These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Phylogenetic relationships of haemosporidian parasites in New World Columbiformes, with emphasis on the endemic Galapagos dove.  

PubMed

DNA-sequence analyses of avian haemosporidian parasites, primarily of passerine birds, have described the phylogenetic relationships of major groups of these parasites, which are in general agreement with morphological taxonomy. However, less attention has been paid to haemosporidian parasites of non-passerine birds despite morphological and DNA-sequence evidence for unique clades of parasites in these birds. Detection of haemosporidian parasites in the Galapagos archipelago has raised conservation concerns and prompted us to characterise the origins and diversity of these parasites in the Galapagos dove (Zenaida galapagoensis). We used partial mitochondrial cytochrome b (cyt b) and apicoplast caseinolytic protease C (ClpC) genes to develop a phylogenetic hypothesis of relationships of haemosporidian parasites infecting New World Columbiformes, paying special attention to those parasites infecting the endemic Galapagos dove. We identified a well-supported and diverse monophyletic clade of haemosporidian parasites unique to Columbiformes, which belong to the sub-genus Haemoproteus (Haemoproteus). This is a sister clade to all the Haemoproteus (Parahaemoproteus) and Plasmodium parasites so far identified from birds as well as the Plasmodium parasites of mammals and reptiles. Our data suggest that the diverse Haemoproteus parasites observed in Galapagos doves are not endemic to the archipelago and likely represent multiple recent introductions. PMID:19854196

Santiago-Alarcon, Diego; Outlaw, Diana C; Ricklefs, Robert E; Parker, Patricia G

2010-03-15

2

Diptera vectors of avian Haemosporidian parasites: untangling parasite life cycles and their taxonomy.  

PubMed

Haemosporida is a large group of vector-borne intracellular parasites that infect amphibians, reptiles, birds, and mammals. This group includes the different malaria parasites (Plasmodium spp.) that infect humans around the world. Our knowledge on the full life cycle of these parasites is most complete for those parasites that infect humans and, to some extent, birds. However, our current knowledge on haemosporidian life cycles is characterized by a paucity of information concerning the vector species responsible for their transmission among vertebrates. Moreover, our taxonomic and systematic knowledge of haemosporidians is far from complete, in particular because of insufficient sampling in wild vertebrates and in tropical regions. Detailed experimental studies to identify avian haemosporidian vectors are uncommon, with only a few published during the last 25 years. As such, little knowledge has accumulated on haemosporidian life cycles during the last three decades, hindering progress in ecology, evolution, and systematic studies of these avian parasites. Nonetheless, recently developed molecular tools have facilitated advances in haemosporidian research. DNA can now be extracted from vectors' blood meals and the vertebrate host identified; if the blood meal is infected by haemosporidians, the parasite's genetic lineage can also be identified. While this molecular tool should help to identify putative vector species, detailed experimental studies on vector competence are still needed. Furthermore, molecular tools have helped to refine our knowledge on Haemosporida taxonomy and systematics. Herein we review studies conducted on Diptera vectors transmitting avian haemosporidians from the late 1800s to the present. We also review work on Haemosporida taxonomy and systematics since the first application of molecular techniques and provide recommendations and suggest future research directions. Because human encroachment on natural environments brings human populations into contact with novel parasite sources, we stress that the best way to avoid emergent and reemergent diseases is through a program encompassing ecological restoration, environmental education, and enhanced understanding of the value of ecosystem services. PMID:22616880

Santiago-Alarcon, Diego; Palinauskas, Vaidas; Schaefer, Hinrich Martin

2012-11-01

3

SPATIAL VARIATION OF HAEMOSPORIDIAN PARASITE INFECTION IN AFRICAN RAINFOREST BIRD SPECIES  

E-print Network

SPATIAL VARIATION OF HAEMOSPORIDIAN PARASITE INFECTION IN AFRICAN RAINFOREST BIRD SPECIES Claire: Spatial heterogeneity influences the distribution, prevalence, and diversity of haemosporidian parasites and parasite genotype, and their interactions, but there is little information regarding how parasitemia

Sehgal, Ravinder

4

Parasite Prevalence Corresponds to Host Life History in a Diverse Assemblage of Afrotropical Birds and Haemosporidian Parasites  

PubMed Central

Avian host life history traits have been hypothesized to predict rates of infection by haemosporidian parasites. Using molecular techniques, we tested this hypothesis for parasites from three haemosporidian genera (Plasmodium, Haemoproteus, and Leucocytozoon) collected from a diverse sampling of birds in northern Malawi. We found that host life history traits were significantly associated with parasitism rates by all three parasite genera. Nest type and nest location predicted infection probability for all three parasite genera, whereas flocking behavior is an important predictor of Plasmodium and Haemoproteus infection and habitat is an important predictor of Leucocytozoon infection. Parasite prevalence was 79.1% across all individuals sampled, higher than that reported for comparable studies from any other region of the world. Parasite diversity was also exceptionally high, with 248 parasite cytochrome b lineages identified from 152 host species. A large proportion of Plasmodium, Haemoproteus, and Leucocytozoon parasite DNA sequences identified in this study represent new, previously undocumented lineages (n = 201; 81% of total identified) based on BLAST queries against the avian malaria database, MalAvi. PMID:25853491

Lutz, Holly L.; Hochachka, Wesley M.; Engel, Joshua I.; Bell, Jeffrey A.; Tkach, Vasyl V.; Bates, John M.; Hackett, Shannon J.; Weckstein, Jason D.

2015-01-01

5

Genetic diversity of avian haemosporidians in Malaysia: Cytochrome b lineages of the genera Plasmodium and Haemoproteus (Haemosporida) from Selangor.  

PubMed

The knowledge of the diversity of haemosporidian parasites is of primary importance as their representatives include agents of bird malaria. We investigated the occurrence of Haemoproteus spp. and Plasmodium spp. in bird populations from a single locality in the State of Selangor, Peninsular Malaysia, and report on the parasite prevalence of the two genera. A combination of methods (molecular and morphological) was used for detecting these parasites. Seventy-nine bird individuals were caught using mist-nets in July and August 2010 at Gombak Field Station of the University of Malaya, Kuala Lumpur. In total, 23 birds were identified as positive for Haemoproteus or Plasmodium infection and one individual was recognized as carrying mixed infection. The total prevalence of haemosporidians in the collected samples was 30.3%. Infections with parasites of the genus Haemoproteus were predominant compared to those of the genus Plasmodium. In total, 10 new cyt b lineages of Haemoproteus spp. and 3 new cyt b lineages of Plasmodium spp. were recorded in this study. From all recorded haemosporidian lineages (16 in total), 3 were known from previous studies - hCOLL2, hYWT2 and pNILSUN1. Two of them are linked with their corresponding morphospecies - Haemoproteus pallidus (COLL2) and Haemoproteus motacillae (YWT2). The morphological analysis in the present study confirmed the results obtained by the PCR method relative to prevalence, with 25.3% total prevalence of Haemoproteus and Plasmodium parasites. The intensities of infection varied between 0.01% and 19%. Most infections were light, with intensities below 0.1%. The present study is the first molecular survey of the protozoan blood parasites of the order Haemosporida recorded in Malaysia. PMID:25577987

Ivanova, Karina; Zehtindjiev, Pavel; Mariaux, Jean; Georgiev, Boyko B

2015-04-01

6

Different meal, same flavor: cospeciation and host switching of haemosporidian parasites in some non-passerine birds  

PubMed Central

Background Previous studies have shown that haemosporidian parasites (Haemoproteus (Parahaemoproteus) and Plasmodium) infecting passerine birds have an evolutionary history of host switching with little cospeciation, in particular at low taxonomic levels (e.g., below the family level), which is suggested as the main speciation mechanism of this group of parasites. Recent studies have characterized diverse clades of haemosporidian parasites (H. (Haemoproteus) and H. (Parahaemoproteus)) infecting non-passerine birds (e.g., Columbiformes, Pelecaniiformes). Here, we explore the cospeciation history of H. (Haemoproteus) and H. (Parahaemoproteus) parasites with their non-passerine hosts. Methods We sequenced the mtDNA cyt b gene of both haemosporidian parasites and their avian non-passerine hosts. We built Bayesian phylogenetic hypotheses and created concensus phylograms that were subsequently used to conduct cospeciation analyses. We used both a global cospeciation test, PACo, and an event-cost algorithm implemented in CoRe-PA. Results The global test suggests that H. (Haemoproteus) and H. (Parahaemoproteus) parasites have a diversification history dominated by cospeciation events particularly at the family level. Host-parasite links from the PACo analysis show that host switching events are common within families (i.e., among genera and among species within genera), and occasionally across different orders (e.g., Columbiformes to Pelecaniiformes). Event-cost analyses show that haemosporidian coevolutionary history is dominated by host switching and some codivergence, but with duplication events also present. Genetic lineages unique to raptor species (e.g., FALC11) commonly switch between Falconiformes and Strigiformes. Conclusions Our results corroborate previous findings that have detected a global cospeciation signal at the family taxonomic level, and they also support a history of frequent switching closer to the tips of the host phylogeny, which seems to be the main diversification mechanism of haemosporidians. Such dynamic host-parasite associations are relevant to the epidemiology of emerging diseases because low parasite host specificity is a prerequisite for the emergence of novel diseases. The evidence on host distributions suggests that haemosporidian parasites have the potential to rapidly develop novel host-associations. This pattern has also been recorded in fish-monogenean interactions, suggesting a general diversification mechanism for parasites when host choice is not restricted by ecological barriers. PMID:24957563

2014-01-01

7

Spatially variable coevolution between a haemosporidian parasite and the MHC of a widely distributed passerine.  

PubMed

The environment shapes host-parasite interactions, but how environmental variation affects the diversity and composition of parasite-defense genes of hosts is unresolved. In vertebrates, the highly variable major histocompatibility complex (MHC) gene family plays an essential role in the adaptive immune system by recognizing pathogen infection and initiating the cellular immune response. Investigating MHC-parasite associations across heterogeneous landscapes may elucidate the role of spatially fluctuating selection in the maintenance of high levels of genetic variation at the MHC. We studied patterns of association between an avian haemosporidian blood parasite and the MHC of rufous-collared sparrows (Zonotrichia capensis) that inhabit environments with widely varying haemosporidian infection prevalence in the Peruvian Andes. MHC diversity peaked in populations with high infection prevalence, although intra-individual MHC diversity was not associated with infection status. MHC nucleotide and protein sequences associated with infection absence tended to be rare, consistent with negative frequency-dependent selection. We found an MHC variant associated with a ?26% decrease in infection probability at middle elevations (1501-3100 m) where prevalence was highest. Several other variants were associated with a significant increase in infection probability in low haemosporidian prevalence environments, which can be interpreted as susceptibility or quantitative resistance. Our study highlights important challenges in understanding MHC evolution in natural systems, but may point to a role of negative frequency-dependent selection and fluctuating spatial selection in the evolution of Z. capensisMHC. PMID:25798222

Jones, Matthew R; Cheviron, Zachary A; Carling, Matthew D

2015-03-01

8

Spatially variable coevolution between a haemosporidian parasite and the MHC of a widely distributed passerine  

PubMed Central

The environment shapes host–parasite interactions, but how environmental variation affects the diversity and composition of parasite-defense genes of hosts is unresolved. In vertebrates, the highly variable major histocompatibility complex (MHC) gene family plays an essential role in the adaptive immune system by recognizing pathogen infection and initiating the cellular immune response. Investigating MHC-parasite associations across heterogeneous landscapes may elucidate the role of spatially fluctuating selection in the maintenance of high levels of genetic variation at the MHC. We studied patterns of association between an avian haemosporidian blood parasite and the MHC of rufous-collared sparrows (Zonotrichia capensis) that inhabit environments with widely varying haemosporidian infection prevalence in the Peruvian Andes. MHC diversity peaked in populations with high infection prevalence, although intra-individual MHC diversity was not associated with infection status. MHC nucleotide and protein sequences associated with infection absence tended to be rare, consistent with negative frequency-dependent selection. We found an MHC variant associated with a ?26% decrease in infection probability at middle elevations (1501–3100 m) where prevalence was highest. Several other variants were associated with a significant increase in infection probability in low haemosporidian prevalence environments, which can be interpreted as susceptibility or quantitative resistance. Our study highlights important challenges in understanding MHC evolution in natural systems, but may point to a role of negative frequency-dependent selection and fluctuating spatial selection in the evolution of Z. capensisMHC. PMID:25798222

Jones, Matthew R; Cheviron, Zachary A; Carling, Matthew D

2015-01-01

9

Profound population structure in the Philippine Bulbul Hypsipetes philippinus (Pycnonotidae, Aves) is not reflected in its Haemoproteus haemosporidian parasite.  

PubMed

In this study we used molecular markers to screen for the occurrence and prevalence of the three most common haemosporidian genera (Haemoproteus, Plasmodium, and Leucocytozoon) in blood samples of the Philippine Bulbul (Hypsipetes philippinus), a thrush-size passerine bird endemic to the Philippine Archipelago. We then used molecular data to ask whether the phylogeographic patterns in this insular host-parasite system might follow similar evolutionary trajectories or not. We took advantage of a previous study describing the pattern of genetic structuring in the Philippine Bulbul across the Central Philippine Archipelago (6 islands, 7 populations and 58 individuals; three mitochondrial DNA genes). The very same birds were here screened for the occurrence of parasites by species-specific PCR assays of the mitochondrial cytochrome b gene (471 base pairs). Twenty-eight out of the 58 analysed birds had Haemoproteus (48%) infections while just 2% of the birds were infected with either Leucocytozoon or Plasmodium. Sixteen of the 28 birds carrying Haemoproteus had multiple infections. The phylogeography of the Philippine Bulbul mostly reflects the geographical origin of samples and it is consistent with the occurrence of two different subspecies on (1) Semirara and (2) Carabao, Boracay, North Gigante, Panay, and Negros, respectively. Haemoproteus phylogeography shows very little geographical structure, suggesting extensive gene flow among locations. While movements of birds among islands seem very sporadic, we found co-occurring evolutionary divergent parasite lineages. We conclude that historical processes have played a major role in shaping the host phylogeography, while they have left no signature in that of the parasites. Here ongoing population processes, possibly multiple reinvasions mediated by other hosts, are predominant. PMID:22108671

Silva-Iturriza, Adriana; Ketmaier, Valerio; Tiedemann, Ralph

2012-01-01

10

Differential patterns of molecular evolution among Haemosporidian parasite groups.  

PubMed

Malaria parasites have had profound effects on human populations for millennia, but other terrestrial vertebrates are impacted by malaria as well. Entire species of birds have been driven to extinction, and many others are threatened by population declines. Recent studies have shown that host-switching is quite common among malaria parasite lineages, and these switches often involve a significant shift in the environment in which the parasites find themselves, including nucleated vs non-nucleated red blood cells and red vs white blood cells. Therefore, it is important to understand how parasites adapt to these different host environments. The mitochondrial cytochrome b (cyt b) gene shows evidence of adaptive molecular evolution among malaria parasite groups, putatively because of its critical role in the electron transport chain (ETC) in cellular metabolism. Two hypotheses were addressed here: (1) mitochondrial components of the ETC (cyt b and cytochrome oxidase 1 [COI]) should show evidence of adaptive evolution (i.e. selection) and (2) selection should be evident in host switches. Overall we found a signature of constraint (e.g. purifying selection) across the four genes included here, but we also found evidence of positive selection associated with host switches in cyt b and, surprisingly, in (apicoplast) caseinolytic protease C. These results suggest that evidence of selection should be widespread across these parasite genomes. PMID:25351897

Outlaw, Robert K; Counterman, Brian; Outlaw, Diana C

2015-04-01

11

First data on the genetic diversity of avian haemosporidians in China: cytochrome b lineages of the genera Plasmodium and Haemoproteus (Haemosporida) from Gansu Province.  

PubMed

A total of 76 birds belonging to 23 species and 14 families was examined for the presence of Plasmodium spp. and Haemoproteus spp. Birds were trapped at four localities in Gansu Province, China, in June-July 2011. DNA was isolated from blood samples and parasite detection, and identification was based on PCR assays and sequences of 479 bp of cyt b gene. The total prevalence of haemosporidians was 21.0%. Haemoproteus spp. were detected in 14 birds (prevalence 18.4%). The lineage CYAPIC1 from Cyanopica cyanus, Parus major, Passer montanus and Pyrrhocorax pyrrhocorax was new; it is genetically distinct and probably represents a new species of the genus Haemoproteus. Three lineages represented known species: RBS4 (from Lanius tephronotus), a lineage of Haemoproteus lanii; COLL2 (from Turdus mupinensis), a lineage of Haemoproteus pallidus and TURDUS2 (from Turdus rubrocanus), a lineage of Haemoproteus minutus. The lineage RBS5 (from Lanius cristatus and L. tephronotus) differs by 1.4% from RBS4 and probably represents an intraspecific entity of H. lanii. The lineages TUCHR1 (recorded from T. mupinensis), WW1 (recorded from Upupa epops) and YWT2 (recorded from Motacilla flava) have not been linked to any known species for the moment. Only one bird was positive for Plasmodium (prevalence 1.4%), i.e. P. major infected with the lineage GRW4 of Plasmodium relictum. The latter lineage has been considered by previous studies as typical for migratory birds and having transmission in tropical areas only; its record in a sedentary bird in China suggests its transmission in temperate latitudes. PMID:23851731

Zehtindjiev, Pavel; Ivanova, Karina; Mariaux, Jean; Georgiev, Boyko B

2013-10-01

12

Life history of a malaria parasite (Plasmodium mexicanum): independent traits  

E-print Network

Life history of a malaria parasite (Plasmodium mexicanum): independent traits and basis,VT 05405, USA Plasmodium mexicanum, a malaria parasite of lizards, exhibits substantial variation among histories of microparasites, such as the malaria organisms (Plasmodium). Within its vertebrate host

Schall, Joseph J.

13

Multiple lineages of Avian malaria parasites (Plasmodium) in the Galapagos Islands and evidence for arrival via migratory birds.  

PubMed

Haemosporidian parasites in the genus Plasmodium were recently detected through molecular screening in the Galapagos Penguin (Spheniscus mendiculus). We summarized results of an archipelago-wide screen of 3726 endemic birds representing 22 species for Plasmodium spp. through a combination of molecular and microscopy techniques. Three additional Plasmodium lineages were present in Galapagos. Lineage A-infected penguins, Yellow Warblers (Setophaga petechia aureola), and one Medium Ground Finch (Geospiza fortis) and was detected at multiple sites in multiple years [corrected]. The other 3 lineages were each detected at one site and at one time; apparently, they were transient infections of parasites not established on the archipelago. No gametocytes were found in blood smears of infected individuals; thus, endemic Galapagos birds may be dead-end hosts for these Plasmodium lineages. Determining when and how parasites and pathogens arrive in Galapagos is key to developing conservation strategies to prevent and mitigate the effects of introduced diseases. To assess the potential for Plasmodium parasites to arrive via migratory birds, we analyzed blood samples from 438 North American breeding Bobolinks (Dolichonyx oryzivorus), the only songbird that regularly migrates through Galapagos. Two of the ephemeral Plasmodium lineages (B and C) found in Galapagos birds matched parasite sequences from Bobolinks. Although this is not confirmation that Bobolinks are responsible for introducing these lineages, evidence points to higher potential arrival rates of avian pathogens than previously thought. Linajes Múltiples de Parásitos de Malaria Aviar (Plasmodium) en las Islas Galápagos y Evidencia de su Arribo por Medio de Aves Migratorias. PMID:24033638

Levin, I I; Zwiers, P; Deem, S L; Geest, E A; Higashiguchi, J M; Iezhova, T A; Jiménez-Uzcátegui, G; Kim, D H; Morton, J P; Perlut, N G; Renfrew, R B; Sari, E H R; Valkiunas, G; Parker, P G

2013-12-01

14

Genetically modified Plasmodium parasites as a protective  

E-print Network

.............................................................. Genetically modified Plasmodium that are only expressed in the pre-erythrocytic stages of the parasite4,5 . Here, we show by reverse genetics is sustained and stage specific. Our findings demonstrate that a safe and effective, genetically attenuated

Arnold, Jonathan

15

Helminth Parasites Alter Protection against Plasmodium Infection  

PubMed Central

More than one-third of the world's population is infected with one or more helminthic parasites. Helminth infections are prevalent throughout tropical and subtropical regions where malaria pathogens are transmitted. Malaria is the most widespread and deadliest parasitic disease. The severity of the disease is strongly related to parasite density and the host's immune responses. Furthermore, coinfections between both parasites occur frequently. However, little is known regarding how concomitant infection with helminths and Plasmodium affects the host's immune response. Helminthic infections are frequently massive, chronic, and strong inductors of a Th2-type response. This implies that infection by such parasites could alter the host's susceptibility to subsequent infections by Plasmodium. There are a number of reports on the interactions between helminths and Plasmodium; in some, the burden of Plasmodium parasites increased, but others reported a reduction in the parasite. This review focuses on explaining many of these discrepancies regarding helminth-Plasmodium coinfections in terms of the effects that helminths have on the immune system. In particular, it focuses on helminth-induced immunosuppression and the effects of cytokines controlling polarization toward the Th1 or Th2 arms of the immune response. PMID:25276830

Salazar-Castañon, Víctor H.; Legorreta-Herrera, Martha

2014-01-01

16

Description of the first cryptic avian malaria parasite, Plasmodium homocircumflexum n. sp., with experimental data on its virulence and development in avian hosts and mosquitoes.  

PubMed

For over 100 years studies on avian haemosporidian parasite species have relied on similarities in their morphology to establish a species concept. Some exceptional cases have also included information about the life cycle and sporogonic development. More than 50 avian Plasmodium spp. have now been described. However, PCR-based studies show a much broader diversity of haemosporidian parasites, indicating the possible existence of a diverse group of cryptic species. In the present study, using both similarity and phylogenetic species definition concepts, we believe that we report the first characterised cryptic speciation case of an avian Plasmodium parasite. We used sequence information on the mitochondrial cytochrome b gene and constructed phylogenies of identified Plasmodium spp. to define their position in the phylogenetic tree. After analysis of blood stages, the morphology of the parasite was shown to be identical to Plasmodium circumflexum. However, the geographic distribution of the new parasite, the phylogenetic information, as well as patterns of development of infection, indicate that this parasite differs from P. circumflexum. Plasmodium homocircumflexum n. sp. was described based on information about genetic differences from described lineages, phylogenetic position and biological characters. This parasite develops parasitemia in experimentally infected birds - the domestic canary Serinus canaria domestica, siskin Carduelis spinus and crossbill Loxia curvirostra. Anaemia caused by high parasitemia, as well as cerebral paralysis caused by exoerythrocytic stages in the brain, are the main reasons for mortality. Exoerythrocytic stages also form in other organs (heart, kidneys, liver, lungs, spleen, intestines and pectoral muscles). DNA amplification was unsuccessful from faecal samples of heavily infected birds. The sporogonic development initiates, but is abortive, at the oocyst stage in two common European mosquito species, Culex pipiens pipiens (forms pipiens and molestus) and Aedes vexans. Vectors of this Plasmodium sp. remain unknown. PMID:25449950

Palinauskas, Vaidas; Žiegyt?, Rita; Ilg?nas, Mikas; Iezhova, Tatjana A; Bernotien?, Rasa; Bolshakov, Casimir; Valki?nas, Gediminas

2015-01-01

17

The haemosporidian parasites of bats with description of Sprattiella alecto gen. nov., sp. nov.  

PubMed Central

Four species of Haemoproteidae were found in Pteropus alecto Temminck, 1837 in Queensland, Australia: i) Johnsprentia copemani, Landau et al., 2012; ii) Sprattiella alecto gen. nov., sp. nov., characterised by schizonts in the renal vessels; iii) Hepatocystis levinei, Landau et al., 1985, originally described from Pteropus poliocephalus Temminck, 1825 and, experimentally from Culicoides nubeculosus and found in this new host and for which features of the hepatic schizonts are reported; iv) gametocytes of Hepatocystis sp. which are illustrated but cannot be assigned to a known species. A tentative interpretation of phylogenetic characters of haemosporidians of bats is provided from the morphology of the gametocytes and localisation of the tissue stages with respect to recent data on the phylogeny of bats. PMID:22550624

Landau, I.; Chavatte, J.M.; Karadjian, G.; Chabaud, A.; Beveridge, I.

2012-01-01

18

Genome sequence of the human malaria parasite Plasmodium falciparum  

E-print Network

Genome sequence of the human malaria parasite Plasmodium falciparum Malcolm J. Gardner1 , Neil Hall ........................................................................................................................................................................................................................... The parasite Plasmodium falciparum is responsible for hundreds of millions of cases of malaria, and kills more of this intracellular parasite encodes fewer enzymes and transporters, but a large proportion of genes are devoted

Arnold, Jonathan

19

Comparative genomics of the neglected human malaria parasite Plasmodium vivax  

E-print Network

ARTICLES Comparative genomics of the neglected human malaria parasite Plasmodium vivax Jane M,7 The human malaria parasite Plasmodium vivax is responsible for 25­40% of the ,515 million annual cases of malaria worldwide. Although seldom fatal, the parasite elicits severe and incapacitating clinical symptoms

Cai, Long

20

Prevalence and Lineage Diversity of Avian Haemosporidians from Three Distinct Cerrado Habitats in Brazil  

PubMed Central

Habitat alteration can disrupt host–parasite interactions and lead to the emergence of new diseases in wild populations. The cerrado habitat of Brazil is being fragmented and degraded rapidly by agriculture and urbanization. We screened 676 wild birds from three habitats (intact cerrado, disturbed cerrado and transition area Amazonian rainforest-cerrado) for the presence of haemosporidian parasites (Plasmodium and Haemoproteus) to determine whether different habitats were associated with differences in the prevalence and diversity of infectious diseases in natural populations. Twenty one mitochondrial lineages, including 11 from Plasmodium and 10 from Haemoproteus were identified. Neither prevalence nor diversity of infections by Plasmodium spp. or Haemoproteus spp. differed significantly among the three habitats. However, 15 of the parasite lineages had not been previously described and might be restricted to these habitats or to the region. Six haemosporidian lineages previously known from other regions, particularly the Caribbean Basin, comprised 50–80% of the infections in each of the samples, indicating a regional relationship between parasite distribution and abundance. PMID:21408114

Belo, Nayara O.; Pinheiro, Renato T.; Reis, Elivânia S.; Ricklefs, Robert E.; Braga, Érika M.

2011-01-01

21

Haemosporidian infection in captive masked bobwhite quail (Colinus virginianus ridgwayi), an endangered subspecies of the northern bobwhite quail  

PubMed Central

The avian haemosporidian parasites (phylum Apicomplexa) are taxonomically diverse and cosmopolitan in distribution; infecting most bird families. Sources of concern are reports of clinical haemosporidian infections in birds kept as part of zoo and aviary collections. Recently, severe and acute mortality episodes have been reported in masked bobwhite quail (Colinus virginianus ridgwayi), an endangered subspecies from the American Southwest. Two hundred and five eggs of the captive flock held in Arivaca, Arizona, were hatched at a zoo in the American Southwest. Thirty four sub-adult or adult animals had lesions associated with tissue phases of hemoparasites, especially vasculitis, ventricular leiomyositis and ulcerative pododermatitis. Molecular techniques applied to blood collected from the zoo’s last twelve remaining animals resulted in the detection of a Plasmodium juxtanucleare-like and Haemoproteus sp. parasites. A Raven (Corvus corax), in a contiguous exhibit, was positive for the same Plasmodium juxtanucleare-like parasite, but remained asymptomatic for three years following detection. These findings indicate that other birds in the exhibit within the zoo premises could act as reservoirs. We conclude that haemosporidian infections could be a factor in the demise of the captive masked bobwhite quails housed at the zoo. We suggest that active surveillance for haemoporidian parasites should be incorporated as a precaution to ex-situ conservation efforts of susceptible endangered species. PMID:21726940

Pacheco, M. Andreína; Escalante, Ananias A.; Garner, Michael M.; Bradley, Gregory A.; Aguilar, Roberto F.

2011-01-01

22

Genetic Analysis of the Human Malaria Parasite Plasmodium falciparum  

Microsoft Academic Search

Malaria parasites are haploid for most of their life cycle, with zygote formation and meiosis occurring during the mosquito phase of development. The parasites can be analyzed genetically by transmitting mixtures of cloned parasites through mosquitoes to permit cross-fertilization of gametes to occur. A cross was made between two clones of Plasmodium falciparum differing in enzymes, drug sensitivity, antigens, and

David Walliker; Isabella A. Quakyi; Thomas E. Wellems; Thomas F. McCutchan; Ana Szarfman; William T. London; Lynn M. Corcoran; Thomas R. Burkot; Richard Carter

1987-01-01

23

Specific calpain activity evaluation in Plasmodium parasites.  

PubMed

In the intraerythrocytic trophozoite stages of Plasmodium falciparum, the calcium-dependent cysteine protease calpain (Pf-calpain) has an important role in the parasite calcium modulation and cell development. We established specific conditions to follow by confocal microscopy and spectrofluorimetry measurements the intracellular activity of Pf-calpain in live cells. The catalytic activity was measured using the fluorogenic Z-Phe-Arg-MCA (where Z is carbobenzoxy and MCA is 4-methylcoumaryl-7-amide). The calmodulin inhibitor calmidazolium and the sarcoplasmic reticulum calcium ATPase inhibitor thapsigargin were used for modifications in the cytosolic calcium concentrations that persisted in the absence of extracellular calcium. The observed calcium-dependent peptidase activity was greatly inhibited by specific cysteine protease inhibitor E-64 and by the selective calpain inhibitor ALLN (N-acetyl-l-leucyl-l-leucyl-l-norleucinal). Taken together, we observed that intracellular Pf-calpain can be selectively detected and is the main calcium-dependent protease in the intraerythrocytic stages of the parasite. The method described here can be helpful in cell metabolism studies and antimalarial drug screening. PMID:25281458

Gomes, Mayrim M; Budu, Alexandre; Ventura, Priscilla D S; Bagnaresi, Piero; Cotrin, Simone S; Cunha, Rodrigo L O R; Carmona, Adriana K; Juliano, Luiz; Gazarini, Marcos L

2014-10-01

24

Haemosporidian infection in captive masked bobwhite quail (Colinus virginianus ridgwayi), an endangered subspecies of the northern bobwhite quail.  

PubMed

The avian haemosporidian parasites (phylum Apicomplexa) are taxonomically diverse and cosmopolitan in distribution; infecting most bird families. Sources of concern are reports of clinical haemosporidian infections in birds kept as part of zoo and aviary collections. Recently, severe and acute mortality episodes have been reported in masked bobwhite quail (Colinus virginianus ridgwayi), an endangered subspecies from the American Southwest. Two hundred and five eggs of the captive flock held in Arivaca, Arizona, were hatched at a zoo in the American Southwest. Thirty-four sub-adult or adult animals had lesions associated with tissue phases of haemoparasites, especially vasculitis, ventricular leiomyositis and ulcerative pododermatitis. Molecular techniques applied to blood collected from the zoo's last twelve remaining animals resulted in the detection of a Plasmodium juxtanucleare-like and Haemoproteus sp. parasites. A Raven (Corvus corax), in a contiguous exhibit, was positive for the same P. juxtanucleare-like parasite, but remained asymptomatic for three years following detection. These findings indicate that other birds in the exhibit within the zoo premises could act as reservoirs. We conclude that haemosporidian infections could be a factor in the demise of the captive masked bobwhite quails housed at the zoo. We suggest that active surveillance for haemoporidian parasites should be incorporated as a precaution to ex situ conservation efforts of susceptible endangered species. PMID:21726940

Pacheco, M Andreína; Escalante, Ananias A; Garner, Michael M; Bradley, Gregory A; Aguilar, Roberto F

2011-12-15

25

The Plasmodium bottleneck: malaria parasite losses in the mosquito vector  

PubMed Central

Nearly one million people are killed every year by the malaria parasite Plasmodium. Although the disease-causing forms of the parasite exist only in the human blood, mosquitoes of the genus Anopheles are the obligate vector for transmission. Here, we review the parasite life cycle in the vector and highlight the human and mosquito contributions that limit malaria parasite development in the mosquito host. We address parasite killing in its mosquito host and bottlenecks in parasite numbers that might guide intervention strategies to prevent transmission. PMID:25185005

Smith, Ryan C; Vega-Rodríguez, Joel; Jacobs-Lorena, Marcelo

2014-01-01

26

Genetically modified Plasmodium parasites as a protective experimental malaria vaccine  

Microsoft Academic Search

Malaria is a mosquito-borne disease that is transmitted by inoculation of the Plasmodium parasite sporozoite stage. Sporozoites invade hepatocytes, transform into liver stages, and subsequent liver-stage development ultimately results in release of pathogenic merozoites. Liver stages of the parasite are a prime target for malaria vaccines because they can be completely eliminated by sterilizing immune responses, thereby preventing malarial infection.

Ann-Kristin Mueller; Mehdi Labaied; Stefan H. I. Kappe; Kai Matuschewski

2005-01-01

27

On the study of the transmission networks of blood parasites from SW Spain: diversity of avian haemosporidians in the biting midge Culicoides circumscriptus and wild birds  

PubMed Central

Background Blood-sucking flying insects play a key role in the transmission of pathogens of vector-borne diseases. However, at least for the case of avian malaria parasites, the vast majority of studies focus on the interaction between parasites and vertebrate hosts, but there is a lack of information regarding the interaction between the parasites and the insect vectors. Here, we identified the presence of malaria and malaria-like parasite lineages harbored by the potential vector Culicoides circumscriptus (Kieffer). Also, we identified some nodes of the transmission network connecting parasite lineages, potential insect vectors and avian hosts by comparing Haemoproteus and Plasmodium lineages isolated from insects with those infecting wild birds in this and previous studies. Methods Using a molecular approach, we analysed the presence of blood parasites in a total of 97 biting midges trapped in the Doñana National Park (SW Spain) and surrounding areas. Also, 123 blood samples from 11 bird species were analyzed for the presence of blood parasite infections. Blood parasites Haemoproteus and Plasmodium were identified by amplification of a 478 bp fragment of the mitochondrial cytochrome b gen. Results Thirteen biting midges harboured blood parasites including six Haemoproteus and two Plasmodium lineages, supporting the potential role of these insects on parasite transmission. Moreover, ten (8.1%) birds carried blood parasites. Seven Plasmodium and one Haemoproteus lineages were isolated from birds. Overall, six new Haemoproteus lineages were described in this study. Also, we identified the transmission networks of some blood parasites. Two Haemoproteus lineages, hCIRCUM03 and GAGLA03, were identical to those isolated from Corvus monedula in southern Spain and Garrulus glandarius in Bulgaria, respectively. Furthermore, the new Haemoproteus lineage hCIRCUM05 showed a 99% similarity with a lineage found infecting captive penguins in Japan. Conclusions The comparison of the parasite lineages isolated in this study with those previously found infecting birds allowed us to identify some potential nodes in the transmission network of avian blood parasite lineages. These results highlight the complexity of the transmission networks of blood parasites in the wild that may involve a high diversity of susceptible birds and insect vectors. PMID:23856348

2013-01-01

28

VECTOR/PATHOGEN/HOST INTERACTION, TRANSMISSION Virulence of a Malaria Parasite, Plasmodium mexicanum, for Its Sand  

E-print Network

VECTOR/PATHOGEN/HOST INTERACTION, TRANSMISSION Virulence of a Malaria Parasite, Plasmodium that virulence of parasites for mobile vector insects will be low for natural parasite-host associations that have coevolved. I determined virulence of the malaria parasite of lizards, Plasmodium mexicanum

Schall, Joseph J.

29

Tetraethylthiuram disulfide (Antabuse) inhibits the human malaria parasite Plasmodium falciparum.  

PubMed Central

Plasmodium falciparum in culture grows optimally at 3% oxygen. Oxygen levels down to 0.5% still support growth, but anaerobic conditions do not. These findings, and the absence of the Krebs cycle in Plasmodium, suggested that in this organism oxygen may not function in electron transport but rather may act through metalloprotein oxygenases. Tetraethylthiuram disulfide (Antabuse, disulfiram) and its reduction product diethyldithiocarbamate inhibit many metalloprotein oxygenases and have a lipid/H2O partition coefficient and high binding constant for metal ions, favoring selective toxicity to the malaria parasite. These compounds exhibited active antimalarial effects in vitro in concentrations down to 0.1 microgram/ml, the lowest level tested. Tetraethylthiuram disulfide at a level as low as 1 microgram/ml inhibited parasite glycolysis with no effect on glycolysis of normal erythrocytes. Erythrocytes pretreated with this drug at 10 microgram/ml did not support growth of the parasite. PMID:388434

Scheibel, L W; Adler, A; Trager, W

1979-01-01

30

African origin of the malaria parasite Plasmodium vivax  

PubMed Central

Plasmodium vivax is the leading cause of human malaria in Asia and Latin America but is absent from most of central Africa due to the near fixation of a mutation that inhibits the expression of its receptor, the Duffy antigen, on human erythrocytes. The emergence of this protective allele is not understood because P. vivax is believed to have originated in Asia. Here we show, using a non-invasive approach, that wild chimpanzees and gorillas throughout central Africa are endemically infected with parasites that are closely related to human P. vivax. Sequence analyses reveal that ape parasites lack host specificity and are much more diverse than human parasites, which form a monophyletic lineage within the ape parasite radiation. These findings indicate that human P. vivax is of African origin and likely selected for the Duffy-negative mutation. All extant human P. vivax parasites are derived from a single ancestor that escaped out of Africa. PMID:24557500

Liu, Weimin; Li, Yingying; Shaw, Katharina S.; Learn, Gerald H.; Plenderleith, Lindsey J.; Malenke, Jordan A.; Sundararaman, Sesh A.; Ramirez, Miguel A.; Crystal, Patricia A.; Smith, Andrew G.; Bibollet-Ruche, Frederic; Ayouba, Ahidjo; Locatelli, Sabrina; Esteban, Amandine; Mouacha, Fatima; Guichet, Emilande; Butel, Christelle; Ahuka-Mundeke, Steve; Inogwabini, Bila-Isia; Ndjango, Jean-Bosco N.; Speede, Sheri; Sanz, Crickette M.; Morgan, David B.; Gonder, Mary K.; Kranzusch, Philip J.; Walsh, Peter D.; Georgiev, Alexander V.; Muller, Martin N.; Piel, Alex K.; Stewart, Fiona A.; Wilson, Michael L.; Pusey, Anne E.; Cui, Liwang; Wang, Zenglei; Färnert, Anna; Sutherland, Colin J.; Nolder, Debbie; Hart, John A.; Hart, Terese B.; Bertolani, Paco; Gillis, Amethyst; LeBreton, Matthew; Tafon, Babila; Kiyang, John; Djoko, Cyrille F.; Schneider, Bradley S.; Wolfe, Nathan D.; Mpoudi-Ngole, Eitel; Delaporte, Eric; Carter, Richard; Culleton, Richard L.; Shaw, George M.; Rayner, Julian C.; Peeters, Martine; Hahn, Beatrice H.; Sharp, Paul M.

2014-01-01

31

Detection and molecular characterization of avian Plasmodium from mosquitoes in central Turkey.  

PubMed

Assessing vector-parasite relationship is important in understanding the emergence of vector-borne diseases and the evolution of parasite diversity. This study investigates avian Plasmodium parasites in mosquitoes collected from Kayseri province in Central Anatolian, Turkey and determines the haemosporidian parasite lineages from these mosquito species. A total of 6153 female mosquitos from 6 species were collected from 46 sites during June-August of 2008 and 2009. Each mosquito's head-thorax and abdomen were separated, categorized with respect to species and collection area and pooled for DNA extraction. A total of 1198 genomic DNA pools (599 thorax-head, 599 abdomen) were constituted of which 128 pools (59 thorax-head, 69 abdomen) were positive for avian haemosporidian parasites (Plasmodium and Haemoproteus) by Nested-PCR analysis. Culex pipens, Aedes vexans, Culex theileri and Culiseta annulata were positive with minimum infection rates (MIRs) of 16.22 and 18.15, 4.72 and 5.98, 5.18 and 10.36, 10.64 and 10.64 in their thorax-head and abdomen parts, respectively. No avian haemosporidian DNA was detected from Culex hortensis and Anopheles maculipennis. Phylogenetic analyses of the partial cytb gene of avian haemosporidian mt-DNA from 13 positive pools revealed that 11 lineages in four phylogenic groups were Plasmodium and the other two were Haemoproteus. Our results suggest that Cx. pipiens could probably be the major vector of avian Plasmodium in Central Turkey. This is the first report of molecular detection and characterization of avian Plasmodium lineages from mosquitoes in Turkey. PMID:22455723

Inci, A; Yildirim, A; Njabo, K Y; Duzlu, O; Biskin, Z; Ciloglu, A

2012-08-13

32

Hostile Takeover by Plasmodium: Reorganization of Parasite and Host Cell Membranes during Liver Stage  

E-print Network

Hostile Takeover by Plasmodium: Reorganization of Parasite and Host Cell Membranes during Liver of Cell Biology, University of Bern, Bern, Switzerland Abstract The protozoan parasite Plasmodium the membrane of these merosomes was derived from the parasite membrane, the parasitophorous vacuole membrane

Arnold, Jonathan

33

The genome of the simian and human malaria parasite Plasmodium knowlesi  

E-print Network

LETTERS The genome of the simian and human malaria parasite Plasmodium knowlesi A. Pain1 *, U. Bo is an intracellular malaria parasite whose natural vertebrate host is Macaca fascicularis (the `kra' monkey); however,2 . Plasmodium knowlesi was the first malaria parasite species in which antigenic variation was demonstrated3

Cai, Long

34

Comparative Genomics of Transcriptional Control in the Human Malaria Parasite Plasmodium falciparum  

E-print Network

Comparative Genomics of Transcriptional Control in the Human Malaria Parasite Plasmodium falciparum, Hinxton, Cambridge CB10 1SA, United Kingdom The life cycle of the parasite Plasmodium falciparum by posttranscriptional mechanisms. The most lethal form of human malaria is caused by infection with the parasite

Arnold, Jonathan

35

Genome sequence of the human malaria parasite Plasmodium falciparum  

Microsoft Academic Search

The parasite Plasmodium falciparum is responsible for hundreds of millions of cases of malaria, and kills more than one million African children annually. Here we report an analysis of the genome sequence of P. falciparum clone 3D7. The 23-megabase nuclear genome consists of 14 chromosomes, encodes about 5,300 genes, and is the most (A + T)-rich genome sequenced to date.

Malcolm J. Gardner; Neil Hall; Eula Fung; Owen White; Matthew Berriman; Richard W. Hyman; Jane M. Carlton; Arnab Pain; Sharen Bowman; Ian T. Paulsen; Keith James; Kim Rutherford; Steven L. Salzberg; Alister Craig; Sue Kyes; Man-Suen Chan; Vishvanath Nene; Shamira J. Shallom; Bernard Suh; Jeremy Peterson; Sam Angiuoli; Mihaela Pertea; Jonathan Allen; Jeremy Selengut; Daniel Haft; Michael W. Mather; Akhil B. Vaidya; Alan H. Fairlamb; Martin J. Fraunholz; David S. Roos; Stuart A. Ralph; Geoffrey I. McFadden; Leda M. Cummings; G. Mani Subramanian; Chris Mungall; J. Craig Venter; Daniel J. Carucci; Stephen L. Hoffman; Chris Newbold; Ronald W. Davis; Claire M. Fraser; Bart Barrell

2002-01-01

36

High prevalence of haemosporidian parasites infection in southern grey shrike Lanius meridionalis (Laniidae, Aves) from agricultural areas  

Microsoft Academic Search

We present the first data on prevalence of haematozoa in Southern grey shrikes Lanius meridionalis (Temminck) in agricultural areas of western Spain. A fragment of the mitochondrial cytochrome b gene of the parasite was amplified, using a nested PCR assay from blood sample. Of the 81 shrikes analysed, 65.4% showed infection with Haemoproteus (Kruse, 1890) while neither Leucocytozoon (Berestneff, 1904)

P. Casanueva; M. Fernández; M. Ángeles Rojo; F. Campos

2012-01-01

37

Nycteria parasites of Afrotropical insectivorous bats.  

PubMed

Parasitic protozoan parasites have evolved many co-evolutionary paths towards stable transmission to their host population. Plasmodium spp., the causative agents of malaria, and related haemosporidian parasites are dipteran-borne eukaryotic pathogens that actively invade and use vertebrate erythrocytes for gametogenesis and asexual development, often resulting in substantial morbidity and mortality of the infected hosts. Here, we present results of a survey of insectivorous bats from tropical Africa, including new isolates of species of the haemosporidian genus Nycteria. A hallmark of these parasites is their capacity to infect bat species of distinct families of the two evolutionary distant chiropteran suborders. We did detect Nycteria parasites in both rhinolophid and nycterid bat hosts in geographically separate areas of Sub-Saharan Africa, however our molecular phylogenetic analyses support the separation of the parasites into two distinct clades corresponding to their host genera, suggestive of ancient co-divergence and low levels of host switching. For one clade of these parasites, cytochrome b genes could not be amplified and cytochrome oxidase I sequences showed unusually high rates of evolution, suggesting that the mitochondrial genome of these parasites may have either been lost or substantially altered. This haemosporidian parasite-mammalian host system also highlights that sequential population expansion in the liver and gametocyte formation is a successful alternative to intermediate erythrocytic replication cycles. PMID:25765623

Schaer, Juliane; Reeder, DeeAnn M; Vodzak, Megan E; Olival, Kevin J; Weber, Natalie; Mayer, Frieder; Matuschewski, Kai; Perkins, Susan L

2015-05-01

38

Host cell deformability is linked to transmission in the human malaria parasite Plasmodium falciparum  

E-print Network

Gametocyte maturation in Plasmodium falciparum is a critical step in the transmission of malaria. While the majority of parasites proliferate asexually in red blood cells, a small fraction of parasites undergo sexual ...

Aingaran, Mythili

39

Host cell deformability is linked to transmission in the human malaria parasite Plasmodium falciparum  

E-print Network

Host cell deformability is linked to transmission in the human malaria parasite Plasmodium the majority of parasites proliferate asexu- ally in red blood cells, a small fraction of parasites undergo of asexual red blood cell stage parasites has been investigated in great detail. These studies have

Suresh, Subra

40

Transformation of Plasmodium falciparum Malaria Parasites by Homologous Integration of Plasmids that Confer Resistance to Pyrimethamine  

Microsoft Academic Search

Plasmodium falciparum malaria parasites were transformed with plasmids containing P. falciparum or Toxoplasma gondii dihydrofolate reductase-thymidylate synthase (dhfr-ts) coding sequences that confer resistance to pyrimethamine. Under pyrimethamine pressure, transformed parasites were obtained that maintained the transfected plasmids as unrearranged episomes for several weeks. These parasite populations were replaced after 2 to 3 months by parasites that had incorporated the transfected

Yimin Wu; Laura A. Kirkman; Thomas E. Wellems

1996-01-01

41

Targeting NAD+ Metabolism in the Human Malaria Parasite Plasmodium falciparum  

PubMed Central

Nicotinamide adenine dinucleotide (NAD+) is an essential metabolite utilized as a redox cofactor and enzyme substrate in numerous cellular processes. Elevated NAD+ levels have been observed in red blood cells infected with the malaria parasite Plasmodium falciparum, but little is known regarding how the parasite generates NAD+. Here, we employed a mass spectrometry-based metabolomic approach to confirm that P. falciparum lacks the ability to synthesize NAD+ de novo and is reliant on the uptake of exogenous niacin. We characterized several enzymes in the NAD+ pathway and demonstrate cytoplasmic localization for all except the parasite nicotinamidase, which concentrates in the nucleus. One of these enzymes, the P. falciparum nicotinate mononucleotide adenylyltransferase (PfNMNAT), is essential for NAD+ metabolism and is highly diverged from the human homolog, but genetically similar to bacterial NMNATs. Our results demonstrate the enzymatic activity of PfNMNAT in vitro and demonstrate its ability to genetically complement the closely related Escherichia coli NMNAT. Due to the similarity of PfNMNAT to the bacterial enzyme, we tested a panel of previously identified bacterial NMNAT inhibitors and synthesized and screened twenty new derivatives, which demonstrate a range of potency against live parasite culture. These results highlight the importance of the parasite NAD+ metabolic pathway and provide both novel therapeutic targets and promising lead antimalarial compounds. PMID:24747974

O'Hara, Jessica K.; Kerwin, Lewis J.; Cobbold, Simon A.; Tai, Jonathan; Bedell, Thomas A.; Reider, Paul J.; Llinás, Manuel

2014-01-01

42

Low haemosporidian diversity and one key-host species in a bird malaria community on a mid-Atlantic island (São Miguel, Azores).  

PubMed

When host species colonize new areas, the parasite assemblage infecting the hosts might change, with some parasite species being lost and others newly acquired. These changes would likely lead to novel selective forces on both host and its parasites. We investigated the avian blood parasites in the passerine bird community on the mid-Atlantic island of São Miguel, Azores, a bird community originating from continental Europe. The presence of haemosporidian blood parasites belonging to the genera Haemoproteus, Plasmodium, and Leucocytozoon was assessed using polymerase chain reaction. We found two Plasmodium lineages and two Leucocytozoon lineages in 11 bird species (84% of all breeding passerine species) on the island. These lineages were unevenly distributed across bird species. The Eurasian Blackbird (Turdus merula) was the key-host species (total parasite prevalence of 57%), harboring the main proportion of parasite infections. Except for Eurasian Blackbirds, all bird species had significantly lower prevalence and parasite diversity compared to their continental populations. We propose that in evolutionary novel bird communities, single species may act as key hosts by harboring the main part of the parasite fauna from which parasites "leak" into the other species. This would create very different host-parasite associations in areas recently colonized by hosts as compared to in their source populations. PMID:22102655

Hellgren, Olof; Križanauskien?, Asta; Hasselquist, Dennis; Bensch, Staffan

2011-10-01

43

Chloroquine-Resistant Haplotype Plasmodium falciparum Parasites, Haiti  

PubMed Central

Plasmodium falciparum parasites have been endemic to Haiti for >40 years without evidence of chloroquine (CQ) resistance. In 2006 and 2007, we obtained blood smears for rapid diagnostic tests (RDTs) and filter paper blots of blood from 821 persons by passive and active case detection. P. falciparum infections diagnosed for 79 persons by blood smear or RDT were confirmed by PCR for the small subunit rRNA gene of P. falciparum. Amplification of the P. falciparum CQ resistance transporter (pfcrt) gene yielded 10 samples with amplicons resistant to cleavage by ApoI. A total of 5 of 9 samples had threonine at position 76 of pfcrt, which is consistent with CQ resistance (haplotypes at positions 72–76 were CVIET [n = 4] and CVMNT [n = 1]); 4 had only the wild-type haplotype associated with CQ susceptibility (CVMNK). These results indicate that CQ-resistant haplotype P. falciparum malaria parasites are present in Haiti. PMID:19402959

Londono, Berlin L.; Eisele, Thomas P.; Keating, Joseph; Bennett, Adam; Chattopadhyay, Chandon; Heyliger, Gaetan; Mack, Brian; Rawson, Ian; Vely, Jean-Francois; Désinor, Olbeg

2009-01-01

44

Transcriptional variation in the malaria parasite Plasmodium falciparum  

PubMed Central

Malaria genetic variation has been extensively characterized, but the level of epigenetic plasticity remains largely unexplored. Here we provide a comprehensive characterization of transcriptional variation in the most lethal malaria parasite, Plasmodium falciparum, based on highly accurate transcriptional analysis of isogenic parasite lines grown under homogeneous conditions. This analysis revealed extensive transcriptional heterogeneity within genetically homogeneous clonal parasite populations. We show that clonally variant expression controlled at the epigenetic level is an intrinsic property of specific genes and gene families, the majority of which participate in host–parasite interactions. Intrinsic transcriptional variability is not restricted to genes involved in immune evasion, but also affects genes linked to lipid metabolism, protein folding, erythrocyte remodeling, or transcriptional regulation, among others, indicating that epigenetic variation results in both antigenic and functional variation. We observed a general association between heterochromatin marks and clonally variant expression, extending previous observations for specific genes to essentially all variantly expressed gene families. These results suggest that phenotypic variation of functionally unrelated P. falciparum gene families is mediated by a common mechanism based on reversible formation of H3K9me3-based heterochromatin. In changing environments, diversity confers fitness to a population. Our results support the idea that P. falciparum uses a bet-hedging strategy, as an alternative to directed transcriptional responses, to adapt to common fluctuations in its environment. Consistent with this idea, we found that transcriptionally different isogenic parasite lines markedly differed in their survival to heat-shock mimicking febrile episodes and adapted to periodic heat-shock with a pattern consistent with natural selection of pre-existing parasites. PMID:22415456

Rovira-Graells, Núria; Gupta, Archna P.; Planet, Evarist; Crowley, Valerie M.; Mok, Sachel; Ribas de Pouplana, Lluís; Preiser, Peter R.; Bozdech, Zbynek; Cortés, Alfred

2012-01-01

45

Serological Evidence of Discrete Spatial Clusters of Plasmodium falciparum Parasites  

PubMed Central

Background Malaria transmission may be considered to be homogenous with well-mixed parasite populations (as in the classic Ross/Macdonald models). Marked fine-scale heterogeneity of transmission has been observed in the field (i.e., over a few kilometres), but there are relatively few data on the degree of mixing. Since the Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) is highly polymorphic, the host's serological responses may be used to infer exposure to parasite sub-populations. Methods and Findings We measured the antibody responses to 46 individual PfEMP1 domains at four time points among 450 children in Kenya, and identified distinct spatial clusters of antibody responses to individual domains. 35 domains showed strongly significant sero-clusters at p?=?0.001. Individuals within the high transmission hotspot showed the greatest diversity of anti-PfEMP1 responses. Individuals outside the hotspot had a less diverse range of responses, even if as individuals they were at relatively intense exposure. Conclusions We infer that antigenically distinct sub-populations of parasites exist on a fine spatial scale in a study area of rural Kenya. Further studies should examine antigenic variation over longer periods of time and in different study areas. PMID:21747921

Bejon, Philip; Turner, Louise; Lavstsen, Thomas; Cham, Gerald; Olotu, Ally; Drakeley, Chris J.; Lievens, Marc; Vekemans, Johan; Savarese, Barbara; Lusingu, John; von Seidlein, Lorenz; Bull, Peter C.; Marsh, Kevin; Theander, Thor G.

2011-01-01

46

POLYMORPHISM OF A HIGH MOLECULAR WEIGHT SCHIZONT ANTIGEN OF THE HUMAN MALARIA PARASITE PLASMODIUM FALCIPARUM  

Microsoft Academic Search

Clinical manifestations of malaria are associated with repeated cycles of mul- tiplication of the parasite in the blood, and any prospective immunopr0phylaxis needs effectively to control the blood phase of the infection. Present attempts (1-10) to identify parasite antigens of potential value in vaccination against asexual blood stages of the human parasite Plasmodium falciparum have impli- cated a number of

S. McBRIDE; CHRIS I. NEWBOLD; RITA ANAND

1985-01-01

47

Visualization of Malaria Parasites in the Skin Using the Luciferase Transgenic Parasite, Plasmodium berghei  

PubMed Central

We produced a transgenic rodent malaria parasite (Plasmodium berghei) that contained the luciferase gene under a promoter region of elongation factor-1?. These transgenic (TG) parasites expressed luciferase in all stages of their life cycle, as previously reported. However, we were the first to succeed in observing sporozoites as a mass in mouse skin following their deposition by the probing of infective mosquitoes. Our transgenic parasites may have emitted stronger bioluminescence than previous TG parasites. The estimated number of injected sporozoites by mosquitoes was between 34 and 775 (median 80). Since luciferase activity diminished immediately after the death of the parasites, luciferase activity could be an indicator of the existence of live parasites. Our results indicated that sporozoites survived at the probed site for more than 42 hours. We also detected sporozoites in the liver within 15 min of the intravenous injection. Bioluminescence was not observed in the lung, kidney or spleen. We confirmed the observation that the liver was the first organ in which malaria parasites entered and increased in number.

Matsuoka, Hiroyuki; Tomita, Hiroyuki; Hattori, Ryuta; Arai, Meiji; Hirai, Makoto

2015-01-01

48

Malaria parasites ( Plasmodium spp.) infecting introduced, native and endemic New Zealand birds  

Microsoft Academic Search

Avian malaria is caused by intracellular mosquito-transmitted protist parasites in the order Haemosporida, genus Plasmodium. Although Plasmodium species have been diagnosed as causing death in several threatened species in New Zealand, little is known about their ecology\\u000a and epidemiology. In this study, we examined the presence, microscopic characterization and sequence homology of Plasmodium spp. isolates collected from a small number

Laryssa Howe; Isabel C. Castro; Ellen R. Schoener; Stuart Hunter; Rosemary K. Barraclough; Maurice R. Alley

49

Haemosporidian infection in passerine birds from Lower Saxony  

Microsoft Academic Search

Blood samples from 94 coal tits (Parus ater), 56 great tits (Parus major) and 219 pied flycatchers (Ficedula hypoleuca), caught between 1993 and 2002 at two localities in Lower Saxony, Germany, were examined for haemosporidian infection by\\u000a parasite-specific polymerase chain reaction (PCR). A simple PCR targeting the 18 SSU rRNA gene of the parasites was used for\\u000a rapid screening of

S. C. Wiersch; T. Lubjuhn; W. A. Maier; H. Kampen

2007-01-01

50

Blood-stage Plasmodium infection induces CD8 T lymphocytes to parasite-expressed antigens,  

E-print Network

Blood-stage Plasmodium infection induces CD8 T lymphocytes to parasite-expressed antigens, largely the blood stage of Plasmodium infection, there is mounting evidence that they are principal mediators in response to blood-stage infection. To resolve this and to define the cellular requirements for such priming

Arnold, Jonathan

51

Landscape features associated with infection by a malaria parasite (Plasmodium mexicanum) and the importance of  

E-print Network

with Plasmodium mexicanum in fence lizards (Sceloporus occidentalis) within a 4n5 ha study area in northern (Sceloporus occidentalis), is a useful model system for studying such associations. The parasite

Schall, Joseph J.

52

GEOGRAPHIC GENETIC DIFFERENTIATION OF A MALARIA PARASITE, PLASMODIUM MEXICANUM, AND ITS LIZARD HOST, SCELOPORUS OCCIDENTALIS  

E-print Network

, SCELOPORUS OCCIDENTALIS Jennifer M. Fricke, Anne M. Vardo-Zalik*, and Jos. J. SchallÃ? Department of Biology parasite Plasmodium mexicanum, and its lizard host, Sceloporus occidentalis, at 8 sites in northern

Schall, Joseph J.

53

Age of the last common ancestor of extant Plasmodium parasite lineages.  

