Science.gov

Sample records for hairy cell leukemia

  1. Hairy Cell Leukemia Treatment

    MedlinePLUS

    ... Childhood ALL Treatment Childhood AML Treatment Research Hairy Cell Leukemia Treatment–Patient Version (PDQ®) General Information About Hairy Cell Leukemia Key Points Hairy cell leukemia is a ...

  2. Stages of Hairy Cell Leukemia

    MedlinePLUS

    ... Childhood ALL Treatment Childhood AML Treatment Research Hairy Cell Leukemia Treatment–Patient Version (PDQ®) General Information About Hairy Cell Leukemia Key Points Hairy cell leukemia is a ...

  3. Treatment Options for Hairy Cell Leukemia

    MedlinePLUS

    ... Childhood ALL Treatment Childhood AML Treatment Research Hairy Cell Leukemia Treatment–Patient Version (PDQ®) General Information About Hairy Cell Leukemia Key Points Hairy cell leukemia is a ...

  4. General Information about Hairy Cell Leukemia

    MedlinePLUS

    ... Childhood ALL Treatment Childhood AML Treatment Research Hairy Cell Leukemia Treatment–Patient Version (PDQ®) General Information About Hairy Cell Leukemia Key Points Hairy cell leukemia is a ...

  5. Eliminating Hairy Cell Leukemia Minimal Residual Disease

    Cancer.gov

    In this trial, patients with hairy cell leukemia who have disease-related symptoms that require treatment will be randomly assigned to receive cladribine with either concurrent rituximab or rituximab at least 6 months after completing cladribine therapy.

  6. Chemoimmunotherapy for hairy cell leukemia.

    PubMed

    Ravandi, Farhad

    2015-12-01

    Success in the treatment of patients with hairy cell leukemia (HCL) over the last several decades is largely due to the high efficacy of the nucleoside analogs, cladribine and pentostatin. However, the relapse-free survival curves have not shown a plateau and many patients treated with these agents will eventually relapse. Although better understanding of the pathogenic mechanisms in HCL have led to effective and novel options for the treatment of relapse, long term durability of the responses obtained with these agents still remains unclear. Combination of nucleoside analogs with monoclonal antibodies such as rituximab has been shown to be safe and effective and has the potential to supersede the nucleoside analogs as the frontline strategy. Such chemo-immunotherapy approaches are under further investigation and will have to be assessed with socioeconomic considerations in mind. Other novel monoclonal antibodies, approved for the treatment of other lymphoid neoplasms, may also be considered for future studies of chemo-immunotherapy. PMID:26614901

  7. Hairy Cell Leukemia and Bone Pain.

    PubMed

    Streu, Erin

    2016-01-01

    Hairy cell leukemia is a relatively rare but distinct B-cell lympho-proliferative disorder of the blood, bone marrow, and spleen that accounts for only 2% of all adult leukemia cases. The median age at presentation is 50-55 years, with a 4:1 male to female predominance. Although considered uncommon, a number of unusual clinical presentations have been noted in the literature, including the presence of peripheral lymphadenopathy, lytic bone lesions, skin involvement, organ involvement, and central nervous system involvement. Unlike the clinical management of other hematologic malignancies, no current system is used to stage hairy cell leukemia. PMID:26679440

  8. Hairy cell leukemia. Immunological study.

    PubMed

    Stela, R; Berceanu, S; Munteanu, N; Ursea, C; Motoiu, I; Moraru, I

    1990-01-01

    The study has been performed on peripheral blood and splenic malignant cells from 16 patients with hairy cell leukaemia (HCL). The cell surface markers were identified by rosette techniques and using monoclonal antibodies (m Ab). The surface markers' expression of the hairy cells (HC) varied. The E receptors, the T-cell antigens, the HLA-DR antigens and smIgG were either expressed or not according to the affected organ, the progress of illness, or the treatment. The surface pattern changed sometimes in the same patient during the progress of illness. These observations demonstrate that HCL is a unique disease with malignant cells characterized by a marked variability of the cell surface markers. To demonstrate the ability of hairy cells to bind labile smIgG, the cells were studied by affinity chromatography on SpA-Sepharose 6MB and by ES-rosette assay. The percent of cells bound on SpA-Sepharose varied between 6% and 66%, representing the hairy cells with labile-bound smIgG. With affinity chromatography it was also possible to separate the hairy cells with a special phenotype: T3+ T4+ T8+ T11+ surface membrane labile-bound IgG+ (11gG+) FcR+, HLA-DR+ EACD+ (Ripley rosette forming cells), resembling a normal subset of large granular lymphocytes (LGL). The percentage of these cells varied between 60% and 86% of the bound cells. These observations suggest that in HCL, the malignant transformation might involve a common progenitor for the B, T and LGL lineages, the hairy cell being a hybrid type of malignant cell. Its main immunological peculiarity is the marked mobility of the surface membrane structures and hence the lability (plasticity) of the surface markers' expression. PMID:2101805

  9. Hairy-cell leukemia and toxoplasmosis.

    PubMed

    Chrobák, L; Bostíková, D; Mirová, S; Hozák, A; Radochová, D

    1982-01-01

    Investigation for Toxoplasma gondii infection using complement fixation test and microprecipitation method in agar gel was performed in fifteen patients with clinically and morphologically typical hairy-cell leukemia. Positive complement fixation test was found in four patients. In three patients an initially high complement fixation titer or its considerable increase associated with positive microprecipitation in agar gel suggested a recent toxoplasmosis. The importance of search for Toxoplasma gondii infection in hairy-cell leukemia patients especially before splenectomy and the necessity of reinvestigation after splenectomy is stressed. PMID:7133241

  10. Immunotoxin Therapy for Relapsed Hairy Cell Leukemia

    Cancer.gov

    In this trial, patients with hairy cell leukemia who have relapsed multiple times or not responded to prior chemotherapy will be treated with an experimental immunotoxin called moxetumomab pasudotox given intravenously on days 1, 3, and 5 of 28-day cycles

  11. Leukemia - B-Cell Prolymphocytic Leukemia and Hairy Cell Leukemia

    MedlinePLUS

    ... Chronic lymphocytic leukemia (CLL) Acute myeloid leukemia (AML) Chronic myeloid leukemia (CML) About PLL and HCL There are other, less common types of leukemia, but they are generally subcategories of one ... both of which are types of chronic B-cell leukemia. B cells are a specific ...

