Science.gov

Sample records for hadron collider il

  1. Hadron-hadron colliders

    SciTech Connect

    Month, M.; Weng, W.T.

    1983-06-21

    The objective is to investigate whether existing technology might be extrapolated to provide the conceptual framework for a major hadron-hadron collider facility for high energy physics experimentation for the remainder of this century. One contribution to this large effort is to formalize the methods and mathematical tools necessary. In this report, the main purpose is to introduce the student to basic design procedures. From these follow the fundamental characteristics of the facility: its performance capability, its size, and the nature and operating requirements on the accelerator components, and with this knowledge, we can determine the technology and resources needed to build the new facility.

  2. Hadron collider physics

    SciTech Connect

    Pondrom, L.

    1991-10-03

    An introduction to the techniques of analysis of hadron collider events is presented in the context of the quark-parton model. Production and decay of W and Z intermediate vector bosons are used as examples. The structure of the Electroweak theory is outlined. Three simple FORTRAN programs are introduced, to illustrate Monte Carlo calculation techniques. 25 refs.

  3. Results from hadron colliders

    SciTech Connect

    Pondrom, L.G. )

    1990-12-14

    The present status of hadron collider physics is reviewed. The total cross section for {bar p} + p has been measured at 1.8 TeV: {sigma}{sub tot} = 72.1 {plus minus} 3.3 mb. New data confirm the UA2 observation of W/Z {yields} {bar q}q. Precision measurements of M{sub W} by UA2 and CDF give an average value M{sub W} = 80.13 {plus minus} 0.30 GeV/c{sup 2}. When combined with measurements of M{sub Z} from LEP and SLC this number gives sin{sup 2}{theta}{sub W} = 0.227 {plus minus} 0.006, or m{sub top} = 130{sub {minus}60}{sup +40} GeV/c{sup 2} from the EWK radiative correction term {Delta}r. Evidence for hadron colliders as practical sources of b quarks has been strengthened, while searches for t quarks have pushed the mass above M{sub W}: m{sub top} > 89 GeV/c{sup 2} 95% cl (CDF Preliminary). Searches beyond the standard model based on the missing E{sub T} signature have not yet produced any positive results. Future prospects for the discovery of the top quark in the range m{sub top} < 200 GeV/c{sup 2} look promising. 80 refs., 35 figs., 7 tabs.

  4. Hadron collider physics at UCR

    SciTech Connect

    Kernan, A.; Shen, B.C.

    1997-07-01

    This paper describes the research work in high energy physics by the group at the University of California, Riverside. Work has been divided between hadron collider physics and e{sup +}-e{sup {minus}} collider physics, and theoretical work. The hadron effort has been heavily involved in the startup activities of the D-Zero detector, commissioning and ongoing redesign. The lepton collider work has included work on TPC/2{gamma} at PEP and the OPAL detector at LEP, as well as efforts on hadron machines.

  5. Composite leptoquarks in hadronic colliders

    SciTech Connect

    Eboli, O.J.P.; Olinto, A.V.

    1988-12-01

    We study the production of composite scalar leptoquarks in hadronic colliders (CERN p-barp, Fermilab Tevatron p-barp, and the Superconducting Super Collider pp). We examine its direct single production via qg..-->..l+leptoquark, and its effect on the production of lepton pairs (p/sup (-)/p..-->..l/sup +/l/sup -/).

  6. Physics at hadron colliders: Experimental view

    SciTech Connect

    Siegrist, J.L.

    1987-08-01

    The physics of the hadron-hadron collider experiment is considered from an experimental point of view. The problems encountered in determination of how well the standard model describes collider results are discussed. 53 refs., 58 figs.

  7. B physics at hadron colliders

    SciTech Connect

    Butler, J.N.; /Fermilab

    2005-09-01

    This paper discusses the physics opportunity and challenges for doing high precision B physics experiments at hadron colliders. It describes how these challenges have been addressed by the two currently operating experiments, CDF and D0, and how they are addressed by three experiments, ATLAS, CMS, and LHCb, at the LHC.

  8. The very large hadron collider

    SciTech Connect

    1998-09-01

    This paper reviews the purposes to be served by a very large hadron collider and the organization and coordination of efforts to bring it about. There is some discussion of magnet requirements and R&D and the suitability of the Fermilab site.

  9. CERN's Large Hadron Collider project

    NASA Astrophysics Data System (ADS)

    Fearnley, Tom A.

    1997-03-01

    The paper gives a brief overview of CERN's Large Hadron Collider (LHC) project. After an outline of the physics motivation, we describe the LHC machine, interaction rates, experimental challenges, and some important physics channels to be studied. Finally we discuss the four experiments planned at the LHC: ATLAS, CMS, ALICE and LHC-B.

  10. Beam Collimation at Hadron Colliders

    NASA Astrophysics Data System (ADS)

    Mokhov, N. V.

    2003-12-01

    Operational and accidental beam losses in hadron colliders can have a serious impact on machine and detector performance, resulting in effects ranging from minor to catastrophic. Principles and realization are described for a reliable beam collimation system required to sustain favorable background conditions in the collider detectors, provide quench stability of superconducting magnets, minimize irradiation of accelerator equipment, maintain operational reliability over the life of the machine, and reduce the impact of radiation on personnel and the environment. Based on detailed Monte-Carlo simulations, such a system has been designed and incorporated in the Tevatron collider. Its performance, comparison to measurements and possible ways to further improve the collimation efficiency are described in detail. Specifics of the collimation systems designed for the SSC, LHC, VLHC, and HERA colliders are discussed.

  11. Future Electron-Hadron Colliders

    SciTech Connect

    Litvinenko, V.

    2010-05-23

    Outstanding research potential of electron-hadron colliders (EHC) was clearly demonstrated by first - and the only - electron-proton collider HERA (DESY, Germany). Physics data from HERA revealed new previously unknown facets of Quantum Chromo-Dynamics (QCD). EHC is an ultimate microscope probing QCD in its natural environment, i.e. inside the hadrons. In contrast with hadrons, electrons are elementary particles with known initial state. Hence, scattering electrons from hadrons provides a clearest pass to their secrets. It turns EHC into an ultimate machine for high precision QCD studies and opens access to rich physics with a great discovery potential: solving proton spin puzzle, observing gluon saturation or physics beyond standard model. Access to this physics requires high-energy high-luminosity EHCs and a wide reach in the center-of-mass (CM) energies. This paper gives a brief overview of four proposed electron-hadron colliders: ENC at GSI (Darmstadt, Germany), ELIC/MEIC at TJNAF (Newport News, VA, USA), eRHIC at BNL (Upton, NY, USA) and LHeC at CERN (Geneva, Switzerland). Future electron-hadron colliders promise to deliver very rich physics not only in the quantity but also in the precision. They are aiming at very high luminosity two-to-four orders of magnitude beyond the luminosity demonstrated by the very successful HERA. While ENC and LHeC are on opposite side of the energy spectrum, eRHIC and ELIC are competing for becoming an electron-ion collider (EIC) in the U.S. Administrations of BNL and Jlab, in concert with US DoE office of Nuclear Physics, work on the strategy for down-selecting between eRHIC and ELIC. The ENC, EIC and LHeC QCD physics programs to a large degree are complimentary to each other and to the LHC physics. In last decade, an Electron Ion Collider (EIC) collaboration held about 25 collaboration meetings to develop physics program for EIC with CM energy {approx}100 GeV. One of these meetings was held at GSI, where ENC topic was in the

  12. State of hadron collider physics

    SciTech Connect

    Grannis, P.D. |

    1993-12-01

    The 9th Topical Workshop on Proton-Antiproton Collider Physics in Tsukuba Japan demonstrated clearly the enormous breadth of physics accessible in hadron cowders. Although no significant chinks were reported in the armor of the Standard Model, new results presented in this meeting have expanded our knowledge of the electroweak and strong interactions and have extended the searches for non-standard phenomena significantly. Much of the new data reported came from the CDF and D0 experiments at the Fermilab cowder. Superb operation of the Tevatron during the 1992-1993 Run and significant advances on the detector fronts -- in particular, the emergence of the new D0 detector as a productive physics instrument in its first outing and the addition of the CDF silicon vertex detector -- enabled much of this advance. It is noteworthy however that physics from the CERN collider experiments UA1 and UA4 continued to make a large impact at this meeting. In addition, very interesting summary talks were given on new results from HERA, cosmic ray experiments, on super-hadron collider physics, and on e{sup +}e{sup {minus}} experiments at LEP and TRISTAN. These summaries are reported in elsewhere in this volume.

  13. LHC: The Large Hadron Collider

    SciTech Connect

    Lincoln, Don

    2015-03-04

    The Large Hadron Collider (or LHC) is the world’s most powerful particle accelerator. In 2012, scientists used data taken by it to discover the Higgs boson, before pausing operations for upgrades and improvements. In the spring of 2015, the LHC will return to operations with 163% the energy it had before and with three times as many collisions per second. It’s essentially a new and improved version of itself. In this video, Fermilab’s Dr. Don Lincoln explains both some of the absolutely amazing scientific and engineering properties of this modern scientific wonder.

  14. XXth Hadron Collider Physics Symposium

    NASA Astrophysics Data System (ADS)

    In 2009, the Hadron Collider Physics Symposium took place in Evian (France), on the shore of the Geneva Lake, from 16-20 November. It was jointly organised by CERN and the French HEP community (CNRS-IN2P3 and CEA-IRFU). This year's symposium come at an important time for both the Tevatron and LHC communities. It stimulated the completion of analyses for a significant Tevatron data sample, and it allowed an in-depth review of the readiness of the LHC and its detectors just before first collisions. The programme includes sessions on top-quark and electro-weak physics, QCD, B physics, new phenomena, electro-weak symmetry breaking, heavy ions, and the status and commissioning of the LHC machine and its experiments. Conference website : http://hcp2009.in2p3.fr/

  15. Very large hadron collider (VLHC)

    SciTech Connect

    1998-09-01

    A VLHC informal study group started to come together at Fermilab in the fall of 1995 and at the 1996 Snowmass Study the parameters of this machine took form. The VLHC as now conceived would be a 100 TeV hadron collider. It would use the Fermilab Main Injector (now nearing completion) to inject protons at 150 GeV into a new 3 TeV Booster and then into a superconducting pp collider ring producing 100 TeV c.m. interactions. A luminosity of {approximately}10{sup 34} cm{sup -2}s{sup -1} is planned. Our plans were presented to the Subpanel on the Planning for the Future of US High- Energy Physics (the successor to the Drell committee) and in February 1998 their report stated ``The Subpanel recommends an expanded program of R&D on cost reduction strategies, enabling technologies, and accelerator physics issues for a VLHC. These efforts should be coordinated across laboratory and university groups with the aim of identifying design concepts for an economically and technically viable facility`` The coordination has been started with the inclusion of physicists from Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL), and Cornell University. Clearly, this collaboration must expanded internationally as well as nationally. The phrase ``economically and technically viable facility`` presents the real challenge.

  16. Heavy flavor physics at hadron colliders

    SciTech Connect

    Barbaro-Galtieri, A.

    1991-12-01

    The search for the top quark has dominated heavy flavor physics at hadron colliders. For Standard model decay of top the present mass limit in m{sub t} > 89 GeV (95% C.L.). Bottom production cross sections are quite large at hadron colliders, thus providing enough statistics for extensive studies. Results on cross sections, B{sup 0} {minus} {bar B}{sup 0} mixing, exclusive channels and rare B decays will be summarized.

  17. Optimizing integrated luminosity of future hadron colliders

    NASA Astrophysics Data System (ADS)

    Benedikt, Michael; Schulte, Daniel; Zimmermann, Frank

    2015-10-01

    The integrated luminosity, a key figure of merit for any particle-physics collider, is closely linked to the peak luminosity and to the beam lifetime. The instantaneous peak luminosity of a collider is constrained by a number of boundary conditions, such as the available beam current, the maximum beam-beam tune shift with acceptable beam stability and reasonable luminosity lifetime (i.e., the empirical "beam-beam limit"), or the event pileup in the physics detectors. The beam lifetime at high-luminosity hadron colliders is largely determined by particle burn off in the collisions. In future highest-energy circular colliders synchrotron radiation provides a natural damping mechanism, which can be exploited for maximizing the integrated luminosity. In this article, we derive analytical expressions describing the optimized integrated luminosity, the corresponding optimum store length, and the time evolution of relevant beam parameters, without or with radiation damping, while respecting a fixed maximum value for the total beam-beam tune shift or for the event pileup in the detector. Our results are illustrated by examples for the proton-proton luminosity of the existing Large Hadron Collider (LHC) at its design parameters, of the High-Luminosity Large Hadron Collider (HL-LHC), and of the Future Circular Collider (FCC-hh).

  18. Top quark studies at hadron colliders

    SciTech Connect

    Sinervo, P.K.; CDF Collaboration

    1996-08-01

    The techniques used to study top quarks at hadron colliders are presented. The analyses that discovered the top quark are described, with emphasis on the techniques used to tag {ital b} quark jets in candidate events. The most recent measurements of top quark properties by the CDF and D{null} collaborations are reviewed, including the top quark cross section, mass, branching fractions and production properties. Future top quark studies at hadron colliders are discussed, and predictions for event yields and uncertainties in the measurements of top quark properties are presented.

  19. Top quark studies at hadron colliders

    SciTech Connect

    Sinervo, P.K.

    1997-01-01

    The techniques used to study top quarks at hadron colliders are presented. The analyses that discovered the top quark are described, with emphasis on the techniques used to tag b quark jets in candidate events. The most recent measurements of top quark properties by the CDF and DO Collaborations are reviewed, including the top quark cross section, mass, branching fractions, and production properties. Future top quark studies at hadron colliders are discussed, and predictions for event yields and uncertainties in the measurements of top quark properties are presented.

  20. Black Holes and the Large Hadron Collider

    ERIC Educational Resources Information Center

    Roy, Arunava

    2011-01-01

    The European Center for Nuclear Research or CERN's Large Hadron Collider (LHC) has caught our attention partly due to the film "Angels and Demons." In the movie, an antimatter bomb attack on the Vatican is foiled by the protagonist. Perhaps just as controversial is the formation of mini black holes (BHs). Recently, the American Physical Society…

  1. The Large Hadron Collider: Redefining High Energy

    SciTech Connect

    Demers, Sarah

    2007-06-19

    Particle physicists have a description of the forces of nature known as the Standard Model that has successfully withstood decades of testing at laboratories around the world. Though the Standard Model is powerful, it is not complete. Important details like the masses of particles are not explained well, and realities as fundamental as gravity, dark matter, and dark energy are left out altogether. I will discuss gaps in the model and why there is hope that some puzzles will be solved by probing high energies with the Large Hadron Collider. Beginning next year, this machine will accelerate protons to record energies, hurling them around a 27 kilometer ring before colliding them 40 million times per second. Detectors the size of five-story buildings will record the debris of these collisions. The new energy frontier made accessible by the Large Hadron Collider will allow thousands of physicists to explore nature's fundamental forces and particles from a fantastic vantage point.

  2. Cross sections at hadron colliders

    SciTech Connect

    Paige, F.E.

    1982-01-01

    The predicted cross sections are given for new Z'/sup 0/ bosons, for the Drell-Yan continuum of ..mu../sup +/..mu../sup -/ pairs, for high p/sub T/ hadron jets, for high p/sub T/ single photons, and for the associated production of heavy quarks. These processes have been selected not to cover the most interesting physics, but to provide a representative selection of cross sections for which to compare various energies and luminosities.

  3. Hadron colliders (SSC/LHC)

    SciTech Connect

    Chao, A.W.; Palmer, R.B.; Evans, L.; Gareyte, J.; Siemann, R.H.

    1992-12-31

    The nominal SSC and LHC designs should operate conservatively at luminosities up to 10{sup 33} cm{sup {minus}2} s{sup {minus}1}. This luminosity is dictated by the event rates that can be handled by the detectors. However, this limit is event dependent (e.g. it does not take much of a detector to detect the event pp {yields} elephant; all one needs is extremely high luminosity). As such, it is useful to explore the possibility of going beyond the 10{sup 33} cm{sup {minus}2} s{sup {minus}1} level. Such exploration will also improve the accelerator physics understanding of pp collider designs. If the detector limitations are removed, the first accelerator limits occur when the luminosity is at the level of 10{sup 34} cm{sup {minus}2}s{sup {minus}1}. These accelerator limits will first be reviewed. The authors will then continue on to explore even higher luminosity as the ultimate limit of pp colliders. Accelerator technologies needed to achieve this ultimate luminosity as well as the R and D needed to reach it are discussed.

  4. Collins Asymmetry at Hadron Colliders

    SciTech Connect

    Yuan, Feng

    2008-01-17

    We study the Collins effect in the azimuthal asymmetricdistribution of hadrons inside a high energy jet in the single transversepolarized proton proton scattering. From the detailed analysis ofone-gluon and two-gluon exchange diagrams contributions, the Collinsfunction is found the same as that in the semi-inclusive deep inelasticscattering and e+e- annihilations. The eikonal propagators in thesediagrams do not contribute to the phase needed for the Collins-typesingle spin asymmetry, and the universality is derived as a result of theWard identity. We argue that this conclusion depends on the momentum flowof the exchanged gluon and the kinematic constraints in the fragmentationprocess, and is generic and model-independent.

  5. Precision Event Simulation for Hadron Colliders

    NASA Astrophysics Data System (ADS)

    Hoeche, Stefan

    2016-03-01

    Hadron colliders are workhorses of particle physics, enabling scientific breakthroughs such as the discovery of the Higgs boson. Hadron beams reach the highest energies, but they also produce very complex collisions. Studying the underlying dynamics requires involved multi-particle calculations. Over the past decades Monte-Carlo simulation programs were developed to tackle this task. They have by now evolved into precision tools for theorists and experimenters alike. This talk will give an introduction to event generators and discuss the current status of development.

  6. Cost optimization of a hadron collider

    SciTech Connect

    Vadim V. Kashikhin and Peter J. Limon

    2001-11-30

    This paper discusses cost scaling laws and optimization of hadron colliders based on high field magnets. Using a few simplifying assumptions that should give a reasonable approximation, cost of the magnet is divided among several major components. Scaling law for every component is determined along with the weight factors that allow cost comparison between different magnet designs. Cost of hadron collider as a function of field, aperture size and critical current density in superconductor is described analytically that allows cost optimization by changing magnet parameters. The optimum magnetic field is determined for machines based on NbTi superconductor, operating at 4.2 K or 1.9 K and NB{sub 3}Sn superconductor operating at 4.2 K. Analyzed influence of main magnet design parameters on a machine cost provided information on ways leading to the magnet cost reduction. Economical justification of a NB{sub 3}Sn collider is performed, which lets to determine the maximum price ratio between NB{sub 3}Sn and NbTi superconductors that makes NB{sub 3}Sn collider economically effective.

  7. The Tevatron Hadron Collider: A short history

    SciTech Connect

    Tollestrup, A.V.

    1994-11-01

    The subject of this presentation was intended to cover the history of hadron colliders. However this broad topic is probably better left to historians. I will cover a much smaller portion of this subject and specialize my subject to the history of the Tevatron. As we will see, the Tevatron project is tightly entwined with the progress in collider technology. It occupies a unique place among accelerators in that it was the first to make use of superconducting magnets and indeed the basic design now forms a template for all machines using this technology. It was spawned in an incredibly productive era when new ideas were being generated almost monthly and it has matured into our highest energy collider complete with two large detectors that provide the major facility in the US for probing high Pt physics for the coming decade.

  8. String resonances at hadron colliders

    NASA Astrophysics Data System (ADS)

    Anchordoqui, Luis A.; Antoniadis, Ignatios; Dai, De-Chang; Feng, Wan-Zhe; Goldberg, Haim; Huang, Xing; Lüst, Dieter; Stojkovic, Dejan; Taylor, Tomasz R.

    2014-09-01

    We consider extensions of the standard model based on open strings ending on D-branes, with gauge bosons due to strings attached to stacks of D-branes and chiral matter due to strings stretching between intersecting D-branes. Assuming that the fundamental string mass scale Ms is in the TeV range and that the theory is weakly coupled, we discuss possible signals of string physics at the upcoming HL-LHC run (integrated luminosity =3000 fb-1) with a center-of-mass energy of √s =14 TeV and at potential future pp colliders, HE-LHC and VLHC, operating at √s =33 and 100 TeV, respectively (with the same integrated luminosity). In such D-brane constructions, the dominant contributions to full-fledged string amplitudes for all the common QCD parton subprocesses leading to dijets and γ +jet are completely independent of the details of compactification and can be evaluated in a parameter-free manner. We make use of these amplitudes evaluated near the first (n=1) and second (n=2) resonant poles to determine the discovery potential for Regge excitations of the quark, the gluon, and the color singlet living on the QCD stack. We show that for string scales as large as 7.1 TeV (6.1 TeV) lowest massive Regge excitations are open to discovery at the ≥5σ in dijet (γ +jet) HL-LHC data. We also show that for n=1 the dijet discovery potential at HE-LHC and VLHC exceedingly improves: up to 15 TeV and 41 TeV, respectively. To compute the signal-to-noise ratio for n=2 resonances, we first carry out a complete calculation of all relevant decay widths of the second massive level string states (including decays into massless particles and a massive n=1 and a massless particle), where we rely on factorization and conformal field theory techniques. Helicity wave functions of arbitrary higher spin massive bosons are also constructed. We demonstrate that for string scales Ms≲10.5 TeV (Ms≲28 TeV) detection of n =2 Regge recurrences at HE-LHC (VLHC) would become the smoking gun for D

  9. Global QCD Analysis and Hadron Collider Physics

    SciTech Connect

    Tung, W.-K.

    2005-03-22

    The role of global QCD analysis of parton distribution functions (PDFs) in collider physics at the Tevatron and LHC is surveyed. Current status of PDF analyses are reviewed, emphasizing the uncertainties and the open issues. The stability of NLO QCD global analysis and its prediction on 'standard candle' W/Z cross sections at hadron colliders are discussed. The importance of the precise measurement of various W/Z cross sections at the Tevatron in advancing our knowledge of PDFs, hence in enhancing the capabilities of making significant progress in W mass and top quark parameter measurements, as well as the discovery potentials of Higgs and New Physics at the Tevatron and LHC, is emphasized.

  10. Black Holes and the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Roy, Arunava

    2011-12-01

    The European Center for Nuclear Research or CERN's Large Hadron Collider (LHC) has caught our attention partly due to the film ``Angels and Demons.'' In the movie, an antimatter bomb attack on the Vatican is foiled by the protagonist. Perhaps just as controversial is the formation of mini black holes (BHs). Recently, the American Physical Society1 website featured an article on BH formation at the LHC.2 This article examines some aspects of mini BHs and explores the possibility of their detection at the LHC.

  11. Black holes at the Large Hadron Collider.

    PubMed

    Dimopoulos, S; Landsberg, G

    2001-10-15

    If the scale of quantum gravity is near TeV, the CERN Large Hadron Collider will be producing one black hole (BH) about every second. The decays of the BHs into the final states with prompt, hard photons, electrons, or muons provide a clean signature with low background. The correlation between the BH mass and its temperature, deduced from the energy spectrum of the decay products, can test Hawking's evaporation law and determine the number of large new dimensions and the scale of quantum gravity. PMID:11690198

  12. String resonances at the Large Hadron Collider

    SciTech Connect

    Roy, Arunava; Cavaglia, Marco

    2009-07-01

    The Large Hadron Collider promises to discover new physics beyond the standard model. An exciting possibility is the formation of string resonances at the TeV scale. In this article, we show how string resonances may be detected at the LHC in the pp{yields}{gamma}+jet channel. Our study is based on event-shape variables, missing energy and momentum, maximum transverse momentum of photons and dijet invariant mass. These observables provide interesting signatures which enable us to discriminate string events from the standard model background.

  13. Mass reach scaling for future hadron colliders

    NASA Astrophysics Data System (ADS)

    Rizzo, Thomas G.

    2015-04-01

    The primary goal of any future hadron collider is to discover new physics (NP) associated with a high mass scale, , beyond the range of the LHC. In order to maintain the same relative mass reach for rate-limited NP, , as increases, Richter recently reminded us that the required integrated luminosity obtainable at future hadron colliders (FHC) must grow rapidly, , in the limit of naive scaling. This would imply, e.g., a 50-fold increase in the required integrated luminosity when going from the 14 TeV LHC to a FHC with TeV, an increase that would prove quite challenging on many different fronts. In this paper we point out, due to the scaling violations associated with the evolution of the parton density functions (PDFs) and the running of the strong coupling, , that the actual luminosity necessary in order to maintain any fixed value of the relative mass reach is somewhat greater than this scaling result indicates. However, the actual values of the required luminosity scaling are found to be dependent upon the detailed nature of the NP being considered. Here we elucidate this point explicitly by employing several specific benchmark examples of possible NP scenarios and briefly discuss the (relatively weak) search impact in each case if these luminosity goals are not met.

  14. QCD and jets at hadron colliders

    NASA Astrophysics Data System (ADS)

    Sapeta, Sebastian

    2016-07-01

    We review various aspects of jet physics in the context of hadron colliders. We start by discussing the definitions and properties of jets and recent development in this area. We then consider the question of factorization for processes with jets, in particular for cases in which jets are produced in special configurations, like for example in the region of forward rapidities. We review numerous perturbative methods for calculating predictions for jet processes, including the fixed-order calculations as well as various matching and merging techniques. We also discuss the questions related to non-perturbative effects and the role they play in precision jet studies. We describe the status of calculations for processes with jet vetoes and we also elaborate on production of jets in forward direction. Throughout the article, we present selected comparisons between state-of-the-art theoretical predictions and the data from the LHC.

  15. Illuminating new electroweak states at hadron colliders

    NASA Astrophysics Data System (ADS)

    Ismail, Ahmed; Izaguirre, Eder; Shuve, Brian

    2016-07-01

    In this paper, we propose a novel powerful strategy to perform searches for new electroweak states. Uncolored electroweak states appear in generic extensions of the Standard Model (SM) and yet are challenging to discover at hadron colliders. This problem is particularly acute when the lightest state in the electroweak multiplet is neutral and all multiplet components are approximately degenerate. In this scenario, production of the charged fields of the multiplet is followed by decay into nearly invisible states; if this decay occurs promptly, the only way to infer the presence of the reaction is through its missing energy signature. Our proposal relies on emission of photon radiation from the new charged states as a means of discriminating the signal from SM backgrounds. We demonstrate its broad applicability by studying two examples: a pure Higgsino doublet and an electroweak quintuplet field.

  16. Big Science and the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Giudice, Gian Francesco

    2012-03-01

    The Large Hadron Collider (LHC), the particle accelerator operating at CERN, is probably the most complex and ambitious scientific project ever accomplished by humanity. The sheer size of the enterprise, in terms of financial and human resources, naturally raises the question whether society should support such costly basic-research programs. I address this question by first reviewing the process that led to the emergence of Big Science and the role of large projects in the development of science and technology. I then compare the methodologies of Small and Big Science, emphasizing their mutual linkage. Finally, after examining the cost of Big Science projects, I highlight several general aspects of their beneficial implications for society.

  17. The Large Hadron Collider, a personal recollection

    NASA Astrophysics Data System (ADS)

    Evans, Lyndon

    2014-03-01

    The construction of the Large Hadron Collider (LHC) has been a massive endeavor spanning almost 30 years from conception to commissioning. Building the machine with the highest possible energy (7 TeV) in the existing LEP tunnel of 27 km circumference and with a tunnel diameter of only 3.8 m has required considerable innovation. The first was the development of an idea first proposed by Bob Palmer at Brookhaven National Laboratory in 1978, where the two rings are integrated into a single magnetic structure. This compact 2-in-1 structure was essential for the LHC due to both the limited space available in the existing Large Electron-Positron collider tunnel and the cost. The second innovation was the bold move to use superfluid helium cooling on a massive scale, which was imposed by the need to achieve a high (8.3 T) magnetic field using an affordable Nb-Ti superconductor. In this article, no attempt is made to give a comprehensive review of the machine design. This can be found in the LHC Design Report [1], which gives a detailed description of the machine as it was built and comprehensive references. A more popular description of the LHC and its detectors can be found in [2]. Instead, this is a more personal account of the project from approval to commissioning, describing some of the main technologies and some of the trials and tribulations encountered in bringing this truly remarkable machine alive.

  18. Protection of the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Schmidt, R.; Assmann, R.; Carlier, E.; Dehning, B.; Denz, R.; Goddard, B.; Holzer, E. B.; Kain, V.; Puccio, B.; Todd, B.; Uythoven, J.; Wenninger, J.; Zerlauth, M.

    2006-11-01

    The Large Hadron Collider (LHC) at CERN will collide two counter-rotating proton beams, each with an energy of 7 TeV. The energy stored in the superconducting magnet system will exceed 10 GJ, and each beam has a stored energy of 362 MJ which could cause major damage to accelerator equipment in the case of uncontrolled beam loss. Safe operation of the LHC will therefore rely on a complex system for equipment protection. The systems for protection of the superconducting magnets in case of quench must be fully operational before powering the magnets. For safe injection of the 450 GeV beam into the LHC, beam absorbers must be in their correct positions and specific procedures must be applied. Requirements for safe operation throughout the cycle necessitate early detection of failures within the equipment, and active monitoring of the beam with fast and reliable beam instrumentation, mainly beam loss monitors (BLM). When operating with circulating beams, the time constant for beam loss after a failure extends from apms to a few minutes—failures must be detected sufficiently early and transmitted to the beam interlock system that triggers a beam dump. It is essential that the beams are properly extracted on to the dump blocks at the end of a fill and in case of emergency, since the beam dump blocks are the only elements of the LHC that can withstand the impact of the full beam.

  19. Heavy flavor production and top quark search at hadron colliders

    SciTech Connect

    Baer, H.A.

    1991-01-01

    We review heavy flavor production at hadron colliders, with an eye towards the physics of the top quark. Motivation for existence of top, and current status of top search are reviewed. The physics of event simulation at hadron colliders is reviewed. We discuss characteristics of top quark events at p{bar p} colliders that may aid in distinguishing the top quark signal from Standard Model backgrounds, and illustrate various cuts which may be useful for top discovery. Top physics at hadron supercolliders is commented upon, as well as top quark mass measurement techniques. 22 refs., 5 figs.

  20. B Physics at Hadron Colliders: Present and Future

    SciTech Connect

    Calvi, Marta

    2005-10-12

    An extensive program of B physics and CP violation measurements can be performed at Hadron Colliders. Results from the experiments CDF and DO at the Tevatron and prospects for future measurements from experiments at the LHC are presented here.

  1. Higgs boson production at hadron colliders: Signal and background processes

    SciTech Connect

    David Rainwater; Michael Spira; Dieter Zeppenfeld

    2004-01-12

    We review the theoretical status of signal and background calculations for Higgs boson production at hadron colliders. Particular emphasis is given to missing NLO results, which will play a crucial role for the Tevatron and the LHC.

  2. A large hadron electron collider at CERN

    DOE PAGESBeta

    Abelleira Fernandez, J. L.

    2015-04-06

    This document provides a brief overview of the recently published report on the design of the Large Hadron Electron Collider (LHeC), which comprises its physics programme, accelerator physics, technology and main detector concepts. The LHeC exploits and develops challenging, though principally existing, accelerator and detector technologies. This summary is complemented by brief illustrations of some of the highlights of the physics programme, which relies on a vastly extended kinematic range, luminosity and unprecedented precision in deep inelastic scattering. Illustrations are provided regarding high precision QCD, new physics (Higgs, SUSY) and eletron-ion physics. The LHeC is designed to run synchronously withmore » the LHC in the twenties and to achieve an integrated luminosity of O(100)fb–1. It will become the cleanest high resolution microscope of mankind and will substantially extend as well as complement the investigation of the physics of the TeV energy scale, which has been enabled by the LHC.« less

  3. Simulating graviton production at hadron colliders

    NASA Astrophysics Data System (ADS)

    de Aquino, Priscila; Hagiwara, Kaoru; Li, Qiang; Maltoni, Fabio

    2011-06-01

    Spin-2 particles and in particular gravitons are predicted in many new physics scenarios at the TeV scale. Depending on the details of models such new states might show up as a continuum, massless particles, or TeV scale resonances. Correspondingly, very different discovery signatures should be exploited, from the search of excesses in events with multi jets and large missing transverse energy, to resonances in weak boson or jet pair productions. We present a very general and flexible implementation in M ad-G raph/M adE vent of spin-2 particles interacting with the standard model particles via the energy momentum tensor, which encompasses all of the most popular TeV scale models featuring gravitons. By merging matrix elements with parton shower, we can generate inclusive samples of graviton + jets at the hadron colliders in several scenarios (ADD, zero-mass graviton and RS). We compare and validate our results against the corresponding next-to-leading order QCD calculations.

  4. A large hadron electron collider at CERN

    SciTech Connect

    Abelleira Fernandez, J. L.

    2015-04-06

    This document provides a brief overview of the recently published report on the design of the Large Hadron Electron Collider (LHeC), which comprises its physics programme, accelerator physics, technology and main detector concepts. The LHeC exploits and develops challenging, though principally existing, accelerator and detector technologies. This summary is complemented by brief illustrations of some of the highlights of the physics programme, which relies on a vastly extended kinematic range, luminosity and unprecedented precision in deep inelastic scattering. Illustrations are provided regarding high precision QCD, new physics (Higgs, SUSY) and eletron-ion physics. The LHeC is designed to run synchronously with the LHC in the twenties and to achieve an integrated luminosity of O(100)fb–1. It will become the cleanest high resolution microscope of mankind and will substantially extend as well as complement the investigation of the physics of the TeV energy scale, which has been enabled by the LHC.

  5. The Very Large Hadron Collider: The farthest energy frontier

    SciTech Connect

    Barletta, William A.

    2001-06-21

    The Very Large Hadron Collider (or Eloisatron) represents what may well be the final step on the energy frontier of accelerator-based high energy physics. While an extremely high luminosity proton collider at 100-200 TeV center of mass energy can probably be built in one step with LHC technology, that machine would cost more than what is presently politically acceptable. This talk summarizes the strategies of collider design including staged deployment, comparison with electron-positron colliders, opportunities for major innovation, and the technical challenges of reducing costs to manageable proportions. It also presents the priorities for relevant R and D for the next few years.

  6. INTRA-BEAM SCATTERING SCALING FOR VERY LARGE HADRON COLLIDERS.

    SciTech Connect

    WEI,J.; PARZEN,G.

    2001-06-18

    For Very Large Hadron Colliders (VLHC), flat hadron beams [2] with their vertical emittance much smaller than their horizontal emittance are proposed to maximize the design luminosity. Emittance growth caused by intra-beam scattering (IBS) is a concern on the realization of such flat-beam conditions. Based on existing IBS formalism on beams of Gaussian distribution, we analytically derive [6] the IBS growth rate and determine the IBS limit on the aspect ratio for a flat beam.

  7. Jet Reconstruction and Spectroscopy at Hadron Colliders

    NASA Astrophysics Data System (ADS)

    Bellettini, Giorgio

    2011-11-01

    Dear colleagues and friends, Major new particle discoveries were made in the past by exploring the mass spectrum of lepton pairs. These searches still have great potential. However, new particle searches are now being extended to masses larger than the W, Z mass. More and more decay channels open up and the branching ratios into lepton pairs are reduced. Also, physics may dictate that states with heavy bosons and quarks become dominant. Examples are the decay of top quarks, and the expected final states of the standard model Higgs boson. Supersymmetry in any of its wide spectrum of models predicts intrigued final states where jets are major observables. To reconstruct masses and to study the dynamics of these states one must exploit the energy-momentum four-vectors of jets. Past experiments at the CERN SPS collider, at HERA, at LEP and now at the Tevatron collider and at LHC, have studied how best to reconstruct hadron jets. However, originally the role of jets in searching for new physics was primarily to sense new parton contact interactions by means of increased large pt tails in inclusive jet spectra, or studying jet events with large missing Et, or measuring branching ratios into jets of different flavour. These studies did not require as accurate a measure of jet four-momenta as needed in new particle searches in multi-jets final states. Figure 1 Figure 1. W, Z associated production in CDF events with large Et, miss and 2 jets. Consider for example (figure 1) the mass spectrum of dijets in events with large missing Et recently measured by CDF [1]. Trigger and analysis cuts were chosen so as to favour production of heavy boson pairs, with decay of one Z boson into neutrinos tagging the event and another W or Z boson decaying into jets. Associated production of boson pairs is observed, but the dijet mass resolution does not allow the separation of W from Z. A broad agreement of the overall observed rate with expectation is found, but a comparative study of the

  8. Resummed Results for Hadron Collider Observables

    NASA Astrophysics Data System (ADS)

    McAslan, Heather

    2016-07-01

    Event shapes are invaluable QCD tools for theoretical calculations and experimental measurements. We revise the definition of these observables in e+e- annihilation and in hadron collisions, and give a review of the state-of-the-art results for their resummation. Then we detail how recent work on the re-summation of event shapes in electron-positron annihilation can provide us with the tools to extend resummation of generic hadronic event shapes to NNLL accuracy. We match our findings to fixed-order results at NNLO accuracy, showing the sizeable effects of resummation in the relevant regions of phase space.

  9. TOP AND HIGGS PHYSICS AT THE HADRON COLLIDERS

    SciTech Connect

    Jabeen, Shabnam

    2013-10-20

    This review summarizes the recent results for top quark and Higgs boson measurements from experiments at Tevatron, a proton–antiproton collider at a center-of-mass energy of √ s =1 . 96 TeV, and the Large Hadron Collider, a proton–proton collider at a center- of-mass energy of √ s = 7 TeV. These results include the discovery of a Higgs-like boson and measurement of its various properties, and measurements in the top quark sector, e.g. top quark mass, spin, charge asymmetry and production of single top quark.

  10. High-brightness injectors for hadron colliders

    SciTech Connect

    Wangler, T.P.

    1990-01-01

    The counterrotating beams in collider rings consist of trains of beam bunches with N{sub B} particles per bunch, spaced a distance S{sub B} apart. When the bunches collide, the interaction rate is determined by the luminosity, which is defined as the interaction rate per unit cross section. For head-on collisions between cylindrical Gaussian beams moving at speed {beta}c, the luminosity is given by L = N{sub B}{sup 2}{beta}c/4{pi}{sigma}{sup 2}S{sub B}, where {sigma} is the rms beam size projected onto a transverse plane (the two transverse planes are assumed identical) at the interaction point. This beam size depends on the rms emittance of the beam and the focusing strength, which is a measure of the 2-D phase-space area in each transverse plane, and is defined in terms of the second moments of the beam distribution. Our convention is to use the rms normalized emittance, without factors of 4 or 6 that are sometimes used. The quantity {tilde {beta}} is the Courant-Synder betatron amplitude function at the interaction point, a characteristic of the focusing lattice and {gamma} is the relativistic Lorentz factor. Achieving high luminosity at a given energy, and at practical values of {tilde {beta}} and S{sub B}, requires a large value for the ratio N{sub B}{sup 2}/{var epsilon}{sub n}, which implies high intensity and small emittance. Thus, specification of the luminosity sets the requirements for beam intensity and emittance, and establishes the requirements on the performance of the injector to the collider ring. In general, for fixed N{sub B}, the luminosity can be increased if {var epsilon}{sub n} can be reduced. The minimum emittance of the collider is limited by the performance of the injector; consequently the design of the injector is of great importance for the ultimate performance of the collider.

  11. Invisible Higgs decay at the Large Hadron-Electron Collider

    NASA Astrophysics Data System (ADS)

    Tang, Yi-Lei; Zhang, Chen; Zhu, Shou-hua

    2016-07-01

    The possibility that the 125 GeV Higgs boson may decay into invisible non-standard-model (non-SM) particles is theoretically and phenomenologically intriguing. In this paper, we investigate the sensitivity of the Large Hadron Electron Collider (LHeC) to an invisibly decaying Higgs, in its proposed high-luminosity running mode. We focus on the neutral current Higgs production channel which offers more kinematical handles than its charged current counterpart. The signal contains one electron, one jet, and large missing energy. With a cut-based parton-level analysis, we estimate that if the h Z Z coupling is at its standard model (SM) value, then assuming an integrated luminosity of 1 ab-1 , the LHeC with the proposed 60 GeV electron beam (with -0.9 polarization) and 7 TeV proton beam is capable of probing Br (h →TE)=6 % at 2 σ level. Good lepton veto performance (especially hadronic τ veto) in the forward region is crucial to the suppression of the dominant W j e background. We also explicitly point out the important role that may be played by the LHeC in probing a wide class of exotic Higgs decay processes and emphasize the general function of lepton-hadron colliders in the precision study of new resonances after their discovery in hadron-hadron collisions.

  12. The Structure of Jets at Hadron Colliders

    SciTech Connect

    Larkoski, Andrew James

    2012-08-01

    Particle physics seeks to understand the interactions and properties of the fundamental particles. To gain understanding, there is an interplay between theory and experiment. Models are proposed to explain how particles behave and interact. These models make precise predictions that can be tested. Experiments are built and executed to measure the properties of these particles, providing necessary tests for the theories that attempt to explain the realm of fundamental particles. However, there is also another level of interaction between theory and experiment; the development of new experiments demands the study of how particles will behave with respect to the measured observables toward the goal of understanding the details and idiosyncrasies of the measurements very well. Only once these are well-modeled and understood can one be con dent that the data that are measured is trustworthy. The modeling and interpretation of the physics of a proton collider, such as the LHC, is the main topic of this thesis.

  13. Central Exclusive Particle Production at High Energy Hadron Colliders

    SciTech Connect

    Albrow, M.G.; Coughlin, T.D.; Forshaw, J.R.; /Manchester U.

    2010-06-01

    We review the subject of central exclusive particle production at high energy hadron colliders. In particular we consider reactions of the type A + B {yields} A + X + B, where X is a fully specified system of particles that is well separated in rapidity from the outgoing beam particles. We focus on the case where the colliding particles are strongly interacting and mainly they will be protons (or antiprotons) as at the ISR, Sp{bar p}S, Tevatron and LHC. The data are surveyed and placed within the context of theoretical developments.

  14. Collider Detector at Fermilab (CDF): Data from B Hadrons Research

    DOE Data Explorer

    The Collider Detector at Fermilab (CDF) is a Tevatron experiment at Fermilab. The Tevatron, a powerful particle accelerator, accelerates protons and antiprotons close to the speed of light, and then makes them collide head-on inside the CDF detector. The CDF detector is used to study the products of such collisions. The CDF Physics Group is organized into six working groups, each with a specific focus. The Bottom group studies the production and decay of B hadrons. Their public web page makes data and numerous figures available from both CDF Runs I and II.

  15. Searches for scalar and vector leptoquarks at future hadron colliders

    SciTech Connect

    Rizzo, T.G.

    1996-09-01

    The search reaches for both scalar(S) and vector(V) leptoquarks at future hadron colliders are summarized. In particular the authors evaluate the production cross sections of both leptoquark types at TeV33 and LHC as well as the proposed 60 and 200 TeV colliders through both quark-antiquark annihilation and gluon-gluon fusion: q{anti q},gg {r_arrow} SS,VV. Experiments at these machines should easily discover such particles if their masses are not in excess of the few TeV range.

  16. Nonuniversal gaugino and scalar masses, hadronically quiet trileptons, and the Large Hadron Collider

    SciTech Connect

    Bhattacharya, Subhaditya; Datta, AseshKrishna; Mukhopadhyaya, Biswarup

    2008-12-01

    We investigate the parameter space of the minimal supersymmetric standard model where the gluino and squark masses are much above 1 TeV but the remaining part of the sparticle spectrum is accessible to the Large Hadron Collider at CERN. After pointing out that such a scenario may constitute an important benchmark of gaugino/scalar nonuniversality, we find that hadronically quiet trileptons are rather useful signals for it. Regions of the parameter space, where the signal is likely to be appreciable, are identified through a detailed scan. The advantage of hadronically quiet trileptons over other types of signals is demonstrated.

  17. The technical challenges of the Large Hadron Collider.

    PubMed

    Collier, Paul

    2015-01-13

    The Large Hadron Collider (LHC) is a 27km circumference hadron collider, built at CERN to explore the energy frontier of particle physics. Approved in 1994, it was commissioned and began operation for data taking in 2009. The design and construction of the LHC presented many design, engineering and logistical challenges which involved pushing a number of technologies well beyond their level at the time. Since the start-up of the machine, there has been a very successful 3-year run with an impressive amount of data delivered to the LHC experiments. With an increasingly large stored energy in the beam, the operation of the machine itself presented many challenges and some of these will be discussed. Finally, the planning for the next 20 years has been outlined with progressive upgrades of the machine, first to nominal energy, then to progressively higher collision rates. At each stage the technical challenges are illustrated with a few examples. PMID:26949802

  18. Higgs Boson Searches at Hadron Colliders (1/4)

    ScienceCinema

    None

    2011-10-06

    In these Academic Training lectures, the phenomenology of Higgs bosons and search strategies at hadron colliders are discussed. After a brief introduction on Higgs bosons in the Standard Model and a discussion of present direct and indirect constraints on its mass the status of the theoretical cross section calculations for Higgs boson production at hadron colliders is reviewed. In the following lectures important experimental issues relevant for Higgs boson searches (trigger, measurements of leptons, jets and missing transverse energy) are presented. This is followed by a detailed discussion of the discovery potential for the Standard Model Higgs boson for both the Tevatron and the LHC experiments. In addition, various scenarios beyond the Standard Model, primarily the MSSM, are considered. Finally, the potential and strategies to measured Higgs boson parameters and the investigation of alternative symmetry breaking scenarios are addressed.

  19. Learning to See at the Large Hadron Collider

    SciTech Connect

    Quigg, Chris

    2010-01-01

    The staged commissioning of the Large Hadron Collider presents an opportunity to map gross features of particle production over a significant energy range. I suggest a visual tool - event displays in (pseudo)rapidity-transverse-momentum space - as a scenic route that may help sharpen intuition, identify interesting classes of events for further investigation, and test expectations about the underlying event that accompanies large-transverse-momentum phenomena.

  20. Discriminating Supersymmetry and Black Holes at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Roy, Arunava; Cavaglia, Marco

    2008-04-01

    We assess the distinguishability between supersymmetry and black hole events at the Large Hadron Collider. Black hole events are simulated with the CATFISH black hole generator. Supersymmetry simulations use a combination of PYTHIA and ISAJET. Our study, based on event shape variables, visible and missing momenta, and analysis of dilepton events, shows that supersymmetry and black hole events at the LHC can be easily discriminated.

  1. Electron Lenses for the Large Hadron Collider

    SciTech Connect

    Stancari, Giulio; Valishev, Alexander; Bruce, Roderik; Redaelli, Stefano; Rossi, Adriana; Salvachua, Belen

    2014-07-01

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in RHIC at BNL. Within the US LHC Accelerator Research Program and the European HiLumi LHC Design Study, hollow electron beam collimation was studied as an option to complement the collimation system for the LHC upgrades. This project is moving towards a technical design in 2014, with the goal to build the devices in 2015-2017, after resuming LHC operations and re-assessing needs and requirements at 6.5 TeV. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles.

  2. Disambiguating seesaw models using invariant mass variables at hadron colliders

    NASA Astrophysics Data System (ADS)

    Dev, P. S. Bhupal; Kim, Doojin; Mohapatra, Rabindra N.

    2016-01-01

    We propose ways to distinguish between different mechanisms behind the collider signals of TeV-scale seesaw models for neutrino masses using kinematic endpoints of invariant mass variables. We particularly focus on two classes of such models widely discussed in literature: (i) Standard Model extended by the addition of singlet neutrinos and (ii) Left-Right Symmetric Models. Relevant scenarios involving the same "smoking-gun" collider signature of dilepton plus dijet with no missing transverse energy differ from one another by their event topology, resulting in distinctive relationships among the kinematic endpoints to be used for discerning them at hadron colliders. These kinematic endpoints are readily translated to the mass parameters of the on-shell particles through simple analytic expressions which can be used for measuring the masses of the new particles. A Monte Carlo simulation with detector effects is conducted to test the viability of the proposed strategy in a realistic environment. Finally, we discuss the future prospects of testing these scenarios at the √{s}=14 and 100 TeV hadron colliders.

  3. Dark matter searches at the large hadron collider

    NASA Astrophysics Data System (ADS)

    Hoh, S. Y.; Komaragiri, J. R.; Wan Abdullah, W. A. T.

    2016-01-01

    Dark Matter is a hypothetical particle proposed to explain the missing matter expected from the cosmological observation. The motivation of Dark Matter is overwhelming however as it is mainly deduced from its gravitational interaction, for it does little to pinpoint what Dark Matter really is. In WIMPs Miracle, weakly interactive massive particle being the Dark Matter candidate is correctly producing the current thermal relic density at weak scale, implying the possibility of producing and detecting it in Large Hadron Collider. Assuming WIMPs being the maverick particle within collider, it is expected to be pair produced in association with a Standard Model particle. The presence of the WIMPs pair is inferred from the Missing Transverse Energy (MET) which is the vector sum of the imbalance in the transverse momentum plane recoils a Standard Model Particle. The collider is able to produce light mass Dark Matter which the traditional detection fail to detect due to the small momentum transfer involved in the interaction; on the other hand, the traditional detection is robust in detecting a higher Dark matter masses but the collider is suffered from the parton distribution function suppression. Topologically the processes are similar to the scattering processes in the direct detection thus complementary to the traditional Dark Matter detection. The collider searches are strongly motivated as the results are usually translated to the annihilation and scattering rates at more traditional Dark Matter-oriented experiments, thus a concordance approach is adapted. An overview of Dark Matter searches at the Large Hadron Collider will be covered in this paper.

  4. Physics and Analysis at a Hadron Collider - An Introduction (1/3)

    ScienceCinema

    None

    2011-10-06

    This is the first lecture of three which together discuss the physics of hadron colliders with an emphasis on experimental techniques used for data analysis. This first lecture provides a brief introduction to hadron collider physics and collider detector experiments as well as offers some analysis guidelines. The lectures are aimed at graduate students.

  5. A 233 km tunnel for lepton and hadron colliders

    NASA Astrophysics Data System (ADS)

    Summers, D. J.; Cremaldi, L. M.; Datta, A.; Duraisamy, M.; Luo, T.; Lyons, G. T.

    2012-12-01

    A decade ago, a cost analysis was conducted to bore a 233 km circumference Very Large Hadron Collider (VLHC) tunnel passing through Fermilab. Here we outline implementations of e+e-, pp, and μ+μ- collider rings in this tunnel using recent technological innovations. The 240 and 500 GeV e+e- colliders employ Crab Waist Crossings, ultra low emittance damped bunches, short vertical IP focal lengths, superconducting RF, and low coercivity, grain oriented silicon steel/concrete dipoles. Some details are also provided for a high luminosity 240 GeV e+e- collider and 1.75 TeV muon accelerator in a Fermilab site filler tunnel. The 40 TeV pp collider uses the high intensity Fermilab p source, exploits high cross sections for pp production of high mass states, and uses 2 Tesla ultra low carbon steel/YBCO superconducting magnets run with liquid neon. The 35 TeV muon ring ramps the 2 Tesla superconducting magnets at 9 Hz every 0.4 seconds, uses 250 GV of superconducting RF to accelerate muons from 1.75 to 17.5 TeV in 63 orbits with 71% survival, and mitigates neutrino radiation with phase shifting, roller coaster motion in a FODO lattice.

  6. A 233 km tunnel for lepton and hadron colliders

    SciTech Connect

    Summers, D. J.; Cremaldi, L. M.; Datta, A.; Duraisamy, M.; Luo, T.; Lyons, G. T.

    2012-12-21

    A decade ago, a cost analysis was conducted to bore a 233 km circumference Very Large Hadron Collider (VLHC) tunnel passing through Fermilab. Here we outline implementations of e{sup +}e{sup -}, pp-bar , and {mu}{sup +}{mu}{sup -} collider rings in this tunnel using recent technological innovations. The 240 and 500 GeV e{sup +}e{sup -} colliders employ Crab Waist Crossings, ultra low emittance damped bunches, short vertical IP focal lengths, superconducting RF, and low coercivity, grain oriented silicon steel/concrete dipoles. Some details are also provided for a high luminosity 240 GeV e{sup +}e{sup -} collider and 1.75 TeV muon accelerator in a Fermilab site filler tunnel. The 40 TeV pp-bar collider uses the high intensity Fermilab p-bar source, exploits high cross sections for pp-bar production of high mass states, and uses 2 Tesla ultra low carbon steel/YBCO superconducting magnets run with liquid neon. The 35 TeV muon ring ramps the 2 Tesla superconducting magnets at 9 Hz every 0.4 seconds, uses 250 GV of superconducting RF to accelerate muons from 1.75 to 17.5 TeV in 63 orbits with 71% survival, and mitigates neutrino radiation with phase shifting, roller coaster motion in a FODO lattice.

  7. QCD corrections to stoponium production at hadron colliders

    SciTech Connect

    Younkin, James E.; Martin, Stephen P.

    2010-03-01

    If the lighter top squark has no kinematically allowed two-body decays that conserve flavor, then it will live long enough to form hadronic bound states. The observation of the diphoton decays of stoponium could then provide a uniquely precise measurement of the top squark mass. In this paper, we calculate the cross section for the production of stoponium in a hadron collider at next-to-leading order (NLO) in QCD. We present numerical results for the cross section for production of stoponium at the LHC and study the dependence on beam energy, stoponium mass, and the renormalization and factorization scale. The cross-section is substantially increased by the NLO corrections, counteracting a corresponding decrease found earlier in the NLO diphoton branching ratio.

  8. Supersymmetric Higgs boson pair production at hadron colliders

    SciTech Connect

    Belyaev, A.; Drees, M.; Eboli, O.J.; Novaes, S.F.; Belyaev, A.; Mizukoshi, J.K.

    1999-10-01

    We study the pair production of neutral Higgs bosons through gluon fusion at hadron colliders in the framework of the minimal supersymmetric standard model. We present analytical expressions for the relevant amplitudes, including both quark and squark loop contributions, and allowing for mixing between the superpartners of left- and right-handed quarks. Squark loop contributions can increase the cross section for the production of two CP-even Higgs bosons by more than two orders of magnitude, if the relevant trilinear soft breaking parameter is large and the mass of the lighter squark eigenstate is not too far above its current lower bound. In the region of large tan&hthinsp;{beta}, neutral Higgs boson pair production might even be observable in the 4b final state during the next run of the Fermilab Tevatron collider. {copyright} {ital 1999} {ital The American Physical Society}

  9. Unveiling the top secrets with the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Chierici, R.

    2013-12-01

    Top quark physics is one of the pillars of fundamental research in the field of high energy physics. It not only gives access to precision measurements for constraining the Standard Model of particles and interactions but also it represents a privileged domain for new physics searches. This contribution summarizes the main results in top quark physics obtained with the two general-purpose detectors ATLAS and CMS during the first two years of operations of the Large Hadron Collider (LHC) at CERN. It covers the 2010 and 2011 data taking periods, where the LHC ran at a centre-of-mass energy of 7 TeV.

  10. A High Field Magnet Design for A Future Hadron Collider

    SciTech Connect

    Gupta, R.; Chow, K.; Dietderich, D.; Gourlay, S.; Millos, G.; McInturff, A.; Scanlan, R.

    1998-09-01

    US high energy physics community is exploring the possibilities of building a Very Large Hadron Collider (VLHC) after the completion of LHC. This paper presents a high field magnet design option based on Nb{sub 3}Sn technology. A preliminary magnetic and mechanical design of a 14-16 T, 2-in-1 dipole based on the 'common coil design' approach is presented. The computer code ROXIE has been upgraded to perform the field quality optimization of magnets based on the racetrack coil geometry. A magnet R&D program to investigate the issues related to high field magnet designs is also outlined.

  11. NLO QCD corrections to ZZ jet production at hadron colliders

    SciTech Connect

    Binoth, T.; Gleisberg, T.; Karg, S.; Kauer, N.; Sanguinetti, G.; /Annecy, LAPTH

    2010-05-26

    A fully differential calculation of the next-to-leading order QCD corrections to the production of Z-boson pairs in association with a hard jet at the Tevatron and LHC is presented. This process is an important background for Higgs particle and new physics searches at hadron colliders. We find sizable corrections for cross sections and differential distributions, particularly at the LHC. Residual scale uncertainties are typically at the 10% level and can be further reduced by applying a veto against the emission of a second hard jet. Our results confirm that NLO corrections do not simply rescale LO predictions.

  12. Instrumentation concepts for the Very Large Hadron Collider (VLHC)

    NASA Astrophysics Data System (ADS)

    Foster, G. William

    2000-11-01

    Instrumentation concepts for the Very Large Hadron Collider (VLHC) are discussed. Different design concepts for the VLHC result in substantially different instrumentation layouts. High field, cold bore magnets have instrumentation requirements very similar to the SSC and LHC. In contrast, the low field warm bore "transmission line" magnets have very sparse instrumentation and the long magnet length allows the cable plant to be preinstalled on the magnets. Specialized beam instrumentation concepts including permanently sealed semi-rigid coax BLMs and distributed coupled-bunch damping systems are discussed.

  13. High luminosity electron-hadron collider eRHIC

    SciTech Connect

    Ptitsyn, V.; Aschenauer, E.; Bai, M.; Beebe-Wang, J.; Belomestnykh, S.; Ben-Zvi, I.; Blaskiewicz, M..; Calaga, R.; Chang, X.; Fedotov, A.; Gassner, D.; Hammons, L.; Hahn, H.; Hammons, L.; He, P.; Hao, Y.; Jackson, W.; Jain, A.; Johnson, E.C.; Kayran, D.; Kewisch, J.; Litvinenko, V.N.; Luo, Y.; Mahler, G.; McIntyre, G.; Meng, W.; Minty, M.; Parker, B.; Pikin, A.; Rao, T.; Roser, T.; Skaritka, J.; Sheehy, B.; Skaritka, J.; Tepikian, S.; Than, Y.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; Wang, G.; Webb, S.; Wu, Q.; Xu, W.; Pozdeyev, E.; Tsentalovich, E.

    2011-03-28

    We present the design of a future high-energy high-luminosity electron-hadron collider at RHIC called eRHIC. We plan on adding 20 (potentially 30) GeV energy recovery linacs to accelerate and to collide polarized and unpolarized electrons with hadrons in RHIC. The center-of-mass energy of eRHIC will range from 30 to 200 GeV. The luminosity exceeding 10{sup 34} cm{sup -2} s{sup -1} can be achieved in eRHIC using the low-beta interaction region with a 10 mrad crab crossing. We report on the progress of important eRHIC R&D such as the high-current polarized electron source, the coherent electron cooling, ERL test facility and the compact magnets for recirculation passes. A natural staging scenario of step-by-step increases of the electron beam energy by building-up of eRHIC's SRF linacs is presented.

  14. Higgs boson production with heavy quarks at hadron colliders

    NASA Astrophysics Data System (ADS)

    Jackson, Christopher B.

    2005-11-01

    One of the remaining puzzles in particle physics is the origin of electroweak symmetry breaking. In the Standard Model (SM), a single doublet of complex scalar fields is responsible for breaking the SU(2) L x U(1)Y gauge symmetry thus giving mass to the electroweak gauge bosons via the Higgs mechanism and to the fermions via Yukawa couplings. The remnant of the process is a vet to he discovered scalar particle, the Higgs boson (h). However, current and future experiments at hadron colliders hold great promise. Of particular interest at hadron colliders is the production of a Higgs boson in association with a pair of heavy quarks, pp¯(pp) → QQ¯h, where Q can be either a top or a bottom quark. Indeed, the production of a Higgs boson with a pair of top quarks provides a very distinctive signal in hadronic collisions where background processes are formidable, and it will be instrumental in the discovery of a Higgs boson below about 130 GeV at the LHC. On the other hand, the production of a Higgs boson with bottom quarks can be strongly enhanced in models of new physics beyond the SM, e.g. supersymmetric models. If this is the case, bb¯h production will play a crucial role at the Tevatron where it could provide the first signal of new physics. Given the prominent role that Higgs production with heavy quarks can play at hadron colliders, it becomes imperative to have precise theoretical predictions for total and differential cross sections. In this dissertation, we outline and present detailed results for the next-to-leading order (NLO) calculation of the Quantum Chromodynamic (QCD) corrections to QQ¯h production at both the Tevatron and the LHC. This calculation involves several difficult issues due to the three massive particles in the final state, a situation which is at the frontier of radiative correction calculations in quantum field theory. We detail the novel techniques developed to deal with these challenges. The calculation of pp¯(pp) → bb¯h at NLO in

  15. Design of the large hadron electron collider interaction region

    NASA Astrophysics Data System (ADS)

    Cruz-Alaniz, E.; Newton, D.; Tomás, R.; Korostelev, M.

    2015-11-01

    The large hadron electron collider (LHeC) is a proposed upgrade of the Large Hadron Collider (LHC) within the high luminosity LHC (HL-LHC) project, to provide electron-nucleon collisions and explore a new regime of energy and luminosity for deep inelastic scattering. The design of an interaction region for any collider is always a challenging task given that the beams are brought into crossing with the smallest beam sizes in a region where there are tight detector constraints. In this case integrating the LHeC into the existing HL-LHC lattice, to allow simultaneous proton-proton and electron-proton collisions, increases the difficulty of the task. A nominal design was presented in the the LHeC conceptual design report in 2012 featuring an optical configuration that focuses one of the proton beams of the LHC to β*=10 cm in the LHeC interaction point to reach the desired luminosity of L =1033 cm-2 s-1 . This value is achieved with the aid of a new inner triplet of quadrupoles at a distance L*=10 m from the interaction point. However the chromatic beta beating was found intolerable regarding machine protection issues. An advanced chromatic correction scheme was required. This paper explores the feasibility of the extension of a novel optical technique called the achromatic telescopic squeezing scheme and the flexibility of the interaction region design, in order to find the optimal solution that would produce the highest luminosity while controlling the chromaticity, minimizing the synchrotron radiation power and maintaining the dynamic aperture required for stability.

  16. Improving identification of dijet resonances at hadron colliders.

    PubMed

    Izaguirre, Eder; Shuve, Brian; Yavin, Itay

    2015-01-30

    The experimental detection of resonances has played a vital role in the development of subatomic physics. The overwhelming multijet backgrounds at the Large Hadron Collider (LHC) necessitate the invention of new techniques to identify resonances decaying into a pair of partons. In this Letter we introduce an observable that achieves a significant improvement in several key measurements at the LHC: the Higgs boson decay to a pair of b quarks; W±/Z0 vector-boson hadronic decay; and extensions of the standard model (SM) with a new hadronic resonance. Measuring the Higgs decay to b quarks is a central test of the fermion mass generation mechanism in the SM, whereas the W±/Z0 production rates are important observables of the electroweak sector. Our technique is effective in large parts of phase space where the resonance is mildly boosted and is particularly well suited for experimental searches dominated by systematic uncertainties, which is true of many analyses in the high-luminosity running of the LHC. PMID:25679886

  17. Improving Identification of Dijet Resonances at Hadron Colliders

    NASA Astrophysics Data System (ADS)

    Izaguirre, Eder; Shuve, Brian; Yavin, Itay

    2015-01-01

    The experimental detection of resonances has played a vital role in the development of subatomic physics. The overwhelming multijet backgrounds at the Large Hadron Collider (LHC) necessitate the invention of new techniques to identify resonances decaying into a pair of partons. In this Letter we introduce an observable that achieves a significant improvement in several key measurements at the LHC: the Higgs boson decay to a pair of b quarks; W±/Z0 vector-boson hadronic decay; and extensions of the standard model (SM) with a new hadronic resonance. Measuring the Higgs decay to b quarks is a central test of the fermion mass generation mechanism in the SM, whereas the W±/Z0 production rates are important observables of the electroweak sector. Our technique is effective in large parts of phase space where the resonance is mildly boosted and is particularly well suited for experimental searches dominated by systematic uncertainties, which is true of many analyses in the high-luminosity running of the LHC.

  18. Challenges for MSSM Higgs searches at hadron colliders

    SciTech Connect

    Carena, Marcela S.; Menon, A.; Wagner, C.E.M.; /Argonne /Chicago U., EFI /KICP, Chicago /Chicago U.

    2007-04-01

    In this article we analyze the impact of B-physics and Higgs physics at LEP on standard and non-standard Higgs bosons searches at the Tevatron and the LHC, within the framework of minimal flavor violating supersymmetric models. The B-physics constraints we consider come from the experimental measurements of the rare B-decays b {yields} s{gamma} and B{sub u} {yields} {tau}{nu} and the experimental limit on the B{sub s} {yields} {mu}{sup +}{mu}{sup -} branching ratio. We show that these constraints are severe for large values of the trilinear soft breaking parameter A{sub t}, rendering the non-standard Higgs searches at hadron colliders less promising. On the contrary these bounds are relaxed for small values of A{sub t} and large values of the Higgsino mass parameter {mu}, enhancing the prospects for the direct detection of non-standard Higgs bosons at both colliders. We also consider the available ATLAS and CMS projected sensitivities in the standard model Higgs search channels, and we discuss the LHC's ability in probing the whole MSSM parameter space. In addition we also consider the expected Tevatron collider sensitivities in the standard model Higgs h {yields} b{bar b} channel to show that it may be able to find 3 {sigma} evidence in the B-physics allowed regions for small or moderate values of the stop mixing parameter.

  19. Summary of the very large hadron collider physics and detector workshop

    SciTech Connect

    Anderson, G.; Berger, M.; Brandt, A.; Eno, S.

    1997-10-01

    One of the options for an accelerator beyond the LHC is a hadron collider with higher energy. Work is going on to explore accelerator technologies that would make such a machine feasible. This workshop concentrated on the physics and detector issues associated with a hadron collider with an energy in the center of mass of the order of 100 to 200 TeV.

  20. Second-order QCD corrections to jet production at hadron colliders: the all-gluon contribution.

    PubMed

    Gehrmann-De Ridder, A; Gehrmann, T; Glover, E W N; Pires, J

    2013-04-19

    We report the calculation of next-to-next-to-leading order QCD corrections in the purely gluonic channel to dijet production and related observables at hadron colliders. Our result represents the first next-to-next-to-leading order calculation of a massless jet observable at hadron colliders, and opens the path towards precision QCD phenomenology with the LHC. PMID:23679596

  1. Black Holes and other exotica at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Roy, Arunava; Cavaglia, Marco

    2009-05-01

    If the fundamental scale of gravity is of the order of 1 TeV, black holes might be produced at the Large Hadron Collider. We present simulations of black holes and other exotic predictions of physics beyond the Standard Model - supersymmetry and string theory. Black hole events are simulated using the CATFISH Monte Carlo generator, simulations of string resonances use PYTHIA and supersymmetric simulations use a combination of ISAJET and PYTHIA. Our analysis shows that black holes can be discriminated from supersymmetry and string resonances. Isolated leptons with high transverse momentum can be used to distinguish black holes and supersymmetry. Z bosons and photons with high transverse momentum allow the discrimination of black holes and string resonances. The analysis of visible and missing energy /momenta, event-shape variables and multilepton events complement these techniques.

  2. Precise Predictions for Z + 4 Jets at Hadron Colliders

    SciTech Connect

    Ita, H.; Bern, Z.; Dixon, L.J.; Cordero, F.Febres; Kosower, D.A.; Maitre, D.

    2011-12-09

    We present the cross section for production of a Z boson in association with four jets at the Large Hadron Collider, at next-to-leading order in the QCD coupling. When the Z decays to neutrinos, this process is a key irreducible background to many searches for new physics. Its computation has been made feasible through the development of the on-shell approach to perturbative quantum field theory. We present the total cross section for pp collisions at {radical}s = 7 TeV, after folding in the decay of the Z boson, or virtual photon, to a charged-lepton pair. We also provide distributions of the transverse momenta of the four jets, and we compare cross sections and distributions to the corresponding ones for the production of a W boson with accompanying jets.