PubMed

Parasites of the genus Plasmodium infect all classes of amniotes (mammals, birds and reptiles) and display host specificity in their infections. It is therefore generally believed that Plasmodium parasites co-evolved intimately with their hosts. Here, we report that based on an evolutionary analysis using 22 genes in the nuclear genome, extant lineages of Plasmodium parasites originated roughly in the Oligocene epoch after the emergence of their hosts. This timing on the age of the common ancestor of extant Plasmodium parasites suggest the importance of host switches and lends support to the evolutionary scenario of a "malaria big bang" that was proposed based on the evolutionary analysis using the mitochondrial genome. PMID:22555021

Hayakawa, Toshiyuki; Tachibana, Shin-Ichiro; Hikosaka, Kenji; Arisue, Nobuko; Matsui, Atsushi; Horii, Toshihiro; Tanabe, Kazuyuki

2012-07-01

54

Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii  

Microsoft Academic Search

Species of malaria parasite that infect rodents have long been used as models for malaria disease research. Here we report the whole-genome shotgun sequence of one species, Plasmodium yoelii yoelii, and comparative studies with the genome of the human malaria parasite Plasmodium falciparum clone 3D7. A synteny map of 2,212 P. y. yoelii contiguous DNA sequences (contigs) aligned to 14

Jane M. Carlton; Samuel V. Angiuoli; Bernard B. Suh; Taco W. Kooij; Mihaela Pertea; Joana C. Silva; Maria D. Ermolaeva; Jonathan E. Allen; Jeremy D. Selengut; Hean L. Koo; Jeremy D. Peterson; Mihai Pop; Daniel S. Kosack; Martin F. Shumway; Shelby L. Bidwell; Shamira J. Shallom; Susan E. van Aken; Steven B. Riedmuller; Tamara V. Feldblyum; Jennifer K. Cho; John Quackenbush; Martha Sedegah; Azadeh Shoaibi; Leda M. Cummings; Laurence Florens; John R. Yates; J. Dale Raine; Robert E. Sinden; Michael A. Harris; Deirdre A. Cunningham; Peter R. Preiser; Lawrence W. Bergman; Akhil B. Vaidya; Leo H. van Lin; Chris J. Janse; Andrew P. Waters; Hamilton O. Smith; Owen R. White; Steven L. Salzberg; J. Craig Venter; Claire M. Fraser; Stephen L. Hoffman; Malcolm J. Gardner; Daniel J. Carucci

2002-01-01

55

Plasmodium Drug Targets Outside the Genetic Control of the Parasite  

PubMed Central

Drug development often seeks to find “magic bullets” which target microbiologic proteins while not affecting host proteins. Paul Ehrlich tested methylene blue as an antimalarial but this dye was not superior to quinine. Many successful antimalarial therapies are “magic shotguns” which target many Plasmodium pathways with little interference in host metabolism. Two malaria drug classes, the 8-aminoquinolines and the artemisinins interact with cytochrome P450s and host iron protoporphyrin IX or iron, respectively, to generate toxic metabolites and/or radicals, which kill the parasite by interference with many proteins. The non 8-amino antimalarial quinolines like quinine or piperaquine bind heme to inhibit the process of heme crystallization, which results in multiple enzyme inhibition and membrane dysfunction. The quinolines and artemisinins are rapidly parasiticidal in contrast to metal chelators, which have a slower parasite clearance rate with higher drug concentrations. Iron chelators interfere with the artemisinins but otherwise represent a strategy of targeting multiple enzymes containing iron. Interest has been revived in antineoplastic drugs that target DNA metabolism as antimalarials. Specific drug targeting or investigation of the innate immunity directed to the more permeable trophozoite or schizont infected erythrocyte membrane has been under explored. Novel drug classes in the antimalarial development pipeline which either target multiple proteins or unchangeable cellular targets will slow the pace of drug resistance acquisition. PMID:22973888

Sullivan, David J.

2014-01-01

56

Anopheles moucheti and Anopheles vinckei Are Candidate Vectors of Ape Plasmodium Parasites, Including Plasmodium praefalciparum in Gabon  

PubMed Central

During the last four years, knowledge about the diversity of Plasmodium species in African great apes has considerably increased. Several new species were described in chimpanzees and gorillas, and some species that were previously considered as strictly of human interest were found to be infecting African apes. The description in gorillas of P. praefalciparum, the closest relative of P. falciparum which is the main malignant agent of human malaria, definitively changed the way we understand the evolution and origin of P. falciparum. This parasite is now considered to have appeared recently, following a cross-species transfer from gorillas to humans. However, the Plasmodium vector mosquito species that have served as bridge between these two host species remain unknown. In order to identify the vectors that ensure ape Plasmodium transmission and evaluate the risk of transfer of these parasites to humans, we carried out a field study in Gabon to capture Anopheles in areas where wild and semi-wild ape populations live. We collected 1070 Anopheles females belonging to 15 species, among which An. carnevalei, An. moucheti and An. marshallii were the most common species. Using mtDNA-based PCR tools, we discovered that An. moucheti, a major human malaria vector in Central Africa, could also ensure the natural transmission of P. praefalciparum among great apes. We also showed that, together with An. vinckei, An. moucheti was infected with P. vivax-like parasites. An. moucheti constitutes, therefore, a major candidate for the transfer of Plasmodium parasites from apes to humans. PMID:23437363

Paupy, Christophe; Makanga, Boris; Ollomo, Benjamin; Rahola, Nil; Durand, Patrick; Magnus, Julie; Willaume, Eric; Renaud, François; Fontenille, Didier; Prugnolle, Franck

2013-01-01

57

Structure, Function and Inhibition of the Phosphoethanolamine Methyltransferases of the Human Malaria Parasites Plasmodium vivax and Plasmodium knowlesi.  

PubMed

Phosphoethanolamine methyltransferases (PMTs) catalyze the three-step methylation of phosphoethanolamine to form phosphocholine, a critical step in the synthesis of phosphatidylcholine in a select number of eukaryotes including human malaria parasites, nematodes and plants. Genetic studies in the malaria parasite Plasmodium falciparum have shown that the methyltransferase PfPMT plays a critical function in parasite development and differentiation. The presence of PMT orthologs in other malaria parasites that infect humans and their absence in mammals make them ideal targets for the development of selective antimalarials with broad specificity against different Plasmodium species. Here we describe the X-ray structures and biochemical properties of PMT orthologs from Plasmodium vivax and Plasmodium knowlesi and show that both enzymes are inhibited by amodiaquine and NSC158011, two drugs with potent antimalarial activity. Metabolic studies in a yeast mutant that relies on PkPMT or PvPMT for survival demonstrated that these compounds inhibit phosphatidylcholine biosynthesis from ethanolamine. Our structural and functional data provide insights into the mechanism of catalysis and inhibition of PMT enzymes and set the stage for a better design of more specific and selective antimalarial drugs. PMID:25761669

Garg, Aprajita; Lukk, Tiit; Kumar, Vidya; Choi, Jae-Yeon; Augagneur, Yoann; Voelker, Dennis R; Nair, Satish; Mamoun, Choukri Ben

2015-01-01

58

Structure, Function and Inhibition of the Phosphoethanolamine Methyltransferases of the Human Malaria Parasites Plasmodium vivax and Plasmodium knowlesi  

PubMed Central

Phosphoethanolamine methyltransferases (PMTs) catalyze the three-step methylation of phosphoethanolamine to form phosphocholine, a critical step in the synthesis of phosphatidylcholine in a select number of eukaryotes including human malaria parasites, nematodes and plants. Genetic studies in the malaria parasite Plasmodium falciparum have shown that the methyltransferase PfPMT plays a critical function in parasite development and differentiation. The presence of PMT orthologs in other malaria parasites that infect humans and their absence in mammals make them ideal targets for the development of selective antimalarials with broad specificity against different Plasmodium species. Here we describe the X-ray structures and biochemical properties of PMT orthologs from Plasmodium vivax and Plasmodium knowlesi and show that both enzymes are inhibited by amodiaquine and NSC158011, two drugs with potent antimalarial activity. Metabolic studies in a yeast mutant that relies on PkPMT or PvPMT for survival demonstrated that these compounds inhibit phosphatidylcholine biosynthesis from ethanolamine. Our structural and functional data provide insights into the mechanism of catalysis and inhibition of PMT enzymes and set the stage for a better design of more specific and selective antimalarial drugs. PMID:25761669

Garg, Aprajita; Lukk, Tiit; Kumar, Vidya; Choi, Jae-Yeon; Augagneur, Yoann; Voelker, Dennis R.; Nair, Satish; Mamoun, Choukri Ben

2015-01-01

59

Ecole doctorale Sciences Chimiques et Biologiques pour la Sant Titre Modlisation intgre du mtabolisme des lipides chez Plasmodium, parasite causal  

E-print Network

métabolisme des lipides chez Plasmodium, parasite causal du paludisme. Title Systems biology modelling of lipid metabolism in the malaria parasite Plasmodium. Directeur de thèse : M. Ovidiu RADULESCU - Tel : 04 Plasmodium est d'un intérêt certain car il paraît essentiel à la survie de ce parasite et est l'objet d

Radulescu, Ovidiu

60

Malaria parasites (Plasmodium spp.) infecting introduced, native and endemic New Zealand birds.  

PubMed

Avian malaria is caused by intracellular mosquito-transmitted protist parasites in the order Haemosporida, genus Plasmodium. Although Plasmodium species have been diagnosed as causing death in several threatened species in New Zealand, little is known about their ecology and epidemiology. In this study, we examined the presence, microscopic characterization and sequence homology of Plasmodium spp. isolates collected from a small number of New Zealand introduced, native and endemic bird species. We identified 14 Plasmodium spp. isolates from 90 blood or tissue samples. The host range included four species of passerines (two endemic, one native, one introduced), one species of endemic pigeon and two species of endemic kiwi. The isolates were associated into at least four distinct clusters including Plasmodium (Huffia) elongatum, a subgroup of Plasmodium elongatum, Plasmodium relictum and Plasmodium (Noyvella) spp. The infected birds presented a low level of peripheral parasitemia consistent with chronic infection (11/15 blood smears examined). In addition, we report death due to overwhelming parasitemia in a blackbird, a great spotted kiwi and a hihi. These deaths were attributed to infections with either Plasmodium spp. lineage LINN1 or P. relictum lineage GRW4. To the authors' knowledge, this is the first published report of Plasmodium spp. infection in great spotted and brown kiwi, kereru and kokako. Currently, we are only able to speculate on the origin of these 14 isolates but consideration must be made as to the impact they may have on threatened endemic species, particularly due to the examples of mortality. PMID:21842389

Howe, Laryssa; Castro, Isabel C; Schoener, Ellen R; Hunter, Stuart; Barraclough, Rosemary K; Alley, Maurice R

2012-02-01

61

Gametocyte sex ratio in single-clone infections of the malaria parasite Plasmodium mexicanum  

E-print Network

Gametocyte sex ratio in single-clone infections of the malaria parasite Plasmodium mexicanum A 12 July 2010) SUMMARY Sex ratio theory predicts that malaria parasites should bias gametocyte system later in the infection. Recent experimental studies reveal genetic variation for gametocyte sex

Schall, Joseph J.

62

Clonal diversity of a malaria parasite, Plasmodium mexicanum, and its transmission success from its vertebrate-to-insect host  

E-print Network

parasite Plasmodium mexicanum are often genetically complex within their fence lizard host (Sceloporus occidentalis) harbouring two or more clones of parasite. The role of clo- nal diversity in transmission success

Schall, Joseph J.

63

Selection for high and low virulence in the malaria parasite Plasmodium chabaudi  

Microsoft Academic Search

What stops parasitesbecoming ever more virulent? Conventionalwisdom and most parasite-centred models of the evolution of virulence suppose that risk of host (and, hence, parasite) death imposes selection against more virulent strains. Here we selected for high and low virulence within each of two clones of the rodent malaria parasite Plasmodium chabaudi on the basis of between-host di¡erences in a surrogate

M. J. Mackinnon; A. F. Read

64

Identification and Characterization of a Liver Stage-Specific Promoter Region of the Malaria Parasite Plasmodium  

PubMed Central

During the blood meal of a Plasmodium-infected mosquito, 10 to 100 parasites are inoculated into the skin and a proportion of these migrate via the bloodstream to the liver where they infect hepatocytes. The Plasmodium liver stage, despite its clinical silence, represents a highly promising target for antimalarial drug and vaccine approaches. Successfully invaded parasites undergo a massive proliferation in hepatocytes, producing thousands of merozoites that are transported into a blood vessel to infect red blood cells. To successfully develop from the liver stage into infective merozoites, a tight regulation of gene expression is needed. Although this is a very interesting aspect in the biology of Plasmodium, little is known about gene regulation in Plasmodium parasites in general and in the liver stage in particular. We have functionally analyzed a novel promoter region of the rodent parasite Plasmodium berghei that is exclusively active during the liver stage of the parasite. To prove stage-specific activity of the promoter, GFP and luciferase reporter assays have been successfully established, allowing both qualitative and accurate quantitative analysis. To further characterize the promoter region, the transcription start site was mapped by rapid amplification of cDNA ends (5?-RACE). Using promoter truncation experiments and site-directed mutagenesis within potential transcription factor binding sites, we suggest that the minimal promoter contains more than one binding site for the recently identified parasite-specific ApiAP2 transcription factors. The identification of a liver stage-specific promoter in P. berghei confirms that the parasite is able to tightly regulate gene expression during its life cycle. The identified promoter region might now be used to study the biology of the Plasmodium liver stage, which has thus far proven problematic on a molecular level. Stage-specific expression of dominant-negative mutant proteins and overexpression of proteins normally active in other life cycle stages will help to understand the function of the proteins investigated. PMID:21048918

Helm, Susanne; Lehmann, Christine; Nagel, Andreas; Stanway, Rebecca R.; Horstmann, Sebastian; Llinas, Manuel; Heussler, Volker T.

2010-01-01

65

The ecology of host immune responses to chronic avian haemosporidian infection.  

PubMed

Host responses to parasitism in the wild are often studied in the context of single host-parasite systems, which provide little insight into the ecological dynamics of host-parasite interactions within a community. Here we characterized immune system responses to mostly low-intensity, chronic infection by haemosporidian parasites in a sample of 424 individuals of 22 avian host species from the same local assemblage in the Missouri Ozarks. Two types of white blood cells (heterophils and lymphocytes) were elevated in infected individuals across species, as was the acute-phase protein haptoglobin, which is associated with inflammatory immune responses. Linear discriminant analysis indicated that individuals infected by haemosporidians occupied a subset of the overall white blood cell multivariate space that was also occupied by uninfected individuals, suggesting that these latter individuals might have harbored other pathogens or that parasites more readily infect individuals with a specific white blood cell profile. DNA sequence-defined lineages of haemosporidian parasites were sparsely distributed across the assemblage of hosts. In one well-sampled host species, the red-eyed vireo (Vireo olivaceus), heterophils were significantly elevated in individuals infected with one but not another of two common parasite lineages. Another well-sampled host, the yellow-breasted chat (Icteria virens), exhibited no differences in immune response to different haemosporidian lineages. Our results indicate that while immune responses to infection may be generalized across host species, parasite-specific immune responses may also occur. PMID:25179282

Ellis, Vincenzo A; Kunkel, Melanie R; Ricklefs, Robert E

2014-11-01

66

Origins of Human Malaria: Rare Genomic Changes and Full Mitochondrial Genomes Confirm the Relationship of Plasmodium falciparum to Other Mammalian Parasites but Complicate the Origins of Plasmodium vivax  

PubMed Central

Despite substantial work, the phylogeny of malaria parasites remains debated. The matter is complicated by concerns about patterns of evolution in potentially strongly selected genes as well as the extreme AT bias of some Plasmodium genomes. Particularly contentious has been the position of the most virulent human parasite Plasmodium falciparum, whether grouped with avian parasites or within a larger clade of mammalian parasites. Here, we study 3 classes of rare genomic changes, as well as the sequences of mitochondrial ribosomal RNA (rRNA) genes. We report 3 lines of support for a clade of mammalian parasites: 1) we find no instances of spliceosomal intron loss in a hypothetical ancestor of P. falciparum and the avian parasite Plasmodium gallinaceum, suggesting against a close relationship between those species; 2) we find 4 genomic mitochondrial indels supporting a mammalian clade, but none grouping P. falciparum with avian parasites; and 3) slowly evolving mitochondrial rRNA sequences support a mammalian parasite clade with 100% posterior probability. We further report a large deletion in the mitochondrial large subunit rRNA gene, which suggests a subclade including both African and Asian parasites within the clade of closely related primate malarias. This contrasts with previous studies that provided strong support for separate Asian and African clades, and reduces certainty about the historical and geographic origins of Plasmodium vivax. Finally, we find a lack of synapomorphic gene losses, suggesting a low rate of ancestral gene loss in Plasmodium. PMID:18359945

Irimia, Manuel

2008-01-01

67

Low- and High-Tech Approaches to Control Plasmodium Parasite Transmission by Anopheles Mosquitoes  

PubMed Central

Current efforts have proven inadequate to stop the transmission of Plasmodium parasites, and hence the spread of malaria, by Anopheles mosquitoes. Therefore, a novel arsenal of strategies for inhibiting Plasmodium infection of mosquitoes is urgently needed. In this paper, we summarize research on two approaches to malaria control, a low-tech strategy based on parasite inhibition by the mosquito's natural microflora, and a high-tech strategy using genetic modification of mosquitoes that renders them resistant to infection and discuss advantages and disadvantages for both approaches. PMID:21876705

Cirimotich, Chris M.; Clayton, April M.; Dimopoulos, George

2011-01-01

68

Quantitative Bioluminescent Imaging of Pre-Erythrocytic Malaria Parasite Infection Using Luciferase-Expressing Plasmodium yoelii  

PubMed Central

The liver stages of Plasmodium parasites are important targets for the development of anti-malarial vaccine candidates and chemoprophylaxis approaches that aim to prevent clinical infection. Analyzing the impact of interventions on liver stages in the murine malaria model system Plasmodium yoelii has been cumbersome and requires terminal procedures. In vivo imaging of bioluminescent parasites has previously been shown to be an effective and non-invasive alternative to monitoring liver stage burden in the Plasmodium berghei model. Here we report the generation and characterization of a transgenic P. yoelii parasite expressing the reporter protein luciferase throughout the parasite life cycle. In vivo bioluminescent imaging of these parasites allows for quantitative analysis of P. yoelii liver stage burden and parasite development, which is comparable to quantitative RT-PCR analysis of liver infection. Using this system, we show that both BALB/cJ and C57BL/6 mice show comparable susceptibility to P. yoelii infection with sporozoites and that bioluminescent imaging can be used to monitor protective efficacy of attenuated parasite immunizations. Thus, this rapid, simple and noninvasive method for monitoring P. yoelii infection in the liver provides an efficient system to screen and evaluate the effects of anti-malarial interventions in vivo and in real-time. PMID:23593316

Miller, Jessica L.; Murray, Sara; Vaughan, Ashley M.; Harupa, Anke; Sack, Brandon; Baldwin, Michael; Crispe, Ian N.; Kappe, Stefan H. I.

2013-01-01

69

Host compatibility rather than vector–host-encounter rate determines the host range of avian Plasmodium parasites  

PubMed Central

Blood-feeding arthropod vectors are responsible for transmitting many parasites between vertebrate hosts. While arthropod vectors often feed on limited subsets of potential host species, little is known about the extent to which this influences the distribution of vector-borne parasites in some systems. Here, we test the hypothesis that different vector species structure parasite–host relationships by restricting access of certain parasites to a subset of available hosts. Specifically, we investigate how the feeding patterns of Culex mosquito vectors relate to distributions of avian malaria parasites among hosts in suburban Chicago, IL, USA. We show that Plasmodium lineages, defined by cytochrome b haplotypes, are heterogeneously distributed across avian hosts. However, the feeding patterns of the dominant vectors (Culex restuans and Culex pipiens) are similar across these hosts, and do not explain the distributions of Plasmodium parasites. Phylogenetic similarity of avian hosts predicts similarity in their Plasmodium parasites. This effect was driven primarily by the general association of Plasmodium parasites with particular host superfamilies. Our results suggest that a mosquito-imposed encounter rate does not limit the distribution of avian Plasmodium parasites across hosts. This implies that compatibility between parasites and their avian hosts structure Plasmodium host range. PMID:23595266

Medeiros, Matthew C. I.; Hamer, Gabriel L.; Ricklefs, Robert E.

2013-01-01

70

Prevalence Patterns of Avian Plasmodium and Haemoproteus Parasites and the Influence of Host Relative Abundance in Southern China  

PubMed Central

Infectious diseases threaten the health and survival of wildlife populations. Consequently, relationships between host diversity, host abundance, and parasite infection are important aspects of disease ecology and conservation research. Here, we report on the prevalence patterns of avian Plasmodium and Haemoproteus infections and host relative abundance influence based on sampling 728 wild-caught birds representing 124 species at seven geographically widespread sites in southern China. The overall prevalence of two haemoprotozoan parasites, Plasmodium and Haemoproteus, was 29.5%, with 22.0% attributable to Haemoproteus and 7.8% to Plasmodium. Haemoproteus prevalence differed significantly among different avian host families, with the highest prevalence in Nectariniidae, Pycnonotidae and Muscicapidae, whereas Plasmodium prevalence varied significantly among host species. Seventy-nine mitochondrial lineages including 25 from Plasmodium and 54 from Haemoproteus were identified, 80% of which were described here for the first time. The phylogenetic relationships among these parasites indicated stronger host-species specificity for Haemoproteus than Plasmodium. Well-supported host-family (Timaliidae) specific clades were found in both Plasmodium and Haemoproteus. The Haemoproteus tree shows regional subclades, whereas the Plasmodium clades are “scattered” among different geographical regions. Interestingly, there were statistically significant variations in the prevalence of Plasmodium and Haemoproteus among the geographical regions. Furthermore, the prevalence of Plasmodium and Haemoproteus were not significantly correlated with host relative abundance. Further efforts will focus on exploring the relationships between parasite prevalence and sex, age, and immune defense of the host. PMID:24911323

Zhang, Yanhua; Wu, Yuchun; Zhang, Qiang; Su, Dongdong; Zou, Fasheng

2014-01-01

71

Prevalence patterns of avian Plasmodium and Haemoproteus parasites and the influence of host relative abundance in southern China.  

PubMed

Infectious diseases threaten the health and survival of wildlife populations. Consequently, relationships between host diversity, host abundance, and parasite infection are important aspects of disease ecology and conservation research. Here, we report on the prevalence patterns of avian Plasmodium and Haemoproteus infections and host relative abundance influence based on sampling 728 wild-caught birds representing 124 species at seven geographically widespread sites in southern China. The overall prevalence of two haemoprotozoan parasites, Plasmodium and Haemoproteus, was 29.5%, with 22.0% attributable to Haemoproteus and 7.8% to Plasmodium. Haemoproteus prevalence differed significantly among different avian host families, with the highest prevalence in Nectariniidae, Pycnonotidae and Muscicapidae, whereas Plasmodium prevalence varied significantly among host species. Seventy-nine mitochondrial lineages including 25 from Plasmodium and 54 from Haemoproteus were identified, 80% of which were described here for the first time. The phylogenetic relationships among these parasites indicated stronger host-species specificity for Haemoproteus than Plasmodium. Well-supported host-family (Timaliidae) specific clades were found in both Plasmodium and Haemoproteus. The Haemoproteus tree shows regional subclades, whereas the Plasmodium clades are "scattered" among different geographical regions. Interestingly, there were statistically significant variations in the prevalence of Plasmodium and Haemoproteus among the geographical regions. Furthermore, the prevalence of Plasmodium and Haemoproteus were not significantly correlated with host relative abundance. Further efforts will focus on exploring the relationships between parasite prevalence and sex, age, and immune defense of the host. PMID:24911323

Zhang, Yanhua; Wu, Yuchun; Zhang, Qiang; Su, Dongdong; Zou, Fasheng

2014-01-01

72

Lactate retards the development of erythrocytic stages of the human malaria parasite Plasmodium falciparum.  

PubMed

The intraerythrocytic form of the human malaria parasite Plasmodium falciparum relies on glycolysis for its energy requirements. In glycolysis, lactate is an end product. It is therefore known that lactate accumulates in in vitro culture; however, its influence on parasite growth remains unknown. Here we investigated the effect of lactate on the development of P. falciparum during in vitro culture under lactate supplementation in detail. Results revealed that lactate retarded parasite development and reduced the number of merozoites in the schizont stage. These findings suggest that lactate has the potential to affect parasite development. PMID:25176135

Hikosaka, Kenji; Hirai, Makoto; Komatsuya, Keisuke; Ono, Yasuo; Kita, Kiyoshi

2015-06-01

73

Active Transcription is Required for Maintenance of Epigenetic Memory in the Malaria Parasite Plasmodium falciparum  

Microsoft Academic Search

The most severe form of human malaria is caused by the protozoan parasite Plasmodium falciparum. The primary antigenic and virulence determinant expressed on the surface of infected red blood cells is PfEMP1 (P. falciparum erythrocyte membrane protein 1), a protein that mediates adhesion and sequestration of the parasites in deep tissue vascular beds. Different forms of PfEMP1 are encoded by

Ron Dzikowski; Kirk W. Deitsch

2008-01-01

74

Contrasting infection susceptibility of the Japanese macaques and cynomolgus macaques to closely related malaria parasites, Plasmodium vivax and Plasmodium cynomolgi.  

PubMed

Although the human malaria parasite Plasmodium vivax is closely related to Asian Old World monkey malaria parasites, there are no reports of P. vivax infections in macaques. In this study, we compared the infectivity of P. vivax and Plasmodium cynomolgi in Japanese macaques (Macaca fuscata) and in cynomolgus macaques (Macaca fascicularis). The Japanese macaques were highly susceptible to P. cynomolgi but not to P. vivax, whereas cynomolgus macaques showed mild/limited P. cynomolgi infection and were, also, not susceptible to P. vivax. Serotyping and amino acid sequence comparison of erythrocyte surface Duffy antigen/receptor for chemokines (DARC) indicate that the Japanese macaque DARC sequence is nearly identical to that of rhesus (Macaca mulatta) and cynomolgus macaques. This suggests that the macaques share a common mechanism for preventing P. vivax infection. Comparison of amino acid sequences of the Duffy-binding-like (DBL) domain from several different Plasmodium species suggests that P. vivax DBLs will not bind to macaque DARCs, which can explain the lack of P. vivax infectivity. The DBL sequence analyses also suggest that P. cynomolgi DBLs may target Japanese macaque erythrocytes through a DARC-independent interaction. PMID:25316604

Tachibana, Shin-Ichiro; Kawai, Satoru; Katakai, Yuko; Takahashi, Hideo; Nakade, Toru; Yasutomi, Yasuhiro; Horii, Toshihiro; Tanabe, Kazuyuki

2015-06-01

75

Construction and use of Plasmodium falciparum phage display libraries to identify host parasite interactions  

Microsoft Academic Search

BACKGROUND: The development of Plasmodium falciparum within human erythrocytes induces a wide array of changes in the ultrastructure, function and antigenic properties of the host cell. Numerous proteins encoded by the parasite have been shown to interact with the erythrocyte membrane. The identification of new interactions between human erythrocyte and P. falciparum proteins has formed a key area of malaria

Sonja B Lauterbach; Roberto Lanzillotti; Theresa L Coetzer

2003-01-01

76

Aspartic proteases of Plasmodium falciparum and other parasitic protozoa as drug targets  

Microsoft Academic Search

All parasitic protozoa contain multiple proteases, some of which are attracting attention as drug targets. Aspartic proteases are already the targets of some clinically useful drugs (e.g. chemotherapy of HIV infection) and a variety of factors make these enzymes appealing to those seeking novel antiparasite therapies. This review provides a critical analysis of the current knowledge on Plasmodium aspartic proteases

Graham H. Coombs; Daniel E. Goldberg; Michael Klemba; Colin Berry; John Kay; Jeremy C. Mottram

2001-01-01

77

Biliverdin production in chickens infected with the malarial parasite Plasmodium Gallinaceum  

Microsoft Academic Search

Chickens infected with the malarial parasite Plasmodium gallinceum produced green droppings: the predominant pigment was biliverdin. Droppings of identical appearance were produced by chicks injected with phenylhydrazine, a haemolytic agent: it is concluded that the catabolism of haemoglobin resulting at least in part from malarial haemolysis produces excess bile pigments which appear in the droppings. Other chicken diseases in which

R. B. Williams

1985-01-01

78

Extracellular ATP triggers proteolysis and cytosolic Ca2+ rise in Plasmodium berghei and Plasmodium yoelii malaria parasites  

PubMed Central

Background Plasmodium has a complex cell biology and it is essential to dissect the cell-signalling pathways underlying its survival within the host. Methods Using the fluorescence resonance energy transfer (FRET) peptide substrate Abz-AIKFFARQ-EDDnp and Fluo4/AM, the effects of extracellular ATP on triggering proteolysis and Ca2+ signalling in Plasmodium berghei and Plasmodium yoelii malaria parasites were investigated. Results The protease activity was blocked in the presence of the purinergic receptor blockers suramin (50 ?M) and PPADS (50 ?M) or the extracellular and intracellular calcium chelators EGTA (5 mM) and BAPTA/AM (25, 100, 200 and 500 ?M), respectively for P. yoelii and P. berghei. Addition of ATP (50, 70, 200 and 250 ?M) to isolated parasites previously loaded with Fluo4/AM in a Ca2+-containing medium led to an increase in cytosolic calcium. This rise was blocked by pre-incubating the parasites with either purinergic antagonists PPADS (50 ?M), TNP-ATP (50 ?M) or the purinergic blockers KN-62 (10 ?M) and Ip5I (10 ?M). Incubating P. berghei infected cells with KN-62 (200 ?M) resulted in a changed profile of merozoite surface protein 1 (MSP1) processing as revealed by western blot assays. Moreover incubating P. berghei for 17 h with KN-62 (10 ?M) led to an increase in rings forms (82% ± 4, n = 11) and a decrease in trophozoite forms (18% ± 4, n = 11). Conclusions The data clearly show that purinergic signalling modulates P. berghei protease(s) activity and that MSP1 is one target in this pathway. PMID:22420332

2012-01-01

79

A plant-like kinase in Plasmodium falciparum regulates parasite egress from erythrocytes.  

PubMed

Clinical malaria is associated with the proliferation of Plasmodium parasites in human erythrocytes. The coordinated processes of parasite egress from and invasion into erythrocytes are rapid and tightly regulated. We have found that the plant-like calcium-dependent protein kinase PfCDPK5, which is expressed in invasive merozoite forms of Plasmodium falciparum, was critical for egress. Parasites deficient in PfCDPK5 arrested as mature schizonts with intact membranes, despite normal maturation of egress proteases and invasion ligands. Merozoites physically released from stalled schizonts were capable of invading new erythrocytes, separating the pathways of egress and invasion. The arrest was downstream of cyclic guanosine monophosphate-dependent protein kinase (PfPKG) function and independent of protease processing. Thus, PfCDPK5 plays an essential role during the blood stage of malaria replication. PMID:20466936

Dvorin, Jeffrey D; Martyn, Derek C; Patel, Saurabh D; Grimley, Joshua S; Collins, Christine R; Hopp, Christine S; Bright, A Taylor; Westenberger, Scott; Winzeler, Elizabeth; Blackman, Michael J; Baker, David A; Wandless, Thomas J; Duraisingh, Manoj T

2010-05-14

80

Transformation of the rodent malaria parasite Plasmodium chabaudi and generation of a stable fluorescent line PcGFPCON  

Microsoft Academic Search

BACKGROUND: The rodent malaria parasite Plasmodium chabaudi has proven of great value in the analysis of fundamental aspects of host-parasite-vector interactions implicated in disease pathology and parasite evolutionary ecology. However, the lack of gene modification technologies for this model has precluded more direct functional studies. METHODS: The development of in vitro culture methods to yield P. chabaudi schizonts for transfection

Sarah E Reece; Joanne Thompson

2008-01-01

81

Quantifying the biophysical characteristics of Plasmodium-falciparum-parasitized  

E-print Network

, Massachusetts Institute of Technology, Cambridge, MA 02139; and b Institut für Festkörperforschung by Plasmodium falciparum (Pf-RBCs) undergo irreversible changes in structure and biophysical characteristics complications in cerebral malaria due to blockages of small vessels in the brain (7). Unlike the extensive

Suresh, Subra

82

Geographic genetic differentiation of a malaria parasite, Plasmodium mexicanum, and its lizard host, Sceloporus occidentalis.  

PubMed

Gene flow, and resulting degree of genetic differentiation among populations, will shape geographic genetic patterns and possibly local adaptation of parasites and their hosts. Some studies of Plasmodium falciparum in humans show substantial differentiation of the parasite in locations separated by only a few kilometers, a paradoxical finding for a parasite in a large, mobile host. We examined genetic differentiation of the malaria parasite Plasmodium mexicanum, and its lizard host, Sceloporus occidentalis, at 8 sites in northern California, with the use of variable microsatellite markers for both species. These lizards are small and highly territorial, so we expected local genetic differentiation of both parasite and lizard. Populations of P. mexicanum were found to be differentiated by analysis of 5 markers (F(st) values >0.05-0.10) over distances as short as 230-400 m, and greatly differentiated (F(st) values >0.25) for sites separated by approximately 10 km. In contrast, the lizard host had no, or very low, levels of differentiation for 3 markers, even for sites >40 km distant. Thus, gene flow for the lizard was great, but despite the mobility of the vertebrate host, the parasite was locally genetically distinct. This discrepancy could result if infected lizards move little, but their noninfected relatives were more mobile. Previous studies on the virulence of P. mexicanum for fence lizards support this hypothesis. However, changing prevalence of the parasite, without changes in density of the lizard, could also result in this pattern. PMID:19916631

Fricke, Jennifer M; Vardo-Zalik, Anne M; Schall, Jos J

2010-04-01

83

Infection Intensity-Dependent Responses of Anopheles gambiae to the African Malaria Parasite Plasmodium falciparum ? †  

PubMed Central

Malaria remains a devastating disease despite efforts at control and prevention. Extensive studies using mostly rodent infection models reveal that successful Plasmodium parasite transmission by the African mosquito vector Anopheles gambiae depends on finely tuned vector-parasite interactions. Here we investigate the transcriptional response of A. gambiae to geographically related Plasmodium falciparum populations at various infection intensities and different infection stages. These responses are compared with those of mosquitoes infected with the rodent parasite Plasmodium berghei. We demonstrate that mosquito responses are largely dependent on the intensity of infection. A major transcriptional suppression of genes involved in the regulation of midgut homeostasis is detected in low-intensity P. falciparum infections, the most common type of infection in Africa. Importantly, genes transcriptionally induced during these infections tend to be phylogenetically unique to A. gambiae. These data suggest that coadaptation between vectors and parasites may act to minimize the impact of infection on mosquito fitness by selectively suppressing specific functional classes of genes. RNA interference (RNAi)-mediated gene silencing provides initial evidence for important roles of the mosquito G protein-coupled receptors (GPCRs) in controlling infection intensity-dependent antiparasitic responses. PMID:21844236

Mendes, Antonio M.; Awono-Ambene, Parfait H.; Nsango, Sandrine E.; Cohuet, Anna; Fontenille, Didier; Kafatos, Fotis C.; Christophides, George K.; Morlais, Isabelle; Vlachou, Dina

2011-01-01

84

CD47 regulates the phagocytic clearance and replication of the Plasmodium yoelii malaria parasite.  

PubMed

Several Plasmodium species exhibit a strong age-based preference for the red blood cells (RBC) they infect, which in turn is a major determinant of disease severity and pathogenesis. The molecular basis underlying this age constraint on the use of RBC and its influence on parasite burden is poorly understood. CD47 is a marker of self on most cells, including RBC, which, in conjunction with signal regulatory protein alpha (expressed on macrophages), prevents the clearance of cells by the immune system. In this report, we have investigated the role of CD47 on the growth and survival of nonlethal Plasmodium yoelii 17XNL (PyNL) malaria in C57BL/6 mice. By using a quantitative biotin-labeling procedure and a GFP-expressing parasite, we demonstrate that PyNL parasites preferentially infect high levels of CD47 (CD47(hi))-expressing young RBC. Importantly, C57BL/6 CD47(-/-) mice were highly resistant to PyNL infection and developed a 9.3-fold lower peak parasitemia than their wild-type (WT) counterparts. The enhanced resistance to malaria observed in CD47(-/-) mice was associated with a higher percentage of splenic F4/80(+) cells, and these cells had a higher percentage of phagocytized parasitized RBC than infected WT mice during the acute phase of infection, when parasitemia was rapidly rising. Furthermore, injection of CD47-neutralizing antibody caused a significant reduction in parasite burden in WT C57BL/6 mice. Together, these results strongly suggest that CD47(hi) young RBC may provide a shield to the malaria parasite from clearance by the phagocytic cells, which may be an immune escape mechanism used by Plasmodium parasites that preferentially infect young RBC. PMID:25713361

Banerjee, Rajdeep; Khandelwal, Sanjay; Kozakai, Yukiko; Sahu, Bikash; Kumar, Sanjai

2015-03-10

85

Aberrant Sporogonic Development of Dmc1 (a Meiotic Recombinase) Deficient Plasmodium berghei Parasites  

PubMed Central

Background In Plasmodium, meiosis occurs in diploid zygotes as they develop into haploid motile ookinetes inside the mosquito. Further sporogonic development involves transformation of ookinetes into oocysts and formation of infective sporozoites. Methodology/Principal Findings Reverse genetics was employed to examine the role of the meiotic specific recombinase Dmc1, a bacterial RecA homolog during sporogony in Plasmodium berghei. PbDmc1 knockout (KO) parasites showed normal asexual growth kinetics compared to WT parasites; however oocyst formation in mosquitoes was reduced by 50 to 80%. Moreover, the majority of oocysts were retarded in their growth and were smaller in size compared to WT parasites. Only a few Dmc1 KO parasites completed maturation resulting in formation of fewer sporozoites which were incapable of infecting naive mice or hepatocytes in vitro. PbDmc1 KO parasites were shown to be approximately 18 times more sensitive to Bizelesin, a DNA alkylating drug compared to WT parasites as reflected by impairment of oocyst formation and sporogonic development in the mosquito vector. Conclusions/Significance Our findings suggest that PbDmc1 plays a critical role in malaria transmission biology. PMID:23285059

Mlambo, Godfree; Coppens, Isabelle; Kumar, Nirbhay

2012-01-01

86

High diversity of West African bat malaria parasites and a tight link with rodent Plasmodium taxa  

PubMed Central

As the only volant mammals, bats are captivating for their high taxonomic diversity, for their vital roles in ecosystems—particularly as pollinators and insectivores—and, more recently, for their important roles in the maintenance and transmission of zoonotic viral diseases. Genome sequences have identified evidence for a striking expansion of and positive selection in gene families associated with immunity. Bats have also been known to be hosts of malaria parasites for over a century, and as hosts, they possess perhaps the most phylogenetically diverse set of hemosporidian genera and species. To provide a molecular framework for the study of these parasites, we surveyed bats in three remote areas of the Upper Guinean forest ecosystem. We detected four distinct genera of hemosporidian parasites: Plasmodium, Polychromophilus, Nycteria, and Hepatocystis. Intriguingly, the two species of Plasmodium in bats fall within the clade of rodent malaria parasites, indicative of multiple host switches across mammalian orders. We show that Nycteria species form a very distinct phylogenetic group and that Hepatocystis parasites display an unusually high diversity and prevalence in epauletted fruit bats. The diversity and high prevalence of novel lineages of chiropteran hemosporidians underscore the exceptional position of bats among all other mammalian hosts of hemosporidian parasites and support hypotheses of pathogen tolerance consistent with the exceptional immunology of bats. PMID:24101466

Schaer, Juliane; Perkins, Susan L.; Decher, Jan; Leendertz, Fabian H.; Fahr, Jakob; Weber, Natalie; Matuschewski, Kai

2013-01-01

87

Artesunate Tolerance in Transgenic Plasmodium falciparum Parasites Overexpressing a Tryptophan-Rich Protein?†  

PubMed Central

Due to their rapid, potent action on young and mature intraerythrocytic stages, artemisinin derivatives are central to drug combination therapies for Plasmodium falciparum malaria. However, the evidence for emerging parasite resistance/tolerance to artemisinins in southeast Asia is of great concern. A better understanding of artemisinin-related drug activity and resistance mechanisms is urgently needed. A recent transcriptome study of parasites exposed to artesunate led us to identify a series of genes with modified levels of expression in the presence of the drug. The gene presenting the largest mRNA level increase, Pf10_0026 (PArt), encoding a hypothetical protein of unknown function, was chosen for further study. Immunodetection with PArt-specific sera showed that artesunate induced a dose-dependent increase of the protein level. Bioinformatic analysis showed that PArt belongs to a Plasmodium-specific gene family characterized by the presence of a tryptophan-rich domain with a novel hidden Markov model (HMM) profile. Gene disruption could not be achieved, suggesting an essential function. Transgenic parasites overexpressing PArt protein were generated and exhibited tolerance to a spike exposure to high doses of artesunate, with increased survival and reduced growth retardation compared to that of wild-type-treated controls. These data indicate the involvement of PArt in parasite defense mechanisms against artesunate. This is the first report of genetically manipulated parasites displaying a stable and reproducible decreased susceptibility to artesunate, providing new possibilities to investigate the parasite response to artemisinins. PMID:21464256

Deplaine, Guillaume; Lavazec, Catherine; Bischoff, Emmanuel; Natalang, Onguma; Perrot, Sylvie; Guillotte-Blisnick, Micheline; Coppée, Jean-Yves; Pradines, Bruno; Mercereau-Puijalon, Odile; David, Peter H.

2011-01-01

88

Borrelidin analogues with antimalarial activity: design, synthesis and biological evaluation against Plasmodium falciparum parasites.  

PubMed

Borrelidin, a structurally unique 18-membered macrolide, was found to express antimalarial activity against drug-resistant Plasmodium falciparum malaria parasites, with IC50 value of 0.93 ng/mL. However, it also displays strong cytotoxicity against human diploid embryonic MRC-5 cells. To investigate the issue of the cytotoxicity of borrelidin, borrelidin-based analogues were synthesized and their anti-Plasmodium properties were evaluated. In this communication, we report that a novel borrelidin analogue, bearing the CH2SPh moiety via a triazole linkage, was found to retain a potent antimalarial activity, against drug-sensitive and drug-resistant parasite strains, but possess only weak cytotoxicity against human cells. PMID:23499502

Sugawara, Akihiro; Tanaka, Toshiaki; Hirose, Tomoyasu; Ishiyama, Aki; Iwatsuki, Masato; Takahashi, Yoko; Otoguro, Kazuhiko; ?mura, Satoshi; Sunazuka, Toshiaki

2013-04-15

89

Implications of Plasmodium parasite infected mosquitoes on an insular avifauna: the case of Socorro Island, México.  

PubMed

Avian malaria (Plasmodium spp.) has been implicated in the decline of avian populations in the Hawaiian Islands and it is generally agreed that geographically isolated and immunologically naïve bird populations are particularly vulnerable to the pathogenic effects of invasive malaria parasites. In order to assess the potential disease risk of malaria to the avifauna of Socorro Island, México, we surveyed for Plasmodium isolates from 1,300 resident field-caught mosquitoes. Most of them were identified as Aedes (Ochlerotatus) taeniorhynchus (Wiedemann, 1821), which were abundant in the salt marshes. We also collected Culex quinquefasciatus Say, 1823 close to human dwellings. Mitochondrial ND5 and COII gene sequences of Ae. taeniorhynchus were analyzed and compared to corresponding sequences of mosquitoes of the Galápagos Islands, Latin America, and the North American mainland. Aedes lineages from Socorro Island clustered most closely with a lineage from the continental U.S. Plasmodium spp. DNA was isolated from both species of mosquitoes. From 38 positive pools, we isolated 11 distinct mitochondrial Cytb lineages of Plasmodium spp. Seven of the Plasmodium lineages represent previously documented avian infective strains while four were new lineages. Our results confirm a potential risk for the spread of avian malaria and underscore the need to monitor both the mosquito and avian populations as a necessary conservation measure to protect endangered bird species on Socorro Island. PMID:21635660

Carlson, Jenny S; Martínez-Gómez, Juan E; Cornel, Anthony; Loiseau, Claire; Sehgal, Ravinder N M

2011-06-01

90

Allelic recombination and linkage disequilibrium within Msp-1 of Plasmodium falciparum, the malignant human malaria parasite  

Microsoft Academic Search

The C-terminal, cysteine-rich 19kDa domain of merozoite surface protein-1 (MSP-1) of Plasmodium falciparum is a target of the host's humoral immunity and thus a malaria vaccine candidate. Although variation in the 19kDa domain is limited among parasite isolates, tertiary structure-dependent intramolecular associations between the 19kDa domain and other parts of MSP-1 are suggested to be involved in immune evasion by

Naoko Sakihama; Masatsugu Kimura; Kenji Hirayama; Tozo Kanda; Kesara Na-Bangchang; Somchai Jongwutiwes; David Conway; Kazuyuki Tanabe

1999-01-01

91

Testing sex ratio theory with the malaria parasite Plasmodium mexicanum in natural and experimental infections.  

PubMed

The malaria parasite (Plasmodium) life history accords well with the assumptions of local mate competition (LMC) of sex ratio theory. Within a single meal of the blood-feeding vector, sexually dimorphic gametocyte cells produce gametes (females produce one, males several) that mate and undergo sexual recombination. The theory posits several factors drive the Plasmodium sex ratio: male fecundity (gametes/male gametocyte), number and relative abundance of parasite clones, and gametocyte density. We measured these traits for the lizard malaria parasite, Plasmodium mexicanum, with a large sample of natural infections and infections from experiments that manipulated clonal diversity. Sex ratio in single-clone infections was slightly female-biased, but matched predictions of theory for this low-fecundity species. Sex ratio was less female-biased in clonally diverse infections as predicted by LMC for the experimental, but not natural infections. Gametocyte density was not positively related to sex ratio. These results are explained by the P. mexicanum life history of naturally low clonal diversity and high gametocyte production. This is the first study of a natural malaria system that examines all traits relevant to LMC in individual vertebrate hosts and suggests a striking example of sex ratio theory having significance for human public health. PMID:24350982

Neal, Allison T; Schall, Jos J

2014-04-01

92

Palmitoylation and palmitoyl-transferases in Plasmodium parasites.  

PubMed

Protein post-translational modifications (PTM) are commonly used to regulate biological processes. Protein S-acylation is an enzymatically regulated reversible modification that has been shown to modulate protein localization, activity and membrane binding. Proteome-scale discovery on Plasmodium falciparum schizonts has revealed a complement of more than 400 palmitoylated proteins, including those essential for host invasion and drug resistance. The wide regulatory affect on this species is endorsed by the presence of 12 proteins containing the conserved DHHC-CRD (DHHC motif within a cysteine-rich domain) that is associated with palmitoyl-transferase activity. Genetic interrogation of these enzymes in Apicomplexa has revealed essentiality and distinct localization at cellular compartments; these features are species specific and are not observed in yeast. It is clear that palmitoylation has an elaborate role in Plasmodium biology and opens intriguing questions on the functional consequence of this group of acylation modifications and how the protein S-acyl transferases (PATs) orchestrate molecular events. PMID:25849924

Hodson, Nicola; Invergo, Brandon; Rayner, Julian C; Choudhary, Jyoti S

2015-04-01

93

A genomic glimpse of aminoacyl-tRNA synthetases in malaria parasite Plasmodium falciparum  

PubMed Central

Background Plasmodium parasites are causative agents of malaria which affects >500 million people and claims ~2 million lives annually. The completion of Plasmodium genome sequencing and availability of PlasmoDB database has provided a platform for systematic study of parasite genome. Aminoacyl-tRNA synthetases (aaRSs) are pivotal enzymes for protein translation and other vital cellular processes. We report an extensive analysis of the Plasmodium falciparum genome to identify and classify aaRSs in this organism. Results Using various computational and bioinformatics tools, we have identified 37 aaRSs in P. falciparum. Our key observations are: (i) fraction of proteome dedicated to aaRSs in P. falciparum is very high compared to many other organisms; (ii) 23 out of 37 Pf-aaRS sequences contain signal peptides possibly directing them to different cellular organelles; (iii) expression profiles of Pf-aaRSs vary considerably at various life cycle stages of the parasite; (iv) several PfaaRSs posses very unusual domain architectures; (v) phylogenetic analyses reveal evolutionary relatedness of several parasite aaRSs to bacterial and plants aaRSs; (vi) three dimensional structural modelling has provided insights which could be exploited in inhibitor discovery against parasite aaRSs. Conclusion We have identified 37 Pf-aaRSs based on our bioinformatics analysis. Our data reveal several unique attributes in this protein family. We have annotated all 37 Pf-aaRSs based on predicted localization, phylogenetics, domain architectures and their overall protein expression profiles. The sets of distinct features elaborated in this work will provide a platform for experimental dissection of this family of enzymes, possibly for the discovery of novel drugs against malaria. PMID:20042123

2009-01-01

94

Quantitative Time-course Profiling of Parasite and Host Cell Proteins in the Human Malaria Parasite Plasmodium falciparum*  

PubMed Central

Studies of the Plasmodium falciparum transcriptome have shown that the tightly controlled progression of the parasite through the intra-erythrocytic developmental cycle (IDC) is accompanied by a continuous gene expression cascade in which most expressed genes exhibit a single transcriptional peak. Because the biochemical and cellular functions of most genes are mediated by the encoded proteins, understanding the relationship between mRNA and protein levels is crucial for inferring biological activity from transcriptional gene expression data. Although studies on other organisms show that <50% of protein abundance variation may be attributable to corresponding mRNA levels, the situation in Plasmodium is further complicated by the dynamic nature of the cyclic gene expression cascade. In this study, we simultaneously determined mRNA and protein abundance profiles for P. falciparum parasites during the IDC at 2-hour resolution based on oligonucleotide microarrays and two-dimensional differential gel electrophoresis protein gels. We find that most proteins are represented by more than one isoform, presumably because of post-translational modifications. Like transcripts, most proteins exhibit cyclic abundance profiles with one peak during the IDC, whereas the presence of functionally related proteins is highly correlated. In contrast, the abundance of most parasite proteins peaks significantly later (median 11 h) than the corresponding transcripts and often decreases slowly in the second half of the IDC. Computational modeling indicates that the considerable and varied incongruence between transcript and protein abundance may largely be caused by the dynamics of translation and protein degradation. Furthermore, we present cyclic abundance profiles also for parasite-associated human proteins and confirm the presence of five human proteins with a potential role in antioxidant defense within the parasites. Together, our data provide fundamental insights into transcript-protein relationships in P. falciparum that are important for the correct interpretation of transcriptional data and that may facilitate the improvement and development of malaria diagnostics and drug therapy. PMID:21558492

Foth, Bernardo Javier; Zhang, Neng; Chaal, Balbir Kaur; Sze, Siu Kwan; Preiser, Peter Rainer; Bozdech, Zbynek

2011-01-01

95

Hippoboscid-transmitted Haemoproteus parasites (Haemosporida) infect Galapagos Pelecaniform birds: evidence from molecular and morphological studies, with a description of Haemoproteus iwa.  

PubMed

Haemosporidian parasites are widely distributed and common parasites of birds, and the application of molecular techniques has revealed remarkable diversity among their lineages. Four haemosporidian genera infect avian hosts (Plasmodium, Haemoproteus, Leucocytozoon and Fallisia), and Haemoproteus is split into two sub-genera based on morphological evidence and phylogenetic support for two divergent sister clades. One clade (Haemoproteus (Parahaemoproteus)) contains parasites developing in birds belonging to several different orders, except pigeons and doves (Columbiformes), while the other (Haemoproteus (Haemoproteus)) has previously been shown to only infect dove hosts. Here we provide molecular and morphological identification of Haemoproteus parasites from several seabird species that are closely related to those found in dove hosts. We also document a deeply divergent clade with two haemosporidian lineages recovered primarily from frigatebirds (Fregatidae, Pelecaniformes) that is sister to the hippoboscid-(Hippoboscidae) transmitted dove parasites. One of the lineages in this new clade of parasites belongs to Haemoproteus iwa and is distributed in two species of frigatebird (Fregata) hosts from Hawaii, the Galapagos Islands, the eastern Pacific and throughout the Caribbean Basin. Haemosporidian parasites are often considered rare in seabirds due in part to the lack or low activity of some dipteran vectors (e.g., mosquitos, biting midges) in marine and coastal environments; however, we show that H. iwa is prevalent and is very likely vectored among frigatebirds by hippoboscid flies which are abundant on frigatebirds and other seabirds. This study supports the existence of two sister clades of avian Haemoproteus in accord with the subgeneric classification of avian hemoproteids. Description of H. iwa from Galapagos Fregata minor is given based on morphology of blood stages and segments of the mitochondrial cytochrome b gene, which can be used for identification. This study shows that hippoboscid flies warrant more attention as vectors of avian Haemoproteus spp., particularly in marine and coastal environments. PMID:21683082

Levin, Iris I; Valki?nas, Gediminas; Santiago-Alarcon, Diego; Cruz, Larisa Lee; Iezhova, Tatjana A; O'Brien, Sarah L; Hailer, Frank; Dearborn, Don; Schreiber, E A; Fleischer, Robert C; Ricklefs, Robert E; Parker, Patricia G

2011-08-15

96

Chromatin-Mediated Epigenetic Regulation in the Malaria Parasite Plasmodium falciparum ?  

PubMed Central

Malaria is a major public health problem in many developing countries, with the malignant tertian parasite Plasmodium falciparum causing the most malaria-associated mortality. Extensive research, especially with the advancement of genomics and transfection tools, has highlighted the fundamental importance of chromatin-mediated gene regulation in the developmental program of this early-branching eukaryote. The Plasmodium parasite genomes reveal the existence of both canonical and variant histones that make up the nucleosomes, as well as a full collection of conserved enzymes for chromatin remodeling and histone posttranslational modifications (PTMs). Recent studies have identified a wide array of both conserved and novel histone PTMs in P. falciparum, indicating the presence of a complex and divergent “histone code.” Genome-wide analysis has begun to decipher the nucleosome landscape and histone modifications associated with the dynamic organization of chromatin structures during the parasite's life cycle. Focused studies on malaria-specific phenomena such as antigenic variation and red cell invasion pathways shed further light on the involvement of epigenetic mechanisms in these processes. Here we review our current understanding of chromatin-mediated gene regulation in malaria parasites, with specific reference to exemplar studies on antigenic variation and host cell invasion. PMID:20453074

Cui, Liwang; Miao, Jun

2010-01-01

97

Population Genetic Analysis of Plasmodium falciparum Parasites Using a Customized Illumina GoldenGate Genotyping Assay  

PubMed Central

The diversity in the Plasmodium falciparum genome can be used to explore parasite population dynamics, with practical applications to malaria control. The ability to identify the geographic origin and trace the migratory patterns of parasites with clinically important phenotypes such as drug resistance is particularly relevant. With increasing single-nucleotide polymorphism (SNP) discovery from ongoing Plasmodium genome sequencing projects, a demand for high SNP and sample throughput genotyping platforms for large-scale population genetic studies is required. Low parasitaemias and multiple clone infections present a number of challenges to genotyping P. falciparum. We addressed some of these issues using a custom 384-SNP Illumina GoldenGate assay on P. falciparum DNA from laboratory clones (long-term cultured adapted parasite clones), short-term cultured parasite isolates and clinical (non-cultured isolates) samples from East and West Africa, Southeast Asia and Oceania. Eighty percent of the SNPs (n?=?306) produced reliable genotype calls on samples containing as little as 2 ng of total genomic DNA and on whole genome amplified DNA. Analysis of artificial mixtures of laboratory clones demonstrated high genotype calling specificity and moderate sensitivity to call minor frequency alleles. Clear resolution of geographically distinct populations was demonstrated using Principal Components Analysis (PCA), and global patterns of population genetic diversity were consistent with previous reports. These results validate the utility of the platform in performing population genetic studies of P. falciparum. PMID:21673999

Kivinen, Katja; Zongo, Issaka; Ouedraogo, Jean-Bosco; Mangano, Valentina; Djimde, Abdoulaye; Doumbo, Ogobara K.; Kiara, Steven M.; Nzila, Alexis; Borrmann, Steffen; Marsh, Kevin; Michon, Pascal; Mueller, Ivo; Siba, Peter; Jiang, Hongying; Su, Xin-Zhuan; Amaratunga, Chanaki; Socheat, Duong; Fairhurst, Rick M.; Imwong, Mallika; Anderson, Timothy; Nosten, François; White, Nicholas J.; Gwilliam, Rhian; Deloukas, Panos; MacInnis, Bronwyn; Newbold, Christopher I.; Rockett, Kirk; Clark, Taane G.; Kwiatkowski, Dominic P.

2011-01-01

98

Prevalence, transmission, and genetic diversity of blood parasites infecting tundra-nesting geese in Alaska  

USGS Publications Warehouse

A total of 842 blood samples collected from five species of tundra-nesting geese in Alaska was screened for haemosporidian parasites using molecular techniques. Parasites of the generaLeucocytozoon Danilewsky, 1890, Haemoproteus Kruse, 1890, and Plasmodium Marchiafava and Celli, 1885 were detected in 169 (20%), 3 (<1%), and 0 (0%) samples, respectively. Occupancy modeling was used to estimate prevalence of Leucocytozoon parasites and assess variation relative to species, age, sex, geographic area, year, and decade. Species, age, and decade were identified as important in explaining differences in prevalence of Leucocytozoonparasites. Leucocytozoon parasites were detected in goslings sampled along the Arctic Coastal Plain using both historic and contemporary samples, which provided support for transmission in the North American Arctic. In contrast, lack of detection of Haemoproteus and Plasmodiumparasites in goslings (n = 238) provided evidence to suggest that the transmission of parasites of these genera may not occur among waterfowl using tundra habitats in Alaska, or alternatively, may only occur at low levels. Five haemosporidian genetic lineages shared among different species of geese sampled from two geographic areas were indicative of interspecies parasite transmission and supported broad parasite or vector distributions. However, identicalLeucocytozoon and Haemoproteus lineages on public databases were limited to waterfowl hosts suggesting constraints in the range of parasite hosts.

Ramey, Andy M.; Reed, John A.; Schmutz, Joel A.; Fondell, Tom F.; Meixell, Brandt W.; Hupp, Jerry W.; Ward, David H.; Terenzi, John; Ely, Craig R.

2014-01-01

99

A monkey's tale: The origin of Plasmodium vivax as a human malaria parasite  

PubMed Central

The high prevalence of Duffy negativity (lack of the Duffy blood group antigen) among human populations in sub-Saharan Africa has been used to argue that Plasmodium vivax originated on that continent. Here, we investigate the phylogenetic relationships among 10 species of Plasmodium that infect primates by using three genes, two nuclear (?-tubulin and cell division cycle 2) and a gene from the plastid genome (the elongation factor Tu). We find compelling evidence that P. vivax is derived from a species that inhabited macaques in Southeast Asia. Specifically, those phylogenies that include P. vivax as an ancient lineage from which all of the macaque parasites could originate are significantly less likely to explain the data. We estimate the time to the most recent common ancestor at four neutral gene loci from Asian and South American isolates (a minimum sample of seven isolates per locus). Our analysis estimates that the extant populations of P. vivax originated between 45,680 and 81,607 years ago. The phylogeny and the estimated time frame for the origination of current P. vivax populations are consistent with an “out of Asia” origin for P. vivax as hominoid parasite. The current debate regarding how the Duffy negative trait became fixed in Africa needs to be revisited, taking into account not only human genetic data but also the genetic diversity observed in the extant P. vivax populations and the phylogeny of the genus Plasmodium. PMID:15684081

Escalante, Ananias A.; Cornejo, Omar E.; Freeland, Denise E.; Poe, Amanda C.; Durrego, Ester; Collins, William E.; Lal, Altaf A.

2005-01-01

100

A lactate and formate transporter in the intraerythrocytic malaria parasite, Plasmodium falciparum.  

