Science.gov

Sample records for hadron tile calorimeter

  1. Calibration of the Tile Hadronic Calorimeter of ATLAS at LHC

    NASA Astrophysics Data System (ADS)

    Boumediene, Djamel; ATLAS Collaboration

    2015-02-01

    The Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment. The TileCal provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses iron plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by means of wavelength shifting fibers to photomultiplier tubes (PMTs). The TileCal readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read by two PMTs. A brief description of the individual calibration systems (Cs radioactive source, laser, charge injection, minimum bias) is provided. Their combination allows to calibrate each part of the data acquisition chain (optical part, photomultiplier, readout electronics) and to monitor its stability to better than 1%. The procedure for setting and preserving the electromagnetic energy scale during Run 1 data taking is discussed. The issues of linearity and stability of the response, as well as the timing adjustment are also shown.

  2. Performance of the ATLAS Tile Hadronic Calorimeter at LHC in Run 1 and planned upgrades

    NASA Astrophysics Data System (ADS)

    Solovyanov, O.

    2014-10-01

    The Tile Calorimeter (TileCal) is the central section of the ATLAS hadronic calorimeter at the Large Hadron Collider, a key detector for the measurements of hadrons, jets, tau leptons and missing transverse energy. Scintillation light produced in the tiles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). The resulting electronic signals from approximately 10000 PMTs are digitized before being transferred to off-detector data-acquisition systems. The data quality procedures used during the LHC data-taking and the evolution of the detector status are explained in the presentation. The energy and the time reconstruction performance of the digitized signals is presented and the noise behaviour and its improvement during the detector consolidation in maintenance periods are shown. A set of calibration systems allow monitoring and equalization of the calorimeter channels responses via signal sources that act at every stage of the signal path, from scintillation light to digitized signal. These partially overlapping systems are described in detail, their individual performance is discussed as well as the comparative results from measurements of the evolution of the calorimeter response with time during the full LHC data-taking period. The TileCal upgrade aims at replacing the majority of the on- and off-detector electronics so that all calorimeter signals will be directly digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. For the off-detector electronics a special pre-processor board is being developed, which will take care of the initial trigger processing, while the main data are temporarily stored in the pipeline and de-randomiser memories.

  3. Performance of the ATLAS Tile calorimeter

    E-print Network

    Bertoli, Gabriele; The ATLAS collaboration

    2015-01-01

    The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for energy reconstruction of hadrons, jets, tau­particles and missing transverse energy. TileCal is a scintillator­steel sampling calorimeter and it covers the region of pseudorapidity quality factor at the required high rate. Each stage of the signal production from scintillation light to the signal reconstruc...

  4. Upgrade of the Laser Calibration System for the ATLAS Hadronic Calorimeter TileCal

    E-print Network

    Van Woerden, Marius Cornelis; The ATLAS collaboration

    2015-01-01

    We present in this contribution the new system for laser calibration of the ATLAS hadronic calorimeter TileCal. The laser system is a part of the three stage calibration apparatus designed to compute the calibration constants of the individual cells of TileCal. The laser system is mainly used to correct for short term (one month) drifts of the readout of the individual cells. A sub-percent accuracy in the control of the calibration constants is required to keep the systematics effects introduced by relative cell miscalibration below the irreducible systematics in determining the parameters of the reconstructed hadronic jets. To achieve this goal in the LHC run II conditions, a new laser system was designed. The architecture of the system is described with details on the new optical line used to distribute laser pulses in each individual detector module and on the new electronics used to drive the laser, to readout the system optical monitors and to interface the system with the Atlas readout, trigger, and slo...

  5. Upgrade of the Laser Calibration System for the ATLAS Hadronic Calorimeter TileCal

    E-print Network

    Van Woerden, Marius Cornelis; The ATLAS collaboration

    2015-01-01

    We present in this contribution the new system for laser calibration of the ATLAS hadronic calorimeter TileCal. The laser system is a part of the three stage calibration apparatus designed to compute the calibration constants of the individual cells of TileCal. The laser system is mainly used to correct for short term (one month) drifts of the readout of the individual cells. A sub-percent accuracy in the control of the calibration constants is required to keep the systematics effects introduced by relative cell miscalibration below the irreducible systematics in determining the parameters of the reconstructed hadronic jets. To achieve this goal in the LHC Run 2 conditions, a new laser system was designed. The architecture of the system is described with details on the new optical line used to distribute laser pulses in each individual detector module and on the new electronics used to drive the laser, to readout the system optical monitors and to interface the system with the Atlas readout, trigger, and slow...

  6. A Design of Scintillator Tiles Read Out by Surface-Mounted SiPMs for a Future Hadron Calorimeter

    E-print Network

    Liu, Yong; Caudron, Julien; Chau, Phi; Krause, Sascha; Masetti, Lucia; Schäfer, Ulrich; Spreckels, Rouven; Tapprogge, Stefan; Wanke, Rainer

    2015-01-01

    Precision calorimetry using highly granular sampling calorimeters is being developed based on the particle flow concept within the CALICE collaboration. One design option of a hadron calorimeter is based on silicon photomultipliers (SiPMs) to detect photons generated in plastic scintillator tiles. Driven by the need of automated mass assembly of around ten million channels stringently required by the high granularity, we developed a design of scintillator tiles directly coupled with surface-mounted SiPMs. A cavity is created in the center of the bottom surface of each tile to provide enough room for the whole SiPM package and to improve collection of the light produced by incident particles penetrating the tile at different positions. The cavity design has been optimized using a GEANT4-based full simulation model to achieve a high response to a Minimum Ionizing Particles (MIP) and also good spatial uniformity. The single-MIP response for scintillator tiles with an optimized cavity design has been measured usi...

  7. ATLAS Tile Calorimeter Interface Card

    E-print Network

    -1- ATLAS Tile Calorimeter Interface Card K. Anderson, A. Gupta, J. Pilcher, H. Sanders, F. Tang, R Digitizer-to-Rod Interface card design, performance and radiation hardness tests and production processes. I1 cards, control motherboards, digitizer boards, and interface card. A block diagram is shown

  8. Upgrade of the ATLAS Tile Calorimeter Electronics

    NASA Astrophysics Data System (ADS)

    Carrió, F.; Tile Calorimeter System, ATLAS

    2015-02-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. The bulk of its upgrade will occur for the High Luminosity LHC phase (Phase-II) where the peak luminosity will increase 5 times compared to the design luminosity (1034 cm-2s-1) but with maintained energy (i.e. 7+7 TeV). An additional increase of the average luminosity with a factor of 2 can be achieved by luminosity levelling. This upgrade is expected to happen around 2024. The TileCal upgrade aims at replacing the majority of the on- and off- detector electronics to the extent that all calorimeter signals will be digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies will determine which option will be selected. 10 Gbps optical links are used to read out all digitized data to the counting room while 5 Gbps down-links are used for synchronization, configuration and detector control. For the off-detector electronics a pre-processor (sROD) is being developed, which takes care of the initial trigger processing while temporarily storing the main data flow in pipeline and derandomizer memories. One demonstrator prototype module with the new calorimeter module electronics, but still compatible with the present system, is planned to be inserted in ATLAS this year.

  9. The ATLAS tile calorimeter performance at the LHC

    SciTech Connect

    Calkins, R.

    2011-07-01

    The Tile Calorimeter (TileCal), the central section of the hadronic calorimeter of the ATLAS experiment, is a key detector component to detect hadrons, jets and taus and to measure the missing transverse energy. Due to the very good muon signal to noise ratio it assists the spectrometer in the identification and reconstruction of muons. TileCal is built of steel and scintillating tiles coupled to optical fibers and read out by photomultipliers. The calorimeter is equipped with systems that allow to monitor and to calibrate each stage of the read out system exploiting different signal sources: laser light, charge injection and a radioactive source. The performance of the calorimeter has been measured and monitored using calibration data, random triggered data, cosmic muons and more importantly LHC collision events. The results presented here assess the absolute energy scale calibration precision, the energy and timing uniformity and the synchronization precision. The ensemble of the results demonstrates a very good understanding of the performance of the Tile Calorimeter that is proved to be well within the design expectations. (authors)

  10. Calibration and monitoring of the ATLAS Tile calorimeter

    SciTech Connect

    Carvalho, J.

    2006-10-27

    The calibration and monitoring systems of the ATLAS hadronic calorimeter, the TileCal, are presented. Special attention is given to the experience gained so far and perspectives for the future, alongside with the results obtained from the analysis of data acquired during the testbeam periods.

  11. Hadronic Shower Development in Iron-Scintillator Tile Calorimetry

    E-print Network

    Tilecal Atlas Collaboration

    1999-04-29

    The lateral and longitudinal profiles of hadronic showers detected by a prototype of the ATLAS Iron-Scintillator Tile Hadron Calorimeter have been investigated. This calorimeter uses a unique longitudinal configuration of scintillator tiles. Using a fine-grained pion beam scan at 100 GeV, a detailed picture of transverse shower behavior is obtained. The underlying radial energy densities for four depth segments and for the entire calorimeter have been reconstructed. A three-dimensional hadronic shower parametrization has been developed. The results presented here are useful for understanding the performance of iron-scintillator calorimeters, for developing fast simulations of hadronic showers, for many calorimetry problems requiring the integration of a shower energy deposition in a volume and for future calorimeter design.

  12. Hadronic Shower Development in Tile Iron-Scintillator Calorimetry

    E-print Network

    Yuri A. Kulchitsky

    1999-10-07

    The lateral and longitudinal profiles of hadronic showers detected by a prototype of the ATLAS Iron-Scintillator Tile Hadron Calorimeter have been investigated. This calorimeter uses a unique longitudinal configuration of scintillator tiles. Using a fine-grained pion beam scan at 100 GeV, a detailed picture of transverse shower behavior is obtained. The underlying radial energy densities for four depth segments and for the entire calorimeter have been reconstructed. A three-dimensional hadronic shower parametrization has been developed. The results presented here are useful for understanding the performance of iron-scintillator calorimeters, for developing fast simulations of hadronic showers, for many calorimetry problems requiring the integration of a shower energy deposition in a volume and for future calorimeter design.

  13. The CMS central hadron calorimeter

    SciTech Connect

    Freeman, Jim

    1998-11-09

    The CMS central hadron calorimeter is a brass absorber/scintillator sampling structure. We describe details of the mechanical and optical structure. We also discuss calibration techniques, and finally the anticipated construction schedule.

  14. Tile Calorimeter Upgrade Program for the Luminosity Increasing at the LHC

    E-print Network

    A. S. Cerqueira; for the ATLAS Tile Calorimeter System

    2015-10-01

    The Tile Calorimeter (TileCal) is the central hadronic calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC). The LHC is scheduled to undergo a major upgrade, in 2022, for the High Luminosity LHC (HL-LHC). The ATLAS upgrade program for high luminosity is split into three phases: Phase-0 occurred during $2013-2014$ and prepared the LHC for Run 2; Phase-I, foreseen for 2019, will prepare the LHC for Run 3, whereafter the peak luminosity reaches $2-3 \\times 10^{34}$ cm$^{2}s^{-1}$; finally, Phase-II, which is foreseen for 2024, will prepare the collider for the HL-LHC operation ($5-7 \\times 10^{34}$ cm$^{2}s^{-1}$). The TileCal main activities for Phase-0 were the installation of the new low voltage power supplies and the activation of the TileCal third layer signal for assisting the muon trigger at $1.0pulses at the front-end level. This work describes the TileCal upgrade activities, focusing on the TileMuon Project and the new on-detector electronics.

  15. Tile Calorimeter Upgrade Program for the Luminosity Increasing at the LHC

    E-print Network

    Cerqueira, Augusto Santiago; The ATLAS collaboration

    2015-01-01

    The Tile Calorimeter (TileCal) is the central hadronic calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC). TileCal is a sampling calorimeter with approximately 10,000 channels and is operating successfully (data quality efficiency above 99%) in ATLAS, since the start of the LHC collisions. The LHC is scheduled to undergo a major upgrade, in 2022, for the High Luminosity LHC (HL-LHC), where the luminosity will be increased by a factor of 10 above the original design value. The ATLAS upgrade program for high luminosity is split into three phases: Phase 0 occurred during 2013-2014 (Long Shutdown 1), and prepared the LHC for run 2; Phase 1, foreseen for 2019 (Long Shutdown 2), will prepare the LHC for run 3, whereafter the peak luminosity reaches 2-3 x 10^{34} cm^{2}s^{-1}; finally, Phase 2, which is foreseen for 2024 (Long Shutdown 3), will prepare the collider for the HL-LHC operation (5-7 x 10^{34} cm^{2}s^{-1}). The TileCal main activities for Phase 0 were the installation of the new low v...

  16. Tile Calorimeter Upgrade Program for the Luminosity Increasing at the LHC

    E-print Network

    Cerqueira, Augusto Santiago; The ATLAS collaboration

    2015-01-01

    The Tile Calorimeter (TileCal) is the central hadronic calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC). TileCal is a sampling calorimeter with approximately 10,000 channels and is operating successfully (data quality efficiency above 99%) in ATLAS, since the start of the LHC collisions. The LHC is scheduled to undergo a major upgrade, in 2022, for the High Luminosity LHC (HL-LHC), where the luminosity will be increased by a factor of 10 above the original design value. The ATLAS upgrade program for high luminosity is split into three phases: Phase 0 occurred during 2013-2014 (Long Shutdown 1), and prepared the LHC for run 2; Phase 1, foreseen for 2019 (Long Shutdown 2), will prepare the LHC for run 3, whereafter the peak luminosity reaches 2-3 x 10^{34} cm^{2}s^{-1}; finally, Phase 2, which is foreseen for 2023 (Long Shutdown 3), will prepare the collider for the HL-LHC operation (5-7 x 10^{34} cm^{2}s^{-1}). The TileCal main activities for Phase 0 were the installation of the new low v...

  17. Performance of the ATLAS Tile Calorimeter in pp collisions at the LHC

    NASA Astrophysics Data System (ADS)

    Fiascaris, Maria; ATLAS Collaboration

    2015-02-01

    The Tile Calorimeter is the central section of the ATLAS hadronic calorimeter at the Large Hadron Collider. This detector is instrumented for the measurements of hadrons, jets, tau leptons and missing transverse energy. Scintillation light produced in the tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The resulting electronic signals from approximately 10000 PMTs are measured and digitized before being transferred to off- detector data-acquisition systems. After an initial setting of the absolute energy scale in test beams with particles of well-defined momentum, the calibrated scale is transferred to the rest of the detector via the response to radioactive sources. The calibrated scale is validated in situ with muons and single hadrons whereas the timing performance is checked with muons and jets. The data quality procedures used during the LHC data-taking and the evolution of the detector status during the LHC Run 1 are presented. The energy and the time reconstruction performance of the digitized signals is summarized and the calorimeter response to hadrons is investigated with collision data.

  18. Prototype tests for a highly granular scintillator-based hadron calorimeter

    NASA Astrophysics Data System (ADS)

    Krüger, K.; CALICE Collaboration

    2015-02-01

    Within the CALICE collaboration, several concepts for the hadronic calorimeter of a future linear collider detector are studied. After having demonstrated the capabilities of the measurement methods in "physics prototypes", the focus now lies on improving their implementation in"technological prototypes", that are scalable to the full linear collider detector. The Analog Hadron Calorimeter (AHCAL) concept is a sampling calorimeter of tungsten or steel absorber plates and plastic scintillator tiles read out by silicon photomultipliers as active material. In the AHCAL technological prototype, the front-end chips are integrated into the active layers of the calorimeter and are designed for minimal power consumption. The versatile electronics allows the prototype to be equipped with different types of scintillator tiles and SiPMs. The current status of the AHCAL engineering prototype is shown and recent beam test measurements as well as plans for future hadron beam tests with a larger prototype will be discussed.

  19. Validation of GEANT4 Monte Carlo Models with a Highly Granular Scintillator-Steel Hadron Calorimeter

    E-print Network

    C. Adloff; J. Blaha; J. -J. Blaising; C. Drancourt; A. Espargilière; R. Gaglione; N. Geffroy; Y. Karyotakis; J. Prast; G. Vouters; K. Francis; J. Repond; J. Schlereth; J. Smith; L. Xia; E. Baldolemar; J. Li; S. T. Park; M. Sosebee; A. P. White; J. Yu; T. Buanes; G. Eigen; Y. Mikami; N. K. Watson; G. Mavromanolakis; M. A. Thomson; D. R. Ward; W. Yan; D. Benchekroun; A. Hoummada; Y. Khoulaki; J. Apostolakis; A. Dotti; G. Folger; V. Ivantchenko; V. Uzhinskiy; M. Benyamna; C. Cârloganu; F. Fehr; P. Gay; S. Manen; L. Royer; G. C. Blazey; A. Dyshkant; J. G. R. Lima; V. Zutshi; J. -Y. Hostachy; L. Morin; U. Cornett; D. David; G. Falley; K. Gadow; P. Göttlicher; C. Günter; B. Hermberg; S. Karstensen; F. Krivan; A. -I. Lucaci-Timoce; S. Lu; B. Lutz; S. Morozov; V. Morgunov; M. Reinecke; F. Sefkow; P. Smirnov; M. Terwort; A. Vargas-Trevino; N. Feege; E. Garutti; I. Marchesinik; M. Ramilli; P. Eckert; T. Harion; A. Kaplan; H. -Ch. Schultz-Coulon; W. Shen; R. Stamen; B. Bilki; E. Norbeck; Y. Onel; G. W. Wilson; K. Kawagoe; P. D. Dauncey; A. -M. Magnan; V. Bartsch; M. Wing; F. Salvatore; E. Calvo Alamillo; M. -C. Fouz; J. Puerta-Pelayo; B. Bobchenko; M. Chadeeva; M. Danilov; A. Epifantsev; O. Markin; R. Mizuk; E. Novikov; V. Popov; V. Rusinov; E. Tarkovsky; N. Kirikova; V. Kozlov; P. Smirnov; Y. Soloviev; P. Buzhan; A. Ilyin; V. Kantserov; V. Kaplin; A. Karakash; E. Popova; V. Tikhomirov; C. Kiesling; K. Seidel; F. Simon; C. Soldner; M. Szalay; M. Tesar; L. Weuste; M. S. Amjad; J. Bonis; S. Callier; S. Conforti di Lorenzo; P. Cornebise; Ph. Doublet; F. Dulucq; J. Fleury; T. Frisson; N. van der Kolk; H. Li; G. Martin-Chassard; F. Richard; Ch. de la Taille; R. Pöschl; L. Raux; J. Rouëné; N. Seguin-Moreau; M. Anduze; V. Boudry; J-C. Brient; D. Jeans; P. Mora de Freitas; G. Musat; M. Reinhard; M. Ruan; H. Videau; B. Bulanek; J. Zacek; J. Cvach; P. Gallus; M. Havranek; M. Janata; J. Kvasnicka; D. Lednicky; M. Marcisovsky; I. Polak; J. Popule; L. Tomasek; M. Tomasek; P. Ruzicka; P. Sicho; J. Smolik; V. Vrba; J. Zalesak; B. Belhorma; H. Ghazlane; T. Takeshita; S. Uozumi; M. Götze; O. Hartbrich; J. Sauer; S. Weber; C. Zeitnitz

    2014-06-15

    Calorimeters with a high granularity are a fundamental requirement of the Particle Flow paradigm. This paper focuses on the prototype of a hadron calorimeter with analog readout, consisting of thirty-eight scintillator layers alternating with steel absorber planes. The scintillator plates are finely segmented into tiles individually read out via Silicon Photomultipliers. The presented results are based on data collected with pion beams in the energy range from 8GeV to 100GeV. The fine segmentation of the sensitive layers and the high sampling frequency allow for an excellent reconstruction of the spatial development of hadronic showers. A comparison between data and Monte Carlo simulations is presented, concerning both the longitudinal and lateral development of hadronic showers and the global response of the calorimeter. The performance of several GEANT4 physics lists with respect to these observables is evaluated.

  20. Towards Optimal Filtering on ARM for ATLAS Tile Calorimeter Front-End Processing

    NASA Astrophysics Data System (ADS)

    Cox, Mitchell A.

    2015-10-01

    The Large Hadron Collider at CERN generates enormous amounts of raw data which presents a serious computing challenge. After planned upgrades in 2022, the data output from the ATLAS Tile Calorimeter will increase by 200 times to over 40 Tb/s. Advanced and characteristically expensive Digital Signal Processors (DSPs) and Field Programmable Gate Arrays (FPGAs) are currently used to process this quantity of data. It is proposed that a cost- effective, high data throughput Processing Unit (PU) can be developed by using several ARM System on Chips in a cluster configuration to allow aggregated processing performance and data throughput while maintaining minimal software design difficulty for the end-user. ARM is a cost effective and energy efficient alternative CPU architecture to the long established x86 architecture. This PU could be used for a variety of high-level algorithms on the high data throughput raw data. An Optimal Filtering algorithm has been implemented in C++ and several ARM platforms have been tested. Optimal Filtering is currently used in the ATLAS Tile Calorimeter front-end for basic energy reconstruction and is currently implemented on DSPs.

  1. Construction and Commissioning of the CALICE Analog Hadron Calorimeter Prototype

    E-print Network

    C. Adloff; Y. Karyotakis; J. Repond; A. Brandt; H. Brown; K. De; C. Medina; J. Smith; J. Li; M. Sosebee; A. White; J. Yu; T. Buanes; G. Eigen; Y. Mikami; O. Miller; N. K. Watson; J. A. Wilson; T. Goto; G. Mavromanolakis; M. A. Thomson; D. R. Ward; W. Yan; D. Benchekroun; A. Hoummada; Y. Khoulaki; M. Oreglia; M. Benyamna; C. Cârloganu; P. Gay; J. Ha; G. C. Blazey; D. Chakraborty; A. Dyshkant; K. Francis; D. Hedin; G. Lima; V. Zutshi; V. A. Babkin; S. N. Bazylev; Yu. I. Fedotov; V. M. Slepnev; I. A. Tiapkin; S. V. Volgin; J. -Y. Hostachy; L. Morin; N. D?Ascenzo; U. Cornett; D. David; R. Fabbri; G. Falley; N. Feege; K. Gadow; E. Garutti; P. Göttlicher; T. Jung; S. Karstensen; V. Korbel; A. -I. Lucaci-Timoce; B. Lutz; N. Meyer; V. Morgunov; M. Reinecke; S. Schätzel; S. Schmidt; F. Sefkow; P. Smirnov; A. Vargas-Trevino; N. Wattimena; O. Wendt; M. Groll; R. -D. Heuer; S. Richter; J. Samson; A. Kaplan; H. -Ch. Schultz-Coulon; W. Shen; A. Tadday; B. Bilki; E. Norbeck; Y. Onel; E. J. Kim; G. Kim; D-W. Kim; K. Lee; S. C. Lee; K. Kawagoe; Y. Tamura; J. A. Ballin; P. D. Dauncey; A. -M. Magnan; H. Yilmaz; O. Zorba; V. Bartsch; M. Postranecky; M. Warren; M. Wing; M. Faucci Giannelli; M. G. Green; F. Salvatore; R. Kieffer; I. Laktineh; M. C Fouz; D. S. Bailey; R. J. Barlow; R. J. Thompson; M. Batouritski; O. Dvornikov; Yu. Shulhevich; N. Shumeiko; A. Solin; P. Starovoitov; V. Tchekhovski; A. Terletski; B. Bobchenko; M. Chadeeva; M. Danilov; O. Markin; R. Mizuk; V. Morgunov; E. Novikov; V. Rusinov; E. Tarkovsky; V. Andreev; N. Kirikova; A. Komar; V. Kozlov; P. Smirnov; Y. Soloviev; A. Terkulov; P. Buzhan; B. Dolgoshein; A. Ilyin; V. Kantserov; V. Kaplin; A. Karakash; E. Popova; S. Smirnov; N. Baranova; E. Boos; L. Gladilin; D. Karmanov; M. Korolev; M. Merkin; A. Savin; A. Voronin; A. Topkar; A. Freyk; C. Kiesling; S. Lu; K. Prothmann; K. Seidel; F. Simon; C. Soldner; L. Weuste; B. Bouquet; S. Callier; P. Cornebise; F. Dulucq; J. Fleury; H. Li; G. Martin-Chassard; F. Richard; Ch. de la Taille; R. Poeschl; L. Raux; M. Ruan; N. Seguin-Moreau; F. Wicek; M. Anduze; V. Boudry; J-C. Brient; G. Gaycken; R. Cornat; D. Jeans; P. Mora de Freitas; G. Musat; M. Reinhard; A. Rougé; J-Ch. Vanel; H. Videau; K-H. Park; J. Zacek; J. Cvach; P. Gallus; M. Havranek; M. Janata; J. Kvasnicka; M. Marcisovsky; I. Polak; J. Popule; L. Tomasek; M. Tomasek; P. Ruzicka; P. Sicho; J. Smolik; V. Vrba; J. Zalesak; Yu. Arestov; V. Ammosov; B. Chuiko; V. Gapienko; Y. Gilitski; V. Koreshev; A. Semak; Yu. Sviridov; V. Zaets; B. Belhorma; M. Belmir; A. Baird; R. N. Halsall; S. W. Nam; I. H. Park; J. Yang; Jong-Seo Chai; Jong-Tae Kim; Geun-Bum Kim; Y. Kim; J. Kang; Y. -J. Kwon; Ilgoo Kim; Taeyun Lee; Jaehong Park; Jinho Sung; S. Itoh; K. Kotera; M. Nishiyama; T. Takeshita; S. Weber; C. Zeitnitz

    2010-03-13

    An analog hadron calorimeter (AHCAL) prototype of 5.3 nuclear interaction lengths thickness has been constructed by members of the CALICE Collaboration. The AHCAL prototype consists of a 38-layer sandwich structure of steel plates and highly-segmented scintillator tiles that are read out by wavelength-shifting fibers coupled to SiPMs. The signal is amplified and shaped with a custom-designed ASIC. A calibration/monitoring system based on LED light was developed to monitor the SiPM gain and to measure the full SiPM response curve in order to correct for non-linearity. Ultimately, the physics goals are the study of hadron shower shapes and testing the concept of particle flow. The technical goal consists of measuring the performance and reliability of 7608 SiPMs. The AHCAL was commissioned in test beams at DESY and CERN. The entire prototype was completed in 2007 and recorded hadron showers, electron showers and muons at different energies and incident angles in test beams at CERN and Fermilab.

  2. A Scintillator tile-fiber preshower detector for the CDF Central Calorimeter

    SciTech Connect

    S. Lami

    2004-08-12

    The front face of the CDF central calorimeter is being equipped with a new Preshower detector, based on scintillator tiles read out by WLS fibers. A light yield of about 40 pe/MIP at the tile exit was obtained, exceeding the design requirements.

  3. Calorimeter Simulation with Hadrons in CMS

    SciTech Connect

    Piperov, Stefan; /Sofiya, Inst. Nucl. Res. /Fermilab

    2008-11-01

    CMS is using Geant4 to simulate the detector setup for the forthcoming data from the LHC. Validation of physics processes inside Geant4 is a major concern in view of getting a proper description of jets and missing energy for signal and background events. This is done by carrying out an extensive studies with test beam using the prototypes or real detector modules of the CMS calorimeter. These data are matched with Geant4 predictions using the same framework that is used for the entire CMS detector. Tuning of the Geant4 models is carried out and steps to be used in reproducing detector signals are defined in view of measurements of energy response, energy resolution, transverse and longitudinal shower profiles for a variety of hadron beams over a broad energy spectrum between 2 to 300 GeV/c. The tuned Monte Carlo predictions match many of these measurements within systematic uncertainties.

  4. Design of an FPGA-based embedded system for the ATLAS Tile Calorimeter front-end electronics test-bench

    NASA Astrophysics Data System (ADS)

    Carrió, F.; Kim, H. Y.; Moreno, P.; Reed, R.; Sandrock, C.; Schettino, V.; Shalyugin, A.; Solans, C.; Souza, J.; Usai, G.; Valero, A.

    2014-03-01

    The portable test-bench for the certification of the ATLAS tile hadronic calorimeter front-end electronics has been redesigned for the present Long Shutdown (LS1) of LHC, improving its portability and expanding its functionalities. This paper presents a new test-bench based on a Xilinx Virtex-5 FPGA that implements an embedded system using a PowerPC 440 microprocessor hard core and custom IP cores. A light Linux version runs on the PowerPC microprocessor and handles the IP cores which implement the different functionalities needed to perform the desired tests such as TTCvi emulation, G-Link decoding, ADC control and data reception.

  5. Design of an FPGA-based embedded system for the ATLAS Tile Calorimeter front-end electronics test-bench

    E-print Network

    Carrio, F; Moreno, P; Reed, R; Sandrock, C; Shalyugin, A; Schettino, V; Souza, J; Solans, C; Usai, G; Valero, A

    2014-01-01

    The portable test-bench for the certification of the ATLAS tile hadronic calorimeter front-end electronics has been redesigned for the LHC Long Shutdown (LS1) improving its portability and expanding its functionalities. This paper presents a new test-bench based on a Xilinx Virtex-5 FPGA that implements an embedded system using a hard core PowerPC 440 microprocessor and custom IP cores. A light Linux version runs on the PowerPC microprocessor and handles the IP cores which implement the different functionalities as TTCvi emulation, G-Link decoder ADC control and data reception, needed to perform the desired tests

  6. The sROD module for the ATLAS Tile Calorimeter Phase-II Upgrade Demonstrator

    NASA Astrophysics Data System (ADS)

    Carrió, F.; Castillo, V.; Ferrer, A.; Fiorini, L.; Hernández, Y.; Higón, E.; Mellado, B.; March, L.; Moreno, P.; Reed, R.; Solans, C.; Valero, A.; Valls, J. A.

    2014-02-01

    TileCal is the central hadronic calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC) at CERN. The main upgrade of the LHC to increase the instantaneous luminosity is scheduled for 2022. The High Luminosity LHC, also called upgrade Phase-II, will imply a complete redesign of the read-out electronics in TileCal. In the new read-out architecture, the front-end electronics aims to transmit full digitized information to the back-end system in the counting rooms. Thus, the back-end system will also provide digital calibrated information with enhanced precision and granularity to the first level trigger to improve the trigger efficiencies. The demonstrator project is envisaged to qualify this new proposed architecture. A reduced part of the detector, 1/256 of the total, will be equipped with the new electronics during 2014 to evaluate the proposed architecture in real conditions. The upgraded Read-Out Driver (sROD) will be the core element of the back-end electronics in Phase-II. The sROD module is designed on a double mid-size AMC format and will operate under an AdvancedTCA framework. The module includes two Xilinx Series 7 Field Programmable Gate Arrays (FPGAs) for data receiving and processing, as well as the implementation of embedded systems. Related to optical connectors, the sROD uses 4 QSFPs to receive and transmit data from the front-end electronics and 1 Avago MiniPOD to send preprocessed data to the first level trigger system. An SFP module maintains the compatibility with the existing hardware. A complete description of the sROD module for the demonstrator including the main functionalities, circuit design and the control software and firmware will be presented.

  7. Some fiber-tile optical studies for SDC electromagnetic calorimeter

    SciTech Connect

    Underwood, D.G.

    1992-11-01

    A number of different issues have been studied at Argonne for development of the fiber-tile optical system for SDC EM. Results on uniformity, masking and wrapping, beveled tiles, timing, fiber damage, and pressure on the scintillator are presented. The instrumentation and techniques are also briefly discussed.

  8. Some fiber-tile optical studies for SDC electromagnetic calorimeter

    SciTech Connect

    Underwood, D.G.

    1992-01-01

    A number of different issues have been studied at Argonne for development of the fiber-tile optical system for SDC EM. Results on uniformity, masking and wrapping, beveled tiles, timing, fiber damage, and pressure on the scintillator are presented. The instrumentation and techniques are also briefly discussed.

  9. Electromagnetic and Hadron Calorimeters in the MIPP Experiment

    SciTech Connect

    T. S. Nigmanov; H. R. Gustafson; M. J. Longo; D. Rajaram

    2006-10-01

    The purpose of the MIPP experiment is to study the inclusive production of photons, pions, kaons, and nucleons produced in ?, K, and p interactions on various targets using beams from the Main Injector at Fermilab. The purpose of the calorimeters is to measure the production of forward-going photons and neutrons. The electromagnetic calorimeter consists of 10 lead plates interspersed with proportional chambers followed by the hadron calorimeter with 64 steel plates interspersed with scintillator. We collected data with a variety of targets with beam energies from 5 GeV/c up to 120 GeV/c. The energy calibration of both calorimeters with electrons, pions, kaons and protons is discussed. The performance of the calorimeters was tested on a neutron sample.

  10. Forward hadron calorimeter of European hybrid spectrometer monitoring system

    SciTech Connect

    Boratave, M.; Datsko, N.A.; David, J.; Ivanyushenkov, Y.M.; Kistenoev, E.P.; Vlasov, E.V.

    1985-11-01

    The light-monitoring system of the forward neutral-hadron calorimeter of the European hybrid spectrometer is described. A general block diagram of the system, the functional relationships of the modules, and the ideology of the mathematical support are presented. The calorimeter records neutral particles in momentum range of 10-400 MeV/c. The calorimeter consists of 200 identical counters in modules of four each in a 10 X 20 matrix. The counters are made from plastic scintillators interlayed by steel plates. Light is collected by means of a rod reemitter admitted along the counter axis.

  11. Design of a new front-end electronics test-bench for the upgraded ATLAS detector's Tile Calorimeter

    NASA Astrophysics Data System (ADS)

    Kureba, C. O.; Govender, M.; Hofsajer, I.; Ruan, X.; Sandrock, C.; Spoor, M.

    2015-10-01

    The year 2022 has been scheduled to see an upgrade of the Large Hadron Collider (LHC), in order to increase its instantaneous luminosity. The High Luminosity LHC, also referred to as the upgrade Phase-II, means an inevitable complete re-design of the read-out electronics in the Tile Calorimeter (TileCal) of the A Toroidal LHC Apparatus (ATLAS) detector. Here, the new read-out architecture is expected to have the front-end electronics transmit fully digitized information of the detector to the back-end electronics system. Fully digitized signals will allow more sophisticated reconstruction algorithms which will contribute to the required improved triggers at high pile-up. In Phase II, the current Mobile Drawer Integrity ChecKing (MobiDICK) test-bench will be replaced by the next generation test-bench for the TileCal superdrawers, the new Prometeo (A Portable ReadOut ModulE for Tilecal ElectrOnics). Prometeo is a portable, high-throughput electronic system for full certification of the front-end electronics of the ATLAS TileCal. It is designed to interface to the fast links and perform a series of tests on the data to assess the certification of the electronics. The Prometeo's prototype is being assembled by the University of the Witwatersrand and installed at CERN for further developing, tuning and tests. This article describes the overall design of the new Prometeo, and how it fits into the TileCal electronics upgrade.

  12. PGAS in-memory data processing for the Processing Unit of the Upgraded Electronics of the Tile Calorimeter of the ATLAS Detector

    NASA Astrophysics Data System (ADS)

    Ohene-Kwofie, Daniel; Otoo, Ekow

    2015-10-01

    The ATLAS detector, operated at the Large Hadron Collider (LHC) records proton-proton collisions at CERN every 50ns resulting in a sustained data flow up to PB/s. The upgraded Tile Calorimeter of the ATLAS experiment will sustain about 5PB/s of digital throughput. These massive data rates require extremely fast data capture and processing. Although there has been a steady increase in the processing speed of CPU/GPGPU assembled for high performance computing, the rate of data input and output, even under parallel I/O, has not kept up with the general increase in computing speeds. The problem then is whether one can implement an I/O subsystem infrastructure capable of meeting the computational speeds of the advanced computing systems at the petascale and exascale level. We propose a system architecture that leverages the Partitioned Global Address Space (PGAS) model of computing to maintain an in-memory data-store for the Processing Unit (PU) of the upgraded electronics of the Tile Calorimeter which is proposed to be used as a high throughput general purpose co-processor to the sROD of the upgraded Tile Calorimeter. The physical memory of the PUs are aggregated into a large global logical address space using RDMA- capable interconnects such as PCI- Express to enhance data processing throughput.

  13. Studies of the hadronic calorimeter prototype for sPHENIX

    NASA Astrophysics Data System (ADS)

    Xue, Liang; Phenix Collaboration

    2015-04-01

    During past three years, the RHIC PHENIX collaboration has developed its decade's upgrade refer as sPHENIX, which will incorporate two electromagnetic (EMCAL) and hadronic (HCAL) calorimeters with a large pseudo-rapidity range, and full azimuthal coverage. The HCAL will be first hadronic calorimeter ever be used at RHIC, and will enable a systematic study of jets in QGP. A accordion like HCAL prototype based on scintillator plates and steel absorber plates has been constructed and tested using test beam at Fermilab. It has two longitudinal sections, each has sixteen layers of alternately arranged scintillator and steel plates, with a total depth of 5 interaction length. In this poster, we will present the test beam performance, as well as the single particle GEANT 4 simulation studies for the HCAL prototype.

  14. CMS Hadron Forward Calorimeter Phase I Upgrade Status

    NASA Astrophysics Data System (ADS)

    Onel, Yasar; CMS Collaboration

    2015-02-01

    The CMS Hadronic Forward Calorimeter has undergone upgrade maintenance during the LHC Long Shutdown 1. The Hamamatsu R7525 PMTs have been replaced with Hamamatsu R7600U-200-M4 PMTs, which have thinner window glass that reduces window- hit events. The R7600 PMTs also have multi-anode readout feature to further enable discrimination of window-hits while also allowing the recovery of true signal energy. Higher quantum efficiency of the R7600 PMTs improves calorimeter resolution. The new PMTs were tested and calibrated; new PMT baseboards were designed and tested, and can be configured to readout 1, 2, or 4 anodes of the R7600. New radiation hard (100Gy) QIE front-end electronics were designed for reading out the new PMTs and include a TDC with < 800ps resolution. New back-end electronics based on the microTCA industrial standard have been tested.

  15. The CMS hadron calorimeter detector control system upgrade

    NASA Astrophysics Data System (ADS)

    Sahin, M. O.; Behrens, U.; Campbell, A.; Martens, I.; Melzer-Pellmann, I. A.; Saxena, P.

    2015-04-01

    The detector control system of the CMS hadron calorimeter provides the 40.0788 MHz LHC clock to the front end electronics and supplies synchronization signals and I2C communication. Pedestals and diagnostic bits are controlled, and temperatures and voltages are read out. SIPM temperatures are actively stabilized by temperature readback and generation of correction voltages to drive the Peltier regulation system. Overall control and interfacing to databases and experimental DAQ software is provided by the software CCM Server. We report on design and development status, and implementation schedule of this system.

  16. Evaluating Small Scintillating Cells for Digital Hadron Calorimeters

    SciTech Connect

    Francis, Kurt

    2004-01-01

    This thesis discusses the use of scintillator cells with digital electronics as a basis for a digital hadron calorimeter. The detection of a minimum ionizing particle (MIP), analysis of crosstalk, and determination of light yield for the array of scintillating cells are described. The cells were found to have a light yield (in terms of single photoelectrons per MIP) of 7 to 13. Crosstalk due to transfer of light between adjacent cells or photomultiplier tube channels can reach 45%. Rejection versus efficiency studies show that single-channel thresholds can be set that reject noise while accepting MIP signals.

  17. The Hadron Calorimeter of the compact muon solenoid (CMS)

    NASA Astrophysics Data System (ADS)

    Hagopian, Vasken; CMS Collaboration

    1998-02-01

    The Hadron Calorimeter of CMS is about 1,000 tons of copper and scintillator sandwich in a 4 tesla magnetic field. It will be built in three segments, the barrel surrounding the central portion and the two end caps. The scintillators will use a tower structure made of grooved megatiles with wavelength shifting (WLS) fibers imbedded inside the grooves. The coverage extends to ? = 3.0 and is hermetic with very few gaps. The 1995 test beam data was taken inside a 3 tesla magnet showed that it will work in a magnetic field, but will require a tail catcher inside the muon system.

  18. The hadron calorimeter of the compact muon solenoid (CMS)

    NASA Astrophysics Data System (ADS)

    Hagopian, Vasken

    1997-02-01

    The Hadron Calorimeter of CMS is about 1000 tons af copper and scintillator sandwich in a 4 tesla magnetic field. It will be built in three segments, the barrel surrounding the central portion and the two end caps. The scintillators will use a tower structure made of grooved megatiles with wavelength shifting (WLS) fibers imbedded inside the grooves. The coverage extends to ?=3.0 and is hermetic with very few gaps. The 1995 test beam data was taken inside a 3 tesla magnet showed that it will work in a magnetic field, but will require a tail catcher inside the muon system.

  19. Hadronic energy resolution of a highly granular scintillator-steel hadron calorimeter using software compensation techniques

    E-print Network

    Adloff, C; Blaising, J.J.; Drancourt, C.; Espargiliere, A.; Gaglione, R.; Geffroy, N.; Karyotakis, Y.; Prast, J.; Vouters, G.; Francis, K.; Repond, J.; Smith, J.; Xia, L.; Baldolemar, E.; Li, J.; Park, S.T.; Sosebee, M.; White, A.P.; Yu, J.; Buanes, T.; Eigen, G.; Mikami, Y.; Watson, N.K.; Goto, T.; Mavromanolakis, G.; Thomson, M.A.; Ward, D.R.; Yan, W.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Benyamna, M.; Carloganu, C.; Fehr, F.; Gay, P.; Manen, S.; Royer, L.; Blazey, G.C.; Dyshkant, A.; Lima, J.G.R.; Zutshi, V.; Hostachy, J.Y.; Morin, L.; Cornett, U.; David, D.; Falley, G.; Gadow, K.; Gottlicher, P.; Gunter, C.; Hermberg, B.; Karstensen, S.; Krivan, F.; Lucaci-Timoce, A.I.; Lu, S.; Lutz, B.; Morozov, S.; Morgunov, V.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Vargas-Trevino, A.; Feege, N.; Garutti, E.; Marchesini, I.; Ramilli, M.; Eckert, P.; Harion, T.; Kaplan, A.; Schultz-Coulon, H.Ch; Shen, W.; Stamen, R.; Tadday, A.; Bilki, B.; Norbeck, E.; Onel, Y.; Wilson, G.W.; Kawagoe, K.; Dauncey, P.D.; Magnan, A.M.; Wing, M.; Salvatore, F.; Calvo Alamillo, E.; Fouz, M.C.; Puerta-Pelayo, J.; Balagura, V.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Rusinov, V.; Tarkovsky, E.; Kirikova, N.; Kozlov, V.; Smirnov, P.; Soloviev, Y.; Buzhan, P.; Dolgoshein, B.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Karakash, A.; Popova, E.; Smirnov, S.; Kiesling, C.; Pfau, S.; Seidel, K.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Bonis, J.; Bouquet, B.; Callier, S.; Cornebise, P.; Doublet, Ph; Dulucq, F.; Faucci Giannelli, M.; Fleury, J.; Li, H.; Martin-Chassard, G.; Richard, F.; de la Taille, Ch.; Poschl, R.; Raux, L.; Seguin-Moreau, N.; Wicek, F.; Anduze, M.; Boudry, V.; Brient, J.C.; Jeans, D.; Mora de Freitas, P.; Musat, G.; Reinhard, M.; Ruan, M.; Videau, H.; Bulanek, B.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Takeshita, T.; Uozumi, S.; Sauer, J.; Weber, S.; Zeitnitz, C.

    2012-01-01

    The energy resolution of a highly granular 1 m3 analogue scintillator-steel hadronic calorimeter is studied using charged pions with energies from 10 GeV to 80 GeV at the CERN SPS. The energy resolution for single hadrons is determined to be approximately 58%/sqrt(E/GeV}. This resolution is improved to approximately 45%/sqrt(E/GeV) with software compensation techniques. These techniques take advantage of the event-by-event information about the substructure of hadronic showers which is provided by the imaging capabilities of the calorimeter. The energy reconstruction is improved either with corrections based on the local energy density or by applying a single correction factor to the event energy sum derived from a global measure of the shower energy density. The application of the compensation algorithms to Geant4 simulations yield resolution improvements comparable to those observed for real data.

  20. Hadronic energy resolution of a highly granular scintillator-steel hadron calorimeter using software compensation techniques

    E-print Network

    CALICE Collaboration; C. Adloff; J. Blaha; J. -J. Blaising; C. Drancourt; A. Espargilière; R. Gaglione; N. Geffroy; Y. Karyotakis; J. Prast; G. Vouters; K. Francis; J. Repond; J. Smith; L. Xia; E. Baldolemar; J. Li; S. T. Park; M. Sosebee; A. P. White; J. Yu; T. Buanes; G. Eigen; Y. Mikami; N. K. Watson; T. Goto; G. Mavromanolakis; M. A. Thomson; D. R. Ward; W. Yan; D. Benchekroun; A. Hoummada; Y. Khoulaki; M. Benyamna; C. Cârloganu; F. Fehr; P. Gay; S. Manen; L. Royer; G. C. Blazey; A. Dyshkant; J. G. R. Lima; V. Zutshi; J. -Y. Hostachy; L. Morin; U. Cornett; D. David; G. Falley; K. Gadow; P. Göttlicher; C. Günter; B. Hermberg; S. Karstensen; F. Krivan; A. -I. Lucaci-Timoce; S. Lu; B. Lutz; S. Morozov; V. Morgunov; M. Reinecke; F. Sefkow; P. Smirnov; M. Terwort; A. Vargas-Trevino; N. Feege; E. Garutti; I. Marchesini; M. Ramilli; P. Eckert; T. Harion; A. Kaplan; H. -Ch. Schultz-Coulon; W. Shen; R. Stamen; A. Tadday; B. Bilki; E. Norbeck; Y. Onel; G. W. Wilson; K. Kawagoe; P. D. Dauncey; A. -M. Magnan; M. Wing; F. Salvatore; E. Calvo Alamillo; M. -C. Fouz; J. Puerta-Pelayo; V. Balagura; B. Bobchenko; M. Chadeeva; M. Danilov; A. Epifantsev; O. Markin; R. Mizuk; E. Novikov; V. Rusinov; E. Tarkovsky; N. Kirikova; V. Kozlov; P. Smirnov; Y. Soloviev; P. Buzhan; B. Dolgoshein; A. Ilyin; V. Kantserov; V. Kaplin; A. Karakash; E. Popova; S. Smirnov; C. Kiesling; S. Pfau; K. Seidel; F. Simon; C. Soldner; M. Szalay; M. Tesar; L. Weuste; J. Bonis; B. Bouquet; S. Callier; P. Cornebise; Ph. Doublet; F. Dulucq; M. Faucci Giannelli; J. Fleury; H. Li; G. Martin-Chassard; F. Richard; Ch. de la Taille; R. Pöschl; L. Raux; N. Seguin-Moreau; F. Wicek; M. Anduze; V. Boudry; J-C. Brient; D. Jeans; P. Mora de Freitas; G. Musat; M. Reinhard; M. Ruan; H. Videau; B. Bulanek; J. Zacek; J. Cvach; P. Gallus; M. Havranek; M. Janata; J. Kvasnicka; D. Lednicky; M. Marcisovsky; I. Polak; J. Popule; L. Tomasek; M. Tomasek; P. Ruzicka; P. Sicho; J. Smolik; V. Vrba; J. Zalesak; B. Belhorma; H. Ghazlane; T. Takeshita; S. Uozumi; J. Sauer; S. Weber; C. Zeitnitz

    2012-09-27

    The energy resolution of a highly granular 1 m3 analogue scintillator-steel hadronic calorimeter is studied using charged pions with energies from 10 GeV to 80 GeV at the CERN SPS. The energy resolution for single hadrons is determined to be approximately 58%/sqrt(E/GeV}. This resolution is improved to approximately 45%/sqrt(E/GeV) with software compensation techniques. These techniques take advantage of the event-by-event information about the substructure of hadronic showers which is provided by the imaging capabilities of the calorimeter. The energy reconstruction is improved either with corrections based on the local energy density or by applying a single correction factor to the event energy sum derived from a global measure of the shower energy density. The application of the compensation algorithms to Geant4 simulations yield resolution improvements comparable to those observed for real data.

  1. Imaging Pion Showers with the CALICE Analogue Hadron Calorimeter

    E-print Network

    Nils Feege; for the CALICE collaboration

    2011-09-09

    The CALICE collaboration investigates different technology options for highly granular calorimeters for detectors at a future electron-positron collider. One of the devices constructed and tested by the collaboration is a 1m^3 prototype for an imaging scintillator-steel sampling calorimeter for hadrons with analogue readout (AHCAL). The light from 7608 small scintillator cells is detected with silicon photomultipliers. The AHCAL has been successfully operated during electron and hadron test-beam measurements at DESY, CERN, and Fermilab since 2005. The collected data allow for evaluating the novel technologies employed. In addition, these data provide a valuable basis for validating pion cascade simulations. This paper presents the current status of comparisons between the AHCAL data and predictions from different Monte Carlo models implemented in GEANT4. The comparisons cover the total visible energy, longitudinal and radial shower profiles, and the shower substructure. Furthermore, this paper discusses a software compensation algorithm for improving the energy resolution of the AHCAL for single pions.

  2. The CMS Hadron Forward Calorimeter Upgrade During Phase I

    NASA Astrophysics Data System (ADS)

    Gülmez, E.

    2014-06-01

    The CMS Hadron Forward Calorimeter is being upgraded during phase 1. The upgrade includes the replacement of the current PMTs with the 4-anode ones and the readout electronics. Stray muons hitting the PMT windows produce Cherenkov light causing erroneous signals. These signals are detrimental to the triggering and physic results, since such signals mimic very high energy events. The new 4-anode PMTs are selected because of their thin windows to reduce the Cherenkov light production. Additional anodes also provide information to eliminate such signals. These new PMTs have been tested extensively to understand their characteristics and to develop the algorithms to eliminate the unwanted signals. Eventually, the current read out will be replaced with two-channel readout electronics for each PMT. The overall expected improvement on the physics results will also be discussed.

  3. The TileCal Energy Reconstruction for LHC Run2 and Future Perspectives

    E-print Network

    Seixas, Jose; The ATLAS collaboration

    2015-01-01

    The Tile Calorimeter (TileCal) is the main hadronic calorimeter of ATLAS and it covers the central part of the detector (|?|basis. The pedestal value is estimated through special calibration runs and it is stored in a data base for online and offline usage. Addit...

  4. Hadronic Shower Validation Experience for the ATLAS End-Cap Calorimeter

    SciTech Connect

    Kiryunin, A. E.; Salihagic, D.

    2007-03-19

    Validation of GEANT4 hadronic physics models is carried out by comparing experimental data from beam tests of modules of the ATLAS end-cap calorimeters with GEANT4 based simulations. Two physics lists (LHEP and QGSP) for the simulation of hadronic showers are evaluated. Calorimeter performance parameters like the energy resolution and response for charged pions and shapes of showers are studied. Comparison with GEANT3 predictions is done as well.

  5. Pion and proton showers in the CALICE scintillator-steel analogue hadron calorimeter

    E-print Network

    The CALICE Collaboration; B. Bilki; J. Repond; L. Xia; G. Eigen; M. A. Thomson; D. R. Ward; D. Benchekroun; A. Hoummada; Y. Khoulaki; S. Chang; A. Khan; D. H. Kim; D. J. Kong; Y. D. Oh; G. C. Blazey; A. Dyshkant; K. Francis; J. G. R. Lima; R. Salcido; V. Zutshi; F. Salvatore; K. Kawagoe; Y. Miyazaki; Y. Sudo; T. Suehara; T. Tomita; H. Ueno; T. Yoshioka; J. Apostolakis; D. Dannheim; G. Folger; V. Ivantchenko; W. Klempt; A. -I. Lucaci-Timoce; A. Ribon; D. Schlatter; E. Sicking; V. Uzhinskiy; J. Giraud; D. Grondin; J. -Y. Hostachy; L. Morin; E. Brianne; U. Cornett; D. David; A. Ebrahimi; G. Falley; K. Gadow; P. Göttlicher; C. Günter; O. Hartbrich; B. Hermberg; S. Karstensen; F. Krivan; K. Krüger; S. Lu; B. Lutz; S. Morozov; V. Morgunov; C. Neubüser; M. Reinecke; F. Sefkow; P. Smirnov; H. L. Tran; P. Buhmann; E. Garutti; S. Laurien; M. Matysek; M. Ramilli; K. Briggl; P. Eckert; T. Harion; Y. Munwes; H. -Ch. Schultz-Coulon; W. Shen; R. Stamen; E. Norbeck; D. Northacker; Y. Onel; B. van Doren; G. W. Wilson; M. Wing; C. Combaret; L. Caponetto; R. Eté; G. Grenier; R. Han; J. C. Ianigro; R. Kieffer; I. Laktineh; N. Lumb; H. Mathez; L. Mirabito; A. Petrukhin; A. Steen; J. Berenguer Antequera; E. Calvo Alamillo; M. -C. Fouz; J. Marin; J. Puerta-Pelayo; A. Verdugo; F. Corriveau; B. Bobchenko; R. Chistov; M. Chadeeva; M. Danilov; A. Drutskoy; A. Epifantsev; O. Markin; D. Mironov; R. Mizuk; E. Novikov; V. Rusinov; E. Tarkovsky; D. Besson; P. Buzhan; A. Ilyin; E. Popova; M. Gabriel; C. Kiesling; N. van der Kolk; F. Simon; C. Soldner; M. Szalay; M. Tesar; L. Weuste; M. S. Amjad; J. Bonis; S. Callier; S. Conforti di Lorenzo; P. Cornebise; F. Dulucq; J. Fleury; T. Frisson; G. Martin-Chassard; R. Pöschl; L. Raux; F. Richard; J. Rouëné; N. Seguin-Moreau; Ch. de la Taille; M. Anduze; V. Boudry; J-C. Brient; C. Clerc; R. Cornat; M. Frotin; F. Gastaldi; A. Matthieu; P. Mora de Freitas; G. Musat; M. Ruan; H. Videau; J. Zacek; J. Cvach; P. Gallus; M. Havranek; M. Janata; J. Kvasnicka; D. Lednicky; M. Marcisovsky; I. Polak; J. Popule; L. Tomasek; M. Tomasek; P. Sicho; J. Smolik; V. Vrba; J. Zalesak; D. Jeans; S. Weber

    2015-03-15

    Showers produced by positive hadrons in the highly granular CALICE scintillator-steel analogue hadron calorimeter were studied. The experimental data were collected at CERN and FNAL for single particles with initial momenta from 10 to 80 GeV/c. The calorimeter response and resolution and spatial characteristics of shower development for proton- and pion-induced showers for test beam data and simulations using Geant4 version 9.6 are compared.

  6. A study on dual readout crystal calorimeter for hadron and jet energy measurement at a future lepton collider

    SciTech Connect

    Yeh, G.P.; /Fermilab

    2010-01-01

    Studies of requirements and specifications of crystals are necessary to develop a new generation of crystals for dual readout crystal hadron or total absorption calorimeter. This is a short and basic study of the characteristics and hadron energy measurement of PbWO4 and BGO crystals for scintillation and Cerenkov Dual Readout hadron calorimeter.

  7. The New Front-End Electronics for the ATLAS Tile Calorimeter Phase 2 Upgrade

    E-print Network

    Drake, Gary; The ATLAS collaboration

    2015-01-01

    We present the design for the new front-end electronics being developed for the Phase 2 Upgrade of the ATLAS Tile Calorimeter. The front-end electronics will be replaced to address the increase in beam energy and luminosity planned for the LHC around 2023, as well as to upgrade to faster, more modern components with higher radiation tolerance. The new electronics will operate dead-timelessly, pushing full data sets from each beam crossing to the data acquisition system that resides off-detector in the USA15 counting room. The new electronics contains five main parts: the Front End Boards that connect directly to the photo-multiplier tubes; the Main Boards that digitize the data; the Daughter Boards that collect the data streams and contain the high-speed optical communication links for writing data to the data acquisition system; a programmable high voltage control system; and a new low-voltage power supply. There are different options for implementing these subcomponents, which will be described. The new sys...

  8. Radiation hardness of plastic scintillators for the Tile Calorimeter of the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Jivan, H.; Sideras-Haddad, E.; Erasmus, R.; Liao, S.; Madhuku, M.; Peters, G.; Sekonya, K.; Solvyanov, O.

    2015-10-01

    The radiation damage in polyvinyl toluene based plastic scintillator EJ200 obtained from ELJEN technology was investigated. This forms part of a comparative study conducted to aid in the upgrade of the Tile Calorimeter of the ATLAS detector during which the Gap scintillators will be replaced. Samples subjected to 6 MeV proton irradiation using the tandem accelerator of iThemba LABS, were irradiated with doses of approximately 0.8 MGy, 8 MGy, 25 MGy and 80 MGy. The optical properties were investigated using transmission spectroscopy and light yield analysis whilst structural damage was assessed using Raman spectroscopy. Findings indicate that for the dose of 0.8 MGy, no structural damage occurs and light loss can be attributed to a breakdown in the light transfer between base and fluor dopants. For doses of 8 MGy to 80 MGy, structural damage leads to possible hydrogen loss in the benzene ring of the PVT base which forms free radicals. This results in an additional absorptive component causing increased transmission loss and light yield loss with increasing dose.

  9. Front end readout electronics for the CMS hadron calorimeter

    SciTech Connect

    Terri M. Shaw et al.

    2002-11-20

    The front-end electronics for the CMS Hadron Calorimeter provides digitized data at the beam interaction rate of 40 MHz. Analog signals provided by hybrid photodiodes (HPDs) or photomultiplier tubes (PMTs) are digitized and the data is sent off board through serialized fiber optic links running at 1600 Mbps. In order to maximize the input signal, the front-end electronics are housed on the detector in close proximity to the scintillating fibers or phototubes. To fit the electronics into available space, custom crates, backplanes and cooling methods have had to be developed. During the expected ten-year lifetime, the front-end readout electronics will exist in an environment where radiation levels approach 330 rads and the neutron fluence will be 1.3E11 n/cm{sup 2}. For this reason, the design approach relies heavily upon custom radiation tolerant ASICs. This paper will present the system architecture of the front-end readout crates and describe their results with early prototypes.