  12. Treating Multiply Relapsed or Refractory Hairy Cell Leukemia

    Cancer.gov

    In this trial, patients with hairy cell leukemia who have not responded or relapsed after initial chemotherapy will be randomly assigned to receive rituximab combined with either pentostatin or bendamustine.

  13. Historical overview of hairy cell leukemia.

    PubMed

    Andritsos, Leslie A; Grever, Michael R

    2015-12-01

    Since its discovery in 1923 and further characterization in 1958, hairy cell leukemia (HCL) has undergone enormous advances in the understanding of the biology and treatment of the disease. Initially a uniformly fatal disease, new therapies in rapid succession transformed HCL into a chronic disease with a normal life expectancy in many cases. More recently, the identification of BRAFV600E mutations in the majority of patients with classic HCL have enabled targeted therapies as a therapeutic option. Additional discoveries into the biology of the disease have identified new subtypes of HCL. Modern approaches to the evaluation and treatment of HCL include detailed molecular analysis which informs therapeutic options, which may consist of traditional therapies such as purine nucleoside analogs, or targeted therapies with antibodies, BTK inhibitors, or BRAF inhibitors, or combination therapy. Because HCL is a rare disease, continued progress depends on patients being enrolled on clinical trials whenever possible. PMID:26614894

  14. Laparoscopic Splenectomy for Hairy Cell Leukemia in Pregnancy

    PubMed Central

    Adeniji, Beni Adegoke; Fallas, Moses; Incerpi, Marc; Hamburg, Solomon; Katz, Robert; Ogunyemi, Dotun

    2010-01-01

    Objective. We present a successful case of laparoscopic splenectomy for a massively enlarged spleen at 25 weeks of gestation for hairy cell leukemia in pregnancy in a woman with initial hemoglobin of 4.3?gm/dl and platelet count of 18,000/mm3. Study Design. Case report. Results. This report provides an approach to management that may be applicable in those cases where thrombocytopenia or other clinical imperatives preclude delaying treatment till after pregnancy. Conclusion. Hairy cell leukemia is a clonal B-Cell malignancy, for which there is very limited experience worldwide for its management when it occurs during pregnancy. Laparoscopic splenectomy should be considered as a therapeutic option, even with a significantly enlarged spleen, in order to avoid the risks of fetal exposure to chemotherapeutic agents. Unique considerations relating to pregnancy are highlighted. PMID:20886009

  15. The importance of the tissue microenvironment in hairy cell leukemia.

    PubMed

    Sivina, Mariela; Burger, Jan A

    2015-12-01

    Hairy cell leukemia (HCL) cells engage in complex cellular and molecular interactions with accessory cells, matrix proteins, and various cytokines in the bone marrow and spleen, collectively referred to as the tissue microenvironment. Chemokine receptors and adhesion molecules are critical players for homing and retention within these microenvironments. Engagement of B cell antigen receptors and CD40 on HCL cells promote survival and proliferation. In this chapter, we summarize the current knowledge about the cellular and molecular interactions between HCL cells and their supportive tissue microenvironment, and provide insight into new therapeutic approaches targeting B cell receptor signaling in HCL. PMID:26614899

  16. 75 FR 14391 - Diseases Associated With Exposure to Certain Herbicide Agents (Hairy Cell Leukemia and Other...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-25

    ... Cell Leukemia and Other Chronic B Cell Leukemias, Parkinson's Disease and Ischemic Heart Disease... between exposure to herbicides and the subsequent development of hairy cell leukemia and other chronic B- cell leukemias, Parkinson's disease, and ischemic heart disease. The intended effect of this...

  17. 75 FR 54496 - Diseases Associated With Exposure to Certain Herbicide Agents (Hairy Cell Leukemia and Other...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-08

    ... Federal Register (75 FR 53202), an amendment to 38 CFR 3.309 to add hairy cell leukemia and other chronic B-cell leukemias, Parkinson's disease and ischemic heart disease to the list of diseases subject to... Cell Leukemia and Other Chronic B-Cell Leukemias, Parkinson's Disease and Ischemic Heart...

  18. Hairy cell leukemia: Update on molecular profiling and therapeutic advances.

    PubMed

    Grever, Michael R; Blachly, James S; Andritsos, Leslie A

    2014-09-01

    Hairy cell leukemia was initially described as a clinicopathologic entity more than 50 years ago. We have subsequently discovered that HCL is really at least two diseases: classical HCL and the hairy cell leukemia variant. The former is among a small group of cancers exceptional for being (nearly) unified by a single genetic lesion, the BRAF V600E mutation. Over the past three decades, tremendous progress in both diagnostic and prognostic clarification has been accompanied by therapeutic advances in classical HCL. Consequently, this once uniformly fatal disease has been converted in most cases into a chronic illness enabling patients to live long and productive lives. In response to standard therapy, patients have high complete remission rates. Unfortunately, the long-term survival curves have not plateaued, revealing that this disease is controlled but not cured. Though rare and representing only about 10% of an already rare disease, those patients with the variant fare exceptionally poorly with standard therapy: complete response rates to purine nucleoside analogs are reported to be less than 50%, whereas the complete response rates in classical HCL are up to 90%. Novel small molecules targeting BRAF and the B-cell receptor signaling complex, and biologic agents like antibodies and immunotoxin conjugates are being explored for those patients who have relapsed. Substantial opportunities for continued research remain. This complex and multi-faceted disease incorporates challenges from altered immunity associated with the underlying disease and its treatments. Considering the rarity of this malignancy, optimization of patient management requires multi-institutional collaboration. The Hairy Cell Leukemia Foundation (www.hairycellleukemia.org) was formed to coordinate these efforts. PMID:25110197

  19. Two Cases of Q-Fever in Hairy Cell Leukemia

    PubMed Central

    Iannitto, Emilio; Tick, Lidwine W.; Arents, Nicolaas L. A.; Kuijper, Philip H.; Nijziel, Marten R.