  3. Modification of Fox-Wolfram moments for hadron colliders

    NASA Astrophysics Data System (ADS)

    Spiller, L. A.

    2016-03-01

    Collisions of composite particles impose an arbitrary boost in the longitudinal direction on a given event. This implies that the centre-of-mass frame at hadron colliders is undetermined for processes with missing energy in the final state. This motivates the modification of the Fox-Wolfram moments such that the moments for a given event are identical when viewed in the lab or centre-of-mass frame of the beam. The resulting moments are invariant under rotations in the plane transverse to the beam and boosts parallel to the beam. These moments are then used to demonstrate improved signal separation in the channel where the Higgs decays to two b-quarks while being produced in association with a vector boson.

  4. Calculations of bottom quark production at hadron colliders

    SciTech Connect

    Kuebel, D.

    1991-06-29

    This thesis studies Monte Carlo simulations of QCD heavy flavor production processes (p{bar p} {yields} Q({anti Q})X) at hadron colliders. ISAJET bottom quark cross-sections are compared to the O({alpha} {sub s}{sup 3}) perturbative calculation of Nason, Dawson, and Ellis. These Monte Carlo cross-sections are computed from data samples which use different parton distribution functions and physics parameters. Distributions are presented in the heavy quark`s transverse momentum and rapidity. Correlations in rapidity and azimuthal angle are computed for the heavy flavor pair. Theory issues which arise are the behavior of the cross-section at low and high values of transverse momentum and the treatment of double counting problems in the flavor excitation samples. An important result is that ISAJET overestimates bottom quark production cross-sections and K factors. These findings are relevant for estimates of rates and backgrounds of heavy floor events.

  5. Calculations of bottom quark production at hadron colliders

    SciTech Connect

    Kuebel, D.

    1991-06-29

    This thesis studies Monte Carlo simulations of QCD heavy flavor production processes (p{bar p} {yields} Q({anti Q})X) at hadron colliders. ISAJET bottom quark cross-sections are compared to the O({alpha} {sub s}{sup 3}) perturbative calculation of Nason, Dawson, and Ellis. These Monte Carlo cross-sections are computed from data samples which use different parton distribution functions and physics parameters. Distributions are presented in the heavy quark's transverse momentum and rapidity. Correlations in rapidity and azimuthal angle are computed for the heavy flavor pair. Theory issues which arise are the behavior of the cross-section at low and high values of transverse momentum and the treatment of double counting problems in the flavor excitation samples. An important result is that ISAJET overestimates bottom quark production cross-sections and K factors. These findings are relevant for estimates of rates and backgrounds of heavy floor events.

  6. 120-mm supercondcting quadrupole for interaction regions of hadron colliders

    SciTech Connect

    Zlobin, A.V.; Kashikhin, V.V.; Mokhov, N.V.; Novitski, I.; /Fermilab

    2010-05-01

    Magnetic and mechanical designs of a Nb{sub 3}Sn quadrupole magnet with 120-mm aperture suitable for interaction regions of hadron colliders are presented. The magnet is based on a two-layer shell-type coil and a cold iron yoke. Special spacers made of a low-Z material are implemented in the coil mid-planes to reduce the level of radiation heat deposition and radiation dose in the coil. The quadrupole mechanical structure is based on aluminum collars supported by an iron yoke and a stainless steel skin. Magnet parameters including maximum field gradient and field harmonics, Nb3Sn coil pre-stress and protection at the operating temperatures of 4.5 and 1.9 K are reported. The level and distribution of radiation heat deposition in the coil and other magnet components are discussed.

  7. Flavour physics and the Large Hadron Collider beauty experiment.

    PubMed

    Gibson, Valerie

    2012-02-28

    An exciting new era in flavour physics has just begun with the start of the Large Hadron Collider (LHC). The LHCb (where b stands for beauty) experiment, designed specifically to search for new phenomena in quantum loop processes and to provide a deeper understanding of matter-antimatter asymmetries at the most fundamental level, is producing many new and exciting results. It gives me great pleasure to describe a selected few of the results here-in particular, the search for rare B(0)(s)-->μ+ μ- decays and the measurement of the B(0)(s) charge-conjugation parity-violating phase, both of which offer high potential for the discovery of new physics at and beyond the LHC energy frontier in the very near future. PMID:22253243

  8. Normalizing weak boson pair production at the Large Hadron Collider

    SciTech Connect

    Campbell, J. M.; Castaneda-Miranda, E.; Fang, Y.; Mellado, B.; Wu, Sau Lan; Kauer, N.

    2009-09-01

    The production of two weak bosons at the Large Hadron Collider will be one of the most important sources of standard model backgrounds for final states with multiple leptons. In this paper we consider several quantities that can help normalize the production of weak boson pairs. Ratios of inclusive cross sections for production of two weak bosons and Drell-Yan are investigated and the corresponding theoretical errors are evaluated. The possibility of predicting the jet veto survival probability of VV production from Drell-Yan data is also considered. Overall, the theoretical errors on all quantities remain less than 5%-20%. The dependence of these quantities on the center of mass energy of the proton-proton collision is also studied.

  9. Direct measurement of the top quark charge at hadron colliders

    NASA Astrophysics Data System (ADS)

    Baur, U.; Buice, M.; Orr, Lynne H.

    2001-11-01

    We consider photon radiation in t¯t events at the upgraded Fermilab Tevatron and the CERN Large Hadron Collider (LHC) as a tool to measure the electric charge of the top quark. We analyze the contributions of t¯tγ production and radiative top quark decays to pp(-)-->γl+/-νb¯bjj, assuming that both b quarks are tagged. With 20 fb-1 at the Tevatron, the possibility that the ``top quark'' discovered in run I is actually an exotic charge -4/3 quark can be ruled out at the ~95% confidence level. At the CERN LHC, it will be possible to determine the charge of the top quark with an accuracy of about 10%.

  10. Strong Electroweak Symmetry Breaking in the Large Hadron Collider Era

    NASA Astrophysics Data System (ADS)

    Evans, Jared Andrew

    2011-12-01

    With the Large Hadron Collider collecting data, both the pursuit of novel detection techniques and the exploration of new ideas are more important than ever. Novel detection techniques are essential in order for the community to garner the most worth from the machine. New ideas are needed both to expand the boundaries of what could be observed and to foster the creative mindset of the community that moves particle physics into fascinating, and often unexpected, directions. Discovering whether electroweak symmetry is broken strongly or weakly is one of the most pressing questions to be answered. Exploring the possibility of strong electroweak symmetry breaking is the topic of this work. The first of two major sectors in this work concerns the theory of conformal technicolor. We present the low energy minimal model for conformal technicolor and verify that it can satisfy current constraints from experiment. We will also provide a UV completion for this model, which realistically extends the sector with high-energy supersymmetry. Two complete models of flavor are presented. This is the first example of a complete, consistent model of strong electroweak symmetry breaking. The second of the two sectors discusses experimental signatures arising in a large class of general technicolor models at the Large Hadron Collider. The possible existence of narrow scalar states that can be produced via gluon-gluon fusion is first discussed. These states can decay into exotic final states of multiple electroweak gauge bosons, third generation particles and even light composite Higgs particles. A two Higgs doublet model is proposed as an effective way to model these exciting states. Lastly, we discuss the array of possible final states and their possible discovery.

  11. Double vector meson production in photon-hadron interactions at hadronic colliders

    NASA Astrophysics Data System (ADS)

    Gonçalves, V. P.; Moreira, B. D.; Navarra, F. S.

    2016-07-01

    In this paper we analyze the double vector meson production in photon-hadron (γ h) interactions at pp / pA / AA collisions and present predictions for the ρ ρ , J/Ψ J/Ψ , and ρ J/Ψ production considering the double scattering mechanism. We estimate the total cross sections and rapidity distributions at LHC energies and compare our results with the predictions for the double vector meson production in γ γ interactions at hadronic colliders. We present predictions for the different rapidity ranges probed by the ALICE, ATLAS, CMS, and LHCb Collaborations. Our results demonstrate that the ρ ρ and J/Ψ J/Ψ production in PbPb collisions is dominated by the double-scattering mechanism, while the two-photon mechanism dominates in pp collisions. Moreover, our results indicate that the analysis of the ρ J/Ψ production at LHC can be useful to constrain the double-scattering mechanism.

  12. Department of Energy assessment of the Large Hadron Collider

    SciTech Connect

    1996-06-01

    This report summarizes the conclusions of the committee that assessed the cost estimate for the Large Hadron Collider (LHC). This proton-proton collider will be built at CERN, the European Laboratory for Particle Physics near Geneva, Switzerland. The committee found the accelerator-project cost estimate of 2.3 billion in 1995 Swiss francs, or about $2 billion US, to be adequate and reasonable. The planned project completion date of 2005 also appears achievable, assuming the resources are available when needed. The cost estimate was made using established European accounting procedures. In particular, the cost estimate does not include R and D, prototyping and testing, spare parts, and most of the engineering labor. Also excluded are costs for decommissioning the Large Electron-Positron collider (LEP) that now occupies the tunnel, modifications to the injector system, the experimental areas, preoperations costs, and CERN manpower. All these items are assumed by CERN to be included in the normal annual operations budget rather than the construction budget. Finally, contingency is built into the base estimate, in contrast to Department of Energy (DOE) estimates that explicitly identify contingency. The committee`s charge, given by Dr. James F. Decker, Deputy Directory of the DOE Office of Energy Research, was to understand the basis for the LHC cost estimate, identify uncertainties, and judge the overall validity of the estimate, proposed schedule, and related issues. The committee met at CERN April 22--26, 1996. The assessment was based on the October 1995 LHC Conceptual Design Report or ``Yellow Book,`` cost estimates and formal presentations made by the CERN staff, site inspection, detailed discussions with LHC technical experts, and the committee members` considerable experience.

  13. Two-photon production of leptons at hadron colliders in semielastic and elastic cases

    NASA Astrophysics Data System (ADS)

    Manko, A. Yu.; Shulyakovsky, R. G.

    2016-03-01

    The mechanism of two-photon dilepton production is studied in the equivalent-photon (Weizsäcker-Williams) approximation. This approximation is shown to describe well experimental data from hadron accelerators. The respective total and differential cross sections were obtained for the LHC and for the Tevatron collider at various energies of colliding hadrons. The differential cross sections were studied versus the dilepton invariant mass, transverse momentum, and emission angle in the reference frame comoving with the center of mass of colliding hadrons. The cases of semielastic and inelastic collisions were examined.

  14. EPOS LHC: Test of collective hadronization with data measured at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Pierog, T.; Karpenko, Iu.; Katzy, J. M.; Yatsenko, E.; Werner, K.

    2015-09-01

    Epos is a Monte Carlo event generator for minimum bias hadronic interactions, used for both heavy ion interactions and cosmic ray air shower simulations. Since the last public release in 2009, the Large Hadron Collider (LHC) experiments have provided a number of very interesting data sets comprising minimum bias p -p ,p -Pb, and Pb-Pb interactions. We describe the changes required to the model to reproduce in detail the new data available from the LHC and the consequences in the interpretation of these data. In particular we discuss the effect of the collective hadronization in p -p scattering. A different parametrization of flow has been introduced in the case of a small volume with high density of thermalized matter (core) reached in p -p compared to large volume produced in heavy ion collisions. Both parametrizations depend only on the geometry and the amount of secondary particles entering in the core and not on the beam mass or energy. The transition between the two flow regimes can be tested with p -Pb data. Epos LHC is able to reproduce all minimum bias results for all particles with transverse momentum from pt=0 to a few GeV/c .

  15. TOPICAL REVIEW A review of the mass measurement techniques proposed for the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Barr, Alan J.; Lester, Christopher G.

    2010-12-01

    We review the methods which have been proposed for measuring masses of new particles at the Large Hadron Collider paying particular attention to the kinematical techniques suitable for extracting mass information when invisible particles are expected.

  16. Supersymmetric dark matter in the harsh light of the Large Hadron Collider

    PubMed Central

    Peskin, Michael E.

    2015-01-01

    I review the status of the model of dark matter as the neutralino of supersymmetry in the light of constraints on supersymmetry given by the 7- to 8-TeV data from the Large Hadron Collider (LHC). PMID:25331902

  17. One-Loop Helicity Amplitudes for tt Production at Hadron Colliders

    SciTech Connect

    Badger, Simon; Sattler, Ralf; Yundin, Valery

    2011-04-01

    We present compact analytic expressions for all one-loop helicity amplitudes contributing to tt production at hadron colliders. Using recently developed generalized unitarity methods and a traditional Feynman based approach we produce a fast and flexible implementation.

  18. First electron-cloud studies at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Domínguez, O.; Li, K.; Arduini, G.; Métral, E.; Rumolo, G.; Zimmermann, F.; Cuna, H. Maury

    2013-01-01

    During the beam commissioning of the Large Hadron Collider (LHC) [LHC Design Report No. CERN-2004-003-V-1, 2004 [http://cds.cern.ch/record/782076?ln=en]; O. Brüning, H. Burkhardt, and S. Myers, Prog. Part. Nucl. Phys. 67, 705 (2012)10.1016/j.ppnp.2012.03.001PPNPDB0146-6410] with 150, 75, 50, and 25-ns bunch spacing, important electron-cloud effects, like pressure rise, cryogenic heat load, beam instabilities, or emittance growth, were observed. Methods have been developed to infer different key beam-pipe surface parameters by benchmarking simulations and pressure rise as well as heat-load observations. These methods allow us to monitor the scrubbing process, i.e., the reduction of the secondary emission yield as a function of time, in order to decide on the most appropriate strategies for machine operation. To better understand the influence of electron clouds on the beam dynamics, simulations have been carried out to examine both the coherent and the incoherent effects on the beam. In this paper we present the methodology and first results for the scrubbing monitoring process at the LHC. We also review simulated instability thresholds and tune footprints for beams of different emittance, interacting with an electron cloud in field-free or dipole regions.

  19. Vector meson production in coherent hadronic interactions: Update on predictions for energies available at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider

    SciTech Connect

    Goncalves, V. P.; Machado, M. V. T.

    2011-07-15

    In this Rapid Communication we update our predictions for the photoproduction of vector mesons in coherent pp and AA collisions at Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) energies using the color dipole approach and the Color Glass Condensate formalism. In particular, we present our predictions for the first run of the LHC at half energy and for the rapidity dependence of the ratio between the J/{Psi} and {rho} cross sections at RHIC energies.

  20. Strange quark suppression and strange hadron production in pp collisions at energies available at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider

    SciTech Connect

    Long Haiyan; Feng Shengqin; Zhou Daimei; Yan Yuliang; Ma Hailiang; Sa Benhao

    2011-09-15

    The parton and hadron cascade model PACIAE based on PYTHIA is utilized to systematically investigate strange particle production in pp collisions at energies available at the BNL Relativistic Heavy Ion Collider (RHIC) and the CERN Large Hadron Collider (LHC). Globally speaking, the PACIAE results of the strange particle rapidity density at midrapidity and the transverse momentum distribution are better than those of PYTHIA (default) in comparison with STAR and ALICE experimental data. This may represent the importance of the parton and hadron rescatterings, as well as the reduction mechanism of strange quark suppression, added in the PACIAE model. The K/{pi} ratios as a function of reaction energy in pp collisions from CERN Super Proton Synchrotron (SPS) to LHC energies are also analyzed in this paper.

  1. Topics in supersymmetry phenomenology at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Kadala, Roger H. K.

    This dissertation focuses on phenomenological studies for possible signals for supersymmetric events at the Large Hadron Collider (LHC). We have divided our endeavours into three separate projects. First, considering that the branching fraction for the decays of gluinos to third generation squarks is expected to be enhanced in classes of supersymmetric models where either third generation fermions are lighter than other squarks, or models of mixed higgsino dark matter which are constructed in agreement with the measured density of cold dark matter (CDM), the gluino production in such scenarios at the LHC should be rich in top and bottom quark jets. Requiring b-jets in addition to missing energy EmissT should, therefore, enhance the supersymmetry signal relative to Standard Model backgrounds. We quantify the increase in the supersymmetry reach of the LHC from b-tagging in a variety of well-motivated models of supersymmetry. We also explore top-tagging at the LHC. Second, we explore the prospects for detecting the direct production of third generation squarks in models with an inverted squark mass hierarchy. This is signalled by b-jets + EmissT events harder than in the Standard Model, but softer than those from the production of gluinos and heavier squarks. We find that these events can be readily separated from SM background (for third generation squark masses in the 200--400 GeV range), and the contamination from the much heavier gluinos and squarks although formidable can effectively be suppressed. Third, we attempt to extract model-independent information about neutralino properties from LHC data, assuming only the particle content of the MSSM and that all two-body neutralino decays are kinematically suppressed, with the neutralino inclusive production yielding a sufficient cross section. We show that the Lorentz invariant dilepton mass distribution encodes clear information about the relative sign of the mass eigenvalues of the parent and daughter neutralinos

  2. Phenomenology of Little Higgs Models at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Moats, Kenneth Paul

    Little Higgs models provide an elegant solution to the hierarchy problem of the Standard Model, introducing new particles at the TeV scale to cancel the quadratic divergences to the square of the Higgs boson mass. The research carried out in this thesis focuses on the Large Hadron Collider (LHC) phenomenology of two such Little Higgs models: the Littlest Higgs model and the Bestest Little Higgs model. Firstly, the results of a study of Higgs triplet boson production in the Littlest Higgs model are presented in the W+/- W+/-, W +/-Z, W+ W--, and ZZ channels at the LHC for a centre of mass energy of s = 14 TeV, comparing these results with the predictions of two additional Higgs triplet models: the Georgi-Machacek model and the Left-Right Symmetric model. It is found that, given the constraints on the triplet vacuum expectation value (vev), considerable luminosity is required to observe Higgs triplet bosons in vector boson scattering. Observing a Higgs triplet at the LHC is most promising in the Georgi-Machacek model due to a weaker constraint on the triplet vev. In this model, a Higgs triplet boson with a mass of 1.0 (1.5) TeV can be observed at the LHC with an integrated luminosity as low as 41 (119) fb--1 in the W+/- W+/- channel and as low as 171 (474) fb --1 in the W+/- Z channel. The structure of the Bestest Little Higgs model is then described, including the procedure for deriving the Feynman rules of this model. The results of a study of heavy quark production in the Bestest Little Higgs model at the LHC are presented, focusing on associated single production of the exotic charge 5/3 heavy quark, T5/3b , at s = 14 TeV for two scenarios of Yukawa couplings. Applying stringent kinematic cuts to reduce the backgrounds, it is found that, in the two scenarios considered, the T5/3b heavy quark with a mass of 400, 600 and 800 GeV could be discovered in the same-sign dilepton channel at the LHC with an integrated luminosity as low as 43, 149 and 797 fb--1

  3. Accelerator physics and technology challenges of very high energy hadron colliders

    DOE PAGESBeta

    Shiltsev, Vladimir D.

    2015-08-20

    High energy hadron colliders have been in the forefront of particle physics for more than three decades. At present, international particle physics community considers several options for a 100 TeV proton–proton collider as a possible post-LHC energy frontier facility. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. This article briefly reviews the accelerator physics and technology challenges of the future very high energy colliders and outlines the areas of required research and development towards their technical and financial feasibility.

  4. Accelerator physics and technology challenges of very high energy hadron colliders

    NASA Astrophysics Data System (ADS)

    Shiltsev, Vladimir D.

    2015-08-01

    High energy hadron colliders have been in the forefront of particle physics for more than three decades. At present, international particle physics community considers several options for a 100 TeV proton-proton collider as a possible post-LHC energy frontier facility. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. This paper briefly reviews the accelerator physics and technology challenges of the future very high energy colliders and outlines the areas of required research and development towards their technical and financial feasibility.

  5. Diffractive Physics at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Revol, Jean-Pierre

    2011-07-01

    After a short introduction on diffraction, I briefly review the framework used to describe non-perturbative QCD phenomena in hadron-hadron interactions. Then I explain why diffractive processes cannot be ignored at LHC and how ALICE, ATLAS, CMS, LHCb and TOTEM study diffraction, with emphasis on how inclusive particle production measurements are normalised to non-single diffractive and inelastic event classes.

  6. Possibilities of polarized protons in Sp anti p S and other high energy hadron colliders

    SciTech Connect

    Courant, E.D.

    1984-01-01

    The requirements for collisions with polarized protons in hadron colliders above 200 GeV are listed and briefly discussed. Particular attention is given to the use of the ''Siberan snake'' to eliminate depolarizing resonances, which occur when the spin precession frequency equals a frequency contained in the spectrum of the field seen by the beam. The Siberian snake is a device which makes the spin precession frequency essentially constant by using spin rotators, which precess the spin by 180/sup 0/ about either the longitudinal or transverse horizontal axis. It is concluded that operation with polarized protons should be possible at all the high energy hadron colliders. (LEW)

  7. Precise Predictions for W+4-Jet Production at the Large Hadron Collider

    SciTech Connect

    Berger, C. F.; Bern, Z.; Ita, H.; Dixon, L. J.; Cordero, F. Febres; Forde, D.; Gleisberg, T.; Kosower, D. A.; Maitre, D.

    2011-03-04

    We present the next-to-leading order (NLO) QCD results for W+4-jet production at hadron colliders. This is the first hadron-collider process with five final-state objects to be computed at NLO. It represents an important background to many searches for new physics at the energy frontier. Total cross sections, as well as distributions in the jet transverse momenta, are provided for the initial LHC energy of {radical}(s)=7 TeV. We use a leading-color approximation, known to be accurate to 3% for W production with fewer jets. The calculation uses the BlackHat library along with the SHERPA package.

  8. Quantitative Calculations for Black Hole Production at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Bock, Nicolas; Humanic, Thomas J.

    The framework of large extra dimensions provides a way to explain why gravity is weaker than the other forces in nature. A consequence of this model is the possible production of D-dimensional black holes in high energy p-p collisions at the Large Hadron Collider. The present work uses the CATFISH black hole generator to study quantitatively how these events could be observed in the hadronic channel at midrapidity using a particle-tracking detector.

  9. Physics and Analysis at a Hadron Collider - Searching for New Physics (2/3)

    ScienceCinema

    None

    2011-10-06

    This is the second lecture of three which together discuss the physics of hadron colliders with an emphasis on experimental techniques used for data analysis. This second lecture discusses techniques important for analyses searching for new physics using the CDF B_s --> mu+ mu- search as a specific example. The lectures are aimed at graduate students.

  10. Physics and Analysis at a Hadron Collider - Searching for New Physics (2/3)

    SciTech Connect

    2010-01-20

    This is the second lecture of three which together discuss the physics of hadron colliders with an emphasis on experimental techniques used for data analysis. This second lecture discusses techniques important for analyses searching for new physics using the CDF B_s --> mu+ mu- search as a specific example. The lectures are aimed at graduate students.

  11. Taking Energy to the Physics Classroom from the Large Hadron Collider at CERN

    ERIC Educational Resources Information Center

    Cid, Xabier; Cid, Ramon

    2009-01-01

    In 2008, the greatest experiment in history began. When in full operation, the Large Hadron Collider (LHC) at CERN will generate the greatest amount of information that has ever been produced in an experiment before. It will also reveal some of the most fundamental secrets of nature. Despite the enormous amount of information available on this…

  12. NCG gluon fusion for the Higgs production at large hadron colliders

    SciTech Connect

    Chadou, I.; Mebarki, N.; Bekli, M. R.

    2012-06-27

    A pure NCG gluon fusion contribution to the Higgs production at large hadron colliders is discussed. It is shown that the NCG results become relevant at very high energies. This can be a good signal for the space-time non commutativity events.

  13. Signatures for Right-Handed Neutrinos at the Large Hadron Collider

    SciTech Connect

    Huitu, Katri; Rai, Santosh Kumar; Khalil, Shaaban; Okada, Hiroshi

    2008-10-31

    We explore possible signatures for right-handed neutrinos in a TeV scale B-L extension of the standard model at the Large Hadron Collider. The studied four lepton signal has a tiny standard model background. We find the signal experimentally accessible at the LHC for the considered parameter regions.

  14. Low-cost hadron colliders at Fermilab: A discussion paper

    SciTech Connect

    Foster, G.W.; Malamud, E.

    1996-06-21

    New more economic approaches are required to continue the dramatic exponential rise in collider energies as represented by the well known Livingston plot. The old idea of low cost, low field iron dominated magnets in a small diameter pipe may become feasible in the next decade with dramatic recent advances in technology: (1) advanced tunneling technologies for small diameter, non human accessible tunnels, (2) accurate remote guidance systems for tunnel survey and boring machine steering, (3) high T{sub c} superconductors operating at liquid N{sub 2} or liquid H{sub 2} temperatures, (4) industrial applications of remote manipulation and robotics, (5) digitally multiplexed electronics to minimize cables, (6) achievement of high luminosities in p-p and p-{anti P} colliders. The goal of this paper is to stimulate continuing discussions on approaches to this new collider and to identify critical areas needing calculations, construction of models, proof of principle experiments, and full scale prototypes in order to determine feasibility and arrive at cost estimates.

  15. Precision Studies of Hadronic and Electro-Weak Interactions for Collider Physics. Final Report

    SciTech Connect

    Yost, Scott A

    2014-04-02

    This project was directed toward developing precision computational tools for proton collisions at the Large Hadron Collider, focusing primarily on electroweak boson production and electroweak radiative corrections. The programs developed under this project carried the name HERWIRI, for High Energy Radiation With Infra-Red Improvements, and are the first steps in an ongoing program to develop a set of hadronic event generators based on combined QCD and QED exponentiation. HERWIRI1 applied these improvements to the hadronic shower, while HERWIRI2 will apply the electroweak corrections from the program KKMC developed for electron-positron scattering to a hadronic event generator, including exponentiated initial and final state radiation together with first-order electroweak corrections to the hard process. Some progress was also made on developing differential reduction techniques for hypergeometric functions, for application to the computation of Feynman diagrams.

  16. Production of doubly heavy-flavored hadrons at e+e- colliders

    NASA Astrophysics Data System (ADS)

    Zheng, Xu-Chang; Chang, Chao-Hsi; Pan, Zan

    2016-02-01

    Production of the doubly heavy-flavored hadrons (Bc meson, doubly heavy baryons Ξc c , Ξb c , Ξb b , their excited states, and antiparticles of them as well) at e+e- colliders is investigated under two different approaches: LO (leading-order QCD complete calculation) and LL (leading-logarithm fragmentation calculation). The results for the production obtained by the LO and LL approaches, including the angle distributions of the produced hadrons with unpolarized and polarized incoming beams, the behaviors on the energy fraction of the produced doubly heavy-flavored hadron, and comparisons of results between the two approaches, are presented in tables and figures. Thus, characteristics of the production and uncertainties of the approaches are shown precisely, and it is concluded that only if the colliders run at the energies around the Z pole (which may be called the Z factories) and the luminosity of the colliders is as high as possible is the study of the doubly heavy-flavored hadrons completely accessible.

  17. TRADING STUDIES OF A VERY LARGE HADRON COLLIDER

    SciTech Connect

    RUGGIERO,A.G.

    1996-11-04

    The authors have shown that the design of the ELOISATRON can be approached in five separate steps. In this report they deal with the two major issues of the collider: the size and the strength of the superconducting magnets. The reference design of the SSC calls for a collider circumference of 86 km. It represents the largest size that until recently was judged feasible. The reference design of the LHC requires a bending field of 9 Tesla, that industries are presently determined to demonstrate. Clearly the large size of the project presents problem with magnet tolerances, and collider operation and management. The high field of the superconducting magnets needs to be demonstrated, and the high-field option in excess of 9 Tesla requires extensive research and development. It is obvious from the start that, if the ELOISATRON has to allow large beam energies, the circumference has also to be larger than that of the SSC, probably of few hundred kilometers. On the other end, Tevatron, RHIC and SSC type of superconducting magnets have been built and demonstrated on a large scale and proven to be cost effective and reliable. Their field, nevertheless, hardly can exceed a value of 7.5 Tesla, without major modifications that need to be studied. The LHC type of magnets may be capable of 9 Tesla, but they are being investigated presently by the European industries. It is desired that if one wants to keep the size of the ring under reasonable limits, a somewhat higher bending field is required for the ELOISATRON, especially if one wants also to take advantage of the synchrotron radiation effects. A field value of 13 Tesla, twice the value of the SSC superconducting magnets, has recently been proposed, but it clearly needs a robust program of research and development. This magnet will not probably be of the RHIC/SSC type and not even of the LHC type. It will have to be designed and conceived anew. In the following they examine two possible approaches. In the first approach

  18. The frontier of high energy physics and the large hadron collider

    SciTech Connect

    Mishra, Kalanand

    2013-09-09

    High Energy Physics explores the most fundamental questions about the nature of the universe, e.g., basic building blocks of matter and energy, existence of the smallest sub-atomic particles, dark matter, dark energy etc. The Large Hadron Collider (LHC) is the most powerful accelerator on earth located near Geneva, Switzerland. It recreates the conditions just after the Big Bang by colliding two proton beams head-on at very high energy every 25-50 nanosecond. With the recent discovery of Higgs boson, the LHC is firmly marching on to explore the TeV energy scale.

  19. Particle Physics after the Higgs-Boson Discovery: Opportunities for the Large Hadron Collider

    DOE PAGESBeta

    Quigg, Chris

    2015-08-24

    The first run of the Large Hadron Collider at CERN brought the discovery of the Higgs boson, an apparently elementary scalar particle with a mass of 125 GeV, the avatar of the mechanism that hides the electroweak symmetry. Then, a new round of experimentation is beginning, with the energy of the proton–proton colliding beams raised to 6.5 TeV per beam, from 4 TeV at the end of the first run. I summarize what we have learned about the Higgs boson, and calls attention to some issues that will be among our central concerns in the near future.

  20. Particle physics after the Higgs boson discovery: opportunities for the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Quigg, Chris

    2016-04-01

    The first run of the Large Hadron Collider at CERN brought the discovery of the Higgs boson, an apparently elementary scalar particle with a mass of 125 GeV, the avatar of the mechanism that hides the electroweak symmetry. A new round of experimentation is beginning, with the energy of the proton--proton colliding beams raised to 6.5 TeV per beam, from 4 TeV at the end of the first run. This article summarizes what we have learned about the Higgs boson, and calls attention to some issues that will be among our central concerns in the near future.

  1. Higgs bosons, electroweak symmetry breaking, and the physics of the Large Hadron Collider

    SciTech Connect

    Quigg, Chris; /Fermilab /CERN

    2007-02-01

    The Large Hadron Collider, a 7 {circle_plus} 7 TeV proton-proton collider under construction at CERN (the European Laboratory for Particle Physics in Geneva), will take experiments squarely into a new energy domain where mysteries of the electroweak interaction will be unveiled. What marks the 1-TeV scale as an important target? Why is understanding how the electroweak symmetry is hidden important to our conception of the world around us? What expectations do we have for the agent that hides the electroweak symmetry? Why do particle physicists anticipate a great harvest of discoveries within reach of the LHC?

  2. Study of highly excited string states at the Large Hadron Collider

    SciTech Connect

    Gingrich, Douglas M.; Martell, Kevin

    2008-12-01

    In TeV-scale gravity scenarios with large extra dimensions, black holes may be produced at future colliders. Good arguments have been made for why general relativistic black holes may be just out of reach of the Large Hadron Collider (LHC). However, in weakly coupled string theory, highly excited string states--string balls--could be produced at the LHC with high rates and decay thermally, not unlike general relativistic black holes. In this paper, we simulate and study string ball production and decay at the LHC. We specifically emphasize the experimentally detectable similarities and differences between string balls and general relativistic black holes at a TeV scale.

  3. Thermal Photon Radiation in High Multiplicity p+Pb Collisions at the Large Hadron Collider

    DOE PAGESBeta

    Shen, Chun; Paquet, Jean-François; Denicol, Gabriel S.; Jeon, Sangyong; Gale, Charles

    2016-02-18

    We observed the collective behavior of hadronic particles in high multiplicity proton-lead collisions at the Large Hadron Collider, as well as in deuteron-gold collisions at the Relativistic Heavy-Ion Collider. In our work we present the first calculation, in the hydrodynamic framework, of thermal photon radiation from such small collision systems. Owing to their compact size, these systems can reach temperatures comparable to those in central nucleus-nucleus collisions. Moreover, the thermal photons can thus shine over the prompt background, and increase the low pT direct photon spectrum by a factor of 2–3 in 0%–1% p+Pb collisions at 5.02 TeV. This thermalmore » photon enhancement can therefore serve as a signature of the existence of a hot quark-gluon plasma during the evolution of these small collision systems, as well as validate hydrodynamic behavior in small systems.« less

  4. Standard model and supersymmetric flavor puzzles at the CERN Large Hadron Collider

    SciTech Connect

    Feng, Jonathan L.; Lester, Christopher G.; Nir, Yosef; Shadmi, Yael

    2008-04-01

    Can the Large Hadron Collider explain the masses and mixings of the known fermions? A promising possibility is that these masses and mixings are determined by flavor symmetries that also govern new particles that will appear at the LHC. We consider well-motivated examples in supersymmetry with both gravity and gauge mediation. Contrary to spreading belief, new physics need not be minimally flavor violating. We build nonminimally flavor violating models that successfully explain all known lepton masses and mixings, but span a wide range in their predictions for slepton flavor violation. In natural and favorable cases, these models have metastable sleptons and are characterized by fully reconstructible events. We outline many flavor measurements that are then possible and describe their prospects for resolving both the standard model and new physics flavor puzzles at the Large Hadron Collider.

  5. Thermal Photon Radiation in High Multiplicity p+Pb Collisions at the Large Hadron Collider.

    PubMed

    Shen, Chun; Paquet, Jean-François; Denicol, Gabriel S; Jeon, Sangyong; Gale, Charles

    2016-02-19

    The collective behavior of hadronic particles has been observed in high multiplicity proton-lead collisions at the Large Hadron Collider, as well as in deuteron-gold collisions at the Relativistic Heavy-Ion Collider. In this work we present the first calculation, in the hydrodynamic framework, of thermal photon radiation from such small collision systems. Owing to their compact size, these systems can reach temperatures comparable to those in central nucleus-nucleus collisions. The thermal photons can thus shine over the prompt background, and increase the low p_{T} direct photon spectrum by a factor of 2-3 in 0%-1% p+Pb collisions at 5.02 TeV. This thermal photon enhancement can therefore serve as a signature of the existence of a hot quark-gluon plasma during the evolution of these small collision systems, as well as validate hydrodynamic behavior in small systems. PMID:26943529

  6. Thermal Photon Radiation in High Multiplicity p +Pb Collisions at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Shen, Chun; Paquet, Jean-François; Denicol, Gabriel S.; Jeon, Sangyong; Gale, Charles

    2016-02-01

    The collective behavior of hadronic particles has been observed in high multiplicity proton-lead collisions at the Large Hadron Collider, as well as in deuteron-gold collisions at the Relativistic Heavy-Ion Collider. In this work we present the first calculation, in the hydrodynamic framework, of thermal photon radiation from such small collision systems. Owing to their compact size, these systems can reach temperatures comparable to those in central nucleus-nucleus collisions. The thermal photons can thus shine over the prompt background, and increase the low pT direct photon spectrum by a factor of 2-3 in 0%-1% p +Pb collisions at 5.02 TeV. This thermal photon enhancement can therefore serve as a signature of the existence of a hot quark-gluon plasma during the evolution of these small collision systems, as well as validate hydrodynamic behavior in small systems.

  7. Probing gauge-phobic heavy Higgs bosons at high energy hadron colliders

    NASA Astrophysics Data System (ADS)

    Kuang, Yu-Ping; Xia, Ling-Hao

    2015-07-01

    We study the probe of the gauge-phobic (or nearly gauge-phobic) heavy Higgs bosons (GPHB) at high energy hadron colliders including the 14 TeV LHC and the 50 TeV Super Proton-Proton Collider (SppC). We take the process pp → t t bar t t bar , and study it at the hadron level including simulating the jet formation and top quark tagging (with jet substructure). We show that, for a GPHB with MH < 800 GeV, MH can be determined by adjusting the value of MH in the theoretical pT (b1) distribution to fit the observed pT (b1) distribution, and the resonance peak can be seen at the SppC for MH = 800 GeV and 1 TeV.

  8. Construction of block-coil high-field model dipoles for future hadron colliders

    SciTech Connect

    Blackburn, Raymond; Elliott, Tim; Henchel, William; McInturff, Al; McIntyre, Peter; Sattarov, Akhdior

    2002-08-04

    A family of high-field dipoles is being developed at Texas A&M University, as part of the program to improve the cost-effectiveness of superconducting magnet technology for future hadron colliders. The TAMU technology employs stress management, flux-plate control of persistent-current multipoles, conductor optimization using mixed-strand cable, and metal-filled bladders to provide pre-load and surface compliance. Construction details and status of the latest model dipole will be presented.

  9. Discriminating supersymmetry and black holes at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Roy, Arunava; Cavaglià, Marco

    2008-03-01

    We show how to differentiate the minimal supersymmetric extension of the standard model from black hole events at the CERN Large Hadron Collider. Black holes are simulated with the CATFISH generator. Supersymmetry simulations use a combination of pythia and isajet. Our study, based on event-shape variables, visible and missing momenta, and analysis of dilepton events, demonstrates that supersymmetry and black hole events at the LHC can be easily discriminated.

  10. Next-to-Leading-Order QCD Corrections to WW+Jet Production at Hadron Colliders

    SciTech Connect

    Dittmaier, S.; Kallweit, S.; Uwer, P.

    2008-02-15

    We report on the calculation of the next-to-leading-order QCD corrections to the production of W-boson pairs in association with a hard jet at the Fermilab Tevatron and CERN Large Hadron Collider, which is an important source of background for Higgs boson and new-physics searches. The corrections stabilize the leading-order prediction for the cross section considerably, in particular, if a veto against the emission of a second hard jet is applied.

  11. Next-to-Leading-Order QCD Corrections to tt+jet Production at Hadron Colliders

    SciTech Connect

    Dittmaier, S.; Uwer, P.; Weinzierl, S.

    2007-06-29

    We report on the calculation of the next-to-leading-order QCD corrections to the production of top-quark-top-antiquark pairs in association with a hard jet at the Fermilab Tevatron and the CERN Large Hadron Collider. We present results for the tt+jet cross section and the forward-backward charge asymmetry. The corrections stabilize the leading-order prediction for the cross section. The charge asymmetry receives large corrections.

  12. Probing neutral gauge boson self-interactions in ZZ production at hadron colliders

    NASA Astrophysics Data System (ADS)

    Baur, U.; Rainwater, D.

    2000-12-01

    A detailed analysis of ZZ production at the upgraded Fermilab Tevatron and the CERN Large Hadron Collider is presented for general ZZZ and ZZγ couplings. Deviations from the standard model gauge theory structure for each of these can be parametrized in terms of two form factors which are severely restricted by unitarity at high energy. Achievable limits on these couplings are shown to be a dramatic improvement over the limits currently obtained by e+e- experiments.

  13. Nucleon Decay and Neutrino Experiments, Experiments at High Energy Hadron Colliders, and String Theor

    SciTech Connect

    Jung, Chang Kee; Douglas, Michaek; Hobbs, John; McGrew, Clark; Rijssenbeek, Michael

    2013-07-29

    This is the final report of the DOE grant DEFG0292ER40697 that supported the research activities of the Stony Brook High Energy Physics Group from November 15, 1991 to April 30, 2013. During the grant period, the grant supported the research of three Stony Brook particle physics research groups: The Nucleon Decay and Neutrino group, the Hadron Collider Group, and the Theory Group.

  14. Physics and Analysis at a Hadron Collider - Making Measurements (3/3)

    SciTech Connect

    2010-01-20

    This is the third lecture of three which together discuss the physics of hadron colliders with an emphasis on experimental techniques used for data analysis. This third lecture discusses techniques important for analyses making a measurement (e.g. determining a cross section or a particle property such as its mass or lifetime) using some CDF top-quark analyses as specific examples. The lectures are aimed at graduate students.

  15. Light relic neutralinos in Dark Matter direct and indirect searches and at the Large Hadron Collider

    SciTech Connect

    Scopel, S.

    2009-04-17

    We show that light relic neutralinos which arise in R-parity conserving Susy models where gaugino masses are not unified at a Grand Unified (GUT) scale can explain the new DAMA annual modulation result. The same configurations are also discussed in connection to indirect signals from galactic antiprotons. Prospects of detection of these light relic neutralinos at the Large Hadron Collider are also analyzed and look promising.

  16. Physics and Analysis at a Hadron Collider - Making Measurements (3/3)

    ScienceCinema

    None

    2011-10-06

    This is the third lecture of three which together discuss the physics of hadron colliders with an emphasis on experimental techniques used for data analysis. This third lecture discusses techniques important for analyses making a measurement (e.g. determining a cross section or a particle property such as its mass or lifetime) using some CDF top-quark analyses as specific examples. The lectures are aimed at graduate students.

  17. Probing neutrino oscillations in supersymmetric models at the Large Hadron Collider

    SciTech Connect

    Campos, F. de; Eboli, O. J. P.; Hirsch, M.; Valle, J. W. F.; Porod, W.

    2010-10-01

    The lightest supersymmetric particle may decay with branching ratios that correlate with neutrino oscillation parameters. In this case the CERN Large Hadron Collider (LHC) has the potential to probe the atmospheric neutrino mixing angle with sensitivity competitive to its low-energy determination by underground experiments. Under realistic detection assumptions, we identify the necessary conditions for the experiments at CERN's LHC to probe the simplest scenario for neutrino masses induced by minimal supergravity with bilinear R parity violation.

  18. MSSM Higgs Discovery Potential at Tevatron with new Benchmark Scenarios for Hadron Colliders

    NASA Astrophysics Data System (ADS)

    Drollinger, Volker; Gold, Michael; Jarrell, Jason; Rekovic, Vladimir; Smirnov, Dmitri

    2003-04-01

    Four benchmark scenarios for MSSM Higgs boson searches at hadron colliders have recently been suggested. We discuss two aspects of the Higgs discovery potential in these scenarios. In the first part of this study, cross sections times branching ratios are computed for the most important search channel pbarp arrow W^± h^0 arrow l^± ν b barb. The second part is dedicated to the Higgs mass behavior in the parameter space and two independent Higgs mass calculations are compared.

  19. [Calorimeter based detectors for high energy hadron colliders]. [Progress report

    SciTech Connect

    Not Available

    1992-08-04

    This document provides a progress report on research that has been conducted under DOE Grant DEFG0292ER40697 for the past year, and describes proposed work for the second year of this 8 year grant starting November 15, 1992. Personnel supported by the contract include 4 faculty, 1 research faculty, 4 postdocs, and 9 graduate students. The work under this grant has in the past been directed in two complementary directions -- DO at Fermilab, and the second SSC detector GEM. A major effort has been towards the construction and commissioning of the new Fermilab Collider detector DO, including design, construction, testing, the commissioning of the central tracking and the central calorimeters. The first DO run is now underway, with data taking and analysis of the first events. Trigger algorithms, data acquisition, calibration of tracking and calorimetry, data scanning and analysis, and planning for future upgrades of the DO detector with the advent of the FNAL Main Injector are all involved. The other effort supported by this grant has been towards the design of GEM, a large and general-purpose SSC detector with special emphasis on accurate muon measurement over a large solid angle. This effort will culminate this year in the presentation to the SSC laboratory of the GEM Technical Design Report. Contributions are being made to the detector design, coordination, and physics simulation studies with special emphasis on muon final states. Collaboration with the RD5 group at CERN to study muon punch through and to test cathode strip chamber prototypes was begun.

  20. Dark matter signals in dilepton production at hadron colliders

    NASA Astrophysics Data System (ADS)

    Altmannshofer, Wolfgang; Fox, Patrick J.; Harnik, Roni; Kribs, Graham D.; Raj, Nirmal

    2015-06-01

    We show that new physics can show up in dileptonic events through its radiative contributions to the dilepton invariant mass, leading to unique "monocline" features in mℓℓ, as well as the angular distribution of the leptons. We focus in particular on the case of dark matter with scalar messengers coupling it to the quarks and leptons. Consistent thermal models require the dark matter to have masses of 100s of GeV and have ≳1 couplings to the Standard Model (SM), implying that radiative corrections to the SM Drell-Yan rate can be sizable. We consider the case of Majorana, Dirac, and pseudo-Dirac dark matter and show that there are regions of parameter space where the nonexistence of a monocline, which starts at roughly twice the dark matter mass, mℓℓ˜2 mχ , places the strongest constraint on the model. We make predictions for the sensitivities at the high luminosity 14 TeV LHC as well as a future 100 TeV proton-proton collider. We find that our dilepton signal is most sensitive when the mediator and the dark matter are nearly degenerate and conventional missing-transverse-momentum-based searches are least sensitive.

  1. Probing new physics of cubic Higgs boson interaction via Higgs pair production at hadron colliders

    NASA Astrophysics Data System (ADS)

    He, Hong-Jian; Ren, Jing; Yao, Weiming

    2016-01-01

    Despite the discovery of a Higgs boson h (125 GeV) at the LHC run 1, its self-interaction has fully evaded direct experimental probe so far. Such self-interaction is vital for electroweak symmetry breaking, vacuum stability, and electroweak phase transition. It is a most likely place to encode new physics beyond the standard model. We parametrize such new physics by model-independent dimension-six effective operators and study their tests via Higgs pair production at hadron colliders. We analyze three major di-Higgs production channels at the parton level and compare the parameter dependence of total cross sections and kinematic distributions at the LHC (14 TeV) and p p (100 TeV) hadron collider. We further perform full simulations for the di-Higgs production channel g g →h h →b b ¯γ γ and its backgrounds at the p p (100 TeV) hadron collider. We construct four kinds of benchmark points and study the sensitivities to probing different regions of the parameter space of cubic Higgs interactions. We find that for a one-parameter analysis and with a 3 ab-1 (30 ab-1 ) integrated luminosity, the g g →h h →b b ¯γ γ channel can measure the SM cubic Higgs coupling and the derivative cubic Higgs coupling to an accuracy of about 13% (4.2%) and 5% (1.6%), respectively.

  2. Toward particle-level filtering of individual collision events at the Large Hadron Collider and beyond

    NASA Astrophysics Data System (ADS)

    Colecchia, Federico

    2014-03-01

    Low-energy strong interactions are a major source of background at hadron colliders, and methods of subtracting the associated energy flow are well established in the field. Traditional approaches treat the contamination as diffuse, and estimate background energy levels either by averaging over large data sets or by restricting to given kinematic regions inside individual collision events. On the other hand, more recent techniques take into account the discrete nature of background, most notably by exploiting the presence of substructure inside hard jets, i.e. inside collections of particles originating from scattered hard quarks and gluons. However, none of the existing methods subtract background at the level of individual particles inside events. We illustrate the use of an algorithm that will allow particle-by-particle background discrimination at the Large Hadron Collider, and we envisage this as the basis for a novel event filtering procedure upstream of the official reconstruction chains. Our hope is that this new technique will improve physics analysis when used in combination with state-of-the-art algorithms in high-luminosity hadron collider environments.

  3. Medium effects on charmonium production at ultrarelativistic energies available at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Zhou, Kai; Xu, Nu; Xu, Zhe; Zhuang, Pengfei

    2014-05-01

    We investigate with a transport approach the cold and hot nuclear matter effects on the charmonium transverse momentum distributions in relativistic heavy ion collisions. The newly defined nuclear modification factor rAA=AA/pp and elliptic flow v2 for J /ψ are sensitive to the nature of the hot medium and the thermalization of heavy quarks. From Super Proton Synchrotron (SPS) through Relativistic Heavy Ion Collider (RHIC) to Large Hadron Collider (LHC) colliding energies, we observe dramatic changes in the centrality dependence of rAA. We find that, at LHC energy, the finally observed charmonia are dominated by the regeneration from thermalized heavy quarks.

  4. Aspects of perturbative QCD at a 100 TeV future hadron collider

    NASA Astrophysics Data System (ADS)

    Bothmann, Enrico; Ferrarese, Piero; Krauss, Frank; Kuttimalai, Silvan; Schumann, Steffen; Thompson, Jennifer

    2016-08-01

    In this paper we consider particle production at a future circular hadron collider with 100 TeV center-of-mass energy within the Standard Model, and in particular their QCD aspects. Accurate predictions for these processes pose severe theoretical challenges related to large hierarchies of scales and possible large multiplicities of final-state particles. We investigate scaling patterns in multijet-production rates allowing to extrapolate predictions to very high final-state multiplicities. Furthermore, we consider large-area QCD jets and study the expectation for the mean number of subjets to be reconstructed from their constituents and confront these with analytical resummed predictions and with the expectation for boosted hadronic decays of top quarks and W bosons. We also discuss the validity of Higgs effective field theory in making predictions for Higgs-boson production in association with jets. Finally, we consider the case of new physics searches at such a 100 TeV hadron-collider machine and discuss the expectations for corresponding Standard-Model background processes.

  5. Electroweak gauge-boson production in association with b jets at Hadron Colliders

    NASA Astrophysics Data System (ADS)

    Febres Cordero, F.; Reina, L.

    2015-06-01

    The production of both charged and neutral electroweak gauge bosons in association with b jets has attracted a lot of experimental and theoretical attention in recent years because of its central role in the physics programs of both the Fermilab Tevatron and the CERN Large Hadron Collider. The improved level of accuracy achieved both in the theoretical predictions and experimental measurements of these processes can promote crucial developments in modeling b-quark jets and b-quark parton distribution functions, and can provide a more accurate description of some of the most important backgrounds to the measurement of Higgs-boson couplings and several new physics searches. In this paper, we review the status of theoretical predictions for cross sections and kinematic distributions of processes in which an electroweak gauge boson is produced in association with up to two b jets in hadronic collisions, namely p\\bar {p}, pp → V + 1b jet and p\\bar {p}, pp → V + 2b jets with V = W±, Z/γ*, γ. Available experimental measurements at both the Fermilab Tevatron and the CERN Large Hadron Collider are also reviewed and their comparison with theoretical predictions is discussed.

  6. On-shell methods applied to exotic Higgs production at hadronic colliders

    NASA Astrophysics Data System (ADS)

    Thayer, Benjamin

    We calculate the associated production of a pseudoscalar (A 0) with a pair of heavy quarks at hadonic colliders, namely pp¯, ppQQ¯ A0 + X for Q = b, t and X the remaining partonic interactions, including one-loop QCD corrections, i.e. at Next-to-leading Order (NLO) in QCD. The one-loop amplitude for the parton level processes qq¯, gg QQ¯A0 is calculated both with a traditional Feynman-diagram approach and with more recently proposed on-shell methods and unitarity based techniques. We use this process as a testing ground to learn and compare the new on-shell methods to more traditional techniques in a case where several massive particles are involved. We present results for the full NLO hadronic cross section, at both the Tevatron (pp¯) and the Large Hadron Collider (pp) with the aim to further aid and constrain the parameter space of models with pseudoscalar production at particle colliders.

  7. Exclusive vector meson production with a leading neutron in photon-hadron interactions at hadronic colliders

    NASA Astrophysics Data System (ADS)

    Gonçalves, V. P.; Moreira, B. D.; Navarra, F. S.; Spiering, D.

    2016-07-01

    In this paper, we study leading neutron production in photon-hadron interactions that take place in p p and p A collisions at large impact parameters. Using a model that describes the recent leading neutron data at HERA, we consider exclusive vector meson production in association with a leading neutron in p p /p A collisions at RHIC and LHC energies. The total cross sections and rapidity distributions of ρ , ϕ , and J /Ψ produced together with a leading neutron are computed. Our results indicate that the study of these processes is feasible and that it can be used to improve the understanding of leading neutron processes and of exclusive vector meson production.

  8. Time evolution of the luminosity of colliding heavy-ion beams in BNL Relativistic Heavy Ion Collider and CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Bruce, R.; Jowett, J. M.; Blaskiewicz, M.; Fischer, W.

    2010-09-01

    We have studied the time evolution of the heavy-ion luminosity and bunch intensities in the Relativistic Heavy Ion Collider (RHIC) at BNL, and in the Large Hadron Collider (LHC) at CERN. First, we present measurements from a large number of RHIC stores (from run-7), colliding 100GeV/nucleon Au79+197 beams without stochastic cooling. These are compared with two different calculation methods. The first is a simulation based on multiparticle tracking taking into account collisions, intrabeam scattering, radiation damping, and synchrotron and betatron motion. In the second, faster, method, a system of ordinary differential equations with terms describing the corresponding effects on emittances and bunch populations is solved numerically. Results of the tracking method agree very well with the RHIC data. With the faster method, significant discrepancies are found since the losses of particles diffusing out of the rf bucket due to intrabeam scattering are not modeled accurately enough. Finally, we use both methods to make predictions of the time evolution of the future Pb82+208 beams in the LHC at injection and collision energy. For this machine, the two methods agree well.

  9. Time evolution of the luminosity of colliding heavy-ion beams in BNL Relativistic Heavy Ion Collider and CERN Large Hadron Collider

    SciTech Connect

    Bruce, R.; Blaskiewicz, M.; Jowett, J.M.; Fischer, W.

    2010-09-07

    We have studied the time evolution of the heavy ion luminosity and bunch intensities in the Relativistic Heavy Ion Collider (RHIC), at BNL, and in the Large Hadron Collider (LHC), at CERN. First, we present measurements from a large number of RHIC stores (from Run 7), colliding 100 GeV/nucleon {sup 197}Au{sup 79}+ beams without stochastic cooling. These are compared with two different calculation methods. The first is a simulation based on multi-particle tracking taking into account collisions, intrabeam scattering, radiation damping, and synchrotron and betatron motion. In the second, faster, method, a system of ordinary differential equations with terms describing the corresponding effects on emittances and bunch populations is solved numerically. Results of the tracking method agree very well with the RHIC data. With the faster method, significant discrepancies are found since the losses of particles diffusing out of the RF bucket due to intrabeam scattering are not modeled accurately enough. Finally, we use both methods to make predictions of the time evolution of the future {sup 208}Pb+{sup 82+} beams in the LHC at injection and collision energy. For this machine, the two methods agree well.

  10. A new micro-strip tracker for the new generation of experiments at hadron colliders

    SciTech Connect

    Dinardo, Mauro E

    2005-12-01

    This thesis concerns the development and characterization of a prototype Silicon micro-strip detector that can be used in the forward (high rapidity) region of a hadron collider. These detectors must operate in a high radiation environment without any important degradation of their performance. The innovative feature of these detectors is the readout electronics, which, being completely data-driven, allows for the direct use of the detector information at the lowest level of the trigger. All the particle hits on the detector can be readout in real-time without any external trigger and any particular limitation due to dead-time. In this way, all the detector information is available to elaborate a very selective trigger decision based on a fast reconstruction of tracks and vertex topology. These detectors, together with the new approach to the trigger, have been developed in the context of the BTeV R&D program; our aim was to define the features and the design parameters of an optimal experiment for heavy flavour physics at hadron colliders. Application of these detectors goes well beyond the BTeV project and, in particular, involves the future upgrades of experiments at hadron colliders, such as Atlas, CMS and LHCb. These experiments, indeed, are already considering for their future high-intensity runs a new trigger strategy a la BTeV. Their aim is to select directly at trigger level events containing Bhadrons, which, on several cases, come from the decay of Higgs bosons, Z{sup o}'s or W{sup {+-}}'s; the track information can also help on improving the performance of the electron and muon selection at the trigger level. For this reason, they are going to develop new detectors with practically the same characteristics as those of BTeV. To this extent, the work accomplished in this thesis could serve as guide-line for those upgrades.

  11. Test of Relativistic Gravity for Propulsion at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Felber, Franklin

    2010-01-01

    A design is presented of a laboratory experiment that could test the suitability of relativistic gravity for propulsion of spacecraft to relativistic speeds. An exact time-dependent solution of Einstein's gravitational field equation confirms that even the weak field of a mass moving at relativistic speeds could serve as a driver to accelerate a much lighter payload from rest to a good fraction of the speed of light. The time-dependent field of ultrarelativistic particles in a collider ring is calculated. An experiment is proposed as the first test of the predictions of general relativity in the ultrarelativistic limit by measuring the repulsive gravitational field of bunches of protons in the Large Hadron Collider (LHC). The estimated `antigravity beam' signal strength at a resonant detector of each proton bunch is 3 nm/s2 for 2 ns during each revolution of the LHC. This experiment can be performed off-line, without interfering with the normal operations of the LHC.

  12. Signatures of the anomalous Zγ and ZZ production at lepton and hadron colliders

    NASA Astrophysics Data System (ADS)

    Gounaris, G. J.; Layssac, J.; Renard, F. M.

    2000-04-01

    The possible form of new physics (NP) interactions affecting the ZZZ, ZZγ, and Zγγ vertices is critically examined. Their signatures and the possibilities to study them, through ZZ and Zγ production, at the CERN e-e+ colliders LEP and LC and at the hadronic colliders, the Fermilab Tevatron and CERN LHC, are investigated. Experimental limits obtained or expected on each coupling are collected. A simple theoretical model based on virtual effects due to some heavy fermions is used for acquiring some guidance on the plausible forms of these NP vertices. In such a case specific relations among the various neutral couplings are predicted, which can be experimentally tested and possibly used to constrain the form of the responsible NP structure.

  13. Probing charged Higgs boson couplings at a future circular hadron collider

    NASA Astrophysics Data System (ADS)

    Ćakır, I. T.; Kuday, S.; Saygın, H.; Şenol, A.; ćakır, O.

    2016-07-01

    Many of the new physics models predict a light Higgs boson similar to the Higgs boson of the Standard Model (SM) and also extra scalar bosons. Beyond the search channels for a SM Higgs boson, the future collider experiments will explore additional channels that are specific to extended Higgs sectors. We study the charged Higgs boson production within the framework of two Higgs doublet models (THDM) in the proton-proton collisions at a future circular hadron collider (FCC-hh). With an integrated luminosity of Lint=500 fb-1 at very high energy frontier (√{s }=100 TeV ), we obtain a significant coverage of the parameter space and distinguish the charged Higgs-top-bottom interaction within the THDM or other new physics models with charged Higgs boson mass up to 1.5 TeV.

  14. Charmonium production at the Tevatron and Large Hadron Collider in the Regge limit of QCD

    SciTech Connect

    Nefedov, M. A. Saleev, V. A. Shipilova, A. V.

    2013-12-15

    Processes involving direct J/ψ-meson production in proton-antiproton and proton-proton collisions are studied under the assumption of gluon Reggeization in t-channel exchanges and with the aid of the formalism of nonrelativistic quantum chromodynamics. The present calculations are performed in the leading approximation in the strong coupling constant α{sub s} and in the relative quark velocity v. The octet nonperturbative matrix elements for the transition of a c c-bar pair to quarkonium are fixed in fitting the transverse-momentumspectra obtained by the CDF Collaboration for J/ψ mesons at the Tevatron collider. The spectra of J/ψ-meson production at the energies of the Large Hadron Collider are predicted, and the resulting predictions agree well with experimental data obtained by the ATLAS, CMS, and LHCb Collaborations at √S = 7 TeV.

  15. Fundamental beam-beam limit from head-on interaction in the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Ohmi, Kazuhito; Zimmermann, Frank

    2015-12-01

    The beam-beam limit at hadron colliders manifests itself in the form of degraded luminosity lifetime and/or reduced beam lifetime. In particular, for increasing beam intensity, the nonlinear beam-beam force causes incoherent emittance growth, while the (linear) coupling force between the two colliding beams can result in coherent beam-beam instabilities. These phenomena may be enhanced (or suppressed) by lattice errors, external noise, and other perturbations. We investigate the luminosity degradation caused both by incoherent emittance growth and by coherent beam-beam instability. The resulting beam-beam limit for an ideal machine and the of question how it is affected by some of the aforementioned errors are discussed in theory and simulation.

  16. Estimates of Hadronic Backgrounds in a 5 TeV e+e- Linear Collider

    SciTech Connect

    Murayama, H.; Ohgaki, Tomomi; Xie, M.

    1998-10-01

    We have estimated hadronic backgrounds by {gamma}{gamma} collisions in an e{sup +}e{sup -} linear collider at a center-of-mass energy of 5 TeV. We introduce a simple ansatz, that is, a total {gamma}{gamma} cross section of {sigma}{sub {gamma}{gamma}} = ({sigma}{gamma}{sub p}){sup 2}/{sigma}{sub pp} shall be saturated by minijet productions, whose rate is controlled by p{sub t,min}({radical}s). We present that the background yields are small and the energy deposits are tinier than the collision energy of the initial electron and positron beams by a simulation.

  17. Compressed supersymmetry after 1 fb⁻¹ at the Large Hadron Collider

    SciTech Connect

    LeCompte, Thomas J.; Martin, Stephen P.

    2012-02-22

    We study the reach of the Large Hadron Collider with 1 fb⁻¹ of data at √s=7 TeV for several classes of supersymmetric models with compressed mass spectra, using jets and missing transverse energy cuts like those employed by ATLAS for summer 2011 data. In the limit of extreme compression, the best limits come from signal regions that do not require more than 2 or 3 jets and that remove backgrounds by requiring more missing energy rather than a higher effective mass.

  18. Testing the handedness of a heavy {ital W}{prime} at future hadron colliders

    SciTech Connect

    Cvetic, M.; Langacker, P.; Liu, J.

    1994-03-01

    We show that the associated production {ital pp}{r_arrow}{ital W}{prime}{ital W} and the rare dec at future hadron colliders. For {ital M}{sub {ital W}{prime}}{similar_to}(1--3) TeV they would allow a clean determination on whether the {ital W}{prime} couples to {ital V}{minus}{ital A} or {ital V}+{ital A} currents. As an illustration a model in which the {ital W}{prime}{sup {plus_minus}} couples only to {ital V}{minus}{ital A} currents is contrasted with the left-right-symmetric models which involve {ital V}+{ital A} currents.

  19. Treating jet correlations in high pile-up at hadron colliders

    NASA Astrophysics Data System (ADS)

    Hautmann, F.; Jung, H.; Van Haevermaet, H.

    2016-03-01

    Experiments in the high-luminosity runs at the Large Hadron Collider face the challenges of very large pile-up. Primary techniques to deal with this are based on precise vertex and track reconstruction. Outside tracker acceptances, however, lie regions of interest for many aspects of the LHC physics program. We explore complementary approaches to pile-up treatment and propose a data-driven jet-mixing method which can be used outside tracker acceptances without depending on Monte Carlo generators. The method can be applied to treat correlation observables and take into account, besides the jet transverse momentum pedestal, effects of hard jets from pile-up.

  20. K (transverse) jet algorithms in hadron colliders: The D0 experience

    SciTech Connect

    V. Daniel Elvira

    2002-12-05

    D0 has implemented and studied a k{sub {perpendicular}} jet algorithm for the first time in a hadron collider. The authors have submitted two physics results for publication: the subjet multiplicity in quark and gluon jets and the central inclusive jet cross section measurements. A third result, a measurement of thrust distributions in jet events, is underway. A combination of measurements using several types of algorithms and samples taken at different center-of-mass energies is desirable to understand and distinguish with higher accuracy between instrumentation and physics effects.

  1. Diphoton signals in theories with large extra dimensions to NLO QCD at hadron colliders

    NASA Astrophysics Data System (ADS)

    Kumar, M. C.; Mathews, Prakash; Ravindran, V.; Tripathi, Anurag

    2009-02-01

    We present a full next-to-leading order (NLO) QCD corrections to diphoton production at the hadron colliders in both standard model and ADD model. The invariant mass and rapidity distributions of the diphotons are obtained using a semi-analytical two cut-off phase space slicing method which allows for a successful numerical implementation of various kinematical cuts used in the experiments. The fragmentation photons are systematically removed using smooth-cone-isolation cuts on the photons. The NLO QCD corrections not only stabilise the perturbative predictions but also enhance the production cross section significantly.

  2. Top quark spin correlations in theories with large extra dimensions at the CERN Large Hadron Collider

    SciTech Connect

    Arai, Masato; Okada, Nobuchika; Smolek, Karel; Simak, Vladislav

    2004-12-01

    In theories with large extra dimensions, we study the top-spin correlations at the Large Hadron Collider. The s-channel process mediated by graviton Kaluza-Klein modes contributes to the top-antitop pair production in addition to the standard model processes, and affects the resultant top-spin correlations. We calculated the full density matrix for the top-antitop pair production. With the fundamental scale of the extra dimensional theory below 2 TeV, we find a sizable deviation of the top-spin correlations from the standard model one.

  3. Effects of unparticles on top spin correlation at the Large Hadron Collider

    SciTech Connect

    Arai, Masato; Okada, Nobuchika; Smolek, Karel

    2009-04-01

    We study effects of the scale-invariant hidden sector, the unparticle, proposed by Georgi, on top spin correlation at the Large Hadron Collider. Assuming no flavor-changing interaction between the unparticles and the standard model particles, the top-antitop quark pair production process arises through virtual unparticle exchanges in the s channel, in addition to the standard model processes. In particular, we consider contributions of scalar and vector unparticles and find that these make sizable deviations of the top spin correlation from the standard model one.

  4. Transverse-momentum resummation for top-quark pairs at hadron colliders.

    PubMed

    Zhu, Hua Xing; Li, Chong Sheng; Li, Hai Tao; Shao, Ding Yu; Yang, Li Lin

    2013-02-22

    We develop a framework for a systematic resummation of the transverse momentum distribution of top-quark pairs produced at hadron colliders based on effective field theory. Compared to Drell-Yan and Higgs production, a novel soft function matrix is required to account for the soft gluon emissions from the final states. We calculate this soft function at the next-to-leading order, and perform the resummation at the next-to-next-to-leading logarithmic accuracy. We compare our results with parton shower programs and with the experimental data at the Tevatron and the LHC. We also discuss the implications for the top quark charge asymmetry. PMID:23473132

  5. Observable T{sub 7} Lepton Flavor Symmetry at the Large Hadron Collider

    SciTech Connect

    Cao Qinghong; Khalil, Shaaban; Ma, Ernest; Okada, Hiroshi

    2011-04-01

    More often than not, models of flavor symmetry rely on the use of nonrenormalizable operators (in the guise of flavons) to accomplish the phenomenologically successful tribimaximal mixing of neutrinos. We show instead how a simple renormalizable two-parameter neutrino mass model of tribimaximal mixing can be constructed with the non-Abelian discrete symmetry T{sub 7} and the gauging of B-L. This is also achieved without the addition of auxiliary symmetries and particles present in almost all other proposals. Most importantly, it is verifiable at the Large Hadron Collider.

  6. Beam dynamics aspects of crab cavities in the CERN Large Hadron Collider

    SciTech Connect

    Sun, Y.; Calaga, R.; Assmann, R.; Barranco, J.; Tomas, R.; Weiler, T.; Zimmermann, F.; Morita, A.

    2009-10-14

    Modern colliders bring into collision a large number of bunches to achieve a high luminosity. The long-range beam-beam effects arising from parasitic encounters at such colliders are mitigated by introducing a crossing angle. Under these conditions, crab cavities (CC) can be used to restore effective head-on collisions and thereby to increase the geometric luminosity. Such crab cavities have been proposed for both linear and circular colliders. The crab cavities are rf cavities operated in a transverse dipole mode, which imparts on the beam particles a transverse kick that varies with the longitudinal position along the bunch. The use of crab cavities in the Large Hadron Collider (LHC) may not only raise the luminosity, but it could also complicate the beam dynamics, e.g., crab cavities might not only cancel synchrobetatron resonances excited by the crossing angle but they could also excite new ones, they could reduce the dynamic aperture for off-momentum particles, they could influence the aperture and orbit, also degrade the collimation cleaning efficiency, and so on. In this paper, we explore the principal feasibility of LHC crab cavities from a beam dynamics point of view. The implications of the crab cavities for the LHC optics, analytical and numerical luminosity studies, dynamic aperture, aperture and beta beating, emittance growth, beam-beam tune shift, long-range collisions, and synchrobetatron resonances, crab dispersion, and collimation efficiency will be discussed.