  10. Design of an FPGA-based embedded system for the ATLAS Tile Calorimeter front-end electronics test-bench

    E-print Network

    Carrio, F; The ATLAS collaboration; Moreno, P; Reed, R; Sandrock, C; Shalyugin, A; Schettino, V; Solans, C; Souza, J; Usai, G; Valero, A

    2013-01-01

    The portable test bench (VME based) used for the certification of the Tile calorimeter front-end electronics has been redesigned for the LHC Long Shutdown (2013-2014) improving its portability. The new version is based on a Xilinx Virtex 5 FPGA that implements an embedded system using a hard core PowerPC 440 microprocessor and custom IP cores. The PowerPC microprocessor runs a light Linux version and handles the IP cores written in VHDL that implement the different functionalities (TTC, G-Link, CAN-Bus) Description of the system and performance measurements of the different components will be shown.

  11. Performance of the ATLAS Calorimeters and Commissioning for LHC Run-2

    E-print Network

    Rossetti, Valerio; The ATLAS collaboration

    2015-01-01

    The ATLAS general-purpose experiment at the Large Hadron Collider (LHC) is equipped with electromagnetic and hadronic liquid-argon (LAr) calorimeters and a hadronic scintillator-steel sampling calorimeter (TileCal) for measuring energy and direction of final state particles in the pseudorapidity range $|\\eta| quality, as well as their performance will be presented, including the calibration and stability of the electromagnetic scale, response uniformity and time resolution. These results demonstrate that the LAr and Tile calorimeters perform excellently within their design requirements. The calorimetry system thu...

  12. Impact of dead zones on the response of a hadron calorimeter with projective and non-projective geometry

    E-print Network

    J. Blaha; N. Geffroy; Y. Karyotakis

    2011-02-07

    The aim of this study is to find an optimal mechanical design of the hadronic calorimeter for SiD detector which takes into account engineering as well as physics requirements. The study focuses on the crack effects between two modules for various barrel mechanical design on calorimeter response. The impact of different size of the supporting stringers and dead areas in an active calorimeter layer along the module boundary has been studied for single pions and muons. The emphasis has been put on the comparison of the projective and non-projective barrel geometry for SiD hadronic calorimeter.

  13. Characterization of plastic scintillators using magnetic resonance techniques for the upgrade of the Tile Calorimeter in the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Pelwan, C.; Jivan, H.; Joubert, D.; Keartland, J.; Liao, S.; Peters, G.; Sideras-Haddad, E.

    2015-10-01

    In this study we look at radiation damage and its adverse effects on plastic scintillators housed within the Tile Calorimeter (TileCal) of the ATLAS detector. The study focuses on determining how the interaction of ionizing radiation with plastic scintillators effects their efficacy and desired properties such as high light output and fast decay time. Plastic scintillators form an integral part of the ATLAS trigger system and their optimal functionality is paramount to the success of ATLAS. Electron paramagnetic resonance (EPR) provides insight into the electronic structure of the plastics and can characterize the damage caused by ionizing radiation. Density functional theory (DFT) calculations will be performed in order to simulate the EPR signal. Preliminary EPR results investigate four different types of plastic scintillators. These include three polyvinyl-toluene based Eljen technologies: EJ200, EJ208 and EJ260, and one polystyrene based Dubna sample. It has been observed that the Dubna sample, identical on the current scintillator used in the ATLAS detector, undergoes more structural damage when compared to the Eljen samples.

  14. Calorimeter based detectors for high energy hadron colliders

    SciTech Connect

    Not Available

    1993-06-23

    The work was directed in two complementary directions, the D0 experiment at Fermilab, and the GEM detector for the SSC. Efforts have been towards the data taking and analysis with the newly commissioned D0 detector at Fermilab in the [bar p]p Collider run that started in May 1992 and ended on June 1, 1993. We involved running and calibration of the calorimeter and tracking chambers, the second level trigger development, and various parts of the data analysis, as well as studies for the D0 upgrade planned in the second half of this decade. Another major accomplishment was the delivery'' of the Technical Design Report for the GEM SSC detector. Efforts to the overall detector and magnet design, design of the facilities, installation studies, muon system coordination, muon chamber design and tests, muon system simulation studies, and physics simulation studies. In this document we describe these activities separately.

  15. Calorimeter based detectors for high energy hadron colliders. [Progress report

    SciTech Connect

    Not Available

    1993-06-23

    The work was directed in two complementary directions, the D0 experiment at Fermilab, and the GEM detector for the SSC. Efforts have been towards the data taking and analysis with the newly commissioned D0 detector at Fermilab in the {bar p}p Collider run that started in May 1992 and ended on June 1, 1993. We involved running and calibration of the calorimeter and tracking chambers, the second level trigger development, and various parts of the data analysis, as well as studies for the D0 upgrade planned in the second half of this decade. Another major accomplishment was the ``delivery`` of the Technical Design Report for the GEM SSC detector. Efforts to the overall detector and magnet design, design of the facilities, installation studies, muon system coordination, muon chamber design and tests, muon system simulation studies, and physics simulation studies. In this document we describe these activities separately.

  16. Hadron energy response of the Iron Calorimeter detector at the India-based Neutrino Observatory

    E-print Network

    Moon Moon Devi; Anushree Ghosh; Daljeet Kaur; Lakshmi S. Mohan; Sandhya Choubey; Amol Dighe; D. Indumathi; Sanjeev Kumar; M. V. N. Murthy; Md. Naimuddin

    2013-10-30

    The results of a Monte Carlo simulation study of the hadron energy response for the magnetized Iron CALorimeter detector, ICAL, proposed to be located at the India-based Neutrino Observatory (INO) is presented. Using a GEANT4 modeling of the detector ICAL, interactions of atmospheric neutrinos with target nuclei are simulated. The detector response to hadrons propagating through it is investigated using the hadron hit multiplicity in the active detector elements. The detector response to charged pions of fixed energy is studied first, followed by the average response to the hadrons produced in atmospheric neutrino interactions using events simulated with the NUANCE event generator. The shape of the hit distribution is observed to fit the Vavilov distribution, which reduces to a Gaussian at high energies. In terms of the parameters of this distribution, we present the hadron energy resolution as a function of hadron energy, and the calibration of hadron energy as a function of the hit multiplicity. The energy resolution for hadrons is found to be in the range 85% (for 1GeV) -- 36% (for 15 GeV).

  17. Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Addy, T. N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Akiyama, A.; Alam, M. S.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allbrooke, B. M. M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amaral, P.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Andrieux, M.-L.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anisenkov, A.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Arfaoui, S.; Arguin, J.-F.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Aubert, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barashkou, A.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A. E.; Bartsch, V.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beale, S.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, S.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Beloborodova, O.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertella, C.; Bertin, A.; Bertinelli, F.; Bertolucci, F.; Besana, M. I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blazek, T.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. B.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boelaert, N.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bona, M.; Bondarenko, V. G.; Bondioli, M.; Boonekamp, M.; Booth, C. N.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borri, M.; Borroni, S.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozhko, N. I.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brown, H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.

    2013-03-01

    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt{s} = 900 {GeV} and 7 TeV collected during 2009 and 2010. Then, using the decay of K s and ? particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5 % for central isolated hadrons and 1-3 % for the final calorimeter jet energy scale.

  18. A new portable test bench for the ATLAS Tile Calorimeter front-end electronics

    NASA Astrophysics Data System (ADS)

    Moreno, P.; Alves, J.; Calvet, D.; Carrió, F.; Crouau, M.; Yeun, K. Hee; Minashvili, I.; Nemecek, S.; Qin, G.; Schettino, V.; Solans, C.; Usai, G.; Valero, A.

    2013-02-01

    This paper describes a new portable test bench for the TileCal sub-detector of the ATLAS experiment at CERN. The system is used for the certification and quality checks of the front-end electronics drawers. It is designed to be an easily upgradable version of the current 10-year-old system, able to evaluate the new technologies planned for the upgrade as well as provide new functionality to the present system. It will be used during the long shutdown of the LHC in 2013-14 and during future maintenance periods.

  19. Testing Hadronic Interaction Models using a Highly Granular Silicon-Tungsten Calorimeter

    E-print Network

    ,

    2015-01-01

    The CALICE collaboration has published a detailed study of hadronic interactions using data recorded with the highly granular CALICE silicon-tungsten electromagnetic calorimeter (Si-W ECAL). Approximately 350,000 selected negative pion events at energies between 2 and 10 GeV have been studied. The predictions of several physics models available within the Geant4 simulation tool kit are compared to this data. A reasonable overall description of the data is observed; the Monte Carlo predictions are within 20 % of the data, and for many observables much closer. The largest quantitative discrepancies are found in the longitudinal and transverse distributions of the reconstructed energy. Based on the good control of the data set and general observables, the next step is to achieve a deeper understanding of hadronic interactions by studying the interaction zone and by reconstructing secondaries that emerge from the hadronic interaction in the Si-W ECAL.

  20. Tracker and Calorimeter Performance for the Identification of Hadronic Tau Lepton Decays in ATLAS

    E-print Network

    Stan Lai; for the ATLAS Collaboration

    2011-11-16

    Tau leptons play an important role in the physics program in ATLAS. They can be used not only in searches for new phenomena like the Higgs boson or Supersymmetry, or for electroweak measurements but also in detector related studies like the determination of the missing transverse energy scale. Identifying hadronically decaying tau leptons requires good understanding of the detector performance, combining information from calorimeter and tracking detectors. The current status of the tau reconstruction and identification with the ATLAS detector is presented. The identification efficiencies are measured with W -> tau nu events, and found to be consistent with the prediction from Monte Carlo simulations.

  1. Channel control ASIC for the CMS hadron calorimeter front end readout module

    SciTech Connect

    Ray Yarema et al.

    2002-09-26

    The Channel Control ASIC (CCA) is used along with a custom Charge Integrator and Encoder (QIE) ASIC to digitize signals from the hybrid photo diodes (HPDs) and photomultiplier tubes (PMTs) in the CMS hadron calorimeter. The CCA sits between the QIE and the data acquisition system. All digital signals to and from the QIE pass through the CCA chip. One CCA chip interfaces with two QIE channels. The CCA provides individually delayed clocks to each of the QIE chips in addition to various control signals. The QIE sends digitized PMT or HPD signals and time slice information to the CCA, which sends the data to the data acquisition system through an optical link.

  2. Testing Hadronic Interaction Models using a Highly Granular Silicon-Tungsten Calorimeter

    E-print Network

    The CALICE Collaboration; B. Bilki; J. Repond; J. Schlereth; L. Xia; Z. Deng; Y. Li; Y. Wang; Q. Yue; Z. Yang; G. Eigen; Y. Mikami; T. Price; N. K. Watson; M. A. Thomson; D. R. Ward; D. Benchekroun; A. Hoummada; Y. Khoulaki; C. Cârloganu; S. Chang; A. Khan; D. H. Kim; D. J. Kong; Y. D. Oh; G. C. Blazey; A. Dyshkant; K. Francis; J. G. R. Lima; P. Salcido; V. Zutshi; V. Boisvert; B. Green; A. Misiejuk; F. Salvatore; K. Kawagoe; Y. Miyazaki; Y. Sudo; T. Suehara; T. Tomita; H. Ueno; T. Yoshioka; J. Apostolakis; G. Folger; G. Folger; V. Ivantchenko; A. Ribon; V. Uzhinskiy; S. Cauwenbergh; M. Tytgat; N. Zaganidis; J. -Y. Hostachy; L. Morin; K. Gadow; P. Göttlicher; C. Günter; K. Krüger; B. Lutz; M. Reinecke; F. Sefkow; N. Feege; E. Garutti; S. Laurien; S. Lu; I. Marchesini; M. Matysek; M. Ramilli; A. Kaplan; E. Norbeck; D. Northacker; Y. Onel; E. J. Kim; B. van Doren; G. W. Wilson; M. Wing; B. Bobchenko; M. Chadeeva; R. Chistov; M. Danilov; A. Drutskoy; A. Epifantsev; O. Markin; R. Mizuk; E. Novikov; V. Popov; V. Rusinov; E. Tarkovsky; D. Besson; E. Popova; M. Gabriel; C. Kiesling; F. Simon; C. Soldner; M. Szalay; M. Tesar; L. Weuste; M. S. Amjad; J. Bonis; S. Callier; S. Conforti di Lorenzo; P. Cornebise; Ph. Doublet; F. Dulucq; M. Faucci-Giannelli; J. Fleury; T. Frisson; B. Kégl; N. van der Kolk; H. Li; G. Martin-Chassard; F. Richard; Ch. de la Taille; R. Pöschl; L. Raux; J. Rouëné; N. Seguin-Moreau; M. Anduze; V. Balagura; E. Becheva; V. Boudry; J-C. Brient; R. Cornat; M. Frotin; F. Gastaldi; F. Magniette; A. Matthieu; P. Mora de Freitas; H. Videau; J-E. Augustin; J. David; P. Ghislain; D. Lacour; L. Lavergne; J. Zacek; J. Cvach; P. Gallus; M. Havranek; M. Janata; J. Kvasnicka; D. Lednicky; M. Marcisovsky; I. Polak; J. Popule; L. Tomasek; M. Tomasek; P. Ruzicka; P. Sicho; J. Smolik; V. Vrba; J. Zalesak; D. Jeans; M. Götze

    2015-05-08

    A detailed study of hadronic interactions is presented using data recorded with the highly granular CALICE silicon-tungsten electromagnetic calorimeter. Approximately 350,000 selected negatively charged pion events at energies between 2 and 10 GeV have been studied. The predictions of several physics models available within the Geant4 simulation tool kit are compared to this data. A reasonable overall description of the data is observed; the Monte Carlo predictions are within 20% of the data, and for many observables much closer. The largest quantitative discrepancies are found in the longitudinal and transverse distributions of reconstructed energy.

  3. Semi-Digital hadronic calorimeter for future high energy physics experiments

    NASA Astrophysics Data System (ADS)

    Laktineh, Imad

    2009-04-01

    A new concept of high granularity hadronic calorimeter based on a semi-digital readout for future ILC experiments is presented. The aim of this concept is to provide the HCAL with a tracking capacity in addition to a good energy measurement resolution. The sensitive medium of this HCAL is made of very thin gas detectors. The readout is based on detector-embedded electronic boards equipped with low consumption daisy-chained 64-channel chips. The nice results obtained with a slice test made of small detectors show that the concept is successful and can be used to build a 1m3 semi-digital HCAL prototype.

  4. Hadronic Calorimeter Shower Size: Challenges and Opportunities for Jet Substructure in the Superboosted Regime

    E-print Network

    Shikma Bressler; Thomas Flacke; Yevgeny Kats; Seung J. Lee; Gilad Perez

    2015-06-08

    Hadrons have finite interaction size with dense material, a basic feature common to known forms of hadronic calorimeters (HCAL). We argue that substructure variables cannot use HCAL information to access the microscopic nature of jets narrower than the hadronic shower size, which we call superboosted massive jets. It implies that roughly 15% of their transverse energy profile remains inaccessible due to the presence of long-lived neutral hadrons. This unreachable part of the jet substructure is also subject to order-one fluctuations. We demonstrate that the effects of the fluctuations are not reduced when a global correction to jet variables is applied. The above leads to fundamental limitations in the ability to extract intrinsic information from jets in the superboosted regime. The neutral fraction of a jet is correlated with its flavor. This leads to an interesting and possibly useful difference between superboosted W/Z/h/t jets and their corresponding backgrounds. The QCD jets that form the background to the signal superboosted jets might also be qualitatively different in their substructure as their mass might lie at or below the Sudakov mass peak. Finally, we introduce a set of zero-cone longitudinal jet substructure variables and show that while they carry information that might be useful in certain situations, they are not in general sensitive to the jet substructure.

  5. Progress towards a Technological Prototype for a Semi-Digital Hadron Calorimeter based on Glass RPCs

    E-print Network

    N. Lumb; for the CALICE collaboration

    2010-06-17

    The semi-digital Hadronic calorimeter using GRPC as sensitive medium is one of the two options the ILD collaboration is considering for the ILD detector final design. A prototype of 1m3 has been conceived within the CALICE collaboration in order to validate this option. The prototype is intended to be as close as possible to the one proposed in the ILD LOI. A first unit of 1m2 GRPC of 3 mm thickness and fully equipped with a semi-digital electronics readout and new gas distribution design was produced and successfully tested. In 2010 we intend to produce 40 similar units to be inserted in a self-supporting mechanical structure. The prototype will then be exposed to test beams at CERN or at Fermilab for final validation.

  6. A comparative study of the radiation hardness of plastic scintillators for the upgrade of the Tile Calorimeter of the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Liao, S.; Erasmus, R.; Jivan, H.; Pelwan, C.; Peters, G.; Sideras-Haddad, E.

    2015-10-01

    The influence of radiation on the light transmittance of plastic scintillators was studied experimentally. The high optical transmittance property of plastic scintillators makes them essential in the effective functioning of the Tile calorimeter of the ATLAS detector at CERN. This significant role played by the scintillators makes this research imperative in the movement towards the upgrade of the tile calorimeter. The radiation damage of polyvinyl toluene (PVT) based plastic scintillators was studied, namely, EJ-200, EJ-208 and EJ-260, all manufactured and provided to us by ELJEN technology. In addition, in order to compare to scintillator brands actually in use at the ATLAS detector currently, two polystyrene (PS) based scintillators and an additional PVT based scintillator were also scrutinized in this study, namely, Dubna, Protvino and Bicron, respectively. All the samples were irradiated using a 6 MeV proton beam at different doses at iThemba LABS Gauteng. The radiation process was planned and mimicked by doing simulations using a SRIM program. In addition, transmission spectra for the irradiated and unirradiated samples of each grade were obtained, observed and analyzed.

  7. On absorption of the hadron component of EAS cores in a large lead calorimeter at 'knee'-range energies

    NASA Astrophysics Data System (ADS)

    Sveshnikova, L. G.; Chubenko, A. P.; Galkin, V. I.; Mukhamedshin, R. A.; Nikolskaya, N. M.; Yakovlev, V. I.

    2008-06-01

    The absorption of the core particles of extensive air showers (EAS) in the large 36 m2 lead ionization calorimeter (at the Tien-Shan mountain station) is analyzed in comparison with full Monte Carlo simulations. The EAS development in the atmosphere is simulated in the framework of CORSIKA+QGSJET code whereas the passage of hadrons and muons through the calorimeter has been simulated using the FLUKA transport code. It is shown that in EAS with energies of a few PeV the value of absorption length, ?, of core hadron energy increases with energy much faster than that expected from simulations. This effect may be connected with the appearance of a small (a few per cent) excess of abnormal EAS cores with large ionization deposited in the lower layers of the calorimeter. It is shown that the shape of ionization curves in the lead calorimeter observed in abnormal EAS resembles that of high-energy muon groups. This effect cannot be explained by the increase of heavy nuclei in the PCR in the knee region. The hypothesis of prompt muons originated in the interaction of particles with atomic nuclei in the atmosphere also cannot explain the excess of abnormal absorption even at large values of charmed particle production cross sections.

  8. The TileCal Energy Reconstruction for LHC Run2 and Future Perspectives

    E-print Network

    Peralva, Bernardo Sotto-Maior

    2015-01-01

    The TileCal is the main hadronic calorimeter of ATLAS and it covers the central part of the detector ($|\\eta|$ basis. The pedestal value is estimated through special calibration runs and it is stored in a data base for online and offline usage. Additionally, the backg...

  9. Study of Various Photomultiplier Tubes for Window Events: Upgrade R&D for CMS Hadron Forward Calorimeters

    NASA Astrophysics Data System (ADS)

    Bilki, Burak; CMS HCAL Collaboration

    2011-04-01

    The PMTs of the CMS Hadron Forward calorimeters were found to generate a large amount of signal when their windows were traversed by energetic charged particles. This signal, which is due to ?erenkov light production at the PMT window, could interfere with the calorimeter signal and mislead the measurements. In order to find a viable solution to this problem, the response of different types of PMTs to muons traversing their windows at different orientations is measured at the H2 beam-line at CERN. Certain kinds of PMTs with thinner windows show significantly lower response to direct muon incidence. For one specific type - the four anode PMT- a simple and powerful algorithm to identify such events and recover the PMT signal using the signals of the quadrants without window hits is also presented. For the measurement of PMT responses to ?erenkov light, the Hadron Forward calorimeter signal was mimicked by two different setups in electron beams and the PMT performances were compared with each other. Superior performance of particular PMTs was observed.

  10. Energy range of hadronic calorimeter towers and cells for high-pT jets at a 100 TeV collider

    E-print Network

    S. V. Chekanov; J. Dull

    2015-11-04

    This paper discusses a study of tower and cell energy ranges of a hadronic calorimeter for a 100 TeV pp collider. The dynamic energy ranges were estimated using Standard Model jets with transverse momenta above 20 TeV. The simulations were performed using the PYTHIA Monte Carlo model after a fast detector simulation tuned to the ATLAS hadronic calorimeter. We estimate the maximum energy range of towers and cells as a function of lateral cell sizes for several extreme cases of jet transverse energy.

  11. Energy range of hadronic calorimeter towers and cells for high-pT jets at a 100 TeV collider

    E-print Network

    S. V. Chekanov; J. Dull

    2015-12-28

    This paper discusses a study of tower and cell energy ranges of a hadronic calorimeter for a 100 TeV pp collider. The dynamic energy ranges were estimated using Standard Model jets with transverse momenta above 20 TeV. The simulations were performed using the PYTHIA Monte Carlo model after a fast detector simulation tuned to the ATLAS hadronic calorimeter. We estimate the maximum energy range of towers and cells as a function of lateral cell sizes for several extreme cases of jet transverse energy.

  12. Production and Test of the ATLAS Hadronic Calorimeter Digitizer S. Berglund, C. Bohm, K. Jon-And, J. Klereborn, M. Ramstedt and B. Selldn

    E-print Network

    Production and Test of the ATLAS Hadronic Calorimeter Digitizer S. Berglund, C. Bohm, K. Jon-And, J the summer 2001. To be able to ensure full functionality and quality, a thorough test scheme was developed. All components are radiation tested before start of production. After mounting components all

  13. Extending the Calibration of the ATLAS Hadronic Calorimeter to High Pt

    E-print Network

    in 2007 will study pp collisions with energies of 7 TeV per beam. Many of the interesting physics studies will involve quark and gluon jets with energies of many TeV. To accurately measure such jets, the calorimeter must be calibrated over all energy ranges. This paper presents an overview of calibration techniques

  14. Construction and commissioning of a technological prototype of a high-granularity semi-digital hadronic calorimeter

    E-print Network

    G. Baulieu; M. Bedjidian; K. Belkadhi; J. Berenguer; V. Boudry; P. Calabria; S. Callier; E. Calvo Almillo; S. Cap; L. Caponetto; C. Combaret; R. Cornat; E. Cortina Gil; B. de Callatay; F. Davin; C. de la Taille; R. Dellanegra; D. Delaunay; F. Doizon; F. Dulucq; A. Eynard; M-C. Fouz; F. Gastaldi; L. Germani; G. Grenier; Y. Haddad; R. Han; J-C. Ianigro; R. Kieffer; I. Laktineh; N. Lumb; K. Manai; S. Mannai; H. Mathez; L. Mirabito; J. Prast; J. Puerta Pelayo; M. Ruan; F. Schirra; N. Seguin-Moreau; A. Steen; W. Tromeur; M. Tytgat; M. Vander Donckt; G. Vouters; N. Zaganidis

    2015-10-24

    A large prototype of 1.3m3 was designed and built as a demonstrator of the semi-digital hadronic calorimeter (SDHCAL) concept proposed for the future ILC experiments. The prototype is a sampling hadronic calorimeter of 48 units. Each unit is built of an active layer made of 1m2 Glass Resistive Plate Chamber(GRPC) detector placed inside a cassette whose walls are made of stainless steel. The cassette contains also the electronics used to read out the GRPC detector. The lateral granularity of the active layer is provided by the electronics pick-up pads of 1cm2 each. The cassettes are inserted into a self-supporting mechanical structure built also of stainless steel plates which, with the cassettes walls, play the role of the absorber. The prototype was designed to be very compact and important efforts were made to minimize the number of services cables to optimize the efficiency of the Particle Flow Algorithm techniques to be used in the future ILC experiments. The different components of the SDHCAL prototype were studied individually and strict criteria were applied for the final selection of these components. Basic calibration procedures were performed after the prototype assembling. The prototype is the first of a series of new-generation detectors equipped with a power-pulsing mode intended to reduce the power consumption of this highly granular detector. A dedicated acquisition system was developed to deal with the output of more than 440000 electronics channels in both trigger and triggerless modes. After its completion in 2011, the prototype was commissioned using cosmic rays and particles beams at CERN.

  15. Construction and commissioning of a technological prototype of a high-granularity semi-digital hadronic calorimeter

    NASA Astrophysics Data System (ADS)

    Baulieu, G.; Bedjidian, M.; Belkadhi, K.; Berenguer, J.; Boudry, V.; Calabria, P.; Callier, S.; Calvo Almillo, E.; Cap, S.; Caponetto, L.; Combaret, C.; Cornat, R.; Cortina Gil, E.; de Callatay, B.; Davin, F.; de la Taille, C.; Dellanegra, R.; Delaunay, D.; Doizon, F.; Dulucq, F.; Eynard, A.; Fouz, M.-C.; Gastaldi, F.; Germani, L.; Grenier, G.; Haddad, Y.; Han, R.; Ianigro, J.-C.; Kieffer, R.; Laktineh, I.; Lumb, N.; Manai, K.; Mannai, S.; Mathez, H.; Mirabito, L.; Prast, J.; Puerta Pelayo, J.; Ruan, M.; Schirra, F.; Seguin-Moreau, N.; Steen, A.; Tromeur, W.; Tytgat, M.; Vander Donckt, M.; Vouters, G.; Zaganidis, N.

    2015-10-01

    A large prototype of 1.3 m3 was designed and built as a demonstrator of the semi-digital hadronic calorimeter (SDHCAL) concept proposed for the future ILC experiments. The prototype is a sampling hadronic calorimeter of 48 units. Each unit is built of an active layer made of 1 m2 Glass Resistive Plate Chamber (GRPC) detector placed inside a cassette whose walls are made of stainless steel. The cassette contains also the electronics used to read out the GRPC detector. The lateral granularity of the active layer is provided by the electronics pick-up pads of 1 cm2 each. The cassettes are inserted into a self-supporting mechanical structure built also of stainless steel plates which, with the cassettes walls, play the role of the absorber. The prototype was designed to be very compact and important efforts were made to minimize the number of services cables to optimize the efficiency of the Particle Flow Algorithm techniques to be used in the future ILC experiments. The different components of the SDHCAL prototype were studied individually and strict criteria were applied for the final selection of these components. Basic calibration procedures were performed after the prototype assembling. The prototype is the first of a series of new-generation detectors equipped with a power-pulsing mode intended to reduce the power consumption of this highly granular detector. A dedicated acquisition system was developed to deal with the output of more than 440000 electronics channels in both trigger and triggerless modes. After its completion in 2011, the prototype was commissioned using cosmic rays and particles beams at CERN.

  16. Search for pair-produced long-lived neutral particles decaying in the ATLAS hadronic calorimeter in $pp$ collisions at $\\sqrt{s}$ = 8 TeV

    E-print Network

    ATLAS Collaboration

    2015-03-07

    The ATLAS detector at the Large Hadron Collider at CERN is used to search for the decay of a scalar boson to a pair of long-lived particles, neutral under the Standard Model gauge group, in 20.3 fb$^{-1}$ of data collected in proton--proton collisions at $\\sqrt{s}$ = 8 TeV. This search is sensitive to long-lived particles that decay to Standard Model particles producing jets at the outer edge of the ATLAS electromagnetic calorimeter or inside the hadronic calorimeter. No significant excess of events is observed. Limits are reported on the product of the scalar boson production cross section times branching ratio into long-lived neutral particles as a function of the proper lifetime of the particles. Limits are reported for boson masses from 100 GeV to 900 GeV, and a long-lived neutral particle mass from 10 GeV to 150 GeV.

  17. Search for pair-produced long-lived neutral particles decaying to jets in the ATLAS hadronic calorimeter in pp collisions at ?{ s} = 8 TeV

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Agustoni, M.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Allbrooke, B. M. M.; Allison, L. J.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baas, A. E.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Backus Mayes, J.; Badescu, E.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Balek, P.; Balli, F.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Bartsch, V.; Bassalat, A.; Basye, A.; Bates, R. L.; Batley, J. R.; Battaglia, M.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, S.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, K.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernat, P.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boddy, C. R.; Boehler, M.; Boek, T. T.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borri, M.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutouil, S.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brelier, B.; Brendlinger, K.; Brennan, A. J.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat, Q.; Bucci, F.

    2015-04-01

    The ATLAS detector at the Large Hadron Collider at CERN is used to search for the decay of a scalar boson to a pair of long-lived particles, neutral under the Standard Model gauge group, in 20.3 fb-1 of data collected in proton-proton collisions at ?{ s} = 8 TeV. This search is sensitive to long-lived particles that decay to Standard Model particles producing jets at the outer edge of the ATLAS electromagnetic calorimeter or inside the hadronic calorimeter. No significant excess of events is observed. Limits are reported on the product of the scalar boson production cross section times branching ratio into long-lived neutral particles as a function of the proper lifetime of the particles. Limits are reported for boson masses from 100 GeV to 900 GeV, and a long-lived neutral particle mass from 10 GeV to 150 GeV.

  18. CMS hadron calorimeter front-end upgrade for SLHC phase I

    SciTech Connect

    Whitmore, Juliana; /Fermilab

    2009-09-01

    We present an upgrade plan for the CMS HCAL detector. The HCAL upgrade is required for the increased luminosity (3 * 10E34) of SLHC Phase I which is targeted for 2014. A key aspect of the HCAL upgrade is to add longitudinal segmentation to improve background rejection, energy resolution, and electron isolation at the L1 trigger. The increased segmentation is achieved by replacing the hybrid photodiodes (HPDs) with silicon PMTs (SIPMs). We plan to instrument each fiber of the calorimeter with an SIPM (103,000 total). We will then electrically sum outputs from selected SIPMs to form the longitudinal readout segments. In addition to having more longitudinal information, the upgrade plans include a new custom ADC with matched sensitivity and timing information. The increased data volume requires higher speed transmitters and the additional power dissipation for the readout electronics requires better thermal design, since much of the on-detector infrastructure (front-end electronics crates, cooling pipes, optical fiber plant, etc.) will remain the same. We will report on the preliminary designs for these upgraded systems, along with performance requirements and initial design studies.

  19. Design Studies of the Calorimeter Systems for the sPHENIX Experiment at RHIC and Future Upgrade Plans

    NASA Astrophysics Data System (ADS)

    Woody, C.; Kistenev, E.; PHENIX Collaboration

    2015-02-01

    The PHENIX Experiment at RHIC is planning a series of major upgrades that will enable a comprehensive measurement of jets in relativistic heavy ion collisions, provide enhanced physics capabilities for studying nucleon-nucleus and polarized proton collisions, and allow a detailed study of electron-nucleus collisions at the Electron Ion Collider at Brookhaven (eRHIC). The first of these upgrades, sPHENIX, will be based on the former BaBar magnet and will include a hadronic calorimeter and new electromagnetic calorimeter that will cover ±1.1 units in pseudorapidity and 2? in azimuth in the central region, resulting in a factor of 6 increase in acceptance over the present PHENIX detector. The electromagnetic calorimeter will be a tungsten scintillating fiber design with a radiation length ~ 7 mm and a Moliere radius ~ 2 cm. It will have a total depth of ~ 18 radiation lengths and an energy resolution ~ 15%/?E. The hadronic calorimeter will consist of steel plates with scintillating tiles in between that are read out with wavelength shifting fibers, It will have a total depth of ~ 5 interaction lengths and an energy resolution 100%/?E. Both calorimeters will use silicon photomultipliers as the readout sensor. Detailed design studies and Monte Carlo simulations for both calorimeters have been carried out and prototype detectors have been constructed and tested in a test beam at Fermilab in February 2014. This contribution describes these design studies for the sPHENIX experiment and its future upgrade plans at RHIC.

  20. Response and Uniformity Studies of Directly Coupled Tiles

    SciTech Connect

    Zutshi, Vishnu

    2010-04-02

    A finely-segmented scintillator-based calorimeter which capitalizes on the marriage of proven detection techniques with novel solid-state photo-detector devices such as Multi-pixel Photon Counters (MPPCs) is an interesting calorimetric system from the point of view of future detector design. A calorimeter system consisting of millions of channels will require a high degree of integration. The first steps towards this integration have already been facilitated by the small size and magnetic field immunity of the MPPCs. The photo-conversion occurs right at the tile, thus obviating the need for routing of long clear fibers. Similar considerations apply to the presence of wave-length shifting (WLS) fibers inside the tiles which couple it to the photo-detectors. Significant simplification in construction and assembly ensue if the MPPCs can be coupled directly to the scintillator tiles. Equally importantly, the total absence of fibers would offer greater flexibility in the choice of the transverse segmentation while enhancing the electro-mechanical integrability of the design. The NIU high-energy physics group has been studying the fiberless or direct-coupling option for some time now. Encouraging results on response and response uniformity have been obtained using radioactive sources. This MOU seeks to set up a framework to extend these tests using beams at the MTBF. The results will be relevant to high granularity scintillator/crystal electromagnetic and hadronic calorimetry. The tests involve a set of small directly-coupled tile counters fabricated at NIU which will be placed in the beam to study their response and response uniformity as a function of the incident position of the particles passing through them.

  1. O the Optimization of a Lead Scintillator Compensating Calorimeter.

    NASA Astrophysics Data System (ADS)

    Tsirou, Andromachi Leo

    A lead scintillator calorimeter was designed and tested by members of the ZEUS calorimeter group. The design of the TEST-36 calorimeter incorporated new ideas for the optimization of the performance of a hadron calorimeter. The development, testing, and the results are presented here.

  2. Tiling Phosphorene

    NASA Astrophysics Data System (ADS)

    Zhu, Zhen; Tomanek, David; Guan, Jie

    2015-03-01

    We introduce a scheme to categorize the structure of different layered phosphorene allotropes by mapping their non-planar atomic structure onto a two-color 2D triangular tiling pattern. In the puckered structure of a phosphorene monolayer, we assign atoms in ``top'' positions to dark tiles and atoms in ``bottom'' positions to light tiles. Optimum sp3 bonding is maintained throughout the structure when each triangular tile is surrounded by the same number N of like-colored tiles, with 0 <= N <= 2 . Our ab initio density functional calculations indicate that both the relative stability and electronic properties depend primarily on the structural index N. The proposed mapping approach may also be applied to phosphorene structures with non-hexagonal rings and 2D quasicrystals with no translational symmetry, which we predict to be nearly as stable as the hexagonal network. Supported by the National Science Foundation Cooperative Agreement #EEC-0832785, titled ``NSEC: Center for High-rate Nanomanufacturing.''

  3. Tiling phosphorene.

    PubMed

    Guan, Jie; Zhu, Zhen; Tománek, David

    2014-12-23

    We present a scheme to categorize the structure of different layered phosphorene allotropes by mapping their nonplanar atomic structure onto a two-color 2D triangular tiling pattern. In the buckled structure of a phosphorene monolayer, we assign atoms in "top" positions to dark tiles and atoms in "bottom" positions to light tiles. Optimum sp3 bonding is maintained throughout the structure when each triangular tile is surrounded by the same number N of like-colored tiles, with 0?N?2. Our ab initio density functional calculations indicate that both the relative stability and electronic properties depend primarily on the structural index N. The proposed mapping approach may also be applied to phosphorene structures with nonhexagonal rings and 2D quasicrystals with no translational symmetry, which we predict to be nearly as stable as the hexagonal network. PMID:25418761

  4. Development of Large Area Gas Electron Multiplier Detector and Its Application to a Digital Hadron Calorimeter for Future Collider Experiments

    SciTech Connect

    Yu, Jaehoon; White, Andrew

    2014-09-25

    The UTA High Energy Physics Group conducted generic detector development based on large area, very thin and high sensitivity gas detector using gas electron multiplier (GEM) technology. This is in preparation for a use as a sensitive medium for sampling calorimeters in future collider experiments at the Energy Frontier as well as part of the tracking detector in Intensity Frontier experiments. We also have been monitoring the long term behavior of one of the prototype detectors (30cmx30cm) read out by the SLAC-developed 13-bit KPiX analog chip over three years and have made presentations of results at various APS meetings. While the important next step was the development of large area (1m x 1m) GEM planes, we also have looked into opportunities of applying this technology to precision tracking detectors to significantly improve the performance of the Range Stack detector for CP violation experiments and to provide an amplification layer for the liquid Argon Time Projection Chamber in the LBNE experiment. We have jointly developed 33cmx100cm large GEM foils with the CERN gas detector development group to construct 33cm x100cm unit chambers. Three of these unit chambers will be put together to form a 1m x 1m detector plane. Following characterization of one 33cmx100cm unit chamber prototype, a total of five 1m x 1m planes will be constructed and inserted into an existing 1m3 RPC DHCAL stack to test the performance of the new GEM DHCAL in particle beams. The large area GEM detector we planned to develop in this proposal not only gives an important option to DHCAL for future collider experiments but also the potential to expand its use to Intensity Frontier and Cosmic Frontier experiments as high efficiency, high amplification anode planes for liquid Argon time projection chambers. Finally, thanks to its sensitivity to X-rays and other neutral radiations and its light-weight characteristics, the large area GEM has a great potential for the use in medical imaging and homeland security, as well as satellite based astronomy experiments.

  5. Tiled microprocessors

    E-print Network

    Taylor, Michael Bedford, 1975-

    2007-01-01

    Current-day microprocessors have reached the point of diminishing returns due to inherent scalability limitations. This thesis examines the tiled microprocessor, a class of microprocessor which is physically scalable but ...

  6. Method and system for improved resolution of a compensated calorimeter detector

    DOEpatents

    Dawson, John W. (Willowbrook, IL)

    1991-01-01

    An improved method and system for a depleted uranium calorimeter detector used in high energy physics experiments. In a depleted uranium calorimeter detector, the energy of a particle entering the calorimeter detector is determined and the output response of the calorimeter detector is compensated so that the ratio of the integrated response of the calorimeter detector from a lepton to the integrated response of the calorimeter detector from a hadron of the same energy as the lepton is approximately equal to 1. In the present invention, the energy of a particle entering the calorimeter detector is determined as a function of time and the hadron content of the response of the calorimeter detector is inferred based upon the time structure of the energy pulse measured by the calorimeter detector. The energy measurement can be corrected based on the inference of the hadron content whereby the resolution of the calorimeter can be improved.

  7. Quartz fiber calorimetry and calorimeters

    E-print Network

    G. Mavromanolakis

    2004-12-20

    Quartz fiber calorimetry is a technique the signal generation mechanism of which is based on the Cherenkov effect. In this article we try to give a comprehensive overview of the subject. We start with a general introduction to calorimetry where the basic elements that characterize the development of electromagnetic and hadronic showers are discussed. Then we describe in detail the operation principle and the properties of calorimeters equipped with quartz fibers. The main advantages of this type of calorimeters are the radiation hardness, the fast response and the compact detector dimensions, features that derive from the quartz material and the specific mechanism of operation. A section is devoted to presenting the quartz fiber calorimeters that have been built or planned to in various experiments to operate as centrality detectors, trigger detectors, luminosity monitors or general purpose very forward calorimeters.

  8. Tile Drainage 

    E-print Network

    Leidigh, A.H.; Gee, E.C.

    1916-01-01

    irrigation system that is on heavy land. If lines of tile are laid out hy the side of irrigation ditches seepage and the rise of alkali can be prevented. In areas where the alkali has already come to the sur- Figure 18. Protection of Hend-End of Lines...

  9. The ATLAS Liquid Argon Calorimeter Construction, Integration, Commissioning

    E-print Network

    Aleksa, Martin

    2006-01-01

    The ATLAS liquid argon (LAr) calorimeter system consists of an electromagnetic barrel calorimeter and two end caps with electromagnetic, hadronic and forward calorimeters. The liquid argon sampling technique, with an accordion geometry was chosen for the barrel electromagnetic calorimeter (EMB) and adapted to the end cap (EMEC). The hadronic end cap calorimeter (HEC) uses a copper-liquid argon sampling technique with flat plate geometry and is subdivided in depth in two wheels per end-cap. Finally, the forward calorimeter (FCAL) is composed of three modules employing cylindrical electrodes with thin liquid argon gaps. The construction of the full calorimeter system is complete since mid-2004. Production modules constructed in the home institutes were integrated into wheels at CERN in 2003-2004, and inserted into the three cryostats. They passed their first complete cold test before the lowering into the ATLAS cavern. Results of quality checks (e.g. electrical, mechanical, ...) performed on all the 190304 read...

  10. Steel specification for the Atlas calorimeter

    SciTech Connect

    Guarino, V.

    1998-02-10

    As part of a collaborative experimental High Energy Physics experiment at the LHC Facility, CERN Laboratory, Geneva Switzerland, a group of US institutions has accepted the responsibility for constructing a large portion of the calorimeter for this experiment. This device is referred to as the Tile Calorimeter. The Tile Calorimeter has three major elements, a large center section (Barrel), and two end sections (Extended Barrel). The US group will be responsible for the construction of one of these extended barrel sections. All of the components that are required to construct this device will be fabricated in the US over a period of three years commencing in 1998. Another similar element and the barrel element will be constructed in both eastern and western Europe by parallel groups. The extended barrel is a cylindrical device approximately 8.5 meters (28 ft.) OD x 4.5 meters (14 ft.) ID, made up of 64 wedges. Each of these wedges (see Attachment 1) is constructed by bolting submodules to a strongback girder. Each submodule is constructed of a series of sheets that are welded and glued together. This document summarizes the characteristics and specifications of these steel sheets. The Tile Calorimeter is the return path for the magnet flux of the ATLAS internal superconducting 2T solenoid, therefore its steel magnetic properties are important.

  11. Photon calorimeter

    DOEpatents

    Chow, Tze-Show

    1988-04-22

    A photon calorimeter is provided that comprises a laminar substrate that is uniform in density and homogeneous in atomic composition. A plasma-sprayed coating, that is generally uniform in density and homogeneous in atomic composition within the proximity of planes that are parallel to the surfaces of the substrate, is applied to either one or both sides of the laminar substrate. The plasma-sprayed coatings may be very efficiently spectrally tailored in atomic number. Thermocouple measuring junctions, are positioned within the plasma-sprayed coatings. The calorimeter is rugged, inexpensive, and equilibrates in temperature very rapidly. 4 figs.

  12. The TileCal Energy Reconstruction for LHC Run2 and Future Perspectives

    E-print Network

    Bernardo Sotto-Maior Peralva; José Manoel de Seixas

    2015-10-06

    The TileCal is the main hadronic calorimeter of ATLAS and it covers the central part of the detector ($|\\eta|$ basis. The pedestal value is estimated through special calibration runs and it is stored in a data base for online and offline usage. Additionally, the background covariance matrix will also be used for the computation of the Optimal Filter weights for high occupancy channels. The use of such information reduces the bias and uncertainties introduced by signal pile-up. The performance of the Optimal Filter version used in Run 1 and Run 2 is compared using Monte Carlo data. The efficiency achieved by the methods is shown in terms of error estimation, when different conditions of luminosity and occupancy are considered. Concerning future work, a new method based on linear signal deconvolution has been recently proposed and it is under validation. It could be used for Run 2 offline energy reconstruction and future upgrades.

  13. Electromagnetic Calorimeter for HADES

    E-print Network

    W. Czyzycki; E. Epple; L. Fabbietti; M. Golubeva; F. Guber; A. Ivashkin; M. Kajetanowicz; A. Krasa; F. Krizek; A. Kugler; K. Lapidus; E. Lisowski; J. Pietraszko; A. Reshetin; P. Salabura; Y. Sobolev; J. Stanislav; P. Tlusty; T. Torrieri; M. Traxler

    2011-11-28

    We propose to build the Electromagnetic calorimeter for the HADES di-lepton spectrometer. It will enable to measure the data on neutral meson production from nucleus-nucleus collisions, which are essential for interpretation of dilepton data, but are unknown in the energy range of planned experiments (2-10 GeV per nucleon). The calorimeter will improve the electron-hadron separation, and will be used for detection of photons from strange resonances in elementary and HI reactions. Detailed description of the detector layout, the support structure, the electronic readout and its performance studied via Monte Carlo simulations and series of dedicated test experiments is presented. The device will cover the total area of about 8 m^2 at polar angles between 12 and 45 degrees with almost full azimuthal coverage. The photon and electron energy resolution achieved in test experiments amounts to 5-6%/sqrt(E[GeV]) which is sufficient for the eta meson reconstruction with S/B ratio of 0.4% in Ni+Ni collisions at 8 AGeV. A purity of the identified leptons after the hadron rejection, resulting from simulations based on the test measurements, is better than 80% at momenta above 500 MeV/c, where time-of-flight cannot be used.

  14. Radiation-Hard Quartz Cerenkov Calorimeters

    SciTech Connect

    Akgun, U.; Onel, Y.

    2006-10-27

    New generation hadron colliders are going to reach unprecedented energies and radiation levels. Quartz has been identified as a radiation-hard material that can be used for Cerenkov calorimeters of the future experiments. We report from the radiation hardness tests performed on quartz fibers, as well as the characteristics of the quartz fiber and plate Cerenkov calorimeters that have been built, designed, and proposed for the CMS experiment.

  15. Calorimeter trigger synchronization in the CMS experiment

    NASA Astrophysics Data System (ADS)

    Almeida, N.; Da Silva, J. C.; Alemany, R.; Almeida, C.; Santos, M.; Teixeira, I.; Teixeira, J. P.; Varela, J.

    2006-12-01

    The calorimeter trigger synchronization of the Compact Muon Solenoid experiment at the large hadron collider (LHC) is presented. The synchronization method is implemented in the synchronization and link board (SLB). The board allows the synchronization of electromagnetic and hadronic trigger primitives at the LHC frequency (40.08 MHz) and its transmission to the Regional Calorimeter Trigger using electrical links at a rate of 1.2 Gb s -1. The system developed for the SLB tests and the commissioning of the full production (1210 boards) is also presented.

  16. Preassembly Of Insulating Tiles

    NASA Technical Reports Server (NTRS)

    Izu, Y. D.; Yoshioka, E. N.; Rosario, T.

    1988-01-01

    Concept for preassembling high-temperature insulating tiles speeds and simplifies installation and repair and reduces damage from handling. Preassembly concept facilitates placement of tiles on gently contoured surfaces as well as on flat ones. Tiles bonded to nylon mesh with room-temperature-vulcanizing silicon rubber. Spacing between tiles is 0.03 in. Applications include boilers, kilns, and furnaces.

  17. Interlocking wettable ceramic tiles

    DOEpatents

    Tabereaux, Jr., Alton T.; Fredrickson, Guy L.; Groat, Eric; Mroz, Thomas; Ulicny, Alan; Walker, Mark F.

    2005-03-08

    An electrolytic cell for the reduction of aluminum having a layer of interlocking cathode tiles positioned on a cathode block. Each tile includes a main body and a vertical restraining member to prevent movement of the tiles away from the cathode block during operation of the cell. The anode of the electrolytic cell may be positioned about 1 inch from the interlocking cathode tiles.

  18. Development of a forward calorimeter system for the STAR experiment

    NASA Astrophysics Data System (ADS)

    Tsai, O. D.; Aschenauer, E.; Christie, W.; Dunkelberger, L. E.; Fazio, S.; Gagliardi, C. A.; Heppelmann, S.; Huang, H. Z.; Jacobs, W. W.; Igo, G.; Kisilev, A.; Landry, K.; Liu, X.; Mondal, M. M.; Pan, Y. X.; Sergeeva, M.; Shah, N.; Sichtermann, E.; Trentalange, S.; Visser, G.; Wissink, S.

    2015-02-01

    We present results of an R&D program to develop a forward calorimeter system (FCS) for the STAR experiment at the Relativistic Heavy Ion Collider at BNL. The FCS is a very compact, compensated, finely granulated, high resolution calorimeter system being developed for p+p and p+A program at RHIC. The FCS prototype consists of both electromagnetic and hadron calorimeters. The electromagnetic portion of the detector is constructed with W powder and scintillation fibers. The hadronic calorimeter is a traditional Pb/Sc-plate sandwich design. Both calorimeters were readout with Hamamatsu MPPCs. A full- scale prototype of the FCS was tested with a beam at FNAL in March 2014. We present details of the design, construction technique and performance of the FCS prototype during the test run at FNAL.

  19. Handmade Tile Mosaics

    ERIC Educational Resources Information Center

    Keeler, Rusty

    2007-01-01

    Just like the classroom, children's outdoor environments should be filled with artistic creations that add sparkle and imagination to the space. One of the author's favorite ways to add art to the outdoors is by installing a mosaic mural of child-made tiles. The process of making the tiles is fun for all; each tile is a charming work of art in…

  20. Physics with the ALICE Electromagnetic Calorimeter

    E-print Network

    Rene Bellwied; for the ALICE Collaboration

    2009-07-17

    I will present physics measurements which are achievable in the ALICE experiment at the LHC through the inclusion of a new electromagnetic calorimeter. I will focus on jet measurements in proton proton and heavy ion collisions. Detailed simulations have been performed on jet reconstruction, jet triggering, heavy flavor jet reconstruction through electron identification, gamma-jet reconstruction and the measurements of identified hadrons and resonances in jets. I will show the physics capabilities which are made possible through the combination of calorimeter information with the other detector components in ALICE.

  1. The ATLAS Liquid Argon Calorimeter: Construction, Integration, Commissioning

    SciTech Connect

    Aleksa, Martin

    2006-10-27

    The ATLAS liquid argon (LAr) calorimeter system consists of an electromagnetic barrel calorimeter and two end caps with electromagnetic, hadronic and forward calorimeters. The liquid argon sampling technique, with an accordion geometry was chosen for the barrel electromagnetic calorimeter (EMB) and adapted to the end cap (EMEC). The hadronic end cap calorimeter (HEC) uses a copper-liquid argon sampling technique with flat plate geometry and is subdivided in depth in two wheels per end-cap. Finally, the forward calorimeter (FCAL) is composed of three modules employing cylindrical electrodes with thin liquid argon gaps.The construction of the full calorimeter system is complete since mid-2004. Production modules constructed in the home institutes were integrated into wheels at CERN in 2003-2004, and inserted into the three cryostats. They passed their first complete cold test before the lowering into the ATLAS cavern. Results of quality checks (e.g. electrical, mechanical, ...) performed on all the 190304 read-out channels after cool down will be reported. End 2004 the ATLAS barrel electromagnetic (EM) calorimeter was installed in the ATLAS cavern and since summer 2005 the front-end electronics are being connected and tested. Results of this first commissioning phase will be shown to demonstrate the high standards of quality control for our detectors.

  2. The ATLAS Liquid Argon Calorimeter: Construction, Integration, Commissioning

    NASA Astrophysics Data System (ADS)

    Aleksa, Martin

    2006-10-01

    The ATLAS liquid argon (LAr) calorimeter system consists of an electromagnetic barrel calorimeter and two end caps with electromagnetic, hadronic and forward calorimeters. The liquid argon sampling technique, with an accordion geometry was chosen for the barrel electromagnetic calorimeter (EMB) and adapted to the end cap (EMEC). The hadronic end cap calorimeter (HEC) uses a copper-liquid argon sampling technique with flat plate geometry and is subdivided in depth in two wheels per end-cap. Finally, the forward calorimeter (FCAL) is composed of three modules employing cylindrical electrodes with thin liquid argon gaps. The construction of the full calorimeter system is complete since mid-2004. Production modules constructed in the home institutes were integrated into wheels at CERN in 2003-2004, and inserted into the three cryostats. They passed their first complete cold test before the lowering into the ATLAS cavern. Results of quality checks (e.g. electrical, mechanical, …) performed on all the 190304 read-out channels after cool down will be reported. End 2004 the ATLAS barrel electromagnetic (EM) calorimeter was installed in the ATLAS cavern and since summer 2005 the front-end electronics are being connected and tested. Results of this first commissioning phase will be shown to demonstrate the high standards of quality control for our detectors.

  3. On the Parameterization of the Longitudinal Hadronic Shower Profiles in Combined Calorimetry

    E-print Network

    Y. A. Kulchitsky; V. B. Vinogradov

    2000-01-12

    The extension of the longitudinal hadronic shower profile parameterization which takes into account non-compensations of calorimeters and the algorithm of the longitudinal hadronic shower profile curve making for a combined calorimeter are suggested. The proposed algorithms can be used for data analysis from modern combined calorimeters like in the ATLAS detector at the LHC.

  4. Rewaterproofing Silica Tiles

    NASA Technical Reports Server (NTRS)

    Lleger, L. J.; Wade, D. C.

    1983-01-01

    Waterproofing agent, vaporized in bubbler transported by gas flowing in system and deposits in pores of tiles. Vapor carried through hole of approximately 1/16 inch (1.6.mm) diameter made in tile coating. Technique used to waterproof buildups (concrete and brick) and possibly fabrics.

  5. An Imaging Calorimeter for Access-Concept Study

    NASA Technical Reports Server (NTRS)

    Parnell, T. A.; Adams, James H.; Binns, R. W.; Christl, M. J.; Derrickson, J. H.; Fountain, W. F.; Howell, L. W.; Gregory, J. C.; Hink, P. L.; Israel, M. H.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    A mission concept study to define the "Advanced Cosmic-ray Composition Experiment for Space Station (ACCESS)" was sponsored by the National Aeronautics and Space Administration (NASA). The ACCESS instrument complement contains a transition radiation detector and an ionization calorimeter to measure tile spectrum of protons, helium, and heavier nuclei up to approximately 10(exp 15) eV to search for the limit of S/N shock wave acceleration, or evidence for other explanations of the spectra. Several calorimeter configurations have been studied, including the "baseline" totally active bismuth germanate instrument and sampling calorimeters utilizing various detectors. The Imaging Calorimeter for ACCESS (ICA) concept comprises a carbon target and a calorimeter using a high atomic number absorber sampled approximately each radiation length (rl) by thin scintillating fiber (SCIFI) detectors. The main features and options of the ICA instrument configuration are described in this paper. Since direct calibration is not possible over most of the energy range, the best approach must be decided from simulations of calorimeter performance extrapolated from CERN calibrations at 0.375 TeV. This paper presents results from the ICA simulations study.

  6. The TileCal Online Energy Estimation for the Next LHC Operation Period

    NASA Astrophysics Data System (ADS)

    Sotto-Maior Peralva, B.; ATLAS Collaboration

    2015-05-01

    The ATLAS Tile Calorimeter (TileCal) is the detector used in the reconstruction of hadrons, jets and missing transverse energy from the proton-proton collisions at the Large Hadron Collider (LHC). It covers the central part of the ATLAS detector (|?| < 1.6). The energy deposited by the particles is read out by approximately 5,000 cells, with double readout channels. The signal provided by the readout electronics for each channel is digitized at 40 MHz and its amplitude is estimated by an optimal filtering algorithm, which expects a single signal with a well-defined shape. However, the LHC luminosity is expected to increase leading to pile-up that deforms the signal of interest. Due to limited resources, the current hardware setup, which is based on Digital Signal Processors (DSP), does not allow the implementation of sophisticated energy estimation methods that deal with the pile-up. Therefore, the technique to be employed for online energy estimation in TileCal for next LHC operation period must be based on fast filters such as the Optimal Filter (OF) and the Matched Filter (MF). Both the OF and MF methods envisage the use of the background second order statistics in its design, more precisely the covariance matrix. However, the identity matrix has been used to describe this quantity. Although this approximation can be valid for low luminosity LHC, it leads to biased estimators under pile- up conditions. Since most of the TileCal cell present low occupancy, the pile-up, which is often modeled by a non-Gaussian distribution, can be seen as outlier events. Consequently, the classical covariance matrix estimation does not describe correctly the second order statistics of the background for the majority of the events, as this approach is very sensitive to outliers. As a result, the OF (or MF) coefficients are miscalculated leading to a larger variance and biased energy estimator. This work evaluates the usage of a robust covariance estimator, namely the Minimum Covariance Determinant (MCD) algorithm, to be applied in the OF design. The goal of the MCD estimator is to find a number of observations whose classical covariance matrix has the lowest determinant. Hence, this procedure avoids taking into account low likelihood events to describe the background. It is worth mentioning that the background covariance matrix as well as the OF coefficients for each TileCal channel are computed offline and stored for both online and offline use. In order to evaluate the impact of the MCD estimator on the performance of the OF, simulated data sets were used. Different average numbers of interactions per bunch crossing and bunch spacings were tested. The results show that the estimation of the background covariance matrix through MCD improves significantly the final energy resolution with respect to the identity matrix which is currently used. Particularly, for high occupancy cells, the final energy resolution is improved by more than 20%. Moreover, the use of the classical covariance matrix degrades the energy resolution for the majority of TileCal cells.

  7. A fractal version of the pinwheel tiling

    E-print Network

    Natalie Priebe Frank; Michael F. Whittaker

    2011-01-25

    We introduce a fractal version of the pinwheel substitution tiling. There are thirteen basic prototiles, all of which have fractal boundaries. These tiles, along with their reflections and rotations, create a tiling space which is mutually locally derivable from the pinwheel tiling space. Interesting rotational properties, symmetries, and relative tile frequency are discussed for the tiling space associated with the fractal pinwheel tiling.