PubMed

The intraerythrocytic malaria parasite relies primarily on glycolysis to fuel its rapid growth and reproduction. The major byproduct of this metabolism, lactic acid, is extruded into the external medium. In this study, we show that the human malaria parasite Plasmodium falciparum expresses at its surface a member of the microbial formate-nitrite transporter family (PfFNT), which, when expressed in Xenopus laevis oocytes, transports both formate and lactate. The transport characteristics of PfFNT in oocytes (pH-dependence, inhibitor-sensitivity and kinetics) are similar to those of the transport of lactate and formate across the plasma membrane of mature asexual-stage P. falciparum trophozoites, consistent with PfFNT playing a major role in the efflux of lactate and hence in the energy metabolism of the intraerythrocytic parasite. PMID:25823844

Marchetti, Rosa V; Lehane, Adele M; Shafik, Sarah H; Winterberg, Markus; Martin, Rowena E; Kirk, Kiaran

2015-01-01

101

The multifunctional autophagy pathway in the human malaria parasite, Plasmodium falciparum  

PubMed Central

Autophagy is a catabolic pathway typically induced by nutrient starvation to recycle amino acids, but can also function in removing damaged organelles. In addition, this pathway plays a key role in eukaryotic development. To date, not much is known about the role of autophagy in apicomplexan parasites and more specifically in the human malaria parasite Plasmodium falciparum. Comparative genomic analysis has uncovered some, but not all, orthologs of autophagy-related (ATG) genes in the malaria parasite genome. Here, using a genome-wide in silico analysis, we confirmed that ATG genes whose products are required for vesicle expansion and completion are present, while genes involved in induction of autophagy and cargo packaging are mostly absent. We subsequently focused on the molecular and cellular function of P. falciparum ATG8 (PfATG8), an autophagosome membrane marker and key component of the autophagy pathway, throughout the parasite asexual and sexual erythrocytic stages. In this context, we showed that PfATG8 has a distinct and atypical role in parasite development. PfATG8 localized in the apicoplast and in vesicles throughout the cytosol during parasite development. Immunofluorescence assays of PfATG8 in apicoplast-minus parasites suggest that PfATG8 is involved in apicoplast biogenesis. Furthermore, treatment of parasite cultures with bafilomycin A1 and chloroquine, both lysosomotropic agents that inhibit autophagosome and lysosome fusion, resulted in dramatic morphological changes of the apicoplast, and parasite death. Furthermore, deep proteomic analysis of components associated with PfATG8 indicated that it may possibly be involved in ribophagy and piecemeal microautophagy of the nucleus. Collectively, our data revealed the importance and specificity of the autophagy pathway in the malaria parasite and offer potential novel therapeutic strategies. PMID:24275162

Cervantes, Serena; Bunnik, Evelien M; Saraf, Anita; Conner, Christopher M; Escalante, Aster; Sardiu, Mihaela E; Ponts, Nadia; Prudhomme, Jacques; Florens, Laurence; Le Roch, Karine G

2014-01-01

102

In situ hybridization and sequence analysis reveal an association of Plasmodium spp. with mortalities in wild passerine birds in Austria.  

PubMed

Native European passerine birds are frequently clinically inapparent carriers of haemosporidian parasites of the genus Plasmodium. Clinical disease and death are only exceptionally reported. In the present study, tissue samples of 233 wild passerine birds found dead in Eastern Austria were examined by in situ hybridization (ISH) and partial cytochrome B gene sequence analysis for the presence, abundance and taxonomic assignment of Plasmodium spp. In 34 cases (14.6 %), ISH yielded a positive result with large numbers of developmental stages in different cell types of the spleen, liver, brain and lung. The abundance of the tissue stages, which was comparable to fatal cases of avian malaria in penguins, suggested a major contribution to the cause of death. Genetic analysis revealed infections with representatives of three different valid species of Plasmodium, Plasmodium elongatum, Plasmodium lutzi and Plasmodium vaughani. Genetically identical parasite lineages had been found in a previous study in penguins kept in the Vienna zoo, providing evidence for the role of wild birds as reservoir hosts. Further, this study provides evidence that several species of Plasmodium are able to abundantly proliferate in endemic wild birds ultimately resulting in mortalities. PMID:25636246

Dinhopl, Nora; Nedorost, Nora; Mostegl, Meike M; Weissenbacher-Lang, Christiane; Weissenböck, Herbert

2015-04-01

103

Continuous force-displacement relationships for the human red blood cell at different erythrocytic developmental stages of Plasmodium falciparum malaria parasite  

E-print Network

developmental stages of Plasmodium falciparum malaria parasite John P. Mills1 , Lan Qie3 , Ming Dao1 , Kevin S that the malaria parasite Plasmodium (P.) falciparum could result in significant stiffening of infected human red, the deadliest of the four species of malaria, which results in two to three million deaths annually [1]. When

Dao, Ming

104

Proteomic Profiling of Plasmodium Sporozoite Maturation Identifies New Proteins Essential for Parasite Development and Infectivity  

PubMed Central

Plasmodium falciparum sporozoites that develop and mature inside an Anopheles mosquito initiate a malaria infection in humans. Here we report the first proteomic comparison of different parasite stages from the mosquito—early and late oocysts containing midgut sporozoites, and the mature, infectious salivary gland sporozoites. Despite the morphological similarity between midgut and salivary gland sporozoites, their proteomes are markedly different, in agreement with their increase in hepatocyte infectivity. The different sporozoite proteomes contain a large number of stage specific proteins whose annotation suggest an involvement in sporozoite maturation, motility, infection of the human host and associated metabolic adjustments. Analyses of proteins identified in the P. falciparum sporozoite proteomes by orthologous gene disruption in the rodent malaria parasite, P. berghei, revealed three previously uncharacterized Plasmodium proteins that appear to be essential for sporozoite development at distinct points of maturation in the mosquito. This study sheds light on the development and maturation of the malaria parasite in an Anopheles mosquito and also identifies proteins that may be essential for sporozoite infectivity to humans. PMID:18974882

Mair, Gunnar R.; Vermunt, Adriaan M. W.; Douradinha, Bruno G.; van Noort, Vera; Huynen, Martijn A.; Luty, Adrian J. F.; Kroeze, Hans; Khan, Shahid M.; Sauerwein, Robert W.; Waters, Andrew P.; Mann, Matthias; Stunnenberg, Hendrik G.

2008-01-01

105

Plasmodium falciparum heat shock protein 110 stabilizes the asparagine repeatrich parasite proteome during malarial fevers  

PubMed Central

One-fourth of Plasmodium falciparum proteins have asparagine repeats that increase the propensity for aggregation, especially at elevated temperatures that occur routinely in malaria-infected patients. We report that a Plasmodium Asn repeat-containing protein (PFI1155w) formed aggregates in mammalian cells at febrile temperatures, as did a yeast Asn/Gln-rich protein (Sup35). Co-expression of the cytoplasmic P. falciparum heat shock protein 110 (PfHsp110c) prevented aggregation. Human or yeast orthologs were much less effective. All-Asn and all-Gln versions of Sup35 were protected from aggregation by PfHsp110c, suggesting that this chaperone is not limited to handling runs of Asn. PfHsp110c gene knockout parasites were not viable and conditional knockdown parasites died slowly in the absence of protein-stabilizing ligand. When exposed to brief heat shock, these knockdowns were unable to prevent aggregation of PFI1155w or Sup35 and died rapidly. We conclude that PfHsp110c protects the parasite from harmful effects of its asparagine repeat-rich proteome during febrile episodes. PMID:23250440

Muralidharan, Vasant; Oksman, Anna; Pal, Priya; Lindquist, Susan; E. Goldberg, Daniel

2013-01-01

106

A Key Role for Plasmodium Subtilisin-like SUB1 Protease in Egress of Malaria Parasites from Host Hepatocytes*  

PubMed Central

In their mammalian host, Plasmodium parasites have two obligatory intracellular development phases, first in hepatocytes and subsequently in erythrocytes. Both involve an orchestrated process of invasion into and egress from host cells. The Plasmodium SUB1 protease plays a dual role at the blood stage by enabling egress of the progeny merozoites from the infected erythrocyte and priming merozoites for subsequent erythrocyte invasion. Here, using conditional mutagenesis in P. berghei, we show that SUB1 plays an essential role at the hepatic stage. Stage-specific sub1 invalidation during prehepatocytic development showed that SUB1-deficient parasites failed to rupture the parasitophorous vacuole membrane and to egress from hepatocytes. Furthermore, mechanically released parasites were not adequately primed and failed to establish a blood stage infection in vivo. The critical involvement of SUB1 in both pre-erythrocytic and erythrocytic developmental phases qualifies SUB1 as an attractive multistage target for prophylactic and therapeutic anti-Plasmodium intervention strategies. PMID:24089525

Tawk, Lina; Lacroix, Céline; Gueirard, Pascale; Kent, Robyn; Gorgette, Olivier; Thiberge, Sabine; Mercereau-Puijalon, Odile; Ménard, Robert; Barale, Jean-Christophe

2013-01-01

107

Biliverdin production in chickens infected with the malarial parasite Plasmodium gallinaceum.  

PubMed

Chickens infected with the malarial parasite Plasmodium gallinceum produced green droppings: the predominant pigment was biliverdin. Droppings of identical appearance were produced by chicks injected with phenylhydrazine, a haemolytic agent: it is concluded that the catabolism of haemoglobin resulting at least in part from malarial haemolysis produces excess bile pigments which appear in the droppings. Other chicken diseases in which green droppings are "a characteristic objective symptom are fowl typhoid, Newcastle disease (Doyle's form), spirochaetosis and fowl cholera. The correlation of this symptom with haemolytic or other secondary anaemia is discussed and its value in field outbreaks of avian malaria as an indicator of the need for immediate therapy is emphasised. PMID:18766933

Williams, R B

1985-07-01

108

Lineage-specific positive selection at the merozoite surface protein 1 (msp1) locus of Plasmodium vivax and related simian malaria parasites  

Microsoft Academic Search

BACKGROUND: The 200 kDa merozoite surface protein 1 (MSP-1) of malaria parasites, a strong vaccine candidate, plays a key role during erythrocyte invasion and is a target of host protective immune response. Plasmodium vivax, the most widespread human malaria parasite, is closely related to parasites that infect Asian Old World monkeys, and has been considered to have become a parasite

Hiromi Sawai; Hiroto Otani; Nobuko Arisue; Nirianne Palacpac; Leonardo de Oliveira Martins; Sisira Pathirana; Shiroma Handunnetti; Satoru Kawai; Hirohisa Kishino; Toshihiro Horii; Kazuyuki Tanabe

2010-01-01

109

Evidence for intercontinental parasite exchange through molecular detection and characterization of haematozoa in northern pintails (Anas acuta) sampled throughout the North Pacific Basin  

PubMed Central

Empirical evidence supports wild birds as playing a role in the interhemispheric exchange of bacteria and viruses; however, data supporting the redistribution of parasites among continents are limited. In this study, the hypothesis that migratory birds contribute to the redistribution of parasites between continents was tested by sampling northern pintails (Anas acuta) at locations throughout the North Pacific Basin in North America and East Asia for haemosporidian infections and assessing the genetic evidence for parasite exchange. Of 878 samples collected from birds in Alaska (USA), California (USA), and Hokkaido (Japan) during August 2011–May 2012 and screened for parasitic infections using molecular techniques, Leucocytozoon, Haemoproteus, and Plasmodium parasites were detected in 555 (63%), 44 (5%), and 52 (6%) samples, respectively. Using an occupancy modeling approach, the probability of detecting parasites via replicate genetic tests was estimated to be high (??>?0.95). Multi-model inference supported variation of Leucocytozoon parasite prevalence by northern pintail age class and geographic location of sampling in contrast to Haemoproteus and Plasmodium parasites for which there was only support for variation in parasite prevalence by sampling location. Thirty-one unique mitochondrial DNA haplotypes were detected among haematozoa infecting northern pintails including seven lineages shared between samples from North America and Japan. The finding of identical parasite haplotypes at widely distributed geographic locations and general lack of genetic structuring by continent in phylogenies for Leucocytozoon and Plasmodium provides evidence for intercontinental genetic exchange of haemosporidian parasites. Results suggest that migratory birds, including waterfowl, could therefore facilitate the introduction of avian malaria and other haemosporidia to novel hosts and spatially distant regions.

Ramey, Andrew M.; Schmutz, Joel A.; Reed, John A.; Fujita, Go; Scotton, Bradley D.; Casler, Bruce; Fleskes, Joseph P.; Konishi, Kan; Uchida, Kiyoshi; Yabsley, Michael J.

2014-01-01

110

Evidence for intercontinental parasite exchange through molecular detection and characterization of haematozoa in northern pintails (Anas acuta) sampled throughout the North Pacific Basin.  

PubMed

Empirical evidence supports wild birds as playing a role in the interhemispheric exchange of bacteria and viruses; however, data supporting the redistribution of parasites among continents are limited. In this study, the hypothesis that migratory birds contribute to the redistribution of parasites between continents was tested by sampling northern pintails (Anas acuta) at locations throughout the North Pacific Basin in North America and East Asia for haemosporidian infections and assessing the genetic evidence for parasite exchange. Of 878 samples collected from birds in Alaska (USA), California (USA), and Hokkaido (Japan) during August 2011-May 2012 and screened for parasitic infections using molecular techniques, Leucocytozoon, Haemoproteus, and Plasmodium parasites were detected in 555 (63%), 44 (5%), and 52 (6%) samples, respectively. Using an occupancy modeling approach, the probability of detecting parasites via replicate genetic tests was estimated to be high (??>?0.95). Multi-model inference supported variation of Leucocytozoon parasite prevalence by northern pintail age class and geographic location of sampling in contrast to Haemoproteus and Plasmodium parasites for which there was only support for variation in parasite prevalence by sampling location. Thirty-one unique mitochondrial DNA haplotypes were detected among haematozoa infecting northern pintails including seven lineages shared between samples from North America and Japan. The finding of identical parasite haplotypes at widely distributed geographic locations and general lack of genetic structuring by continent in phylogenies for Leucocytozoon and Plasmodium provides evidence for intercontinental genetic exchange of haemosporidian parasites. Results suggest that migratory birds, including waterfowl, could therefore facilitate the introduction of avian malaria and other haemosporidia to novel hosts and spatially distant regions. PMID:25830100

Ramey, Andrew M; Schmutz, Joel A; Reed, John A; Fujita, Go; Scotton, Bradley D; Casler, Bruce; Fleskes, Joseph P; Konishi, Kan; Uchida, Kiyoshi; Yabsley, Michael J

2015-04-01

111

Identification of Plasmodium malariae, a Human Malaria Parasite, in Imported Chimpanzees  

PubMed Central

It is widely believed that human malaria parasites infect only man as a natural host. However, earlier morphological observations suggest that great apes are likely to be natural reservoirs as well. To identify malaria parasites in great apes, we screened 60 chimpanzees imported into Japan. Using the sequences of small subunit rRNA and the mitochondrial genome, we identified infection of Plasmodium malariae, a human malaria parasite, in two chimpanzees that were imported about thirty years ago. The chimpanzees have been asymptomatic to the present. In Japan, indigenous malaria disappeared more than fifty years ago; and thus, it is most likely inferred that the chimpanzees were infected in Africa, and P. malariae isolates were brought into Japan from Africa with their hosts, suggesting persistence of parasites at low level for thirty years. Such a long term latent infection is a unique feature of P. malariae infection in humans. To our knowledge, this is the first to report P. malariae infection in chimpanzees and a human malaria parasite from nonhuman primates imported to a nonendemic country. PMID:19823579

Hayakawa, Toshiyuki; Arisue, Nobuko; Udono, Toshifumi; Hirai, Hirohisa; Sattabongkot, Jetsumon; Toyama, Tomoko; Tsuboi, Takafumi; Horii, Toshihiro; Tanabe, Kazuyuki

2009-01-01

112

Plasmodium falciparum-like parasites infecting wild apes in southern Cameroon do not represent a recurrent source of human malaria.  

PubMed

Wild-living chimpanzees and gorillas harbor a multitude of Plasmodium species, including six of the subgenus Laverania, one of which served as the progenitor of Plasmodium falciparum. Despite the magnitude of this reservoir, it is unknown whether apes represent a source of human infections. Here, we used Plasmodium species-specific PCR, single-genome amplification, and 454 sequencing to screen humans from remote areas of southern Cameroon for ape Laverania infections. Among 1,402 blood samples, we found 1,000 to be Plasmodium mitochondrial DNA (mtDNA) positive, all of which contained human parasites as determined by sequencing and/or restriction enzyme digestion. To exclude low-abundance infections, we subjected 514 of these samples to 454 sequencing, targeting a region of the mtDNA genome that distinguishes ape from human Laverania species. Using algorithms specifically developed to differentiate rare Plasmodium variants from 454-sequencing error, we identified single and mixed-species infections with P. falciparum, Plasmodium malariae, and/or Plasmodium ovale. However, none of the human samples contained ape Laverania parasites, including the gorilla precursor of P. falciparum. To characterize further the diversity of P. falciparum in Cameroon, we used single-genome amplification to amplify 3.4-kb mtDNA fragments from 229 infected humans. Phylogenetic analysis identified 62 new variants, all of which clustered with extant P. falciparum, providing further evidence that P. falciparum emerged following a single gorilla-to-human transmission. Thus, unlike Plasmodium knowlesi-infected macaques in southeast Asia, African apes harboring Laverania parasites do not seem to serve as a recurrent source of human malaria, a finding of import to ongoing control and eradication measures. PMID:23569255

Sundararaman, Sesh A; Liu, Weimin; Keele, Brandon F; Learn, Gerald H; Bittinger, Kyle; Mouacha, Fatima; Ahuka-Mundeke, Steve; Manske, Magnus; Sherrill-Mix, Scott; Li, Yingying; Malenke, Jordan A; Delaporte, Eric; Laurent, Christian; Mpoudi Ngole, Eitel; Kwiatkowski, Dominic P; Shaw, George M; Rayner, Julian C; Peeters, Martine; Sharp, Paul M; Bushman, Frederic D; Hahn, Beatrice H

2013-04-23

113

Malarial parasite diversity in chimpanzees: the value of comparative approaches to ascertain the evolution of Plasmodium falciparum antigens  

PubMed Central

Background Plasmodium falciparum shares its most recent common ancestor with parasites found in African apes; these species constitute the so-called Laverania clade. In this investigation, the evolutionary history of Plasmodium lineages found in chimpanzees (Pan troglodytes) was explored. Methods Here, the remainders of 74 blood samples collected as part of the chimpanzees’ routine health examinations were studied. For all positive samples with parasite lineages belonging to the Laverania clade, the complete mitochondrial genome (mtDNA), the gene encoding dihydrofolate reductase-thymidylate synthase (dhfr-ts), the chloroquine resistance transporter (Pfcrt), the circumsporozoite protein (csp), merozoite surface protein 2 (msp2), and the DBL-1 domain from var2CSA were amplified, cloned, and sequenced. Other Plasmodium species were included in the mtDNA, dhfr-ts, and csp analyses. Phylogenetic and evolutionary genetic analyses were performed, including molecular clock analyses on the mtDNA. Results/Conclusions Nine chimpanzees were malaria positive (12.2%); four of those infections were identified as P. falciparum, two as a Plasmodium reichenowi-like parasite or Plasmodium sp., one as Plasmodium gaboni, and two as Plasmodium malariae. All P. falciparum isolates were resistant to chloroquine indicating that the chimpanzees acquired such infections from humans in recent times. Such findings, however, are not sufficient for implicating chimpanzees as an animal reservoir for P. falciparum. Timing estimates support that the Laverania clade has co-existed with hominids for a long-period of time. The proposed species P. gaboni, Plasmodium billbrayi, and Plasmodium billcollinsi are monophyletic groups supporting that they are indeed different species. An expanded CSP phylogeny is presented, including all the Laverania species and other malarial parasites. Contrasting with other Plasmodium, the Laverania csp exhibits great conservation at the central tandem repeat region. Msp2 and var2CSA, however, show extended recent polymorphism in P. falciparum that likely originated after the P. reichenowi-P. falciparum split. The accumulation of such diversity may indicate adaptation to the human host. These examples support the notion that comparative approaches among P. falciparum and its related species will be of great value in understanding the evolution of proteins that are important in parasite invasion of the human red blood cell, as well as those involved in malaria pathogenesis. PMID:24044371

2013-01-01

114

A Droplet Microfluidics Platform for Highly Sensitive and Quantitative Detection of Malaria Causing Plasmodium Parasites Based on Enzyme Activity Measurement  

PubMed Central

We present an attractive new system for the specific and sensitive detection of the malaria causing Plasmodium parasites. The system relies on isothermal conversion of single DNA cleavage-ligation events catalyzed specifically by the Plasmodium enzyme topoisomerase I to micrometer sized products detectable at the single-molecule level. Combined with a droplet-microfluidics Lab-on-a-Chip platform, this design allowed for sensitive, specific and quantitative detection of all human malaria causing Plasmodium species in single drops of unprocessed blood with a detection limit of less than one parasite/?L. Moreover, the setup allowed for detection of Plasmodium parasites in non-invasive saliva samples from infected patients. During recent years malaria transmission has declined worldwide and with this the number of patients with low-parasite density has increased. Consequently, the need for accurate detection of even a few parasites is becoming increasingly important for the continued combat against the disease. We believe that the presented droplet-microfluidics platform, which has a high potential for adaptation to point-of-care setups suitable for low-resource settings may contribute significantly to meet this demand. Moreover, potential future adaptation of the presented setup for the detection of other microorganisms may form the basis for the development of a more generic platform for diagnosis, fresh water- or food quality control or other purposes within applied or basic science. PMID:23121492

Juul, Sissel; Nielsen, Christine J. F.; Labouriau, Rodrigo; Roy, Amit; Tesauro, Cinzia; Jensen, Pia W.; Harmsen, Charlotte; Kristoffersen, Emil L.; Chiu, Ya-Ling; Frøhlich, Rikke; Fiorani, Paola; Cox-Singh, Janet; Tordrup, David; Koch, Jørn; Bienvenu, Anne-Lise; Desideri, Alessandro; Picot, Stephane; Petersen, Eskild; Leong, Kam W.; Ho, Yi-Ping; Stougaard, Magnus; Knudsen, Birgitta R.

2012-01-01

115

Radioimmunoassay for detecting antibodies against murine malarial parasite antigens: monoclonal antibodies recognizing Plasmodium yoelii antigens  

SciTech Connect

A solid-phase radioimmunoassay (SPRIA) in microtiter wells was established for detecting antibodies against Plasmodium yoelii Ag. The SPRIA was found (1) to require as little as 5 ..mu..g of crude parasite Ag per well, (2) to be able to detect 0.5 ng of monoclonal Ab, and (3) to be 10/sup 4/ times more sensitive than the indirect fluorescent Ab staining technique. In a modification of the above assay using intact RBC as an Ag, hyperimmune serum showed significant binding to the surface of erythrocytes of mice infected with P. yoelii parasites but not to RBC of normal mice. Hybridomas were prepared by fusing infected mouse spleen cells with myeloma cells. Using the SPRIA, hybrids secreting Ab against P. yoelii 17XL Ag were detected.

Kim, K.J.; Taylor, D.W.; Evans, C.B.; Asofsky, R.

1980-12-01

116

Gibberellin Biosynthetic Inhibitors Make Human Malaria Parasite Plasmodium falciparum Cells Swell and Rupture to Death  

PubMed Central

Malaria remains as one of the most devastating infectious disease, and continues to exact an enormous toll in medical cost and days of labor lost especially in the tropics. Effective malaria control and eventual eradication remain a huge challenge, with efficacious antimalarials as important intervention/management tool. Clearly new alternative drugs that are more affordable and with fewer side effects are desirable. After preliminary in vitro assays with plant growth regulators and inhibitors, here, we focus on biosynthetic inhibitors of gibberellin, a plant hormone with many important roles in plant growth, and show their inhibitory effect on the growth of both apicomplexa, Plasmodium falciparum and Toxoplasma gondii. Treatment of P. falciparum cultures with the gibberellin biosynthetic inhibitors resulted in marked morphological changes that can be reversed to a certain degree under hyperosmotic environment. These unique observations suggest that changes in the parasite membrane permeability may explain the pleiotropic effects observed within the intracellular parasites. PMID:22412858

Toyama, Tomoko; Tahara, Michiru; Nagamune, Kisaburo; Arimitsu, Kenji; Hamashima, Yoshio; Palacpac, Nirianne M. Q.; Kawaide, Hiroshi; Horii, Toshihiro; Tanabe, Kazuyuki

2012-01-01

117

Multiple dimensions of epigenetic gene regulation in the malaria parasite Plasmodium falciparum  

PubMed Central

Plasmodium falciparum is the most deadly human malarial parasite, responsible for an estimated 207 million cases of disease and 627,000 deaths in 2012. Recent studies reveal that the parasite actively regulates a large fraction of its genes throughout its replicative cycle inside human red blood cells and that epigenetics plays an important role in this precise gene regulation. Here we discuss recent advances in our understanding of three aspects of epigenetic regulation in P. falciparum: changes in histone modifications, nucleosome occupancy and the three-dimensional genome structure. We compare these three aspects of the P. falciparum epigenome to those of other eukaryotes, and show that large-scale compartmentalization is particularly important in determining histone decomposition and gene regulation in P. falciparum. We conclude by presenting a gene regulation model for P. falciparum that combines the described epigenetic factors, and by discussing the implications of this model for the future of malaria research. PMID:25394267

Ay, Ferhat; Bunnik, Evelien M.; Varoquaux, Nelle; Vert, Jean-Philippe; Noble, William Stafford; Le Roch, Karine G.

2015-01-01

118

Genetic diversity of chloroquine-resistant Plasmodium vivax parasites from the western Brazilian Amazon  

PubMed Central

The molecular basis of Plasmodium vivax chloroquine (CQ) resistance is still unknown. Elucidating the molecular background of parasites that are sensitive or resistant to CQ will help to identify and monitor the spread of resistance. By genotyping a panel of molecular markers, we demonstrate a similar genetic variability between in vitro CQ-resistant and sensitive phenotypes of P. vivax parasites. However, our studies identified two loci (MS8 and MSP1-B10) that could be used to discriminate between both CQ-susceptible phenotypes among P. vivax isolates in vitro. These preliminary data suggest that microsatellites may be used to identify and to monitor the spread of P. vivax-resistance around the world. PMID:25411001

Lizcano, Omaira Vera; Resende, Sarah Stela; Chehuan, Yonne F; Lacerda, Marcus VG; Brito, Cristiana FA; Zalis, Mariano G

2014-01-01

119

Clonal diversity within infections and the virulence of a malaria parasite, Plasmodium mexicanum.  

PubMed

Both verbal and mathematical models of parasite virulence predict that genetic diversity of microparasite infections will influence the level of costs suffered by the host. We tested this idea by manipulating the number of co-existing clones of Plasmodium mexicanum in its natural vertebrate host, the fence lizard Sceloporus occidentalis. We established replicate infections of P. mexicanum made up of 1, 2, 3, or >3 clones (scored using 3 microsatellite loci) to observe the influence of clone number on several measures of parasite virulence. Clonal diversity did not affect body growth or production of immature erythrocytes. Blood haemoglobin concentration was highest for the most genetically complex infections (equal to that of non-infected lizards), and blood glucose levels and rate of blood clotting was highest for the most diverse infections (with greater glucose and more rapid clotting than non-infected animals). Neither specific clones nor parasitaemia were associated with virulence. In this first experiment that manipulated the clonal diversity of a natural Plasmodium-host system, the cost of infection with 1 or 2 clones of P. mexicanum was similar to that previously reported for infected lizards, but the most complex infections had either no cost or could be beneficial for the host. PMID:18937882

Vardo-Zalik, A M; Schall, J J

2008-10-01

120

High-efficiency transfection and drug selection of genetically transformed blood stages of the rodent malaria parasite Plasmodium berghei  

Microsoft Academic Search

This protocol describes a method of genetic transformation for the rodent malaria parasite Plasmodium berghei with a high transfection efficiency of 10?3–10?4. It provides methods for: (i) in vitro cultivation and purification of the schizont stage;(ii) transfection of DNA constructs containing drug-selectable markers into schizonts using the nonviral Nucleofector technology; and (iii) injection of transfected parasites into mice and subsequent

Chris J Janse; Jai Ramesar; Andrew P Waters

2006-01-01

121

Disruption of a mitochondrial protease machinery in Plasmodium falciparum is an intrinsic signal for parasite cell death  

Microsoft Academic Search

The ATP-dependent ClpQY protease system in Plasmodium falciparum is a prokaryotic machinery in the parasite. In the present study, we have identified the complete ClpQY system in P. falciparum and elucidated its functional importance in survival and growth of asexual stage parasites. We characterized the interaction of P. falciparum ClpQ protease (PfClpQ) and PfClpY ATPase components, and showed that a

S Rathore; S Jain; D Sinha; M Gupta; M Asad; A Srivastava; M S Narayanan; G Ramasamy; V S Chauhan; D Gupta; A Mohmmed

2011-01-01

122

MSP-1p42-specific antibodies affect growth and development of intra-erythrocytic parasites of Plasmodium falciparum  

Microsoft Academic Search

BACKGROUND: Antibodies are the main effector molecules in the defense against blood stages of the malaria parasite Plasmodium falciparum. Understanding the mechanisms by which vaccine-induced anti-blood stage antibodies work in protecting against malaria is essential for vaccine design and testing. METHODS: The effects of MSP-1p42-specific antibodies on the development of blood stage parasites were studied using microscopy, flow cytometry and

Elke S Bergmann-Leitner; Elizabeth H Duncan; Evelina Angov

2009-01-01

123

Optimization of flow cytometric detection and cell sorting of transgenic Plasmodium parasites using interchangeable optical filters  

PubMed Central

Background Malaria remains a major cause of morbidity and mortality worldwide. Flow cytometry-based assays that take advantage of fluorescent protein (FP)-expressing malaria parasites have proven to be valuable tools for quantification and sorting of specific subpopulations of parasite-infected red blood cells. However, identification of rare subpopulations of parasites using green fluorescent protein (GFP) labelling is complicated by autofluorescence (AF) of red blood cells and low signal from transgenic parasites. It has been suggested that cell sorting yield could be improved by using filters that precisely match the emission spectrum of GFP. Methods Detection of transgenic Plasmodium falciparum parasites expressing either tdTomato or GFP was performed using a flow cytometer with interchangeable optical filters. Parasitaemia was evaluated using different optical filters and, after optimization of optics, the GFP-expressing parasites were sorted and analysed by microscopy after cytospin preparation and by imaging cytometry. Results A new approach to evaluate filter performance in flow cytometry using two-dimensional dot blot was developed. By selecting optical filters with narrow bandpass (BP) and maximum position of filter emission close to GFP maximum emission in the FL1 channel (510/20, 512/20 and 517/20; dichroics 502LP and 466LP), AF was markedly decreased and signal-background improve dramatically. Sorting of GFP-expressing parasite populations in infected red blood cells at 90 or 95% purity with these filters resulted in 50-150% increased yield when compared to the standard filter set-up. The purity of the sorted population was confirmed using imaging cytometry and microscopy of cytospin preparations of sorted red blood cells infected with transgenic malaria parasites. Discussion Filter optimization is particularly important for applications where the FP signal and percentage of positive events are relatively low, such as analysis of parasite-infected samples with in the intention of gene-expression profiling and analysis. The approach outlined here results in substantially improved yield of GFP-expressing parasites, and requires decreased sorting time in comparison to standard methods. It is anticipated that this protocol will be useful for a wide range of applications involving rare events. PMID:22950515

2012-01-01

124

Cytotoxic Effect of Curcumin on Malaria Parasite Plasmodium falciparum: Inhibition of Histone Acetylation and Generation of Reactive Oxygen Species  

Microsoft Academic Search

The emergence of multidrug-resistant parasites is a major concern for malaria control, and development of novel drugs is a high priority. Curcumin, a natural polyphenolic compound, possesses diverse pharmacological properties. Among its antiprotozoan activities, curcumin was potent against both chloroquine-sensitive and -resistant Plasmodium falciparum strains. Consistent with findings in mammalian cell lines, curcumin's prooxi- dant activity promoted the production in

Long Cui; Jun Miao; Liwang Cui

2007-01-01

125

Pivotal and distinct role for Plasmodium actin capping protein alpha during blood infection of the malaria parasite.  

PubMed

Accurate regulation of microfilament dynamics is central to cell growth, motility and response to environmental stimuli. Stabilizing and depolymerizing proteins control the steady-state levels of filamentous (F-) actin. Capping protein (CP) binds to free barbed ends, thereby arresting microfilament growth and restraining elongation to remaining free barbed ends. In all CPs characterized to date, alpha and beta subunits form the active heterodimer. Here, we show in a eukaryotic parasitic cell that the two CP subunits can be functionally separated. Unlike the beta subunit, the CP alpha subunit of the apicomplexan parasite Plasmodium is refractory to targeted gene deletion during blood infection in the mammalian host. Combinatorial complementation of Plasmodium berghei CP genes with the orthologs from Plasmodium falciparum verified distinct activities of CP alpha and CP alpha/beta during parasite life cycle progression. Recombinant Plasmodium?CP alpha could be produced in Escherichia coli in the absence of the beta subunit and the protein displayed F-actin capping activity. Thus, the functional separation of two CP subunits in a parasitic eukaryotic cell and the F-actin capping activity of CP alpha expand the repertoire of microfilament regulatory mechanisms assigned to CPs. PMID:25565321

Ganter, Markus; Rizopoulos, Zaira; Schüler, Herwig; Matuschewski, Kai

2015-04-01

126

Arteether resistance reversal by ketoconazole/fluconazole in rodent malaria parasite Plasmodium vinckei.  

PubMed

Artemisinin and its derivative arteether (ART) are fast acting antimalarial drugs against chloroquine-resistant. There are several partner drugs that are identified as a potential drug for artemisinin combination therapy (ACT) to develop as the antimalarial drug. Limited studies have been carried out in ART drug combination that may have more promising as ACT for resistant Plasmodium parasite. Here, we are the first to show the ART drug resistance reversal in Plasmodium vinckei by using antifungal azole compounds ketoconazole (KTZ) and fluconazole (FCZ). Our previous study has shown that higher antioxidant enzyme, glutathione, and less hemozoin may be correlated with ART resistance in P. vinckei (PvAR). We further hypothesized that glutathione and heme catabolism may be interfered by KTZ and FCZ, resulting in an increased efficacy of ART in PvAR parasite. The results of present study demonstrate synergetic effect of KTZ and FCZ against PvAR parasite, since none of the mice developed infection up to day 10 after combination with ART. These results further showed that ED90 of ART was reduced from 17.23 to 2.19 and 2.56 mg/kg when used in combination with KTZ and FCZ, respectively. Resultant, activity enhancement index (AEI) of ART is significantly increased to 8.60 and 6.73 with partner agents. These studies propose the possibility of ART drug combination that may be helpful in prolonging the life of drug and a promising lead to reduce the chance of resistance development of artemisinin and its derivative. PMID:25616344

Chandra, Ramesh; Puri, S K

2015-03-01

127

Blood parasites in Owls with conservation implications for the Spotted Owl (Strix occidentalis)  

USGS Publications Warehouse

The three subspecies of Spotted Owl (Northern, Strix occidentalis courina; California, S. o. occidentalis; and Mexican, S. o. lucida) are all threatened by habitat loss and range expansion of the Barred Owl (S. varia). An unaddressed threat is whether Barred Owls could be a source of novel strains of disease such as avian malaria (Plasmodium spp.) or other blood parasites potentially harmful for Spotted Owls. Although Barred Owls commonly harbor Plasmodium infections, these parasites have not been documented in the Spotted Owl. We screened 111 Spotted Owls, 44 Barred Owls, and 387 owls of nine other species for haemosporidian parasites (Leucocytozoon, Plasmodium, and Haemoproteus spp.). California Spotted Owls had the greatest number of simultaneous multi-species infections (44%). Additionally, sequencing results revealed that the Northern and California Spotted Owl subspecies together had the highest number of Leucocytozoon parasite lineages (n=17) and unique lineages (n=12). This high level of sequence diversity is significant because only one leucocytozoon species (L. danilewskyi) has been accepted as valid among all owls, suggesting that L. danilewskyi is a cryptic species. Furthermore, a Plasmodium parasite was documented in a Northern Spotted Owl for the first time. West Coast Barred Owls had a lower prevalence of infection (15%) when compared to sympatric Spotted Owls (S. o. caurina 52%, S. o. occidentalis 79%) and Barred Owls from the historic range (61%). Consequently, Barred Owls on the West Coast may have a competitive advantage over the potentially immune compromised Spotted Owls. ?? 2008 Ishak et al.

Ishak, H.D.; Dumbacher, J.P.; Anderson, N.L.; Keane, J.J.; Valkiunas, G.; Haig, S.M.; Tell, L.A.; Sehgal, R.N.M.

2008-01-01

128

Blood Parasites in Owls with Conservation Implications for the Spotted Owl (Strix occidentalis)  

PubMed Central

The three subspecies of Spotted Owl (Northern, Strix occidentalis caurina; California, S. o. occidentalis; and Mexican, S. o. lucida) are all threatened by habitat loss and range expansion of the Barred Owl (S. varia). An unaddressed threat is whether Barred Owls could be a source of novel strains of disease such as avian malaria (Plasmodium spp.) or other blood parasites potentially harmful for Spotted Owls. Although Barred Owls commonly harbor Plasmodium infections, these parasites have not been documented in the Spotted Owl. We screened 111 Spotted Owls, 44 Barred Owls, and 387 owls of nine other species for haemosporidian parasites (Leucocytozoon, Plasmodium, and Haemoproteus spp.). California Spotted Owls had the greatest number of simultaneous multi-species infections (44%). Additionally, sequencing results revealed that the Northern and California Spotted Owl subspecies together had the highest number of Leucocytozoon parasite lineages (n?=?17) and unique lineages (n?=?12). This high level of sequence diversity is significant because only one Leucocytozoon species (L. danilewskyi) has been accepted as valid among all owls, suggesting that L. danilewskyi is a cryptic species. Furthermore, a Plasmodium parasite was documented in a Northern Spotted Owl for the first time. West Coast Barred Owls had a lower prevalence of infection (15%) when compared to sympatric Spotted Owls (S. o. caurina 52%, S. o. occidentalis 79%) and Barred Owls from the historic range (61%). Consequently, Barred Owls on the West Coast may have a competitive advantage over the potentially immune compromised Spotted Owls. PMID:18509541

Ishak, Heather D.; Dumbacher, John P.; Anderson, Nancy L.; Keane, John J.; Valki?nas, Gediminas; Haig, Susan M.; Tell, Lisa A.; Sehgal, Ravinder N. M.

2008-01-01

129

Host cell deformability is linked to transmission in the human malaria parasite Plasmodium falciparum  

PubMed Central

SUMMARY Gametocyte maturation in Plasmodium falciparum is a critical step in the transmission of malaria. While the majority of parasites proliferate asexually in red blood cells, a small fraction of parasites undergo sexual conversion and mature over two weeks to become competent for transmission to a mosquito vector. Immature gametocytes sequester in deep tissues while mature stages must be able to circulate, pass the spleen and present themselves to the mosquito vector in order to complete transmission. Sequestration of asexual red blood cell stage parasites has been investigated in great detail. These studies have demonstrated that induction of cytoadherence properties through specific receptor-ligand interactions coincides with a significant increase in host cell stiffness. In contrast, the adherence and biophysical properties of gametocyte-infected red blood cells have not been studied systematically. Utilizing a transgenic line for 3D live imaging, in vitro capillary assays and 3D finite element whole cell modeling, we studied the role of cellular deformability in determining the circulatory characteristics of gametocytes. Our analysis shows that the red blood cell deformability of immature gametocytes displays an overall decrease followed by rapid restoration in mature gametocytes. Intriguingly, simulations suggest that along with deformability variations, the morphological changes of the parasite may play an important role in tissue distribution in vivo. Taken together we present a model, which suggests that mature but not immature gametocytes circulate in the peripheral blood for uptake in the mosquito blood meal and transmission to another human host thus ensuring long term survival of the parasite. PMID:22417683

Aingaran, Mythili; Zhang, Rou; Law, Sue KaYee; Peng, Zhangli; Undisz, Andreas; Meyer, Evan; Diez-Silva, Monica; Burke, Thomas A.; Spielmann, Tobias; Lim, Chwee Teck; Suresh, Subra; Dao, Ming; Marti, Matthias

2012-01-01

130

Effects of Artesunate on Parasite Recrudescence and Dormancy in the Rodent Malaria Model Plasmodium vinckei  

PubMed Central

Artemisinin (ART) is the recommended first line therapy for treating uncomplicated and drug-resistant Plasmodium falciparum, the most pathogenic form of malaria. However, treatment failure following ART monotherapy is not uncommon and resistance to this rapidly acting drug has been reported in the Thai-Cambodian border. Recent in vitro studies have shown that following treatment with dihydroartemisinin (DHA), the development of ring-stage parasites is arrested for up to 20 days. These arrested (i.e. dormant) rings could be responsible for the recrudescence of infection that is observed following ART monotherapy. To develop a better understanding of the stage-specific effects of ART and determine if dormancy occurs in vivo, the ART derivative artesunate (AS) was used to treat mice infected with the synchronous rodent malaria parasites P. vinckei petteri (non-lethal) and P. v. vinckei (lethal). Results show that in both the non-lethal and lethal strains, ring-stage parasites are the least susceptible to treatment with AS and that the day of treatment has more of an impact on recrudescence than the total dose administered. Additionally, 24 hrs post-treatment with AS, dormant forms similar in morphology to those seen in vitro were observed. Finally, rate of recrudescence studies suggest that there is a positive correlation between the number of dormant parasites present and when recrudescence occurs in the vertebrate host. Collectively, these data suggest that dormancy occurs in vivo and contributes to recrudescence that is observed following AS treatment. It is possible that this may represent a novel mechanism of parasite survival following treatment with AS. PMID:22039533

LaCrue, Alexis N.; Scheel, Misty; Kennedy, Katherine; Kumar, Nikesh; Kyle, Dennis E.

2011-01-01

131

A flow cytometric assay to quantify invasion of red blood cells by rodent Plasmodium parasites in vivo  

PubMed Central

Background Malaria treatments are becoming less effective due to the rapid spread of drug resistant parasites. Increased understanding of the host/parasite interaction is crucial in order to develop treatments that will be less prone to resistance. Parasite invasion of the red blood cell (RBC) is a critical aspect of the parasite life cycle and is, therefore, a promising target for the development of malaria treatments. Assays for analysing parasite invasion in vitro have been developed, but no equivalent assays exist for in vivo studies. This article describes a novel flow cytometric in vivo parasite invasion assay. Methods Experiments were conducted with mice infected with erythrocytic stages of Plasmodium chabaudi adami strain DS. Exogenously labelled blood cells were transfused into infected mice at schizogony, and collected blood samples stained and analysed using flow cytometry to specifically detect and measure proportions of labelled RBC containing newly invaded parasites. A combination of antibodies (CD45 and CD71) and fluorescent dyes, Hoechst (DNA) and JC-1 (mitochondrial membrane potential), were used to differentiate parasitized RBCs from uninfected cells, RBCs containing Howell-Jolly bodies, leukocytes and RBC progenitors. Blood cells were treated ex vivo with proteases to examine the effects on in vivo parasite invasion. Results The staining and flow cytometry analysis method was accurate in determining the parasitaemia down to 0.013% with the limit of detection at 0.007%. Transfused labelled blood supported normal rates of parasite invasion. Protease-treated red cells resulted in 35% decrease in the rate of parasite invasion within 30 minutes of introduction into the bloodstream of infected mice. Conclusions The invasion assay presented here is a versatile method for the study of in vivo red cell invasion efficiency of Plasmodium parasites in mice, and allows direct comparison of invasion in red cells derived from two different populations. The method also serves as an accurate alternative method of estimating blood parasitaemia. PMID:24628989

2014-01-01

132

Leukocyte profiles for western fence lizards, Sceloporus occidentalis, naturally infected by the malaria parasite Plasmodium mexicanum.  

PubMed

Plasmodium mexicanum is a malaria parasite that naturally infects the western fence lizard, Sceloporus occidentalis , in northern California. We set out to determine whether lizards naturally infected with this malaria parasite have different leukocyte profiles, indicating an immune response to infection. We used 29 naturally infected western fence lizards paired with uninfected lizards based on sex, snout-to-vent length, tail status, and the presence-absence of ectoparasites such as ticks and mites, as well as the presence-absence of another hemoparasite, Schellackia occidentalis. Complete white blood cell (WBC) counts were conducted on blood smears stained with Giemsa, and the proportion of granulocytes per microliter of blood was estimated using the Avian Leukopet method. The abundance of each WBC class (lymphocytes, monocytes, heterophils, eosinophils, and basophils) in infected and uninfected lizards was compared to determine whether leukocyte densities varied with infection status. We found that the numbers of WBCs and lymphocytes per microliter of blood significantly differed (P < 0.05) between the 2 groups for females but not for males, whereas parasitemia was significantly correlated with lymphocyte counts for males, but not for females. This study supports the theory that infection with P. mexicanum stimulates the lizard's immune response to increase the levels of circulating WBCs, but what effect this has on the biology of the parasite remains unclear. PMID:24945903

Motz, Victoria L; Lewis, William D; Vardo-Zalik, Anne M

2014-10-01

133

The MYST Family Histone Acetyltransferase Regulates Gene Expression and Cell Cycle in Malaria Parasite Plasmodium falciparum  

PubMed Central

Summary Histone lysine acetylation, normally associated with euchromatin and active genes, is regulated by different families of histone acetyltransferases (HATs). A single Plasmodium falciparum MYST (PfMYST) HAT was expressed as a long and a short version in intraerythrocytic stages. Whereas the recombinant PfMYST expressed in prokaryotes and insect cells did not show HAT activity, recombinant PfMYST purified from the parasites exhibited a predilection to acetylate histone H4 in vitro at K5, K8, K12, and K16. Tagging PfMYST with the green fluorescent protein at the C-terminus showed that PfMYST protein was localized in both the nucleus and cytoplasm. Consistent with the importance of H4 acetylation in var gene expression, PfMYST was recruited to the active var promoter. Attempts to disrupt PfMYST were not successful, suggesting that PfMYST is essential for asexual intraerythrocytic growth. However, overexpression of the long, active or a truncated, non-active version of PfMYST by stable integration of the expression cassette in the parasite genome resulted in changes of H4 acetylation and cell cycle progression. Furthermore, parasites with PfMYST over-expression showed changes in sensitivity to DNA damaging agents. Collectively, this study showed that PfMYST plays important roles in cellular processes such as gene activation, cell cycle control, and DNA repair. PMID:20807207

Miao, Jun; Fan, Qi; Cui, Long; Li, Xiaolian; Wang, Haiyan; Ning, Gang; Reese, Joseph C.; Cui, Liwang

2010-01-01

134

Co-infections with Babesia microti and Plasmodium parasites along the China-Myanmar border  

PubMed Central

Background Babesiosis is an emerging health risk in several parts of the world. However, little is known about the prevalence of Babesia in malaria-endemic countries. The area along the China-Myanmar border in Yunnan is a main endemic area of malaria in P.R. China, however, human infection with Babesia microti (B. microti) is not recognized in this region, and its profile of co-infection is not yet clear. Methods To understand its profile of co-infections with B. microti, our investigation was undertaken in the malaria-endemic area along the China-Myanmar border in Yunnan between April 2012 and June 2013. Four parasite species, including B. microti, Plasmodium falciparum (P. falciparum), P. vivax, and P. malariae, were identified among 449 suspected febrile persons detected by nested polymerase chain reaction (PCR) assay based on small subunit ribosomal ribonucleic acid (RNA) genes of B. microti and Plasmodium spp. Results Of all the collected samples from febrile patients, mono-infection with B. microti, P. vivax, P. falciparum, and P. malariae accounted for 1.8% (8/449), 9.8% (44/449), 2.9% (13/449), and 0.2% (1/449), respectively. The rate of mixed infections of B. microti with P. falciparum or P. vivax are both 0.2% (1/449), and mixed infections of P. falciparum and P. vivax accounted for 1.1% (5/449). Conclusions This report supports the hypothesis that babesiosis caused by B. microti is emerging along the China-Myanmar border in the Yunnan province, P.R. China, but it was ignored because of low parasitemia or mixed infection with Plasmodium spp. More sensitive and specific diagnosis methods are needed to find the rapid response mechanism of emergency for babesiosis and malaria co-prevalence areas. PMID:24090043

2013-01-01

135

Extensive lysine acetylation occurs in evolutionarily conserved metabolic pathways and parasite-specific functions during Plasmodium falciparum intraerythrocytic development  

PubMed Central

Summary Lysine acetylation has emerged as a major posttranslational modification involved in diverse cellular functions. Using a combination of immunoisolation and liquid chromatography coupled to accurate mass spectrometry, we determined the first acetylome of the human malaria parasite Plasmodium falciparum during its active proliferation in erythrocytes with 421 acetylation sites identified in 230 proteins. Lysine-acetylated proteins are distributed in the nucleus, cytoplasm, mitochondrion, and apicoplast. Whereas occurrence of lysine acetylation in a similarly wide range of cellular functions suggests conservation of lysine acetylation through evolution, the Plasmodium acetylome also revealed significant divergence from those of other eukaryotes and even the closely-related parasite Toxoplasma. This divergence is reflected in the acetylation of a large number of Plasmodium-specific proteins and different acetylation sites in evolutionarily conserved acetylated proteins. A prominent example is the abundant acetylation of proteins in the glycolysis pathway but relatively deficient acetylation of enzymes in the citrate cycle. Using specific transgenic lines and inhibitors, we determined that the acetyltransferase PfMYST and lysine deacetylases play important roles in regulating the dynamics of cytoplasmic protein acetylation. The Plasmodium acetylome provides an exciting start point for further exploration of functions of acetylation in the biology of malaria parasites. PMID:23796209

Miao, Jun; Lawrence, Matthew; Jeffers, Victoria; Zhao, Fangqing; Parker, Daniel; Ge, Ying; Sullivan, William J.; Cui, Liwang

2013-01-01

136

Plasmodium falciparum Parasites Are Killed by a Transition State Analogue of Purine Nucleoside Phosphorylase in a Primate Animal Model  

PubMed Central

Plasmodium falciparum causes most of the one million annual deaths from malaria. Drug resistance is widespread and novel agents against new targets are needed to support combination-therapy approaches promoted by the World Health Organization. Plasmodium species are purine auxotrophs. Blocking purine nucleoside phosphorylase (PNP) kills cultured parasites by purine starvation. DADMe-Immucillin-G (BCX4945) is a transition state analogue of human and Plasmodium PNPs, binding with picomolar affinity. Here, we test BCX4945 in Aotus primates, an animal model for Plasmodium falciparum infections. Oral administration of BCX4945 for seven days results in parasite clearance and recrudescence in otherwise lethal infections of P. falciparum in Aotus monkeys. The molecular action of BCX4945 is demonstrated in crystal structures of human and P. falciparum PNPs. Metabolite analysis demonstrates that PNP blockade inhibits purine salvage and polyamine synthesis in the parasites. The efficacy, oral availability, chemical stability, unique mechanism of action and low toxicity of BCX4945 demonstrate potential for combination therapies with this novel antimalarial agent. PMID:22096507

Cassera, María B.; Hazleton, Keith Z.; Merino, Emilio F.; Obaldia, Nicanor; Ho, Meng-Chiao; Murkin, Andrew S.; DePinto, Richard; Gutierrez, Jemy A.; Almo, Steven C.; Evans, Gary B.; Babu, Yarlagadda S.; Schramm, Vern L.

2011-01-01

137

K13-Propeller Polymorphisms in Plasmodium falciparum Parasites From Sub-Saharan Africa.  

PubMed

Mutations in the Plasmodium falciparum K13-propeller domain have recently been shown to be important determinants of artemisinin resistance in Southeast Asia. This study investigated the prevalence of K13-propeller polymorphisms across sub-Saharan Africa. A total of 1212 P. falciparum samples collected from 12 countries were sequenced. None of the K13-propeller mutations previously reported in Southeast Asia were found, but 22 unique mutations were detected, of which 7 were nonsynonymous. Allele frequencies ranged between 1% and 3%. Three mutations were observed in >1 country, and the A578S was present in parasites from 5 countries. This study provides the baseline prevalence of K13-propeller mutations in sub-Saharan Africa. PMID:25367300

Kamau, Edwin; Campino, Susana; Amenga-Etego, Lucas; Drury, Eleanor; Ishengoma, Deus; Johnson, Kimberly; Mumba, Dieudonne; Kekre, Mihir; Yavo, William; Mead, Daniel; Bouyou-Akotet, Marielle; Apinjoh, Tobias; Golassa, Lemu; Randrianarivelojosia, Milijaona; Andagalu, Ben; Maiga-Ascofare, Oumou; Amambua-Ngwa, Alfred; Tindana, Paulina; Ghansah, Anita; MacInnis, Bronwyn; Kwiatkowski, Dominic; Djimde, Abdoulaye A

2015-04-15

138

Human Monoclonal Antibodies to Pf 155, a Major Antigen of Malaria Parasite Plasmodium falciparum  

NASA Astrophysics Data System (ADS)

Pf 155, a protein of the human malaria parasite Plasmodium falciparum, is strongly immunogenic in humans and is believed to be a prime candidate for the preparation of a vaccine. Human monoclonal antibodies to Pf 155 were obtained by cloning B cells that had been prepared from an immune donor and transformed with Epstein-Barr virus. When examined by indirect immunofluorescence, these antibodies stained the surface of infected erythrocytes, free merozoites, segmented schizonts, and gametocytes. They bound to a major polypeptide with a relative molecular weight of 155K and to two minor ones (135K and 120K), all having high affinity for human glycophorin. The antibodies strongly inhibited merozoite reinvasion in vitro, suggesting that they might be appropriate reagents for therapeutic administration in vivo.

Udomsangpetch, Rachanee; Lundgren, Katarina; Berzins, Klavs; Wahlin, Birgitta; Perlmann, Hedvig; Troye-Blomberg, Marita; Carlsson, Jan; Wahlgren, Mats; Perlmann, Peter; Bjorkman, Anders

1986-01-01

139

Genome-wide mapping of DNA methylation in the human malaria parasite Plasmodium falciparum  

PubMed Central

SUMMARY Cytosine DNA methylation is an epigenetic mark in most eukaryotic cells that regulates numerous processes, including gene expression and stress responses. We performed a genome-wide analysis of DNA methylation in the human malaria parasite Plasmodium falciparum. We mapped the positions of methylated cytosines and identified a single functional DNA methyltransferase, PfDNMT, that may mediate these genomic modifications. These analyses revealed that the malaria genome is asymmetrically methylated, in which only one DNA strand is methylated, and shares common features with undifferentiated plant and mammalian cells. Notably, core promoters are hypomethylated and transcript levels correlate with intra-exonic methylation. Additionally, there are sharp methylation transitions at nucleosome and exon-intron boundaries. These data suggest that DNA methylation could regulate virulence gene expression and transcription elongation. Furthermore, the broad range of action of DNA methylation and uniqueness of PfDNMT suggest that the methylation pathway is a potential target for anti-malarial strategies. PMID:24331467

Ponts, Nadia; Fu, Lijuan; Harris, Elena Y.; Zhang, Jing; Chung, Duk-Won D.; Cervantes, Michael C.; Prudhomme, Jacques; Atanasova-Penichon, Vessela; Zehraoui, Enric; Bunnik, Evelien; Rodrigues, Elisandra M.; Lonardi, Stefano; Hicks, Glenn R.; Wang, Yinsheng; Le Roch, Karine G.

2014-01-01

140

Flow cytometry-assisted rapid isolation of recombinant Plasmodium berghei parasites exemplified by functional analysis of aquaglyceroporin  

PubMed Central

The most critical bottleneck in the generation of recombinant Plasmodium berghei parasites is the mandatory in vivo cloning step following successful genetic manipulation. This study describes a new technique for rapid selection of recombinant P. berghei parasites. The method is based on flow cytometry to isolate isogenic parasite lines and represents a major advance for the field, in that it will speed the generation of recombinant parasites as well as cut down on animal use significantly. High expression of GFP during blood infection, a prerequisite for robust separation of transgenic lines by flow cytometry, was achieved. Isogenic recombinant parasite populations were isolated even in the presence of a 100-fold excess of wild-type (WT) parasites. Aquaglyceroporin (AQP) loss-of-function mutants and parasites expressing a tagged AQP were generated to validate this approach. aqp? parasites grow normally within the WT phenotypic range during blood infection of NMRI mice. Similarly, colonization of the insect vector and establishment of an infection after mosquito transmission were unaffected, indicating that AQP is dispensable for life cycle progression in vivo under physiological conditions, refuting its use as a suitable drug target. Tagged AQP localized to perinuclear structures and not the parasite plasma membrane. We suggest that flow-cytometric isolation of isogenic parasites overcomes the major roadblock towards a genome-scale repository of mutant and transgenic malaria parasite lines. PMID:23137753

Kenthirapalan, Sanketha; Waters, Andrew P.; Matuschewski, Kai; Kooij, Taco W.A.

2012-01-01

141

Real-Time Imaging of the Intracellular Glutathione Redox Potential in the Malaria Parasite Plasmodium falciparum  

PubMed Central

In the malaria parasite Plasmodium falciparum, the cellular redox potential influences signaling events, antioxidant defense, and mechanisms of drug action and resistance. Until now, the real-time determination of the redox potential in malaria parasites has been limited because conventional approaches disrupt sub-cellular integrity. Using a glutathione biosensor comprising human glutaredoxin-1 linked to a redox-sensitive green fluorescent protein (hGrx1-roGFP2), we systematically characterized basal values and drug-induced changes in the cytosolic glutathione-dependent redox potential (EGSH) of drug-sensitive (3D7) and resistant (Dd2) P. falciparum parasites. Via confocal microscopy, we demonstrated that hGrx1-roGFP2 rapidly detects EGSH changes induced by oxidative and nitrosative stress. The cytosolic basal EGSH of 3D7 and Dd2 were estimated to be ?314.2±3.1 mV and ?313.9±3.4 mV, respectively, which is indicative of a highly reducing compartment. We furthermore monitored short-, medium-, and long-term changes in EGSH after incubation with various redox-active compounds and antimalarial drugs. Interestingly, the redox cyclers methylene blue and pyocyanin rapidly changed the fluorescence ratio of hGrx1-roGFP2 in the cytosol of P. falciparum, which can, however, partially be explained by a direct interaction with the probe. In contrast, quinoline and artemisinin-based antimalarial drugs showed strong effects on the parasites' EGSH after longer incubation times (24 h). As tested for various conditions, these effects were accompanied by a drop in total glutathione concentrations determined in parallel with alternative methods. Notably, the effects were generally more pronounced in the chloroquine-sensitive 3D7 strain than in the resistant Dd2 strain. Based on these results hGrx1-roGFP2 can be recommended as a reliable and specific biosensor for real-time spatiotemporal monitoring of the intracellular EGSH in P. falciparum. Applying this technique in further studies will enhance our understanding of redox regulation and mechanisms of drug action and resistance in Plasmodium and might also stimulate redox research in other pathogens. PMID:24348249

Kasozi, Denis; Mohring, Franziska; Rahlfs, Stefan; Meyer, Andreas J.; Becker, Katja

2013-01-01

142

High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography  

E-print Network

We present high-resolution optical tomographic images of human red blood cells (RBC) parasitized by malaria-inducing Plasmodium falciparum (Pf)-RBCs. Three-dimensional (3-D) refractive index (RI) tomograms are reconstructed ...

Kim, Kyoohyun

143

Plasmodium falciparum parasites lacking histidine-rich protein 2 and 3: a review and recommendations for accurate reporting  

PubMed Central

Malaria rapid diagnostic tests (RDTs) play a critical role in malaria case management, surveillance and case investigations. Test performance is largely determined by design and quality characteristics, such as detection sensitivity, specificity, and thermal stability. However, parasite characteristics such as variable or absent expression of antigens targeted by RDTs can also affect RDT performance. Plasmodium falciparum parasites lacking the PfHRP2 protein, the most common target antigen for detection of P. falciparum, have been reported in some regions. Therefore, accurately mapping the presence and prevalence of P. falciparum parasites lacking pfhrp2 would be an important step so that RDTs targeting alternative antigens, or microscopy, can be preferentially selected for use in such regions. Herein the available evidence and molecular basis for identifying malaria parasites lacking PfHRP2 is reviewed, and a set of recommended procedures to apply for future investigations for parasites lacking PfHRP2, is proposed. PMID:25052298

2014-01-01

144

In vitro susceptibility of Plasmodium falciparum to quinine: relation to parasite density and drug distribution in culture fractions.  