  7. Signals of supersymmetry with inaccessible first two families at the Large Hadron Collider

    SciTech Connect

    Desai, Nishita; Mukhopadhyaya, Biswarup

    2009-09-01

    We investigate the signals of supersymmetry in a scenario where only the third family squarks and sleptons can be produced at the Large Hadron Collider, in addition to the gluino, charginos, and neutralinos. The final states in such cases are marked by a multiplicity of top or bottom quarks. We study, in particular, the case when the top squark, bottom squark, and gluino masses are near the TeV scale due to which, the final state t's and b's are very energetic. We point out the difficulty in b tagging and identifying energetic tops and suggest several event selection criteria which allow the signals to remain significantly above the standard model background. We show that such scenarios with gluino mass up to 2 TeV can be successfully probed at the Large Hadron Collider. Information on tan{beta} can also be obtained by looking at associated Higgs production in the cascades of accompanying neutralinos. We also show that a combined analysis of event rates in the different channels and the effective mass distribution allows one to differentiate this scenario from the one where all three sfermion families are accessible.

  8. Heavy-Quark Associated Production with One Hard Photon at Hadron Colliders

    SciTech Connect

    Hartanto, Heribertus Bayu

    2013-01-01

    We present the calculation of heavy-quark associated production with a hard photon at hadron colliders, namely $pp(p\\bar p) → Q\\bar Q +X$γ (for $Q=t,b$), at Next-to-Leading Order (NLO) in Quantum Chromodynamics (QCD). We study the impact of NLO QCD corrections on the total cross section and several differential distributions at both the Tevatron and the Large Hadron Collider (LHC). For $t\\bar t$γ production we observe a sizeable reduction of the renormalization and factorization scale dependence when the NLO QCD corrections are included, while for $b\\bar b$γ production a considerable scale dependence still persists at NLO in QCD. This is consistent with what emerges in similar processes involving $b$ quarks and vector bosons and we explain its origin in detail. For $b\\bar b$γ production we study both the case in which at least one $b$ jet and the case in which at least two $b$ jets are observed. We perform the $b\\bar b$γ calculation using the Four Flavor Number Scheme (4FNS) and compare the case where at least one $b$ jet is observed with the corresponding results from the Five Flavor Number Scheme (5FNS) calculation. Finally we compare our results for $p\\bar p →+b+X$γ with the Tevatron data.

  9. Heavy-quark associated production with one hard photon at hadron colliders

    NASA Astrophysics Data System (ADS)

    Hartanto, Heribertus Bayu

    We present the calculation of heavy-quark associated production with a hard photon at hadron colliders, namely pp( pp) → QQgamma + X (for Q = t, b), at Next-to-Leading Order (NLO) in Quantum Chromodynamics (QCD). We study the impact of NLO QCD corrections on the total cross section and several differential distributions at both the Tevatron and the Large Hadron Collider (LHC). For ttgamma production we observe a sizeable reduction of the renormalization and factorization scale dependence when the NLO QCD corrections are included, while for bbgamma production a considerable scale dependence still persists at NLO in QCD. This is consistent with what emerges in similar processes involving b quarks and vector bosons and we explain its origin in detail. For bbgamma production we study both the case in which at least one b jet and the case in which at least two b jets are observed. We perform the bbgamma calculation using the Four Flavor Number Scheme (4FNS) and compare the case where at least one b jet is observed with the corresponding results from the Five Flavor Number Scheme (5FNS) calculation. Finally we compare our results for p p → gamma + b + X with Tevatron data.

  10. Conceptual design of hollow electron lenses for beam halo control in the Large Hadron Collider

    SciTech Connect

    Stancari, Giulio; Previtali, Valentina; Valishev, Alexander; Bruce, Roderik; Redaelli, Stefano; Rossi, Adriana; Salvachua Ferrando, Belen

    2014-06-26

    Collimation with hollow electron beams is a technique for halo control in high-power hadron beams. It is based on an electron beam (possibly pulsed or modulated in intensity) guided by strong axial magnetic fields which overlaps with the circulating beam in a short section of the ring. The concept was tested experimentally at the Fermilab Tevatron collider using a hollow electron gun installed in one of the Tevatron electron lenses. We are proposing a conceptual design for applying this technique to the Large Hadron Collider at CERN. A prototype hollow electron gun for the LHC was built and tested. The expected performance of the hollow electron beam collimator was based on Tevatron experiments and on numerical tracking simulations. Halo removal rates and enhancements of halo diffusivity were estimated as a function of beam and lattice parameters. Proton beam core lifetimes and emittance growth rates were checked to ensure that undesired effects were suppressed. Hardware specifications were based on the Tevatron devices and on preliminary engineering integration studies in the LHC machine. Required resources and a possible timeline were also outlined, together with a brief discussion of alternative halo-removal schemes and of other possible uses of electron lenses to improve the performance of the LHC.

  11. Signal for an extra-dimensional model of flavor at the Large Hadron Collider.

    PubMed

    Aquino, Priscila M; Burdman, Gustavo; Eboli, Oscar J P

    2007-03-30

    In Randall-Sundrum models with gauge bosons and fermions in the extra-dimensional bulk, it is possible to build models of flavor by localizing the fermions in the extra dimension. Since the Higgs boson must be localized at or close to the TeV scale fixed point, heavier fermions must be localized close to this brane. The first Kaluza-Klein excitations of the gauge bosons are also TeV-localized, so they have stronger couplings to heavier fermions leading to tree-level flavor-violating couplings. We investigate the potential of the Large Hadron Collider to observe flavor violation in single top production at very high invariant masses, in addition to the observation of the corresponding t-t[over] resonance. We conclude that the Large Hadron Collider will be able to observe tree-level flavor violation in single top production, probing Kaluza-Klein masses at least as large as 2 TeV, as well as a very interesting region of the parameters. PMID:17501183

  12. Signal for an Extra-Dimensional Model of Flavor at the Large Hadron Collider

    SciTech Connect

    Aquino, Priscila M.; Burdman, Gustavo; Eboli, Oscar J. P.

    2007-03-30

    In Randall-Sundrum models with gauge bosons and fermions in the extra-dimensional bulk, it is possible to build models of flavor by localizing the fermions in the extra dimension. Since the Higgs boson must be localized at or close to the TeV scale fixed point, heavier fermions must be localized close to this brane. The first Kaluza-Klein excitations of the gauge bosons are also TeV-localized, so they have stronger couplings to heavier fermions leading to tree-level flavor-violating couplings. We investigate the potential of the Large Hadron Collider to observe flavor violation in single top production at very high invariant masses, in addition to the observation of the corresponding t-t resonance. We conclude that the Large Hadron Collider will be able to observe tree-level flavor violation in single top production, probing Kaluza-Klein masses at least as large as 2 TeV, as well as a very interesting region of the parameters.

  13. Analysis of the Laser Calibration System for the CMS HCAL at CERN's Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Lebolo, Luis

    2005-11-01

    The European Organization for Nuclear Physics' (CERN) Large Hadron Collider uses the Compact Muon Solenoid (CMS) detector to measure collision products from proton-proton interactions. CMS uses a hadron calorimeter (HCAL) to measure the energy and position of quarks and gluons by reconstructing their hadronic decay products. An essential component of the detector is the calibration system, which was evaluated in terms of its misalignment, linearity, and resolution. In order to analyze the data, the authors created scripts in ROOT 5.02/00 and C++. The authors also used Mathematica 5.1 to perform complex mathematics and AutoCAD 2006 to produce optical ray traces. The misalignment of the optical components was found to be satisfactory; the Hybrid Photodiodes (HPDs) were confirmed to be linear; the constant, noise and stochastic contributions to its resolution were analyzed; and the quantum efficiency of most HPDs was determined to be approximately 40%. With a better understanding of the laser calibration system, one can further understand and improve the HCAL.

  14. New avenues to heavy right-handed neutrinos with pair production at hadronic colliders

    NASA Astrophysics Data System (ADS)

    Kang, Zhaofeng; Ko, P.; Li, Jinmian

    2016-04-01

    In many models incorporating the type-I seesaw mechanism, the right-handed neutrino (N ) couples to heavy vector/scalar bosons and thereby has resonant pair production. It has barely received attention thus far; however, it may provide the best avenue to probe TeV scale N without requiring anomalously large mixing between N and the active neutrino νL . In this paper we explore the discovery prospects of (mainly heavy) N pair production at the 14 TeV LHC and future 100 TeV p p collider, based on the three signatures: (1) trilepton from N (→ℓWℓ)N (→ℓWh) with Wℓ/h being the leptonically/hadronically decaying W ; (2) boosted di-Higgs boson plus ET from N (→νLh )N (→νLh ) ; (3) a single boosted Higgs boson with leptons and ET from N (→ℓWℓ)N (→νLh ) . At the 100 TeV collider, we also consider the situation when the Higgs boson is overboosted, thus losing its jet substructure. Interpreting our tentative results in the benchmark model, the local B -L model, we find that the (multi-) TeV scale N can be probed at the (100) 14 TeV colliders.

  15. Top-quark initiated processes at high-energy hadron colliders

    NASA Astrophysics Data System (ADS)

    Han, Tao; Sayre, Josh; Westhoff, Susanne

    2015-04-01

    In hadronic collisions at high energies, the top-quark may be treated as a parton inside a hadron. Top-quark initiated processes become increasingly important since the top-quark luminosity can reach a few percent of the bottom-quark luminosity. In the production of a heavy particle H with mass m H > m t , treating the top-quark as a parton allows us to resum large logarithms log( m {/H 2}/ m {/t 2}) arising from collinear splitting in the initial state. We quantify the effect of collinear resummation at the 14-TeV LHC and a future 100-TeV hadron collider, focusing on the top-quark open-flavor process in comparison with and tg → tH at the leading order (LO) in QCD. We employ top-quark parton distribution functions with appropriate collinear subtraction and power counting. We find that (1) collinear resummation enhances the inclusive production of a heavy particle with m H ≈ 5 TeV (0 .5 TeV) by more than a factor of two compared to the open-flavor process at a 100-TeV (14-TeV) collider; (2) top-quark mass effects are important for scales m H near the top-quark threshold, where the cross section is largest. We advocate a modification of the ACOT factorization scheme, dubbed m-ACOT, that consistently treats heavy-quark masses in hadronic collisions with two initial heavy quarks; (3) the scale uncertainty of the total cross section in m-ACOT is of about 20% at the LO. While a higher-order calculation is indispensable for a precise prediction, the LO cross section is well described by the process using an effective factorization scale significantly lower than m H . We illustrate our results by the example of a heavy spin-0 particle. Our main results also apply to the production of particles with spin-1 and 2.

  16. Design Concept and Parameters of a 15 T $Nb_{3}Sn$ Dipole Demonstrator for a 100 TEV Hadron Collider

    SciTech Connect

    Zlobin, A. V.; Andreev, N.; Barzi, E.; Kashikhin, V. V.; Novitski, I.

    2015-06-01

    FNAL has started the development of a 15 T $Nb_{3}Sn$ dipole demonstrator for a 100 TeV scale hadron collider. This paper describes the design concept and parameters of the 15 T $Nb_{3}Sn$ dipole demonstrator. The dipole magnetic, mechanical and quench protection concept and parameters are presented and discussed.

  17. Beam-induced energy deposition issues in the Very Large Hadron Collider

    SciTech Connect

    Nikolai V. Mokhov; Alexandr I. Drozhdin; G. William Foster

    2001-06-26

    Energy deposition issues are extremely important in the Very Large Hadron Collider (VLHC) with huge energy stored in its 20 TeV (Stage-1) and 87.5 TeV (Stage-2) beams. The status of the VLHC design on these topics, and possible solutions of the problems are discussed. Protective measures are determined based on the operational and accidental beam loss limits for the prompt radiation dose at the surface, residual radiation dose, ground water activation, accelerator components radiation damage and quench stability. The beam abort and beam collimation systems are designed to protect accelerator from accidental and operational beam losses, IP region quadrupoles from irradiation by the products of beam-beam collisions, and to reduce the accelerator-induced backgrounds in the detectors.

  18. Higgs self-coupling measurements at a 100 TeV hadron collider

    SciTech Connect

    Barr, Alan J.; Dolan, Matthew J.; Englert, Christoph; Ferreira de Lima, Enoque Danilo; Spannowsky, Michael

    2015-02-03

    An important physics goal of a possible next-generation high-energy hadron collider will be precision characterisation of the Higgs sector and electroweak symmetry breaking. A crucial part of understanding the nature of electroweak symmetry breaking is measuring the Higgs self-interactions. We study dihiggs production in proton-proton collisions at 100 TeV centre of mass energy in order to estimate the sensitivity such a machine would have to variations in the trilinear Higgs coupling around the Standard Model expectation. We focus on the bb¯γγ final state, including possible enhancements in sensitivity by exploiting dihiggs recoils against a hard jet. In conclusion, we find that it should be possible to measure the trilinear self-coupling with 40% accuracy given 3/ab and 12% with 30/ab of data.

  19. Search for a light fermiophobic Higgs boson produced via gluon fusion at hadron colliders

    SciTech Connect

    Arhrib, Abdesslam; Benbrik, Rachid; Guedes, R. B.; Santos, R.

    2008-10-01

    In this study, we propose new Higgs production mechanisms with multiphoton final states in the fermiophobic limit of the two Higgs doublet model. The processes are: gg{yields}hh, gg{yields}Hh followed by H{yields}hh and gg{yields}Ah followed by A{yields}hZ. In the fermiophobic limit, gg{yields}hh and gg{yields}Ah{yields}hhZ would give rise to 4{gamma} signature while gg{yields}Hh{yields}hhh can give a 6{gamma} final state. We show that both the Fermilab Tevatron and CERN's Large Hadron Collider can probe a substantial slice of the parameter space in this fermiophobic scenario of the two Higgs doublet model. If observed the above processes can give some information on the triple Higgs couplings involved.

  20. Precise Predictions for W 4 Jet Production at the Large Hadron Collider

    SciTech Connect

    Berger, C.F.; Bern, Z.; Dixon, Lance J.; Cordero, F.Febres; Forde, D.; Gleisberg, T.; Ita, H.; Kosower, D.A.; Maitre, D.; /Durham U.

    2010-09-14

    We present the first next-to-leading order QCD results for W + 4-jet production at hadron colliders. Total cross sections, as well as distributions in the jet transverse momenta and in the total transverse energy HT, are provided for the initial LHC energy of {radical}s = 7 TeV. We use a leading-color approximation, known to be accurate to 3% for W production with fewer jets. The virtual matrix elements and the most complicated real-emission matrix elements are handled by the BlackHat library, based on on-shell methods. The remaining parts of the calculation, including the integration over phase space, are performed by the SHERPA package.

  1. Cryogenic safety aspect of the low -$\\beta$ magnest systems at the Large Hadron Collider (LHC)

    SciTech Connect

    Darve, C.; /Fermilab

    2010-07-01

    The low-{beta} magnet systems are located in the LHC insertion regions around the four interaction points. They are the key elements in the beams focusing/defocusing process and will allow proton collisions at a luminosity of up to 10{sup 34}cm{sup -2}s{sup -1}. Large radiation dose deposited at the proximity of the beam collisions dictate stringent requirements for the design and operation of the systems. The hardware commissioning phase of the LHC was completed in the winter of 2010 and permitted to validate this system safe operation. This paper presents the analysis used to qualify and quantify the safe operation of the low-{beta} magnet systems in the Large Hadron Collider (LHC) for the first years of operation.

  2. Non-Standard ZZ Production with Leptonic Decays at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Sun, Hao

    2012-04-01

    The prospects of anomalous ZZγ and ZZZ triple gauge boson couplings are investigated at the Large Hadron Collider (LHC) through an excess of events in ZZ diboson production. Two such channels are selected and the tree level results including leptonic final states are discussed: ZZ → l1-l1+l2-l2+ and ZZ → l-l+νν¯(l, l1,2 = e, μ). The results in the full finite width method are compared with the narrow width approximation (NWA) method in detail. Besides the Z boson transverse momentum distributions, the azimuthal angle between the Z boson decay to fermions, ΔΦ, and their separations in the pseudo-rapidity-azimuthal angle plane, ΔR, as well as the sensitivity on anomalous couplings are displayed at the 14 TeV LHC.

  3. Summary and highlights of the 14th Topical Conference on Hadron Collider Physics (HCP2002)

    SciTech Connect

    John Womersley

    2002-11-13

    First of all, I would like to thank the scientific committee, the conference organizers, the University of Karlsruhe and the Institute for Experimental Nuclear Physics, all of the speakers, and the conference secretariat, for making this an extremely well-organized and uniformly high-quality meeting. I would also like to thank all of the speakers who provided me with material for my talk before and during the conference. There is obviously no point in these proceedings in attempting to repeat all of the material from the individual contributions; by definition, these are all available earlier in this volume. In the written version, therefore, I will try to give a high level overview of the current state of hadron collider physics and to highlight the connections between the many presentations at this conference.

  4. Top quark spin correlations in the Randall-Sundrum model at the CERN Large Hadron Collider

    SciTech Connect

    Arai, Masato; Okada, Nobuchika; Smolek, Karel

    2007-05-01

    In the Randall-Sundrum model, we study top-antitop pair production and top spin correlations at the Large Hadron Collider. In addition to the standard model processes, there is a new contribution to the top-antitop pair production process mediated by graviton Kaluza-Klein modes in the s-channel. We calculate the density matrix for the top-antitop pair production including the new contribution. With a reasonable parameter choice in the Randall-Sundrum model, we find a sizable deviation of the top-antitop pair production cross section and the top spin correlations from those in the standard model. In particular, resonant productions of the graviton Kaluza-Klein modes give rise to a remarkable enhancement of such a deviation.

  5. QCD corrections to associated production of tt{gamma} at hadron colliders

    SciTech Connect

    Duan Pengfei; Ma Wengan; Zhang Renyou; Han Liang; Guo Lei; Wang Shaoming

    2009-07-01

    We report on the next-to-leading order (NLO) QCD computation of top-quark pair production in association with a photon at the Fermilab Tevatron RUN II and CERN Large Hadron Collider. We describe the impact of the complete NLO QCD radiative corrections to this process, and provide the predictions of the leading order (LO) and NLO integrated cross sections, distributions of the transverse momenta of the top quark and photon for the LHC and Tevatron, and the LO and NLO forward-backward top-quark charge asymmetries for the Tevatron. We investigate the dependence of the LO and NLO cross sections on the renormalization/factorization scale, and find the scale dependence of the LO cross section is obviously improved by the NLO QCD corrections. The K-factor of the NLO QCD correction is 0.977(1.524) for the Tevatron (LHC)

  6. Signatures of non-universal gaugino and scalar masses at the Large Hadron Collider (LHC)

    SciTech Connect

    Bhattacharya, Subhaditya

    2008-11-23

    We perform a multichannel analysis in context of the Large Hadron Collider (LHC) for supersymmetric (SUSY) theories with high-scale non-universal gaugino masses arising from different non-singlet representations of SU(5) and SO(10) gauge groups in a SUSY-GUT scenario and non-universal scalar masses in form of squark-slepton non-universality, third family scalar non-universality and that arising due to SO(10) D-terms. We present the numerical predictions over a wide region of parameter space using event generator Pythia. Certain broad features emerge from the study which may be useful to identify these non-universal schemes and distinguish them from the minimal supergravity (mSUGRA) framework.

  7. The Large Hadron Collider project: organizational and financial matters (of physics at the terascale).

    PubMed

    Engelen, Jos

    2012-02-28

    In this paper, I present a view of organizational and financial matters relevant for the successful construction and operation of the experimental set-ups at the Large Hadron Collider of CERN, the European Laboratory for Particle Physics in Geneva. Construction of these experiments was particularly challenging: new detector technologies had to be developed; experimental set-ups that are larger and more complex than ever before had to be constructed; and larger collaborations than ever before had to be organized. Fundamental to the success were: the 'reference' provided by CERN, peer review, signed memoranda of understanding, well-organized resources review boards as an interface to the national funding agencies and collegial, but solidly organized, experimental collaborations. PMID:22253248

  8. Black holes in many dimensions at the CERN Large Hadron Collider: testing critical string theory.

    PubMed

    Hewett, JoAnne L; Lillie, Ben; Rizzo, Thomas G

    2005-12-31

    We consider black hole production at the CERN Large Hadron Collider (LHC) in a generic scenario with many extra dimensions where the standard model fields are confined to a brane. With approximately 20 dimensions the hierarchy problem is shown to be naturally solved without the need for large compactification radii. We find that in such a scenario the properties of black holes can be used to determine the number of extra dimensions, . In particular, we demonstrate that measurements of the decay distributions of such black holes at the LHC can determine if is significantly larger than 6 or 7 with high confidence and thus can probe one of the critical properties of string theory compactifications. PMID:16486339

  9. EXERGY ANALYSIS OF THE CRYOGENIC HELIUM DISTRIBUTION SYSTEM FOR THE LARGE HADRON COLLIDER (LHC)

    SciTech Connect

    Claudet, S.; Lebrun, Ph.; Tavian, L.; Wagner, U.

    2010-04-09

    The Large Hadron Collider (LHC) at CERN features the world's largest helium cryogenic system, spreading over the 26.7 km circumference of the superconducting accelerator. With a total equivalent capacity of 145 kW at 4.5 K including 18 kW at 1.8 K, the LHC refrigerators produce an unprecedented exergetic load, which must be distributed efficiently to the magnets in the tunnel over the 3.3 km length of each of the eight independent sectors of the machine. We recall the main features of the LHC cryogenic helium distribution system at different temperature levels and present its exergy analysis, thus enabling to qualify second-principle efficiency and identify main remaining sources of irreversibility.

  10. The discovery of the Higgs boson at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Nisati, A.; Tonelli, G.

    2015-11-01

    This paper summarises the work done by the ATLAS and CMS collaborations, and by the teams of the Large Hadron Collider at CERN, that led to the discovery of a new particle, with mass near 125GeV and properties consistent with the ones predicted for the Standard Model Higgs boson. An overview of the Standard Model, with a description of the role of the Higgs boson in the theory, and a summary of the searches for this particle prior to the LHC operations is also given. The paper presents the results obtained by ATLAS and CMS from the analysis of the full data set produced in the first physics run of LHC. After a short discussion on the implications of the discovery, the future prospects for the precision study of the new particle are lastly discussed.

  11. Viewpoint: the End of the World at the Large Hadron Collider?

    SciTech Connect

    Peskin, Michael E.; /SLAC

    2011-11-21

    New arguments based on astrophysical phenomena constrain the possibility that dangerous black holes will be produced at the CERN Large Hadron Collider. On 8 August, the Large Hadron Collider (LHC) at CERN injected its first beams, beginning an experimental program that will produce proton-proton collisions at an energy of 14 TeV. Particle physicists are waiting expectantly. The reason is that the Standard Model of strong, weak, and electromagnetic interactions, despite its many successes, is clearly incomplete. Theory says that the holes in the model should be filled by new physics in the energy region that will be studied by the LHC. Some candidate theories are simple quick fixes, but the most interesting ones involve new concepts of spacetime waiting to be discovered. Look up the LHC on Wikipedia, however, and you will find considerable space devoted to safety concerns. At the LHC, we will probe energies beyond those explored at any previous accelerator, and we hope to create particles that have never been observed. Couldn't we, then, create particles that would actually be dangerous, for example, ones that would eat normal matter and eventually turn the earth into a blob of unpleasantness? It is morbid fun to speculate about such things, and candidates for such dangerous particles have been suggested. These suggestions have been analyzed in an article in Reviews of Modern Physics by Jaffe, Busza, Wilczek, and Sandweiss and excluded on the basis of constraints from observation and from the known laws of physics. These conclusions have been upheld by subsequent studies conducted at CERN.

  12. A Novel method for modeling the recoil in W boson events at hadron collider

    SciTech Connect

    Abazov, Victor Mukhamedovich; Abbott, Braden Keim; Abolins, Maris A.; Acharya, Bannanje Sripath; Adams, Mark Raymond; Adams, Todd; Aguilo, Ernest; Ahsan, Mahsana; Alexeev, Guennadi D.; Alkhazov, Georgiy D.; Alton, Andrew K.; /Michigan U. /Augustana Coll., Sioux Falls /Northeastern U.

    2009-07-01

    We present a new method for modeling the hadronic recoil in W {yields} {ell}{nu} events produced at hadron colliders. The recoil is chosen from a library of recoils in Z {yields} {ell}{ell} data events and overlaid on a simulated W {yields} {ell}{nu} event. Implementation of this method requires that the data recoil library describe the properties of the measured recoil as a function of the true, rather than the measured, transverse momentum of the boson. We address this issue using a multidimensional Bayesian unfolding technique. We estimate the statistical and systematic uncertainties from this method for the W boson mass and width measurements assuming 1 fb{sup -1} of data from the Fermilab Tevatron. The uncertainties are found to be small and comparable to those of a more traditional parameterized recoil model. For the high precision measurements that will be possible with data from Run II of the Fermilab Tevatron and from the CERN LHC, the method presented in this paper may be advantageous, since it does not require an understanding of the measured recoil from first principles.

  13. Nonuniversal scalar masses: A signal-based analysis for the CERN Large Hadron Collider

    SciTech Connect

    Bhattacharya, Subhaditya; Datta, AseshKrishna; Mukhopadhyaya, Biswarup

    2008-08-01

    We study the possible signatures of nonuniversal scalar masses in supersymmetry at the Large Hadron Collider (LHC). This is done, following our recent study on gaugino nonuniversality, via a multichannel analysis, based largely on the ratios of event rates for different final states, aimed at minimizing irregularity in the pattern due to extraneous effects and errors. We have studied (a) squark-slepton nonuniversality, (b) nonuniversality in sfermion masses of the third family, (c) the effects of SO(10) D-terms in supersymmetric grand unified theories. After presenting an elaborate numerical analysis of like- and opposite-sign dileptons, inclusive and hadronically quiet trileptons, as well as inclusive jet final states, we point out specific features of the spectrum in each case, which can be differentiated in the above channels from the spectrum for a minimal supergravity scenario with a universal scalar mass at high scale. The event selection criteria and the situations where the signals are sizable enough for a comparative study, are also delineated. It is found that, with some exceptions, the trilepton channels are likely to be especially useful for this purpose.

  14. Advanced superconducting technology for global science: The Large Hadron Collider at CERN

    NASA Astrophysics Data System (ADS)

    Lebrun, Ph.

    2002-05-01

    The Large Hadron Collider (LHC), presently in construction at CERN, the European Organization for Nuclear Research near Geneva (Switzerland), will be, upon its completion in 2005 and for the next twenty years, the most advanced research instrument of the world's high-energy physics community, providing access to the energy frontier above 1 TeV per elementary constituent. Re-using the 26.7-km circumference tunnel and infrastructure of the past LEP electron-positon collider, operated until 2000, the LHC will make use of advanced superconducting technology-high-field Nb-Ti superconducting magnets operated in superfluid helium and a cryogenic ultra-high vacuum system-to bring into collision intense beams of protons and ions at unprecedented values of center-of-mass energy and luminosity (14 TeV and 1034 cm-2ṡs-1, respectively with protons). After some ten years of focussed R&D, the LHC components are presently series-built in industry and procured through world-wide collaboration. After briefly recalling the physics goals, performance challenges and design choices of the machine, we describe its major technical systems, with particular emphasis on relevant advances in the key technologies of superconductivity and cryogenics, and report on its construction progress.

  15. Superfluid helium cryogenics for the large hadron collider project at CERN

    NASA Astrophysics Data System (ADS)

    Lebrun, Philippe

    The Large Hadron Collider (LHC) at CERN will be the next research instrument of high-energy physics. Colliding protons at 14 TeV center-of-mass energy and high luminosity, it will probe the structure of matter down to an unprecedentedly fine scale, thus allowing to reproduce in the laboratory phenomena which occurred in the very early universe. On the technological side, the LHC makes use of high-field superconducting magnets for guidance and focusing of the particle beams around the 26.7 km circumference of the machine, to be installed in the existing LEP tunnel. The nominal bending field of 8.65 T is produced in some 1300 twin-aperture dipoles, wound with small-filament Nb sbnd Ti conductor, and operated below 1.9 K in static baths of pressurized helium II, thus taking advantage of its specific properties as cooling fluid. We present the main technical challenges of the LHC cryogenic system, and review the actions of development and the preparatory work in progress.

  16. Next generation Higgs bosons: Theory, constraints, and discovery prospects at the Large Hadron Collider

    SciTech Connect

    Gupta, Rick S.; Wells, James D.

    2010-03-01

    Particle physics model building within the context of string theory suggests that further copies of the Higgs boson sector may be expected. Concerns regarding tree-level flavor-changing neutral currents are easiest to allay if little or no couplings of next generation Higgs bosons to standard model fermions are allowed. We detail the resulting general Higgs potential and mass spectroscopy in both a standard model extension and a supersymmetric extension. We present the important experimental constraints from meson-meson mixing, loop-induced b{yields}s{gamma} decays, and LEP2 direct production limits. We investigate the energy range of the valid perturbation theory of these ideas. In the supersymmetric context we present a class of examples that marginally aids the fine-tuning problem for parameter space where the lightest Higgs boson mass is greater than the standard model limit of 114 GeV. Finally, we study collider physics signatures generic to next generation Higgs bosons, with special emphasis on Ah{yields}hhZ{yields}4b+2l signal events, and describe the capability of discovery at the Large Hadron Collider.

  17. Left-right symmetry and lepton number violation at the Large Hadron electron Collider

    NASA Astrophysics Data System (ADS)

    Lindner, Manfred; Queiroz, Farinaldo S.; Rodejohann, Werner; Yaguna, Carlos E.

    2016-06-01

    We show that the proposed Large Hadron electron Collider (LHeC) will provide an opportunity to search for left-right symmetry and establish lepton number violation, complementing current and planned searches based on LHC data and neutrinoless double beta decay. We consider several plausible configurations for the LHeC — including different electron energies and polarizations, as well as distinct values for the charge misidentification rate. Within left-right symmetric theories we determine the values of right-handed neutrino and gauge boson masses that could be tested at the LHeC after one, five and ten years of operation. Our results indicate that this collider might probe, via the Δ L = 2 signal e - p → e + jjj, Majorana neutrino masses up to 1 TeV and W R masses up to ˜ 6 .5 TeV. Interestingly, part of this parameter space is beyond the expected reach of the LHC and of future neutrinoless double beta decay experiments.

  18. Next-to-Leading-Order QCD Corrections to W{sup +}W{sup -}bb Production at Hadron Colliders

    SciTech Connect

    Denner, A.; Dittmaier, S.; Kallweit, S.; Pozzorini, S.

    2011-02-04

    Top-antitop quark pairs belong to the most abundantly produced and precisely measurable heavy-particle signatures at hadron colliders and allow for crucial tests of the standard model and new physics searches. Here we report on the calculation of the next-to-leading order (NLO) QCD corrections to hadronic W{sup +}W{sup -}bb production, which provides a complete NLO description of the production of top-antitop pairs and their subsequent decay into W bosons and bottom quarks, including interferences, off-shell effects, and nonresonant backgrounds. Numerical predictions for the Tevatron and the LHC are presented.

  19. Searches for Lorentz Violation in Top-Quark Production and Decay at Hadron Colliders

    SciTech Connect

    Whittington, Denver Wade

    2012-07-01

    We present a first-of-its-kind confirmation that the most massive known elementary particle obeys the special theory of relativity. Lorentz symmetry is a fundamental aspect of special relativity which posits that the laws of physics are invariant regardless of the orientation and velocity of the reference frame in which they are measured. Because this symmetry is a fundamental tenet of physics, it is important to test its validity in all processes. We quantify violation of this symmetry using the Standard-Model Extension framework, which predicts the effects that Lorentz violation would have on elementary particles and their interactions. The top quark is the most massive known elementary particle and has remained inaccessible to tests of Lorentz invariance until now. This model predicts a dependence of the production cross section for top and antitop quark pairs on sidereal time as the orientation of the experiment in which these events are produced changes with the rotation of the Earth. Using data collected with the DØ detector at the Fermilab Tevatron Collider, we search for violation of Lorentz invariance in events involving the production of a $t\\bar{t}$ pair. Within the experimental precision, we find no evidence for such a violation and set upper limits on parameters describing its possible strength within the Standard-Model Extension. We also investigate the prospects for extending this analysis using the ATLAS detector at the Large Hadron Collider which, because of the higher rate of $t\\bar{t}$ events at that experiment, has the potential to improve the limits presented here.

  20. High energy proton-proton elastic scattering at the Large Hadron Collider and nucleon structure

    NASA Astrophysics Data System (ADS)

    Luddy, Richard Joseph

    To gain insight into the structure of the nucleon, we pursue the development of the phenomenological model of Islam et al. (IIFS model) for high energy elastic pp and p¯p scattering. We determine the energy dependence of the parameters of the IIFS model using the available elastic differential cross section data from SPS Collider and Tevatron and the known asymptotic behavior of sigmatot (s) and rho(s) from dispersion relation calculations and more recent analyses of Cudell et al. (COMPETE Collaboration). Next, we incorporate a high energy elastic valence quark-quark scattering amplitude into the model based on BFKL pomeron to describe small impact parameter (large | t|) pp collisions. Finally, we predict the pp elastic differential cross section at the unprecedented c.m. energy of s = 14.0 TeV at the Large Hadron Collider (LHC). This prediction assumes crucial significance---because of an approved experiment at LHC: TOTal and Elastic Measurement (TOTEM). The TOTEM group plans to measure pp elastic dsigma/dt at 14.0 TeV all the way from momentum transfer |t| = 0 to |t| ≃ 10 GeV 2. Their measurement will stringently test not only the diffraction and o-exchange descriptions of the original IIFS model, but also the additional valence quark-quark scattering contribution that we find to be dominant for large |t|. Successful quantitative verification of the predicted dsigma/dt will mean that our picture of the nucleon with an outer cloud of qq¯ condensed ground state, an inner core of topological baryonic charge, and a still smaller core of massless valence quarks provides a realistic description of nucleon structure.

  1. Simulations and measurements of beam loss patterns at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Bruce, R.; Assmann, R. W.; Boccone, V.; Bracco, C.; Brugger, M.; Cauchi, M.; Cerutti, F.; Deboy, D.; Ferrari, A.; Lari, L.; Marsili, A.; Mereghetti, A.; Mirarchi, D.; Quaranta, E.; Redaelli, S.; Robert-Demolaize, G.; Rossi, A.; Salvachua, B.; Skordis, E.; Tambasco, C.; Valentino, G.; Weiler, T.; Vlachoudis, V.; Wollmann, D.

    2014-08-01

    The CERN Large Hadron Collider (LHC) is designed to collide proton beams of unprecedented energy, in order to extend the frontiers of high-energy particle physics. During the first very successful running period in 2010-2013, the LHC was routinely storing protons at 3.5-4 TeV with a total beam energy of up to 146 MJ, and even higher stored energies are foreseen in the future. This puts extraordinary demands on the control of beam losses. An uncontrolled loss of even a tiny fraction of the beam could cause a superconducting magnet to undergo a transition into a normal-conducting state, or in the worst case cause material damage. Hence a multistage collimation system has been installed in order to safely intercept high-amplitude beam protons before they are lost elsewhere. To guarantee adequate protection from the collimators, a detailed theoretical understanding is needed. This article presents results of numerical simulations of the distribution of beam losses around the LHC that have leaked out of the collimation system. The studies include tracking of protons through the fields of more than 5000 magnets in the 27 km LHC ring over hundreds of revolutions, and Monte Carlo simulations of particle-matter interactions both in collimators and machine elements being hit by escaping particles. The simulation results agree typically within a factor 2 with measurements of beam loss distributions from the previous LHC run. Considering the complex simulation, which must account for a very large number of unknown imperfections, and in view of the total losses around the ring spanning over 7 orders of magnitude, we consider this an excellent agreement. Our results give confidence in the simulation tools, which are used also for the design of future accelerators.

  2. Calculations of safe collimator settings and β* at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Bruce, R.; Assmann, R. W.; Redaelli, S.

    2015-06-01

    The first run of the Large Hadron Collider (LHC) at CERN was very successful and resulted in important physics discoveries. One way of increasing the luminosity in a collider, which gave a very significant contribution to the LHC performance in the first run and can be used even if the beam intensity cannot be increased, is to decrease the transverse beam size at the interaction points by reducing the optical function β*. However, when doing so, the beam becomes larger in the final focusing system, which could expose its aperture to beam losses. For the LHC, which is designed to store beams with a total energy of 362 MJ, this is critical, since the loss of even a small fraction of the beam could cause a magnet quench or even damage. Therefore, the machine aperture has to be protected by the collimation system. The settings of the collimators constrain the maximum beam size that can be tolerated and therefore impose a lower limit on β*. In this paper, we present calculations to determine safe collimator settings and the resulting limit on β*, based on available aperture and operational stability of the machine. Our model was used to determine the LHC configurations in 2011 and 2012 and it was found that β* could be decreased significantly compared to the conservative model used in 2010. The gain in luminosity resulting from the decreased margins between collimators was more than a factor 2, and a further contribution from the use of realistic aperture estimates based on measurements was almost as large. This has played an essential role in the rapid and successful accumulation of experimental data in the LHC.

  3. MEKS: A program for computation of inclusive jet cross sections at hadron colliders

    NASA Astrophysics Data System (ADS)

    Gao, Jun; Liang, Zhihua; Soper, Davison E.; Lai, Hung-Liang; Nadolsky, Pavel M.; Yuan, C.-P.

    2013-06-01

    EKS is a numerical program that predicts differential cross sections for production of single-inclusive hadronic jets and jet pairs at next-to-leading order (NLO) accuracy in a perturbative QCD calculation. We describe MEKS 1.0, an upgraded EKS program with increased numerical precision, suitable for comparisons to the latest experimental data from the Large Hadron Collider and Tevatron. The program integrates the regularized patron-level matrix elements over the kinematical phase space for production of two and three partons using the VEGAS algorithm. It stores the generated weighted events in finely binned two-dimensional histograms for fast offline analysis. A user interface allows one to customize computation of inclusive jet observables. Results of a benchmark comparison of the MEKS program and the commonly used FastNLO program are also documented. Program SummaryProgram title: MEKS 1.0 Catalogue identifier: AEOX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland. Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 9234 No. of bytes in distributed program, including test data, etc.: 51997 Distribution format: tar.gz Programming language: Fortran (main program), C (CUBA library and analysis program). Computer: All. Operating system: Any UNIX-like system. RAM: ˜300 MB Classification: 11.1. External routines: LHAPDF (https://lhapdf.hepforge.org/) Nature of problem: Computation of differential cross sections for inclusive production of single hadronic jets and jet pairs at next-to-leading order accuracy in perturbative quantum chromodynamics. Solution method: Upon subtraction of infrared singularities, the hard-scattering matrix elements are integrated over available phase space using an optimized VEGAS algorithm. Weighted events are generated and filled

  4. Production of b-quark jets at the large Hadron Collider in the parton-reggeization approach

    SciTech Connect

    Saleev, V. A. Shipilova, A. V.

    2013-11-15

    The inclusive hadroproduction of b-quark jets and bb-bar-quark dijets at the Large Hadron Collider is considered by using the hypothesis of gluon Reggeization in t-channel exchanges at high energies. Experimental data obtained by the ATLAS Collaboration are described well within all of the presented kinematical regions for single b-quark jets and bb-bar-quark dijets without resort to any free parameters.

  5. Higgs boson pair production in new physics models at hadron, lepton, and photon colliders

    NASA Astrophysics Data System (ADS)

    Asakawa, Eri; Harada, Daisuke; Kanemura, Shinya; Okada, Yasuhiro; Tsumura, Koji

    2010-12-01

    We study Higgs boson pair production processes at future hadron and lepton colliders including the photon collision option in several new physics models; i.e., the two-Higgs-doublet model, the scalar leptoquark model, the sequential fourth generation fermion model and the vectorlike quark model. Cross sections for these processes can deviate significantly from the standard model predictions due to the one-loop correction to the triple Higgs boson coupling constant. For the one-loop induced processes such as gg→hh and γγ→hh, where h is the (lightest) Higgs boson and g and γ respectively represent a gluon and a photon, the cross sections can also be affected by new physics particles via additional one-loop diagrams. In the two-Higgs-doublet model and scalar leptoquark models, cross sections of e+e-→hhZ and γγ→hh can be enhanced due to the nondecoupling effect in the one-loop corrections to the triple Higgs boson coupling constant. In the sequential fourth generation fermion model, the cross section for gg→hh becomes very large because of the loop effect of the fermions. In the vectorlike quark model, effects are small because the theory has decoupling property. Measurements of the Higgs boson pair production processes can be useful to explore new physics through the determination of the Higgs potential.

  6. Study of the Standard Model W angular coefficients and associated helicity cross sections at hadron colliders.

    NASA Astrophysics Data System (ADS)

    Strologas, John

    2002-04-01

    We present the Standard Model prediction for the W angular coefficients and the corresponding helicity cross sections at hadron colliders. There are eight angular coefficients, four of which are present in high transverse momentum events associated with the production of a jet, while the last three ones are related to gluon loops and they are T-odd and P-odd, thus a probable source of CP violation in W production and decay. All angular coefficients are ratios of the W helicity cross sections and the unpolarized total W cross section. If the W is produced with zero transverse momentum, its spin is parallel to the beam-axis and only one coefficient survives, giving us the familiar formula (dσ/(dp_T^Wd\\cosθ)=(1±\\cosθ)^2, where θ is the azimuthal angle of the final state charged lepton in the W^mp rest frame), if only valence quarks contribute to the W production. In the case of W production with non-trivial transverse momentum, the differential W cross section is more involved and also a function of the polar angle of the charged lepton. We discuss a method of experimentally extracting the W angular coefficients and helicity cross sections using W+jet events at next-to-leading order in QCD (gluon loops), without dividing the data with any Monte Carlo isotropic gauge boson decays, as it was proposed in the past.

  7. The Local Helium Compound Transfer Lines for the Large Hadron Collider Cryogenic System

    NASA Astrophysics Data System (ADS)

    Parente, C.; Allen, W.; Munday, A.; Wiggins, P.

    2006-04-01

    The cryogenic system for the Large Hadron Collider (LHC) under construction at CERN will include twelve new local helium transfer lines distributed among five LHC points in underground caverns. These lines, being manufactured and installed by industry, will connect the cold boxes of the 4.5-K refrigerators and the 1.8-K refrigeration units to the cryogenic interconnection boxes. The lines have a maximum of 30-m length and may possess either small or large re-distribution units to allow connection to the interface ports. Due to space restrictions the lines may have complex routings and require several elbowed sections. The lines consist of a vacuum jacket, a thermal shield and either three or four helium process pipes. Specific internal and external supporting and compensation systems were designed for each line to allow for thermal contraction of the process pipes (or vacuum jacket, in case of a break in the insulation vacuum) and to minimise the forces applied to the interface equipment. Whenever possible, flexible hoses were used instead of bellows to allow for thermal compensation of the process pipes. If necessary, compensation units were integrated in the vacuum jacket. The thermal design was performed to fulfil the specified heat-load budget. This paper presents the main technical design choices for the lines together with their expected performance.

  8. Dijet Signals for Low Mass Strings at the Large Hadron Collider

    SciTech Connect

    Anchordoqui, Luis A.; Nawata, Satoshi; Goldberg, Haim; Taylor, Tomasz R.; Luest, Dieter; Stieberger, Stephan

    2008-12-12

    Assuming that the fundamental string mass scale is in the TeV range and the theory is weakly coupled, we discuss possible signals of string physics at the Large Hadron Collider (LHC). In D-brane constructions, the dominant contributions to full-fledged string amplitudes for all the common QCD parton subprocesses leading to dijets are completely independent of the details of compactification, and can be evaluated in a parameter-free manner. We make use of these amplitudes evaluated near the first resonant pole to determine the discovery potential of LHC for the first Regge excitations of the quark and gluon. Remarkably, the reach of LHC after a few years of running can be as high as 6.8 TeV. Even after the first 100 pb{sup -1} of integrated luminosity, string scales as high as 4.0 TeV can be discovered. Data on pp{yields}direct{gamma}+ jet can provide corroboration for string physics at scales as high as 5 TeV.

  9. Jet Signals for Low Mass Strings at the Large Hadron Collider

    SciTech Connect

    Anchordoqui, Luis A.; Nawata, Satoshi; Goldberg, Haim; Taylor, Tomasz R.

    2008-05-02

    The mass scale M{sub s} of superstring theory is an arbitrary parameter that can be as low as few TeVs if the Universe contains large extra dimensions. We propose a search for the effects of Regge excitations of fundamental strings at the CERN Large Hadron Collider (LHC), in the process pp{yields}{gamma}+jet. The underlying parton process is dominantly the single photon production in gluon fusion, gg{yields}{gamma}g, with open string states propagating in intermediate channels. If the photon mixes with the gauge boson of the baryon number, which is a common feature of D-brane quivers, the amplitude appears already at the string disk level. It is completely determined by the mixing parameter--and it is otherwise model (compactification) independent. Even for relatively small mixing, 100 fb{sup -1} of LHC data could probe deviations from standard model physics, at a 5{sigma} significance, for M{sub s} as large as 3.3 TeV.

  10. Dijet signals for low mass strings at the Large Hadron Collider.

    PubMed

    Anchordoqui, Luis A; Goldberg, Haim; Lüst, Dieter; Nawata, Satoshi; Stieberger, Stephan; Taylor, Tomasz R

    2008-12-12

    Assuming that the fundamental string mass scale is in the TeV range and the theory is weakly coupled, we discuss possible signals of string physics at the Large Hadron Collider (LHC). In D-brane constructions, the dominant contributions to full-fledged string amplitudes for all the common QCD parton subprocesses leading to dijets are completely independent of the details of compactification, and can be evaluated in a parameter-free manner. We make use of these amplitudes evaluated near the first resonant pole to determine the discovery potential of LHC for the first Regge excitations of the quark and gluon. Remarkably, the reach of LHC after a few years of running can be as high as 6.8 TeV. Even after the first 100 pb(-1) of integrated luminosity, string scales as high as 4.0 TeV can be discovered. Data on pp-->directgamma + jet can provide corroboration for string physics at scales as high as 5 TeV. PMID:19113614

  11. Performance Analysis of the Ironless Inductive Position Sensor in the Large Hadron Collider Collimators Environment

    PubMed Central

    Danisi, Alessandro; Masi, Alessandro; Losito, Roberto

    2015-01-01

    The Ironless Inductive Position Sensor (I2PS) has been introduced as a valid alternative to Linear Variable Differential Transformers (LVDTs) when external magnetic fields are present. Potential applications of this linear position sensor can be found in critical systems such as nuclear plants, tokamaks, satellites and particle accelerators. This paper analyzes the performance of the I2PS in the harsh environment of the collimators of the Large Hadron Collider (LHC), where position uncertainties of less than 20 µm are demanded in the presence of nuclear radiation and external magnetic fields. The I2PS has been targeted for installation for LHC Run 2, in order to solve the magnetic interference problem which standard LVDTs are experiencing. The paper describes in detail the chain of systems which belong to the new I2PS measurement task, their impact on the sensor performance and their possible further optimization. The I2PS performance is analyzed evaluating the position uncertainty (on 30 s), the magnetic immunity and the long-term stability (on 7 days). These three indicators are assessed from data acquired during the LHC operation in 2015 and compared with those of LVDTs. PMID:26569259

  12. Thermomechanical response of Large Hadron Collider collimators to proton and ion beam impacts

    NASA Astrophysics Data System (ADS)

    Cauchi, Marija; Assmann, R. W.; Bertarelli, A.; Carra, F.; Cerutti, F.; Lari, L.; Redaelli, S.; Mollicone, P.; Sammut, N.

    2015-04-01

    The CERN Large Hadron Collider (LHC) is designed to accelerate and bring into collision high-energy protons as well as heavy ions. Accidents involving direct beam impacts on collimators can happen in both cases. The LHC collimation system is designed to handle the demanding requirements of high-intensity proton beams. Although proton beams have 100 times higher beam power than the nominal LHC lead ion beams, specific problems might arise in case of ion losses due to different particle-collimator interaction mechanisms when compared to protons. This paper investigates and compares direct ion and proton beam impacts on collimators, in particular tertiary collimators (TCTs), made of the tungsten heavy alloy INERMET® 180. Recent measurements of the mechanical behavior of this alloy under static and dynamic loading conditions at different temperatures have been done and used for realistic estimates of the collimator response to beam impact. Using these new measurements, a numerical finite element method (FEM) approach is presented in this paper. Sequential fast-transient thermostructural analyses are performed in the elastic-plastic domain in order to evaluate and compare the thermomechanical response of TCTs in case of critical beam load cases involving proton and heavy ion beam impacts.

  13. Performance Analysis of the Ironless Inductive Position Sensor in the Large Hadron Collider Collimators Environment.

    PubMed

    Danisi, Alessandro; Masi, Alessandro; Losito, Roberto

    2015-01-01

    The Ironless Inductive Position Sensor (I2PS) has been introduced as a valid alternative to Linear Variable Differential Transformers (LVDTs) when external magnetic fields are present. Potential applications of this linear position sensor can be found in critical systems such as nuclear plants, tokamaks, satellites and particle accelerators. This paper analyzes the performance of the I2PS in the harsh environment of the collimators of the Large Hadron Collider (LHC), where position uncertainties of less than 20 µm are demanded in the presence of nuclear radiation and external magnetic fields. The I2PS has been targeted for installation for LHC Run 2, in order to solve the magnetic interference problem which standard LVDTs are experiencing. The paper describes in detail the chain of systems which belong to the new I2PS measurement task, their impact on the sensor performance and their possible further optimization. The I2PS performance is analyzed evaluating the position uncertainty (on 30 s), the magnetic immunity and the long-term stability (on 7 days). These three indicators are assessed from data acquired during the LHC operation in 2015 and compared with those of LVDTs. PMID:26569259

  14. Mathematical formulation to predict the harmonics of the superconducting Large Hadron Collider magnets

    NASA Astrophysics Data System (ADS)

    Sammut, Nicholas; Bottura, Luca; Micallef, Joseph

    2006-01-01

    CERN is currently assembling the LHC (Large Hadron Collider) that will accelerate and bring in collision 7 TeV protons for high energy physics. Such a superconducting magnet-based accelerator can be controlled only when the field errors of production and installation of all magnetic elements are known to the required accuracy. The ideal way to compensate the field errors obviously is to have direct diagnostics on the beam. For the LHC, however, a system solely based on beam feedback may be too demanding. The present baseline for the LHC control system hence requires an accurate forecast of the magnetic field and the multipole field errors to reduce the burden on the beam-based feedback. The field model is the core of this magnetic prediction system, that we call the field description for the LHC (FIDEL). The model will provide the forecast of the magnetic field at a given time, magnet operating current, magnet ramp rate, magnet temperature, and magnet powering history. The model is based on the identification and physical decomposition of the effects that contribute to the total field in the magnet aperture of the LHC dipoles. Each effect is quantified using data obtained from series measurements, and modeled theoretically or empirically depending on the complexity of the physical phenomena involved. This paper presents the developments of the new finely tuned magnetic field model and, using the data accumulated through series tests to date, evaluates its accuracy and predictive capabilities over a sector of the machine.

  15. Jet signals for low mass strings at the large hadron collider.

    PubMed

    Anchordoqui, Luis A; Goldberg, Haim; Nawata, Satoshi; Taylor, Tomasz R

    2008-05-01

    The mass scale M{s} of superstring theory is an arbitrary parameter that can be as low as few TeVs if the Universe contains large extra dimensions. We propose a search for the effects of Regge excitations of fundamental strings at the CERN Large Hadron Collider (LHC), in the process pp-->gamma+jet. The underlying parton process is dominantly the single photon production in gluon fusion, gg-->gammag, with open string states propagating in intermediate channels. If the photon mixes with the gauge boson of the baryon number, which is a common feature of D-brane quivers, the amplitude appears already at the string disk level. It is completely determined by the mixing parameter-and it is otherwise model (compactification) independent. Even for relatively small mixing, 100 fb{-1} of LHC data could probe deviations from standard model physics, at a 5sigma significance, for M{s} as large as 3.3 TeV. PMID:18518273

  16. Instrumentation status of the low-b magnet systems at the Large Hadron Collider (LHC)

    SciTech Connect

    Darve, C.; Balle, C.; Casas-Cubillos, J.; Perin, A.; Vauthier, N.; /CERN

    2011-05-01

    The low-{beta} magnet systems are located in the Large Hadron Collider (LHC) insertion regions around the four interaction points. They are the key elements in the beams focusing/defocusing process allowing proton collisions at luminosity up to 10{sup 34}cm{sup -2}s{sup -1}. Those systems are a contribution of the US-LHC Accelerator project. The systems are mainly composed of the quadrupole magnets (triplets), the separation dipoles and their respective electrical feed-boxes (DFBX). The low-{beta} magnet systems operate in an environment of extreme radiation, high gradient magnetic field and high heat load to the cryogenic system due to the beam dynamic effect. Due to the severe environment, the robustness of the diagnostics is primordial for the operation of the triplets. The hardware commissioning phase of the LHC was completed in February 2010. In the sake of a safer and more user-friendly operation, several consolidations and instrumentation modifications were implemented during this commissioning phase. This paper presents the instrumentation used to optimize the engineering process and operation of the final focusing/defocusing quadrupole magnets for the first years of operation.

  17. Next-to-Leading Order Predictions for W + 3-Jet Distributions at Hadron Colliders

    SciTech Connect

    Berger, C.F.; Bern, Z.; Dixon, L.J.; Febres Cordero, F.; Forde, D.; Gleisberg, T.; Ita, H.; Kosower, D.A.; Maitre, D.; /Durham U.

    2009-12-09

    We present next-to-leading order QCD predictions for a variety of distributions in W + 3-jet production at both the Tevatron and the Large Hadron Collider. We include all subprocesses and incorporate the decay of the W boson into leptons. Our results are in excellent agreement with existing Tevatron data and provide the first quantitatively precise next-to-leading order predictions for the LHC. We include all terms in an expansion in the number of colors, confirming that the specific leading-color approximation used in our previous study is accurate to within three percent. The dependence of the cross section on renormalization and factorization scales is reduced significantly with respect to a leading-order calculation. We study different dynamical scale choices, and find that the total transverse energy is significantly better than choices used in previous phenomenological studies. We compute the one-loop matrix elements using on-shell methods, as numerically implemented in the BlackHat code. The remaining parts of the calculation, including generation of the real-emission contributions and integration over phase space, are handled by the SHERPA package.

  18. Search for Microscopic Black Hole Signatures at the Large Hadron Collider

    SciTech Connect

    Tsang, Ka Vang

    2011-05-01

    A search for microscopic black hole production and decay in proton-proton collisions at a center-of-mass energy of 7 TeV has been conducted using Compact Muon Solenoid (CMS) detector at the CERN Large Hadron Collider. A total integrated luminosity of 35 pb-1 data sample, taken by CMS Collaboration in year 2010, has been analyzed. A novel background estimation for multi-jet events beyond TeV scale has been developed. A good agreement with standard model backgrounds, dominated by multi-jet production, is observed for various final-state multiplicities. Using semi-classical approximation, upper limits on minimum black hole mass at 95% confidence level are set in the range of 3.5 - 4.5 TeV for values of the Planck scale up to 3 TeV. Model-independent limits are provided to further constrain microscopic black hole models with additional regions of parameter space, as well as new physics models with multiple energetic final states. These are the first limits on microscopic black hole production at a particle accelerator.

  19. Bottom-quark forward-backward and charge asymmetries at hadron colliders

    NASA Astrophysics Data System (ADS)

    Murphy, Christopher W.

    2015-09-01

    Predictions are made for the forward-backward and charge asymmetries in bottom-quark pair production at hadron colliders. Tree-level exchanges of electroweak (EW) gauge bosons dominate the Standard Model (SM) contribution to the asymmetry near the Z -pole. The mixed EW-QCD corrections are computed in an approximate way, and are found to be small in magnitude. These SM predictions are consistent with experimental results from CDF, D0, and LHCb. In particular, CDF and LHCb find that the asymmetry in the invariant mass bin containing the Z -pole is larger than in the adjacent bins, as predicted. Several beyond the Standard Model scenarios proposed for the top-quark forward-backward asymmetry, including a 100 GeV axigluon, are disfavored by this combination of SM predictions and measurements. On the other hand, modified Z b b ¯ couplings can explain the 2 σ discrepancy in the bottom-quark forward-backward asymmetry at LEP1, while being consistent with the results of CDF and LHCb. It is also shown that t -channel W exchange makes a non-negligible contribution to the charm-quark charge asymmetry.

  20. Phenomenology of Rotating Extra-Dimensional Black Holes at Hadron Colliders

    SciTech Connect

    Frost, James A.

    2010-02-10

    Results are presented from CHARYBDIS2, a new Monte Carlo simulation of black hole production and decay at hadron colliders. The main new features of CHARYBDIS2 are a full treatment of the spin-down phase of the decay process using the angular and energy distributions of the associated Hawking radiation, improved modelling of the loss of angular momentum and energy in the production process as well as a wider range of options for the Planck-scale termination of the decay. The new features allow the study of the effects of black hole rotation and the feasibility of its observation. We present results, with emphasis on the consequences and experimental signatures of black hole rotation at the LHC. The effects of rotation are found to be large, with substantial changes to particle energies and distributions. Rotation persists throughout evaporation, invalidating the approximation of a rapid spin-down followed by isotropic emission in a non-rotating Schwarzschild phase. A selection of results are presented from the original article, arXiv:0904:0979.

  1. FEL-based coherent electron cooling for high-energy hadron colliders

    SciTech Connect

    Litvinenko,V.N.; Derbenev, Y.S.

    2008-06-23

    Cooling intense high-energy hadron beams is a major challenge in modern accelerator physics. Synchrotron radiation is too feeble and two common methods--stochastic and electron cooling--are not efficient in providing significant cooling for high energy, high intensity proton colliders. In this paper they discuss a practical scheme of Coherent Electron Cooling (CeC), which promises short cooling times (below one hour) for intense proton beams in RHIC at 250 GeV or in LHC at 7 TeV. A possibility of CeC using various microwave instabilities was discussed since 1980s. In this paper, they present first evaluation of specific CeC scheme based on capabilities of present-day accelerator technology, ERLs, and high-gain Free-Electron lasers (FELs). They discuss the principles, the main limitations of this scheme and present some predictions for Coherent Electron Cooling in RHIC and the LHC operating with ions or protons, summarized in Table 1.

  2. Higgs boson pair production in new physics models at hadron, lepton, and photon colliders

    SciTech Connect

    Asakawa, Eri; Harada, Daisuke; Okada, Yasuhiro; Kanemura, Shinya; Tsumura, Koji

    2010-12-01

    We study Higgs boson pair production processes at future hadron and lepton colliders including the photon collision option in several new physics models; i.e., the two-Higgs-doublet model, the scalar leptoquark model, the sequential fourth generation fermion model and the vectorlike quark model. Cross sections for these processes can deviate significantly from the standard model predictions due to the one-loop correction to the triple Higgs boson coupling constant. For the one-loop induced processes such as gg{yields}hh and {gamma}{gamma}{yields}hh, where h is the (lightest) Higgs boson and g and {gamma} respectively represent a gluon and a photon, the cross sections can also be affected by new physics particles via additional one-loop diagrams. In the two-Higgs-doublet model and scalar leptoquark models, cross sections of e{sup +}e{sup -}{yields}hhZ and {gamma}{gamma}{yields}hh can be enhanced due to the nondecoupling effect in the one-loop corrections to the triple Higgs boson coupling constant. In the sequential fourth generation fermion model, the cross section for gg{yields}hh becomes very large because of the loop effect of the fermions. In the vectorlike quark model, effects are small because the theory has decoupling property. Measurements of the Higgs boson pair production processes can be useful to explore new physics through the determination of the Higgs potential.

  3. Chiral electric field in relativistic heavy-ion collisions at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Zhong, Yang; Yang, Chun-Bin; Cai, Xu; Feng, Sheng-Qin

    2016-08-01

    It has been proposed that electric fields may lead to chiral separation in quark-gluon plasma (QGP). This is called the chiral electric separation effect. The strong electromagnetic field and the QCD vacuum can both be completely produced in off-central nuclear-nuclear collision. We use the Woods-Saxon nucleon distribution to calculate the electric field distributions of off-central collisions. The chiral electric field spatial distribution at Relativistic Heavy-Ion Collider (RHIC) and Large Hadron Collider (LHC) energy regions are systematically studied in this paper. The dependence of the electric field produced by the thermal quark in the central position with different impact parameters on the proper time with different collision energies in the RHIC and LHC energy regions are studied in this paper. Supported by National Natural Science Foundation of China (11375069, 11435054, 11075061, 11221504) and Key Laboratory Foundation of Quark and Lepton Physics (Hua-Zhong Normal University)(QLPL2014P01)

  4. Magnetic-field-induced squeezing effect at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Pang, Long-Gang; Endrődi, Gergely; Petersen, Hannah

    2016-04-01

    In off-central heavy-ion collisions, quark-gluon plasma (QGP) is exposed to the strongest magnetic fields ever created in the universe. Because of the paramagnetic nature of the QGP at high temperatures, the spatially inhomogeneous magnetic field configuration exerts an anisotropic force density that competes with the pressure gradients resulting from purely geometric effects. In this paper, we simulate (3+1)-dimensional ideal hydrodynamics with external magnetic fields to estimate the effect of this force density on the anisotropic expansion of the QGP in collisions at the Relativistic Heavy Ion Collider and at the Large Hadron Collider (LHC). While negligible for quickly decaying magnetic fields, we find that long-lived fields generate a substantial force density that suppresses the momentum anisotropy of the plasma by up to 20 % at the LHC energy and also leaves its imprint on the elliptic flow v2 of charged pions.

  5. Beam losses from ultra-peripheral nuclear collisions between Pb ions in the Large Hadron Collider and their alleviation

    SciTech Connect

    Bruce, R.; Bocian, D.; Gilardoni, S.; Jowett, J.M.; /CERN

    2009-08-01

    Electromagnetic interactions between colliding heavy ions at the Large Hadron Collider (LHC) at CERN will give rise to localized beam losses that may quench superconducting magnets, apart from contributing significantly to the luminosity decay. To quantify their impact on the operation of the collider, we have used a three-step simulation approach, which consists of optical tracking, a Monte-Carlo shower simulation and a thermal network model of the heat flow inside a magnet. We present simulation results for the case of {sup 208}Pb{sup 82+} ion operation in the LHC, with focus on the alice interaction region, and show that the expected heat load during nominal {sup 208}Pb{sup 82+} operation is 40% above the quench level. This limits the maximum achievable luminosity. Furthermore, we discuss methods of monitoring the losses and possible ways to alleviate their effect.

  6. QCD corrections to pair production of Type III Seesaw leptons at hadron colliders

    NASA Astrophysics Data System (ADS)

    Ruiz, Richard

    2015-12-01

    If kinematically accessible, hadron collider experiments provide an ideal laboratory for the direct production of heavy lepton partners in Seesaw models. In the context of the Type III Seesaw Mechanism, the O({α}_s) rate and shape corrections are presented for the pair production of hypothetical, heavy SU(2) L triplet leptons in pp collisions at √{s} = 13, 14 and 100TeV. The next-to-leading order (NLO) K-factors span, approximately, K NLO = 1 .1 - 1 .4 for both charged current and neutral current processes over a triplet mass range m T = 100 GeV - 2 TeV. Total production cross sections exhibit a - 6 % + 5 % scale dependence at 14 TeV and ±1% at 100 TeV. The NLO differential K-factors for heavy lepton kinematics are largely flat, suggesting that na¨ıve scaling by the total K NLO is reasonably justified. The resummed transverse momentum distribution of the dilepton system is presented at leading logarithmic (LL) accuracy. The effects of resummation are large in TeV-scale dilepton systems. Discovery potential to heavy lepton pairs at 14 and 100 TeV is briefly explored: at the High-Luminosity LHC, we estimate a 4 .8 - 6 .3 σ discovery potential maximally for m T = 1 .5 - 1 .6 TeV after 3000 fb-1. With 300 (3000) fb-1, there is 2σ sensitivity up to m T = 1 .3 - 1 .4 TeV (1 .7 - 1 .8 TeV) in the individual channels. At 100 TeV and with 10 fb-1, a 5 σ discovery can be achieved for m T = 1 .4 - 1 .6 TeV. Due to the factorization properties of Drell-Yan-type systems, the fixed order and resummed calculations reduce to convolutions over tree-level quantities.

  7. Measured and simulated heavy-ion beam loss patterns at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Hermes, P. D.; Bruce, R.; Jowett, J. M.; Redaelli, S.; Salvachua Ferrando, B.; Valentino, G.; Wollmann, D.

    2016-05-01

    The Large Hadron Collider (LHC) at CERN pushes forward to new regimes in terms of beam energy and intensity. In view of the combination of very energetic and intense beams together with sensitive machine components, in particular the superconducting magnets, the LHC is equipped with a collimation system to provide protection and intercept uncontrolled beam losses. Beam losses could cause a superconducting magnet to quench, or in the worst case, damage the hardware. The collimation system, which is optimized to provide a good protection with proton beams, has shown a cleaning efficiency with heavy-ion beams which is worse by up to two orders of magnitude. The reason for this reduced cleaning efficiency is the fragmentation of heavy-ion beams into isotopes with a different mass to charge ratios because of the interaction with the collimator material. In order to ensure sufficient collimation performance in future ion runs, a detailed theoretical understanding of ion collimation is needed. The simulation of heavy-ion collimation must include processes in which 82+208Pb ions fragment into dozens of new isotopes. The ions and their fragments must be tracked inside the magnetic lattice of the LHC to determine their loss positions. This paper gives an overview of physical processes important for the description of heavy-ion loss patterns. Loss maps simulated by means of the two tools ICOSIM [1,2] and the newly developed STIER (SixTrack with Ion-Equivalent Rigidities) are compared with experimental data measured during LHC operation. The comparison shows that the tool STIER is in better agreement.

  8. Impact of 7-TeV/c large hadron collider proton beam on a copper target

    NASA Astrophysics Data System (ADS)

    Tahir, N. A.; Goddard, B.; Kain, V.; Schmidt, R.; Shutov, A.; Lomonosov, I. V.; Piriz, A. R.; Temporal, M.; Hoffmann, D. H. H.; Fortov, V. E.

    2005-04-01

    The large hadron collider (LHC) will allow for collision between two 7TeV/c proton beams, each comprising 2808 bunches with 1.1×1011 protons per bunch, traveling in opposite direction. The bunch length is 0.5ns and two neighboring bunches are separated by 25ns so that the duration of the entire beam is about 89μs. The beam power profile in the transverse direction is a Gaussian with a standard deviation of 0.2mm. The energy stored in each beam is about 350MJ that is sufficient to melt 500kg of copper. In case of a failure in the machine protection systems, the entire beam could impact directly onto an accelerator equipment. A first estimate of the scale of damage resulting from such a failure has been assessed for a solid copper target hit by the beam by carrying out three-dimensional energy deposition calculations and two-dimensional numerical simulations of the hydrodynamic and thermodynamic response of the target. This work has shown that the penetration depth of the LHC protons will be between 10 and 40m in solid copper. These calculations show that material conditions obtained in the target are similar to those planned for beam impact at dedicated accelerators designed to study the physics of high-energy-density states of matter, for example, the Facility for Antiprotons and Ion Research at the Gesellschaft für Schwerionenforschung, Darmstadt [W. F. Henning, Nucl. Instrum Methods Phys. Res. B 214, 211 (2004)].