  8. Zero Degree Calorimeter for CMS

    NASA Astrophysics Data System (ADS)

    Lehnherr, Megan

    2004-10-01

    In 2007 the Large Hadron Collider (LHC) at CERN in Geneva will start to collide protons and lead ions together at extremely high energies. The purpose of the proton-proton running is to study the origin of mass. The purpose of the ion running is to recreate the first few moments of the universe. The Compact Muon Solenoid, or CMS, is one of the experiments at LHC. I am currently working with the Nuclear Physics Team at the University of Kansas on part of CMS, called the Zero Degree Calorimeter (ZDC). I use a simulation toolkit, Geant4, which uses the object-oriented nature of C++ code to allow users to build simulations of particle collisions. Neutrons hit the ZDC and collide with tungsten plates to produce a shower of particles. The ZDC uses tungsten plates to change the neutrons into charged particles, and optical fibers to gather Cerenkov photons that are created. The current goal is to convert as much energy that comes into the ZDC as possible into light energy, and determine the most effective design for the calorimeter. I will present estimates of the ZDC performance for both proton-proton and heavy ion running.

  9. Development of a high data-throughput ADC board for the PROMETEO portable test-bench for the upgraded front-end electronics of the ATLAS TileCal

    NASA Astrophysics Data System (ADS)

    Spoor, Matthew; Kureba, Oscar; Sandrock, Charles

    2015-10-01

    The Large Hadron Collider (LHC) is preparing for a major Phase-II upgrade scheduled for 2022 [1]. The upgrade will require a complete redesign of both on- and off-detector electronics systems in the ATLAS Tile hadron Calorimeter (TileCal) [2]. The PROMETEO (A Portable ReadOut ModulE for Tilecal ElectrOnics) stand-alone test-bench system is currently in development and will be used for the certification and quality checks of the new front- end electronics. The Prometeo is designed to read in digitized samples from 12 channels simultaneously at the bunch crossing frequency while accessing quality of information in realtime. The main board used for the design is a Xilinx VC707 evaluation board with a dual QSFP+ FMC (FPGA Mezzanine Card) module for read-out and control of the front-end electronics. All other functions are provided by a HV board, LED board and a 16 channel ADC daughter board. The paper relates to the development and testing of the ADC board that will be used in the new Prometeo system.

  10. Voronoi spiral tilings

    NASA Astrophysics Data System (ADS)

    Yamagishi, Yoshikazu; Sushida, Takamichi; Hizume, Akio

    2015-04-01

    The parameter set of Voronoi spiral tilings gives a dual of van Iterson's bifurcation diagram for phyllotactic spirals. We study the Voronoi tilings for the Bernoulli spiral site sets, as the simplest spirals in the centric representation with similarity symmetry. Their parameter set is composed of a family of real algebraic curves in the complex plane, with the Farey sequence structure. This naturally extends to the parameter set for multiple tilings, i.e., the tilings of the covering spaces of the punctured plane. We show the denseness of the parameters z = rei? for quadrilateral Voronoi spiral multiple tilings. The techniques of dynamical systems are applied to the group of similarity symmetry. The parastichy numbers and the distortion of the Voronoi regions depend on the rational approximations of ?/2?. We consider the limit set of the shapes of the quadrilateral tiles by taking the limit as r ? 1, with ? fixed. If ?/2? is a quadratic irrational number, then the limit set is a finite set of rectangles. In particular, if ?/2? is linearly equivalent to the golden section, then the limit is the square.

  11. The PHENIX electromagnetic calorimeter

    SciTech Connect

    Kistenev, E.; White, S.; Belikov, S.; Kochetkov, V.

    1993-12-31

    The main features of the Phenix EM calorimeter are presented. This a Pb/scintillator calorimeter with ``shish-kebab`` fiber readout, designed for low energy electron and photon measurements. Prototype calorimeters have been built with longitudinal segmentation, {approximately} 100 psec time of flight resolution and 8% energy resolution at 1GeV/c. The laser based monitoring system which has been incorporated into large scale prototypes is described. The dependence of light yield on fiber choice and scintillator surface preparation has been studied.

  12. Calorimeter Control Program

    Energy Science and Technology Software Center (ESTSC)

    1998-11-03

    The Calorimeter Control Software provides PID (Proportional, Integral, and Derivative) Control for up to twelve Mound Calorimeters and five Calorimeter Waterbaths. The software accepts a Voltage input, compares it to a user defined setpoint, calculates a new voltage output designed to bring the input closer to the setpoint using a PID control algorithm, then sets the analog voltage output to the calculated value. The software is designed to interface with HP 3852A Data Acquisition Unitmore »via an HP-1B PC board. All field inputs are wired into Digital Input cards and field outputs are wired from Analog Output cards.« less

  13. The lead-glass electromagnetic calorimeter for the SELEX experiment

    SciTech Connect

    M. Y. Balatz et al.

    2004-07-19

    A large-acceptance, highly segmented electromagnetic lead glass calorimeter for Experiment E781 (SELEX) at Fermi National Acceleration Laboratory was designed and built. This detector has been used to reconstruct photons and electrons with energies ranging from few GeV up to 500 GeV in the collisions of the 650 GeV {Sigma}{sup -} hyperons and {pi}{sup -} mesons with the target nucleons. The design, calibration and performance of the calorimeter are described. Energy resolution and position resolution are assessed using both calibration electron beams and {pi}{sup 0} mesons reconstructed in 650 GeV hadron-hadron interactions. The performance of the calorimeter in selecting resonant states that involve photons is demonstrated.

  14. Tiled Multicore Processors

    NASA Astrophysics Data System (ADS)

    Taylor, Michael B.; Lee, Walter; Miller, Jason E.; Wentzlaff, David; Bratt, Ian; Greenwald, Ben; Hoffmann, Henry; Johnson, Paul R.; Kim, Jason S.; Psota, James; Saraf, Arvind; Shnidman, Nathan; Strumpen, Volker; Frank, Matthew I.; Amarasinghe, Saman; Agarwal, Anant

    For the last few decades Moore’s Law has continually provided exponential growth in the number of transistors on a single chip. This chapter describes a class of architectures, called tiled multicore architectures, that are designed to exploit massive quantities of on-chip resources in an efficient, scalable manner. Tiled multicore architectures combine each processor core with a switch to create a modular element called a tile. Tiles are replicated on a chip as needed to create multicores with any number of tiles. The Raw processor, a pioneering example of a tiled multicore processor, is examined in detail to explain the philosophy, design, and strengths of such architectures. Raw addresses the challenge of building a general-purpose architecture that performs well on a larger class of stream and embedded computing applications than existing microprocessors, while still running existing ILP-based sequential programs with reasonable performance. Central to achieving this goal is Raw’s ability to exploit all forms of parallelism, including ILP, DLP, TLP, and Stream parallelism. Raw approaches this challenge by implementing plenty of on-chip resources - including logic, wires, and pins - in a tiled arrangement, and exposing them through a new ISA, so that the software can take advantage of these resources for parallel applications. Compared to a traditional superscalar processor, Raw performs within a factor of 2x for sequential applications with a very low degree of ILP, about 2x-9x better for higher levels of ILP, and 10x-100x better when highly parallel applications are coded in a stream language or optimized by hand.

  15. 9. Detail of "BMT lines" tile sign, and decorative tiles ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Detail of "BMT lines" tile sign, and decorative tiles between center and east castellations of south facade. Looking north. - Stillwell Avenue Station, Intersection of Stillwell & Surf Avenues, Brooklyn, Kings County, NY

  16. CMS electromagnetic calorimeter readout

    SciTech Connect

    Denes, P.; Wixted, R.

    1997-12-31

    The CMS Electromagnetic Calorimeter will consist of 109,008 crystals of Lead Tungstate (PbWO{sub 4}) arranged in a barrel (92880 crystals) and 2 endcaps (8064 crystals each). The crystals will be 25 radiation lengths long and cut in tapered shapes to make a hermetic calorimeter. The scintillation light from the crystals is captured by a photodetector, amplified and digitized. The properties of PbWO4, which is a new crystal still very much under development.

  17. Seamless tiled display system

    NASA Technical Reports Server (NTRS)

    Dubin, Matthew B. (Inventor); Larson, Brent D. (Inventor); Kolosowsky, Aleksandra (Inventor)

    2006-01-01

    A modular and scalable seamless tiled display apparatus includes multiple display devices, a screen, and multiple lens assemblies. Each display device is subdivided into multiple sections, and each section is configured to display a sectional image. One of the lens assemblies is optically coupled to each of the sections of each of the display devices to project the sectional image displayed on that section onto the screen. The multiple lens assemblies are configured to merge the projected sectional images to form a single tiled image. The projected sectional images may be merged on the screen by magnifying and shifting the images in an appropriate manner. The magnification and shifting of these images eliminates any visual effect on the tiled display that may result from dead-band regions defined between each pair of adjacent sections on each display device, and due to gaps between multiple display devices.

  18. Floating data acquisition system for microwave calorimeter measurements on MTX

    SciTech Connect

    Sewall, N.R.; Meassick, S. )

    1989-09-13

    A microwave calorimeter has been designed for making 140-GHz absorption measurements on the MTX. Measurement of the intensity and spatial distribution of the FEL-generated microwave beam on the inner wall will indicate the absorption characteristics of the plasma when heated with a 140 GHz FEL pulse. The calorimeter works by monitoring changes of temperature in silicon carbide tiles located on the inner wall of the tokamak. Thermistors are used to measure the temperature of each tile. The tiles are located inside the tokamak about 1 cm outside of the limiter radius at machine potential. The success of this measurement depends on our ability to float the data acquisition system near machine potential and isolate it from the rest of the vault ground system. Our data acquisition system has 48 channels of thermistor signal conditioning, a multiplexer and digitizer section, a serial data formatter, and a fiber-optic transmitter to send the data out. Additionally, we bring timing signals to the interface through optical fibers to tell it when to begin measurement, while maintaining isolation. The receiver is an HP 200 series computer with a serial data interface; the computer provides storage and local display for the shot temperature profile. Additionally, the computer provides temporary storage of the data until it can be passed to a shared resource management system for archiving. 2 refs., 6 figs.

  19. Tiling Microarray Analysis Tools

    Energy Science and Technology Software Center (ESTSC)

    2005-05-04

    TiMAT is a package of 23 command line Java applications for use in the analysis of Affymetrix tiled genomic microarray data. TiMAT enables: 1) Rebuilding the genome annotation for entire tiled arrays (repeat filtering, chromosomal coordinate assignment). 2) Post processing of oligo intensity values (quantile normalization, median scaling, PMMM transformation), 3) Significance testing (Wilcoxon rank sum and signed rank tests, intensity difference and ratio tests) and Interval refinement (filtering based on multiple statistics, overlap comparisons),more »4) Data visualization (detailed thumbnail/zoomed view with Interval Plots and data export to Affymetrix's Integrated Genome Browser) and Data reports (spreadsheet summaries and detailed profiles)« less

  20. Waterproofing Agents for Silica Tiles

    NASA Technical Reports Server (NTRS)

    Nakano, H. N.; Izu, Y. D.; Yoshioka, E. N.

    1985-01-01

    Waterproofing agent methyltrimethoxysilane applied to silica thermal insulation tiles in simple vapor-deposition process. Other waterproofing agents in same series include methylsiloxane and hexamethyldisilazane. Originally developed for insulating tiles for spacecraft, agents also find uses in roofing tiles, insulation for buildings or solar-energy systems, or solar reflectors.

  1. The data acquisition system for a fixed target experiment at NICA complex at JINR and its connection to the ATLAS TileCal readout electronics

    NASA Astrophysics Data System (ADS)

    Tomiwa, K. G.; Slepnev, I.; Bazylev, S.

    2015-10-01

    Today's large-scale science projects have always encountered challenges in processing large data flow from the experiments, the ATLAS detector records proton-proton collisions provided by the Large Hadron Collider (LHC) at CERN every 50 ns which results in a total data flow of 10 Pb/s. These data must be reduced to the science data product for further analysis, thus a very fast decisions need to be executed, to modify this large amounts of data at high rates. The capabilities required to support this scale of data movement is development and improvement of high-throughput electronics. The upgraded LHC will provide collisions at rates that will be at least 10 times higher than those of today due to it's luminosity by 2022. This will require a complete redesign of the read-out electronics and Processing Units (PU) in the Tile-calorimeter (TileCal) of the ATLAS experiment. A general purpose, high-throughput PU has been developed for the TileCal at CERN, by using several ARM-processors in cluster configuration. The PU is capable of handling large data throughput and apply advanced operations at high rates. This system has been proposed for the fixed target experiment at NICA complex to handle the first level processes and event building. The aim of this work is to have a look at the architecture of the data acquisition system (DAQ) of the fixed target experiment at the NICA complex at JINR, by compiling the data-flow requirements of all the subcomponents. Furthermore, the VME DAQ modules characteristics to control, triggering and data acquisition will be described in order to define the DAQ with maximum readout efficiency, no dead time and data selection and compression.

  2. Molecular random tilings as glasses

    PubMed Central

    Garrahan, Juan P.; Stannard, Andrew; Blunt, Matthew O.; Beton, Peter H.

    2009-01-01

    We have recently shown that p-terphenyl-3,5,3?,5?-tetracarboxylic acid adsorbed on graphite self-assembles into a two-dimensional rhombus random tiling. This tiling is close to ideal, displaying long-range correlations punctuated by sparse localized tiling defects. In this article we explore the analogy between dynamic arrest in this type of random tilings and that of structural glasses. We show that the structural relaxation of these systems is via the propagation–reaction of tiling defects, giving rise to dynamic heterogeneity. We study the scaling properties of the dynamics and discuss connections with kinetically constrained models of glasses. PMID:19720990

  3. Calorimeter Upgrade to the PHENIX Forward Spectrometers

    NASA Astrophysics Data System (ADS)

    Barish, Kenneth N.

    2009-08-01

    The forward calorimeter upgrade to the PHENIX forward spectrometers aims to add capabilities at high rapidity (0.9hadron asymmetries, study nucleon structure in nuclei at high parton densities in p+A collisions through the measurement of photons and neutral pions in the forward region, and enhance our quark and anti-quark spin measurements via W-production by providing an isolation cut and possibly providing an electron measurement at forward rapidities.

  4. IL NUOVO CIMENTO VOL. 102 B, N. 5 Novembre 1988 Study of the Granularity for a Tracking Calorimeter

    E-print Network

    Morselli, Aldo

    in the design of such a calorimeter is the efficient discrimination between eloctromagnetic and hadronic showers of protons. To reach an effective detection of the positrons, an optimal e+/p discrimination

  5. An Inexpensive Solution Calorimeter

    ERIC Educational Resources Information Center

    Kavanagh, Emma; Mindel, Sam; Robertson, Giles; Hughes, D. E. Peter

    2008-01-01

    We describe the construction of a simple solution calorimeter, using a miniature bead thermistor as a temperature-sensing element. This has a response time of a few seconds and made it possible to carry out a thermometric reaction in under a minute, which led to minimal heat losses. Small temperature changes of 1 K associated with enthalpies of…

  6. CONFORMAL TILINGS I: FOUNDATIONS, THEORY, AND PRACTICE

    E-print Network

    CONFORMAL TILINGS I: FOUNDATIONS, THEORY, AND PRACTICE PHILIP L. BOWERS AND KENNETH STEPHENSON Abstract. This paper opens a new chapter in the study of planar tilings by introducing conformal tilings as concrete patterns of geometric shapes, the tiles. In the conformal case, however, these geometric tiles

  7. Arithmetic theory of brick tilings

    SciTech Connect

    Egorov, A V; Prikhod'ko, A A

    1998-12-31

    A new, 'arithmetic', approach to the algebraic theory of brick tilings is developed. This approach enables one to construct a simple classification of brick tilings in Z{sup d} and to find new proofs of several classical results on brick packing and tilings in Z{sup d}. In addition, possible generalizations of results on integer brick packing to the Euclidean plane R{sup 2} are investigated.

  8. Ceramic tile expansion engine housing

    SciTech Connect

    Myers, Blake

    1995-01-01

    An expandable ceramic tile housing for a high temperature engine is disclosed wherein each tile is independently supported in place in an interlocking matrix by retention mechanisms which mechanically couple the individual ceramic tiles to an outer metal support housing while maintaining thermal isolation of the metal housing from the ceramic tiles. The ceramic tiles are formed with either an octagonal front face portion and a square shank portion or a square front face portion with an octagonal shank portion. The length of the sides of the octagonal front face portion on one tile is equal to the length of the sides of the square front face portion of adjoining tiles to permit formation of an interlocking matrix. Fibrous ceramic sealing material may be placed between radial and tangential facing surfaces of adjacent tiles to limit radial gas flow therebetween. Labyrinth-sealed pressure-controlled compartments may be established between the tile housing and the outer metal support housing to control radial gas flow.

  9. Covering the Plane with Rep-Tiles.

    ERIC Educational Resources Information Center

    Fosnaugh, Linda S.; Harrell, Marvin E.

    1996-01-01

    Presents an activity in which students use geometric figures, rep-tiles, to design a tile floor. Rep-tiles are geometric figures of which copies can fit together to form a larger similar figure. Includes reproducible student worksheet. (MKR)

  10. Radionuclide calorimeter system

    DOEpatents

    Donohoue, Thomas P. (Denver, CO); Oertel, Christopher P. (Arvada, CO); Tyree, William H. (Boulder, CO); Valdez, Joe L. (Denver, CO)

    1991-11-26

    A circuit for measuring temperature differentials in a calorimeter is disclosed. The temperature differential between the reference element and sample element containing a radioactive material is measured via a wheatstone bridge arrangement of thermistors. The bridge is driven with an alternating current on a pulsed basis to maintain the thermal floor of the calorimeter at a low reference value. A lock-in amplifier connected to the bridge phase locks a signal from the bridge to the input pulsed AC signal to provide a DC voltage. The DC voltage is sampled over time and provided to a digital computer. The digital computer, using curve fitting algorithms, will derive a function for the sample data. From the function, an equilibrium value for the temperature may be calculated.

  11. Radionuclide calorimeter system

    DOEpatents

    Donohoue, T.P.; Oertel, C.P.; Tyree, W.H.; Valdez, J.L.

    1991-11-26

    A circuit for measuring temperature differentials in a calorimeter is disclosed. The temperature differential between the reference element and sample element containing a radioactive material is measured via a Wheatstone bridge arrangement of thermistors. The bridge is driven with an alternating current on a pulsed basis to maintain the thermal floor of the calorimeter at a low reference value. A lock-in amplifier connected to the bridge phase locks a signal from the bridge to the input pulsed AC signal to provide a DC voltage. The DC voltage is sampled over time and provided to a digital computer. The digital computer, using curve fitting algorithms, will derive a function for the sample data. From the function, an equilibrium value for the temperature may be calculated. 7 figures.

  12. Central Calorimeter configuration: A study report to the SDC Technical Board

    SciTech Connect

    Kirk, T.B.W.; Wicklund, A.B.

    1991-04-11

    The single most important determinant of the overall Central Calorimeter (CC) shape is the criterion for depth of hadron shower containment. This criterion and its rapidity dependence is discussed in a companion document to this report titled ``Depth Requirements in SSC Calorimeters`` by a D. Green et al., SDC-91-00016. The conclusion reached there is that the calorimeter should be 10 {lambda} thick at {eta} = 0 and increase smoothly to 12 {lambda} at {eta} = 3. We adopt this criterion in this report and discuss the mechanical properties and design details of a CC that meets this condition.

  13. Study of the interactions of pions in the CALICE silicon-tungsten calorimeter prototype

    E-print Network

    C. Adloff; Y. Karyotakis; J. Repond; J. Yu; G. Eigen; Y. Mikami; N. K. Watson; J. A. Wilson; T. Goto; G. Mavromanolakis; M. A. Thomson; D. R. Ward; W. Yan; D. Benchekroun; A. Hoummada; Y. Khoulaki; J. Apostolakis; A. Ribon; V. Uzhinskiy; M. Benyamna; C. Cârloganu; F. Fehr; P. Gay; G. C. Blazey; D. Chakraborty; A. Dyshkant; K. Francis; D. Hedin; J. G. Lima; V. Zutshi; J. -Y. Hostachy; K. Krastev; L. Morin; N. D'Ascenzo; U. Cornett; D. David; R. Fabbri; G. Falley; K. Gadow; E. Garutti; P. Göttlicher; T. Jung; S. Karstensen; A. -I. Lucaci-Timoce; B. Lutz; N. Meyer; V. Morgunov; M. Reinecke; F. Sefkow; P. Smirnov; A. Vargas-Trevino; N. Wattimena; O. Wendt; N. Feege; M. Groll; J. Haller; R. -D. Heuer; S. Morozov; S. Richter; J. Samson; A. Kaplan; H. -Ch. Schultz-Coulon; W. Shen; A. Tadday; B. Bilki; E. Norbeck; Y. Onel; E. J. Kim; G. Kim; D-W. Kim; K. Lee; S. C. Lee; K. Kawagoe; Y. Tamura; P. D. Dauncey; A. -M. Magnan; H. Yilmaz; O. Zorba; V. Bartsch; M. Postranecky; M. Warren; M. Wing; M. G. Green; F. Salvatore; M. Bedjidian; R. Kieffer; I. Laktineh; M. -C. Fouz; D. S. Bailey; R. J. Barlow; M. Kelly; R. J. Thompson; M. Danilov; E. Tarkovsky; N. Baranova; D. Karmanov; M. Korolev; M. Merkin; A. Voronin; A. Frey; S. Lu; K. Seidel; F. Simon; C. Soldner; L. Weuste; J. Bonis; B. Bouquet; S. Callier; P. Cornebise; Ph. Doublet; M. Faucci Giannelli; J. Fleury; H. Li; G. Martin-Chassard; F. Richard; Ch. de la Taille; R. Poeschl; L. Raux; N. Seguin-Moreau; F. Wicek; M. Anduze; V. Boudry; J-C. Brient; G. Gaycken; D. Jeans; P. Mora de Freitas; G. Musat; M. Reinhard; A. Rougé; M. Ruan; J-Ch. Vanel; H. Videau; K-H. Park; J. Zacek; J. Cvach; P. Gallus; M. Havranek; M. Janata; M. Marcisovsky; I. Polak; J. Popule; L. Tomasek; M. Tomasek; P. Ruzicka; P. Sicho; J. Smolik; V. Vrba; J. Zalesak; B. Belhorma; M. Belmir; S. W. Nam; I. H. Park; J. Yang; Jong-Seo Chai; Jong-Tae Kim; Geun-Bum Kim; J. Kang; Y. -J. Kwon

    2010-04-28

    A prototype silicon-tungsten electromagnetic calorimeter for an ILC detector was tested in 2007 at the CERN SPS test beam. Data were collected with electron and hadron beams in the energy range 8 to 80 GeV. The analysis described here focuses on the interactions of pions in the calorimeter. One of the main objectives of the CALICE program is to validate the Monte Carlo tools available for the design of a full-sized detector. The interactions of pions in the Si-W calorimeter are therefore confronted with the predictions of various physical models implemented in the GEANT4 simulation framework.

  14. CMS HF calorimeter PMTs and Xi(c)+ lifetime measurement

    SciTech Connect

    Akgun, Ugur; /Iowa U.

    2003-12-01

    This thesis consists of two parts: In the first part we describe the Photomultiplier Tube (PMT) selection and testing processes for the Hadronic Forward (HF) calorimeter of the CMS, a Large Hadron Collier (LHC) experiment at CERN. We report the evaluation process of the candidate PMTs from three different manufacturers, the complete tests performed on the 2300 Hamamatsu PMTs which will be used in the HF calorimeter, and the details of the PMT Test Station that is in University of Iowa CMS Laboratories. In the second part we report the {Xi}{sub c}{sup +} lifetime measurement from SELEX, the charm hadro-production experiment at Fermilab. Based upon 301 {+-} 31 events from three di.erent decay channels, by using the binned maximum likelihood technique, we observe the lifetime of {Xi}{sub c}{sup +} as 427 {+-} 31 {+-} 13 fs.

  15. DSWA calorimeter bomb experiments

    SciTech Connect

    Cunningham, B

    1998-10-01

    Two experiments were performed in which 25 grams of TNT were detonated inside an expended detonation calorimeter bomb. The bomb had a contained volume of approximately 5.28 liters. In the first experiment, the bomb was charged with 3 atmospheres of nitrogen. In the second, it was charged with 2.58 atmospheres (23.1 psi gage) of oxygen. In each experiment pressure was monitored over a period of approximately 1200 microseconds after the pulse to the CDU. Monitoring was performed via two 10,000 psi 102AO3 PCB high frequency pressure transducers mounted symmetrically in the lid of the calorimeter bomb. Conditioners used were PCB 482As. The signals from the transducers were recorded in digital format on a multi channel Tektronix scope. The sampling frequency was 10 Mhz (10 samples per microsecond). After a period of cooling following detonation, gas samples were taken and were subsequently submitted for analysis using gas mass spectrometry. Due to a late request for post shot measurement, it was only possible to make a rough estimate of the weight of debris (carbon) remaining in the calorimeter bomb following the second experiment.

  16. Thermalization of magnetic calorimeters

    NASA Astrophysics Data System (ADS)

    Enss, C.; Fleischmann, A.; Görlach, T.; Kim, Y. H.; Seidel, G. M.; Braun, H. F.

    2002-02-01

    Calorimetric particle detectors based on metallic paramagnetic temperature sensors have been shown to be well suited for high resolution particle spectroscopy. Most of the work on metallic magnetic calorimeters has been performed using dilute alloys of erbium in gold as the sensor material. In the temperature range of interest, the thermodynamic properties of erbium ions in gold are well understood. The dependence of the signal size is predictable as a function of temperature, magnetic field and concentration. However, at temperatures below 50 mK the decay of the signal exhibits two relaxation times. Measurements of these time constants and the fractional amplitudes as a function of temperature and field indicate the presence of an additional thermodynamic system within the sensor material. Heat capacity measurements at temperatures as low as 100 ?K suggest that this additional contribution arises from the quadrupole splitting of the Au nuclei (l=3/2) in the electric field gradients introduced by the presence of the Er ions. Measurements using calorimeters based on silver-erbium sensors support this assumption. In these measurements on Ag the additional, fast relaxation process is not observed. The host material silver (l=1/2) does not have a nuclear electric quadrupole moment. We discuss the origin of the two thermalization times of Au:Er calorimeters and present the measurements on Ag:Er. .

  17. On timing properties of LYSO-based calorimeters

    NASA Astrophysics Data System (ADS)

    Anderson, D.; Apresyan, A.; Bornheim, A.; Duarte, J.; Pena, C.; Ronzhin, A.; Spiropulu, M.; Trevor, J.; Xie, S.

    2015-09-01

    We present test beam studies and results on the timing performance and characterization of the time resolution of Lutetium-Yttrium Orthosilicate (LYSO)-based calorimeters. We demonstrate that a time resolution of 30 ps is achievable for a particular design. Furthermore, we discuss precision timing calorimetry as a tool for the mitigation of physics object performance degradation effects due to the large number of simultaneous interactions in the high luminosity environment foreseen at the Large Hadron Collider.

  18. Repairing high-temperature glazed tiles

    NASA Technical Reports Server (NTRS)

    Ecord, G. M.; Schomburg, C.

    1981-01-01

    Tetraethyl orthosilicate (TEOS) mixture fills chips and cracks in glazed tile surface. Filler is made by mixing hydrolyzed TEOS, silicon tetraboride powder, and pulverized tile material. Repaired tiles survived testing by intense acoustic emissions, arc jets, and intense heat radiation. Repair is reliable and rapid, performed in 1-1 1/2 hours with tile in any or orientation.

  19. Scintillating fiber ribbon --- tungsten calorimeter

    SciTech Connect

    Bross, A.; Crisler, M.; Kross, B.; Wrbanek, J.

    1989-07-14

    We describe an ultra-high density scintillating fiber and tungsten calorimeter used as an active beam-dump for electrons. Data showing the calorimeter response to electrons with momenta between 50 and 350 GeV/c are presented. 9 figs.

  20. Shell tile thermal protection system

    NASA Technical Reports Server (NTRS)

    Macconochie, I. O.; Lawson, A. G.; Kelly, H. N. (inventors)

    1984-01-01

    A reusable, externally applied thermal protection system for use on aerospace vehicles subject to high thermal and mechanical stresses utilizes a shell tile structure which effectively separates its primary functions as an insulator and load absorber. The tile consists of structurally strong upper and lower metallic shells manufactured from materials meeting the thermal and structural requirements incident to tile placement on the spacecraft. A lightweight, high temperature package of insulation is utilized in the upper shell while a lightweight, low temperature insulation is utilized in the lower shell. Assembly of the tile which is facilitated by a self-locking mechanism, may occur subsequent to installation of the lower shell on the spacecraft structural skin.

  1. Texture mapping using tiled textures 

    E-print Network

    Kaur, Avneet

    2004-09-30

    . Inspiration from the Neyret-Cani Method . . . . . . ..... 19 III METHODOLOGY : : : : : : : : : : : : : : : : : : : : : : : : : : 23 III.1. Outline of the Method . . . . . ................ 23 III.1.1. Case I . . . ....................... 24 III.1.2. Case II... mapping of a mountain covered forest by using the four trian- gular texture tiles on the left, by the Neyret-Cani method. : : : : : : : : 15 viii FIGURE Page 13 Set of textures tiles created by Neyret-Cani?s extension of Worley?s synthesis technique...

  2. Lozenge Tilings and Hurwitz Numbers

    NASA Astrophysics Data System (ADS)

    Novak, Jonathan

    2015-10-01

    We give a new proof of the fact that, near a turning point of the frozen boundary, the vertical tiles in a uniformly random lozenge tiling of a large sawtooth domain are distributed like the eigenvalues of a GUE random matrix. Our argument uses none of the standard tools of integrable probability. In their place, it uses a combinatorial interpretation of the Harish-Chandra/Itzykson-Zuber integral as a generating function for desymmetrized Hurwitz numbers.

  3. The CDF miniplug calorimeters

    SciTech Connect

    Lami, Stefano

    2002-06-28

    Two MiniPlug calorimeters, designed to measure the energy and lateral position of particles in the (forward) pseudorapidity region of 3.6 < |{nu}| < 5.2 of the CDF detector, have been recently installed as part of the Run II CDF upgrade at the Tevatron {bar p}p collider. They consist of lead/liquid scintillator read out by wavelength shifting fibers arranged in a pixel-type towerless geometry suitable for ''calorimetric tracking''. The design concept, the prototype performance and the final design of the MiniPlugs are here described. A recent cosmic ray test resulted in a light yield of approximately 100 pe/MIP, which exceeds our design requirements.

  4. High Energy Beam Test of PHENIX EM-Calorimeter at CERN

    NASA Astrophysics Data System (ADS)

    Goto, Yuji; Saito, Naohito; Torii, Hisayuki; Kistenev, Edouard; White, Sebastian; Awes, Terry; Ippolitov, Mikhail; Bathe, Stefan; Buesching, Henner; Mexner, Vanessa; von Poblotzki, Ullrich

    1999-10-01

    The EM-calorimeter plays an important role in both heavy ion physics and spin physics in the PHENIX experiment at RHIC. To cover both physics topics, it is required to cover a wide range of energies with good linearity, resolution, and hadron rejection. A high energy beam test was done at the CERN/SPS H6 beam line on August/September of 1998. One lead--scintillator super module and 4 lead glass super modules were placed on a movable platform to change the position and angle of the incident beam on the calorimeter. We took energy scan data, non-perpendicular incident beam data, position scan data, hadron response data, and necessary calibration data. We will report these results and evaluate performance of the EM-calorimeter for the physics at PHENIX.

  5. T-1018 UCLA Spacordion Tungsten Powder Calorimeter

    SciTech Connect

    Trentalange, Stephen; Tsai, Oleg; Igo, George; Huang, Huan; Pan, Yu Xi; Dunkelberger, Jay; Xu, Wen Qin; Soha, Aria; Heppelmann, Steven; Gagliardi, Carl; /Texas A-M

    2011-11-16

    The present experiments at the BNL-RHIC facility are evolving towards physics goals which require the detection of medium energy electromagnetic particles (photons, electrons, neutral pions, eta mesons, etc.), especially at forward angles. New detectors will place increasing demands on energy resolution, hadron rejection and two-photon resolution and will require large area, high performance electromagnetic calorimeters in a variety of geometries. In the immediate future, either RHIC or JLAB will propose a facility upgrade (Electron-Ion Collider, or EIC) with physics goals such as electron-heavy ion collisions (or p-A collisions) with a wide range of calorimeter requirements. An R and D program based at Brookhaven National Laboratory has awarded the group funding of approximately $110,000 to develop new types of calorimeters for EIC experiments. The UCLA group is developing a method to manufacture very flexible and cost-effective, yet high quality calorimeters based on scintillating fibers and tungsten powder. The design and features of the calorimeter can be briefly stated as follows: an arbitrarily large number of small diameter fibers (< 0.5 mm) are assembled as a matrix and held rigidly in place by a set of precision screens inside an empty container. The container is then back-filled with tungsten powder, compacted on a vibrating table and infused with epoxy under vacuum. The container is then removed. The resulting sub-modules are extremely uniform and achieve roughly the density of pure Lead. The sub-modules are stacked together to achieve a final detector of the desired shape. There is no dead space between sub-modules and the fibers can be in an accordion geometry bent to prevent 'channeling' of the particles due to accidental alignment of their track with the module axis. This technology has the advantage of being modular and inexpensive to the point where the construction work may be divided among groups the size of typical university physics departments. This test run if a proof-of-principle and allows the experiment to improve the design and performance of the final detectors. The experimenters have constructed prototypes of three different designs in order to investigate the characteristics of practical devices such as uniformity, linearity, longitudinal and transverse shower shapes. The first design is an array of 4 x 4 modules intended as a prototype for a practical device to be installed within two years in the STAR experimental hall. The modules are a combination of a spaghetti calorimeter and an accordion (hence 'spacordion'). Each sub-module is 1.44 cm x 1.44 cm x 15 cm and constructed individually. The second design is a prototype of 4 sub-modules constructed in one step, using a different construction technique. The third design is a set of single sub-modules each intended to test variations of the tungsten powder/embedded fiber concept by enhancing the light output/density using liquid scintillator or heavy liquids.

  6. Image Composition Engine for Tiles

    Energy Science and Technology Software Center (ESTSC)

    2011-08-22

    The Image Composition Engine for Tiles (lceT) is a high-performance sort-last parallel rendering library. It is designed to be used in parallel applications requiring rendering. The primary purpose of IceT is to be integrated into parallel visualization applications such as ParaView to provide parallel rendering capabilities. The Image Composition Engine for Tiles (lceT) is a high-performance sort-last parallel rendering library. IceT uses a "sort-Iasf' approach to rendering. Each process in a parallel application independently rendersmore »a local piece of geometry. The resulting images are given to IceT, and IceT combines the images together to form a single cohesive image. Ice T is also capable of driving tiled displays, largeformat displays comprising an array of smaller displays. To this end IceT can collect the smaller tile images and organize them such that the entire tiled display can be driven. Ice T takes advantage of spatial coherence in geometry by identifying empty regions of the display and reducing the overall required work.« less

  7. Tiling with Ls and Squares 1 Tiling with Ls and Squares

    E-print Network

    Heubach, Silvia

    Tiling with Ls and Squares 1 Tiling with Ls and Squares Silvia Heubach Department of Mathematics California State University Los Angeles joint work with Phyllis Chinn and Ralph Grimaldi #12;Tiling with Ls. Benjamin and J.J. Quinn, Proofs that Really Count, MAA 2003 #12;Tiling with Ls and Squares 3 Things to come

  8. APERIODIC HIERARCHICAL TILINGS CHAIM GOODMAN-STRAUSS

    E-print Network

    Goodman-Strauss, Chaim

    APERIODIC HIERARCHICAL TILINGS CHAIM GOODMAN-STRAUSS University of Arkansas Fayetteville, Arkansas of the latter. #12;2 CHAIM GOODMAN-STRAUSS Figure 2. A matching rule tiling Substitution rules generate global

  9. Composite treatment of ceramic tile armor

    DOEpatents

    Hansen, James G. R. (Oak Ridge, TN); Frame, Barbara J. (Oak Ridge, TN)

    2012-01-02

    An improved ceramic tile armor has a core of boron nitride and a polymer matrix composite (PMC) facing of carbon fibers fused directly to the impact face of the tile. A polyethylene fiber composite backing and spall cover are preferred. The carbon fiber layers are cured directly onto the tile, not adhered using a separate adhesive so that they are integral with the tile, not a separate layer.

  10. Composite treatment of ceramic tile armor

    DOEpatents

    Hansen, James G. R. (Oak Ridge, TN) [Oak Ridge, TN; Frame, Barbara J. (Oak Ridge, TN) [Oak Ridge, TN

    2010-12-14

    An improved ceramic tile armor has a core of boron nitride and a polymer matrix composite (PMC) facing of carbon fibers fused directly to the impact face of the tile. A polyethylene fiber composite backing and spall cover are preferred. The carbon fiber layers are cured directly onto the tile, not adhered using a separate adhesive so that they are integral with the tile, not a separate layer.

  11. Metallic magnetic calorimeters

    SciTech Connect

    Fleischmann, A.; Gastaldo, L.; Kempf, S.; Kirsch, A.; Pabinger, A.; Pies, C.; Porst, J.-P; Ranitzsch, P.; Schaefer, S.; Seggern, F. v.; Wolf, T.; Enss, C.; Seidel, G. M.

    2009-12-16

    Metallic magnetic calorimeters (MMC) are calorimetric particle detectors, typically operated at temperatures below 100 mK, that make use of a paramagnetic temperature sensor to transform the temperature rise upon the absorption of a particle in the detector into a measurable magnetic flux change in a dc-SQUID. During the last years a growing number of groups has started to develop MMC for a wide variety of applications, ranging from alpha-, beta- and gamma-spectrometry over the spatially resolved detection of accelerated molecule fragments to arrays of high resolution x-ray detectors. For x-rays with energies up to 6 keV an energy resolution of 2.7 eV (FWHM) has been demonstrated and we expect that this can be pushed below 1 eV with the next generation of devices. We give an introduction to the physics of MMCs and summarize the presently used readout schemes as well as the typically observed noise contributions and their impact on the energy resolution. We discuss general design considerations, the micro-fabrication of MMCs and the performance of micro-fabricated devices. In this field large progress has been achieved in the last years and the thermodynamic properties of most materials approach bulk values allowing for optimal and predictable performance.

  12. Beam tests of a thin dual-readout calorimeter for detecting cosmic rays outside the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Nagaslaev, Vladimir; Sill, Alan; Wigmans, Richard

    2001-04-01

    Cosmic ray experiments outside the Earth's atmosphere are subject to very severe restrictions on the mass of the instruments. Therefore, it is important that the experimental information that can be obtained per unit detector mass is maximized. In this paper, we describe tests of a thin (1.4 ?int deep) hadron calorimeter that was designed with this goal in mind. This detector was equipped with two independent active media, which provided complementary information on the showering hadrons. It is shown that by combining the information from these media it was possible to reduce the effects of the dominant leakage fluctuations on the calorimeter performance.

  13. Thermal dynamics of bomb calorimeters.

    PubMed

    Lyon, Richard E

    2015-12-01

    The thermal dynamics of bomb calorimeters are modeled using a lumped heat transfer analysis in which heat is released in a pressure vessel/bomb immersed in a stirred water bath that is surrounded by a static air space bounded by an insulated (static) jacket, a constant/controlled temperature jacket (isoperibol), or a changing temperature (adiabatic) jacket. The temperature history of the water bath for each of these boundary conditions (methods) is well described by the two-term solution for the calorimeter response to a heat impulse (combustion), allowing the heat transfer coefficients and thermal capacities of the bomb and water bath to be determined parametrically. The validated heat transfer model provides an expression for direct calculation of the heat released in an arbitrary process inside a bomb calorimeter using the temperature history of the water bath for each of the boundary conditions (methods). This result makes possible the direct calculation of the heat of combustion of a sample in an isoperibol calorimeter from the recorded temperature history without the need for semi-empirical temperature corrections to account for non-adiabatic behavior. Another useful result is that the maximum temperature rise of the water bath in the static jacket method is proportional to the total heat generated, and the empirical proportionality constant, which is determined by calibration, accounts for all of the heat losses and thermal lags of the calorimeter. PMID:26724069

  14. Muon Identification in the ATLAS Calorimeters

    E-print Network

    van Suijlekom, Walter

    Muon Identification in the ATLAS Calorimeters #12;#12;Muon Identification in the ATLAS Calorimeters . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2.3 Muon spectrometer . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.4 The forward . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.2.6 The trigger system . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3 Muon

  15. Performance of prototypes for the ALICE electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Allen, J.; Awes, T.; Badalá, A.; Baumgart, S.; Bellwied, R.; Benhabib, L.; Bernard, C.; Bianchi, N.; Blanco, F.; Bortoli, Y.; Bourdaud, G.; Bourrion, O.; Boyer, B.; Bruna, E.; Butterworth, J.; Caines, H.; Calvo Diaz Aldagalan, D.; Capitani, G. P.; Carcagno, Y.; Casanova Diaz, A.; Cherney, M.; Conesa Balbastre, G.; Cormier, T. M.; Cunqueiro Mendez, L.; Delagrange, H.; Del Franco, M.; Dialinas, M.; di Nezza, P.; Donoghue, A.; Elnimr, M.; Enokizono, A.; Estienne, M.; Faivre, J.; Fantoni, A.; Fichera, F.; Foglio, B.; Fresneau, S.; Fujita, J.; Furget, C.; Gadrat, S.; Garishvili, I.; Germain, M.; Giudice, N.; Gorbunov, Y.; Grimaldi, A.; Guardone, N.; Guernane, R.; Hadjidakis, C.; Hamblen, J.; Harris, J. W.; Hasch, D.; Heinz, M.; Hille, P. T.; Hornback, D.; Ichou, R.; Jacobs, P.; Jangal, S.; Jayananda, K.; Klay, J. L.; Knospe, A. G.; Kox, S.; Kral, J.; Laloux, P.; Lapointe, S.; La Rocca, P.; Lewis, S.; Li, Q.; Librizzi, F.; Madagodahettige Don, D.; Martashvili, I.; Mayes, B.; Milletto, T.; Muccifora, V.; Muller, H.; Muraz, J. F.; Nattrass, C.; Noto, F.; Novitzky, N.; Odyniec, G.; Orlandi, A.; Palmeri, A.; Pappalardo, G. S.; Pavlinov, A.; Pesci, W.; Petrov, V.; Petta, C.; Pichot, P.; Pinsky, L.; Ploskon, M.; Pompei, F.; Pulvirenti, A.; Putschke, J.; Pruneau, C. A.; Rak, J.; Rasson, J.; Read, K. F.; Real, J. S.; Reolon, A. R.; Riggi, F.; Riso, J.; Ronchetti, F.; Roy, C.; Roy, D.; Salemi, M.; Salur, S.; Sharma, M.; Silvermyr, D.; Smirnov, N.; Soltz, R.; Sparti, V.; Stutzmann, J.-S.; Symons, T. J. M.; Tarazona Martinez, A.; Tarini, L.; Thomen, R.; Timmins, A.; van Leeuwen, M.; Vieira, R.; Viticchié, A.; Voloshin, S.; Wang, D.; Wang, Y.; Ward, R. M.; ALICE EMCal Group

    2010-03-01

    The performance of prototypes for the ALICE electromagnetic sampling calorimeter has been studied in test beam measurements at FNAL and CERN. A 4×4 array of final design modules showed an energy resolution of about 11%/?{E(GeV)}?1.7% with a uniformity of the response to electrons of 1% and a good linearity in the energy range from 10 to 100 GeV. The electromagnetic shower position resolution was found to be described by 1.5 mm?5.3 mm/?{E(GeV)}. For an electron identification efficiency of 90% a hadron rejection factor of >600 was obtained.

  16. Fusion: A general framework for hierarchical tilings

    E-print Network

    Natalie Priebe Frank

    2013-11-21

    One well studied way to construct quasicrystalline tilings is via inflate-and-subdivide (a.k.a. substitution) rules. These produce self-similar tilings--the Penrose, octagonal, and pinwheel tilings are famous examples. We present a different model for generating hierarchical tilings we call "fusion rules". Inflate-and-subdivide rules are a special case of fusion rules, but general fusion rules are more flexible and allow for defects, changes in geometry, and even constrained randomness. A condition that produces homogeneous structures and a method for computing frequency for fusion tiling spaces are discussed.

  17. NEUTRON-ENHANCED CALORIMETRY FOR HADRONS (NECH): FINAL REPORT

    SciTech Connect

    Andrew Stroud, Lee Sawyer

    2012-08-31

    We present the results of a project to apply scintillator technology recently developed at Louisiana Tech University to hadronic calorimetry. In particular, we developed a prototype calorimeter module incorporating scintillator embedded with metal oxide nanoparticles as the active layers. These metal oxide nanoparticles of gadolinium oxide, have high cross-sections for interactions with slow neutrons. As a part fo this research project, we have developed a novel method for producing plastic scintillators with metal oxide nanoparticles evenly distributed through the plastic without aggregation.We will test the performance of the calorimeter module in test beam and with a neutron source, in order to measure the response to the neutron component of hadronic showers. We will supplement our detector prototyping activities with detailed studies of the effect of neutron component on the resolution of hadronic energy measurements, particular in the next generation of particle flow calorimeters.

  18. Test beam results on the Proton Zero Degree Calorimeter for the ALICE experiment

    SciTech Connect

    Arnaldi, R.; Chiavassa, E.; De Marco, N.; Ferretti, A.; Gagliardi, M.; Gallio, M.; Gemme, R.; Mereu, P.; Musso, A.; Oppedisano, C.; Piccotti, A.; Poggio, F.; Scomparin, E.; Stocco, D.; Vercellin, E.; Yermia, F.; Cicalo, C.; De Falco, A.; Floris, M.; Masoni, A.

    2006-10-27

    The proton Zero Degree Calorimeter (ZP) for the ALICE experiment will measure the energy of the spectator protons in heavy ion collisions at the CERN LHC. Since all the spectator protons have the same energy, the calorimeter's response is proportional to their number, providing a direct information on the centrality of the collision. The ZP is a spaghetti calorimeter, which collects and measures the Cherenkov light produced by the shower particles in silica optical fibers embedded in a brass absorber. The details of its construction will be shown. The calorimeter was tested at the CERN SPS using pion and electron beams with momenta ranging from 50 to 200 GeV/c. The response of the calorimeter and its energy resolution have been studied as a function of the beam energy. Also, the signal uniformity and a comparison between the transverse profile of the hadronic and electromagnetic shower are presented. Moreover, the differences between the calorimeter's responses to protons and pions of the same energy have been investigated, exploiting the proton contamination in the positive pion beams.

  19. New Physics requirements and technological challenges to be confronted by calorimeters in particle physics

    NASA Astrophysics Data System (ADS)

    Cavallari, Francesca

    2015-09-01

    The seminar presents an introduction to calorimetry in particle physics. Initially the purpose of electromagnetic and hadronic calorimeters in particle physics is shown. Then the paper focusses on electromagnetic calorimeters and it describes the microscopic phenomena that drive the formation of electromagnetic showers. Homogeneous and sampling calorimeters are presented and the energy resolution of both is analyzed. A few examples of past and present electromagnetic calorimeters at particle colliders are presented, with particular attention to the ones employed in the Atlas and CMS experiments at the LHC, their design constraints, challenges and adopted choices. Both these calorimeters were designed to operate for a minimum of ten years at the LHC, with an instantaneous luminosity of 1· 1034/cm2/s and for an integrated luminosity of 500/fb. From 2023 a new program will start: the high luminosity LHC (HL-LHC), which is expected to provide an instantaneous luminosity of around 5· 1034/cm2/s and integrate a total luminosity of around 3000/fb in ten years of data taking. The evolution of the CMS and Atlas calorimeters is assessed and needed upgrades are presented.

  20. Toward Meaningful Simulations of Hadronic Showers

    SciTech Connect

    Wigmans, Richard

    2007-03-19

    The physics processes that are crucial for the description of hadronic shower development in calorimeters are {pi}0 production, the release of protons in nuclear reactions and (in calorimeters with hydrogenous active material) elastic scattering of soft neutrons. In this paper, I discuss how we know that these elements are crucial, and I describe experimental data that are sensitive to a correct implementation of these elements in simulation codes. Therefore, these data should serve as benchmarks for (generic) validation of these codes. I also illustrate the practical importance of reliable shower simulations with some recent real-life examples.

  1. The design and performance of the electromagnetic calorimeters in Hall C at Jefferson Lab

    SciTech Connect

    Vardan Tadevosyan, Hamlet Mkrtchyan, Arshak Asaturyan, Arthur Mkrtchyan, Simon Zhamkochyan

    2012-12-01

    The design and performance of the electromagnetic calorimeters in the magnetic spectrometers in Hall C at Jefferson Lab are presented. For the existing HMS and SOS spectrometers, construction information and comparisons of simulated and experimental results are presented. The design and simulated performance for a new calorimeter to be used in the new SHMS spectrometer is also presented. We have developed and constructed electromagnetic calorimeters from TF-1 type lead-glass blocks for the HMS and SOS magnetic spectrometers at JLab Hall C. The HMS/SOS calorimeters are of identical design and construction except for their total size. Blocks of dimension 10 cm × 10 cm × 70 cm are arranged in four planes and stacked 13 and 11 blocks high in the HMS and SOS respectively. The energy resolution of these calorimeters is better than 6%/?E, and pion/electron (?/e) separation of about 100:1 has been achieved in energy range 1–5 GeV. Good agreement has been observed between the experimental and GEANT4 simulated energy resolutions. The HMS/SOS calorimeters have been used nearly in all Hall C experiments, providing good energy resolution and a high pion suppression factor. No significant deterioration in their performance has been observed in the course of use since 1994. For the SHMS spectrometer, presently under construction, details on the calorimeter design and accompanying GEANT4 simulation efforts are given. A Preshower+Shower design was selected as the most cost-effective among several design choices. The preshower will consist of a layer of 28 modules with TF-1 type lead glass radiators, stacked in two columns. The shower part will consist of 224 modules with F-101 type lead glass radiators, stacked in a “fly's eye” configuration of 14 columns and 16 rows. The active area of 120 × 130 cm(2) will encompass the beam envelope at the calorimeter. The anticipated performance of the new calorimeter is simulated over the full momentum range of the SHMS, predicting resolution and yields similar to the HMS calorimeter. Good electron/hadron separation can be achieved by using energy deposition in the Preshower along with total energy deposition in the calorimeter. In this case the PID capability is similar to or better than that attainable with HMS calorimeter, with a pion suppression factor of a few hundreds predicted for 99% electron detection efficiency.

  2. Exploiting Parallelism in the TileCal Trigger System with GPGPU

    NASA Astrophysics Data System (ADS)

    Sacks, Marc

    2015-10-01

    After the 2022 upgrades, the Tile Calorimeter (TileCal) detector at ATLAS will be generating raw data at a rate of approximately 41 TB/s. The TileCal triggering system contains a degree of parallelism in its processing algorithms and thus presents an opportunity to explore the use of general-purpose computing on graphics processing units (GPGPU). Currently, research into the viability of an sROD ARM-based co-processing unit (PU) is being conducted at Wits University with especial regard to increasing the I/O throughput of the detector. Integration of GPGPU into this PU could enhance its performance by relieving the ARMs of particularly parallel computations. In addition to the PU, use of GPGPU in the front-end trigger is being investigated on the basis of the used algorithms having a similarity to image processing algorithms - where GPU can be used optimally. The use of GPUs in assistance to or in place of FPGAs can be justified by GPUs’ relative ease of programming; C/C++ like languages as opposed to assembly-like Hardware Description Languages (HDLs). This project will consider how GPUs can best be utilised as a subsystem of TileCal in terms of power and computing efficiency; and therefore cost.

  3. Performance studies of prototype II for the CASTOR forward calorimeter at the CMS experiment

    NASA Astrophysics Data System (ADS)

    Aslanoglou, X.; Bakirci, M. N.; Cerci, S.; Cyz, A.; D'Enterria, D.; Gladysz-Dziadus, E.; Gouskos, L.; Ivashkin, A.; Kalfas, C.; Katsas, P.; Kuznetsov, A.; Musienko, Y.; Panagiotou, A. D.; Vlasov, E.

    2007-10-01

    We present results of the performance of the second prototype of the CASTOR quartz tungsten sampling calorimeter, to be installed in the very forward region of the CMS experiment at the LHC. The energy linearity and resolution, as well as the spatial resolution of the prototype to electromagnetic and hadronic showers are studied with E=20 200 GeV electrons, E=20 350 GeV pions, and E=50, 150 GeV muons from beam tests carried out at CERN/SPS in 2004. The responses of the calorimeter using two different types of photodetectors (avalanche photodiodes APDs, and photomultiplier tubes PMTs) are compared.

  4. Characterization of 1800 Hamamatsu R7600-M4 PMTs for CMS HF Calorimeter upgrade

    NASA Astrophysics Data System (ADS)

    Akgun, U.; Funk, G.; Corso, J.; Jia, Z.; Southwick, D.; Adams, L.; Kingyon, J.; Tiras, E.; Munhollon, T.; Troendle, E.; Bruecken, P.; Khristenko, V.; Onel, Y.

    2014-06-01

    The Hadronic Forward calorimeters of the CMS experiment are Cherenkov calorimeters that use quartz fibers and 1728 photomultiplier tubes (PMTs) for readout. The CMS detector upgrade project requires the current Hamamatsu R7525 PMTs to be replaced with 4-anode, high quantum efficiency R7600-M4 PMTs. The new PMTs will improve the detector resolution, as well as the capability of removing fake events due to signal created in the glass window of the PMT. Here, we report the dark current, anode gain, transit time, transit time spread, pulse width, rise time, and linearity measurements performed on 1800 Hamamatsu R7600-200-M4 PMTs.

  5. Programmable DNA tile self-assembly using a hierarchical sub-tile strategy

    NASA Astrophysics Data System (ADS)

    Shi, Xiaolong; Lu, Wei; Wang, Zhiyu; Pan, Linqiang; Cui, Guangzhao; Xu, Jin; LaBean, Thomas H.

    2014-02-01

    DNA tile based self-assembly provides a bottom-up approach to construct desired nanostructures. DNA tiles have been directly constructed from ssDNA and readily self-assembled into 2D lattices and 3D superstructures. However, for more complex lattice designs including algorithmic assemblies requiring larger tile sets, a more modular approach could prove useful. This paper reports a new DNA ‘sub-tile’ strategy to easily create whole families of programmable tiles. Here, we demonstrate the stability and flexibility of our sub-tile structures by constructing 3-, 4- and 6-arm DNA tiles that are subsequently assembled into 2D lattices and 3D nanotubes according to a hierarchical design. Assembly of sub-tiles, tiles, and superstructures was analyzed using polyacrylamide gel electrophoresis and atomic force microscopy. DNA tile self-assembly methods provide a bottom-up approach to create desired nanostructures; the sub-tile strategy adds a useful new layer to this technique. Complex units can be made from simple parts. The sub-tile approach enables the rapid redesign and prototyping of complex DNA tile sets and tiles with asymmetric designs.

  6. Programmable DNA tile self-assembly using a hierarchical sub-tile strategy.

    PubMed

    Shi, Xiaolong; Lu, Wei; Wang, Zhiyu; Pan, Linqiang; Cui, Guangzhao; Xu, Jin; LaBean, Thomas H

    2014-02-21

    DNA tile based self-assembly provides a bottom-up approach to construct desired nanostructures. DNA tiles have been directly constructed from ssDNA and readily self-assembled into 2D lattices and 3D superstructures. However, for more complex lattice designs including algorithmic assemblies requiring larger tile sets, a more modular approach could prove useful. This paper reports a new DNA 'sub-tile' strategy to easily create whole families of programmable tiles. Here, we demonstrate the stability and flexibility of our sub-tile structures by constructing 3-, 4- and 6-arm DNA tiles that are subsequently assembled into 2D lattices and 3D nanotubes according to a hierarchical design. Assembly of sub-tiles, tiles, and superstructures was analyzed using polyacrylamide gel electrophoresis and atomic force microscopy. DNA tile self-assembly methods provide a bottom-up approach to create desired nanostructures; the sub-tile strategy adds a useful new layer to this technique. Complex units can be made from simple parts. The sub-tile approach enables the rapid redesign and prototyping of complex DNA tile sets and tiles with asymmetric designs. PMID:24451169

  7. Hadron-hadron colliders

    SciTech Connect

    Month, M.; Weng, W.T.

    1983-06-21

    The objective is to investigate whether existing technology might be extrapolated to provide the conceptual framework for a major hadron-hadron collider facility for high energy physics experimentation for the remainder of this century. One contribution to this large effort is to formalize the methods and mathematical tools necessary. In this report, the main purpose is to introduce the student to basic design procedures. From these follow the fundamental characteristics of the facility: its performance capability, its size, and the nature and operating requirements on the accelerator components, and with this knowledge, we can determine the technology and resources needed to build the new facility.

  8. The backward end-cap for the PANDA electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Capozza, L.; Maas, F. E.; Noll, O.; Rodriguez Pineiro, D.; Valente, R.

    2015-02-01

    The PANDA experiment at the new FAIR facility will cover a broad experimental programme in hadron structure and spectroscopy. As a multipurpose detector, the PANDA spectrometer needs to ensure almost 4? coverage of the scattering solid angle, full and accurate multiple-particle event reconstruction and very good particle identification capabilities. The electromagnetic calorimeter (EMC) will be a key item for many of these aspects. Particle energies ranging from some MeVs to several GeVs have to be measured with a relative resolution of 1% ? 2%/?E/GeV . It will be a homogeneous calorimeter made of PbWO4 crystals and will be operated at -25°C, in order to improve the scintillation light yield. With the exception of the very forward section, the light will be detected by large area avalanche photodiodes (APDs). The current pulses from the APDs will be integrated, amplified and shaped by ASIC chips which were developed for this purpose. The whole calorimeter has been designed in three sections: a forward end-cap, a central barrel and a backward end-cap (BWEC). In this contribution, a status report on the development of the BWEC is presented.