PubMed

We have studied the importance of parasite density (2, 0.2, 0.02 and 0.002%) for the in vitro susceptibility of Plasmodium falciparum (F32 strain) to quinine. Shorter exposures (< or = 48 hours) only briefly inhibited parasites in wells with the highest initial density. Parasites reappeared after 3-5.5 days in wells with intermediate (0.2 and 0.02%) and lowest density (0.002%). Longer exposures (> or = 72 hours), however, inhibited them for much longer periods and parasites did not reappear in most of the wells with the lowest density during the 28 days of follow-up. The mean multiplication rate following reappearance was tenfold per parasite schizogony cycle. The mean elimination rate per schizogony cycle was calculated to be 99.91%. The elimination and multiplication rates were not correlated to initial parasite density. The mean ratio between quinine concentrations in erythrocytes and medium was 3.6 regardless of quinine concentrations and presence of parasites. Mean quinine-free fractions of 36 and 67% were found from total concentrations of 0.33 and 10.4 mumol/l. We conclude that initial parasite density determines the time to reappearance of parasites following quinine exposure while the elimination and multiplication rates are independent of the initial parasite density, and that quinine protein binding is concentration-dependent in vitro and lower than during treatment. PMID:8980593

Mapaba, E; Ericsson, O; Hellgren, U; Rombo, L

1996-12-01

145

Neutral sphingomyelinase activity dependent on Mg2+ and anionic phospholipids in the intraerythrocytic malaria parasite Plasmodium falciparum.  

PubMed Central

Sphingolipid metabolism and metabolites are important in various cellular events in eukaryotes. However, little is known about their function in plasmodial parasites. Here we demonstrate that neutral sphingomyelinase (SMase) involved in the sphingomyelin (SM) catabolism is retained by the intraerythrocytic parasite Plasmodium falciparum. When assayed in a neutral pH buffer supplemented with Mg(2+) and phosphatidylserine, an activity for the release of the phosphocholine group from SM was detected in parasite-infected, but not in uninfected, erythrocyte ghosts. The SMase activity in the parasite-infected erythrocyte ghosts was enhanced markedly by anionic phospholipids including unsaturated but not saturated phosphatidylserine. Mn(2+) could not substitute for Mg(2+) to activate SMase in parasite-infected erythrocyte ghosts, whereas both Mn(2+) and Mg(2+) activated mammalian neutral SMase. The specific activity level of SMase was higher in isolated parasites than in infected erythrocyte ghosts; further fractionation of lysates of the isolated parasites showed that the activity was bound largely to the membrane fraction of the parasites. The plasmodial SMase seemed not to hydrolyse phosphatidylcholine or phosphatidylinositol. The plasmodial SMase, but not SM synthase, was sensitive to scyphostatin, an inhibitor of mammalian neutral SMase, indicating that the plasmodial activities for SM hydrolysis and SM synthesis are mediated by different catalysts. Our finding that the malaria parasites possess SMase activity might explain why the parasites seem to have an SM synthase activity but no activity to synthesize ceramide de novo. PMID:10698693

Hanada, K; Mitamura, T; Fukasawa, M; Magistrado, P A; Horii, T; Nishijima, M

2000-01-01

146

Does haemosporidian infection affect hematological and biochemical profiles of the endangered Black-fronted piping-guan (Aburria jacutinga)?  

PubMed Central

Infectious diseases can cause deleterious effects on bird species, leading to population decline and extinction. Haemosporidia can be recognized by their negative effects on host fitness, including reproductive success and immune responses. In captivity, outbreaks of haemosporidian infection have been observed in birds in zoos and aviaries. The endemic Brazilian Atlantic rainforest species Aburria jacutinga is one of the most endangered species in the Cracidae family, and wild populations of this species are currently found mainly in conservation areas in only two Brazilian states. In this study, we aimed to evaluate the effects of avian haemosporidia on hematological and biochemical parameters in two captive populations of A. jacutinga. Forty-two animals were assessed, and the haemosporidian prevalence was similar for males and females. The occurrence of haemosporidian infection in captive A. jacutinga observed in this study was similar to results found in other captive and wild birds in Brazil. We found three different lineages of haemosporidia. Two lineages were identified as Plasmodium sp., one of which was previously detected in Europe and Asia, and the other is a new lineage closely related to P. gallinaceum. A new third lineage was identified as Haemoproteus sp. We found no significant differences in hematological and biochemical values between infected and non-infected birds, and the haemosporidian lineage did not seem to have an impact on the clinical and physiological parameters of A. jacutinga. This is the first report on an evaluation of natural haemosporidian infections diagnosed by microscopic and molecular methods in A. jacutinga by hematology, blood biochemistry, and serum protein values. Determining physiological parameters, occurrence and an estimation of the impact of haemosporidia in endangered avian species may contribute to the management of species rehabilitation and conservation. PMID:23638382

Ferreira Junior, Francisco Carlos; Andery, Danielle de Assis; Horta, Rodrigo Santos; Peixoto, Renata Barbosa; Lacorte, Gustavo Augusto; Moreira, Patrícia de Abreu; Paes Leme, Fabíola de Oliveira; Melo, Marília Martins; Martins, Nelson Rodrigo da Silva

2013-01-01

147

Antibodies against multiple merozoite surface antigens of the human malaria parasite Plasmodium falciparum inhibit parasite maturation and red blood cell invasion  

Microsoft Academic Search

BACKGROUND: Plasmodium falciparum merozoites expose at their surface a large protein complex, which is composed of fragments of merozoite surface protein 1 (MSP-1; called MSP-183, MSP-130, MSP-138, and MSP-142) plus associated processing products of MSP-6 and MSP-7. During erythrocyte invasion this complex, as well as an integral membrane protein called apical membrane antigen-1 (AMA-1), is shed from the parasite surface

Ute Woehlbier; Christian Epp; Fiona Hackett; Michael J Blackman; Hermann Bujard

2010-01-01

148

Experimental test for premunition in a lizard malaria parasite (Plasmodium mexicanum).  

PubMed

Premunition in Plasmodium spp. is the prevention of superinfection by novel genotypes entering an already established infection in a vertebrate host. Evidence for premunition was sought for the lizard malaria parasite, P. mexicanum, in its natural host, the fence lizard, Sceloporus occidentalis. Clonal diversity (= alleles for the haploid parasite) was determined with the use of 3 microsatellite markers. Both naturally infected lizards (N = 25) and previously noninfected lizards (N = 78) were inoculated intraperitoneally (IP) with blood from donor infections and followed over a 3-mo period. Compared to the success of clonal establishment in all the naive lizards (78/78 successful), clones entering preexisting infections had a significant disadvantage (9/25 successful). The number of preexisting clones (1-2 vs. 3-4) within recipient infections had no effect on the success of superinfection. Infections that excluded entering novel clones did not have higher initial asexual parasitemia, but had a higher initial density of gametocytes, suggesting they were older. Infections allowing superinfection experienced a higher final parasitemia. PMID:17539410

Vardo, Anne M; Kaufhold, Kimberly D; Schall, Jos J

2007-04-01

149

Plasmodium berghei: parasite clearance after treatment with dihydroartemisinin in an asplenic murine malaria model.  

PubMed

Clinical reports indicate that malaria-infected asplenic patients have a reduced capacity for parasite clearance despite intensive antimalarial therapy. The aim of this study was to evaluate the efficacy of dihydroartemisinin in an asplenic murine malaria model. Mice were inoculated with Plasmodium berghei parasitised erythrocytes and received a single dose of dihydroartemisinin 56 h later, at 2-5% parasitaemia. Haematology, liver biochemistry and histopathology of key organs were performed to evaluate organ response to malaria infection. The nadir parasitaemia occurred 20 h after dihydroartemisinin administration, falling 2.8- to 6.0-fold and 2.7- to 6.9-fold in asplenic and intact mice, respectively, (10-100 mg/kg). Histopathology indicated increased stimulation of liver function/activity during malaria infection of asplenic mice (as compared to intact mice). Overall efficacy of single-dose dihydroartemisinin treatment in asplenic mice was similar to intact mice although the rate of recrudescence in asplenic mice was significantly greater than intact mice at 30 and 100 mg/kg. The asplenic murine malaria model could be used in pre-clinical studies of splenic function and clearance of malaria parasites, pathophysiological studies or antimalarial drug efficacy in asplenia. PMID:18023429

Moore, Brioni R; Jago, Jeffrey D; Batty, Kevin T

2008-04-01

150

X-ray structure of glutathione S-transferase from the malarial parasite Plasmodium falciparum  

PubMed Central

GSTs catalyze the conjugation of glutathione with a wide variety of hydrophobic compounds, generally resulting in nontoxic products that can be readily eliminated. In contrast to many other organisms, the malarial parasite Plasmodium falciparum possesses only one GST isoenzyme (PfGST). This GST is highly abundant in the parasite, its activity was found to be increased in chloroquine-resistant cells, and it has been shown to act as a ligandin for parasitotoxic hemin. Thus, the enzyme represents a promising target for antimalarial drug development. We now have solved the crystal structure of PfGST at a resolution of 1.9 Å. The homodimeric protein of 26 kDa per subunit represents a GST form that cannot be assigned to any of the known GST classes. In comparison to other GSTs, and, in particular, to the human isoforms, PfGST possesses a shorter C-terminal section resulting in a more solvent-accessible binding site for the hydrophobic and amphiphilic substrates. The structure furthermore reveals features in this region that could be exploited for the design of specific PfGST inhibitors. PMID:14623980

Fritz-Wolf, Karin; Becker, Andreas; Rahlfs, Stefan; Harwaldt, Petra; Schirmer, R. Heiner; Kabsch, Wolfgang; Becker, Katja

2003-01-01

151

Use of Peptide Nucleic Acids to Manipulate Gene Expression in the Malaria Parasite Plasmodium falciparum  

PubMed Central

One of the major concerns in treating malaria by conventional small drug molecules is the rapid emergence of drug resistance. Specific silencing of essential genes by antisense oliogomers has been proposed as an alternative approach that may result in antimalarial activity which is not associated with drug resistance. In addition, such an approach could be an important biological tool for studying many genes' function by reverse genetics. Here we present a novel methodology of using peptide nucleic acids (PNAs) as a useful tool for gene silencing in Plasmodium falciparum. PNAs, designed as specific antisense molecules, were conjugated to a cell penetrating peptide (CPP); namely, octa-D-lysine via the C-terminus, to allow facile delivery through cell membranes. PNAs added to P. falciparum cultures were found exclusively in infected erythrocytes and were eventually localized in nuclei of the parasites at all stages of intra erythrocytic development. We show that these PNAs specifically down regulated both a stably expressed transgene as well as an endogenous essential gene, which significantly reduced parasites' viability. This study paves the way for a simple approach to silence a variety of P. falciparum genes as means of deciphering their function and potentially to develop highly specific and potent antimalarial agents. PMID:24466246

Naik, Shankar; Yavin, Eylon; Dzikowski, Ron

2014-01-01

152

Humoral Immune Responses to a Recombinant Plasmodium vivax Tryptophan-Rich Antigen Among Plasmodium vivax-Infected Patients and Its Localization in the Parasite.  

PubMed

Our recent studies have focused on the identification and characterization of the tryptophan-rich proteins of the Plasmodium vivax parasite where their role in the elicitation of humoral and cellular responses and erythrocyte-binding activity was investigated. Here, we report the humoral responses of a 32.4-kDa P. vivax tryptophan-rich antigen (PvTRAg32.4) among the sera of P. vivax-infected patients. PvTRAg32.4 also contains an unusually high percentage of tryptophan residues (10.7 %) that are positionally conserved with its orthologues in Plasmodium yoelii (PypAg1 and PypAg2) and Plasmodium falciparum (PfTryThrA and PfMATRA). Thirty-four of the 40 (85.0 %) P. vivax isolates showed seropositivity to recombinant PvTRAg32.4 by ELISA. The mean?±?SD values of optical density (OD) for P. vivax subjects and naïve individuals were 1.02?±?0.36 and 0.26?±?0.11, respectively. In the Western blot analysis, majority of the subjects studied (n?=?44) showed reactivity to the recombinant, purified PvTRAg32.4. This antigen does not show binding to the erythrocytes, but the immunofluorescence data reveals that it is expressed in the erythrocytic stages of the parasite. Sequence analysis of the clinical isolates from various parts of the country shows that PvTRAg32.4 is highly conserved. Functional in-depth characterization of more such type of novel proteins in the parasite is warranted for the development of successful malaria intervention methods. PMID:25467946

Siddiqui, Asim A; Khan, Fozia; Sharma, Yagya D

2015-02-01

153

Transfected Plasmodium knowlesi Produces Bioactive Host Gamma Interferon: a New Perspective for Modulating Immune Responses to Malaria Parasites  

PubMed Central

Transgenic pathogenic microorganisms expressing host cytokines such as gamma interferon (IFN-?) have been shown to manipulate host-pathogen interaction, leading to immunomodulation and enhanced protection. Expression of host cytokines in malaria parasites offers the opportunity to investigate the potential of an immunomodulatory approach by generating immunopotentiated parasites. Using the primate malaria parasite Plasmodium knowlesi, we explored the conditions for expressing host cytokines in malaria parasites. P. knowlesi parasites transfected with DNA constructs for expressing rhesus monkey (Macaca mulatta) IFN-? under the control of the heterologous P. berghei apical membrane antigen 1 promoter, produced bioactive IFN-? in a developmentally regulated manner. IFN-? expression had no marked effect on in vitro parasite development. Bioactivity of the parasite-produced IFN-? was shown through inhibition of virus cytopathic effect and confirmed by using M. mulatta peripheral blood cells in vitro. These data indicate for the first time that it is feasible to generate malaria parasites expressing bioactive host immunomodulatory cytokines. Furthermore, cytokine-expressing malaria parasites offer the opportunity to analyze cytokine-mediated modulation of malaria during the blood and liver stages of the infection. PMID:12874315

Ozwara, Hastings; Langermans, Jan A. M.; Kocken, Clemens H. M.; van der Wel, Annemarie; van der Meide, Peter H.; Vervenne, Richard A. W.; Mwenda, Jason M.; Thomas, Alan W.

2003-01-01

154

Cross-sectional study of specific antibodies to a polymorphic Plasmodium falciparum antigen and of parasite antigen genotypes in school children on the slope of Mount Cameroon  

Microsoft Academic Search

To investigate relationships between Plasmodium falciparum parasitaemia, parasite genotypes, and specific anti-parasite antibodies, 244 school children (aged 4 to 16 years) were studied in April\\/May 2002, the peak malaria transmission season in Buea, Cameroon. Antibody reactivities were analysed by ELISA using an array of recombinant antigens representing different sequences from the polymorphic block 2 region of the merozoite surface protein

Helen K Kimbi; Kevin K. A Tetteh; Spencer D Polley; David J Conway

2004-01-01

155

Circannual variation in blood parasitism in a sub-Saharan migrant passerine bird, the garden warbler.  

PubMed

Knowing the natural dynamics of pathogens in migratory birds is important, for example, to understand the factors that influence the transport of pathogens to and their transmission in new geographical areas, whereas the transmission of other pathogens might be restricted to a specific area. We studied haemosporidian blood parasites of the genera Plasmodium, Haemoproteus and Leucocytozoon in a migratory bird, the garden warbler Sylvia borin. Birds were sampled in spring, summer and early autumn at breeding grounds in Sweden, on migration at Capri, Italy and on arrival and departure from wintering staging areas in West Africa: mapping recoveries of garden warblers ringed in Fennoscandia and Capri showed that these sites are most probably on the migratory flyway of garden warblers breeding at Kvismaren. Overall, haemosporidian prevalence was 39%, involving 24 different parasite lineages. Prevalence varied significantly over the migratory cycle, with relatively high prevalence of blood parasites in the population on breeding grounds and at the onset of autumn migration, followed by marked declines in prevalence during migration both on spring and autumn passage. Importantly, we found that when examining circannual variation in the different lineages, significantly different prevalence profiles emerged both between and within genera. Our results suggest that differences in prevalence profiles are the result of either different parasite transmission strategies or coevolution between the host and the various parasite lineages. When separating parasites into common vs. rare lineages, we found that two peaks in the prevalence of rare parasites occur; on arrival at Swedish breeding grounds, and after the wintering period in Africa. Our results stress the importance of appropriate taxonomic resolution when examining host-parasite interactions, as variation in prevalence both between and within parasite genera can show markedly different patterns. PMID:23621369

Hellgren, O; Wood, M J; Waldenström, J; Hasselquist, D; Ottosson, U; Stervander, M; Bensch, S

2013-05-01

156

Antisense long noncoding RNAs regulate var gene activation in the malaria parasite Plasmodium falciparum  

PubMed Central

The virulence of Plasmodium falciparum, the causative agent of the deadliest form of human malaria, is attributed to its ability to evade human immunity through antigenic variation. These parasites alternate between expression of variable antigens, encoded by members of a multicopy gene family named var. Immune evasion through antigenic variation depends on tight regulation of var gene expression, ensuring that only a single var gene is expressed at a time while the rest of the family is maintained transcriptionally silent. Understanding how a single gene is chosen for activation is critical for understanding mutually exclusive expression but remains a mystery. Here, we show that antisense long noncoding RNAs (lncRNAs) initiating from var introns are associated with the single active var gene at the time in the cell cycle when the single var upstream promoter is active. We demonstrate that these antisense transcripts are incorporated into chromatin, and that expression of these antisense lncRNAs in trans triggers activation of a silent var gene in a sequence- and dose-dependent manner. On the other hand, interference with these lncRNAs using complement peptide nucleic acid molecules down-regulated the active var gene, erased the epigenetic memory, and induced expression switching. Altogether, our data provide evidence that these antisense lncRNAs play a key role in regulating var gene activation and mutually exclusive expression. PMID:25691743

Amit-Avraham, Inbar; Pozner, Guy; Eshar, Shiri; Fastman, Yair; Kolevzon, Netanel; Yavin, Eylon; Dzikowski, Ron

2015-01-01

157

Genomic Sequencing of Plasmodium falciparum Malaria Parasites from Senegal Reveals the Demographic History of the Population  

PubMed Central

Malaria is a deadly disease that causes nearly one million deaths each year. To develop methods to control and eradicate malaria, it is important to understand the genetic basis of Plasmodium falciparum adaptations to antimalarial treatments and the human immune system while taking into account its demographic history. To study the demographic history and identify genes under selection more efficiently, we sequenced the complete genomes of 25 culture-adapted P. falciparum isolates from three sites in Senegal. We show that there is no significant population structure among these Senegal sampling sites. By fitting demographic models to the synonymous allele-frequency spectrum, we also estimated a major 60-fold population expansion of this parasite population ?20,000–40,000 years ago. Using inferred demographic history as a null model for coalescent simulation, we identified candidate genes under selection, including genes identified before, such as pfcrt and PfAMA1, as well as new candidate genes. Interestingly, we also found selection against G/C to A/T changes that offsets the large mutational bias toward A/T, and two unusual patterns: similar synonymous and nonsynonymous allele-frequency spectra, and 18% of genes having a nonsynonymous-to-synonymous polymorphism ratio >1. PMID:22734050

Chang, Hsiao-Han; Park, Daniel J.; Galinsky, Kevin J.; Schaffner, Stephen F.; Ndiaye, Daouda; Ndir, Omar; Mboup, Souleymane; Wiegand, Roger C.; Volkman, Sarah K.; Sabeti, Pardis C.; Wirth, Dyann F.; Neafsey, Daniel E.; Hartl, Daniel L.

2012-01-01

158

Antigenic Diversity of the Plasmodium vivax Circumsporozoite Protein in Parasite Isolates of Western Colombia  

PubMed Central

Circumsporozoite (CS) protein is a malaria antigen involved in sporozoite invasion of hepatocytes, and thus considered to have good vaccine potential. We evaluated the polymorphism of the Plasmodium vivax CS gene in 24 parasite isolates collected from malaria-endemic areas of Colombia. We sequenced 27 alleles, most of which (25/27) corresponded to the VK247 genotype and the remainder to the VK210 type. All VK247 alleles presented a mutation (Gly ? Asn) at position 28 in the N-terminal region, whereas the C-terminal presented three insertions: the ANKKAGDAG, which is common in all VK247 isolates; 12 alleles presented the insertion GAGGQAAGGNAANKKAGDAG; and 5 alleles presented the insertion GGNAGGNA. Both repeat regions were polymorphic in gene sequence and size. Sequences coding for B-, T-CD4+, and T-CD8+ cell epitopes were found to be conserved. This study confirms the high polymorphism of the repeat domain and the highly conserved nature of the flanking regions. PMID:21292878

Hernández-Martínez, Miguel Ángel; Escalante, Ananías A.; Arévalo-Herrera, Myriam; Herrera, Sócrates

2011-01-01

159

Antisense long noncoding RNAs regulate var gene activation in the malaria parasite Plasmodium falciparum.  

PubMed

The virulence of Plasmodium falciparum, the causative agent of the deadliest form of human malaria, is attributed to its ability to evade human immunity through antigenic variation. These parasites alternate between expression of variable antigens, encoded by members of a multicopy gene family named var. Immune evasion through antigenic variation depends on tight regulation of var gene expression, ensuring that only a single var gene is expressed at a time while the rest of the family is maintained transcriptionally silent. Understanding how a single gene is chosen for activation is critical for understanding mutually exclusive expression but remains a mystery. Here, we show that antisense long noncoding RNAs (lncRNAs) initiating from var introns are associated with the single active var gene at the time in the cell cycle when the single var upstream promoter is active. We demonstrate that these antisense transcripts are incorporated into chromatin, and that expression of these antisense lncRNAs in trans triggers activation of a silent var gene in a sequence- and dose-dependent manner. On the other hand, interference with these lncRNAs using complement peptide nucleic acid molecules down-regulated the active var gene, erased the epigenetic memory, and induced expression switching. Altogether, our data provide evidence that these antisense lncRNAs play a key role in regulating var gene activation and mutually exclusive expression. PMID:25691743

Amit-Avraham, Inbar; Pozner, Guy; Eshar, Shiri; Fastman, Yair; Kolevzon, Netanel; Yavin, Eylon; Dzikowski, Ron

2015-03-01

160

Radical-mediated damage to parasites and erythrocytes in Plasmodium vinckei infected mice after injection of t-butyl hydroperoxide.  

PubMed Central

Intravenous injection of t-butyl hydroperoxide rapidly killed Plasmodium vinckei in mice, and caused haemolysis. The same dose seemed harmless to unparasitized mice. Many parasites disintegrated inside circulating erythrocytes, so parasite death was not simply a passive consequence of haemolysis. Injection of desferrioxamine, which removes the traces of free iron that promote the dissociation of t-butyl hydroperoxide into radical species, prevented both parasite death and haemolysis. Lipid peroxidation, as measured by accumulation of malonyldialdehyde over 2 h in vitro, occurred in erythrocytes exposed to t-butyl hydroperoxide, and was particularly marked in erythrocytes from parasitized mice. These erythrocytes accumulated appreciable malonyldialdehyde even without exposure to t-butyl hydroperoxide. Desferrioxamine inhibited the accumulation of malonyldialdehyde, but did not prevent depletion of reduced glutathione by t-butyl hydroperoxide. This suggests that t-butyl hydroperoxide damaged parasites and erythrocytes by dissociating into radical species, rather than by decreasing intraerythrocyte anti-oxidant capacity. In earlier experiments we suggested that intraerythrocytic parasite death and haemolysis caused by alloxan were mediated by radical species, and these experiments with t-butyl hydroperoxide add weight to this interpretation. We regard both of these systems as models for macrophage-induced parasite death and host pathology in acute malaria. Images Fig. 1 PMID:6744660

Clark, I A; Hunt, N H; Cowden, W B; Maxwell, L E; Mackie, E J

1984-01-01

161

Dominant negative mutant of Plasmodium?Rad51 causes reduced parasite burden in host by abrogating DNA double-strand break repair.  

PubMed

Malaria parasites survive through repairing a plethora of DNA double-stranded breaks (DSBs) experienced during their asexual growth. In Plasmodium?Rad51 mediated homologous recombination (HR) mechanism and homology-independent alternative end-joining mechanism have been identified. Here we address whether loss of HR activity can be compensated by other DSB repair mechanisms. Creating a transgenic Plasmodium line defective in HR function, we demonstrate that HR is the most important DSB repair pathway in malarial parasite. Using mouse malaria model we have characterized the dominant negative effect of PfRad51(K143R) mutant on Plasmodium?DSB repair and host-parasite interaction. Our work illustrates that Plasmodium berghei harbouring the mutant protein (PfRad51(K143R)) failed to repair DSBs as evidenced by hypersensitivity to DNA-damaging agent. Mice infected with mutant parasites lived significantly longer with markedly reduced parasite burden. To better understand the effect of mutant PfRad51(K143R) on HR, we used yeast as a surrogate model and established that the presence of PfRad51(K143R) completely inhibited DNA repair, gene conversion and gene targeting. Biochemical experiment confirmed that very low level of mutant protein was sufficient for complete disruption of wild-type PfRad51 activity. Hence our work provides evidence that HR pathway of Plasmodium could be efficiently targeted to curb malaria. PMID:25145341

Roy, Nabamita; Bhattacharyya, Sunanda; Chakrabarty, Swati; Laskar, Shyamasree; Babu, Somepalli Mastan; Bhattacharyya, Mrinal Kanti

2014-10-01

162

Histone H3K9 acetylation level modulates gene expression and may affect parasite growth in human malaria parasite Plasmodium falciparum.  

PubMed

Three-dimensional positioning of the nuclear genome plays an important role in the epigenetic regulation of genes. Although nucleographic domain compartmentalization in the regulation of epigenetic state and gene expression is well established in higher organisms, it remains poorly understood in the pathogenic parasite Plasmodium falciparum. In the present study, we report that two histone tail modifications, H3K9Ac and H3K14Ac, are differentially distributed in the parasite nucleus. We find colocalization of active gene promoters such as Tu1 (tubulin-1 expressed in the asexual stages) with H3K9Ac marks at the nuclear periphery. By contrast, asexual stage inactive gene promoters such as Pfg27 (gametocyte marker) and Pfs28 (ookinete marker) occupy H3K9Ac devoid zones at the nuclear periphery. The histone H3K9 is predominantly acetylated by the PCAF/GCN5 class of lysine acetyltransferases, which is well characterized in the parasite. Interestingly, embelin, a specific inhibitor of PCAF/GCN5 family histone acetyltransferase, selectively decreases total H3K9Ac acetylation levels (but not H3K14Ac levels) around the var gene promoters, leading to the downregulation of var gene expression, suggesting interplay among histone acetylation status, as well as subnuclear compartmentalization of different genes and their activation in the parasites. Finally, we found that embelin inhibited parasitic growth at the low micromolar range, raising the possibility of using histone acetyltransferases as a target for antimalarial therapy. PMID:25252094

Srivastava, Sandeep; Bhowmick, Krishanu; Chatterjee, Snehajyoti; Basha, Jeelan; Kundu, Tapas K; Dhar, Suman K

2014-12-01

163

Proteomic analysis of detergent-resistant membrane microdomains in trophozoite blood stage of the human malaria parasite Plasmodium falciparum.  

PubMed

Intracellular pathogens contribute to a significant proportion of infectious diseases worldwide. The successful strategy of evading the immune system by hiding inside host cells is common to all the microorganism classes, which exploit membrane microdomains, enriched in cholesterol and sphingolipids, to invade and colonize the host cell. These assemblies, with distinct biochemical properties, can be isolated by means of flotation in sucrose density gradient centrifugation because they are insoluble in nonionic detergents at low temperature. We analyzed the protein and lipid contents of detergent-resistant membranes from erythrocytes infected by Plasmodium falciparum, the most deadly human malaria parasite. Proteins associated with membrane microdomains of trophic parasite blood stages (trophozoites) include an abundance of chaperones, molecules involved in vesicular trafficking, and enzymes implicated in host hemoglobin degradation. About 60% of the identified proteins contain a predicted localization signal suggesting a role of membrane microdomains in protein sorting/trafficking. To validate our proteomic data, we raised antibodies against six Plasmodium proteins not characterized previously. All the selected candidates were recovered in floating low-density fractions after density gradient centrifugation. The analyzed proteins localized either to internal organelles, such as the mitochondrion and the endoplasmic reticulum, or to exported membrane structures, the parasitophorous vacuole membrane and Maurer's clefts, implicated in targeting parasite proteins to the host erythrocyte cytosol or surface. The relative abundance of cholesterol and phospholipid species varies in gradient fractions containing detergent-resistant membranes, suggesting heterogeneity in the lipid composition of the isolated microdomain population. This study is the first report showing the presence of cholesterol-rich microdomains with distinct properties and subcellular localization in trophic stages of Plasmodium falciparum. PMID:24045696

Yam, Xue Yan; Birago, Cecilia; Fratini, Federica; Di Girolamo, Francesco; Raggi, Carla; Sargiacomo, Massimo; Bachi, Angela; Berry, Laurence; Fall, Gamou; Currà, Chiara; Pizzi, Elisabetta; Breton, Catherine Braun; Ponzi, Marta

2013-12-01

164

The Plasmodium vivax Merozoite Surface Protein 3? Sequence Reveals Contrasting Parasite Populations in Southern and Northwestern Thailand  

PubMed Central

Background Malaria control efforts have a significant impact on the epidemiology and parasite population dynamics. In countries aiming for malaria elimination, malaria transmission may be restricted to limited transmission hot spots, where parasite populations may be isolated from each other and experience different selection forces. Here we aim to examine the Plasmodium vivax population divergence in geographically isolated transmission zones in Thailand. Methodology We employed the P. vivax merozoite surface protein 3? (PvMSP3?) as a molecular marker for characterizing P. vivax populations based on the extensive diversity of this gene in Southeast Asian parasite populations. To examine two parasite populations with different transmission levels in Thailand, we obtained 45 P. vivax isolates from Tak Province, northwestern Thailand, where the annual parasite incidence (API) was more than 2%, and 28 isolates from Yala and Narathiwat Provinces, southern Thailand, where the API was less than 0.02%. We sequenced the PvMSP3? gene and examined its genetic diversity and molecular evolution between the parasite populations. Principal Findings Of 58 isolates containing single PvMSP3? alleles, 31 sequence types were identified. The overall haplotype diversity was 0.77±0.06 and nucleotide diversity 0.0877±0.0054. The northwestern vivax malaria population exhibited extensive haplotype diversity (HD) of PvMSP3? (HD?=?1.0). In contrast, the southern parasite population displayed a single PvMSP3? allele (HD?=?0), suggesting a clonal population expansion. This result revealed that the extent of allelic diversity in P. vivax populations in Thailand varies among endemic areas. Conclusion Malaria parasite populations in a given region may vary significantly in genetic diversity, which may be the result of control and influenced by the magnitude of malaria transmission intensity. This is an issue that should be taken into account for the implementation of P. vivax control measures such as drug policy and vaccine development. PMID:25412166

Kuamsab, Napaporn; Sattabongkot, Jetsumon; Sirichaisinthop, Jeeraphat; Jongwutiwes, Somchai; Cui, Liwang

2014-01-01

165

Cutting edge: a new tool to evaluate human pre-erythrocytic malaria vaccines: rodent parasites bearing a hybrid Plasmodium falciparum circumsporozoite protein.  

PubMed

Malaria vaccines containing the Plasmodium falciparum Circumsporozoite protein repeat domain are undergoing human trials. There is no simple method to evaluate the effect of vaccine-induced responses on P. falciparum sporozoite infectivity. Unlike the rodent malaria Plasmodium berghei, P. falciparum sporozoites do not infect common laboratory animals and only develop in vitro in human hepatocyte cultures. We generated a recombinant P. berghei parasite bearing P. falciparum Circumsporozoite protein repeats. These hybrid sporozoites are fully infective in vivo and in vitro. Monoclonal and polyclonal Abs to P. falciparum repeats neutralize hybrid parasite infectivity, and mice immunized with a P. falciparum vaccine are protected against challenge with hybrid sporozoites. PMID:12471098

Persson, Cathrine; Oliveira, Giane A; Sultan, Ali A; Bhanot, Purnima; Nussenzweig, Victor; Nardin, Elizabeth

2002-12-15

166

Matrix Metalloproteinase-9 and Haemozoin: Wedding Rings for Human Host and Plasmodium falciparum Parasite in Complicated Malaria.  

PubMed

It is generally accepted that the combination of both Plasmodium falciparum parasite and human host factors is involved in the pathogenesis of complicated severe malaria, including cerebral malaria (CM). Among parasite products, the malarial pigment haemozoin (HZ) has been shown to impair the functions of mononuclear and endothelial cells. Different CM models were associated with enhanced levels of matrix metalloproteinases (MMPs), a family of proteolytic enzymes able to disrupt subendothelial basement membrane and tight junctions and shed, activate, or inactivate cytokines, chemokines, and other MMPs through cleavage from their precursors. Among MMPs, a good candidate for targeted therapy might be MMP-9, whose mRNA and protein expression enhancement as well as direct proenzyme activation by HZ have been recently investigated in a series of studies by our group and others. In the present paper the role of HZ and MMP-9 in complicated malaria, as well as their interactions, will be discussed. PMID:21760809

Prato, Mauro; Giribaldi, Giuliana

2011-01-01

167

Variation in life-history traits of Plasmodium mexicanum, a malaria parasite infecting western  

E-print Network

the life history of Plasmodium mexicanum in naturally infected western fence liz- ards (Sceloporus lézards Sceloporus occidentalis porteurs d'infections naturelles au cours d'une période de 4 ans. J

Schall, Joseph J.

168

How Plasmodium falciparum malaria parasites bind to human brain endothelial cells   

E-print Network

Cerebral malaria is characterised by an accumulation of infected erythrocytes in the microvasculature of the brain. Plasmodium falciparum infected erythrocytes have been shown to bind to a Human Brain Endothelial Cell line (HBEC-5i) in vitro...

Claessens, Antoine

2011-01-01

169

Baculovirus-Vectored Multistage Plasmodium vivax Vaccine Induces Both Protective and Transmission-Blocking Immunities against Transgenic Rodent Malaria Parasites  

PubMed Central

A multistage malaria vaccine targeting the pre-erythrocytic and sexual stages of Plasmodium could effectively protect individuals against infection from mosquito bites and provide transmission-blocking (TB) activity against the sexual stages of the parasite, respectively. This strategy could help prevent malaria infections in individuals and, on a larger scale, prevent malaria transmission in communities of endemicity. Here, we describe the development of a multistage Plasmodium vivax vaccine which simultaneously expresses P. vivax circumsporozoite protein (PvCSP) and P25 (Pvs25) protein of this species as a fusion protein, thereby acting as a pre-erythrocytic vaccine and a TB vaccine, respectively. A new-concept vaccine platform based on the baculovirus dual-expression system (BDES) was evaluated. The BDES-Pvs25-PvCSP vaccine displayed correct folding of the Pvs25-PvCSP fusion protein on the viral envelope and was highly expressed upon transduction of mammalian cells in vitro. This vaccine induced high levels of antibodies to Pvs25 and PvCSP and elicited protective (43%) and TB (82%) efficacies against transgenic P. berghei parasites expressing the corresponding P. vivax antigens in mice. Our data indicate that our BDES, which functions as both a subunit and DNA vaccine, can offer a promising multistage vaccine capable of delivering a potent antimalarial pre-erythrocytic and TB response via a single immunization regimen. PMID:25092912

Mizutani, Masanori; Iyori, Mitsuhiro; Blagborough, Andrew M.; Fukumoto, Shinya; Funatsu, Tomohiro; Sinden, Robert E.

2014-01-01

170

Host genotype by parasite genotype interactions underlying the resistance of anopheline mosquitoes to Plasmodium falciparum  

Microsoft Academic Search

BACKGROUND: Most studies on the resistance of mosquitoes to their malaria parasites focus on the response of a mosquito line or colony against a single parasite genotype. In natural situations, however, it may be expected that mosquito-malaria relationships are based, as are many other host-parasite systems, on host genotype by parasite genotype interactions. In such systems, certain hosts are resistant

Louis Lambrechts; Jean Halbert; Patrick Durand; Louis C Gouagna; Jacob C Koella

2005-01-01

171

Patterns of infection of the lizard malaria parasite, Plasmodium floridense, in invasive brown anoles (Anolis sagrei) in Southwestern Florida.  

PubMed

Plasmodium floridense is a saurian malaria parasite common in the Anolis lizards of the northern Caribbean islands and the SE USA. In the latter area, it is found in two native lizards (Sceloporus undulatus and Anolis carolinensis) and in the introduced Anolis sagrei, which is native to Cuba. We measured parasite prevalence and parasitemia in the introduced anole at a single site in North Port, Florida over 5 years. Prevalence, based on microscopic examination of blood smears, was high year-round (45.6% of adult lizards infected) but was highest in the two December collections and showed significant variation over time. The parasitemia of the P. floridense infections was extremely low, however, with a median of only three parasites per 1,000 red blood cells in infected lizards. This combination of high prevalence and low parasitemia suggests chronic infections for individual lizards and an endemic prevalence pattern. Our study also underscores the need for long-term studies to establish overall prevalence in malarial parasite systems. PMID:19085004

Perkins, Susan L; Kerwin, Allison S; Rothschild, Anna D

2009-04-01

172

Identification and functional analysis of the primary pantothenate transporter, PfPAT, of the human malaria parasite Plasmodium falciparum.  

PubMed

The human malaria parasite Plasmodium falciparum is absolutely dependent on the acquisition of host pantothenate for its development within human erythrocytes. Although the biochemical properties of this transport have been characterized, the molecular identity of the parasite-encoded pantothenate transporter remains unknown. Here we report the identification and functional characterization of the first protozoan pantothenate transporter, PfPAT, from P. falciparum. We show using cell biological, biochemical, and genetic analyses that this transporter is localized to the parasite plasma membrane and plays an essential role in parasite intraerythrocytic development. We have targeted PfPAT to the yeast plasma membrane and showed that the transporter complements the growth defect of the yeast fen2? pantothenate transporter-deficient mutant and mediates the entry of the fungicide drug, fenpropimorph. Our studies in P. falciparum revealed that fenpropimorph inhibits the intraerythrocytic development of both chloroquine- and pyrimethamine-resistant P. falciparum strains with potency equal or better than that of currently available pantothenate analogs. The essential function of PfPAT and its ability to deliver both pantothenate and fenpropimorph makes it an attractive target for the development and delivery of new classes of antimalarial drugs. PMID:23729665

Augagneur, Yoann; Jaubert, Lise; Schiavoni, Matthieu; Pachikara, Niseema; Garg, Aprajita; Usmani-Brown, Sahar; Wesolowski, Donna; Zeller, Skye; Ghosal, Abhisek; Cornillot, Emmanuel; Said, Hamid M; Kumar, Priti; Altman, Sidney; Ben Mamoun, Choukri

2013-07-12

173

Drug-induced permeabilization of parasite's digestive vacuole is a key trigger of programmed cell death in Plasmodium falciparum  

PubMed Central

Having previously characterized chloroquine (CQ)-induced programmed cell death (PCD) hallmarks in the malaria parasite Plasmodium falciparum and delineating a pathway linking these features, the roles of non-classical mediators were investigated in this paper. It was shown that the later stages of this pathway are Ca2+-dependent and transcriptionally regulated. Moreover, it was demonstrated for the first time that micromolar concentrations of CQ partially permeabilized the parasite's digestive vacuole (DV) membrane and that this important upstream event appears to precede mitochondrial dysfunction. This permeabilization of the DV occurred without rupture of the DV membrane and was reminiscent of lysosome-mediated cell death in mammalian cells. As such micromolar concentrations of CQ are found in the patient's plasma after initial CQ loading, this alludes to a clinically relevant antimalarial mechanism of the drug which has yet to be recognized. Furthermore, other ‘non-antimalarial' lysosomotropic compounds were also shown to cause DV permeabilization, triggering PCD in both CQ-sensitive and -resistant parasites. These findings present new avenues for antimalarial developments, which induce DV destabilization to kill parasites. PMID:21993392

Ch'Ng, J-H; Liew, K; Goh, A S-P; Sidhartha, E; Tan, K S-W

2011-01-01

174

Studies on the effects of sida acuta and vetiveria zizanioides against the malarial vector, anopheles stephensi and malarial parasite, plasmodium berghei  

Technology Transfer Automated Retrieval System (TEKTRAN)

Methanolic extracts of Sida acuta and Vetiveria zizanioides leaves and root were studied for toxicity to Anopheles stephensi mosquitoes and to the malaria parasite Plasmodium berghei in mice. The extracts reduced parasitemia levels in mice by 17-69%, depending on extract concentration. Median le...

175

The origin and diversification of the merozoite surface protein 3 (msp3) multi-gene family in Plasmodium vivax and related parasites.  

PubMed

The genus Plasmodium is a diversified group of parasites with more than 200 known species that includes those causing malaria in humans. These parasites use numerous proteins in a complex process that allows them to invade the red blood cells of their vertebrate hosts. Many of those proteins are part of multi-gene families; one of which is the merozoite surface protein-3 (msp3) family. The msp3 multi-gene family is considered important in the two main human parasites, Plasmodium vivax and Plasmodium falciparum, as its paralogs are simultaneously expressed in the blood stage (merozoite) and are immunogenic. There are large differences among Plasmodium species in the number of paralogs in this family. Such differences have been previously explained, in part, as adaptations that allow the different Plasmodium species to invade their hosts. To investigate this, we characterized the array containing msp3 genes among several Plasmodium species, including P. falciparum and P. vivax. We first found no evidence indicating that the msp3 family of P. falciparum was homologous to that of P. vivax. Subsequently, by focusing on the diverse clade of nonhuman primate parasites to which P. vivax is closely related, where homology was evident, we found no evidence indicating that the interspecies variation in the number of paralogs was an adaptation related to changes in host range or host switches. Overall, we hypothesize that the evolution of the msp3 family in P. vivax is consistent with a model of multi-allelic diversifying selection where the paralogs may have functionally redundant roles in terms of increasing antigenic diversity. Thus, we suggest that the expressed MSP3 proteins could serve as "decoys", via antigenic diversity, during the critical process of invading the host red blood cells. PMID:24862221

Rice, Benjamin L; Acosta, Mónica M; Pacheco, M Andreína; Carlton, Jane M; Barnwell, John W; Escalante, Ananias A

2014-09-01

176

Target evaluation of deoxyhypusine synthase from Theileria parva the neglected animal parasite and its relationship to Plasmodium.  

PubMed

East Coast fever (ECF) is a tick-borne disease caused by the parasite Theileria parva which infects cattle. In Sub-Saharan Africa it leads to enormous economic costs. After a bite of a tick, sporozoites invade the host lymphocytes and develop into schizonts. At this stage the parasite transforms host lymphocytes resulting in the clonal expansion of infected lymphocytes. Animals develop a lymphoma like disorder after infection which is rapidly fatal. Hitherto, a few drugs of the quinone type can cure the disease. However, therapy can only be successful after early diagnosis. The genera Theileria and Plasmodium, which includes the causative agent of human malaria, are closely related apicomplexan parasites. Enzymes of the hypusine pathway, a posttranslational modification in eukaryotic initiation factor EIF-5A, have shown to be druggable targets in Plasmodium. We identified the first enzyme of the hypusine pathway from T. parva, the deoxyhypusine synthase (DHS), which is located on chromosome 2 of the Muguga strain. Transcription is significantly increased in schizonts. The expressed T. parva DHS reveals an open reading frame (ORF) of 370 amino acids after expression in Escherichia coli Rosetta cells with a molecular size of 41.26 kDa and a theoretical pI of 5.26. Screening of the Malaria Box which consists of 400 active compounds resulted in a novel heterocyclic compound with a guanyl spacer which reduced the activity of T. parva DHS to 45%. In sum, the guanyl residue seems to be an important lead structure for inhibition of Theileria DHS. Currently, more different guanyl analogues from the Malaria Box are tested in inhibitor experiments to determine their efficacy. PMID:24909679

Njuguna, James T; von Koschitzky, Imke; Gerhardt, Heike; Lämmerhofer, Michael; Choucry, Ali; Pink, Mario; Schmitz-Spahnke, Simone; Bakheit, Mohammed A; Strube, Christina; Kaiser, Annette

2014-08-01

177

Evolution of the Multi-Domain Structures of Virulence Genes in the Human Malaria Parasite, Plasmodium  

E-print Network

Evolution of the Multi-Domain Structures of Virulence Genes in the Human Malaria Parasite sequestration of parasitized red blood cells in vital organs, including the brain or placenta. Acquisition on the level of an individual gene may have also shaped the parasite's gene repertoire. The observed

Arnold, Jonathan

178

In vitro activity of wALADin benzimidazoles against different life cycle stages of Plasmodium parasites.  

PubMed

wALADin1 benzimidazoles are specific inhibitors of ?-aminolevulinic acid dehydratase from Wolbachia endobacteria of filarial nematodes. We report that wALADin1 and two derivatives killed blood stage Plasmodium falciparum in vitro (50% inhibitory concentrations, 39, 7.7, and 12.8 ?M, respectively). One of these derivatives inhibited gliding motility of Plasmodium berghei ANKA infectious sporozoites with nanomolar affinity and blocked invasion into hepatocytes but did not affect intrahepatocytic replication. Hence, wALADin1 benzimidazoles are tools to study gliding motility and potential antiplasmodial drug candidates. PMID:25313210

Lentz, Christian S; Sattler, Julia M; Fendler, Martina; Gottwalt, Simon; Halls, Victoria S; Strassel, Silke; Arriens, Sandra; Hannam, Jeffrey S; Specht, Sabine; Famulok, Michael; Mueller, Ann-Kristin; Hoerauf, Achim; Pfarr, Kenneth M

2015-01-01

179

Global distribution of polymorphisms associated with delayed Plasmodium falciparum parasite clearance following artemisinin treatment: Genotyping of archive blood samples.  

PubMed

The recent emergence and spread of artemisinin-resistant Plasmodium falciparum isolates is a growing concern for global malaria-control efforts. A recent genome-wide analysis study identified two SNPs at genomic positions MAL10-688956 and MAL13-1718319, which are linked to delayed clearance of parasites following artemisinin combination therapy (ACT). It is expected that continuous artemisinin pressure will affect the distribution of these SNPs. Here, we investigate the worldwide distribution of these SNPs using a large number of archived samples in order to generate baseline data from the period before the emergence of ACT resistance. The presence of SNPs in MAL10-688956 and MAL13-1718319 was assessed by nested PCR RFLP and direct DNA sequencing using 653 global P. falciparum samples obtained before the reported emergence of ACT resistance. SNPs at MAL10-688956 and MAL13-1718319 associated with delayed parasite clearance following ACT administration were observed in 8% and 3% of parasites, respectively, mostly in Cambodia and Thailand. Parasites harbouring both SNPs were found in only eight (1%) isolates, all of which were from Cambodia and Thailand. Linkage disequilibrium was detected between MAL10-688956 and MAL13-1718319, suggesting that this SNP combination may have been selected by ACT drug pressure. Neither of the SNPs associated with delayed parasite clearance were observed in samples from Africa or South America. Baseline information of the geographical difference of MAL10-688956 and MAL13-1718319 SNPs provides a solid basis for assessing whether these SNPs are selected by artemisinin-based combination therapies. PMID:25449286

Murai, Kenji; Culleton, Richard; Hisaoka, Teruhiko; Endo, Hiroyoshi; Mita, Toshihiro

2015-06-01

180

Characterization of Plasmodium falciparum cdc2-related kinase and the effects of a CDK inhibitor on the parasites in erythrocytic schizogony.  

PubMed

The cell cycle of Plasmodium is unique among major eukaryotic cell cycle models. Cyclin-dependent kinases (CDKs) are thought to be the key molecular switches that regulate cell cycle progression in the parasite. However, little information is available about Plasmodium CDKs. The present study was performed to investigate the effects of a CDK inhibitor, olomoucine, on the erythrocytic growth of Plasmodium falciparum. This agent inhibited the growth of the parasite at the trophozoite/schizont stage. Furthermore, we characterized the Plasmodium CDK homolog, P. falciparum cdc2-related kinase-1 (Pfcrk-1), which is a potential target of olomoucine. We synthesized a functional kinase domain of Pfcrk-1 as a GST fusion protein using a wheat germ protein expression system, and examined its phosphorylation activity. The activity of this catalytic domain was higher than that of GST-GFP control, but the same as that of a kinase-negative mutant of Pfcrk-1. After the phosphatase treatment, the labeling of [?-(32)P]ATP was abolished. Recombinant human cyclin proteins were added to these kinase reactions, but there were no differences in activity. This report provides important information for the future investigation of Plasmodium CDKs. PMID:23688804

Iwanaga, Tatsuya; Sugi, Tatsuki; Kobayashi, Kyousuke; Takemae, Hitoshi; Gong, Haiyan; Ishiwa, Akiko; Murakoshi, Fumi; Recuenco, Frances C; Horimoto, Taisuke; Akashi, Hiroomi; Kato, Kentaro

2013-10-01

181

Expression of senescent antigen on erythrocytes infected with a knobby variant of the human malaria parasite Plasmodium falciparum  

SciTech Connect

Erythrocytes infected with a knobby variant of Plasmodium falciparum selectively bind IgG autoantibodies in normal human serum. Quantification of membrane-bound IgG, by use of /sup 125/I-labeled protein A, revealed that erythrocytes infected with the knobby variant bound 30 times more protein A than did noninfected erythrocytes; infection with a knobless variant resulted in less than a 2-fold difference compared with noninfected erythrocytes. IgG binding to knobby erythrocytes appeared to be related to parasite development, since binding of /sup 125/I-labeled protein A to cells bearing young trophozoites (less than 20 hr after parasite invasion) was similar to binding to uninfected erythrocytes. By immunoelectron microscopy, the membrane-bound IgG on erythrocytes infected with the knobby variant was found to be preferentially associated with the protuberances (knobs) of the plasma membrane. The removal of aged or senescent erythrocytes from the peripheral circulation is reported to involve the binding of specific antibodies to an antigen (senescent antigen) related to the major erythrocyte membrane protein band 3. Since affinity-purified autoantibodies against band 3 specifically bound to the plasma membrane of erythrocytes infected with the knobby variant of P. falciparum, it is clear that the malaria parasite induces expression of senescent antigen.

Winograd, E.; Greenan, J.R.T.; Sherman, I.W.

1987-04-01

182

Clonal diversity of a malaria parasite, Plasmodium mexicanum, and its transmission success from its vertebrate-to-insect host.  

PubMed

Infections of the lizard malaria parasite Plasmodium mexicanum are often genetically complex within their fence lizard host (Sceloporus occidentalis) harbouring two or more clones of parasite. The role of clonal diversity in transmission success was studied for P. mexicanum by feeding its sandfly vectors (Lutzomyia vexator and Lutzomyia stewarti) on experimentally infected lizards. Experimental infections consisted of one, two, three or more clones, assessed using three microsatellite markers. After 5days, vectors were dissected to assess infection status, oocyst burden and genetic composition of the oocysts. A high proportion (92%) of sandflies became infected and carried high oocyst burdens (mean of 56 oocysts) with no influence of clonal diversity on these two measures of transmission success. Gametocytemia was positively correlated with transmission success and the more common vector (L. vexator) developed more oocysts on midguts. A high proportion ( approximately 74%) of all alleles detected in the lizard blood was found in infected vectors. The relative proportion of clones within mixed infections, determined by peak heights on pherograms produced by the genetic analyser instrument, was very similar for the lizard's blood and infections in the vectors. These results demonstrate that P. mexicanum achieves high transmission success, with most clones making the transition from vertebrate-to-insect host, and thus explains in part the high genetic diversity of the parasite among all hosts at the study site. PMID:19523471

Vardo-Zalik, A M

2009-12-01

183

Inhibitory Potential of Prodomain of Plasmodium falciparum Protease Serine Repeat Antigen 5 for Asexual Blood Stages of Parasite  

PubMed Central

Plasmodium falciparum serine repeat antigen 5 (SERA5) is a target for both drug and vaccine intervention against malaria. SERA5 is secreted in the parasitophorous vacuole where it is proteolytically processed before schizont rupture. Among the processed products is a 50.8-kDa central domain of the protease, which possesses chymotrypsin-like activity and consists of a 28.9-kDa catalytic domain with a 21.9-kDa N-terminal prodomain, which remain attached together. Because SERA5 has been implicated in merozoite egress from host erythrocytes, the effect of the prodomain and a heptapeptide derived from its C-terminus spanning from D560 to F566 (DNSDNMF) on parasite growth was studied. When E. coli-expressed prodomain was incubated with parasite culture, a significant delay in transition from schizont to ring stages was observed up to nanomolar concentrations. The peptide, DNSDNMF also showed similar effects but at nearly 1000-fold higher concentrations. The peptide was also found to interact with the catalytic domain. These data demonstrate the crucial role of SERA5 prodomain for the egress process. Given the inhibitory potential of the prodomain for the parasite, we suggest that peptidomimetic inhibitors based on SERA5 prodomain sequences can be developed as future therapeutics against malaria. PMID:22291957

Alam, Asrar; Chauhan, Virander S.

2012-01-01

184

Sequence-based association and selection scans identify drug resistance loci in the Plasmodium falciparum malaria parasite  

PubMed Central

Through rapid genetic adaptation and natural selection, the Plasmodium falciparum parasite—the deadliest of those that cause malaria—is able to develop resistance to antimalarial drugs, thwarting present efforts to control it. Genome-wide association studies (GWAS) provide a critical hypothesis-generating tool for understanding how this occurs. However, in P. falciparum, the limited amount of linkage disequilibrium hinders the power of traditional array-based GWAS. Here, we demonstrate the feasibility and power improvements gained by using whole-genome sequencing for association studies. We analyzed data from 45 Senegalese parasites and identified genetic changes associated with the parasites’ in vitro response to 12 different antimalarials. To further increase statistical power, we adapted a common test for natural selection, XP-EHH (cross-population extended haplotype homozygosity), and used it to identify genomic regions associated with resistance to drugs. Using this sequence-based approach and the combination of association and selection-based tests, we detected several loci associated with drug resistance. These loci included the previously known signals at pfcrt, dhfr, and pfmdr1, as well as many genes not previously implicated in drug-resistance roles, including genes in the ubiquitination pathway. Based on the success of the analysis presented in this study, and on the demonstrated shortcomings of array-based approaches, we argue for a complete transition to sequence-based GWAS for small, low linkage-disequilibrium genomes like that of P. falciparum. PMID:22826220

Park, Daniel J.; Lukens, Amanda K.; Neafsey, Daniel E.; Schaffner, Stephen F.; Chang, Hsiao-Han; Valim, Clarissa; Ribacke, Ulf; Van Tyne, Daria; Galinsky, Kevin; Galligan, Meghan; Becker, Justin S.; Ndiaye, Daouda; Mboup, Souleymane; Wiegand, Roger C.; Hartl, Daniel L.; Sabeti, Pardis C.; Wirth, Dyann F.; Volkman, Sarah K.

2012-01-01

185

Loss of pH Control in Plasmodium falciparum Parasites Subjected to Oxidative Stress  

PubMed Central

The intraerythrocytic malaria parasite is susceptible to oxidative stress and this may play a role in the mechanism of action of some antimalarial agents. Here we show that exposure of the intraerythrocytic malaria parasite to the oxidising agent hydrogen peroxide results in a fall in the intracellular ATP level and inhibition of the parasite's V-type H+-ATPase, causing a loss of pH control in both the parasite cytosol and the internal digestive vacuole. In contrast to the V-type H+-ATPase, the parasite's digestive vacuole H+-pyrophosphatase is insensitive to hydrogen peroxide-induced oxidative stress. This work provides insights into the effects of oxidative stress on the intraerythrocytic parasite, as well as providing an alternative possible explanation for a previous report that light-induced oxidative stress causes selective lysis of the parasite's digestive vacuole. PMID:23536836

van Schalkwyk, Donelly A.; Saliba, Kevin J.; Biagini, Giancarlo A.; Bray, Patrick G.; Kirk, Kiaran

2013-01-01

186

Global warming will reshuffle the areas of high prevalence and richness of three genera of avian blood parasites.  

PubMed

The importance of parasitism for host populations depends on local parasite richness and prevalence: usually host individuals face higher infection risk in areas where parasites are most diverse, and host dispersal to or from these areas may have fitness consequences. Knowing how parasites are and will be distributed in space and time (in a context of global change) is thus crucial from both an ecological and a biological conservation perspective. Nevertheless, most research articles focus just on elaborating models of parasite distribution instead of parasite diversity. We produced distribution models of the areas where haemosporidian parasites are currently highly diverse (both at community and at within-host levels) and prevalent among Iberian populations of a model passerine host: the blackcap Sylvia atricapilla; and how these areas are expected to vary according to three scenarios of climate change. On the basis of these models, we analysed whether variation among populations in parasite richness or prevalence are expected to remain the same or change in the future, thereby reshuffling the geographic mosaic of host-parasite interactions as we observe it today. Our models predict a rearrangement of areas of high prevalence and richness of parasites in the future, with Haemoproteus and Leucocytozoon parasites (today the most diverse genera in blackcaps) losing areas of high diversity and Plasmodium parasites (the most virulent ones) gaining them. Likewise, the prevalence of multiple infections and parasite infracommunity richness would be reduced. Importantly, differences among populations in the prevalence and richness of parasites are expected to decrease in the future, creating a more homogeneous parasitic landscape. This predicts an altered geographic mosaic of host-parasite relationships, which will modify the interaction arena in which parasite virulence evolves. PMID:24488566

Pérez-Rodríguez, Antón; de la Hera, Iván; Fernández-González, Sofía; Pérez-Tris, Javier

2014-08-01

187

A Receptor for the Malarial Parasite Plasmodium vivax: The Erythrocyte Chemokine Receptor  

Microsoft Academic Search

Plasmodium vivax and P. falciparum are the major causes of human malaria, except in sub-Saharan Africa where people lack the Duffy blood group antigen, the erythrocyte receptor for P. vivax. Duffy negative human erythrocytes are resistant to invasion by P. vivax and the related monkey malaria, P. knowlesi. Several lines of evidence in the present study indicate that the Duffy

Richard Horuk; Chetan E. Chitnis; Walter C. Darbonne; Timothy J. Colby; Anne Rybicki; Terence J. Hadley; Louis H. Miller

1993-01-01

188

Plasmodium in the Postgenomic Era: New Insights into the Molecular Cell Biology of Malaria Parasites  

Microsoft Academic Search

In this review, we bring together some of the approaches toward understanding the cellular and molecular biology of Plasmodium species and their interaction with their host red blood cells. Considerable impetus has come from the development of new methods of molecular genetics and bioinformatics, and it is important to evaluate the wealth of these novel data in the context of

Celia R. S. Garcia; Mauro F. de Azevedo; Gerhard Wunderlich; Alexandre Budu; Jason A. Young; Lawrence Bannister

2008-01-01

189

Horizontal gene transfer of epigenetic machinery and evolution of parasitism in the malaria parasite Plasmodium falciparum and other apicomplexans  

PubMed Central

Background The acquisition of complex transcriptional regulatory abilities and epigenetic machinery facilitated the transition of the ancestor of apicomplexans from a free-living organism to an obligate parasite. The ability to control sophisticated gene expression patterns enabled these ancient organisms to evolve several differentiated forms, invade multiple hosts and evade host immunity. How these abilities were acquired remains an outstanding question in protistan biology. Results In this work, we study SET domain bearing genes that are implicated in mediating immune evasion, invasion and cytoadhesion pathways of modern apicomplexans, including malaria parasites. We provide the first conclusive evidence of a horizontal gene transfer of a Histone H4 Lysine 20 (H4K20) modifier, Set8, from an animal host to the ancestor of apicomplexans. Set8 is known to contribute to the coordinated expression of genes involved in immune evasion in modern apicomplexans. We also show the likely transfer of a H3K36 methyltransferase (Ashr3 from plants), possibly derived from algal endosymbionts. These transfers appear to date to the transition from free-living organisms to parasitism and coincide with the proposed horizontal acquisition of cytoadhesion domains, the O-glycosyltransferase that modifies these domains, and the primary family of transcription factors found in apicomplexan parasites. Notably, phylogenetic support for these conclusions is robust and the genes clearly are dissimilar to SET sequences found in the closely related parasite Perkinsus marinus, and in ciliates, the nearest free-living organisms with complete genome sequences available. Conclusions Animal and plant sources of epigenetic machinery provide new insights into the evolution of parasitism in apicomplexans. Along with the horizontal transfer of cytoadhesive domains, O-linked glycosylation and key transcription factors, the acquisition of SET domain methyltransferases marks a key transitional event in the evolution to parasitism in this important protozoan lineage. PMID:23398820

2013-01-01

190

Effect of thioredoxin peroxidase-1 gene disruption on the liver stages of the rodent malaria parasite Plasmodium berghei.  