    2014-01-01

    Hairy cell leukemia (HCL) is a rare B-cell lymphoproliferative disorder accounting for about 2% of all leukemias. The clinical course is indolent, however HCL patients are particularly susceptible to infections. Here we report two cases of Q-fever as first manifestation of disease in two patients affected by HCL. Both patients described in this report showed an unusually sluggish clinical response to the antibiotic treatment with ciprofloxacin probably because of the marked immunodeficiency. However, treatment of HCL with cladribine administered soon after the resolution of QF pneumonitis was uneventful and led to a complete remission in both cases. Most probably the association of Coxiella burnetii (CB) infection and HCL that we observed in two patients is due to chance. However, a hairy cell resembling transformation of freshly isolated human peripheral blood lymphocytes upon CB has been showed. We think that the possibility of CB infection in febrile HCL patient should be always taken in mind, especially in endemic areas. In addition the potential for such infections to become chronic in HCL patients should not be overlooked and the reporting of further cases should be encouraged. PMID:25180111

  20. Two cases of q-Fever in hairy cell leukemia.

    PubMed

    Ammatuna, Emanuele; Iannitto, Emilio; Tick, Lidwine W; Arents, Nicolaas L A; Kuijper, Philip H; Nijziel, Marten R

    2014-01-01

    Hairy cell leukemia (HCL) is a rare B-cell lymphoproliferative disorder accounting for about 2% of all leukemias. The clinical course is indolent, however HCL patients are particularly susceptible to infections. Here we report two cases of Q-fever as first manifestation of disease in two patients affected by HCL. Both patients described in this report showed an unusually sluggish clinical response to the antibiotic treatment with ciprofloxacin probably because of the marked immunodeficiency. However, treatment of HCL with cladribine administered soon after the resolution of QF pneumonitis was uneventful and led to a complete remission in both cases. Most probably the association of Coxiella burnetii (CB) infection and HCL that we observed in two patients is due to chance. However, a hairy cell resembling transformation of freshly isolated human peripheral blood lymphocytes upon CB has been showed. We think that the possibility of CB infection in febrile HCL patient should be always taken in mind, especially in endemic areas. In addition the potential for such infections to become chronic in HCL patients should not be overlooked and the reporting of further cases should be encouraged. PMID:25180111

  1. Current and emerging treatment options for hairy cell leukemia

    PubMed Central

    Lpez-Rubio, Montserrat; Garcia-Marco, Jose Antonio

    2015-01-01

    Hairy cell leukemia (HCL) is a lymphoproliferative B-cell disorder characterized by pancytopenia, splenomegaly, and characteristic cytoplasmic hairy projections. Precise diagnosis is essential in order to differentiate classic forms from HCL variants, such as the HCL-variant and VH4-34 molecular variant, which are more resistant to available treatments. The current standard of care is treatment with purine analogs (PAs), such as cladribine or pentostatin, which provide a high rate of long-lasting clinical remissions. Nevertheless, ~30%40% of the patients relapse, and moreover, some of these are difficult-to-treat refractory cases. The use of the monoclonal antibody rituximab in combination with PA appears to produce even higher responses, and it is often employed to minimize or eliminate residual disease. Currently, research in the field of HCL is focused on identifying novel therapeutic targets and potential agents that are safe and can universally cure the disease. The discovery of the BRAF mutation and progress in understanding the biology of the disease has enabled the scientific community to explore new therapeutic targets. Ongoing clinical trials are assessing various treatment strategies such as the combination of PA and anti-CD20 monoclonal antibodies, recombinant immunotoxins targeting CD22, BRAF inhibitors, and B-cell receptor signal inhibitors. PMID:26316784

  2. Novel therapeutic options for relapsed hairy cell leukemia.

    PubMed

    Jain, Preetesh; Polliack, Aaron; Ravandi, Farhad

    2015-08-01

    The majority of patients with hairy cell leukemia (HCL) achieve a response to therapy with cladribine or pentostatin with or without rituximab. However, late relapses can occur. Treatment of relapsed HCL can be difficult due to a poor tolerance to chemotherapy, increased risk of infections and decreased responsiveness to chemotherapy. The identification of BRAFV600E mutations and the role of aberrant MEK kinase and Bruton's tyrosine kinase (BTK) pathways in the pathogenesis of HCL have helped to develop novel targeted therapies for these patients. Currently, the most promising therapeutic strategies for relapsed or refractory HCL include recombinant immunoconjugates targeting CD22 (e.g. moxetumomab pasudotox), BRAF inhibitors such as vemurafenib and B cell receptor signaling kinase inhibitors such as ibrutinib. Furthermore, the VH4-34 molecular variant of classic HCL has been identified to be less responsive to chemotherapy. Herein, we review the results of the ongoing clinical trials and potential future therapies for relapsed/refractory HCL. PMID:25563425

  3. Treatment of refractory hairy cell leukemia with a BRAF-inhibitor: lessons to be learnt.

    PubMed

    Sri, Eszter; Nagy, Zsolt Gyrgy; Baghy, Kornlia; Rajnai, Hajnalka; Bdr, Csaba; Csomor, Judit; Barna, Gbor; Rudas, Gbor; Kovalszky, Ilona; Demeter, Judit

    2014-10-01

    Hairy cell leukemia is a rare chronic lymphoproliferative disorder with indolent but progressive clinical course. Patients require treatment when they have significant cytopenia or recurrent infections. The gold standard treatment are purine nucleoside analogues (cladribine and pentostatine), with these agents the rate of complete remission can approach even 95 %. The differential diagnosis between classical hairy cell leukemia and other, rare splenic lymphomas that can mimic this disease might be really challenging. Splenic lymphoma with villous lymphocytes and other new, provisional WHO entities share some, but not all immunophenotypical features with hairy cell leukemia. The correct diagnosis is of an extreme importance as these entities require different treatment. Thus further investigation in the pathogenesis of hairy cell leukemia is required in order to solve this challenge. Discovery of the BRAF V600E mutation as a disease-defining genetic event in hairy cell leukemia can be helpful in both differential diagnosis and treatment of this disease. We report the case of three hairy cell leukemia patients, whose diagnosis or treatment was based on this newly discovered somatic mutation, but the treatment results and side effects were individual. PMID:24789721