  9. Micromegas for imaging hadronic calorimetry

    E-print Network

    C. Adloff; J. Blaha; S. Cap; M. Chefdeville; A. Dalmaz; C. Drancourt; A. Espargiliere; R. Gaglione; R. Gallet; N. Geffroy; J. Jacquemier; Y. Karyotakis; F. Peltier; J. Prast; G. Vouters

    2011-02-07

    The recent progress in R&D of the Micromegas detectors for hadronic calorimetry including new engineering-technical solutions, electronics development, and accompanying simulation studies with emphasis on the comparison of the physics performance of the analog and digital readout is described. The developed prototypes are with 2 bit digital readout to exploit the Micromegas proportional mode and thus improve the calorimeter linearity. In addition, measurements of detection efficiency, hit multiplicity, and energy shower profiles obtained during the exposure of small size prototypes to radioactive source quanta, cosmic particles and accelerator beams are reported. Eventually, the status of a large scale chamber (1{\\times}1 m2) are also presented with prospective towards the construction of a 1 m3 digital calorimeter consisting of 40 such chambers.

  10. COE1 Calorimeter Operations Manual

    SciTech Connect

    Santi, Peter Angelo

    2015-12-15

    The purpose of this manual is to describe the operations of the COE1 calorimeter which is used to measure the thermal power generated by the radioactive decay of plutonium bearing materials for the purposes of assaying the amount of plutonium within the material.

  11. Tiling the plane without supersymmetry

    E-print Network

    D. Bazeia; F. A. Brito

    1999-12-01

    We present a way of tiling the plane with a regular hexagonal network of defects. The network is stable and follows in consequence of the three-junctions that appear in a model of two real scalar fields that presents $Z_3$ symmetry. The $Z_3$ symmetry is effective in both the vacuum and defect sectors, and no supersymmetry is required to build the network.

  12. Shuttle Upgrade Program: Tile TPS

    NASA Technical Reports Server (NTRS)

    Leiser, Daniel B.; Stewart, David A.; DiFiore, Robert; Irby, Ed; Arnold, James (Technical Monitor)

    2001-01-01

    One of the areas where the thermal protection system on the Space Shuttle Orbiter could be improved is the RSI (Reusable Surface Insulation) tile. The improvement would be in damage resistance that would reduce the resultant maintenance and inspection required. It has performed very well in every other aspect. Improving the system's damage resistance has been the subject of much research over the past several years. One of the results of that research was a new system developed for damage prone areas on the orbiter (i.e., base heat shield). That system, designated as TUFI, Toughened Uni-Piece Fibrous Insulation, was successfully demonstrated as an experiment on the Orbiter and is now baselined for the base heat shield. This paper describes the results of a current research program to further improve the TUFI tile system, thus making it applicable to more areas on the orbiter. The way to remove the current limitations of the TUFI system (i.e., weight or thermal conductivity differences between it and the baseline tile (LI-900)) is to improve the characteristics of LI-900 or AETB-8. Specifically this paper describes the results of two efforts. The first shows performance data of an improved LI-900 system involving the application of TUFI and the second describes data that shows a reduced difference in thermal conductivity between the advanced TUFI substrate (AETB-8) now used on the orbiter and LI-900.

  13. The Cms Electromagnetic Calorimeter Status:. Performance with Cosmic and First Lhc Data

    NASA Astrophysics Data System (ADS)

    Biino, Cristina

    2010-04-01

    The Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC) is ready for first collisions. The main physics goal of the experiment is the search for the Higgs boson and new particle phenomena. If the Higgs mass is lower than 150 GeV, the Higgs electromagnetic decay into two photons is the cleanest channel for discovery. In this mass range the signal lies over an irreducible background and this demands a high resolution e.m. calorimeter. The design and performance of the CMS e.m. calorimeter (ECAL) with test beams, cosmic rays, and first LHC beam events in 2008 will be presented. The status of the calorimeter and plans for calibration with first collisions will be discussed. CMS ECAL is ready for exciting physics and design goals are within reach.

  14. Simulation results on shower transverse size and response map of the ALICE-CASTOR calorimeter.

    E-print Network

    Angelis, A L S; CERN. Geneva; Mavromanolakis, G

    2000-01-01

    Abstract: We report on the simulated performance of the CASTOR calorimeter as a function of the beam impact point. Results with electrons and pions at 100 GeV energy are presented. The shower visible transverse size and the spatial uniformity of the calorimeter response have been studied. Simulations show that in our calorimeter the visible electromagnetic and hadronic showers have very narrow transverse size, 0.7 cm and 2.7 cm for 100 GeV electrons and pions respectively for 95 per cent signal containment. As a consequence the detector responds in an acceptably uniform way up to very close to the edges. Of special care should be the construction and positioning of the fiber planes since their geometry critically affects the performance.

  15. The ATLAS Level-1 Calorimeter Trigger Architecture

    E-print Network

    Garvey, J; Mahout, G; Moye, T H; Staley, R J; Watkins, P M; Watson, A T; Achenbach, R; Hanke, P; Kluge, E E; Meier, K; Meshkov, P; Nix, O; Penno, K; Schmitt, K; Ay, Cc; Bauss, B; Dahlhoff, A; Jakobs, K; Mahboubi, K; Schäfer, U; Trefzger, T M; Eisenhandler, E F; Landon, M; Moyse, E; Thomas, J; Apostoglou, P; Barnett, B M; Brawn, I P; Davis, A O; Edwards, J; Gee, C N P; Gillman, A R; Perera, V J O; Qian, W; Bohm, C; Hellman, S; Hidvégi, A; Silverstein, S; RT 2003 13th IEEE-NPSS Real Time Conference

    2004-01-01

    The architecture of the ATLAS Level-1 Calorimeter Trigger system (L1Calo) is presented. Common approaches have been adopted for data distribution, result merging, readout, and slow control across the three different subsystems. A significant amount of common hardware is utilized, yielding substantial savings in cost, spares, and development effort. A custom, high-density backplane has been developed with data paths suitable for both the em/tt cluster processor (CP) and jet/energy-summation processor (JEP) subsystems. Common modules also provide interfaces to VME, CANbus and the LHC Timing, Trigger and Control system (TTC). A common data merger module (CMM) uses FPGAs with multiple configurations for summing electron/photon and tau/hadron cluster multiplicities, jet multiplicities, or total and missing transverse energy. The CMM performs both crate- and system-level merging. A common, FPGA-based readout driver (ROD) is used by all of the subsystems to send input, intermediate and output data to the data acquis...

  16. Performance of the ATLAS Liquid Argon Calorimeter after three years of LHC operation and plans for a future upgrade

    E-print Network

    Nikiforos Nikiforou

    2013-07-04

    The ATLAS experiment is designed to study the proton-proton collisions produced at the Large Hadron Collider (LHC) at CERN. Liquid argon sampling calorimeters are used for all electromagnetic calorimetry as well as hadronic calorimetry in the endcaps. After installation in 2004--2006, the calorimeters were extensively commissioned over the three--year period prior to first collisions in 2009, using cosmic rays and single LHC beams. Since then, approximately 27 fb$\\mathbf{^{-1}}$ of data have been collected at an unprecedented center of mass energy. During all these stages, the calorimeter and its electronics have been operating almost optimally, with a performance very close to specifications. This paper covers all aspects of these first years of operation. The excellent performance achieved is especially presented in the context of the discovery of the elusive Higgs boson. The future plans to preserve this performance until the end of the LHC program are also presented.

  17. The CMS barrel calorimeter response to particle beams from 2-GeV/c to 350-GeV/c

    SciTech Connect

    Abdullin, S.; Abramov, V.; Acharya, B.; Adam, N.; Adams, M.; Adzic, P.; Akchurin, N.; Akgun, U.; Albayrak, E.; Alemany-Fernandez, R.; Almeida, N.; /Lisbon, LIFEP /Democritos Nucl. Res. Ctr. /Virginia U. /Iowa State U.

    2009-01-01

    The response of the CMS barrel calorimeter (electromagnetic plus hadronic) to hadrons, electrons and muons over a wide momentum range from 2 to 350 GeV/c has been measured. To our knowledge, this is the widest range of momenta in which any calorimeter system has been studied. These tests, carried out at the H2 beam-line at CERN, provide a wealth of information, especially at low energies. The analysis of the differences in calorimeter response to charged pions, kaons, protons and antiprotons and a detailed discussion of the underlying phenomena are presented. We also show techniques that apply corrections to the signals from the considerably different electromagnetic (EB) and hadronic (HB) barrel calorimeters in reconstructing the energies of hadrons. Above 5 GeV/c, these corrections improve the energy resolution of the combined system where the stochastic term equals 84.7 {+-} 1.6% and the constant term is 7.4 {+-} 0.8%. The corrected mean response remains constant within 1.3% rms.

  18. Multilayer Impregnated Fibrous Thermal Insulation Tiles

    NASA Technical Reports Server (NTRS)

    Tran, Huy K.; Rasky, Daniel J.; Szalai, Christine e.; Hsu, Ming-ta; Carroll, Joseph A.

    2007-01-01

    The term "secondary polymer layered impregnated tile" ("SPLIT") denotes a type of ablative composite-material thermal- insulation tiles having engineered, spatially non-uniform compositions. The term "secondary" refers to the fact that each tile contains at least two polymer layers wherein endothermic reactions absorb considerable amounts of heat, thereby helping to prevent overheating of an underlying structure. These tiles were invented to afford lighter-weight alternatives to the reusable thermal-insulation materials heretofore variously used or considered for use in protecting the space shuttles and other spacecraft from intense atmospheric-entry heating.

  19. Global Swath and Gridded Data Tiling

    NASA Technical Reports Server (NTRS)

    Thompson, Charles K.

    2012-01-01

    This software generates cylindrically projected tiles of swath-based or gridded satellite data for the purpose of dynamically generating high-resolution global images covering various time periods, scaling ranges, and colors called "tiles." It reconstructs a global image given a set of tiles covering a particular time range, scaling values, and a color table. The program is configurable in terms of tile size, spatial resolution, format of input data, location of input data (local or distributed), number of processes run in parallel, and data conditioning.

  20. Parametric Multi-Level Tiling of Imperfectly Nested Loops

    SciTech Connect

    Hartono, Albert; Baskaran, Muthu M.; Bastoul, Cedric; Cohen, Albert; Krishnamoorthy, Sriram; Norris, Boyana; Ramanujam, J.; Sadayappan, Ponnuswamy

    2009-05-18

    Tiling is a critical loop transformation for generating high-performance code on modern architectures. Efficient generation of multilevel tiled code is essential to exploit several levels of parallelism and/or to maximize data reuse in deep memory hierarchies. Tiled loops with parameterized tile sizes (not compile time constants) facilitate runtime feedback and dynamic optimizations used in iterative compilation and automatic tuning. The existing parametric multilevel tiling approach has focused on transformation for perfectly nested loops, where all assignment statements are contained inside the innermost loop of a loop nest. Previous solutions to tiling for imperfect loop nests are limited to the case where tile sizes are fixed. In this paper, we present an approach to parameterized multilevel tiling for imperfectly nested loops. Our tiling algorithm generates loops that iterate over full rectangular tiles that are amenable for potential compiler optimizations such as register tiling. Experimental results using a number of computational benchmarks demonstrate the effectiveness of our tiling approach.

  1. Thermal Equilibrium Calorimeters -- An Introduction

    E-print Network

    Dan McCammon

    2005-03-07

    Near-equilibrium thermal detectors operate as classical calorimeters, with energy deposition and internal equilibration times short compared to the thermal time constant of the device. Advances in fabrication techniques, cryogenics, and electronics have made it practical to measure deposited energy with unprecedented sensitivity and precision. In this chapter we discuss performance considerations for these devices, including optimal filtering and energy resolution calculations. We begin with the basic theory of simple equilibrium calorimeters with ideal resistive thermometers. This provides a starting point for a brief discussion of electrothermal feedback, other noise sources, various non-ideal effects, and nonlinearity. We then describe other types of thermometers and show how they fit into this theoretical framework and why they may require different optimizations and figures of merit. Most of this discussion is applicable also to power detectors, or bolometers, where the detector time constants may be short compared to variations in the incident signal power.

  2. The e/{pi} and {pi}{sup 0}/{pi} ratios measured, and monochromatic {gamma} and {pi}{sup 0} beams explored in the D0 test calorimeter

    SciTech Connect

    Tartaglia, M.A.; D0 Collaboration

    1992-10-01

    The e/{pi} response ratio of the DO end calorimeter has been measured by comparing data from 10 to 150 GeV/c electron and pion beams. The ``intrinsic`` e/{pi} of the fine-hadronic module has also been studied with the pions alone, by selecting {pi}{sup 0}-like showers contained within individual layers of the calorimeter. The measurements are compared to GEANT Monte Carlo simulations. A technique to generate monochromatic test beams of photons and neutral pions was successfully investigated. Preliminary results from central calorimeter modules exposed to these beams are discussed, and are compared to calculated expectations.

  3. The lead-glass electromagnetic calorimeters for the magnetic spectrometers in Hall C at Jefferson Lab

    SciTech Connect

    Mkrtchyan, Hamlet; Carlini, Roger D.; Tadevosyan, Vardan H.; Arrington, John Robert; Asaturyan, Arshak Razmik; Christy, Michael Eric; Dutta, Dipangkar; Ent, Rolf; Fenker, Howard C.; Gaskell, David J.; Horn, Tanja; Jones, Mark K.; Keppel, Cynthia; Mack, David J.; Malace, Simona P.; Mkrtchyan, Arthur; Niculescu, Maria-Ioana; Seely, Charles Jason; Tvaskis, Vladas; Wood, Stephen A.; Zhamkochyan, Simon

    2013-08-01

    The electromagnetic calorimeters of the various magnetic spectrometers in Hall C at Jefferson Lab are presented. For the existing HMS and SOS spectrometers design considerations, relevant construction information, and comparisons of simulated and experimental results are included. The energy resolution of the HMS and SOS calorimeters is better than $\\sigma/E \\sim 6%/\\sqrt E $, and pion/electron ($\\pi/e$) separation of about 100:1 has been achieved in energy range 1 -- 5 GeV. Good agreement has been observed between the experimental and simulated energy resolutions, but simulations systematically exceed experimentally determined $\\pi^-$ suppression factors by close to a factor of two. For the SHMS spectrometer presently under construction details on the design and accompanying GEANT4 simulation efforts are given. The anticipated performance of the new calorimeter is predicted over the full momentum range of the SHMS. Good electron/hadron separation is anticipated by combining the energy deposited in an initial (preshower) calorimeter layer with the total energy deposited in the calorimeter.

  4. The lead-glass electromagnetic calorimeters for the magnetic spectrometers in Hall C at Jefferson Lab

    E-print Network

    H. Mkrtchyan; R. Carlini; V. Tadevosyan; J. Arrington; A. Asaturyan; M. E. Christy; D. Dutta; R. Ent; H. C. Fenker; D. Gaskell; T. Horn; M. K. Jones; C. E. Keppel; D. J. Mack; S. P. Malace; A. Mkrtchyan; M. I. Niculescu; J. Seely; V. Tvaskis; S. A. Wood; S. Zhamkochyan

    2012-04-28

    The electromagnetic calorimeters of the various magnetic spectrometers in Hall C at Jefferson Lab are presented. For the existing HMS and SOS spectrometers design considerations, relevant construction information, and comparisons of simulated and experimental results are included. The energy resolution of the HMS and SOS calorimeters is better than $\\sigma/E \\sim 6%/\\sqrt E $, and pion/electron ($\\pi/e$) separation of about 100:1 has been achieved in energy range 1 -- 5 GeV. Good agreement has been observed between the experimental and simulated energy resolutions, but simulations systematically exceed experimentally determined $\\pi^-$ suppression factors by close to a factor of two. For the SHMS spectrometer presently under construction details on the design and accompanying GEANT4 simulation efforts are given. The anticipated performance of the new calorimeter is predicted over the full momentum range of the SHMS. Good electron/hadron separation is anticipated by combining the energy deposited in an initial (preshower) calorimeter layer with the total energy deposited in the calorimeter.

  5. An elevated temperature titration calorimeter

    SciTech Connect

    Smith, J.R.; Zanonato, P.L.; Choppin, G.R. . Dept. of Chemistry)

    1991-06-01

    A variable-temperature (313 K to 353 K) titration calorimeter of high sensitivity has been constructed. The purpose of the calorimeter is to study temperature effects on the enthalpies of complex formation and of other reactions of metal cations such as hydrolysis and precipitation. Operation of the calorimetric system, including that final calculation of the heat released during titration, is automatic via computer control. Calibration tests of the calorimeter using 2-amino-2-hydroxymethyl-1,3-propanediol gave -(46.0 {plus minus} 0.3) kJ mol{sup {minus}1} and -(46.2 {plus minus} 0.2) kJ mol{sup {minus}1} for the enthalpy of protonation, at 318 K and at 343 K, respectively. For titrations of 2-bis(2-hydroxyethyl) amino-2-hydroxymethyl-1,3-propanediol, enthalpy of protonation values of -(28.4 {plus minus} 0.3) kJ mol{sup {minus}1} and -(29.3 {plus minus} 0.2) kJ mol{sup {minus}1} were obtained at 318 K and at 343 K, respectively. 6 refs., 3 figs., 2 tabs.

  6. Performance of Glass Resistive Plate Chambers for a high granularity semi-digital calorimeter

    E-print Network

    M. Bedjidian; K. Belkadhi; V. Boudry; C. Combaret; D. Decotigny; E. Cortina Gil; C. de la Taille; R. Dellanegra; V. A. Gapienko; G. Grenier; C. Jauffret; R. Kieffer; M. -C. Fouz; R. Han; I. Laktineh; N. Lumb; K. Manai; S. Mannai; H. Mathez; L. Mirabito; J. Puerta Pelayo; M. Ruan; F. Schirra; N. Seguin-Moreau; W. Tromeur; M. Tytgat; M. Vander Donckt; N. Zaganidis

    2010-12-30

    A new design of highly granular hadronic calorimeter using Glass Resistive Plate Chambers (GRPCs) with embedded electronics has been proposed for the future International Linear Collider (ILC) experiments. It features a 2-bit threshold semi-digital read-out. Several GRPC prototypes with their electronics have been successfully built and tested in pion beams. The design of these detectors is presented along with the test results on efficiency, pad multiplicity, stability and reproducibility.

  7. Thermal Characterization of TPS Tiles

    SciTech Connect

    Kacmar, C. J.; LaCivita, K. J.; Jata, K. V.; Sathish, S.

    2006-03-06

    The Thermal Protection System (TPS) used on space shuttles protects the metallic structure from the large amounts of heat created during travel through the atmosphere, both on takeoff and reentry. The shuttle experiences high thermo-acoustic loading and impact damage from micro-meteorites, which can cause disbonds, delaminations, chips, cracks, and other defects to the TPS system. To enhance durability and damage tolerance, new TPS tiles with an added protective ceramic-matrix-composite layer are being developed. This paper explores the use of pulsed thermography as a quick, diverse, non-destructive technique, to characterize the TPS system. The pulsed thermography images obtained are presented and analyzed.

  8. Bonding Heat-Resistant Fabric to Tile

    NASA Technical Reports Server (NTRS)

    Holt, J. W.; Smiser, L. W.

    1985-01-01

    Acid etching, densification, and silica cement ensure strong bond. Key step in preparation for bonding to glazed tile is etching quartz fabric and tile with acid. This increases adhesion of silica cement used to form bond. Procedures use high-temperature materials exclusively and therefore suitable for securing flexible seals and heat barriers around doors and viewing ports in furnaces and kilns.

  9. Fibonacci words, hyperbolic tilings and grossone

    NASA Astrophysics Data System (ADS)

    Margenstern, Maurice

    2015-04-01

    In this paper, we study the contribution of the theory of grossone to the study of infinite Fibonacci words, combining this tool with the help of a particular tiling of the hyperbolic plane: the tiling { 7, 3 } , called the heptagrid. With the help of the numeral system based on grossone, we obtain a richer family of infinite Fibonacci words compared with the traditional approach.

  10. Shaving Ceramic Tiles To Final Dimensions

    NASA Technical Reports Server (NTRS)

    Shaw, Ernest

    1992-01-01

    Combination of template and routing tool cuts ceramic tiles to final dimensions. Template guides router along precisely defined planes to accurately and uniformly shave chamfers on edge of tiles. Legs of template temporarily bonded to workpiece by double-backed adhesive tape. Adaptable to in-situ final machining of other nominally flat, narrow surfaces.

  11. FRACTAL TILING MICHAEL BARNSLEY AND ANDREW VINCE

    E-print Network

    Vince, Andrew

    FRACTAL TILING MICHAEL BARNSLEY AND ANDREW VINCE Abstract. A simple, yet unifying method be constructed by this method. These tilings can be used to extend a fractal transformation defined on the attractor of a contractive IFS to a fractal transformation on the entire space upon which the IFS acts. 1

  12. The Development of the CMS Zero Degree Calorimeters to Derive the Centrality of AA Collisions

    E-print Network

    Wood, Jeffrey Scott

    2013-05-31

    is given here. The purple region also shows HF, a forward hadronic calorimeter. CASTOR and the ZDCs are not shown here. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.4 A transverse slice of CMS is given here. Some examples...-direction. . . . . . . . . . . . . . . 56 3.9 A photo of the tungsten and quartz fiber sandwich is shown here. On the left is the vertical setup of the EM section, and on the right is the setup of the 45 degree slanted arrangement of the hadronic section. . . . . . . 57 3.10 A cartoon...

  13. The Penrose Tiles Start playing with the shapes...

    E-print Network

    Capogna, Luca

    The Penrose Tiles Start playing with the shapes... · · · Stop reading until you have played patterns with the shapes? What symmetries do they have? #12;Further Study: The Penrose Tiles These shapes are an example of Penrose Tiles: They have a remarkable property. They can tile the plane but not periodically

  14. Pattern overlap implies runaway growth in hierarchical tile systems

    E-print Network

    Doty, David

    ,lstacho}@gmail.com Abstract We show that in the hierarchical tile assembly model, if there is a producible assembly Identifier 10.4230/LIPIcs.xxx.yyy.p 1 Introduction Winfree's abstract Tile Assembly Model (aTAM) [23 assumptions are key: 1) growth starts from a single seed tile type, and 2) only individual tiles bind

  15. On abnormal absorption of hadron component of EAS cores in lead and possible explanations

    E-print Network

    L. G. Sveshnikova; A. P. Chubenko; R. A. Mukhamedshin; N. S. Popova; N. M. Nikolskaya; V. I. Yakovlev

    2007-01-09

    We confirm the result obtained many years ago at Tien-Shan mountain station with the large 36-m2 lead calorimeter that in extensive air showers (EAS) with energies of few PeV the attenuation of core energy deposit in lead becomes slower than it could be predicted by modern codes. It is shown that this effect is connected with the appearance of the excess of abnormal cores with a large ionisation released in lower layers of the calorimeter and these abnormal EAS cores are most probably produced by high-energy muon groups. A few hypotheses of the excess of muon reach EAS cores are considered. To study the absorption of EAS hadrons and muons in a lead ionization calorimeter, the EAS development in the atmosphere was simulated in the framework of the CORSIKA+QGSJET code whereupon the passage of hadrons and muons through a lead calorimeter has been modeled with using the FLUKA transport code.

  16. 5.8 X-ray Calorimeters

    NASA Technical Reports Server (NTRS)

    Porter, F. Scott

    2008-01-01

    X-ray calorimeter instruments for astrophysics have seen rapid development since they were invented in 1984. The prime instrument on all currently planned X-ray spectroscopic observatories is based on calorimeter technology. This relatively simple detection concept that senses the energy of an incident photon by measuring the temperature rise of an absorber material at very low temperatures, can form the basis of a very high performance, non-dispersive spectrometer. State-of-the-art calorimeter instruments have resolving powers of over 3000, large simultaneous band-passes, and near unit efficiency. This coupled with the intrinsic imaging capability of a pixilated x-ray calorimeter array, allows true spectral-spatial instruments to be constructed. In this chapter I briefly review the detection scheme, the state-of-the-art in X-ray calorimeter instruments and the future outlook for this technology.

  17. Fibrous-Ceramic/Aerogel Composite Insulating Tiles

    NASA Technical Reports Server (NTRS)

    White, Susan M.; Rasky, Daniel J.

    2004-01-01

    Fibrous-ceramic/aerogel composite tiles have been invented to afford combinations of thermal-insulation and mechanical properties superior to those attainable by making tiles of fibrous ceramics alone or aerogels alone. These lightweight tiles can be tailored to a variety of applications that range from insulating cryogenic tanks to protecting spacecraft against re-entry heating. The advantages and disadvantages of fibrous ceramics and aerogels can be summarized as follows: Tiles made of ceramic fibers are known for mechanical strength, toughness, and machinability. Fibrous ceramic tiles are highly effective as thermal insulators in a vacuum. However, undesirably, the porosity of these materials makes them permeable by gases, so that in the presence of air or other gases, convection and gas-phase conduction contribute to the effective thermal conductivity of the tiles. Other disadvantages of the porosity and permeability of fibrous ceramic tiles arise because gases (e.g., water vapor or cryogenic gases) can condense in pores. This condensation contributes to weight, and in the case of cryogenic systems, the heat of condensation undesirably adds to the heat flowing to the objects that one seeks to keep cold. Moreover, there is a risk of explosion associated with vaporization of previously condensed gas upon reheating. Aerogels offer low permeability, low density, and low thermal conductivity, but are mechanically fragile. The basic idea of the present invention is to exploit the best features of fibrous ceramic tiles and aerogels. In a composite tile according to the invention, the fibrous ceramic serves as a matrix that mechanically supports the aerogel, while the aerogel serves as a low-conductivity, low-permeability filling that closes what would otherwise be the open pores of the fibrous ceramic. Because the aerogel eliminates or at least suppresses permeation by gas, gas-phase conduction, and convection, the thermal conductivity of such a composite even at normal atmospheric pressure is not much greater than that of the fibrous ceramic alone in a vacuum.

  18. High-Strength, Low-Shrinkage Ceramic Tiles

    NASA Technical Reports Server (NTRS)

    Wheeler, W. H.; Creedon, J. F.

    1986-01-01

    Addition of refractory fibers and whiskers to insulating tiles composed primarily of fibrous silica, such as those used on the skin of Space Shuttle orbiter, greatly improves properties. New composition suitable for lightweight, thermally-stable mirror blanks and as furnace and kiln insulation. Improved tiles made with current tile-fabrication processes. For given density, tiles containing silicon carbide and boron additives stronger in flexure than tiles made from silica alone. In addition, tiles with additives nearly immune to heat distortion, whereas pure-silica tiles shrink and become severely distorted.

  19. Aerogel: Tile Composites Toughen a Brittle Superinsulation

    NASA Technical Reports Server (NTRS)

    White, Susan; Rasky, Daniel; Arnold, James O. (Technical Monitor)

    1998-01-01

    Pure aerogels, though familiar in the laboratory for decades as exotic lightweight insulators with unusual physical properties, have had limited industrial applications due to their low strength and high brittleness. Composites formed of aerogels and the ceramic fiber matrices like those used as space shuttle tiles bypass the fragility of pure aerogels and can enhance the performance of space shuttle tiles in their harsh operating environment. Using a layer of aerogel embedded in a tile may open up a wide range of applications where thermal insulation, gas convection control and mechanical strength matter.

  20. Remotely replaceable tokamak plasma limiter tiles

    DOEpatents

    Gallix, R.

    1987-12-09

    U-shaped tiles placed end-to-end over a pair of parallel runners have two rods which engage L-shaped slots. A sliding bar between the runners has grooves with clips to retain the rods pressed into receiving legs of the L-shaped slots in the runners. Sliding the bar in the direction of retaining legs of the L-shaped slots latches the tiles in place over the wall. Resilient contact strips under the parallel sides of the U-shaped tile assure thermal and electrical contact with the wall. 6 figs.

  1. Penrose Tilings as Jammed Solids

    E-print Network

    Olaf Stenull; T. C. Lubensky

    2014-06-24

    Penrose tilings form lattices, exhibiting 5-fold symmetry and isotropic elasticity, with inhomogeneous coordination much like that of the force networks in jammed systems. Under periodic boundary conditions, their average coordination is exactly four. We study the elastic and vibrational properties of rational approximants to these lattices as a function of unit-cell size $N_S$ and find that they have of order $\\sqrt{N_S}$ zero modes and states of self stress and yet all their elastic moduli vanish. In their generic form obtained by randomizing site positions, their elastic and vibrational properties are similar to those of particulate systems at jamming with a nonzero bulk modulus, vanishing shear modulus, and a flat density of states.

  2. Folding, Tiling, and Multidimensional Coding

    E-print Network

    Etzion, Tuvi

    2009-01-01

    Folding a sequence $S$ into a multidimensional box is a method that is used to construct multidimensional codes. The well known operation of folding is generalized in a way that the sequence $S$ can be folded into various shapes. The new definition of folding is based on lattice tiling and a direction in the $D$-dimensional grid. There are potentially $\\frac{3^D-1}{2}$ different folding operations. Necessary and sufficient conditions that a lattice combined with a direction define a folding are given. The immediate and most impressive application is some new lower bounds on the number of dots in two-dimensional synchronization patterns. This can be also generalized for multidimensional synchronization patterns. We show how folding can be used to construct multidimensional error-correcting codes and to generate multidimensional pseudo-random arrays.

  3. Penrose tilings as jammed solids.

    PubMed

    Stenull, Olaf; Lubensky, T C

    2014-10-10

    Penrose tilings form lattices, exhibiting fivefold symmetry and isotropic elasticity, with inhomogeneous coordination much like that of the force networks in jammed systems. Under periodic boundary conditions, their average coordination is exactly four. We study the elastic and vibrational properties of rational approximants to these lattices as a function of unit-cell size N(S) and find that they have of order sqrt[N(S)] zero modes and states of self-stress and yet all their elastic moduli vanish. In their generic form, obtained by randomizing site positions, their elastic and vibrational properties are similar to those of particulate systems at jamming with a nonzero bulk modulus, vanishing shear modulus, and a flat density of states. PMID:25375746

  4. Brane Tilings and Reflexive Polygons

    E-print Network

    Amihay Hanany; Rak-Kyeong Seong

    2012-02-06

    Reflexive polygons have attracted great interest both in mathematics and in physics. This paper discusses a new aspect of the existing study in the context of quiver gauge theories. These theories are 4d supersymmetric worldvolume theories of D3 branes with toric Calabi-Yau moduli spaces that are conveniently described with brane tilings. We find all 30 theories corresponding to the 16 reflexive polygons, some of the theories being toric (Seiberg) dual to each other. The mesonic generators of the moduli spaces are identified through the Hilbert series. It is shown that the lattice of generators is the dual reflexive polygon of the toric diagram. Thus, the duality forms pairs of quiver gauge theories with the lattice of generators being the toric diagram of the dual and vice versa.

  5. Lozenge Tilings with Free Boundaries

    NASA Astrophysics Data System (ADS)

    Panova, Greta

    2015-11-01

    We study lozenge tilings of a domain with partially free boundary. In particular, we consider a trapezoidal domain (half-hexagon), s.t. the horizontal lozenges on the long side can intersect it anywhere to protrude halfway across. We show that the positions of the horizontal lozenges near the opposite flat vertical boundary have the same joint distribution as the eigenvalues from a Gaussian Unitary Ensemble (the GUE-corners/minors process). We also prove the existence of a limit shape of the height function, which is also a vertically symmetric plane partition. Both behaviors are shown to coincide with those of the corresponding doubled fixed boundary hexagonal domain. We also consider domains where the different sides converge to {?} at different rates and recover again the GUE-corners process near the boundary.

  6. Higher genus Soccer Balls andHigher genus Soccer Balls and Kaleidoscopic Tilings in theKaleidoscopic Tilings in the

    E-print Network

    Broughton, S. Allen

    1 Higher genus Soccer Balls andHigher genus Soccer Balls and Kaleidoscopic Tilings in the;2 OutlineOutline · Talk 1 The relation between higher genus soccer balls and the kaleidoscopic tilings with undergraduates #12;3 First Talk: Soccer Ball and TilingsFirst Talk: Soccer Ball and Tilings · Analyze soccer ball

  7. Results of 2007 test beam of AMS-02 Electromagnetic Calorimeter

    NASA Astrophysics Data System (ADS)

    Falco, Stefano Di

    2010-01-01

    The AMS-02 experiment will be delivered by the Space Shuttle Discovery to the ISS in summer 2010. The main goals of the experiment are search for antimatter and dark matter, high precision measurement of charged cosmic ray spectra and fluxes and study of gamma rays, in the GeV to TeV energy range. In AMS-02 the Electromagnetic Calorimeter (ECAL) is required to measure e+,e- and gamma energy and to discriminate electromagnetic showers from hadronic cascades. ECAL is based on a lead/scintillating fiber sandwich, providing a 3D imaging reconstruction of the showers. The electronics equipping the detector has low power consumption, low noise, large dynamic range readout and full double redundancy. The calorimeter successfully got through several space qualification tests concerning the mechanical and thermal stability, the electromagnetic compatibility and radiation hardness. The ECAL Flight Model was calibrated during Summer 2007 in a test beam at CERN, using 6-250 GeV electron and proton beams: angular and energy resolutions, obtained from these data, are reported.

  8. New calorimeters for space experiments: physics requirements and technological challenges

    NASA Astrophysics Data System (ADS)

    Marrocchesi, Pier Simone

    2015-07-01

    Direct measurements of charged cosmic radiation with instruments in Low Earth Orbit (LEO), or flying on balloons above the atmosphere, require the identification of the incident particle, the measurement of its energy and possibly the determination of its sign-of-charge. The latter information can be provided by a magnetic spectrometer together with a measurement of momentum. However, magnetic deflection in space experiments is at present limited to values of the Maximum Detectable Rigidity (MDR) hardly exceeding a few TV. Advanced calorimetric techniques are, at present, the only way to measure charged and neutral radiation at higher energies in the multi-TeV range. Despite their mass limitation, calorimeters may achieve a large geometric factor and provide an adequate proton background rejection factor, taking advantage of a fine granularity and imaging capabilities. In this lecture, after a brief introduction on electromagnetic and hadronic calorimetry, an innovative approach to the design of a space-borne, large acceptance, homogeneous calorimeter for the detection of high energy cosmic rays will be described.

  9. High-temperature containerless calorimeter

    NASA Technical Reports Server (NTRS)

    Robinson, M. B.; Lacy, L. L.

    1985-01-01

    A high-temperature (greater than 1500 K) containerless calorimeter is described and its usefulness demonstrated. The calorimeter uses the technique of omnidirectional electron bombardment of pendant drops to achieve an isothermal test environment. The small heat input into the sample (i.e., 15-50 W) can be controlled and measured. The apparatus can be used to determine the total hemispherical emissivity, specific heat, heat of fusion, surface tension, and equilibrium melting temperature of small molten drops in the temperature range of 1500 to 3500 K. The total hemispherical emissivity and specific heat of pure niobium and two alloys of niobium-germanium have been measured in the temperature range of 1700 to 2400 K. As reported in the literature, the total hemispherical emissivity varied as a function of temperature. However, specific heat values for both the pure metal and alloys seem to be independent of temperature. Specific heat for the liquid alloy phase was also measured and compared to the solid phase.

  10. Calorimeter trigger system for the ISR axial-field spectrometer

    SciTech Connect

    Not Available

    1981-01-01

    A fast and flexible trigger processor system designed to run in parallel up to 51 different types of trigger is used in a large hadron calorimeter experiment at CERN-ISR. A very fast data bus connected to 255 10 bit address ECL memory chips allows programmable selection of events according to their topology and energy pattern in less than 150 ns. In addition this system can interrogate two programmable processors (ESOP) to isolate events characterized by a large energy flow in the central drift chamber (< 500 ..mu..s). All functions of the trigger processor can be checked externally by a computer through injecting in parallel simulated input signals into various stages of the system. Salient features and performances will be discussed.

  11. High-temperature waterproofing for tiles

    NASA Technical Reports Server (NTRS)

    Bahnsen, E. B.; Izu, Y. D.

    1978-01-01

    Vapor-deposited coating protects silica tiles against water vapor up to 800 degrees Fahrenheit. Degradation products formed do not affect optical properties of coating. Application method makes it particularly suitable for fragile components.

  12. Radioactivity in zircon and building tiles.

    PubMed

    Deng, W; Tian, K; Zhang, Y; Chen, D

    1997-08-01

    Zircon (ZrSiO4) is commonly used in the manufacture of glazed tiles. In this study we found high concentrations of the radionuclides 226Ra, 232Th, 40K in zircon sand. The average radium equivalent (A(Ra) + 1.26 A(Th) + 0.086 A(k)) in zircon sand is 17,500 Bq kg(-1), which is 106 times as much as that in ordinary building materials. The external radiation (gamma + beta) dose rates in air at 5 cm from the surface of piles of zircon sand sacks range from 1.1 to 4.9 x 10(-2) mGy h(-1) with an average of 2.1 x 10(-2) mGy h(-1). Although no elevated gamma-ray radiation or radon exhalation rate was detected in rooms decorated with glazed tiles, which is characteristic of combined alpha, beta and gamma emitting thin materials, the average gamma-ray radiation dose rate at the surface of the tile stacks in shops is 1.5 times as much as the indoor background level. The average area density of total beta emitting radionuclides in glazed floor tiles and glazed wall tiles is 0.30 Bq cm(-2) and 0.28 Bq cm(-2), respectively. It was estimated that the average beta dose rates in tissue at a depth 7 mg cm(-2) with a distance 20-100 cm from the floor tiles were 3.2 to 0.9 x 10(-7) Gy h(-1). The study indicates that the beta-rays from glazed tiles might be one of the main factors leading to an increase in ionizing radiation received by the general public. Workers in glazed tile manufacturing factories and in tile shops or stores may be exposed to elevated levels of both beta-rays and gamma-rays from zircon sand or glazed tile stacks. No elevated radiation from unglazed tiles was detected. PMID:9228172

  13. Symmetry properties of Penrose type tilings

    E-print Network

    Nicolae Cotfas

    2008-03-10

    The Penrose tiling is directly related to the atomic structure of certain decagonal quasicrystals and, despite its aperiodicity, is highly symmetric. It is known that the numbers 1, $-\\tau $, $(-\\tau)^2$, $(-\\tau)^3$, ..., where $\\tau =(1+\\sqrt{5})/2$, are scaling factors of the Penrose tiling. We show that the set of scaling factors is much larger, and for most of them the number of the corresponding inflation centers is infinite.

  14. Manufacture of ceramic tiles from fly ash

    DOEpatents

    Hnat, James G. (Collegeville, PA); Mathur, Akshay (Tampa, FL); Simpson, James C. (Perkiomenville, PA)

    1999-01-01

    The present invention relates to a process for forming glass-ceramic tiles. Fly ash containing organic material, metal contaminants, and glass forming materials is oxidized under conditions effective to combust the organic material and partially oxidize the metallic contaminants and the glass forming materials. The oxidized glass forming materials are vitrified to form a glass melt. This glass melt is then formed into tiles containing metallic contaminants.

  15. Laser Scanner for Tile-Cavity Measurement

    NASA Technical Reports Server (NTRS)

    Yoshino, Stanley Y.; Wykes, Donald H.; Hagen, George R.; Lotgering, Gene E.; Gaynor, Michael B.; Westerlund, Paul G.; Baal, Thomas A.

    1987-01-01

    Irregular surfaces mapped and digitized for numerical-control machinery. Fast, accurate laser scanning system measures size and shape of cavity without making any physical contact with cavity and walls. Measurements processed into control signals for numerically controlled machining of tile or block to fit cavity. System generates map of grid points representing cavity and portion of outer surface surrounding cavity. Map data used to control milling machine, which cuts tile or block to fit in cavity.

  16. Cutting Symmetrical Recesses In Soft Ceramic Tiles

    NASA Technical Reports Server (NTRS)

    Nesotas, Tony C.; Tyler, Brent

    1989-01-01

    Simple tool cuts hemispherical recesses in soft ceramic tiles. Designed to expose wires of thermocouples embedded in tiles without damaging leads. Creates neat, precise holes around wires. End mill includes axial hole to accommodate thermocouple wires embedded in material to be cut. Wires pass into hole without being bent or broken. Dimensions in inches. Used in place of such tools as dental picks, tweezers, spatulas, and putty knives.

  17. Manufacture of ceramic tiles from fly ash

    DOEpatents

    Hnat, J.G.; Mathur, A.; Simpson, J.C.

    1999-08-10

    The present invention relates to a process for forming glass-ceramic tiles. Fly ash containing organic material, metal contaminants, and glass forming materials is oxidized under conditions effective to combust the organic material and partially oxidize the metallic contaminants and the glass forming materials. The oxidized glass forming materials are vitrified to form a glass melt. This glass melt is then formed into tiles containing metallic contaminants. 6 figs.

  18. Quasicrystalline tilings with nematic colloidal platelets.

    PubMed

    Dontabhaktuni, Jayasri; Ravnik, Miha; Žumer, Slobodan

    2014-02-18

    Complex nematic fluids have the remarkable capability for self-assembling regular colloidal structures of various symmetries and dimensionality according to their micromolecular orientational order. Colloidal chains, clusters, and crystals were demonstrated recently, exhibiting soft-matter functionalities of robust binding, spontaneous chiral symmetry breaking, entanglement, shape-driven and topological driven assembly, and even memory imprinting. However, no quasicrystalline structures were found. Here, we show with numerical modeling that quasicrystalline colloidal lattices can be achieved in the form of original Penrose P1 tiling by using pentagonal colloidal platelets in layers of nematic liquid crystals. The tilings are energetically stabilized with binding energies up to 2500 kBT for micrometer-sized platelets and further allow for hierarchical substitution tiling, i.e., hierarchical pentagulation. Quasicrystalline structures are constructed bottom-up by assembling the boat, rhombus, and star maximum density clusters, thus avoiding other (nonquasicrystalline) stable or metastable configurations of platelets. Central to our design of the quasicrystalline tilings is the symmetry breaking imposed by the platelet shape and the surface anchoring conditions at the colloidal platelets, which are misaligning and asymmetric over two perpendicular mirror planes. Finally, the design of the quasicrystalline tilings as platelets in nematic liquid crystals is inherently capable of a continuous variety of length scales of the tiling, ranging over three orders of magnitude in the typical length (from ~ 10 nm to ~ 10 ?m), which could allow for the design of quasicrystalline photonics at multiple frequency ranges. PMID:24550269

  19. MARK II end cap calorimeter electronics

    SciTech Connect

    Jared, R.C.; Haggerty, J.S.; Herrup, D.A.; Kirsten, F.A.; Lee, K.L.; Olson, S.R.; Wood, D.R.

    1985-10-01

    An end cap calorimeter system has been added to the MARK II detector in preparation for its use at the SLAC Linear Collider. The calorimeter uses 8744 rectangular proportional counter tubes. This paper describes the design features of the data acquisition electronics that has been installed on the calorimeter. The design and use of computer-based test stands for the amplification and signal-shaping components is also covered. A portion of the complete system has been tested in a beam at SLAC. In these initial tests, using only the calibration provided by the test stands, a resolution of 18%/..sqrt..E was achieved.

  20. On the Calibration of Segmented Calorimeters

    SciTech Connect

    Wigmans, Richard

    2006-10-27

    Most calorimeter systems used in particle physics experiments are longitudinally subdivided into several compartments. The intercalibration of these compartments is highly non-trivial, as a result of two effects: 1) The dependence of the calorimeter response on the type (and energy) of the showering particle, and 2) The depth dependent sampling fraction of showers.The problems arising from this are illustrated with examples from the scientific literature. I also review some of the methods applied in practice to calibrate segmented calorimeters, and discuss the (lack of) merit of these methods.

  1. Performance of the ATLAS Liquid Argon Calorimeter after three years of LHC operation and plans for a future upgrade

    NASA Astrophysics Data System (ADS)

    Strizenec, P.

    2014-09-01

    The ATLAS experiment is designed to study the proton-proton collisions produced at the Large Hadron Collider (LHC) at CERN. Liquid Argon sampling calorimeters are used for all electromagnetic calorimetry covering the pseudorapidity region up to 3.2, as well as for hadronic calorimetry in the range 1.4-4.9. The electromagnetic calorimeters use lead as passive material and are characterized by an accordion geometry that allows a fast and uniform azimuthal response. Copper and tungsten were chosen as passive material for the hadronic calorimetry; whereas a parallel plate geometry was adopted at large polar angles, an innovative one based on cylindrical electrodes with thin argon gaps was designed for the coverage at low angles, where the particles flow is higher. All detectors are housed in three cryostats kept at 88.5 K. After installation in 2004-2006, the calorimeters were extensively commissioned over the three years period prior to first collisions in 2009, using cosmic rays and single LHC beams. Since then, around 27 fb-1 of data have been collected at a unprecedented center of mass energies between 7 TeV and 8 TeV. During all these stages, the calorimeter and its electronics have been operating with performances very close to the specification ones. After 2019, the instantaneous luminosity will reach 2-3 × 1034 cm-2s-1, well above the luminosity for which the calorimeter was designed. In order to preserve its triggering capabilities, the detector will be upgraded with a new fully digital trigger system with a refined granularity. In 2023, the instantaneous luminosity will ultimately reach 5-7 × 1034 cm-2s-1, requiring a complete replacement of the readout electronics. Moreover, with an increased particle flux, several phenomena (liquid argon boiling, space charge effects...) will affect the performance of the forward calorimeter (FCal). A replacement with a new FCal with smaller LAr gaps or a new calorimeter module are considered. The performance of these new calorimeters is being studied in highest intensity particle beams. This contribution covers all aspects of the first three years of operation. The excellent performance achieved is especially detailed in the context of the discovery of the Higgs boson announced in July 2012. The future plans to preserve this performance until the end of the LHC program are also presented.

  2. A silicon-tungsten imaging calorimeter for cosmic-ray measurements from the space station

    NASA Astrophysics Data System (ADS)

    Bravar, Ulisse

    The source and full nature of cosmic rays are still largely undetermined. Direct observations from outside the Earth's atmosphere of Galactic cosmic rays do not extend beyond energies of 1014 eV. Particles with larger energies, up to 1020 eV, are detected indirectly by ground-based air-shower detectors and such measurements are affected by the large uncertainties implicit in this experimental method. The Advanced Cosmic-ray Composition Experiment for the Space Station (ACCESS) will measure the elemental composition and energy spectra of cosmic-ray particles to energies of over 1015 eV. The experimental apparatus of ACCESS includes a transition radiation detector and a thin ionization calorimeter. The calorimeter will measure the spectra of cosmic-ray protons and helium and identify cosmic-ray electrons. The design of a space-based calorimeter differs significantly from ground-based detectors. A hadronic calorimeter for space must necessarily be thin in order to meet the stringent mass requirements of a space mission. Its design is ultimately a tradeoff between desired energy resolution and required collecting power. Several concepts have been proposed for the structure of the ACCESS calorimeter. This work describes the design of the Silicon-Tungsten imaging calorimeter for ACCESS, developed as part of a NASA-sponsored mission concept and detector assessment study. A reduced version of this detector was developed and flown by the WiZard collaboration in balloon-borne and in a few satellite-based cosmic-ray experiments, primarily to search for primordial antimatter in the cosmic radiation. In this dissertation, we study the optimization of the Silicon-Tungsten calorimeter design for ACCESS, and then verify the performance of the final structure for the measurement of high-energy cosmic-ray protons, alpha-particles and electrons. Our results show that the Silicon-Tungsten calorimeter is an ideal detector for ACCESS, and offers the best possible performance achievable within the strict constraints imposed on the structure of this experiment.

  3. Lessons from Monte Carlo simulations of the performance of a dual-readout fiber calorimeter

    NASA Astrophysics Data System (ADS)

    Akchurin, N.; Bedeschi, F.; Cardini, A.; Cascella, M.; De Pedis, D.; Ferrari, R.; Fracchia, S.; Franchino, S.; Fraternali, M.; Gaudio, G.; Genova, P.; Hauptman, J.; La Rotonda, L.; Lee, S.; Livan, M.; Meoni, E.; Pinci, D.; Policicchio, A.; Saraiva, J. G.; Scuri, F.; Sill, A.; Venturelli, T.; Wigmans, R.

    2014-10-01

    The RD52 calorimeter uses the dual-readout principle to detect both electromagnetic and hadronic showers, as well as muons. Scintillation and Cherenkov light provide the two signals which, in combination, allow for superior hadronic performance. In this paper, we report on detailed, GEANT4 based Monte Carlo simulations of the performance of this instrument. The results of these simulations are compared in great detail to measurements that have been carried out and published by the DREAM Collaboration. This comparison makes it possible to understand subtle details of the shower development in this unusual particle detector. It also allows for predictions of the improvement in the performance that may be expected for larger detectors of this type. These studies also revealed some inadequacies in the GEANT4 simulation packages, especially for hadronic showers, but also for the Cherenkov signals from electromagnetic showers.

  4. Hadronic Interactions

    E-print Network

    Takeshi Yamazaki

    2015-03-30

    Understanding hadronic interactions is crucial for investigating the properties of unstable hadrons, since measuring physical quantities for unstable hadrons including the resonance mass and decay width requires simultaneous calculations of final scattering states. Recent studies of hadronic scatterings and decays are reviewed from this point of view. The nuceon-nucleon and multi-nucleon interactions are very important to understand the formation of nucleus from the first principle of QCD. These interactions have been studied mainly by two methods, due originally to L\\"uscher and to HALQCD. The results obtained from the two methods are compared in three channels, $I=2$ two-pion, H-dibaryon, and two-nucleon channels. So far the results from the two methods for the two-nucleon channels are different even at the level of the presence or absence of bound states. We then discuss possible uncertainties in each method. Recent results on the binding energy for helium nuclei are also reviewed.

  5. Accelerator Test of an Imaging Calorimeter

    NASA Technical Reports Server (NTRS)

    Christl, Mark J.; Adams, James H., Jr.; Binns, R. W.; Derrickson, J. H.; Fountain, W. F.; Howell, L. W.; Gregory, J. C.; Hink, P. L.; Israel, M. H.; Kippen, R. M.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Imaging Calorimeter for ACCESS (ICA) utilizes a thin sampling calorimeter concept for direct measurements of high-energy cosmic rays. The ICA design uses arrays of small scintillating fibers to measure the energy and trajectory of the produced cascades. A test instrument has been developed to study the performance of this concept at accelerator energies and for comparison with simulations. Two test exposures have been completed using a CERN test beam. Some results from the accelerator tests are presented.

  6. Hadron interactions

    SciTech Connect

    K. Orginos

    2011-12-01

    In this talk I am reviewing recent calculations of properties of multi-hadron systems in lattice QCD. In particular, I am reviewing results of elastic scattering phase shifts in meson-meson, meson-baryon and baryon-baryon systems, as well as discussing results indicating possible existence of bound states in two baryon systems. Finally, calculations of properties of systems with more than two hadrons are presented.

  7. Calorimeter Data Acquisition and Reporting Software

    Energy Science and Technology Software Center (ESTSC)

    1998-08-27

    The calorimeter Data Acquisition and Reporting Program performs the calculations necessary to calculate the calorimetric sample results in grams and provide a printable report for up to twelve Mound Calorimeters. To determine a standard''s wattage or sample gram fill, the reporting program retrieves the output voltage from the power supply at the calorimeter and a temperature resistant resistor via a voltmeter and digital input card in a Hewlett Packard Data Acquisition Unit (DAQ). From themore »retrieved voltage data, the reporting program can calculate a standard''s wattage output and sample gram fill. The reporting program also determines equilibrium (stability) by performing a stability algorithm bassed on user defined slope an/or sigma values for the previous forty values. Once the stability is determined, the reporting program will notify the user that the calorimeter has reached equilibrium. The Calorimeter Data Acquisition and Reporting Program operates continuously as described to monitor for calorimeter equilibrium and to generate a printable report with sample results.« less

  8. Single crystalline LuAG fibers for homogeneous dual-readout calorimeters

    NASA Astrophysics Data System (ADS)

    Pauwels, K.; Dujardin, C.; Gundacker, S.; Lebbou, K.; Lecoq, P.; Lucchini, M.; Moretti, F.; Petrosyan, A. G.; Xu, X.; Auffray, E.

    2013-09-01

    For the next generation of calorimeters, designed to improve the energy resolution of hadrons and jets measurements, there is a need for highly granular detectors requiring peculiar geometries. Heavy inorganic scintillators allow compact homogeneous calorimeter designs with excellent energy resolution and dual-readout abilities. These scintillators are however not usually suited for geometries with a high aspect ratio because of the important losses observed during the light propagation. Elongated single crystals (fibers) of Lutetium Aluminium garnet (LuAG, Lu3Al5O12) were successfully grown with the micropulling-down technique. We present here the results obtained with the recent fiber production and we discuss how the light propagation could be enhanced to reach attenuation lengths in the fibers better than 0.5 m.

  9. Power supply distribution system for calorimeters at the LHC beyond the nominal luminosity

    NASA Astrophysics Data System (ADS)

    Tenti, P.; Spiazzi, G.; Buso, S.; Riva, M.; Maranesi, P.; Belloni, F.; Cova, P.; Menozzi, R.; Delmonte, N.; Bernardoni, M.; Iannuzzo, F.; Busatto, G.; Porzio, A.; Velardi, F.; Lanza, A.; Citterio, M.; Meroni, C.

    2011-06-01

    This paper investigates the use of switching converters for the power supply distribution to calorimeters in the ATLAS experiment when the Large Hadron Collider (LHC) will be upgraded beyond the nominal luminosity. Due to the highly hostile environment the converters must operate in, all the main aspects are considered in the investigation, from the selection of the switching converter topologies to the thermal analysis of components and PCBs, with attention to reliability issues of power devices subject to ionizing radiations. The analysis focuses on the particular, but crucial, case of the power supplies for calorimeters, though several outcomes of the research can profitably be applied to other detectors like muon chambers. Research co-funded by the Italian Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR) and the Istituto Nazionale di Fisica Nucleare (INFN), under the PRIN 2007 program.

  10. Tiled WMS/KML Server V2

    NASA Technical Reports Server (NTRS)

    Plesea, Lucian

    2012-01-01

    This software is a higher-performance implementation of tiled WMS, with integral support for KML and time-varying data. This software is compliant with the Open Geospatial WMS standard, and supports KML natively as a WMS return type, including support for the time attribute. Regionated KML wrappers are generated that match the existing tiled WMS dataset. Ping and JPG formats are supported, and the software is implemented as an Apache 2.0 module that supports a threading execution model that is capable of supporting very high request rates. The module intercepts and responds to WMS requests that match certain patterns and returns the existing tiles. If a KML format that matches an existing pyramid and tile dataset is requested, regionated KML is generated and returned to the requesting application. In addition, KML requests that do not match the existing tile datasets generate a KML response that includes the corresponding JPG WMS request, effectively adding KML support to a backing WMS server.

  11. Monte Carlo simulation of an actual segmented calorimeter: a study of calorimeter performance at high energies

    SciTech Connect

    Gabriel, T.A.; Bishop, B.L.; Goodman, M.S.; Sessoms, A.L.; Eisenstein, B.; Wright, S.C.; Kephart, R.D.

    1981-01-01

    The calculated responses including energy resolution, angular resolution, and spatial energy deposition of a segmented iron and liquid-argon calorimeter to incident pions in the energy range of 10- to 250-GeV are presented. Experimental data for this calorimeter have been obtained in the 10- to 40- GeV energy range and these results compare favorably with the calculated data.

  12. CsI calorimeter of the CMD-3 detector

    NASA Astrophysics Data System (ADS)

    Aulchenko, V. M.; Bondar, A. E.; Epifanov, D. A.; Erofeev, A. L.; Kovalenko, O. A.; Kozyrev, A. N.; Kuzmin, A. S.; Logashenko, I. B.; Razuvaev, G. P.; Ruban, A. A.; Shebalin, V. E.; Shwartz, B. A.; Talyshev, A. A.; Titov, V. M.; Yudin, Yu. V.

    2015-10-01

    The VEPP-2000 e+e- collider has been operated at Budker Institute of Nuclear Physics since 2010. The experiments are performed with two detectors CMD-3 and SND. The calorimetry at the CMD-3 detector is based on three subsystems, two coaxial barrel calorimeters—Liquid Xenon Calorimeter and crystal CsI calorimeter, and endcap calorimeter with BGO crystals. This paper describes the CsI calorimeter of the CMD-3 detector. The calorimeter design, its electronics and calibration procedures are discussed.

  13. AIRBORNE ASBESTOS CONCENTRATIONS DURING BUFFING OF RESILIENT FLOOR TILE

    EPA Science Inventory

    Although asbestos-containing resilient floor tiles are considered nonfriable, the frictional forces exerted on the tile during routine maintenance operations can generate asbestos-containing structures. tudy was conducted to determine the level of airborne asbestos concentrations...