  9. Principles of interaction region design in Hadron Colliders and their application to the SSC

    SciTech Connect

    Nosochkov, Y.; Sen, T.; Courant, E.; Garren, A.; Ritson, D.M.; Stirninh, T.; Dyphrtd, M.J.

    1994-01-01

    The high luminosity Interaction Regions (IRs) are an important part of the lattice in colliding beam machines. The performance of the collider may depend significantly on the particular design of the IRs. In this paper we discuss the general principles of IR design and apply these principles to the design of the Superconducting Super Collider Interaction Regions.

  10. Drag of heavy quarks in quark gluon plasma at energies available at the CERN Large Hadron Collider (LHC)

    SciTech Connect

    Das, Santosh K.; Alam, Jan-e; Mohanty, Payal

    2010-07-15

    The drag and diffusion coefficients of charm and bottom quarks propagating through quark gluon plasma (QGP) have been evaluated for conditions relevant to nuclear collisions at the Large Hadron Collider (LHC). The dead cone and Landau-Pomeronchuk-Migdal (LPM) effects on radiative energy loss of heavy quarks have been considered. Both radiative and collisional processes of energy loss are included in the effective drag and diffusion coefficients. With these effective transport coefficients, we solve the Fokker-Plank (FP) equation for the heavy quarks executing Brownian motion in the QGP. The solution of the FP equation has been used to evaluate the nuclear suppression factor, R{sub AA}, for the nonphotonic single-electron spectra resulting from the semileptonic decays of hadrons containing charm and bottom quarks. The effects of mass on R{sub AA} have also been highlighted.

  11. Technicolor corrections to bb{yields}W{sup {+-}{pi}}{sub t}{sup {+-}}at the CERN Large Hadron Collider

    SciTech Connect

    Huang Jinshu; Pan, Qunna; Song, Taiping; Lu, Gongru

    2010-07-01

    In this paper we calculate the technicolor correction to the production of a charged top pion in association with a W boson via bb annihilation at the CERN Large Hadron Collider in the context of the topcolor assisted technicolor model. We find that the cross section of pp{yields}bb{yields}W{sup {+-}{pi}}{sub t}{sup {+-}}at the tree level can reach a few hundred femtobarns for reasonable ranges of the parameters, roughly corresponding to the result of the process pp{yields}bb{yields}W{sup {+-}H{+-}}in the minimal supersymmetric standard model; the relative corrections arising from the one-loop diagrams are about a few percent to two dozen percent, and they will increase the cross section at the tree level. As a comparison, we also discuss the size of the hadron cross section via the other subprocess gg{yields}W{sup {+-}{pi}}{sub t}{sup {+-}.}

  12. Associated Higgs production in CP-violating supersymmetry: Probing the 'open hole' at the Large Hadron Collider

    SciTech Connect

    Bandyopadhyay, Priyotosh; Datta, AseshKrishna; Mukhopadhyaya, Biswarup; Datta, Amitava

    2008-07-01

    A benchmark CP-violating supersymmetric scenario (known in the literature as 'CPX-scenario') is studied in the context of the Large Hadron Collider (LHC). It is shown that the LHC, with low to moderate accumulated luminosity, will be able to probe the existing 'hole' in the m{sub h{sub 1}}-tan{beta} plane, which cannot be ruled out by the Large Electron Positron Collider data. This can be done through associated production of Higgs bosons with top quark and top squark pairs leading to the signal dilepton+ {<=}5 jets (including 3b-jets)+missing p{sub T}. Efficient discrimination of such a CP-violating supersymmetric scenario from other contending ones is also possible at the LHC with a moderate volume of data.

  13. Search for and Identification of Graviton Exchange Effects in Drell-Yan Process at Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Pankov, A. A.; Serenkova, I. A.; Tsytrinov, A. V.

    New physics signatures arising from different sources may be confused when first observed at future colliders. Thus it is important to examine how various scenarios may be differentiated given the availability of only limited information. Here, we explore the capability of the Large Hadron Collider (LHC) to distinguish spin-2 Kaluza-Klein towers of gravitons exchange from other new physics effects which might be conveniently parametrized by the four-fermion contact interactions. We find that the LHC with planned energies and luminosities will be capable of discovering (and identifying) graviton exchange effects in the large extra dimensions with the cutoff parameter of order 4.6 - 9.4 TeV (3.6 - 6.0 TeV) depending on energy, luminosity and number of extra dimensions.

  14. Same-sign trileptons and four leptons as signatures of new physics at the Large Hadron Collider

    SciTech Connect

    Mukhopadhyaya, Biswarup; Mukhopadhyay, Satyanarayan

    2010-08-01

    We point out that same-sign multilepton events, not given due attention yet for new physics search, can be extremely useful at the Large Hadron Collider. After showing the easy reducibility of the standard model backgrounds, we demonstrate the viability of same-sign trilepton signals for R-parity breaking supersymmetry, at both 7 and 14 TeV. We find that same-sign four-leptons, too, can have appreciable rates. Same-sign trileptons are also expected, for example, in Little Higgs theories with T-parity broken by anomaly terms.

  15. Searches for and identification of effects of extra spatial dimensions in dilepton and diphoton production at the Large Hadron Collider

    SciTech Connect

    Pankov, A. A. Serenkova, I. A. Tsytrinov, A. V. Bednyakov, V. A.

    2015-06-15

    Prospects of discovering and identifying effects of extra spatial dimensions in dilepton and diphoton production at the Large Hadron Collider (LHC) are studied. Such effects may be revealed by the characteristic behavior of the invariant-mass distributions of dileptons and diphotons, and their identification can be performed on the basis of an analysis of their angular distributions. The discovery and identification reaches are estimated for the scale parameter M{sub S} of the Kaluza-Klein gravitational towers, which can be determined in experiments devoted to measuring the dilepton and diphoton channels at the LHC.

  16. Discovery and measurement of excited b hadrons at the Collider Detector at Fermilab

    SciTech Connect

    Pursley, Jennifer Marie; /Johns Hopkins U.

    2007-06-01

    This thesis presents evidence for the B**{sup 0} and {Sigma}{sub b}{sup (*){+-}} hadrons in proton-antiproton collisions at a center of mass energy of 1.96 TeV, using data collected by the Collider Detector at Fermilab. In the search for B**{sup 0} {yields} B{sup {+-}} {pi}{sup {-+}}, two B{sup {+-}} decays modes are reconstructed: B{sup {+-}} {yields} J/{Upsilon}K{sup {+-}}, where J/{Upsilon} {yields} {mu}{sup +}{mu}{sup -}, and B{sup {+-}} {yields} {bar D}{sup 0}{pi}{sup {+-}}, where {bar D}{sup 0} {yields} K{sup {+-}} {pi}{sup {+-}}. Both modes are reconstructed using 370 {+-} 20 pb{sup -1} of data. Combining the B{sup {+-}} meson with a charged pion to reconstruct B**{sup 0} led to the observation and measurement of the masses of the two narrow B**{sup 0} states, B{sub 1}{sup 0} and B*{sub 2}{sup 0}, of m(B{sub 1}{sup 0}) = 5734 {+-} 3(stat.) {+-} 2(syst.) MeV/c{sup 2}; m(B*{sub 2}{sup 0}) = 5738 {+-} 5(stat.) {+-} 1(syst.) MeV/c{sup 2}. In the search for {Sigma}{sub b}{sup (*){+-}} {yields} {Lambda}{sub b}{sup 0}{pi}{sup {+-}}, the {Lambda}{sub b}{sup 0} is reconstructed in the decay mode {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}{sup +}{pi}{sup -}, where {Lambda}{sub c}{sup +} {yields} pK{sup -} {pi}{sup +}, using 1070 {+-} 60 pb{sup -1} of data. Upon combining the {Lambda}{sub b}{sup 0} candidate with a charged pion, all four of the {Sigma}{sub b}{sup (*){+-}} states are observed and their masses measured to be: m({Sigma}{sub b}{sup +}) = 5807.8{sub -2.2}{sup +2.0}(stat.) {+-} 1.7(syst.) MeV/c{sup 2}; m({Sigma}{sub b}{sup -}) = 5815.2 {+-} 1.0(stat.) {+-} 1.7(syst.) MeV/c{sup 2}; m({Sigma}*{sub b}{sup +}) = 5829.0{sub -1.8}{sup +1.6}(stat.){sub -1.8}{sup +1.7}(syst.) MeV/c{sup 2}; M({Sigma}*{sub b}{sup -}) - 5836.4 {+-} 2.0(stat.){sub -1.7}{sup +1.8}(syst.) MeV/c{sup 2}. This is the first observation of {Sigma}{sub b}{sup (*){+-}} baryons.

  17. Coherent photoproduction of vector mesons in ultraperipheral heavy ion collisions: Update for run 2 at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Guzey, V.; Kryshen, E.; Zhalov, M.

    2016-05-01

    We make predictions for the cross sections of coherent photoproduction of ρ ,ϕ ,J /ψ ,ψ (2 S ) , and Υ (1 S ) mesons in Pb-Pb ultraperipheral collisions (UPCs) at √{sN N}=5.02 TeV in the kinematics of run 2 at the Large Hadron Collider extending the approaches successfully describing the available Pb-Pb UPC data at √{sN N}=2.76 TeV . Our results illustrate the important roles of hadronic fluctuations of the photon and inelastic nuclear shadowing in photoproduction of light vector mesons on nuclei and the large leading twist nuclear gluon shadowing in photoproduction of quarkonia on nuclei. We show that the ratio of ψ (2 S ) and J /ψ photoproduction cross sections in Pb-Pb UPCs is largely determined by the ratio of these cross sections on the proton. We also argue that UPCs with electromagnetic excitations of the colliding ions followed by the forward neutron emission allows one to significantly increase the range of photon energies accessed in vector meson photoproduction on nuclei.

  18. Experimental search for W/Z pairs and Higgs bosons at very high energy hadron-hadron colliders

    SciTech Connect

    Alverson, G.; Bengtsson, H.U.; Hauptman, J.; Hedin, D.; Herrero, M.J.; Wang, E.; Linn, S.; Young, C.; Milliken, B.; Paige, F.

    1987-03-01

    We study, from an experimental point of view, the main ways to detect standard high mass Higgs bosons (from 300 GeV up to about 1 TeV) when they decay into W- and Z-pairs at the SSC. We also consider the corresponding W- and Z/sup 0/-pair continuum which may itself provide interesting physics, and we pay some attention to the case of an intermediate mass charged Higgs decaying into tau..nu../sub tau/ (m/sub H+-/ = 300 GeV). We first explain why and how high energy pp colliders may search for Higgs' and we compare their possible performances to those of the e/sup +/e/sup -/ and ep colliders at all possible mass scale (from few tens of GeV's up to 1 TeV). We then estimate the rates of the signals and the main backgrounds. We define the main characteristics of these events as reproduced by M.C. generators (especially implemented with these processes) and simulated through an idealized 4..pi.. fine-grained calorimeter. A trigger strategy for W- and Z-pairs is derived from this study. 26 refs., 28 figs.

  19. Probing triple-Higgs productions via 4 b 2 γ decay channel at a 100 TeV hadron collider

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Yi; Yan, Qi-Shu; Zhao, Xiaoran; Zhao, Zhijie; Zhong, Yi-Ming

    2016-01-01

    The quartic self-coupling of the Standard Model Higgs boson can only be measured by observing the triple-Higgs production process, but it is challenging for the LHC Run 2 or International Linear Collider (ILC) at a few TeV because of its extremely small production rate. In this paper, we present a detailed Monte Carlo simulation study of the triple-Higgs production through gluon fusion at a 100 TeV hadron collider and explore the feasibility of observing this production mode. We focus on the decay channel H H H →b b ¯b b ¯γ γ , investigating detector effects and optimizing the kinematic cuts to discriminate the signal from the backgrounds. Our study shows that, in order to observe the Standard Model triple-Higgs signal, the integrated luminosity of a 100 TeV hadron collider should be greater than 1.8 ×104 ab-1 . We also explore the dependence of the cross section upon the trilinear (λ3) and quartic (λ4) self-couplings of the Higgs. We find that, through a search in the triple-Higgs production, the parameters λ3 and λ4 can be restricted to the ranges [-1 ,5 ] and [-20 ,30 ], respectively. We also examine how new physics can change the production rate of triple-Higgs events. For example, in the singlet extension of the Standard Model, we find that the triple-Higgs production rate can be increased by a factor of O (10 ).

  20. Evidence of subnucleonic degrees of freedom in J /ψ photoproduction in ultraperipheral collisions at energies available at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Andrade-II, E.; González, I.; Deppman, A.; Bertulani, C. A.

    2015-12-01

    We present calculations for the incoherent photoproduction of J /ψ vector mesons in ultraperipheral heavy ion collisions (UPCs) in terms of hadronic interactions. This study was carried out using the recently developed Monte Carlo model CRISP extended to include UPCs at energies available at the CERN Large Hadron Collider. A careful study of rescattering and destruction of the J /ψ particles is presented for Pb + Pb collisions at √{sN N}=2.76 TeV. We have also compared our method to Au + Au collisions at √{sN N}=200 GeV measured at the BNL Relativistic Heavy Ion Collider.

  1. High Energy Colliders

    NASA Astrophysics Data System (ADS)

    Palmer, R. B.; Gallardo, J. C.

    INTRODUCTION PHYSICS CONSIDERATIONS GENERAL REQUIRED LUMINOSITY FOR LEPTON COLLIDERS THE EFFECTIVE PHYSICS ENERGIES OF HADRON COLLIDERS HADRON-HADRON MACHINES LUMINOSITY SIZE AND COST CIRCULAR e^{+}e^- MACHINES LUMINOSITY SIZE AND COST e^{+}e^- LINEAR COLLIDERS LUMINOSITY CONVENTIONAL RF SUPERCONDUCTING RF AT HIGHER ENERGIES γ - γ COLLIDERS μ ^{+} μ^- COLLIDERS ADVANTAGES AND DISADVANTAGES DESIGN STUDIES STATUS AND REQUIRED R AND D COMPARISION OF MACHINES CONCLUSIONS DISCUSSION

  2. Les Houches Guidebook to Monte Carlo generators for hadron collider physics

    SciTech Connect

    Dobbs, M.A

    2004-08-24

    Recently the collider physics community has seen significant advances in the formalisms and implementations of event generators. This review is a primer of the methods commonly used for the simulation of high energy physics events at particle colliders. We provide brief descriptions, references, and links to the specific computer codes which implement the methods. The aim is to provide an overview of the available tools, allowing the reader to ascertain which tool is best for a particular application, but also making clear the limitations of each tool.

  3. Les Houches guidebook to Monte Carlo generators for hadron collider physics

    SciTech Connect

    Dobbs, Matt A.; Frixione, Stefano; Laenen, Eric; Tollefson, Kirsten

    2004-03-01

    Recently the collider physics community has seen significant advances in the formalisms and implementations of event generators. This review is a primer of the methods commonly used for the simulation of high energy physics events at particle colliders. We provide brief descriptions, references, and links to the specific computer codes which implement the methods. The aim is to provide an overview of the available tools, allowing the reader to ascertain which tool is best for a particular application, but also making clear the limitations of each tool.

  4. CERN-RD39 collaboration activities aimed at cryogenic silicon detector application in high-luminosity Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Eremin, Vladimir; Verbitskaya, Elena; Dehning, Bernd; Sapinski, Mariusz; Bartosik, Marcin R.; Alexopoulos, Andreas; Kurfürst, Christoph; Härkönen, Jaakko

    2016-07-01

    Beam Loss Monitors (BLM) made of silicon are new devices for monitoring of radiation environment in the vicinity of superconductive magnets of the Large Hadron Collider. The challenge of BLMs is extreme radiation hardness, up to 1016 protons/cm2 while placed in superfluid helium (temperature of 1.9 K). CERN BE-BI-BL group, together with CERN-RD39 collaboration, has developed prototypes of BLMs and investigated their device physics. An overview of this development-results of the in situ radiation tests of planar silicon detectors at 1.9 K, performed in 2012 and 2014-is presented. Our main finding is that silicon detectors survive under irradiation to 1×1016 p/cm2 at 1.9 K. In order to improve charge collection, current injection into the detector sensitive region (Current Injection Detector (CID)) was tested. The results indicate that the detector signal increases while operated in CID mode.

  5. Optimising charged Higgs boson searches at the Large Hadron Collider across b b bar W± final states

    NASA Astrophysics Data System (ADS)

    Moretti, Stefano; Santos, Rui; Sharma, Pankaj

    2016-09-01

    In the light of the most recent data from Higgs boson searches and analyses, we re-assess the scope of the Large Hadron Collider in accessing heavy charged Higgs boson signals in b b bar W± final states, wherein the contributing channels can be H+ → t b bar , hW±, HW± and AW±. We consider a 2-Higgs Doublet Model Type-II and we assume as production mode bg → tH- +c.c., the dominant one over the range MH± ≥ 480 GeV, as dictated by b → sγ constraints. Prospects of detection are found to be significant for various Run 2 energy and luminosity options.

  6. QCD corrections to the Drell-Yan process for the Large Hadron Collider (LHC): Vertex functions and gluon bremsstrahlung

    SciTech Connect

    Zykunov, V. A.

    2010-07-15

    With an eye to future experiments at the Large Hadron Collider (LHC), O(aa{sub s}) QCD corrections to the Drell-Yan process are calculated for vertex functions and gluon bremsstrahlung. Use is made of fully differential cross sections, so that the result obtained in the present study can readily be applied in analyzing experimental data (in correcting data from future experiments at LHC). It is shown both analytically and numerically that the results are independent of unphysical parameters, including the parameter separating the regions of soft and hard gluons and the quark mass. A numerical analysis of radiative effects was performed by means of the FORTRAN code READY with allowance for the experimental cuts used at the Compact Muon Solenoid (CMS) detector

  7. A particle consistent with the Higgs boson observed with the ATLAS detector at the Large Hadron Collider.

    PubMed

    2012-12-21

    Nearly 50 years ago, theoretical physicists proposed that a field permeates the universe and gives energy to the vacuum. This field was required to explain why some, but not all, fundamental particles have mass. Numerous precision measurements during recent decades have provided indirect support for the existence of this field, but one crucial prediction of this theory has remained unconfirmed despite 30 years of experimental searches: the existence of a massive particle, the standard model Higgs boson. The ATLAS experiment at the Large Hadron Collider at CERN has now observed the production of a new particle with a mass of 126 giga-electron volts and decay signatures consistent with those expected for the Higgs particle. This result is strong support for the standard model of particle physics, including the presence of this vacuum field. The existence and properties of the newly discovered particle may also have consequences beyond the standard model itself. PMID:23258888

  8. A Particle Consistent with the Higgs Boson Observed with the ATLAS Detector at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    ATLAS Collabortion; Aad, G.; Abajyan, T.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdelalim, A. A.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Addy, T. N.; Adelman, J.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Agustoni, M.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alam, M. S.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Allbrooke, B. M. M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alonso, F.; Altheimer, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amelung, C.; Ammosov, V. V.; Amor Dos Santos, S. P.; Amorim, A.; Amram, N.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Andrieux, M.-L.; Anduaga, X. S.; Angelidakis, S.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Arfaoui, S.; Arguin, J.-F.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Atkinson, M.; Aubert, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Avolio, G.; Avramidou, R.; Axen, D.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Backus Mayes, J.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Balek, P.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A. E.; Bartsch, V.; Basye, A.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beale, S.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, A. K.; Becker, S.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellomo, M.; Belloni, A.; Beloborodova, O.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Bertella, C.; Bertin, A.; Bertolucci, F.; Besana, M. I.; Besjes, G. J.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bittner, B.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blazek, T.; Bloch, I.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. B.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boelaert, N.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bomben, M.; Bona, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borri, M.; Borroni, S.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brelier, B.; Bremer, J.; Brendlinger, K.; Brenner, R.; Bressler, S.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Broggi, F.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brown, G.; Brown, H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Buat, Q.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Bulekov, O.; Bundock, A. C.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Buttinger, W.; Byszewski, M.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarri, P.; Cameron, D.; Caminada, L. M.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Cantrill, R.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capriotti, D.; Capua, M.; Caputo, R.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N. F.; Cataldi, G.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cavaliere, V.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chan, K.; Chang, P.; Chapleau, B.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Chavez Barajas, C. A.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, S.; Chen, X.; Chen, Y.; Cheng, Y.; Cheplakov, A.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Cirkovic, P.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Clarke, R. N.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Cogan, J. G.; Coggeshall, J.; Cogneras, E.; Colas, J.; Cole, S.; Colijn, A. P.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colombo, T.; Colon, G.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Consonni, S. M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Crescioli, F.; Cristinziani, M.; Crosetti, G.; Crépé-Renaudin, S.; Cuciuc, C.-M.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C. J.; Cuthbert, C.; Cwetanski, P.; Czirr, H.; Czodrowski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dallapiccola, C.; Dam, M.; Dameri, M.; Damiani, D. S.; Danielsson, H. O.; Dao, V.; Darbo, G.; Darlea, G. L.; Dassoulas, J. A.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, E.; Davies, M.; Davignon, O.; Davison, A. R.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Castro, S.; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; De La Taille, C.; De la Torre, H.; De Lorenzi, F.; de Mora, L.; De Nooij, L.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; De Zorzi, G.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dechenaux, B.; Dedovich, D. V.; Degenhardt, J.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Delemontex, T.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delpierre, P.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Devetak, E.; Deviveiros, P. O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A.; Di Ciaccio, L.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dinut, F.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dodd, J.; Doglioni, C.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donadelli, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M. T.; Dowell, J. D.; Doxiadis, A. D.; Doyle, A. T.; Dressnandt, N.; Dris, M.; Dubbert, J.; Dube, S.; Duchovni, E.; Duckeck, G.; Duda, D.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duerdoth, I. P.; Duflot, L.; Dufour, M.-A.; Duguid, L.; Dunford, M.; Duran Yildiz, H.; Duxfield, R.; Dwuznik, M.; Dydak, F.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckweiler, S.; Edmonds, K.; Edson, W.; Edwards, C. A.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri, L.; Fabre, C.; Fakhrutdinov, R. M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Fazio, S.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Fellmann, D.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M. J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Fonseca Martin, T.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fowler, A. J.; Fox, H.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Frank, T.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; French, S. T.; Friedrich, C.; Friedrich, F.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadatsch, S.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallo, V.; Gallop, B. J.; Gallus, P.; Gan, K. K.; Gao, Y. S.; Gaponenko, A.; Garberson, F.; Garcia-Sciveres, M.; García, C.; García Navarro, J. E.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilchriese, M.; Gildemeister, O.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Giugni, D.; Giunta, M.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Goddard, J. R.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Goldfarb, S.; Golling, T.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gosdzik, B.; Goshaw, A. T.; Gosselink, M.; Gostkin, M. I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Gozpinar, S.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Gramstad, E.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Grebenyuk, O. G.; Greenshaw, T.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grinstein, S.; Gris, Ph.; Grishkevich, Y. V.; Grivaz, J.-F.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guest, D.; Guicheney, C.; Guillemin, T.; Guindon, S.; Gul, U.; Gunther, J.; Guo, B.; Guo, J.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Hahn, F.; Haider, S.; Hajduk, Z.; Hakobyan, H.; Hall, D.; Haller, J.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.; Hamilton, S.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansson, P.; Hara, K.; Hard, A. S.; Hare, G. A.; Harenberg, T.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayakawa, T.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, C.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Hensel, C.; Henß, T.; Hernandez, C. M.; Hernández Jiménez, Y.; Herrberg, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Higón-Rodriguez, E.; Hill, J. C.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holder, M.; Holmgren, S. O.; Holy, T.; Holzbauer, J. L.; Hong, T. M.; Hooft van Huysduynen, L.; Horner, S.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huettmann, A.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hurwitz, M.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibbotson, M.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Iliadis, D.; Ilic, N.; Ince, T.; Inigo-Golfin, J.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansen, H.; Jantsch, A.; Janus, M.; Jarlskog, G.; Jeanty, L.; Jen-La Plante, I.; Jennens, D.; Jenni, P.; Loevschall-Jensen, A. E.; Jež, P.; Jézéquel, S.; Jha, M. K.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinnouchi, O.; Joergensen, M. D.; Joffe, D.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Joram, C.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Jovin, T.; Ju, X.; Jung, C. A.; Jungst, R. M.; Juranek, V.; Jussel, P.; Juste Rozas, A.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kaneti, S.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagounis, M.; Karakostas, K.; Karnevskiy, M.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasieczka, G.; Kass, R. D.; Kastanas, A.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kazama, S.; Kazanin, V. A.; Kazarinov, M. Y.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Keller, J. S.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Keung, J.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kitamura, T.; Kittelmann, T.; Kiuchi, K.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Köneke, K.; König, A. C.; Koenig, S.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolachev, G. M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Komar, A. A.; Komori, Y.; Kondo, T.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotov, S.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kreiss, S.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumnack, N.; Krumshteyn, Z. V.; Kruse, A.; Kubota, T.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lablak, S.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laisne, E.; Lamanna, M.; Lambourne, L.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larner, A.; Lassnig, M.; Laurelli, P.; Lavorini, V.; Lavrijsen, W.; Laycock, P.; Lazovich, T.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, M.; Legendre, M.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leontsinis, S.; Lepold, F.; Leroy, C.; Lessard, J.-R.; Lester, C. G.; Lester, C. M.; Levêque, J.; Levin, D.; Levinson, L. J.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, S.; Li, X.; Liang, Z.; Liao, H.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Lombardo, V. P.; Long, J. D.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Lo Sterzo, F.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luijckx, G.; Lukas, W.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundberg, O.; Lundquist, J.; Lungwitz, M.; Lynn, D.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Mackeprang, R.; Madaras, R. J.; Maddocks, H. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magnoni, L.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Mahmoud, S.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malaescu, B.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandíc, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Mangeard, P. S.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J. A.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marroquim, F.; Marshall, Z.; Martens, F. K.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, B.; Martin, J. P.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martin-Haugh, S.; Martinez, M.; Martinez Outschoorn, V.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massaro, G.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Matricon, P.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maurer, J.; Maxfield, S. J.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzaferro, L.; Mazzanti, M.; Mc Donald, J.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; Mclaughlan, T.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Meloni, F.; Mendoza Navas, L.; Meng, Z.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Merritt, H.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Meyer, T. C.; Michal, S.; Micu, L.; Middleton, R. P.; Migas, S.; Mijovíc, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Miller, R. J.; Mills, W. J.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano Moya, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Mitrevski, J.; Mitsou, V. A.; Mitsui, S.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Moeller, V.; Mönig, K.; Möser, N.; Mohapatra, S.; Mohr, W.; Moles-Valls, R.; Molfetas, A.; Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Moorhead, G. F.; Mora Herrera, C.; Moraes, A.; Morange, N.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Morii, M.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Mueller, T.; Muenstermann, D.; Munwes, Y.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagel, M.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Nanava, G.; Napier, A.; Narayan, R.; Nash, M.; Nattermann, T.; Naumann, T.; Navarro, G.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negri, G.; Negrini, M.; Nektarijevic, S.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newcomer, F. M.; Newman, P. R.; Nguyen Thi Hong, V.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Norberg, S.; Nordberg, M.; Norton, P. R.; Novakova, J.; Nozaki, M.; Nozka, L.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Brien, B. J.; O'Neil, D. C.; O'Shea, V.; Oakes, L. B.; Oakham, F. G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olchevski, A. G.; Olivares Pino, S. A.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Osuna, C.; Otero y Garzon, G.; Ottersbach, J. P.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, S.; Ozcan, V. E.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Pagan Griso, S.; Paganis, E.; Pahl, C.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Paleari, C. P.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panduro Vazquez, J. G.; Pani, P.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Papadelis, A.; Papadopoulou, Th. D.; Paramonov, A.; Paredes Hernandez, D.; Park, W.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pashapour, S.; Pasqualucci, E.; Passaggio, S.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pecsy, M.; Pedraza Lopez, S.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Pelikan, D.; Peng, H.; Penning, B.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Cavalcanti, T.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Peshekhonov, V. D.; Peters, K.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, P. W.; Piacquadio, G.; Picazio, A.; Piccaro, E.; Piccinini, M.; Piec, S. M.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Pinto, B.; Pizio, C.; Plamondon, M.; Pleier, M.-A.; Plotnikova, E.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poggioli, L.; Pohl, D.; Pohl, M.; Polesello, G.; Policicchio, A.; Polifka, R.; Polini, A.; Poll, J.; Polychronakos, V.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Pospelov, G. E.; Pospisil, S.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Prabhu, R.; Pralavorio, P.; Pranko, A.; Prasad, S.; Pravahan, R.; Prell, S.; Pretzl, K.; Price, D.; Price, J.; Price, L. E.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przybycien, M.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Pueschel, E.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Raddum, S.; Radeka, V.; Radescu, V.; Radloff, P.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Randle-Conde, A. S.; Randrianarivony, K.; Rauscher, F.; Rave, T. C.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Rembser, C.; Ren, Z. L.; Renaud, A.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter-Was, E.; Ridel, M.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Roe, A.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romeo, G.; Romero Adam, E.; Rompotis, N.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, A.; Rose, M.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosendahl, P. L.; Rosenthal, O.; Rosselet, L.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Ruckstuhl, N.; Rud, V. I.; Rudolph, C.; Rudolph, G.; Rühr, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rurikova, Z.; Rusakovich, N. A.; Rutherfoord, J. P.; Ruzicka, P.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salek, D.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sanchez, A.; Sanchez Martinez, V.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Santos, H.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sartisohn, G.; Sasaki, O.; Sasaki, Y.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Sauvan, E.; Sauvan, J. B.; Savard, P.; Savinov, V.; Savu, D. O.; Sawyer, L.; Saxon, D. H.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D. A.; Scarcella, M.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schäfer, U.; Schaelicke, A.; Schaepe, S.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schmid, P.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, M.; Schneider, B.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schroeder, C.; Schroer, N.; Schultens, M. J.; Schultes, J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwegler, Ph.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Schwindt, T.; Schwoerer, M.; Sciolla, G.; Scott, W. G.; Searcy, J.; Sedov, G.; Sedykh, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekula, S. J.; Selbach, K. E.; Seliverstov, D. M.; Sellden, B.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Seuster, R.; Severini, H.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Sherman, D.; Sherwood, P.; Shimizu, S.; Shimojima, M.; Shin, T.; Shiyakova, M.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simoniello, R.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sircar, A.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinnari, L. A.; Skottowe, H. P.; Skovpen, K.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snyder, S.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Solovyev, V.; Soni, N.; Sopko, V.; Sopko, B.; Sosebee, M.; Soualah, R.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Spearman, W. R.; Spighi, R.; Spigo, G.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Staude, A.; Stavina, P.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strang, M.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Styles, N. A.; Soh, D. A.; Su, D.; Subramania, HS.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Suzuki, Y.; Svatos, M.; Swedish, S.; Sykora, I.; Sykora, T.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanasijczuk, A. J.; Tani, K.; Tannoury, N.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Tayalati, Y.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teinturier, M.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Testa, M.; Teuscher, R. J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thong, W. M.; Thun, R. P.; Tian, F.; Tibbetts, M. J.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomoto, M.; Tompkins, L.; Toms, K.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torchiani, I.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trilling, G.; Trincaz-Duvoid, S.; Tripiana, M. F.; Triplett, N.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tudorache, A.; Tudorache, V.; Tuggle, J. M.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urquijo, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valentinetti, S.; Valero, A.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; Van Berg, R.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Vulpen, I.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vari, R.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vazquez Schroeder, T.; Vegni, G.; Veillet, J. J.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Virchaux, M.; Virzi, J.; Vitells, O.; Viti, M.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Anh, T. Vu; Vuillermet, R.; Vukotic, I.; Wagner, W.; Wagner, P.; Wahlen, H.; Wahrmund, S.; Wakabayashi, J.; Walch, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Walsh, B.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, R.; Wang, S. M.; Wang, T.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Warsinsky, M.; Washbrook, A.; Wasicki, C.; Watanabe, I.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Weber, M. S.; Weber, P.; Webster, J. S.; Weidberg, A. R.; Weigell, P.; Weingarten, J.; Weiser, C.; Wells, P. S.; Wenaus, T.; Wendland, D.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Wessels, M.; Wetter, J.; Weydert, C.; Whalen, K.; Wheeler-Ellis, S. J.; White, A.; White, M. J.; White, S.; Whitehead, S. R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Will, J. Z.; Williams, E.; Williams, H. H.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wong, W. C.; Wooden, G.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wraight, K.; Wright, M.; Wrona, B.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wynne, B. M.; Xella, S.; Xiao, M.; Xie, S.; Xu, C.; Xu, D.; Yabsley, B.; Yacoob, S.; Yamada, M.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, L.; Yao, Y.; Yasu, Y.; Ybeles Smit, G. V.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J.; Youssef, S.; Yu, D.; Yu, J.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zanello, L.; Zanzi, D.; Zaytsev, A.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zendler, C.; Zenin, O.; Ženiš, T.; Zinonos, Z.; Zerwas, D.; Zevi della Porta, G.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, X.; Zhang, Z.; Zhao, L.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zieminska, D.; Zimin, N. I.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Živkovíc, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zutshi, V.; Zwalinski, L.

    2012-12-01

    Nearly 50 years ago, theoretical physicists proposed that a field permeates the universe and gives energy to the vacuum. This field was required to explain why some, but not all, fundamental particles have mass. Numerous precision measurements during recent decades have provided indirect support for the existence of this field, but one crucial prediction of this theory has remained unconfirmed despite 30 years of experimental searches: the existence of a massive particle, the standard model Higgs boson. The ATLAS experiment at the Large Hadron Collider at CERN has now observed the production of a new particle with a mass of 126 giga-electron volts and decay signatures consistent with those expected for the Higgs particle. This result is strong support for the standard model of particle physics, including the presence of this vacuum field. The existence and properties of the newly discovered particle may also have consequences beyond the standard model itself.

  9. Total top-quark pair-production cross section at hadron colliders through O(αS(4)).

    PubMed

    Czakon, Michał; Fiedler, Paul; Mitov, Alexander

    2013-06-21

    We compute the next-to-next-to-leading order (NNLO) quantum chromodynamics (QCD) correction to the total cross section for the reaction gg → tt + X. Together with the partonic channels we computed previously, the result derived in this Letter completes the set of NNLO QCD corrections to the total top pair-production cross section at hadron colliders. Supplementing the fixed order results with soft-gluon resummation with next-to-next-to-leading logarithmic accuracy, we estimate that the theoretical uncertainty of this observable due to unknown higher order corrections is about 3% at the LHC and 2.2% at the Tevatron. We observe a good agreement between the standard model predictions and the available experimental measurements. The very high theoretical precision of this observable allows a new level of scrutiny in parton distribution functions and new physics searches. PMID:23829732

  10. Centrality dependence of high energy jets in p +Pb collisions at energies available at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Bzdak, Adam; Skokov, Vladimir; Bathe, Stefan

    2016-04-01

    The recently measured centrality dependence of high energy jets in proton-lead collisions at the CERN Large Hadron Collider (LHC) is investigated. We hypothesize that events with jets of very high energy (a few hundred GeV) are characterized by a suppressed number of soft particles, thus shifting these events into more peripheral bins. This naturally results in the suppression (enhancement) of the nuclear modification factor, Rp A, in central (peripheral) collisions. Our calculations suggest that a moderate suppression of the order of 20 % , for 103 GeV jets, can quantitatively reproduce the experimental data. We further extract the suppression factor as a function of jet energy and test our conjecture using available Rp A data for various centralities.

  11. Polarized window for left-right symmetry and a right-handed neutrino at the Large Hadron-Electron Collider

    NASA Astrophysics Data System (ADS)

    Mondal, Subhadeep; Rai, Santosh Kumar

    2016-01-01

    The breaking of parity, a fundamental symmetry between left and right, is best understood in the framework of left-right symmetric extension of the standard model. We show that the production of a heavy right-handed neutrino at the proposed Large Hadron-Electron Collider (LHeC) could give us the most simple and direct hint of the scale of this breaking in left-right symmetric theories. This production mode gives a lepton number violating signal with Δ L =2 which is very clean and has practically no standard model background. We highlight that the right-handed nature of WR exchange which defines the left-right symmetric theories can be confirmed by using a polarized electron beam and also enhance the production rates with relatively lower beam energy.

  12. Charm production in Pb + Pb collisions at energies available at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Song, Taesoo; Berrehrah, Hamza; Cabrera, Daniel; Cassing, Wolfgang; Bratkovskaya, Elena

    2016-03-01

    We study charm production in Pb +Pb collisions at √{sN N}=2.76 TeV in the parton-hadron-string-dynamics (PHSD) transport approach and the charm dynamics in the partonic and hadronic medium. The charm quarks are produced through initial binary nucleon-nucleon collisions by using the pythia event generator, taking into account the (anti-)shadowing incorporated in the eps09 package. The produced charm quarks interact with off-shell massive partons in the quark-gluon plasma and are hadronized into D mesons through coalescence or fragmentation close to the critical energy density, and then interact with hadrons in the final hadronic stage with scattering cross sections calculated in an effective Lagrangian approach with heavy-quark spin symmetry. The PHSD results show a reasonable RAA and elliptic flow of D mesons in comparison to the experimental data for Pb +Pb collisions at √{sN N}=2.76 TeV from the ALICE Collaboration. We also study the effect of temperature-dependent off-shell charm quarks in relativistic heavy-ion collisions. We find that the scattering cross sections are only moderately affected by off-shell charm degrees of freedom. However, the position of the peak of RAA for D mesons depends on the strength of the scalar partonic forces which also have an impact on the D meson elliptic flow. The comparison with experimental data on the RAA suggests that the repulsive force is weaker for off-shell charm quarks as compared to that for light quarks. Furthermore, the effects from radiative charm energy loss appear to be low compared to the collisional energy loss up to transverse momenta of ˜15 GeV/c .

  13. NLO QED contributions to top-pair production at hadron colliders

    SciTech Connect

    Hollik, W.; Kollar, M.

    2008-01-01

    Electroweak one-loop calculations for production of top-quark pairs at colliders are completed by providing the missing QED type contributions from real and virtual photons, where also effects from interference between QED and QCD contributions have to be taken into account. Moreover, photon-induced tt production is included as another partonic channel.

  14. Predictions for 5.023 TeV Pb + Pb collisions at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Niemi, H.; Eskola, K. J.; Paatelainen, R.; Tuominen, K.

    2016-01-01

    We compute predictions for various low-transverse-momentum bulk observables in √{sN N}=5.023 TeV Pb+Pb collisions at the CERN Large Hadron Collider (LHC) from the event-by-event next-to-leading-order perturbative-QCD + saturation + viscous hydrodynamics ("EKRT") model. In particular, we consider the centrality dependence of charged hadron multiplicity, flow coefficients of the azimuth-angle asymmetries, and correlations of event-plane angles. The centrality dependencies of the studied observables are predicted to be very similar to those at 2.76 TeV, and the magnitudes of the flow coefficients and event-plane angle correlations are predicted to be close to those at 2.76 TeV. The flow coefficients may, however, offer slightly more discriminating power on the temperature dependence of QCD matter viscosity than the 2.76 TeV measurements. Our prediction for the multiplicity in the 0-5 % centrality class, obtained using the two temperature-dependent shear-viscosity-to-entropy ratios that give the best overall fit to BNL Relativistic Heavy Ion Collider (RHIC) and LHC data is d Nch/d η ||η|≤0.5=1876 ⋯2046 . We also predict a power-law increase from 200 GeV Au+Au collisions at RHIC to 2.76 and 5.023 TeV Pb+Pb collisions at the LHC, d Nch/d η ||η|≤0.5∝s0.164 ⋯0.174 .

  15. 62-TeV center of mass hadron collider with superbunch beams

    SciTech Connect

    Ryuji Yamada et al.

    2001-11-05

    The scheme of a 62-TeV center of mass p-p collider with superbunch beams at Fermilab is proposed as a practical and realistically achievable future project. It will be built in two stages, using the same tunnel, first with a 2 Tesla low field magnet collider ring and later with a 10 Tesla high field magnet collider ring. Both low and high field magnets have twin bore aperture and will be installed in the tunnel with the circumference of 87.25 km. In each bore a proton beam is accelerated, using induction cavities to increase luminosity. In the first stage they install a 7 TeV accelerator ring with operating field of 2 Tesla, based on the superferric transmission-line design. This ring will be operated at a 14-TeV center of mass collider. This will have the same energy as the LHC, but it will have 15 times higher luminosity, namely 1.5 x 10{sup 35}/cm{sup 2}/sec. The estimated synchrotron radiation is negligible with this machine. The existing Fermilab accelerator system, including the 150 GeV main injector, will be used as the injector system. Its rough cost estimation and schedule for this first stage are presented. In the second stage proton beams are accelerated, also using induction cavities up to 31 TeV with the 10 Tesla dipole magnets. The counter circulating beams will collide with the 62-TeV center of mass energy. With the superbunch beams they can expect the luminosity can be increased about 15 times more than the conventional method with RF cavities. It will be 10{sup 35}/cm{sup 2}/sec. In the second stage, the synchrotron radiation power will be about 12 W/m, and they need an elaborated beam screen.

  16. The Quest for the Higgs Boson and the Planck Black Hole Production at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Haramein, Nassim; Rauscher, E. A.

    2003-10-01

    When the CERN 7 TeV Large Hadron Collider (LHC) comes on line in the next few years, hypothesis is that significant experimental discoveries may verify the Higgs boson and the production of short lived Planck size mini Schwarzchild black holes, both of which are fundamental to a unified particle and cosmological standard and supersymmetry model. The Higgs mechanism relates to particle mass in the standard model and the mini black holes may relate to the cosmological mini mass problem as well as yield clues as to the structure of the vacuum. These points are of particular interest to our research [1,2], and the discovery and identification of mini black holes (mbh) is basic to our scaling law model [1]. Hawking radiation from the production of mini black holes from accelerated Hadrons are expected to be observed from x- and γ-ray lepton production from subcomponents of quarks or partons. Our model [1,2] and Hawking's picture [3] may demonstrate that mbh hold basic clues about the very nature of the fabric of spacetime itself. We examine the Kerr-Newman black hole production cross section in detail at the energies of the LHC. (1) N. Haramein, Bull. Am. Phys. Soc. AB006, 1154 (2001), (2) E.A. Rauscher, lett. Nuovo Cimento 3, 661 (1972), (3) S.W. Hawking, Phys. Rev. D53, 3099 (1996).

  17. First evidence for WW and WZ diboson production with semi-leptonic decays at a Hadron Collider

    SciTech Connect

    Haley, Joseph Glenn Biddle

    2009-06-01

    Presented is a measurement of the simultaneous production of a W± boson in association with a second weak boson (W± or Z0) in p$\\bar{p}$ collisions at √s = 1.96 TeV. Events are consider with one electron or one muon, missing transverse energy, and at least two hadronic jets. The data were collected by the D0 detector in Run IIa of the Tevatron accelerator and correspond to 1.07 fb-1 of integrated luminosity for each of the two channels (WW/WZ → evq$\\bar{q}$ and WW/WZ → μvq$\\bar{q}$). The cross section for WW + WZ production is measured to be 20.2 ± 2.5(stat) ± 3.6(sys) ± 1.2(lum) pb with a Gaussian significance of 4.4 standard deviations above the background-only scenario. This measurement is consistent with the Standard Model prediction and represents the first direct evidence for WW and WZ production with semi-leptonic decays at a hadron collider.

  18. Light-by-light scattering in ultraperipheral Pb-Pb collisions at energies available at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Kłusek-Gawenda, Mariola; Lebiedowicz, Piotr; Szczurek, Antoni

    2016-04-01

    We calculate cross sections for diphoton production in (semi)exclusive PbPb collisions, relevant for the CERN Large Hadron Collider (LHC). The calculation is based on the equivalent photon approximation in the impact parameter space. The cross sections for the elementary γ γ →γ γ subprocess are calculated including two different mechanisms. We take into account box diagrams with leptons and quarks in the loops. In addition, we consider a vector-meson dominance (VDM-Regge) contribution with virtual intermediate hadronic (vector-like) excitations of the photons. We get measurable cross sections in PbPb collisions. This opens a possibility to study the γ γ →γ γ (quasi)elastic scattering at the LHC. We present many interesting differential distributions which could be measured by the ALICE, CMS, or ATLAS Collaborations at the LHC. We study whether a separation or identification of different components (boxes, VDM-Regge) is possible. We find that the cross section for elastic γ γ scattering could be measured in the heavy-ion collisions for subprocess energies smaller than Wγ γ≈15 -20 GeV.

  19. Study of cosmic ray events with high muon multiplicity using the ALICE detector at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    The ALICE Collaboration

    2016-01-01

    ALICE is one of four large experiments at the CERN Large Hadron Collider near Geneva, specially designed to study particle production in ultra-relativistic heavy-ion collisions. Located 52 meters underground with 28 meters of overburden rock, it has also been used to detect muons produced by cosmic ray interactions in the upper atmosphere. In this paper, we present the multiplicity distribution of these atmospheric muons and its comparison with Monte Carlo simulations. This analysis exploits the large size and excellent tracking capability of the ALICE Time Projection Chamber. A special emphasis is given to the study of high multiplicity events containing more than 100 reconstructed muons and corresponding to a muon areal density ρμ > 5.9 m-2. Similar events have been studied in previous underground experiments such as ALEPH and DELPHI at LEP. While these experiments were able to reproduce the measured muon multiplicity distribution with Monte Carlo simulations at low and intermediate multiplicities, their simulations failed to describe the frequency of the highest multiplicity events. In this work we show that the high multiplicity events observed in ALICE stem from primary cosmic rays with energies above 1016 eV and that the frequency of these events can be successfully described by assuming a heavy mass composition of primary cosmic rays in this energy range. The development of the resulting air showers was simulated using the latest version of QGSJET to model hadronic interactions. This observation places significant constraints on alternative, more exotic, production mechanisms for these events.

  20. Drell-Yan process as an avenue to test a noncommutative standard model at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    J, Selvaganapathy; Das, Prasanta Kumar; Konar, Partha

    2016-06-01

    We study the Drell-Yan process at the Large Hadron Collider in the presence of the noncommutative extension of the standard model. Using the Seiberg-Witten map, we calculate the production cross section to first order in the noncommutative parameter Θμ ν . Although this idea has been evolving for a long time, only a limited amount of phenomenological analysis has been completed, and this was mostly in the context of the linear collider. An outstanding feature from this nonminimal noncommutative standard model not only modifies the couplings over the SM production channel but also allows additional nonstandard vertices which can play a significant role. Hence, in the Drell-Yan process, as studied in the present analysis, one also needs to account for the gluon fusion process at the tree level. Some of the characteristic signatures, such as oscillatory azimuthal distributions, are an outcome of the momentum-dependent effective couplings. We explore the noncommutative scale ΛNC≥0.4 TeV , considering different machine energy ranging from 7 to 13 TeV.

  1. CONCLUSIONS OF THE WORKSHOP [Hadron Colliders at the highest energy and luminosity

    SciTech Connect

    RUGGIERO,A.G.

    1996-11-04

    During this Workshop, it was concluded that a Proton-Proton Collider with an energy of 100 TeV per beam and a luminosity of about 10{sup 35} cm{sup {minus}2} s{sup {minus}1} is feasible. The most important technical requirement for the realization of such a project is a large bending field. For instance, a field of 13 Tesla would be desirable. This is twice the field of the SSC superconducting magnets, which very likely may be achieved in a non-too-far future by extrapolation of the present technology. The design of this Collider would follow very closely the methods used for the design of the SSC and of the LHC, with the major noticeable difference that, because of the larger bending field and the larger beam energy, the performance is determined by the effects of the Synchrotron Radiation in the similar manner they affect the performance of an electron-positron collider. This fact has considerable beneficial consequences since it allows the attainment of large luminosity by reducing the beam dimensions at collision and by requiring, to some degree, less number of particles per beam. On the other end. the losses to synchrotron radiation are to be absorbed by the cryogenic system, and the vacuum system should be capable to cope with them. A more significant rf system may also be required.

  2. Indications of conical emission of charged hadrons at the BNL relativistic heavy ion collider.

    SciTech Connect

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Krueger, K.; Spinka, H. M.; Underwood, D. G.; High Energy Physics; Univ. of Illinois; Panjab Univ.; Variable Energy Cyclotron Centre; Kent State Univ.; Particle Physic Lab.; STAR Collaboration

    2009-01-01

    Three-particle azimuthal correlation measurements with a high transverse momentum trigger particle are reported for pp, d+Au, and Au+Au collisions at {radical}s{sub NN} = 200 GeV by the STAR experiment. Dijet structures are observed in pp, d+Au and peripheral Au+Au collisions. An additional structure is observed in central Au+Au data, signaling conical emission of correlated charged hadrons. The conical emission angle is found to be {theta} = 1.37 {+-} 0.02(stat){sub -0.07}{sup +0.06} (syst), independent of p.

  3. Indications of Conical Emission of Charged Hadrons at the BNL Relativistic HeavyIon Collider

    SciTech Connect

    STAR Coll

    2009-02-09

    Three-particle azimuthal correlation measurements with a high transverse momentum trigger particle are reported for pp, d + Au, and Au + Au collisions at {radical}s{sub NN} = 200 GeV by the STAR experiment. Dijet structures are observed in pp, d + Au and peripheral Au + Au collisions. An additional structure is observed in central Au + Au data, signaling conical emission of correlated charged hadrons. The conical emission angle is found to be {theta} = 1.37 {+-} 0.02(stat){sub -0.07}{sup +0.06}(syst), independent of p{sub {perpendicular}}.

  4. Indications of Conical Emission of Charged Hadrons at the BNL Relativistic Heavy Ion Collider

    NASA Astrophysics Data System (ADS)

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Beavis, D. R.; Bellwied, R.; Benedosso, F.; Betts, R. R.; Bhardwaj, S.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Biritz, B.; Bland, L. C.; Bombara, M.; Bonner, B. E.; Botje, M.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bruna, E.; Bueltmann, S.; Burton, T. P.; Bystersky, M.; Cai, X. Z.; Caines, H.; Calderón de La Barca Sánchez, M.; Callner, J.; Catu, O.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K. E.; Christie, W.; Chung, S. U.; Clarke, R. F.; Codrington, M. J. M.; Coffin, J. P.; Cormier, T. M.; Cosentino, M. R.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Daugherity, M.; de Silva, C.; de Moura, M. M.; Dedovich, T. G.; Dephillips, M.; Derevschikov, A. A.; de Souza, R. Derradi; Didenko, L.; Djawotho, P.; Dogra, S. M.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, F.; Dunlop, J. C.; Dutta Mazumdar, M. R.; Edwards, W. R.; Efimov, L. G.; Elhalhuli, E.; Elnimr, M.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, C. A.; Gaillard, L.; Gangadharan, D. R.; Ganti, M. S.; Garcia-Solis, E.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y. N.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S. M.; Guimaraes, K. S. F. F.; Gupta, A.; Gupta, N.; Guryn, W.; Haag, B.; Hallman, T. J.; Hamed, A.; Harris, J. W.; He, W.; Heinz, M.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A. M.; Hoffmann, G. W.; Hofman, D. J.; Hollis, R. S.; Huang, H. Z.; Humanic, T. J.; Igo, G.; Iordanova, A.; Jacobs, P.; Jacobs, W. W.; Jakl, P.; Jin, F.; Jones, P. G.; Joseph, J.; Judd, E. G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kapitan, J.; Kaplan, M.; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V. Yu.; Kiryluk, J.; Kisiel, A.; Klein, S. R.; Knospe, A. G.; Kocoloski, A.; Koetke, D. D.; Kopytine, M.; Kotchenda, L.; Kouchpil, V.; Kravtsov, P.; Kravtsov, V. I.; Krueger, K.; Krus, M.; Kuhn, C.; Kumar, L.; Kurnadi, P.; Lamont, M. A. C.; Landgraf, J. M.; Lapointe, S.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, C.-H.; Levine, M. J.; Li, C.; Li, Y.; Lin, G.; Lin, X.; Lindenbaum, S. J.; Lisa, M. A.; Liu, F.; Liu, H.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Love, W. A.; Lu, Y.; Ludlam, T.; Lynn, D.; Ma, G. L.; Ma, Y. G.; Mahapatra, D. P.; Majka, R.; Mall, O. I.; Mangotra, L. K.; Manweiler, R.; Margetis, S.; Markert, C.; Matis, H. S.; Matulenko, Yu. A.; McShane, T. S.; Meschanin, A.; Millane, J.; Miller, M. L.; Minaev, N. G.; Mioduszewski, S.; Mischke, A.; Mitchell, J.; Mohanty, B.; Molnar, L.; Morozov, D. A.; Munhoz, M. G.; Nandi, B. K.; Nattrass, C.; Nayak, T. K.; Nelson, J. M.; Nepali, C.; Netrakanti, P. K.; Ng, M. J.; Nogach, L. V.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Okada, H.; Okorokov, V.; Olson, D.; Pachr, M.; Page, B. S.; Pal, S. K.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S. C.; Planinic, M.; Pluta, J.; Poljak, N.; Poskanzer, A. M.; Potukuchi, B. V. K. S.; Prindle, D.; Pruneau, C.; Pruthi, N. K.; Putschke, J.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Reed, R.; Ridiger, A.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M. J.; Rykov, V.; Sahoo, R.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Schambach, J.; Scharenberg, R. P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S. S.; Shi, X.-H.; Sichtermann, E. P.; Simon, F.; Singaraju, R. N.; Skoby, M. J.; Smirnov, N.; Snellings, R.; Sorensen, P.; Sowinski, J.; Spinka, H. M.; Srivastava, B.; Stadnik, A.; Stanislaus, T. D. S.; Staszak, D.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Suarez, M. C.; Subba, N. L.; Sumbera, M.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Symons, T. J. M.; Szanto de Toledo, A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Thein, D.; Thomas, J. H.; Tian, J.; Timmins, A. R.; Timoshenko, S.; Tlusty, D.; Tokarev, M.; Trainor, T. A.; Tram, V. N.; Trattner, A. L.; Trentalange, S.; Tribble, R. E.; Tsai, O. D.; Ulery, J.; Ullrich, T.; Underwood, D. G.; van Buren, G.; van Leeuwen, M.; Vander Molen, A. M.; Vanfossen, J. A., Jr.; Varma, R.; Vasconcelos, G. M. S.; Vasilevski, I. M.; Vasiliev, A. N.; Videbaek, F.; Vigdor, S. E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Wada, M.; Waggoner, W. T.; Wang, F.; Wang, G.; Wang, J. S.; Wang, Q.; Wang, X.; Wang, X. L.; Wang, Y.; Webb, J. C.; Westfall, G. D.; Whitten, C., Jr.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xu, N.; Xu, Q. H.; Xu, Y.; Xu, Z.; Yepes, P.; Yoo, I.-K.; Yue, Q.; Zawisza, M.; Zbroszczyk, H.; Zhan, W.; Zhang, H.; Zhang, S.; Zhang, W. M.; Zhang, Y.; Zhang, Z. P.; Zhao, Y.; Zhong, C.; Zhou, J.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zuo, J. X.

    2009-02-01

    Three-particle azimuthal correlation measurements with a high transverse momentum trigger particle are reported for pp, d+Au, and Au+Au collisions at sNN=200GeV by the STAR experiment. Dijet structures are observed in pp, d+Au and peripheral Au+Au collisions. An additional structure is observed in central Au+Au data, signaling conical emission of correlated charged hadrons. The conical emission angle is found to be θ=1.37±0.02(stat)-0.07+0.06(syst), independent of p⊥.

  5. Using neural networks to enhance the Higgs boson signal at hadron colliders

    SciTech Connect

    Field, R.D.; Kanev, Y.; Tayebnejad, M.; Griffin, P.A.

    1995-12-31

    Neural networks are used to help distinguish the ZZ {yields} {ell}{sup +}{ell}{sup {minus}}-jet-jet signal produced by the decay of a 400 GeV Higgs boson at a proton-proton collider energy of 15 TeV from the ``ordinary`` QCD Z + jets background. The ideal case where only one event at a time enters the detector (no pile-up) and the case of multiple interactions per beam crossing (pile-up) are examined. In both cases, when used in conjunction with the standard cuts, neural networks provide an additional signal to background enhancement.

  6. Measurement of Hadronic Event Shapes and Jet Substructure in Proton-Proton Collisions at 7.0 TeV Center-of-Mass Energy with the ATLAS Detector at the Large Hadron Collider

    SciTech Connect

    Miller, David Wilkins

    2012-03-20

    This thesis presents the first measurement of 6 hadronic event shapes in proton-proton collisions at a center-of-mass energy of {radical}s = 7 TeV using the ATLAS detector at the Large Hadron Collider. Results are presented at the particle-level, permitting comparisons to multiple Monte Carlo event generator tools. Numerous tools and techniques that enable detailed analysis of the hadronic final state at high luminosity are described. The approaches presented utilize the dual strengths of the ATLAS calorimeter and tracking systems to provide high resolution and robust measurements of the hadronic jets that constitute both a background and a signal throughout ATLAS physics analyses. The study of the hadronic final state is then extended to jet substructure, where the energy flow and topology within individual jets is studied at the detector level and techniques for estimating systematic uncertainties for such measurements are commissioned in the first data. These first substructure measurements in ATLAS include the jet mass and sub-jet multiplicity as well as those concerned with multi-body hadronic decays and color flow within jets. Finally, the first boosted hadronic object observed at the LHC - the decay of the top quark to a single jet - is presented.

  7. First Observation of Vector Boson Pairs in a Hadronic Final State at the Tevatron Collider

    SciTech Connect

    Aaltonen, T.; Adelman, Jahred A.; Akimoto, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, Dante E.; Anastassov, A.; Annovi, Alberto; Antos, Jaroslav; Apollinari, G.; Apresyan, A.; /Purdue U. /Waseda U.

    2009-05-01

    We present the first observation in hadronic collisions of the electroweak production of vector boson pairs (VV, V = W,Z) where one boson decays to a dijet final state. The data correspond to 3.5 fb{sup -1} of integrated luminosity of p{bar p} collisions at {radical}s = 1.96 TeV collected by the CDF II detector at the Fermilab Tevatron. We observe 1516 {+-} 239(stat) {+-} 144(syst) diboson candidate events and measure a cross section {sigma}(p{bar p} {yields} VV + X) of 18.0 {+-} 2.8(stat) {+-} 2.4(syst) {+-} 1.1(lumi) pb, in agreement with the expectations of the standard model.

  8. Top++: A program for the calculation of the top-pair cross-section at hadron colliders

    NASA Astrophysics Data System (ADS)

    Czakon, Michał; Mitov, Alexander

    2014-11-01

    We present the program Top++ for the numerical evaluation of the total inclusive cross-section for producing top quark pairs at hadron colliders. The program calculates the cross-section in (a) fixed order approach with exact next-to-next-to leading order (NNLO) accuracy and (b) by including soft-gluon resummation for the hadronic cross-section in Mellin space with full next-to-next-to-leading logarithmic (NNLL) accuracy. The program offers the user significant flexibility through the large number (29) of available options. Top++ is written in C++. It has a very simple to use interface that is intuitive and directly reflects the physics. The running of the program requires no programming experience from the user. Catalogue identifier: AETR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETR_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU General Public License No. of lines in distributed program, including test data, etc.: 15 896 No. of bytes in distributed program, including test data, etc.: 695 919 Distribution format: tar.gz Programming language: C++. Computer: any running a unix operating system. Program was developed and tested with GNU Compiler Collection, C++ compiler. Operating system: Linux; Mac OS X; can be adapted for other unix systems. RAM: typically less than 200 MB. Classification: 11.1. External routines: GNU Scientific Library (GSL); the Les Houches Accord pdf Interface (LHAPDF). Nature of problem: computation of the total cross-section in perturbative QCD. Solution method: numerical integration of the product of hard partonic cross-section (with or without soft gluon resummation) with two parton distribution functions. Additional comments: sub per-mill accuracy achievable in realistic time (program does not employ Monte Carlo methods). Running time: depending on the options. The program is optimized for speed.

  9. Design considerations for the semi-digital hadronic calorimeter (SDHCAL) for future leptonic colliders

    NASA Astrophysics Data System (ADS)

    Pingault, A.

    2016-07-01

    The first technological SDHCAL prototype having been successfully tested, a new phase of R&D, to validate completely the SDHCAL option for the International Linear Detector (ILD) project of the International Linear Collider (ILC), has started with the conception and the realisation of a new prototype. The new one is intended to host few but large active layers of the future SDHCAL. The new active layers, made of Glass Resistive Plate Chambers (GRPC) with sizes larger than 2 m2 will be equipped with a new version of the electronic readout, fulfilling the requirements of the future ILD detector. The new GRPC are conceived to improve the homogeneity with a new gas distribution scheme. Finally the mechanical structure will be achieved using the electron beam welding technique. The progress realised will be presented and future steps will be discussed.

  10. Nonuniversal scalar mass scenario with Higgs funnel region of supersymmetric dark matter: A signal-based analysis for the Large Hadron Collider

    SciTech Connect

    Bhattacharya, Subhaditya; Mukhopadhyaya, Biswarup; Chattopadhyay, Utpal; Das, Debottam; Choudhury, Debajyoti

    2010-04-01

    We perform a multilepton channel analysis in the context of the Large Hadron Collider (LHC) for Wilkinson Microwave Anisotropy Probe compatible points in a model with nonuniversal scalar masses, which admits a Higgs funnel region of supersymmetry dark matter even for a small tan{beta}. In addition to two- and three-lepton final states, four-lepton events, too, are shown to be useful for this purpose. We also compare the collider signatures in similar channels for Wilkinson Microwave Anisotropy Probe compatible points in the minimal supergravity (mSUGRA) framework with similar gluino masses. Some definite features of such nonuniversal scenario emerge from the analysis.

  11. Kaluza-Klein gluon + jets associated production at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Iyer, A. M.; Mahmoudi, F.; Manglani, N.; Sridhar, K.

    2016-08-01

    The Kaluza-Klein excitations of gluons offer the exciting possibility of probing bulk Randall-Sundrum (RS) models. In these bulk models either a custodial symmetry or a deformation of the metric away from AdS is invoked in order to deal with electroweak precision tests. Addressing both these models, we suggest a new channel in which to study the production of KK-gluons (gKK): one where it is produced in association with one or more hard jets. The cross-section for the gKK + jets channel is significant because of several contributing sub-processes. In particular, the 1-jet and the 2-jet associated processes are important because at these orders in QCD the qg and the gg initial states respectively come into play. We have performed a hadron-level simulation of the signal and present strategies to effectively extract the signal from what could potentially be a huge background. We present results for the kinematic reach of the LHC Run-II for different gKK masses in bulk-RS models.

  12. Integrated analysis of particle interactions at hadron colliders Report of research activities in 2010-2015

    SciTech Connect

    Nadolsky, Pavel M.

    2015-08-31

    The report summarizes research activities of the project ”Integrated analysis of particle interactions” at Southern Methodist University, funded by 2010 DOE Early Career Research Award DE-SC0003870. The goal of the project is to provide state-of-the-art predictions in quantum chromodynamics in order to achieve objectives of the LHC program for studies of electroweak symmetry breaking and new physics searches. We published 19 journal papers focusing on in-depth studies of proton structure and integration of advanced calculations from different areas of particle phenomenology: multi-loop calculations, accurate long-distance hadronic functions, and precise numerical programs. Methods for factorization of QCD cross sections were advanced in order to develop new generations of CTEQ parton distribution functions (PDFs), CT10 and CT14. These distributions provide the core theoretical input for multi-loop perturbative calculations by LHC experimental collaborations. A novel ”PDF meta-analysis” technique was invented to streamline applications of PDFs in numerous LHC simulations and to combine PDFs from various groups using multivariate stochastic sampling of PDF parameters. The meta-analysis will help to bring the LHC perturbative calculations to the new level of accuracy, while reducing computational efforts. The work on parton distributions was complemented by development of advanced perturbative techniques to predict observables dependent on several momentum scales, including production of massive quarks and transverse momentum resummation at the next-to-next-to-leading order in QCD.

  13. Charm and bottom production in inclusive double Pomeron exchange in heavy-ion collisions at energies available at the CERN Large Hadron Collider

    SciTech Connect

    Gay Ducati, M. B.; Machado, M. M.; Machado, M. V. T.

    2011-01-15

    The inclusive double Pomeron exchange cross section for heavy-quark pair production is calculated for nucleus-nucleus collisions at the Large Hadron Collider. The present estimate is based on hard diffractive factorization, corrected by absorptive corrections and nuclear effects. The theoretical uncertainties for nuclear collisions are investigated and a comparison to other approaches is presented. The production channels giving a similar final state configuration are discussed as well.

  14. Mathematical formulation to predict the harmonics of the superconducting Large Hadron Collider magnets. II. Dynamic field changes and scaling laws

    NASA Astrophysics Data System (ADS)

    Sammut, Nicholas J.; Bottura, Luca; Bauer, Pierre; Velev, George; Pieloni, Tatiana; Micallef, Joseph

    2007-08-01

    A superconducting particle accelerator like the LHC (Large Hadron Collider) at CERN, can only be controlled well if the effects of the magnetic field multipoles on the beam are compensated. The demands on a control system solely based on beam feedback may be too high for the requirements to be reached at the specified bandwidth and accuracy. Therefore, we designed a suitable field description for the LHC (FIDEL) as part of the machine control baseline to act as a feed-forward magnetic field prediction system. FIDEL consists of a physical and empirical parametric field model based on magnetic measurements at warm and in cryogenic conditions. The performance of FIDEL is particularly critical at injection when the field decays, and in the initial part of the acceleration when the field snaps back. These dynamic components are both current and time dependent and are not reproducible from cycle to cycle since they also depend on the magnet powering history. In this paper a qualitative and quantitative description of the dynamic field behavior substantiated by a set of scaling laws is presented.

  15. Thermomechanical assessment of the effects of a jaw-beam angle during beam impact on Large Hadron Collider collimators

    NASA Astrophysics Data System (ADS)

    Cauchi, Marija; Assmann, R. W.; Bertarelli, A.; Carra, F.; Lari, L.; Rossi, A.; Mollicone, P.; Sammut, N.

    2015-02-01

    The correct functioning of a collimation system is crucial to safely and successfully operate high-energy particle accelerators, such as the Large Hadron Collider (LHC). However, the requirements to handle high-intensity beams can be demanding, and accident scenarios must be well studied in order to assess if the collimator design is robust against possible error scenarios. One of the catastrophic, though not very probable, accident scenarios identified within the LHC is an asynchronous beam dump. In this case, one (or more) of the 15 precharged kicker circuits fires out of time with the abort gap, spraying beam pulses onto LHC machine elements before the machine protection system can fire the remaining kicker circuits and bring the beam to the dump. If a proton bunch directly hits a collimator during such an event, severe beam-induced damage such as magnet quenches and other equipment damage might result, with consequent downtime for the machine. This study investigates a number of newly defined jaw error cases, which include angular misalignment errors of the collimator jaw. A numerical finite element method approach is presented in order to precisely evaluate the thermomechanical response of tertiary collimators to beam impact. We identify the most critical and interesting cases, and show that a tilt of the jaw can actually mitigate the effect of an asynchronous dump on the collimators. Relevant collimator damage limits are taken into account, with the aim to identify optimal operational conditions for the LHC.