  4. Hairy cell leukemia: short review, today's recommendations and outlook

    PubMed Central

    Maevis, V; Mey, U; Schmidt-Wolf, G; Schmidt-Wolf, I G H

    2014-01-01

    Hairy cell leukemia (HCL) is part of the low-grade non-Hodgkin lymphoma family and represents approximately 2% of all leukemias. Treatment with splenectomy and interferon-? historically belonged to the first steps of therapeutic options, achieving partial responses/remissions (PR) in most cases with a median survival between 4 and 6 years in the 1980s. The introduction of the purine analogs (PA) pentostatin and cladribine made HCL a well-treatable disease: overall complete response rates (CRR) range from 76 to 98%, with a median disease-free survival (DFS) of 16 years a normal lifespan can be reached and HCL-related deaths are rare. However, insufficient response to PA with poorer prognosis and relapse rates of 3040% after 510 years of follow-up may require alternative strategies. Minimal residual disease can be detected by additional examinations of bone marrow specimens after treatment with PA. The use of immunotherapeutic monoclonal antibodies (mAB) like rituximab as a single agent or in combination with a PA or more recently clinical trials with recombinant immunotoxins (RIT) show promising results to restrict these problems. Recently, the identification of the possible disease-defining BRAF V600E mutation may allow the development of new therapeutic targets. PMID:24531447

  5. Immunoconjugates in the management of hairy cell leukemia.

    PubMed

    Kreitman, Robert J; Pastan, Ira

    2015-12-01

    Hairy cell leukemia (HCL) is an indolent B-cell malignancy effectively treated but not often cured by purine analog therapy; after multiple courses of purine analogs, patients can become purine analog resistant and in need of alternative therapies. Complete remission to single-agent purine analog is often accompanied by minimal residual disease (MRD), residual HCL cells detectable by immunologic methods, considered a risk factor for eventual relapse. Several different non-chemotherapy approaches are being used to target relapsed and refractory HCL, including inhibitors of BRAF, but so far only monoclonal antibody (MAb)-based approaches have been reported to eliminate MRD in a high percentage of patients. One of the MAb-based options for HCL currently under clinical investigation involves recombinant immunotoxins, containing a fragment of a MAb and a bacterial toxin. The bacterial toxin, a highly potent fragment from Pseudomonas exotoxin, catalytically ADP-ribosylates elongation factor 2 (EF2), resulting in protein synthesis inhibition and apoptotic cell death. Recombinant immunotoxins tested in HCL patients include LMB-2, targeting CD25, and BL22, targeting CD22. An affinity matured version of BL22, termed moxetumomab pasudotox (formerly HA22 or CAT-8015) achieved high CR rates in phase I, and is currently undergoing multicenter Phase 3 testing. Phase I testing was without dose-limiting toxicity, although 2 patients had grade 2 hemolytic uremic syndrome (HUS) with transient grade 1 abnormalities in platelets and creatinine. Preclinical work is underway to identify residues on moxetumomab pasudotox leading to immunogenicity. Moxetumomab pasudotox is undergoing pivotal testing for relapsed and refractory HCL. PMID:26614902

  6. The value of bone marrow biopsy in the prognosis of hairy cell leukemia (HCL).

    PubMed

    Podzimek, K; Kerekes, Z; Chrobák, L; Skalská, H; Voglová, J; Mirová, S; Dulícek, P; Zák, P

    1994-01-01

    Histological findings in the bone marrow and their changes in the course of the disease and therapy were evaluated with respect to the prognosis in a group of 32 patients with hairy cell leukemia (HCL). Two types of bone marrow infiltration by hairy cells (HCs), the diffuse type and the interstitial type, respectively were found. The diffuse type of infiltration and the minimal or absent residual hematopoiesis (RH) at presentation were found with statistical significance to be unfavorable prognostic findings when compared with interstitial infiltration and persisting RH (p < 0.01). Reticulin fibrosis is a characteristic finding in HCL and was found in all but 2 patients. PMID:7870215

  7. Epidemiology and environmental risk in hairy cell leukemia.

    PubMed

    Tadmor, Tamar; Polliack, Aaron

    2015-12-01

    Hairy cell leukaemia (HCL) is an orphan subtype of leukaemia which constitutes less than 2% of all leukaemia's, with an incidence of less than 1 per 100,000 persons per annum. Median age at presentation is 55 years and it is 3-4 times more frequent in males. It is also more frequently encountered in whites and less in Asians, Africans and Arabs. The epidemiologic data are multi-factorial and influenced by ethnicity and geographical factors. Other reported associations relate to some environmental exposures and possible occupational factors. Smoking appears to have an inverse correlation with the development of hairy cell leukaemia, while farming and exposure to pesticides, petroleum products, diesel and ionizing radiation have also been reported to be associated with an increased risk. National and international collaborative efforts are needed in order to undertake more extensive studies involving larger patient cohorts, aiming to determine the role of occupational and environmental risk factors in the development of this rare form of chronic leukaemia. PMID:26614895

  8. Leukemic meningitis in a patient with hairy cell leukemia. A case report

    SciTech Connect

    Wolfe, D.W.; Scopelliti, J.A.; Boselli, B.D.

    1984-09-15

    Central nervous system involvement has not previously been described in patients with hairy cell leukemia (HCL). A patient is reported who presented with meningeal involvement as his initial symptom of HCL. Diagnosis was established by morphologic and cytochemical studies of his cerebrospinal fluid (CSF) and bone marrow. Treatment with whole-brain irradiation and intrathecal chemotherapy was successful in clearing leukemic cells from the CSF with resolution of symptoms.

  9. CD20dim-positive T-cell large granular lymphocytic leukemia in a patient with concurrent hairy cell leukemia and plasma cell myeloma

    PubMed Central

    Xu, Xiangdong; Broome, Elizabeth H; Rashidi, Hooman H; South, Sarah T; Dell'Aquila, Marie L; Wang, Huan-You

    2010-01-01

    We report a CD20dim- positive T-cell large granular lymphocytic (T-LGL) leukemia in a patient with concurrent hairy cell leukemia and plasma cell myeloma. This patient was first diagnosed with T-LGL leukemia with dim CD20 expression, which by itself was a rare entity. He received no treatment for T-LGL leukemia. The patient later developed a hairy cell leukemia, which went into complete clinical remission after one cycle of 2-CdA. Five years later, he was diagnosed with a third malignancy, plasma cell myeloma. Complex cytogenetic aberrancies were present at the time when plasma cell myeloma was diagnosed. This is the first report, to the best of our knowledge, in the English literature with the aforementioned three distinct hematopoietic malignancies in one patient. PMID:21151394

  10. Disseminated ulcerating lupus panniculitis emerging under interferon therapy of hairy cell leukemia: treatment- or disease-related?