  14. Morphometry and structure of natural random tilings.

    PubMed

    Ho?evar, A; El Shawish, S; Ziherl, P

    2010-12-01

    A vast range of both living and inanimate planar cellular partitions obeys universal empirical laws describing their structure. To better understand this observation, we analyze the morphometric parameters of a sizeable set of experimental data that includes animal and plant tissues, patterns in desiccated starch slurry, suprafroth in type-I superconductors, soap froths, and geological formations. We characterize the tilings by the distributions of polygon reduced area, a scale-free measure of the roundedness of polygons. These distributions are fairly sharp and seem to belong to the same family. We show that the experimental tilings can be mapped onto the model tilings of equal-area, equal-perimeter polygons obtained by numerical simulations. This suggests that the random two-dimensional patterns can be parametrized by their median reduced area alone. PMID:21107883

  15. Remotely replaceable tokamak plasma limiter tiles

    DOEpatents

    Tsuo, Simon (Lakewood, CO), Langford, Alison A. (Boulder, CO)

    1989-01-01

    U-shaped limiter tiles placed end-to-end over a pair of parallel runners secured to a wall have two rods which engage L-shaped slots in the runners. The short receiving legs of the L-shaped slots are perpendicular to the wall and open away from the wall, while long retaining legs are parallel to and adjacent the wall. A sliding bar between the runners has grooves with clips to retain the rods pressed into receiving legs of the L-shaped slots in the runners. Sliding the bar in the direction of retaining legs of the L-shaped slots latches the tiles in place over the runners. Resilient contact strips between the parallel arms of the U-shaped tiles and the wall assure thermal and electrical contact with the wall.

  16. Tritium calorimeter setup and operation

    SciTech Connect

    Rodgers, David E.

    2002-12-17

    The LBNL tritium calorimeter is a stable instrument capable of measuring tritium with a sensitivity of 25 Ci. Measurement times range from 8-hr to 7-days depending on the thermal conductivity and mass of the material being measured. The instrument allows accurate tritium measurements without requiring that the sample be opened and subsampled, thus reducing personnel exposure and radioactive waste generation. The sensitivity limit is primarily due to response shifts caused by temperature fluctuation in the water bath. The fluctuations are most likely a combination of insufficient insulation from ambient air and precision limitations in the temperature controller. The sensitivity could probably be reduced to below 5 Ci if the following improvements were made: (1) Extend the external insulation to cover the entire bath and increase the top insulation. (2) Improve the seal between the air space above the bath and the outside air to reduce evaporation. This will limit the response drift as the water level drops. (3) Install an improved temperature controller, preferably with a built in chiller, capable of temperature control to {+-}0.001 C.

  17. The Symplectic Geometry of Penrose Rhombus Tilings

    E-print Network

    Fiammetta Battaglia; Elisa Prato

    2008-04-24

    The purpose of this article is to view Penrose rhombus tilings from the perspective of symplectic geometry. We show that each thick rhombus in such a tiling can be naturally associated to a highly singular 4-dimensional compact symplectic space, while each thin rhombus can be associated to another such space; both spaces are invariant under the Hamiltonian action of a 2-dimensional quasitorus, and the images of the corresponding moment mappings give the rhombuses back. These two spaces are diffeomorphic but not symplectomorphic.

  18. Packing, tiling, and covering with tetrahedra

    PubMed Central

    Conway, J. H.; Torquato, S.

    2006-01-01

    It is well known that three-dimensional Euclidean space cannot be tiled by regular tetrahedra. But how well can we do? In this work, we give several constructions that may answer the various senses of this question. In so doing, we provide some solutions to packing, tiling, and covering problems of tetrahedra. Our results suggest that the regular tetrahedron may not be able to pack as densely as the sphere, which would contradict a conjecture of Ulam. The regular tetrahedron might even be the convex body having the smallest possible packing density. PMID:16818891

  19. Zeitschrift fur Kristallographie Deformed Model Sets and Distorted Penrose Tilings

    E-print Network

    Zeitschrift fË?ur Kristallographie Deformed Model Sets and Distorted Penrose Tilings Bernd Sing Sets, Size E#ect, Penrose Tiling, Monte­Carlo Simulation MS­ID: sing@math.uni­bielefeld.de July 10 disorder phenomena in solids. We then apply this concept to distorted Penrose tilings, i.e., Penrose

  20. Penrose Tilings and Periodicity Christopher McMurdie

    E-print Network

    Fatkullin, Ibrahim

    Penrose Tilings and Periodicity Christopher McMurdie Mathematics Department, University of Arizona:This is the first part of a continuing project on non-commutative geometry. The space of all penrose tilings offers as specific properties of penrose tilings. This project is supported by a UofA undergraduate research

  1. MIT Lincoln Laboratory Parallel Vector Tile-Optimized Library

    E-print Network

    Kepner, Jeremy

    1 PVTOL-1 6/23/07 MIT Lincoln Laboratory Parallel Vector Tile-Optimized Library (PVTOL with large IO and processing requirements Approach: Develop Parallel Vector Tile Optimizing Library (PVTOL of tiled processors ·Novel storage should provide 10x more IO FFTFFTA B C Automated Parallel Mapper P2P1P0

  2. WATER TABLE LEVEL AS INFLUENCED BY TILING METHOD

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sections of the research farm were tiled in the fall of 1979. The primary reason for the tiling was to provide a good soil environment for large tillage trial plots that had been previously established. This was also used as an opportunity to install a comparison of tile installation with a conven...

  3. Installation of Ceramic Tile: Residential Thin-Set Methods.

    ERIC Educational Resources Information Center

    Short, Sam

    This curriculum guide contains materials for use in teaching a course on residential thin-set methods of tile installation. Covered in the individual units are the following topics: the tile industry; basic math; tools; measurement; safety in tile setting; installation materials and guidelines for their use; floors; counter tops and backsplashes;…

  4. 21. TILES OF THE NEW WORLD PANEL, NORTH WALL OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. TILES OF THE NEW WORLD PANEL, NORTH WALL OF THE INDIAN HOUSE. THE RELIEF BROCADE TILES ILLUSTRATE SCENES OF NATIVE AMERICAN HISTORY AND CULTURE, AND THE EARLY EUROPEAN EXPLORATION OF THE NEW WORLD. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  5. 90. TILES OF THE NEW WORLD PANEL, NORTH WALL OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    90. TILES OF THE NEW WORLD PANEL, NORTH WALL OF THE INDIAN HOUSE. THE RELIEF BROCADE TILES ILLUSTRATE SCENES OF NATIVE AMERICAN HISTORY AND CULTURE, AND THE EARLY EUROPEAN EXPLORATION OF THE NEW WORLD. SAME VIEW AS PA-107-21. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  6. REGULAR TILINGS Description: A regular tiling is a tiling of the plane consisting of multiple copies of a single

    E-print Network

    Lee, Carl

    TILINGS Illustration: Kappra , p. 179 #12;PLATONIC SOLIDS Description: A Platonic solid has the property older. Hints: There are only ve Platonic solids: 1. Tetrahedron. Four equilateral triangles, three and Interesting Geometry, Penguin, 1991, pp. 187{188. #12;PLATONIC SOLIDS Illustration: Wells, p. 188 #12

  7. Overview of the front end electronics for the Atlas LAR calorimeter

    SciTech Connect

    Rescia, S.

    1997-11-01

    Proposed experiments for the Large Hadron Collider (LHC) set new demands on calorimeter readout electronics. The very high energy and large luminosity of the collider call for a large number of high speed, large dynamic range readout channels which have to be carefully synchronized. The ATLAS liquid argon collaboration, after more than 5 years of R and D developments has now finalized the architecture of its front end and read-out electronics, which have been written down in its Technical Design Report (TDR). An overview is presented.

  8. Calorimeters for Precision Timing Measurements in High Energy Physics

    NASA Astrophysics Data System (ADS)

    Bornheim, Adolf; Apresyan, Artur; Duarte, Javier; Pena, Cristian; Ronzhin, Anatoly; Spiropulu, Maria; Xie, Si

    2015-02-01

    Current and future high energy physics particle colliders are capable to provide instantaneous luminosities of 1034 cm-2s-1 and above. The high center of mass energy, the large number of simultaneous collision of beam particles in the experiments and the very high repetition rates of the collision events pose huge challenges. They result in extremely high particle fluxes, causing very high occupancies in the particle physics detectors operating at these machines. To reconstruct the physics events, the detectors have to make as much information as possible available on the final state particles. We discuss how timing information with a precision of around 10 ps and below can aid the reconstruction of the physics events under such challenging conditions. High energy photons play a crucial role in this context. About one third of the particle flux originating from high energy hadron collisions is detected as photons, stemming from the decays of neutral mesons. In addition, many key physics signatures under study are identified by high energy photons in the final state. They pose a particular challenge in that they can only be detected once they convert in the detector material. The particular challenge in measuring the time of arrival of a high energy photon lies in the stochastic component of the distance to the initial conversion and the size of the electromagnetic shower. They extend spatially over distances which propagation times of the initial photon and the subsequent electromagnetic shower which are large compared to the desired precision. We present studies and measurements from test beams and a cosmic muon test stand for calorimeter based timing measurements to explore the ultimate timing precision achievable for high energy photons of 10 GeV and above. We put particular focus on techniques to measure the timing with a precision of about 10 ps in association with the energy of the photon. For calorimeters utilizing scintillating materials and light guiding components, the propagation speed of the scintillation light in the calorimeter is important. We present studies and measurements of the propagation speed on a range of detector geometries. Finally, possible applications of precision timing in future high energy physics experiments are discussed.

  9. CFD-Predicted Tile Heating Bump Factors Due to Tile Overlay Repairs

    NASA Technical Reports Server (NTRS)

    Lessard, Victor R.

    2006-01-01

    A Computational Fluid Dynamics investigation of the Orbiter's Tile Overlay Repair (TOR) is performed to assess the aeroheating Damage Assessment Team's (DAT) existing heating correlation method for protuberance interference heating on the surrounding thermal protection system. Aerothermodynamic heating analyses are performed for TORs at the design reference damage locations body points 1800 and 1075 for a Mach 17.9 and a=39deg STS-107 flight trajectory point with laminar flow. Six different cases are considered. The computed peak heating bump factor on the surrounding tiles are below the DAT's heating bump factor values for smooth tile cases. However, for the uneven tiles cases the peak interference heating is shown to be considerably higher than the existing correlation prediction.

  10. Development of GEM-Based Digital Hadron Calorimetry Using the SLAC KPiX Chip

    SciTech Connect

    White, A.; /Texas U., Arlington /Washington U., Seattle /Unlisted /SLAC

    2012-04-12

    The development of Digital Hadron Calorimetry for the SiD detector Concept for the International Linear Collider is described. The jet energy requirements of the ILC physics program are discussed. The concept of GEM-based digital hadron calorimetry is presented, followed by a description of, and results from, prototype detectors. Plans are described for the construction of 1m{sup 2} GEM-DHCAL planes to be tested as part of a future calorimeter stack.

  11. Vacuum-jacketed hydrofluoric acid solution calorimeter

    USGS Publications Warehouse

    Robie, R.A.

    1965-01-01

    A vacuum-jacketed metal calorimeter for determining heats of solution in aqueous HF was constructed. The reaction vessel was made of copper and was heavily gold plated. The calorimeter has a cooling constant of 0.6 cal-deg -1-min-1, approximately 1/4 that of the air-jacketed calorimeters most commonly used with HF. It reaches equilibrium within 10 min after turning off the heater current. Measurements of the heat of solution of reagent grade KCl(-100 mesh dried 2 h at 200??C) at a mole ratio of 1 KCl to 200 H2O gave ??H = 4198??11 cal at 25??C. ?? 1965 The American Institute of Physics.

  12. Temperature Effects in the ATIC BGO Calorimeter

    NASA Technical Reports Server (NTRS)

    Isbert, J.; Adams, J. H.; Ahn, H.; Bashindzhagyan, G.; Batkov, K.; Chang, J.; Christl, M. J.; Fazely, A.; Ganel, O.; Gunasigha, R.

    2006-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment contains a segmented calorimeter composed of 320 individual BGO crystals (18 radiation lengths deep) to determine the particle energy. Like all inorganic scintillation crystals the light output of BGO depends not only on the energy deposited by particles but also on the temperature of the crystal. ATIC had successful flights in 2000/2001 and 2002/2003 from McMurdo, Antarctica. The temperature of balloon instruments varies during their flights at altitude due to sun angle variations and differences in albedo from the ground and is monitored and recorded. In order to determine the temperature sensitivity of the ATIC calorimeter it was temperature cycled in the thermal vacuum chamber at the CSBF in Palestine, TX. The temperature dependence is derived from the pulse height response to cosmic ray muons at various temperatures.

  13. Temperature Effects in the ATIC BGO Calorimeter

    NASA Astrophysics Data System (ADS)

    Isbert, J.; Wefel, J. P.; Atic Team

    The Advanced Thin Ionization Calorimeter ATIC Balloon Experiment contains a segmented calorimeter composed of 320 individual BGO crystals 18 radiation lengths deep to determine the particle energy Like all inorganic scintillation crystals the light output of BGO depends not only on the energy deposited by particles but also on the temperature of the crystal ATIC had successful flights in 2000 2001 and 2002 2003 from McMurdo Antarctica The temperature of balloon instruments varies during their flights at altitude due to sun angle variations and differences in albedo from the ground and is monitored and recorded In order to determine the temperature sensitivity of the ATIC calorimeter the instrument was temperature cycled in the thermal vacuum chamber at the CSBF in Palestine TX The temperature dependence derived from the pulse height response to cosmic ray muons at various temperatures is discussed and compared to values in the literature

  14. Tile-based Level of Detail for the Parallel Age

    SciTech Connect

    Niski, K; Cohen, J D

    2007-08-15

    Today's PCs incorporate multiple CPUs and GPUs and are easily arranged in clusters for high-performance, interactive graphics. We present an approach based on hierarchical, screen-space tiles to parallelizing rendering with level of detail. Adapt tiles, render tiles, and machine tiles are associated with CPUs, GPUs, and PCs, respectively, to efficiently parallelize the workload with good resource utilization. Adaptive tile sizes provide load balancing while our level of detail system allows total and independent management of the load on CPUs and GPUs. We demonstrate our approach on parallel configurations consisting of both single PCs and a cluster of PCs.

  15. High Temperature Filler for Tile Gaps

    NASA Technical Reports Server (NTRS)

    Holt, J. W.; Wang, D. S.

    1983-01-01

    Gaps between ceramic tiles filled with ceramic-coated fabric that withstands temperatures as high as 2,000 degrees F (1,300 degrees C). Reusable high-temperature gap filler is made of fabric coated with ceramic slurry and bonded in place with room-temperature-vulcanized adhesive. Procedure used in kilns and furnaces.

  16. Computer-controlled optical scanning tile microscope.

    PubMed

    Wang, C; Shumyatsky, P; Zeng, F; Zevallos, M; Alfano, R R

    2006-02-20

    A new type of computer-controlled optical scanning, high-magnification imaging system with a large field of view is described that overcomes the commonly believed incompatibility of achieving both high magnification and a large field of view. The new system incorporates galvanometer scanners, a CCD camera, and a high-brightness LED source for the fast acquisition of a large number of a high-resolution segmented tile images with a magnification of 800x for each tile. The captured segmented tile images are combined to create an effective enlarged view of a target totaling 1.6 mm x 1.2 mm in area. The speed and sensitivity of the system make it suitable for high-resolution imaging and monitoring of a small segmented area of 320 microm x 240 microm with 4 microm resolution. Each tile segment of the target can be zoomed up without loss of the high resolution. This new microscope imaging system gives both high magnification and a large field of view. This microscope can be utilized in medicine, biology, semiconductor inspection, device analysis, and quality control. PMID:16523776

  17. Tiling Puzzle Solver University of Virginia

    E-print Network

    Robins, Gabriel

    1 Tiling Puzzle Solver University of Virginia Gabriel Robins "But what am I to do?" said Alice containing the above instance may be found at: www.cs.virginia.edu/~robins/puzzles/trivial #12;2 A less input file containing the above puzzle instance can be found at: www.cs.virginia

  18. Lozenge Tilings, Glauber Dynamics and Macroscopic Shape

    NASA Astrophysics Data System (ADS)

    Laslier, Benoît; Toninelli, Fabio Lucio

    2015-09-01

    We study the Glauber dynamics on the set of tilings of a finite domain of the plane with lozenges of side 1/ L. Under the invariant measure of the process (the uniform measure over all tilings), it is well known (Cohn et al. J Am Math Soc 14:297-346, 2001) that the random height function associated to the tiling converges in probability, in the scaling limit , to a non-trivial macroscopic shape minimizing a certain surface tension functional. According to the boundary conditions, the macroscopic shape can be either analytic or contain "frozen regions" (Arctic Circle phenomenon Cohn et al. N Y J Math 4:137-165, 1998; Jockusch et al. Random domino tilings and the arctic circle theorem, arXiv:math/9801068, 1998). It is widely conjectured, on the basis of theoretical considerations (Henley J Statist Phys 89:483-507, 1997; Spohn J Stat Phys 71:1081-1132, 1993), partial mathematical results (Caputo et al. Commun Math Phys 311:157-189, 2012; Wilson Ann Appl Probab 14:274-325, 2004) and numerical simulations for similar models (Destainville Phys Rev Lett 88:030601, 2002; cf. also the bibliography in Henley (J Statist Phys 89:483-507, 1997) and Wilson (Ann Appl Probab 14:274-325, 2004), that the Glauber dynamics approaches the equilibrium macroscopic shape in a time of order L 2+ o(1). In this work we prove this conjecture, under the assumption that the macroscopic equilibrium shape contains no "frozen region".

  19. L-Tromino Tiling of Multilated Chessboards

    ERIC Educational Resources Information Center

    Gardner, Martin

    2009-01-01

    An "n" x "n" chessboard is called deficient if one square is missing from any spot on the board. Can all deficient boards with a number of cells divisible by 3 be tiled by bent (or L-shaped) trominoes? The answer is yes, with exception of the order-5 board. This paper deals with the general problem plus numerous related puzzles and proofs…

  20. Cross-and-Turn Tile Patterns.

    ERIC Educational Resources Information Center

    Clason, Robert G.; And Others

    1997-01-01

    Presents three sets of polygons marked so that visually appealing designs emerge when the polygons are assembled into tessellations that cover the plane. Provides ideas for using the different sets of tiles in the classroom and reactions of the students who assembled the patterns. (AIM)

  1. Communications Self-assembly of Tiled Perovskite

    E-print Network

    Communications Self-assembly of Tiled Perovskite Monolayer and Multilayer Thin Films Raymond E optical2 and electronic3 properties. One of the outstanding challenges in this area is to devise synthetic with specific electronic, magnetic, optical, catalytic, and other properties. Toward this goal, perovskite

  2. TILE at Iowa: Adoption and Adaptation

    ERIC Educational Resources Information Center

    Florman, Jean C.

    2014-01-01

    This chapter introduces a University of Iowa effort to enhance and support active learning pedagogies in technology-enhanced (TILE) classrooms and three elements that proved essential to the campus-wide adoption of those pedagogies. It then describes the impact of those professional development efforts on the curricula and cultures of three…

  3. Precision Crystal Calorimeters in High Energy Physics

    ScienceCinema

    Ren-Yuan Zhu

    2010-01-08

    Precision crystal calorimeters traditionally play an important role in high energy physics experiments. In the last two decades, it faces a challenge to maintain its precision in a hostile radiation environment. This paper reviews the performance of crystal calorimeters constructed for high energy physics experiments and the progress achieved in understanding crystal?s radiation damage as well as in developing high quality scintillating crystals for particle physics. Potential applications of new generation scintillating crystals of high density and high light yield, such as LSO and LYSO, in particle physics experiments is also discussed.

  4. Commissioning of the ATLAS Liquid Argon Calorimeter

    E-print Network

    S. Laplace

    2010-05-17

    The in-situ commissioning of the ATLAS liquid argon calorimeter is taking place since three years. During this period, it has been fully tested by means of frequent calibration runs, and the analysis of the large cosmic muon data samples and of the few beam splash events that occurred on September 10th, 2008. This has allowed to obtain a stable set of calibration constants for the first collisions, and to measure the in-situ calorimeter performances that were found to be at the expected level.

  5. Beautiful Math, Part 5: Colorful Archimedean Tilings from Dynamical Systems.

    PubMed

    Ouyang, Peichang; Zhao, Weiguo; Huang, Xuan

    2015-01-01

    The art of tiling originated very early in the history of civilization. Almost every known human society has made use of tilings in some form or another. In particular, tilings using only regular polygons have great visual appeal. Decorated regular tilings with continuous and symmetrical patterns were widely used in decoration field, such as mosaics, pavements, and brick walls. In science, these tilings provide inspiration for synthetic organic chemistry. Building on previous CG&A “Beautiful Math” articles, the authors propose an invariant mapping method to create colorful patterns on Archimedean tilings (1-uniform tilings). The resulting patterns simultaneously have global crystallographic symmetry and local cyclic or dihedral symmetry. PMID:26594960

  6. Comment on "Penrose Tilings as Jammed Solids"

    E-print Network

    Cristian F. Moukarzel; Gerardo G. Naumis

    2015-07-09

    In a recent letter, Stenull and Lubensky claim that periodic approximants of Penrose tilings, which are generically isostatic, have a nonzero bulk modulus B when disordered, and, therefore, Penrose tilings are good models of jammed packings. The claim of a nonzero B, which is made on the basis of a normal mode analysis of periodic Penrose approximants for a single value of the disorder epsilon, is the central point of their letter: other properties of Penrose tilings, such as the vanishing of the shear modulus, and a flat density of vibrational states, are already shared by most geometrically disordered isostatic networks studied so far. In this comment, Conjugate Gradient is used to solve the elastic equations on approximants with up to 8x10^4 sites for several values of epsilon, to show beyond reasonable doubt that Stenull and Lubensky's claim is incorrect. The bulk modulus of generic Penrose tilings is zero asymptotically. According to our results, B grows as (epsilon^2 L^3) when (epsilon^2 L^3) > 10^2. Stenull and Lubensky seem to have only analyzed one value of epsilon for which saturation is reached at the largest size studied. This led them to a wrong conclusion. We support our results by also considering generic Penrose approximants with fixed boundaries, whose bulk modulus constitutes a strict upper bound for that of periodic systems, finding that these have a vanishing B as well for large L. We conclude that the main point in Stenull and Lubensky letter is unjustified. Penrose tilings are no better models of jammed packings than any of the previously studied isostatic networks with geometric disorder.

  7. Comment on "Penrose Tilings as Jammed Solids"

    NASA Astrophysics Data System (ADS)

    Moukarzel, Cristian F.; Naumis, Gerardo G.

    2015-11-01

    In a recent letter, Stenull and Lubensky claim that periodic approximants of Penrose tilings, which are generically isostatic, have a nonzero bulk modulus B when disordered, and, therefore, Penrose tilings are good models of jammed packings. The claim of a nonzero B, which is made on the basis of a normal mode analysis of periodic Penrose approximants for a single value of the disorder epsilon, is the central point of their letter: other properties of Penrose tilings, such as the vanishing of the shear modulus, and a flat density of vibrational states, are already shared by most geometrically disordered isostatic networks studied so far. In this comment, Conjugate Gradient is used to solve the elastic equations on approximants with up to 8x10^4 sites for several values of epsilon, to show beyond reasonable doubt that Stenull and Lubensky's claim is incorrect. The bulk modulus of generic Penrose tilings is zero asymptotically. According to our results, B grows as (epsilon^2 L^3) when (epsilon^2 L^3) << 10^2, then saturates, and finally decays as (epsilon^2 L^3)^{-2/3} ~ 1/L^2 for epsilon^2 L^3 >> 10^2. Stenull and Lubensky seem to have only analyzed one value of epsilon for which saturation is reached at the largest size studied. This led them to a wrong conclusion. We support our results by also considering generic Penrose approximants with fixed boundaries, whose bulk modulus constitutes a strict upper bound for that of periodic systems, finding that these have a vanishing B as well for large L. We conclude that the main point in Stenull and Lubensky letter is unjustified. Penrose tilings are no better models of jammed packings than any of the previously studied isostatic networks with geometric disorder.

  8. Measurements of the Time Structure of Hadronic Showers in a Scintillator-Tungsten HCAL

    E-print Network

    Simon, Frank

    2011-01-01

    For calorimeter applications requiring precise time stamping, the time structure of hadronic showers in the detector is a crucial issue. This applies in particular to detector concepts for CLIC, where a hadronic calorimeter with tungsten absorbers is being considered to achieve a high level of shower containment while satisfying strict space constraints. The high hadronic background from gamma gamma to hadrons processes at 3 TeV in combination with the 2 GHz bunch crossing frequency at CLIC requires good time stamping in the detectors. To provide first measurements of the time structure in a highly granular scintillator-tungsten calorimeter, T3B, a dedicated timing experiment, was installed behind the last layer of the CALICE WHCAL prototype, a 30 layer tungsten scintillator calorimeter. T3B consists of 15 small scintillator cells with embedded silicon photomultipliers, read out with fast digitizers over a time window of 2.4 us, and provides detailed measurements of the time structure of the signal. The offli...

  9. Test beam results with LuAG fibers for next-generation calorimeters

    NASA Astrophysics Data System (ADS)

    Lucchini, M.; Medvedeva, T.; Pauwels, K.; Tully, C.; Heering, A.; Dujardin, C.; Lebbou, K.; Lecoq, P.; Auffray, E.

    2013-10-01

    For the next generation of calorimeters, designed to improve the energy resolution of hadrons and jet measurements, there is a need for highly granular detectors that require peculiar geometries. Inorganic scintillators can provide good stopping power to allow compact calorimeter designs together with an excellent energy resolution. The micropulling-down technique allows to grow crystal fibers with high aspect ratio providing good granularity. Designs based on dual-readout could also be considered since the host matrices of extrinsic scintillators behave as a Cherenkov radiator in the absence of the scintillating dopant. We report here about results obtained with crystal fibers of 22 cm length and 2 mm diameter of lutetium aluminium garnet (LuAG, Lu3Al5O12). The response of such fibers in a high energy physics environment has been investigated through a test beam campaign at the CERN PS facility using electrons in the 50-150 GeV energy range. The results, proving the potential of LuAG fibers for calorimetry applications, have been used to validate a Geant4 simulation which allowed to study different configuration of a fiber-based detector. Possible implementations of the crystal fibers technology into a real calorimeter are also discussed.

  10. Grout Analysis for EC and CC Calorimeters

    SciTech Connect

    Engstrom, L.L.; /Fermilab

    1987-01-06

    The EC and CC calorimeters roll on Two parallel hardened steel ways which reside on the top of the D0 platform's center beam. The ways will be grouted to the center beam once their correct elevation has been established. The purpose of this report is to evaluate and compare three different epoxy grouts and their properties for this application.

  11. SLD liquid argon calorimeter prototype test results

    SciTech Connect

    Dubois, R.; Eigen, G.; Au, Y.; Sleeman, J.; Breidenbach, M.; Brau, J.; Ludgate, G.A.; Oram, C.J.; Cook, V.; Johnson, J.

    1985-10-01

    The results of the SLD test beam program for the selection of a calorimeter radiator composition within a liquid argon system are described, with emphasis on the study of the use of uranium to obtain equalization of pion and electron responses.

  12. Design, fabrication, and tests of a metallic shell tile thermal protection system for space transportation

    NASA Technical Reports Server (NTRS)

    Macconochie, Ian O.; Kelly, H. Neale

    1989-01-01

    A thermal protection tile for earth-to-orbit transports is described. The tiles consist of a rigid external shell filled with a flexible insulation. The tiles tend to be thicker than the current Shuttle rigidized silica tiles for the same entry heat load but are projected to be more durable and lighter. The tiles were thermally tested for several simulated entry trajectories.

  13. gFEX, the ATLAS Calorimeter Level-1 Real Time Processor

    E-print Network

    Tang, Shaochun; The ATLAS collaboration; Chen, Hucheng; Lanni, Francesco; Takai, Helio; Wu, Weihao

    2015-01-01

    The global feature extractor (gFEX) is a component of the Level-1 Calorimeter trigger Phase-I upgrade for the ATLAS experiment. It is intended to identify patterns of energy associated with the hadronic decays of high momentum Higgs, W, & Z bosons, top quarks, and exotic particles in real time at the LHC crossing rate. The single processor board will be packaged in an Advanced Telecommunications Computing Architecture (ATCA) module and implemented as a fast reconfigurable processor based on three Xilinx Vertex Ultra-scale FPGAs. The board will receive coarse-granularity information from all the ATLAS calorimeters on 276 optical fibers with the data transferred at the 40 MHz Large Hadron Collider (LHC) clock frequency. The gFEX will be controlled by a single system-on-chip processor, ZYNQ, that will be used to configure all the processor Field-Programmable Gate Array (FPGAs), monitor board health, and interface to external signals. Now, the pre-prototype board which includes one ZYNQ and one Vertex-7 FPGA ...

  14. Boeing's High Voltage Solar Tile Test Results

    NASA Technical Reports Server (NTRS)

    Reed, Brian J.; Harden, David E.; Ferguson, Dale C.; Snyder, David B.

    2002-01-01

    Real concerns of spacecraft charging and experience with solar array augmented electrostatic discharge arcs on spacecraft have minimized the use of high voltages on large solar arrays despite numerous vehicle system mass and efficiency advantages. Boeing's solar tile (patent pending) allows high voltage to be generated at the array without the mass and efficiency losses of electronic conversion. Direct drive electric propulsion and higher power payloads (lower spacecraft weight) will benefit from this design. As future power demand grows, spacecraft designers must use higher voltage to minimize transmission loss and power cable mass for very large area arrays. This paper will describe the design and discuss the successful test of Boeing's 500-Volt Solar Tile in NASA Glenn's Tenney chamber in the Space Plasma Interaction Facility. The work was sponsored by NASA's Space Solar Power Exploratory Research and Technology (SERT) Program and will result in updated high voltage solar array design guidelines being published.

  15. Nondestructive evaluation of hollow clay tile walls

    SciTech Connect

    Wynn, C.C.; Fletcher, W.M.; Jones, W.D.

    1992-03-12

    Experiments have been conducted using sonics, ultrasonics, infrared thermography, and microwave NDE techniques on hollow clay tile masonry construction at the Department of Energy Oak Ridge Y-12 Plant in Oak Ridge, Tennessee. The experiments are part of a major test program to evaluate the seismic and wind load capacity of existing hollow clay tile infilled steel frame buildings at the Y-12 Plant and to recommended the extent of retrofit required to ensure these structures will meet the current requirements for natural hazards survival. Many of the techniques that showed promise in bench top experiments proved to be disappointing for in situ evaluations. For the problem definitions specific to the Y-12 Plant test program, at least two NDE techniques continue to justify funding of further development into a useful methodology: infrared thermography and low power microwave spectrography.

  16. Research and Development for a Free-Running Readout System for the ATLAS LAr Calorimeters at the High Luminosity LHC

    E-print Network

    Hils, Maximilian; The ATLAS collaboration

    2015-01-01

    The ATLAS Liquid Argon (LAr) Calorimeters were designed and built to measure electromagnetic and hadronic energy in proton-proton collisions produced at the Large Hadron Collider (LHC) at centre-of-mass energies up to \\SI{14}{\\tera\\electronvolt} and instantaneous luminosities up to \\SI{d34}{\\per\\centi\\meter\\squared\\per\\second}. The High Luminosity LHC (HL-LHC) programme is now developed for up to 5-7 times the design luminosity, with the goal of accumulating an integrated luminosity of \\SI{3000}{\\per\\femto\\barn}. In the HL-LHC phase, the increased radiation levels require a replacement of the front-end (FE) electronics of the LAr Calorimeters. Furthermore, the ATLAS trigger system is foreseen to increase the trigger accept rate and the trigger latency which requires a larger data volume to be buffered. Therefore, the LAr Calorimeter read-out will be exchanged with a new FE and a high bandwidth back-end (BE) system for receiving data from all \

  17. Testing of hollow clay tile masonry prisms

    SciTech Connect

    Jones, W.D.; Butala, M.B.

    1993-10-15

    This paper presents test results of 610-mm wide (24-in.) by 1219-mm high (48-in.) by 203-or 330-mm (8- or 13-in.) thick prisms constructed of hollow clay tiles. Three prisms were extracted fro existing hollow clay title walls and 69 were constructed in laboratories at The University of Tennessee and the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland. Modulus of Elasticity, E, and compressive strength f{prime}{sub m} were calculated from the results.

  18. FITS Tile Compression in the NOAO DMS

    NASA Astrophysics Data System (ADS)

    Stobie, E.; Seaman, R.; Barg, I.

    2009-09-01

    The NOAO Data Management system (DMS) captures data from eleven NOAO and partner telescopes and transports these data from three mountaintops to replicate them between three data centers both North and South of the equator. Image files are annotated, remediated, ingested, and persisted through interfaces of the NOAO Science Archive. Wide-field optical and infrared images flow out of the archive, through the NOAO High Performance Pipeline creating several new data products that flow back into the archive. Raw, pipeline-reduced, and survey data products, both proprietary and post-proprietary, are made available through the NOAO Portal using VO standards and services. Each of these several steps requires access to both image data and metadata in the form of image header keywords. Measures of storage efficiency and throughput characterize performance, cost, schedule, and risk in a matrix across all telescopes and all subsystems. Anything that impedes access to data or metadata diminishes throughput, thus slowing schedules, increasing costs, revealing risks, and adversely affecting performance. The familiar gzip compression algorithm is often used to increase data storage efficiency. However, gzip actually reduces throughput due to initial and recurring overhead of compression and later uncompression. For example, if metadata for an image require remediation, the whole image must be compressed, uncompressed, and compressed again. By contrast, the FITS tile convention using the Rice algorithm achieves about 40% better compression than gzip in just one-third the time. Image headers remain readable such that images often need never be uncompressed at all; metadata can be simply edited in place. Further, a library such as CFITSIO can support tile compression as a native image format. The pixel tiling feature means that for applications such as a cutout service, only the tiles overlapping the desired image section need be uncompressed.

  19. Interference Lattice-based Loop Nest Tilings for Stencil Computations

    NASA Technical Reports Server (NTRS)

    VanderWijngaart, Rob F.; Frumkin, Michael

    2000-01-01

    A common method for improving performance of stencil operations on structured multi-dimensional discretization grids is loop tiling. Tile shapes and sizes are usually determined heuristically, based on the size of the primary data cache. We provide a lower bound on the numbers of cache misses that must be incurred by any tiling, and a close achievable bound using a particular tiling based on the grid interference lattice. The latter tiling is used to derive highly efficient loop orderings. The total number of cache misses of a code is the sum of (necessary) cold misses and misses caused by elements being dropped from the cache between successive loads (replacement misses). Maximizing temporal locality is equivalent to minimizing replacement misses. Temporal locality of loop nests implementing stencil operations is optimized by tilings that avoid data conflicts. We divide the loop nest iteration space into conflict-free tiles, derived from the cache miss equation. The tiling involves the definition of the grid interference lattice an equivalence class of grid points whose images in main memory map to the same location in the cache-and the construction of a special basis for the lattice. Conflicts only occur on the boundaries of the tiles, unless the tiles are too thin. We show that the surface area of the tiles is bounded for grids of any dimensionality, and for caches of any associativity, provided the eccentricity of the fundamental parallelepiped (the tile spanned by the basis) of the lattice is bounded. Eccentricity is determined by two factors, aspect ratio and skewness. The aspect ratio of the parallelepiped can be bounded by appropriate array padding. The skewness can be bounded by the choice of a proper basis. Combining these two strategies ensures that pathologically thin tiles are avoided. They do not, however, minimize replacement misses per se. The reason is that tile visitation order influences the number of data conflicts on the tile boundaries. If two adjacent tiles are visited successively, there will be no replacement misses on the shared boundary. The iteration space may be covered with pencils larger than the size of the cache while avoiding data conflicts if the pencils are traversed by a scanning-face method. Replacement misses are incurred only on the boundaries of the pencils, and the number of misses is minimized by maximizing the volume of the scanning face, not the volume of the tile. We present an algorithm for constructing the most efficient scanning face for a given grid and stencil operator. In two dimensions it is based on a continued fraction algorithm. In three dimensions it follows Voronoi's successive minima algorithm. We show experimental results of using the scanning face, and compare with canonical loop orderings.

  20. Foam-on-Tile Damage Model

    NASA Technical Reports Server (NTRS)

    Koharchik, Michael; Murphy, Lindsay; Parker, Paul

    2012-01-01

    An impact model was developed to predict how three specific foam types would damage the Space Shuttle Orbiter insulating tiles. The inputs needed for the model are the foam type, the foam mass, the foam impact velocity, the foam impact incident angle, the type being impacted, and whether the tile is new or aged (has flown at least one mission). The model will determine if the foam impact will cause damage to the tile. If it can cause damage, the model will output the damage cavity dimensions (length, depth, entry angle, exit angle, and sidewall angles). It makes the calculations as soon as the inputs are entered (less than 1 second). The model allows for the rapid calculation of numerous scenarios in a short time. The model was developed from engineering principles coupled with significant impact testing (over 800 foam impact tests). This model is applicable to masses ranging from 0.0002 up to 0.4 pound (0.09 up to 181 g). A prior tool performed a similar function, but was limited to the assessment of a small range of masses and did not have the large test database for verification. In addition, the prior model did not provide outputs of the cavity damage length, entry angle, exit angle, or sidewall angles.

  1. Generating Closed Shapes from Regular Tilings

    NASA Astrophysics Data System (ADS)

    Boo, William O. J.; Mattern, Daniell L.

    2002-08-01

    Closed geometrical shapes may be obtained from a hexagonal tiling by substituting 12 pentagons for hexagons and fusing the appropriate edges. Such geometrical shapes describe the fullerenes, demonstrating that this mathematical rule has utility in structural chemistry. Closure from a hexagonal tiling may also be obtained by substituting six squares; or four triangles; or combinations of pentagons (one point each), squares (two points each), and triangles (three points each) so that the total is 12 points. Similar recipes exist for obtaining closed shapes from tetragonal or trigonal tilings. Structures thus obtained may evolve into additional structures having the same symmetry in a manner similar to the evolution of the Archimedean solids from the Platonic solids. Important examples include the deltahedra, a group of eight convex polyhedra consisting of all triangles and belonging to high-symmetry point groups. These polyhedra evolve into additional high symmetry shapes, many of which have already found use in describing the structures of molecules, ions, and clusters.

    Featured on the Cover

    See Featured Molecules.

  2. Laser printing of enamels on tiles

    NASA Astrophysics Data System (ADS)

    Fernández-Pradas, J. M.; Restrepo, J. W.; Gómez, M. A.; Serra, P.; Morenza, J. L.

    2007-07-01

    A Nd:YAG laser beam is used as a tool to print patterns of coloured enamels on tile substrates. For this, the laser beam is scanned over a layer of raw enamel previously sprayed on the tile surface. The possibility to focus the laser energy to heat a small zone without affecting the rest of the piece presents some advantages in front of traditional furnace techniques in which the whole piece has to be heated; among them, energy saving and the possibility to apply enamels with higher melting temperatures than those of the substrate. In this work, we study the effects of laser irradiation of a green enamel, based in chromium oxide pigment and lead frit, deposited on a white tile substrate. Lines obtained with different combinations of laser beam power and scan speeds were investigated with the aim to optimize the process from the point of view of the quality of the patterns. For this purpose, the morphology of the lines and their cross-sections is studied. The results show that lines with good visual properties can be printed with the laser. The characteristics of the marked lines were found to be directly related with the accumulated energy density delivered. Moreover, there is a linear relationship between the accumulated energy density and the volume of melted material. A minimum accumulated energy density is required to melt a shallow zone of the glazed substrate to allow the adhesion of the enamelled lines.

  3. Hadron spectroscopy

    SciTech Connect

    Cooper, S.

    1985-10-01

    Heavy quark systems and glueball candidates, the particles which are relevant to testing QCD, are discussed. The review begins with the heaviest spectroscopically observed quarks, the b anti-b bound states, including the chi state masses, spins, and hadronic widths and the non-relativistic potential models. Also, P states of c anti-c are mentioned. Other heavy states are also discussed in which heavy quarks combine with lighter ones. The gluonium candidates iota(1460), theta(1700), and g/sub T/(2200) are then covered. The very lightest mesons, pi-neutral and eta, are discussed. 133 refs., 24 figs., 16 tabs. (LEW)

  4. 55. QUARRY TILE CUTTERS, SECOND FLOOR, NORTH WING. WORKERS PRESSED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    55. QUARRY TILE CUTTERS, SECOND FLOOR, NORTH WING. WORKERS PRESSED THE CUTTERS INTO SLABS OF CLAY, LIFTED THEM ONTO DRYING BOARDS AND PRESSED THE PLUNGERS TO RELEASE THE CUT TILES. REPRODUCTIONS CUTTERS ARE NOT USED IN PRODUCTION. WOODEN FORMS FOR PRODUCING CLAY SLABS WITH ROLLING PINS REST AGAINST THE WALL. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  5. X-Ray Calorimeter Arrays for Astrophysics

    NASA Technical Reports Server (NTRS)

    Kilbourne, Caroline A.

    2009-01-01

    High-resolution x-ray spectroscopy is a powerful tool for studying the evolving universe. The grating spectrometers on the XMM and Chandra satellites started a new era in x-ray astronomy, but there remains a need for instrumentation that can provide higher spectral resolution with high throughput in the Fe-K band (around 6 keV) and can enable imaging spectroscopy of extended sources, such as supernova remnants and galaxy clusters. The instrumentation needed is a broad-band imaging spectrometer - basically an x-ray camera that can distinguish tens of thousands of x-ray colors. The potential benefits to astrophysics of using a low-temperature calorimeter to determine the energy of an incident x-ray photon via measurement of a small change in temperature was first articulated by S. H. Moseley over two decades ago. In the time since, technological progress has been steady, though full realization in an orbiting x-ray telescope is still awaited. A low-temperature calorimeter can be characterized by the type of thermometer it uses, and three types presently dominate the field. The first two types are temperature-sensitive resistors - semiconductors in the metal-insulator transition and superconductors operated in the superconducting-normal transition. The third type uses a paramagnetic thermometer. These types can be considered the three generations of x-ray calorimeters; by now each has demonstrated a resolving power of 2000 at 6 keV, but only a semiconductor calorimeter system has been developed to spaceflight readiness. The Soft X-ray Spectrometer on Astro-H, expected to launch in 2013, will use an array of silicon thermistors with I-IgTe x-ray absorbers that will operate at 50 mK. Both the semiconductor and superconductor calorimeters have been implemented in small arrays, kilo-pixel arrays of the superconducting calorimeters are just now being produced, and it is anticipated that much larger arrays will require the non-dissipative advantage of magnetic thermometers.

  6. NASA TileWorld manual (system version 2.2)

    NASA Technical Reports Server (NTRS)

    Philips, Andrew B.; Bresina, John L.

    1991-01-01

    The commands are documented of the NASA TileWorld simulator, as well as providing information about how to run it and extend it. The simulator, implemented in Common Lisp with Common Windows, encodes a particular range in a spectrum of domains, for controllable research experiments. TileWorld consists of a two dimensional grid of cells, a set of polygonal tiles, and a single agent which can grasp and move tiles. In addition to agent executable actions, there is an external event over which the agent has not control; this event correspond to a 'gust of wind'.

  7. 29 CFR 570.64 - Occupations involved in the manufacture of brick, tile, and kindred products (Order 13).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...Brick, hollow structural tile, sewer pipe and kindred products, refractories, and other clay products such as architectural terra cotta, glazed structural tile, roofing tile, stove lining, chimney pipes and tops, wall coping, and drain tile....

  8. Advanced Thin Ionization Calorimeter (ATIC) Update

    NASA Technical Reports Server (NTRS)

    Ahn, H. S.; Ganel, O.; Kim, K. C.; Seo, E. S.; Sina, R.; Wang, J. Z.; Wu, J.; Case, G.; Ellison, S. B.; Gould, R.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) experiment is designed to measure the composition and energy spectra of Z = 1 to 28 cosmic rays over the energy range of approximately 10 GeV - 100 TeV. ATIC is comprised of an eight-layer, 18 radiation length deep Bismuth Germanate (BGO) calorimeter, downstream of a 0.75 nuclear interaction length graphite target and an approximately 1 sq m finely segmented silicon charge detector. Interleaved with the graphite layers are three scintillator strip hodoscopes for pre-triggering and tracking. ATIC flew for the first time on a Long Duration Balloon (LDB) launched from McMurdo, Antarctica in January 2001. During its 16-day flight ATIC collected more than 30 million science events, along with housekeeping, calibration, and rate data. This presentation will describe the ATIC data processing, including calibration and efficiency corrections, and show results from analysis of this dataset. The next launch is planned for December 2002.

  9. Level-2 Calorimeter Trigger Upgrade at CDF

    SciTech Connect

    Flanagan, G.U.; /Purdue U.

    2007-04-01

    The CDF Run II Level-2 calorimeter trigger is implemented in hardware and is based on an algorithm used in Run I. This system insured good performance at low luminosity obtained during the Tevatron Run II. However, as the Tevatron instantaneous luminosity increases, the limitations of the current system due to the algorithm start to become clear. In this paper, we will present an upgrade of the Level-2 calorimeter trigger system at CDF. The upgrade is based on the Pulsar board, a general purpose VME board developed at CDF and used for upgrading both the Level-2 tracking and the Level-2 global decision crate. This paper will describe the design, hardware and software implementation, as well as the advantages of this approach over the existing system.

  10. LYSO crystal calorimeter readout with silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Berra, A.; Bonvicini, V.; Cecchi, C.; Germani, S.; Guffanti, D.; Lietti, D.; Lubrano, P.; Manoni, E.; Prest, M.; Rossi, A.; Vallazza, E.

    2014-11-01

    Large area Silicon PhotoMultipliers (SiPMs) are the new frontier of the development of readout systems for scintillating detectors. A SiPM consists of a matrix of parallel-connected silicon micropixels operating in limited Geiger-Muller avalanche mode, and thus working as independent photon counters with a very high gain (~106). This contribution presents the performance in terms of linearity and energy resolution of an electromagnetic homogeneous calorimeter composed of 9 ~ 18X0 LYSO crystals. The crystals were readout by 36 4×4 mm2 SiPMs (4 for each crystal) produced by FBK-irst. This calorimeter was tested at the Beam Test Facility at the INFN laboratories in Frascati with a single- and multi-particle electron beam in the 100-500 MeV energy range.

  11. Symmetries and color symmetries of a family of tilings with a singular point.

    PubMed

    Evidente, Imogene F; Felix, Rene P; Loquias, Manuel Joseph C

    2015-11-01

    Tilings with a singular point are obtained by applying conformal maps on regular tilings of the Euclidean plane and their symmetries are determined. The resulting tilings are then symmetrically colored by applying the same conformal maps on colorings of regular tilings arising from sublattice colorings of the centers of the tiles. In addition, conditions are determined in order that the coloring of a tiling with singularity that is obtained in this manner is perfect. PMID:26522407

  12. Troubleshooting guide for Mound calorimeter systems

    SciTech Connect

    Breakall, K.L.; Duff, M.F.; Rodenburg, W.W.

    1988-06-29

    This report is to be used as a tool for troubleshooting Mound calorimeter systems. It describes in simple language the equilibration, prediction, and servo-control modes of operation. A problem-cause-action table provides suggestions and, in some cases, directs personnel to one of six troubleshooting flow charts included in the report. Using the flow charts, laboratory personnel should be able to rcognize and troubleshoot most problems that occur. 4 figs., 1 tab.

  13. Performance of the CDF miniplug calorimeters

    SciTech Connect

    M. Gallinaro

    2003-04-09

    Two Miniplug calorimeters, designed to measure the energy and lateral position of particles in the forward pseudorapidity region of 3.6 < |{eta}| < 5.1, have been installed as part of the CDF upgraded detector for Run II at the Tevatron. Proton-antiproton beams are colliding at {radical}s = 1.96 TeV. One year after installation, Miniplug detector performance and first results are presented.

  14. Monte Carlo simulation of HERD calorimeter

    NASA Astrophysics Data System (ADS)

    Xu, M.; Chen, G. M.; Dong, Y. W.; Lu, J. G.; Quan, Z.; Wang, L.; Wang, Z. G.; Wu, B. B.; Zhang, S. N.

    2014-07-01

    The High Energy cosmic-Radiation Detection (HERD) facility onboard China's Space Station is planned for operation starting around 2020 for about 10 years. It is designed as a next generation space facility focused on indirect dark matter search, precise cosmic ray spectrum and composition measurements up to the knee energy, and high energy gamma-ray monitoring and survey. The calorimeter plays an essential role in the main scientific objectives of HERD. A 3-D cubic calorimeter filled with high granularity crystals as active material is a very promising choice for the calorimeter. HERD is mainly composed of a 3-D calorimeter (CALO) surrounded by silicon trackers (TK) from all five sides except the bottom. CALO is made of 9261 cubes of LYSO crystals, corresponding to about 55 radiation lengths and 3 nuclear interaction lengths, respectively. Here the simulation results of the performance of CALO with GEANT4 and FLUKA are presented: 1) the total absorption CALO and its absorption depth for precise energy measurements (energy resolution: 1% for electrons and gammarays beyond 100 GeV, 20% for protons from 100 GeV to 1 PeV); 2) its granularity for particle identification (electron/proton separation power better than 10-5); 3) the homogenous geometry for detecting particles arriving from every unblocked direction for large effective geometrical factor (<3 m2sr for electron and diffuse gammarays, >2 m2sr for cosmic ray nuclei); 4) expected observational results such as gamma-ray line spectrum from dark matter annihilation and spectrum measurement of various cosmic ray chemical components.

  15. An absorbed dose calorimeter for IMRT dosimetry

    NASA Astrophysics Data System (ADS)

    Duane, S.; Aldehaybes, M.; Bailey, M.; Lee, N. D.; Thomas, C. G.; Palmans, H.

    2012-10-01

    A new calorimeter for dosimetry in small and complex fields has been built. The device is intended for the direct determination of absorbed dose to water in moderately small fields and in composite fields such as IMRT treatments, and as a transfer instrument calibrated against existing absorbed dose standards in conventional reference conditions. The geometry, materials and mode of operation have been chosen to minimize detector perturbations when used in a water phantom, to give a reasonably isotropic response and to minimize the effects of heat transfer when the calorimeter is used in non-reference conditions in a water phantom. The size of the core is meant to meet the needs of measurement in IMRT treatments and is comparable to the size of the air cavity in a type NE2611 ionization chamber. The calorimeter may also be used for small field dosimetry. Initial measurements in reference conditions and in an IMRT head and neck plan, collapsed to gantry angle zero, have been made to estimate the thermal characteristics of the device, and to assess its performance in use. The standard deviation (estimated repeatability) of the reference absorbed dose measurements was 0.02 Gy (0.6%).

  16. A calorimeter for neutron flux measurement. Final report

    SciTech Connect

    Chupp, T.E.

    1993-04-01

    A calorimeter for absolute neutron flux measurement has been built and tested. The calorimeter measures the heat produced in a 10{degrees}K thick LiPb target when neutrons are captured via the {sup 6}Li(n,{sup 3}H){sup 4}He reaction. The sensitivity achieved was 1.3x10{sup 6} n/s for a 1 hour measurement. Separate flux measurements with the calorimeter and a {sup 238}U fission chamber are in agreement and show that systematic errors are less than 3%. An improved calorimeter has been built which is sensitive to 10{sup 5} n/s for a 1 hour measurement.

  17. Complex tiling patterns in liquid crystals

    PubMed Central

    Tschierske, C.; Nürnberger, C.; Ebert, H.; Glettner, B.; Prehm, M.; Liu, F.; Zeng, X.-B.; Ungar, G.

    2012-01-01

    In this account recent progress in enhancing the complexity of liquid crystal self-assembly is highlighted. The discussed superstructures are formed mainly by polyphilic T-shaped and X-shaped molecules composed of a rod-like core, tethered with glycerol units at both ends and flexible non-polar chain(s) in lateral position, but also related inverted molecular structures are considered. A series of honeycomb phases composed of polygonal cylinders ranging from triangular to hexagonal, followed by giant cylinder honeycombs is observed for ternary T-shaped polyphiles on increasing the size of the lateral chain(s). Increasing the chain size further leads to new modes of lamellar organization followed by three-dimensional and two-dimensional structures incorporating branched and non-branched axial rod-bundles. Grafting incompatible chains to opposite sides of the rod-like core leads to quaternary X-shaped polyphiles. These form liquid crystalline honeycombs where different cells are filled with different material. Projected on an Euclidian plane, all honeycomb phases can be described either by uniformly coloured Archimedean and Laves tiling patterns (T-shaped polyphiles) or as multi-colour tiling patterns (X-shaped polyphiles). It is shown that geometric frustration, combined with the tendency to segregate incompatible chains into different compartments and the need to find a periodic tiling pattern, leads to a significant increase in the complexity of soft self-assembly. Mixing of different chains greatly enhances the number of possible ‘colours’ and in this way, periodic structures comprising up to seven distinct compartments can be generated. Relations to biological self-assembly are discussed shortly. PMID:24098852

  18. Vortex states in Archimedean tiling pinning arrays

    NASA Astrophysics Data System (ADS)

    Ray, D.; Reichhardt, C.; Olson Reichhardt, C. J.

    2014-07-01

    We numerically study vortex ordering and pinning in Archimedean tiling substrates composed of square and triangular plaquettes. The two different plaquettes become occupied at different vortex densities, producing commensurate peaks in the magnetization at non-integer matching fields. We find that as the field increases, in some cases the fraction of occupied pins can decrease due to the competition between fillings of the different plaquette types. We also identify a number of different types of vortex orderings as a function of the field at integer and non-integer commensurate fillings.

  19. Complexity of cutting words on regular tilings Pascal Hubert

    E-print Network

    Hubert, Pascal

    Complexity of cutting words on regular tilings Pascal Hubert and Laurent Vuillon Abstract: We show that the complexity of a cutting word u in a regular tiling by a polyomino Q is equal to Pn in the infinite word u and where the boundary of Q is constructed by 2p horizontal and 2q vertical unit segments

  20. ENUMERATION OF TILINGS OF DIAMONDS AND HEXAGONS WITH DEFECTS

    E-print Network

    Gessel, Ira M.

    ENUMERATION OF TILINGS OF DIAMONDS AND HEXAGONS WITH DEFECTS HARALD A. HELFGOTT AND IRA M. GESSEL Abstract. We show how to count tilings of Aztec diamonds and hexagons with defects using determinants diamond of order n is the union of all unit squares with integral vertices contained within the region |x

  1. Low-Density, Aerogel-Filled Thermal-Insulation Tiles

    NASA Technical Reports Server (NTRS)

    Santos, Maryann; Heng, Vann; Barney, Andrea; Oka, Kris; Droege, Michael

    2005-01-01

    Aerogel fillings have been investigated in a continuing effort to develop low-density thermal-insulation tiles that, relative to prior such tiles, have greater dimensional stability (especially less shrinkage), equal or lower thermal conductivity, and greater strength and durability. In preparation for laboratory tests of dimensional and thermal stability, prototypes of aerogel-filled versions of recently developed low-density tiles have been fabricated by impregnating such tiles to various depths with aerogel formations ranging in density from 1.5 to 5.6 lb/ft3 (about 53 to 200 kg/cu m). Results available at the time of reporting the information for this article showed that the thermal-insulation properties of the partially or fully aerogel- impregnated tiles were equivalent or superior to those of the corresponding non-impregnated tiles and that the partially impregnated tiles exhibited minimal (<1.5 percent) shrinkage after multiple exposures at a temperature of 2,300 F (1,260 C). Latest developments have shown that tiles containing aerogels at the higher end of the density range are stable after multiple exposures at the said temperature.

  2. METHOD FOR EVALUATING MOLD GROWTH ON CEILING TILE

    EPA Science Inventory

    A method to extract mold spores from porous ceiling tiles was developed using a masticator blender. Ceiling tiles were inoculated and analyzed using four species of mold. Statistical analysis comparing results obtained by masticator extraction and the swab method was performed. T...

  3. Improving Efficiency of 3-SAT-Solving Tile Systems

    NASA Astrophysics Data System (ADS)

    Brun, Yuriy

    The tile assembly model has allowed the study of the nature's process of self-assembly and the development of self-assembling systems for solving complex computational problems. Research into this model has led to progress in two distinct classes of computational systems: Internet-sized distributed computation, such as software architectures for computational grids, and molecular computation, such as DNA computing. The design of large complex tile systems that emulate Turing machines has shown that the tile assembly model is Turing universal, while the design of small tile systems that implement simple algorithms has shown that tile assembly can be used to build private, fault-tolerant, and scalable distributed software systems and robust molecular machines. However, in order for these types of systems to compete with traditional computing devices, we must demonstrate that fairly simple tile systems can implement complex and intricate algorithms for important problems. The state of the art, however, requires vastly complex tile systems with large tile sets to implement such algorithms.

  4. A MODIFICATION OF THE PENROSE APERIODIC TILING VIVIAN OLSIEWSKI HEALEY

    E-print Network

    Kahng, Byung-Jay

    them has intrigued scientists, mathematicians, and enthusiasts for centuries. Johannes Kepler, most. It contained more than 20,000 square tiles (now referred to as Wang tiles) with different edge colorings. The question of the domino problem was essentially whether there existed an algorithm to determine whether

  5. Drainage water management effects on tile discharge and water quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen (N) fluxes from tile drained watersheds have been implicated in water quality studies of the Mississippi River Basin, but the contribution of tile drains to N export in headwater watersheds is not well understood. The objective of this study was to ascertain seasonal and annual contribution...

  6. The tilings of Kari and E. Arthur Robinson, Jr.

    E-print Network

    Robinson Jr., E. Arthur (Robbie)

    . · In a valid tiling, colors of adjacent edges must match. · Essentialy a 2-dimensional SFT, · (any 2-d SFT can Fibonacci SFT. #12;Finite state machine #12;Hao Wang, 1961 · Studied problem of existence of a valid tiling of the plane. · Equivalently: every nonempty 2-dimensional SFT has a periodic orbit. · (Wang did not use

  7. ONCOGENOMICS Genomic profiling of malignant melanoma using tiling-resolution

    E-print Network

    Ringnér, Markus

    ONCOGENOMICS Genomic profiling of malignant melanoma using tiling-resolution arrayCGH G Jo¨ nsson1, Lund, Sweden Malignant melanoma is an aggressive, heterogeneous disease where new biomarkers pathogenesis using 47 different melanoma cell lines and tiling-resolution bacter- ial artificial chromosome

  8. Computerized Machine for Cutting Space Shuttle Thermal Tiles

    NASA Technical Reports Server (NTRS)

    Ramirez, Luis E.; Reuter, Lisa A.