  16. Sources of machine-induced background in the ATLAS and CMS detectors at the CERN Large Hadron Collider

    SciTech Connect

    Bruce, R.; et al.,

    2013-11-21

    One source of experimental background in the CERN Large Hadron Collider (LHC) is particles entering the detectors from the machine. These particles are created in cascades, caused by upstream interactions of beam protons with residual gas molecules or collimators. We estimate the losses on the collimators with SixTrack and simulate the showers with FLUKA and MARS to obtain the flux and distribution of particles entering the ATLAS and CMS detectors. We consider some machine configurations used in the first LHC run, with focus on 3.5 TeV operation as in 2011. Results from FLUKA and MARS are compared and a very good agreement is found. An analysis of logged LHC data provides, for different processes, absolute beam loss rates, which are used together with further simulations of vacuum conditions to normalize the results to rates of particles entering the detectors. We assess the relative importance of background from elastic and inelastic beam-gas interactions, and the leakage out of the LHC collimation system, and show that beam-gas interactions are the dominating source of machine-induced background for the studied machine scenarios. Our results serve as a starting point for the experiments to perform further simulations in order to estimate the resulting signals in the detectors.

  17. W- and Z-boson production with a massive bottom-quark pair at the Large Hadron Collider

    SciTech Connect

    Cordero, F. Febres; Reina, L.; Wackeroth, D.

    2009-08-01

    We present total and differential cross sections for Wbb and Zbb production at the CERN Large Hadron Collider with a center-of-mass energy of {radical}(s)=14 TeV, including next-to-leading order (NLO) QCD corrections and full bottom-quark mass effects. We also provide numerical results obtained with a center-of-mass energy of {radical}(s)=10 TeV. We study the scale uncertainty of the total cross sections due to the residual renormalization- and factorization-scale dependence of the truncated perturbative series. While in the case of Zbb production the scale uncertainty of the total cross section is reduced by NLO QCD corrections, the Wbb production process at NLO in QCD still suffers from large scale uncertainties, in particular, in the inclusive case. We also perform a detailed comparison with a calculation that considers massless bottom quarks, as implemented in the Monte Carlo program MCFM. The effects of a nonzero bottom-quark mass (m{sub b}) cannot be neglected in phase-space regions where the relevant kinematic observable, such as the transverse-momentum of the bottom quarks or the invariant-mass of the bottom-quark pair, are of the order of m{sub b}. The effects on the total production cross sections are usually smaller than the residual scale uncertainty at NLO in QCD.

  18. Reliability of Beam Loss Monitors System for the Large Hadron Collider

    SciTech Connect

    Guaglio, G.; Dehning, B.; Santoni, C.

    2004-11-10

    The employment of superconducting magnets in high energy colliders opens challenging failure scenarios and brings new criticalities for the whole system protection. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particle losses, while at medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data from the SPS, using temperature and radiation damage experimental data as well as using standard databases. All the data have been processed by reliability software (Isograph). The analysis ranges from the components data to the system configuration.

  19. (Calorimeter based detectors for high energy hadron colliders). [State Univ. of New York

    SciTech Connect

    Not Available

    1992-08-04

    This document provides a progress report on research that has been conducted under DOE Grant DEFG0292ER40697 for the past year, and describes proposed work for the second year of this 8 year grant starting November 15, 1992. Personnel supported by the contract include 4 faculty, 1 research faculty, 4 postdocs, and 9 graduate students. The work under this grant has in the past been directed in two complementary directions -- DO at Fermilab, and the second SSC detector GEM. A major effort has been towards the construction and commissioning of the new Fermilab Collider detector DO, including design, construction, testing, the commissioning of the central tracking and the central calorimeters. The first DO run is now underway, with data taking and analysis of the first events. Trigger algorithms, data acquisition, calibration of tracking and calorimetry, data scanning and analysis, and planning for future upgrades of the DO detector with the advent of the FNAL Main Injector are all involved. The other effort supported by this grant has been towards the design of GEM, a large and general-purpose SSC detector with special emphasis on accurate muon measurement over a large solid angle. This effort will culminate this year in the presentation to the SSC laboratory of the GEM Technical Design Report. Contributions are being made to the detector design, coordination, and physics simulation studies with special emphasis on muon final states. Collaboration with the RD5 group at CERN to study muon punch through and to test cathode strip chamber prototypes was begun.

  20. Impact of high energy high intensity proton beams on targets: Case studies for Super Proton Synchrotron and Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Tahir, N. A.; Sancho, J. Blanco; Shutov, A.; Schmidt, R.; Piriz, A. R.

    2012-05-01

    The Large Hadron Collider (LHC) is designed to collide two proton beams with unprecedented particle energy of 7 TeV. Each beam comprises 2808 bunches and the separation between two neighboring bunches is 25 ns. The energy stored in each beam is 362 MJ, sufficient to melt 500 kg copper. Safety of operation is very important when working with such powerful beams. An accidental release of even a very small fraction of the beam energy can result in severe damage to the equipment. The machine protection system is essential to handle all types of possible accidental hazards; however, it is important to know about possible consequences of failures. One of the critical failure scenarios is when the entire beam is lost at a single point. In this paper we present detailed numerical simulations of the full impact of one LHC beam on a cylindrical solid carbon target. First, the energy deposition by the protons is calculated with the FLUKA code and this energy deposition is used in the BIG2 code to study the corresponding thermodynamic and the hydrodynamic response of the target that leads to a reduction in the density. The modified density distribution is used in FLUKA to calculate new energy loss distribution and the two codes are thus run iteratively. A suitable iteration step is considered to be the time interval during which the target density along the axis decreases by 15%-20%. Our simulations suggest that the full LHC proton beam penetrates up to 25 m in solid carbon whereas the range of the shower from a single proton in solid carbon is just about 3 m (hydrodynamic tunneling effect). It is planned to perform experiments at the experimental facility HiRadMat (High Radiation Materials) at CERN using the proton beam from the Super Proton Synchrotron (SPS), to compare experimental results with the theoretical predictions. Therefore simulations of the response of a solid copper cylindrical target hit by the SPS beam were performed. The particle energy in the SPS beam is 440

  1. A study on dual readout crystal calorimeter for hadron and jet energy measurement at a future lepton collider

    SciTech Connect

    Yeh, G.P.; /Fermilab

    2010-01-01

    Studies of requirements and specifications of crystals are necessary to develop a new generation of crystals for dual readout crystal hadron or total absorption calorimeter. This is a short and basic study of the characteristics and hadron energy measurement of PbWO4 and BGO crystals for scintillation and Cerenkov Dual Readout hadron calorimeter.

  2. Mass and Spin Measurement Techniques (for the Large Hadron Collider):. Lectures Given at TASI 2011, Boulder, Colorado

    NASA Astrophysics Data System (ADS)

    Lester, Christopher G.

    2013-12-01

    For TASI 2011, I was asked to give a series of lectures on "Mass and Spin Measurement Techniques" with relevance to the Large Hadron Collider. This document provides a written record of those lectures - or more precisely of what I said while giving the lectures - warts and all. It is provided as my contribution to the proceedings primarily for the benefit of those who heard the lectures first hand and may wish to refer back to them. What it is not is a scientific paper or a teaching resource. Though lecture slides may be prepared in advance, what is actually said in a lecture is usually extemporaneous, may be partial, can be influenced by audience reaction, and may not even make sense without a visual record of the concomitant gesticulations of the lecturer. More worryingly, some of the statements made may be down-right false, if the lecturer's tongue is in a twist. Accordingly, these proceedings are provided without warranty of any kind - not least in respect of accuracy or impartiality. The lectures were intended to engage the audience and get them thinking about a number of topics that they had not seen before. They were not expected to be the sort of sombre or well-balanced overview of the field that one might hope to achive in a review. These proceedings are provided to jog the memory of those who saw the lectures first hand, and for little other purpose. Footnotes, where they appear, indicate text/thoughts I have added during the editing process that were not voiced during the lectures themselves. Copies of the lecture slides are inserted at approximately the locations they would have become visible in the lectures.

  3. Photon cascade decay of the warped graviton at LHC14 and a 100 TeV hadron collider

    NASA Astrophysics Data System (ADS)

    Agashe, Kaustubh; Chen, Chien-Yi; Davoudiasl, Hooman; Kim, Doojin

    2015-04-01

    In warped 5D models of hierarchy and flavor, the first Kaluza-Klein (KK) state of the graviton G1 is heavy enough to decay into a photon and its first KK mode γ1 on-shell: G1→γ1γ . The volume-suppression of the rate for this process [relative to 2-body decay into heavy Standard Model (SM) final states (W /Z /t /H )] may be partially compensated by the simplicity of the photon final state. We consider γ1→W+W- , with a typical O (1 ) branching fraction, and focus on the semileptonic final state W (→j j )W (→ℓ,ν ) with ℓ=e ,μ . The SM background originates from 2 →3 parton processes and is relatively suppressed compared to those for 2-body decays of G1. Moreover, to further reduce the background, we can impose an invariant mass window cut for γ1 (in addition to that for G1) in this new channel. We emphasize that this "photon cascade" decay probes a different combination of (bulk and brane) interactions of the KK states than the decays into two heavy SM states. Thus, in combination with other channels, the cascade decay could be used to extract the individual underlying geometric parameters. The 3 σ reach for G1 in our channel is up to 1.5 TeV at the high luminosity (14 TeV) LHC, and can be extended to about 4 TeV, at 5 σ , at a future 100 TeV hadron collider. Along the way, we point out the novel feature that the invariant mass distribution of KK graviton decay products becomes skewed from the Breit-Wigner form, due to the KK graviton coupling growing with energy.

  4. Mono-jet, -photon and - Z signals of a supersymmetric ( B - L) model at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Abdallah, W.; Fiaschi, J.; Khalil, S.; Moretti, S.

    2016-02-01

    Search for invisible final states produced at the Large Hadron Collider (LHC) by new physics scenarios are normally carried out resorting to a variety of probes emerging from the initial state, in the form of single-jet, -photon and - Z boson signatures. These are particularly effective for models of Supersymmetry (SUSY) in presence of R-parity conservation, owing to the presence in their spectra of a stable neutralino as a Dark Matter (DM) candidate. We assume here as theoretical framework the Supersymmetric version of the ( B - L) extension of the Standard Model (BLSSM), wherein a mediator for invisible decays can be the Z ' boson present in this scenario. The peculiarity of the signal is thus that the final state objects carry a very large (transverse) missing energy, since the Z ' is naturally massive and constrained by direct searches and Electro-Weak Precision Tests (EWPTs) to be at least in the TeV scale region. Under these circumstances the efficiency in accessing the invisible final state and rejecting the Standard Model (SM) background is very high. This somehow compensates the rather meagre production rates. Another special feature of this invisible BLSSM signal is its composition, which is often dominated by sneutrino decays (alongside the more traditional neutrino and neutralino modes). Sensitivity of the CERN machine to these two features can therefore help disentangling the BLSSM from more popular SUSY models. We assess in this analysis the scope of the LHC in establishing the aforementioned invisible signals through a sophisticated signal-to-background simulation carried out in presence of parton shower, hadronisation as well as detector effects. We find that significant sensitivity exists already after 300 fb-1 during Run 2. We find that mono-jet events can be readily accessible at the LHC, so as to enable one to claim a prompt discovery, while mono-photon and - Z signals can be used as diagnostic tools of the underlying scenario.

  5. Muon colliders

    SciTech Connect

    Palmer, R.B. |; Sessler, A.; Skrinsky, A.

    1996-01-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should thus be regarded as complementary. Parameters are given of 4 TeV and 0.5 TeV high luminosity {micro}{sup +}{micro}{sup {minus}}colliders, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders, starting from the proton accelerator needed to generate the muons and proceeding through muon cooling, acceleration and storage in a collider ring. Problems of detector background are also discussed.

  6. Top Quark Pair Production in Association with a Jet with Next-to-Leading-Order QCD Off-Shell Effects at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Bevilacqua, G.; Hartanto, H. B.; Kraus, M.; Worek, M.

    2016-02-01

    We present a complete description of top quark pair production in association with a jet in the dilepton channel. Our calculation is accurate to next-to-leading order (NLO) in QCD and includes all nonresonant diagrams, interferences, and off-shell effects of the top quark. Moreover, nonresonant and off-shell effects due to the finite W gauge boson width are taken into account. This calculation constitutes the first fully realistic NLO computation for top quark pair production with a final state jet in hadronic collisions. Numerical results for differential distributions as well as total cross sections are presented for the Large Hadron Collider at 8 TeV. With our inclusive cuts, NLO predictions reduce the unphysical scale dependence by more than a factor of 3 and lower the total rate by about 13% compared to leading-order QCD predictions. In addition, the size of the top quark off-shell effects is estimated to be below 2%.

  7. Strong and Electroweak Corrections to the Production of a Higgs Boson+2 Jets via Weak Interactions at the Large Hadron Collider

    SciTech Connect

    Ciccolini, M.; Denner, A.; Dittmaier, S.

    2007-10-19

    Radiative corrections of strong and electroweak interactions are presented at next-to-leading order for the production of a Higgs boson plus two hard jets via weak interactions at the CERN Large Hadron Collider. The calculation includes all weak-boson fusion and quark-antiquark annihilation diagrams as well as the corresponding interferences. The electroweak corrections, which are discussed here for the first time, reduce the cross sections by 5% and thus are of the same order of magnitude as the QCD corrections.

  8. Threshold corrections to rapidity distributions of Z and W{sup {+-}} bosons beyond N{sup 2}LO at hadron colliders

    SciTech Connect

    Ravindran, V.; Smith, J.

    2007-12-01

    Threshold enhanced perturbative QCD corrections to rapidity distributions of Z and W{sup {+-}} bosons at hadron colliders are presented using the Sudakov resummed cross sections at N{sup 3}LO level. We have used renormalization group invariance and the mass factorization theorem that these hard scattering cross sections satisfy to construct the QCD amplitudes. We show that these higher order threshold QCD corrections stabilize the theoretical predictions for vector boson production at the LHC under variations of both renormalization and factorization scales.

  9. Shadowing effects on J /ψ and Υ production at energies available at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Vogt, R.

    2015-09-01

    Background: Proton-nucleus collisions have been used as a intermediate baseline for the determination of cold-medium effects. They lie between proton-proton collisions in vacuum and nucleus-nucleus collisions which are expected to be dominated by hot-matter effects. Modifications of the quark densities in nuclei relative to those of the proton are well established, although those of the gluons in the nucleus are not well understood. The effect of these modifications on quarkonium production are studied in proton-lead collisions at the CERN Large Hadron Collider (LHC) at a center-of-mass energy of 5.02 TeV. Purpose: The possibility of whether the LHC proton-lead data can be described by nuclear modifications of the parton densities, referred to as shadowing, alone is examined. The results are compared to the nuclear modification factor and to the forward-backward ratio, as a function of both transverse momentum, pT, and rapidity, y . Methods: The color evaporation model of quarkonium production is employed at next-to-leading order (NLO) in the total cross section and leading order in the transverse momentum dependence. The EPS09 NLO modifications are used as a standard of comparison. The effect of the proton parton density and the choice of shadowing parametrization on the pT and rapidity dependence of the result is studied. The consistency of the shadowing calculations at LO and NLO are checked. The size of the mass and scale uncertainties relative to the uncertainty on the shadowing parametrization is also investigated. Finally, whether the expected cold-matter effect in nucleus-nucleus collisions can be modeled as the product of proton-nucleus results at forward and backward rapidity is studied. Results: The rapidity and pT dependence of the nuclear modification factor is found to be generally consistent with the NLO calculations in the color evaporation model. The forward-backward ratio is more difficult to describe with shadowing alone. The LO and NLO

  10. Probing triple-Higgs productions via 4b2γ decay channel at a 100 TeV hadron collider

    DOE PAGESBeta

    Chen, Chien-Yi; Yan, Qi-Shu; Zhao, Xiaoran; Zhao, Zhijie; Zhong, Yi-Ming

    2016-01-11

    We report that the quartic self-coupling of the Standard Model Higgs boson can only be measured by observing the triple-Higgs production process, but it is challenging for the LHC Run 2 or International Linear Collider (ILC) at a few TeV because of its extremely small production rate. In this paper, we present a detailed Monte Carlo simulation study of the triple-Higgs production through gluon fusion at a 100 TeV hadron collider and explore the feasibility of observing this production mode. We focus on the decay channel HHH →more » $$b\\bar{b}$$$$b\\bar{b}$$γγ, investigating detector effects and optimizing the kinematic cuts to discriminate the signal from the backgrounds. Our study shows that, in order to observe the Standard Model triple-Higgs signal, the integrated luminosity of a 100 TeV hadron collider should be greater than 1.8×104 ab₋1. We also explore the dependence of the cross section upon the trilinear (λ3) and quartic (λ4) self-couplings of the Higgs. Ultimately, we find that, through a search in the triple-Higgs production, the parameters λ3 and λ4 can be restricted to the ranges [₋1,5] and [₋20,30], respectively. We also examine how new physics can change the production rate of triple-Higgs events. For example, in the singlet extension of the Standard Model, we find that the triple-Higgs production rate can be increased by a factor of O(10).« less

  11. Model-independent measurement of the e^{{+}}e- → HZ cross section at a future e^{{+}}e- linear collider using hadronic Z decays

    NASA Astrophysics Data System (ADS)

    Thomson, M. A.

    2016-02-01

    A future e+ e- collider, such as the ILC or CLIC, would allow the Higgs sector to be probed with a precision significantly beyond that achievable at the High-Luminosity LHC. A central part of the Higgs programme at an e+ e- collider is the model-independent determination of the absolute Higgs couplings to fermions and to gauge bosons. Here the measurement of the e+ e- → H Z Higgsstrahlung cross section, using the recoil mass technique, sets the absolute scale for all Higgs coupling measurements. Previous studies have considered \\upsigma (e+ e- → H Z) with Z → {ℓ} + {ℓ} - , where {ℓ} = e, {\\upmu } . In this paper it is shown for the first time that a near model-independent recoil mass technique can be extended to the hadronic decays of the Z boson. Because the branching ratio for Z → q {overline{q}} is approximately ten times greater than for Z → {ℓ} + {ℓ} - , this method is statistically more powerful than using the leptonic decays. For an integrated luminosity of 500 fb^{-1} at a centre-of-mass energy of √{s} =350 GeV at CLIC, \\upsigma (e+ e- → H Z) can be measured to {± }1.8 % using the hadronic recoil mass technique. A similar precision is found for the ILC operating at √{s} =350 GeV. The centre-of-mass dependence of this measurement technique is discussed, arguing for the initial operation of a future linear collider at just above the top-pair production threshold.

  12. Measurement of very forward neutron energy spectra for 7 TeV proton-proton collisions at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Adriani, O.; Berti, E.; Bonechi, L.; Bongi, M.; Castellini, G.; D'Alessandro, R.; Del Prete, M.; Haguenauer, M.; Itow, Y.; Kasahara, K.; Kawade, K.; Makino, Y.; Masuda, K.; Matsubayashi, E.; Menjo, H.; Mitsuka, G.; Muraki, Y.; Okuno, Y.; Papini, P.; Perrot, A.-L.; Ricciarini, S.; Sako, T.; Sakurai, N.; Sugiura, Y.; Suzuki, T.; Tamura, T.; Tiberio, A.; Torii, S.; Tricomi, A.; Turner, W. C.; Zhou, Q. D.

    2015-11-01

    The Large Hadron Collider forward (LHCf) experiment is designed to use the LHC to verify the hadronic-interaction models used in cosmic-ray physics. Forward baryon production is one of the crucial points to understand the development of cosmic-ray showers. We report the neutron-energy spectra for LHC √{ s} = 7 TeV proton-proton collisions with the pseudo-rapidity η ranging from 8.81 to 8.99, from 8.99 to 9.22, and from 10.76 to infinity. The measured energy spectra obtained from the two independent calorimeters of Arm1 and Arm2 show the same characteristic feature before unfolding the detector responses. We unfolded the measured spectra by using the multidimensional unfolding method based on Bayesian theory, and the unfolded spectra were compared with current hadronic-interaction models. The QGSJET II-03 model predicts a high neutron production rate at the highest pseudo-rapidity range similar to our results, and the DPMJET 3.04 model describes our results well at the lower pseudo-rapidity ranges. However, no model perfectly explains the experimental results over the entire pseudo-rapidity range. The experimental data indicate a more abundant neutron production rate relative to the photon production than any model predictions studied here.

  13. Thermalization, evolution, and observables at energies available at the CERN Large Hadron Collider in an integrated hydrokinetic model of A +A collisions

    NASA Astrophysics Data System (ADS)

    Naboka, V. Yu.; Karpenko, Iu. A.; Sinyukov, Yu. M.

    2016-02-01

    A further development of the evolutionary picture of A +A collisions, which we call the integrated hydrokinetic model (iHKM), is proposed. The model comprises a generator of the initial state GLISSANDO, prethermal dynamics of A +A collisions leading to thermalization, subsequent relativistic viscous hydrodynamic expansion of quark-gluon and hadron medium (vHLLE), its particlization, and finally the hadronic cascade ultrarelativistic QMD. We calculate midrapidity charged-particle multiplicities, pion, kaon, and antiproton spectra, charged-particle elliptic flows, and pion interferometry radii for Pb + Pb collisions at the energies available at the CERN Large Hadron Collider, √{s }=2.76 TeV, at different centralities. We find that the best description of the experimental data is reached when the initial states are attributed to the very small initial time 0.1 fm/c , the prethermal stage (thermalization process) lasts at least until 1 fm/c , and the shear viscosity at the hydrodynamic stage of the matter evolution has its minimal value, η /s =1/4 π . At the same time it is observed that the various momentum anisotropies of the initial states, different initial and relaxation times, as well as even a treatment of the prethermal stage within just viscous or ideal hydrodynamic approach, lead sometimes to worse but nevertheless similar results if the normalization of maximal initial energy density in most central events is adjusted to reproduce the final hadron multiplicity in each scenario. This can explain a good enough data description in numerous variants of hybrid models without a prethermal stage when the initial energy densities are defined up to a common factor.

  14. Heavy quark transport in heavy ion collisions at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider within the UrQMD hybrid model

    NASA Astrophysics Data System (ADS)

    Lang, Thomas; van Hees, Hendrik; Inghirami, Gabriele; Steinheimer, Jan; Bleicher, Marcus

    2016-01-01

    We implement a Langevin approach for the transport of heavy quarks in the ultrarelativistic quantum molecular dynamics (UrQMD) hybrid model, which uses the transport model UrQMD to determine realistic initial conditions for the hydrodynamical evolution of quark gluon plasma and heavy charm and bottom quarks. It provides a realistic description of the background medium for the evolution of relativistic heavy ion collisions. The diffusion of heavy quarks is simulated with a relativistic Langevin approach, using two sets of drag and diffusion coefficients, one based on a T -matrix approach and one based on a resonance model for elastic scattering of heavy quarks within the medium. In the case of the resonance model we investigate the effects of different decoupling temperatures of heavy quarks from the medium, ranging between 130 and 180 MeV . We present calculations of the nuclear modification factor RA A, as well as of the elliptic flow v2 in Au + Au collisions at √{sN N}=200 GeV and Pb + Pb collisions at √{sN N}=2.76 TeV . To make our results comparable to experimental data at the Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC), we implement a Peterson fragmentation and a quark coalescence approach followed by semileptonic decay of the D and B mesons to electrons. We find that our results strongly depend on the decoupling temperature and the hadronization mechanism. At a decoupling temperature of 130 MeV we reach a good agreement with the measurements at both the RHIC and the LHC energies simultaneously for the elliptic flow v2 and the nuclear modification factor RA A.

  15. Next-to-leading order QCD predictions for A{sup 0}{gamma} associated production at the CERN Large Hadron Collider

    SciTech Connect

    Dai Liang; Shao Dingyu; Gao Jun; Zhang Hao; Li Chongsheng

    2011-03-01

    We calculate the complete next-to-leading order (NLO) QCD corrections (including SUSY QCD corrections) to the inclusive total cross sections of the associated production processes pp{yields}A{sup 0}{gamma}+X in the minimal supersymmetric standard model (MSSM) at the CERN Large Hadron Collider (LHC). Our results show that the enhancement of the total cross sections from the NLO QCD corrections can reach 25%{approx}15% for 200 GeV

  16. Next-to-leading order QCD effects in associated charged Higgs and W boson production in the MSSM at the CERN Large Hadron Collider

    SciTech Connect

    Gao Jun; Li Chongsheng; Li Zhao

    2008-01-01

    We present the calculations of the next-to-leading order (NLO) QCD corrections to the inclusive total cross sections for the associated production of the W{sup {+-}}H{sup {+-}} through bb annihilation in the minimal supersymmetric standard model at the CERN Large Hadron Collider. The NLO QCD corrections can either enhance or reduce the total cross sections, but they generally efficiently reduce the dependence of the total cross sections on the renormalization/factorization scale. The magnitude of the NLO QCD corrections is about 10% in most of the parameter space and can reach 15% in some parameter regions. We also show the Monte Carlo simulation results for the 2j+{tau}{sub jet}+pe{sub T} signature from the W{sup {+-}} and the H{sup {+-}} decays including the NLO QCD effects, and find an observable signal at a 5{sigma} level in some parameter region of the minimal supergravity model.

  17. Next-to-leading order QCD corrections to the single top quark production via model-independent tqg flavor-changing neutral-current couplings at hadron colliders

    SciTech Connect

    Gao Jun; Li Chongsheng; Zhang Jiajun; Zhu Huaxing

    2009-12-01

    We present the calculations of the complete next-to-leading order (NLO) QCD effects on the single top productions induced by model-independent tqg flavor-changing neutral-current couplings at hadron colliders. Our results show that, for the tcg coupling, the NLO QCD corrections can enhance the total cross sections by about 60% and 30%, and for the tug coupling by about 50% and 20% at the Tevatron and LHC, respectively, which means that the NLO corrections can increase the experimental sensitivity to the flavor-changing neutral-current couplings by about 10%-30%. Moreover, the NLO corrections reduce the dependence of the total cross sections on the renormalization or factorization scale significantly, which lead to increased confidence on the theoretical predictions. Besides, we also evaluate the NLO corrections to several important kinematic distributions, and find that for most of them the NLO corrections are almost the same and do not change the shape of the distributions.

  18. The study of the Z boson transverse momentum spectrum recorded by the Compact Muon Solenoid from 2010 Large Hadron Collider data

    NASA Astrophysics Data System (ADS)

    Gartner, Joseph A., III

    This dissertation describes the full details of 2 studies of Z0 bosons performed using the Compact Muon Solenoid detector at the Large Hadron Collider of proton on proton collisions with center of mass energy of 7TeV. The first study searches for physics beyond the Standard Model by looking for an excess in production of Z0 bosons by examining the Z 0pT spectrum. As no excess is found, limits on new physics models are presented as a function of mass and other free parameters. The second study focuses on a precision measurement of the Z 0pT distribution, and is compared to theoretical calculations for the purposes of testing high order QCD calculations in addition to probing the predictions of various tunes of the underlying event. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)

  19. First measurement and correction of nonlinear errors in the experimental insertions of the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Maclean, E. H.; Tomás, R.; Giovannozzi, M.; Persson, T. H. B.

    2015-12-01

    Nonlinear magnetic errors in low-β insertions can contribute significantly to detuning with amplitude, linear and nonlinear chromaticity, and lead to degradation of dynamic aperture and beam lifetime. As such, the correction of nonlinear errors in the experimental insertions of colliders can be of critical significance for successful operation. This is expected to be of particular relevance to the LHC's second run and its high luminosity upgrade, as well as to future colliders such as the Future Circular Collider. Current correction strategies envisioned for these colliders assume it will be possible to calculate optimized local corrections through the insertions, using a magnetic model of the errors. This paper shows however, that reliance purely upon magnetic measurements of the nonlinear errors of insertion elements is insufficient to guarantee a good correction quality in the relevant low-β* regime. It is possible to perform beam-based examination of nonlinear magnetic errors via the feed-down to readily observed beam properties upon application of closed orbit bumps, and methods based upon feed-down to tune have been utilized at RHIC, SIS18, and SPS. This paper demonstrates the extension of such methodology to include direct observation of feed-down to linear coupling in the LHC. It is further shown that such beam-based studies can be used to complement magnetic measurements performed during LHC construction, in order to validate and refine the magnetic model of the collider. Results from first attempts of the measurement and correction of nonlinear errors in the LHC experimental insertions are presented. Several discrepancies of beam-based studies with respect to the LHC magnetic model are reported.

  20. Top Quark Pair Production in Association with a Jet with Next-to-Leading-Order QCD Off-Shell Effects at the Large Hadron Collider.

    PubMed

    Bevilacqua, G; Hartanto, H B; Kraus, M; Worek, M

    2016-02-01

    We present a complete description of top quark pair production in association with a jet in the dilepton channel. Our calculation is accurate to next-to-leading order (NLO) in QCD and includes all nonresonant diagrams, interferences, and off-shell effects of the top quark. Moreover, nonresonant and off-shell effects due to the finite W gauge boson width are taken into account. This calculation constitutes the first fully realistic NLO computation for top quark pair production with a final state jet in hadronic collisions. Numerical results for differential distributions as well as total cross sections are presented for the Large Hadron Collider at 8 TeV. With our inclusive cuts, NLO predictions reduce the unphysical scale dependence by more than a factor of 3 and lower the total rate by about 13% compared to leading-order QCD predictions. In addition, the size of the top quark off-shell effects is estimated to be below 2%. PMID:26894704

  1. Comment on "Polarized window for left-right symmetry and a right-handed neutrino at the Large Hadron-Electron Collider"

    NASA Astrophysics Data System (ADS)

    Queiroz, Farinaldo S.

    2016-06-01

    Reference [1 S. Mondal and S. K. Rai, Phys. Rev. D 93, 011702 (2016).] recently argued that the projected Large Hadron Electron Collider (LHeC) presents a unique opportunity to discover a left-right symmetry since the LHeC has availability for polarized electrons. In particular, the authors apply some basic pT cuts on the jets and claim that the on-shell production of right-handed neutrinos at the LHeC, which violates lepton number in two units, has practically no standard model background and, therefore, that the right-handed nature of WR interactions that are intrinsic to left-right symmetric models can be confirmed by using colliding beams consisting of an 80% polarized electron and a 7 TeV proton. In this Comment, we show that their findings, as presented, have vastly underestimated the SM background which prevents a Left-Right symmetry signal from being seen at the LHeC.

  2. Supersymmetric QCD one-loop effects in (un)polarized top-pair production at hadron colliders

    SciTech Connect

    Berge, Stefan; Hollik, Wolfgang; Mosle, Wolf M.; Wackeroth, Doreen

    2007-08-01

    We study the effects of O({alpha}{sub s}) supersymmetric QCD (SQCD) corrections on the total production rate and kinematic distributions of polarized and unpolarized top-pair production in pp and pp collisions. At the Fermilab Tevatron pp collider, top-quark pairs are mainly produced via quark-antiquark annihilation, qq{yields}tt, while at the CERN LHC pp collider gluon-gluon scattering, gg{yields}tt, dominates. We compute the complete set of O({alpha}{sub s}) SQCD corrections to both production channels and study their dependence on the parameters of the minimal supersymmetric standard model. In particular, we discuss the prospects for observing strong, loop-induced SUSY effects in top-pair production at the Tevatron run II and the LHC.

  3. Prospects for beauty physics at hadron colliders or What to do when the glue doesn't stick

    NASA Astrophysics Data System (ADS)

    McDonald, K. T.

    1989-04-01

    The cross section for gg→BB¯ is relatively high at collider energies, so that a one year run at RHIC or TEV I might yield ≳1010 B-B¯ pairs, and ≳1012 pairs at the SSC. The challege to the experimenter is to trigger on and reconstruct a significant fraction of this sample. Detectors are being proposed which make extensive use of silicon vertexing, VLSI readout, and massive online numerical processing with the goal of maintaining a 1% efficiency for few-body decays to all-charged final states. If achieved at the SSC for L=1032 cm-2sec-1, this would be equivalent to an e+e- B factory operating at L=1036 cm-2sec-1 and 100% reconstruction efficiency. Even at RHIC or TEV I with 108 reconstructible B's, the strongest signals for CP violation in the B-B¯ system would be accessible.

  4. Comparison of electric dipole moments and the Large Hadron Collider for probing CP violation in triple boson vertices

    SciTech Connect

    Jung, Sunghoon; Wells, James D.

    2009-07-01

    CP violation from physics beyond the standard model may reside in triple boson vertices of the electroweak theory. We review the effective theory description and discuss how CP-violating contributions to these vertices might be discerned by electric dipole moments (EDM) or diboson production at the LHC. Despite triple boson CP-violating interactions entering EDMs only at the two-loop level, we find that EDM experiments are generally more powerful than the diboson processes. To give an example to these general considerations we perform the comparison between EDMs and collider observables within supersymmetric theories that have heavy sfermions, such that substantive EDMs at the one-loop level are disallowed. EDMs generally remain more powerful probes, and next-generation EDM experiments may surpass even the most optimistic assumptions for LHC sensitivities.

  5. Development of Large Area Gas Electron Multiplier Detector and Its Application to a Digital Hadron Calorimeter for Future Collider Experiments

    SciTech Connect

    Yu, Jaehoon; White, Andrew

    2014-09-25

    The UTA High Energy Physics Group conducted generic detector development based on large area, very thin and high sensitivity gas detector using gas electron multiplier (GEM) technology. This is in preparation for a use as a sensitive medium for sampling calorimeters in future collider experiments at the Energy Frontier as well as part of the tracking detector in Intensity Frontier experiments. We also have been monitoring the long term behavior of one of the prototype detectors (30cmx30cm) read out by the SLAC-developed 13-bit KPiX analog chip over three years and have made presentations of results at various APS meetings. While the important next step was the development of large area (1m x 1m) GEM planes, we also have looked into opportunities of applying this technology to precision tracking detectors to significantly improve the performance of the Range Stack detector for CP violation experiments and to provide an amplification layer for the liquid Argon Time Projection Chamber in the LBNE experiment. We have jointly developed 33cmx100cm large GEM foils with the CERN gas detector development group to construct 33cm x100cm unit chambers. Three of these unit chambers will be put together to form a 1m x 1m detector plane. Following characterization of one 33cmx100cm unit chamber prototype, a total of five 1m x 1m planes will be constructed and inserted into an existing 1m3 RPC DHCAL stack to test the performance of the new GEM DHCAL in particle beams. The large area GEM detector we planned to develop in this proposal not only gives an important option to DHCAL for future collider experiments but also the potential to expand its use to Intensity Frontier and Cosmic Frontier experiments as high efficiency, high amplification anode planes for liquid Argon time projection chambers. Finally, thanks to its sensitivity to X-rays and other neutral radiations and its light-weight characteristics, the large area GEM has a great potential for the use in medical imaging and

  6. Impact of the recent results by the CMS and ATLAS collaborations at the CERN Large Hadron Collider on an effective minimal supersymmetric extension of the standard model

    SciTech Connect

    Scopel, S.; Choi, Suyong; Fornengo, N.; Bottino, A.

    2011-05-01

    We discuss the impact for light neutralinos in an effective minimal supersymmetric extension of the standard model of the recent results presented by the CMS and ATLAS Collaborations at the CERN Large Hadron Collider for a search of supersymmetry in proton-proton collisions at a center-of-mass energy of 7 TeV with an integrated luminosity of 35 pb{sup -1}. We find that, in the specific case of light neutralinos, efficiencies for the specific signature searched by ATLAS (jets+ missing transverse energy and an isolated lepton) imply a lower sensitivity compared to CMS (which searches for jets+ missing transverse energy). Focusing on the CMS bound, if squark soft masses of the three families are assumed to be degenerate, the combination of the ensuing constraint on squark and gluino masses with the experimental limit on the b{yields}s+{gamma} decay imply a lower bound on the neutralino mass m{sub {chi}} that can reach the value of 11.9 GeV, depending on the gluino mass. On the other hand, when the universality condition among squark soft parameters is relaxed, the lower bound on m{sub {chi}} is not constrained by the CMS measurement and then remains at the value 7.5 GeV derived in previous papers.

  7. Electromagnetic probes of a pure-glue initial state in nucleus-nucleus collisions at energies available at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Vovchenko, V.; Karpenko, Iu. A.; Gorenstein, M. I.; Satarov, L. M.; Mishustin, I. N.; Kämpfer, B.; Stoecker, H.

    2016-08-01

    Partonic matter produced in the early stage of ultrarelativistic nucleus-nucleus collisions is assumed to be composed mainly of gluons, and quarks and antiquarks are produced at later times. To study the implications of such a scenario, the dynamical evolution of a chemically nonequilibrated system is described by ideal (2+1)-dimensional hydrodynamics with a time dependent (anti)quark fugacity. The equation of state interpolates linearly between the lattice data for the pure gluonic matter and the lattice data for the chemically equilibrated quark-gluon plasma. The spectra and elliptic flows of thermal dileptons and photons are calculated for central Pb+Pb collisions at the CERN Large Hadron Collider energy of √{sN N}=2.76 TeV. We test the sensitivity of the results to the choice of equilibration time, including also the case where the complete chemical equilibrium of partons is reached already at the initial stage. It is shown that a suppression of quarks at early times leads to a significant reduction of the yield of the thermal dileptons, but only to a rather modest suppression of the pT distribution of direct photons. It is demonstrated that an enhancement of photon and dilepton elliptic flows might serve as a promising signature of the pure-glue initial state.

  8. Hadronic resonance production in d+au collisions at {radical}{ovr s}{sub NN} =200 GeV measured at the BNL relativistic heavy ion collider.

    SciTech Connect

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Krueger, K.; Spinka, H. M.; Underwood, D. G.; STAR Collaboration; High Energy Physics; Univ. of Illinois; Panjab Univ.; Variable Energy Cyclotron Centre; Kent State Univ.; Particle Physic Lab.

    2008-01-01

    We present the first measurements of the {rho}(770){sup 0},K*(892), {Delta}(1232){sup ++}, {sigma}(1385), and {Lambda}(1520) resonances in d+Au collisions at {radical}s{sub NN} = 200 GeV, reconstructed via their hadronic decay channels using the STAR detector (the solenoidal tracker at the BNL Relativistic Heavy Ion Collider). The masses and widths of these resonances are studied as a function of transverse momentum p{sub T}. We observe that the resonance spectra follow a generalized scaling law with the transverse mass m{sub T}. The of resonances in minimum bias collisions are compared with the of {pi},K and {bar p}. The {rho}{sup 0}/{pi}{sup -}, K{sup +}/K{sup -}, {Delta}{sup ++}/p, {Sigma}(1385)/{Lambda}, and {Lambda}(1520)/{Lambda} ratios in d+Au collisions are compared with the measurements in minimum bias p+p interactions, where we observe that both measurements are comparable. The nuclear modification factors (R{sub dAu}) of the {rho}{sup 0},K{sup +}, and {Sigma}{sup +} scale with the number of binary collisions (N{sub bin}) for p{sub T} > 1.2 GeV/c.

  9. Polarization of top quark as a probe of its chromomagnetic and chromoelectric couplings in tW production at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Rindani, Saurabh D.; Sharma, Pankaj; Thomas, Anthony W.

    2015-10-01

    We study the sensitivity of the Large Hadron Collider (LHC) to top quark chromomagnetic (CMDM) and chromoelectric (CEDM) dipole moments and W tb effective couplings in single-top production in association with a W - boson, followed by semileptonic decay of the top. The W t single-top production mode helps to isolate the anomalous ttg and W tb couplings, in contrast to top-pair production and other single-top production modes, where other new-physics effects can also contribute. We calculate the top polarization and the effects of these anomalous couplings on it at two centre-of-mass (cm) energies, 8 TeV and 14 TeV. As a measure of top polarization, we look at decay-lepton angular distributions in the laboratory frame, without requiring reconstruction of the rest frame of the top, and study the effect of the anomalous couplings on these distributions. We construct certain asymmetries to study the sensitivity of these distributions to top-quark couplings. We determine individual limits on the dominant couplings, viz., the real part of the CMDM Re ρ 2, the imaginary part of the CEDM Im ρ 3, and the real part of the tensor W tb coupling Ref2R, which may be obtained by utilizing these asymmetries at the LHC. We also obtain simultaneous limits on pairs of these couplings taking two couplings to be non-zero at a time.

  10. Observation of electroweak W+jets production and kinematic tests of vector boson fusion using the atlas detector at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Dattagupta, Aparajita

    The first observation of electroweak W+jets production in the Vector Boson Fusion (VBF) topology using the ATLAS detector at the Large Hadron Collider (LHC) is presented. VBF probes the triple gauge vertex, a rare process that is validated in this measurement, and has begun to be explored in the Higgs sector. The signal in W boson production presented in this thesis is measured using proton-proton collisions at [special characters omitted] and 8 TeV at a statistical significance of greater than 5 standard deviations. Studies of the event kinematics are also presented via differential cross-section measurements as a function of various observables that are sensitive to VBF production. These are the first differential cross-section measurements for the VBF process. Results reflect the most precise measurements of electroweak and strong interactions in this kinematic domain. These measurements will serve as a reference point for related analyses using data at higher collision energies at the LHC. Results from this thesis will also contribute towards improving our theoretical understanding of the largest irreducible background in this analysis coming from strongly produced W+jets. Measurements presented, when representing potential backgrounds, will also be useful to studies of top quark and Higgs production, as well as new physics searches that deal with similar backgrounds.

  11. Next-to-leading order QCD predictions for t{gamma} associated production via model-independent flavor-changing neutral-current couplings at hadron colliders

    SciTech Connect

    Zhang Yue; Li Bohua; Li Chongsheng; Gao Jun; Zhu Huaxing

    2011-05-01

    We present the complete next-to-leading order (NLO) QCD predictions for the t{gamma} associated production induced by model-independent tq{gamma} and tqg flavor-changing neutral-current (FCNC) couplings at hadron colliders, respectively. We also consider the mixing effects between the tq{gamma} and tqg FCNC couplings for this process. Our results show that, for the tq{gamma} couplings, the NLO QCD corrections can enhance the total cross sections by about 50% and 40% at the Tevatron and LHC, respectively. Including the contributions from the tq{gamma}, tqg FCNC couplings and their mixing effects, the NLO QCD corrections can enhance the total cross sections by about 50% for the tu{gamma} and tug FCNC couplings, and by about 80% for the tc{gamma} and tcg FCNC couplings at the LHC, respectively. Moreover, the NLO corrections reduce the dependence of the total cross section on the renormalization and factorization scale significantly. We also evaluate the NLO corrections for several important kinematic distributions.

  12. Possibility of formation of a disoriented chiral condensate in p p collisions at energies available at the CERN Large Hadron Collider via the reaction-diffusion equation

    NASA Astrophysics Data System (ADS)

    Bagchi, Partha; Das, Arpan; Sengupta, Srikumar; Srivastava, Ajit M.

    2016-02-01

    There are indications of formation of a thermalized medium in high multiplicity p p collisions at energies available at the CERN Large Hadron Collider. It is possible that such a medium may reach high enough energy density and temperature that a transient stage of quark-gluon plasma, where chiral symmetry is restored, may be achieved. Due to rapid three-dimensional expansion, the system will quickly cool, undergoing a spontaneous chiral symmetry breaking transition. We study the dynamics of the chiral field, after the symmetry breaking transition, for such an event using a reaction-diffusion equation approach which we have recently applied for studying QCD transitions in relativistic heavy-ion collisions. We show that the interior of such a rapidly expanding system is likely to lead to the formation of a single large domain of disoriented chiral condensate (DCC), which has been a subject of intensive search in earlier experiments. We argue that large multiplicity p p collisions naturally give rise to required boundary conditions for the existence of slowly propagating front solutions of the reaction-diffusion equation with resulting dynamics of the chiral field leading to the formation of a large DCC domain.