PubMed

Phenotypic observation of thioredoxin peroxidase-1 (TPx-1) gene-disrupted Plasmodium berghei (TPx-1 KO) in the liver-stage was performed with an in vitro infection system in order to investigate defective liver-stage development in a mouse infection model. Indirect immunofluorescence microscopy assay with anti-circumsporozoite protein antibody revealed that in the liver schizont stage, TPx-1 KO parasite cells were significantly smaller than cells of the wild-type parent strain (WT). Indirect immunofluorescence microscopy assay with anti-merozoite surface protein-1 antibody, which was used to evaluate late schizont-stage development, indicated that TPx-1 KO schizont development was similar to WT strain development towards the merozoite-forming stage (mature schizont). However, fewer merozoites were produced in the mature TPx-1 KO schizont than in the mature WT schizont. Taken together, the results suggest that TPx-1 may be involved in merozoite formation during liver schizont development. PMID:25284813

Usui, Miho; Masuda-Suganuma, Hirono; Fukumoto, Shinya; Angeles, Jose Ma M; Hakimi, Hassan; Inoue, Noboru; Kawazu, Shin-Ichiro

2015-06-01

191

Immunogenicity and protective efficacy of a recombinant yellow fever vaccine against the murine malarial parasite Plasmodium yoelii  

PubMed Central

The live-attenuated yellow fever vaccine (YF17D) is one of the safest and most effective vaccines available today. Here, YF17D was genetically altered to express the circumsporozoite protein (CSP) from the murine malarial parasite Plasmodium yoelii. Reconstituted recombinant virus was viable and exhibited robust CSP expression. Immunization of naïve mice resulted in extensive proliferation of adoptively transferred CSP-specific transgenic CD8+ T cells. A single immunization of naïve mice with recombinant YF17D resulted robust production of IFN-? by CD8+ T cells and IFN-? and IL-2 by CD4+ T cells. A prime-boost regimen consisting of recombinant virus followed by a low dose of irradiated sporozoites conferred protection against challenge with P. yoelii. Taken together, these results show that recombinant YF17D can efficiently express CSP in culture, and prime a protective immune response in vivo. PMID:20451637

Stoyanov, Cristina T.; Boscardin, Silvia B.; Deroubaix, Stephanie; Barba-Spaeth, Giovanna; Franco, David; Nussenzweig, Ruth S.; Nussenzweig, Michel; Rice, Charles M.

2010-01-01

192

Identification of a potent combination of key Plasmodium falciparum merozoite antigens that elicit strain-transcending parasite-neutralizing antibodies.  

PubMed

Blood-stage malaria vaccines that target single Plasmodium falciparum antigens involved in erythrocyte invasion have not induced optimal protection in field trials. Blood-stage malaria vaccine development has faced two major hurdles, antigenic polymorphisms and molecular redundancy, which have led to an inability to demonstrate potent, strain-transcending, invasion-inhibitory antibodies. Vaccines that target multiple invasion-related parasite proteins may inhibit erythrocyte invasion more efficiently. Our approach is to develop a receptor-blocking blood-stage vaccine against P. falciparum that targets the erythrocyte binding domains of multiple parasite adhesins, blocking their interaction with their receptors and thus inhibiting erythrocyte invasion. However, with numerous invasion ligands, the challenge is to identify combinations that elicit potent strain-transcending invasion inhibition. We evaluated the invasion-inhibitory activities of 20 different triple combinations of antibodies mixed in vitro against a diverse set of six key merozoite ligands, including the novel ligands P. falciparum apical asparagine-rich protein (PfAARP), EBA-175 (PfF2), P. falciparum reticulocyte binding-like homologous protein 1 (PfRH1), PfRH2, PfRH4, and Plasmodium thrombospondin apical merozoite protein (PTRAMP), which are localized in different apical organelles and are translocated to the merozoite surface at different time points during invasion. They bind erythrocytes with different specificities and are thus involved in distinct invasion pathways. The antibody combination of EBA-175 (PfF2), PfRH2, and PfAARP produced the most efficacious strain-transcending inhibition of erythrocyte invasion against diverse P. falciparum clones. This potent antigen combination was selected for coimmunization as a mixture that induced balanced antibody responses against each antigen and inhibited erythrocyte invasion efficiently. We have thus demonstrated a novel two-step screening approach to identify a potent antigen combination that elicits strong strain-transcending invasion inhibition, supporting its development as a receptor-blocking malaria vaccine. PMID:23184525

Pandey, Alok K; Reddy, K Sony; Sahar, Tajali; Gupta, Sonal; Singh, Hina; Reddy, E Jyotheeswara; Asad, Mohd; Siddiqui, Faiza A; Gupta, Pankaj; Singh, Bijender; More, Kunal R; Mohmmed, Asif; Chitnis, Chetan E; Chauhan, Virander S; Gaur, Deepak

2013-02-01

193

Kinetics of B Cell Responses to Plasmodium falciparum Erythrocyte Membrane Protein 1 in Ghanaian Women Naturally Exposed to Malaria Parasites  

PubMed Central

Naturally acquired protective immunity to Plasmodium falciparum malaria takes years to develop. It relies mainly on Abs, particularly IgG specific for Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) proteins on the infected erythrocyte surface. It is only partially understood why acquisition of clinical protection takes years to develop, but it probably involves a range of immune-evasive parasite features, not least of which are PfEMP1 polymorphism and clonal variation. Parasite-induced subversion of immunological memory and expansion of “atypical” memory B cells may also contribute. In this first, to our knowledge, longitudinal study of its kind, we measured B cell subset composition, as well as PfEMP1-specific Ab levels and memory B cell frequencies, in Ghanaian women followed from early pregnancy up to 1 y after delivery. Cell phenotypes and Ag-specific B cell function were assessed three times during and after pregnancy. Levels of IgG specific for pregnancy-restricted, VAR2CSA-type PfEMP1 increased markedly during pregnancy and declined after delivery, whereas IgG levels specific for two PfEMP1 proteins not restricted to pregnancy did not. Changes in VAR2CSA-specific memory B cell frequencies showed typical primary memory induction among primigravidae and recall expansion among multigravidae, followed by contraction postpartum in all. No systematic changes in the frequencies of memory B cells specific for the two other PfEMP1 proteins were identified. The B cell subset analysis confirmed earlier reports of high atypical memory B cell frequencies among residents of P. falciparum–endemic areas, and indicated an additional effect of pregnancy. Our study provides new knowledge regarding immunity to P. falciparum malaria and underpins efforts to develop PfEMP1-based vaccines against this disease. PMID:24760153

Ampomah, Paulina; Stevenson, Liz; Ofori, Michael F.; Barfod, Lea

2014-01-01

194

Delayed parasite clearance after treatment with dihydroartemisinin-piperaquine in Plasmodium falciparum malaria patients in central Vietnam.  

PubMed

Reduced susceptibility of Plasmodium falciparum toward artemisinin derivatives has been reported from the Thai-Cambodian and Thai-Myanmar borders. Following increasing reports from central Vietnam of delayed parasite clearance after treatment with dihydroartemisinin-piperaquine (DHA-PPQ), the current first-line treatment, we carried out a study on the efficacy of this treatment. Between September 2012 and February 2013, we conducted a 42-day in vivo and in vitro efficacy study in Quang Nam Province. Treatment was directly observed, and blood samples were collected twice daily until parasite clearance. In addition, genotyping, quantitative PCR (qPCR), and in vitro sensitivity testing of isolates was performed. The primary endpoints were parasite clearance rate and time. The secondary endpoints included PCR-corrected and uncorrected cure rates, qPCR clearance profiles, in vitro sensitivity results (for chloroquine, dihydroartemisinin, and piperaquine), and genotyping for mutations in the Kelch 13 propeller domain. Out of 672 screened patients, 95 were recruited and 89 available for primary endpoint analyses. The median parasite clearance time (PCT) was 61.7 h (interquartile range [IQR], 47.6 to 83.2 h), and the median parasite clearance rate had a slope half-life of 6.2 h (IQR, 4.4 to 7.5 h). The PCR-corrected efficacy rates were estimated at 100% at day 28 and 97.7% (95% confidence interval, 91.2% to 99.4%) at day 42. At day 3, the P. falciparum prevalence by qPCR was 2.5 times higher than that by microscopy. The 50% inhibitory concentrations (IC50s) of isolates with delayed clearance times (? 72 h) were significantly higher than those with normal clearance times for all three drugs. Delayed parasite clearance (PCT, ? 72 h) was significantly higher among day 0 samples carrying the 543 mutant allele (47.8%) than those carrying the wild-type allele (1.8%; P = 0.048). In central Vietnam, the efficacy of DHA-PPQ is still satisfactory, but the parasite clearance time and rate are indicative of emerging artemisinin resistance. (This study has been registered at ClinicalTrials.gov under registration no. NCT01775592.). PMID:25224002

Thriemer, Kamala; Hong, Nguyen Van; Rosanas-Urgell, Anna; Phuc, Bui Quang; Ha, Do Manh; Pockele, Evi; Guetens, Pieter; Van, Nguyen Van; Duong, Tran Thanh; Amambua-Ngwa, Alfred; D'Alessandro, Umberto; Erhart, Annette

2014-12-01

195

Molecular Evidence of Plasmodium vivax Mono and Mixed Malaria Parasite Infections in Duffy-Negative Native Cameroonians  

PubMed Central

The malaria parasite Plasmodium vivax is known to be majorly endemic to Asian and Latin American countries with no or very few reports of Africans infected with this parasite. Since the human Duffy antigens act as receptors for P. vivax to invade human RBCs and Africans are generally Duffy-negative, non-endemicity of P. vivax in Africa has been attributed to this fact. However, recent reports describing P. vivax infections in Duffy-negative Africans from West and Central parts of Africa have been surfaced including a recent report on P. vivax infection in native Cameroonians. In order to know if Cameroonians living in the southern regions are also susceptible to P. vivax infection, we collected finger-prick blood samples from 485 malarial symptomatic patients in five locations and followed PCR diagnostic assays with DNA sequencing of the 18S ribosomal RNA gene. Out of the 201 malaria positive cases detected, 193 were pure P. falciparum, six pure P. vivax and two mixed parasite infections (P. falciparum + P. vivax). The eight P. vivax infected samples (six single + two mixed) were further subjected to DNA sequencing of the P. vivax multidrug resistance 1 (pvmdr1) and the P.vivax circumsporozoite (pvcsp) genes. Alignment of the eight Cameroonian pvmdr1 sequences with the reference sequence showed high sequence similarities, reconfirming P. vivax infection in all the eight patients. DNA sequencing of the pvcsp gene indicated all the eight P. vivax to be of VK247 type. Interestingly, DNA sequencing of a part of the human Duffy gene covering the promoter region in the eight P. vivax-infected Cameroonians to identify the T-33C mutation revealed all these patients as Duffy-negative. The results provide evidence of single P. vivax as well as mixed malaria parasite infection in native Cameroonians and add knowledge to the growing evidences of P. vivax infection in Duffy-negative Africans. PMID:25084090

Ngassa Mbenda, Huguette Gaelle; Das, Aparup

2014-01-01

196

Membrane-associated electron-dense material of the asexual stages of Plasmodium falciparum: evidence for movement from the intracellular parasite to the erythrocyte membrane.  

PubMed

Electron-dense material (EDM) appears at the parasite plasma membrane with trophozoites of several strains of Plasmodium falciparum cultured in vitro. The EDM is also seen associated with unit membrane-bounded Maurer's clefts in K+ P. falciparum-infected erythrocytes. The cytoplasmic clefts lack the EDM with K- parasites. Some EDM have the same density and appearance as the material located under knobs at the erythrocyte membrane. The EDM at the parasite plasma membrane is absent with schizonts when expression of new knobs at the erythrocyte membrane appears to have ceased. This electron microscopic study suggests that the parasite-derived EDM is transported from the parasite plasmalemma to the erythrocyte membrane via Maurer's clefts in the erythrocyte cytoplasm. PMID:3511749

Aikawa, M; Uni, Y; Andrutis, A T; Howard, R J

1986-01-01

197

Molecular cloning, characterization and expression profile of a glutathione peroxidase-like thioredoxin peroxidase (TPxGl) of the rodent malaria parasite Plasmodium berghei.  

PubMed

Glutathione peroxidases (GPx) comprise an important group of redox active proteins with diverse functions, including antioxidant defense and signaling. Although the genome of the malaria parasite Plasmodium does not contain a genuine GPx gene a glutathione peroxidase-like thioredoxin peroxidase (TPxGl) has recently been identified and biochemically characterized in the human malaria parasite P. falciparum. To gain more insight into the potential biological function of this enzyme we have cloned and expressed TPxGl of the rodent model system P. berghei (PbTPxGl). Biochemical characterization confirmed that the protein is redox active with the P. berghei thioredoxin system. We compared PbTPxGl to recently characterized thioredoxin-dependent GPx-type proteins of other organisms, and generated the first hypothetical 3D model of a Plasmodium TPxGl, which shows the conservation of the thioredoxin-fold as well as the spatial orientation of a classic GPx catalytic tetrad. In vivo studies indicate that PbTPxGl is continuously expressed in all P. berghei asexual blood stages, gametocytes and in early mosquito-stage parasites. Confocal microscopy suggest a cytoplasmic localization of PbTPxGl in all investigated parasite life stages, specifically in mature ookinetes. Our data provides new insights into the structure and ubiquitous expression of Plasmodium TPxGl and warrants further investigation into this potentially important redox enzyme. PMID:24637102

Haselton, Kyle J; David, Robin; Fell, Katherine; Schulte, Emily; Dybas, Matthew; Olsen, Kenneth W; Kanzok, Stefan M

2015-06-01

198

Plasmodium falciparum rhoptry neck protein 5 peptides bind to human red blood cells and inhibit parasite invasion.  

PubMed

Plasmodium falciparum malaria parasite invasion of erythrocytes is an essential step in host infection and the proteins involved in such invasion are the main target in developing an antimalarial vaccine. Secretory organelle-derived proteins (micronemal AMA1 protein and the RON2, 4, and 5 rhoptry neck proteins) have been recently described as components of moving junction complex formation allowing merozoites to move into a newly created parasitophorous vacuole. This study led to identifying RON5 regions involved in binding to human erythrocytes by using a highly robust, sensitive and specific receptor-ligand interaction assay; it is further shown that the RON5 protein remains highly conserved throughout different parasite strains. It is shown that the binding peptide-erythrocyte interaction is saturable and sensitive to chymotrypsin and trypsin. Invasion inhibition assays using erythrocyte binding peptides showed that the RON5-erythrocyte interaction could be critical for merozoite invasion of erythrocytes. This work provides evidence (for the first time) suggesting a fundamental role for RON5 in erythrocyte invasion. PMID:23932940

Curtidor, Hernando; Patiño, Liliana C; Arévalo-Pinzón, Gabriela; Vanegas, Magnolia; Patarroyo, Manuel E; Patarroyo, Manuel A

2014-03-01

199

An Adjustable Gas-Mixing Device to Increase Feasibility of In Vitro Culture of Plasmodium falciparum Parasites in the Field  

PubMed Central

A challenge to conducting high-impact and reproducible studies of the mechanisms of P. falciparum drug resistance, invasion, virulence, and immunity is the lack of robust and sustainable in vitro culture in the field. While the technology exists and is routinely utilized in developed countries, various factors–from cost, to supply, to quality–make it hard to implement in malaria endemic countries. Here, we design and rigorously evaluate an adjustable gas-mixing device for the in vitro culture of P. falciparum parasites in the field to circumvent this challenge. The device accurately replicates the gas concentrations needed to culture laboratory isolates, short-term adapted field isolates, cryopreserved previously non-adapted isolates, as well as to adapt ex vivo isolates to in vitro culture in the field. We also show an advantage over existing alternatives both in cost and in supply. Furthermore, the adjustable nature of the device makes it an ideal tool for many applications in which varied gas concentrations could be critical to culture success. This adjustable gas-mixing device will dramatically improve the feasibility of in vitro culture of Plasmodium falciparum parasites in malaria endemic countries given its numerous advantages. PMID:24603696

Volkman, Sarah K.; Ahouidi, Ambroise D.; Ndiaye, Daouda; Mboup, Souleymane; Wirth, Dyann F.

2014-01-01

200

The Evolutionary History of Plasmodium vivax as Inferred from Mitochondrial Genomes: Parasite Genetic Diversity in the Americas  

PubMed Central

Plasmodium vivax is the most prevalent human malaria parasite in the Americas. Previous studies have contrasted the genetic diversity of parasite populations in the Americas with those in Asia and Oceania, concluding that New World populations exhibit low genetic diversity consistent with a recent introduction. Here we used an expanded sample of complete mitochondrial genome sequences to investigate the diversity of P. vivax in the Americas as well as in other continental populations. We show that the diversity of P. vivax in the Americas is comparable to that in Asia and Oceania, and we identify several divergent clades circulating in South America that may have resulted from independent introductions. In particular, we show that several haplotypes sampled in Venezuela and northeastern Brazil belong to a clade that diverged from the other P. vivax lineages at least 30,000 years ago, albeit not necessarily in the Americas. We propose that, unlike in Asia where human migration increases local genetic diversity, the combined effects of the geographical structure and the low incidence of vivax malaria in the Americas has resulted in patterns of low local but high regional genetic diversity. This could explain previous views that P. vivax in the Americas has low genetic diversity because these were based on studies carried out in limited areas. Further elucidation of the complex geographical pattern of P. vivax variation will be important both for diversity assessments of genes encoding candidate vaccine antigens and in the formulation of control and surveillance measures aimed at malaria elimination. PMID:23733143

Taylor, Jesse E.; Pacheco, M. Andreína; Bacon, David J.; Beg, Mohammad A.; Machado, Ricardo Luiz; Fairhurst, Rick M.; Herrera, Socrates; Kim, Jung-Yeon; Menard, Didier; Póvoa, Marinete Marins; Villegas, Leopoldo; Mulyanto; Snounou, Georges; Cui, Liwang; Zeyrek, Fadile Yildiz; Escalante, Ananias A.

2013-01-01

201

Complete Gene Map of the Plastid-like DNA of the Malaria Parasite Plasmodium falciparum  

Microsoft Academic Search

Malaria parasites, and other parasitic protists of the Phylum Apicomplexa, carry a plastid-like genome with greatly reduced sequence complexity. This 35 kb DNA circle resembles the plastid DNA of non-photosynthetic plants, encoding almost exclusively components involved in gene expression. The complete gene map described here includes genes for duplicated large and small subunit rRNAs, 25 species of tRNA, three subunits

Paul W. Denny; Peter R. Preiser; Kaveri Rangachari; Kate Roberts; Anjana Roy; Andrea Whyte; Malcolm Strath; Daphne J. Moore; Peter W. Moore; Donald H. Williamson

1996-01-01

202

Bayesian analysis of new and old malaria parasite DNA sequence data demonstrates the need for more phylogenetic signal to clarify the descent of Plasmodium falciparum  

Microsoft Academic Search

Molecular systematic studies published during the last 15 years to clarify the phylogenetic relationships among the malaria\\u000a parasites have led to two major hypotheses on the descent of Plasmodium falciparum: One supports an avian origin as a result of a relatively recent host switch, and another one favours the evolutionary development\\u000a of P. falciparum together with its human host from primate

S. C. Hagner; B. Misof; W. A. Maier; H. Kampen

2007-01-01

203

Anti-folate drug resistance in Africa: meta-analysis of reported dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) mutant genotype frequencies in African Plasmodium falciparum parasite populations  

Microsoft Academic Search

BACKGROUND: Mutations in the dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) genes of Plasmodium falciparum are associated with resistance to anti-folate drugs, most notably sulphadoxine-pyrimethamine (SP). Molecular studies document the prevalence of these mutations in parasite populations across the African continent. However, there is no systematic review examining the collective epidemiological significance of these studies. This meta-analysis attempts to: 1)

Sankar Sridaran; Shannon K McClintock; Luke M Syphard; Karen M Herman; John W Barnwell; Venkatachalam Udhayakumar

2010-01-01

204

Acute Plasmodium chabaudi chabaudi Malaria Infection Induces Antibodies Which Bind to the Surfaces of Parasitized Erythrocytes and Promote Their Phagocytosis by Macrophages In Vitro  

PubMed Central

CBA/Ca mice infected with 5 × 104 Plasmodium chabaudi chabaudi AS-parasitized erythrocytes experience acute but self-limiting infections of relatively short duration. Parasitemia peaks (?40% infected erythrocytes) on day 10 or 11 and is then partially resolved over the ensuing 5 to 6 days, a period referred to as crisis. How humoral and cellular immune mechanisms contribute to parasite killing and/or clearance during crisis is controversial. Humoral immunity might be parasite variant, line, or species specific, while cellular immune responses would be relatively less specific. For P.?c. chabaudi AS, parasite clearance is largely species and line specific during this time, which suggests a primary role for antibody activity. Accordingly, acute-phase plasma (APP; taken from P.?c. chabaudi AS-infected mice at day 11 or 12 postinfection) was examined for the presence of parasite-specific antibody activity by enzyme-linked immunosorbent assay. Antibody binding to the surface of intact, live parasitized erythrocytes, particularly those containing mature (trophozoite and schizont) parasites, was demonstrated by immunofluorescence in APP and the immunoglobulin G (IgG)-containing fraction thereof. Unfractionated APP (from P.?c. chabaudi AS-infected mice), as well as its IgG fraction, specifically mediated the opsonization and internalization of P.?c. chabaudi AS-parasitized erythrocytes by macrophages in vitro. APP from another parasite line (P.?c. chabaudi CB) did not mediate the same effect against P.?c. chabaudi AS-parasitized erythrocytes. These results, which may represent one mechanism of parasite removal during crisis, are discussed in relation to the parasite variant, line, and species specificity of parasite clearance during this time. PMID:9712751

Mota, Maria M.; Brown, K. Neil; Holder, Anthony A.; Jarra, William

1998-01-01

205

Plasmodium falciparum Rab5B Is an N-Terminally Myristoylated Rab GTPase That Is Targeted to the Parasite's Plasma and Food Vacuole Membranes  

PubMed Central

Plasmodium falciparum (Pf) has a family of 11 Rab GTPases to regulate its vesicular transport. However, PfRab5B is unique in lacking a C-terminal geranyl-geranylation motif, while having N-terminal palmitoylation and myristoylation motifs. We show that the N-terminal glycine is required for PfRab5B myristoylation in vitro and when an N-terminal PfRab5B fragment possessing both acylation motifs is fused to GFP and expressed in transgenic P. falciparum parasites, the chimeric PfRab5B protein localizes to the plasma membrane. Upon substitution of the modified glycine by alanine the staining becomes diffuse and GFP is found in soluble subcellular fractions. Immuno-electron microscopy shows endogenous PfRab5B decorating the parasite's plasma and food vacuole membranes. Using reverse genetics rab5b couldn't be deleted from the haploid genome of asexual blood stage P. berghei parasites. The failure of PbRab5A or PbRab5C to complement for loss of PbRab5B function indicates non-overlapping roles for the three Plasmodium Rab5s, with PfRab5B involved in trafficking MSP1 to the food vacuole membrane and CK1 to the plasma membrane. We discuss similarities between Plasmodium Rab5B and Arabidopsis thaliana ARA6, a similarly unusual Rab5-like GTPase of plants. PMID:24498355

Ezougou, Carinne Ndjembo; Ben-Rached, Fathia; Moss, David K.; Lin, Jing-wen; Black, Sally; Knuepfer, Ellen; Green, Judith L.; Khan, Shahid M.; Mukhopadhyay, Amitabha; Janse, Chris J.; Coppens, Isabelle; Yera, Hélène; Holder, Anthony A.; Langsley, Gordon

2014-01-01

206

Perturbations of Plasmodium Puf2 Expression and RNA-seq of Puf2-Deficient Sporozoites Reveal a Critical Role in Maintaining RNA Homeostasis and Parasite Transmissibility  

PubMed Central

Summary Malaria's cycle of infection requires parasite transmission between a mosquito vector and a mammalian host. We here demonstrate that the Plasmodium yoelii Pumilio-FBF family member Puf2 allows the sporozoite to remain infectious in the mosquito salivary glands while awaiting transmission. Puf2 mediates this solely through its RNA-Binding Domain (RBD) likely by stabilizing or hastening the degradation of specific mRNAs. Puf2 traffics to sporozoite cytosolic granules, which are negative for several markers of stress granules and P-bodies, and disappear rapidly after infection of hepatocytes. In contrast to previously described Plasmodium berghei pbpuf2? parasites, pypuf2? sporozoites have no apparent defect in host infection when tested early in salivary gland residence, but become progressively noninfectious and prematurely transform into EEFs during prolonged salivary gland residence. The premature overexpression of Puf2 in oocysts causes striking deregulation of sporozoite maturation and infectivity while extension of Puf2 expression in liver stages causes no defect, suggesting that the presence of Puf2 alone is not sufficient for its functions. Finally, by conducting the first comparative RNA-seq analysis of Plasmodium sporozoites, we find that Puf2 may play a role in directly or indirectly maintaining the homeostasis of specific transcripts. These findings uncover requirements for maintaining a window of opportunity for the malaria parasite to accommodate the unpredictable moment of transmission from mosquito to mammalian host. PMID:23356439

Lindner, Scott E.; Mikolajczak, Sebastian A.; Vaughan, Ashley M.; Moon, Wonjong; Joyce, Brad R.; Sullivan, William J.; Kappe, Stefan H. I.

2013-01-01

207

Crystal structure and solution characterization of the thioredoxin-2 from Plasmodium falciparum, a constituent of an essential parasitic protein export complex.  

PubMed

Survival of the malaria parasite Plasmodium falciparum when it infects red blood cells depends upon its ability to export hundreds of its proteins beyond an encasing vacuole. Protein export is mediated by a parasite-derived protein complex, the Plasmodium translocon of exported proteins (PTEX), and requires unfolding of the different cargos prior to their translocation across the vacuolar membrane. Unfolding is performed by the AAA+protein unfoldase HSP101/ClpB2 and the thioredoxin-2 enzyme (TRX2). Protein trafficking is dramatically impaired in parasites with defective HSP101 or lacking TRX2. These two PTEX subunits drive export and are targets for the design of a novel class of antimalarials: protein export inhibitors. To rationalize inhibitor design, we solved the crystal structure of Pfal-TRX2 at 2.2-Å resolution. Within the asymmetric unit, the three different copies of this protein disulfide reductase sample its two redox catalytic states. Size exclusion chromatography and small-angle X-ray scattering (SAXS) analyses demonstrate that Pfal-TRX2 is monomeric in solution. A non-conserved N-terminal extension precedes the canonical thioredoxin-fold; although it is not observed in our structure, our solution analysis suggests it is flexible in contrast to Plasmodium thioredoxin-1. This represents a first step towards the reconstitution of the entire PTEX for mechanistic and structural studies. PMID:25475729

Peng, Mindy; Cascio, Duilio; Egea, Pascal F

2015-01-01

208

Efficacy of a Plasmodium vivax malaria vaccine using ChAd63 and modified vaccinia Ankara expressing thrombospondin-related anonymous protein as assessed with transgenic Plasmodium berghei parasites.  

PubMed

Plasmodium vivax is the world's most widely distributed malaria parasite and a potential cause of morbidity and mortality for approximately 2.85 billion people living mainly in Southeast Asia and Latin America. Despite this dramatic burden, very few vaccines have been assessed in humans. The clinically relevant vectors modified vaccinia virus Ankara (MVA) and the chimpanzee adenovirus ChAd63 are promising delivery systems for malaria vaccines due to their safety profiles and proven ability to induce protective immune responses against Plasmodium falciparum thrombospondin-related anonymous protein (TRAP) in clinical trials. Here, we describe the development of new recombinant ChAd63 and MVA vectors expressing P. vivax TRAP (PvTRAP) and show their ability to induce high antibody titers and T cell responses in mice. In addition, we report a novel way of assessing the efficacy of new candidate vaccines against P. vivax using a fully infectious transgenic Plasmodium berghei parasite expressing P. vivax TRAP to allow studies of vaccine efficacy and protective mechanisms in rodents. Using this model, we found that both CD8+ T cells and antibodies mediated protection against malaria using virus-vectored vaccines. Our data indicate that ChAd63 and MVA expressing PvTRAP are good preerythrocytic-stage vaccine candidates with potential for future clinical application. PMID:24379295

Bauza, Karolis; Malinauskas, Tomas; Pfander, Claudia; Anar, Burcu; Jones, E Yvonne; Billker, Oliver; Hill, Adrian V S; Reyes-Sandoval, Arturo

2014-03-01

209

Simultaneous determination of phagocytosis of Plasmodium falciparum-parasitized and non-parasitized red blood cells by flow cytometry  

PubMed Central

Background Severe falciparum malaria anaemia (SMA) is a frequent cause of mortality in children and pregnant women. The most important determinant of SMA appears to be the loss of non-parasitized red blood cells (np-RBCs) in excess of loss of parasitized (p-) RBCs at schizogony. Based on data from acute SMA where excretion of haemoglobin in urine and increased plasma haemoglobin represented respectively less than 1% and 0.5% of total Hb loss, phagocytosis appears to be the predominant mechanism of removal of np- and p-RBC. Estimates indicate that np-RBCs are cleared in approximately 10-fold excess compared to p-RBCs. An even larger removal of np-RBCs has been described in vivax malaria anaemia. Estimates were based on two single studies both performed on neurosyphilitic patients who underwent malaria therapy. As the share of np-RBC removal is likely to vary between wide limits, it is important to assess the contribution of both np- and p-RBC populations to overall RBC loss, and disclose the mechanism of such variability. As available methods do not discriminate between the removal of np- vs p-RBCs, the purpose of this study was to set up a system allowing the simultaneous determination of phagocytosis of p- and np-RBC in the same sample. Methods and Results Phagocytosis of p- and np-RBCs was quantified in the same sample using double-labelled target cells and the human phagocytic cell-line THP-1, pre-activated by TNF and IFN? to enhance their phagocytic activity. Target RBCs were double-labelled with fluorescent carboxyfluorescein-succinimidyl ester (CF-SE) and the DNA label ethidium bromide (EB). EB, a DNA label, allowed to discriminate p-RBCs that contain parasitic DNA from the np-RBCs devoid of DNA. FACS analysis of THP-1 cells fed with double-labelled RBCs showed that p- and np-RBCs were phagocytosed in different proportions in relation to parasitaemia. Conclusions The assay allowed the analysis of phagocytosis rapidly and with low subjective error, and the differentiation between phagocytosed p- and np-RBCs in the same sample. The presented method may help to analyse the factors or conditions that modulate the share of np-RBC removal in vitro and in vivo and lead to a better understanding of the pathogenesis of SMA. PMID:23259636

2012-01-01

210

SYBR Green Real-Time PCR-RFLP Assay Targeting the Plasmodium Cytochrome B Gene – A Highly Sensitive Molecular Tool for Malaria Parasite Detection and Species Determination  

PubMed Central

A prerequisite for reliable detection of low-density Plasmodium infections in malaria pre-elimination settings is the availability of ultra-sensitive and high-throughput molecular tools. We developed a SYBR Green real-time PCR restriction fragment length polymorphism assay (cytb-qPCR) targeting the cytochrome b gene of the four major human Plasmodium species (P. falciparum, P. vivax, P. malariae, and P. ovale) for parasite detection and species determination with DNA extracted from dried blood spots collected on filter paper. The performance of cytb-qPCR was first compared against four reference PCR methods using serially diluted Plasmodium samples. The detection limit of the cytb-qPCR was 1 parasite/?l (p/?l) for P. falciparum and P. ovale, and 2 p/?l for P. vivax and P. malariae, while the reference PCRs had detection limits of 0.5–10 p/?l. The ability of the PCR methods to detect low-density Plasmodium infections was then assessed using 2977 filter paper samples collected during a cross-sectional survey in Zanzibar, a malaria pre-elimination setting in sub-Saharan Africa. Field samples were defined as ‘final positive’ if positive in at least two of the five PCR methods. Cytb-qPCR preformed equal to or better than the reference PCRs with a sensitivity of 100% (65/65; 95%CI 94.5–100%) and a specificity of 99.9% (2910/2912; 95%CI 99.7–100%) when compared against ‘final positive’ samples. The results indicate that the cytb-qPCR may represent an opportunity for improved molecular surveillance of low-density Plasmodium infections in malaria pre-elimination settings. PMID:25774805

Xu, Weiping; Morris, Ulrika; Aydin-Schmidt, Berit; Msellem, Mwinyi I.; Shakely, Delér; Petzold, Max; Björkman, Anders; Mårtensson, Andreas

2015-01-01

211

Parasite densities modulate susceptibility of mice to cerebral malaria during co-infection with Schistosoma japonicum and Plasmodium berghei  

PubMed Central

Background Malaria and schistosomiasis are endemic and co-exist in the same geographic areas, even co-infecting the same host. Previous studies have reported that concomitant infection with Schistosoma japonicum could offer protection against experimental cerebral malaria (ECM) in mice. This study was performed to evaluate whether alterations in parasite density could alter this protective effect. Methods Mice were inoculated with 100 or 200?S. japonicum cercariae followed by infection with high or low density of Plasmodium berghei ANKA strain eight weeks after the first infection. Then, parasitaemia, survival rate and blood–brain-barrier (BBB) damage were assessed. Interferon-gamma (IFN-?), interleukin (IL)-4, IL-5, IL-13, IL-10, and TGF-? levels were determined in splenocyte supernatants using enzyme-linked immunosorbent assay (ELISA). Cell surface/intracellular staining and flow cytometry were used to analyse the level of CD4+/CD8+ T cells, CD4+CD25+Foxp3+ Tregs, IL-10-secreting Tregs, and IL-10+Foxp3-CD4+ T cells in the spleen, and CD4+/CD8+ T cells infiltrating the brain. Results Co-infection with low density P. berghei and increased S. japonicum cercariae significantly increased the levels of IL-4, IL-5, IL-13, TGF-? and Tregs, but significantly decreased the levels of IFN-? and the percentage of CD4+ T cells and CD8+ T cells in the spleen and CD8+ T cell infiltration in the brain. Increased worm loads also significantly decreased mortality and BBB impairment during ECM. When challenged with higher numbers of P. berghei and increased cercariae, the observed cytokine changes were not statistically significant. The corresponding ECM mortality and BBB impairment also remained unchanged. Conclusions This study demonstrates that protection for ECM depends on the numbers of the parasites, S. japonicum and P. berghei, during co-infection. Alterations in the regulatory response appear to play a key role in this adaptation. PMID:24670210

2014-01-01

212

The Mu Subunit of Plasmodium falciparum Clathrin-Associated Adaptor Protein 2 Modulates In Vitro Parasite Response to Artemisinin and Quinine.  

PubMed

The emergence of drug-resistant parasites is a serious threat faced by malaria control programs. Understanding the genetic basis of resistance is critical to the success of treatment and intervention strategies. A novel locus associated with antimalarial resistance, ap2-mu (encoding the mu chain of the adaptor protein 2 [AP2] complex), was recently identified in studies on the rodent malaria parasite Plasmodium chabaudi (pcap2-mu). Furthermore, analysis in Kenyan malaria patients of polymorphisms in the Plasmodium falciparum ap2-mu homologue, pfap2-mu, found evidence that differences in the amino acid encoded by codon 160 are associated with enhanced parasite survival in vivo following combination treatments which included artemisinin derivatives. Here, we characterize the role of pfap2-mu in mediating the in vitro antimalarial drug response of P. falciparum by generating transgenic parasites constitutively expressing codon 160 encoding either the wild-type Ser (Ser160) or the Asn mutant (160Asn) form of pfap2-mu. Transgenic parasites carrying the pfap2-mu 160Asn allele were significantly less sensitive to dihydroartemisinin using a standard 48-h in vitro test, providing direct evidence of an altered parasite response to artemisinin. Our data also provide evidence that pfap2-mu variants can modulate parasite sensitivity to quinine. No evidence was found that pfap2-mu variants contribute to the slow-clearance phenotype exhibited by P. falciparum in Cambodian patients treated with artesunate monotherapy. These findings provide compelling evidence that pfap2-mu can modulate P. falciparum responses to multiple drugs. We propose that this gene should be evaluated further as a potential molecular marker of antimalarial resistance. PMID:25691625

Henriques, Gisela; van Schalkwyk, Donelly A; Burrow, Rebekah; Warhurst, David C; Thompson, Eloise; Baker, David A; Fidock, David A; Hallett, Rachel; Flueck, Christian; Sutherland, Colin J

2015-05-01

213

Plasmodium falciparum induces Foxp3hi CD4 T cells independent of surface PfEMP1 expression via small soluble parasite components  

PubMed Central

Elevated levels of regulatory T cells following Plasmodium infection are a well-reported phenomenon that can influence both protective and pathological anti-parasite responses, and might additionally impact on vaccine responses in acutely malaria infected individuals. The mechanisms underlying their induction or expansion by the parasite, however, are incompletely understood. In a previous study, Plasmodium falciparum infected red blood cells (iRBCs) were shown to induce effector-cytokine producing Foxp3int CD4+ T cells, as well as regulatory Foxp3hi CD4+ T cells in vitro. The aim of the present study was to determine the contribution of parasite components to the induction of Foxp3 expression in human CD4+ T cells. Using the surface PfEMP1-deficient parasite line 1G8, we demonstrate that induction of Foxp3hi and Foxp3int CD4+ T cells is independent of PfEMP1 expression on iRBCs. We further demonstrate that integrity of iRBCs is no requirement for the induction of Foxp3 expression. Finally, transwell experiments showed that induction of Foxp3 expression, and specifically the generation of Foxp3hi as opposed to Foxp3int CD4 T cells, can be mediated by soluble parasite components smaller than 20 nm and thus likely distinct from the malaria pigment hemozoin. These results suggest that the induction of Foxp3hi T cells by P. falciparum is largely independent of two key immune modulatory parasite components, and warrant future studies into the nature of the Foxp3hi inducing parasite components to potentially allow their exclusion from vaccine formulations. PMID:24822053

Scholzen, Anja; Cooke, Brian M.; Plebanski, Magdalena

2014-01-01

214

Landscape features associated with infection by a malaria parasite (Plasmodium mexicanum) and the importance of multiple scale studies.  

PubMed

In a 3-year study, we examined landscape features (aspect, slope, sun exposure, canopy cover, type of ground cover, and nearest water source) that were potentially related to prevalence of infection with Plasmodium mexicanum in fence lizards (Sceloporus occidentalis) within a 4.5 ha study area in northern California, USA. Logistic regression analysis showed that ground cover type was the primary mediator of the probability of P. mexicanum infection. Infected lizards were captured more often in rock and/or leaf litter locations than in grassy ones. In another experiment, the study area was divided into 9 sites (0.07-0.33 ha), and infection prevalence was calculated for each. Three sites with high (> 30%) infection prevalence had significantly more rocky outcrops and leaf litter than those with low (< 20%) or moderate (20-30%) infection prevalence (N = 3 sites each). We conclude that lizard site selection may influence the probability of exposure to infected vectors and thus the likelihood of P. mexicanum infection. We also demonstrate that studies at different spatial scales may be required to understand fully the relationship between landscape features and parasite distribution. PMID:11393823

Eisen, R J; Wright, N M

2001-05-01

215

Distribution of Drug Resistance Genotypes in Plasmodium falciparum in an Area of Limited Parasite Diversity in Saudi Arabia  

PubMed Central

Two hundred and three Plasmodium falciparum isolates from Jazan area, southwest Saudi Arabia, were typed for Pfcrt, Pfmdr1, dhps, and dhfr mutations associated with resistance to chloroquine, mefloquine, halofantrine, artemisinin, sulfadoxine-pyrimethamine, and the neutral polymorphic gene Pfg377. A large proportion (33%) of isolates harbored double mutant dhfr genotype (51I,59C,108N). However, only one isolate contained mutation dhps-437G. For Pfcrt, almost all examined isolates (163; 99%) harbored the mutant genotype (72C,73V,74I,75E,76T), whereas only 49 (31%) contained the mutant Pfmdr1 genotype (86Y,184F,1034S,1042N), 109 (66%) harbored the single mutant genotype (86N,184F,1034S,1042N), and no mutations were seen in codons 1034, 1042, and 1246. Nonetheless, three new single-nucleotide polymorphisms were detected at codons 182, 192, and 102. No differences were seen in distribution of drug resistance genes among Saudis and expatriates. There was a limited multiplicity (5%), mean number of clones (1.05), and two dominant multilocus genotypes among infected individuals in Jazan. A pattern consistent with limited cross-mating and recombination among local parasite was apparent. PMID:22556074

Bin Dajem, Saad M.; Al-Farsi, Hissa M.; Al-Hashami, Zainab S.; Al-Sheikh, Adel Ali H.; Al-Qahtani, Ahmed; Babiker, Hamza A.

2012-01-01

216

Treatment of Erythrocytes with the 2-Cys Peroxiredoxin Inhibitor, Conoidin A, Prevents the Growth of Plasmodium falciparum and Enhances Parasite Sensitivity to Chloroquine  

PubMed Central

The human erythrocyte contains an abundance of the thiol-dependant peroxidase Peroxiredoxin-2 (Prx2), which protects the cell from the pro-oxidant environment it encounters during its 120 days of life in the blood stream. In malarial infections, the Plasmodium parasite invades red cells and imports Prx2 during intraerythrocytic development, presumably to supplement in its own degradation of peroxides generated during cell metabolism, especially hemoglobin (Hb) digestion. Here we demonstrate that an irreversible Prx2 inhibitor, Conoidin A (2,3-bis(bromomethyl)-1,4-dioxide-quinoxaline; BBMQ), has potent cytocidal activity against cultured P. falciparum. Parasite growth was also inhibited in red cells that were treated with BBMQ and then washed prior to parasite infection. These cells remained susceptible to merozoite invasion, but failed to support normal intraerythrocytic development. In addition the potency of chloroquine (CQ), an antimalarial drug that prevents the detoxification of Hb-derived heme, was significantly enhanced in the presence of BBMQ. CQ IC50 values decreased an order of magnitude when parasites were either co-incubated with BBMQ, or introduced into BBMQ-pretreated cells; these effects were equivalent for both drug-resistant and drug-sensitive parasite lines. Together these results indicate that treatment of red cells with BBMQ renders them incapable of supporting parasite growth and increases parasite sensitivity to CQ. We also propose that molecules such as BBMQ that target host cell proteins may constitute a novel host-directed therapeutic approach for treating malaria. PMID:24699133

Brizuela, Mariana; Huang, Hong Ming; Smith, Clare; Burgio, Gaetan; Foote, Simon J.; McMorran, Brendan J.

2014-01-01

217

Treatment of erythrocytes with the 2-cys peroxiredoxin inhibitor, Conoidin A, prevents the growth of Plasmodium falciparum and enhances parasite sensitivity to chloroquine.  

PubMed

The human erythrocyte contains an abundance of the thiol-dependant peroxidase Peroxiredoxin-2 (Prx2), which protects the cell from the pro-oxidant environment it encounters during its 120 days of life in the blood stream. In malarial infections, the Plasmodium parasite invades red cells and imports Prx2 during intraerythrocytic development, presumably to supplement in its own degradation of peroxides generated during cell metabolism, especially hemoglobin (Hb) digestion. Here we demonstrate that an irreversible Prx2 inhibitor, Conoidin A (2,3-bis(bromomethyl)-1,4-dioxide-quinoxaline; BBMQ), has potent cytocidal activity against cultured P. falciparum. Parasite growth was also inhibited in red cells that were treated with BBMQ and then washed prior to parasite infection. These cells remained susceptible to merozoite invasion, but failed to support normal intraerythrocytic development. In addition the potency of chloroquine (CQ), an antimalarial drug that prevents the detoxification of Hb-derived heme, was significantly enhanced in the presence of BBMQ. CQ IC50 values decreased an order of magnitude when parasites were either co-incubated with BBMQ, or introduced into BBMQ-pretreated cells; these effects were equivalent for both drug-resistant and drug-sensitive parasite lines. Together these results indicate that treatment of red cells with BBMQ renders them incapable of supporting parasite growth and increases parasite sensitivity to CQ. We also propose that molecules such as BBMQ that target host cell proteins may constitute a novel host-directed therapeutic approach for treating malaria. PMID:24699133

Brizuela, Mariana; Huang, Hong Ming; Smith, Clare; Burgio, Gaetan; Foote, Simon J; McMorran, Brendan J

2014-01-01

218

The Plasmodium parasite—a ‘new’ challenge for insect innate immunity  

Microsoft Academic Search

Though lacking adaptive immunity, insects possess a powerful innate immune system, a genome-encoded defence machinery used to confront infections. Studies in the fruit fly Drosophila melanogaster revealed a remarkable capacity of the innate immune system to differentiate between and subsequently respond to different bacteria and fungi. However, hematophagous compared to non-hematophagous insects encounter additional blood-borne infectious agents, such as parasites

S. Meister; A. C. Koutsos; G. K. Christophides

2004-01-01

219

Quantitative analysis of Plasmodium ookinete motion in three dimensions suggests a critical role for cell shape in the biomechanics of malaria parasite gliding motility.  

PubMed

Motility is a fundamental part of cellular life and survival, including for Plasmodium parasites--single-celled protozoan pathogens responsible for human malaria. The motile life cycle forms achieve motility, called gliding, via the activity of an internal actomyosin motor. Although gliding is based on the well-studied system of actin and myosin, its core biomechanics are not completely understood. Currently accepted models suggest it results from a specifically organized cellular motor that produces a rearward directional force. When linked to surface-bound adhesins, this force is passaged to the cell posterior, propelling the parasite forwards. Gliding motility is observed in all three life cycle stages of Plasmodium: sporozoites, merozoites and ookinetes. However, it is only the ookinetes--formed inside the midgut of infected mosquitoes--that display continuous gliding without the necessity of host cell entry. This makes them ideal candidates for invasion-free biomechanical analysis. Here we apply a plate-based imaging approach to study ookinete motion in three-dimensional (3D) space to understand Plasmodium cell motility and how movement facilitates midgut colonization. Using single-cell tracking and numerical analysis of parasite motion in 3D, our analysis demonstrates that ookinetes move with a conserved left-handed helical trajectory. Investigation of cell morphology suggests this trajectory may be based on the ookinete subpellicular cytoskeleton, with complementary whole and subcellular electron microscopy showing that, like their motion paths, ookinetes share a conserved left-handed corkscrew shape and underlying twisted microtubular architecture. Through comparisons of 3D movement between wild-type ookinetes and a cytoskeleton-knockout mutant we demonstrate that perturbation of cell shape changes motion from helical to broadly linear. Therefore, while the precise linkages between cellular architecture and actomyosin motor organization remain unknown, our analysis suggests that the molecular basis of cell shape may, in addition to motor force, be a key adaptive strategy for malaria parasite dissemination and, as such, transmission. PMID:24612056

Kan, Andrey; Tan, Yan-Hong; Angrisano, Fiona; Hanssen, Eric; Rogers, Kelly L; Whitehead, Lachlan; Mollard, Vanessa P; Cozijnsen, Anton; Delves, Michael J; Crawford, Simon; Sinden, Robert E; McFadden, Geoffrey I; Leckie, Christopher; Bailey, James; Baum, Jake

2014-05-01

220

High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography  

NASA Astrophysics Data System (ADS)

We present high-resolution optical tomographic images of human red blood cells (RBC) parasitized by malaria-inducing Plasmodium falciparum (Pf)-RBCs. Three-dimensional (3-D) refractive index (RI) tomograms are reconstructed by recourse to a diffraction algorithm from multiple two-dimensional holograms with various angles of illumination. These 3-D RI tomograms of Pf-RBCs show cellular and subcellular structures of host RBCs and invaded parasites in fine detail. Full asexual intraerythrocytic stages of parasite maturation (ring to trophozoite to schizont stages) are then systematically investigated using optical diffraction tomography algorithms. These analyses provide quantitative information on the structural and chemical characteristics of individual host Pf-RBCs, parasitophorous vacuole, and cytoplasm. The in situ structural evolution and chemical characteristics of subcellular hemozoin crystals are also elucidated.

Kim, Kyoohyun; Yoon, HyeOk; Diez-Silva, Monica; Dao, Ming; Dasari, Ramachandra R.; Park, YongKeun

2014-01-01

221

High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography  

PubMed Central

Abstract. We present high-resolution optical tomographic images of human red blood cells (RBC) parasitized by malaria-inducing Plasmodium falciparum (Pf)-RBCs. Three-dimensional (3-D) refractive index (RI) tomograms are reconstructed by recourse to a diffraction algorithm from multiple two-dimensional holograms with various angles of illumination. These 3-D RI tomograms of Pf-RBCs show cellular and subcellular structures of host RBCs and invaded parasites in fine detail. Full asexual intraerythrocytic stages of parasite maturation (ring to trophozoite to schizont stages) are then systematically investigated using optical diffraction tomography algorithms. These analyses provide quantitative information on the structural and chemical characteristics of individual host Pf-RBCs, parasitophorous vacuole, and cytoplasm. The in situ structural evolution and chemical characteristics of subcellular hemozoin crystals are also elucidated. PMID:23797986

Kim, Kyoohyun; Yoon, HyeOk; Diez-Silva, Monica; Dao, Ming; Dasari, Ramachandra R.; Park, YongKeun

2013-01-01

222

Preferential targeting of human erythrocytes infected with the malaria parasite Plasmodium falciparumvia hexose transporter surface proteins.  

PubMed

Glucose uptake by Plasmodium-infected erythrocytes (RBC) is higher compared to uninfected RBC. Glucose is transported across the cell membrane by transporter proteins. Particles of median size 146.3±18.7nm, containing anti-malarial agents in corn starch were prepared for investigating: (a) whether the glucose moiety in starch targets RBC via hexose transporter(s), (b) whether there are differences in the extent of targeting to uninfected RBC versus infected RBC (iRBC) in view of higher cell surface density of these proteins on iRBC and (c) whether targeting provides enhanced efficacy against P. falciparum in comparison to drugs in solution. Binding of these particles to RBC was target-specific, since it could be blocked by phloretin, an inhibitor of glucose transporters (GLUT), or competed out in a dose-dependent manner with d-glucose in a flow cytometry assay. Significant (P=0.048, t-test) differences in extent of targeting to iRBC versus RBC were observed in flow cytometry. CDRI 97/63 incorporated in particles was 63% more efficacious than its solution at 250ng/ml, while quinine was 20% more efficacious at 6.25ng/ml in a SYBR Green incorporation assay. Preferential targeting of iRBC using an inexpensive excipient promises advantages in terms of dose reduction and toxicity alleviation. PMID:25666024

Heikham, Kajal Devi; Gupta, Ankit; Kumar, Ambrish; Singh, Chandan; Saxena, Juhi; Srivastava, Kumkum; Puri, Sunil K; Dwivedi, Anil K; Habib, Saman; Misra, Amit

2015-04-10

223

Lineage-specific positive selection at the merozoite surface protein 1 (msp1) locus of Plasmodium vivax and related simian malaria parasites  

PubMed Central

Background The 200 kDa merozoite surface protein 1 (MSP-1) of malaria parasites, a strong vaccine candidate, plays a key role during erythrocyte invasion and is a target of host protective immune response. Plasmodium vivax, the most widespread human malaria parasite, is closely related to parasites that infect Asian Old World monkeys, and has been considered to have become a parasite of man by host switch from a macaque malaria parasite. Several Asian monkey parasites have a range of natural hosts. The same parasite species shows different disease manifestations among host species. This suggests that host immune responses to P. vivax-related malaria parasites greatly differ among host species (albeit other factors). It is thus tempting to invoke that a major immune target parasite protein such as MSP-1 underwent unique evolution, depending on parasite species that exhibit difference in host range and host specificity. Results We performed comparative phylogenetic and population genetic analyses of the gene encoding MSP-1 (msp1) from P. vivax and nine P. vivax-related simian malaria parasites. The inferred phylogenetic tree of msp1 significantly differed from that of the mitochondrial genome, with a striking displacement of P. vivax from a position close to P. cynomolgi in the mitochondrial genome tree to an outlier of Asian monkey parasites. Importantly, positive selection was inferred for two ancestral branches, one leading to P. inui and P. hylobati and the other leading to P. vivax, P. fieldi and P. cynomolgi. This ancestral positive selection was estimated to have occurred three to six million years ago, coinciding with the period of radiation of Asian macaques. Comparisons of msp1 polymorphisms between P. vivax, P. inui and P. cynomolgi revealed that while some positively selected amino acid sites or regions are shared by these parasites, amino acid changes greatly differ, suggesting that diversifying selection is acting species-specifically on msp1. Conclusions The present results indicate that the msp1 locus of P. vivax and related parasite species has lineage-specific unique evolutionary history with positive selection. P. vivax and related simian malaria parasites offer an interesting system toward understanding host species-dependent adaptive evolution of immune-target surface antigen genes such as msp1. PMID:20167126

2010-01-01

224

Variable SNP density in aspartyl-protease genes of the malaria parasite Plasmodium falciparum.  

PubMed

An analysis of the diversity of the aspartyl proteases of Plasmodium falciparum, known as plasmepsins (PMs), was completed in view of their possible role as drug targets. DNA sequence polymorphisms were identified in nine pm genes including their non-coding (introns and 5' flanking) sequences. All genes contained at least one single nucleotide polymorphism (SNP). Extensive microsatellite diversity was observed predominantly in non-coding sequences. All but one non-synonymous polymorphism (a conservative substitution) were mapped to the surface of the predicted protein, contradicting a possible role in enzymatic activity. The distribution of SNPs was found to be non-random among pm genes, with pm6 and pm10 having significantly higher SNP densities, suggesting they were under selection. For pm6 the majority of the SNPs were in introns and some of these may contribute to splice site variation. SNPs were found at a high density in both the coding and non-coding sequences of pm10. Recombination was important in generating additional diversity at this locus. Although direct selection for pm10 mutations could not be ruled out, the presence of balancing selection and a high density of SNPs in non-coding sequence led us to propose that another gene under selection may be influencing the diversity in the region. By sequencing short DNA tags in a 200 kb region flanking pm10 we show that a cluster of antigen genes, known to be under diversifying selection, may contribute to the observed diversity. We discuss the importance of diversity and local selection effects when choosing drug targets for intervention strategies. PMID:16784823

Barry, Alyssa E; Leliwa-Sytek, Aleksandra; Man, Kitty; Kasper, Jacob M; Hartl, Daniel L; Day, Karen P

2006-07-19

225

A whole parasite vaccine to control the blood stages of Plasmodium: the case for lateral thinking.  

PubMed

Now, 27 years following the cloning of malaria antigens with the promise of the rapid development of a malaria vaccine, we face significant obstacles that are belatedly being addressed. Poor immunogenicity of subunit vaccine antigens and significant antigenic diversity of target epitopes represent major hurdles for which there are no clear strategies for a way forward within the current paradigm. Thus, a different paradigm - a vaccine that uses the whole organism - is now being examined. Although most advances in this approach relate to a vaccine for the pre-erythrocytic stages (sporozoites, liver stages), this opinion paper will outline the possibilities of developing a whole parasite vaccine for the blood stage and address some of the challenges for this strategy, which are entirely different to the challenges for a subunit vaccine. It is the view of the author that both vaccine paradigms should be pursued, but that success will come more quickly using the paranormal approach of exposing individuals to ultra-low doses of whole attenuated or killed parasites. PMID:21514227

Good, Michael F

2011-08-01

226

The Clp Chaperones and Proteases of the Human Malaria Parasite Plasmodium falciparum  

SciTech Connect

The Clpchaperones and proteases play an important role in protein homeostasis in the cell. They are highly conserved across prokaryotes and found also in the mitochondria of eukaryotes and the chloroplasts of plants. They function mainly in the disaggregation, unfolding and degradation of native as well as misfolded proteins. Here, we provide a comprehensive analysis of the Clpchaperones and proteases in the humanmalariaparasitePlasmodiumfalciparum. The parasite contains four Clp ATPases, which we term PfClpB1, PfClpB2, PfClpC and PfClpM. One PfClpP, the proteolytic subunit, and one PfClpR, which is an inactive version of the protease, were also identified. Expression of all Clpchaperones and proteases was confirmed in blood-stage parasites. The proteins were localized to the apicoplast, a non-photosynthetic organelle that accommodates several important metabolic pathways in P. falciparum, with the exception of PfClpB2 (also known as Hsp101), which was found in the parasitophorous vacuole. Both PfClpP and PfClpR form mostly homoheptameric rings as observed by size-exclusion chromatography, analytical ultracentrifugation and electron microscopy. The X-ray structure of PfClpP showed the protein as a compacted tetradecamer similar to that observed for Streptococcus pneumoniae and Mycobacterium tuberculosis ClpPs. Our data suggest the presence of a ClpCRP complex in the apicoplast of P. falciparum.

M El Bakkouri; A Pow; A Mulichak; K Cheung; J Artz; M Amani; S Fell; T de Koning-Ward; C Goodman; et al.

2011-12-31

227

In Silico Screening on the Three-dimensional Model of the Plasmodium vivax SUB1 Protease Leads to the Validation of a Novel Anti-parasite Compound*  

PubMed Central

Widespread drug resistance calls for the urgent development of new antimalarials that target novel steps in the life cycle of Plasmodium falciparum and Plasmodium vivax. The essential subtilisin-like serine protease SUB1 of Plasmodium merozoites plays a dual role in egress from and invasion into host erythrocytes. It belongs to a new generation of attractive drug targets against which specific potent inhibitors are actively searched. We characterize here the P. vivax SUB1 enzyme and show that it displays a typical auto-processing pattern and apical localization in P. vivax merozoites. To search for small PvSUB1 inhibitors, we took advantage of the similarity of SUB1 with bacterial subtilisins and generated P. vivax SUB1 three-dimensional models. The structure-based virtual screening of a large commercial chemical compounds library identified 306 virtual best hits, of which 37 were experimentally confirmed inhibitors and 5 had Ki values of <50 ?m for PvSUB1. Interestingly, they belong to different chemical families. The most promising competitive inhibitor of PvSUB1 (compound 2) was equally active on PfSUB1 and displayed anti-P. falciparum and Plasmodium berghei activity in vitro and in vivo, respectively. Compound 2 inhibited the endogenous PfSUB1 as illustrated by the inhibited maturation of its natural substrate PfSERA5 and inhibited parasite egress and subsequent erythrocyte invasion. These data indicate that the strategy of in silico screening of three-dimensional models to select for virtual inhibitors combined with stringent biological validation successfully identified several inhibitors of the PvSUB1 enzyme. The most promising hit proved to be a potent cross-inhibitor of PlasmodiumSUB1, laying the groundwork for the development of a globally active small compound antimalarial. PMID:23653352

Bouillon, Anthony; Giganti, David; Benedet, Christophe; Gorgette, Olivier; Pêtres, Stéphane; Crublet, Elodie; Girard-Blanc, Christine; Witkowski, Benoit; Ménard, Didier; Nilges, Michael; Mercereau-Puijalon, Odile; Stoven, Véronique; Barale, Jean-Christophe

2013-01-01

228

Asexual Populations of the Human Malaria Parasite, Plasmodium falciparum, Use a Two-Step Genomic Strategy to Acquire Accurate, Beneficial DNA Amplifications  

PubMed Central

Malaria drug resistance contributes to up to a million annual deaths. Judicious deployment of new antimalarials and vaccines could benefit from an understanding of early molecular events that promote the evolution of parasites. Continuous in vitro challenge of Plasmodium falciparum parasites with a novel dihydroorotate dehydrogenase (DHODH) inhibitor reproducibly selected for resistant parasites. Genome-wide analysis of independently-derived resistant clones revealed a two-step strategy to evolutionary success. Some haploid blood-stage parasites first survive antimalarial pressure through fortuitous DNA duplications that always included the DHODH gene. Independently-selected parasites had different sized amplification units but they were always flanked by distant A/T tracks. Higher level amplification and resistance was attained using a second, more efficient and more accurate, mechanism for head-to-tail expansion of the founder unit. This second homology-based process could faithfully tune DNA copy numbers in either direction, always retaining the unique DNA amplification sequence from the original A/T-mediated duplication for that parasite line. Pseudo-polyploidy at relevant genomic loci sets the stage for gaining additional mutations at the locus of interest. Overall, we reveal a population-based genomic strategy for mutagenesis that operates in human stages of P. falciparum to efficiently yield resistance-causing genetic changes at the correct locus in a successful parasite. Importantly, these founding events arise with precision; no other new amplifications are seen in the resistant haploid blood stage parasite. This minimizes the need for meiotic genetic cleansing that can only occur in sexual stage development of the parasite in mosquitoes. PMID:23717205

Ahyong, Vida; Patrapuvich, Rapatbhorn; White, John; Gujjar, Ramesh; Phillips, Margaret A.; DeRisi, Joseph; Rathod, Pradipsinh K.