    2009-01-01

    A report presents the concept of a machine aboard the space shuttle that would cut oversized thermal-tile blanks to precise sizes and shapes needed to replace tiles that were damaged or lost during ascent to orbit. The machine would include a computer-controlled jigsaw enclosed in a clear acrylic shell that would prevent escape of cutting debris. A vacuum motor would collect the debris into a reservoir and would hold a tile blank securely in place. A database stored in the computer would contain the unique shape and dimensions of every tile. Once a broken or missing tile was identified, its identification number would be entered into the computer, wherein the cutting pattern associated with that number would be retrieved from the database. A tile blank would be locked into a crib in the machine, the shell would be closed (proximity sensors would prevent activation of the machine while the shell was open), and a "cut" command would be sent from the computer. A blade would be moved around the crib like a plotter, cutting the tile to the required size and shape. Once the tile was cut, an astronaut would take a space walk for installation.

  9. 8 IEEE INTELLIGENT SYSTEMS Sliding-tile puzzles and Rubik's

    E-print Network

    Littman, Michael L.

    8 IEEE INTELLIGENT SYSTEMS Sliding-tile puzzles and Rubik's Cube in AI research Richard E. Korf, University of California, Los Angeles The best-known sliding-tile puzzle is the Fifteen Puzzle, shown in Figure 1a. Other sizes include the 3 × 3 Eight Puzzle and the 5 × 5 Twenty-Four Puzzle. The standard 3

  10. Creative Tiling: A Story of 1000-and-1 Curves

    ERIC Educational Resources Information Center

    Al-Darwish, Nasir

    2012-01-01

    We describe a procedure that utilizes symmetric curves for building artistic tiles. One particular curve was found to mesh nicely with hundreds other curves, resulting in eye-catching tiling designs. The results of our work serve as a good example of using ideas from 2-D graphics and algorithms in a practical web-based application.

  11. FRACTAL TILES ASSOCIATED WITH SHIFT RADIX SYSTEMS ERIE BERTH

    E-print Network

    FRACTAL TILES ASSOCIATED WITH SHIFT RADIX SYSTEMS VAL â?? ERIE BERTH â?? E, ANNE SIEGEL, WOLFGANG to fractal shapes, such as the classical Rauzy fractal and the twin dragon. These fractals turned out a collection of fractal tiles with shift radix systems. We show that for certain classes of parameters r

  12. Removal of nutrient and pesticides from tile drainage discharge using an end-of-tile cartridge approach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutrient transport from subsurface tile drainage is pretty well documented. One approach receiving consideration for reducing the amount of nutrients and pesticides in subsurface drainage waters is end-of-tile filters. The filters are often comprised of industrial wastes or by-products that have a s...

  13. TECHNICAL DESIGN REPORT FOR A NOSECONE CALORIMETER (NCC) FOR THE PHENIX EXPERIMENT.

    SciTech Connect

    PHENIX EXPERIMENT; OBRIEN,E.; BOOSE, S.; CHIU, M.; JOHNSON, B.M.; KISTENEV, E.P.; LYNCH, D.; NOUICER, R.; PAK, R.; PISANI, R.; STOLL, S.P.; SUKHANOV, A.; WOODY, C.L.; LI, Z.; RADEKA, V.; RESCIA, S.

    2007-08-01

    A remarkable result has emerged from the first several years of data taking at RHIC--the high temperature and density phase of QCD matter created in heavy ion collisions at RHIC is best described as a near perfect fluid--the strongly interacting Quark-Gluon-Plasma (sQGP). This state is characterized by a small viscosity to entropy ratio, and a high density of color charges which induces huge energy losses of partons transversing the medium. The task for the future is to understand the characteristics of the sQGP, and perhaps more importantly--to gain some insight into how and why such a medium is created. The PHENIX detector has been one of the primary experimental tools at RHIC; in particular the electromagnetic calorimeter has been a critical component of many of the measurements leading to this discovery. The coverage of the present PHENIX electromagnetic calorimeter is rather limited, covering half the azimuth and -0.35< {eta} <0.35 Further progress requires larger coverage of electromagnetic calorimetry, both to increase the rate for low cross section phenomena, and to cover a broader range of pseudorapidity to study the rapidity dependence of the medium. A pair of Nosecone Calorimeters (NCC) has been designed covering both positive and negative rapidity regions 1< |{eta}| <3 of the PHENIX detector. The NCC will make it possible to perform tomographic studies of the jet energy dependence of energy loss and medium response, by using direct photons as trigger particles over a large rapidity range. The technique of correlating trigger hadrons with low momentum hadrons has been powerfully exploited at RHIC to study the evolution of back to back jets [1, 2] and hence the response of the medium. The NCC will make it possible to do such studies using direct photons as the trigger particles. The direct photon in such ''photon-jet'' events tags the transverse momentum of outgoing parton which then fragments into lower energy particles. Together with the Forward Silicon Vertex detector (FVTX), the NCC will make PHENIX a large acceptance spectrometer, capable of detecting photons, electrons, muons, and hadrons. Our prime motivation is to provide precision measurements of direct photons, {pi}{sup 0}s and dielectrons in A+A, p(d)+A, and polarized p+p collisions. The upgrade will provide access to physics observables that are not currently accessible to PHENIX or that are now available only indirectly with very limited accuracy.

  14. Ac loss calorimeter for three-phase cable

    SciTech Connect

    Daney, D.E.; Boenig, H.J.; Maley, M.P.; McMurry, D.E.; DeBlanc, B.G.

    1996-10-01

    A calorimeter for measuring ac losses in meter-long lengths of HTS superconducting power transmission line cables is described. The calorimeter, which is based on a temperature difference technique, has a precision of 1 mW and measures single, two-phase (coupling), and three-phase losses. The measurements show significant coupling losses between phases.

  15. Construction, assembly and tests of the ATLAS electromagnetic barrel calorimeter

    E-print Network

    Aubert, B; Colas, Jacques; Delebecque, P; Di Ciaccio, L; El-Kacimi, M; Ghez, P; Girard, C; Gouanère, M; Goujdami, D; Jérémie, A; Jézéquel, S; Lafaye, R; Massol, N; Perrodo, P; Przysiezniak, H; Sauvage, G; Thion, J; Wingerter-Seez, I; Zitoun, R; Zolnierowski, Y; Alforque, R; Chen, H; Farrell, J; Gordon, H; Grandinetti, R; Hackenburg, R W; Hoffmann, A; Kierstead, J A; Köhler, J; Lanni, F; Lissauer, D; Ma, H; Makowiecki, D S; Müller, T; Norton, S; Radeka, V; Rahm, David Charles; Rehak, M; Rajagopalan, S; Rescia, S; Sexton, K; Sondericker, J; Stumer, I; Takai, H; Belymam, A; Benchekroun, D; Driouichi, C; Hoummada, A; Hakimi, M; Knee, Michael; Stroynowski, R; Wakeland, B; Datskov, V I; Drobin, V; Aleksa, Martin; Bremer, J; Carli, T; Chalifour, M; Chevalley, J L; Djama, F; Ema, L; Fabre, C; Fassnacht, P; Gianotti, F; Gonidec, A; Hansen, J B; Hervás, L; Hott, T; Lacaste, C; Marin, C P; Pailler, P; Pleskatch, A; Sauvagey, D; Vandoni, Giovanna; Vuillemin, V; Wilkens, H; Albrand, S; Belhorma, B; Collot, J; de Saintignon, P; Dzahini, D; Ferrari, A; Fulachier, J; Gallin-Martel, M L; Hostachy, J Y; Laborie, G; Ledroit-Guillon, F; Martin, P; Muraz, J F; Ohlsson-Malek, F; Saboumazrag, S; Viret, S; Othegraven, R; Zeitnitz, C; Banfi, D; Carminati, L; Cavalli, D; Citterio, M; Costa, G; Delmastro, M; Fanti, M; Mandelli, L; Mazzanti, M; Tartarelli, F; Augé, E; Baffioni, S; Bonis, J; Bonivento, W; Bourdarios, C; de La Taille, C; Fayard, L; Fournier, D; Guilhem, G; Imbert, P; Iconomidou-Fayard, L; Le Meur, G; Mencik, M; Noppe, J M; Parrour, G; Puzo, P; Rousseau, D; Schaffer, A C; Seguin-Moreau, N; Serin, L; Unal, G; Veillet, J J; Wicek, F; Zerwas, D; Astesan, F; Bertoli, W; Canton, B; Fleuret, F; Imbault, D; Lacour, D; Laforge, B; Schwemling, P; Abouelouafa, M; Ben-Mansour, A; Cherkaoui, R; El-Mouahhidi, Y; Ghazlane, H; Idrissi, A; Bazizi, K; England, D; Glebov, V; Haelen, T; Lobkowicz, F; Slattery, P F; Belorgey, J; Besson, N; Boonekamp, M; Durand, D; Ernwein, J; Mansoulié, B; Molinie, F; Meyer, J P; Perrin, P; Schwindling, J; Taguet, J P; Zaccone, Henri; Lund-Jensen, B; Rydström, S; Tayalati, Y; Botchev, B; Finocchiaro, G; Hoffman, J; McCarthy, R L; Rijssenbeek, M; Steffens, J; Zdrazil, M; Braun, H M

    2006-01-01

    The construction and assembly of the two half barrels of the ATLAS central electromagnetic calorimeter and their insertion into the barrel cryostat are described. The results of the qualification tests of the calorimeter before installation in the LHC ATLAS pit are given.

  16. Performances of the NA48 Liquid Krypton calorimeter

    E-print Network

    Guillaume Unal

    2000-12-05

    The NA48 experiments aims at a precise measurement of direct CP violation in the neutral Kaon system. This puts stringent requirements on the electromagnetic calorimeter used to detect photons of average energy 25 GeV. The choice of NA48 is a quasi homogeneous Liquid Krypton calorimeter with fast readout. The operation of this device and the performances achieved are described.

  17. Calorimeter measurements of low wattage items

    SciTech Connect

    Cremers, T.L.; Camp, K.L.; Hildner, S.S.; Sedlacek, W.A.

    1993-08-01

    The transition of DOE facilities from production to decontamination and decommissioning has led to more measurements of waste, scrap, and other less attractive materials. The difficulty that these materials pose for segmented gamma scanning and neutron counting has increased the use of calorimetric assay for very low wattage items (< 250 millwatts). We have measured well characterized {sup 238}Pu oxide ranging in wattage from 25 to 500 milliwatts in the calorimeters at the Los Alamos Plutonium Facility and report the error and the precision of the measurements.

  18. Results on damage induced by high-energy protons in LYSO calorimeter crystals

    E-print Network

    Dissertori, G

    2014-01-01

    Lutetium-Yttrium Orthosilicate doped with Cerium (LYSO:Ce), as a bright scintillating crystal, is a candidate for calorimetry applications in strong ionizing-radiation fields and large high-energy hadron fluences as are expected at the CERN Large Hadron Collider after the planned High-Luminosity upgrade. There, proton-proton collisions will produce fast hadron fluences up to ~5E14/cm^2 in the large-rapidity regions of the calorimeters. The performance of LYSO:Ce has been investigated, after exposure to different fluences of 24 GeV/c protons. Measured changes in optical transmission as a function of proton fluence are presented, and the evolution over time due to spontaneous recovery at room temperature is studied. The activation of materials will also be an issue in the described environment. Studies of the ambient dose induced by LYSO and its evolution with time, in comparison with other scintillating crystals, have also been performed through measurements and FLUKA simulations.

  19. Closed Gap Slug Calorimeter for Plasma Stream Characterization

    NASA Technical Reports Server (NTRS)

    Nawaz, Anuscheh; Gorbunov, Sergey; Terrazas-Salinas, Imelda; Jones, Steven M.

    2012-01-01

    Slug calorimeters are used in sheer and stagnation mode to characterize heat flux levels for high enthalpy streams. The traditional design features a gap between slug and holder, which can be of concern in these convective heat flux environments. The challenge is to develop a calorimeter that closes the gap to gas flow, but largely maintains thermal insulation of the slug. The work presented herein introduces two new slug calorimeter designs featuring a closed gap. This is done using either aerogel as a filler or press fitting the slug with a disk. The designs were verified and compared to the baseline calorimeter design under radiative heat flux. Building on this, the calorimeters were exposed to convective heat flux in the arc-jet facilities. Results from the new designs and conclusions on the impact of the gap in convective heat flux will be shown.

  20. ITER-like wall sliced beryllium tiles The JET Enhanced Performance 2 (EP2) shutdown

    E-print Network

    of the vessel and the installation of ~2700 new individual assemblies. The tile designs are very sensitive. The design constraints of the new limiter tile assemblies meant that the tile fixing bolt access hole could no longer be in the front face of the tile. The design therefore evolved into the use of hidden fixing bolts

  1. Introduction/Background Tiling to soccer ball Group theory Further questions Higher Genus Soccer Balls

    E-print Network

    Broughton, S. Allen

    Introduction/Background Tiling to soccer ball Group theory Further questions Higher Genus Soccer;Introduction/Background Tiling to soccer ball Group theory Further questions Outline 1 Introduction/Background Credits Why soccer balls? Kaleidoscopic tilings 2 Tiling to soccer ball Cayley Graph Construction

  2. D-0 End Calorimeter Warm Tube/TeV Dry Air Purge

    SciTech Connect

    Leibfritz, J.R.; /Fermilab

    1991-08-14

    This Engineering Note studies the design of the Dry Air Purge that is going to flow through the Warm Tube of the End Calorimeter of the D-O Calorimeter. The Tev tubes through the E.C. can be thought of as a cluster of concentric tubes: The Tev tube, the warm (vacuum vessel) tube, 15 layers of superinsulation, the cold (argon vessel) tube, and the Inner Hadronic center support tube. The Dry Air Purge will involve flowing Dry Air through the annular region between the Warm Tube and the Tev Beam Pipe. This air flow is intended to prevent condensation from forming in this region which could turn to ice under cryogenic temperatures. Any ice formed in this gap, could cause serious problems when these tubes are moved. The Air will flow through a Nylon Tube Fitting -1/4-inch I.D. to 1/8-inch male pipe thread (Cole Palmer YB-06465-15) see Drawing MC-295221 (Appendix A). This fitting will be attached to the Nylon 2-inch Tube-Wiper and Seal Assembly which is clamped to the ends of the Warm Tube (Appendix A). This note includes drawings and calculations that explain the setup of the Dry Air Purge and give the required information on the pressure drops through the setup. The Equations and properties used in the calculations were obtained from the Applied Fluid Dynamics Handbook by Robert D. Blevins and Fluid Dynamics Second Edition by Frank M. White.

  3. The design of the data acquisition system for a very large bismuth germanate calorimeter

    SciTech Connect

    Bakken, J.; Isaila, M.; Piroue, P.; Stickland, D.; Sumner, R.

    1984-02-01

    LEPC, the Large Electron Positron Collider being built at CERN, will be ready for experiments in 1988. A large array of bismuth germanate crystals will be part of one of the first experiments to be installed. Particles (including photons) resulting from the collisions will be identified and measured in the surrounding detector. At the center of this composite detector is a tracking device to observe the trajectories of all particles. Beyond this is the bismuth germanate array; it will measure the energy of electrons and photons from a few MeV to 100 GeV. This is surrounded by the hadron calorimeter. The bismuth germanate calorimeter will consist of about 12,000 individual bismuth germanate crystals. Each crystal will have an independent readout system. This system uses silicon photodiodes, each with its own ADC, to measure the scintillation light from each crystal. The ADC is implemented in software in a single chip microcomputer, using a modification of successive approximation, which produces a very wide dynamic range. The microcomputer also provides data buffering and several other housekeeping functions. The initial design of the readout system, presented in this paper, evolved from an attempt to minimize the size requirements and the number of cables needed, and to meet the dynamic range requirement in a practical way.

  4. gFEX, the ATLAS Calorimeter Level 1 Real Time Processor

    E-print Network

    Tang, Shaochun; The ATLAS collaboration

    2015-01-01

    The global feature extractor (gFEX) is a component of the Level-1Calorimeter trigger Phase-I upgrade for the ATLAS experiment. It is intended to identify patterns of energy associated with the hadronic decays of high momentum Higgs, W, & Z bosons, top quarks, and exotic particles in real time at the LHC crossing rate. The single processor board will be packaged in an Advanced Telecommunications Computing Architecture (ATCA) module and implemented as a fast reconfigurable processor based on three Xilinx Ultra-scale FPGAs. The board will receive coarse-granularity information from all the ATLAS calorimeters on 264 optical fibers with the data transferred at the 40 MHz LHC clock frequency. The gFEX will be controlled by a single system-on-chip processor, ZYNQ, that will be used to configure all the processor FPGAs, monitor board health, and interface to external signals. Now, the pre-prototype board which includes one ZYNQ and one Vertex-7 FPGA has been designed for testing and verification. The performance ...

  5. Liquid Argon Calorimeter Performance at High Rates

    NASA Astrophysics Data System (ADS)

    Seifert, Frank

    2012-12-01

    The expected increase of luminosity at HL-LHC by a factor of ten with respect to LHC luminosities has serious consequences for the signal reconstruction, radiation hardness requirements and operations of the ATLAS liquid-argon calorimeters in the endcap, respectively forward region. Small modules of each type of calorimeter have been built and exposed to a high intensity proton beam of 50 GeV at IHEP/Protvino. The beam is extracted via the bent crystal technique, offering the unique opportunity to cover intensities ranging from 106 p/s up to 3 . 1011 p/s. This exceeds the deposited energy per time expected at HL-LHC by more than a factor of 100. The correlation between beam intensity and the read-out signal has been studied. The data show clear indications of pulse shape distortion due to the high ionization build-up, in agreement with MC expectations. This is also confirmed from the dependence of the HV currents on beam intensity.

  6. Transportable calorimeter measurements of highly enriched uranium

    SciTech Connect

    Rudy, C.; Bracken, D.S.; Staples, P.; Carrillo, L.

    1997-11-01

    A sensitive calorimeter has been combined with a small temperature-controlled water bath to compose a transportable system that is capable of measuring multikilogram quantities of highly enriched uranium (HEU). The sample chamber size, 5 in. in diameter by 10 in. high, is large enough to hold sufficient HEU metal or high-grade scrap to provide a measurable thermal signal. Calorimetric measurements performed on well-characterized material indicate that the thermal power generated by 93% {sup 235}U samples with 1.0% {sup 234}U can be measured with a precision of about 1% (1 sigma) for 4-kg samples. The transportable system consists of a twin-bridge calorimeter installed inside a 55-gal. stainless steel drum filled with water with heating and cooling supplied by a removable thermoelectric module attached to the side. Isotopic measurements using high-resolution gamma-ray measurements of the HEU samples and analysis with the FRAM code were used to determine the isotopic ratios and specific power of the samples. This information was used to transform the measured thermal power into grams of HEU. Because no physical standards are required, this system could be used for the verification of plutonium, {sup 238}Pu heat sources, or large quantities of metal or other high-grade matrix forms of HEU.

  7. Hypervelocity impact testing of Shuttle Orbiter thermal protection system tiles

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L.; Ortega, Javier

    1990-01-01

    Results are presented from a series of 22 hypervelocity impact tests carried out on the thermal protection system (TPS) for the Shuttle Orbiter. Both coated and uncoated low-density (0.14 g/cu cm) LI-900 and high-density (0.35 g/cu cm) LI-2200 tiles were tested. The results are used to develop the penetration and damage correlations which can be used in meteoroid and debris hazard analyses for spacecraft with a ceramic tile TPS. It is shown that tile coatings act as a 'bumper' to fragment the impacting projectile, with thicker coating providing increased protection.

  8. 57. ORIGINAL TILE PRESS AND EXPERIMENTAL DENTAL KILN, SECOND FLOOR, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    57. ORIGINAL TILE PRESS AND EXPERIMENTAL DENTAL KILN, SECOND FLOOR, NORTH WING, HENRY MERCER USED THE KILN FOR HIS EARLIEST GLAZE TESTS. THE PRESS WAS DESIGNED TO BE USED WITH METAL CASED MOLDS. SINCE ONLY THE EARLIEST TILE DESIGNS ARE IN METAL CASES. THIS TECHNIQUE WAS PROBABLY DISCONTINUED. THIS PRESS WAS, THEREFORE, PROBABLY NOT USED EXTENSIVELY AT THIS SITE. THE UPPER PART OF GLAZE KILN No. 2 IS AT THE LEFT REAR. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  9. Soft error rate estimations of the Kintex-7 FPGA within the ATLAS Liquid Argon (LAr) Calorimeter

    NASA Astrophysics Data System (ADS)

    Wirthlin, M. J.; Takai, H.; Harding, A.

    2014-01-01

    This paper summarizes the radiation testing performed on the Xilinx Kintex-7 FPGA in an effort to determine if the Kintex-7 can be used within the ATLAS Liquid Argon (LAr) Calorimeter. The Kintex-7 device was tested with wide-spectrum neutrons, protons, heavy-ions, and mixed high-energy hadron environments. The results of these tests were used to estimate the configuration ram and block ram upset rate within the ATLAS LAr. These estimations suggest that the configuration memory will upset at a rate of 1.1 × 10-10 upsets/bit/s and the bram memory will upset at a rate of 9.06 × 10-11 upsets/bit/s. For the Kintex 7K325 device, this translates to 6.85 × 10-3 upsets/device/s for configuration memory and 1.49 × 10-3 for block memory.

  10. D0 Decomissioning : Storage of Depleted Uranium Modules Inside D0 Calorimeters after the Termination of D0 Experiment

    SciTech Connect

    Sarychev, Michael; /Fermilab

    2011-09-21

    Dzero liquid Argon calorimeters contain hadronic modules made of depleted uranium plates. After the termination of DO detector's operation, liquid Argon will be transferred back to Argon storage Dewar, and all three calorimeters will be warmed up. At this point, there is no intention to disassemble the calorimeters. The depleted uranium modules will stay inside the cryostats. Depleted uranium is a by-product of the uranium enrichment process. It is slightly radioactive, emits alpha, beta and gamma radiation. External radiation hazards are minimal. Alpha radiation has no external exposure hazards, as dead layers of skin stop it; beta radiation might have effects only when there is a direct contact with skin; and gamma rays are negligible - levels are extremely low. Depleted uranium is a pyrophoric material. Small particles (such as shavings, powder etc.) may ignite with presence of Oxygen (air). Also, in presence of air and moisture it can oxidize. Depleted uranium can absorb moisture and keep oxidizing later, even after air and moisture are excluded. Uranium oxide can powder and flake off. This powder is also pyrographic. Uranium oxide may create health problems if inhaled. Since uranium oxide is water soluble, it may enter the bloodstream and cause toxic effects.

  11. Research and Development for a Free-Running Readout System for the ATLAS LAr Calorimeters at the High Luminosity LHC

    E-print Network

    Hils, Maximilian; The ATLAS collaboration

    2015-01-01

    The ATLAS Liquid Argon (LAr) Calorimeters were designed and built to measure electromagnetic and hadronic energy in proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to $10^{34} \\text{cm}^{-2} \\text{s}^{-1}$. The High Luminosity LHC (HL-LHC) programme is now developed for up to 5-7 times the design luminosity, with the goal of accumulating an integrated luminosity of $3000~\\text{fb}^{-1}$. In the HL-LHC phase, the increased radiation levels require a replacement of the front-end electronics of the LAr Calorimeters. Furthermore, the ATLAS trigger system is foreseen to increase the trigger accept rate by a factor 10 to 1 MHz and the trigger latency by a factor of 20 which requires a larger data volume to be buffered. Therefore, the LAr Calorimeter read-out will be exchanged with a new front-end and a high bandwidth back-end system for receiving data from all 186.000 channels at 40 MHz LHC bunch-crossing frequency and for off-detector buffering...

  12. GEANT SIMULATIONS OF PRESHOWER CALORIMETER FOR CLAS12 UPGRADE OF THE FORWARD ELECTROMAGNETIC CALORIMETER

    SciTech Connect

    Whitlow, K.; Stepanyan, S.

    2007-01-01

    Hall B at the Thomas Jefferson National Accelerator Facility uses the CEBAF (Continuous Electron Beam Accelerator Facility) Large Acceptance Spectrometer (CLAS) to study the structure of the nucleon. An upgrade from a 6 GeV beam to a 12GeV beam is currently planned. With the beam energy upgrade, more high-energy pions will be created from the interaction of the beam and the target. Above 6GeV, the angle between the two-decay photons of high-energy pions becomes too small for the current electromagnetic calorimeter (EC) of CLAS to differentiate between two photon clusters and single photon events. Thus, a preshower calorimeter will be added in front of the EC to enable fi ner granularity and ensure better cluster separation for all CLAS experiments at higher energies. In order to optimize cost without compromising the calorimeter’s performance, three versions of the preshower, varying in number of scintillator and lead layers, were compared by their resolution and effi ciency. Using GSIM, a GEANT detector simulation program for CLAS, the passage of neutral pions and single photons through CLAS and the new preshower calorimeter (CLAS12 EC) was studied. The resolution of the CLAS12 EC was calculated from the Gaussian fi t of the sampling fraction, the energy CLAS12 EC detected over the Monte Carlo simulated energy. The single photon detection effi ciency was determined from the energy and position of the photon hits. The fractional energy resolution measured was ?E/E = 0.0972 in the fi ve-module version, 0.111 in the four-module version, and 0.149 in the three-module version. Both the fi ve- and four-module versions had 99% single photon detection effi ciency above 0.5GeV while the 3 module version had 99% effi ciency above 1.5GeV. Based on these results, the suggested preshower confi guration is the four-module version containing twelve layers of scintillator and fi fteen layers of lead. This version provides a reasonable balance of resolution, effi ciency, and cost. Additional GSIM simulations will be undertaken to verify that the four-module version has acceptable ?° mass reconstruction and to continue Research and Development (R&D) analysis on the preshower calorimeter.

  13. QCD in hadron-hadron collisions

    SciTech Connect

    Albrow, M.

    1997-03-01

    Quantum Chromodynamics provides a good description of many aspects of high energy hadron-hadron collisions, and this will be described, along with some aspects that are not yet understood in QCD. Topics include high E{sub T} jet production, direct photon, W, Z and heavy flavor production, rapidity gaps and hard diffraction.

  14. 12. FIREPLACE: TILES AND CARVED WOOD PANEL. IN THE LATTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. FIREPLACE: TILES AND CARVED WOOD PANEL. IN THE LATTER READS THE WORDS OF THE MORRIS FAMILY'S HOMES: CEDAR GROVE, A.D. 1774 AND COMPTON, A.D. 1887. - Compton, Meadowbrook Avenue, Philadelphia, Philadelphia County, PA

  15. South front, west part, showing wrought iron gates and tiling ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    South front, west part, showing wrought iron gates and tiling at the former main entrance. - San Bernardino Valley College, Life Science Building, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  16. Measurement of Tritium Surface Distribution on TFTR Bumper Limiter Tiles

    SciTech Connect

    K. Sugiyama; T. Tanabe; C.H. Skinner; C.A. Gentile

    2004-06-28

    The tritium surface distribution on graphite tiles used in the Tokamak Fusion Test Reactor (TFTR) bumper limiter and exposed to TFTR deuterium-tritium (D-T) discharges from 1993 to 1997 was measured by the Tritium Imaging Plate Technique (TIPT). The TFTR bumper limiter shows both re-/co-deposition and erosion. The tritium images for all tiles measured are strongly correlated with erosion and deposition patterns, and long-term tritium retention was found in the re-/co-depositions and flakes. The CFC tiles located at erosion dominated areas clearly showed their woven structure in their tritium images owing to different erosion yields between fibers and matrix. Significantly high tritium retention was observed on all sides of the erosion tiles, indicating carbon transport via repetition of local erosion/deposition cycles.

  17. 45. Everett, Weinreb, photographer DETAIL, CEMENT TILE PATTERN FROM RECEPTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. Everett, Weinreb, photographer DETAIL, CEMENT TILE PATTERN FROM RECEPTION HALL LOOKING EAST ACROSS ARRIVAL LOBBY FLOOR - Los Angeles Union Passenger Terminal, Tracks & Shed, 800 North Alameda Street, Los Angeles, Los Angeles County, CA

  18. 44. Everett Weinreb, photographer DETAIL, CEMENT TILE PATTERN, FROM LOGGIA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. Everett Weinreb, photographer DETAIL, CEMENT TILE PATTERN, FROM LOGGIA LOOKING EAST ACROSS RECEPTION HALL - Los Angeles Union Passenger Terminal, Tracks & Shed, 800 North Alameda Street, Los Angeles, Los Angeles County, CA

  19. 25. CAFETERIA Note remains of tile floor in foreground. Food ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. CAFETERIA Note remains of tile floor in foreground. Food cooked on the stove was served to workers in the eating area to the left of the counter (off picture). - Hovden Cannery, 886 Cannery Row, Monterey, Monterey County, CA

  20. Electric Polarizability of Hadrons

    SciTech Connect

    Joe Christensen; Frank X. Lee; Walter Wilcox; Leming Zhou

    2003-05-01

    The electric polarizability of a hadron allows an external electric field to shift the hadron mass. We try to calculate the electric polarizability for several hadrons from their quadratic response to the field at a = 0.17fm using an improved gauge field and the clover quark action. Results are compared to experiment where available.

  1. Hadron Spectroscopy and Structure

    SciTech Connect

    Isgur, Nathan

    1992-08-01

    In this talk I review and comment upon recent developments in hadron spectroscopy and structure. The talk is organized into three main sections dealing with heavy quarkonia (QQ(bar)), hadrons containing a single heavy quark (Qq(bar) and Qqq), and hadrons containing only light quarks and glue, although I will emphasize a surprising unity of the phenomena characterizing these systems.

  2. 56. ORIGINAL MOLDS. THE MORAVIAN POTTERY AND TILE WORKS HAS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    56. ORIGINAL MOLDS. THE MORAVIAN POTTERY AND TILE WORKS HAS APPROXIMATELY 6,000 PLASTER MOLDS OF VARIOUS TYPES, INCLUDING THE DEEP CAVITY MOLDS IN THE CENTER OF THE PHOTOGRAPH. THESE MOLDS PRODUCED ALLEGORICAL FIGURES TO BE INSTALLED AROUND THE CORNICES OF PUBLIC SCHOOLS. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  3. No inherent glassiness in a Penrose tiling quasicrystal

    SciTech Connect

    Strandburg, K.J.; Dressel, P.R.

    1988-11-01

    Consideration of the structure of the Penrose pattern has led to speculation that a system with a Penrose tiling ground state might be subject to inherent glassy behavior. Monte Carol simulations show, using a simple model of the energetics, that there is no inherent glassiness in the Penrose tiling. Thermodynamic quantities measured are completely reversible, displaying no observable hysterisis, and the system may be easily cooled from a highly disordered configuration into its lowest energy state. 11 refs., 7 figs.

  4. On the Minimum Weight Steiner Triangular Tiling problem

    SciTech Connect

    Doddi, S.; Zhu, B.

    1995-04-01

    In this paper, we introduce the Minimum Weight Steiner Triangular Tiling problem, which is a generalization of the Minimum Weight Steiner Triangulation. Contrary to the conjecture of Eppstein that the Minimum Weight Steiner Triangulation of a convex polygon has the property that the Steiner points all lie on the boundary of the polygon [Epp94], we show that the Steiner points of a Minimum Weight Steiner Triangular Tiling could lie in the interior of a convex polygon.

  5. Ternary and senary representations using DNA double-crossover tiles

    E-print Network

    Kim, Byeonghoon; Son, Junyoung; Kim, Junghoon; Hwang, Si Un; Dugasani, Sreekantha Reddy; Kim, Min Hyeok; Kim, Byung-Dong; Chang, Iksoo; Liu, Wing Kam; Kim, Moon Ki; Park, Sung Ha

    2016-01-01

    The information capacity of double-crossover (DX) tiles was successfully increased beyond a binary representation to higher base representations. By controlling the length and the position of DNA hairpins on the DX tile, ternary and senary (base-3 and base-6) digit representations were realized and verified by atomic force microscopy (AFM). Also, normal mode analysis (NMA) was carried out to study the mechanical characteristics of each structure.

  6. Detailed Tritium Distribution on the JET MK IIA Divertor Tiles

    SciTech Connect

    Sugiyama, K.; Tanabe, T.; Bekris, N.; Glugla, M.; Coad, J.P.

    2005-07-15

    Tritium surface distributions on the plasma-facing surface and four sides of JET Mk IIA divertor tiles employed in the D-T operation phase of JET were measured by Tritium Imaging Plate Technique (TIPT). Tritium distribution on the plasma-facing surface was consistent with carbon deposition profiles and asymmetric in both poloidal and toroidal directions. The toroidal asymmetry was attributed to the alignment of the tiles preventing direct impact of flux lines to tile edges. Accordingly, no significant carbon deposition or tritium accumulation was observed on two sides facing the toroidal direction. As already reported, heavy codeposition retaining high levels of tritium was observed on the plasma-shadow area of the horizontal target tile surface and the bottom side of the vertical target tile of the inner divertor region where it was kept relatively cool by water coolant. In addition, TIPT has clearly distinguished at least two different carbon deposition layers with different tritium retention in poloidal direction, showing that the poloidal asymmetry on the horizontal target tiles is due to the different carbon deposition properties in the poloidal direction. All the results suggest that tritium retention in the divertor area, which was determined by the carbon/hydrocarbon distribution, correlates closely with divertor geometry and surface temperature.

  7. SCA controller for the ATLAS calorimeter

    SciTech Connect

    Gingrich, D.M.; Hewlett, J.C.; Holm, L.

    1997-12-31

    The front-end readout of the ATLAS liquid argon calorimeter will store data locally in analog pipeline memories at the LHC beam crossing frequency of 40 MHz. Switched capacitor array chips meeting the ATLAS readout requirements will be used. These new chips axe capable of simultaneous read and write operations, and allow random access to storage locations. To utilize these essential design features requires a substantial amount of fast control and address bookkeeping logic. We have designed a controller capable of operating the pipelines as analog random access memories and that satisfies the ATLAS readout requirements. The pipeline controller manages the data of 144 time samples and can operate at a mean trigger rate of about 75 kHz, when reading out five time samples per event. We are currently prototyping an integrated version of the controller implemented in a FPGA from Xilinx.

  8. Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment

    NASA Technical Reports Server (NTRS)

    Wefel, John P.; Guzik, T. Gregory

    2001-01-01

    During grant NAG5-5064, Louisiana State University (LSU) led the ATIC team in the development, construction, testing, accelerator validation, pre-deployment integration and flight operations of the Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment. This involved interfacing among the ATIC collaborators (UMD, NRL/MSFC, SU, MSU, WI, SNU) to develop a new balloon payload based upon a fully active calorimeter, a carbon target, a scintillator strip hodoscope and a pixilated silicon solid state detector for a detailed investigation of the very high energy cosmic rays to energies beyond 10(exp 14) eV/nucleus. It is in this very high energy region that theory predicts changes in composition and energy spectra related to the Supernova Remnant Acceleration model for cosmic rays below the "knee" in the all-particle spectrum. This report provides a documentation list, details the anticipated ATIC science return, describes the particle detection principles on which the experiment is based, summarizes the simulation results for the system, describes the validation work at the CERN SPS accelerator and details the balloon flight configuration. The ATIC experiment had a very successful LDB flight from McMurdo, Antarctica in 12/00 - 1/01. The instrument performed well for the entire 15 days. Preliminary data analysis shows acceptable charge resolution and an all-particle power law energy deposition distribution not inconsistent with previous measurements. Detailed analysis is underway and will result in new data on the cosmic ray charge and energy spectra in the GeV - TeV energy range. ATIC is currently being refurbished in anticipation of another LDB flight in the 2002-03 period.

  9. Distribution of patches in tilings and spectral properties of corresponding dynamical systems

    NASA Astrophysics Data System (ADS)

    Nagai, Yasushi

    2015-08-01

    A tiling is a cover of {R}d by tiles such as polygons that overlap only on their borders. A patch is a configuration consisting of finitely many tiles that appears in tilings. From a tiling, we can construct a dynamical system which encodes the nature of the tiling. In the literature, properties of this dynamical system were investigated by studying how patches distribute in each tiling. In this article we conversely research distribution of patches from properties of the corresponding dynamical systems. We show periodic structures are hidden in tilings which are not necessarily periodic. Our results throw light on inverse problem of deducing information of tilings from information of diffraction measures, in quite a general setting.

  10. New method to measure the attenuation of hadrons in extensive air showers

    SciTech Connect

    Apel, W. D.; Badea, F.; Bekk, K.; Bozdog, H.; Daumiller, K.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Gils, H. J.; Haungs, A.; Heck, D.; Huege, T.; Isar, P. G.; Klages, H. O.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Nehls, S.; Oehlschlaeger, J.

    2009-07-15

    Extensive air showers are generated through interactions of high-energy cosmic rays impinging the Earth's atmosphere. A new method is described to infer the attenuation of hadrons in air showers. The numbers of electrons and muons, registered with the scintillator array of the KASCADE experiment, are used to estimate the energy of the shower inducing primary particle. A large hadron calorimeter is used to measure the hadronic energy reaching observation level. The ratio of energy reaching ground level to the energy of the primary particle is used to derive an attenuation length of hadrons in air showers. In the energy range from 10{sup 6} to 3x10{sup 7} GeV the attenuation length obtained increases from 170 to 210 g/cm{sup 2}. The experimental results are compared to predictions of simulations based on contemporary high-energy interaction models.

  11. Orbiter thermal pressure drop characteristics for shuttle orbiter thermal protection system components: High density tile, low density tile, densified low density tile, and strain isolation pad

    NASA Technical Reports Server (NTRS)

    Lawing, P. L.; Nystrom, D. M.

    1980-01-01

    Pressure drop tests were conducted on available samples of low and high density tile, densified low density tile, and strain isolation pads. The results are presented in terms of pressure drop, material thickness and volume flow rate. Although the test apparatus was only capable of a small part of the range of conditions to be encountered in a Shuttle Orbiter flight, the data serve to determine the type of flow characteristics to be expected for each material type tested; the measured quantities also should serve as input for initial venting and flow through analysis.

  12. Recent Developments And Validations in Geant4 Hadronic Physics

    SciTech Connect

    Wright, D.H.; Koi, T.; Folger, G.; Ivanchenko, V.; Kossov, M.; Starkov, N.; Heikkinen, A.; Wellisch, H.P.; /SLAC /CERN /Helsinki Inst. of Phys.

    2007-02-12

    The Geant4 hadronic models cover the entire range of energies required by calorimeters in new and planned experiments. The extension and improvement of the elastic, cascade, parameterized and quark-gluon string models will be discussed. Such improvements include the extension to more particle types, a review and correction of cross sections, and a better treatment of energy and momentum conservation. Concurrent with this development has been a validation program which includes comparisons with double differential cross sections. An ongoing hadronic shower validation will also be discussed which includes the examination of longitudinal shower shapes and the performance of the above models as well as their interaction with electromagnetic processes such as multiple scattering.

  13. Foam on Tile Impact Modeling for the STS-107 Investigation

    NASA Technical Reports Server (NTRS)

    Stellingwerf, R. F.; Robinson, J. H.; Richardson, S.; Evans, S. W.; Stallworth, R.; Hovater, M.

    2004-01-01

    Following the breakup of the Space Shuttle Columbia during reentry a NASA/Contractor investigation team was formed to examine the probable damage inflicted on Orbiter Thermal Protection System elements by impact of External Tank insulating foam projectiles. The authors formed a working subgroup within the larger team to apply the Smooth Particle Hydrodynamics code SPHC to the damage estimation problem. Numerical models of the Orbiter's tiles and of the Tank's foam were constructed and used as inputs into the code. Material properties needed to properly model the tiles and foam were obtained from other working subgroups who performed tests on these items for this purpose. Two- and three-dimensional models of the tiles were constructed, including the glass outer layer, the main body of LI-900 insulation, the densified lower layer of LI-900, the Nomex felt mounting layer, and the Aluminum 2024 vehicle skin. A model for the BX-250 foam including porous compression, elastic rebound, and surface erosion was developed. Code results for the tile damage and foam behavior were extensively validated through comparison with Southwest Research Institute foam-on-tile impact experiments carried out in 1999. These tests involved small projectiles striking individual tiles and small tile arrays. Following code and model validation we simulated impacts of larger foam projectiles on the examples of tile systems used on the Orbiter. Results for impacts on the main landing gear door are presented in this paper, including effects of impacts at several angles, and of rapidly rotating projectiles. General results suggest that foam impacts on tiles at about 500 mph could cause appreciable damage if the impact angle is greater than about 20 degrees. Some variations of the foam properties, such as increased brittleness or increased density could increase damage in some cases. Rotation up to 17 rps failed to increase the damage for the two cases considered. This does not rule out other cases in which the rotational energy might lead to an increase in tile damage, but suggests that in most cases rotation will not be an important factor.

  14. Phase change material in floor tiles for thermal energy storage

    NASA Astrophysics Data System (ADS)

    Lee, Amy Sarah

    Traditional passive solar systems have relied on sensible heat storage for energy savings. Recent research has investigated taking advantage of latent heat storage for additional energy savings. This is accomplished by the incorporation of phase change material into building materials used in traditional passive applications. Trombe walls, ceilings and floors can all be enhanced with phase change materials. This research introduces a new flooring material that incorporates a phase change material ready for commercial manufacture. An agglomerate floor tile containing 20% by mass of encapsulated octadecane has been manufactured. Flexural and compressive strength of 7.4 MPa and 24.5 MPa respectively, were measured for the tile. Peak melting transition temperature was determined to be 27.2°C with a latent heat of 33.9 J/g of tile. Structural and thermal performance of the tile surpassed that of a typical ceramic tile. Each tile was composed of quartz, resin and phase change material. Statistical modeling was performed to analyze the response of flexural and compressive strength on varying amounts of quartz, resin and phase change material. Resulting polynomials described the effect of adding phase change material into the tile. With as little as 10% by mass of phase change material, the strength was reduced to less than 50% of tile without phase change material. It was determined that the maximum phase change material content to attain structural integrity greater than ceramic tile was 20% by mass. The statistical analysis used for this research was based on mixture experiments. A procedure was developed to simplify the selection of data points used in the fit of the polynomials to describe the response of flexural and compressive strengths. Analysis of energy savings using this floor tile containing 20% by mass of phase change material was performed as an addendum to this research. A known static simulation method, SLR (solar load ratio), was adapted to include latent heat storage. In addition a dynamic simulation was also performed using BLAST. The program had to be modified to simulate latent heat storage. Annual heating consumptions from both methods were estimated to be reduced by approximately 5%.

  15. Realtime calibration of the A4 electromagnetic lead fluoride calorimeter

    E-print Network

    S. Baunack; D. Balaguer Ríos; L. Capozza; J. Diefenbach; R. Frascaria; B. Gläser; D. v. Harrach; Y. Imai; R. Kothe; R. Kunne; J. H. Lee; F. E. Maas; M. C. Mora Espí; M. Morlet; S. Ong; E. Schilling; J. van de Wiele; C. Weinrich

    2011-02-28

    Sufficient energy resolution is the key issue for the calorimetry in particle and nuclear physics. The calorimeter of the A4 parity violation experiment at MAMI is a segmented calorimeter where the energy of an event is determined by summing the signals of neighbouring channels. In this case the precise matching of the individual modules is crucial to obtain a good energy resolution. We have developped a calibration procedure for our total absorbing electromagnetic calorimeter which consists of 1022 lead fluoride (PbF_2) crystals. This procedure reconstructs the the single-module contributions to the events by solving a linear system of equations, involving the inversion of a 1022 x 1022-matrix. The system has shown its functionality at beam energies between 300 and 1500 MeV and represents a new and fast method to keep the calorimeter permanently in a well-calibrated state.

  16. The BaBar Electromagnetic Calorimeter: Status and Performance Improvements

    SciTech Connect

    Bauer, Johannes M.; /SLAC

    2006-01-20

    The electromagnetic calorimeter at the BABAR detector, part of the asymmetric B Factory at SLAC, measures photons in the energy range from 20 MeV to 8 GeV with high resolution. The current status of the calorimeter, now in its seventh year of operation, is being presented, as well as details on improvements made to the analysis code during the last years.

  17. Current status and performance of the BESIII electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Fang, Jian; Wang, Zhigang

    2012-12-01

    The design and construction of the BESIII electromagnetic calorimeter is introduced briefly. Radiation dose of CsI(Tl) crystals is monitored and history graph of integral dose of crystals is showed. LED-fiber system is used for monitoring the EMC light output, and large decrease of light output of several crystals is discussed. BESIII electromagnetic calorimeter works very well and its performance reach the design value.

  18. Signal feedthroughs for the ATLAS barrel and endcap calorimeters

    SciTech Connect

    Axen, D.; Hackenburg, R.; Hoffmann, A.; Kane, S.; Lissauer, D.; Makowiecki, D.; Muller, T.; Pate, D.; Radeka, V.; Rahm, D.; Rehak, M.; Rescia, S.; Sexton, K.; Sondericker, J.; Birney, P.; Dowling, A.W.; Fincke-Keeler, M.; Hodges, T.; Holness, F.; Honkanen, N.

    2005-06-15

    The function, design, construction, testing, and installation of the signal feedthroughs for the barrel and endcap ATLAS liquid argon calorimeters are described. The feedthroughs provide a high density and radiation hard method to extract over 200 000 signals from the cryogenic environment of the calorimeters using an application of a design based on flexible kapton circuit board transmission lines. A model to describe the frequency dependent behavior of the transmission lines is also presented.

  19. The electromagnetic calorimeter in JLab Real Compton Scattering Experiment

    SciTech Connect

    Albert Shahinyan; Eugene Chudakov; A. Danagoulian; P. Degtyarenko; K. Egiyan; V. Gorbenko; J. Hines; E. Hovhannisyan; Ch. Hyde; C.W. de Jager; A. Ketikyan; V. Mamyan; R. Michaels; A.M. Nathan; V. Nelyubin; I. Rachek; M. Roedelbrom; A. Petrosyan; R. Pomatsalyuk; V. Popov; J. Segal; Yu. Shestakov; J. Templon; H. Voskanyan; B. Wojtsekhowski

    2007-04-16

    A hodoscope calorimeter comprising of 704 lead-glass blocks is described. The calorimeter was constructed for use in the JLab Real Compton Scattering experiment. The detector provides a measurement of the coordinates and the energy of scattered photons in the GeV energy range with resolutions of 5 mm and 6\\%/$\\sqrt{E_\\gamma \\, [GeV]}$, respectively. Design features and performance parameters during the experiment are presented.

  20. Tiled fuzzy Hough transform for crack detection

    NASA Astrophysics Data System (ADS)

    Vaheesan, Kanapathippillai; Chandrakumar, Chanjief; Mathavan, Senthan; Kamal, Khurram; Rahman, Mujib; Al-Habaibeh, Amin

    2015-04-01

    Surface cracks can be the bellwether of the failure of any component under loading as it indicates the component's fracture due to stresses and usage. For this reason, crack detection is indispensable for the condition monitoring and quality control of road surfaces. Pavement images have high levels of intensity variation and texture content, hence the crack detection is difficult. Moreover, shallow cracks result in very low contrast image pixels making their detection difficult. For these reasons, studies on pavement crack detection is active even after years of research. In this paper, the fuzzy Hough transform is employed, for the first time to detect cracks on any surface. The contribution of texture pixels to the accumulator array is reduced by using the tiled version of the Hough transform. Precision values of 78% and a recall of 72% are obtaining for an image set obtained from an industrial imaging system containing very low contrast cracking. When only high contrast crack segments are considered the values move to mid to high 90%.

  1. Tiling solutions for optimal biological sensing

    NASA Astrophysics Data System (ADS)

    Walczak, Aleksandra M.

    2015-10-01

    Biological systems, from cells to organisms, must respond to the ever-changing environment in order to survive and function. This is not a simple task given the often random nature of the signals they receive, as well as the intrinsically stochastic, many-body and often self-organized nature of the processes that control their sensing and response and limited resources. Despite a wide range of scales and functions that can be observed in the living world, some common principles that govern the behavior of biological systems emerge. Here I review two examples of very different biological problems: information transmission in gene regulatory networks and diversity of adaptive immune receptor repertoires that protect us from pathogens. I discuss the trade-offs that physical laws impose on these systems and show that the optimal designs of both immune repertoires and gene regulatory networks display similar discrete tiling structures. These solutions rely on locally non-overlapping placements of the responding elements (genes and receptors) that, overall, cover space nearly uniformly. xml:lang="fr"

  2. Construction of 2D quasi-periodic Rauzy tiling by similarity transformation

    SciTech Connect

    Zhuravlev, V. G.; Maleev, A. V.

    2009-05-15

    A new approach to constructing self-similar fractal tilings is proposed based on the construction of semigroups generated by a finite set of similarity transformations. The Rauzy tiling-a 2D analog of 1D Fibonacci tiling generated by the golden mean-is used as an example to illustrate this approach. It is shown that the Rauzy torus development and the elementary fractal boundary of Rauzy tiling can be constructed in the form of a set of centers of similarity semigroups generated by two and three similarity transformations, respectively. A centrosymmetric tiling, locally dual to the Rauzy tiling, is constructed for the first time and its parameterization is developed.

  3. 29 CFR 570.64 - Occupations involved in the manufacture of brick, tile, and kindred products (Order 13).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...of plants manufacturing sewer pipe. (2) All work in or about...hollow structural tile, sewer pipe and kindred products, refractories...tile, stove lining, chimney pipes and tops, wall coping, and drain tile. The term shall...

  4. 29 CFR 570.64 - Occupations involved in the manufacture of brick, tile, and kindred products (Order 13).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...of plants manufacturing sewer pipe. (2) All work in or about...hollow structural tile, sewer pipe and kindred products, refractories...tile, stove lining, chimney pipes and tops, wall coping, and drain tile. The term shall...

  5. 29 CFR 570.64 - Occupations involved in the manufacture of brick, tile, and kindred products (Order 13).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...of plants manufacturing sewer pipe. (2) All work in or about...hollow structural tile, sewer pipe and kindred products, refractories...tile, stove lining, chimney pipes and tops, wall coping, and drain tile. The term shall...

  6. Geometric structures in hadronic cores of extensive air showers observed by KASCADE

    SciTech Connect

    Antoni, T.; Glasstetter, R.; Hoerandel, J.R.; Roth, M.; Apel, W.D.; Badea, F.; Bekk, K.; Bozdog, H.; Daumiller, K.; Doll, P.; Engel, R.; Engler, J.; Fessler, F.; Gils, H.J.; Haungs, A.; Heck, D.; Klages, H.O.; Maier, G.; Mathes, H.J.; Mayer, H.J.

    2005-04-01

    The geometric distribution of high-energy hadrons {>=}100 GeV in shower cores measured with the KASCADE calorimeter is analyzed. The data are checked for sensitivity to hadronic interaction features and indications of new physics as discussed in the literature. The angular correlation of the most energetic hadrons and, in particular, the fraction of events with hadrons being aligned are quantified by means of the commonly used parameter {lambda}{sub 4}. The analysis shows that the observed {lambda}{sub 4} distribution is compatible with that predicted by simulations and is not linked to an angular correlation from hadronic jet production at high energy. Another parameter, d{sub 4}{sup max}, describing distances between hadrons measured in the detector, is found to be sensitive both to the transverse momenta in secondary hadron production and the primary particle type. Transverse momenta in high-energy hadron interactions differing by a factor two or more from what is assumed in the standard simulations are disfavored by the measured d{sub 4}{sup max} distribution.

  7. Microwave versus conventional sintering of silicon carbide tiles

    SciTech Connect

    Kass, M.D.; Caughman, J.B.O.; Forrester, S.C.; Akerman, A.

    1997-05-07

    Silicon carbide is being evaluated as an armor material because of its lightweight, high-hardness, and excellent armor efficiency. However, one of the problems associated with silicon carbide is the high cost associated with achieving fully dense tiles. Full density requires either hot pressing and sintering or reaction bonding. Past efforts have shown that hot pressed tiles have a higher armor efficiency than those produced by reaction bonded sintering. An earlier stuy showed that the acoustic properties of fully-dense silicon carbide tiles were enhanced through the use of post-sintered microwave heat treatments. One of the least expensive forming techniques is to isostatically press-and-sinter. In this study, the authors have used microwave energy to densify silicon carbide green bodies. Microwave sintering has been demonstrated to be a very quick way to sinter ceramics such as alumina to exceptionally high densities. Previous work has shown that microwave post treatment of fully-dense reaction bonded silicon carbide tiles significantly improves the acoustic properties of the tiles. These properties include Poisson`s ratio, Young`s modulus, shear modulus, and bulk modulus.

  8. Analysis of Thick Sandwich Shells with Embedded Ceramic Tiles

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.; Smith, C.; Lumban-Tobing, F.

    1996-01-01

    The Composite Armored Vehicle (CAV) is an advanced technology demonstrator of an all-composite ground combat vehicle. The CAV upper hull is made of a tough light-weight S2-glass/epoxy laminate with embedded ceramic tiles that serve as armor. The tiles are bonded to a rubber mat with a carefully selected, highly viscoelastic adhesive. The integration of armor and structure offers an efficient combination of ballistic protection and structural performance. The analysis of this anisotropic construction, with its inherent discontinuous and periodic nature, however, poses several challenges. The present paper describes a shell-based 'element-layering' technique that properly accounts for these effects and for the concentrated transverse shear flexibility in the rubber mat. One of the most important advantages of the element-layering technique over advanced higher-order elements is that it is based on conventional elements. This advantage allows the models to be portable to other structural analysis codes, a prerequisite in a program that involves the computational facilities of several manufacturers and government laboratories. The element-layering technique was implemented into an auto-layering program that automatically transforms a conventional shell model into a multi-layered model. The effects of tile layer homogenization, tile placement patterns, and tile gap size on the analysis results are described.

  9. Investigation of registration algorithms for the automatic tile processing system

    NASA Technical Reports Server (NTRS)

    Tamir, Dan E.

    1995-01-01

    The Robotic Tile Inspection System (RTPS), under development in NASA-KSC, is expected to automate the processes of post-flight re-water-proofing and the process of inspection of the Shuttle heat absorbing tiles. An important task of the robot vision sub-system is to register the 'real-world' coordinates with the coordinates of the robot model of the Shuttle tiles. The model coordinates relate to a tile data-base and pre-flight tile-images. In the registration process, current (post-flight) images are aligned with pre-flight images to detect the rotation and translation displacement required for the coordinate systems rectification. The research activities performed this summer included study and evaluation of the registration algorithm that is currently implemented by the RTPS, as well as, investigation of the utility of other registration algorithms. It has been found that the current algorithm is not robust enough. This algorithm has a success rate of less than 80% and is, therefore, not suitable for complying with the requirements of the RTPS. Modifications to the current algorithm has been developed and tested. These modifications can improve the performance of the registration algorithm in a significant way. However, this improvement is not sufficient to satisfy system requirements. A new algorithm for registration has been developed and tested. This algorithm presented very high degree of robustness with success rate of 96%.

  10. Hadron Physics at FAIR

    SciTech Connect

    Wiedner, Ulrich

    2011-10-24

    The new FAIR facility in Darmstadt has a broad program in the field of hadron and nuclear physics utilizing ion beams with unprecedented intensity and accuracy. The hadron physics program centers around the the high-energy storage ring HESR for antiprotons and the PANDA experiment that is integrated in it. The physics program includes among others topics like hadron spectroscopy in the charmonium mass region and below, hyperon physics, electromagnetic processes and charm in nuclei.

  11. Hollow clay tile wall program summary report

    SciTech Connect

    Henderson, R.C.; Jones, W.D.

    1995-07-30

    Many of the Y-12 Plant buildings, constructed during the 1940s and 1950s, consist of steel ed concrete framing infilled with hollow clay tile (HCT). The infill was intended to provide for building enclosure and was not designed to have vertical or lateral load-carrying capacity. During the late 1970s and early 1980s, seismic and wind evaluations were performed on many of these buildings in conjunction with the preparation of a site-wide safety analysis report. This analytical work, based on the best available methodology, considered lateral load-carrying capacity of the HCT infill on the basis of building code allowable shear values. In parallel with the analysis effort, DOE initiated a program to develop natural phenomena capacity and performance criteria for existing buildings, but these criteria did not specify guidelines for determining the lateral force capacity of frames infilled with HCT. The evaluation of infills was, therefore, based on the provisions for the design of unreinforced masonry as outlined in standard masonry codes. When the results of the seismic and wind evaluations were compared with the new criteria, the projected building capacities fell short of the requirements. Apparently, if the buildings were to meet the new criteria, many millions of dollars would be required for building upgrades. Because the upgrade costs were significant, the assumptions and approaches used in the analyses were reevaluated. Four issues were identified: (1) Once the infilled walls cracked, what capacity (nonlinear response), if any, would the walls have to resist earthquake or wind loads applied in the plane of the infill (in-plane)? (2) Would the infilled walls remain within the steel or reinforced concrete framing when subjected to earthquake or high wind loads applied perpendicular to the infill (out-of-plane)? (3) What was the actual shear capacity of the HCT infill? (4) Was modeling the HCT infill as a shear wall the best approach?