  13. A New Boson with a Mass of 125 GeV Observed with the CMS Experiment at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    CMS Collabortion; Abbaneo, D.; Abbiendi, G.; Abbrescia, M.; Abdullin, S.; Abdulsalam, A.; Acharya, B. S.; Acosta, D.; Acosta, J. G.; Adair, A.; Adam, W.; Adam, N.; Adamczyk, D.; Adams, T.; Adams, M. R.; Adiguzel, A.; Adler, V.; Adolphi, R.; Adzic, P.; Afanasiev, S.; Agostino, L.; Agram, J.-L.; Aguilar-Benitez, M.; Aguilo, E.; Ahmad, M.; Ahmad, M. K. H.; Ahuja, S.; Akchurin, N.; Akgun, U.; Akgun, B.; Akin, I. V.; Alagoz, E.; Albajar, C.; Albayrak, E. A.; Albergo, S.; Albert, M.; Albrow, M.; Alcaraz Maestre, J.; Aldá Júnior, W. L.; Aldaya Martin, M.; Alemany-Fernandez, R.; Alexander, J.; Aliev, T.; Alimena, J.; Allfrey, P.; Almeida, N.; Alverson, G.; Alves, G. A.; Aly, A.; Amaglobeli, N.; Amapane, N.; Ambroglini, F.; Amsler, C.; Anagnostou, G.; Anastassov, A.; Andelin, D.; Anderson, J.; Anderson, M.; Andrea, J.; Andreev, Yu.; Andreev, V.; Andreev, V.; Andrews, W.; Anfreville, M.; Angelini, F.; Anghel, I. M.; Anisimov, A.; Anjos, T. S.; Ansari, M. H.; Antonelli, L.; Anttila, E.; Antunovic, Z.; Apanasevich, L.; Apollinari, G.; Appelt, E.; Apresyan, A.; Apyan, A.; Arce, P.; Arcidiacono, R.; Ardalan, F.; Arenton, M. W.; Arezzini, S.; Arfaei, H.; Argiro, S.; Arisaka, K.; Arndt, K.; Arneodo, M.; Arora, S.; Asavapibhop, B.; Asawatangtrakuldee, C.; Asghar, M. I.; Askew, A.; Aspell, P.; Assran, Y.; Ata, M.; Atac, M.; Attebury, G.; Attikis, A.; Auffray, E.; Autermann, C.; Auzinger, G.; Avdeeva, E.; Avery, P.; Avetisyan, A.; Avila, C.; Awad, A.; Ayan, A. S.; Azarkin, M.; Azhgirey, I.; Aziz, T.; Azzi, P.; Azzolini, V.; Azzurri, P.; Baarmand, M. M.; Babb, J.; Baccaro, S.; Bacchetta, N.; Bachtis, M.; Baden, A.; Badgett, W.; Badier, J.; Baechler, J.; Baffioni, S.; Bagaturia, I.; Bagliesi, G.; Bai, Y.; Bailleux, D.; Baillon, P.; Bainbridge, R.; Bakhshiansohi, H.; Bakirci, M. N.; Bakken, J. A.; Balazs, M.; Baldin, B.; Ball, A. H.; Ball, G.; Ballin, J.; Ban, Y.; Banerjee, S.; Banerjee, S.; Bäni, L.; Banicz, K.; Bansal, M.; Bansal, S.; Banzuzi, K.; Barashko, V.; Barbagli, G.; Barberis, E.; Barbone, L.; Barczyk, A.; Bard, R.; Barfuss, A. F.; Bargassa, P.; Barge, D.; Baringer, P.; Barker, A.; Barnes, V. E.; Barnett, B. A.; Barney, D.; Barone, L.; Barrass, T.; Bartalini, P.; Barth, C.; Bartoloni, A.; Basegmez, S.; Basso, L.; Basti, A.; Bateman, E.; Battilana, C.; Bauer, J.; Bauer, D.; Bauer, G.; Bauerdick, L. A. T.; Baulieu, G.; Baumbaugh, B.; Baumgartel, D.; Baur, U.; Bayshev, I.; Bazterra, V. E.; Bean, A.; Beauceron, S.; Beaudette, F.; Beaumont, W.; Beaupere, N.; Becheva, E.; Bedjidian, M.; Beernaert, K.; Behner, F.; Behr, J.; Behrenhoff, W.; Behrens, U.; Belforte, S.; Beliy, N.; Belknap, D.; Bell, A. J.; Bell, K. W.; Bellan, R.; Bellato, M.; Bellazzini, R.; Bellinger, J. N.; Belotelov, I.; Belyaev, A.; Belyaev, A.; Benaglia, A.; Bencze, G.; Bendavid, J.; Benedetti, D.; Benelli, G.; Benettoni, M.; Benhabib, L.; Beni, N.; Benitez, J. F.; Benussi, L.; Benvenuti, A. C.; Beranek, S.; Beretvas, A.; Bergauer, T.; Berger, J.; Bergholz, M.; Beri, S. B.; Bernardes, C. A.; Bernardini, J.; Bernardino Rodrigues, N.; Bernet, C.; Berry, D.; Berry, E.; Berryhill, J.; Bertl, W.; Bertoldi, M.; Berzano, U.; Besancon, M.; Besson, A.; Betchart, B.; Betev, B.; Bethani, A.; Betts, R. R.; Beuselinck, R.; Bhandari, V.; Bhardwaj, A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharya, S.; Bhattacharya, S.; Bhatti, A.; Bheesette, S.; Bialas, W.; Bialkowska, H.; Biallass, P.; Bian, J. G.; Bianchi, G.; Bianchini, L.; Bianco, S.; Biasini, M.; Biasotto, M.; Biino, C.; Bilei, G. M.; Bilin, B.; Bilki, B.; Binkley, M.; Bisello, D.; Bitioukov, S.; Blau, B.; Blekman, F.; Blobel, V.; Bloch, D.; Bloch, P.; Bloom, K.; Bluj, M.; Blüm, P.; Blumenfeld, B.; Blyweert, S.; Boccali, T.; Bocci, A.; Bochenek, J.; Bockelman, B.; Bodek, A.; Bodin, D.; Boimska, B.; Bolla, G.; Bolognesi, S.; Bolton, T.; Bonacorsi, D.; Bonato, A.; Bondu, O.; Bonnett Del Alamo, M.; Bontenackels, M.; Boos, E.; Borcherding, F.; Bornheim, A.; Borras, K.; Borrello, L.; Bortignon, P.; Bortoletto, D.; Bose, T.; Bose, S.; Böser, C.; Bosi, F.; Bostock, F.; Botta, C.; Boudoul, G.; Bouhali, O.; Boulahouache, C.; Bourilkov, D.; Boutemeur, M.; Boutigny, D.; Boutle, S.; Bradley, D.; Braibant-Giacomelli, S.; Branca, A.; Branson, A.; Branson, J. G.; Brauer, R.; Braunschweig, W.; Breedon, R.; Breto, G.; Breuker, H.; Brew, C.; Brez, A.; Brigliadori, L.; Brigljevic, V.; Brinkerhoff, A.; Brito, L.; Broccolo, G.; Brochero Cifuentes, J. A.; Brochet, S.; Brom, J.-M.; Brona, G.; Brooke, J. J.; Broutin, C.; Brown, R. M.; Brownson, E.; Brun, H.; Bruno, G.; Buchmann, M. A.; Buchmuller, O.; Bucinskaite, I.; Budd, H.; Buege, V.; Bujak, A.; Bunichev, V.; Bunin, P.; Bunkowski, K.; Bunn, J.; Buontempo, S.; Burgmeier, A.; Burkett, K.; Busson, P.; Busza, W.; Butler, A. P. H.; Butler, P. H.; Butler, J. N.; Butt, J.; Butz, E.; Bylsma, B.; Cabrillo, I. J.; Caebergs, T.; Cai, J.; Cakir, A.; Calabria, C.; Calamba, A.; Calderon, A.; Calderon De La Barca Sanchez, M.; Cali, I. A.; Calligaris, L.; Callner, J.; Calpas, B.; Calvert, B.; Calvo, E.; Calzolari, F.; Camanzi, B.; Campagnari, C.; Campbell, A.; Campi, D.; Camporesi, T.; Candelise, V.; Cankocak, K.; Cano, E.; Capiluppi, P.; Cappello, G.; Carbone, L.; Carboni, A.; Cardaci, M.; Carlin, R.; Carlsmith, D.; Carrera Jarrin, E.; Carrillo Montoya, C. A.; Carrillo Moreno, S.; Carroll, R.; Cartiglia, N.; Carvalho, W.; Casal, B.; Casarsa, M.; Case, M.; Casimiro Linares, E.; Castaldi, R.; Castello, R.; Castilla-Valdez, H.; Castro, E.; Castro, A.; Caudron, J.; Cavallari, F.; Cavallo, F. R.; Cavallo, N.; Cavanaugh, R.; Ceard, L.; Cepeda, M.; Cerati, G. B.; Cerci, S.; Cerizza, G.; Cerminara, G.; Cerrada, M.; Cerri, C.; Cerutti, M.; Chabert, E. C.; Chadwick, M.; Chakaberia, I.; Chamizo Llatas, M.; Chamont, D.; Chan, M.; Chan, K. M.; Chang, S.; Chang, Y. H.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chanon, N.; Chao, Y.; Charaf, O.; Charkiewicz, A.; Charlot, C.; Chasco, M.; Chasserat, J.; Chatrchyan, S.; Chatterjee, A.; Chatterji, S.; Chauhan, S.; Checchia, P.; Chekhovsky, V.; Chen, G. M.; Chen, H. S.; Chen, Z. Y.; Chen, Z.; Chen, K. H.; Chen, W. T.; Chen, K. F.; Chen, Y.; Chen, M.; Chen, J.; Chendvankar, S.; Cheng, T.; Cherepanov, V.; Chertok, M.; Chetluru, V.; Cheung, H. W. K.; Chhibra, S. S.; Chierici, R.; Chiladze, B.; Chiochia, V.; Chiorboli, M.; Chlebana, F.; Choi, S.; Choi, M.; Choi, Y.; Choi, Y. K.; Chou, J. P.; Choudhary, B. C.; Choudhury, S.; Choudhury, R. K.; Chowdhury, S.; Christiansen, T.; Chuang, S. H.; Chung, J.; Chung, M. H.; Chung, Y. S.; Chwalek, T.; Ciampa, A.; Ciesielski, R.; Cihangir, S.; Cimmino, A.; Cinquilli, M.; Cittolin, S.; Ciulli, V.; Civinini, C.; Claes, D. R.; Clare, R.; Clarida, W.; Clement, E.; Clerbaux, B.; Cline, D.; Coarasa Perez, J. A.; Cockerill, D. J. A.; Codispoti, G.; Colafranceschi, S.; Colaleo, A.; Cole, J. E.; Colino, N.; Collard, C.; Colling, D.; Combaret, C.; Conetti, S.; Connolly, J. F.; Contardo, D.; Conte, E.; Contreras-Campana, C.; Contreras-Campana, E.; Conway, J.; Conway, R.; Cooper, S. I.; Coppage, D.; Cornelis, T.; Correa Martins Junior, M.; Cossutti, F.; Costa, S.; Costa, M.; Costantini, S.; Costanza, F.; Coughlan, J. A.; Cousins, R.; Covarelli, R.; Cox, P. T.; Cox, B.; Creanza, D.; Cremaldi, L. M.; Cripps, N.; Crotty, I.; Cuevas, J.; Cuffiani, M.; Cumalat, J. P.; Cuplov, V.; Curé, B.; Cushman, P.; Cussans, D.; Custódio, A.; Cutajar, M.; Cutts, D.; Cwiok, M.; Czellar, S.; Czyrkowski, H.; Da Costa, E. M.; Da Silva Di Calafiori, D. R.; Dabrowski, R.; Dabrowski, A.; Daci, N.; Daeuwel, D.; Dafinei, I.; Dagenhart, W.; D'Agnolo, R. T.; Daguin, J.; Dahmes, B.; Dahms, T.; Dalchenko, M.; D'Alessandro, R.; D'Alfonso, M.; Dallavalle, G. M.; Dambach, S.; Damgov, J.; Dammann, D.; D'Angelo, P.; Danielson, T.; Das, S.; Daskalakis, G.; Dasu, S.; Daubie, E.; Dauncey, P.; Davatz, G.; David, A.; Davies, G.; de Barbaro, P.; De Benedetti, A.; De Boer, W.; De Cosa, A.; De Favereau De Jeneret, J.; De Filippis, N.; De Gruttola, M.; De Guio, F.; De Jesus Damiao, D.; De La Cruz, B.; De La Cruz-Burelo, E.; De Lentdecker, G.; De Mattia, M.; De Oliveira Martins, C.; De Palma, M.; De Robertis, G.; De Roeck, A.; de Trocóniz, J. F.; De Visscher, S.; De Wolf, E. A.; Debbins, P.; Deisher, A.; Deiters, K.; Dejardin, M.; Del Re, D.; Delaere, C.; Delannoy, A. G.; Delgado Peris, A.; Deliomeroglu, M.; Della Negra, M.; Della Ricca, G.; Dell'Orso, R.; Demaria, N.; Demin, P.; Demina, R.; Demiragli, Z.; Demiyanov, A.; Demortier, L.; Denegri, D.; Denis, G.; Deniz, M.; D'Enterria, D.; Denton, L. G.; Depasse, P.; Dermenev, A.; Dero, V.; Derylo, G.; Descroix, A.; Deshpande, P. V.; Devroede, O.; Dewulf, J. P.; Dharmaratna, W. G. D.; Dhingra, N.; D'Hondt, J.; Di Giovanni, G. P.; Di Guida, S.; Di Marco, E.; Di Matteo, L.; Diamond, B.; Dias, F. A.; Diemoz, M.; Dierlamm, A.; Dietz, C.; Dietz-Laursonn, E.; Diez Pardos, C.; Dimitrov, L.; Dimitrov, A.; Dinardo, M. E.; Dini, P.; Dirkes, G.; Dissertori, G.; Dittmann, J.; Dittmar, M.; Djambazov, L.; Djordjevic, M.; Dobrzynski, L.; Dobson, M.; Dobur, D.; Doesburg, R.; Dogangun, O.; Dolen, J.; Dolinsky, S.; Dominguez, A.; Domínguez Vázquez, D.; Dominik, W.; Donegà, M.; Donvito, G.; Dorigo, T.; Dorney, B.; Doroba, K.; Dosselli, U.; Dozen, C.; Draeger, J.; Dragicevic, M.; Dragoiu, C.; Drell, B. R.; Dremin, I.; Drouhin, F.; Drozdetskiy, A.; Druzhkin, D.; du Pree, T.; Duarte, J.; Duarte Campderros, J.; Dubinin, M.; Duchardt, D.; Dudero, P. R.; Dudko, L.; Dugad, S.; Duggan, D.; Dumanoglu, I.; Dumitrescu, C.; Dünser, M.; Dupont-Sagorin, N.; Duric, S.; Duris, J.; Durkin, L. S.; Duru, F.; Dutta, S.; Dutta, D.; Dutta, V.; Dykstra, D.; Eads, M.; Eartly, D. P.; Eckerlin, G.; Ecklund, K. M.; Eckstein, D.; Edelhoff, M.; Eerola, P.; Egeland, R.; Eggel, C.; Eggert, N.; Ekmedzic, M.; El Mamouni, H.; Elgammal, S.; Elias, J. E.; Elliott-Peisert, A.; Ellison, J.; Ellithi Kamel, A.; Elmer, P.; Elvira, V. D.; Emeliantchik, I.; Enderle, H.; Engh, D.; Eno, S. C.; Eppard, M.; Epshteyn, V.; Erbacher, R.; Erdmann, M.; Erdmann, W.; Erdogan, Y.; Erfle, J.; Erhan, S.; Erö, J.; Erofeeva, M.; Ershov, Y.; Ershov, A.; Eshaq, Y.; Eskut, E.; Etesami, S. M.; Eugster, J.; Eulisse, G.; Eusebi, R.; Evangelou, I.; Evans, D.; Evans, D.; Evdokimov, O.; Everaerts, P.; Everett, A.; Evstyukhin, S.; Fabbri, F.; Fabbri, F.; Fabbricatore, P.; Fabbro, B.; Faber, G.; Fabjan, C.; Fabozzi, F.; Faccioli, P.; Fagan, D.; Fahim, A.; Fahrer, M.; Fanelli, C.; Fanfani, A.; Fanò, L.; Fantasia, C.; Fanzago, F.; Farina, F. M.; Farinon, S.; Farrell, C.; Fasanella, D.; Faure, J. L.; Favaro, C.; Favart, D.; Fay, J.; Fedi, G.; Fedorov, A.; Fehling, D.; Feichtinger, D.; Feindt, M.; Felcini, M.; Feld, L.; Felzmann, U.; Fenyvesi, A.; Ferapontov, A.; Ferbel, T.; Ferencek, D.; Ferguson, W.; Ferguson, T.; Fernandez, M.; Fernandez Bedoya, C.; Fernandez Menendez, J.; Fernandez Perez Tomei, T. R.; Fernández Ramos, J. P.; Ferrando, A.; Ferreira Parracho, P. G.; Ferri, F.; Ferro, C.; Feyzi, F.; Field, R. D.; Finger, M.; Finger, M.; Fiore, L.; Fiorendi, S.; Fiori, F.; Fischer, R.; Fisher, M.; Fisk, I.; Flacher, H.; Flanagan, W.; Flix, J.; Florez, C.; Flossdorf, A.; Flower, P. S.; Flowers, K.; Flucke, G.; Flügge, G.; Foà, L.; Focardi, E.; Folgueras, S.; Fonseca De Souza, S.; Fontaine, J.-C.; Ford, W. T.; Forthomme, L.; Foudas, C.; Foulkes, S.; Fouz, M. C.; Francis, B.; Franzoni, G.; Frazier, R.; Freeman, J.; French, M. J.; Freudenreich, K.; Frey, M.; Friedl, M.; Friis, E.; Frisch, B.; Frosali, S.; Frueboes, T.; Frühwirth, R.; Fu, Y.; Fulcher, J.; Funk, W.; Furgeri, A.; Furic, I. K.; Futyan, D.; Gabathuler, K.; Gabella, W.; Gabusi, M.; Gaddi, A.; Gaines, I.; Galanti, M.; Gallinaro, M.; Gallo, E.; Galvez, P.; Gamsizkan, H.; Ganguli, S. N.; Ganguly, S.; Ganjour, S.; Gao, Z.; Gao, Y.; Garabedian, A.; Garcia, G.; Garcia-Abia, P.; Garcia-Bellido, A.; Garcia-Solis, E. J.; Gardner, M.; Gartner, J.; Gartung, P.; Gary, J. W.; Gascon, S.; Gasparini, F.; Gasparini, U.; Gastal, M.; Gataullin, M.; Gaultney, V.; Gauthier, L.; Gavrilenko, M.; Gavrilov, V.; Gay, A. P. R.; Gaz, A.; Gebauer, I.; Gebbert, U.; Geenen, H.; Geerebaert, Y.; Geffert, P.; Geiser, A.; Geisler, M.; Gelé, D.; Genchev, V.; Gennai, S.; Genta, C.; Gentit, F. X.; Georgiou, G.; Geralis, T.; Gerbaudo, D.; Gerber, C. E.; Gershtein, Y.; Gerwig, H.; Gessler, A.; Geurts, F. J. M.; Ghete, V. M.; Ghezzi, A.; Ghodgaonkar, M.; Giacchetti, L.; Giacomelli, P.; Giammanco, A.; Giassi, A.; Gibbons, L. K.; Giffels, M.; Gigi, D.; Gilbert, A.; Gill, K.; Gilmore, J.; Ginther, G.; Giordano, D.; Giordano, F.; Giraud, N.; Girgis, S.; Girone, M.; Giubilato, P.; Giunta, M.; Giurgiu, G.; Giusti, S.; Givernaud, A.; Glege, F.; Gleyzer, S. V.; Glushkov, I.; Gninenko, S.; Go, A.; Gobbi, B.; Gobbo, B.; Godinovic, N.; Godshalk, A.; Goerlach, U.; Goettlicher, P.; Goetzmann, C.; Goh, J.; Gokbulut, G.; Gokieli, R.; Goldenzweig, P.; Goldstein, J.; Golf, F.; Gollapinni, S.; Golovtsov, V.; Golubev, N.; Golunov, A.; Golutvin, I.; Gomber, B.; Gomez, J. P.; Gomez, G.; Gomez, J. A.; Gomez Ceballos, G.; Gomez Moreno, B.; Gomez-Reino Garrido, R.; Goncharov, M.; Gonella, F.; Gonzalez Caballero, I.; Gonzalez Lopez, O.; Gonzalez Sanchez, J.; Gonzalez Suarez, R.; Gonzi, S.; Goodell, J.; Goorens, R.; Gorbounov, N.; Gorbunov, I.; Gorbunov, D.; Gorn, L.; Görner, M.; Gorski, T.; Górski, M.; Goscilo, L.; Gotra, Y.; Gottschalk, E.; Goudard, R.; Goulianos, K.; Gouskos, L.; Gouzevitch, M.; Govoni, P.; Gowdy, S.; Goy Lopez, S.; Gozzelino, A.; Grab, C.; Grachov, O.; Gramenitski, I.; Grandi, C.; Granier de Cassagnac, R.; Gras, P.; Grassi, T.; Grassi, M.; Gray, R.; Gray, L.; Graziano, A.; Grebenyuk, A.; Greco, M.; Green, D.; Greene, S.; Greenhalgh, R. J. S.; Grégoire, G.; Gregores, E. M.; Gribushin, A.; Grim, G.; Grimes, M.; Grishin, V.; Gritsan, A. V.; Grogg, K. S.; Gronberg, J.; Gross, L.; Grothe, M.; Grundler, U.; Grunewald, M.; Gruschke, J.; Grynyov, B.; Guchait, M.; Gude, A.; Guida, R.; Guiducci, L.; Guler, A. M.; Gülmez, E.; Gulmini, M.; Guneratne Bryer, A.; Gunion, J.; Gunnellini, P.; Guo, S.; Guo, Y.; Guo, Y.; Guo, Z. J.; Gupta, R.; Gupta, P.; Guragain, S.; Gurpinar, E.; Gurrola, A.; Gurtu, A.; Gutay, L.; Güth, A.; Guthoff, M.; Gutleber, J.; Gutsche, O.; Gyun, D.; Haas, J.; Habib, S.; Hackstein, C.; Hadjiiska, R.; Hadley, N. J.; Hagopian, S.; Hagopian, V.; Haguenauer, M.; Hahn, G.; Hahn, A.; Hahn, K. A.; Haj Ahmad, W.; Hajdu, C.; Haley, J.; Halkiadakis, E.; Hall, G.; Hall-Wilton, R.; Halsall, R. N. J.; Halyo, V.; Ham, S. W.; Hamel de Monchenault, G.; Hammad, G. H.; Hammarstrom, R.; Hammer, J.; Han, D.; Han, J.; Hanlon, J.; Hansen, M.; Hanson, G.; Harder, K.; Harel, A.; Härkönen, J.; Haroutunian, R.; Harper, S.; Harr, R.; Harris, P.; Harris, R. M.; Hartl, C.; Hartmann, F.; Harvey, J.; Hashemi, M.; Hatakeyama, K.; Hatherell, Z.; Hauk, J.; Hauler, F.; Haupt, J.; Hauser, J.; Hauth, T.; Hays, J.; Hazen, E.; He, K. L.; Heath, G. P.; Heath, H. F.; Hebbeker, T.; Hebda, P.; Heering, A. H.; Hegeman, J.; Hegner, B.; Heidemann, C.; Heier, S.; Heikkinen, A.; Heindl, S. M.; Heinrich, M.; Heintz, U.; Heiss, A.; Heister, A.; Hektor, A.; Held, H.; Hellwig, G.; Heltsley, B.; Henderson, C.; Hennion, P.; Heracleous, N.; Heredia-de La Cruz, I.; Hermanns, T.; Hernandez, J. M.; Herndon, M.; Hervé, A.; Hewamanage, S.; Heyburn, B.; Hidas, P.; Hidas, D.; Hildreth, M.; Hilgers, G.; Hill, J. A.; Hill, C.; Hindrichs, O.; Hintz, W.; Hinzmann, A.; Hirosky, R.; Hirschauer, J.; Hits, D.; Hobson, P. R.; Hoch, M.; Hoehle, F.; Hoepfner, K.; Hof, C.; Hofer, H.; Hoffmann, K. H.; Hofman, D. J.; Hohlmann, M.; Höing, R. S.; Holbrook, B.; Hollar, J.; Hollingsworth, M.; Hollis, R.; Holme, O.; Holmes, D.; Holzman, B.; Holzner, A.; Honc, S.; Hong, B.; Honma, A.; Hooberman, B.; Hooper, R.; Hoorani, H. R.; Horisberger, R.; Hörmann, N.; Horvath, D.; Horvath, I.; Hos, I.; Hou, W.-S.; Howell, J.; Hreus, T.; Hrubec, J.; Hsiung, Y.; Hu, G.; Hu, Z.; Huang, C. h.; Huang, X. T.; Hufnagel, D.; Hughes, R.; Hugon, J.; Hunt, A.; Husemann, U.; Huss, D.; Iaselli, G.; Iashvili, I.; Iaydjiev, P.; Ignatenko, M.; Iiyama, Y.; Iles, G.; Ille, B.; Ilyin, V.; Imhof, M.; Incandela, J.; Ingram, Q.; Ingram, F. D.; Innocente, V.; Inyakin, A.; Iope, R. L.; Iordanova, A.; Iorio, A. O. M.; Isildak, B.; Ivanov, Y.; Ivanov, A.; Ivova Rikova, M.; Jabeen, S.; Jackson, J.; Jafari, A.; Jain, Sa.; Jain, Sh.; Jain, S.; Jang, D. W.; Janot, P.; Janssen, X.; Janulis, M.; Jarry, P.; Jarvis, M.; Jarvis, C.; Jeitler, M.; Jeng, G. Y.; Jenkins, M.; Jeong, C.; Jessop, C.; Jiang, C. H.; Jindal, P.; Jindariani, S.; Jo, M.; Jo, Y.; Johns, W.; Johnson, D.; Johnson, M.; Johnson, K. F.; Jones, J.; Jones, C. D.; Jones, M.; Jorda, C.; Josa, M. I.; Joshi, U.; Juillot, P.; Jun, S. Y.; Jung, H.; Jung, C.; Junghans, S.; Juodagalvis, A.; Juska, E.; Jussen, R.; Justus, C.; Kaadze, K.; Kachanov, V.; Kadastik, M.; Kadija, K.; Kaestli, H. C.; Kaftanov, V.; Kailas, S.; Kalagin, V.; Kalakhety, H.; Kalavase, P.; Kalinin, A.; Kalinowski, A.; Kalmani, S. D.; Kalogeropoulos, A.; Kamenev, A.; Kaminskiy, A.; Kamon, T.; Kang, J.; Kang, M.; Kang, S.; Kangal, E. E.; Kanishchev, K.; Kannike, K.; Kao, K. Y.; Kao, S. C.; Karaman, T.; Karancsi, J.; Karapinar, G.; Karapostoli, G.; Karavakis, E.; Karchin, P. E.; Kargoll, B.; Karimäki, V.; Karjalainen, A.; Karjavin, V.; Karmgard, D. J.; Karneyeu, A.; Karpinski, W.; Kaschube, K.; Kasemann, M.; Kasprowicz, G.; Katajisto, H. M.; Kataria, S. K.; Katkov, I.; Katsas, P.; Kaur, M.; Kaussen, G.; Kavka, C.; Kaya, M.; Kaya, O.; Kayis Topaksu, A.; Kazana, M.; Kcira, D.; Kellams, N.; Keller, J.; Kelley, R.; Kellogg, R. G.; Kennedy, B. W.; Kenny, R. P., Iii; Kenzie, M.; Kerzel, U.; Kesisoglou, S.; Khachatryan, V.; Khakzad, M.; Khalatyan, S.; Khalid, S.; Khalil, S.; Khalil, S.; Khan, W. A.; Khan, A.; Kharchilava, A.; Khotilovich, V.; Khukhunaishvili, A.; Khurana, R.; Khurshid, T.; Kieffer, E.; Kiesenhofer, W.; Kilminster, B.; Kim, T. Y.; Kim, D. H.; Kim, G. N.; Kim, J. E.; Kim, K. S.; Kim, J. Y.; Kim, Zero J.; Kim, H.; Kim, T. J.; Kim, H.; Kim, J. H.; Kim, M. S.; Kim, V.; Kim, B.; Kim, Y.; Kinnunen, R.; Kirakosyan, M.; Kircher, F.; Kirn, M.; Kirsanov, M.; Kirschenmann, H.; Kiselevich, I.; Klabbers, P.; Klanner, R.; Klapoetke, K.; Klein, B.; Klein, K.; Kleinwort, C.; Klima, B.; Klimkovich, T.; Klingebiel, D.; Kloukinas, K.; Kluge, H.; Klukas, J.; Klute, M.; Klyukhin, V.; Knoblauch, D.; Knünz, V.; Knutsson, A.; Ko, W.; Koay, S. A.; Kodolova, O.; Kohli, J. M.; Kokkas, P.; Kolb, J.; Kolberg, T.; Kolosov, V.; Komaragiri, J. R.; Konecki, M.; Kong, D. J.; König, S.; Konigsberg, J.; Konoplyanikov, V.; Konoplyannikov, A.; Konstantinov, D.; Kopecky, A.; Korablev, A.; Korenkov, V.; Korjenevski, S.; Korotkikh, V.; Korpela, A.; Kortelainen, M. J.; Korytov, A.; Korzhik, M.; Kossov, M.; Kotamäki, M.; Kotlinski, D.; Kotov, K.; Kottachchi Kankanamge Don, C.; Kousouris, K.; Kovac, M.; Kovalskyi, D.; Kovitanggoon, K.; Koybasi, O.; Kozhuharov, V.; Kozlov, G.; Kozlov, Y.; Kraan, A.; Kräber, M.; Krajczar, K.; Krämer, M.; Krammer, M.; Krasnikov, N.; Krätschmer, I.; Kravchenko, I.; Kreczko, L.; Kreis, B.; Kress, T.; Kress, M.; Kreuzer, P.; Krishnaswamy, M. R.; Kroeger, R.; Krofcheck, D.; Krokhotin, A.; Krolikowski, J.; Kropivnitskaya, A.; Krpic, D.; Krücker, D.; Krutelyov, V.; Krychkine, V.; Kryukov, A.; Kubic, J.; Kubik, A.; Kubota, Y.; Kudla, I. M.; Kuessel, Y.; Kuhr, T.; Kukartsev, G.; Kumar, Arun; Kumar, Ashok; Kumar, V.; Kumar, A.; Kunde, G. J.; Kunori, S.; Kuo, C. M.; Kurca, T.; Kurenkov, A.; Kurt, P.; Kuznetsov, V.; Kuznetsova, E.; Kvatadze, R.; Kwan, S.; Kwon, E.; Kyberd, P.; Kypreos, T.; Kyre, S.; Kyriakis, A.; Laasanen, A. T.; Lacaprara, S.; Lacesso, W.; Lackey, J.; Lacroix, F.; Lagana, C.; Laird, E.; Lakkireddi, V. R.; Lamichhane, P.; Lampén, T.; Lanaro, A.; Lander, R.; Landsberg, G.; Lanev, A.; Lange, W.; Lange, J.; Lange, D.; Langenegger, U.; Lannon, K.; Lariccia, P.; Larson, K.; Lassila-Perini, K.; Lath, A.; Latronico, L.; Lawson, P.; Layter, J. G.; Lazaridis, C.; Lazic, D.; Lazo-Flores, J.; Lazzizzera, I.; Le Bihan, A.-C.; Leaver, J.; Lebeau, M.; Lebolo, L. M.; Lebourgeois, M.; Lecomte, P.; Lecoq, P.; Ledovskoy, A.; Lee, M. W.; Lee, K. S.; Lee, B.; Lee, J.; Lee, S.; Lee, Y.-J.; Lee, J.; Lee, S. J.; Lee, S. W.; Leggat, D.; Legrand, I.; Lehti, S.; Lei, Y. J.; Lelas, D.; Lellouch, J.; Lemaire, M. C.; Lemaitre, V.; Lenzi, P.; Leonard, J.; Léonard, A.; Leonardo, N.; Leonidopoulos, C.; Leonidov, A.; Leslie, D.; Lethuillier, M.; Letts, J.; Levchenko, P.; Levchuk, L.; Levin, A.; Levine, A.; Lewendel, B.; Li, W. G.; Li, W.; Li, S. W.; Li, W.; Liamsuwan, T.; Liang, D.; Liang, S.; Liao, J.; Liau, J. j.; Libeiro, T.; Lietti, S. M.; Ligabue, F.; Liko, D.; Lin, W.; Lin, S. W.; Lin, F. C.; Lin, C.; Linacre, J.; Linari, S.; Lincoln, D.; Lindén, T.; Ling, T. Y.; Lingemann, J.; Linn, S.; Lintern, A. L.; Lipton, R.; Lista, L.; Litomin, A.; Litov, L.; Litvine, V.; Litvintsev, D.; Liu, H. T.; Liu, S.; Liu, M. H.; Liu, Z. K.; Liu, H.; Liu, H.; Liu, Y. F.; Liu, C.; Liu, J. H.; Lloret Iglesias, L.; Lobelle Pardo, P.; Locci, E.; Loddo, F.; Lodge, A. B.; Lohmann, W.; Lokhtin, I.; Lomidze, D.; Lomtadze, T.; Long, O. R.; Longo, E.; Loos, R.; Lopes Pegna, D.; Lopez, A.; Lopez Perez, J. A.; Lopez Virto, A.; Lopez-Fernandez, R.; Loreti, M.; Los, S.; Loukas, D.; Lourenço, C.; Loveless, R.; Low, J. F.; Lowette, S.; Lu, Y. J.; Lu, R.-S.; Lu, Y.; Lübelsmeyer, K.; Lucaroni, A.; Luckey, P. D.; Luetic, J.; Luiggi Lopez, E.; Lujan, P.; Luk, M.; Lukyanenko, S.; Lumb, N.; Lundstedt, C.; Lungu, G.; Luo, W.; Lusin, S.; Lusito, L.; Lustermann, W.; Luthra, A.; Lutz, B.; Luukka, P.; Luyckx, S.; Lychkovskaya, N.; Lykken, J.; Lynch, S.; Lyons, L.; Ma, Y.; Ma, T.; Macneill, I.; Macpherson, A.; Madorsky, A.; Mäenpää, T.; Maes, M.; Maeshima, K.; Magaña Villalba, R.; Magass, C.; Magazzu, G.; Maggi, M.; Maggi, G.; Magini, N.; Magnan, A.-M.; Magrans de Abril, M.; Maguire, C.; Mahmoud, M. A.; Mahrous, A.; Maier, W.; Maity, M.; Majerotto, W.; Majumder, D.; Makankin, A.; Makarenko, V.; Mäki, T.; Makouski, M.; Maksimovic, P.; Malakhov, A.; Malberti, M.; Malbouisson, H.; Malcles, J.; Malek, M.; Malgeri, L.; Malhotra, S.; Malik, S.; Malik, S.; Malvezzi, S.; Mandjavidze, I.; Mangano, B.; Mankel, R.; Manna, N.; Mannelli, M.; Manolakos, I.; Mans, J.; Manthos, N.; Mantovani, G.; Manzoni, R. A.; Mao, Y.; Marage, P. E.; Marangelli, B.; Maravin, Y.; Marcellini, S.; Marchica, C.; Marchioro, A.; Marco, J.; Marco, R.; Marfin, I.; Margoni, M.; Marienfeld, M.; Marinelli, N.; Marinho, F.; Marini, A. C.; Marinov, A.; Marionneau, M.; Mariotti, C.; Markina, A.; Markou, A.; Markou, C.; Markowitz, P.; Marlow, D.; Maron, G.; Marone, M.; Maroussov, V.; Marques Pinho Noite, J.; Marraffino, J. M.; Marrouche, J.; Martelli, A.; Martin, W.; Martin, T.; Martinez, G.; Martinez Rivero, C.; Martinez Ruiz del Arbol, P.; Martínez-Ortega, J.; Martini, L.; Martins, T.; Martschei, D.; Maruyama, S.; Maselli, S.; Masetti, L.; Masetti, G.; Mason, D.; Massa, M.; Massai, M. M.; Massironi, A.; Matchev, K.; Mathez, H.; Mathias, B.; Matorras, F.; Matos Figueiredo, D.; Mattson, M.; Matveev, V.; Matveev, M.; Mavromanolakis, G.; Mavrommatis, C.; Maxa, Z.; Mazumdar, K.; Mazzoni, E.; Mazzucato, M.; McBride, P.; Mccartin, J.; McCauley, T.; McClatchey, R.; McCliment, E.; Mccoll, N.; Medvedeva, T.; Mehta, M. Z.; Mehta, P.; Meier, B.; Meier, F.; Meijers, F.; Mekterovic, D.; Melnitchenko, I.; Melo, A.; Melzer-Pellmann, I.-A.; Menasce, D.; Menchikov, A.; Mendez, H.; Meneghelli, M.; Meneguzzo, A. T.; Meng, X.; Menichelli, M.; Meola, S.; Mercadante, P. G.; Mercier, D.; Meridiani, P.; Merino, G.; Merkel, P.; Merlo, J.-P.; Mermerkaya, H.; Merola, M.; Merschmeyer, M.; Mersi, S.; Merz, J.; Meschi, E.; Meschini, M.; Mesropian, C.; Messineo, A.; Mestvirishvili, A.; Mesyats, G.; Metson, S.; Meyer, A.; Meyer, A. B.; Miceli, T.; Micheli, F.; Migliore, E.; Mignerey, A. C.; Mikulec, I.; Milenovic, P.; Militaru, O.; Millan Mejias, B.; Miller, D. G.; Miller, M. J.; Miller, D. H.; Milleret, G.; Milosevic, J.; Milstène, C.; Miné, P.; Miner, D. C.; Mirabito, L.; Mirman, N.; Mironov, C.; Mishra, K.; Missevitch, O.; Mitselmakher, G.; Mitsyn, V. V.; Miyamoto, J.; Mnich, J.; Moccia, S.; Moeller, A.; Moggi, A.; Mohammadi, A.; Mohammadi Najafabadi, M.; Mohanty, A. K.; Mohanty, G. B.; Mohapatra, A.; Mohr, N.; Moisenz, P.; Mol, X.; Molnar, J.; Mommsen, R. K.; Monaco, V.; Mondal, N. K.; Moneta, L.; Montalvo, R.; Montanari, A.; Montanino, D.; Montecassiano, F.; Moon, D. H.; Mooney, M.; Moortgat, F.; Morelos Pineda, A.; Mörmann, D.; Moromisato, J.; Moroni, L.; Morovic, S.; Morse, D. M.; Mossolov, V.; Mott, A.; Mousa, J.; Mozer, M. U.; Mrak-Tadel, A.; Mrenna, S.; Mucibello, L.; Mueller, S.; Mughal, A.; Muhl, C.; Mulders, M.; Müller, Th.; Mundim, L.; Muniz, L.; Munoz Sanchez, F. J.; Müntel, M.; Mura, B.; Murray, P.; Murray, S. J.; Murray, M.; Murzin, V.; Musella, P.; Musenich, R.; Musich, M.; Musienko, Y.; Mussgiller, A.; Muzaffar, S.; My, S.; Nachtman, J.; Nae, D.; Nägeli, C.; Nahn, S.; Naimuddin, M.; Nam, S. K.; Nandi, R.; Nappi, A.; Narain, M.; Naranjo, I. N.; Narasimham, V. S.; Nash, J.; Nash, D.; Natali, S.; Nauenberg, U.; Naujikas, R.; Naumann-Emme, S.; Navarria, F. L.; Nawrocki, K.; Nayak, A.; Nef, P.; Negri, P.; Nessi-Tedaldi, F.; Neu, C.; Neuberger, D.; Neuland, M. B.; Neumeister, N.; Newbold, D. M.; Newman, H. B.; Newman-Holmes, C.; Newsom, C. R.; Nguyen, M.; Nguyen, D.; Nguyen, H.; Nguyen, C. N.; Nicolaou, C.; Nicolas Kaufman, G.; Niegel, M.; Nikitenko, A.; Nikolic, M.; Nirunpong, K.; Nishu, N.; Nogima, H.; Noonan, D.; Norbeck, E.; Noto, F.; Nourbakhsh, S.; Novaes, S. F.; Novgorodova, O.; Nowack, A.; Nowak, F.; Noy, M.; Ntomari, E.; Nürnberg, A.; Nuttens, C.; Nuzzo, S.; Oberst, O.; Obertino, M. M.; Obraztsov, S.; O'Brien, C.; Ocalan, K.; Ocampo Rios, A. A.; Ochando, C.; Ochesanu, S.; Odeh, M.; Odell, N.; O'Dell, V.; Odorici, F.; Oehler, A.; Ofierzynski, R. A.; Oguri, V.; Oh, Y. D.; Ojalvo, I.; Oklinski, W.; Olaiya, E.; Olbrechts, A.; Oleynik, D.; Oliveros, S.; Olschewski, M.; Olsen, J.; Olson, J.; Olzem, J.; Onel, Y.; Onengut, G.; Onnela, A.; Orbaker, D.; Oreshkin, V.; Organtini, G.; Orimoto, T.; Orlov, A.; Orsini, L.; Ortega Gomez, T.; Osborne, J. A.; Osborne, I.; Osipenkov, I.; Osorio Oliveros, A. F.; Ostapchuk, A.; Otiougova, P.; Ott, J.; Otwinowski, S.; Oulianov, A.; Ozdemir, K.; Ozkorucuklu, S.; Ozok, F.; Ozpineci, A.; Ozturk, S.; Pacifico, N.; Padhi, S.; Padley, B. P.; Padula, Sandra S.; Paganini, P.; Pagano, D.; Paganoni, M.; Pakhotin, Y.; Paktinat Mehdiabadi, S.; Palencia Cortezon, E.; Palichik, V.; Palinkas, J.; Palla, F.; Palmer, C.; Palmonari, F.; Panagiotou, A.; Pandolfi, F.; Pandoulas, D.; Pansanel, J.; Pansart, J. P.; Pant, L. M.; Panwalkar, S.; Panyam, N.; Paoletti, S.; Paolucci, P.; Papacz, P.; Papadopoulos, I.; Papageorgiou, A.; Pape, L.; Paramatti, R.; Paramesvaran, S.; Parashar, N.; Parenti, A.; Parida, B.; Park, H.; Park, S. K.; Park, C.; Park, I. C.; Park, S.; Park, M.; Park, M.; Parrini, G.; Pashenkov, A.; Passaseo, M.; Passeri, D.; Pastika, N.; Pastrone, N.; Patel, R.; Patil, M. R.; Patois, Y.; Patras, V.; Patterson, J. R.; Paulini, M.; Paus, C.; Pauss, F.; Pavlov, B.; Pavlunin, V.; Pazzini, J.; Pearson, M. R.; Pearson, T.; Pedrini, D.; Pedro, K.; Pegoraro, M.; Peiffer, T.; Pela, J.; Pellett, D.; Pelliccioni, M.; Peltola, T.; Penzo, A.; Perchalla, L.; Perelygin, V.; Perera, L.; Perez, E.; Perfilov, M.; Perieanu, A.; Perloff, A.; Pernicka, M.; Peroni, C.; Perrey, H.; Perries, S.; Perrotta, A.; Perrozzi, L.; Peruzzi, M.; Pesaresi, M.; Petagna, P.; Peterman, A.; Petkov, P.; Petrakou, E.; Petridis, K.; Petrilli, A.; Petrosyan, A.; Petrov, V.; Petrucci, A.; Petrucciani, G.; Petrukhin, A.; Petrushanko, S.; Petyt, D.; Pfeiffer, D.; Pfeiffer, A.; Philipps, B.; Phillips, D.; Piasecki, C.; Piccolo, D.; Piedra Gomez, J.; Pieri, M.; Pierini, M.; Pierro, G. A.; Pieta, H.; Pietsch, N.; Pimiä, M.; Pin, A.; Pioppi, M.; Piotrzkowski, K.; Piparo, D.; Piperov, S.; Piroué, P.; Pitzl, D.; Pivarski, J.; Pivovarov, G.; Placidi, P.; Plager, C.; Planer, M.; Plestina, R.; Pol, M. E.; Polatoz, A.; Polese, G.; Polic, D.; Poll, A.; Pollack, B.; Pompili, A.; Pooth, O.; Popescu, S.; Popov, V.; Popov, A.; Pordes, R.; Poschlad, A.; Postema, H.; Postoev, V. E.; Potenza, R.; Potenza, A.; Pozdnyakov, A.; Pozniak, K.; Pozzobon, N.; Prado Da Silva, W. L.; Primavera, F.; Prokofyev, O.; Proskuryakov, A.; Prosper, H.; Ptochos, F.; Puerta Pelayo, J.; Pugliese, G.; Puigh, D.; Puljak, I.; Pullia, A.; Punz, T.; Qazi, S.; Qian, S. J.; Quan, X.; Quast, G.; Quertenmont, L.; Quintario Olmeda, A.; Rabbertz, K.; Racz, A.; Radburn-Smith, B. C.; Radi, A.; Radicci, V.; Raffaelli, F.; Ragazzi, S.; Ragghianti, G.; Raghavan, R.; Rahatlou, S.; Rahbaran, B.; Rahmat, R.; Raics, P.; Raidal, M.; Rakness, G.; Ralich, R.; Ralph, D.; Ramirez Vargas, J. E.; Rand, D.; Rander, J.; Ranieri, A.; Ranieri, R.; Ranjan, K.; Rappoccio, S.; Rapsevicius, V.; Raspereza, A.; Rathjens, D.; Ratnikov, F.; Ratnikova, N.; Ratti, S. P.; Raupach, F.; Raval, A.; Ravot, S.; Raymond, D. M.; Razis, P. A.; Rebane, L.; Rebassoo, F.; Redaelli, N.; Redjimi, R.; Redondo, I.; Reece, W.; Reeder, D.; Reid, I. D.; Reidy, J.; Reis, T.; Reithler, H.; Rekovic, V.; Remington, R.; Renker, D.; Renz, M.; Reucroft, S.; Reyes-Santos, M. A.; Reymond, J. M.; Ribeiro, P. Q.; Ribeiro Cipriano, P. M.; Ribnik, J.; Riccardi, C.; Ricci, D.; Ricci-Tam, F.; Richman, J.; Riedl, C.; Riley, D.; Rinkevicius, A.; Rizzi, A.; Ro, S. R.; Roberts, J.; Robles, J.; Robmann, P.; Röcker, S.; Rodenburg, M.; Rodozov, M.; Rodrigo, T.; Rodrigues Antunes, J.; Rodriguez, J. L.; Rodríguez-Marrero, A. Y.; Roe, J.; Roederer, F.; Rogan, C.; Rogerson, S.; Roh, Y.; Rohe, T.; Rohlf, J.; Rohringer, C.; Rohringer, H.; Roinishvili, V.; Roland, B.; Roland, C.; Roland, G.; Rolandi, G.; Romaniuk, R.; Romano, F.; Romanowska-Rybinska, K.; Romanteau, T.; Romeo, F.; Romero, L.; Romero, A.; Ron, E.; Ronchese, P.; Ronga, F. J.; Ronzhin, A.; Rose, A.; Rose, K.; Rosemann, C.; Röser, U.; Rosin, M.; Rosowsky, A.; Ross, I.; Rossato, K.; Rossi, A. M.; Rossin, R.; Rossini, M.; Rossman, P.; Rott, C.; Rougny, R.; Roumenin, C.; Rovelli, C.; Rovelli, T.; Rovere, M.; Rowe, J.; Roy, A.; Rozsa, S. G.; Rubakov, V.; Ruchti, R.; Rudolph, M.; Rugovac, S.; Ruiz-Jimeno, A.; Rumerio, P.; Rurua, L.; Rusack, R.; Rusakov, S. V.; Rush, C. J.; Ruspa, M.; Russ, J.; Rutherford, B.; Ryabov, A.; Ryan, M. J.; Ryckbosch, D.; Ryd, A.; Ryjov, V.; Ryu, G.; Ryu, S.; Ryutin, R.; Sabellek, A.; Sabes, D.; Sacchi, R.; Safarzadeh, B.; Safonov, A.; Safronov, G.; Saha, A.; Saini, L. K.; Saizu, M. A.; Saka, H.; Sakharov, A.; Sakhelashvili, T.; Sakulin, H.; Sakuma, T.; Sakumoto, W.; Sala, L.; Sala, S.; Salazar Ibarguen, H. A.; Salerno, R.; Salfeld-Nebgen, J.; Salur, S.; Salvati, E.; Sammet, J.; Samyn, D.; Sanabria, J. C.; Sanchez, A. K.; Sánchez-Hernández, A.; Sander, C.; Sanders, S.; Sanders, D. A.; Sanguinetti, G.; Sani, M.; Santanastasio, F.; Santaolalla, J.; Santocchia, A.; Santoro, A.; Saoulidou, N.; Saout, C.; Sarkar, S.; Sartirana, A.; Sarycheva, L.; Sauerland, P.; Savin, A.; Savina, M.; Savrin, V.; Sawley, M.-C.; Scarborough, T.; Schael, S.; Schäfer, C.; Schettler, H.; Scheurer, A.; Schieferdecker, D.; Schieferdecker, P.; Schilling, F.-P.; Schinzel, D.; Schizzi, A.; Schlein, P.; Schleper, P.; Schlieckau, E.; Schmanau, M.; Schmidt, R.; Schmidt, A.; Schmidt, I.; Schmitt, M.; Schmitz, D.; Schmitz, S. A.; Schnetzer, S.; Schoerner-Sadenius, T.; Schöfbeck, R.; Schott, G.; Schröder, M.; Schul, N.; Schultz von Dratzig, A.; Schum, T.; Schwerdtfeger, W.; Schwick, C.; Sciaba, A.; Scodellaro, L.; Scurlock, B.; Searle, M.; Seez, C.; Segala, M.; Segneri, G.; Segoni, I.; Sehgal, V.; Seidel, M.; Seitz, C.; Seixas, J.; Sekmen, S.; Selvaggi, M.; Selvaggi, G.; Semenov, R.; Semenov, S.; Sen, N.; Sen, S.; Sengupta, S.; Senkin, S.; Seo, H.; Serban, A. T.; Serin, M.; Servoli, L.; Sever, R.; Sexton-Kennedy, E.; Sfiligoi, I.; Sgandurra, L.; Sguazzoni, G.; Shah, M. A.; Shamdasani, J.; Shanidze, R.; Sharan, M.; Sharma, A.; Sharma, V.; Sharma, A.; Sharma, V.; Sharma, S.; Sharma, M.; Sharp, P.; Shaw, T. M.; Sheldon, P.; Shen, B. C.; Shepherd-Themistocleous, C. H.; Shevchenko, S.; Shi, X.; Shin, K.; Shipkowski, S. P.; Shipsey, I.; Shirinyants, V.; Shiu, J. G.; Shivpuri, R. K.; Shmatov, S.; Shoaib, M.; Shrestha, S.; Shreyber, I.; Shukla, P.; Shulha, S.; Shumeiko, N.; Sibille, J.; Siedling, R.; Siegrist, P.; Sigamani, M.; Sikler, F.; Silkworth, C.; Sill, A.; Silva, J.; Silva, P.; Silvers, D.; Silverwood, H.; Silvestre, C.; Silvestris, L.; Sim, K. S.; Simon, M.; Simon, S.; Simonetto, F.; Simonis, H. J.; Singh, J. B.; Singh, A. P.; Singh, G.; Singovsky, A.; Sinthuprasith, T.; Sirois, Y.; Siroli, G. P.; Sirunyan, A. M.; Skachkova, A.; Skatchkov, N.; Skhirtladze, N.; Skiba, A.; Skuja, A.; Slattery, P.; Slaunwhite, J.; Smetannikov, V.; Smiljkovic, N.; Smirnov, V.; Smirnov, I.; Smith, V. J.; Smith, B. J.; Smith, J.; Smith, J. G.; Smith, R. P.; Smith, K.; Smith, W. H.; Smolin, D.; Smoron, A.; Snigirev, A.; Snihur, R.; Snoek, H.; Snook, B.; Snow, G. R.; Snowball, M.; Soares, M. S.; Sobol, A.; Sobron Sanudo, M.; Soffi, L.; Sogut, K.; Soha, A.; Sola, V.; Solano, A.; Solin, A.; Solovey, A.; Somalwar, S.; Son, D.; Son, D. C.; Song, S.; Sonmez, N.; Sonnenschein, L.; Soomro, K.; Sordini, V.; Soroka, D.; Sorokin, P.; Souza, M. H. G.; Sowa, M.; Spagnolo, P.; Spalding, W. J.; Spandre, G.; Spanier, S.; Sparrow, A.; Speer, T.; Sperka, D.; Sphicas, P.; Spiegel, L.; Spiezia, A.; Spiga, D.; Spinoso, V.; Spiridonov, A.; Spiropulu, M.; Sprenger, D.; Sproston, M.; Squillacioti, P.; Squires, M.; Srimanobhas, N.; Stadie, H.; Stahl, A.; Staiano, A.; Starodumov, A.; Stasko, J.; Staykova, Z.; Steenberg, C.; Stefanovitch, R.; Steggemann, J.; Stein, M.; Steinbrück, G.; Stenson, K.; Stepanov, N.; Stephans, G. S. F.; Stephenson, R.; Stickland, D.; Stieger, B.; Stober, F. M.; Stöckli, F.; Stolin, V.; Stone, R.; Stoye, M.; Stoykova, S.; Stoynev, S.; Strauss, J.; Stringer, R.; Strobbe, N.; Stroiney, S.; Strom, D.; Strumia, A.; Stuart, D.; Sturdy, J.; Suarez, I.; Suarez Gonzalez, J.; Sudano, E.; Sudhakar, K.; Suh, J. S.; Sulak, L.; Sulimov, V.; Sultanov, G.; Summers, D.; Sumorok, K.; Sumowidagdo, S.; Sun, G.; Sun, H. S.; Sun, W.; Sunar Cerci, D.; Sung, K.; Surat, U. E.; Suter, H.; Svintradze, I.; Svyatkovskiy, A.; Swain, J.; Swanson, D.; Swanson, J.; Swartz, M.; Symonds, P.; Szillasi, Z.; Szleper, M.; Sznajder, A.; Szoncsó, F.; Tabarelli de Fatis, T.; Tadel, M.; Takahashi, M.; Talamo, I. G.; Tali, B.; Talov, V.; Tambe, N.; Tan, P.; Tanenbaum, W.; Tao, J.; Tapper, A.; Taroni, S.; Tatarinov, A.; Taurok, A.; Tauscher, L.; Tavernier, S.; Taylor, B. G.; Taylor, L.; Tcholakov, V.; Teller, O.; Temple, J.; Tenchini, R.; Teng, H.; Tentindo, S.; Teo, W. D.; Teodorescu, L.; Terentyev, N.; Teyssier, D.; Thea, A.; Theel, A.; Theofilatos, K.; Thiebaux, C.; Thom, J.; Thomas, L.; Thomas, M.; Thomas, S.; Thompson, J.; Thompson, R.; Thomsen, J.; Thümmel, W. H.; Thyssen, F.; Tikhonenko, E.; Tiko, A.; Timciuc, V.; Timlin, C.; Tinti, G.; Tiradani, A.; Tiras, E.; Titov, M.; Tkaczyk, S.; Tlisov, D.; To, W.; Toback, D.; Tomalin, I. R.; Tomaszewska, J.; Tonelli, G.; Tonjes, M. B.; Tonwar, S. C.; Toole, T.; Topakli, H.; Topkar, A.; Torassa, E.; Torbet, M. J.; Toropin, A.; Torre, P.; Tosi, S.; Tosi, M.; Tourneur, S.; Tourtchanovitch, L.; Traczyk, P.; Tran, N. V.; Travaglini, R.; Trayanov, R.; Treille, D.; Triantis, F. A.; Tricomi, A.; Tripathi, M.; Trocino, D.; Trocsanyi, Z. L.; Troendle, D.; Troitsky, S.; Tropea, P.; Tropiano, A.; Troshin, S.; Troska, J.; Trüb, P.; Trunov, A.; Tsamalaidze, Z.; Tsang, K. V.; Tschudi, Y.; Tsesmelis, E.; Tsirou, A.; Tu, Y.; Tucker, J.; Tully, C.; Tumanov, A.; Tumasyan, A.; Tuo, S.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Tupputi, S.; Turkewitz, J.; Turner, M.; Turner, P.; Tuura, L.; Tuuva, T.; Tuve, C.; Twedt, E.; Tytgat, M.; Tyurin, N.; Tzeng, Y. M.; Udriot, S.; Ueno, K.; Ujvari, B.; Ulmer, K. A.; Ulrich, R.; Unalan, Z.; Ungaro, D.; Uplegger, L.; Urscheler, C.; Uvarov, L.; Uzunian, A.; Uzunova, D.; Vaandering, E. W.; Valdata, M.; Valls, N.; Valuev, V.; Van Doninck, W.; Van Haevermaet, H.; Van Hove, P.; Van Lancker, L.; van Lingen, F.; Van Mechelen, P.; Van Mulders, P.; Van Onsem, G. P.; Van Remortel, N.; Van Spilbeeck, A.; Vander Donckt, M.; Vander Velde, C.; Vanelderen, L.; Vanhala, T. P.; Vanini, S.; Vankov, I.; Vanlaer, P.; Vardanyan, I.; Varela, J.; Varela Rodriguez, F.; Varelas, N.; Vartak, A.; Vasey, F.; Vasil'ev, S.; Vasquez Sierra, R.; Vaughan, J.; Vavilov, S.; Vazquez Acosta, M.; Vazquez Valencia, F.; Veelken, C.; Veeraraghavan, V.; Veillet, L.; Velasco, M.; Velicanu, D.; Velikzhanin, Y.; Velkovska, J.; Venditti, R.; Ventura, S.; Venturi, A.; Verdier, P.; Verdini, P. G.; Veres, G. I.; Vergili, L. N.; Vergili, M.; Verma, P.; Verrecchia, P.; Verwilligen, P.; Verzetti, M.; Veszpremi, V.; Vesztergombi, G.; Veverka, J.; Vichoudis, P.; Vidal, R.; Vidal Marono, M.; Viertel, G.; Vila, I.; Vilar Cortabitarte, R.; Vilela Pereira, A.; Villasenor-Cendejas, L. M.; Villella, I.; Vinogradov, A.; Virdee, T.; Viret, S.; Vischia, P.; Vishnevskiy, D.; Vitulo, P.; Vizan Garcia, J. M.; Vlasov, E.; Vlimant, J. R.; Vodopiyanov, I.; Vogel, H.; Voicu, B. R.; Volkov, A.; Volobouev, I.; Volodko, A.; Volpe, R.; Volyanskyy, D.; Von Goeler, E.; von Gunten, H. P.; Vorobiev, I.; Vorobyev, A.; Vorobyev, An.; Voutilainen, M.; Vuosalo, C.; Vutova, M.; Wagner, S. R.; Wagner-Kuhr, J.; Wakefield, S.; Wallny, R.; Walsh, S.; Walsh, R.; Waltenberger, W.; Walzel, G.; Wan, X.; Wang, J.; Wang, J.; Wang, X.; Wang, Z.; Wang, D.; Wang, C. C.; Wang, M.; Wardle, N.; Wasserbaech, S.; Wayand, S.; Wayne, M.; Weber, H.; Weber, M.; Weber, M.; Weber, H. A.; Weber, M.; Wehrli, L.; Wei, J. T.; Weiler, T.; Weinberg, M.; Wendland, L.; Weng, J.; Weng, Y.; Wenger, E. A.; Wenman, D.; Werner, J. S.; Wertelaers, P.; West, C.; Wetzel, J.; Whitbeck, A.; White, D.; Whitmore, J.; Whyntie, T.; Wickens, J.; Wickramage, N.; Widl, E.; Wigmans, R.; Wildish, T.; Wilken, R.; Wilkinson, R.; Williams, J. C.; Williams, T.; Williams, J. H.; Williams, G.; Willmott, C.; Wimpenny, S.; Winer, B. L.; Wingham, M.; Winn, D.; Winstrom, L.; Wissing, C.; Wittich, P.; Wittmer, B.; Wlochal, M.; Wöhri, H. K.; Wolf, R.; Wolf, M.; Womersley, W. J.; Won, S.; Wood, J. S.; Wood, D.; Wood, J.; Woodard, A.; Worm, S. D.; Wright, D.; Wrochna, G.; Wu, J. H.; Wu, S.; Wu, W.; Wulz, C.-E.; Würthwein, F.; Wyslouch, B.; Xiao, H.; Xie, S.; Xie, Z.; Xu, M.; Yagil, A.; Yang, M.; Yang, X.; Yang, Y.; Yang, F.; Yang, M.; Yang, Z. C.; Yarba, J.; Yazgan, E.; Ye, Y. L.; Yeh, P.; Yelton, J.; Yepes, P.; Yetkin, T.; Yi, K.; Yilmaz, Y.; Yohay, R.; Yoo, J.; Yoo, H. D.; Yoon, A. S.; York, A.; Youngman, C.; Yu, I.; Yu, S. S.; Yumiceva, F.; Yun, J. C.; Zabel, J.; Zabi, A.; Zablocki, J.; Zabolotny, W.; Zaganidis, N.; Zahariev, R.; Zakaria, M.; Zalan, P.; Zalewski, P.; Zanetti, M.; Zang, J.; Zang, S. L.; Zarubin, A.; Zatserklyaniy, A.; Zaytsev, V.; Zeinali, M.; Zeise, M.; Zelepoukine, S.; Zenz, S. C.; Zeuner, W. D.; Zeyrek, M.; Zhang, X.; Zhang, Z.; Zhang, Z.; Zhang, L.; Zhang, L.; Zhang, J.; Zhao, W. R.; Zheng, Y.; Zheng, Y.; Zhiltsov, V.; Zhokin, A.; Zhu, Z.; Zhu, B.; Zhu, K.; Zhu, R. Y.; Zhukov, V.; Zhukova, V.; Ziebarth, E. B.; Zielinski, M.; Zilizi, G.; Zimmerman, T.; Zito, G.; Zoeller, M. H.; Zorba, O.; Zotto, P.; Zou, W.; Zumerle, G.; Zupan, M.; Zuranski, A.; Zuyeuski, R.; Zvada, M.; Zych, P.

    2012-12-01

    The Higgs boson was postulated nearly five decades ago within the framework of the standard model of particle physics and has been the subject of numerous searches at accelerators around the world. Its discovery would verify the existence of a complex scalar field thought to give mass to three of the carriers of the electroweak force—the W+, W-, and Z0 bosons—as well as to the fundamental quarks and leptons. The CMS Collaboration has observed, with a statistical significance of five standard deviations, a new particle produced in proton-proton collisions at the Large Hadron Collider at CERN. The evidence is strongest in the diphoton and four-lepton (electrons and/or muons) final states, which provide the best mass resolution in the CMS detector. The probability of the observed signal being due to a random fluctuation of the background is about 1 in 3 × 106. The new particle is a boson with spin not equal to 1 and has a mass of about 1.25 giga-electron volts. Although its measured properties are, within the uncertainties of the present data, consistent with those expected of the Higgs boson, more data are needed to elucidate the precise nature of the new particle.

  14. Spin identification of graviton resonances in the process pp {sup {yields}}e{sup +}e{sup -} + X at the Large Hadron Collider (LHC)

    SciTech Connect

    Serenkova, I. A. Pankov, A.A. Tsytrinov, A.V.; Bednyakov, V. A.

    2010-07-15

    Prospects for discovering heavy graviton resonances in decays to an electron-positron pair and for identifying the nature of these resonances in the ATLAS experiment at the Large Hadron Collider (LHC) are investigated. Gravitons in the Randall-Sundrum model, which features extra spatial dimensions, are considered by way of example. A comparative analysis of effects of new different-spin heavy resonances, scalar [supersymmetric neutrino (sneutrino)], vector (new gauge Z' boson), and tensor (graviton) ones, is performed in order to identify the graviton spin. An identification of gravitons is performed by using the integrated center-edge asymmetry. For LHC, the graviton discovery (identification) reach is found to be 2.1 TeV (1.2 TeV) and 3.9 TeV (2.9 TeV) at a confidence level of 5{delta} (95%) for the graviton coupling constants of k/bar M {sub Pl} = 0.01 and 0.1, respectively. This analysis is the most general, since, for the first time, it takes into account the possible existence of scalar resonances, which affects substantially quantitative estimates of the identification reach.

  15. A new boson with a mass of 125 GeV observed with the CMS experiment at the Large Hadron Collider.

    PubMed

    2012-12-21

    The Higgs boson was postulated nearly five decades ago within the framework of the standard model of particle physics and has been the subject of numerous searches at accelerators around the world. Its discovery would verify the existence of a complex scalar field thought to give mass to three of the carriers of the electroweak force-the W(+), W(-), and Z(0) bosons-as well as to the fundamental quarks and leptons. The CMS Collaboration has observed, with a statistical significance of five standard deviations, a new particle produced in proton-proton collisions at the Large Hadron Collider at CERN. The evidence is strongest in the diphoton and four-lepton (electrons and/or muons) final states, which provide the best mass resolution in the CMS detector. The probability of the observed signal being due to a random fluctuation of the background is about 1 in 3 × 10(6). The new particle is a boson with spin not equal to 1 and has a mass of about 125 [corrected] giga-electron volts. Although its measured properties are, within the uncertainties of the present data, consistent with those expected of the Higgs boson, more data are needed to elucidate the precise nature of the new particle. PMID:23258887

  16. Single and double production of the Higgs boson at hadron and lepton colliders in minimal composite Higgs models

    NASA Astrophysics Data System (ADS)

    Kanemura, Shinya; Kaneta, Kunio; Machida, Naoki; Odori, Shinya; Shindou, Tetsuo

    2016-07-01

    In the composite Higgs models, originally proposed by Georgi and Kaplan, the Higgs boson is a pseudo Nambu-Goldstone boson (pNGB) of spontaneous breaking of a global symmetry. In the minimal version of such models, global SO(5) symmetry is spontaneously broken to SO(4), and the pNGBs form an isospin doublet field, which corresponds to the Higgs doublet in the Standard Model (SM). Predicted coupling constants of the Higgs boson can in general deviate from the SM predictions, depending on the compositeness parameter. The deviation pattern is determined also by the detail of the matter sector. We comprehensively study how the model can be tested via measuring single and double production processes of the Higgs boson at the LHC and future electron-positron colliders. The possibility to distinguish the matter sector among the minimal composite Higgs models is also discussed. In addition, we point out differences in the cross section of double Higgs boson production from the prediction in other new physics models.

  17. Proton-Λ correlation functions at energies available at the CERN Large Hadron Collider taking into account residual correlations

    NASA Astrophysics Data System (ADS)

    Shapoval, V. M.; Sinyukov, Yu. M.; Naboka, V. Yu.

    2015-10-01

    The theoretical analysis of the p ¯-Λ ⊕p -Λ ¯ correlation function in 10% most central Au+Au collisions at Relativistic Heavy Ion Collider (RHIC) energy √{sNN}=200 GeV shows that the contribution of residual correlations is a necessary factor for obtaining a satisfactory description of the experimental data. Neglecting the residual correlation effect leads to an unrealistically low source radius, about 2 times smaller than the corresponding value for p -Λ ⊕p ¯-Λ ¯ case, when one fits the experimental correlation function within Lednický-Lyuboshitz analytical model. Recently an approach that accounts effectively for residual correlations for the baryon-antibaryon correlation function was proposed, and a good RHIC data description was reached with the source radius extracted from the hydrokinetic model (HKM). The p ¯-Λ scattering length, as well as the parameters characterizing the residual correlation effect—annihilation dip amplitude and its inverse width—were extracted from the corresponding fit. In this paper we use these extracted values and simulated in HKM source functions for Pb+Pb collisions at the LHC energy √{sNN}=2.76 TeV to predict the corresponding p Λ and p Λ ¯ correlation functions.

  18. Ion colliders

    SciTech Connect

    Fischer, W.

    2011-12-01

    Ion colliders are research tools for high-energy nuclear physics, and are used to test the theory of Quantum Chromo Dynamics (QCD). The collisions of fully stripped high-energy ions create matter of a temperature and density that existed only microseconds after the Big Bang. Ion colliders can reach higher densities and temperatures than fixed target experiments although at a much lower luminosity. The first ion collider was the CERN Intersecting Storage Ring (ISR), which collided light ions [77Asb1, 81Bou1]. The BNL Relativistic Heavy Ion Collider (RHIC) is in operation since 2000 and has collided a number of species at numerous energies. The CERN Large Hadron Collider (LHC) started the heavy ion program in 2010. Table 1 shows all previous and the currently planned running modes for ISR, RHIC, and LHC. All three machines also collide protons, which are spin-polarized in RHIC. Ion colliders differ from proton or antiproton colliders in a number of ways: the preparation of the ions in the source and the pre-injector chain is limited by other effects than for protons; frequent changes in the collision energy and particle species, including asymmetric species, are typical; and the interaction of ions with each other and accelerator components is different from protons, which has implications for collision products, collimation, the beam dump, and intercepting instrumentation devices such a profile monitors. In the preparation for the collider use the charge state Z of the ions is successively increased to minimize the effects of space charge, intrabeam scattering (IBS), charge change effects (electron capture and stripping), and ion-impact desorption after beam loss. Low charge states reduce space charge, intrabeam scattering, and electron capture effects. High charge states reduce electron stripping, and make bending and acceleration more effective. Electron stripping at higher energies is generally more efficient. Table 2 shows the charge states and energies in the

  19. High luminosity muon collider design

    SciTech Connect

    Palmer, R.; Gallardo, J.

    1996-10-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should be regarded as complementary. Parameters are given of 4 TeV high luminosity {mu}{sup +}{mu}{sup {minus}} collider, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders.

  20. Physics at the Large Hadron Collider. Higgs boson (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 26 February 2014)

    NASA Astrophysics Data System (ADS)

    2014-09-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS) "Physics at the Large Hadron Collider. Higgs boson" was held in the conference hall of the Lebedev Physical Institute, RAS, on 26 February 2014. The agenda of the session, announced on the website http://www.gpad.ac.ru of the Physical Sciences Division, RAS, listed the following reports: (1) Boos E E (Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow) "Standard Model and predictions for the Higgs boson"; (2) Zaytsev A M (National Research Center Kurchatov Institute, Moscow) "ATLAS experiment. The Higgs boson and the Standard Model"; (3) Lanyov A V (Joint Institute for Nuclear Research, Dubna, Moscow region) "CMS collaboration results: Higgs boson and search for new physics"; (4) Kazakov D I (Joint Institute for Nuclear Research, Dubna, Moscow region) "The Higgs boson has been found: what is next?" Papers written on the basis of oral reports 1, 3, and 4 are published below. An extensive review of the topic in item 2 will be published in an upcoming issue of Physics-Uspekhi. • Standard Model and predictions for the Higgs boson, E E Boos Physics-Uspekhi, 2014, Volume 57, Number 9, Pages 912-923 • CMS collaboration results: Higgs boson and search for new physics, A V Lanyov Physics-Uspekhi, 2014, Volume 57, Number 9, Pages 923-930 • The Higgs boson is found: what is next?, D I Kazakov Physics-Uspekhi, 2014, Volume 57, Number 9, Pages 930-942

  1. 3-, 4-, and 5-flavor next-to-next-to-leading order parton distribution functions from deep-inelastic-scattering data and at hadron colliders

    NASA Astrophysics Data System (ADS)

    Alekhin, S.; Blümlein, J.; Klein, S.; Moch, S.

    2010-01-01

    We determine the parton distribution functions (PDFs) in a next-to-next-to-leading order QCD analysis of the inclusive neutral-current deep-inelastic-scattering (DIS) world data combined with the neutrino-nucleon DIS di-muon data and the fixed-target Drell-Yan data. The PDF evolution is performed in the Nf=3 fixed-flavor scheme and supplementary sets of PDFs in the 4- and 5-flavor schemes are derived from the results in the 3-flavor scheme using matching conditions. The charm-quark DIS contribution is calculated in a general-mass variable-flavor-number (GMVFN) scheme interpolating between the zero-mass 4-flavor scheme at asymptotically large values of momentum transfer Q2 and the 3-flavor scheme prescription of Buza-Matiounine-Smith-van Neerven (BMSN) at the value of Q2=mc2. The results in the general-mass variable-flavor-number scheme are compared with those of the fixed-flavor scheme and other prescriptions used in global fits of PDFs. The strong coupling constant is measured at an accuracy of ≈1.5%. We obtain at next-to-next-to-leading order αs(MZ2)=0.1135±0.0014 in the fixed-flavor scheme and αs(MZ2)=0.1129±0.0014 applying the Buza-Matiounine-Smith-van Neerven prescription. The implications for important standard candle and hard scattering processes at hadron colliders are illustrated. Predictions for cross sections of W±- and Z-boson, the top-quark pair, and Higgs-boson production at the Tevatron and the LHC based on the 5-flavor PDFs of the present analysis are provided.

  2. 3-, 4-, and 5-flavor next-to-next-to-leading order parton distribution functions from deep-inelastic-scattering data and at hadron colliders

    SciTech Connect

    Alekhin, S.; Bluemlein, J.; Klein, S.; Moch, S.

    2010-01-01

    We determine the parton distribution functions (PDFs) in a next-to-next-to-leading order QCD analysis of the inclusive neutral-current deep-inelastic-scattering (DIS) world data combined with the neutrino-nucleon DIS di-muon data and the fixed-target Drell-Yan data. The PDF evolution is performed in the N{sub f}=3 fixed-flavor scheme and supplementary sets of PDFs in the 4- and 5-flavor schemes are derived from the results in the 3-flavor scheme using matching conditions. The charm-quark DIS contribution is calculated in a general-mass variable-flavor-number (GMVFN) scheme interpolating between the zero-mass 4-flavor scheme at asymptotically large values of momentum transfer Q{sup 2} and the 3-flavor scheme prescription of Buza-Matiounine-Smith-van Neerven (BMSN) at the value of Q{sup 2}=m{sub c}{sup 2}. The results in the general-mass variable-flavor-number scheme are compared with those of the fixed-flavor scheme and other prescriptions used in global fits of PDFs. The strong coupling constant is measured at an accuracy of {approx_equal}1.5%. We obtain at next-to-next-to-leading order {alpha}{sub s}(M{sub Z}{sup 2})=0.1135{+-}0.0014 in the fixed-flavor scheme and {alpha}{sub s}(M{sub Z}{sup 2})=0.1129{+-}0.0014 applying the Buza-Matiounine-Smith-van Neerven prescription. The implications for important standard candle and hard scattering processes at hadron colliders are illustrated. Predictions for cross sections of W{sup {+-}-} and Z-boson, the top-quark pair, and Higgs-boson production at the Tevatron and the LHC based on the 5-flavor PDFs of the present analysis are provided.

  3. Optimization of a closed-loop gas system for the operation of Resistive Plate Chambers at the Large Hadron Collider experiments

    NASA Astrophysics Data System (ADS)

    Capeans, M.; Glushkov, I.; Guida, R.; Hahn, F.; Haider, S.

    2012-01-01

    Resistive Plate Chambers (RPCs), thanks to their fast time resolution (˜1 ns), suitable space resolution (˜1 cm) and low production cost (˜50 €/m2), are widely employed for the muon trigger systems at the Large Hadron Collider (LHC). Their large detector volume (they cover a surface of about 4000 m2 equivalent to 16 m3 of gas volume both in ATLAS and CMS) and the use of a relatively expensive Freon-based gas mixture make a closed-loop gas circulation unavoidable. It has been observed that the return gas of RPCs operated in conditions similar to the difficult experimental background foreseen at LHC contains a large amount of impurities potentially dangerous for long-term operation. Several gas-cleaning agents are currently in use in order to avoid accumulation of impurities in the closed-loop circuits. We present the results of a systematic study characterizing each of these cleaning agents. During the test, several RPCs were operated at the CERN Gamma Irradiation Facility (GIF) in a high radiation environment in order to observe the production of typical impurities: mainly fluoride ions, molecules of the Freon group and hydrocarbons. The polluted return gas was sent to several cartridges, each containing a different cleaning agent. The effectiveness of each material was studied using gas chromatography and mass-spectrometry techniques. Results of this test have revealed an optimized configuration of filters that is now under long-term validation.Gas optimization studies are complemented with a finite element simulation of gas flow distribution in the RPCs, aiming at its eventual optimization in terms of distribution and flow rate.

  4. Reco level Smin and subsystem Smin: improved global inclusive variables for measuring the new physics mass scale in MET events at hadron colliders

    SciTech Connect

    Konar, Partha; Kong, Kyoungchul; Matchev, Konstantin T.; Park, Myeonghun; /Florida U.

    2011-08-11

    The variable {radical}s{sub min} was originally proposed in [1] as a model-independent, global and fully inclusive measure of the new physics mass scale in missing energy events at hadron colliders. In the original incarnation of {radical}s{sub min}, however, the connection to the new physics mass scale was blurred by the effects of the underlying event, most notably initial state radiation and multiple parton interactions. In this paper we advertize two improved variants of the {radical}s{sub min} variable, which overcome this problem. First we show that by evaluating the {radical}s{sub min} variable at the RECO level, in terms of the reconstructed objects in the event, the effects from the underlying event are significantly diminished and the nice correlation between the peak in the {radical}s{sub min}{sup (reco)} distribution and the new physics mass scale is restored. Secondly, the underlying event problem can be avoided altogether when the {radical}s{sub min} concept is applied to a subsystem of the event which does not involve any QCD jets. We supply an analytic formula for the resulting subsystem {radical}s{sub min}{sup (sub)} variable and show that its peak exhibits the usual correlation with the mass scale of the particles produced in the subsystem. Finally, we contrast {radical}s{sub min} to other popular inclusive variables such as H{sub T}, M{sub Tgen} and M{sub TTgen}. We illustrate our discussion with several examples from supersymmetry, and with dilepton events from top quark pair production.

  5. Search for supersymmetry in dijet and multijet channels and soft QCD measurements using the atlas detector at the large hadron collider

    NASA Astrophysics Data System (ADS)

    Pravahan, Rishiraj

    The ATLAS experiment at the CERN Large Hadron Collider (LHC) has collected a substantial amount of data to understand the Standard Model of particle physics at higher than previous center of mass energy available and to explore new physics beyond the Standard Model. This dissertation describes observations of charged particle multiplicity distributions in 7 TeV and 900 GeV data as well as searches for new physics with a signature of high energy jets and missing transverse energy using the first few months of data available at the LHC. Multiplicity distributions of charged particle tracks, one of the first observables in high energy collisions were made for a center of mass energy, s = 900 GeV as well as 7 TeV proton-proton collision data. Such distributions help to understand multi-particle production processes. One of the predicted features of multiplicity distribution and its moments is KNO scaling which implies that the shape and moments of the scaled multiplicity distribution is independent of the center-of-mass energy. Although a clear violation of KNO scaling is not observed within the error limits, an indication of such violation is noted. Different models of hadro-production to describe multiplicity distributions are also studied. The Negative Binomial Distribution (NBD) is an often used distribution modeling multiplicity distributions. It has been observed that NBD is satisfied in different types of collisions and over wide range of energies and it was observed that not only the full-phase-space multiplicity distribution can be successfully fitted by the NBD but also the distribution within central pseudo-rapidity intervals. Based on these findings, the model of cluster (or "clan") cascading type has been proposed. Although, a good NBD fit can be obtained, it is observed for hadronic interactions that the presence of two weighted NBD or Double NBD (DNBD) components, one corresponding to soft production and the other to semi-hard one (mini-jets) seems to

  6. Luminosity measurements at hadron colliders

    SciTech Connect

    Papadimitriou, Vaia; /Fermilab

    2008-04-01

    In this paper we discuss luminosity measurements at Tevatron and HERA as well as plans for luminosity measurements at LHC. We discuss luminosity measurements using the luminosity detectors of the experiments as well as measurements by the machine. We address uncertainties of the measurements, challenges and lessons learned.

  7. Triphoton production at hadron colliders

    SciTech Connect

    Campbell, John M.; Williams, Ciaran

    2014-06-01

    We present next-to-leading order predictions for the production of triphoton final states at the LHC and the Tevatron. Our results include the effect of photon fragmentation for the first time and we are able to quantify the impact of different isolation prescriptions. We find that calculations accounting for fragmentation effects at leading order, and those employing a smooth cone isolation where no fragmentation contribution is required, are in reasonable agreement with one another. However, larger differences in the predicted rates arise when higher order corrections to the fragmentation functions are included. In addition we present full analytic results for the $\\gamma\\gamma\\gamma$ and $\\gamma\\gamma+$jet one-loop amplitudes. These amplitudes, which are particularly compact, may be useful to future higher-order calculations. Our results are available in the Monte Carlo code MCFM.

  8. hc production at hadron colliders

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Xiong; Zhang, Hong-Fei

    2015-02-01

    In this paper, we present the study of the hadroproduction rate of hc at next-to-leading order in {{α }s} under the nonrelativisitic QCD (NRQCD) factorization framework, using color-octet long-distance matrix elements obtained from a global fit of experimental measurements on {{χ }c} yield and the ratio dσ ({{χ }c2})/dσ ({{χ }c1}) from the CDF, LHCb, CMS, and ATLAS Collaborations. This paper considers the problem of NRQCD scale dependence for the first time, and finds that, for some experimental conditions, the choice of this scale can significantly affect the final results, which indicates that, for these conditions, theoretical evaluation up to next-to-leading order cannot provide sufficiently precise predictions. We also present a brief analysis on the NRQCD scale dependence problem, and provide a criterion to determine in which case next-to-leading order prediction would be ruined by the scale dependence.

  9. Spin in Hadron Reactions

    SciTech Connect

    Aidala, Christine A.

    2009-08-04

    The Relativistic Heavy Ion Collider (RHIC) has brought the study of spin effects in hadronic collisions to a new energy regime. In conjunction with other experiments at facilities around the world, much can be learned from the high-energy polarized proton collisions RHIC provides, allowing the collider to serve as a powerful tool to continue to understand the rich subtleties and surprises of spin effects in QCD, some of which were originally discovered more than three decades ago.

  10. News Teaching: The epiSTEMe project: KS3 maths and science improvement Field trip: Pupils learn physics in a stately home Conference: ShowPhysics welcomes fun in Europe Student numbers: Physics numbers increase in UK Tournament: Physics tournament travels to Singapore Particle physics: Hadron Collider sets new record Astronomy: Take your classroom into space Forthcoming Events

    NASA Astrophysics Data System (ADS)

    2010-05-01

    Teaching: The epiSTEMe project: KS3 maths and science improvement Field trip: Pupils learn physics in a stately home Conference: ShowPhysics welcomes fun in Europe Student numbers: Physics numbers increase in UK Tournament: Physics tournament travels to Singapore Particle physics: Hadron Collider sets new record Astronomy: Take your classroom into space Forthcoming Events

  11. Two- and three-pion quantum statistics correlations in Pb-Pb collisions at √sNN =2.76 TeV at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Abelev, B.; Adam, J.; Adamová, D.; Aggarwal, M. M.; Rinella, G. Aglieri; Agnello, M.; Agocs, A. G.; Agostinelli, A.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Masoodi, A. Ahmad; Ahmed, I.; Ahn, S. U.; Ahn, S. A.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Prado, C. Alves Garcia; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bairathi, V.; Bala, R.; Baldisseri, A.; Pedrosa, F. Baltasar Dos Santos; Bán, J.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batyunya, B.; Batzing, P. C.; Baumann, C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Berger, M. E.; Bergognon, A. A. E.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Boehmer, F. V.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bornschein, J.; Bossú, F.; Botje, M.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Caliva, A.; Villar, E. Calvo; Camerini, P.; Roman, V. Canoa; Carena, F.; Carena, W.; Carminati, F.; Díaz, A. Casanova; Castellanos, J. Castillo; Casula, E. A. R.; Catanescu, V.; Cavicchioli, C.; Sanchez, C. Ceballos; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Barroso, V. Chibante; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Balbastre, G. Conesa; Conesa Del Valle, Z.; Connors, M. E.; Contin, G.; Contreras, J. G.; Cormier, T. M.; Morales, Y. Corrales; Cortese, P.; Maldonado, I. Cortés; Cosentino, M. R.; Costa, F.; Crochet, P.; Albino, R. Cruz; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dang, R.; Danu, A.; Das, D.; Das, I.; Das, K.; Das, S.; Dash, A.; Dash, S.; de, S.; Delagrange, H.; Deloff, A.; Dénes, E.; D'Erasmo, G.; de Barros, G. O. V.; de Caro, A.; de Cataldo, G.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; de Rooij, R.; Corchero, M. A. Diaz; Dietel, T.; Divià, R.; Bari, D. Di; Liberto, S. Di; Mauro, A. Di; Nezza, P. Di; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Gimenez, D. Domenicis; Dönigus, B.; Dordic, O.; Dorheim, S.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Majumdar, A. K. Dutta; Elia, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Téllez, A. Fernández; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floratos, E.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Girard, M. Fusco; Gaardhøje, J. J.; Gagliardi, M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Garishvili, I.; Gerhard, J.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez, R.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Graczykowski, L. K.; Grajcarek, R.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Khan, K. H.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.

    2014-02-01

    Correlations induced by quantum statistics are sensitive to the spatiotemporal extent as well as dynamics of particle-emitting sources in heavy-ion collisions. In addition, such correlations can be used to search for the presence of a coherent component of pion production. Two- and three-pion correlations of same and mixed charge are measured at low relative momentum to estimate the coherent fraction of charged pions in Pb-Pb collisions at √sNN =2.76 TeV at the CERN Large Hadron Collider with ALICE. The genuine three-pion quantum statistics correlation is found to be suppressed relative to the two-pion correlation based on the assumption of fully chaotic pion emission. The suppression is observed to decrease with triplet momentum. The observed suppression at low triplet momentum may correspond to a coherent fraction in charged-pion emission of 23%±8%.

  12. Search for Gluino-Mediated Supersymmetry in Events With Bottom-Quark Jets and Missing Transverse Energy With the Compact Muon Solenoid Detector at the Large Hadron Collider With Proton-Proton Collisions at 8 TeV

    NASA Astrophysics Data System (ADS)

    Nguyen, Harold

    A search is presented for physics beyond the standard model based on events with significant missing transverse energy, at least three jets, and at least one identified bottom-quark jet. The study is based on a sample of 19 fb-1 collected at 8 TeV with the CMS detector at the Large Hadron Collider in 2012. The background from standard model processes is evaluated using data control samples, and a global likelihood fit is performed. The data are found to be consistent with standard model processes, and the results are interpreted in the context of simplified models (SMS). Upper limits on the production cross sections of the T1bbbb and T1tttt SMS new physics scenarios are determined. Gluino masses up to 1170 GeV are excluded for the T1bbbb scenario and up to 1020 GeV for the T1tttt scenario, at 95% confidence level.

  13. Measurement of the Inclusive $Z \\to ee$ Production Cross Section in Proton-Proton Collisions at $\\sqrt{s}$ = 7TeV and $Z \\to ee$ Decays as Standard Candles for Luminosity at the Large Hadron Collider

    SciTech Connect

    Werner, Jeremy

    2011-01-01

    This thesis comprises a precision measurement of the inclusive \\Zee production cross section in proton-proton collisions provided by the Large Hadron Collider (LHC) at a center-of-mass energy of $\\sqrt{s}=7$~TeV and the absolute luminosity based on \\Zee decays. The data was collected by the Compact Muon Solenoid (CMS) detector near Geneva, Switzerland during the year of 2010 and corresponds to an integrated luminosity of $\\int\\mathcal{L}dt = 35.9\\pm 1.4$~pb$^{-1}$. Electronic decays of $Z$ bosons allow one of the first electroweak measurements at the LHC, making the cross section measurement a benchmark of physics performance after the first year of CMS detector and LHC machine operations. It is the first systematic uncertainty limited \\Zee cross section measurement performed at $\\sqrt{s}=7$~TeV. The measured cross section pertaining to the invariant mass window $M_{ee}\\in (60,120)$~GeV is reported as: $\\sigma(pp\\to Z+X) \\times \\mathcal{B}( Z\\to ee ) = 997 \\pm 11 \\mathrm{(sta t)} \\pm 19 \\mathrm{(syst)} \\pm 40 \\mathrm{(lumi)} \\textrm{ pb}$, which agrees with the theoretical prediction calculated to NNLO in QCD. Leveraging \\Zee decays as ``standard candles'' for measuring the absolute luminosity at the LHC is examined; they are produced copiously, are well understood, and have clean detector signatures. Thus the consistency of the inclusive \\Zee production cross section measurement with the theoretical prediction motivates inverting the measurement to instead use the \\Zee signal yield to measure the luminosity. The result, which agrees with the primary relative CMS luminosity measurement calibrated using Van der Meer separation scans, is not only the most precise absolute luminosity measurement performed to date at a hadron collider, but also the first one based on a physics signal at the LHC.

  14. Status and future directions for advanced accelerator research - conventional and non-conventional collider concepts

    SciTech Connect

    Siemann, R.H.

    1997-01-01

    The relationship between advanced accelerator research and future directions for particle physics is discussed. Comments are made about accelerator research trends in hadron colliders, muon colliders, and e{sup +}3{sup {minus}} linear colliders.

  15. Tau physics at p[bar p] colliders

    SciTech Connect

    Konigsberg, J. . High Energy Physics Lab.)

    1993-01-01

    Tau detection techniques in hadron colliders are discussed together with the measurements and searches performed so far. We also underline the importance tau physics has in present and future collider experiments.

  16. Tau physics at p{bar p} colliders

    SciTech Connect

    Konigsberg, J.

    1993-01-01

    Tau detection techniques in hadron colliders are discussed together with the measurements and searches performed so far. We also underline the importance tau physics has in present and future collider experiments.

  17. Muon collider progress

    SciTech Connect

    Noble, Robert J. FNAL

    1998-08-01

    Recent progress in the study of muon colliders is presented. An international collaboration consisting of over 100 individuals is involved in calculations and experiments to demonstrate the feasibility of this new type of lepton collider. Theoretical efforts are now concentrated on low-energy colliders in the 100 to 500 GeV center-of-mass energy range. Credible machine designs are emerging for much of a hypothetical complex from proton source to the final collider. Ionization cooling has been the most difficult part of the concept, and more powerful simulation tools are now in place to develop workable schemes. A collaboration proposal for a muon cooling experiment has been presented to the Fermilab Physics Advisory Committee, and a proposal for a targetry and pion collection channel experiment at Brookhaven National Laboratory is in preparation. Initial proton bunching and space-charge compensation experiments at existing hadron facilities have occurred to demonstrate proton driver feasibility.

  18. Estimation of the Invisible Z Background to Hadronic Supersymmetry Searches Performed With Proton-Proton Collision Data at 7 and 8 TeV Observed With the CMS Detector During the First Run of the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Sturdy, Jared Todd

    In searches for SUSY in all-hadronic channels, events with jets and a Z boson form an irreducible background when the PZ\\ boson decays to a pair of neutrinos. For R-parity conserving susy models, every decay chain involving a superparticle must result in at least one gls{lsp}, which can be neutral and noninteracting. The detector signature for the gls{lsp} is identical to that of the two neutrinos from the PZ, which appear as an imbalance in the transverse momentum of the event. The characterization of these types of events is crucially important in any search for new physics performed in a multi-jets+missing transverse momentum channel. A method for estimating this irreducible background using events with a measured photon is presented, and the results for a search performed in the all-hadronic multi-jet channel are shown to be consistent with standard model expectations. Limits are set on the mass of expected new particles in various models.