2013-01-01

229

Transgenic parasites stably expressing full-length Plasmodium falciparum circumsporozoite protein as a model for vaccine down-selection in mice using sterile protection as an endpoint.  

PubMed

Circumsporozoite protein (CSP) of Plasmodium falciparum is a protective human malaria vaccine candidate. There is an urgent need for models that can rapidly down-select novel CSP-based vaccine candidates. In the present study, the mouse-mosquito transmission cycle of a transgenic Plasmodium berghei malaria parasite stably expressing a functional full-length P. falciparum CSP was optimized to consistently produce infective sporozoites for protection studies. A minimal sporozoite challenge dose was established, and protection was defined as the absence of blood-stage parasites 14 days after intravenous challenge. The specificity of protection was confirmed by vaccinating mice with multiple CSP constructs of differing lengths and compositions. Constructs that induced high NANP repeat-specific antibody titers in enzyme-linked immunosorbent assays were protective, and the degree of protection was dependent on the antigen dose. There was a positive correlation between antibody avidity and protection. The antibodies in the protected mice recognized the native CSP on the parasites and showed sporozoite invasion inhibitory activity. Passive transfer of anti-CSP antibodies into naive mice also induced protection. Thus, we have demonstrated the utility of a mouse efficacy model to down-select human CSP-based vaccine formulations. PMID:23536694

Porter, Michael D; Nicki, Jennifer; Pool, Christopher D; DeBot, Margot; Illam, Ratish M; Brando, Clara; Bozick, Brooke; De La Vega, Patricia; Angra, Divya; Spaccapelo, Roberta; Crisanti, Andrea; Murphy, Jittawadee R; Bennett, Jason W; Schwenk, Robert J; Ockenhouse, Christian F; Dutta, Sheetij

2013-06-01

230

Transgenic Parasites Stably Expressing Full-Length Plasmodium falciparum Circumsporozoite Protein as a Model for Vaccine Down-Selection in Mice Using Sterile Protection as an Endpoint  

PubMed Central

Circumsporozoite protein (CSP) of Plasmodium falciparum is a protective human malaria vaccine candidate. There is an urgent need for models that can rapidly down-select novel CSP-based vaccine candidates. In the present study, the mouse-mosquito transmission cycle of a transgenic Plasmodium berghei malaria parasite stably expressing a functional full-length P. falciparum CSP was optimized to consistently produce infective sporozoites for protection studies. A minimal sporozoite challenge dose was established, and protection was defined as the absence of blood-stage parasites 14 days after intravenous challenge. The specificity of protection was confirmed by vaccinating mice with multiple CSP constructs of differing lengths and compositions. Constructs that induced high NANP repeat-specific antibody titers in enzyme-linked immunosorbent assays were protective, and the degree of protection was dependent on the antigen dose. There was a positive correlation between antibody avidity and protection. The antibodies in the protected mice recognized the native CSP on the parasites and showed sporozoite invasion inhibitory activity. Passive transfer of anti-CSP antibodies into naive mice also induced protection. Thus, we have demonstrated the utility of a mouse efficacy model to down-select human CSP-based vaccine formulations. PMID:23536694

Porter, Michael D.; Nicki, Jennifer; Pool, Christopher D.; DeBot, Margot; Illam, Ratish M.; Brando, Clara; Bozick, Brooke; De La Vega, Patricia; Angra, Divya; Spaccapelo, Roberta; Crisanti, Andrea; Murphy, Jittawadee R.; Bennett, Jason W.; Schwenk, Robert J.; Ockenhouse, Christian F.

2013-01-01

231

Plasmodium Immunomics  

PubMed Central

The Plasmodium parasite, the causative agent of malaria, is an excellent model for immunomic-based approaches to vaccine development. The Plasmodium parasite has a complex life cycle with multiple stages and stage-specific expression of ~ 5,300 putative proteins. No malaria vaccine has yet been licensed. Many believe that an effective vaccine will need to target several antigens and multiple stages, and will require the generation of both antibody and cellular immune responses. Vaccine efforts to date have been stage-specific and based on only a very limited number of proteins representing < 0.5% of the genome. The recent availability of comprehensive genomic, proteomic and transcriptomic datasets from human and selected non-human primate and rodent malarias provide a foundation to exploit for vaccine development. This information can be mined to identify promising vaccine candidate antigens, by proteome-wide screening of antibody and T cell reactivity using specimens from individuals exposed to malaria and technology platforms such as protein arrays, high throughput protein production and epitope prediction algorithms. Such antigens could be incorporated into a rational vaccine development process that targets specific stages of the Plasmodium parasite life cycle with immune responses implicated in parasite elimination and control. Immunomic approaches which enable the selection of the best possible targets by prioritizing antigens according to clinically relevant criteria may overcome the problem of poorly immunogenic, poorly protective vaccines that has plagued malaria vaccine developers for the past 25 years. Herein, current progress and perspectives regarding Plasmodium immunomics are reviewed. PMID:20816843

Doolan, Denise L.

2010-01-01

232

Genome-Wide Analysis of Selection on the Malaria Parasite Plasmodium falciparum in West African Populations of Differing Infection Endemicity  

PubMed Central

Locally varying selection on pathogens may be due to differences in drug pressure, host immunity, transmission opportunities between hosts, or the intensity of between-genotype competition within hosts. Highly recombining populations of the human malaria parasite Plasmodium falciparum throughout West Africa are closely related, as gene flow is relatively unrestricted in this endemic region, but markedly varying ecology and transmission intensity should cause distinct local selective pressures. Genome-wide analysis of sequence variation was undertaken on a sample of 100 P. falciparum clinical isolates from a highly endemic region of the Republic of Guinea where transmission occurs for most of each year and compared with data from 52 clinical isolates from a previously sampled population from The Gambia, where there is relatively limited seasonal malaria transmission. Paired-end short-read sequences were mapped against the 3D7 P. falciparum reference genome sequence, and data on 136,144 single nucleotide polymorphisms (SNPs) were obtained. Within-population analyses identifying loci showing evidence of recent positive directional selection and balancing selection confirm that antimalarial drugs and host immunity have been major selective agents. Many of the signatures of recent directional selection reflected by standardized integrated haplotype scores were population specific, including differences at drug resistance loci due to historically different antimalarial use between the countries. In contrast, both populations showed a similar set of loci likely to be under balancing selection as indicated by very high Tajima’s D values, including a significant overrepresentation of genes expressed at the merozoite stage that invades erythrocytes and several previously validated targets of acquired immunity. Between-population FST analysis identified exceptional differentiation of allele frequencies at a small number of loci, most markedly for five SNPs covering a 15-kb region within and flanking the gdv1 gene that regulates the early stages of gametocyte development, which is likely related to the extreme differences in mosquito vector abundance and seasonality that determine the transmission opportunities for the sexual stage of the parasite. PMID:24644299

Mobegi, Victor A.; Duffy, Craig W.; Amambua-Ngwa, Alfred; Loua, Kovana M.; Laman, Eugene; Nwakanma, Davis C.; MacInnis, Bronwyn; Aspeling-Jones, Harvey; Murray, Lee; Clark, Taane G.; Kwiatkowski, Dominic P.; Conway, David J.

2014-01-01

233

Habitat Fragmentation and Ecological Traits Influence the Prevalence of Avian Blood Parasites in a Tropical Rainforest Landscape  

PubMed Central

In the tropical rainforests of northern Australia, we investigated the effects of habitat fragmentation and ecological parameters on the prevalence of blood-borne parasites (Plasmodium and Haemoproteus) in bird communities. Using mist-nets on forest edges and interiors, we sampled bird communities across six study sites: 3 large fragments (20–85 ha) and 3 continuous-forest sites. From 335 mist-net captures, we recorded 28 bird species and screened 299 bird samples with PCR to amplify and detect target DNA. Of the 28 bird species sampled, 19 were infected with Plasmodium and/or Haemoproteus and 9 species were without infection. Over one third of screened birds (99 individuals) were positive for Haemoproteus and/or Plasmodium. In forest fragments, bird capture rates were significantly higher than in continuous forests, but bird species richness did not differ. Unexpectedly, we found that the prevalence of the dominant haemosporidian infection, Haemoproteus, was significantly higher in continuous forest than in habitat fragments. Further, we found that ecological traits such as diet, foraging height, habitat specialisation and distributional ranges were significantly associated with blood-borne infections. PMID:24124541

Laurance, Susan G. W.; Jones, Dean; Westcott, David; Mckeown, Adam; Harrington, Graham; Hilbert, David W.

2013-01-01

234

Melatonin-Induced Temporal Up-Regulation of Gene Expression Related to Ubiquitin/Proteasome System (UPS) in the Human Malaria Parasite Plasmodium falciparum  

PubMed Central

There is an increasing understanding that melatonin and the ubiquitin/proteasome system (UPS) interact to regulate multiple cellular functions. Post-translational modifications such as ubiquitination are important modulators of signaling processes, cell cycle and many other cellular functions. Previously, we reported a melatonin-induced upregulation of gene expression related to ubiquitin/proteasome system (UPS) in Plasmodium falciparum, the human malaria parasite, and that P. falciparum protein kinase 7 influences this process. This implies a role of melatonin, an indolamine, in modulating intraerythrocytic development of the parasite. In this report we demonstrate by qPCR analysis, that melatonin induces gene upregulation in nine out of fourteen genes of the UPS, consisting of the same set of genes previously reported, between 4 to 5 h after melatonin treatment. We demonstrate that melatonin causes a temporally controlled gene expression of UPS members. PMID:25479077

Koyama, Fernanda C.; Azevedo, Mauro F.; Budu, Alexandre; Chakrabarti, Debopam; Garcia, Célia R. S.

2014-01-01

235

Plasmodium falciparum??heat shock protein 110 stabilizes the asparagine repeat-rich parasite proteome during malarial fevers  

E-print Network

One-fourth of Plasmodium falciparum proteins have asparagine repeats that increase the propensity for aggregation, especially at elevated temperatures that occur routinely in malaria-infected patients. Here we report that ...

Muralidharan, Vasant

236

Changes in the transcriptome of the malaria parasite Plasmodium falciparum during the initial phase of transmission from the human to the mosquito  

PubMed Central

Background The transmission of the malaria parasite Plasmodium falciparum from the human to the mosquito is mediated by dormant sexual precursor cells, the gametocytes, which become activated in the mosquito midgut. Because gametocytes are the only parasite stages able to establish an infection in the mosquito, they play a crucial role in spreading the tropical disease. The human-to-mosquito transmission triggers important molecular changes in the gametocytes, which initiate gametogenesis and prepare the parasite for life-cycle progression in the insect vector. Results To better understand gene regulations during the initial phase of malaria parasite transmission, we focused on the transcriptome changes that occur within the first half hour of parasite development in the mosquito. Comparison of mRNA levels of P. falciparum gametocytes before and 30 min following activation using suppression subtractive hybridization (SSH) identified 126 genes, which changed in expression during gametogenesis. Among these, 17.5% had putative functions in signaling, 14.3% were assigned to cell cycle and gene expression, 8.7% were linked to the cytoskeleton or inner membrane complex, 7.9% were involved in proteostasis and 6.4% in metabolism, 12.7% were cell surface-associated proteins, 11.9% were assigned to other functions, and 20.6% represented genes of unknown function. For 40% of the identified genes there has as yet not been any protein evidence. For a subset of 27 genes, transcript changes during gametogenesis were studied in detail by real-time RT-PCR. Of these, 22 genes were expressed in gametocytes, and for 15 genes transcript expression in gametocytes was increased compared to asexual blood stage parasites. Transcript levels of seven genes were particularly high in activated gametocytes, pointing at functions downstream of gametocyte transmission to the mosquito. For selected genes, a regulated expression during gametogenesis was confirmed on the protein level, using quantitative confocal microscopy. Conclusions The obtained transcriptome data demonstrate the regulations of gene expression immediately following malaria parasite transmission to the mosquito. Our findings support the identification of proteins important for sexual reproduction and further development of the mosquito midgut stages and provide insights into the genetic basis of the rapid adaption of Plasmodium to the insect vector. PMID:23586929

2013-01-01

237

Exploring the diversity and distribution of neotropical avian malaria parasites--a molecular survey from Southeast Brazil.  

PubMed

Southeast Brazil is a neotropical region composed of a mosaic of different tropical habitats and mountain chains, which allowed for the formation of bird-rich communities with distinct ecological niches. Although this region has the potential to harbor a remarkable variety of avian parasites, there is a lack of information about the diversity of malarial parasites. We used molecular approaches to characterize the lineage diversity of Plasmodium and Haemoproteus in bird communities from three different habitats in southeast Brazil based on the prevalence, richness and composition of lineages. We observed an overall prevalence of 35.3%, with a local prevalence ranging from 17.2% to 54.8%. Moreover, no significant association between prevalence and habitat type could be verified (p>0.05). We identified 89 Plasmodium and 22 Haemoproteus lineages, with 86% of them described for the first time here, including an unusual infection of a non-columbiform host by a Haemoproteus (Haemoproteus) parasite. The composition analyses of the parasite communities showed that the lineage composition from Brazilian savannah and tropical dry forest was similar, but it was different from the lineage composition of Atlantic rainforest, reflecting the greater likeness of the former habitats with respect to seasonality and forest density. No significant effects of habitat type on lineage richness were observed based on GLM analyses. We also found that sites whose samples had a greater diversity of bird species showed a greater diversity of parasite lineages, providing evidence that areas with high bird richness also have high parasite richness. Our findings point to the importance of the neotropical region (southeast Brazil) as a major reservoir of new haemosporidian lineages. PMID:23469235

Lacorte, Gustavo A; Félix, Gabriel M F; Pinheiro, Rafael R B; Chaves, Anderson V; Almeida-Neto, Gilberto; Neves, Frederico S; Leite, Lemuel O; Santos, Fabrício R; Braga, Erika M

2013-01-01

238

Inhibition of the growth and development of asexual and sexual stages of drug-sensitive and resistant strains of the human malaria parasite Plasmodium falciparum by Neem ( Azadirachta indica) fractions  

Microsoft Academic Search

Neem (Azadirachta indica) has been shown to possess anti-malarial activity. In this study we systematically evaluated extracts of neem seeds and purified fractions further enriched in polar or non-polar constituents for their effect on in vitro growth and development of asexual and sexual stages of the human malaria parasite Plasmodium falciparum. Use of synchronized stages of parasites suggested trophozoites\\/schizonts as

Ravi Dhar; Kunyan Zhang; G. P Talwar; Sanjay Garg; Nirbhay Kumar

1998-01-01

239

LIFE HISTORY OF A MALARIA PARASITE ( PLASMODIUM MEXICANUM ) IN ITS HOST, THE WESTERN FENCE LIZARD ( SCELOPORUS OCCIDENTALIS ): HOST TESTOSTERONE AS A SOURCE OF SEASONAL AND AMONG-HOST VARIATION?  

Microsoft Academic Search

The course of infection of a malaria parasite (Plasmodium mexicanum)is highly variable in its host, the fence lizard (Sceloporus occidentalis). However, a seasonal trend is superimposed on this variation such that gametocyte production is inten- sified during mid- to late summer. Host testosterone levels follow a similar seasonal fluctuation and are variable among individual lizards. We sought to determine if

Rebecca J. Eisen; Dale F. DeNardo

2000-01-01

240

Plasmodium falciparum merozoite surface protein 6 (MSP-6) derived peptides bind erythrocytes and partially inhibit parasite invasion.  

PubMed

This work shows that Plasmodium falciparum merozoite surface protein-6 (MSP-6) peptides specifically bind to membrane surface receptor on human erythrocytes. Three high activity binding peptides (HABPs) were found: peptides 31175 (41MYNNDKILSKNEVDTNIESN60) and 31178 (101YDIQATYQFPSTSGGNNVIP120) in the amino terminal region and 31191 (361EIDSTINNLVQEMIHLFSNNY380) at the carboxy terminal. Their binding to erythrocytes was saturable. HABPs 31191 and 31178 recognized 56 and 26 kDa receptors on erythrocyte membrane and inhibited in vitro Plasmodium falciparum merozoite invasion of erythrocytes by between 27% and 46% at 200 microg ml(-1) concentration, suggesting that these MSP-6 protein peptides play a possible role in the invasion process. PMID:16713025

López, Ramsés; Valbuena, John; Rodríguez, Luis E; Ocampo, Marisol; Vera, Ricardo; Curtidor, Hernando; Puentes, Alvaro; García, Javier; Ramirez, Luis E; Patarroyo, Manuel E

2006-07-01

241

Immunization of mice with live-attenuated late liver stage-arresting Plasmodium yoelii parasites generates protective antibody responses to preerythrocytic stages of malaria.  

PubMed

Understanding protective immunity to malaria is essential for the design of an effective vaccine to prevent the large number of infections and deaths caused by this parasitic disease. To date, whole-parasite immunization with attenuated parasites is the most effective method to confer sterile protection against malaria infection in clinical trials. Mouse model studies have highlighted the essential role that CD8(+) T cells play in protection against preerythrocytic stages of malaria; however, there is mounting evidence that antibodies are also important in these stages. Here, we show that experimental immunization of mice with Plasmodium yoelii fabb/f(-) (Pyfabb/f(-)), a genetically attenuated rodent malaria parasite that arrests late in the liver stage, induced functional antibodies that inhibited hepatocyte invasion in vitro and reduced liver-stage burden in vivo. These antibodies were sufficient to induce sterile protection from challenge by P. yoelii sporozoites in the absence of T cells in 50% of mice when sporozoites were administered by mosquito bite but not when they were administered by intravenous injection. Moreover, among mice challenged by mosquito bite, a higher proportion of BALB/c mice than C57BL/6 mice developed sterile protection (62.5% and 37.5%, respectively). Analysis of the antibody isotypes induced by immunization with Pyfabb/f(-) showed that, overall, BALB/c mice developed an IgG1-biased response, whereas C57BL/6 mice developed an IgG2b/c-biased response. Our data demonstrate for the first time that antibodies induced by experimental immunization of mice with a genetically attenuated rodent parasite play a protective role during the preerythrocytic stages of malaria. Furthermore, they highlight the importance of considering both the route of challenge and the genetic background of the mouse strains used when interpreting vaccine efficacy studies in animal models of malaria infection. PMID:25267837

Keitany, Gladys J; Sack, Brandon; Smithers, Hannah; Chen, Lin; Jang, Ihn K; Sebastian, Leslie; Gupta, Megha; Sather, D Noah; Vignali, Marissa; Vaughan, Ashley M; Kappe, Stefan H I; Wang, Ruobing

2014-12-01

242

Parasites  

MedlinePLUS

... U V W X Y Z Parasites Topics Malaria An ancient disease that affects millions of people ... source: Global Health - Division of Parasitic Diseases and Malaria Notice: Linking to a non-federal site does ...

243

Robust inducible Cre recombinase activity in the human malaria parasite Plasmodium falciparum enables efficient gene deletion within a single asexual erythrocytic growth cycle.  

PubMed

Asexual blood stages of the malaria parasite, which cause all the pathology associated with malaria, can readily be genetically modified by homologous recombination, enabling the functional study of parasite genes that are not essential in this part of the life cycle. However, no widely applicable method for conditional mutagenesis of essential asexual blood-stage malarial genes is available, hindering their functional analysis. We report the application of the DiCre conditional recombinase system to Plasmodium falciparum, the causative agent of the most dangerous form of malaria. We show that DiCre can be used to obtain rapid, highly regulated site-specific recombination in P. falciparum, capable of excising loxP-flanked sequences from a genomic locus with close to 100% efficiency within the time-span of a single erythrocytic growth cycle. DiCre-mediated deletion of the SERA5 3' UTR failed to reduce expression of the gene due to the existence of alternative cryptic polyadenylation sites within the modified locus. However, we successfully used the system to recycle the most widely used drug resistance marker for P. falciparum, human dihydrofolate reductase, in the process producing constitutively DiCre-expressing P. falciparum clones that have broad utility for the functional analysis of essential asexual blood-stage parasite genes. PMID:23489321

Collins, Christine R; Das, Sujaan; Wong, Eleanor H; Andenmatten, Nicole; Stallmach, Robert; Hackett, Fiona; Herman, Jean-Paul; Müller, Sylke; Meissner, Markus; Blackman, Michael J

2013-05-01

244

Robust inducible Cre recombinase activity in the human malaria parasite Plasmodium falciparum enables efficient gene deletion within a single asexual erythrocytic growth cycle  

PubMed Central

Asexual blood stages of the malaria parasite, which cause all the pathology associated with malaria, can readily be genetically modified by homologous recombination, enabling the functional study of parasite genes that are not essential in this part of the life cycle. However, no widely applicable method for conditional mutagenesis of essential asexual blood-stage malarial genes is available, hindering their functional analysis. We report the application of the DiCre conditional recombinase system to Plasmodium falciparum, the causative agent of the most dangerous form of malaria. We show that DiCre can be used to obtain rapid, highly regulated site-specific recombination in P. falciparum, capable of excising loxP-flanked sequences from a genomic locus with close to 100% efficiency within the time-span of a single erythrocytic growth cycle. DiCre-mediated deletion of the SERA5 3' UTR failed to reduce expression of the gene due to the existence of alternative cryptic polyadenylation sites within the modified locus. However, we successfully used the system to recycle the most widely used drug resistance marker for P. falciparum, human dihydrofolate reductase, in the process producing constitutively DiCre-expressing P. falciparum clones that have broad utility for the functional analysis of essential asexual blood-stage parasite genes. PMID:23489321

Collins, Christine R; Das, Sujaan; Wong, Eleanor H; Andenmatten, Nicole; Stallmach, Robert; Hackett, Fiona; Herman, Jean-Paul; Müller, Sylke; Meissner, Markus; Blackman, Michael J

2013-01-01

245

Plasmodium falciparum serine repeat protein, a new target of monocyte-dependent antibody-mediated parasite killing.  

PubMed

Using monoclonal antibodies and human affinity-purified antibodies specific to the Plasmodium falciparum 126-kDa serine-rich protein, SERP, we found that these antibodies have no direct effect upon merozoite invasion at the concentrations tested but can cooperate with blood monocytes to strongly inhibit P. falciparum in vitro growth. PMID:12438408

Soe, Soe; Singh, Subhash; Camus, Daniel; Horii, Toshihiro; Druilhe, Pierre

2002-12-01

246

Geographical origin of Plasmodium vivax in the Republic of Korea: haplotype network analysis based on the parasite's mitochondrial genome  

Microsoft Academic Search

BACKGROUND: The Republic of Korea (South Korea) is one of the countries where vivax malaria had been successfully eradicated by the late 1970s. However, re-emergence of vivax malaria in South Korea was reported in 1993. Several epidemiological studies and some genetic studies using antigenic molecules of Plasmodium vivax in the country have been reported, but the evolutionary history of P.

Moritoshi Iwagami; Seung-Young Hwang; Megumi Fukumoto; Toshiyuki Hayakawa; Kazuyuki Tanabe; So-Hee Kim; Weon-Gyu Kho; Shigeyuki Kano

2010-01-01

247

Transgenic Rodent Plasmodium berghei Parasites as Tools for Assessment of Functional Immunogenicity and Optimization of Human Malaria Vaccines  

Microsoft Academic Search

Functional assessments of immune responses against stage- specific antigens of Plasmodium falciparum, the agent of the deadliest form of human malaria, are limited mainly to in vitro assays because P. falciparum cannot infect small animals, such as rodents. Hence, antibodies from individuals who have been naturally infected or vaccinated against malaria during clinical trials have been evaluated by enzyme-linked immunosorbent

Godfree Mlambo; Nirbhay Kumar

2008-01-01

248

RTS,S Vaccination Is Associated With Serologic Evidence of Decreased Exposure to Plasmodium falciparum Liver- and Blood-Stage Parasites.  

PubMed

The leading malaria vaccine candidate, RTS,S, targets the sporozoite and liver stages of the Plasmodium falciparum life cycle, yet it provides partial protection against disease associated with the subsequent blood stage of infection. Antibodies against the vaccine target, the circumsporozoite protein, have not shown sufficient correlation with risk of clinical malaria to serve as a surrogate for protection. The mechanism by which a vaccine that targets the asymptomatic sporozoite and liver stages protects against disease caused by blood-stage parasites remains unclear. We hypothesized that vaccination with RTS,S protects from blood-stage disease by reducing the number of parasites emerging from the liver, leading to prolonged exposure to subclinical levels of blood-stage parasites that go undetected and untreated, which in turn boosts pre-existing antibody-mediated blood-stage immunity. To test this hypothesis, we compared antibody responses to 824 P. falciparum antigens by protein array in Mozambican children 6 months after receiving a full course of RTS,S (n = 291) versus comparator vaccine (n = 297) in a Phase IIb trial. Moreover, we used a nested case-control design to compare antibody responses of children who did or did not experience febrile malaria. Unexpectedly, we found that the breadth and magnitude of the antibody response to both liver and asexual blood-stage antigens was significantly lower in RTS,S vaccinees, with the exception of only four antigens, including the RTS,S circumsporozoite antigen. Contrary to our initial hypothesis, these findings suggest that RTS,S confers protection against clinical malaria by blocking sporozoite invasion of hepatocytes, thereby reducing exposure to the blood-stage parasites that cause disease. We also found that antibody profiles 6 months after vaccination did not distinguish protected and susceptible children during the subsequent 12-month follow-up period but were strongly associated with exposure. Together, these data provide insight into the mechanism by which RTS,S protects from malaria. PMID:25547414

Campo, Joe J; Aponte, John J; Skinner, Jeff; Nakajima, Rie; Molina, Douglas M; Liang, Li; Sacarlal, Jahit; Alonso, Pedro L; Crompton, Peter D; Felgner, Philip L; Dobaño, Carlota

2015-03-01

249

Ycf93 (Orf105), a small apicoplast-encoded membrane protein in the relict plastid of the malaria parasite Plasmodium falciparum that is conserved in Apicomplexa.  

PubMed

Malaria parasites retain a relict plastid (apicoplast) from a photosynthetic ancestor shared with dinoflagellate algae. The apicoplast is a useful drug target; blocking housekeeping pathways such as genome replication and translation in the organelle kills parasites and protects against malaria. The apicoplast of Plasmodium falciparum encodes 30 proteins and a suite of rRNAs and tRNAs that facilitate their expression. orf105 is a hypothetical apicoplast gene that would encode a small protein (PfOrf105) with a predicted C-terminal transmembrane domain. We produced antisera to a predicted peptide within PfOrf105. Western blot analysis confirmed expression of orf105 and immunofluorescence localised the gene product to the apicoplast. Pforf105 encodes a membrane protein that has an apparent mass of 17.5 kDa and undergoes substantial turnover during the 48-hour asexual life cycle of the parasite in blood stages. The effect of actinonin, an antimalarial with a putative impact on post-translational modification of apicoplast proteins like PfOrf105, was examined. Unlike other drugs perturbing apicoplast housekeeping that induce delayed death, actinonin kills parasites immediately and has an identical drug exposure phenotype to the isopentenyl diphosphate synthesis blocker fosmidomycin. Open reading frames of similar size to PfOrf105, which also have predicted C-terminal trans membrane domains, occur in syntenic positions in all sequenced apicoplast genomes from Phylum Apicomplexa. We therefore propose to name these genes ycf93 (hypothetical chloroplast reading frame 93) according to plastid gene nomenclature convention for conserved proteins of unknown function. PMID:24705170

Goodman, Christopher D; McFadden, Geoffrey I

2014-01-01

250

Malaria Parasite Invasion of the Mosquito Salivary Gland Requires Interaction between the Plasmodium TRAP and the Anopheles Saglin Proteins  

Microsoft Academic Search

SM1 is a twelve-amino-acid peptide that binds tightly to the Anopheles salivary gland and inhibits its invasion by Plasmodium sporozoites. By use of UV-crosslinking experiments between the peptide and its salivary gland target protein, we have identified the Anopheles salivary protein, saglin, as the receptor for SM1. Furthermore, by use of an anti-SM1 antibody, we have determined that the peptide

Anil K. Ghosh; Martin Devenport; Deepa Jethwaney; Dario E. Kalume; Akhilesh Pandey; Vernon E. Anderson; Ali A. Sultan; Nirbhay Kumar; Marcelo Jacobs-Lorena

2009-01-01

251

Different antibody- and cytokine-mediated responses to Plasmodium falciparum parasite in two sympatric ethnic tribes living in Mali  

Microsoft Academic Search

The Fulani are known to be less susceptible to Plasmodium falciparum malaria infections and to have lower parasitaemia despite living under similar malaria transmission intensity compared with other ethnic tribes. The aim of the present study was to examine whether the Fulani were more polarised towards Th2 as reflected by higher numbers of malaria-specific IL-4- and IL-10-producing cells and lower

Salah E. Farouk; Amagana Dolo; Sàndor Bereczky; Bourema Kouriba; Boubacar Maiga; Anna Färnert; Hedvig Perlmann; Masashi Hayano; Scott M. Montgomery; Ogobara K. Doumbo; Marita Troye-Blomberg

2005-01-01

252

FULL-malaria: a database for a full-length enriched cDNA library from human malaria parasite, Plasmodium falciparum.  

PubMed

FULL-malaria is a database for a full-length-enriched cDNA library from the human malaria parasite Plasmodium falciparum (http://133.11. 149.55/). Because of its medical importance, this organism is the first target for genome sequencing of a eukaryotic pathogen; the sequences of two of its 14 chromosomes have already been determined. However, for the full exploitation of this rapidly accumulating information, correct identification of the genes and study of their expression are essential. Using the oligo-capping method, we have produced a full-length-enriched cDNA library from erythrocytic stage parasites and performed one-pass reading. The database consists of nucleotide sequences of 2490 random clones that include 390 (16%) known malaria genes according to BLASTN analysis of the nr-nt database in GenBank; these represent 98 genes, and the clones for 48 of these genes contain the complete protein-coding sequence (49%). On the other hand, comparisons with the complete chromosome 2 sequence revealed that 35 of 210 predicted genes are expressed, and in addition led to detection of three new gene candidates that were not previously known. In total, 19 of these 38 clones (50%) were full-length. From these observations, it is expected that the database contains approximately 1000 genes, including 500 full-length clones. It should be an invaluable resource for the development of vaccines and novel drugs. PMID:11125052

Watanabe, J; Sasaki, M; Suzuki, Y; Sugano, S

2001-01-01

253

Chemokine levels and parasite- and allergen-specific antibody responses in children and adults with severe or uncomplicated Plasmodium falciparum malaria  

PubMed Central

Chemokine and antibody response profiles were investigated in children and adults with severe or uncomplicated Plasmodium falciparum malaria; the aim was to reveal which profiles are associated with severe disease, as often seen in nonimmune children, or with mild and uncomplicated disease, as seen in semi-immune adults. Blood samples were obtained from children under 5 years of age as well as adults with falciparum malaria. Classification of malaria was performed according to parasite densities and hemoglobin concentrations. Plasma levels of chemokines (IL-8, IP-10, MCP-4, TARC, PARC, MIP-1?, eotaxins) were quantified, and antibody responses (IgE, IgG1, and IgG4) to P. falciparum, Entamoeba histolytica-specific antigen, and mite allergen extracts were determined. In children with severe malaria proinflammatory, IL-8, IP10, MIP-1?, and LARC were at highly elevated levels, suggesting an association with severe disease. In contrast, the Th2-type chemokines TARC, PARC, and eotaxin-2 attained in children the same levels as in adults suggesting the evolution of immune regulatory components. In children with severe malaria, an elevated IgG1 and IgE reactivity to mite allergens and intestinal protozoan parasites was observed. In conclusion, exacerbated proinflammatory chemokines together with IgE responses to mite allergens or E. histolytica-specific antigen extract were observed in children with severe falciparum malaria.

Wangala, B.; Vovor, A.; Gantin, R. G.; Agbeko, Y. F.; Lechner, C. J.; Huang, X.; Köhler, C.

2015-01-01

254

Parasites  

Microsoft Academic Search

Unproductive enterprises that feed on productive businesses, are rampant in developing countries. These parasitic enterprises take divergent forms, some headed by violent bandits and brutal mafia bosses, others by organized middlemen or smart political insiders. All of them seem to have the profit motive in common. A consequence of parasitic enterprises is that societies may be locked into a self

Halvor Mehlum; Karl O. Moene; Ragnar Torvik

2003-01-01

255

Bacterially Expressed Full-Length Recombinant Plasmodium falciparum RH5 Protein Binds Erythrocytes and Elicits Potent Strain-Transcending Parasite-Neutralizing Antibodies  

PubMed Central

Plasmodium falciparum reticulocyte binding-like homologous protein 5 (PfRH5) is an essential merozoite ligand that binds with its erythrocyte receptor, basigin. PfRH5 is an attractive malaria vaccine candidate, as it is expressed by a wide number of P. falciparum strains, cannot be genetically disrupted, and exhibits limited sequence polymorphisms. Viral vector-induced PfRH5 antibodies potently inhibited erythrocyte invasion. However, it has been a challenge to generate full-length recombinant PfRH5 in a bacterial-cell-based expression system. In this study, we have produced full-length recombinant PfRH5 in Escherichia coli that exhibits specific erythrocyte binding similar to that of the native PfRH5 parasite protein and also, importantly, elicits potent invasion-inhibitory antibodies against a number of P. falciparum strains. Antibasigin antibodies blocked the erythrocyte binding of both native and recombinant PfRH5, further confirming that they bind with basigin. We have thus successfully produced full-length PfRH5 as a functionally active erythrocyte binding recombinant protein with a conformational integrity that mimics that of the native parasite protein and elicits potent strain-transcending parasite-neutralizing antibodies. P. falciparum has the capability to develop immune escape mechanisms, and thus, blood-stage malaria vaccines that target multiple antigens or pathways may prove to be highly efficacious. In this regard, antibody combinations targeting PfRH5 and other key merozoite antigens produced potent additive inhibition against multiple worldwide P. falciparum strains. PfRH5 was immunogenic when immunized with other antigens, eliciting potent invasion-inhibitory antibody responses with no immune interference. Our results strongly support the development of PfRH5 as a component of a combination blood-stage malaria vaccine. PMID:24126527

Reddy, K. Sony; Pandey, Alok K.; Singh, Hina; Sahar, Tajali; Emmanuel, Amlabu; Chitnis, Chetan E.; Chauhan, Virander S.

2014-01-01

256

Feasibility of flow cytometry for measurements of Plasmodium falciparum parasite burden in studies in areas of malaria endemicity by use of bidimensional assessment of YOYO-1 and autofluorescence.  

PubMed

The detection and quantification of Plasmodium falciparum in studies of malaria endemicity primarily relies upon microscopy. High-throughput quantitative methods with less subjectivity and greater reliability are needed for investigational studies. The staining of parasitized erythrocytes with YOYO-1 for flow cytometry bears great potential as a tool for assessing malaria parasite burden. Capillary blood was collected from children presenting to the pediatric ward of the Manhiça District Hospital in Mozambique for parasitemia assessment by thick and thin blood films, flow cytometry (YOYO-1(530/585)), and quantitative real-time PCR (qRT-PCR). Whole blood was fixed and stained with YOYO-1 for acquisition on a cytometer to assess the frequency of infected erythrocyte events. qRT-PCR was used as the gold standard for the detection of P. falciparum. The YOYO-1(530/585) method was as sensitive and specific as conventional microscopy (area under the receiver operating characteristic, 0.9 for both methods). The interrater mean difference for YOYO-1(530/585) was near zero. Parasite density using flow cytometry and complete blood counts returned density estimates with a mean difference 2.2 times greater than results by microscopy (confidence interval, 1.46 to 3.60) but with limits of agreement between 10 times lower and 50 times higher than those of microscopy. The YOYO-1(530/585) staining pattern was established exactly as demonstrated in animal models, but the assay was limited by the lack of appropriate negative-control samples for establishing background levels and the definition of positives in areas in which malaria is endemic. YOYO-1(530/585) is a high-throughput tool with great potential if the limitations of negative controls and heterogeneous levels of background signal can be overcome. PMID:21227985

Campo, Joseph J; Aponte, John J; Nhabomba, Augusto J; Sacarlal, Jahit; Angulo-Barturen, Iñigo; Jiménez-Díaz, María Belén; Alonso, Pedro L; Dobaño, Carlota

2011-03-01

257

Refractive index maps and membrane dynamics of human red blood cells parasitized  

E-print Network

Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium, Northwestern University, Evanston, IL, July 25, 2008 (received for review May 18, 2008) Parasitization development, the malaria parasite Plasmodium falciparum causes structural, biochemical, and mechanical changes

Suresh, Subra

258

Identification of an Atg8-Atg3 protein-protein interaction inhibitor from the medicines for Malaria Venture Malaria Box active in blood and liver stage Plasmodium falciparum parasites.  

PubMed

Atg8 is a ubiquitin-like autophagy protein in eukaryotes that is covalently attached (lipidated) to the elongating autophagosomal membrane. Autophagy is increasingly appreciated as a target in diverse diseases from cancer to eukaryotic parasitic infections. Some of the autophagy machinery is conserved in the malaria parasite, Plasmodium. Although Atg8's function in the parasite is not well understood, it is essential for Plasmodium growth and survival and partially localizes to the apicoplast, an indispensable organelle in apicomplexans. Here, we describe the identification of inhibitors from the Malaria Medicine Venture Malaria Box against the interaction of PfAtg8 with its E2-conjugating enzyme, PfAtg3, by surface plasmon resonance. Inhibition of this protein-protein interaction prevents PfAtg8 lipidation with phosphatidylethanolamine. These small molecule inhibitors share a common scaffold and have activity against both blood and liver stages of infection by Plasmodium falciparum. We have derivatized this scaffold into a functional platform for further optimization. PMID:24786226

Hain, Adelaide U P; Bartee, David; Sanders, Natalie G; Miller, Alexia S; Sullivan, David J; Levitskaya, Jelena; Meyers, Caren Freel; Bosch, Jürgen

2014-06-12

259

Hepatitis B Virus Infection Does Not Significantly Influence Plasmodium Parasite Density in Asymptomatic Infections in Ghanaian Transfusion Recipients  

PubMed Central

Background Areas endemic for malaria and Hepatitis B virus (HBV) infection largely overlap geographically. A recent study has suggested the existence of an interaction between the two pathogens in symptomatic co-infected individuals on the South-American continent. We examined this issue in a hyperendemic area for both pathogens in sub-Saharan Africa. Methodology and Findings Pre-transfusion samples from a retrospective cohort of 154 blood transfusion recipients were screened for both serological and molecular markers of HBV and Plasmodium genomes using species-specific nested PCR and quantitative real-time PCR. Thirty-seven individuals met exclusion criteria and were subsequently eliminated from further analysis. Of 117 participants, 90% of recipients exhibited evidence of exposure to HBV, 42% with HBsAg and/or HBV DNA and 48% anti-HBc reactive without detectable HBV DNA. Plasmodium genome prevalence by NAT was 50%. Parasitemic individuals were significantly younger than non-parasitemic individuals (P?=?0.04). Parasitemia level was not significantly lower in individuals with HBV DNA positive infections compared to those with HBV DNA negative exposures. HBV DNA load was not significantly different in parasitemic and non-parasitemic individuals. Conclusion The data presented suggests that, in sub-Saharan Africa, asymptomatic co-infections with these two ubiquitous pathogens do not appear to significantly affect each other and evolve independently. PMID:23185500

Freimanis, Graham Lee; Owusu-Ofori, Shirley; Allain, Jean-Pierre

2012-01-01

260

Invited Review Malaria parasite colonisation of the mosquito midgut Placing  

E-print Network

Invited Review Malaria parasite colonisation of the mosquito midgut ­ Placing the Plasmodium 3 March 2012 Keywords: Malaria Plasmodium Mosquito Anopheles Ookinete Oocyst Midgut traversal drugs is emerging. Malaria parasite migration through the mosquito host constitutes a major population

McFadden, Geoff

261

Blood parasites from California ducks and geese  

USGS Publications Warehouse

Blood smears were procured from 1,011 geese and ducks of 19 species from various locations in California. Parasites were found in 28 individuals. The parasites observed included Haemoproteus hermani, Leucocytozoon simondi, microfilaria, Plasmodium relictum (=P. biziurae), and Plasmodium sp. with elongate gametocytes. This is the first report of a natural infection with a Plasmodium in North American wild ducks.

Herman, C.M.

1951-01-01

262

Variation in the gene encoding a major merozoite surface antigen of the human malaria parasite Plasmodium falciparum.  

PubMed Central

Plasmodium falciparum merozoites have a variable surface protein of about 195,000 molecular weight which may be involved in strain-specific immunity. We have cloned and sequenced a major portion of the gene encoding this antigen from the CAMP strain and have located sites of preferred mung bean nuclease cleavage around the gene. These sites depend on reaction conditions, but at 40% formamide and 2 units of mung bean nuclease per microgram DNA, the intact gene was excised from the chromosome. Comparison of the CAMP strain gene with the same gene from other strains of P. falciparum by matching available DNA sequences and by DNA hybridization revealed five regions of homology separated by divergent segments. Two of the variable regions encoded three amino acid repeats, predominantly Ser-Gly-Thr and Thr-Glu-Glu. Implications of these findings on the function of the antigen, and possible mechanisms for generation of variants are discussed. Images PMID:3517809

Weber, J L; Leininger, W M; Lyon, J A

1986-01-01

263

Counter-regulatory anti-parasite cytokine responses during concurrent Plasmodium yoelii and intestinal helminth infections in mice  

Technology Transfer Automated Retrieval System (TEKTRAN)

Malaria and helminth infections are two of the most prevalent parasitic diseases in tropical areas. While concomitant infection is common, mechanisms contributing to altered disease outcomes during co-infection remain poorly defined. We have previously reported exacerbation of normally non-lethal ...

264

The Activities of Current Antimalarial Drugs on the Life Cycle Stages of Plasmodium: A Comparative Study with Human and Rodent Parasites  

PubMed Central

Background Malaria remains a disease of devastating global impact, killing more than 800,000 people every year—the vast majority being children under the age of 5. While effective therapies are available, if malaria is to be eradicated a broader range of small molecule therapeutics that are able to target the liver and the transmissible sexual stages are required. These new medicines are needed both to meet the challenge of malaria eradication and to circumvent resistance. Methods and Findings Little is known about the wider stage-specific activities of current antimalarials that were primarily designed to alleviate symptoms of malaria in the blood stage. To overcome this critical gap, we developed assays to measure activity of antimalarials against all life stages of malaria parasites, using a diverse set of human and nonhuman parasite species, including male gamete production (exflagellation) in Plasmodium falciparum, ookinete development in P. berghei, oocyst development in P. berghei and P. falciparum, and the liver stage of P. yoelii. We then compared 50 current and experimental antimalarials in these assays. We show that endoperoxides such as OZ439, a stable synthetic molecule currently in clinical phase IIa trials, are strong inhibitors of gametocyte maturation/gamete formation and impact sporogony; lumefantrine impairs development in the vector; and NPC-1161B, a new 8-aminoquinoline, inhibits sporogony. Conclusions These data enable objective comparisons of the strengths and weaknesses of each chemical class at targeting each stage of the lifecycle. Noting that the activities of many compounds lie within achievable blood concentrations, these results offer an invaluable guide to decisions regarding which drugs to combine in the next-generation of antimalarial drugs. This study might reveal the potential of life-cycle–wide analyses of drugs for other pathogens with complex life cycles. Please see later in the article for the Editors' Summary PMID:22363211

Delves, Michael; Plouffe, David; Scheurer, Christian; Meister, Stephan; Wittlin, Sergio; Winzeler, Elizabeth A.; Sinden, Robert E.; Leroy, Didier

2012-01-01

265

B-Cell Responses to Pregnancy-Restricted and -Unrestricted Plasmodium falciparum Erythrocyte Membrane Protein 1 Antigens in Ghanaian Women Naturally Exposed to Malaria Parasites  

PubMed Central

Protective immunity to Plasmodium falciparum malaria acquired after natural exposure is largely antibody mediated. IgG-specific P. falciparum EMP1 (PfEMP1) proteins on the infected erythrocyte surface are particularly important. The transient antibody responses and the slowly acquired protective immunity probably reflect the clonal antigenic variation and allelic polymorphism of PfEMP1. However, it is likely that other immune-evasive mechanisms are also involved, such as interference with formation and maintenance of immunological memory. We measured PfEMP1-specific antibody levels by enzyme-linked immunosorbent assay (ELISA) and memory B-cell frequencies by enzyme-linked immunosorbent spot (ELISPOT) assay in a cohort of P. falciparum-exposed nonpregnant Ghanaian women. The antigens used were a VAR2CSA-type PfEMP1 (IT4VAR04) with expression restricted to parasites infecting the placenta, as well as two commonly recognized PfEMP1 proteins (HB3VAR06 and IT4VAR60) implicated in rosetting and not pregnancy restricted. This enabled, for the first time, a direct comparison in the same individuals of immune responses specific for a clinically important parasite antigen expressed only during well-defined periods (pregnancy) to responses specific for comparable antigens expressed independent of pregnancy. Our data indicate that PfEMP1-specific B-cell memory is adequately acquired even when antigen exposure is infrequent (e.g., VAR2CSA-type PfEMP1). Furthermore, immunological memory specific for VAR2CSA-type PfEMP1 can be maintained for many years without antigen reexposure and after circulating antigen-specific IgG has disappeared. The study provides evidence that natural exposure to P. falciparum leads to formation of durable B-cell immunity to clinically important PfEMP1 antigens. This has encouraging implications for current efforts to develop PfEMP1-based vaccines. PMID:24566620

Ampomah, Paulina; Stevenson, Liz; Ofori, Michael F.; Barfod, Lea

2014-01-01

266

Recent developments in vaccination against malaria: Preliminary studies on vaccination of rhesus monkeys with irradiated sporozoites of Plasmodium knowlesi and characterization of surface antigens of these parasites*  

PubMed Central

Studies were conducted to develop an effective method of inducing protection against sporozoite-induced malaria in a primate system and to obtain information regarding the surface membrane antigens of sporozoites. Immunization of rhesus monkeys was performed with gamma-irradiated sporozoites of Plasmodium knowlesi. Levels of antisporozoite antibodies were monitored by immunofluorescence, sporozoite neutralization, and the circumsporozoite precipitate reaction, and appeared to correlate well with protection. Only the intravenous route was effective in inducing both protection and antisporozoite antibodies. Immunization with sporozoites mixed with Freund's complete adjuvant failed completely to induce protection and resulted in a minimal antibody response. Mechanisms of resistance to sporozoites probably involve the interaction of the host's immune system with the parasite's surface antigen(s). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of surface-labelled, partially purified sporozoites followed by autoradiography revealed the presence of a small number of labelled proteins in the extract. Immunoprecipitation with specific antisera to P. berghei detected primarily one of these membrane components, with an apparent molecular weight of 41 000. The molecular weight of this main surface antigen in sporozoites of P. berghei was different from that in sporozoites of P. knowlesi. ImagesFig. 2Fig. 3 PMID:120766

Gwadz, R. W.; Cochrane, A. H.; Nussenzweig, V.; Nussenzweig, Ruth S.

1979-01-01

267

Isolation and characterization of the MSP1 genes from Plasmodium malariae and Plasmodium ovale.  

PubMed

The merozoite surface protein 1 (MSP1) is the principal surface antigen of the blood stage form of the Plasmodium parasite. Antibodies recognizing MSP1 are frequently detected following Plasmodium infection, making this protein a significant component of malaria vaccines and diagnostic tests. Although the MSP1 gene sequence has been reported for Plasmodium falciparum and Plasmodium vivax, this gene has not been identified for the other two major human-infectious species, Plasmodium malariae and Plasmodium ovale. MSP1 genes from these two species were isolated from Cameroon blood donor samples. The genes are similar in size to known MSP1 genes and encode proteins with interspecies conserved domains homologous to those identified in other Plasmodium species. Sequence and phylogenetic analysis of all available Plasmodium MSP1 amino acid sequences clearly shows that the Po and Pm MSP1 sequences are truly unique within the Plasmodium genus and not simply Pf or Pv variants. PMID:20519591

Birkenmeyer, Larry; Muerhoff, A Scott; Dawson, George J; Desai, Suresh M

2010-06-01

268

Effects of transmission reduction by insecticide-treated bed nets (ITNs) on parasite genetics population structure: I. The genetic diversity of Plasmodium falciparum parasites by microsatellite markers in western Kenya  

PubMed Central

Background Insecticide-treated bed nets (ITNs) reduce malaria transmission and are an important prevention tool. However, there are still information gaps on how the reduction in malaria transmission by ITNs affects parasite genetics population structure. This study examined the relationship between transmission reduction from ITN use and the population genetic diversity of Plasmodium falciparum in an area of high ITN coverage in western Kenya. Methods Parasite genetic diversity was assessed by scoring eight single copy neutral multilocus microsatellite (MS) markers in samples collected from P. falciparum-infected children (< five years) before introduction of ITNs (1996, baseline, n = 69) and five years after intervention (2001, follow-up, n = 74). Results There were no significant changes in overall high mixed infections and unbiased expected heterozygosity between baseline (%MA = 94% and He = 0.75) and follow up (%MA = 95% and He = 0.79) years. However, locus specific analysis detected significant differences for some individual loci between the two time points. Pfg377 loci, a gametocyte-specific MS marker showed significant increase in mixed infections and He in the follow up survey (%MA = 53% and He = 0.57) compared to the baseline (%MA = 30% and He = 0.29). An opposite trend was observed in the erythrocyte binding protein (EBP) MS marker. There was moderate genetic differentiation at the Pfg377 and TAA60 loci (FST = 0.117 and 0.137 respectively) between the baseline and post-ITN parasite populations. Further analysis revealed linkage disequilibrium (LD) of the microsatellites in the baseline (14 significant pair-wise tests and ISA = 0.016) that was broken in the follow up parasite population (6 significant pairs and ISA = 0.0003). The locus specific change in He, the moderate population differentiation and break in LD between the baseline and follow up years suggest an underlying change in population sub-structure despite the stability in the overall genetic diversity and multiple infection levels. Conclusions The results from this study suggest that although P. falciparum population maintained an overall stability in genetic diversity after five years of high ITN coverage, there was significant locus specific change associated with gametocytes, marking these for further investigation. PMID:21134282

2010-01-01

269

Wolbachia Strain wAlbB Enhances Infection by the Rodent Malaria Parasite Plasmodium berghei in Anopheles gambiae Mosquitoes  

PubMed Central

Wolbachia, a common bacterial endosymbiont of insects, has been shown to protect its hosts against a wide range of pathogens. However, not all strains exert a protective effect on their host. Here we assess the effects of two divergent Wolbachia strains, wAlbB from Aedes albopictus and wMelPop from Drosophila melanogaster, on the vector competence of Anopheles gambiae challenged with Plasmodium berghei. We show that the wAlbB strain significantly increases P. berghei oocyst levels in the mosquito midgut while wMelPop modestly suppresses oocyst levels. The wAlbB strain is avirulent to mosquitoes while wMelPop is moderately virulent to mosquitoes pre-blood meal and highly virulent after mosquitoes have fed on mice. These various effects on P. berghei levels suggest that Wolbachia strains differ in their interactions with the host and/or pathogen, and these differences could be used to dissect the molecular mechanisms that cause interference of pathogen development in mosquitoes. PMID:22210220

Hughes, Grant L.; Vega-Rodriguez, Joel; Xue, Ping

2012-01-01

270

Journal of Parasitology Diversity and phylogenetic relationships of hemosporidian parasites in birds of Socorro  

E-print Network

on Socorro ground doves Columbina passerina socorrensis and mourning doves Zenaida macroura, as well in birds of Socorro Island, México and their role in the re-introduction of the Socorro Dove (Zenaida-introduction of the Socorro Dove (Zenaida graysoni) Short Title: Avian haemosporidian parasites diversity of Socorro Island

Sehgal, Ravinder

271

Evolution of malaria parasite plastid targeting sequences  

E-print Network

Evolution of malaria parasite plastid targeting sequences Christopher J. Tonkin* , Bernardo J. Foth in the malaria parasite Plasmodium falciparum. We show that exons of the P. falciparum genome could serve-bearing proteins remains largely mysterious (1). The human malaria parasite Plasmodium falciparum contains

McFadden, Geoff

272

Sequences of the Plasmodium falciparum cytoadherence-linked asexual protein 9 implicated in malaria parasite invasion to erythrocytes.  

PubMed

In this study, we synthesized the complete sequence of the CLAG-9 protein as 67 20-mer-long non-overlapped peptides and assessed their ability to bind to erythrocytes in receptor-ligand assays. Twenty CLAG-9 peptides were found to have specific high-affinity binding ability to erythrocytes (thereby named as HABPs), with nanomolar dissociation constants. CLAG-9 HABPs interacted with different erythrocyte surface receptors having apparent molecular weights of 85, 63 and 34 kDa. CLAG-9 HABPs binding was also affected by pre-treatment of RBCs with enzymes and inhibited erythrocyte invasion in vitro by up to 72% at 200 microM. These results suggest that some protein fragments of CLAG-9 may be part of the molecular machinery used by malaria parasites to invade erythrocytes, hence supporting their study as possible vaccine candidates. PMID:20085836

Pinzón, Carlos Giovanni; Curtidor, Hernando; García, Jeison; Vanegas, Magnolia; Vizcaíno, Carolina; Patarroyo, Manuel A; Patarroyo, Manuel E

2010-03-19

273

Metabolic maps and functions of the Plasmodium mitochondrion  

Microsoft Academic Search

The mitochondrion of Plasmodium species is a validated drug target. However, very little is known about the functions of this organelle. In this review, we utilize data available from the Plasmodium falciparum genome sequencing project to piece together putative metabolic pathways that occur in the parasite, comparing this with the existing biochemical and cell biological knowledge. The Plasmodium mitochondrion contains

Giel G. van Dooren; Luciana M. Stimmler; Geoffrey I. McFadden

2006-01-01

274

A species of Plasmodium from sandhill cranes in Florida.  

PubMed

Infections of a species of Plasmodium (subgenus Giovannolaia) were diagnosed in 3 sandhill cranes (Grus canadensis) from north-central Florida. This parasite is close morphometrically to Plasmodium polare; this finding constitutes the first report of a species of Plasmodium from sandhill cranes in North America. PMID:8195957

Telford, S R; Nesbitt, S A; Spalding, M G; Forrester, D J

1994-06-01

275

Age-adjusted Plasmodium falciparum antibody levels in school-aged children are a stable marker of microgeographical variations in exposure to Plasmodium infection  

E-print Network

, but may result from long-term exposure to the parasite. Studies of hepatosplenomegaly associated with Schistosoma mansoni infection and exposure to Plasmodium infection indicate that differences that occur over 1–2 km in levels of Plasmodium transmission...

Wilson, Shona; Booth, Mark; Jones, Frances M; Mwatha, Joseph K; Kimani, Gachuhi; Kariuki, Henry Curtis; Vennervald, Birgitte J; Ouma, John H; Muchiri, Eric; Dunne, David W

2007-06-29

276

Genetic complementation in apicomplexan parasites Boris Striepen  

E-print Network

Plasmodium (malaria), Toxoplasma (AIDS-related enceph- alitis), Cryptosporidium, and Cyclospora (severe enteritis) as well as many parasites of substantial veterinary importance (Eimeria, Theileria, Sarcocystis

Logsdon Jr., John M.,

277

Co-ordinated stage-dependent enhancement of Plasmodium falciparum antioxidant enzymes and heat shock protein expression in parasites growing in oxidatively stressed or G6PD-deficient red blood cells  

PubMed Central

Background Plasmodium falciparum-parasitized red blood cells (RBCs) are equipped with protective antioxidant enzymes and heat shock proteins (HSPs). The latter are only considered to protect against thermal stress. Important issues are poorly explored: first, it is insufficiently known how both systems are expressed in relation to the parasite developmental stage; secondly, it is unknown whether P. falciparum HSPs are redox-responsive, in view of redox sensitivity of HSP in eukaryotic cells; thirdly, it is poorly known how the antioxidant defense machinery would respond to increased oxidative stress or inhibited antioxidant defense. Those issues are interesting as several antimalarials increase the oxidative stress or block antioxidant defense in the parasitized RBC. In addition, numerous inhibitors of HSPs are currently developed for cancer therapy and might be tested as anti-malarials. Thus, the joint disruption of the parasite antioxidant enzymes/HSP system would interfere with parasite growth and open new perspectives for anti-malaria therapy. Methods Stage-dependent mRNA expression of ten representative P. falciparum antioxidant enzymes and hsp60/70–2/70–3/75/90 was studied by quantitative real-time RT-PCR in parasites growing in normal RBCs, in RBCs oxidatively-stressed by moderate H2O2 generation and in G6PD-deficient RBCs. Protein expression of antioxidant enzymes was assayed by Western blotting. The pentosephosphate-pathway flux was measured in isolated parasites after Sendai-virus lysis of RBC membrane. Results In parasites growing in normal RBCs, mRNA expression of antioxidant enzymes and HSPs displayed co-ordinated stage-dependent modulation, being low at ring, highest at early trophozoite and again very low at schizont stage. Additional exogenous oxidative stress or growth in antioxidant blunted G6PD-deficient RBCs indicated remarkable flexibility of both systems, manifested by enhanced, co-ordinated mRNA expression of antioxidant enzymes and HSPs. Protein expression of antioxidant enzymes was also increased in oxidatively-stressed trophozoites. Conclusion Results indicated that mRNA expression of parasite antioxidant enzymes and HSPs was co-ordinated and stage-dependent. Secondly, both systems were redox-responsive and showed remarkably increased and co-ordinated expression in oxidatively-stressed parasites and in parasites growing in antioxidant blunted G6PD-deficient RBCs. Lastly, as important anti-malarials either increase oxidant stress or impair antioxidant defense, results may encourage the inclusion of anti-HSP molecules in anti-malarial combined drugs. PMID:19480682

Akide-Ndunge, Oscar Bate; Tambini, Elisa; Giribaldi, Giuliana; McMillan, Paul J; Müller, Sylke; Arese, Paolo; Turrini, Francesco

2009-01-01

278

Geographic variation in malarial parasite lineages in the common yellowthroat ( Geothlypis trichas )  

Microsoft Academic Search

Our current understanding of migration routes of many birds is limited and researchers have employed various methods to determine\\u000a migratory patterns. Recently, parasites have been used to track migratory birds. The objective of this study was to determine\\u000a whether haemosporidian parasite lineages detect significant geographic structure in common yellowthroats (Geothlypis trichas). We examined liver tissue or blood from 552 birds

K. M. Pagenkopp; J. Klicka; K. L. Durrant; J. C. Garvin; R. C. Fleischer

2008-01-01

279

Membrane transporters in the relict plastid of malaria parasites  

E-print Network

Membrane transporters in the relict plastid of malaria parasites Kylie A. Mullin*, Liting Lim, 2005) Malaria parasites contain a nonphotosynthetic plastid homologous to chloroplasts of plants to power the organelle. apicoplast endosymbiosis Plasmodium translocator Malaria is caused by parasites

McFadden, Geoff

280

Abstract Theoretical models of parasite virulence often quantify virulence by mortality. However, there is a lack  

E-print Network

(Sceloporus occidentalis) infected with a malaria parasite, Plasmodium mexican- um, in northern California mortality in nature. Keywords Plasmodium · Malaria · Parasite-induced host mortality · Sceloporus). A malaria-causing parasite, Plasmodium mexicanum, commonly found in western fence lizards (Sceloporus

Schall, Joseph J.