  12. Holographic model of hadronization.

    PubMed

    Evans, Nick; Tedder, Andrew

    2008-04-25

    We study hadronization of the final state in a particle-antiparticle annihilation using a holographic gravity dual description of QCD. At the point of hadronization we match the events to a simple (Gaussian) energy distribution in the five dimensional theory. The final state multiplicities are then modeled by calculating the overlap between the Gaussian and a set of functions in the fifth dimension which represent each hadron. We compare our results to those measured in e(+)e(-) collisions. Hadron production numbers over a range of 4 orders of magnitude are reproduced well. PMID:18518189

  13. Holographic Model of Hadronization

    SciTech Connect

    Evans, Nick; Tedder, Andrew

    2008-04-25

    We study hadronization of the final state in a particle-antiparticle annihilation using a holographic gravity dual description of QCD. At the point of hadronization we match the events to a simple (Gaussian) energy distribution in the five dimensional theory. The final state multiplicities are then modeled by calculating the overlap between the Gaussian and a set of functions in the fifth dimension which represent each hadron. We compare our results to those measured in e{sup +}e{sup -} collisions. Hadron production numbers over a range of 4 orders of magnitude are reproduced well.

  14. Modelling Hadronic Interactions

    NASA Astrophysics Data System (ADS)

    Wellisch, J. P.

    Optimal exploitation of hadronic final states played a key role in successes of all recent collider experiments in HEP, and the ability to use hadronic final states will continue to be one of the decisive issues during the analysis phase of the LHC experiments. Monte Carlo techniques facilitate the use of hadronic final states, and have been developed for many years. We will give a brief overview of the physics models underlying hadronic shower simulation, discussing the three basic types of modelling used in the geant4 tool-kit; data driven, parameterisation driven, and theory driven modelling, and provide comparisons with experimental data for selected models.

  15. Automatic Defect Detection and Classification Technique from Image: A Special Case Using Ceramic Tiles

    E-print Network

    Rahaman, G M Atiqur

    2009-01-01

    Quality control is an important issue in the ceramic tile industry. On the other hand maintaining the rate of production with respect to time is also a major issue in ceramic tile manufacturing. Again, price of ceramic tiles also depends on purity of texture, accuracy of color, shape etc. Considering this criteria, an automated defect detection and classification technique has been proposed in this report that can have ensured the better quality of tiles in manufacturing process as well as production rate. Our proposed method plays an important role in ceramic tiles industries to detect the defects and to control the quality of ceramic tiles. This automated classification method helps us to acquire knowledge about the pattern of defect within a very short period of time and also to decide about the recovery process so that the defected tiles may not be mixed with the fresh tiles.

  16. An automated data management/analysis system for space shuttle orbiter tiles. [stress analysis

    NASA Technical Reports Server (NTRS)

    Giles, G. L.; Ballas, M.

    1982-01-01

    An engineering data management system was combined with a nonlinear stress analysis program to provide a capability for analyzing a large number of tiles on the space shuttle orbiter. Tile geometry data and all data necessary of define the tile loads environment accessed automatically as needed for the analysis of a particular tile or a set of tiles. User documentation provided includes: (1) description of computer programs and data files contained in the system; (2) definitions of all engineering data stored in the data base; (3) characteristics of the tile anaytical model; (4) instructions for preparation of user input; and (5) a sample problem to illustrate use of the system. Description of data, computer programs, and analytical models of the tile are sufficiently detailed to guide extension of the system to include additional zones of tiles and/or additional types of analyses

  17. Tony Rollins fashions a new tile for the Space Shuttle orbiter

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Tile Fabrication Shop, Tony Rollins, with United Space Alliance, holds down a curtain while making a test sample of tile on a block 5-axis computerized numerical control milling machine. About 70 percent of a Space Shuttle orbiter's external surface is shielded from heat by a network of more than 24,000 tiles formed from a silica fiber compound. They are known as High-Temperature Reusable Surface Insulation (HRSI) tiles and Low-Temperature Reusable Surface Insulation (LRSI) tiles. Most HRSI tiles are 6 inches square, but may be as large as 12 inches in some areas, and 1 to 5 inches thick. LRSI tiles are generally 8 inches square, ranging from 0.2- to 1-inch thick. More advanced materials such as Flexible Insulation Blankets have replaced tiles on some upper surfaces of the orbiter.

  18. The Two-Handed Tile Assembly Model Is Not Intrinsically Universal

    E-print Network

    Demaine, Erik D.

    In this paper, we study the intrinsic universality of the well-studied Two-Handed Tile Assembly Model (2HAM), in which two “supertile” assemblies, each consisting of one or more unit-square tiles, can fuse together ...

  19. Hybrid Calorimeter Algorithm Development for Primex Experiment

    SciTech Connect

    Motoyama, E.; Gasparian, A.; Bernstein, A.

    2002-01-01

    The PrimEx Collaboration seeks to measure the lifetime of the 0 meson (neutral pion) at high precision. The decay rate of the pion is considered to be the most fundamental prediction of low-energy quantum chromodynamics (QCD). Pions will be produced by the Primakoff Effect: a few GeV photon interacts with the coulomb field of a nucleus to produce a pion. The pion then decays almost immediately ({approx}10-16 seconds) into two photons. The decay photons will be detected by an electromagnetic hybrid calorimeter (HYCAL), an array of lead tungstate and lead glass crystals. An algorithm is needed to calculate the angular separation of the two decay photons (and thus the invariant mass of the pion) from the energies deposited in HYCAL. A GEANT Monte Carlo simulation of the experiment is used to test and develop the algorithm to achieve the best angular resolution. The development of the algorithm is essential to the PrimEx project.

  20. SUITABILITY OF A NEW CALORIMETER FOR EXOTIC MESON SEARCHES

    SciTech Connect

    Bookwalter, C.; Ostrovidov, A.; Eugenio, P.

    2007-01-01

    Exotic mesons, particles that have quantum numbers that are inaccessible to conventional quark-model mesons, are predicted by quantum chromodynamics (QCD), but past experiments seeking to identify exotic candidates have produced controversial results. The HyCLAS experiment (E04005) at Thomas Jefferson National Accelerator Facility (TJNAF) proposes the use of the Continuous Electron Beam Accelerator Facility (CEBAF) Large Acceptance Spectrometer (CLAS) in Hall B to study the photoproduction of exotic mesons. However, the base detector package at CLAS is not ideal for observing and measuring neutral particles, particularly at forward angles. The Deeply Virtual Compton Scattering (DVCS) experiment at TJNAF has commissioned a new calorimeter for detecting small-angle photons, but studies must be performed to determine its suitability for a meson spectroscopy experiment. The ?? system has been under especial scrutiny in the community as a source for potential exotics, so the new calorimeter’s ability at reconstructing these resonances must be evaluated. To achieve this, the invariant mass of showers in the calorimeter are reconstructed. Also, two electroproduction reaction channels analogous to photoproduction channels of interest to HyCLAS are examined in DVCS data. It is found that, while not ideal, the new calorimeter will allow access to additional reaction channels, and its inclusion in HyCLAS is warranted. Results in basic shower reconstruction show that the calorimeter has good effi ciency in resolving ?° decays, but its ? reconstruction is not as strong. When examining ep ? ep?°?, preliminary reconstruction of the ??° system shows faint signals in the a0(980) region. In the ep ? e n ?+ ? channel, preliminary reconstruction of the ??+ system gave good signals in the a0(980) and a2(1320) regions, but statistics were poor. While more analyses are necessary to improve statistics and remove background, these preliminary results support the claim that the DVCS calorimeter will be a valuable addition to CLAS for upcoming exotic meson searches in photoproduction.

  1. Interlaced particle systems and tilings of the Aztec diamond

    E-print Network

    Benjamin J. Fleming; Peter J. Forrester

    2010-04-03

    Motivated by the problem of domino tilings of the Aztec diamond, a weighted particle system is defined on $N$ lines, with line $j$ containing $j$ particles. The particles are restricted to lattice points from 0 to $N$, and particles on successive lines are subject to an interlacing constraint. It is shown that marginal distributions for this particle system can be computed exactly. This in turn is used to give unified derivations of a number of fundamental properties of the tiling problem, for example the evaluation of the number of distinct configurations and the relation to the GUE minor process. An interlaced particle system associated with the domino tiling of a certain half Aztec diamond is similarly defined and analyzed.

  2. Mobilization and loss of elements from roofing tiles

    NASA Astrophysics Data System (ADS)

    Sulaiman, Fazrul Razman; Brimblecombe, Peter; Grossi, Carlota M.

    2009-08-01

    Deposition, leaching and chemical transformation are processes that affect roofing tile and roof runoff water. Leaching experiments, with artificial rainwater in the laboratory, showed the presence of Na+, K+, Mg2+, Ca2+, Cl-, NO3 -, SO4 2-, with a ratio of Ca2+ and SO4 2- suggesting gypsum dissolution. X-ray fluorescence (XRF) of the exposed roof tile showed depletion such as Mg, Al, Si, P, Ti and K at the surface of the tile and an enrichment of Fe and Mn which hinted at a process akin to laterite formation. However, calcium appeared to be enriched at the surface as gypsum (confirmed by X-ray diffraction) and to a lesser extent calcite, which is characteristic of deposits on building surfaces in cities.

  3. Solare Cell Roof Tile And Method Of Forming Same

    DOEpatents

    Hanoka, Jack I. (Brookline, MA); Real, Markus (Oberberg, CH)

    1999-11-16

    A solar cell roof tile includes a front support layer, a transparent encapsulant layer, a plurality of interconnected solar cells and a backskin layer. The front support layer is formed of light transmitting material and has first and second surfaces. The transparent encapsulant layer is disposed adjacent the second surface of the front support layer. The interconnected solar cells has a first surface disposed adjacent the transparent encapsulant layer. The backskin layer has a first surface disposed adjacent a second surface of the interconnected solar cells, wherein a portion of the backskin layer wraps around and contacts the first surface of the front support layer to form the border region. A portion of the border region has an extended width. The solar cell roof tile may have stand-offs disposed on the extended width border region for providing vertical spacing with respect to an adjacent solar cell roof tile.

  4. PHASE CHANGE MATERIALS IN FLOOR TILES FOR THERMAL ENERGY STORAGE

    SciTech Connect

    Douglas C. Hittle

    2002-10-01

    Passive solar systems integrated into residential structures significantly reduce heating energy consumption. Taking advantage of latent heat storage has further increased energy savings. This is accomplished by the incorporation of phase change materials into building materials used in passive applications. Trombe walls, ceilings and floors can all be enhanced with phase change materials. Increasing the thermal storage of floor tile by the addition of encapsulated paraffin wax is the proposed topic of research. Latent heat storage of a phase change material (PCM) is obtained during a change in phase. Typical materials use the latent heat released when the material changes from a liquid to a solid. Paraffin wax and salt hydrates are examples of such materials. Other PCMs that have been recently investigated undergo a phase transition from one solid form to another. During this process they will release heat. These are known as solid-state phase change materials. All have large latent heats, which makes them ideal for passive solar applications. Easy incorporation into various building materials is must for these materials. This proposal will address the advantages and disadvantages of using these materials in floor tile. Prototype tile will be made from a mixture of quartz, binder and phase change material. The thermal and structural properties of the prototype tiles will be tested fully. It is expected that with the addition of the phase change material the structural properties will be compromised to some extent. The ratio of phase change material in the tile will have to be varied to determine the best mixture to provide significant thermal storage, while maintaining structural properties that meet the industry standards for floor tile.

  5. Task 4 supporting technology. Part 1: Detailed test plan for leading edge tile development. Leading edge material development and testing

    NASA Technical Reports Server (NTRS)

    Hogenson, P. A.; Staszak, Paul; Hinkle, Karrie

    1995-01-01

    This task develops two alternative candidate tile materials for leading edge applications: coated alumina enhanced thermal barrier (AETB) tile and silicone impregnated reusable ceramic ablator (SIRCA) tile. Upon reentry of the X-33/RLV space vehicle, the leading edges experience the highest heating rates and temperatures. The wing leading edge and nose cap experience peak temperatures in the range 2000 to 2700 F. Replacing reinforced carbon-carbon (RCC) with tile-based thermal protection system (TPS) materials is the primary objective. Weight, complexity, coating impact damage, and repairability are among the problems that this tile technology development addresses. The following subtasks will be performed in this development effort: tile coating development; SIRCA tile development; robustness testing of tiles; tile repair development; tile operations/processing; tile leading edge configuration; and life cycle testing.

  6. The Tile ProcessorTM Architecture: Embedded Multicore for

    E-print Network

    Martonosi, Margaret

    4 6 8 10 12 1 11 21 31 41 51 61 Number of Tiles Gbps 40 8 2 1 0 20 40 CIF SD 720P 1080P Number The TILE64 chip is shipping today 6 PCIe 1 MAC PHY PCIe 0 MAC PHY Serdes Serdes Flexible IO GbE 0 GbE 1 Diagram A Complete System on a Chip PROCESSOR P2 Reg File P1 P0 CACHE L2 CACHE L1I L1D ITLB DTLB 2D DMA

  7. High-Performance Tiled WMS and KML Web Server

    NASA Technical Reports Server (NTRS)

    Plesea, Lucian

    2007-01-01

    This software is an Apache 2.0 module implementing a high-performance map server to support interactive map viewers and virtual planet client software. It can be used in applications that require access to very-high-resolution geolocated images, such as GIS, virtual planet applications, and flight simulators. It serves Web Map Service (WMS) requests that comply with a given request grid from an existing tile dataset. It also generates the KML super-overlay configuration files required to access the WMS image tiles.

  8. Investigations of Game of Life cellular automata rules on Penrose Tilings: lifetime and ash

    E-print Network

    Stepney, Susan

    Investigations of Game of Life cellular automata rules on Penrose Tilings: lifetime and ash Au- tomata (CAs) running on aperiodic grids, namely Penrose tilings. Here we investigate the result of running such CAs from random initial con- ditions. This requires development of a Penrose tiling algorithm

  9. Investigations of Game of Life Cellular Automata rules on Penrose Tilings

    E-print Network

    Stepney, Susan

    Investigations of Game of Life Cellular Automata rules on Penrose Tilings: lifetime, ash be applied to Cellu- lar Automata (CAs) running on aperiodic grids, namely Penrose tilings. Here we, and demonstrate that the GoL on the Penrose kite and dart tiling has significantly different statistical behaviour

  10. Steep-Slope Assembly Testing of Clay and Concrete Tile With and Without Cool Pigmented Colors

    SciTech Connect

    Miller, William A

    2005-11-01

    Cool color pigments and sub-tile venting of clay and concrete tile roofs significantly impact the heat flow crossing the roof deck of a steep-slope roof. Field measures for the tile roofs revealed a 70% drop in the peak heat flow crossing the deck as compared to a direct-nailed asphalt shingle roof. The Tile Roofing Institute (TRI) and its affiliate members are keenly interested in documenting the magnitude of the drop for obtaining solar reflectance credits with state and federal "cool roof" building efficiency standards. Tile roofs are direct-nailed or are attached to a deck with batten or batten and counter-batten construction. S-Misson clay and concrete tile roofs, a medium-profile concrete tile roof, and a flat slate tile roof were installed on fully nstrumented attic test assemblies. Temperature measures of the roof, deck, attic, and ceiling, heat flows, solar reflectance, thermal emittance, and the ambient weather were recorded for each of the tile roofs and also on an adjacent attic cavity covered with a conventional pigmented and directnailed asphalt shingle roof. ORNL measured the tile's underside temperature and the bulk air temperature and heat flows just underneath the tile for batten and counter-batten tile systems and compared the results to the conventional asphalt shingle.

  11. Effect of tile effluent on nutrient concentration and retention efficiency in agricultural drainage ditches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tile drainage is a common water management practice in many agricultural landscapes in the Midwestern United States. Drainage ditches regularly receive water from agricultural fields through these tile drains. This field-scale study was conducted to determine the impact of tile discharge on ambient ...

  12. GROWTH EVALUATION OF FUNGI (PENICILLIUM AND ASPERGILLUS SPP.) ON CEILING TILES

    EPA Science Inventory

    The paper gives results of an evaluation of the potential for fungal growth on four different ceiling tiles in static chambers. It was found that even new ceiling tiles supported fungal growth under favorable conditions. Used ceiling tiles appeared to be more susceptible to funga...

  13. Exploring Excited Hadrons

    E-print Network

    Colin Morningstar

    2008-10-24

    Progress in extracting the spectrum of excited hadron resonances is reviewed and the key issues and challenges in such computations are outlined. The importance of multi-hadron states as simulations are done with lighter pion masses is discussed, and the need for all-to-all quark propagators is emphasized.

  14. Progress on the upgrade of the CMS Hadron Calorimeter Front-End electronics

    SciTech Connect

    Anderson, Jake; Whitmore, Juliana; /Fermilab

    2011-11-01

    We present a scheme to upgrade the CMS HCAL front-end electronics in the second long shutdown to upgrade the LHC (LS2), which is expected to occur around 2018. The HCAL electronics upgrade is required to handle the major instantaneous luminosity increase (up to 5 * 10{sup 34} cm{sup -2} s{sup -1}) and an expected integrated luminosity of {approx}3000 fb{sup -1}. A key aspect of the HCAL upgrade is to read out longitudinal segmentation information to improve background rejection, energy resolution, and electron isolation at the L1 trigger. This paper focuses on the requirements for the new electronics and on the proposed solutions. The requirements include increased channel count, additional timing capabilities, and additional redundancy. The electronics are required to operate in a harsh environment and are constrained by the existing infrastructure. The proposed solutions span from chip level to system level. They include the development of a new ASIC ADC, the design and testing of higher speed transmitters to handle the increased data volume, the evaluation and use of circuits from other developments, evaluation of commercial FPGAs, better thermal design, and improvements in the overall readout architecture. We will report on the progress of the designs for these upgraded systems, along with performance requirements and initial design studies.

  15. Hadronization via Recombination

    E-print Network

    Kang Seog Lee; Steffen Bass; Berndt Mueller; Chiho Nonaka

    2008-12-27

    The recombination model as a model for hadronization from a quark-gluon plasma has been recently revived since it has advantages in explaining several important features of the final state produced in heavy-ion collisions at RHIC, such as the constituent quark number scaling of the elliptic coefficient versus the transverse energy of identified hadrons, the bending shape of the $p_T$ spectrum of hadrons near 5 GeV/c, and the measured large value of baryon to meson ratio(of the order of unity) in the same $p_T$ range. We have developed a dynamic simulation model of heavy-ion collisions in which a quark-gluon plasma, starting from a certain initial condition, evolves hydrodynamically until it reaches the phase boundary, and then hadronizes by valence quark recombination. Rescattering after hadronization is described by UrQMD. We discuss some details of the model and report first, preliminary results.

  16. Foam on Tile Impact Modeling for the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Stellingwerf, R. F.; Robinson, J. H.; Richardson, S.; Evans, S. W.; Stallworth, R.; Hovater, M.

    2003-01-01

    Following the breakup of the Space Shuttle Columbia during reentry a NASA-wide investigation team was formed to examine the probable damage inflicted on Orbiter Thermal Protection System (TPS) elements by impact of External Tank insulating foam projectiles. Our team was to apply rigorous, physics-based analysis techniques to help determine parameters of interest for an experimental test program, utilize validated codes to investigate the full range of impact scenarios, and use analysis derived models to predict aero-thermal-structural responses to entry conditions. We were to operate on a non-interference basis with the j Team, and were to supply significant findings to that team and to the Orbiter Vehicle Engineering Working Group, being responsive to any solicitations for support from these entities. The authors formed a working sub-group within the larger team to apply the Smooth Particle Hydrodynamics code SPHC to the damage estimation problem. Numerical models of the LI-900 TPS tiles and of the BX-250 foam were constructed and used as inputs into the code. Material properties needed to properly model the tiles and foam were obtained from other working sub-groups who performed tests on these items for this purpose. Two- and three- dimensional models of the tiles were constructed, including the glass outer layer, the densified lower layer of LI-900 insulation, the Nomex felt Strain Isolation Pad (SIP) mounting layer, and the underlying aluminum 2024 vehicle skin. A model for the BX-250 foam including porous compression, elastic rebound, and surface erosion was developed. Code results for the tile damage and foam behavior were extensively validated through comparison with the Southwest Research Institute (SwRI) foam-on-tile impact experiments carried out in 1999. These tests involved small projectiles striking individual tiles and small tile arrays. Following code and model validation we simulated impacts of larger ET foam projectiles on the TPS tile systems used on the wings of the orbiter. Tiles used on the Wing Acreage, the Main Landing Gear Door, and the Carrier Panels near the front edge of the wing were modeled. Foam impacts shot for the CAB investigation were modeled, as well as impacts at larger angles, including rapid rotation of the projectile, and with varying foam properties. General results suggest that foam impacts on tiles at about 500 mph could cause appreciable damage if the impact angle is greater than about 20 degrees. Some variations of the foam properties, such as increased brittleness or increased density could increase damage in some cases. Rapid (17 rps) rotation failed to increase the damage for the two cases considered. This does not rule out other cases in which the rotational energy might lead to an increase in tile damage, but suggests that in most cases rotation will not be an important factor. Similar models will be applied for other impacting materials, other velocities, and other geometries as part of the Return to Flight process.

  17. Quartz Plate Calorimetry for CMS HE Upgrade

    E-print Network

    Yasar Onel; David Winn

    2013-08-29

    Analysis of the CMS data and the simulation prediction based on these results indicate that the performance of the current scintillators in the CMS Hadron Endcap Calorimeter (HE) tiles will degrade dramatically in the High Luminosity LHC (HL-LHC) era. In order to continue the physics program in this region, the HE tiles will need to be replaced. The new tiles should have comparable/improved performance, be radiation hard, reliable and robust.

  18. Testbench of shaper-digitizer modules for Belle II calorimeter

    NASA Astrophysics Data System (ADS)

    Vorobyev, V.; Kuzmin, A.; Matvienko, D.; Vinokurova, A.

    2014-08-01

    The design and construction work of the Belle II detector subsystems, including its electromagnetic calorimeter, is ongoing. The modification of the calorimeter includes the development of new electronics based on specially developed shaper-digitizer-signal-processing (Shaper DSP) modules. A shaper DSP module performs signal shaping, digitization, waveform analysis and provides a fast sum signal for trigger. The calorimeter includes 576 Shaper DSP modules. Recently mass-production stage started and the complete performance test for all modules is now necessary. To test a workability of modules and measure their parameters, a specialized testbench has been developed. The testbench allows one to study the signal shape, fast output, deviations from linearity, noise level and DSP logic. All test results are recorded in the database and some of them have graphical representation.

  19. The ATLAS Liquid Argon Calorimeter: One Year Of LHC Operation And Future Upgrade Plans For

    E-print Network

    Krieger, Peter

    The ATLAS Liquid Argon Calorimeter: One Year Of LHC Operation And Future Upgrade Plans For HL-LHC Peter W. Krieger, on behalf of the ATLAS Liquid Argon Calorimeter Group Abstract--An overview of the ATLAS liquid-argon calorimeter system is provided, along with a discussion of its operation

  20. Substructure procedure for including tile flexibility in stress analysis of shuttle thermal protection system

    NASA Technical Reports Server (NTRS)

    Giles, G. L.

    1980-01-01

    A substructure procedure to include the flexibility of the tile in the stress analysis of the shuttle thermal protection system (TPS) is described. In this procedure, the TPS is divided into substructures of (1) the tile which is modeled by linear finite elements and (2) the SIP which is modeled as a nonlinear continuum. This procedure was applied for loading cases of uniform pressure, uniform moment, and an aerodynamic shock on various tile thicknesses. The ratios of through-the-thickness stresses in the SIP which were calculated using a flexible tile compared to using a rigid tile were found to be less than 1.05 for the cases considered.

  1. Fractal spectral triples on Kellendonk's $C^*$-algebra of a substitution tiling

    E-print Network

    Michael Mampusti; Michael F. Whittaker

    2015-04-21

    We introduce a new class of noncommutative spectral triples on Kellendonk's $C^*$-algebra associated with a nonperiodic substitution tiling. These spectral triples are constructed from fractal trees on tilings, which define a geodesic distance between tiles in the tiling. We show that each spectral triple is $\\theta$-summable and respects the hierarchy of the substitution system. To elucidate our results we construct a fractal tree on the Penrose tiling and explicitly show how it gives rise to a collection of spectral triples.

  2. On the Scalability of Loop Tiling Techniques David G. Wonnacott

    E-print Network

    Strout, Michelle Mills

    PLuTo automatic parallelizer have provided empiri- cal confirmation of the success of polyhedral provide weak scaling. In particular, the tiling currently performed by PLuTo does not scale in this sense the adoption of the polyhedral approach. However, the PLuTo automatic parallelizer [19, 6] has demonstrated

  3. Contributions of systematic tile drainage to watershed scale phosphorus transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus (P) transport from agricultural fields continues be a focal point for addressing harmful algal blooms (HABs) and nuisance algae in freshwater systems throughout the world. In humid, poorly drained regions, attention has turned to P delivery through subsurface tile drainage. Research on th...

  4. Water Quality from Grass-Based Dairy Farm Tile Lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Subsurface water quality from agricultural systems varies with the type of system and management. Systems with high inputs from fertilizer and/or manure may have high nutrient levels, e.g. NO3-N, in subsurface water. This study investigates the water quality from tile lines on grass-based dairy fa...

  5. Tiled architecture of a CNN-mostly IP system

    NASA Astrophysics Data System (ADS)

    Spaanenburg, Lambert; Malki, Suleyman

    2009-05-01

    Multi-core architectures have been popularized with the advent of the IBM CELL. On a finer grain the problems in scheduling multi-cores have already existed in the tiled architectures, such as the EPIC and Da Vinci. It is not easy to evaluate the performance of a schedule on such architecture as historical data are not available. One solution is to compile algorithms for which an optimal schedule is known by analysis. A typical example is an algorithm that is already defined in terms of many collaborating simple nodes, such as a Cellular Neural Network (CNN). A simple node with a local register stack together with a 'rotating wheel' internal communication mechanism has been proposed. Though the basic CNN allows for a tiled implementation of a tiled algorithm on a tiled structure, a practical CNN system will have to disturb this regularity by the additional need for arithmetical and logical operations. Arithmetic operations are needed for instance to accommodate for low-level image processing, while logical operations are needed to fork and merge different data streams without use of the external memory. It is found that the 'rotating wheel' internal communication mechanism still handles such mechanisms without the need for global control. Overall the CNN system provides for a practical network size as implemented on a FPGA, can be easily used as embedded IP and provides a clear benchmark for a multi-core compiler.

  6. Efficient algorithms for the computational design of optimal tiling arrays.

    PubMed

    Schliep, Alexander; Krause, Roland

    2008-01-01

    The representation of a genome by oligonucleotide probes is a prerequisite for the analysis of many of its basic properties, such as transcription factor binding sites, chromosomal breakpoints, gene expression of known genes and detection of novel genes, in particular those coding for small RNAs. An ideal representation would consist of a high density set of oligonucleotides with similar melting temperatures that do not cross-hybridize with other regions of the genome and are equidistantly spaced. The implementation of such design is typically called a tiling array or genome array. We formulate the minimal cost tiling path problem for the selection of oligonucleotides from a set of candidates. Computing the selection of probes requires multi-criterion optimization, which we cast into a shortest path problem. Standard algorithms running in linear time allow us to compute globally optimal tiling paths from millions of candidate oligonucleotides on a standard desktop computer for most problem variants. The solutions to this multi-criterion optimization are spatially adaptive to the problem instance. Our formulation incorporates experimental constraints with respect to specific regions of interest and trade offs between hybridization parameters, probe quality and tiling density easily. A web application is available at http://tileomatic.org. PMID:18989043

  7. EVALUATION OF FUNGAL GROWTH (PENICILLIUM GLABRUM) ON A CEILING TILE

    EPA Science Inventory

    The paper gives results of a study employing static chambers to study the impact of different equilibrium relative humidities (RHs) and moisture conditions on the ability of a new ceiling tile to support fungal growth. Amplification of the mold, Penicillium glabrum, occurred at R...

  8. CONFORMAL TILINGS II: LOCAL ISOMORPHISM, HIERARCHY, AND CONFORMAL TYPE

    E-print Network

    over the last decade and a half. In the first paper of the series [4], the authors laid out a general of [4] are reviewed, repackaged, and expanded in the first section of this paper, so that this paper STEPHENSON Abstract. This is the second in a series of papers on conformal tilings. The overriding themes

  9. Gene expression Assessing the need for sequencebased normalization in tiling

    E-print Network

    Gerstein, Mark

    and copy number polymorphisms, for example. Luckily, the DNA microarray technology (Chee et al., 1996 by the hybridization of labeled nucleic acids to this emerg- ing microarray technology. As reviewed in (Mockler et alGene expression Assessing the need for sequencebased normalization in tiling microarray

  10. MATRIX TILE ANALYSIS Inmar Givoni, Vincent Cheung, Brendan J. Frey

    E-print Network

    Toronto, University of

    MATRIX TILE ANALYSIS Inmar Givoni, Vincent Cheung, Brendan J. Frey Probabilistic and Statistical Many tasks require finding groups of ele- ments in a matrix of numbers, symbols or class likelihoods, sparse matrix factor- ization and plaid analysis. These techniques are not appropriate when addition

  11. Nutrient Transport in Tile-Fed Drainage Ditches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drainage ditches receive water and associated contaminants from agricultural fields via surface runoff or sub-surface tile drains. Little consideration has been given to the processes affecting nutrient transport once in surface water. The objective of this research was to evaluate the nutrient fa...

  12. The NA62 Liquid Krypton Electromagnetic Calorimeter Level 0 Trigger

    E-print Network

    Bonaiuto, V; Paoluzzi, G; Salamon, A; Salina, G; Santovetti, E; Sargeni, F; Scarfì, F M

    2012-01-01

    The NA62 experiment at CERN SPS aims to measure the Branching Ratio of the very rare kaon decay K+ -> pi+ nu nubar collecting O(100) events with a 10% background to make a stringent test of the Standard Model. One of the main backgrounds to the proposed measurement is represented by the K+ -> pi+ pi0 decay. To suppress this background an efficient photo veto system is foreseen. In the 1-10 mrad angular region the NA48 high performance liquid krypton electromagnetic calorimeter is used. The design, implementation and current status of the Liquid Krypton Electromagnetic Calorimeter Level 0 Trigger are presented.

  13. The NA62 Liquid Krypton Electromagnetic Calorimeter Level 0 Trigger

    E-print Network

    Vincenzo Bonaiuto; Adolfo Fucci; Giovanni Paoluzzi; Andrea Salamon; Gaetano Salina; Emanuele Santovetti; Fausto Sargeni; Francesco M. Scarfi'

    2012-01-18

    The NA62 experiment at CERN SPS aims to measure the Branching Ratio of the very rare kaon decay K+ -> pi+ nu nubar collecting O(100) events with a 10% background to make a stringent test of the Standard Model. One of the main backgrounds to the proposed measurement is represented by the K+ -> pi+ pi0 decay. To suppress this background an efficient photo veto system is foreseen. In the 1-10 mrad angular region the NA48 high performance liquid krypton electromagnetic calorimeter is used. The design, implementation and current status of the Liquid Krypton Electromagnetic Calorimeter Level 0 Trigger are presented.

  14. The NA62 Liquid Krypton Electromagnetic Calorimeter Level 0 Trigger

    E-print Network

    V. Bonaiuto; A. Fucci; G. Paoluzzi; A. Salamon; G. Salina; E. Santovetti; F. Sargeni; F. M. Scarfi'

    2012-01-16

    The NA62 experiment at CERN SPS aims to measure the Branching Ratio of the very rare kaon decay K+ -> pi+ nu nubar collecting O(100) events with a 10% background to make a stringent test of the Standard Model. One of the main backgrounds to the proposed measurement is represented by the K+ -> pi+ pi0 decay. To suppress this background an efficient photo veto system is foreseen. In the 1-10 mrad angular region the NA48 high performance liquid krypton electromagnetic calorimeter is used. The design, implementation and current status of the Liquid Krypton Electromagnetic Calorimeter Level 0 Trigger are presented.

  15. Performance of the SLD Warm Iron Calorimeter pre-prototype

    SciTech Connect

    Johnson, A.S.; Busza, W.; Friedman, J.; Kendall, H.; Kistiakowsky, V.; Lyons, T.; Osborne, L.S.; Rosenson, L.; Verdier, R.; Carumbalis, D.

    1985-10-01

    The performance of a pre-prototype of the SLD Warm Iron Calorimeter (WIC) build with proportional tube cathode pad readout has been studied. The calorimeter was found to have an average resolution of 36.7 +- 0.2% for muons at 2.0, 5.0 and 10.5 GeV and 81 +- 2%/..sqrt..E for pion showers at 5.0 and 10.5 GeV. The mean energy found for the pion showers was consistent with a linear dependence on energy within these standard deviations. 4 refs., 6 figs., 3 tabs.

  16. The Electromagnetic Calorimeter of the future PANDA Detector

    SciTech Connect

    Novotny, Rainer

    2006-10-27

    Experiments with a cooled antiproton beam at the future accelerator facility FAIR at GSI, Darmstadt, will be performed with the 4{pi} detector PANDA comprising a high resolution, compact and fast homogeneous electromagnetic calorimeter to detect photons between 10MeV and 10GeV energy inside a superconducting solenoid (2T). The target calorimeter comprises more than 20,000 PbWO4 crystals of significantly enhanced quality read-out with large area avalanche photodiodes at an operating temperature of -25 degree sign C. The paper describes the quality of PWO-II and illustrates the future performance based on response measurements with high-energy photons.

  17. Performance of an accordion electromagnetic calorimeter with liquid krypton

    SciTech Connect

    Lissuaer, D.

    1994-12-31

    Beam test results of the liquid krypton electromagnetic calorimeter with a projective accordion type electrode structure are presented. The electrode had a fine segmentation in the front to enhance {pi}{sup 0} rejection and pointing. The test was carried out at the H4 line at the CERN SPS with e{sup {minus}} beams between 20 and 200 GeV. Preliminary results of energy resolution, linearity, {mu} response and the dependence of the energy resolution on the amount of inactive material in front of the calorimeter are presented.

  18. On Hadronic Shower Simulation

    NASA Astrophysics Data System (ADS)

    Wellisch, J. P.

    1999-08-01

    The exploitation of hadronic final states played a key role in the successes of all recent HEP collider experiments, and the ability to use the hadronic final state will continue to be one of the decisive issues during the LHC era. Monte Carlo techniques to make efficient use of hadronic final states have been developed for many years, and have a technological culmination in Object Oriented tool-kits for hadronic shower simulation that now are becoming available. In the present paper we give a brief overview on the physics modeling underlying hadronic shower simulation, and report on advanced techniques used and developed for simulation of hadronic showers in HEP experiments. We will discuss the three basic types of modelling — data driven, parametisation driven, and theory driven modelling — and demonstrate ways to combine them in a flexible manner for concrete applications. We will confront the different types of modelling with the stringent requirements on hadronic shower simulation posed by LHC, and investigate whether the issue will have been addressed in a satisfactory manner within time restrictions of the Computing Technical Design reports of the LHC experiments.

  19. Thermal simulations of STRIKE tiles for the assessment of the CFC prototypes and of the configuration for SPIDER

    NASA Astrophysics Data System (ADS)

    Serianni, G.; De Muri, M.; Fasolo, D.; Pasqualotto, R.; Cervaro, V.; Dal Bello, S.; Palma, M. Dalla; Franchin, L.; Rizzolo, A.; Tollin, M.

    2013-02-01

    The ITER project requires additional heating via injection of neutral beams, provided by two injectors accelerating negative ions. To study and optimise negative ion production, the SPIDER prototype is under construction in Padova, whose beam has an energy of 100keV and a current of 50A. The instrumented calorimeter STRIKE (Short-Time Retractable Instrumented Kalorimeter Experiment) has been developed with the main purpose of characterising the SPIDER negative ion beam in terms of beam uniformity and beam divergence during short pulse operations (several seconds). STRIKE is made of 16 1D Carbon Fibre Composite (CFC) tiles, intercepting the whole beam and observed on the rear side by infrared (IR) cameras. Prototypes of the CFC material were procured and this contribution presents experimental tests and numerical simulations devoted to the characterisation of the CFC properties and to the assessment of the performance of the diagnostic. Tests are described, performed using a CO2 laser to investigate the spatial resolution of the diagnostic on the scale lengths and with the experimental layout expected in SPIDER. Data recorded by an IR camera during the experiments are compared with simulations aiming to reproducing the experimental data with the purpose of validating the thermal parameters of CFC.

  20. The development of a general purpose ARM-based processing unit for the ATLAS TileCal sROD

    NASA Astrophysics Data System (ADS)

    Cox, M. A.; Reed, R.; Mellado, B.

    2015-01-01

    After Phase-II upgrades in 2022, the data output from the LHC ATLAS Tile Calorimeter will increase significantly. ARM processors are common in mobile devices due to their low cost, low energy consumption and high performance. It is proposed that a cost-effective, high data throughput Processing Unit (PU) can be developed by using several consumer ARM processors in a cluster configuration to allow aggregated processing performance and data throughput while maintaining minimal software design difficulty for the end-user. This PU could be used for a variety of high-level functions on the high-throughput raw data such as spectral analysis and histograms to detect possible issues in the detector at a low level. High-throughput I/O interfaces are not typical in consumer ARM System on Chips but high data throughput capabilities are feasible via the novel use of PCI-Express as the I/O interface to the ARM processors. An overview of the PU is given and the results for performance and throughput testing of four different ARM Cortex System on Chips are presented.

  1. Primordial beryllium as a big bang calorimeter

    E-print Network

    Pospelov, Maxim

    2010-01-01

    Many models of new physics including variants of supersymmetry predict metastable long-lived particles that can decay during or after primordial nucleosynthesis, releasing significant amounts of non-thermal energy. The hadronic energy injection in these decays leads to the formation of ^9Be via the chain of non-equilibrium transformations: Energy_h -> T, ^3He -> ^6He, ^6Li -> ^9Be. We calculate the efficiency of this transformation and show that if the injection happens at cosmic times of a few hours, the release of 10 MeV per baryon can be sufficient for obtaining a sizable ^9Be abundance. The absence of a plateau-structure in the ^9Be/H abundance down to a 10^{-14} level allows one to use beryllium as a robust constraint on new physics models with decaying or annihilating particles.

  2. Primordial beryllium as a big bang calorimeter.

    PubMed

    Pospelov, Maxim; Pradler, Josef

    2011-03-25

    Many models of new physics including variants of supersymmetry predict metastable long-lived particles that can decay during or after primordial nucleosynthesis, releasing significant amounts of nonthermal energy. The hadronic energy injection in these decays leads to the formation of ?Be via the chain of nonequilibrium transformations: Energy(h)?T, ³He??He, ?Li??Be. We calculate the efficiency of this transformation and show that if the injection happens at cosmic times of a few hours the release of O(10 MeV) per baryon can be sufficient for obtaining a sizable ?Be abundance. The absence of a plateau structure in the ?Be/H abundance down to a O(10?¹?) level allows one to use beryllium as a robust constraint on new physics models with decaying or annihilating particles. PMID:21517297

  3. Primordial beryllium as a big bang calorimeter

    E-print Network

    Maxim Pospelov; Josef Pradler

    2011-03-23

    Many models of new physics including variants of supersymmetry predict metastable long-lived particles that can decay during or after primordial nucleosynthesis, releasing significant amounts of non-thermal energy. The hadronic energy injection in these decays leads to the formation of ^9Be via the chain of non-equilibrium transformations: Energy_h -> T, ^3He -> ^6He, ^6Li -> ^9Be. We calculate the efficiency of this transformation and show that if the injection happens at cosmic times of a few hours, the release of 10 MeV per baryon can be sufficient for obtaining a sizable ^9Be abundance. The absence of a plateau-structure in the ^9Be/H abundance down to a 10^{-14} level allows one to use beryllium as a robust constraint on new physics models with decaying or annihilating particles.

  4. Primordial Beryllium as a Big Bang Calorimeter

    SciTech Connect

    Pospelov, Maxim; Pradler, Josef

    2011-03-25

    Many models of new physics including variants of supersymmetry predict metastable long-lived particles that can decay during or after primordial nucleosynthesis, releasing significant amounts of nonthermal energy. The hadronic energy injection in these decays leads to the formation of {sup 9}Be via the chain of nonequilibrium transformations: Energy{sub h}{yields}T, {sup 3}He{yields}{sup 6}He, {sup 6}Li{yields}{sup 9}Be. We calculate the efficiency of this transformation and show that if the injection happens at cosmic times of a few hours the release of O(10 MeV) per baryon can be sufficient for obtaining a sizable {sup 9}Be abundance. The absence of a plateau structure in the {sup 9}Be/H abundance down to a O(10{sup -14}) level allows one to use beryllium as a robust constraint on new physics models with decaying or annihilating particles.

  5. Simulation studies of hadron energy resolution as a function of iron plate thickness at INO-ICAL

    E-print Network

    Lakshmi S. Mohan; Anushree Ghosh; Moon Moon Devi; Daljeet Kaur; Sandhya Choubey; Amol Dighe; D. Indumathi; M. V. N. Murthy; Md. Naimuddin

    2015-03-11

    We report on a detailed simulation study of the hadron energy resolution as a function of the thickness of the absorber plates for the proposed Iron Calorimeter (ICAL) detector at the India-based Neutrino Observatory (INO). We compare the hadron resolutions obtained with absorber thicknesses in the range 1.5--8 cm for neutrino interactions in the energy range 2--15 GeV, which is relevant to hadron production in atmospheric neutrino interactions. We find that at lower energies, the thickness dependence of energy resolution is steeper than at higher energies, however there is a thickness-independent contribution that dominates at the lower thicknesses discussed in this work. As a result, the gain in hadron energy resolution with decreasing plate thickness is marginal. We present the results in the form of fits to a function with energy-dependent exponent.

  6. Melting hadrons, boiling quarks

    NASA Astrophysics Data System (ADS)

    Rafelski, Johann

    2015-09-01

    In the context of the Hagedorn temperature half-centenary I describe our understanding of the hot phases of hadronic matter both below and above the Hagedorn temperature. The first part of the review addresses many frequently posed questions about properties of hadronic matter in different phases, phase transition and the exploration of quark-gluon plasma (QGP). The historical context of the discovery of QGP is shown and the role of strangeness and strange antibaryon signature of QGP illustrated. In the second part I discuss the corresponding theoretical ideas and show how experimental results can be used to describe the properties of QGP at hadronization. The material of this review is complemented by two early and unpublished reports containing the prediction of the different forms of hadron matter, and of the formation of QGP in relativistic heavy ion collisions, including the discussion of strangeness, and in particular strange antibaryon signature of QGP.

  7. QCD and hadron structure

    SciTech Connect

    Kaplan, D.B.

    1995-06-01

    I give a brief and selective overview of QCD as it pertains to determining hadron structure, and the relevant directions in this field for nuclear theory. This document is intended to start discussion about priorities, not end it.

  8. Progress status for the Mu2e calorimeter system

    NASA Astrophysics Data System (ADS)

    Pezzullo, Gianantonio; Budagov, J.; Carosi, R.; Cervelli, F.; Cheng, C.; Cordelli, M.; Corradi, G.; Davydov, Yu; Echenard, B.; Giovannella, S.; Glagolev, V.; Happacher, F.; Hitlin, D.; Luca, A.; Martini, M.; Miscetti, S.; Murat, P.; Ongmonkolkul, P.; Porter, F.; Saputi, A.; Sarra, I.; Spinella, F.; Stomaci, V.; Tassielli, G.

    2015-02-01

    The Mu2e experiment at FNAL aims to measure the charged-lepton flavor violating neutrinoless conversion of a negative muon into an electron. The conversion results in a monochromatic electron with an energy slightly below the muon rest mass (104.97 MeV). The calorimeter should confirm that the candidates reconstructed by the extremely precise tracker system are indeed conversion electrons while performing a powerful ?/e particle identification. Moreover, it should also provide a high level trigger for the experiment independently from the tracker system. The calorimeter should also be able to keep functionality in an environment where the background delivers a dose of ~ 10 krad/year in the hottest area and to work in the presence of 1 T axial magnetic field. These requirements translate in the design of a calorimeter with large acceptance, good energy resolution O(5%) and a reasonable position (time) resolution of ~ < 1 cm (<0.5ns). The baseline version of the calorimeter is composed by two disks of inner (outer) radius of 351 (660) mm filled by 1860 hexagonal BaF2 crystals of 20 cm length. Each crystal is readout by two large area APD's. In this paper, we summarize the experimental tests done so far as well as the simulation studies in the Mu2e environment.

  9. D0 calorimeter upgrades for Tevatron Run II

    SciTech Connect

    Leslie S. Groer

    2001-08-15

    The electronic readout system for the D0 liquid argon calorimeter has been upgraded to take advantage of the upcoming Tevatron Run II. New scintillation preshower detectors have been installed as well as replacements for scintillation detectors in the intercryostat regions. These upgrades and preliminary testing and calibration results are described.

  10. The Mini-Calorimeter detector for the AGILE mission

    NASA Astrophysics Data System (ADS)

    Labanti, C.; Argan, A.; Bulgarelli, A.; Di Cocco, G.; Gianotti, F.; Marisaldi, M.; Mauri, A.; Rossi, E.; Tavani, M.; Traci, A.; Trifoglio, M.

    2006-01-01

    AGILE is an ASI space mission for high energy astrophysics in the gamma ray energy range 30MeV-50GeV, and in the X-ray band (10keV-40keV). AGILE is composed of three detecting systems: a Tungsten-Silicon Tracker, a Csl Mini-Calorimeter and a Silicon based X-ray detector (Super-Agile), plus an anticoincidence system for background rejection. The satellite will have good imaging performances (with angular resolution of a few arc-minutes in the gamma ray band), good timing resolution and a large field of view (about 1/5 of the sky). AGILE high energy detector is composed of a Silicon Tracker, a Mini-Calorimeter, the Anticoincidence and the Data Handling system The Mini-Calorimeter can also work as a stand-alone gamma ray detector in the energy range 250keV-250MeV, with no imaging capabilities, for the detection of transients and gamma ray burst events and for the evaluation of gamma ray background fluctuations. The Mini-Calorimeter is made of 30 independent elements of 37.5×2.3×1.5 cm stacked in two layers. Each detector scintillator signal is read out via two photodiodes glued on the small surfaces of the bar. The characteristics of the engineering model detectors has been deeply investigated and will be reported.

  11. ATLAS Liquid Argon Calorimeter at dawn of LHC Run-2

    E-print Network

    Camincher, Clement; The ATLAS collaboration

    2015-01-01

    At the start of the LHC Run-2 here is an overview of the Liquid Argon Calorimeter of ATLAS. It is described the main modifications done during the long shutdown (2013-2015). The first LAr-related results with 2015 data are also highlighted. Finally a short description present the foreseen Phase-I upgrade of the L1 Calo trigger.

  12. Temperature and humidity control in indirect calorimeter chambers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A three-chamber, indirect calorimeter has been a part of the Environmental Laboratory at the U.S. Meat Animal Research Center (MARC) for over 25 yr. Corrosion of the animal chambers and unreliable temperature control forced either major repairs or complete replacement. There is a strong demand for...

  13. Micro-fabricated DC comparison calorimeter for RF power measurement.

    PubMed

    Neji, Bilel; Xu, Jing; Titus, Albert H; Meltzer, Joel

    2014-01-01

    Diode detection and bolometric detection have been widely used to measure radio frequency (RF) power. However, flow calorimeters, in particular micro-fabricated flow calorimeters, have been mostly unexplored as power meters. This paper presents the design, micro-fabrication and characterization of a flow calorimeter. This novel device is capable of measuring power from 100 ?W to 200 mW. It has a 50-Ohm load that is heated by the RF source, and the heat is transferred to fluid in a microchannel. The temperature change in the fluid is measured by a thermistor that is connected in one leg of a Wheatstone bridge. The output voltage change of the bridge corresponds to the RF power applied to the load. The microfabricated device measures 25.4 mm × 50.8 mm, excluding the power supplies, microcontroller and fluid pump. Experiments demonstrate that the micro-fabricated sensor has a sensitivity up to 22 × 10?³ V/W. The typical resolution of this micro-calorimeter is on the order of 50 ?W, and the best resolution is around 10 ?W. The effective efficiency is 99.9% from 0?1 GHz and more than 97.5% at frequencies up to 4 GHz. The measured reflection coefficient of the 50-Ohm load and coplanar wave guide is less than ?25 dB from 0?2 GHz and less than ?16 dB at 2?4 GHz. PMID:25350509

  14. Balloon test project: Cosmic Ray Antimatter Calorimeter (CRAC)

    NASA Technical Reports Server (NTRS)

    Christy, J. C.; Dhenain, G.; Goret, P.; Jorand, J.; Masse, P.; Mestreau, P.; Petrou, N.; Robin, A.

    1984-01-01

    Cosmic ray observations from balloon flights are discussed. The cosmic ray antimatter calorimeter (CRAC) experiment attempts to measure the flux of antimatter in the 200-600 Mev/m energy range and the isotopes of light elements between 600 and 1,000 Mev/m.

  15. U. Akgun, ECLIPSE06, Antalya, Quartz Plate Calorimeter Prototype

    E-print Network

    Akgun, Ugur

    U. Akgun, ECLIPSE06, Antalya, Turkey Quartz Plate Calorimeter Prototype "First Generation" U. Akgun. Onel The University of Iowa #12;U. Akgun, ECLIPSE06, Antalya, Turkey Introduction · While working for the first time this summer at CERN. #12;U. Akgun, ECLIPSE06, Antalya, Turkey Model Quartz Plate Prototype

  16. Noise in a Calorimeter Readout System Using Periodic Sampling

    SciTech Connect

    Innes, Walter R.; /SLAC

    2009-02-26

    Fourier transform analysis of the calorimeter noise problem gives quantitative results on (a) the time-height correlation, (b) the effect of background on optimal shaping and on the ENC, (c) sampling frequency requirements, and (d) the relation between sampling frequency and the required quantization error.

  17. The pad readout electronics of the SLD Warm Iron Calorimeter

    SciTech Connect

    Burrows, P.N.; Busza, W.; Cartwright, S.L.; Friedman, J.I.; Fuess, S.; Gonzalez, S.; Hansl-Kozanecka, T.; Kendall, H.W.; Lath, A.; Lyons, T.; Osborne, L.S.; Rosenson, L.; Schneekloth, U.; Taylor, F.E.; Verdier, R.; Wadsworth, B.; Williams, D.C.; Yamartino, J.M. ); Byers, B.L.; Escalera, J.; Gioumousis, A.; Gray, R.; Horelick, D.; Kharakh, D.; Messner, R.L.; Moss, J.; Zdark

    1990-08-01

    The design of the pad readout electronics of the Warm Iron Calorimeter for the SLD detector at SLAC, consisting of about 9000 analog channels, is described. Results of various tests performed during the construction, installation and commissioning of the electronics mounted on the detector are presented. 10 refs., 12 figs.

  18. Towards a compensatable Muon Collider calorimeter with manageable backgrounds

    SciTech Connect

    Raja, R.; /Fermilab

    2012-04-01

    Muon Collider detectors pose very challenging problems in detector technology due to extremely large backgrounds present in the detector volume as a result of muon decays. Current designs of a 750 GeV/c per beam Muon Collider envisage 4.28 x 10{sup 5} muon decays per meter in the beam pipe close to the interaction region. The decay electrons after intense shielding still manage to produce large backgrounds in the detector volume of low energy photons, neutrons and higher energy Bethe Heitler muons. There are 170/184/6.8/177 TeVs energy entering the detector volume per crossing due to EM particles/Muons/Mesons/Baryons respectively. We investigate the capabilities of an iron calorimeter with pixelated readout where each pixel gives a yes/no answer as to whether a charged particle passed through it or not, to solve this problem. Each pixel is individually triggered by a 'travelling gate trigger' with a gate of 2 ns where the beginning of the gate is the time of arrival of a light signal from the interaction region to the pixel. We show that such a calorimeter is compensatable and propose two schemes to compensate the digital output in software to improve the resolution of the calorimeter. We show that such a calorimeter is capable of digitizing physics signals from the interaction region and as a result, the backgrounds from the muon decays are much reduced and under control.

  19. Development of a scintillating optical fiber ionization calorimeter

    NASA Technical Reports Server (NTRS)

    Takahashi, Y.

    1990-01-01

    A design study of a scintillation fiber (SF) calorimeter for a cosmic ray observation is made. An evaluation of various fibers and design configuration was made. The proposed design has a dimension of 1 m (W) x 1 m (L) x 16 cm (H) contains 1000 fibers at each of 40 x- or 40 y-layers interleaved with 1mm thick leadplates. Two or four CCD Particle Track Imaging Systems are connected to a bundle of SF edges at x- and y-ends. The overall weight of a calorimeter is 1,200 kg including read-out systems and supporting boards. The designed calorimeter can measure cosmic ray nuclei and gamma-rays with position, angles and energy information suitable for detailed spectrum analysis. The system is particularly beneficial at very high energies where the flux is extremely low and it requires a very long exposure over many years in space. Emulsion chambers have an advantage for cosmic ray measurements if the exposure is limited to several months in space. In fact, the most important energy region for the current cosmic ray studies is at around 1,000 TeV where a drastic change of elemental composition is indicated by various indirect observations. A detector whose size is in the order of 1 m(sup 2) requires several years of exposure in space accumulate sufficient statistics near 1,000 TeV. Emulsions will be strongly contaminated by background radiation for such a long duration flight, while SF calorimeter is totally immune from this concern. This is particularly important for long-duration experiments. The SF calorimeter also allows time-tagging of individual events, extending the experimental capability in various ways.

  20. The effect of manufacturing variables on radiation doses from porcelain tiles.

    PubMed

    Selby, J H; Strydom, R

    2008-06-01

    Previous studies have focused on the radiological properties of glazed ceramic tiles. This study was conducted to describe the radiological properties of porcelain tiles and how they were affected by variations in the manufacturing parameters. The data showed that the majority of the uranium in the tiles was attributable to the addition of zircon while less than half of the thorium in the tile was attributable to the added zircon, and the remainder came from other minerals in the formulation. The effects of firing temperatures and compressive strengths of the tiles are presented and show that higher firing temperatures increase radon emanation, while higher compressive strengths reduce radon emanation. The study also described how the addition of zircon to the tile formulation affected the radiological exposures that could be received by a member of the public from the use of such porcelain tiles. A dose assessment was conducted based on 23 different types of tile formulation. Screening procedures for building materials have been described in European Commission documents, and these limit the addition of zircon in a porcelain tile to approximately 9% by mass. The dose assessment reported in this study showed that 20% zircon could be added to a porcelain tile without exceeding the prescribed dose limits. PMID:18469587

  1. The AMS-02 3D Imaging calorimeter : a tool for cosmic ray physics in space

    NASA Astrophysics Data System (ADS)

    Vialle, Jean-Pierre

    AMS-02 is an astroparticle experiment that will operate on board of the ISS for a period of about three years. The main scientific goals of the experiment are the search for antimatter and dark matter, the high precision measurement of charged cosmic ray spectra and fluxes and the study of gamma rays, in the GeV to TeV energy range. In AMS-02 the Electromagnetic Calorimeter (ECAL) is required to measure e+, eand gamma spectra and to discriminate electromagnetic showers from hadronic cascades. To fulfill these requirements ECAL is based on a lead/scintillating fiber sandwich, providing a 3D imaging reconstruction of the showers. The electronics equipping the detector, with low noise and challenging dynamic range readout, was designed following stringent requirements on mechanical and thermal stability, power consumption, radiation hardness and double redundancy. The full system had successfully gone through the space qualification tests. At last the ECAL Flight Model was calibrated during Summer 2007 in a test beam at CERN, using 6 to 250 GeV electron and proton beams. Results on the measurements of ECAL parameters and performances are reported

  2. The upgrade and re-validation of the Compact Muon Solenoid Electromagnetic Calorimeter Control System

    NASA Astrophysics Data System (ADS)

    Holme, O.; Adzic, P.; Di Calafiori, D.; Dissertori, G.; Djambazov, L.; Jovanovic, D.; Lustermann, W.; Zelepoukine, S.

    2014-06-01

    The Electromagnetic Calorimeter (ECAL) is one of the sub-detectors of the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) at CERN. The Detector Control System (DCS) that has been developed and implemented for the CMS ECAL was deployed in accordance with the LHC schedule and has been supporting the CMS data-taking since LHC physics runs started in 2009. During these years, the control system has been regularly adapted according to operational experience and new requirements, always respecting the constraints imposed on significant changes to a running system. Several hardware and software upgrades and system extensions were therefore deferred to the first LHC Long Shutdown (LS1). This paper presents the main architectural differences between the system that supported the CMS ECAL during its first years and the new design for the coming physics runs after LS1. Details on the upgrade planning, including the certification methods performed in the CMS ECAL DCS laboratory facilities, reports on the implementation progress and the expectations for the post-LS1 system are highlighted.

  3. Phase-I Trigger Readout Electronics Upgrade of the ATLAS Liquid-Argon Calorimeters

    E-print Network

    Mori, Tatsuya; The ATLAS collaboration

    2015-01-01

    The Large Hadron Collider (LHC) is foreseen to be upgraded during the shut-down period of 2018-2019 to deliver about 3 times the instantaneous design luminosity. Since the ATLAS trigger system, at that time, will not support such an increase of the trigger rate an improvement of the trigger system is required. The ATLAS LAr Calorimeter readout will therefore be modified and digital trigger signals with a higher spatial granularity will be provided to the trigger. The new trigger signals will be arranged in 34000 Super Cells which achieves a 5-10 better granularity than the trigger towers currently used and allows an improved background rejection. The Super Cell readout is composed of custom developed 12-bit combined SAR ADCs in 130 nm CMOS technology which will be installed on-detector in a radiation environment and digitizes the detector pulses at 40 MHz. The data will be transmitted to the back end using a custom serializer and optical converter applying 5.44 Gb/s optical links. These components are install...