    PubMed

    Urosevic-Maiwald, Mirjana; Nobbe, Stephan; Kerl, Katrin; Benz, Rudolf

    2014-04-01

    We report a 43-year-old woman, who underwent therapy with interferon-α for hairy cell leukemia. During interferon-α therapy she developed multiple subcutaneous swellings, accompanied by fever and fatigue. A skin biopsy revealed lobular, T-cell lymphocytic panniculitis. In conjunction with the clinical and immunological findings, the diagnosis of lupus panniculitis was made and interferon-α therapy stopped. Initially, she responded well to oral prednisone and hydroxychloroquine, but after several months she became resistant to it. Her condition worsened, she developed skin ulcers in the inflamed regions. Only with the leukemia-targeted therapy using cladribine and rituximab her skin condition could be controlled, suggesting hairy cell leukemia as an additional trigger of the lupus panniculitis. Our report is the first one to show induction of lupus panniculitis under interferon therapy of hairy cell leukemia and its presumable sustentation by the latter. PMID:24612373

  11. Disseminated ulcerating lupus panniculitis emerging under interferon therapy of hairy cell leukemia: treatment- or disease-related?

    TOXLINE Toxicology Bibliographic Information

    Urosevic-Maiwald M; Nobbe S; Kerl K; Benz R

    2014-04-01

    We report a 43-year-old woman, who underwent therapy with interferon-α for hairy cell leukemia. During interferon-α therapy she developed multiple subcutaneous swellings, accompanied by fever and fatigue. A skin biopsy revealed lobular, T-cell lymphocytic panniculitis. In conjunction with the clinical and immunological findings, the diagnosis of lupus panniculitis was made and interferon-α therapy stopped. Initially, she responded well to oral prednisone and hydroxychloroquine, but after several months she became resistant to it. Her condition worsened, she developed skin ulcers in the inflamed regions. Only with the leukemia-targeted therapy using cladribine and rituximab her skin condition could be controlled, suggesting hairy cell leukemia as an additional trigger of the lupus panniculitis. Our report is the first one to show induction of lupus panniculitis under interferon therapy of hairy cell leukemia and its presumable sustentation by the latter.

  12. Influenza A H1N1 pneumonia in a patient with hairy-cell leukemia.

    PubMed

    Nicolini, A; Perazzo, A

    2010-06-01

    Severe pandemic influenza A virus (H1N1) infection is associated with risk factors such as pregnancy, obesity and immunosuppression. Immunocompromised patients are at increased risk of more severe or prolonged infection. We report a case of a hairy cell leukemia patient with H1N1 pneumonia which caused severe and prolonged illness. H1N1 virus pneumonia with meticillin-resistant Staphilococcus Aerues (MRSA) coinfection causing Acute Lung Injury (ALI) was treated with a double-dose of osentamyvir, a high dose of teicoplanin and a low dose of corticosteroids. Haematological findings included leucopenia, neutropenia, lymphopenia, reduction of gamma-globulins and natural killer (NK) cells. Reduction of NK and gamma-globulins may explain the development of severe illness and the prolonged illness Neutropenia may explain the MRSA co-infection. Lymphopenia is directly associated with virus action and is considered to be a marker of the swine influenza in adults. PMID:20949777

  13. Hematopoietic stem cell origin of BRAFV600E mutations in hairy cell leukemia.

    PubMed

    Chung, Stephen S; Kim, Eunhee; Park, Jae H; Chung, Young Rock; Lito, Piro; Teruya-Feldstein, Julie; Hu, Wenhuo; Beguelin, Wendy; Monette, Sebastien; Duy, Cihangir; Rampal, Raajit; Telis, Leon; Patel, Minal; Kim, Min Kyung; Huberman, Kety; Bouvier, Nancy; Berger, Michael F; Melnick, Ari M; Rosen, Neal; Tallman, Martin S; Park, Christopher Y; Abdel-Wahab, Omar

    2014-05-28

    Hairy cell leukemia (HCL) is a chronic lymphoproliferative disorder characterized by somatic BRAFV600E mutations. The malignant cell in HCL has immunophenotypic features of a mature B cell, but no normal counterpart along the continuum of developing B lymphocytes has been delineated as the cell of origin. We find that the BRAFV600E mutation is present in hematopoietic stem cells (HSCs) in HCL patients, and that these patients exhibit marked alterations in hematopoietic stem/progenitor cell (HSPC) frequencies. Quantitative sequencing analysis revealed a mean BRAFV600E-mutant allele frequency of 4.97% in HSCs from HCL patients. Moreover, transplantation of BRAFV600E-mutant HSCs from an HCL patient into immunodeficient mice resulted in stable engraftment of BRAFV600E-mutant human hematopoietic cells, revealing the functional self-renewal capacity of HCL HSCs. Consistent with the human genetic data, expression of BRafV600E in murine HSPCs resulted in a lethal hematopoietic disorder characterized by splenomegaly, anemia, thrombocytopenia, increased circulating soluble CD25, and increased clonogenic capacity of B lineage cells-all classic features of human HCL. In contrast, restricting expression of BRafV600E to the mature B cell compartment did not result in disease. Treatment of HCL patients with vemurafenib, an inhibitor of mutated BRAF, resulted in normalization of HSPC frequencies and increased myeloid and erythroid output from HSPCs. These findings link the pathogenesis of HCL to somatic mutations that arise in HSPCs and further suggest that chronic lymphoid malignancies may be initiated by aberrant HSCs. PMID:24871132

  14. Hematopoietic Stem Cell Origin of BRAFV600E Mutations in Hairy Cell Leukemia

    PubMed Central

    Chung, Young Rock; Lito, Piro; Teruya-Feldstein, Julie; Hu, Wenhuo; Beguelin, Wendy; Monette, Sebastien; Duy, Cihangir; Rampal, Raajit; Telis, Leon; Patel, Minal; Kim, Min Kyung; Huberman, Kety; Bouvier, Nancy; Berger, Michael F.; Melnick, Ari M.; Rosen, Neal; Tallman, Martin S.