281

Practical PCR genotyping protocols for Plasmodium vivax using Pvcs and Pvmsp1  

Microsoft Academic Search

BACKGROUND: Plasmodium vivax is the second most prevalent malaria parasite affecting more than 75 million people each year, mostly in South America and Asia. In addition to major morbidity this parasite is associated with relapses and a reduction in birthweight. The emergence and spread of drug resistance in Plasmodium falciparum is a major factor in the resurgence of this parasite.

Mallika Imwong; Sasithon Pukrittayakamee; Anne Charlotte Grüner; Laurent Rénia; Frank Letourneur; Sornchai Looareesuwan; Nicholas J White; Georges Snounou

2005-01-01

282

Transmission Blocking Immunity in Plasmodium v\\/vax Malaria: Antibodies Raised against a Peptide Block Parasite Development in the Mosquito Vector  

Microsoft Academic Search

Summary One approach towards the development of a vaccine against malaria is to immunize against the parasite sexual stages that mediate transmission of the parasite from man to mosquito. Anti- bodies against these stages, ingested with the blood meal, inhibit the parasite development in the mosquito vector, constituting \\

Valerie A. Snewin; Sunil Premawansa; S Gamini; M. G. Kapilananda; Preethi V. Udagama; Denise M. Mattei; Elizabeth Khouri; Giuseppe De; J. S. M. Peiris; Kamini N. Mendis; Peter H. David

283

Molecular Systematics of malaria parasites  

E-print Network

Molecular Systematics of malaria parasites The malaria parasites are included within the order Plasmodiidae. The best-known genera are Plasmodium, which is the cause of human malaria (more on those species below), and Haemoproteus, found primarily in birds. The common term, "malaria parasites

Schall, Joseph J.

284

Plasma antibodies from malaria-exposed pregnant women recognize variant surface antigens on Plasmodium falciparum-infected erythrocytes in a parity-dependent manner and block parasite adhesion to chondroitin sulfate A.  

PubMed

In areas of intense Plasmodium falciparum transmission, clinical immunity is acquired during childhood, and adults enjoy substantial protection against malaria. An exception to this rule is pregnant women, in whom malaria is both more prevalent and severe than in nonpregnant women. Pregnancy-associated malaria (PAM) in endemic areas is concentrated in the first few pregnancies, indicating that protective immunity to PAM is a function of parity. The placenta is often heavily infected in PAM, and placental parasites show a striking preference for chondroitin sulfate A (CSA) as an adhesion receptor. Plasma Abs from malaria-exposed multiparous women are able to interfere with binding of P. falciparum parasites to CSA in vitro, and acquisition of Abs interfering with CSA-specific parasite sequestration thus appears to be a critical element in acquired protection against PAM. Here we show that adults from an area of hyperendemic P. falciparum transmission generally possessed low levels of Abs specifically recognizing surface Ags expressed by a CSA-adhering parasite isolate, while unselected isolates were well recognized. In marked contrast, most third-trimester pregnant women from that area had very high plasma levels of such Abs. Plasma levels of Abs specifically recognizing the CSA-adhering isolate strongly depended on parity, whereas recognition of CSA-nonadhering isolates did not. Finally, we demonstrate a clear correlation between plasma levels of Abs recognizing the CSA-specific isolate and the ability to interfere with its sequestration to CSA in vitro. Our study supports the hypothesis that Abs inhibiting CSA-specific parasite sequestration are important in acquisition of protection against PAM. PMID:10975848

Ricke, C H; Staalsoe, T; Koram, K; Akanmori, B D; Riley, E M; Theander, T G; Hviid, L

2000-09-15

285

Mosquito immune defenses against Plasmodium infection  

PubMed Central

The causative agent of malaria, Plasmodium, has to undergo complex developmental transitions and survive attacks from the mosquito's innate immune system to achieve transmission from one host to another through the vector. Here we discuss recent findings on the role of the mosquito's innate immune signaling pathways in preventing infection by the Plasmodium parasite, the identification and mechanistic description of novel anti-parasite molecules, the role that natural bacteria harbored in the mosquito midgut might play in this immune defense, and the crucial parasite and vector molecules that mediate midgut infection. PMID:20026176

Cirimotich, Chris M.; Dong, Yuemei; Garver, Lindsey S.; Sim, Shuzhen

2012-01-01

286

Nucleosome occupancy at transcription start sites in the human malaria parasite: A hard-wired evolution of virulence?  

E-print Network

Nucleosome occupancy at transcription start sites in the human malaria parasite: A hard-borne infectious disease caused by a eukaryotic protist of the genus Plasmodium. Plasmodium can parasitize a wide into mosquitoes of the genus Anopheles corresponds with the expan- sion of Plasmodium parasites into mammals

Lonardi, Stefano

287

Cultivation of Plasmodium spp.  

PubMed Central

Cultivation of both human and non-human species of Plasmodium spp., the causal agent of malaria, has been a major research success, leading to a greater understanding of the parasite. Efforts at cultivating the organisms in vitro are complicated by the parasites' alternating between a human host and an arthropod vector, each having its own set of physiological, metabolic, and nutritional parameters. Life cycle stages of the four species that infect humans have been established in vitro. Of these four, P. falciparum remains the only species for which all stages have been cultured in vitro; different degrees of success have been achieved with the other human Plasmodium spp. The life cycle includes the exoerythrocytic stage (within liver cells), the erythrocytic stage (within erythrocytes or precursor reticulocytes), and the sporogonic stage (within the vector). Culture media generally consist of a basic tissue culture medium (e.g., minimal essential medium or RPMI 1640) to which serum and erythrocytes are added. Most of the efforts have been directed toward the stage found in the erythrocyte. This stage has been cultivated in petri plates or other growth vessels in a candle jar to generate elevated CO2 levels or in a more controlled CO2 atmosphere. Later developments have employed continuous-flow systems to reduce the labor-intensive nature of medium changing. The exoerythrocytic and sporogonic life cycle stages have also been cultivated in vitro. A number of avian, rodent, and simian malarial parasites have also been established in vitro. Although cultivation is of great help in understanding the biology of Plasmodium, it does not lend itself to use for diagnostic purposes. PMID:12097244

Schuster, Frederick L.

2002-01-01

288

Identification of a major B-cell epitope of the Plasmodium falciparum glutamate-rich protein (GLURP), targeted by human antibodies mediating parasite killing  

Microsoft Academic Search

The antigenicity of the glutamate-rich protein (GLURP) of Plasmodium falciparum was comprehensively evaluated in epitope-mapping studies utilizing a phage display library, synthetic peptides and anti-GLURP IgG preparations previously shown to promote strong antibody-dependent cellular inhibition (ADCI) effects. We identified six major B-cell epitopes within the nonrepetitive region R0, corresponding to amino acid residues 173 to 187 (P1), 193 to 207

Michael Theisen; Soe Soe; Stine G Jessing; Limei Meng Okkels; Steffen Danielsen; Claude Oeuvray; Pierre Druilhe; Søren Jepsen

2000-01-01

289

A Clonal Theory of Parasitic Protozoa: The Population Structures of Entamoeba, Giardia, Leishmania, Naegleria, Plasmodium, Trichomonas, and Trypanosoma and their Medical and Taxonomical Consequences  

Microsoft Academic Search

We propose a general theory of clonal reproduction for parasitic protozoa, which has important medical and biological consequences. Many parasitic protozoa have been assumed to reproduce sexually, because of diploidy and occasional sexuality in the laboratory. However, a population genetic analysis of extensive data on biochemical polymorphisms indicates taht the two fundamental consequences of sexual reproduction (i.e., segregation and recombination)

Michel Tibayrenc; Finn Kjellberg; Francisco J. Ayala

1990-01-01

290

Vector transmission regulates immune control of Plasmodium virulence  

PubMed Central

Defining mechanisms by which Plasmodium virulence is regulated is central to understanding the pathogenesis of human malaria. Serial blood passage of Plasmodium through rodents1-3, primates4 or humans5 increases parasite virulence, suggesting that vector transmission regulates Plasmodium virulence within the mammalian host. In agreement, disease severity can be modified by vector transmission6-8, which is assumed to ‘reset’ Plasmodium to its original character3. However, direct evidence that vector transmission regulates Plasmodium virulence is lacking. Here we utilise mosquito transmission of serially blood passaged (SBP) Plasmodium chabaudi chabaudi9 to interrogate regulation of parasite virulence. Analysis of SBP P.c. chabaudi before and after mosquito transmission demonstrates that vector transmission intrinsically modifies the asexual blood-stage parasite, which in turn, modifies the elicited mammalian immune response, which in turn, attenuates parasite growth and associated pathology. Attenuated parasite virulence associates with modified expression of the pir multi-gene family. Vector transmission of Plasmodium therefore regulates gene expression of probable variant antigens in the erythrocytic cycle, modifies the elicited mammalian immune response, and thus regulates parasite virulence. These results place the mosquito at the centre of our efforts to dissect mechanisms of protective immunity to malaria for the development of an effective vaccine. PMID:23719378

Spence, Philip J.; Jarra, William; Lévy, Prisca; Reid, Adam J.; Chappell, Lia; Brugat, Thibaut; Sanders, Mandy; Berriman, Matthew; Langhorne, Jean

2013-01-01

291

Serine repeat antigen (SERA5) is predominantly expressed among the SERA multigene family of Plasmodium falciparum, and the acquired antibody titers correlate with serum inhibition of the parasite growth.  

PubMed

The Plasmodium falciparum serine repeat antigen (SERA) is one of the blood stage malaria vaccine candidates. The malaria genome project has revealed that SERA is a member of the SERA multigene family consisting of eight SERA homologues clustered on chromosome 2 and one SERA homologue on chromosome 9. Northern blotting and real time quantitative reverse transcription-PCR with five independent parasite strains, including three allelic representative forms of the SERA gene, have shown that all of the SERA homologues are transcribed most actively at trophozoite and schizont stages and that SERA5 (SERA/SERP) is transcribed predominantly among the family. Polyclonal antibodies were raised against recombinant proteins representing the N-terminal portions of four significantly transcribed SERA homologues (SERA3 to -6) in the center of the cluster on chromosome 2. Using these antibodies, indirect immunofluorescence microscopy detected the expression of SERA3 to -6, with similar localization, in all trophozoite- and schizont-infected erythrocytes. We have examined 40 sera from Ugandan adults for their antibody reactivity and found that enzyme-linked immunosorbent assay titer against SERA5 N-terminal domain, but not against other SERA proteins, is positively correlated with the inhibition of in vitro parasite growth by individual sera. Our data confirm the usefulness of the N-terminal domain of SERA5 as a promising malaria candidate vaccine. PMID:12244052

Aoki, Sayaka; Li, Jie; Itagaki, Sawako; Okech, Brenda A; Egwang, Thomas G; Matsuoka, Hiroyuki; Palacpac, Nirianne Marie Q; Mitamura, Toshihide; Horii, Toshihiro

2002-12-01

292

Antibodies to Escherichia coli-Expressed C-Terminal Domains of Plasmodium falciparum Variant Surface Antigen 2-Chondroitin Sulfate A (VAR2CSA) Inhibit Binding of CSA-Adherent Parasites to Placental Tissue  

PubMed Central

Placental malaria (PM) is characterized by infected erythrocytes (IEs) that selectively bind to chondroitin sulfate A (CSA) and sequester in placental tissue. Variant surface antigen 2-CSA (VAR2CSA), a Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) protein family member, is expressed on the surface of placental IEs and mediates adherence to CSA on the surface of syncytiotrophoblasts. This transmembrane protein contains 6 Duffy binding-like (DBL) domains which might contribute to the specific adhesive properties of IEs. Here, we use laboratory isolate 3D7 VAR2CSA DBL domains expressed in Escherichia coli to generate antibodies specific for this protein. Flow cytometry results showed that antibodies generated against DBL4?, DBL5?, DBL6?, and tandem double domains of DBL4-DBL5 and DBL5-DBL6 all bind to placental parasite isolates and to lab strains selected for CSA binding but do not bind to children's parasites. Antisera to DBL4? and to DBL5? inhibit maternal IE binding to placental tissue in a manner comparable to that for plasma collected from multigravid women. These antibodies also inhibit binding to CSA of several field isolates derived from pregnant women, while antibodies to double domains do not enhance the functional immune response. These data support DBL4? and DBL5? as vaccine candidates for pregnancy malaria and demonstrate that E. coli is a feasible tool for the large-scale manufacture of a vaccine based on these VAR2CSA domains. PMID:23319559

Saveria, Tracy; Oleinikov, Andrew V.; Wiliamson, Kathryn; Chaturvedi, Richa; Lograsso, Joe; Keitany, Gladys J.; Fried, Michal

2013-01-01

293

Antibodies to Escherichia coli-expressed C-terminal domains of Plasmodium falciparum variant surface antigen 2-chondroitin sulfate A (VAR2CSA) inhibit binding of CSA-adherent parasites to placental tissue.  

PubMed

Placental malaria (PM) is characterized by infected erythrocytes (IEs) that selectively bind to chondroitin sulfate A (CSA) and sequester in placental tissue. Variant surface antigen 2-CSA (VAR2CSA), a Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) protein family member, is expressed on the surface of placental IEs and mediates adherence to CSA on the surface of syncytiotrophoblasts. This transmembrane protein contains 6 Duffy binding-like (DBL) domains which might contribute to the specific adhesive properties of IEs. Here, we use laboratory isolate 3D7 VAR2CSA DBL domains expressed in Escherichia coli to generate antibodies specific for this protein. Flow cytometry results showed that antibodies generated against DBL4?, DBL5?, DBL6?, and tandem double domains of DBL4-DBL5 and DBL5-DBL6 all bind to placental parasite isolates and to lab strains selected for CSA binding but do not bind to children's parasites. Antisera to DBL4? and to DBL5? inhibit maternal IE binding to placental tissue in a manner comparable to that for plasma collected from multigravid women. These antibodies also inhibit binding to CSA of several field isolates derived from pregnant women, while antibodies to double domains do not enhance the functional immune response. These data support DBL4? and DBL5? as vaccine candidates for pregnancy malaria and demonstrate that E. coli is a feasible tool for the large-scale manufacture of a vaccine based on these VAR2CSA domains. PMID:23319559

Saveria, Tracy; Oleinikov, Andrew V; Wiliamson, Kathryn; Chaturvedi, Richa; Lograsso, Joe; Keitany, Gladys J; Fried, Michal; Duffy, Patrick

2013-04-01

294

Plasmodium falciparum malaria case originating from Uganda.  

PubMed

Malaria is the fifth infection leading to death in the world. Plasmodium species is the malarial parasite that infects human cells. The five species of the human Plasmodium parasites are P. falciparum, P. vivax, P. ovale, P. malariae and P. knowlesi. Recently, the World Health Organization reported that Uganda has the world's highest malaria incidence, with a rate of 478 cases per 1000 population per year. In this article, a patient who had specific clinical signs and symptoms of malaria after work-related travel to Uganda has been evaluated. The major clinical findings of the patient were chills and fever. After examination of thin and thick blood smears prepared from the peripheral blood of the patient, P. falciparum parasites were observed. Cerebral malaria was suspected as the patient's consciousness, orientation and cooperation had deteriorated. No Plasmodium was seen in control blood smears after treatment. PMID:24192631

Altun, Hatice Uluda?; Gül, Yasemin Kurto?lu; Vudal?, Emre; Hatipo?lu, Çi?dem Ataman; Bulut, Cemal; Ya?ci, Server; Tufan, Zeliha Koçak; Kinikli, Sami; Demiröz, Ali Pekcan

2013-01-01

295

Big Bang in the Evolution of Extant Malaria Parasites  

Microsoft Academic Search

Malaria parasites (genus Plasmodium) infect all classes of terrestrial vertebrates and display host specificity in their infections. It is therefore assumed that malaria parasites coevolved intimately with their hosts. Here, we propose a novel scenario of malaria parasite-host coevolution. A phylogenetic tree constructed using the malaria parasite mitochondrial genome reveals that the extant primate, rodent, bird, and reptile parasite lineages

Toshiyuki Hayakawa; Richard Culleton; Hiroto Otani; Toshihiro Horii; Kazuyuki Tanabe

2008-01-01

296

Squirrel monkey (Saimiri sciureus) B lymphocytes: secretion of IgG directed to Plasmodium falciparum antigens, by primed blood B lymphocytes restimulated in vitro with parasitized red blood cells.  

PubMed

Blood B lymphocytes obtained from Plasmodium falciparum-immune Saimiri monkeys were assayed for their in vitro differentiation in immunoglobulin-secreting cells upon restimulation with P. falciparum-parasitized Saimiri red blood cells. Selected culture conditions enabled appropriately stimulated blood B cells to secrete 3F11/G10+ IgG, detected in the supernatants by means of a dot immunobinding assay. Primed blood B lymphocytes from P. falciparum-immune Saimiri monkeys were thus able to secrete IgG when restimulated by parasitized red blood cells in the presence of T cell- and monocyte-derived cytokines (recombinant human cytokines). These primed blood B cells, which were able to differentiate, were shown to secrete antibodies reactive with P. falciparum-infected red blood cells, as detected by means of an indirect immunofluorescence assay, and reactive with P. falciparum-infected red blood cell extracts, as detected by means of Western blot analysis. Furthermore, due to the possibility of discriminating between IgG subtypes in the squirrel monkey (3F11/G10+::3A2/G6+ IgG [associated with protection against the blood stages of P. falciparum] vs. 3F11/G10+::3E4/H8+ IgG [usually not functionally associated with protection]), we have attempted to estimate the respective proportions of each IgG subtype. In defined culture conditions, Saimiri monkey blood B cells preferentially secrete 3F11/G10+::3E4/H8+ IgG in response to parasitized red blood cells. We therefore discuss the conditions that would render this assay suitable for the selection, among P. falciparum blood stage antigens, of those that have major B-cell epitopes. PMID:8303060

Garraud, O; Perraut, R; Blanchard, D; Chouteau, P; Bourreau, E; Le Scanf, C; Bonnemains, B; Michel, J C

1993-01-01

297

Plasmodium vivax malaria vaccines  

PubMed Central

Malaria is one of the few diseases in which morbidity is still measured in hundreds of millions of cases every year. Plasmodium vivax and Plasmodium falciparum are responsible for nearly all the malaria cases in the world and despite difficulties in obtaining an exact number, estimates indicate an astonishing 349–552 million clinical cases of malaria due to P. falciparum in 2007 and between 132–391 million clinical episodes due to P. vivax in 2009. It is becoming evident that eradication of malaria will be an arduous task and P. vivax will be one of the most difficult species to eliminate and perhaps become the last standing malaria parasite. Indeed, in countries that succeed in decreasing the disease burden, nearly all the remaining malaria cases are caused by P. vivax. Such resilience is mainly due to the sophisticated mechanism that the parasite has evolved to remain dormant for months or years forming hypnozoites, a small structure in the liver that will be a major hurdle in the efforts toward malaria eradication. Furthermore, while clinical trials of vaccines against P. falciparum are making fast progress, a very different picture is seen with P. vivax, where only few candidates are currently active in clinical trials. PMID:23978931

Reyes-Sandoval, Arturo; Bachmann, Martin F

2013-01-01

298

Discovery of parasite virulence genes reveals a unique regulator of chromosome condensation 1  

E-print Network

genetic screen to study pathogenesis in the protozoan parasite Toxoplasma gondii. By using modified proteins are highly conserved in organisms from humans to yeast, no protozoan parasite encodes. nuclear transport Toxoplasma Protozoan parasites such as Plasmodium spp., Entamoeba histolytica

Sheridan, Jennifer

299

Intracellular Parasite Invasion Strategies  

NASA Astrophysics Data System (ADS)

Intracellular parasites use various strategies to invade cells and to subvert cellular signaling pathways and, thus, to gain a foothold against host defenses. Efficient cell entry, ability to exploit intracellular niches, and persistence make these parasites treacherous pathogens. Most intracellular parasites gain entry via host-mediated processes, but apicomplexans use a system of adhesion-based motility called ``gliding'' to actively penetrate host cells. Actin polymerization-dependent motility facilitates parasite migration across cellular barriers, enables dissemination within tissues, and powers invasion of host cells. Efficient invasion has brought widespread success to this group, which includes Toxoplasma, Plasmodium, and Cryptosporidium.

Sibley, L. D.

2004-04-01

300

Four new species of Plasmodium from New Guinea lizards: integrating morphology and molecules.  

PubMed

New Guinea is one of the most biodiverse regions of the world, particularly in terms of the herpetofauna present, yet surprisingly little is known about the parasites that infect these organisms. A survey of diverse scinid and agamid lizard hosts from this country showed a diversity of malaria parasites infecting these hosts. We combined morphological and morphometric observations of the parasites (primarily gametocytes) along with DNA sequence data from the mitochondrial cytochrome b and cytochrome oxidase I genes and here describe 4 new species of Plasmodium, i.e. Plasmodium minuoviride n. sp., Plasmodium koreafense n. sp., Plasmodium megalotrypa n. sp., and Plasmodium gemini n. sp. A fifth species, Plasmodium lacertiliae Thompson and Hart 1946, is redescribed based on new observations of hosts and localities and additional molecular data. This combined morphological and molecular approach is advised for all future descriptions of new malaria parasite species, particularly in light of situations where every life-history stage is not available. PMID:18823150

Perkins, Susan L; Austin, Christopher C

2009-04-01

301

Treatment of Plasmodium chabaudi Parasites with Curcumin in Combination with Antimalarial Drugs: Drug Interactions and Implications on the Ubiquitin/Proteasome System  

PubMed Central

Antimalarial drug resistance remains a major obstacle in malaria control. Evidence from Southeast Asia shows that resistance to artemisinin combination therapy (ACT) is inevitable. Ethnopharmacological studies have confirmed the efficacy of curcumin against Plasmodium spp. Drug interaction assays between curcumin/piperine/chloroquine and curcumin/piperine/artemisinin combinations and the potential of drug treatment to interfere with the ubiquitin proteasome system (UPS) were analyzed. In vivo efficacy of curcumin was studied in BALB/c mice infected with Plasmodium chabaudi clones resistant to chloroquine and artemisinin, and drug interactions were analyzed by isobolograms. Subtherapeutic doses of curcumin, chloroquine, and artemisinin were administered to mice, and mRNA was collected following treatment for RT-PCR analysis of genes encoding deubiquitylating enzymes (DUBs). Curcumin was found be nontoxic in BALB/c mice. The combination of curcumin/chloroquine/piperine reduced parasitemia to 37% seven days after treatment versus the control group's 65%, and an additive interaction was revealed. Curcumin/piperine/artemisinin combination did not show a favorable drug interaction in this murine model of malaria. Treatment of mice with subtherapeutic doses of the drugs resulted in a transient increase in genes encoding DUBs indicating UPS interference. If curcumin is to join the arsenal of available antimalarial drugs, future studies exploring suitable drug partners would be of interest. PMID:23691276

Neto, Zoraima; Machado, Marta; Lindeza, Ana; do Rosário, Virgílio; Gazarini, Marcos L.; Lopes, Dinora

2013-01-01

302

Malaria Proteins Implicated in Host-Parasite Interactions   

E-print Network

The invasive and transmission stages of the malaria parasite Plasmodium falciparum express several proteins with domains implicated in host-parasite interactions, that are potential vaccine candidates or drug targets. The expression patterns of two...

Anderson, Laura Fay

2007-01-01

303

Cell Host & Microbe A Malaria Parasite Formin Regulates Actin  

E-print Network

, another type of actin nucle- ator. Here, we demonstrate that one of two malaria parasite formins, Plasmodium falciparum formin 1 (PfFormin 1), and its ortholog in the related parasite Toxoplasma gondii

304

A malarial cysteine protease is necessary for Plasmodium sporozoite egress from oocysts  

Microsoft Academic Search

The Plasmodium life cycle is a sequence of alternating invasive and replicative stages within the vertebrate and invertebrate hosts. How malarial parasites exit their host cells after completion of reproduction remains largely unsolved. Inhibitor studies indicated a role of Plasmodium cysteine proteases in merozoite release from host erythrocytes. To validate a vital function of malarial cysteine proteases in active parasite

Ahmed S. I. Aly; Kai Matuschewski

305

BiochemicalSocietyAnnualSymposiumNo.77 Malaria, Plasmodium falciparum and its  

E-print Network

BiochemicalSocietyAnnualSymposiumNo.77 Malaria, Plasmodium falciparum and its apicoplast Ming, Australia Abstract Malaria, which is caused by species of the parasite genus Plasmodium, remains a major was discovered in malaria and related parasites from the phylum Apicomplexa and has radically changed our view

McFadden, Geoff

306

Histone Deacetylases Play a Major Role in the Transcriptional Regulation of the Plasmodium falciparum Life Cycle  

Microsoft Academic Search

The apparent paucity of molecular factors of transcriptional control in the genomes of Plasmodium parasites raises many questions about the mechanisms of life cycle regulation in these malaria parasites. Epigenetic regulation has been suggested to play a major role in the stage specific gene expression during the Plasmodium life cycle. To address some of these questions, we analyzed global transcriptional

Balbir K. Chaal; Archna P. Gupta; Brigitta D. Wastuwidyaningtyas; Yen-Hoon Luah; Zbynek Bozdech

2010-01-01

307

Dimerization of Plasmodium vivax DBP is induced upon receptor binding and drives recognition of DARC  

Microsoft Academic Search

Plasmodium vivax and Plasmodium knowlesi depend on the Duffy-Binding Protein DBL domain (RII-PvDBP or RII-PkDBP) engaging Duffy Antigen\\/Receptor for Chemokines on red blood cells during invasion. Inhibition of this key interaction provides an excellent opportunity for parasite control. There are competing models for whether Plasmodium ligands engage receptors as monomers or dimers, resolution of which has profound implications for parasite

Joseph D. Batchelor; Jacob A. Zahm; Niraj H. Tolia

308

Dimerization of Plasmodium vivaxDBP is induced upon receptor binding and drives recognition of DARC  

Microsoft Academic Search

Plasmodium vivax and Plasmodium knowlesi invasion depends on the parasite Duffy-binding protein DBL domain (RII-PvDBP or RII-PkDBP) engaging the Duffy antigen receptor for chemokines (DARC) on red blood cells. Inhibition of this key interaction provides an excellent opportunity for parasite control. There are competing models for whether Plasmodium ligands engage receptors as monomers or dimers, a question whose resolution has

Joseph D Batchelor; Jacob A Zahm; Niraj H Tolia

2011-01-01

309

Evidence of tRNA cleavage in apicomplexan parasites: half-tRNAs as new potential regulatory molecules of Toxoplasma gondii and Plasmodium berghei  

Technology Transfer Automated Retrieval System (TEKTRAN)

Several lines of evidence demonstrated that organisms ranging from bacteria to higher animals possess a regulated endonucleolytic cleavage pathway producing half-tRNA fragments. In the present study, we investigated the occurrence of this phenomenon in two distantly related apicomplexan parasites, T...

310

Residual Plasmodium falciparum Parasitemia in Kenyan Children After Artemisinin-Combination Therapy Is Associated With Increased Transmission to Mosquitoes and Parasite Recurrence  

PubMed Central

Background.?Parasite clearance time after artemisinin-based combination therapy (ACT) may be increasing in Asian and African settings. The association between parasite clearance following ACT and transmissibility is currently unknown. Methods.?We determined parasite clearance dynamics by duplex quantitative polymerase chain reaction (qPCR) in samples collected in the first 3 days after treatment of uncomplicated malaria with ACT. Gametocyte carriage was determined by Pfs25 quantitative nucleic acid sequence–based amplification assays; infectiousness to mosquitoes by membrane-feeding assays on day 7 after treatment. Results.?Residual parasitemia was detected by qPCR in 31.8% (95% confidence interval [CI], 24.6–39.8) of the children on day 3 after initiation of treatment. Residual parasitemia was associated with a 2-fold longer duration of gametocyte carriage (P = .0007), a higher likelihood of infecting mosquitoes (relative risk, 1.95; 95% CI, 1.17–3.24; P = .015), and a higher parasite burden in mosquitoes (incidence rate ratio, 2.92; 95% CI, 1.61–5.31; P < .001). Children with residual parasitemia were also significantly more likely to experience microscopically detectable parasitemia during follow-up (relative risk, 11.25; 95% CI, 4.08–31.01; P < .001). Conclusions.?Residual submicroscopic parasitemia is common after ACT and is associated with a higher transmission potential. Residual parasitemia may also have consequences for individual patients because of its higher risk of recurrent parasitemia. PMID:23945376

Beshir, Khalid B.; Sutherland, Colin J.; Sawa, Patrick; Drakeley, Chris J.; Okell, Lucy; Mweresa, Collins K.; Omar, Sabah A.; Shekalaghe, Seif A.; Kaur, Harparkash; Ndaro, Arnold; Chilongola, Jaffu; Schallig, Henk D. F. H.; Sauerwein, Robert W.; Hallett, Rachel L.; Bousema, Teun

2013-01-01

311

Polymorphisms in Plasmodium falciparum Chloroquine Resistance Transporter and Multidrug Resistance 1 Genes: Parasite Risk Factors that Affect Treatment Outcomes for P. falciparum Malaria after Artemether-Lumefantrine and Artesunate-Amodiaquine  

PubMed Central

Adequate clinical and parasitologic cure by artemisinin combination therapies relies on the artemisinin component and the partner drug. Polymorphisms in the Plasmodium falciparum chloroquine resistance transporter (pfcrt) and P. falciparum multidrug resistance 1 (pfmdr1) genes are associated with decreased sensitivity to amodiaquine and lumefantrine, but effects of these polymorphisms on therapeutic responses to artesunate-amodiaquine (ASAQ) and artemether-lumefantrine (AL) have not been clearly defined. Individual patient data from 31 clinical trials were harmonized and pooled by using standardized methods from the WorldWide Antimalarial Resistance Network. Data for more than 7,000 patients were analyzed to assess relationships between parasite polymorphisms in pfcrt and pfmdr1 and clinically relevant outcomes after treatment with AL or ASAQ. Presence of the pfmdr1 gene N86 (adjusted hazards ratio = 4.74, 95% confidence interval = 2.29 – 9.78, P < 0.001) and increased pfmdr1 copy number (adjusted hazards ratio = 6.52, 95% confidence interval = 2.36–17.97, P < 0.001) were significant independent risk factors for recrudescence in patients treated with AL. AL and ASAQ exerted opposing selective effects on single-nucleotide polymorphisms in pfcrt and pfmdr1. Monitoring selection and responding to emerging signs of drug resistance are critical tools for preserving efficacy of artemisinin combination therapies; determination of the prevalence of at least pfcrt K76T and pfmdr1 N86Y should now be routine. PMID:25048375

Venkatesan, Meera; Gadalla, Nahla B.; Stepniewska, Kasia; Dahal, Prabin; Nsanzabana, Christian; Moriera, Clarissa; Price, Ric N.; Mårtensson, Andreas; Rosenthal, Philip J.; Dorsey, Grant; Sutherland, Colin J.; Guérin, Philippe; Davis, Timothy M. E.; Ménard, Didier; Adam, Ishag; Ademowo, George; Arze, Cesar; Baliraine, Frederick N.; Berens-Riha, Nicole; Björkman, Anders; Borrmann, Steffen; Checchi, Francesco; Desai, Meghna; Dhorda, Mehul; Djimdé, Abdoulaye A.; El-Sayed, Badria B.; Eshetu, Teferi; Eyase, Frederick; Falade, Catherine; Faucher, Jean-François; Fröberg, Gabrielle; Grivoyannis, Anastasia; Hamour, Sally; Houzé, Sandrine; Johnson, Jacob; Kamugisha, Erasmus; Kariuki, Simon; Kiechel, Jean-René; Kironde, Fred; Kofoed, Poul-Erik; LeBras, Jacques; Malmberg, Maja; Mwai, Leah; Ngasala, Billy; Nosten, Francois; Nsobya, Samuel L.; Nzila, Alexis; Oguike, Mary; Otienoburu, Sabina Dahlström; Ogutu, Bernhards; Ouédraogo, Jean-Bosco; Piola, Patrice; Rombo, Lars; Schramm, Birgit; Somé, A. Fabrice; Thwing, Julie; Ursing, Johan; Wong, Rina P. M.; Zeynudin, Ahmed; Zongo, Issaka; Plowe, Christopher V.; Sibley, Carol Hopkins

2014-01-01

312

Life history of a malaria parasite (Plasmodium mexicanum) in its host, the western fence lizard (Sceloporus occidentalis): host testosterone as a source of seasonal and among-host variation?  

PubMed

The course of infection of a malaria parasite (Plasmodium mexicanum) is highly variable in its host, the fence lizard (Sceloporus occidentalis). However, a seasonal trend is superimposed on this variation such that gametocyte production is intensified during mid- to late summer. Host testosterone levels follow a similar seasonal fluctuation and are variable among individual lizards. We sought to determine if testosterone levels affect seasonal and among-host variation in 11 P. mexicanum life history traits: rate of increase in level of infection (3 measures), peak parasitemia (3 measures), duration of increase (3 measures), time to detectable infection, and timing of production of gametocytes. We followed the course of infection in 125 male S. occidentalis, each randomly assigned to 1 of 4 treatment groups: castrated, castrated and implanted with exogenous testosterone, sham implanted, and unmanipulated controls. Median values for the 11 life history traits did not differ among treatment groups, and variances were homogeneous among the treatment groups for 10/11 traits. However, elevated testosterone significantly reduced the variation in timing of the onset of gametocyte production. Therefore, testosterone does not appear to be a primary regulator of P. mexicanum life history, yet testosterone may have some effect on when gametocytes first become detectable. PMID:11128477

Eisen, R J; DeNardo, D F

2000-10-01

313

Polymorphisms in Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes: parasite risk factors that affect treatment outcomes for P. falciparum malaria after artemether-lumefantrine and artesunate-amodiaquine.  

PubMed

Adequate clinical and parasitologic cure by artemisinin combination therapies relies on the artemisinin component and the partner drug. Polymorphisms in the Plasmodium falciparum chloroquine resistance transporter (pfcrt) and P. falciparum multidrug resistance 1 (pfmdr1) genes are associated with decreased sensitivity to amodiaquine and lumefantrine, but effects of these polymorphisms on therapeutic responses to artesunate-amodiaquine (ASAQ) and artemether-lumefantrine (AL) have not been clearly defined. Individual patient data from 31 clinical trials were harmonized and pooled by using standardized methods from the WorldWide Antimalarial Resistance Network. Data for more than 7,000 patients were analyzed to assess relationships between parasite polymorphisms in pfcrt and pfmdr1 and clinically relevant outcomes after treatment with AL or ASAQ. Presence of the pfmdr1 gene N86 (adjusted hazards ratio = 4.74, 95% confidence interval = 2.29 - 9.78, P < 0.001) and increased pfmdr1 copy number (adjusted hazards ratio = 6.52, 95% confidence interval = 2.36-17.97, P < 0.001 : were significant independent risk factors for recrudescence in patients treated with AL. AL and ASAQ exerted opposing selective effects on single-nucleotide polymorphisms in pfcrt and pfmdr1. Monitoring selection and responding to emerging signs of drug resistance are critical tools for preserving efficacy of artemisinin combination therapies; determination of the prevalence of at least pfcrt K76T and pfmdr1 N86Y should now be routine. PMID:25048375

Venkatesan, Meera; Gadalla, Nahla B; Stepniewska, Kasia; Dahal, Prabin; Nsanzabana, Christian; Moriera, Clarissa; Price, Ric N; Mårtensson, Andreas; Rosenthal, Philip J; Dorsey, Grant; Sutherland, Colin J; Guérin, Philippe; Davis, Timothy M E; Ménard, Didier; Adam, Ishag; Ademowo, George; Arze, Cesar; Baliraine, Frederick N; Berens-Riha, Nicole; Björkman, Anders; Borrmann, Steffen; Checchi, Francesco; Desai, Meghna; Dhorda, Mehul; Djimdé, Abdoulaye A; El-Sayed, Badria B; Eshetu, Teferi; Eyase, Frederick; Falade, Catherine; Faucher, Jean-François; Fröberg, Gabrielle; Grivoyannis, Anastasia; Hamour, Sally; Houzé, Sandrine; Johnson, Jacob; Kamugisha, Erasmus; Kariuki, Simon; Kiechel, Jean-René; Kironde, Fred; Kofoed, Poul-Erik; LeBras, Jacques; Malmberg, Maja; Mwai, Leah; Ngasala, Billy; Nosten, Francois; Nsobya, Samuel L; Nzila, Alexis; Oguike, Mary; Otienoburu, Sabina Dahlström; Ogutu, Bernhards; Ouédraogo, Jean-Bosco; Piola, Patrice; Rombo, Lars; Schramm, Birgit; Somé, A Fabrice; Thwing, Julie; Ursing, Johan; Wong, Rina P M; Zeynudin, Ahmed; Zongo, Issaka; Plowe, Christopher V; Sibley, Carol Hopkins

2014-10-01

314

RESEARCH Open Access Atorvastatin prevents Plasmodium falciparum  

E-print Network

of Plasmodium falciparum parasitized red blood cell (PRBC) to human endothelial cells (EC) induces inflammatory) to adhere on endothelial cells (EC) and sequester in the capillary network of vital organs (e.g. brain of adhesion molecules and P. falciparum cytoadherence, to protect cells against PRBC-induced apoptosis

Paris-Sud XI, Université de

315

Chloroquine Resistance in Plasmodium falciparum Malaria  

E-print Network

the primary chemotherapeutic means of malaria treatment and control (1). This safe and inexpensive 4Chloroquine Resistance in Plasmodium falciparum Malaria Parasites Conferred by pfcrt Mutations Amar is a major cause of worldwide increases in malaria mortality and morbidity. Recent laboratory and clinical

Symington, Lorraine S.

316

Chloroquine increases Plasmodium falciparum gametocytogenesis in vitro  

E-print Network

in gametocytogenesis in the human malaria, P. falciparum, in vitro, in response to treatment with the antimalarial drug November 1998; accepted 6 November 1998) SUMMARY Malaria parasites are capable of modulating the diversion antimalarial chemotherapy in the rodent malaria, Plasmodium chabaudi, in vivo. Using an immunofluorescent assay

Read, Andrew

317

Malarial Parasites Accumulate Labile Zinc Pools  

E-print Network

The malarial parasite, Plasmodium falciparum, is an intracellular pathogen and partially dependent on nutrient uptake for survival. In this issue of Chemistry & Biology, Marvin et al. demonstrate that zinc is essential for ...

Niles, Jacquin

318

Multiplex 5? Nuclease Quantitative Real-Time PCR for Clinical Diagnosis of Malaria and Species-Level Identification and Epidemiologic Evaluation of Malaria-Causing Parasites, Including Plasmodium knowlesi  

PubMed Central

Molecular diagnosis of malaria offers many potential advantages over microscopy, including identification of malaria to the species level in an era with few experienced microscopists. We developed high-throughput multiplex 5? nuclease quantitative PCR (qPCR) assays, with the potential to support large studies, to specifically identify Plasmodium falciparum, P. vivax, P. ovale, P. malariae, and P. knowlesi. We compared qPCR to microscopy and confirmed discordant results with an alternative target PCR assay. The assays specifically detected 1 to 6 parasites/?l of blood. The clinical sensitivities (95% confidence intervals [CIs]) of the 4-plex assay to detect microscopically confirmed malaria were 95.8% (88.3 to 99.1%) for P. falciparum, 89.5% (75.2 to 97.1%) for P. vivax, 94.1% (71.3 to 99.9%) for P. ovale, and 100% (66.4 to 100%) for P. malariae. The specificities (95% CIs) were 98.6% (92.4 to 100%) for P. falciparum, 99% (84.8 to 100%) for P. vivax, 98.4% (94.4 to 99.8%) for P. ovale, and 99.3% (95.9 to 100%) for P. malariae. The clinical specificity for samples without malaria was 100%. The clinical sensitivity of the 5-plex assay for confirmed P. knowlesi malaria was 100% (95% CI, 69.2 to 100%), and the clinical specificity was 100% (95% CI, 87.2 to 100%). Coded retesting and testing with an alternative target PCR assay showed improved sensitivity and specificity of multiplex qPCR versus microscopy. Additionally, 91.7% (11/12) of the samples with uncertain species by microscopy were identified to the species level identically by both our multiplex qPCR assay and the alternative target PCR assay, including 9 P. falciparum infections. Multiplex qPCR can rapidly and simultaneously identify all 5 Plasmodium species known to cause malaria in humans, and it offers an alternative or adjunct to microscopy for clinical diagnosis as well as a needed high-throughput tool for research. PMID:23804387

Chen, Wan Hsin; Dalton, Justin; Lichay, Marguerite A.; Dumler, J. Stephen

2013-01-01

319

The Origin of Malarial Parasites in Orangutans  

Microsoft Academic Search

BackgroundRecent findings of Plasmodium in African apes have changed our perspectives on the evolution of malarial parasites in hominids. However, phylogenetic analyses of primate malarias are still missing information from Southeast Asian apes. In this study, we report molecular data for a malaria parasite lineage found in orangutans.Methodology\\/Principal FindingsWe screened twenty-four blood samples from Pongo pygmaeus (Kalimantan, Indonesia) for Plasmodium

M. Andreína Pacheco; Michael J. C. Reid; Michael A. Schillaci; Carl A. Lowenberger; Biruté M. F. Galdikas; Lisa Jones-Engel; Ananias A. Escalante

2012-01-01

320

Alu elements in a Plasmodium vivax antigen gene  

Microsoft Academic Search

Plasmodium vivax is a very common human malaria parasite but it is poorly characterized at the molecular level. Here, we describe the isolation and characterization of an antigen coding gene of P. vivax which contains Alu elements. This gene, called Pv-Alu, is expressed during the erythrocytic phase of the parasite. The encoded 200 amino acid long polypeptide is highly hydrophobic,

Arindam Dhar; Seema Gupta; Yagya D Sharma

1998-01-01

321

FINE STRUCTURE OF THE ASEXUAL STAGES OF PLASMODIUM ELONGATUM  

Microsoft Academic Search

Plasmodium elongatum, an avian malarial parasite, differs from other such parasites by infect- ing both the circulating red blood cells and the hematopoietic cells. The exoerythrocytic de- velopment of P. elongatum occurs mainly in these red cell precursors. The fine structure of the asexual stages of P. elongatum has been studied in the bone marrow and peripheral blood of canaries

MASAMICHI AIKAWA; HELMUTH SPRINZ

1967-01-01

322

A proteomic view of the Plasmodium falciparum life cycle  

Microsoft Academic Search

The completion of the Plasmodium falciparum clone 3D7 genome provides a basis on which to conduct comparative proteomics studies of this human pathogen. Here, we applied a high-throughput proteomics approach to identify new potential drug and vaccine targets and to better understand the biology of this complex protozoan parasite. We characterized four stages of the parasite life cycle (sporozoites, merozoites,

Laurence Florens; Michael P. Washburn; J. Dale Raine; Robert M. Anthony; Munira Grainger; J. David Haynes; J. Kathleen Moch; Nemone Muster; John B. Sacci; David L. Tabb; Adam A. Witney; Dirk Wolters; Yimin Wu; Malcolm J. Gardner; Anthony A. Holder; Robert E. Sinden; John R. Yates; Daniel J. Carucci

2002-01-01

323

Population structure and recent evolution of Plasmodium falciparum  

Microsoft Academic Search

Plasmodium falciparum is the agent of malignant malaria, one of mankind's most severe maladies. The parasite exhibits antigenic polymorphisms that have been postulated to be ancient. We have proposed that the extant world populations of P. falciparum have derived from one single parasite, a cenancestor, within the last 5,000-50,000 years. This inference derives from the virtual or complete absence of

Stephen M. Rich; Francisco J. Ayala

2000-01-01

324

A Transmission Model for the Ecology of an Avian Blood Parasite in a Temperate Ecosystem  

PubMed Central

Most of our knowledge about avian haemosporidian parasites comes from the Hawaiian archipelago, where recently introduced Plasmodiumrelictum has contributed to the extinction of many endemic avian species. While the ecology of invasive malaria is reasonably understood, the ecology of endemic haemosporidian infection in mainland systems is poorly understood, even though it is the rule rather than the exception. We develop a mathematical model to explore and identify the ecological factors that most influence transmission of the common avian parasite, Leucocytozoonfringillinarum (Apicomplexa). The model was parameterized from White-crowned Sparrow (Zonotrichialeucophrys) and S. silvestre / craigi black fly populations breeding in an alpine ecosystem. We identify and examine the importance of altricial nestlings, the seasonal relapse of infected birds for parasite persistence across breeding seasons, and potential impacts of seasonal changes in black fly emergence on parasite prevalence in a high elevation temperate system. We also use the model to identify and estimate the parameters most influencing transmission dynamics. Our analysis found that relapse of adult birds and young of the year birds were crucial for parasite persistence across multiple seasons. However, distinguishing between nude nestlings and feathered young of the year was unnecessary. Finally, due to model sensitivity to many black fly parameters, parasite prevalence and sparrow recruitment may be most affected by seasonal changes in environmental temperature driving shifts in black fly emergence and gonotrophic cycles. PMID:24073288

Murdock, Courtney C.; Foufopoulos, Johannes; Simon, Carl P.

2013-01-01

325

Characterisation and expression of a PP1 serine\\/threonine protein phosphatase (PfPP1) from the malaria parasite, Plasmodium falciparum: demonstration of its essential role using RNA interference  

Microsoft Academic Search

BACKGROUND: Reversible protein phosphorylation is relatively unexplored in the intracellular protozoa of the Apicomplexa family that includes the genus Plasmodium, to which belong the causative agents of malaria. Members of the PP1 family represent the most highly conserved protein phosphatase sequences in phylogeny and play essential regulatory roles in various cellular pathways. Previous evidence suggested a PP1-like activity in Plasmodium

Rajinder Kumar; Brian Adams; Anja Oldenburg; Alla Musiyenko; Sailen Barik

2002-01-01

326

Identification of resistance of Plasmodium falciparum to artesunate-mefloquine combination in an area along the Thai-Myanmar border: integration of clinico-parasitological response, systemic drug exposure, and in vitro parasite sensitivity  

PubMed Central

Background A markedly high failure rate of three-day artesunate-mefloquine was observed in the area along the Thai-Myanmar border. Methods Identification of Plasmodium falciparum isolates with intrinsic resistance to each component of the artesunate-mefloquine combination was analysed with integrated information on clinico-parasitological response, together with systemic drug exposure (area under blood/plasma concentration-time curves (AUC)) of dihydroartemisinin and mefloquine, and in vitro sensitivity of P. falciparum in a total of 17 out of 29 P. falciparum isolates from patients with acute uncomplicated falciparum malaria. Analysis of the contribution of in vitro parasite sensitivity and systemic drug exposure and relationship with pfmdr1 copy number in the group with sensitive response was performed in 21 of 69 cases. Results Identification of resistance and/or reduced intrinsic parasitocidal activity of artesunate and/or mefloquine without pharmacokinetic or other host-related factors were confirmed in six cases: one with reduced sensitivity to artesunate alone, two with resistance to mefloquine alone, and three with reduced sensitivity to artesunate combined with resistance to mefloquine. Resistance and/or reduced intrinsic parasitocidal activity of mefloquine/artesunate, together with contribution of pharmacokinetic factor of mefloquine and/or artesunate were identified in seven cases: two with resistance to mefloquine alone, and five with resistance to mefloquine combined with reduced sensitivity to artesunate. Pharmacokinetic factor alone contributed to recrudescence in three cases, all of which had inadequate whole blood mefloquine levels (AUC0-7days). Other host-related factors contributed to recrudescence in one case. Amplification of pfmdr1 (increasing of pfmdr1 copy number) is a related molecular marker of artesunate-mefloquine resistance and seems to be a suitable molecular marker to predict occurrence of recrudescence. Conclusions Despite the evidence of a low level of a decline in sensitivity of P. falciparum isolates to artemisinins in areas along the Thai-Myanmar border, artemisinin-based combination therapy (ACT) would be expected to remain the key anti-malarial drug for treatment of multidrug resistance P. falciparum. Continued monitoring and active surveillance of clinical efficacy of ACT, including identification of true artemisinin resistant parasites, is required for appropriate implementation of malaria control policy in this area. PMID:23898808

2013-01-01

327

Vaccines against Plasmodium vivax: a research challenge.  

PubMed

Malaria caused by Plasmodium vivax continues being a public health problem in tropical and subtropical areas throughout the whole world. In spite of this species' epidemiological importance, its biological complexity has hampered advances being made in the field of vaccine development. Few antigens have been described and analyzed to date in preclinical and clinical studies, thereby highlighting the great challenge facing groups currently working on this parasite species. This review summarizes the most representative work done during the last few years and discusses the approaches adopted in making progress towards an anti-Plasmodium vivax vaccine. PMID:23176656

Patarroyo, Manuel A; Calderón, Dayana; Moreno-Pérez, Darwin A

2012-10-01

328

Comparative detection of Plasmodium vivax and Plasmodium falciparum DNA in saliva and urine samples from symptomatic malaria patients in a low endemic area  

Microsoft Academic Search

BACKGROUND: Definite diagnosis of malaria relies on microscopy detection of blood stages of parasites in peripheral blood and requires blood sample collection. The nested PCR method has shown to be more sensitive and superior to microscopy in detecting co-infections of Plasmodium species in circulation while Plasmodium falciparum DNA can be identified in urine and saliva specimens of patients, albeit at

Pattakorn Buppan; Chaturong Putaporntip; Urassaya Pattanawong; Sunee Seethamchai; Somchai Jongwutiwes

2010-01-01

329

Population Genomics of the Immune Evasion (var) Genes of Plasmodium falciparum  

Microsoft Academic Search

Var genes encode the major surface antigen (PfEMP1) of the blood stages of the human malaria parasite Plasmodium falciparum. Differential expression of up to 60 diverse var genes in each parasite genome underlies immune evasion. We compared the diversity of the DBL? domain of var genes sampled from 30 parasite isolates from a malaria endemic area of Papua New Guinea

Alyssa E Barry; Aleksandra Leliwa-Sytek; Livingston Tavul; Heather Imrie; Florence Migot-Nabias; Stuart M Brown; Gilean A. V McVean; Karen P Day

2007-01-01

330

Trends in drug resistance codons in Plasmodium falciparum dihydrofolate reductase and dihydropteroate synthase genes in Kenyan parasites from 2008 to 2012  

PubMed Central

Background Sulphadoxine-pyrimethamine (SP), an antifolate, was replaced by artemether-lumefantrine as the first-line malaria drug treatment in Kenya in 2004 due to the wide spread of resistance. However, SP still remains the recommended drug for intermittent preventive treatment in pregnant women and infants (IPTP/I) owing to its safety profile. This study assessed the prevalence of mutations in dihydrofolate reductase (Pfdhfr) and dihydropteroate synthase (Pfdhps) genes associated with SP resistance in samples collected in Kenya between 2008 and 2012. Methods Field isolates collected from Kisumu, Kisii, Kericho and Malindi district hospitals were assessed for genetic polymorphism at various loci within Pfdhfr and Pfdhps genes by sequencing. Results Among the Pfdhfr mutations, codons N51I, C59R, S108N showed highest prevalence in all the field sites at 95.5%, 84.1% and 98.6% respectively. Pfdhfr S108N prevalence was highest in Kisii at 100%. A temporal trend analysis showed steady prevalence of mutations over time except for codon Pfdhps 581 which showed an increase in mixed genotypes. Triple Pfdhfr N51I/C59R/S108N and double Pfdhps A437G/ K540E had high prevalence rates of 86.6% and 87.9% respectively. The Pfdhfr/Pfdhps quintuple, N51I/C59R/S108N/A437G/K540E mutant which has been shown to be the most clinically relevant marker for SP resistance was observed in 75.7% of the samples. Conclusion SP resistance is still persistently high in western Kenya, which is likely due to fixation of key mutations in the Pfdhfr and Pfdhps genes as well as drug pressure from other antifolate drugs being used for the treatment of malaria and other infections. In addition, there is emergence and increasing prevalence of new mutations in Kenyan parasite population. Since SP is used for IPTP/I, molecular surveillance and in vitro susceptibility assays must be sustained to provide information on the emergence and spread of SP resistance. PMID:24989984

2014-01-01

331

Reticulocytes: Plasmodium vivax target cells.  

PubMed

Reticulocytes represent the main invasion target for Plasmodium vivax, the second most prevalent parasite species around the world causing malaria in humans. In spite of these cells' importance in research into malaria, biological knowledge related to the nature of the host has been limited, given the technical difficulties present in working with them in the laboratory. Poor reticulocyte recovery from total blood, by different techniques, has hampered continuous in vitro P. vivax cultures being developed, thereby delaying basic investigation in this parasite species. Intense research during the last few years has led to advances being made in developing methodologies orientated towards obtaining enriched reticulocytes from differing sources, thereby providing invaluable information for developing new strategies aimed at preventing infection caused by malaria. This review describes the most recent studies related to obtaining reticulocytes and discusses approaches which could contribute towards knowledge regarding molecular interactions between target cell proteins and their main infective agent, P. vivax. PMID:23458497

Moreno-Pérez, Darwin A; Ruíz, Jhenniffer A; Patarroyo, Manuel A

2013-06-01

332

Imaging Plasmodium Immunobiology in Liver, Brain, and Lung  

PubMed Central

Plasmodium falciparum malaria is responsible for the deaths of over half a million African children annually. Until a decade ago, dynamic analysis of the malaria parasite was limited to in vitro systems with the typical limitations associated with 2D monocultures or entirely artificial surfaces. Due to extremely low parasite densities, the liver was considered a black box in terms of Plasmodium sporozoite invasion, liver stage development, and merozoite release into the blood. Further, nothing was known about the behavior of blood stage parasites in organs such as brain where clinical signs manifest and the ensuing immune response of the host that may ultimately result in a fatal outcome. The advent of fluorescent parasites, advances in imaging technology, and availability of an ever-increasing number of cellular and molecular probes have helped illuminate many steps along the pathogenetic cascade of this deadly tropical parasite. PMID:24076429

Frevert, Ute; Nacer, Adéla; Cabrera, Mynthia; Movila, Alexandru; Leberl, Maike

2013-01-01

333

Evolutionary origin of Plasmodium and other Apicomplexa based on rRNA genes.  

PubMed Central

We have explored the evolutionary history of the Apicomplexa and two related protistan phyla, Dinozoa and Ciliophora, by comparing the nucleotide sequences of small subunit ribosomal RNA genes. We conclude that the Plasmodium lineage, to which the malarial parasites belong, diverged from other apicomplexan lineages (piroplasmids and coccidians) several hundred million years ago, perhaps even before the Cambrian. The Plasmodium radiation, which gave rise to several species parasitic to humans, occurred approximately 129 million years ago; Plasmodium parasitism of humans has independently arisen several times. The origin of apicomplexans (Plasmodium), dinoflagellates, and ciliates may be > 1 billion years old, perhaps older than the three multicellular kingdoms of animals, plants, and fungi. Digenetic parasitism independently evolved several times in the Apicomplexa. PMID:7597031

Escalante, A A; Ayala, F J

1995-01-01

334

Development of an inducible transcriptional control system in plasmodium falciparum with applications to targeted genome editing  

E-print Network

Malaria accounts for over 500,000 deaths each year. While malaria is caused by multiple distinct parasites of the genus Plasmodium, P. falciparum is responsible for the majority of morbidity and mortality due to the disease. ...

Wagner, Jeffrey C. (Jeffrey Charles)

2014-01-01

335

Visualising plasmodium falciparum functional genomic data in MaGnET: malaria genome exploration tool   

E-print Network

Malaria affects the lives of 500 million people around the world each year. The disease is caused by protozoan parasites of the genus Plasmodium, whose ability to evade the immune system and quickly evolve resistance to ...

Sharman, Joanna Louise

2009-06-29

336

A general SNP-based molecular barcode for Plasmodium falciparum identification and tracking  

E-print Network

Abstract Background Single nucleotide polymorphism (SNP) genotyping provides the means to develop a practical, rapid, inexpensive assay that will uniquely identify any Plasmodium falciparum parasite using a small amount ...

Daniels, Rachel F.

337

Genome-wide SNP genotyping highlights the role of natural selection in Plasmodium falciparum population divergence  

E-print Network

Background: The malaria parasite Plasmodium falciparum exhibits abundant genetic diversity, and this diversity is key to its success as a pathogen. Previous efforts to study genetic diversity in P. falciparum have begun ...

Neafsey, Daniel E.

338

A Microscale Human Liver Platform that Supports the Hepatic Stages of Plasmodium falciparum and vivax  

E-print Network

The Plasmodium liver stage is an attractive target for the development of antimalarial drugs and vaccines, as it provides an opportunity to interrupt the life cycle of the parasite at a critical early stage. However, ...

Ng, Shengyong

339

INVASION NOTE Invasive avian malaria as an emerging parasitic disease  

E-print Network

Biological invasion Á Blood parasites Á Malaria Á Haemoproteus Á Plasmodium Á South America Introduction Many by biological invasions of parasites that have ``jumped ship'' to novel host species (Hatcher et al. 2012INVASION NOTE Invasive avian malaria as an emerging parasitic disease in native birds of Peru

Sehgal, Ravinder

340

Plasmodium falciparum RuvB proteins  

PubMed Central

The urgent requirement of next generation antimalarials has been of recent interest due to the emergence of drug-resistant parasite. The genome-wide analysis of Plasmodium falciparum helicases revealed three RuvB proteins. Due to the presence of helicase motif I and II in PfRuvBs, there is a high probability that they contain ATPase and possibly helicase activity. The Plasmodium database has homologs of several key proteins that interact with RuvBs and are most likely involved in the cell cycle progression, chromatin remodeling, and other cellular activities. Phylogenetically PfRuvBs are closely related to Saccharomyces cerevisiae RuvB, which is essential for cell cycle progression and survival of yeast. Thus PfRuvBs can serve as potential drug target if they show an essential role in the survival of parasite. PMID:23060959

Ahmad, Moaz; Tuteja, Renu

2012-01-01

341

Conservation of a Gliding Motility and Cell Invasion Machinery in Apicomplexan Parasites  

Microsoft Academic Search

Most Apicomplexan parasites, including the human pathogens Plasmodium , Toxoplasma , and Cryptosporidium , actively invade host cells and display gliding motility, both actions powered by parasite mi- crofilaments. In Plasmodium sporozoites, thrombo- spondin-related anonymous protein (TRAP), a mem- ber of a group of Apicomplexan transmembrane proteins that have common adhesion domains, is neces- sary for gliding motility and infection

Stefan Kappe; Thomas Bruderer; Soren Gantt; Hisashi Fujioka; Victor Nussenzweig; Robert Ménard

1999-01-01

342

Comparative host-parasite population genetic structures: obligate fly ectoparasites on Galapagos seabirds.  