  19. Quark-Hadron Duality in Electron Scattering

    SciTech Connect

    W. Melnitchouk

    2000-09-01

    Quark-hadron duality addresses some of the most fundamental issues in strong interaction physics, in particular the nature of the transition from the perturbative to non-perturbative regions of QCD. I summarize recent developments in quark-hadron duality in lepton-hadron scattering, and outline how duality can be studied at future high-luminosity facilities such as Jefferson Lab at 12 GeV, or an electron-hadron collider such as EPIC.

  20. Search for the Flavor-Changing Neutral Current in Top Pair Events in √s = 8 TeV Proton-Proton Collisions at the Large Hadron Collider Using the ATLAS Detector

    NASA Astrophysics Data System (ADS)

    Brost, Elizabeth Caitlin

    In this dissertation, a search for the flavor-changing neutral current in top-antitop events is presented. The flavor-changing neutral current is forbidden at tree level in the Standard Model and suppressed at higher order due to the GIM mechanism. In the Standard Model, the top quark is expected to decay to a W boson and a bottom quark nearly 100 percent of the time. While the Standard Model branching fractions for flavor-changing neutral currents in top decays are well beyond current experimental reach, there exist theoretical models which predict large enhancements to those branching fractions. Observation of the flavor-changing neutral current in top decays would be an unambiguous confirmation of new physics. This search was conducted in data from proton-proton collisions at the Large Hadron Collider, running at a center-of-mass energy of √s = 8 TeV, which were collected with the ATLAS detector in 2012. These data correspond to an integrated luminosity of 20.3 fb. -1. Candidate events include a lepton (electron or muon), a photon, at least two jets (one of which is b-tagged), and missing transverse energy. As no signal is observed, an observed (expected) upper limit on the branching ratio BR(t → qgamma) of 0.063% (0.062%) is presented.

  1. Triangular flow of thermal photons from an event-by-event hydrodynamic model for 2.76 A TeV Pb + Pb collisions at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Chatterjee, Rupa; Srivastava, Dinesh K.; Renk, Thorsten

    2016-07-01

    We calculate the triangular flow parameter v3 of thermal photons from an event-by-event ideal hydrodynamic model for 0-40% central collisions of Pb nuclei at √{sN N}=2.76 TeV at the CERN Large Hadron Collider. v3 determined with respect to the participant plane (PP) is found to be nonzero and positive, and its pT dependence is qualitatively similar to the elliptic flow parameter v2(PP) of thermal photons in the range 1 ≤pT≤6 GeV/c . In the range pT≤ 3 GeV/c , v3(PP) is found to be about 50-75% of v2(PP) and for pT> 3 GeV/c the two anisotropy parameters become comparable. The value of v3 is driven by local density fluctuations both directly via the creation of triangular geometry and indirectly via additional flow. As expected, the triangular flow parameter calculated with respect to the reaction plane v3(RP) is found to be close to zero. We show that v3(PP) strongly depends on the spatial size of fluctuations, especially in the higher pT(≥3 GeV /c ) region where a larger value of σ results in a smaller v3(PP ) . In addition, v3(PP ) is found to increase with the assumed formation time of the thermalized system.

  2. Interpretation of charged-particle spectra in p +p and p +Pb collisions at energies available at the CERN Large Hadron Collider using an improved hijing code with a collective cascade

    NASA Astrophysics Data System (ADS)

    Abdel-Waged, Khaled; Felemban, Nuha

    2015-03-01

    We supplement the Heavy Ion Jet Interaction Generator (hijing) code with a collective cascade recipe and updated Martin-Stirling-Thorne-Watt (MSTW2009) parton distribution functions (PDFs) to describe nonsingle diffractive (NSD) p +p and Pb collisions at CERN Large Hadron Collider energies. The collective cascade, developed in the space of an impact parameter, is used to induce nuclear modification of nucleons, that are involved in primary interactions, inside the dense nuclear medium. It is found that the improved hijing (Imhijing) code (that with MSTW2009 PDFs) reproduces rather well the pseudorapidity density, the multiplicity, and the transverse momentum distributions of charged particles within the pseudorapidity interval | ηc .m .system|<2.4 in NSD p +p collisions at √{sNN}=0.9 , 2.36, and 7 TeV. The Imhijing with collective cascade calculations is also shown to be a good fit to the pseudorapidity density (in the laboratory system) and transverse momentum (pT) dependence of the nuclear modification of charged particles in NSD p +Pb collisions at √{sNN}=5.02 TeV . The effects of the collective cascade are clearly seen in the target (3 <ηlab<4 ) and central (within | ηc .m .system|<0.3 at 1

  3. Impact of parton distribution function and {alpha}{sub s} uncertainties on Higgs boson production in gluon fusion at hadron colliders

    SciTech Connect

    Demartin, Federico; Mariani, Elisa; Forte, Stefano; Vicini, Alessandro; Rojo, Juan

    2010-07-01

    We present a systematic study of uncertainties due to parton distributions (PDFs) and the strong coupling on the gluon-fusion production cross section of the standard model Higgs at the Tevatron and LHC colliders. We compare procedures and results when three recent sets of PDFs are used, CTEQ6.6, MSTW08, and NNPDF1.2, and we discuss specifically the way PDF and strong coupling uncertainties are combined. We find that results obtained from different PDF sets are in reasonable agreement if a common value of the strong coupling is adopted. We show that the addition in quadrature of PDF and {alpha}{sub s} uncertainties provides an adequate approximation to the full result with exact error propagation. We discuss a simple recipe to determine a conservative PDF+{alpha}{sub s} uncertainty from available global parton sets, and we use it to estimate this uncertainty on the given process to be about 10% at the Tevatron and 5% at the LHC for a light Higgs.

  4. The standard model and colliders

    SciTech Connect

    Hinchliffe, I.

    1987-03-01

    Some topics in the standard model of strong and electroweak interactions are discussed, as well as how these topics are relevant for the high energy colliders which will become operational in the next few years. The radiative corrections in the Glashow-Weinberg-Salam model are discussed, stressing how these corrections may be measured at LEP and the SLC. CP violation is discussed briefly, followed by a discussion of the Higgs boson and the searches which are relevant to hadron colliders are then discussed. Some of the problems which the standard model does not solve are discussed, and the energy ranges accessible to the new colliders are indicated. (LEW)

  5. Exotic colliders

    SciTech Connect

    Chattopadhyay, S.

    1994-11-01

    The motivation, feasibility and potential for two unconventional collider concepts - the Gamma-Gamma Collider and the Muon Collider - are described. The importance of the development of associated technologies such as high average power, high repetition rate lasers and ultrafast phase-space techniques are outlined.

  6. Photon Colliders

    SciTech Connect

    Gronberg, J

    2002-10-07

    A photon collider interaction region has the possibility of expanding the physics reach of a future TeV scale electron-positron collider. A survey of ongoing efforts to design the required lasers and optics to create a photon collider is presented in this paper.

  7. Theoretical study of the effect of the size of a high-energy proton beam of the Large Hadron Collider on the formation and propagation of shock waves in copper irradiated by 450-GeV proton beams

    NASA Astrophysics Data System (ADS)

    Ryazanov, A. I.; Stepakov, A. V.; Vasilyev, Ya. S.; Ferrari, A.

    2014-02-01

    The interaction of 450-GeV protons with copper, which is the material of the collimators of the Large Hadron Collider, has been theoretically studied. A theoretical model for the formation and propagation of shock waves has been proposed on the basis of the analysis of the energy released by a proton beam in the electronic subsystem of the material owing to the deceleration of secondary particles appearing in nuclear reactions induced by this beam on the electronic subsystem of the material. The subsequent transfer of the energy from the excited electronic subsystem to the crystal lattice through the electron-phonon interaction has been described within the thermal spike model [I.M. Lifshitz, M.I. Kaganov, and L.V. Tanatarov, Sov. Phys. JETP 4, 173 (1957); I.M. Lifshitz, M.I. Kaganov, and L.V. Tanatarov, At. Energ. 6, 391 (1959); K. Yasui, Nucl. Instrum. Methods Phys. Res., Sect. B 90, 409 (1994)]. The model of the formation of shock waves involves energy exchange processes between excited electronic and ionic subsystems of the irradiated material and is based on the hydrodynamic approximation proposed by Zel'dovich [Ya.B. Zel'dovich and Yu.P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1966; Dover, New York, 2002)]. This model makes it possible to obtain the space-time distributions of the main physical characteristics (temperatures of the ionic and electronic subsystems, density, pressure, etc.) in materials irradiated by high-energy proton beams and to analyze the formation and propagation of shock waves in them. The nonlinear differential equations describing the conservation laws of mass, energy, and momentum of electrons and ions in the Euler variables in the case of the propagation of shock waves has been solved with the Godunov scheme [S. K. Godunov, A.V. Zabrodin, M.Ya. Ivanov, A.N. Kraiko, and G.P. Prokopov, Numerical Solution of Multidimensional Problems in Gas Dynamics (Nauka, Moscow, 1976) [in Russian

  8. Vectorlike leptons at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Kumar, Nilanjana; Martin, Stephen P.

    2015-12-01

    We study the prospects for excluding or discovering vectorlike leptons using multilepton events at the LHC. We consider models in which the vectorlike leptons decay to tau leptons. If the vectorlike leptons are weak isosinglets, then discovery in multilepton states is found to be extremely challenging. For the case that the vectorlike leptons are weak isodoublet, we argue that there may be an opportunity for exclusion for masses up to about 275 GeV by direct searches with existing LHC data at √{s }=8 TeV . We also discuss prospects for exclusion or discovery at the LHC with future √{s }=13 TeV data.

  9. Higgs friends and counterfeits at hadron colliders

    NASA Astrophysics Data System (ADS)

    Fox, Patrick J.; Tucker-Smith, David; Weiner, Neal

    2011-06-01

    We consider the possibility of "Higgs counterfeits" - scalars that can be produced with cross sections comparable to the SM Higgs, and which decay with identical relative observable branching ratios, but which are nonetheless not responsible for electroweak symmetry breaking. We also consider a related scenario involving "Higgs friends," fields similarly produced through gg fusion processes, which would be discovered through diboson channels WW, ZZ, γγ, or even γZ, potentially with larger cross sections times branching ratios than for the Higgs. The discovery of either a Higgs friend or a Higgs counterfeit, rather than directly pointing towards the origin of the weak scale, would indicate the presence of new colored fields necessary for the sizable production cross section (and possibly new colorless but electroweakly charged states as well, in the case of the diboson decays of a Higgs friend). These particles could easily be confused for an ordinary Higgs, perhaps with an additional generation to explain the different cross section, and we emphasize the importance of vector boson fusion as a channel to distinguish a Higgs counterfeit from a true Higgs. Such fields would naturally be expected in scenarios with "effective Z's," where heavy states charged under the SM produce effective charges for SM fields under a new gauge force. We discuss the prospects for discovery of Higgs counterfeits, Higgs friends, and associated charged fields at the LHC.

  10. Triggering at a high luminosity hadron collider

    SciTech Connect

    Price, L.E.; Wagner, R.G.; Abolins, M.A.

    1984-01-01

    The extreme interaction rate occurring at the SSC as described in the Reference Design Report poses the principal new challenge for the triggering system compared with detectors at previous accelerators. At SSC we must plan for about 10/sup 8/ interactions per second. If bunch crossings occur each 33 ns, there will be an average of 3 interactions in each bunch crossing. Potential problems for triggering are presented both by the high total rate and by the multiple interactions per bunch crossing, so that triggering events must be selected in the presence of other interactions independent of the inherent speed of either detector elements or triggering electronics. Three principal topics are considered in this report: (1) Practical selections to be made in a first-level trigger to reduce the rate by a factor of 1000. (2) Electronics expected to implement this first-level trigger, and (3) the ultimate trigger selections that must be used to select the approximately 1 Hz that can practically be recorded for detailed analysis. 11 references, 6 figures.

  11. Quarks and gluons at hadron colliders

    SciTech Connect

    Bodek, A.; CDF Collaboration

    1996-08-01

    Data from proton-antiproton collisions at high energy provide important information on constraining the quark and gluon distributions in the nucleon and place limits on quark substructure. The S asymmetry data constrains the slope of the d/u quark distributions and significantly reduces the systematic error on the extracted value of the W mass. Drell-Yan data at high invariant mass provides strong limits on quark substructure. Information on {alpha}{sub s} and the gluon distributions can be extracted from high P{sub T} jet data and direct photons.

  12. Vector leptoquark production at hadron colliders

    SciTech Connect

    Hewett, J.L.; Rizzo, T.G.; Pakvasa, S.; Haber, H.E.; Pomarol, A.

    1993-09-01

    We explore the production of vector leptoquarks(V) at the Tevatron, LHC, and SSC through both quark-antiquark and gluon fusion: q{bar q}, gg {yields} VV. The cross sections are found to be somewhat larger than for scalar leptoquarks of the same mass implying enhanced search capabilities.

  13. Aspects of hadron physics.

    SciTech Connect

    Bhagwat, M. S.; Hoell, A.; Roberts, C. D.; Wright, S. V.; Physics; Univ. Rostock

    2007-01-01

    Detailed investigations of the structure of hadrons are essential for understanding how matter is constructed from the quarks and gluons of Quantum chromodynamics (QCD), and amongst the questions posed to modern hadron physics, three stand out. What is the rigorous, quantitative mechanism responsible for confinement? What is the connection between confinement and dynamical chiral symmetry breaking? And are these phenomena together sufficient to explain the origin of more than 98% of the mass of the observable universe? Such questions may only be answered using the full machinery of nonperturbative relativistic quantum field theory. This contribution provides a perspective on progress toward answering these key questions. In so doing it will provide an overview of the contemporary application of Dyson-Schwinger equations in Hadron Physics, additional information on which may be found in Refs. [1, 2, 3, 4, 5, 6]. The presentation assumes that the reader is familiar with the concepts and notation of relativistic quantum mechanics, with the functional integral formulation of quantum field theory and with regularization and renormalization in its perturbative formulation. For these topics, in order of appearance, Refs. [7, 8, 9, 10] are useful. In addition, Chaps. 1 and 2 of Ref. [5] review the bulk of the necessary concepts. Hadron physics is a key part of the international effort in basic science. For example, in the USA we currently have the Thomas Jefferson National Accelerator Facility (JLab) and the Relativistic Heavy Ion Collider (RHIC) while in Europe hadron physics is studied at the Frascati National Laboratory and is an important part of a forthcoming pan-European initiative; namely, the Facility for Antiproton and Ion Research (FAIR) at GSI-Darmstadt. Progress in this field is gauged via the successful completion of precision measurements of fundamental properties of hadrons; e.g., the pion, proton and neutron, and simple nuclei, for comparison with

  14. PROSPECTS FOR COLLIDERS AND COLLIDER PHYSICS TO THE 1 PEV ENERGY SCALE

    SciTech Connect

    KING,B.J.

    2000-05-05

    A review is given of the prospects for future colliders and collider physics at the energy frontier. A proof-of-plausibility scenario is presented for maximizing the authors progress in elementary particle physics by extending the energy reach of hadron and lepton colliders as quickly and economically as might be technically and financially feasible. The scenario comprises 5 colliders beyond the LHC--one each of e{sup +}e{sup {minus}} and hadron colliders and three {mu}{sup +}{mu}{sup {minus}} colliders--and is able to hold to the historical rate of progress in the log-energy reach of hadron and lepton colliders, reaching the 1 PeV constituent mass scale by the early 2040's. The technical and fiscal requirements for the feasibility of the scenario are assessed and relevant long-term R and D projects are identified. Considerations of both cost and logistics seem to strongly favor housing most or all of the colliders in the scenario in a new world high energy physics laboratory.

  15. Signatures of doubly-charged Higgsinos at colliders

    SciTech Connect

    Demir, D. A.; Frank, M.; Turan, I.; Huitu, K.; Rai, S. K.

    2008-11-23

    Several supersymmetric models with extended gauge structures predict light doubly-charged Higgsinos. Their distinctive signature at the large hadron collider is highlighted by studying its production and decay characteristics.

  16. High Energy Accelerator and Colliding Beam User Group

    SciTech Connect

    Snow, G.A.; Skuja, A.

    1992-05-01

    This report discusses research in the following areas: the study of e{sup +}e{sup {minus}} interactions; Hadron collider physics at Fermilab; fixed target physics and particle physics of general interest; and, the solenoidal detector collaboration at SSCL.

  17. World lays groundwork for future linear collider

    SciTech Connect

    Feder, Toni

    2010-07-15

    With the Large Hadron Collider at CERN finally working, the particle-physics community can now afford to divide its attention between achieving LHC results and preparing for the next machine on its wish list, an electron-positron linear collider. The preparations involve developing and deciding on the technology for such a machine, the mode of its governance, and how to balance regional and global particle- and accelerator-physics programs.

  18. Physics at Future Circular Colliders

    NASA Astrophysics Data System (ADS)

    Kotwal, Ashutosh

    2016-03-01

    The Large Hadron Collider has been a grand success with the discovery of the Higgs boson, with bright prospects for additional discoveries since the recent increase in collider energy and the anticipated large datasets. Big open questions such as the nature of dark matter, the origin of the matter-antimatter asymmetry in the Universe, and the theoretical puzzle of the finely-tuned parameters in the Higgs sector, demand new physics principles that extend the established Standard Model paradigm. Future circular colliders in a substantially larger tunnel can house both a high luminosity electron-positron collider for precision measurements of Higgs and electroweak parameters, as well as a very high energy proton-proton collider which can directly manifest particles associated with these new physics principles. We discuss the physics goals of these future circular colliders, and the prospects for elucidating fundamental new laws of nature that will significantly extend our understanding of the Universe. Detailed studies of the discovery potential in specific benchmark models will be presented, with implications for detector design.

  19. Luminosity determination at proton colliders

    NASA Astrophysics Data System (ADS)

    Grafström, P.; Kozanecki, W.

    2015-03-01

    Luminosity is a key parameter in any particle collider, and its precise determination has proven particularly challenging at hadron colliders. After introducing the concept of luminosity in its multiple incarnations and offering a brief survey of the pp and p p bar colliders built to date, this article outlines the various methods that have been developed for relative-luminosity monitoring, as well as the complementary approaches considered for establishing an absolute luminosity scale. This is followed by a survey, from both a historical and a technical perspective, of luminosity determination at the ISR, the S p p ¯ S, the Tevatron, RHIC and the LHC. For each of these, we first delineate the interplay between the experimental context, the specificities of the accelerator, and the precision targets suggested by the physics program. We then detail how the different methods were applied to specific experimental environments and how successfully they meet the precision goals.

  20. Muon Collider

    SciTech Connect

    Palmer, R.

    2009-10-19

    Parameters are given of muon colliders with center of mass energies of 1.5 and 3 TeV. Pion production is from protons on a mercury target. Capture, decay, and phase rotation yields bunch trains of both muon signs. Six dimensional cooling reduces the emittances until the trains are merged into single bunches, one of each sign. Further cooling in 6 dimensions is then applied, followed by final transverse cooling in 50 T solenoids. After acceleration the muons enter the collider ring. Ongoing R&D is discussed.

  1. Electron-ion collider eRHIC

    NASA Astrophysics Data System (ADS)

    Litvinenko, Vladimir N.

    In this article, we describe our planned future electron-ion collider (EIC), based on the existing Relativistic Heavy Ion Collider (RHIC) hadron facility, with two intersecting superconducting rings, each 3.8 km in circumference [1]. We plan to add a polarized electron beam with energy tunable within the 5-30-GeV range to collide with variety of species in the existing RHIC accelerator complex, from polarized protons with a maximum energy of 250 GeV, to heavy, fully striped ions with energies up to 100 GeV/u.

  2. Signals for vector leptoquarks in hadronic collisions

    SciTech Connect

    Cieza Montalvo, J.E.; Eboli, O.J.P. )

    1994-07-01

    We analyze systematically the signatures of vector leptoquarks in hadronic collisions. We examine their single and pair productions, as well as their effects on the production of lepton pairs. Our results indicate that a machine like the CERN Large Hadron Collider (LHC) will be able to unravel the existence of vector leptoquarks with masses up to the range of 2--3 TeV.

  3. Physics with low energy hadrons

    SciTech Connect

    Guttierez, G.; Littenberg, L.

    1997-10-01

    The prospects for low energy hadron physics at the front end of a muon collider (FMC) are discussed. The FMC, as conceived for the purposes of this workshop, is pretty close to a classical idea of a koan factory. There is an order of magnitude advantage of the FMC front end over the AGS for K{sup {minus}} and {anti p} production below 5 GeV/c.

  4. QCD and Hadron Physics

    SciTech Connect

    Brodsky, Stanley J.; Deshpande, Abhay L.; Gao, Haiyan; McKeown, Robert D.; Meyer, Curtis A.; Meziani, Zein-Eddine; Milner, Richard G.; Qiu, Jianwei; Richards, David G.; Roberts, Craig D.

    2015-02-26

    This White Paper presents the recommendations and scientific conclusions from the Town Meeting on QCD and Hadronic Physics that took place in the period 13-15 September 2014 at Temple University as part of the NSAC 2014 Long Range Planning process. The meeting was held in coordination with the Town Meeting on Phases of QCD and included a full day of joint plenary sessions of the two meetings. The goals of the meeting were to report and highlight progress in hadron physics in the seven years since the 2007 Long Range Plan (LRP07), and present a vision for the future by identifying the key questions and plausible paths to solutions which should define the next decade. The introductory summary details the recommendations and their supporting rationales, as determined at the Town Meeting on QCD and Hadron Physics, and the endorsements that were voted upon. The larger document is organized as follows. Section 2 highlights major progress since the 2007 LRP. It is followed, in Section 3, by a brief overview of the physics program planned for the immediate future. Finally, Section 4 provides an overview of the physics motivations and goals associated with the next QCD frontier: the Electron-Ion-Collider.

  5. Event simulation for colliders — A basic overview

    NASA Astrophysics Data System (ADS)

    Reuschle, Christian

    2015-05-01

    In this article we will discuss the basic calculational concepts to simulate particle physics events at high energy colliders. We will mainly focus on the physics in hadron colliders and particularly on the simulation of the perturbative parts, where we will in turn focus on the next-to-leading order QCD corrections.

  6. Hadron interactions

    SciTech Connect

    K. Orginos

    2011-12-01

    In this talk I am reviewing recent calculations of properties of multi-hadron systems in lattice QCD. In particular, I am reviewing results of elastic scattering phase shifts in meson-meson, meson-baryon and baryon-baryon systems, as well as discussing results indicating possible existence of bound states in two baryon systems. Finally, calculations of properties of systems with more than two hadrons are presented.

  7. Collider Tests of the Little Higgs Model

    SciTech Connect

    Burdman, Gustavo; Perelstein, Maxim; Pierce, Aaron

    2002-12-16

    The little Higgs model provides an alternative to traditional candidates for new physics at the TeV scale. The new heavy gauge bosons predicted by this model should be observable at the Large Hadron Collider (LHC). We discuss how the LHC experiments could test the little Higgs model by studying the production and decay of these particles.

  8. Future hadron physics at Fermilab

    SciTech Connect

    Appel, Jeffrey A.; /Fermilab

    2005-09-01

    Today, hadron physics research occurs at Fermilab as parts of broader experimental programs. This is very likely to be the case in the future. Thus, much of this presentation focuses on our vision of that future--a future aimed at making Fermilab the host laboratory for the International Linear Collider (ILC). Given the uncertainties associated with the ILC--the level of needed R&D, the ILC costs, and the timing--Fermilab is also preparing for other program choices. I will describe these latter efforts, efforts focused on a Proton Driver to increase the numbers of protons available for experiments. As examples of the hadron physics which will be coming from Fermilab, I summarize three experiments: MIPP/E907 which is running currently, and MINERvA and Drell-Yan/E906 which are scheduled for future running periods. Hadron physics coming from the Tevatron Collider program will be summarized by Arthur Maciel in another talk at Hadron05.

  9. Rare b Hadron Decays at the LHC

    NASA Astrophysics Data System (ADS)

    Blake, T.; Gershon, T.; Hiller, G.

    2015-10-01

    With the completion of Run I of the CERN Large Hadron Collider, particle physics has entered a new era. The production of unprecedented numbers of heavy-flavored hadrons in high-energy proton-proton collisions allows detailed studies of flavor-changing processes. The increasingly precise measurements allow the Standard Model to be tested with a new level of accuracy. Rare b hadron decays provide some of the most promising approaches for such tests because there are several observables that can be cleanly interpreted from a theoretical viewpoint. In this article, we review the status and prospects in this field, with a focus on precision measurements and null tests.

  10. Muon g-2 and Hadronic Vacuum Polarization: Recent Developments

    NASA Astrophysics Data System (ADS)

    Eidelman, Simon

    2016-04-01

    We discuss various experiments on e+e- annihilation into hadrons relevant to the problem of the muon anomalous magnetic moment. They include a status of the ISR measurements of the e+e- → π+π- as well as studies of numerous hadronic final states in experiments with the CMD-3 and SND detectors at the VEPP-2000 e+e- collider.

  11. Seismic studies for Fermilab future collider projects

    SciTech Connect

    Lauh, J.; Shiltsev, V.

    1997-11-01

    Ground motion can cause significant beam emittance growth and orbit oscillations in large hadron colliders due to a vibration of numerous focusing magnets. Larger accelerator ring circumference leads to smaller revolution frequency and, e.g. for the Fermilab Very Large Hadron Collider(VLHC) 50-150 Hz vibrations are of particular interest as they are resonant with the beam betatron frequency. Seismic measurements at an existing large accelerator under operation can help to estimate the vibrations generated by the technical systems in future machines. Comparison of noisy and quiet microseismic conditions might be useful for proper choice of technical solutions for future colliders. This article presents results of wide-band seismic measurements at the Fermilab site, namely, in the tunnel of the Tevatron and on the surface nearby, and in two deep tunnels in the Illinois dolomite which is though to be a possible geological environment of the future accelerators.

  12. Collider and detector protection at beam accidents

    SciTech Connect

    I. L. Rakhno; N. V. Mokhov; A. I. Drozhdin

    2003-12-10

    Dealing with beam loss due to abort kicker prefire is considered for hadron colliders. The prefires occurred at Tevatron (Fermilab) during Run I and Run II are analyzed and a protection system implemented is described. The effect of accidental beam loss in the Large Hadron Collider (LHC) at CERN on machine and detector components is studied via realistic Monte Carlo calculations. The simulations show that beam loss at an unsynchronized beam abort would result in severe heating of conventional and superconducting magnets and possible damage to the collider detector elements. A proposed set of collimators would reduce energy deposition effects to acceptable levels. Special attention is paid to reducing peak temperature rise within the septum magnet and minimizing quench region length downstream of the LHC beam abort straight section.

  13. Calorimetry At Very High Energy Colliders

    SciTech Connect

    Chiu, Mickey

    2011-06-01

    The capability of hadron colliders has increased to where it will soon be possible to collide protons at center of mass energies of 14 TeV with the advent of the LHC. With increasing collision energy, calorimeters become ever more essential components of a detector, and collaborations often choose very different technologies to meet their goals. From the perspective of a high energy particle and nuclear physicist, a survey is presented of the differences in design considerations and actual performance of the wide variety of calorimeters used in modern hadron colliders such as the Tevatron, RHIC, and LHC. The lessons learned and some ideas for future development of calorimetry will also be discussed.

  14. Measurement of the inclusive Z boson going to electron-electron production cross section in proton-proton collisions at center of mass energy = 7 TeV and Z boson going to electron-electron decays as standard candles for luminosity at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Werner, Jeremy Scott

    This thesis comprises a precision measurement of the inclusive Z→ee production cross section in proton-proton collisions provided by the Large Hadron Collider (LHC) at a center-of-mass energy of s = 7 TeV and the absolute luminosity based on Z→ ee decays. The data was collected by the Compact Muon Solenoid (CMS) detector near Geneva, Switzerland during the year of 2010 and corresponds to an integrated luminosity of Ldt = 35.9 +/- 1.4 pb-1. Electronic decays of Z bosons allow one of the first electroweak measurements at the LHC, making the cross section measurement a benchmark of physics performance after the first year of CMS detector and LHC machine operations. It is the first systematic uncertainty limited Z→ee cross section measurement performed at s = 7 TeV. The measured cross section pertaining to the invariant mass window Mee ∈ (60, 120) GeV is reported as sigma( pp → Z + X) x B (Z → ee) = 997 +/- 11(stat) +/- 19(syst) +/- 40(lumi) pb, which agrees with the theoretical prediction calculated to NNLO in QCD. Leveraging Z→ee decays as "standard candles" for measuring the absolute luminosity at the LHC is examined; they are produced copiously, are well understood, and have clean detector signatures. Thus the consistency of the inclusive Z→ ee production cross section measurement with the theoretical prediction motivates inverting the measurement to instead use the Z→ ee signal yield to measure the luminosity. The result, which agrees with the primary relative CMS luminosity measurement calibrated using Van der Meer separation scans, is one of the most precise absolute luminosity measurements performed to date at a hadron collider and the first based on a physics signal at the LHC.

  15. Measurement of the Masses and Lifetimes of B Hadrons at the Tevatron

    SciTech Connect

    Catastini, Pierluigi; /Pisa U. /INFN, Pisa

    2006-05-01

    The latest results for the B Hadron sector at the Tevatron Collider are summarized. The properties of B hadrons can be precisely measured at the Tevatron. In particularly they will focus on the masses and lifetimes. The new Tevatron results for the CP violation in B Hadrons are also discussed.

  16. Hard hadronic collisions: extrapolation of standard effects

    SciTech Connect

    Ali, A.; Aurenche, P.; Baier, R.; Berger, E.; Douiri, A.; Fontannaz, M.; Humpert, B.; Ingelman, G.; Kinnunen, R.; Pietarinen, E.

    1984-01-01

    We study hard hadronic collisions for the proton-proton (pp) and the proton-antiproton (p anti p) option in the CERN LEP tunnel. Based on our current knowledge of hard collisions at the present CERN p anti p Collider, and with the help of quantum chromodynamics (QCD), we extrapolate to the next generation of hadron colliders with a centre-of-mass energy E/sub cm/ = 10 to 20 TeV. We estimate various signatures, trigger rates, event topologies, and associated distributions for a variety of old and new physical processes, involving prompt photons, leptons, jets, W/sup + -/ and Z bosons in the final state. We also calculate the maximum fermion and boson masses accessible at the LEP Hadron Collider. The standard QCD and electroweak processes studied here, being the main body of standard hard collisions, quantify the challenge of extracting new physics with hadron colliders. We hope that our estimates will provide a useful profile of the final states, and that our experimental physics colleagues will find this of use in the design of their detectors. 84 references.

  17. Status of the Future Circular Collider Study

    NASA Astrophysics Data System (ADS)

    Benedikt, Michael

    2016-03-01

    Following the 2013 update of the European Strategy for Particle Physics, the international Future Circular Collider (FCC) Study has been launched by CERN as host institute, to design an energy frontier hadron collider (FCC-hh) in a new 80-100 km tunnel with a centre-of-mass energy of about 100 TeV, an order of magnitude beyond the LHC's, as a long-term goal. The FCC study also includes the design of a 90-350 GeV high-luminosity lepton collider (FCC-ee) installed in the same tunnel, serving as Higgs, top and Z factory, as a potential intermediate step, as well as an electron-proton collider option (FCC-he). The physics cases for such machines will be assessed and concepts for experiments will be developed in time for the next update of the European Strategy for Particle Physics by the end of 2018. The presentation will summarize the status of machine designs and parameters and discuss the essential technical components to be developed in the frame of the FCC study. Key elements are superconducting accelerator-dipole magnets with a field of 16 T for the hadron collider and high-power, high-efficiency RF systems for the lepton collider. In addition the unprecedented beam power presents special challenges for the hadron collider for all aspects of beam handling and machine protection. First conclusions of geological investigations and implementation studies will be presented. The status of the FCC collaboration and the further planning for the study will be outlined.

  18. PERFORMANCE LIMITATIONS IN HIGH-ENERGY ION COLLIDERS

    SciTech Connect

    FISCHER, W.

    2005-05-16

    High-energy ion colliders (hadron colliders operating with ions other than protons) are premier research tools for nuclear physics. The collision energy and high luminosity are important design and operations considerations. The experiments also expect flexibility with frequent changes in the collision energy, detector fields, and ion species, including asymmetric collisions. For the creation, acceleration, and storage of bright intense ion beams limits are set by space charge, charge exchange, and intrabeam scattering effects. The latter leads to luminosity lifetimes of only a few hours for intense heavy ions beams. Currently, the Relativistic Heavy Ion Collider (RHIC) at BNL is the only operating high-energy ion collider. Later this decade the Large Hadron Collider (LHC), under construction at CERN, will also run with heavy ions.

  19. Fast cooling, muon acceleration and the prospect of muon colliders

    NASA Astrophysics Data System (ADS)

    Palmer, Mark

    Facilities based on stored muons offer unique potential for future high-energy physics capabilities. Three key characteristics of the muon make this possible: * The muon is a lepton; * The muon is roughly 200 times as massive as the electron; * The muon decays to an electron and two neutrinos. As the next heavier members of the lepton family with respect to the electron and positron, μ+ and μ-. beams can be collided to provide a precision lepton probe of the electroweak couplings. This makes a muon collider a suitable option for a lepton collider companion to a hadron collider discovery machine...

  20. Klystron switching power supplies for the Internation Linear Collider

    SciTech Connect

    Fraioli, Andrea; /Cassino U. /INFN, Pisa

    2009-12-01

    The International Linear Collider is a majestic High Energy Physics particle accelerator that will give physicists a new cosmic doorway to explore energy regimes beyond the reach of today's accelerators. ILC will complement the Large Hadron Collider (LHC), a proton-proton collider at the European Center for Nuclear Research (CERN) in Geneva, Switzerland, by producing electron-positron collisions at center of mass energy of about 500 GeV. In particular, the subject of this dissertation is the R&D for a solid state Marx Modulator and relative switching power supply for the International Linear Collider Main LINAC Radio Frequency stations.

  1. Muon Muon Collider: Feasibility Study

    SciTech Connect

    Gallardo, J.C.; Palmer, R.B.; Tollestrup, A.V.; Sessler, A.M.; Skrinsky, A.N.; Ankenbrandt, C.; Geer, S.; Griffin, J.; Johnstone, C.; Lebrun, P.; McInturff, A.; Mills, Frederick E.; Mokhov, N.; Moretti, A.; Neuffer, D.; Ng, K.Y.; Noble, R.; Novitski, I.; Popovic, M.; Qian, C.; Van Ginneken, A. /Fermilab /Brookhaven /Wisconsin U., Madison /Tel Aviv U. /Indiana U. /UCLA /LBL, Berkeley /SLAC /Argonne /Sobolev IM, Novosibirsk /UC, Davis /Munich, Tech. U. /Virginia U. /KEK, Tsukuba /DESY /Novosibirsk, IYF /Jefferson Lab /Mississippi U. /SUNY, Stony Brook /MIT /Columbia U. /Fairfield U. /UC, Berkeley

    2012-04-05

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup -2}s{sup -1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice - we believe - to allow us to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring wich has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design. Muons because of their large mass compared to an electron, do not produce significant synchrotron radiation. As a result there is negligible beamstrahlung and high energy collisions are not limited by this phenomena. In addition, muons can be accelerated in circular devices which will be considerably smaller than two full-energy linacs as required in an e{sup +} - e{sup -} collider. A hadron collider would require a CM energy 5 to 10 times higher than 4 TeV to have an equivalent energy reach. Since the accelerator size is limited by the strength of bending magnets, the hadron collider for the same physics reach would have to be much larger than the muon collider. In addition, muon collisions should be cleaner than hadron collisions. There are many detailed particle

  2. Energy-range relations for hadrons in nuclear matter

    NASA Technical Reports Server (NTRS)

    Strugalski, Z.

    1985-01-01

    Range-energy relations for hadrons in nuclear matter exist similarly to the range-energy relations for charged particles in materials. When hadrons of GeV kinetic energies collide with atomic nuclei massive enough, events occur in which incident hadron is stopped completely inside the target nucleus without causing particle production - without pion production in particular. The stoppings are always accompanied by intensive emission of nucleons with kinetic energy from about 20 up to about 400 MeV. It was shown experimentally that the mean number of the emitted nucleons is a measure of the mean path in nuclear matter in nucleons on which the incident hadrons are stopped.

  3. Collider physics for the late 1980's

    SciTech Connect

    Hinchliffe, I.

    1987-02-27

    Topics in the Standard Model of strong and electroweak interactions and how these topics are relevant for the high energy colliders are discussed. Radiative corrections in the Glashow-Weinberg-Salam model are discussed, stressing how these corrections may be measured at LEP and the SLC. CP violation is discussed, followed by a discussion of the Higgs boson and the searches which can be carried out for it. Some features of quantum chromodynamics are discussed which are relevant to hadron colliders. Some of the problems which the Standard Model does not solve are discussed. 115 refs., 53 figs. (LEW)

  4. Suppressing Electron Cloud in Future Linear Colliders

    SciTech Connect

    Pivi, M; Kirby, R.E.; Raubenheimer, T.O.; Le Pimpec, F.; /PSI, Villigen

    2005-05-27

    Any accelerator circulating positively charged beams can suffer from a build-up of an electron cloud (EC) in the beam pipe. The cloud develops through ionization of residual gases, synchrotron radiation and secondary electron emission and, when severe, can cause instability, emittance blow-up or loss of the circulating beam. The electron cloud is potentially a luminosity limiting effect for both the Large Hadron Collider (LHC) and the International Linear Collider (ILC). For the ILC positron damping ring, the development of the electron cloud must be suppressed. This paper discusses the state-of-the-art of the ongoing SLAC and international R&D program to study potential remedies.

  5. A high energy e{sup +}e{sup {minus}} collider in a ``really large`` tunnel

    SciTech Connect

    Norem, J.; Keil, E.

    1996-12-31

    Recent developments in tunneling technology imply that it is possible to consider much larger tunnels for high energy circular colliders in the future. Tunnels with diameters of 200 km are being considered for a low field hadron collider called the Really Large Hadron Collider (RLHC). This tunnel might be produced for a cost of about 1000 $/m. An e{sup +}e{sup -} collider in this tunnel could perhaps study {ital t{anti t}} production at threshold with good resolution, Higgs production and e/p collisions at high energy. This note considers some of the parameters and issues of such a machine.

  6. Hadron spectroscopy

    SciTech Connect

    Cooper, S.

    1985-10-01

    Heavy quark systems and glueball candidates, the particles which are relevant to testing QCD, are discussed. The review begins with the heaviest spectroscopically observed quarks, the b anti-b bound states, including the chi state masses, spins, and hadronic widths and the non-relativistic potential models. Also, P states of c anti-c are mentioned. Other heavy states are also discussed in which heavy quarks combine with lighter ones. The gluonium candidates iota(1460), theta(1700), and g/sub T/(2200) are then covered. The very lightest mesons, pi-neutral and eta, are discussed. 133 refs., 24 figs., 16 tabs. (LEW)

  7. Collider signature of T-quarks

    SciTech Connect

    Carena, Marcela; Hubisz, Jay; Perelstein, Maxim; Verdier, Patrice; /Lyon, IPN

    2006-10-01

    Little Higgs models with T Parity contain new vector-like fermions, the T-odd quarks or ''T-quarks'', which can be produced at hadron colliders with a QCD-strength cross section. Events with two acoplanar jets and large missing transverse energy provide a simple signature of T-quark production. We show that searches for this signature with the Tevatron Run II data can probe a significant part of the Little Higgs model parameter space not accessible to previous experiments, exploring T-quark masses up to about 400 GeV. This reach covers parts of the parameter space where the lightest T-odd particle can account for the observed dark matter relic abundance. We also comment on the prospects for this search at the Large Hadron Collider (LHC).

  8. Towards the next QCD Frontier with the Electron Ion Collider

    NASA Astrophysics Data System (ADS)

    Deshpande, Abhay; Meziani, Zein-Eddine; Qiu, Jian-Wei

    2016-03-01

    In this talk, we argue that the proposed Electron-Ion Collider (EIC) with its unique capability to collide polarized electrons with polarized protons and light ions at unprecedented luminosity, and with heavy nuclei at high energy, will be the most powerful tomographic scanner able to precisely image gluons and quarks inside the proton and nuclei. This precision microscope will allow us to "see" and explore the dynamics binding gluons and quarks together to form hadrons. The EIC will address the most compelling unanswered questions in QCD and hadron physics.

  9. High Energy Accelerator and Colliding Beam User Group. Progress report, March 1, 1992--October 31, 1992

    SciTech Connect

    Snow, G.A.; Skuja, A.

    1992-05-01

    This report discusses research in the following areas: the study of e{sup +}e{sup {minus}} interactions; Hadron collider physics at Fermilab; fixed target physics and particle physics of general interest; and, the solenoidal detector collaboration at SSCL.

  10. Energy loss, hadronization, and hadronic interactions of heavy flavors in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Cao, Shanshan; Qin, Guang-You; Bass, Steffen A.

    2015-08-01

    We construct a theoretical framework to describe the evolution of heavy flavors produced in relativistic heavy-ion collisions. The in-medium energy loss of heavy quarks is described using our modified Langevin equation that incorporates both quasielastic scatterings and the medium-induced gluon radiation. The space-time profiles of the fireball are described by a (2+1)-dimensional hydrodynamics simulation. A hybrid model of fragmentation and coalescence is utilized for heavy quark hadronization, after which the produced heavy mesons together with the soft hadrons produced from the bulk quark-gluon plasma (QGP) are fed into the hadron cascade ultrarelativistic quantum molecular dynamics (UrQMD) model to simulate the subsequent hadronic interactions. We find that the medium-induced gluon radiation contributes significantly to heavy quark energy loss at high pT; heavy-light quark coalescence enhances heavy meson production at intermediate pT; and scatterings inside the hadron gas further suppress the D meson RAA at large pT and enhance its v2. Our calculations provide good descriptions of heavy meson suppression and elliptic flow observed at both the Large Hadron Collider and the Relativistic Heavy-Ion Collider.

  11. QCD resummation for hadronic final states

    NASA Astrophysics Data System (ADS)

    Luisoni, Gionata; Marzani, Simone

    2015-10-01

    We review the basic concepts of all-order calculations in quantum chromodynamics (QCD) and their application to collider phenomenology. We start by discussing the factorization properties of QCD amplitudes and cross-sections in the soft and collinear limits and their resulting all-order exponentiation. We then discuss several applications of this formalism to observables which are of great interest at particle colliders. In this context, we describe the all-order resummation of event-shape distributions, as well as observables that probe the internal structure of hadronic jets.

  12. Quirky collider signals of folded supersymmetry

    NASA Astrophysics Data System (ADS)

    Burdman, Gustavo; Chacko, Z.; Goh, Hock-Seng; Harnik, Roni; Krenke, Christopher A.

    2008-10-01

    We investigate the collider signals associated with scalar quirks (squirks) in folded supersymmetric models. As opposed to regular superpartners in supersymmetric models these particles are uncolored, but are instead charged under a new confining group, leading to radically different collider signals. Because of the new strong dynamics, squirks that are pair produced do not hadronize separately, but rather form a highly excited bound state. The excited squirkonium loses energy to radiation before annihilating back into standard model particles. We calculate the branching fractions into various channels for this process, which is prompt on collider time scales. The most promising annihilation channel for discovery is W+photon which dominates for squirkonium near its ground state. We demonstrate the feasibility of the LHC search, showing that the mass peak is visible above the SM continuum background and estimate the discovery reach.

  13. Antiparticle to particle production ratios in hadron-hadron and d-Au collisions in the DPMJET-III Monte Carlo model

    SciTech Connect

    Bopp, F. W.; Ranft, J.; Engel, R.; Roesler, S.

    2008-01-15

    To understand baryon stopping we analyze new Relativistic Heavy Ion Collider and Fermilab data within the framework of the multichain Monte Carlo DPMJET-III. The present consideration is restricted to hadron-hadron and d-Au collisions, where the present version of the model can be trusted.

  14. Accelerating and storing polarized hadron beams

    SciTech Connect

    Teng, L.C.

    1990-10-01

    Polarization hadron experiments at high energies continue to generate surprises. Many questions remain unanswered or unanswerable within the frame work of QCD. These include such basic questions as to why at high energies the polarization analyzing power in pp elastic scattering remains high, why hyperons are produced with high polarizations etc. It is, therefore, interesting to investigate the possibilities of accelerating and storing polarized beams in high energy colliders. On the technical side the recent understanding and confirmation of the actions of partial and multiple Siberian snakes made it possible to contemplate accelerating and storing polarized hadron beams to multi-TeV energies. In this paper, we will examine the equipment, the operation and the procedure required to obtain colliding beams of polarized protons at TeV energies.

  15. NLO QCD CORRECTIONS TO HADRONIC HIGGS PRODUCTION WITH HEAVY QUARKS.

    SciTech Connect

    DAWSON,S.; JACKSON,C.; ORR,L.; REINA,L.; WACHEROTH,D.

    2003-07-02

    The production of a Higgs boson in association with a pair of t{bar t} or b{bar b} quarks plays a very important role at both the Tevatron and the Large Hadron Collider. The theoretical prediction of the corresponding cross sections has been improved by including the complete next-to-leading order QCD corrections. After a brief description of the most relevant technical aspects of the calculation, we review the results obtained for both the Tevatron and the Large Hadron Collider.

  16. Heavy quark production in hadron collisions

    SciTech Connect

    Berger, E.L.

    1987-01-01

    Theoretical developments in the dynamics of heavy quark production in hadronic collisions as well as recent data are discussed. Focus is principally on bottom quark production. Extensive calculations of cross sections and production spectra for both collider and fixed target energies are presented. Available data are in excellent agreement with expectations of lowest order perturbative quantum chromodynamics. Uncertainties in the theoretical estimates are explored. The paper includes calculations and comments on charm and top quark production.

  17. Photon and hadron production of heavy flavors

    SciTech Connect

    DeJongh, F.

    1993-11-01

    Recent experiments have obtained large clean samples of charmed and bottom hadrons, and have measured both single-quark inclusive cross-sections and quark-antiquark correlations. Predictions for these production properties are available from next-to-leading order QCD. We review recent results from fixed target hadroproduction of charm and bottom, fixed target photoproduction of charm, and production of bottom at proton-antiproton colliders.

  18. A robust jet reconstruction algorithm for high-energy lepton colliders

    NASA Astrophysics Data System (ADS)

    Boronat, M.; Fuster, J.; García, I.; Ros, E.; Vos, M.

    2015-11-01

    We propose a new sequential jet reconstruction algorithm for future lepton colliders at the energy frontier. The Valencia algorithm combines the natural distance criterion for lepton colliders with the greater robustness against backgrounds of algorithms adapted to hadron colliders. Results on a detailed Monte Carlo simulation of t t bar and ZZ production at future linear e+e- colliders (ILC and CLIC) with a realistic level of background overlaid, show that it achieves better performance in the presence of background than the classical algorithms used at previous e+e- colliders.

  19. Measurement of the radiation field surrounding the Collider Detector at Fermilab

    SciTech Connect

    K. Kordas et al.

    2004-01-28

    We present here the first direct and detailed measurements of the spatial distribution of the ionizing radiation surrounding a hadron collider experiment. Using data from two different exposures we measure the effect of additional shielding on the radiation field around the Collider Detector at Fermilab (CDF). Employing a simple model we parameterize the ionizing radiation field surrounding the detector.

  20. Radiative return capabilities of a high-energy, high-luminositye+e-collider

    DOE PAGESBeta

    Karliner, Marek; Low, Matthew; Rosner, Jonathan L.; Wang, Lian-Tao

    2015-08-14

    An electron-positron collider operating at a center-of-mass energy ECM can collect events at all lower energies through initial-state radiation (ISR or radiative return). We explore the capabilities for radiative return studies by a proposed high-luminosity collider at ECM = 250 or 90 GeV, to fill in gaps left by lower-energy colliders such as PEP, PETRA, TRISTAN, and LEP. These capabilities are compared with those of the lower-energy e+e- colliders as well as hadron colliders such as the Tevatron and the CERN Large Hadron Collider (LHC). Some examples of accessible questions in dark photon searches and heavy flavor spectroscopy are given.

  1. Searches for new gauge bosons at future colliders

    SciTech Connect

    Rizzo, T.G.

    1996-09-01

    The search reaches for new gauge bosons at future hadron and lepton colliders are summarized for a variety of extended gauge models. Experiments at these energies will vastly improve over present limits and will easily discover a Z` and/or W` in the multi-TeV range.

  2. Overview of a high luminosity {mu}{sup +}{mu}{sup {minus}} collider

    SciTech Connect

    Palmer, R.B.; Gallardo, J.C.

    1997-03-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should be regarded as complementary. Parameters are given of a 4 TeV high luminosity {mu}{sup +}{mu}{sup {minus}} collider, and of a 0.5 TeV lower luminosity demonstration machine. The authors discuss the various systems in such muon colliders.

  3. Jet and Leading Hadron Production in High-energy Heavy-ionCollisions

    SciTech Connect

    Wang, Xin-Nian

    2005-11-01

    Jet tomography has become a powerful tool for the study ofproperties of dense matter in high-energy heavy-ion collisions. I willdiscuss recent progresses in the phenomenological study of jet quenching,including momentum, colliding energy and nuclear size dependence ofsingle hadron suppression, modification of dihadron correlations and thesoft hadron distribution associatedwith a quenched jet.

  4. Photon collider Higgs factories

    NASA Astrophysics Data System (ADS)

    Telnov, V. I.

    2014-09-01

    The discovery of the Higgs boson (and still nothing else) have triggered appearance of many proposals of Higgs factories for precision measurement of the Higgs properties. Among them there are several projects of photon colliders (PC) without e+e- in addition to PLC based on e+e- linear colliders ILC and CLIC. In this paper, following a brief discussion of Higgs factories physics program I give an overview of photon colliders based on linear colliders ILC and CLIC, and of the recently proposed photon-collider Higgs factories with no e+e- collision option based on recirculation linacs in ring tunnels.

  5. High energy hadron-hadron collisions

    SciTech Connect

    Chou, T.T.

    1991-12-01

    Results of a study on high energy collision with the geometrical model are summarized in three parts: (1) the elastic hadron-hadron collision, (2) the inelastic hadron-hadron collision, and (3) the e{sup +}e{sup {minus}} annihilation. More recent studies are highlighted below. For elastic scattering, a modified form for the hadronic matter form factor of the proton was proposed which remains to be dipole in form but contains an energy-dependent range parameter. This new expression of the opacity function fits the elastic {bar p}p scattering very well from the ISR to S{bar p}pS energies. Extrapolation of this theory also yielded results in good agreement with the {bar p}p differential cross section measured at the Tevatron. For inelastic hadron-hadron collisions, we have made a systematic investigation of the single-particle momentum spectra in the entire S{bar p}pS energy region. Results are useful for the extrapolation of angular distribution to the higher SSC energies. In e{sup +}e{sup {minus}} annihilation, a detailed analysis of all available experimental multiplicity data from PETRA to LEP energies has been performed. We discovered that the cluster size of emitted hadrons increases steadily with energy and is close to 2 as we predicted.

  6. QCD in hadron-hadron collisions

    SciTech Connect

    Albrow, M.

    1997-03-01

    Quantum Chromodynamics provides a good description of many aspects of high energy hadron-hadron collisions, and this will be described, along with some aspects that are not yet understood in QCD. Topics include high E{sub T} jet production, direct photon, W, Z and heavy flavor production, rapidity gaps and hard diffraction.

  7. Hadronic Production of Colored SUSY Particles with Electroweak NLO Contributions

    SciTech Connect

    Hollik, Wolfgang; Mirabella, Edoardo; Kollar, Monika; Trenkel, Maike K.

    2008-11-23

    We consider the production of squarks and gluinos at hadronic colliders. An overview over the class of processes is given. We investigate in detail the tree-level and higher order EW contributions to the cross sections. Special care has to be taken to obtain infrared finite observables. We study numerically stop--anti-stop and squark-gluino production at the LHC.

  8. Measurement of masses and lifetimes of B hadrons

    SciTech Connect

    Filthaut, F.; /Nijmegen U.

    2007-05-01

    We present recent measurements by the CDF and D{O} Collaborations at the Tevatron Collider on the masses and lifetimes of B hadrons. The results are compared to predictions based on Heavy Quark Effective Theory, lattice gauge theory, and quark models.

  9. Evidences for two scales in hadrons

    SciTech Connect

    Kopeliovich, B. Z.; Potashnikova, I. K.; Schmidt, Ivan; Povh, B.

    2007-11-01

    Some unusual features observed in hadronic collisions at high energies can be understood assuming that gluons in hadrons are located within small spots occupying only about 10% of the hadrons' area. Such a conjecture about the presence of two scales in hadrons helps to explain the following: why diffractive gluon radiation is so suppressed; why the triple-Pomeron coupling shows no t dependence; why total hadronic cross sections rise so slowly with energy; why diffraction cones shrink so slowly, and why {alpha}{sub P}{sup '}<<{alpha}{sub R}{sup '}; why the transition from hard to soft regimes in the structure functions occurs at rather large Q{sup 2}; why the observed Cronin effect at collider energies is so weak; why hard reactions sensitive to primordial parton motion (direct photon, Drell-Yan dileptons, heavy flavors, back-to-back dihadrons, seagull effect, etc.) demand such a large transverse momenta of the projectile partons, which is not explained by next-to-leading order calculations; why the onset of nuclear shadowing for gluons is so delayed compared to quarks; and why shadowing is so weak.

  10. Crystal Ball: On the Future High Energy Colliders

    SciTech Connect

    Shiltsev, Vladimir

    2015-09-20

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). A number of next generation collider facilities have been proposed and are currently under consideration for the medium- and far-future of the accelerator-based high energy physics. In this paper we offer a uniform approach to evaluation of various accelerators based on the feasibility of their energy reach, performance reach and cost range. We briefly review such post-LHC options as linear e+e- colliders in Japan (ILC) or at CERN (CLIC), muon collider, and circular lepton or hadron colliders in China (CepC/SppC) and Europe (FCC). We conclude with a look into ultimate energy reach accelerators based on plasmas and crystals, and some perspectives for the far future of accelerator-based particle physics.

  11. Updated measurements of hadronic B decays at CDF

    SciTech Connect

    Morello, Michael J.

    2012-01-01

    The CDF experiment at the Tevatron p{bar p} collider established that extensive and detailed exploration of the b-quark dynamics is possible in hadron collisions, with results competitive and supplementary to those from e{sup +}e{sup -} colliders. This provides a rich, and highly rewarding program that has currently reached full maturity. In the following I report some recent results on hadronic decays: the evidence for the charmless annihilation decay mode B{sub s}{sup 0} {yields} {pi}{sup +}{pi}{sup -}, and the first reconstruction in hadron collisions of the suppressed decays B{sup -} {yields} D({yields} K{sup +}{pi}{sup 0})K{sup -} and B{sup -} {yields} D({yields} K{sup +} {pi}{sup -}){pi}{sup -}.

  12. High energy hadron-hadron collisions

    SciTech Connect

    Chou, T.T.

    1990-11-01

    Results of a study on high energy collision with the geometrical model are summarized in three parts: (i) the elastic hadron-hadron collision, (ii) the inelastic hadron-hadron collision, and (iii) the e{sup +}e{sup {minus}} annihilation. For elastic collisions, a simple expression for the proton matter distribution is proposed which fits well the elastic {bar p}p scattering from ISR to S{bar p}pS energies within the geometrical model. The proton form factor is of the dipole form with an energy-dependent range parameter. The {bar p}p elastic differential cross section at Tevatron energies obtained by extrapolation is in good agreement with experiments. For multiparticle emission processes a unified physical picture for hadron-hadron and e{sup +}e{sup {minus}} collisions was proposed. A number of predictions were made, including the one that KNO-scaling does not obtain for e{sup +}e{sup {minus}} two-jet events. An extension of the considerations within the geometrical model led to a theory of the momentum distributions of the outgoing particles which are found in good agreement with current experimental data. Extrapolations of results to higher energies have been made. The cluster size of hadrons produced in e{sup +}e{sup {minus}} annihilation is found to increase slowly with energy.

  13. Drell-Yan production at collider energies

    SciTech Connect

    Neerven, W.L. Van

    1995-07-01

    We present some results of the Drell-Yan cross sections d{sigma}/dm and {sigma}{sub tot} which includes the O ({alpha}{sub s}{sup 2}) contribution to the coefficient function. In particular we study the total cross section {sigma}{sub tot} for vector boson production and d{sigma}/dm for low invariant masses m of the lepton pairs at large hadron collider energies. This study includes a detailed discussion of the dependence of the cross sections on the chosen scheme ({bar M}S versus DIS) and the factorization scale.

  14. Quantum production of black holes at colliders

    NASA Astrophysics Data System (ADS)

    Arsene, Nicusor; Casadio, Roberto; Micu, Octavian

    2016-07-01

    We investigate black hole production in p p collisions at the Large Hadron Collider by employing the horizon quantum mechanics for models of gravity with extra spatial dimensions. This approach can be applied to processes around the fundamental gravitational scale and naturally yields a suppression below the fundamental gravitational scale and for increasing number of extra dimensions. The results of numerical simulations performed with the black hole event generator BLACKMAX are here reported in order to illustrate the main differences in the numbers of expected black hole events and mass distributions.

  15. International linear collider reference design report

    SciTech Connect

    Aarons, G.

    2007-06-22

    The International Linear Collider will give physicists a new cosmic doorway to explore energy regimes beyond the reach of today's accelerators. A proposed electron-positron collider, the ILC will complement the Large Hadron Collider, a proton-proton collider at the European Center for Nuclear Research (CERN) in Geneva, Switzerland, together unlocking some of the deepest mysteries in the universe. With LHC discoveries pointing the way, the ILC -- a true precision machine -- will provide the missing pieces of the puzzle. Consisting of two linear accelerators that face each other, the ILC will hurl some 10 billion electrons and their anti-particles, positrons, toward each other at nearly the speed of light. Superconducting accelerator cavities operating at temperatures near absolute zero give the particles more and more energy until they smash in a blazing crossfire at the centre of the machine. Stretching approximately 35 kilometres in length, the beams collide 14,000 times every second at extremely high energies -- 500 billion-electron-volts (GeV). Each spectacular collision creates an array of new particles that could answer some of the most fundamental questions of all time. The current baseline design allows for an upgrade to a 50-kilometre, 1 trillion-electron-volt (TeV) machine during the second stage of the project. This reference design provides the first detailed technical snapshot of the proposed future electron-positron collider, defining in detail the technical parameters and components that make up each section of the 31-kilometer long accelerator. The report will guide the development of the worldwide R&D program, motivate international industrial studies and serve as the basis for the final engineering design needed to make an official project proposal later this decade.

  16. Future Accelerators, Muon Colliders, and Neutrino Factories

    SciTech Connect

    Richard A Carrigan, Jr.

    2001-12-19

    Particle physics is driven by five great topics. Neutrino oscillations and masses are now at the fore. The standard model with extensions to supersymmetry and a Higgs to generate mass explains much of the field. The origins of CP violation are not understood. The possibility of extra dimensions has raised tantalizing new questions. A fifth topic lurking in the background is the possibility of something totally different. Many of the questions raised by these topics require powerful new accelerators. It is not an overstatement to say that for some of the issues, the accelerator is almost the experiment. Indeed some of the questions require machines beyond our present capability. As this volume attests, there are parts of the particle physics program that have been significantly advanced without the use of accelerators such as the subject of neutrino oscillations and many aspects of the particle-cosmology interface. At this stage in the development of physics, both approaches are needed and important. This chapter first reviews the status of the great accelerator facilities now in operation or coming on within the decade. Next, midrange possibilities are discussed including linear colliders with the adjunct possibility of gamma-gamma colliders, muon colliders, with precursor neutrino factories, and very large hadron colliders. Finally visionary possibilities are considered including plasma and laser accelerators.

  17. Science and Technology of the TESLA Electron-Positron Linear Collider

    NASA Astrophysics Data System (ADS)

    Wagner, Albrecht

    2002-07-01

    Recent analyses of the long term future of particles physics in Asia, Europe, and the U.S.A. have led to the consensus that the next major facility to be built to unravel the secrets of the micro-cosmos is an electron-positron linear collider in the energy range of 500 to 1000 GeV. This collider should be constructed in an as timely fashion as possible to overlap with the Large Hadron Collider, under construction at CERN. Here, the scientific potential and the technological aspects of the TESLA projects, a superconducting collider with an integrated X-ray laser laboratory, are summarised.

  18. Measurement of the Oscillation Frequency of Bs Mesons in the Hadronic Decay Mode Bs→ π Ds(Φ π)X with the D0 Detector at the Fermilab Tevatron Collider

    SciTech Connect

    Weber, Gernot August

    2009-03-01

    The standard model (SM) of particle physics is a theory, describing three out of four fundamental forces. In this model the Cabibbo-Kobayashi-Maskawa (CKM) matrix describes the transformation between the mass and weak eigenstates of quarks. The matrix properties can be visualized as triangles in the complex plane. A precise measurement of all triangle parameters can be used to verify the validity of the SM. The least precisely measured parameter of the triangle is related to the CKM element |Vtd|, accessible through the mixing frequency (oscillation) of neutral B mesons, where mixing is the transition of a neutral meson into its anti-particle and vice versa. It is possible to calculate the CKM element |Vtd| and a related element |Vts| by measuring the mass differences Δmd(Δms) between neutral Bd and $\\bar{B}$d (Bs and $\\bar{B}$s) meson mass eigenstates. This measurement is accomplished by tagging the initial and final state of decaying B mesons and determining their lifetime. Currently the Fermilab Tevatron Collider (providing p$\\bar{p}$ collisions at {radical}s = 1.96 TeV) is the only place, where Bs oscillations can be studied. The first selection of the 'golden', fully hadronic decay mode Bs → πDs(Φπ)X at D0 is presented in this thesis. All data, taken between April 2002 and August 2007 with the D0 detector, corresponding to an integrated luminosity of integral Ldt = 2.8 fb-1 is used. The oscillation frequency Δms and the ratio |Vtd|/|Vts| are determined as Δms = (16.6-0.4+0.5(stat)-0.3+0.4(sys)) ps-1, |Vtd|/|Vts| = 0.213-0.003+0.004(exp) ± 0.008(theor). These results are consistent with the standard model expectations and no evidence for new physics is observable.

  19. Charged kaon and proton production in B-hadron decays

    NASA Astrophysics Data System (ADS)

    Tegenfeldt, Fredrik Per

    The production of charged kaons and protons in B-hadron decays has been measured in e+e- annihilations at centre-of-mass energies corresponding to the Z0 mass. In total 1.6 million hadronic Z0 decays were analysed, corresponding to about 690000 B-hadron decays. They were collected using the DELPHI detector at the LEP collider at CERN during 1994 and 1995. Events containing B-hadron decays were identified using special characteristics of the B-hadron decay topology. In particular, the long lifetime of the B-hadron leads to decay vertices significantly displaced relative the interaction point. These so called secondary vertices were reconstructed using a powerful micro vertex detector. In order to discriminate B-hadron decay products from fragmentation tracks, a method was used where the impact parameter measured by the vertex detector was employed as a discriminating variable. The tracks were thus divided into two classes, one compatible with the interaction point and the other compatible with a secondary vertex. An unfolding method was used to extract the true B-hadron decay tracks from the two classes. Charged kaons and protons were identified using the Ring Imaging CHerenkov (RICH) detector and corrected for misidentification using an efficiency matrix. The analysis resulted in charged kaon and proton spectra from B-hadron decays, including previously unmeasured momentum regions. Integrating the spectra yielded the following multiplicities n(B- hadron-->K+/- X)=0.683+/-0.021(stat) +/-0.017(syst) n(B- hadron-->p/p X)=0.127+/-0.013(stat) +/-0.019(syst) where the proton multiplicity does not include Λ baryon decay products.

  20. Six-Lepton Z' Resonance at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Barger, Vernon; Langacker, Paul; Lee, Hye-Sung

    2009-12-01

    New physics models admit the interesting possibility of a Z' weak boson associated with an extra U(1) gauge symmetry and a Higgs boson that is heavy enough to decay into a pair of Z bosons. Then Z' production and decay via Z'→ZH→ZZZ has a distinctive LHC signal that is nearly background-free and reconstructs the H and Z' masses and widths. The Z' decay to 3 pairs of leptons is especially distinctive. The ZH decay mode exists even if the Z' is decoupled from leptons, which motivates an independent 6-lepton resonance search regardless of the dilepton search results.

  1. Six-lepton Z' resonance at the Large Hadron Collider.

    PubMed

    Barger, Vernon; Langacker, Paul; Lee, Hye-Sung

    2009-12-18

    New physics models admit the interesting possibility of a Z' weak boson associated with an extra U(1) gauge symmetry and a Higgs boson that is heavy enough to decay into a pair of Z bosons. Then Z' production and decay via Z' --> ZH --> ZZZ has a distinctive LHC signal that is nearly background-free and reconstructs the H and Z' masses and widths. The Z' decay to 3 pairs of leptons is especially distinctive. The ZH decay mode exists even if the Z' is decoupled from leptons, which motivates an independent 6-lepton resonance search regardless of the dilepton search results. PMID:20366250

  2. Non-Large Hadron Collider Physics Program at CERN

    SciTech Connect

    Rondio, Ewa

    2011-08-17

    CERN has a diversified program at the chain of accelerators also used as LHC injectors. Selected examples of recent results will be used to illustrate the depth and the breadth of the overall physics program. Starting from lowest energies – the only decelerator at CERN (AD) is looking at antimatter production and trapping. First trapped anti-hydrogen were reported in 2010. Interdisciplinary team is working in the CLOUD experiment, where systematic studies on condensation have just started with the unique equipment allowing control of contamination, temperature and radiation dose. They may affect our understanding of climate changes. At SPS, results from Compass on the studies of nucleon spin structure bring the conclusion on how much gluons contribute to the nucleon spin. These results will be presented in more details. SPS beam is also used to produce high energy neutrinos which are sent towards Gran Sasso underground laboratory where OPERA and ICARUS detectors are waiting to register them. First observation of tau neutrino interaction was reported by OPERA last year. It is expected that the broad and evolving physics program will be supported at CERN to complement the research at the energy frontier.

  3. Rf system considerations for a large hadron collider

    SciTech Connect

    Raka, E.

    1988-01-01

    In this paper, we shall discuss how we arrive at a particular choice of voltage and frequency; the type of acceleration structure that would be suitable for obtaining the required voltage and resonant impedance; static beam loading including a simplified beam stability criterion involving the beam current and total rf system shunt impedance; the basic principle of rf phase and frequency control loops; and the effect of rf noise and its interaction with these loops. Finally, we shall consider the need for and design of rf systems to damp independently coherent oscillations of individual bunches or groups of bunches. 30 refs., 17 figs., 2 tabs.

  4. Phenomenology of pure-gauge hidden valleys at hadron colliders

    NASA Astrophysics Data System (ADS)

    Juknevich, Jose E.

    Expectations for new physics at the LHC have been greatly influenced by the Hierarchy problem of electroweak symmetry breaking. However, there are reasons to believe that the LHC may still discover new physics, but not directly related to the resolution of the Hierarchy problem. To ensure that such a physics does not go undiscovered requires precise understanding of how new phenomena will reveal themselves in the current and future generation of particle-physics experiments. Given this fact it seems sensible to explore other approaches to this problem; we study three alternatives here. In this thesis I argue for the plausibility that the standard model is coupled, through new massive charged or colored particles, to a hidden sector whose low energy dynamics is controlled by a pure Yang-Mills theory, with no light matter. Such a sector would have numerous metastable "hidden glueballs" built from the hidden gluons. These states would decay to particles of the standard model. I consider the phenomenology of this scenario, and find formulas for the lifetimes and branching ratios of the most important of these states. The dominant decays are to two standard model gauge bosons or to fermion-antifermion pairs, or by radiative decays with photon or Higgs emission, leading to jet- and photon-rich signals, and some occasional leptons. The presence of effective operators of different mass dimensions, often competing with each other, together with a great diversity of states, leads to a great variability in the lifetimes and decay modes of the hidden glueballs. I find that most of the operators considered in this work are not heavily constrained by precision electroweak physics, therefore leaving plenty of room in the parameter space to be explored by the future experiments at the LHC. Finally, I discuss several issues on the phenomenology of the new massive particles as well as an outlook for experimental searches.