    2014-01-01

    Hairy cell leukemia (HCL) is a chronic lymphoproliferative disorder characterized by somatic BRAFV600E mutations. The malignant cell in HCL has immunophenotypic features of a mature B cell, but no normal counterpart along the continuum of developing B lymphocytes has been delineated as the cell of origin. We find that the BRAFV600E mutation is present in hematopoietic stem cells (HSCs) in HCL patients, and that these patients exhibit marked alterations in hematopoietic stem/progenitor cell (HSPC) frequencies. Quantitative sequencing analysis revealed a mean BRAFV600E-mutant allele frequency of 4.97% in HSCs from HCL patients. Moreover, transplantation of BRAFV600E-mutant HSCs from an HCL patient into immunodeficient mice resulted in stable engraftment of BRAFV600E-mutant human hematopoietic cells, revealing the functional self-renewal capacity of HCL HSCs. Consistent with the human genetic data, expression of BRafV600E in murine HSPCs resulted in a lethal hematopoietic disorder characterized by splenomegaly, anemia, thrombocytopenia, increased circulating soluble CD25, and increased clonogenic capacity of B lineage cellsall classic features of human HCL. In contrast, restricting expression of BRafV600E to the mature B cell compartment did not result in disease. Treatment of HCL patients with vemurafenib, an inhibitor of mutated BRAF, resulted in normalization of HSPC frequencies and increased myeloid and erythroid output from HSPCs. These findings link the pathogenesis of HCL to somatic mutations that arise in HSPCs and further suggest that chronic lymphoid malignancies may be initiated by aberrant HSCs. PMID:24871132

  15. Current Therapy and New Directions in the Treatment of Hairy Cell Leukemia: A Review.

    PubMed

    Sarvaria, Aditya; Topp, Zheng; Saven, Alan

    2016-01-01

    Hairy cell leukemia (HCL) is a chronic B-cell leukemia noted for an indolent course that ultimately results in cytopenias and massive splenomegaly. Whereas treatment with the nucleoside purine analogues cladribine and pentostatin results in lengthy remissions in nearly all patients with HCL, most patients will experience relapse while a small percentage of patients' disease fails to respond to therapy in the first place. Retreatment with a purine nucleoside analogue often leads to an effective but limited response. For decades, few other viable therapeutic options were available to these patients who required retreatment. Recently, new insights into the mechanism of disease of HCL have led to research in new potential treatment agents, either alone or with a purine nucleoside analogue. Clinical trials with rituximab, bendamustine, and conjugate immunotoxins will reveal what role these therapies will have in HCL treatment. A better understanding of the BRAF/MEK/ERK pathway and the B-cell signaling pathway has allowed further exploration into the novel drugs vemurafenib, dabrafenib, trametinib, and ibrutinib. PMID:26513168

  16. Which role for rituximab in hairy cell leukemia? Reflections on six cases.

    PubMed

    Malfuson, J V; Fagot, T; Konopacki, J; Souleau, B; Cremades, S; de Revel, T

    2010-01-01

    Hairy cell leukemia (HCL) is a rare, chronic, B-cell, lymphoproliferative disorder. Treatment has been revolutionized by the advent of interferon (IFN)-alpha and purine analogs (PA). First-line therapy with PA yields complete response rates of 75-100%, with many long-lasting remissions. In the event of profound neutropenia and/or infectious complications, a short sequence of IFN-alpha may precede PA treatment. Because of the excellent results achieved with PA therapy, the potential role of rituximab (an anti-CD20 monoclonal antibody that is highly effective against most B-cell lymphomas) in HCL has yet to be elucidated. Six HCL cases treated with rituximab are reported herein with a view to elucidating the potential role of the drug in HCL. The indications essentially consist of relapsing or refractory disease, avoiding the cumulative toxicity of PA, consolidation therapy in order to eradicate minimal residual disease, and first-line therapy for patients with contraindications to PA and IFN-alpha. PMID:20051682

  17. Recurrent CDKN1B (p27) mutations in hairy cell leukemia.

    PubMed

    Dietrich, Sascha; Hüllein, Jennifer; Lee, Stanley Chun-Wei; Hutter, Barbara; Gonzalez, David; Jayne, Sandrine; Dyer, Martin J S; Oleś, Małgorzata; Else, Monica; Liu, Xiyang; Słabicki, Mikołaj; Wu, Bian; Troussard, Xavier; Dürig, Jan; Andrulis, Mindaugas; Dearden, Claire; von Kalle, Christof; Granzow, Martin; Jauch, Anna; Fröhling, Stefan; Huber, Wolfgang; Meggendorfer, Manja; Haferlach, Torsten; Ho, Anthony D; Richter, Daniela; Brors, Benedikt; Glimm, Hanno; Matutes, Estella; Abdel Wahab, Omar; Zenz, Thorsten

    2015-08-20

    Hairy cell leukemia (HCL) is marked by near 100% mutational frequency of BRAFV600E mutations. Recurrent cooperating genetic events that may contribute to HCL pathogenesis or affect the clinical course of HCL are currently not described. Therefore, we performed whole exome sequencing to explore the mutational landscape of purine analog refractory HCL. In addition to the disease-defining BRAFV600E mutations, we identified mutations in EZH2, ARID1A, and recurrent inactivating mutations of the cell cycle inhibitor CDKN1B (p27). Targeted deep sequencing of CDKN1B in a larger cohort of HCL patients identify deleterious CDKN1B mutations in 16% of patients with HCL (n = 13 of 81). In 11 of 13 patients the CDKN1B mutation was clonal, implying an early role of CDKN1B mutations in the pathogenesis of HCL. CDKN1B mutations were not found to impact clinical characteristics or outcome in this cohort. These data identify HCL as having the highest frequency of CDKN1B mutations among cancers and identify CDNK1B as the second most common mutated gene in HCL. Moreover, given the known function of CDNK1B, these data suggest a novel role for alterations in regulation of cell cycle and senescence in HCL with CDKN1B mutations. PMID:26065650