PubMed

Parasites often have shorter generation times and, in some cases, faster mutation rates than their hosts, which can lead to greater population differentiation in the parasite relative to the host. Here we present a population genetic study of two ectoparasitic flies, Olfersia spinifera and Olfersia aenescens compared with their respective bird hosts, great frigatebirds (Fregata minor) and Nazca boobies (Sula granti). Olfersia spinifera is the vector of a haemosporidian parasite, Haemoproteus iwa, which infects frigatebirds throughout their range. Interestingly, there is no genetic differentiation in the haemosporidian parasite across this range despite strong genetic differentiation between Galapagos frigatebirds and their non-Galapagos conspecifics. It is possible that the broad distribution of this one H. iwa lineage could be facilitated by movement of infected O. spinifera. Therefore, we predicted more gene flow in both fly species compared with the bird hosts. Mitochondrial DNA sequence data from three genes per species indicated that despite marked differences in the genetic structure of the bird hosts, gene flow was very high in both fly species. A likely explanation involves non-breeding movements of hosts, including movement of juveniles, and movement by adult birds whose breeding attempt has failed, although we cannot rule out the possibility that closely related host species may be involved. PMID:23659306

Levin, Iris I; Parker, Patricia G

2013-08-01

343

Plasmodium simium/Plasmodium vivax infections in southern brown howler monkeys from the Atlantic Forest  

PubMed Central

Blood infection by the simian parasite, Plasmodium simium, was identified in captive (n = 45, 4.4%) and in wild Alouatta clamitans monkeys (n = 20, 35%) from the Atlantic Forest of southern Brazil. A single malaria infection was symptomatic and the monkey presented clinical and haematological alterations. A high frequency of Plasmodium vivax-specific antibodies was detected among these monkeys, with 87% of the monkeys testing positive against P. vivax antigens. These findings highlight the possibility of malaria as a zoonosis in the remaining Atlantic Forest and its impact on the epidemiology of the disease. PMID:25099335

Costa, Daniela Camargos; da Cunha, Vanessa Pecini; de Assis, Gabriela Maria Pereira; de Souza, Júlio César; Hirano, Zelinda Maria Braga; de Arruda, Mércia Eliane; Kano, Flora Satiko; Carvalho, Luzia Helena; de Brito, Cristiana Ferreira Alves

2014-01-01

344

Vaccines 85: Molecular and chemical basis of resistance to parasitic, bacterial, and viral diseases  

SciTech Connect

This book contains 70 selections. Some of the selection titles are: Structure of the Gene Encoding of Immunodominant Surface Antigen on the Sprozoite of the Human Malaria Parasite Plasmodium falciparum; Cloning and Expression in Bacteria of the Genes for Merozite-specific Antigens from the Malaria Parasite Plasmodium falciparum; A Major Surface Antigen of Plasmodium falciparum in Merozoites: Studies on the Protein and its Gene; Genetic Construction of Cholera Vaccine Prototypes; and Viral Genes, Cytotoxic T Lymphocytes and Immunity.

Lerner, R.A.; Chanock, R.M.; Brown, F.

1985-01-01

345

Molecular identification of the chitinase genes in Plasmodium relictum  

PubMed Central

Background Malaria parasites need to synthesize chitinase in order to go through the peritrophic membrane, which is created around the mosquito midgut, to complete its life cycle. In mammalian malaria species, the chitinase gene comprises either a large or a short copy. In the avian malaria parasites Plasmodium gallinaceum both copies are present, suggesting that a gene duplication in the ancestor to these extant species preceded the loss of either the long or the short copy in Plasmodium parasites of mammals. Plasmodium gallinaceum is not the most widespread and harmful parasite of birds. This study is the first to search for and identify the chitinase gene in one of the most prevalent avian malaria parasites, Plasmodium relictum. Methods Both copies of P. gallinaceum chitinase were used as reference sequences for primer design. Different sequences of Plasmodium spp. were used to build the phylogenetic tree of chitinase gene. Results The gene encoding for chitinase was identified in isolates of two mitochondrial lineages of P. relictum (SGS1 and GRW4). The chitinase found in these two lineages consists both of the long (PrCHT1) and the short (PrCHT2) copy. The genetic differences found in the long copy of the chitinase gene between SGS1 and GRW4 were higher than the difference observed for the cytochrome b gene. Conclusion The identification of both copies in P. relictum sheds light on the phylogenetic relationship of the chitinase gene in the genus Plasmodium. Due to its high variability, the chitinase gene could be used to study the genetic population structure in isolates from different host species and geographic regions. PMID:24943514

2014-01-01

346

Blood parasites of blue grouse: variation in prevalence and patterns of interspecific association  

Microsoft Academic Search

Blood parasites of blue grouse (Dendragapus obscurus) were sampled and the factors responsible for variation in prevalence of blood parasites, and patterns of association among parasite species, were investigated. Five genera of haematozoa were surveyed including four protozoans (Haemoproteus, Leucocytozoon, Plasmodium, and Trypanosoma) and a nematode (Splendidofilaria). Prevalence of blood parasites varied significantly between years; sexes differed in number of

M. Forbes; P. I. Weatherhead; G. E. Bennett

1994-01-01

347

Inhibition of Malaria Parasite Development by a Cyclic Peptide That Targets the Vital Parasite Protein SERA5  

Microsoft Academic Search

The serine repeat antigen (SERA) proteins of the malaria parasites Plasmodium spp. contain a putative enzyme domain similar to that of papain family cysteine proteases. In Plasmodium falciparum parasites, more than half of the SERA family proteins, including the most abundantly expressed form, SERA5, have a cysteine-to-serine substitution within the putative catalytic triad of the active site. Although SERA5 is

W. Douglas Fairlie; Tim P. Spurck; Joanne E. McCoubrie; Paul R. Gilson; Susanne K. Miller; Geoffrey I. McFadden; Robyn Malby; Brendan S. Crabb; Anthony N. Hodder

2008-01-01

348

Prevalence and distribution of human Plasmodium infection in Pakistan  

PubMed Central

Background Both Plasmodium vivax and Plasmodium falciparum are prevalent in Pakistan, yet up-to-date data on the epidemiology of malaria in Pakistan are not available. This study was undertaken to determine the current prevalence and distribution of Plasmodium species across the country. Methods A malariometric population survey was conducted in 2011 using blood samples collected from 801 febrile patients of all ages in four provinces and the capital city of Islamabad. Microscopically confirmed Plasmodium-positive blood samples were reconfirmed by polymerase chain reaction (PCR). Confirmed parasite-positive samples were subjected to species-specific PCR capable of detecting four species of human malaria. Results Of the 707 PCR-positive samples, 128 (18%) were P. falciparum, 536 (76%) were P. vivax, and 43 (6%) were mixed P. falciparum and P. vivax. Ninety-four microscopy-positive samples were PCR-negative, and Plasmodium malariae and Plasmodium ovale were not detected. Prevalence of P. vivax ranged from 2.4% in Punjab Province to 10.8% in Sindh Province and prevalence of P. falciparum ranged from 0.1% in Islamabad to 3.8% in Balochistan. Conclusions Plasmodium infections in Pakistan are largely attributed to P. vivax but P. falciparum and mixed species infections are also prevalent. In addition, regional variation in the prevalence and species composition of malaria is high. PMID:23984968

2013-01-01

349

Infection with Wolbachia protects mosquitoes against Plasmodium-induced mortality in a natural system.  

PubMed

In recent years, there has been a shift in the one host-one parasite paradigm with the realization that, in the field, most hosts are coinfected with multiple parasites. Coinfections are particularly relevant when the host is a vector of diseases, because multiple infections can have drastic consequences for parasite transmission at both the ecological and evolutionary timescales. Wolbachia pipientis is the most common parasitic microorganism in insects, and as such, it is of special interest for understanding the role of coinfections in the outcome of parasite infections. Here, we investigate whether Wolbachia can modulate the effect of Plasmodium on what is, arguably, the most important component of the vectorial capacity of mosquitoes: their longevity. For this purpose, and in contrast to recent studies that have focused on mosquito-Plasmodium and/or mosquito-Wolbachia combinations not found in nature, we work on a Wolbachia-mosquito-Plasmodium triad with a common evolutionary history. Our results show that Wolbachia protects mosquitoes from Plasmodium-induced mortality. The results are consistent across two different strains of Wolbachia and repeatable across two different experimental blocks. To our knowledge, this is the first time that such an effect has been shown for Plasmodium-infected mosquitoes and, in particular, in a natural Wolbachia-host combination. We discuss different mechanistic and evolutionary explanations for these results as well as their consequences for Plasmodium transmission. PMID:22533729

Zélé, F; Nicot, A; Duron, O; Rivero, A

2012-07-01

350

The origin and age of Plasmodium vivax  

PubMed Central

The evolutionary history of Plasmodium vivax has recently been addressed in terms of its origin as a parasite of humans and the age of extant populations. The consensus is that P. vivax originated as a result of a host switch from a non-human primate to hominids and that the extant populations did not originate as recently as previously proposed. Here, we show that, in a comparison of parasite isolates from across the world, Asian populations of P. vivax are the oldest. We discuss how this result, together with the phylogenetic evidence that P. vivax derived from Plasmodium found in Southeast Asian macaques, is most simply explained by assuming an Asian origin of this parasite. Nevertheless, the available data show only the tip of the iceberg. We discuss how sampling might affect time estimates to the most recent common ancestor for P. vivax populations and suggest that spatially explicit estimates are needed to understand the demographic history of this parasite better. PMID:17035086

Cornejo, Omar E.; Escalante, Ananias A.

2007-01-01

351

METHODOLOGY Open Access Isolation of Plasmodium falciparum by  

E-print Network

METHODOLOGY Open Access Isolation of Plasmodium falciparum by flow-cytometry: implications for single-trophozoite genotyping and parasite DNA purification for whole-genome high-throughput sequencing amplify small amounts of starting DNA, offer exciting new opportunities for the study of malaria genetics

Paris-Sud XI, Université de

352

Compositional properties of nuclear genes from Plasmodium falciparum  

Microsoft Academic Search

We have analyzed the compositional distributions of coding sequences and their different codon positions, as well as the codon usage of the nuclear genes of Plasmodium falciparum, a parasite characterized by an extremely GC-poor genome. As expected, coding sequences are AT-rich, codon usage is strongly biased towards A or T in third codon positions, and some particular amino acids (aa)

Hector Musto; Helena Rodriguez-Maseda; Giorgio Bernardi

1995-01-01

353

Cell Host & Microbe Plasmodium Sporozoite Motility Is Modulated  

E-print Network

the repeated turnover of discrete adhesion sites as the underlying mechanism of this substrate-dependent type that feature motile invasive stages such as Plasmodium or Toxoplasma (Heintzelman, 2006). These parasites constitute highly polarized and simple-shaped cells that show limited types of motile behavior (Frixione et

Schwarz, Ulrich

354

Adaptive changes in Plasmodium transmission strategies following chloroquine chemotherapy  

E-print Network

Adaptive changes in Plasmodium transmission strategies following chloroquine chemotherapy ANGUS G is stress-induced, medical interventions, such as chemotherapy, could lead to greater investment in gametocyte production, thus offsetting much of the transmission-reducing benefits of killing parasites. Here

Buckling, Angus

355

Malaria Parasite Metabolic Pathways  

NSDL National Science Digital Library

This tremendously comprehensive Web site aims to facilitate "post-genomic" research on the biochemical processes of _Plasmodium_, the species of protists that cause malaria. The Web site, sponsored by the Computation Authority of The Hebrew University of Jerusalem, offers a compilation of _Plasmodium_ metabolic pathway maps culled from other, more general biochemistry sites. Each map is linked to others so that users may trace the fate or origin of each metabolite. The maps include links to PubMed abstracts and related Web pages for more detailed information. Through an ask-the-expert feature several experts on the biochemistry of malaria parasites are also available to tackle questions from "active investigators" making use of the Web site.

Ginsburg, Hagai.

356

Plasmodium knowlesi infection: a diagnostic challenge  

PubMed Central

Plasmodium knowlesi malaria is an uncommon, but highly prevalent parasitic infection in parts of Malaysia. This is the case of a 14-year-old Singaporean boy presenting to our emergency department with an 11-day history of fever following a school trip to Malaysia. Hepatosplenomegaly was the only clinical finding; laboratory tests showed thrombocytopaenia, lymphopaenia, mild anaemia and liver transaminitis. Specific malaria antigen tests were negative, but the peripheral blood film showed plasmodia with atypical features, with a parasite load of 0.5%. PCR confirmed the diagnosis of P knowlesi. The patient was successfully treated with chloroquine. The clinical course of P knowlesi malaria is indistinguishable from that of Plasmodium falciparum. This case highlights the importance of taking detailed travel history, careful examination of malaria blood films and judicious use of molecular techniques. Antigen tests alone may have missed a malaria diagnosis altogether, while blood film examination may wrongly identify the species as Plasmodium malariae or P falciparum. Third-generation PCR assays can be used to reliably identify P knowlesi. PMID:23608876

Fan, Lijia; Lee, Shir Ying; Koay, Evelyn; Harkensee, Christian

2013-01-01

357

Plasmodium knowlesi infection: a diagnostic challenge.  

PubMed

Plasmodium knowlesi malaria is an uncommon, but highly prevalent parasitic infection in parts of Malaysia. This is the case of a 14-year-old Singaporean boy presenting to our emergency department with an 11-day history of fever following a school trip to Malaysia. Hepatosplenomegaly was the only clinical finding; laboratory tests showed thrombocytopaenia, lymphopaenia, mild anaemia and liver transaminitis. Specific malaria antigen tests were negative, but the peripheral blood film showed plasmodia with atypical features, with a parasite load of 0.5%. PCR confirmed the diagnosis of P knowlesi. The patient was successfully treated with chloroquine. The clinical course of P knowlesi malaria is indistinguishable from that of Plasmodium falciparum. This case highlights the importance of taking detailed travel history, careful examination of malaria blood films and judicious use of molecular techniques. Antigen tests alone may have missed a malaria diagnosis altogether, while blood film examination may wrongly identify the species as Plasmodium malariae or P falciparum. Third-generation PCR assays can be used to reliably identify P knowlesi. PMID:23608876

Fan, Lijia; Lee, Shir Ying; Koay, Evelyn; Harkensee, Christian

2013-01-01

358

Identification of Protein Markers in Patients Infected with Plasmodium knowlesi, Plasmodium falciparum and Plasmodium vivax  

PubMed Central

Malaria is caused by parasitic protozoans of the genus Plasmodium and is one of the most prevalent infectious diseases in tropical and subtropical regions. For this reason, effective and practical diagnostic methods are urgently needed to control the spread of malaria. The aim of the current study was to identify a panel of new malarial markers, which could be used to diagnose patients infected with various Plasmodium species, including P. knowlesi, P. vivax and P. falciparum. Sera from malaria-infected patients were pooled and compared to control sera obtained from healthy individuals using the isobaric tags for relative and absolute quantitation (iTRAQ) technique. Mass spectrometry was used to identify serum proteins and quantify their relative abundance. We found that the levels of several proteins were increased in pooled serum from infected patients, including cell adhesion molecule-4 and C-reactive protein. In contrast, the serum concentration of haptoglobin was reduced in malaria-infected individuals, which we verified by western blot assay. Therefore, these proteins might represent infectious markers of malaria, which could be used to develop novel diagnostic tools for detecting P. knowlesi, P. vivax and P. falciparum. However, these potential malarial markers will need to be validated in a larger population of infected individuals. PMID:25372941

Mu, Alan Kang-Wai; Bee, Ping Chong; Lau, Yee Ling; Chen, Yeng

2014-01-01

359

Antigen-Displaying Lipid-Enveloped PLGA Nanoparticles as Delivery Agents for a Plasmodium vivax Malaria Vaccine  

E-print Network

The parasite Plasmodium vivax is the most frequent cause of malaria outside of sub-Saharan Africa, but efforts to develop viable vaccines against P. vivax so far have been inadequate. We recently developed pathogen-mimicking ...

Moon, James J.

360

Pf155/RESA protein influences the dynamic microcirculatory behavior of ring-stage Plasmodium falciparum infected red blood cells  

E-print Network

Proteins exported by Plasmodium falciparum to the red blood cell (RBC) membrane modify the structural properties of the parasitized RBC (Pf-RBC). Although quasi-static single cell assays show reduced ring-stage Pf-RBCs ...

Diez-Silva, Monica

361

Identification and Functional Validation of the Novel Antimalarial Resistance Locus PF10_0355 in Plasmodium falciparum  

E-print Network

The Plasmodium falciparum parasite's ability to adapt to environmental pressures, such as the human immune system and antimalarial drugs, makes malaria an enduring burden to public health. Understanding the genetic basis ...

Tyne, Daria Van

362

The selectable marker human dihydrofolate reductase enables sequential genetic manipulation of the Plasmodium berghei genome  

Microsoft Academic Search

Genetic transformation of malaria parasites has been limited by the number of selectable markers available. For the rodent malaria parasite, Plasmodium berghei, only a single selection marker has been at hand, utilising the dihydrofolate reductase-thymidylate synthase gene from either P. berghei or Toxoplasma gondii to confer resistance to the anti-malarial drug pyrimethamine. Here we report the use of the human

Tania F. de Koning-Ward; David A. Fidock; Vandana Thathy; Robert Menard; Rosalina M. L. van Spaendonk; Andrew P. Waters; Chris J. Janse

2000-01-01

363

Diverse Expression Patterns of Subgroups of the rif Multigene Family during Plasmodium falciparum Gametocytogenesis  

Microsoft Academic Search

BackgroundThe maturation of Plasmodium falciparum gametocytes in the human host takes several days, during which the parasites need to efficiently evade the host immune system. Like asexual stage parasites, immature gametocytes can sequester at various sites in the human body, and only mature sexual stages are found in the circulation. Although the fundamental mechanisms of gametocyte immune evasion are still

Michaela Petter; Insa Bonow; Mo-Quen Klinkert; James G. Beeson

2008-01-01

364

Dynamics and energetics of solute permeation through the Plasmodium falciparum aquaglyceroporin  

E-print Network

drug target for the treatment of malaria. It efficiently conducts water and other small solutes falciparum is responsible for the most lethal form of the malaria disease.1 It expresses one aquaglyceroporinAQP in the rodent malaria parasite, Plasmodium berghei (PbAQP), that showed a slower proliferation of the parasite

de Groot, Bert

365

Novel mutations in K13 propeller gene of artemisinin-resistant Plasmodium falciparum.  

PubMed

We looked for mutations in the Plasmodium falciparum K13 propeller gene of an artemisinin-resistant parasite on islands in Lake Victoria, Kenya, where transmission in 2012-2013 was high. The 4 new types of nonsynonymous, and 5 of synonymous, mutations we detected among 539 samples analyzed provide clues to understanding artemisinin-resistant parasites. PMID:25695257

Isozumi, Rie; Uemura, Haruki; Kimata, Isao; Ichinose, Yoshio; Logedi, John; Omar, Ahmeddin H; Kaneko, Akira

2015-03-01

366

Cellular immune response to Plasmodium falciparum after pregnancy is related to previous placental infection and parity  

Microsoft Academic Search

BACKGROUND: Malaria in pregnancy is characterised by the sequestration of Plasmodium falciparum-infected erythrocytes in placental intervillous spaces. Placental parasites express a specific phenotype, which allows them to cytoadhere to chondroitin sulfate A expressed by syncytiotrophoblasts. Malaria infection during pregnancy allows the acquisition of antibodies against placental parasites, these antibodies are thought to be involved in protection during subsequent pregnancies. METHODS:

Nadine Fievet; Germaine Tami; Bertrand Maubert; Marlène Moussa; Ian K Shaw; Michel Cot; Anthony A Holder; Gérard Chaouat; Philippe Deloron

2002-01-01

367

Plasmodium falciparum Serine/Threonine Phosphoprotein Phosphatases (PPP): From Housekeeper to 'Holy Grail'  

Technology Transfer Automated Retrieval System (TEKTRAN)

Availability of complete genome sequence for Plasmodium falciparum has been useful in drawing a comprehensive metabolic map of the parasite. Distinct and unique metabolic characteristics of the parasite may be exploited as potential targets for new antimalarial drug discovery research. Reversible ph...

368

Novel Mutations in K13 Propeller Gene of Artemisinin-Resistant Plasmodium falciparum  

PubMed Central

We looked for mutations in the Plasmodium falciparum K13 propeller gene of an artemisinin-resistant parasite on islands in Lake Victoria, Kenya, where transmission in 2012–2013 was high. The 4 new types of nonsynonymous, and 5 of synonymous, mutations we detected among 539 samples analyzed provide clues to understanding artemisinin-resistant parasites. PMID:25695257

Uemura, Haruki; Kimata, Isao; Ichinose, Yoshio; Logedi, John; Omar, Ahmeddin H.; Kaneko, Akira

2015-01-01

369

Engineered Anopheles Immunity to Plasmodium Infection  

PubMed Central

A causative agent of human malaria, Plasmodium falciparum, is transmitted by Anopheles mosquitoes. The malaria parasite is under intensive attack from the mosquito's innate immune system during its sporogonic development. We have used genetic engineering to create immune-enhanced Anopheles stephensi mosquitoes through blood meal-inducible expression of a transgene encoding the IMD pathway-controlled NF-kB Rel2 transcription factor in the midgut and fat-body tissue. Transgenic mosquitoes showed greater resistance to Plasmodium and microbial infection as a result of timely concerted tissue-specific immune attacks involving multiple effectors. The relatively weak impact of this genetic modification on mosquito fitness under laboratory conditions encourages further investigation of this approach for malaria control. PMID:22216006

Cirimotich, Chris; Souza-Neto, Jayme A.; McLean, Kyle J.; Dimopoulos, George

2011-01-01

370

Protein Palmitoylation and Pathogenesis in Apicomplexan Parasites  

PubMed Central

Apicomplexan parasites comprise a broad variety of protozoan parasites, including Toxoplasma gondii, Plasmodium, Eimeria, and Cryptosporidium species. Being intracellular parasites, the success in establishing pathogenesis relies in their ability to infect a host-cell and replicate within it. Protein palmitoylation is known to affect many aspects of cell biology. Furthermore, palmitoylation has recently been shown to affect important processes in T. gondii such as replication, invasion, and gliding. Thus, this paper focuses on the importance of protein palmitoylation in the pathogenesis of apicomplexan parasites. PMID:23093847

Corvi, Maria Martha; Alonso, Andres Mariano; Caballero, Marina Cecilia

2012-01-01

371

Carotenoid-based bill colour is an integrative signal of multiple parasite infection in blackbird  

NASA Astrophysics Data System (ADS)

In the study of parasite-mediated sexual selection, there has been controversial evidence for the prediction that brighter males should have fewer parasites. Most of these studies have focused on one parasite species. Our aim was to investigate the expression of carotenoid-based coloured signals in relation to patterns of multiple parasite infections, to determine whether colour reflects parasite load of all parasite species, or whether different relationships might be found when looking at each parasite species independently. We investigated the relationship between bill colour, body mass and plasma carotenoids and parasite load (feather chewing lice, blood parasite Plasmodium sp., intestinal parasites cestodes and coccidia) in the blackbird ( Turdus merula). Bill colour on its own appeared to be a poor predictor of parasite load when investigating its relationships with individual parasite species. Variation in parasite intensities at the community level was summarised using principal component analysis to derive synthetic indexes of relative parasite species abundance and absolute parasite load. The relative abundance of parasite species was strongly related to bill colour, plasma carotenoid levels and body mass: birds with relatively more cestodes and chewing lice and relatively less Plasmodium and coccidia had a more colourful bill, circulated more carotenoids and were heavier. These results suggest that bill colour more accurately reflects the relative intensities of parasite infection, rather than one-by-one relationships with parasites or absolute parasite burden. Investigating patterns of multiple parasite infection would thus improve our understanding of the information conveyed by coloured signals on parasite load.

Biard, Clotilde; Saulnier, Nicolas; Gaillard, Maria; Moreau, Jérôme

2010-11-01

372

Peptide Inhibition of Topoisomerase IB from Plasmodium falciparum  

PubMed Central

Control of diseases inflicted by protozoan parasites such as Leishmania, Trypanosoma, and Plasmodium, which pose a serious threat to human health worldwide, depends on a rather small number of antiparasite drugs, of which many are toxic and/or inefficient. Moreover, the increasing occurrence of drug-resistant parasites emphasizes the need for new and effective antiprotozoan drugs. In the current study, we describe a synthetic peptide, WRWYCRCK, with inhibitory effect on the essential enzyme topoisomerase I from the malaria-causing parasite Plasmodium falciparum. The peptide inhibits specifically the transition from noncovalent to covalent DNA binding of P. falciparum topoisomerase I, while it does not affect the ligation step of catalysis. A mechanistic explanation for this inhibition is provided by molecular docking analyses. Taken together the presented results suggest that synthetic peptides may represent a new class of potential antiprotozoan drugs. PMID:22091414

Roy, Amit; D'Annessa, Ilda; Nielsen, Christine J. F.; Tordrup, David; Laursen, Rune R.; Knudsen, Birgitta Ruth; Desideri, Alessandro; Andersen, Felicie Faucon

2011-01-01

373

Host Cell Phosphatidylcholine Is a Key Mediator of Malaria Parasite Survival during Liver Stage Infection  

PubMed Central

Summary During invasion, Plasmodium, the causative agent of malaria, wraps itself in a parasitophorous vacuole membrane (PVM), which constitutes a critical interface between the parasite and its host cell. Within hepatocytes, each Plasmodium sporozoite generates thousands of new parasites, creating high demand for lipids to support this replication and enlarge the PVM. Here, a global analysis of the total lipid repertoire of Plasmodium-infected hepatocytes reveals an enrichment of neutral lipids and the major membrane phospholipid, phosphatidylcholine (PC). While infection is unaffected in mice deficient in key enzymes involved in neutral lipid synthesis and lipolysis, ablation of rate-limiting enzymes in hepatic PC biosynthetic pathways significantly decreases parasite numbers. Host PC is taken up by both P. berghei and P. falciparum and is necessary for correct localization of parasite proteins to the PVM, which is essential for parasite survival. Thus, Plasmodium relies on the abundance of these lipids within hepatocytes to support infection. PMID:25498345

Itoe, Maurice A.; Sampaio, Júlio L.; Cabal, Ghislain G.; Real, Eliana; Zuzarte-Luis, Vanessa; March, Sandra; Bhatia, Sangeeta N.; Frischknecht, Friedrich; Thiele, Christoph; Shevchenko, Andrej; Mota, Maria M.

2014-01-01

374

Structural Differences Explain Diverse Functions of Plasmodium Actins  

PubMed Central

Actins are highly conserved proteins and key players in central processes in all eukaryotic cells. The two actins of the malaria parasite are among the most divergent eukaryotic actins and also differ from each other more than isoforms in any other species. Microfilaments have not been directly observed in Plasmodium and are presumed to be short and highly dynamic. We show that actin I cannot complement actin II in male gametogenesis, suggesting critical structural differences. Cryo-EM reveals that Plasmodium actin I has a unique filament structure, whereas actin II filaments resemble canonical F-actin. Both Plasmodium actins hydrolyze ATP more efficiently than ?-actin, and unlike any other actin, both parasite actins rapidly form short oligomers induced by ADP. Crystal structures of both isoforms pinpoint several structural changes in the monomers causing the unique polymerization properties. Inserting the canonical D-loop to Plasmodium actin I leads to the formation of long filaments in vitro. In vivo, this chimera restores gametogenesis in parasites lacking actin II, suggesting that stable filaments are required for exflagellation. Together, these data underline the divergence of eukaryotic actins and demonstrate how structural differences in the monomers translate into filaments with different properties, implying that even eukaryotic actins have faced different evolutionary pressures and followed different paths for developing their polymerization properties. PMID:24743229

Vahokoski, Juha; Martinez, Silvia Muñico; Ignatev, Alexander; Lepper, Simone; Frischknecht, Friedrich; Sidén-Kiamos, Inga; Sachse, Carsten; Kursula, Inari

2014-01-01

375

How to Scan Blood Smears, Identify, and Count Parasites  

E-print Network

How to Scan Blood Smears, Identify, and Count Parasites 1. Scanning for Leucocytozoon in bird blood in the blood, but are large parasites and can be spotted even under low power. 2. For Plasmodium slide box (Carolina blue box) that holds 25 slides. The bottom of the slide box has a layer of paper

Schall, Joseph J.

376

Environmental Constraints Guide Migration of Malaria Parasites during Transmission  

Microsoft Academic Search

Migrating cells are guided in complex environments mainly by chemotaxis or structural cues presented by the surrounding tissue. During transmission of malaria, parasite motility in the skin is important for Plasmodium sporozoites to reach the blood circulation. Here we show that sporozoite migration varies in different skin environments the parasite encounters at the arbitrary sites of the mosquito bite. In

Janina Kristin Hellmann; Sylvia Münter; Mikhail Kudryashev; Simon Schulz; Kirsten Heiss; Ann-Kristin Müller; Kai Matuschewski; Joachim P. Spatz; Ulrich S. Schwarz; Friedrich Frischknecht

2011-01-01

377

Malaria-Induced Acquisition of Antibodies to Plasmodium falciparum Variant Surface Antigens  

Microsoft Academic Search

In areas of intense Plasmodium falciparum transmission, protective immunity is acquired during childhood in parallel with acquisition of agglutinating antibodies to parasite-encoded variant surface antigens (VSA) expressed on parasitized red blood cells. In a semi-immune child in such an area, clinical disease is caused mainly by parasites expressing VSA not recognized by preexisting VSA-specific antibodies in that child. Such malaria

Michael F. Ofori; Daniel Dodoo; Trine Staalsoe; Jørgen A. L. Kurtzhals; Kwadwo Koram; Thor G. Theander; Bartholomew D. Akanmori; Lars Hviid

2002-01-01

378

RESEARCH Open Access Distinct patterns of blood-stage parasite antigens  

E-print Network

RESEARCH Open Access Distinct patterns of blood-stage parasite antigens detected by plasma Ig immunity against Plasmodium falciparum develops as a function of age and exposure to parasite infections immunoepidemiological studies have indicated an association of cytophilic anti-parasite IgG with protection against

Paris-Sud XI, Université de

379

Metamorphosis of the malaria parasite in the liver is associated with organelle clearance  

Microsoft Academic Search

Malaria parasites encounter diverse conditions as they cycle between their vertebrate host and mosquito vector. Within these distinct environments, the parasite undergoes drastic transformations, changing both its morphology and metabolism. Plasmodium species that infect mammals must first take up residence in the liver before initiating red blood cell infection. Following penetration into hepatocytes, the parasite converts from an invasion-competent, motile,

Bamini Jayabalasingham; Nazneen Bano; Isabelle Coppens

2010-01-01

380

Does the drug sensitivity of malaria parasites depend on their virulence?  

Microsoft Academic Search

BACKGROUND: Chemotherapy can prompt the evolution of classical drug resistance, but selection can also favour other parasite traits that confer a survival advantage in the presence of drugs. The experiments reported here test the hypothesis that sub-optimal drug treatment of malaria parasites might generate survival and transmission advantages for virulent parasites. METHODS: Two Plasmodium chabaudi lines, one derived from the

Petra Schneider; Brian HK Chan; Sarah E Reece; Andrew F Read

2008-01-01

381

Molecular detection of Plasmodium in free-ranging birds and captive flamingos (Phoenicopterus chilensis) in Chicago.  

PubMed

Frozen blood samples from 13 species of free-ranging birds (n = 65) and captive Chilean flamingos (Phoenicopterus chilensis) (n = 46) housed outdoors in the Chicago area were screened for Plasmodium. With the use of a modified polymerase chain reaction, 20/65 (30.8%) of free-ranging birds and 26/46 (56.5%) of flamingos were classified as positive for this parasite genus. DNA sequencing of the parasite cytochrome b gene in positive samples demonstrated that eight species of free-ranging birds were infected with five different Plasmodium spp. cytochrome b lineages, and all positive Chilean flamingos were infected with Plasmodium spp. cytochrome b lineages most closely related to organisms in the Novyella subgenus. These results show that Chilean flamingos may harbor subclinical malaria infections more frequently than previously estimated, and that they may have increased susceptibility to some Plasmodium species. PMID:25632659

Thurber, Mary Irene; Gamble, Kathryn C; Krebs, Bethany; Goldberg, Tony L

2014-12-01

382

Human Malaria Parasites in Continuous Culture  

Microsoft Academic Search

Plasmodium falciparum can now be maintained in continuous culture in human erythrocytes incubated at 38 degrees C in RPMI 1640 medium with human serum under an atmosphere with 7 percent carbon dioxide and low oxygen (1 or 5 percent). The original parasite material, derived from an infected Aotus trivirgatus monkey, was diluted more than 100 million times by the addition

William Trager; James B. Jensen

1976-01-01

383

Parasite genomics: current status and future prospects  

Microsoft Academic Search

The past year has brought great progress in the genome-sequencing efforts on a large number of protozoan and metazoan parasites. Whereas many of these projects are in their initial stages, at least one (for Plasmodium falciparum) is nearing completion. The information released to date has been most revealing with respect to immune evasion mechanisms.

Rick L Tarleton; Jessica Kissinger

2001-01-01

384

Natural Plasmodium infection in monkeys in the state of Rondônia (Brazilian Western Amazon)  

PubMed Central

Background Simian malaria is still an open question concerning the species of Plasmodium parasites and species of New World monkeys susceptible to the parasites. In addition, the lingering question as to whether these animals are reservoirs for human malaria might become important especially in a scenario of eradication of the disease. To aid in the answers to these questions, monkeys were surveyed for malaria parasite natural infection in the Amazonian state of Rondônia, Brazil, a state with intense environmental alterations due to human activities, which facilitated sampling of the animals. Methods Parasites were detected and identified in DNA from blood of monkeys, by PCR with primers for the 18S rRNA, CSP and MSP1 genes and sequencing of the amplified fragments. Multiplex PCR primers for the 18S rRNA genes were designed for the parasite species Plasmodium falciparum and Plasmodium vivax, Plasmodium malariae/Plasmodium brasilianum and Plasmodium simium. Results An overall infection rate of 10.9% was observed or 20 out 184 monkey specimens surveyed, mostly by P. brasilianum. However, four specimens of monkeys were found infected with P. falciparum, two of them doubly infected with P. brasilianum and P. falciparum. In addition, a species of monkey of the family Aotidae, Aotus nigriceps, is firstly reported here naturally infected with P. brasilianum. None of the monkeys surveyed was found infected with P. simium/P. vivax. Conclusion The rate of natural Plasmodium infection in monkeys in the Brazilian state of Rondônia is in line with previous surveys of simian malaria in the Amazon region. The fact that a monkey species was found that had not previously been described to harbour malaria parasites indicates that the list of monkey species susceptible to Plasmodium infection is yet to be completed. Furthermore, finding monkeys in the region infected with P. falciparum clearly indicates parasite transfer from humans to the animals. Whether this parasite can be transferred back to humans and how persistent the parasite is in monkeys in the wild so to be efficient reservoirs of the disease, is yet to be evaluated. Finding different species of monkeys infected with this parasite species suggests indeed that these animals can act as reservoirs of human malaria. PMID:23731624

2013-01-01

385

Re-evaluation of microscopy confirmed Plasmodium falciparum and Plasmodium vivax malaria by nested PCR detection in southern Ethiopia  

PubMed Central

Background With 75% of the Ethiopian population at risk of malaria, accurate diagnosis is crucial for malaria treatment in endemic areas where Plasmodium falciparum and Plasmodium vivax co-exist. The present study evaluated the performance of regular microscopy in accurate identification of Plasmodium spp. in febrile patients visiting health facilities in southern Ethiopia. Methods A cross-sectional study design was employed to recruit study subjects who were microscopically positive for malaria parasites and attending health facilities in southern Ethiopia between August and December 2011. Of the 1,416 febrile patients attending primary health facilities, 314 febrile patients, whose slides were positive for P. falciparum, P. vivax or mixed infections using microscopy, were re-evaluated for their infection status by PCR. Finger-prick blood samples were used for parasite genomic DNA extraction. Phylogenetic analyses were performed to reconstruct the distribution of different Plasmodium spp. across the three geographical areas. Results Of the 314 patients with a positive thick blood smear, seven patients (2%) were negative for any of the Plasmodium spp. by nested PCR. Among 180 microscopically diagnosed P. falciparum cases, 111 (61.7%) were confirmed by PCR, 44 (24.4%) were confirmed as P. vivax, 18 (10%) had mixed infections with P. falciparum and P. vivax and two (1.1%) were mixed infections with P. falciparum and P. malariae and five (2.8%) were negative for any of the Plasmodium spp. Of 131 microscopically diagnosed P. vivax cases, 110 (84%) were confirmed as P. vivax, 14 (10.7%) were confirmed as P. falciparum, two (1.5%) were P. malariae, three (2.3%) with mixed infections with P. falciparum and P. vivax and two (1.5%) were negative for any of the Plasmodium spp. Plasmodium falciparum and P. vivax mixed infections were observed. Plasmodium malariae was detected as mono and mixed infections in four individuals. Conclusion False positivity, under-reporting of mixed infections and a significant number of species mismatch needs attention and should be improved for appropriate diagnosis. The detection of substantial number of false positive results by molecular methodologies may provide the accurate incidence of circulating Plasmodium species in the geographical region and has important repercussions in understanding malaria epidemiology and subsequent control. PMID:24502664

2014-01-01

386

Extraction of Hydrophilic Metabolites from Plasmodium falciparum-Infected Erythrocytes for Metabolomic Analysis  

PubMed Central

Metabolomics is an increasingly common analytical approach for investigating metabolic networks of pathogenic organisms. This may be of particular use in the study of parasitic infections due to the intrinsic metabolic connection between the parasite and its host. In vitro cultures of the malaria parasite Plasmodium falciparum present a valuable platform to elucidate the structure and dynamics of the parasite’s metabolic network and to determine the mechanisms of action of antimalarial drugs and drug resistance mutations. Accurately measuring metabolite levels requires a reproducible method for quantifying intracellular metabolites. Here we present a simple protocol for extracting hydrophilic metabolites from P. falciparum-infected erythrocyte cultures. PMID:22990783

Olszewski, Kellen L.; Llinás, Manuel

2012-01-01

387

A flow cytometry-based assay for measuring invasion of red blood cells by Plasmodium falciparum  

PubMed Central

Variability in the ability of the malaria parasite Plasmodium falciparum to invade human erythrocytes is postulated to be an important determinant of disease severity. Both the parasite multiplication rate and erythrocyte selectivity are important parameters that underlie such variable invasion. We have established a flow cytometry-based method for simultaneously calculating both the parasitemia and the number of multiply-infected erythrocytes. Staining with the DNA-specific dye SYBR Green I allows quantitation of parasite invasion at the ring stage of parasite development. We discuss in vitro and in vivo applications and limitations of this method in relation to the study of parasite invasion. PMID:20196166

Bei, Amy K.; DeSimone, Tiffany M.; Badiane, Aida S.; Ahouidi, Ambroise D.; Dieye, Tandakha; Ndiaye, Daouda; Sarr, Ousmane; Ndir, Omar; Mboup, Souleymane; Duraisingh, Manoj T.

2011-01-01

388

Plasmodium infection brings forward mosquito oviposition.  

PubMed

Invertebrate hosts often bring forward their reproductive effort in response to a parasitic infection. This is widely interpreted as a host-driven response aimed at compensating for the expected losses in future fitness as a result of parasitism. Here we report that mosquitoes bring forward their oviposition schedule when they are infected with Plasmodium, a parasite known to severely curtail mosquito fecundity. This response could aim at compensating for a negative time-dependent effect of the parasite on mosquito fitness, as infected mosquitoes seem to display a strong and progressive decrease in the quality of the eggs they lay. In addition, we show that this shift in oviposition date is dependent on mosquito strain: a comparison of several isogenic mosquitoes strains, one insecticide-susceptible and two insecticide-resistant ones, reveals that only the former shift their oviposition strategy when infected. This pattern suggests the existence of a costly host-driven response to parasitism, as insecticide-resistant mosquitoes have been shown to be in generally poorer condition. PMID:25788485

Vézilier, J; Nicot, A; Gandon, S; Rivero, A

2015-03-01

389

Plasmodium falciparum phosphoethanolamine methyltransferase is essential for malaria transmission  

PubMed Central

Efficient transmission of Plasmodium species between humans and Anopheles mosquitoes is a major contributor to the global burden of malaria. Gametocytogenesis, the process by which parasites switch from asexual replication within human erythrocytes to produce male and female gametocytes, is a critical step in malaria transmission and Plasmodium genetic diversity. Nothing is known about the pathways that regulate gametocytogenesis and only few of the current drugs that inhibit asexual replication are also capable of inhibiting gametocyte development and blocking malaria transmission. Here we provide genetic and pharmacological evidence indicating that the pathway for synthesis of phosphatidylcholine in Plasmodium falciparum membranes from host serine is essential for parasite gametocytogenesis and malaria transmission. Parasites lacking the phosphoethanolamine N-methyltransferase enzyme, which catalyzes the limiting step in this pathway, are severely altered in gametocyte development, are incapable of producing mature-stage gametocytes, and are not transmitted to mosquitoes. Chemical screening identified 11 inhibitors of phosphoethanolamine N-methyltransferase that block parasite intraerythrocytic asexual replication and gametocyte differentiation in the low micromolar range. Kinetic studies in vitro as well as functional complementation assays and lipid metabolic analyses in vivo on the most promising inhibitor NSC-158011 further demonstrated the specificity of inhibition. These studies set the stage for further optimization of NSC-158011 for development of a class of dual activity antimalarials to block both intraerythrocytic asexual replication and gametocytogenesis. PMID:24145416

Bobenchik, April M.; Witola, William H.; Augagneur, Yoann; Nic Lochlainn, Laura; Garg, Aprajita; Pachikara, Niseema; Choi, Jae-Yeon; Zhao, Yang O.; Usmani-Brown, Sahar; Lee, Albert; Adjalley, Sophie H.; Samanta, Swapna; Fidock, David A.; Voelker, Dennis R.; Fikrig, Erol; Ben Mamoun, Choukri

2013-01-01

390

DNA Cloning of Plasmodium falciparum Circumsporozoite Gene: Amino Acid Sequence of Repetitive Epitope  

NASA Astrophysics Data System (ADS)

A clone of complementary DNA encoding the circumsporozoite (CS) protein of the human malaria parasite Plasmodium falciparum has been isolated by screening an Escherichia coli complementary DNA library with a monoclonal antibody to the CS protein. The DNA sequence of the complementary DNA insert encodes a four-amino acid sequence: proline-asparagine-alanine-asparagine, tandemly repeated 23 times. The CS ? -lactamase fusion protein specifically binds monoclonal antibodies to the CS protein and inhibits the binding of these antibodies to native Plasmodium falciparum CS protein. These findings provide a basis for the development of a vaccine against Plasmodium falciparum malaria.

Enea, Vincenzo; Ellis, Joan; Zavala, Fidel; Arnot, David E.; Asavanich, Achara; Masuda, Aoi; Quakyi, Isabella; Nussenzweig, Ruth S.

1984-08-01

391

Immunization against a serine protease inhibitor reduces intensity of Plasmodium berghei infection in mosquitoes  

PubMed Central

The mosquito innate immune response is able to clear the majority of Plasmodium parasites. This immune clearance is controlled by a number of regulatory molecules including serine protease inhibitors (serpins). To determine whether such molecules could represent a novel target for a malaria transmission-blocking vaccine, we vaccinated mice with Anopheles gambiae serpin-2 (AgSRPN2). Antibodies against AgSRPN2 significantly reduced the infection of a heterologous Anopheles species (Anopheles stephensi) by Plasmodium berghei, however this effect was not observed with Plasmodium falciparum. Therefore, this approach of targeting regulatory molecules of the mosquito immune system may represent a novel approach to transmission-blocking malaria vaccines. PMID:23872520

Williams, Andrew R.; Zakutansky, Sara E.; Miura, Kazutoyo; Dicks, Matthew J. D.; Churcher, Thomas S.; Jewell, Kerry E.; Vaughan, Aisling M.; Turner, Alison V.; Kapulu, Melissa C.; Michel, Kristin; Long, Carole A.; Sinden, Robert E.; Hill, Adrian V. S.; Draper, Simon J.; Biswas, Sumi

2013-01-01

392

Targeted Disruption of py235ebp-1: Invasion of Erythrocytes by Plasmodium yoelii Using an Alternative Py235 Erythrocyte Binding Protein  

Microsoft Academic Search

Plasmodium yoelii YM asexual blood stage parasites express multiple members of the py235 gene family, part of the super-family of genes including those coding for Plasmodium vivax reticulocyte binding proteins and Plasmodium falciparum RH proteins. We previously identified a Py235 erythrocyte binding protein (Py235EBP-1, encoded by the PY01365 gene) that is recognized by protective mAb 25.77. Proteins recognized by a

Solabomi A. Ogun; Rita Tewari; Thomas D. Otto; Steven A. Howell; Ellen Knuepfer; Deirdre A. Cunningham; Zhengyao Xu; Arnab Pain; Anthony A. Holder

2011-01-01

393

Proposal for a new therapy for drug-resistant malaria using Plasmodium synthetic lethality inference?  

PubMed Central

Many antimalarial drugs kill malaria parasites, but antimalarial drug resistance (ADR) and toxicity to normal cells limit their usefulness. To solve this problem, we suggest a new therapy for drug-resistant malaria. The approach consists of data integration and inference through homology analysis of yeast–human–Plasmodium. If one gene of a Plasmodium synthetic lethal (SL) gene pair has a mutation that causes ADR, a drug targeting the other gene of the SL pair might be used as an effective treatment for drug-resistant strains of malaria. A simple computational tool to analyze the inferred SL genes of Plasmodium species (malaria parasites Plasmodium falciparum and Plasmodium vivax for human malarial therapy, and rodent parasite Plasmodium berghei for in vivo studies of human malarias) was established to identify SL genes that can be used as drug targets. Information on SL gene pairs with ADR genes and their first neighbors was inferred from yeast SL genes to search for pertinent antimalarial drug targets. We not only suggest drug target gene candidates for further experimental validation, but also provide information on new usage for already-described drugs. The proposed specific antimalarial drug candidates can be inferred by searching drugs that cause a fitness defect in yeast SL genes. PMID:24533301

Lee, Sang Joon; Seo, Eunseok; Cho, Yonghyun

2013-01-01

394

Static and dynamic light scattering of healthy and malaria-parasite blood cells  

E-print Network

We present the light scattering of individual Plasmodium falciparum-parasitized human red blood cells (Pf-RBCs), and demonstrate progressive alterations to the scattering signal arising from the development of malaria-inducing ...

Suresh, Subra

395

Evolution and ecology of malaria parasites: from mating to mixed?species infections   

E-print Network

Despite over a century of research, malaria parasites (Plasmodium) still remain a major cause of mortality and morbidity worldwide. In recent years, the application of theoretical principles from ecology and evolutionary ...

Ramiro, Ricardo Filipe Serrote; Ricardo Filipe, Serrote Ramiro

2012-11-30

396

More plastids in human parasites? Ross F. Waller1,2  

E-print Network

parasites such as Plasmodium and Toxoplasma demonstrates that the rules are not so clear [2­4]. Although anabolic pathways, together with all the prokaryotic-type housekeeping functions on which they depend

McFadden, Geoff

397

Parasitic Diseases  

MedlinePLUS

... a bug bite, or sexual contact. Some parasitic diseases are easily treated and some are not. Parasites ... be seen with the naked eye. Some parasitic diseases occur in the United States. Contaminated water supplies ...

398

Plasmodium falciparum ookinetes require mosquito midgut chondroitin sulfate proteoglycans for cell invasion  

PubMed Central

Malaria transmission entails development of the Plasmodium parasite in its insect vector, the Anopheles mosquito. Parasite invasion of the mosquito midgut is the critical first step and involves adhesion to host epithelial cell ligands. Partial evidence suggests that midgut oligosaccharides are important ligands for parasite adhesion; however, the identity of these glycans remains unknown. We have identified a population of chondroitin glycosaminoglycans along the apical midgut microvilli of Anopheles gambiae and further demonstrated ookinete recognition of these glycans in vitro. By repressing the expression of the peptide-O-xylosyltransferase homolog of An. gambiae by means of RNA interference, we blocked glycosaminoglycan chain biosynthesis, diminished chondroitin sulfate levels in the adult midgut, and substantially inhibited parasite development. We provide evidence for the in vivo role of chondroitin sulfate proteoglycans in Plasmodium falciparum invasion of the midgut and insight into the molecular mechanisms mediating parasite–mosquito interactions. PMID:17873063

Dinglasan, Rhoel R.; Alaganan, Aditi; Ghosh, Anil K.; Saito, Akio; van Kuppevelt, Toin H.; Jacobs-Lorena, Marcelo

2007-01-01

399

Indigenous Plasmodium ovale Malaria in Bangladesh  

PubMed Central

In spite of the high prevalence of malaria in Southeastern Bangladesh, there remains a significant shortage of information regarding the presence of three of five human malaria parasites: Plasmodium ovale, P. malariae, and P. knowlesi. The presence of P. ovale and P. knowlesi has previously never been reported from Bangladesh. We used a genus- and species-specific nested polymerase chain reaction, targeting highly conserved regions of the small subunit ribosomal RNA (SSU rRNA) gene, to investigate the presence of malaria parasites in a total number of 379 patient samples in a survey of patients with febrile illnesses in the Chittagong Hill Tracts in Southeastern Bangladesh. We identified the first cases of P. ovale in Bangladesh. They were confirmed by sequence analysis; 189 of 379 samples (49.9%; 95% confidence interval = 44.9–54.9%) were positive for Plasmodium sp. by PCR. P. falciparum monoinfections accounted for 68.3% (61.3–74.5%), followed by P. vivax (15.3%; 10.9–21.2%), P. malariae (1.6%; 0.5–4.6%), P. ovale (1.6%; 0.5–4.6%), and mixed infections (13.2%; 9.1–18.8%). We found no evidence of P. knowlesi in this region. PMID:20595481

Fuehrer, Hans-Peter; Starzengruber, Peter; Swoboda, Paul; Khan, Wasif Ali; Matt, Julia; Ley, Benedikt; Thriemer, Kamala; Haque, Rashidul; Yunus, Emran Bin; Hossain, Shah Monir; Walochnik, Julia; Noedl, Harald

2010-01-01

400

Human Infections and Detection of Plasmodium knowlesi  

PubMed Central

SUMMARY Plasmodium knowlesi is a malaria parasite that is found in nature in long-tailed and pig-tailed macaques. Naturally acquired human infections were thought to be extremely rare until a large focus of human infections was reported in 2004 in Sarawak, Malaysian Borneo. Human infections have since been described throughout Southeast Asia, and P. knowlesi is now recognized as the fifth species of Plasmodium causing malaria in humans. The molecular, entomological, and epidemiological data indicate that human infections with P. knowlesi are not newly emergent and that knowlesi malaria is primarily a zoonosis. Human infections were undiagnosed until molecular detection methods that could distinguish P. knowlesi from the morphologically similar human malaria parasite P. malariae became available. P. knowlesi infections cause a spectrum of disease and are potentially fatal, but if detected early enough, infections in humans are readily treatable. In this review on knowlesi malaria, we describe the early studies on P. knowlesi and focus on the epidemiology, diagnosis, clinical aspects, and treatment of knowlesi malaria. We also discuss the gaps in our knowledge and the challenges that lie ahead in studying the epidemiology and pathogenesis of knowlesi malaria and in the prevention and control of this zoonotic infection. PMID:23554413

Daneshvar, Cyrus

2013-01-01

401

Indigenous Plasmodium ovale malaria in Bangladesh.  

PubMed

In spite of the high prevalence of malaria in Southeastern Bangladesh, there remains a significant shortage of information regarding the presence of three of five human malaria parasites: Plasmodium ovale, P. malariae, and P. knowlesi. The presence of P. ovale and P. knowlesi has previously never been reported from Bangladesh. We used a genus- and species-specific nested polymerase chain reaction, targeting highly conserved regions of the small subunit ribosomal RNA (SSU rRNA) gene, to investigate the presence of malaria parasites in a total number of 379 patient samples in a survey of patients with febrile illnesses in the Chittagong Hill Tracts in Southeastern Bangladesh. We identified the first cases of P. ovale in Bangladesh. They were confirmed by sequence analysis; 189 of 379 samples (49.9%; 95% confidence interval = 44.9-54.9%) were positive for Plasmodium sp. by PCR. P. falciparum monoinfections accounted for 68.3% (61.3-74.5%), followed by P. vivax (15.3%; 10.9-21.2%), P. malariae (1.6%; 0.5-4.6%), P. ovale (1.6%; 0.5-4.6%), and mixed infections (13.2%; 9.1-18.8%). We found no evidence of P. knowlesi in this region. PMID:20595481

Fuehrer, Hans-Peter; Starzengruber, Peter; Swoboda, Paul; Khan, Wasif Ali; Matt, Julia; Ley, Benedikt; Thriemer, Kamala; Haque, Rashidul; Yunus, Emran Bin; Hossain, Shah Monir; Walochnik, Julia; Noedl, Harald

2010-07-01

402

New type of SSUrDNA sequence was detected from both Plasmodium ovale curtisi and Plasmodium ovale wallikeri samples  

PubMed Central

Background Plasmodium ovale is relatively unfamiliar to Chinese staff engaged in malaria diagnosis. In 2013, dried blood spots of four unidentified but suspected ovale malaria samples were sent to the National Malaria Reference Laboratory (NMRL) for reconfirmation. Methods Partial and complete, small, subunit ribosomal DNA (SSU rDNA) sequences of four samples were obtained with PCR-cloning-sequencing method. Obtained sequences were analyzed by aligning with each other and with nine SSU rDNA sequences of six known Plasmodium parasites. A phylogenetic tree was constructed based on complete SSU rDNA sequences and 12 same gene sequences derived from six known Plasmodium parasites and three Babesia parasites. Primary structure of conservative and variable regions of variant sequences was determined also by comparing them with those of six known Plasmodium parasites. To confirm their existence in genome, they were redetected with primers matching their variable regions. PCR systems aimed to roughly detect any eukaryotes and prokaryotes respectively were also applied to search for other pathogens in one of four patients. Results Totally, 19 partial and 23 complete SSU rDNA sequences obtained from four samples. Except eight variant sequences, similarities among sequences from same DNA sample were in general high (more than 98%). The phylogenetic analysis revealed that three cases were infected by P. ovale wallikeri and one by P. ovale curtisi. Four of the variant sequences which obtained from four samples relatively showed high similarities with each other (98.5%-100%). Identical variant sequences actually could be re-obtained from each DNA sample. Their primary structure of conservative and variable regions showed quite fit with that of six known Plasmodium parasites. The test for prokaryote pathogens showed negative and the tests for eukaryotes only found DNA sequences of Human and P. ovale parasites. Conclusion Both P. ovale wallikeri and P. ovale curtisi infections are present in imported malaria cases of China. New type of partial SSU rDNA sequence which assumed to express in a certain life stage of P. ovale was obtained from both P. ovale wallikeri and P. ovale curtisi samples. This discovery would supply information and clues to identify and understand P. ovale parasites more accurately. PMID:24893846

2014-01-01

403

Malaria transmission intensity and the rate of spread of chloroquine resistant Plasmodium falciparum: Why have theoretical models generated conflicting results?  

Microsoft Academic Search

The rate at which falciparum resistant malaria spreads in different transmission settings is still a controversial subject. We have assessed the spread of mutant Plasmodium falciparum parasites in six Ugandan populations with varying prevalence of chloroquine resistance (CQR), malaria transmission intensity, multiplicity of parasite clones and prevalence of CQ use. For each population, we have determined the wild and mutant

Ambrose O. Talisuna; Annette Erhart; Sagarika Samarasinghe; Chantal Van Overmeir; Niko Speybroeck; Umberto D’Alessandro

2006-01-01

404

Plasmodium falciparum Gene Encoding a Protein Similar to the 78-kDa Rat Glucose-Regulated Stress Protein  

Microsoft Academic Search

Genes homologous to heat shock protein 70 have been described in parasitic protozoa. It has been proposed that they may be important to the parasite as it moves from the vertebrate host at 37 degrees C to the insect. We now describe a genomic DNA clone isolated from Plasmodium falciparum that encodes a protein similar in sequence to a mammalian

Nirbhay Kumar; Chiang Syin; Richard Carter; Isabella Quakyi; Louis H. Miller

1988-01-01

405

Susceptibility of human Plasmodium knowlesi infections to anti-malarials  

PubMed Central

Background Evidence suggests that Plasmodium knowlesi malaria in Sarawak, Malaysian Borneo remains zoonotic, meaning anti-malarial drug resistance is unlikely to have developed in the absence of drug selection pressure. Therefore, adequate response to available anti-malarial treatments is assumed. Methods Here the ex vivo sensitivity of human P. knowlesi isolates in Malaysian Borneo were studied, using a WHO schizont maturation assay modified to accommodate the quotidian life cycle of this parasite. The in vitro sensitivities of P. knowlesi H strain adapted from a primate infection to in vitro culture (by measuring the production of Plasmodium lactate dehydrogenase) were also examined together with some assays using Plasmodium falciparum and Plasmodium vivax. Results Plasmodium knowlesi is uniformly highly sensitive to artemisinins, variably and moderately sensitive to chloroquine, and less sensitive to mefloquine. Conclusions Taken together with reports of clinical failures when P. knowlesi is treated with mefloquine, the data suggest that caution is required if using mefloquine in prevention or treatment of P. knowlesi infections, until further studies are undertaken. PMID:24245918

2013-01-01

406

Wolbachia increases susceptibility to Plasmodium infection in a natural system  

PubMed Central

Current views about the impact of Wolbachia on Plasmodium infections are almost entirely based on data regarding artificially transfected mosquitoes. This work has shown that Wolbachia reduces the intensity of Plasmodium infections in mosquitoes, raising the exciting possibility of using Wolbachia to control or limit the spread of malaria. Whether natural Wolbachia infections have the same parasite-inhibiting properties is not yet clear. Wolbachia–mosquito combinations with a long evolutionary history are, however, key for understanding what may happen with Wolbachia-transfected mosquitoes after several generations of coevolution. We investigate this issue using an entirely natural mosquito–Wolbachia–Plasmodium combination. In contrast to most previous studies, which have been centred on the quantification of the midgut stages of Plasmodium, we obtain a measurement of parasitaemia that relates directly to transmission by following infections to the salivary gland stages. We show that Wolbachia increases the susceptibility of Culex pipiens mosquitoes to Plasmodium relictum, significantly increasing the prevalence of salivary gland stage infections. This effect is independent of the density of Wolbachia in the mosquito. These results suggest that naturally Wolbachia-infected mosquitoes may, in fact, be better vectors of malaria than Wolbachia-free ones. PMID:24500167

Zélé, F.; Nicot, A.; Berthomieu, A.; Weill, M.; Duron, O.; Rivero, A.

2014-01-01

407

Interactive transcriptome analysis of malaria patients and infecting Plasmodium falciparum  

PubMed Central

To understand the molecular mechanisms of parasitism in vivo, it is essential to elucidate how the transcriptomes of the human hosts and the infecting parasites affect one another. Here we report the RNA-seq analysis of 116 Indonesian patients infected with the malaria parasite Plasmodium falciparum (Pf). We extracted RNAs from their peripheral blood as a mixture of host and parasite transcripts and mapped the RNA-seq tags to the human and Pf reference genomes to separate the respective tags. We were thus able to simultaneously analyze expression patterns in