  4. Thermodynamic behavior of a Penrose-tiling quasicrystal

    SciTech Connect

    Strandburg, K.J.; Dressel, P.R. )

    1990-02-01

    The Penrose tiling provides a prototype for the quasiperiodic crystal model of quasicrystals. We report results of Monte Carlo simulations of a two-dimensional model in which a Penrose tiling is the ground state. A single energy is assigned to any violation of the Penrose matching rules. Our results support the existence of two separate phase transitions, corresponding to single- and double-arrow matching-rule disorder, respectively. Manifestations of these transitions in the behavior of perpendicular-space'' quantities are explored. A limited exploration of the effects of unequal double- and single-arrow matching-rule-violation energies is performed. Speculations that the Penrose pattern might be inherently prone to glassy behavior are shown to be incorrect.

  5. Measure Theory of Self-Similar Groups and Digit Tiles 

    E-print Network

    Kravchenko, Rostyslav

    2011-02-22

    the limit G-space XZn is Rn and the tile T is an integral self-affine tile, which are intensively studied for the last two decades (see [LW96b, Vin00, LW96a, LW97, HLR03]). In this case the measure ? is the Lebesgue measure on Rn. One can apply the methods...(Fv)? summationdisplay ux?v p(x)?p(Fu) = summationdisplay u?V tuv?p(Fu) ? vector?p(F)?vector?p(F)Tp. The standard arguments based on the theory of nonnegative matrices (see for 23 example [HLR03, proof of Theorem 4.5], [GY06, page 197], [Rot06]) end the proof. Corollary...

  6. Large-scale testing of structural clay tile infilled frames

    SciTech Connect

    Flanagan, R.D.; Bennett, R.M.

    1993-03-18

    A summary of large-scale cyclic static tests of structural clay tile infilled frames is given. In-plane racking tests examined the effects of varying frame stiffness, varying infill size, infill offset from frame centerline, and single and double wythe infill construction. Out-of-plane tests examined infilled frame response to inertial loadings and inter-story drift loadings. Sequential in-plane and out-of-plane loadings were performed to determine the effects of orthogonal damage and degradation on both strength and stiffness. A combined out-of-plane inertial and in-plane racking test was conducted to investigate the interaction of multi-directional loading. To determine constitutive properties of the infills, prism compression, mortar compression and various unit tile tests were performed.

  7. The geometry of the 37-tile microwave antenna support structure

    NASA Technical Reports Server (NTRS)

    Finley, L. A.

    1980-01-01

    The geometry of the support structure for a proposed parabolic shaped microwave antenna is examined. The surface of the antenna is comprised of 37 hexagonal shaped tiles, each connected to a truss module. The units are joined together to form a rigidized, faceted, concave parabolic surface. The geometry specifications are described through an explanation of the structural components which make up the antenna, a description of the coordinate system devised to identify the structure, and a presentation of the nondimensional results.

  8. Orion EFT-1 Catalytic Tile Experiment Overview and Flight Measurements

    NASA Technical Reports Server (NTRS)

    Salazar, Giovanni; Amar, Adam; Hyatt, Andrew; Rezin, Marc D.

    2016-01-01

    This paper describes the design and results of a surface catalysis flight experiment flown on the Orion Multipurpose Crew Vehicle during Exploration Flight Test 1 (EFT1). Similar to previous Space Shuttle catalytic tile experiments, the present test consisted of a highly catalytic coating applied to an instrumented TPS tile. However, the present catalytic tile experiment contained significantly more instrumentation in order to better resolve the heating overshoot caused by the change in surface catalytic efficiency at the interface between two distinct materials. In addition to collecting data with unprecedented spatial resolution of the "overshoot" phenomenon, the experiment was also designed to prove if such a catalytic overshoot would be seen in turbulent flow in high enthalpy regimes. A detailed discussion of the results obtained during EFT1 is presented, as well as the challenges associated with data interpretation of this experiment. Results of material testing carried out in support of this flight experiment are also shown. Finally, an inverse heat conduction technique is employed to reconstruct the flight environments at locations upstream and along the catalytic coating. The data and analysis presented in this work will greatly contribute to our understanding of the catalytic "overshoot" phenomenon, and have a significant impact on the design of future spacecraft.

  9. Virtual-memory tiling for spatial data handling in GIS

    NASA Astrophysics Data System (ADS)

    McCormack, J. E.; Hogg, J.

    1997-07-01

    Virtual-memory tiling enables applications efficiently to handle much larger arrays of raster spatial data more efficiently than is otherwise possible, without requiring specialist computing resources. It has particular application to geographical information systems (GIS) given the wide availability of large sets of digital raster spatial data from remote sensing and other sources. The size of these data sets often greatly exceeds the capabilities of most applications on standard computer platforms. In this paper, a virtual memory tiling approach is developed and implemented in C++. A tiled array class with a similar syntax and usage to standard arrays is constructed, which is readily integrated with existing algorithms and applications. A framework is developed for classifying operations on spatial data in terms of small and large regions. These two categories are representative of a broad range of operations on spatial data in GIS. Experimental results on a standard desktop platform are presented for an application (river catchment hydrology) using a 297-Mb array (10,800 × 9600 cells) of USGS digital elevation data.

  10. Generalized Penrose tiling as a quasilattice for decagonal quasicrystal structure analysis.

    PubMed

    Chodyn, Maciej; Kuczera, Pawel; Wolny, Janusz

    2015-03-01

    The generalized Penrose tiling is, in fact, an infinite set of decagonal tilings. It is constructed with the same rhombs (thick and thin) as the conventional Penrose tiling, but its long-range order depends on the so-called shift parameter (s ? ?0; 1)). The structure factor is derived for the arbitrarily decorated generalized Penrose tiling within the average unit cell approach. The final formula works in physical space only and is directly dependent on the s parameter. It allows one to straightforwardly change the long-range order of the refined structure just by changing the s parameter and keeping the tile decoration unchanged. This gives a great advantage over the higher-dimensional method, where every change of the tiling (change in the s parameter) requires the structure model to be built from scratch, i.e. the fine division of the atomic surfaces has to be redone. PMID:25727864

  11. CAD Tools for Creating Space-filing 3D Escher Tiles

    SciTech Connect

    Howison, Mark; Sequin, Carlo H.

    2009-04-10

    We discuss the design and implementation of CAD tools for creating decorative solids that tile 3-space in a regular, isohedral manner. Starting with the simplest case of extruded 2D tilings, we describe geometric algorithms used for maintaining boundary representations of 3D tiles, including a Java implementation of an interactive constrained Delaunay triangulation library and a mesh-cutting algorithm used in layering extruded tiles to create more intricate designs. Finally, we demonstrate a CAD tool for creating 3D tilings that are derived from cubic lattices. The design process for these 3D tiles is more constrained, and hence more difficult, than in the 2D case, and it raises additional user interface issues.

  12. QCD and Hadron Physics

    E-print Network

    Stanley J. Brodsky; Abhay L. Deshpande; Haiyan Gao; Robert D. McKeown; Curtis A. Meyer; Zein-Eddine Meziani; Richard G. Milner; Jianwei Qiu; David G. Richards; Craig D. Roberts

    2015-02-19

    This document presents the recommendations and scientific conclusions from the Town Meeting on QCD and Hadronic Physics that took place in the period 13-15 September 2014 at Temple University as part of the NSAC 2014 Long Range Planning process. It highlights progress in hadron physics in the seven years since the 2007 Long Range Plan (LRP07), and presents a vision for the future by identifying key questions and plausible paths to solutions which should define our next decade. In defining the priority of outstanding physics opportunities for the future, both prospects for the short (roughly 5 years) and longer term (beyond 10 years) are identified together with the facilities, personnel and other resources needed to maximize the discovery potential in hadronic physics worldwide. In this connection, the potential of an electron ion collider is highlighted.

  13. QCD and Hadron Physics

    E-print Network

    Brodsky, Stanley J; Gao, Haiyan; McKeown, Robert D; Meyer, Curtis A; Meziani, Zein-Eddine; Milner, Richard G; Qiu, Jianwei; Richards, David G; Roberts, Craig D

    2015-01-01

    This document presents the recommendations and scientific conclusions from the Town Meeting on QCD and Hadronic Physics that took place in the period 13-15 September 2014 at Temple University as part of the NSAC 2014 Long Range Planning process. It highlights progress in hadron physics in the seven years since the 2007 Long Range Plan (LRP07), and presents a vision for the future by identifying key questions and plausible paths to solutions which should define our next decade. In defining the priority of outstanding physics opportunities for the future, both prospects for the short (roughly 5 years) and longer term (beyond 10 years) are identified together with the facilities, personnel and other resources needed to maximize the discovery potential in hadronic physics worldwide. In this connection, the potential of an electron ion collider is highlighted.

  14. Aspects of hadron physics.

    SciTech Connect

    Bhagwat, M. S.; Hoell, A.; Roberts, C. D.; Wright, S. V.; Physics; Univ. Rostock

    2007-01-01

    Detailed investigations of the structure of hadrons are essential for understanding how matter is constructed from the quarks and gluons of Quantum chromodynamics (QCD), and amongst the questions posed to modern hadron physics, three stand out. What is the rigorous, quantitative mechanism responsible for confinement? What is the connection between confinement and dynamical chiral symmetry breaking? And are these phenomena together sufficient to explain the origin of more than 98% of the mass of the observable universe? Such questions may only be answered using the full machinery of nonperturbative relativistic quantum field theory. This contribution provides a perspective on progress toward answering these key questions. In so doing it will provide an overview of the contemporary application of Dyson-Schwinger equations in Hadron Physics, additional information on which may be found in Refs. [1, 2, 3, 4, 5, 6]. The presentation assumes that the reader is familiar with the concepts and notation of relativistic quantum mechanics, with the functional integral formulation of quantum field theory and with regularization and renormalization in its perturbative formulation. For these topics, in order of appearance, Refs. [7, 8, 9, 10] are useful. In addition, Chaps. 1 and 2 of Ref. [5] review the bulk of the necessary concepts. Hadron physics is a key part of the international effort in basic science. For example, in the USA we currently have the Thomas Jefferson National Accelerator Facility (JLab) and the Relativistic Heavy Ion Collider (RHIC) while in Europe hadron physics is studied at the Frascati National Laboratory and is an important part of a forthcoming pan-European initiative; namely, the Facility for Antiproton and Ion Research (FAIR) at GSI-Darmstadt. Progress in this field is gauged via the successful completion of precision measurements of fundamental properties of hadrons; e.g., the pion, proton and neutron, and simple nuclei, for comparison with theoretical calculations to provide a quantitative understanding of their quark substructure.

  15. Flavourful hadronic physics.

    SciTech Connect

    El-Bennich, B.; Ivanov, M. A.; Roberts, C. D.

    2010-02-01

    We review theoretical approaches to form factors that arise in heavy-meson decays and are hadronic expressions of non-perturbative QCD. After motivating their origin in QCD factorisation, we retrace their evolution from quark-model calculations to non-perturbative QCD techniques with an emphasis on formulations of truncated heavy-light amplitudes based upon Dyson-Schwinger equations. We compare model predictions exemplarily for the F{sup B {yields} {pi}}(q{sup 2}) transition form factor and discuss new results for the g{sub D*D{pi}}coupling in the hadronic D* decay.

  16. Hadrons in Dense Matter

    E-print Network

    A. W. Thomas

    1997-07-03

    There is currently enormous interest in the investigation of how hadron properties may be altered by immersion in matter. There is strong evidence of a reduction in the mass of the rho meson from relativistic heavy ion collisions as well as a hint from a recent experiment on photoproduction in light nuclei. We briefly review the main theoretical ideas which lead one to expect the mass of a hadron to change in matter, including the various QCD-based methods, notably the QCD sum rules, as well as mean-field, quark based models like QMC and conventional nuclear approaches such as QHD.

  17. Hadron Physics with Antiprotons

    SciTech Connect

    Wiedner, Ulrich

    2005-10-26

    The new FAIR facility which comes into operation at GSI in the upcoming years has a dedicated program of utilizing antiprotons for hadron physics. In particular, the planned PANDA experiment belongs to the group of core experiments at the new FAIR facility in Darmstadt/Germany. PANDA will be a universal detector to study the strong interaction by utilizing the annihilation process of antiprotons with protons and nuclear matter. The current paper gives an introduction into the hadron physics with antiprotons and part of the planned physics program with PANDA.

  18. Measurement of Hadronic Event Shapes and Jet Substructure in Proton-Proton Collisions at 7.0 TeV Center-of-Mass Energy with the ATLAS Detector at the Large Hadron Collider

    SciTech Connect

    Miller, David Wilkins

    2012-03-20

    This thesis presents the first measurement of 6 hadronic event shapes in proton-proton collisions at a center-of-mass energy of {radical}s = 7 TeV using the ATLAS detector at the Large Hadron Collider. Results are presented at the particle-level, permitting comparisons to multiple Monte Carlo event generator tools. Numerous tools and techniques that enable detailed analysis of the hadronic final state at high luminosity are described. The approaches presented utilize the dual strengths of the ATLAS calorimeter and tracking systems to provide high resolution and robust measurements of the hadronic jets that constitute both a background and a signal throughout ATLAS physics analyses. The study of the hadronic final state is then extended to jet substructure, where the energy flow and topology within individual jets is studied at the detector level and techniques for estimating systematic uncertainties for such measurements are commissioned in the first data. These first substructure measurements in ATLAS include the jet mass and sub-jet multiplicity as well as those concerned with multi-body hadronic decays and color flow within jets. Finally, the first boosted hadronic object observed at the LHC - the decay of the top quark to a single jet - is presented.

  19. Constructing Penrose-like tilings from a single prototile and the implications for quasicrystals

    SciTech Connect

    Jeong, H.; Steinhardt, P.J.

    1997-02-01

    We present two sets of rules for constructing quasiperiodic tilings that suggest a simpler structural model of quasicrystals and a more plausible explanation of why quasicrystals form. First, we show that quasiperiodic tilings can be constructed from a single prototile with matching rules which constrain the way that neighbors can overlap. Second, we show that maximizing the density of a certain cluster of fat and thin tiles can force a Penrose tiling without imposing the usual Penrose matching rules. {copyright} {ital 1997} {ital The American Physical Society}

  20. Aperiodic compression and reconstruction of real-world material systems based on Wang tiles

    NASA Astrophysics Data System (ADS)

    Došká?, Martin; Novák, Jan; Zeman, Jan

    2014-12-01

    The paper presents a concept to compress and synthesize complex material morphologies that is based on Wang tilings. Specifically, a microstructure is stored in a set of Wang tiles and its reconstruction is performed by means of a stochastic tiling algorithm. A substantial part of the study is devoted to the setup of optimal parameters of the automatic tile design by means of parametric studies with statistical descriptors at heart. The performance of the method is demonstrated on four two-dimensional two-phase target systems, monodisperse media with hard and soft disks, sandstone, and high porosity metallic foam.

  1. Ceramic-ceramic shell tile thermal protection system and method thereof

    NASA Technical Reports Server (NTRS)

    Riccitiello, Salvatore R. (inventor); Smith, Marnell (inventor); Goldstein, Howard E. (inventor); Zimmerman, Norman B. (inventor)

    1986-01-01

    A ceramic reusable, externally applied composite thermal protection system (TPS) is proposed. The system functions by utilizing a ceramic/ceramic upper shell structure which effectively separates its primary functions as a thermal insulator and as a load carrier to transmit loads to the cold structure. The composite tile system also prevents impact damage to the atmospheric entry vehicle thermal protection system. The composite tile comprises a structurally strong upper ceramic/ceramic shell manufactured from ceramic fibers and ceramic matrix meeting the thermal and structural requirements of a tile used on a re-entry aerospace vehicle. In addition, a lightweight high temperature ceramic lower temperature base tile is used. The upper shell and lower tile are attached by means effective to withstand the extreme temperatures (3000 to 3200F) and stress conditions. The composite tile may include one or more layers of variable density rigid or flexible thermal insulation. The assembly of the overall tile is facilitated by two or more locking mechanisms on opposing sides of the overall tile assembly. The assembly may occur subsequent to the installation of the lower shell tile on the spacecraft structural skin.

  2. Tethers as Debris: Simulating Impacts of Tether Fragments on Shuttle Tiles

    NASA Technical Reports Server (NTRS)

    Evans, Steven W.

    2004-01-01

    The SPHC hydrodynamic code was used to simulate impacts of Kevlar and aluminum projectiles on a model of the LI-900 type insulating tiles used on Space Shuffle Orbiters The intent was to examine likely damage that such tiles might experience if impacted by orbital debris consisting of tether fragments. Projectile speeds ranged from 300 meters per second to 10 kilometers per second. Damage is characterized by penetration depth, tile surface-hole diameter, tile body-cavity diameter, coating fracture diameter, tether and cavity wall material phases, and deformation of the aluminum backwall.

  3. A simplistic view of hadron calorimetry

    SciTech Connect

    Groom, Donald E.

    2007-03-19

    All too often we rely on Monte Carlo simulations without worrying too much about basic physics. It is possible to start with a very simple calorimeter (a big cylinder) and learn the functional form of {pi}/e by an induction argument. Monte Carlo simulations provide sanity checks and constants. A power-law functional form describes test beam results surprisingly well. The prediction that calorimeters respond differently to protons and pions of the same energy was unexpected. The effect was later demonstrated by the CMS forward calorimeter group, using the most noncompensating calorimeter ever built. Calorimeter resolution is dominated by fluctuations in {pi}0 production and the energy deposit by neutrons. The DREAM collaboration has recently used a dual readout calorimeter to eliminate the first of these. Ultimate resolution depends on measuring neutrons on an event-by-event basis as well.

  4. The NA48 Liquid Krypton Calorimeter Description and Performances

    E-print Network

    Jose Ocariz

    1999-01-11

    The NA48 experiment at CERN aims at making a precision study of direct CP violation in the neutral kaons, by measuring $Re(\\epsilon'/\\epsilon)$ with an accuracy better than 0.02%. To achieve this goal, the experiment requires a neutral detector with fast response, high efficiency in a high-rate environment (\\sim MHz), long-term stability, sub-nanosecond time resolution, millimetric space precision, and an excellent energy resolution (1%) in the $5 \\to 100$ GeV range. To achieve these performances, a quasi-homogeneous Liquid Krypton calorimeter has been chosen, designed with a projective tower geometry, high transversal segmentation, and fast digital readout. The calorimeter was operative during the '97 data taking period, its performances were thoroughly studied, and found to be in agreement with design requirements. A detector description and performances analysis are here presented.

  5. ATLAS LAr Calorimeter Performance and Commissioning for LHC Run-2

    E-print Network

    Spettel, Fabian; The ATLAS collaboration

    2015-01-01

    The ATLAS detector was designed and built to study proton-proton colli- sions produced at the LHC at centre-of-mass energies up to 14 TeV and in- stantaneous luminosities up to $10^{34} \\text{cm}^{-2} \\text{s}^{-1}$. Liquid argon (LAr) sampling calorimeters are employed for all electromagnetic calorimetry in the pseudorapidity region $|\\eta|text{fb}^{-1}$ as been collected at center-of-mass energies of 7-8 TeV with very high operational efficiency of the LAr Calorimeters and excellent performance. The well calibrated and highly granular detector achieved its design values both in energy measurement as well as in direction resolution, which was a main ingredient for the successul discovery of a Higgs boson in the di-photon decay channel. The talk will give an overview of the procedures applied to calibrate the 180.000 read-out channels electronically as well as from using refe...

  6. Hadron Therapy for Cancer Treatment

    SciTech Connect

    Lennox, Arlene

    2003-09-10

    The biological and physical rationale for hadron therapy is well understood by the research community, but hadron therapy is not well established in mainstream medicine. This talk will describe the biological advantage of neutron therapy and the dose distribution advantage of proton therapy, followed by a discussion of the challenges to be met before hadron therapy can play a significant role in treating cancer. A proposal for a new research-oriented hadron clinic will be presented.

  7. Design of a microwave calorimeter for the microwave tokamak experiment

    SciTech Connect

    Marinak, M. )

    1988-10-07

    The initial design of a microwave calorimeter for the Microwave Tokamak Experiment is presented. The design is optimized to measure the refraction and absorption of millimeter rf microwaves as they traverse the toroidal plasma of the Alcator C tokamak. Techniques utilized can be adapted for use in measuring high intensity pulsed output from a microwave device in an environment of ultra high vacuum, intense fields of ionizing and non-ionizing radiation and intense magnetic fields. 16 refs.

  8. Calibration and Characterization of the Small Sample Calorimeter

    SciTech Connect

    Santi, Peter A.; Perry, Katherine A.

    2012-08-13

    An early component of the Joint Fuel Cycle Study (JFCS) between the United States and the Republic of Korea is a test of gram scale electrochemical recycling of spent fuel which is to be performed at Idaho National Laboratory (INL). Included in this test is the development of Nondestructive Assay (NDA) technologies that would be applicable for International Atomic Energy Agency (IAEA) safeguards of the electrochemical recycling process. Of upmost importance to safeguarding the fuel cycle associated with the electrochemical recycling process is the ability to safeguard the U/TRU ingots that will be produced in the process. For the gram scale test, the ingots that will be produced will have an expected thermal power of approximately 130 mW. To ascertain how well the calorimetric assay NDA technique can perform in assaying these ingots, Los Alamos National Laboratory (LANL) has characterized and calibrated a small solid-state calorimeter called the Small Sample Calorimeter (SSC3) to perform these measurements at LANL. To calibrate and characterize the SSC3, a series of measurements were performed using certified {sup 238}Pu heat standards whose power output is traceable back to the National Institute of Standards and Technology (NIST) electrical standards. The results of these measurements helped establish both the calibration of the calorimeter as well as the expected performance of the calorimeter in terms of its accuracy and precision as a function of thermal power of the item that is being measured. In this report, we will describe the measurements that were performed and provide a discussion of the results of these measurements.

  9. Development of an air flow thermal balance calorimeter

    NASA Technical Reports Server (NTRS)

    Sherfey, J. M.

    1972-01-01

    An air flow calorimeter, based on the idea of balancing an unknown rate of heat evolution with a known rate of heat evolution, was developed. Under restricted conditions, the prototype system is capable of measuring thermal wattages from 10 milliwatts to 1 watt, with an error no greater than 1 percent. Data were obtained which reveal system weaknesses and point to modifications which would effect significant improvements.

  10. Technical Design Report for PANDA Electromagnetic Calorimeter (EMC)

    E-print Network

    PANDA Collaboration; W. Erni; I. Keshelashvili; B. Krusche; M. Steinacher; Y. Heng; Z. Liu; H. Liu; X. Shen; O. Wang; H. Xu; J. Becker; F. Feldbauer; F. -H. Heinsius; T. Held; H. Koch; B. Kopf; M. Pelizaeus; T. Schroeder; M. Steinke; U. Wiedner; J. Zhong; A. Bianconi; M. Bragadireanu; D. Pantea; A. Tudorache; V. Tudorache; M. De Napoli; F. Giacoppo; G. Raciti; E. Rapisarda; C. Sfienti; E. Bialkowski; A. Budzanowski; B. Czech; M. Kistryn; S. Kliczewski; A. Kozela; P. Kulessa; K. Pysz; W. Schaefer; R. Siudak; A. Szczurek; W. Czy. zycki; M. Domagala; M. Hawryluk; E. Lisowski; F. Lisowski; L. Wojnar; D. Gil; P. Hawranek; B. Kamys; St. Kistryn; K. Korcyl; W. Krzemien; A. Magiera; P. Moskal; Z. Rudy; P. Salabura; J. Smyrski; A. Wronska; M. Al-Turany; I. Augustin; H. Deppe; H. Flemming; J. Gerl; K. Goetzen; R. Hohler; D. Lehmann; B. Lewandowski; J. Luehning; F. Maas; D. Mishra; H. Orth; K. Peters; T. Saito; G. Schepers; C. J. Schmidt; L. Schmitt; C. Schwarz; B. Voss; P. Wieczorek; A. Wilms; K. -T. Brinkmann; H. Freiesleben; R. Jaekel; R. Kliemt; T. Wuerschig; H. -G. Zaunick; V. M. Abazov; G. Alexeev; A. Arefiev; V. I. Astakhov; M. Yu. Barabanov; B. V. Batyunya; Yu. I. Davydov; V. Kh. Dodokhov; A. A. Efremov; A. G. Fedunov; A. A. Feshchenko; A. S. Galoyan; S. Grigoryan; A. Karmokov; E. K. Koshurnikov; V. Ch. Kudaev; V. I. Lobanov; Yu. Yu. Lobanov; A. F. Makarov; L. V. Malinina; V. L. Malyshev; G. A. Mustafaev; A. Olshevski; M. A. . Pasyuk; E. A. Perevalova; A. A. Piskun; T. A. Pocheptsov; G. Pontecorvo; V. K. Rodionov; Yu. N. Rogov; R. A. Salmin; A. G. Samartsev; M. G. Sapozhnikov; A. Shabratova; G. S. Shabratova; A. N. Skachkova; N. B. Skachkov; E. A. Strokovsky; M. K. Suleimanov; R. Sh. Teshev; V. V. Tokmenin; V. V. Uzhinsky; A. S. Vodopianov; S. A. Zaporozhets; N. I. Zhuravlev; A. G. Zorin; D. Branford; K. Foehl; D. Glazier; D. Watts; P. Woods; W. Eyrich; A. Lehmann; A. Teufel; S. Dobbs; Z. Metreveli; K. Seth; B. Tann; A. Tomaradze; D. Bettoni; V. Carassiti; A. Cecchi; P. Dalpiaz; E. Fioravanti; I. Garzia; M. Negrini; M. Savri`e; G. Stancari; B. Dulach; P. Gianotti; C. Guaraldo; V. Lucherini; E. Pace; A. Bersani; M. Macri; M. Marinelli; R. F. Parodi; I. Brodski; W. Doering; P. Drexler; M. Dueren; Z. Gagyi-Palffy; A. Hayrapetyan; M. Kotulla; W. Kuehn; S. Lange; M. Liu; V. Metag; M. Nanova; R. Novotny; C. Salz; J. Schneider; P. Schoenmeier; R. Schubert; S. Spataro; H. Stenzel; C. Strackbein; M. Thiel; U. Thoering; S. Yang; T. Clarkson; E. Cowie; E. Downie; G. Hill; M. Hoek; D. Ireland; R. Kaiser; T. Keri; I. Lehmann; K. Livingston; S. Lumsden; D. MacGregor; B. McKinnon; M. Murray; D. Protopopescu; G. Rosner; B. Seitz; G. Yang; M. Babai; A. K. Biegun; A. Bubak; E. Guliyev; V. S. Jothi; M. Kavatsyuk; H. Loehner; J. Messchendorp; H. Smit; J. C. van der Weele; F. Garcia; D. -O. Riska; M. Buescher; R. Dosdall; R. Dzhygadlo; A. Gillitzer; D. Grunwald; V. Jha; G. Kemmerling; H. Kleines; A. Lehrach; R. Maier; M. Mertens; H. Ohm; D. Prasuhn; T. Randriamalala; J. Ritman; M. Roeder; T. Stockmanns; P. Wintz; P. Wuestner; J. Kisiel; S. Li; Z. Li; Z. Sun; H. Xu; S. Fissum; K. Hansen; L. Isaksson; M. Lundin; B. Schroeder; P. Achenbach; M. C. Mora Espi; J. Pochodzalla; S. Sanchez; A. Sanchez-Lorente; V. I. Dormenev; A. A. Fedorov; M. V. Korzhik; O. V. Missevitch; V. Balanutsa; V. Chernetsky; A. Demekhin; A. Dolgolenko; P. Fedorets; A. Gerasimov; V. Goryachev; A. Boukharov; O. Malyshev; I. Marishev; A. Semenov; C. Hoeppner; B. Ketzer; I. Konorov; A. Mann; S. Neubert; S. Paul; Q. Weitzel; A. Khoukaz; T. Rausmann; A. Taeschner; J. Wessels; R. Varma; E. Baldin; K. Kotov; S. Peleganchuk; Yu. Tikhonov; J. Boucher; T. Hennino; R. Kunne; S. Ong; J. Pouthas; B. Ramstein; P. Rosier; M. Sudol; J. Van de Wiele; T. Zerguerras; K. Dmowski; R. Korzeniewski; D. Przemyslaw; B. Slowinski; G. Boca; A. Braghieri; S. Costanza; A. Fontana; P. Genova; L. Lavezzi; P. Montagna; A. Rotondi; N. I. Belikov; A. M. Davidenko; A. A. Derevschikov; Y. M. Goncharenko; V. N. Grishin; V. A. Kachanov; D. A. Konstantinov; V. A. Kormilitsin; V. I. Kravtsov; Y. A. Matulenko; Y. M. Melnik; A. P. Meschanin; N. G. Minaev; V. V. Mochalov; D. A. Morozov; L. V. Nogach; S. B. Nurushev; A. V. Ryazantsev; P. A. Semenov; L. F. Soloviev; A. V. Uzunian; A. N. Vasiliev; A. E. Yakutin; T. Baeck; B. Cederwall; C. Bargholtz; L. Geren; P. E. Tegner; S. Belostotski; G. Gavrilov; A. Itzotov; A. Kisselev; P. Kravchenko; S. Manaenkov; O. Miklukho; Y. Naryshkin; D. Veretennikov; V. Vikhrov; A. Zhadanov; L. Fava; D. Panzieri; D. Alberto; A. Amoroso; E. Botta; T. Bressani; S. Bufalino; M. P. Bussa; L. Busso; F. De Mori; M. Destefanis; L. Ferrero; A. Grasso; M. Greco; T. Kugathasan; M. Maggiora; S. Marcello; G. Serbanut; S. Sosio; R. Bertini; D. Calvo; S. Coli; P. De Remigis; A. Feliciello; A. Filippi; G. Giraudo; G. Mazza; A. Rivetti

    2008-10-07

    This document presents the technical layout and the envisaged performance of the Electromagnetic Calorimeter (EMC) for the PANDA target spectrometer. The EMC has been designed to meet the physics goals of the PANDA experiment, which is being developed for the Facility for Antiproton and Ion Research (FAIR) at Darmstadt, Germany. The performance figures are based on extensive prototype tests and radiation hardness studies. The document shows that the EMC is ready for construction up to the front-end electronics interface.

  11. The large-scale anisotropy with the PAMELA calorimeter

    NASA Astrophysics Data System (ADS)

    Karelin, A.; Adriani, O.; Barbarino, G.; Bazilevskaya, G.; Bellotti, R.; Boezio, M.; Bogomolov, E.; Bongi, M.; Bonvicini, V.; Bottai, S.; Bruno, A.; Cafagna, F.; Campana, D.; Carbone, R.; Carlson, P.; Casolino, M.; Castellini, G.; De Donato, C.; De Santis, C.; De Simone, N.; Di Felice, V.; Formato, V.; Galper, A.; Koldashov, S.; Koldobskiy, S.; Krut'kov, S.; Kvashnin, A.; Leonov, A.; Malakhov, V.; Marcelli, L.; Martucci, M.; Mayorov, A.; Menn, W.; Mergé, M.; Mikhailov, V.; Mocchiutti, E.; Monaco, A.; Mori, N.; Munini, R.; Osteria, G.; Palma, F.; Panico, B.; Papini, P.; Pearce, M.; Picozza, P.; Ricci, M.; Ricciarini, S.; Sarkar, R.; Simon, M.; Scotti, V.; Sparvoli, R.; Spillantini, P.; Stozhkov, Y.; Vacchi, A.; Vannuccini, E.; Vasilyev, G.; Voronov, S.; Yurkin, Y.; Zampa, G.; Zampa, N.

    2015-10-01

    The large-scale anisotropy (or the so-called star-diurnal wave) has been studied using the calorimeter of the space-born experiment PAMELA. The cosmic ray anisotropy has been obtained for the Southern and Northern hemispheres simultaneously in the equatorial coordinate system for the time period 2006-2014. The dipole amplitude and phase have been measured for energies 1-20 TeV n-1.

  12. Simulated performance of the silicon-Tungsten calorimeter for access

    NASA Astrophysics Data System (ADS)

    Bravar, U.; Ambriola, M. L.; Boezio, M.; Bonvicini, V.; Picozza, P.; Ricci, M.; Stochaj, S. J.; Vacchi, A.; Zampa, N.

    2001-08-01

    The design of the Silicon Tungsten (Si-W) calorimeter for ACCESS was developed as an evolution of the Si-W imaging detectors currently used by the WiZard collaboration in balloon borne and spacecraft based cosmic ray experiments. We present a detailed analysis of this design and of its simulated performance for cosmic ray protons with energies from 100 GeV to 1,000 TeV.

  13. Time Reconstruction and Performance of the CMS Electromagnetic Calorimeter

    E-print Network

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G

    2010-01-01

    The resolution and the linearity of time measurements made with the CMS electromagnetic calorimeter are studied with samples of data from test beam electrons, cosmic rays, and beam-produced muons. The resulting time resolution measured by lead tungstate crystals is better than 100 ps for energy deposits larger than 10 GeV. Crystal-to-crystal synchronization with a precision of 500 ps is performed using muons produced with the first LHC beams in 2008.

  14. Worst-case losses from a cylindrical calorimeter for solar simulator calibration.

    PubMed

    Rowe, Scott C; Groehn, Arto J; Palumbo, Aaron W; Chubukov, Boris A; Clough, David E; Weimer, Alan W; Hischier, Illias

    2015-09-21

    High-flux solar simulators consist of lamps that mimic concentrated sunlight from a field of heliostats or parabolic dish. These installations are used to test promising solar-thermal technologies for commercial potential. Solar simulators can be calibrated with cylindrical calorimeters, devices that approximate black body absorbers. Calorimeter accuracy is crucial to solar simulator characterization and maintenance. To discover the worst-case performance of a cylindrical calorimeter during flux measurement Monte Carlo ray tracing was coupled to finite volume simulations. Results indicated that the calorimeter can exhibit an observer effect that distorts the solar simulator flux profile. Furthermore, the proposed design was sensitive to changes in calorimeter optical properties, changes that can result from oxidation and/or photobleaching over time. Design fidelity and robustness were substantially improved through the use of a beveled (conical) calorimeter aperture. PMID:26406760

  15. Assessment of Uncertainties in Calibration of Langavant Calorimeters

    NASA Astrophysics Data System (ADS)

    Hay, Bruno; Hameury, Jacques; Davee, Guillaume; Grelard, Marc

    2014-10-01

    The semi-adiabatic method, commonly referred to as the Langavant method, is widely applied for routine measurements of the hydration heat of cements. This standardized method is applicable to all cements and hydraulic binders, whatever their chemical composition, with the exception of quick-setting cements. The calorimeters used to perform these hydration heat measurements must be previously calibrated by electrical substitution, in order to determine their coefficient of total heat loss and their heat capacity . LNE developed a facility enabling performance of the calibration of these Langavant calorimeters, in order to insure the traceability of the hydration heat measurements to basic quantities such as temperature, time, mass, and electrical quantities. Calibration results of a typical Langavant calorimeter are presented here. The measurement uncertainties of the parameters and have been assessed according to the ISO/BIPM "Guide to the Expression of Uncertainty in Measurement." The relative expanded uncertainties () of the coefficient of total heat loss and the heat capacity are estimated, respectively, to be about 0.7 % and 15 %.

  16. Fast-response whole body indirect calorimeters for infants.

    PubMed

    Moon, J K; Jensen, C L; Butte, N F

    1993-01-01

    Portable whole body indirect calorimeters were constructed for full-term (2.5- to 8-kg) and preterm (1- to 2.5-kg) infants. A new calibration system significantly increased the accuracy of flowmeters and gas analyzers. Performance tests with N2 and CO2 infusions and butane combustion demonstrated that the error of individual measurements of O2 consumption and CO2 production were within +/- 2%. The measured error was close to the theoretical uncertainty of approximately +/- 1% calculated from test results of the flowmeters and gas analyzers. System response to a step change in butane combustion rate exceeded 90% within 2 min. Error of +/- 2% and response of 2 min are likely to be the practical lower limits for whole body infant indirect calorimeters with current technology. The calorimeters demonstrated a rapid increase in O2 consumption after feeding (preterm infants) and in the transition from non-rapid-eye-movement to rapid-eye-movement sleep stages (full-term infants). PMID:8444731

  17. An automated flow calorimeter for heat capacity and enthalpy measurements

    SciTech Connect

    Sandarusi, J.A.; Yesavage, V.F.

    1988-11-01

    An automated flow calorimeter has been developed for the measurement of heat capacity and latent enthalpies of fluids at elevated temperatures (300-700 K) and pressure (< 30 MPa) with a design accuracy of 0.1%. The method of measurement is the traditional electrical power input flow calorimeter, utilizing a precision metering pump, which eliminates the need for flow-rate monitoring. The calorimeter cell uses a unique concentric coil design with passive metal radiation shields and active guard heaters to minimize heat leakage, eliminate the traditional constant-temperature bath, and facilitate easy component replacement. An additional feature of the instrument is a complete automation system, greatly simplifying operation of the apparatus. A novel multitasking software scheme allows a single microcomputer simultaneously to control all system temperatures, provide continuous monitoring and updates on system status, and log data. Preliminary results for liquid water mean heat capacities show the equipment to be performing satisfactorily, with data accuracies of better than /plus minus/0.3%. Minor equipment modifications and better thermometry are required to reduce systemic errors and to achieve the designed operational range.

  18. Applying fast calorimetry on a spent nuclear fuel calorimeter

    SciTech Connect

    Liljenfeldt, Henrik

    2015-04-15

    Recently at Los Alamos National Laboratory, sophisticated prediction algorithms have been considered for the use of calorimetry for treaty verification. These algorithms aim to predict the equilibrium temperature based on early data and therefore be able to shorten the measurement time while maintaining good accuracy. The algorithms have been implemented in MATLAB and applied on existing equilibrium measurements from a spent nuclear fuel calorimeter located at the Swedish nuclear fuel interim storage facility. The results show significant improvements in measurement time in the order of 15 to 50 compared to equilibrium measurements, but cannot predict the heat accurately in less time than the currently used temperature increase method can. This Is both due to uncertainties in the calibration of the method as well as identified design features of the calorimeter that limits the usefulness of equilibrium type measurements. The conclusions of these findings are discussed, and suggestions of both improvements of the current calorimeter as well as what to keep in mind in a new design are given.

  19. Prototype design of DAMPE Calorimeter readout electronics and performance in CERN beam test

    NASA Astrophysics Data System (ADS)

    Feng, Changqing; Hu, Yiming; Gao, Shanshan; Zhang, Deliang; Zhang, Yunlong; Liu, Shubin; An, Qi

    A high energy cosmic ray detector to be in space, called DArk Matter Particle Explorer (DAMPE), is now being developed in China. The major scientific objectives of the DAMPE mission are primary cosmic ray, gamma ray astronomy and dark matter particles, by observing high energy primary cosmic rays, especially positrons/electrons and gamma rays with an energy range from 5 GeV to 10 TeV. The DAMPE detector is intended to operate in a 500 km satellite orbit, and a calorimeter, which is composed of 308 BGO (Bismuth Germanate) crystal logs with a size of 2.5cm*2.5cm*60cm for each log, is a critical sub-detector for measuring the energy of cosmic particles, distinguishing positrons/electrons and gamma rays from hadron background, and providing trigger information. Each BGO crystal log is viewed by two Hamamatsu R5610A PMTs (photomultiplier tubes), from both sides respectively. In order to achieve a large dynamic range, each PMT base incorporates a three dynode (2, 5, 8) pick off, which results in 616 PMTs and 1848 signal channels. According to the design specification, a dynamic range of 10(5) is need for each BGO detector units. The large amount of detector components and signal channels, as well as large dynamic range, greatly challenge the design of readout electronics, because the physical space of PCB (Printed Circuit Board) and cable layout, crosstalk between signal channels and power budget, are strictly constrained. In year 2012, a prototype of DAMPE was accomplished, including a scaled-down BGO calorimeter with 132 short BGO bars. Each short BGO bar, with a size of 2.5cm*2.5cm*30cm, is coupled with a R5610A PMT on one end, while the other end is wrapped by heat-shrinkable black sleeves. A prototype of the readout electronics, using VA32 ASIC (Application Specific Integrated Circuit) and Actel Flash-based FPGA (Field Programmable Gate Array), are developed and assembled with the detector. After 1 month ground-based cosmic ray tests in China, an accelerator experiment for DAMPE prototype was successfully carried out at CERN, in October, 2012, using the Super Proton Synchrotron (SPS). The design of the readout electronics and the performance during experiments are to be described in this paper.

  20. Rare Hadronic B Decays

    SciTech Connect

    Bevan, A.J.

    2006-06-07

    Rare hadronic B-meson decays allow us to study CP violation. The class of B-decays final states containing two vector mesons provides a rich set of angular correlation observables to study. This article reviews some of the recent experimental results from the BABAR and Belle collaborations.

  1. Electroweak and hadron studies

    SciTech Connect

    Rau, R.R.

    1988-01-01

    Some final results are presented on ..mu mu.., /tau//tau/, and hadron production, obtained by the MARK J collaboration at PETRA, over the cm energy band 22 GeV to 46.8 GeV. The MARK J results agree with world averaged data. They constitute powerful tests of the predictions of the Standard Model. 29 refs., 8 figs., 3 tabs.

  2. Hadronic Physics: an Outlook

    SciTech Connect

    Swanson, Eric S.

    2010-08-05

    A brief outlook, in two senses, is presented for hadronic physics. The likely near term future for experiment and lattice effort is sketched and I speculate on future directions in theory. I also look out at other fields, presenting a short review of QCD ideas in ''Beyond the Standard Model'' physics.

  3. Masses of Heavy Hadrons

    E-print Network

    Harpreet Kaur; M. P. Khanna

    2000-05-09

    An estimate has been made of the masses of heavy hadrons in nonrelativistic quark model, which includes spin and flavor-dependent hyperfine splitting for two quarks. The effect of variation of the wavefunction value at origin and the strong coupling constant, with flavor, has also been included in calculating the mass values.

  4. Hadron collider physics

    SciTech Connect

    Pondrom, L.

    1991-10-03

    An introduction to the techniques of analysis of hadron collider events is presented in the context of the quark-parton model. Production and decay of W and Z intermediate vector bosons are used as examples. The structure of the Electroweak theory is outlined. Three simple FORTRAN programs are introduced, to illustrate Monte Carlo calculation techniques. 25 refs.

  5. Measurement of top quark mass in the all hadronic channel in s**(1/2) = 1.96 TeF, ppbar collisions at D0

    SciTech Connect

    Lam, David Wai Kui; /Notre Dame U.

    2008-05-01

    A measurement of the top quark mass in proton-antiproton collisions at {radical}s = 1.96 TeV using 1040fb{sup -1} of data collected in D detector at Fermilab is presented. This analysis focuses on the all-hadronic decay mode of the top quark and therefore only events with six or more calorimeter jets in the final state are considered.

  6. Determination of shower central position in laterally segmented lead-fluoride electromagnetic calorimeters

    E-print Network

    M. Mazouz; L. Ghedira; E. Voutier

    2015-10-02

    The spatial resolution of laterally segmented electromagnetic calorimeters is studied on the basis of Monte-Carlo simulations worked-out for lead fluoride material. Parametrization of the relative resolution is proposed and optimized in terms of the energy of incoming particles and the elementary size of the calorimeter blocks. A new fit algorithm method is proposed that improves spatial resolution at high energies, and provides guidance for the design optimization of electromagnetic calorimeters.

  7. A photon calorimeter using lead tungstate crystals for the CEBAF HAll A Compton polarimeter

    SciTech Connect

    D. Neyret; T. Pussieux; T. Auger; M. Baylac; E. Burtin; C. Cavata; R. Chipaux; S. Escoffier; N. Falletto; J. Jardillier; S. Kerhoas; D. Lhuillier; F. Marie; C. Veyssiere; J. Ahrens; R. Beck; M. Lang

    2000-05-01

    A new Compton polarimeter is built on the CEBAF Hall A electron beam line. Performances of 10% resolution and 1% calibration are required for the photon calorimeter of this polarimeter. This calorimeter is built with lead tungstate scintillators coming from the CMS electromagnetic calorimeter R&D. Beam tests of this detector have been made using the tagged photon beam line at MAMI, Mainz, and a resolution of 1.76%+2.75%/v+0.41%/E has been measured.

  8. Precision closed bomb calorimeter for testing flame and gas producing initiators

    NASA Technical Reports Server (NTRS)

    Carpenter, D. R., Jr.; Taylor, A. C., Jr.

    1972-01-01

    A calorimeter has been developed under this study to help meet the needs of accurate performance monitoring of electrically or mechanically actuated flame and gas producing devices, such as squib-type initiators. A ten cubic centimeter closed bomb (closed volume) calorimeter was designed to provide a standard pressure trace and to measure a nominal 50 calorie output, using the basic components of a Parr Model 1411 calorimeter. Two prototype bombs were fabricated, pressure tested to 2600 psi, and extensively evaluated.

  9. New family of tilings of three-dimensional Euclidean space by tetrahedra and octahedra.

    PubMed

    Conway, John H; Jiao, Yang; Torquato, Salvatore

    2011-07-01

    It is well known that two regular tetrahedra can be combined with a single regular octahedron to tile (complete fill) three-dimensional Euclidean space . This structure was called the "octet truss" by Buckminster Fuller. It was believed that such a tiling, which is the Delaunay tessellation of the face-centered cubic (fcc) lattice, and its closely related stacking variants, are the only tessellations of that involve two different regular polyhedra. Here we identify and analyze a unique family comprised of a noncountably infinite number of periodic tilings of whose smallest repeat tiling unit consists of one regular octahedron and six smaller regular tetrahedra. We first derive an extreme member of this unique tiling family by showing that the "holes" in the optimal lattice packing of octahedra, obtained by Minkowski over a century ago, are congruent tetrahedra. This tiling has 694 distinct concave (i.e., nonconvex) repeat units, 24 of which possess central symmetry, and hence is distinctly different and combinatorically richer than the fcc tetrahedra-octahedra tiling, which only has two distinct tiling units. Then we construct a one-parameter family of octahedron packings that continuously spans from the fcc to the optimal lattice packing of octahedra. We show that the "holes" in these packings, except for the two extreme cases, are tetrahedra of two sizes, leading to a family of periodic tilings with units composed four small tetrahedra and two large tetrahedra that contact an octahedron. These tilings generally possess 2,068 distinct concave tiling units, 62 of which are centrally symmetric. PMID:21690370

  10. New family of tilings of three-dimensional Euclidean space by tetrahedra and octahedra

    PubMed Central

    Conway, John H.; Jiao, Yang; Torquato, Salvatore

    2011-01-01

    It is well known that two regular tetrahedra can be combined with a single regular octahedron to tile (complete fill) three-dimensional Euclidean space . This structure was called the “octet truss” by Buckminster Fuller. It was believed that such a tiling, which is the Delaunay tessellation of the face-centered cubic (fcc) lattice, and its closely related stacking variants, are the only tessellations of that involve two different regular polyhedra. Here we identify and analyze a unique family comprised of a noncountably infinite number of periodic tilings of whose smallest repeat tiling unit consists of one regular octahedron and six smaller regular tetrahedra. We first derive an extreme member of this unique tiling family by showing that the “holes” in the optimal lattice packing of octahedra, obtained by Minkowski over a century ago, are congruent tetrahedra. This tiling has 694 distinct concave (i.e., nonconvex) repeat units, 24 of which possess central symmetry, and hence is distinctly different and combinatorically richer than the fcc tetrahedra-octahedra tiling, which only has two distinct tiling units. Then we construct a one-parameter family of octahedron packings that continuously spans from the fcc to the optimal lattice packing of octahedra. We show that the “holes” in these packings, except for the two extreme cases, are tetrahedra of two sizes, leading to a family of periodic tilings with units composed four small tetrahedra and two large tetrahedra that contact an octahedron. These tilings generally possess 2,068 distinct concave tiling units, 62 of which are centrally symmetric. PMID:21690370

  11. Hadron fragmentation inside jets in hadronic collisions

    NASA Astrophysics Data System (ADS)

    Kaufmann, Tom; Mukherjee, Asmita; Vogelsang, Werner

    2015-09-01

    We present an analytical next-to-leading-order QCD calculation of the partonic cross sections for the process p p ?(jeth )X , for which a specific hadron is observed inside a fully reconstructed jet. In order to obtain the analytical results, we assume the jet to be relatively narrow. We show that the results can be cast into a simple and systematic form based on suitable universal jet functions for the process. We confirm the validity of our calculation by comparing to previous results in the literature for which the next-to-leading-order cross section was treated entirely numerically by Monte Carlo integration techniques. We present phenomenological results for experiments at the LHC and at RHIC. These suggest that p p ?(jeth )X should enable very sensitive probes of fragmentation functions, especially of the one for gluons.

  12. Magnetic calorimeter with a SQUID for detecting weak radiations and recording the ultralow energy release

    SciTech Connect

    Golovashkin, Aleksander I; Zherikhina, L N; Kuleshova, G V; Tskhovrebov, A M; Izmailov, G N

    2006-12-31

    The scheme of a magnetic calorimeter for recording extremely low energy releases is developed. The calorimeter is activated by the method of adiabatic demagnetisation and its response to the energy release is measured with a superconducting quantum interference device (SQUID). The estimate of the ultimate sensitivity of the calorimeter with the SQUID demonstrates the possibilities of its application for detecting ultralow radiation intensity, recording single X-ray quanta in the proportional regime and other events with ultralow energy releases. The scheme of the calorimeter with the SQUID on matter waves in superfluid {sup 4}He is proposed. (radiation detectors)

  13. Assembly of a tile-based multilayered DNA nanostructure

    NASA Astrophysics Data System (ADS)

    Son, Junyoung; Lee, Junywe; Tandon, Anshula; Kim, Byeonghoon; Yoo, Sanghyun; Lee, Chang-Won; Park, Sung Ha

    2015-04-01

    The Watson-Crick complementarity of DNA is exploited to construct periodically patterned nanostructures, and we herein demonstrate tile-based three dimensional (3D) multilayered DNA nanostructures that incorporate two design strategies: vertical growth and horizontal layer stacking with substrate-assisted growth. To this end, we have designed a periodically holed double-double crossover (DDX) template that can be used to examine the growth of the multilayer structures in both the vertical and horizontal directions. For vertical growth, the traditional 2D double crossover (DX) DNA lattice is seeded and grown vertically from periodic holes in the DDX template. For horizontal stacking, the DDX layers are stacked by binding the connector tiles between each layer. Although both types of multilayers exhibited successful formation, the observations with an atomic force microscope indicated that the DDX layer growth achieved with the horizontal stacking approach could be considered to be slightly better relative to the vertical growth of the DX layers in terms of uniformity, layer size, and discreteness. In particular, the newly designed DDX template layer provided a parallel arrangement between each domain with substrate-assisted growth. This kind of layer arrangement suggests a possibility of using our design scheme in the construction of other periodic structures.The Watson-Crick complementarity of DNA is exploited to construct periodically patterned nanostructures, and we herein demonstrate tile-based three dimensional (3D) multilayered DNA nanostructures that incorporate two design strategies: vertical growth and horizontal layer stacking with substrate-assisted growth. To this end, we have designed a periodically holed double-double crossover (DDX) template that can be used to examine the growth of the multilayer structures in both the vertical and horizontal directions. For vertical growth, the traditional 2D double crossover (DX) DNA lattice is seeded and grown vertically from periodic holes in the DDX template. For horizontal stacking, the DDX layers are stacked by binding the connector tiles between each layer. Although both types of multilayers exhibited successful formation, the observations with an atomic force microscope indicated that the DDX layer growth achieved with the horizontal stacking approach could be considered to be slightly better relative to the vertical growth of the DX layers in terms of uniformity, layer size, and discreteness. In particular, the newly designed DDX template layer provided a parallel arrangement between each domain with substrate-assisted growth. This kind of layer arrangement suggests a possibility of using our design scheme in the construction of other periodic structures. Electronic supplementary information (ESI) available: Schematic diagram for tiles forming -mono, -bi and -multilayers; strand and sticky end details of tiles used for -mono, -bi and -multilayer formation; AFM image and height profile of fully grown vertical DDX layer. See DOI: 10.1039/c4nr07332k

  14. A new 2D-tiled detector for multislice CT

    NASA Astrophysics Data System (ADS)

    Luhta, Randy; Chappo, Marc; Harwood, Brian; Mattson, Rod; Salk, Dave; Vrettos, Chris

    2006-03-01

    The tremendous increase in speed with which the body can now be scanned using multislice CT has improved the diagnostic ability of the modality, especially in time critical applications involving contrast injection. Advances in photodiode and front-end electronics technology now allow a CT detector module to be made that can be tiled in two dimensions. An array of such modules can be used to easily make a CT scanner with hundreds of slices with the promise of scanning whole organs with a single revolution and further improving diagnostic ability. Recently, a back-illuminated photodiode for CT has been developed which has its electrical connections on the underside. With all four sides of the silicon chip free, the photodiodes can be tiled in two dimensions. In addition, improvements in front-end electronics now allow the A/D converters for all photodiode elements to be placed completely behind the photodiode. A prototype detector module has been constructed and tested. Measurements of DQE, MTF, dynamic range and temporal response are presented showing that the module has the same high performance as detectors found in current diagnostic CT scanners. A dynamic range of 250,000:1 at a frame rate of 10,000 fps has been achieved. Alternatively a dynamic range of 1,000,000:1 can be achieved at 2,500 fps. This new compact 2D tiled detector with digital data output can be used as a basic building block for future multislice detection systems enabling larger coverage and the promise of improved diagnostic ability.

  15. Ballistic performance of polyurea-coated armor grade ceramic tiles

    NASA Astrophysics Data System (ADS)

    Samiee, Ahsan; Isaacs, Jon; Nemat-Nasser, Sia

    2010-04-01

    The use of ceramics as energy absorbents has been studied by many researchers and some improvements in the ballistic performance of ceramic tiles have been made by coating them with different classes of materials (e.g. E-glass/epoxy, carbon-fiber/epoxy, etc.). Using ceramics for energy absorbing applications leads to a significant weight reduction of the system. Therefore, any modification to the ceramic configuration in the system which leads to more energy absorption with the same or less areal density is significant. On the other hand, polyurea has been proved to be an excellent energy dissipating agent in many applications. Inspired by this, we are studying the effect of coating ceramics with polyurea and other materials, on the energy absorption and ballistic performance of the resulting ceramic-based composites. In this study, we investigate the effect of polyurea on ballistic efficiency of ceramic tiles. To this end, we have performed a set of penetration tests on polyurea-ceramic composites. In our experiments, a high velocity projectile is propelled to impact and perforate the ceramic-polyurea composite. The velocity and mass of the projectile are measured before and after the penetration. The change in the kinetic energy of the projectile is evaluated and compared for different polyurea-ceramic configurations (e.g., polyurea on front face, polyurea on back face, polyurea between two ceramic tiles, etc.). The experimental results suggest that polyurea is not as effective as other restraining materials such as E-glass/epoxy and carbon-fiber/epoxy.

  16. Pentagonal tiling with buckybowls: pentamethylcorannulene on Cu(111).

    PubMed

    Zoppi, Laura; Bauert, Tobias; Siegel, Jay S; Baldridge, Kim K; Ernst, K-H

    2012-10-14

    We present scanning tunnelling microscopy studies and first principles calculation on the 2D crystallization of pentagonal pentamethylcorannulene on a Cu(111) surface under ultrahigh vacuum in the temperature range of 50 K to 400 K. The observed 2D crystal phases and their packing densities are compared to tiling options of hard pentagons. Temperature change-induced reversible phase transitions reveal entropic effects in 2D crystallization. Only inclusion of dispersion interactions into density functional theory yields structures observed experimentally at low temperatures. PMID:22935627

  17. Shake table testing of structural clay tile infilled frames

    SciTech Connect

    Bennett, R.M.; Fowler, J.J.; Flanagan, R.D.

    1996-03-08

    Two steel frames with structural clay tile infills were tested under simulated seismic loads in both the out-of-plane and in-plane direction. Out-of-plane testing showed that infill panels separate from their bounding frame, and respond at their own natural frequency during a seismic excitation. Due to arching, the panels remain stable. In-plane seismic testing showed similar behavior patterns to previous static testing. The natural frequency was adequately predicted using a piecewise linear equivalent strut analytical method. The structure was then subjected to over one thousand cycles of loading using a sine sweep before failure.

  18. Hidden translational symmetry in square-triangle-tiled dodecagonal quasicrystal

    NASA Astrophysics Data System (ADS)

    Zito, Gianluigi; Pepe, Giovanni P.; De Nicola, Sergio

    2015-05-01

    We show that a two-dimensional 12-fold quasicrystal tiled with squares and triangles can be generated as a triangular periodic lattice in which the unit cell is replaced by a cluster of 19 elements defining an elementary supercell with a dodecagonal boundary. As a straightforward consequence, we obtain analytically the exact Fourier spectrum of the deodecagonal quasicrystal that can find interesting applications for modeling purposes. In perspective, since our spatially periodic assembling allows restoring Bloch-type periodic boundary conditions, photonic band gap calculations will be possible without approximating the quasicrystal geometry. We foresee extending the same basic idea to other quasiperiodic patterns.

  19. Complexity of cutting words on regular tilings Pascal Hubert # and Laurent Vuillon +

    E-print Network

    Vuillon, Laurent - Raffalli, Christophe

    Complexity of cutting words on regular tilings Pascal Hubert # and Laurent Vuillon + Abstract: We show that the complexity of a cutting word u in a regular tiling by a polyomino Q is equal to P n (u in the infinite word u and where the boundary of Q is constructed by 2p horizontal and 2q vertical unit segments

  20. Entropy of three-dimensional integer partitions and related three-dimensional rhombus tilings

    E-print Network

    Widom, Michael

    Entropy of three-dimensional integer partitions and related state of a random covering of space by rigid objects. Actually c* *alculating the entropy to calculate random tiling entropies, and apply them to the study of c* *odimension 1 random tilings