  18. Efficacy and Safety of Cladribine: Subcutaneous versus Intravenous Administration in Hairy Cell Leukemia Patients

    PubMed Central

    Khorshid, Ola; Namour, Alfred Elias; El-Gammal, Mosaad M; Mahmoud, Tarek Yakout; Fortpied, Catherine; Abdel-Malek, Raafat; Ramadan, Safaa

    2015-01-01

    Cladribine induces durable complete remission (CR) in approximately 85% of hairy cell leukemia (HCL) patients. In Egypt, cladribine is mainly used as IV continuous infusion at a dose of 0.1 mg/kg/day for 7 days and as SC bolus injection at a dose of 0.14 mg/kg/day for 5 days. We aimed to compare the outcome and toxicity between these two regimens. We retrospectively collected data from HCL patients treated at the National Cancer Institute and its affiliated center, Nasser Institute, Cairo, Egypt. Forty-nine patients were identified, 18 treated with the IV regimen (IV group) and 31 with the SC regimen (SC group). Forty-one patients were newly diagnosed. Patient characteristics were balanced across the two groups. The CR rates in the IV and the SC group were 94% and 97%, respectively. The main complications in the IV group and the SC were neutropenia G3–4 (67% vs. 87%), mucositis mainly G1–2 (67% vs 32%) and infections (mainly viral, 78% vs 34%). In the IV group, five patients died, three of progression and infection, one of unknown cause and one of late heart failure. In the SC group, one patient died of disease progression and one of second cancer. After 33.5 months, median follow-up, the 3-year event free survival was 60% and 96%, respectively (p=0.104). The 3-year overall survival was 81% and 100%, respectively (p=0.277). In conclusion, SC cladribine is an excellent alternative to the IV regimen for the treatment of HCL. PMID:26543527

  19. Impact of telomere length on survival in classic and variant hairy cell leukemia.

    PubMed

    Arons, Evgeny; Zhou, Hong; Edelman, Daniel C; Gomez, Allison; Steinberg, Seth M; Petersen, David; Wang, Yonghong; Meltzer, Paul S; Kreitman, Robert J

    2015-12-01

    Telomeres, which protect the ends of chromosomes, are shortened in several hematologic malignancies, often with adverse prognostic implications, but their effect on prognosis of classic and variant hairy cell leukemia (HCL and HCLv) has not been reported. HCL/HCLv genomic DNA from 46 patients was studied by PCR to determine the ratio of telomere to single copy gene number (T/S). T/S was unrelated to diagnosis of HCL or HCLv (p=0.27), but shorter T/S was associated with unmutated immunoglobulin rearrangements (p=0.033) and age above the median at diagnosis (p=0.017). Low T/S was associated with shorter overall survival from diagnosis (OS), particularly T/S <0.655 (p=0.0064, adjusted p=0.019). Shorter OS was also associated with presence of unmutated (p<0.0001) or IGHV4-34+ (p<0.0001) rearrangements, or increasing age (p=0.0002). Multivariable analysis with Cox modeling showed that short T/S along with either unmutated or IGHV4-34+ rearrangements remained associated with reduced OS (p=0.0071, p=0.0024, respectively) after age adjustment. While T/S is relatively long in HCL and the disease usually indolent with excellent survival, shortened telomeres in HCL/HCLv are associated with decreased survival. Shortened T/S could represent a risk factor needing further investigation/intervention to determine if non-chemotherapy treatment options, in addition to or instead of chemotherapy, might be particularly useful. PMID:26520623

  20. Kytococcus schroeteri Bacteremia in a Patient with Hairy Cell Leukemia: A Case Report and Review of the Literature

    PubMed Central

    Amaraneni, Akshay; Malik, Devin; Jasra, Sakshi; Chandana, Sreenivasa R.; Garg, Deepak

    2015-01-01

    The Kytococcus genus formerly belonged to Micrococcus. The first report of a Kytococcus schroeteri infection was in 2002 in a patient diagnosed with endocarditis. We report a case of central line associated Kytococcus schroeteri bacteremia in a patient with underlying Hairy Cell Leukemia. Kytococcus schroeteri is an emerging infection in the neutropenic population and in patients with implanted artificial tissue. It is thought to be a commensal bacterium of the skin; however, attempts to culture the bacteria remain unsuccessful. There have been a total of 5 cases (including ours) of K. schroeteri bacteremia in patients with hematologic malignancies and neutropenia and only 18 documented cases in any population. Four of the cases of bacteria in neutropenic patients have been fatal, but early detection and treatment could make a difference in clinical outcomes. PMID:26064718

  1. [Lymph node enlargement in hairy cell leukemia and problems with significant abdominal lymphadenopathy].

    PubMed

    Zák, P; Chrobák, L; Simáková, E; Michl, A; Voglová, J; Mirová, S; Podzimek, K

    1993-09-01

    Enlargement of nodes in leukaemia with hairy cells (LVB) during the initial examination is rarely encountered. In the final stage of the disease it was found in six of our ten patients. A special situation is marked enlargement of retroperitoneal nodes observed in two patients. In one of them the nodes diminished after irradiation, in the second patient irradiation was not possible because of severe pancytopenia. Treatment with alpha-interferon failed previously in this patient. The question remains whether marked enlargement of the abdominal nodes is part of the picture of the disease or whether it is the manifestation of transformation of the disease into a more acute type. The authors recommend examination of the abdominal nodes by means of computed tomography (CT) already during the initial examination and during the subsequent course of the disease, in particular when there are signs of relapse. PMID:8212645

  2. Variant B Cell Receptor Isotype Functions Differ in Hairy Cell Leukemia with Mutated BRAF and IGHV Genes

    PubMed Central

    Weston-Bell, Nicola J.; Forconi, Francesco; Kluin-Nelemans, Hanneke C.; Sahota, Surinder S.