  5. Dijet Searches for Supersymmetry at the Large Hadron Collider

    SciTech Connect

    Randall, Lisa; Tucker-Smith, David

    2008-11-28

    We present several strategies for searching for supersymmetry in dijet channels, using the two leading jets' momenta alone rather than the full missing transverse energy. Preliminary investigations suggest that signal-to-background ratios of at least 4-5 should be achievable at the LHC, with discovery possible for squarks as heavy as {approx}1.7 TeV.

  6. SLAC Linear Collider

    SciTech Connect

    Richter, B.

    1985-12-01

    A report is given on the goals and progress of the SLAC Linear Collider. The status of the machine and the detectors are discussed and an overview is given of the physics which can be done at this new facility. Some ideas on how (and why) large linear colliders of the future should be built are given.

  7. Hadron multiplicity in pp and AA collisions at LHC from the color glass condensate

    SciTech Connect

    Levin, Eugene; Rezaeian, Amir H.

    2010-09-01

    We provide quantitative predictions for the rapidity, centrality and energy dependencies of inclusive charged-hadron productions for the forthcoming LHC measurements in nucleus-nucleus collisions based on the idea of gluon saturation in the color-glass condensate framework. Our formulation gives very good descriptions of the first data from the LHC for the inclusive charged-hadron production in proton-proton collisions, the deep inelastic scattering at the Hadron-Elektron-Ring-Anlage at small Bjorken x, and the hadron multiplicities in nucleus-nucleus collisions at the Relativistic Heavy Ion Collider.

  8. GARLIC: GAmma Reconstruction at a LInear Collider experiment

    NASA Astrophysics Data System (ADS)

    Jeans, D.; Brient, J.-C.; Reinhard, M.

    2012-06-01

    The precise measurement of hadronic jet energy is crucial to maximise the physics reach of a future Linear Collider. An important ingredient required to achieve this is the efficient identification of photons within hadronic showers. One configuration of the ILD detector concept employs a highly granular silicon-tungsten sampling calorimeter to identify and measure photons, and the GARLIC algorithm described in this paper has been developed to identify photons in such a calorimeter. We describe the algorithm and characterise its performance using events fully simulated in a model of the ILD detector.

  9. Hadron Physics at FAIR

    SciTech Connect

    Wiedner, Ulrich

    2011-10-24

    The new FAIR facility in Darmstadt has a broad program in the field of hadron and nuclear physics utilizing ion beams with unprecedented intensity and accuracy. The hadron physics program centers around the the high-energy storage ring HESR for antiprotons and the PANDA experiment that is integrated in it. The physics program includes among others topics like hadron spectroscopy in the charmonium mass region and below, hyperon physics, electromagnetic processes and charm in nuclei.

  10. High Energy Colliders as Tools to Understand the Early Universe

    SciTech Connect

    Tait, Tim

    2008-08-16

    Cosmological observations have reached a new era of precision, and reveal many interesting and puzzling features of the Universe. I will briefly review two of the most exciting mysteries: the nature of the dark components of the Universe, and the origin of the asymmetry between matter and anti-matter. I will argue that our best hope of unraveling these questions will need to combine information from the heavens with measurements in the lab at high energy particle accelerators. The end of run II of the Tevatron, the up-coming Large Hadron Collider and proposed International Linear Collider all have great potential to help us answer these questions in the near future.

  11. Linear Collider Physics Resource Book Snowmass 2001

    SciTech Connect

    Ronan , M.T.

    2001-06-01

    The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decade or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup -} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup -} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup -} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup -} experiments can provide. This last point merits further emphasis. If a new accelerator could be designed and

  12. QCD SPIN PHYSICS IN HADRONIC INTERACTIONS.

    SciTech Connect

    VOGELSANG,W.

    2007-06-19

    We discuss spin phenomena in high-energy hadronic scattering, with a particular emphasis on the spin physics program now underway at the first polarized proton-proton collider, RHIC. Experiments at RHIC unravel the spin structure of the nucleon in new ways. Prime goals are to determine the contribution of gluon spins to the proton spin, to elucidate the flavor structure of quark and antiquark polarizations in the nucleon, and to help clarify the origin of transverse-spin phenomena in QCD. These lectures describe some aspects of this program and of the associated physics.

  13. Holographic model of hadronization.

    PubMed

    Evans, Nick; Tedder, Andrew

    2008-04-25

    We study hadronization of the final state in a particle-antiparticle annihilation using a holographic gravity dual description of QCD. At the point of hadronization we match the events to a simple (Gaussian) energy distribution in the five dimensional theory. The final state multiplicities are then modeled by calculating the overlap between the Gaussian and a set of functions in the fifth dimension which represent each hadron. We compare our results to those measured in e(+)e(-) collisions. Hadron production numbers over a range of 4 orders of magnitude are reproduced well. PMID:18518189

  14. Holographic Model of Hadronization

    SciTech Connect

    Evans, Nick; Tedder, Andrew

    2008-04-25

    We study hadronization of the final state in a particle-antiparticle annihilation using a holographic gravity dual description of QCD. At the point of hadronization we match the events to a simple (Gaussian) energy distribution in the five dimensional theory. The final state multiplicities are then modeled by calculating the overlap between the Gaussian and a set of functions in the fifth dimension which represent each hadron. We compare our results to those measured in e{sup +}e{sup -} collisions. Hadron production numbers over a range of 4 orders of magnitude are reproduced well.

  15. SLAC linear collider

    SciTech Connect

    Richter, B.; Bell, R.A.; Brown, K.L.

    1980-06-01

    The SLAC LINEAR COLLIDER is designed to achieve an energy of 100 GeV in the electron-positron center-of-mass system by accelerating intense bunches of particles in the SLAC linac and transporting the electron and positron bunches in a special magnet system to a point where they are focused to a radius of about 2 microns and made to collide head on. The rationale for this new type of colliding beam system is discussed, the project is described, some of the novel accelerator physics issues involved are discussed, and some of the critical technical components are described.

  16. Nonglobal correlations in collider physics

    DOE PAGESBeta

    Moult, Ian; Larkoski, Andrew J.

    2016-01-13

    Despite their importance for precision QCD calculations, correlations between in- and out-of-jet regions of phase space have never directly been observed. These so-called non-global effects are present generically whenever a collider physics measurement is not explicitly dependent on radiation throughout the entire phase space. In this paper, we introduce a novel procedure based on mutual information, which allows us to isolate these non-global correlations between measurements made in different regions of phase space. We study this procedure both analytically and in Monte Carlo simulations in the context of observables measured on hadronic final states produced in e+e- collisions, though itmore » is more widely applicable.The procedure exploits the sensitivity of soft radiation at large angles to non-global correlations, and we calculate these correlations through next-to-leading logarithmic accuracy. The bulk of these non-global correlations are found to be described in Monte Carlo simulation. They increase by the inclusion of non-perturbative effects, which we show can be incorporated in our calculation through the use of a model shape function. As a result, this procedure illuminates the source of non-global correlations and has connections more broadly to fundamental quantities in quantum field theory.« less

  17. Nonglobal correlations in collider physics

    NASA Astrophysics Data System (ADS)

    Larkoski, Andrew J.; Moult, Ian

    2016-01-01

    Despite their importance for precision QCD calculations, correlations between in- and out-of-jet regions of phase space have never directly been observed. These so-called nonglobal effects are present generically whenever a collider physics measurement is not explicitly dependent on radiation throughout the entire phase space. In this paper, we introduce a novel procedure based on mutual information, which allows us to isolate these nonglobal correlations between measurements made in different regions of phase space. We study this procedure both analytically and in Monte Carlo simulations in the context of observables measured on hadronic final states produced in e+e- collisions, though it is more widely applicable. The procedure exploits the sensitivity of soft radiation at large angles to nonglobal correlations, and we calculate these correlations through next-to-leading logarithmic accuracy. The bulk of these nonglobal correlations are found to be described in Monte Carlo simulation. They increase by the inclusion of nonperturbative effects, which we show can be incorporated in our calculation through the use of a model shape function. This procedure illuminates the source of nonglobal correlations and has connections more broadly to fundamental quantities in quantum field theory.

  18. Proton-antiproton collider physics

    SciTech Connect

    Shochet, M.J.

    1995-07-01

    The 9th {anti p}p Workshop was held in Tsukuba, Japan in October, 1993. A number of important issues remained after that meeting: Does QCD adequately describe the large cross section observed by CDF for {gamma} production below 30 GeV? Do the CDF and D0 b-production cross sections agree? Will the Tevatron live up to its billing as a world-class b-physics facility? How small will the uncertainty in the W mass be? Is there anything beyond the Minimal Standard Model? And finally, where is the top quark? Presentations at this workshop addressed all of these issues. Most of them are now resolved, but new questions have arisen. This summary focuses on the experimental results presented at the meeting by CDF and D0 physicists. Reviews of LEP and HERA results, future plans for hadron colliders and their experiments, as well as important theoretical presentations are summarized elsewhere in this volume. Section 1 reviews physics beyond the Minimal Standard Model. Issues in b and c physics are addressed in section 3. Section 4 focuses on the top quark. Electroweak physics is reviewed in section 5, followed by QCD studies in section 6. Conclusions are drawn in section 7.

  19. Linear collider: a preview

    SciTech Connect

    Wiedemann, H.

    1981-11-01

    Since no linear colliders have been built yet it is difficult to know at what energy the linear cost scaling of linear colliders drops below the quadratic scaling of storage rings. There is, however, no doubt that a linear collider facility for a center of mass energy above say 500 GeV is significantly cheaper than an equivalent storage ring. In order to make the linear collider principle feasible at very high energies a number of problems have to be solved. There are two kinds of problems: one which is related to the feasibility of the principle and the other kind of problems is associated with minimizing the cost of constructing and operating such a facility. This lecture series describes the problems and possible solutions. Since the real test of a principle requires the construction of a prototype I will in the last chapter describe the SLC project at the Stanford Linear Accelerator Center.

  20. Relativistic Heavy Ion Collider

    SciTech Connect

    Willen, E.H.

    1986-01-01

    The Relativistic Heavy Ion Collider (RHIC) is a proposed research facility at Brookhaven National Laboratory to study the collision of beams of heavy ions, up to gold in mass and at beam energies up to 100 GeV/nucleon. The physics to be explored by this collider is an overlap between the traditional disciplines of nuclear physics and high energy physics and is a continuation of the planned program of light and heavy ion physics at BNL. The machine is to be constructed in the now-empty tunnel built for the former CBA project. Various other facilities to support the collider are either in place or under construction at BNL. The collider itself, including the magnets, is in an advanced state of design, and a construction start is anticipated in the next several years.

  1. Accelerator physics in ERL based polarized electron ion collider

    SciTech Connect

    Hao, Yue

    2015-05-03

    This talk will present the current accelerator physics challenges and solutions in designing ERL-based polarized electron-hadron colliders, and illustrate them with examples from eRHIC and LHeC designs. These challenges include multi-pass ERL design, highly HOM-damped SRF linacs, cost effective FFAG arcs, suppression of kink instability due to beam-beam effect, and control of ion accumulation and fast ion instabilities.

  2. High luminosity {mu}{sup +} {mu}{sup {minus}} collider: Report of a feasibility study

    SciTech Connect

    Palmer, R.B.; Gallardo, J.C.; Tollestrup, A.; Sessler, A.

    1996-12-01

    Parameters are given of 4 TeV and 0.5 TeV (c-of-m) high luminosity {mu}{sup +}{mu}{sup -} colliders, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders, starting from the proton accelerator needed to generate the muons and proceeding through muon cooling, acceleration and storage in a collider ring. Detector background, polarization, and nonstandard operating conditions are analyzed. Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should thus be regarded as complementary. We briefly mention the luminosity requirements of hadrons and lepton machines and their high-energy-physics advantages and disadvantages in reference to their effective center of mass energy. Finally, we present an R & D plan to determine whether such machines are practical.

  3. Photon collider at TESLA

    NASA Astrophysics Data System (ADS)

    Telnov, Valery

    2001-10-01

    High energy photon colliders ( γγ, γe) based on backward Compton scattering of laser light is a very natural addition to e +e - linear colliders. In this report, we consider this option for the TESLA project. Recent study has shown that the horizontal emittance in the TESLA damping ring can be further decreased by a factor of four. In this case, the γγ luminosity in the high energy part of spectrum can reach about (1/3) Le +e -. Typical cross-sections of interesting processes in γγ collisions are higher than those in e +e - collisions by about one order of magnitude, so the number of events in γγ collisions will be more than that in e +e - collisions. Photon colliders can, certainly, give additional information and they are the best for the study of many phenomena. The main question is now the technical feasibility. The key new element in photon colliders is a very powerful laser system. An external optical cavity is a promising approach for the TESLA project. A free electron laser is another option. However, a more straightforward solution is "an optical storage ring (optical trap)" with a diode pumped solid state laser injector which is today technically feasible. This paper briefly reviews the status of a photon collider based on the linear collider TESLA, its possible parameters and existing problems.

  4. Comparing multiparticle production within a two-component dual parton model with collider data

    SciTech Connect

    Hahn, K.; Ranft, J. )

    1990-03-01

    The dual parton model (DPM) is very successful in describing hadronic multiparticle production. The version of DPM presented includes both soft and hard mechanisms. The hard component is described according to the lowest-order perturbative QCD--parton-model cross section. The model is formulated in the form of a Monte Carlo event generator. Results obtained with this event generator are compared with data on inclusive reactions in the TeV energy range of the CERN and Fermilab hadron colliders.

  5. B physics at CDF - the Beauty of hadron collisions

    SciTech Connect

    Tonelli, Diego

    2010-11-01

    The CDF experiment at the Tevatron p{bar p} collider established that extensive and detailed exploration of the b-quark dynamics is possible in hadron collisions, with results competitive and supplementary to those from e{sup +}e{sup -} colliders. This provides an unique, rich, and highly rewarding program that is currently reaching full maturity. I report a few recent world-leading results on rare decays, CP-violation in B{sub s}{sup 0} mixing, and b {yields} s penguin decays.

  6. Single event effects and their mitigation for the Collider Detector at Fermilab

    SciTech Connect

    Tesarek, Richard J.; D'Auria, Saverio; Dong, Peter; Hocker, Andy; Kordas, Kostas; McGimpsey, Susan; Nicolas, Ludovic; Wallny, Rainer; Schmitt, Wayne; Worm, Steven; /Fermilab /Toronto U. /Glasgow U. /Rutherford /UCLA

    2005-11-01

    We present an overview of radiation induced failures and operational experiences from the Collider Detector at Fermilab (CDF). In our summary, we examine single event effects (SEE) in electronics located in and around the detector. We present results of experiments to identify the sources and composition of the radiation and steps to reduce the rate of SEEs in our electronics. Our studies have led to a better, more complete understanding of the radiation environment in a modern hadron collider experiment.

  7. Dynamical charge fluctuations in the hadronic medium

    NASA Astrophysics Data System (ADS)

    Sharma, Bhanu; Aggarwal, Madan M.; Sahoo, Nihar Ranjan; Nayak, Tapan K.

    2015-02-01

    Dynamical charge fluctuations have been studied in ultrarelativistic heavy-ion collisions by using hadronic model simulations, such as Ultrarelativistic Quantum Molecular Dynamics (UrQMD) and Heavy Ion Jet Interaction Generator (HIJING). The evolution of fluctuations has been calculated at different time steps during the collision as well as at different observation windows in pseudorapidity (△η ) . The final state effects on the fluctuations have been investigated by varying △η and the time steps with the aim of obtaining an optimum observation window for capturing maximum fluctuations. It is found that △η between 2.0 and 3.5 gives the best coverage for the fluctuations studies. The results of these model calculations for Au+Au collisions at √{sNN} = 7.7 to 200 GeV and for Pb+Pb collisions at 2.76 TeV are presented and compared to the available experimental data from the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC).

  8. Di-Hadron Angular Correlation Dependence on Leading Hadron Identity in Relativistic Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Kauder, Kolja

    A unique state of matter is created in ultra-relativistic heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC), the Quark Gluon Plasma (QGP). It displays the properties of a near-perfect liquid of quarks and gluons (partons) interacting collectively via the strong force. Properties of this medium can be explored using high-energy probes created in the form of back-to-back pairs (jets) in hard scatterings. A distinct feature of the QGP is jet quenching, which describes the large energy loss of such probes observed in measurements of hadron distributions in head-on heavy ion collisions. A more differential measurement of jet quenching is achieved using di-hadron correlations, where relative angular distributions are studied with respect to a leading (high energy) "trigger" hadron. Two striking features found in di-hadron correlations are the emergence of a long-range plateau on the near-side (at small relative azimuth), the so-called "ridge", and a broadening and deformation of the away-side, back to back with the trigger. Using 200 GeV central gold-gold and minimum bias deuteron-gold collision data collected by the STAR detector at RHIC, a systematic study of the dependence of di-hadron correlation structures on the identity of the trigger particle is carried out in this work by statistically separating pion from non-pion (i.e. proton and kaon) triggers, offering new insights into the hadronization mechanisms in the QGP. The jet-like yield at small relative angles is found enhanced for leading pions in Au+Au data with respect to the d+Au reference, while leading non-pions (protons and kaons) do not elicit such an enhancement. These findings are discussed within the context of quark recombination. At large angles, the correlated yield is significantly higher for leading non-pions than pions. Parameters extracted from two-dimensional model fits are used to test consistency with the constituent quark scaling assumptions

  9. Hadron supercolliders: The 1-TeV scale and beyond

    SciTech Connect

    Quigg, C.

    1990-08-10

    Greater understanding of the connection between the weak and electromagnetic interactions is central to progress in elementary-particle physics. A definitive exploration of the mechanism for electroweak symmetry breaking will require collisions between fundamental constituents at energies on the order of 1 TeV. This goal drives the design of high-energy, high-luminosity hadron colliders that will be commissioned during the next decade, but by no means completely defines their scientific potential. These three lectures are devoted to a review of the standard-model issues that motivated an experimental assault on the 1-TeV scale, an introduction to the machines and the experimental environment they will present, and a survey of possibilities for measurement and discovery with a multi-TeV hadron collider. 72 refs., 29 figs.

  10. Muon-muon and other high energy colliders

    SciTech Connect

    Palmer, R.B.; Gallardo, J.C.

    1997-02-01

    The first section looks at the high energy physics advantages, disadvantages and luminosity requirements of hadron, of lepton and photon-photon colliders for comparison. The second section discusses the physics considerations for the muon collider. The third section covers muon collider components. The fourth section is about the intersection region and detectors. In the fifth section, the authors discuss modifications to enhance the muon polarization`s operating parameters with very small momentum spreads, operations at energies other than the maximum for which the machine is designed, and designs of machines for different maximum energies. The final section discusses a Research and Development plan aimed at the operation of a 0.5 TeV demonstration machine by the year 2010, and of the 4 TeV machine by the year 2020.

  11. Searches for supersymmetry at high-energy colliders

    SciTech Connect

    Feng, Jonathan L.; Grivaz, Jean-Francois; Nachtman, Jane

    2010-01-15

    This review summarizes the state of the art in searches for supersymmetry at colliders on the eve of the Large Hadron Collider era. Supersymmetry is unique among extensions of the standard model in being motivated by naturalness, dark matter, and force unification, both with and without gravity. At the same time, weak-scale supersymmetry encompasses a wide range of experimental signals that are also found in many other frameworks. Motivations for supersymmetry are recalled and the various models and their distinctive features are reviewed. Searches for neutral and charged Higgs bosons and standard-model superpartners at the high energy frontier are summarized comprehensively, considering both canonical and noncanonical supersymmetric models, and including results from the LEP collider at CERN, HERA at DESY, and the Fermilab Tevatron.

  12. Hadrons in Nuclei

    SciTech Connect

    Mosel, Ulrich

    2004-08-30

    Changes of hadronic properties in dense nuclear matter as predicted by theory have usually been investigated by means of relativistic heavy-ion reactions. In this talk I show that observable consequences of such changes can also be seen in more elementary reactions on nuclei. Particular emphasis is put on a discussion of photonuclear reactions; examples are the dilepton production at {approx_equal} 1 GeV and the hadron production in nuclei at 10-20 GeV photon energies. The observable effects are expected to be as large as in relativistic heavy-ion collisions and can be more directly related to the underlying hadronic changes.

  13. Toward NNLL threshold resummation for hadron pair production in hadronic collisions

    NASA Astrophysics Data System (ADS)

    Hinderer, Patriz; Ringer, Felix; Sterman, George F.; Vogelsang, Werner

    2015-01-01

    We investigate QCD threshold resummation effects beyond the next-to-leading logarithmic (NLL) order for the process H1H2→h1h2X at high invariant mass of the produced hadron pair. We take into account the color structure of the underlying partonic hard-scattering cross sections and determine the relevant hard and soft matrices in color space that contribute to the resummed cross section at next-to-next-to-leading logarithmic (NNLL) accuracy. We present numerical results for fixed-target and collider regimes. We find a significant improvement compared to previous results at NLL accuracy. In particular, the scale dependence of the resummed cross section is greatly reduced. Use of the most recent set of fragmentation functions also helps in improving the comparison with the experimental data. Our calculation provides a step towards a systematic NNLL extension of threshold resummation also for other hadronic processes, in particular for jet production.

  14. Single particle momentum and angular distributions in hadron-hadron collisions at ultrahigh energies

    NASA Technical Reports Server (NTRS)

    Chou, T. T.; Chen, N. Y.

    1985-01-01

    The forward-backward charged multiplicity distribution (P n sub F, n sub B) of events in the 540 GeV antiproton-proton collider has been extensively studied by the UA5 Collaboration. It was pointed out that the distribution with respect to n = n sub F + n sub B satisfies approximate KNO scaling and that with respect to Z = n sub F - n sub B is binomial. The geometrical model of hadron-hadron collision interprets the large multiplicity fluctuation as due to the widely different nature of collisions at different impact parameters b. For a single impact parameter b, the collision in the geometrical model should exhibit stochastic behavior. This separation of the stochastic and nonstochastic (KNO) aspects of multiparticle production processes gives conceptually a lucid and attractive picture of such collisions, leading to the concept of partition temperature T sub p and the single particle momentum spectrum to be discussed in detail.

  15. Extracting αs from scaling violations in light-hadron fragmentation functions

    NASA Astrophysics Data System (ADS)

    Kniehl, Bernd A.

    2016-02-01

    We review the status of extracting the strong-coupling constant αs from the scaling violations in fragmentation functions (FFs) by fitting the latter to experimental data of the inclusive production of single light hadrons in e+e- annihilation. We also discuss the analogous analysis based on the average hadron multiplicities in gluon and quark jets, which correspond to the first Mellin moments of the respective FFs. We then assess the prospects of such αs determinations at future high-luminosity e+e- colliders such as the CERN Future Circular Collider operated in the e+e- annihilation mode (FCC-ee).

  16. Development of GEM-Based Digital Hadron Calorimetry Using the SLAC KPiX Chip

    SciTech Connect

    White, A.; /Texas U., Arlington /Washington U., Seattle /Unlisted /SLAC

    2012-04-12

    The development of Digital Hadron Calorimetry for the SiD detector Concept for the International Linear Collider is described. The jet energy requirements of the ILC physics program are discussed. The concept of GEM-based digital hadron calorimetry is presented, followed by a description of, and results from, prototype detectors. Plans are described for the construction of 1m{sup 2} GEM-DHCAL planes to be tested as part of a future calorimeter stack.

  17. Measurement of the average B hadron lifetime in Z0 decays using reconstructed vertices

    NASA Astrophysics Data System (ADS)

    Abe, K.; Abt, I.; Ahn, C. J.; Akagi, T.; Allen, N. J.; Ash, W. W.; Aston, D.; Baird, K. G.; Baltay, C.; Band, H. R.; Barakat, M. B.; Baranko, G.; Bardon, O.; Barklow, T.; Bazarko, A. O.; Ben-David, R.; Benvenuti, A. C.; Bilei, G. M.; Bisello, D.; Blaylock, G.; Bogart, J. R.; Bolton, T.; Bower, G. R.; Brau, J. E.; Breidenbach, M.; Bugg, W. M.; Burke, D.; Burnett, T. H.; Burrows, P. N.; Busza, W.; Calcaterra, A.; Caldwell, D. O.; Calloway, D.; Camanzi, B.; Carpinelli, M.; Cassell, R.; Castaldi, R.; Castro, A.; Cavalli-Sforza, M.; Church, E.; Cohn, H. O.; Coller, J. A.; Cook, V.; Cotton, R.; Cowan, R. F.; Coyne, D. G.; D'oliveira, A.; Damerell, C. J.; Daoudi, M.; de Sangro, R.; de Simone, P.; dell'orso, R.; Dima, M.; Du, P. Y.; Dubois, R.; Eisenstein, B. I.; Elia, R.; Falciai, D.; Fan, C.; Fero, M. J.; Frey, R.; Furuno, K.; Gillman, T.; Gladding, G.; Gonzalez, S.; Hallewell, G. D.; Hart, E. L.; Hasegawa, Y.; Hedges, S.; Hertzbach, S. S.; Hildreth, M. D.; Huber, J.; Huffer, M. E.; Hughes, E. W.; Hwang, H.; Iwasaki, Y.; Jackson, D. J.; Jacques, P.; Jaros, J.; Johnson, A. S.; Johnson, J. R.; Johnson, R. A.; Junk, T.; Kajikawa, R.; Kalelkar, M.; Kang, H. J.; Karliner, I.; Kawahara, H.; Kendall, H. W.; Kim, Y.; King, M. E.; King, R.; Kofler, R. R.; Krishna, N. M.; Kroeger, R. S.; Labs, J. F.; Langston, M.; Lath, A.; Lauber, J. A.; Leith, D. W.; Liu, M. X.; Liu, X.; Loreti, M.; Lu, A.; Lynch, H. L.; Ma, J.; Mancinelli, G.; Manly, S.; Mantovani, G.; Markiewicz, T. W.; Maruyama, T.; Massetti, R.; Masuda, H.; Mazzucato, E.; McKemey, A. K.; Meadows, B. T.; Messner, R.; Mockett, P. M.; Moffeit, K. C.; Mours, B.; Müller, G.; Muller, D.; Nagamine, T.; Nauenberg, U.; Neal, H.; Nussbaum, M.; Ohnishi, Y.; Osborne, L. S.; Panvini, R. S.; Park, H.; Pavel, T. J.; Peruzzi, I.; Piccolo, M.; Piemontese, L.; Pieroni, E.; Pitts, K. T.; Plano, R. J.; Prepost, R.; Prescott, C. Y.; Punkar, G. D.; Quigley, J.; Ratcliff, B. N.; Reeves, T. W.; Reidy, J.; Rensing, P. E.; Rochester, L. S.; Rothberg, J. E.; Rowson, P. C.; Russell, J. J.; Saxton, O. H.; Schaffner, S. F.; Schalk, T.; Schindler, R. H.; Schneekloth, U.; Schumm, B. A.; Seiden, A.; Sen, S.; Serbo, V. V.; Shaevitz, M. H.; Shank, J. T.; Shapiro, G.; Shapiro, S. L.; Sherden, D. J.; Shmakov, K. D.; Simopoulos, C.; Sinev, N. B.; Smith, S. R.; Snyder, J. A.; Stamer, P.; Steiner, H.; Steiner, R.; Strauss, M. G.; Su, D.; Suekane, F.; Sugiyama, A.; Suzuki, S.; Swartz, M.; Szumilo, A.; Takahashi, T.; Taylor, F. E.; Torrence, E.; Trandafir, A. I.; Turk, J. D.; Usher, T.; Va'vra, J.; Vannini, C.; Vella, E.; Venuti, J. P.; Verdier, R.; Verdini, P. G.; Wagner, S. R.; Waite, A. P.; Watts, S. J.; Weidemann, A. W.; Weiss, E. R.; Whitaker, J. S.; White, S. L.; Wickens, F. J.; Williams, D. A.; Williams, D. C.; Williams, S. H.; Willocq, S.; Wilson, R. J.; Wisniewski, W. J.; Woods, M.; Word, G. B.; Wyss, J.; Yamamoto, R. K.; Yamartino, J. M.; Yang, X.; Yellin, S. J.; Young, C. C.; Yuta, H.; Zapalac, G.; Zdarko, R. W.; Zeitlin, C.; Zhang, Z.; Zhou, J.

    1995-11-01

    We report a measurement of the average B hadron lifetime using data collected with the SLD detector at the SLAC Linear Collider in 1993. An inclusive analysis selected three-dimensional vertices with B hadron lifetime information in a sample of 50×103 Z0 decays. A lifetime of 1.564+/-0.030(stat)+/-0.036(syst) ps was extracted from the decay length distribution of these vertices using a binned maximum likelihood method.

  18. Genetic characterization of interleukins (IL-1α, IL-1β, IL-2, IL-4, IL-8, IL-10, IL-12A, IL-12B, IL-15 and IL-18) with relevant biological roles in lagomorphs

    PubMed Central

    Neves, Fabiana; Abrantes, Joana; Almeida, Tereza; de Matos, Ana Lemos; Costa, Paulo P

    2015-01-01

    ILs, as essential innate immune modulators, are involved in an array of biological processes. In the European rabbit (Oryctolagus cuniculus) IL-1α, IL-1β, IL-2, IL-4, IL-8, IL-10, IL-12A, IL-12B, IL-15 and IL-18 have been implicated in inflammatory processes and in the immune response against rabbit hemorrhagic disease virus and myxoma virus infections. In this study we characterized these ILs in six Lagomorpha species (European rabbit, pygmy rabbit, two cottontail rabbit species, European brown hare and American pika). Overall, these ILs are conserved between lagomorphs, including in their exon/intron structure. Most differences were observed between leporids and American pika. Indeed, when comparing both, some relevant differences were observed in American pika, such as the location of the stop codon in IL-1α and IL-2, the existence of a different transcript in IL8 and the number of cysteine residues in IL-1β. Changes at N-glycosylation motifs were also detected in IL-1, IL-10, IL-12B and IL-15. IL-1α is the protein that presents the highest evolutionary distances, which is in contrast to IL-12A where the distances between lagomorphs are the lowest. For all these ILs, sequences of human and European rabbit are more closely related than between human and mouse or European rabbit and mouse. PMID:26395994

  19. Genetic characterization of interleukins (IL-1α, IL-1β, IL-2, IL-4, IL-8, IL-10, IL-12A, IL-12B, IL-15 and IL-18) with relevant biological roles in lagomorphs.

    PubMed

    Neves, Fabiana; Abrantes, Joana; Almeida, Tereza; de Matos, Ana Lemos; Costa, Paulo P; Esteves, Pedro J

    2015-11-01

    ILs, as essential innate immune modulators, are involved in an array of biological processes. In the European rabbit (Oryctolagus cuniculus) IL-1α, IL-1β, IL-2, IL-4, IL-8, IL-10, IL-12A, IL-12B, IL-15 and IL-18 have been implicated in inflammatory processes and in the immune response against rabbit hemorrhagic disease virus and myxoma virus infections. In this study we characterized these ILs in six Lagomorpha species (European rabbit, pygmy rabbit, two cottontail rabbit species, European brown hare and American pika). Overall, these ILs are conserved between lagomorphs, including in their exon/intron structure. Most differences were observed between leporids and American pika. Indeed, when comparing both, some relevant differences were observed in American pika, such as the location of the stop codon in IL-1α and IL-2, the existence of a different transcript in IL8 and the number of cysteine residues in IL-1β. Changes at N-glycosylation motifs were also detected in IL-1, IL-10, IL-12B and IL-15. IL-1α is the protein that presents the highest evolutionary distances, which is in contrast to IL-12A where the distances between lagomorphs are the lowest. For all these ILs, sequences of human and European rabbit are more closely related than between human and mouse or European rabbit and mouse. PMID:26395994

  20. A Multidimensional Study of Hadronization in Nuclei

    NASA Astrophysics Data System (ADS)

    Miles, Nathan; Deconinck, Wouter; Kordosky, Mike

    2013-10-01

    At the present moment there doest not exist a universal event generator in high energy neutrino physics and this is where GENIE (Generates Events for Neutrino Interaction Experiments) is currently being implemented. The aim for GENIE is to become and extensive canonical Monte Carlo (MC) event generator for a wide range of neutrino interactions and in order to achieve this GENIE must be repeatedly verified with experimental data collected from neutrino interaction experiments conducted around the world. This paper focuses on comparing data obtained in a multidimensional study of hadronization in nuclei done by the HERMES collaboration with a reproduction of a similar experiment via GENIE. The experiment was a simulation of colliding a beam of electron neutrinos at 27.6 GeV with carbon-12 and deuterium nuclei and then observing the dependence of hadron multiplicity ratios, RAh, of carbon to deuterium for ν, the energy transferred to the struck valence or sea quark by the virtual boson, and z, the fractional energy carried by the hadron produced as a result of exciting the valence or sea quark out of the nucleon. The dependence of the multiplicity ratios were analyzed for 8 different particles, π+, π-, π0, K+, K-, K0, p+, and p-. NSF grant and the College of William and Mary Physics Department.

  1. Topics in Hadronic Physics

    SciTech Connect

    Alfred Tang

    2002-08-01

    Hadron production cross sections are calculated in the perturbative QCD frame work. Parton distribution functions are obtained from a strip-soliton model. The fragmentation functions are derived from the Lund model of string breaking.

  2. Melting hadrons, boiling quarks

    NASA Astrophysics Data System (ADS)

    Rafelski, Johann

    2015-09-01

    In the context of the Hagedorn temperature half-centenary I describe our understanding of the hot phases of hadronic matter both below and above the Hagedorn temperature. The first part of the review addresses many frequently posed questions about properties of hadronic matter in different phases, phase transition and the exploration of quark-gluon plasma (QGP). The historical context of the discovery of QGP is shown and the role of strangeness and strange antibaryon signature of QGP illustrated. In the second part I discuss the corresponding theoretical ideas and show how experimental results can be used to describe the properties of QGP at hadronization. The material of this review is complemented by two early and unpublished reports containing the prediction of the different forms of hadron matter, and of the formation of QGP in relativistic heavy ion collisions, including the discussion of strangeness, and in particular strange antibaryon signature of QGP.

  3. Renormdynamics and Hadronization

    NASA Astrophysics Data System (ADS)

    Makhaldiani, Nugzar

    2016-01-01

    Independently radiating valence quarks and corresponding negative binomial distribution presents phenomenologically preferable mechanism of hadronization in multiparticle production processes. Main properties of the renormdynamics, corresponding motion equations and their solutions are considered.

  4. Jets in hadronic reactions

    SciTech Connect

    Paige, F.E.

    1983-01-01

    Recent experimental data on the properties of jets in hadronic reactions are reviewed and compared with theoretical expectations. Jets are clearly established as the dominant process for high E/sub T/ events in hadronic reactions. The cross section and the other properties of these events are in qualitative and even semiquantitative agreement with expectations based on perturbative QCD. However, we can not yet make precise tests of QCD, primarily because there are substantial uncertainties in the theoretical calculations. 45 references. (WHK)

  5. Hadron spectroscopy---Conclusions

    SciTech Connect

    Landua, R.

    1995-07-10

    The session on hadron spectroscopy covered a wide range of new results on the light and heavy meson spectrum. The discovery of three new scalar mesons at LEAR may be crucial for our understanding of the scalar nonet and the possible existence of exotic scalar states. An outlook on the prospects of hadron spectroscopy is given. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  6. The Muon Collider

    SciTech Connect

    Zisman, Michael S.

    2011-01-05

    We describe the scientific motivation for a new type of accelerator, the muon collider. This accelerator would permit an energy-frontier scientific program and yet would fit on the site of an existing laboratory. Such a device is quite challenging, and requires a substantial R&D program. After describing the ingredients of the facility, the ongoing R&D activities of the Muon Accelerator Program are discussed. A possible U.S. scenario that could lead to a muon collider at Fermilab is briefly mentioned.

  7. Muon collider design

    SciTech Connect

    Palmer, R. |; Sessler, A.; Skrinsky, A.

    1996-03-01

    The possibility of muon colliders was introduced by Skrinsky et al., Neuffer, and others. More recently, several workshops and collaboration meetings have greatly increased the level of discussion. In this paper we present scenarios for 4 TeV and 0.5 TeV colliders based on an optimally designed proton source, and for a lower luminosity 0.5 TeV demonstration based on an upgraded version of the AGS. It is assumed that a demonstration version based on upgrades of the FERMILAB machines would also be possible. 53 refs., 25 figs., 8 tabs.

  8. Single production of excited neutrinos at future e{sup +}e{sup -}, ep and pp colliders

    SciTech Connect

    Cakir, O.; Cakir, I. Tuerk; Kirca, Z.

    2004-10-01

    We study the potential of the linear collider (LC) with {radical}(s)=0.5 TeV, linac-ring type ep collider (LCxLHC) with {radical}(s)=3.74 TeV, and the large hadron collider (LHC) with {radical}(s)=14 TeV to search for excited neutrinos through transition magnetic type couplings with gauge bosons. The excited neutrino signal and corresponding backgrounds are studied in detail to obtain accessible mass limits and couplings for these three types of colliders.

  9. B Hadron properties measured in the D0 experiment

    SciTech Connect

    Fisk, H.Eugene; /Fermilab

    2008-12-01

    The study of charm and beauty mesons and baryons provides many opportunities to not only measure and classify their spectroscopic states, but also it serves as a testing ground for aspects of flavor QCD such as heavy quark effective theory and lattice gauge calculations, that are used in precise calculations of masses, lifetimes and cross sections. The Fermilab Tevatron has provided both fixed target and proton--antiproton collider facilities that not only account for the discovery of b-quarks but also have dovetailed well with the b-factories to answer a variety of b-physics questions, some of which were not readily explored at existing e{sup +} e{sup -} and electron-positron colliders. An added feature of the hadron colliders is their large cross-section and high luminosity for production of b-quark states that compliments the high luminosities of the b-factories. We report on the observation of b-hadron states reconstructed using the D0 detector data at the Tevatron Collider. Measurements of the mass and relative rates of neutral excited B{sub d} and B{sub s} mesons, and the discovery of the {Xi}{sub b} baryon are described.

  10. Introductory Lectures on Collider Physics

    NASA Astrophysics Data System (ADS)

    Tait, Tim M. P.; Wang, Lian-Tao

    2013-12-01

    These are elementary lectures about collider physics. They are aimed at graduate students who have some background in computing Feynman diagrams and the Standard Model, but assume no particular sophistication with the physics of high energy colliders.

  11. Status report of a high luminosity muon collider and future research and development plans

    SciTech Connect

    Palmer, R.B.; Tollestrup, A.; Sessler, A.

    1996-11-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should thus be regarded as complementary. Parameters are given of 4 TeV and 0.5 TeV (c-of-m) high luminosity {mu}{sup +}{mu}{sup -} colliders, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders, starting from the proton accelerator needed to generate the muons and proceeding through muon cooling, acceleration and storage in a collider ring. Detector background, polarization, and nonstandard operating conditions are analyzed. Finally, we present an R & D plan to determine whether such machines are practical, and, if they are, lead to the construction of a 0.5 TeV demonstration by 2010, and to a 4 TeV collider by the year 2020.

  12. The Photon Collider at Tesla

    NASA Astrophysics Data System (ADS)

    Badelek, B.; Blöchinger, C.; Blümlein, J.; Boos, E.; Brinkmann, R.; Burkhardt, H.; Bussey, P.; Carimalo, C.; Chyla, J.; Çiftçi, A. K.; Decking, W.; de Roeck, A.; Fadin, V.; Ferrario, M.; Finch, A.; Fraas, H.; Franke, F.; Galynskii, M.; Gamp, A.; Ginzburg, I.; Godbole, R.; Gorbunov, D. S.; Gounaris, G.; Hagiwara, K.; Han, L.; Heuer, R.-D.; Heusch, C.; Illana, J.; Ilyin, V.; Jankowski, P.; Jiang, Y.; Jikia, G.; Jönsson, L.; Kalachnikow, M.; Kapusta, F.; Klanner, R.; Klassen, M.; Kobayashi, K.; Kon, T.; Kotkin, G.; Krämer, M.; Krawczyk, M.; Kuang, Y. P.; Kuraev, E.; Kwiecinski, J.; Leenen, M.; Levchuk, M.; Ma, W. F.; Martyn, H.; Mayer, T.; Melles, M.; Miller, D. J.; Mtingwa, S.; Mühlleitner, M.; Muryn, B.; Nickles, P. V.; Orava, R.; Pancheri, G.; Penin, A.; Potylitsyn, A.; Poulose, P.; Quast, T.; Raimondi, P.; Redlin, H.; Richard, F.; Rindani, S. D.; Rizzo, T.; Saldin, E.; Sandner, W.; Schönnagel, H.; Schneidmiller, E.; Schreiber, H. J.; Schreiber, S.; Schüler, K. P.; Serbo, V.; Seryi, A.; Shanidze, R.; da Silva, W.; Söldner-Rembold, S.; Spira, M.; Stasto, A. M.; Sultansoy, S.; Takahashi, T.; Telnov, V.; Tkabladze, A.; Trines, D.; Undrus, A.; Wagner, A.; Walker, N.; Watanabe, I.; Wengler, T.; Will, I.; Wipf, S.; Yavaş, Ö.; Yokoya, K.; Yurkov, M.; Zarnecki, A. F.; Zerwas, P.; Zomer, F.

    High energy photon colliders (γγ,γe) are based on e-e- linear colliders where high energy photons are produced using Compton scattering of laser light on high energy electrons just before the interaction point. This paper is a part of the Technical Design Report of the linear collider TESLA.1 Physics program, possible parameters and some technical aspects of the photon collider at TESLA are discussed.

  13. Lectures on perturbative QCD, jets and the standard model: collider phenomenology

    SciTech Connect

    Ellis, S.D.

    1988-01-01

    Applications of the Standard Model to the description of physics at hadron colliders are discussed. Particular attention is paid to the use of jets to characterize this physics. The issue of identifying physics beyond the Standard Model is also discussed. 59 refs., 6 figs., 4 tabs.

  14. Overview of results from the Fermilab fixed target and collider experiments

    SciTech Connect

    Montgomery, H.E.

    1997-06-01

    In this paper we present a review of recent QCD related results from Fermilab fixed target and collider experiments. Topics covered range from structure functions through W/Z production, heavy quark production and jet angular distributions. We also include the current state of knowledge about leptoquark pair production in hadronic collisions.

  15. The CALICE digital hadron calorimeter: calibration and response to pions and positrons

    NASA Astrophysics Data System (ADS)

    Bilki, B.; CALICE Collaboration

    2015-02-01

    In order to measure the jet products of the hadronic decays of electroweak bosons in a future lepton collider with 3-4% resolution, a novel approach named Particle Flow Algorithms is proposed. The Particle Flow Algorithms attempt to measure each particle in a hadronic jet individually, using the detector providing the best energy/momentum resolution. The role of the hadronic calorimeters is to measure the neutral component of the hadronic jets. In this context, the CALICE Collaboration developed the Digital Hadron Calorimeter, which uses Resistive Plate Chambers as active media. The 1-bit resolution (digital) readout of 1 × 1 cm2 pads achieves a world record in the number of readout channels already at the prototyping stage. Here we report on the results from the analysis of pion events of momenta between 2 to 60 GeV/c collected in the Fermilab test beam with an emphasis on the intricate calibration procedures.

  16. Structure of hadrons and hadronic matter. Proceedings.

    NASA Astrophysics Data System (ADS)

    Scholten, O.; Koch, J. H.

    The lectures at the summer school were focussed on the dynamics and structure of hadronic systems. This theme was examined from various perspectives. For nuclear matter close to normal densities and for relatively low excitation energies, a description in terms of nucleon degrees of freedom is appropriate. As the density increases, but in some case already under normal conditions, relativistic effects become important and a relativistic approach is necessary. For the description of heavy ion scattering at high energies or to understand the dynamics governing neutron stars, one must explicitly take into account also the non-nucleon degrees of freedom.

  17. Macroscopic strings and ``quirks'' at colliders

    NASA Astrophysics Data System (ADS)

    Kang, Junhai; Luty, Markus A.

    2009-11-01

    We consider extensions of the standard model containing additional heavy particles (``quirks'') charged under a new unbroken non-abelian gauge group as well as the standard model. We assume that the quirk mass m is in the phenomenologically interesting range 100 GeV-TeV, and that the new gauge group gets strong at a scale Λ < m. In this case breaking of strings is exponentially suppressed, and quirk production results in strings that are long compared to Λ-1. The existence of these long stable strings leads to highly exotic events at colliders. For 100 eV lsimΛ <~ keV the strings are macroscopic, giving rise to events with two separated quirk tracks with measurable curvature toward each other due to the string interaction. For keV <~ Λ <~ MeV the typical strings are mesoscopic: too small to resolve in the detector, but large compared to atomic scales. In this case, the bound state appears as a single particle, but its mass is the invariant mass of a quirk pair, which has an event-by-event distribution. For MeV <~ Λ <~ m, the strings are microscopic, and the quirks annihilate promptly within the detector. For colored quirks, this can lead to hadronic fireball events with ~ 103 hadrons with energy of order GeV emitted in conjunction with hard decay products from the final annihilation.

  18. Hadron Resonances from QCD

    NASA Astrophysics Data System (ADS)

    Dudek, Jozef J.

    2016-03-01

    I describe how hadron-hadron scattering amplitudes are related to the eigenstates of QCD in a finite cubic volume. The discrete spectrum of such eigenstates can be determined from correlation functions computed using lattice QCD, and the corresponding scattering amplitudes extracted. I review results from the Hadron Spectrum Collaboration who have used these finite volume methods to study ππ elastic scattering, including the ρ resonance, as well as coupled-channel πK, ηK scattering. The very recent extension to the case where an external current acts is also presented, considering the reaction πγ* → ππ, from which the unstable ρ → πγ transition form factor is extracted. Ongoing calculations are advertised and the outlook for finite volume approaches is presented.

  19. J. J. Sakurai Prize for Theoretical Particle Physics Talk: Collider Physics: Yesterday, Today and Tomorrow

    NASA Astrophysics Data System (ADS)

    Eichten, Estia

    2011-04-01

    More than a quarter century ago, theoretical issues with the Standard Model scalar boson sector inspired theorists to develop alternative models of electroweak symmetry breaking. The goal of the EHLQ study of hadron collider physics was to help determine the basic parameters of a supercollider that could distinguish these alternatives. Now we await data from the CMS and ATLAS experiments at CERN's Large Hadron Collider to solve this mystery. Does the Standard Model survive or, as theorists generally expect, does new physics appear (Strong Dynamics, SUSY, Extra Dimensions,...)? Even well into the LHC era it is likely that questions about the origin of fermion mass and mixings will remain and new physics will bring new puzzles. This time, the associated new scales are unknown. The opportunity to address new physics at a future multi-TeV lepton collider is briefly addressed.

  20. Proceedings of the 2005 International Linear Collider Workshop (LCWS05)

    SciTech Connect

    Hewett, JoAnne,; /SLAC

    2006-12-18

    Exploration of physics at the TeV scale holds the promise of addressing some of our most basic questions about the nature of matter, space, time, and energy. Discoveries of the Electroweak Symmetry Breaking mechanism, Supersymmetry, Extra Dimensions of space, Dark Matter particles, and new forces of nature are all possible. We have been waiting and planning for this exploration for over 20 years. In 2007 the Large Hadron Collider at CERN will begin its operation and will break into this new energy frontier. A new era of understanding will emerge as the LHC data maps out the Terascale. With the LHC discoveries, new compelling questions will arise. Responding to these questions will call for a new tool with greater sensitivity--the International Linear Collider. Historically, the most striking progress in the exploration of new energy frontiers has been made from combining results from hadron and electron-positron colliders. The precision measurements possible at the ILC will reveal the underlying theory which gave rise to the particles discovered at the LHC and will open the window to even higher energies. The world High Energy Physics community has reached an accord that an e+e- linear collider operating at 0.5-1.0 TeV would provide both unique and essential scientific opportunities; the community has endorsed with highest priority the construction of such a machine. A major milestone toward this goal was reached in August 2004 when the International Committee on Future Accelerators approved a recommendation for the technology of the future International Linear Collider. A global research and design effort is now underway to construct a global design report for the ILC. This endeavor is directed by Barry Barrish of the California Institute of Technology. The offer, made by Jonathan Dorfan on the behalf of ICFA, and acceptance of this directorship took place during the opening plenary session of this workshop. The 2005 International Linear Collider Workshop was held

  1. The International Linear Collider

    NASA Astrophysics Data System (ADS)

    List, Benno

    2014-04-01

    The International Linear Collider (ILC) is a proposed e+e- linear collider with a centre-of-mass energy of 200-500 GeV, based on superconducting RF cavities. The ILC would be an ideal machine for precision studies of a light Higgs boson and the top quark, and would have a discovery potential for new particles that is complementary to that of LHC. The clean experimental conditions would allow the operation of detectors with extremely good performance; two such detectors, ILD and SiD, are currently being designed. Both make use of novel concepts for tracking and calorimetry. The Japanese High Energy Physics community has recently recommended to build the ILC in Japan.

  2. High intensity hadron accelerators

    SciTech Connect

    Teng, L.C.

    1989-05-01

    This rapporteur report consists mainly of two parts. Part I is an abridged review of the status of all High Intensity Hadron Accelerator projects in the world in semi-tabulated form for quick reference and comparison. Part II is a brief discussion of the salient features of the different technologies involved. The discussion is based mainly on my personal experiences and opinions, tempered, I hope, by the discussions I participated in in the various parallel sessions of the workshop. In addition, appended at the end is my evaluation and expression of the merits of high intensity hadron accelerators as research facilities for nuclear and particle physics.

  3. Hadron Physics with Antiprotons

    SciTech Connect

    Wiedner, Ulrich

    2005-10-26

    The new FAIR facility which comes into operation at GSI in the upcoming years has a dedicated program of utilizing antiprotons for hadron physics. In particular, the planned PANDA experiment belongs to the group of core experiments at the new FAIR facility in Darmstadt/Germany. PANDA will be a universal detector to study the strong interaction by utilizing the annihilation process of antiprotons with protons and nuclear matter. The current paper gives an introduction into the hadron physics with antiprotons and part of the planned physics program with PANDA.

  4. Bouncing and Colliding Branes

    SciTech Connect

    Lehners, Jean-Luc

    2007-11-20

    In a braneworld description of our universe, we must allow for the possibility of having dynamical branes around the time of the big bang. Some properties of such domain walls in motion are discussed here, for example the ability of negative-tension domain walls to bounce off spacetime singularities and the consequences for cosmological perturbations. In this context, we will also review a colliding branes solution of heterotic M-theory that has been proposed as a model for early universe cosmology.

  5. Muon Collider Progress: Accelerators

    SciTech Connect

    Zisman, Michael S.

    2011-09-10

    A muon collider would be a powerful tool for exploring the energy-frontier with leptons, and would complement the studies now under way at the LHC. Such a device would offer several important benefits. Muons, like electrons, are point particles so the full center-of-mass energy is available for particle production. Moreover, on account of their higher mass, muons give rise to very little synchrotron radiation and produce very little beamstrahlung. The first feature permits the use of a circular collider that can make efficient use of the expensive rf system and whose footprint is compatible with an existing laboratory site. The second feature leads to a relatively narrow energy spread at the collision point. Designing an accelerator complex for a muon collider is a challenging task. Firstly, the muons are produced as a tertiary beam, so a high-power proton beam and a target that can withstand it are needed to provide the required luminosity of ~1 × 10{sup 34} cm{sup –2}s{sup –1}. Secondly, the beam is initially produced with a large 6D phase space, which necessitates a scheme for reducing the muon beam emittance (“cooling”). Finally, the muon has a short lifetime so all beam manipulations must be done very rapidly. The Muon Accelerator Program, led by Fermilab and including a number of U.S. national laboratories and universities, has undertaken design and R&D activities aimed toward the eventual construction of a muon collider. Design features of such a facility and the supporting R&D program are described.

  6. The dark penguin shines light at colliders

    NASA Astrophysics Data System (ADS)

    Primulando, Reinard; Salvioni, Ennio; Tsai, Yuhsin

    2015-07-01

    Collider experiments are one of the most promising ways to constrain Dark Matter (DM) interactions. For several types of DM-Standard Model couplings, a meaningful interpretation of the results requires to go beyond effective field theory, considering simplified models with light mediators. This is especially important in the case of loop-mediated interactions. In this paper we perform the first simplified model study of the magnetic dipole interacting DM, by including the one-loop momentum-dependent form factors that mediate the coupling — given by the Dark Penguin — in collider processes. We compute bounds from the monojet, monophoton, and diphoton searches at the 8 and 14 TeV LHC, and compare the results to those of direct and indirect detection experiments. Future searches at the 100 TeV hadron collider and at the ILC are also addressed. We find that the optimal search strategy requires loose cuts on the missing transverse energy, to capture the enhancement of the form factors near the threshold for on-shell production of the mediators. We consider both minimal models and models where an additional state beyond the DM is accessible. In the latter case, under the assumption of anarchic flavor structure in the dark sector, the LHC monophoton and diphoton searches will be able to set much stronger bounds than in the minimal scenario. A determination of the mass of the heavier dark fermion might be feasible using the M T2 variable. In addition, if the Dark Penguin flavor structure is almost aligned with that of the DM mass, a displaced signal from the decay of the heavier dark fermion into the DM and photon can be observed. This allows us to set constraints on the mixings and couplings of the model from an existing search for non-pointing photons.

  7. Solid State Technology Meets Collider Challenge

    SciTech Connect

    Hazi, A

    2005-09-20

    Probing the frontiers of particle physics and delving into the mysteries of the universe and its beginnings require machines that can accelerate beams of fundamental particles to very high energies and then collide those beams together, producing a multitude of exotic subatomic particles. The proposed Next Linear Collider (NLC), being developed by Stanford Linear Accelerator Center (SLAC), Lawrence Livermore and Lawrence Berkeley national laboratories, and Fermi National Accelerator Laboratory (Fermilab), is such a machine. The NLC is expected to produce a variety of subatomic particles by smashing together electrons and their antimatter counterparts (positrons) at nearly the speed of light with energies in the teraelectronvolt (TeV) range. Plans are that the NLC will initially operate at 0.5 TeV and ultimately be scaled up to 1.5 TeV. (See S&TR, April 2000, pp. 12-16.) Work at the facility will complement the research to be conducted at another high-energy particle accelerator, the 14-TeV Large Hadron Collider at the European Laboratory for Particle Physics (commonly known by the acronym CERN from its former name) in Geneva, which is scheduled for completion in 2007. Achieving beam energy levels in the TeV range requires modulator systems that can convert ac line power--the same type of power one gets from the wall plug--into dc pulses. Ultimately, these pulses are transformed into radiofrequency (rf) pulses that ''kick'' the particles up to the required energy levels. Livermore scientists and engineers have designed a solid-state modulator to replace oldstyle modulators based on vacuum-tube technology. These new modulators promise to be far more efficient, reliable, and serviceable than the previous components. Livermore's Laboratory Directed Research and Development Program supported the basic research and development on the solid-state modulator technology, and SLAC supported the systems integration.

  8. COLLIDING CRYSTALLINE BEAMS.

    SciTech Connect

    WEI, J.

    1998-06-26

    The understanding of crystalline beams has advanced to the point where one can now, with reasonable confidence, undertake an analysis of the luminosity of colliding crystalline beams. Such a study is reported here. It is necessary to observe the criteria, previously stated, for the creation and stability of crystalline beams. This requires, firstly, the proper design of a lattice. Secondly, a crystal must be formed, and this can usually be done at various densities. Thirdly, the crystals in a colliding-beam machine are brought into collision. We study all of these processes using the molecular dynamics (MD) method. The work parallels what was done previously, but the new part is to study the crystal-crystal interaction in collision. We initially study the zero-temperature situation. If the beam-beam force (or equivalent tune shift) is too large then overlapping crystals can not be created (rather two spatially separated crystals are formed). However, if the beam-beam force is less than but comparable to that of the space-charge forces between the particles, we find that overlapping crystals can be formed and the beam-beam tune shift can be of the order of unity. Operating at low but non-zero temperature can increase the luminosity by several orders of magnitude over that of a usual collider. The construction of an appropriate lattice, and the development of adequately strong cooling, although theoretically achievable, is a challenge in practice.

  9. Colliding Crystalline Beams

    SciTech Connect

    Wei, Jie; Sessler, A.M.

    1998-06-01

    The understanding of crystalline beams has advanced to the point where one can now, with reasonable confidence, undertake an analysis of the luminosity of colliding crystalline beams. Such a study is reported here. It is necessary to observe the criteria, previously stated, for the creation and stability of crystalline beams. This requires, firstly, the proper design of a lattice. Secondly, a crystal must be formed, and this can usually be done at various densities. Thirdly, the crystals in a colliding-beam machine are brought into collision. We study all of these processes using the molecular dynamics (MD) method. The work parallels what was done previously, but the new part is to study the crystal-crystal interaction in collision. We initially study the zero-temperature situation. If the beam-beam force (or equivalent tune shift) is too large then over-lapping crystals can not be created (rather two spatially separated crystals are formed). However, if the beam-beam force is less than but comparable to that of the space-charge forces between the particles, we find that overlapping crystals can be formed and the beam-beam tune shift can be of the order of unity. Operating at low but non-zero temperature can increase the luminosity by several orders of magnitude over that of a usual collider. The construction of an appropriate lattice, and the development of adequately strong coding, although theoretically achievable, is a challenge in practice.

  10. e-A PHYSICS AT A COLLIDER.

    SciTech Connect

    G. T. GARVEY

    2001-01-09

    An electron-nucleus (e-A) collider with center-of-mass energy in excess of 50 GeV per electron-nucleon collision will allow the physics community to obtain unprecedented new knowledge of the partonic structure of nuclei. If reliable information is to be extracted on these partonic densities, it is essential to realize that with our current level of understanding of QCD, momentum transfers to the struck partons greater than 1 GeV/c are necessary. This requirement puts a priority on high center-of-mass energy if partonic densities are to be measured over a wide range. Comparing the partonic structure of the free nucleon to that of bound nucleons and measuring the systematic changes in that structure as a function of nucleon number (A) will provide deeper insight into the origins and dynamics of nuclear binding. In addition, e-A collisions will allow the exploration of partonic densities appreciably higher than is accessible in e-p collisions. An e-A collider will allow one to measure the gluonic structure functions of nuclei down to x {approx} 10{sup -3}, information valuable in its own right and essential to a quantitative understanding of highly relativistic A-A collisions. The time-space evolution of partons can only be investigated by studying the modifications of hard collisions that take place when nuclear targets are employed. In a hard collision the partonic fragments interact, hadronize, and reinteract on their way to the distant detectors without revealing their evolution into the hadrons finally detected. Nuclear targets of differing A place varying amounts of nuclear matter in proximity to the hard collision producing unique information about the quantum fluctuations of incident projectile prior to the collision and on the early evolution of the produced partons. Using charged leptons (e, {mu}) to investigate this physics has been the richest source of information to date and extending the reach of these investigations by the constructing an e -A collider

  11. Hadron Therapy for Cancer Treatment

    SciTech Connect

    Lennox, Arlene

    2003-09-10

    The biological and physical rationale for hadron therapy is well understood by the research community, but hadron therapy is not well established in mainstream medicine. This talk will describe the biological advantage of neutron therapy and the dose distribution advantage of proton therapy, followed by a discussion of the challenges to be met before hadron therapy can play a significant role in treating cancer. A proposal for a new research-oriented hadron clinic will be presented.

  12. Weibull model of multiplicity distribution in hadron-hadron collisions

    NASA Astrophysics Data System (ADS)

    Dash, Sadhana; Nandi, Basanta K.; Sett, Priyanka

    2016-06-01

    We introduce the use of the Weibull distribution as a simple parametrization of charged particle multiplicities in hadron-hadron collisions at all available energies, ranging from ISR energies to the most recent LHC energies. In statistics, the Weibull distribution has wide applicability in natural processes that involve fragmentation processes. This provides a natural connection to the available state-of-the-art models for multiparticle production in hadron-hadron collisions, which involve QCD parton fragmentation and hadronization. The Weibull distribution describes the multiplicity data at the most recent LHC energies better than the single negative binomial distribution.

  13. Electroweak and hadron studies

    SciTech Connect

    Rau, R.R.

    1988-01-01

    Some final results are presented on ..mu mu.., /tau//tau/, and hadron production, obtained by the MARK J collaboration at PETRA, over the cm energy band 22 GeV to 46.8 GeV. The MARK J results agree with world averaged data. They constitute powerful tests of the predictions of the Standard Model. 29 refs., 8 figs., 3 tabs.

  14. Prototype tests for a highly granular scintillator-based hadron calorimeter

    NASA Astrophysics Data System (ADS)

    Krüger, K.; CALICE Collaboration

    2015-02-01

    Within the CALICE collaboration, several concepts for the hadronic calorimeter of a future linear collider detector are studied. After having demonstrated the capabilities of the measurement methods in "physics prototypes", the focus now lies on improving their implementation in"technological prototypes", that are scalable to the full linear collider detector. The Analog Hadron Calorimeter (AHCAL) concept is a sampling calorimeter of tungsten or steel absorber plates and plastic scintillator tiles read out by silicon photomultipliers as active material. In the AHCAL technological prototype, the front-end chips are integrated into the active layers of the calorimeter and are designed for minimal power consumption. The versatile electronics allows the prototype to be equipped with different types of scintillator tiles and SiPMs. The current status of the AHCAL engineering prototype is shown and recent beam test measurements as well as plans for future hadron beam tests with a larger prototype will be discussed.

  15. Proceedings of the workshop on future hadron facilities in the US

    SciTech Connect

    Not Available

    1994-12-31

    This report discusses the following topics on future hadron facilities: Workshop on future hadron facilities in the US; 30 {times} 30 TeV-summary report; A high luminosity, 2 {times} 2 TeV collider in the tevatron tunnel; magnets working group; cryogenics discussion; vacuum report; antiproton source production; injector working group; interaction region working group; lattice/beam dynamics working group; LEBT for high-luminosity colliders; some notes on long-range beam-beam effects for the 2TeV collider; synchrotron radiation masks for high energy proton accelerators. Emittance preservation in a proton synchrotron; beam-beam interaction effects on betatron tunes; analytic solutions for phase trombone modules; and chromatic corrections of RHIC when one or two insertions is at {Beta}* = 0.5m.

  16. Extracting hadron-neutron scattering amplitudes from hadron-proton and hadron-deuteron measurements

    NASA Technical Reports Server (NTRS)

    Franco, V.

    1977-01-01

    A method is presented for extracting hadron-neutron scattering amplitudes from hadron-proton and hadron-deuteron measurements within the framework of the Glauber approximation. This method, which involves the solution of a linear integral equation, is applied to pn collisions between 15 and 275 GeV/c. Effects arising from inelastic intermediate states are estimated.

  17. The super collider revisited

    SciTech Connect

    Hussein, M.S.; Pato, M.P. )

    1992-05-20

    In this paper, the authors suggest a revised version of the Superconducting Super Collider (SSC) that employs the planned SSC first stage machine as an injector of 0.5 TeV protons into a power laser accelerator. The recently developed Non-linear Amplification of Inverse Bremsstrahlung Acceleration (NAIBA) concept dictates the scenario of the next stage of acceleration. Post Star Wars lasers, available at several laboratories, can be used for the purpose. The 40 TeV CM energy, a target of the SSC, can be obtained with a new machine which can be 20 times smaller than the planned SSC.

  18. sPHENIX Hadronic Calorimeter Scintillator Studies

    NASA Astrophysics Data System (ADS)

    Byrd, Reuben; Sphenix Collaboration

    2015-10-01

    A new form of matter called the Quark-Gluon Plasma (QGP) was discovered with the Relativistic Heavy Ion Collider (RHIC). PHENIX is an experiment at RHIC that helped with this discovery, but plans are being made to replace it with a new spectrometer with different capabilities. The sPHENIX detector will consist of a superconducting solenoid magnet, hadronic and electromagnetic calorimetry and charged particle tracking. sPHENIX will enable a rich jet physics program that will address fundamental questions about of the nature of the QGP. The new detector will provide full azimuthal coverage and +/- 1.1 in pseudorapidity. The Hadronic Calorimeter is a major subsystem in this detector. It is made of alternating layers of scintillating tiles and steel plates. In the current prototype the tiles are covered with a reflective coating and contain wavelength shifting fibers. As the second round of prototypes are developed for an upcoming beam test, special care is being taken to provide uniform light collection efficiency across the detector. Studies are being conducted to ensure this by careful alignment of the silicon photomultipliers to the fibers and varying coatings on the tiles. The effects of the coating will be presented along with the current status and ongoing plans.

  19. Strange hadron production at low transverse momenta

    NASA Astrophysics Data System (ADS)

    Veres, Gábor I.; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Noell, A.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Roland, C.; Roland, G.; Sagerer, J.; Sarin, P.; Sawicki, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Teng, R.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wyslouch, B.; Zhang, J.

    2004-01-01

    Some of the latest results of the PHOBOS experiment from the \\sqrt{s_{NN}}= 200\\ GeV Au+Au data are discussed. Those relevant to strangeness production are emphasized. These observations relate to the nature of the matter created when heavy ions collide at the highest achieved energy. The invariant yields of strange and non-strange charged hadrons at very low transverse momentum have been measured, and used to differentiate between different dynamical scenarios. In the intermediate transverse momentum range, the measured ratios of strange and anti-strange kaons approach one, while the antibaryon to baryon ratio is still significantly less, independent of collision centrality and transverse momentum. At high transverse momenta, we find that central and peripheral Au+Au collisions produce similar numbers of charged hadrons per participant nucleon pair, rather than per binary nucleon-nucleon collision. Finally, we describe the upgrades of PHOBOS completed for the 2003 d+Au and p+p run, which extend the transverse momentum range over which particle identification is possible and, at the same time, implement a trigger system selective for high-pT particles.

  20. Average and individual B hadron lifetimes at CDF

    SciTech Connect

    Schneider, O.; CDF Collaboration

    1993-09-01

    Bottom hadron lifetime measurements have been performed using B {yields} J/{psi} {yields} {mu}+{mu}{sup {minus}}X dacays recorded with the collider Detector at Fermilab (CDF) during the first half of the 1992--1993 Tevatron collider run. These decays have been reconstructed in a silicon vertex detector. Using 5344 {plus_minus} 73 inclusive J/{psi} events, the average lifetime of all bottom hadrons produced in 1.8 TeV p{bar p} collisions and decaying into a J/{psi} events, the average lifetime of all bottom hadrons produced in 1.8 TeV p{bar p} collisions and decaying into a J/{psi} is found to be 1.46 {plus_minus} 0.06(stat) {plus_minus}0.06(sys)ps. The charged and neutral B meson lifetimes have been measured separately using 75 {plus_minus}10 (charged) and 61{plus_minus}9 (neutral) fully reconstructed decays; preliminary results are {tau}{sup {plus_minus}} = 1.63 {plus_minus} 0.21(stat) {plus_minus} 0.16(sys) {plus_minus} 0. 10(sys) ps, yielding a lifetime ratio of {tau}{sup {plus_minus}}/{tau}{sup 0} = 1.06{plus_minus} 0.20(stat){plus_minus}0.12(sys).