    2014-01-01

    A functional B-cell receptor (BCR) is critical for survival of normal B-cells, but whether it plays a comparable role in B-cell malignancy is as yet not fully delineated. Typical Hairy Cell Leukemia (HCL) is a rare B-cell tumor, and unique in expressing multiple surface immunoglobulin (sIg) isotypes on individual tumor cells (mult-HCL), to raise questions as to their functional relevance. Typical mult-HCL also displays a mutated BRAF V(600)E lesion. Since wild type BRAF is a primary conduit for transducing normal BCR signals, as revealed by deletion modelling studies, it is as yet not apparent if mutated BRAF alters BCR signal transduction in mult-HCL. To address these questions, we examined BCR signalling in mult-HCL cases uniformly displaying mutated BRAF and IGHV genes. Two apparent functional sets were delineated by IgD co-expression. In sIgD+ve mult-HCL, IgD mediated persistent Ca2+ flux, also evident via >1 sIgH isotype, linked to increased ERK activation and BCR endocytosis. In sIgD?ve mult-HCL however, BCR-mediated signals and downstream effects were restricted to a single sIgH isotype, with sIgM notably dysfunctional and remaining immobilised on the cell surface. These observations reveal discordance between expression and function of individual isotypes in mult-HCL. In dual sIgL expressing cases, only a single sIgL was fully functional. We examined effects of anti-BCR stimuli on mult-HCL survival ex-vivo. Significantly, all functional non-IgD isotypes increased ERK1/2 phosphorylation but triggered apoptosis of tumor cells, in both subsets. IgD stimuli, in marked contrast retained tumor viability. Despite mutant BRAF, BCR signals augment ERK1/2 phosphorylation, but isotype dictates functional downstream outcomes. In mult-HCL, sIgD retains a potential to transduce BCR signals for tumor survival in-vivo. The BCR in mult-HCL emerges as subject to complex regulation, with apparent conflicting signalling by individual isotypes when co-expressed with sIgD. This suggests the possibility that mutant BRAF by-passes BCR constraints in mult-HCL. PMID:24497953

  3. A comprehensive immunophenotypic marker analysis of hairy cell leukemia in paraffin-embedded bone marrow trephine biopsies--a tissue microarray study.

    PubMed

    Tth-Liptk, Judit; Piukovics, Klra; Borbnyi, Zita; Demeter, Judit; Bagdi, Enik?; Krencs, Lszl

    2015-01-01

    Hairy cell leukemia (HCL) is an uncommon B cell lymphoproliferation characterized by a unique immunophenotype. Due to low number of circulating neoplastic cells and 'dry tap' aspiration, the diagnosis is often based on BM trephine biopsy. We have performed a consecutive immunohistochemical analysis to evaluate diagnostic usefulness of various HCL markers (CD11c, CD25, CD68, CD103, CD123, CD200, annexin A1, cyclin D1, DBA.44, HBME-1, phospho-ERK1/2, TRAP, and T-bet) currently available against fixation resistant epitopes. We analyzed tissue microarrays consisting of samples gained from 73 small B-cell lymphoma cases, including hairy cell leukemia (HCL) (n = 32), HCL variant (HCL-v) (n = 4), B-cell chronic lymphocytic leukemia (B-CLL) (n = 11), lymphoplasmacytic lymphoma (LPL) (n = 3), mantle cell lymphoma (MCL) (n = 10), splenic diffuse red pulp small B cell lymphoma (SDRPL) (n = 2), splenic B cell marginal zone lymphoma (SMZL) (n = 8), and splenic B cell lymphoma/leukemia, unclassifiable (SBCL) (n = 3) cases. The HCL cases were 100% positive for all but 2 (DBA.44 and CD123) of these markers. Annexin A1 showed 100% specificity and accuracy, which was followed by CD123, pERK, CD103, HBME-1, CD11c, CD25, CD68, cyclin D1, CD200, T-bet, DBA.44, and TRAP, in decreasing order. In conclusion, our results reassured the high specificity of annexin A1 and pERK, as well as the diagnostic value of standard HCL markers of CD11c, CD25, CD103, and CD123 also in paraffin-embedded BM samples. Additional markers, including HBME-1, cyclin D1, CD200, and T-bet also represent valuable tools in the differential diagnosis of HCL and its mimics. PMID:24903677

  4. [An unusual course in hairy-cell leukemia with marked abdominal lymphadenopathy, leukemic infiltration of the cornea and skin changes].

    PubMed

    Zák, P; Chrobák, L; Podzimek, K; Hejcmanová, D; Voglová, J; Dulícek, P; Mirová, S

    1996-07-01

    The authors describe a female patient suffering from hairy-cell leukaemia. Already at the onset of the disease, apart from marked splenomegaly, sonography revealed marked retroperitoneal lymphadenopathy. During the subsequent course skin changes developed such as vasculitis and leukaemic infiltrates of the cornea on both eyes. The patient was successfully treated with 2-chlorodeoxyadenosine (2-CdA, Leustatin). PMID:8928422

  5. Hairy Cell Leukemia Presenting with Isolated Skeletal Involvement Successfully Treated by Radiation Therapy and Cladribine: A Case Report and Review of the Literature

    PubMed Central

    Yonal-Hindilerden, Ipek; Hindilerden, Fehmi; Bulut-Dereli, Sanem; Y?ld?z, Eren; Dogan, Ibrahim Oner; Nalcaci, Meliha

    2015-01-01

    We describe an unusual case of hairy cell leukemia (HCL) in a 55-year-old male presenting with isolated skeletal disease as the initial manifestation without abnormal peripheral blood counts, bone marrow involvement, or splenomegaly. To the best of our knowledge, there have been only two previous reports of a similar case. The patient presented with pain in the right femur. Anteroposterior radiographs of both femurs revealed mixed lytic-sclerotic lesions. PET scan showed multiple metastatic lesions on axial skeleton, pelvis, and both femurs. Histopathological examination of the bone biopsy revealed an infiltrate of HCL. Localized radiation therapy to both proximal femurs and subsequently 4 weeks later, a 7-day course of 0.1?mg/kg/day cladribine provided complete remission with relief of symptoms and resolution of bone lesions. We addressed the manifestations and management of HCL patients with skeletal involvement. PMID:26788382

  6. Hairy cell leukemia

    MedlinePLUS

    ... this disease. Some patients may need an occasional blood transfusion. If treatment is needed because of very low ... be used to treat infections. People with low blood counts will receive growth factors and, possibly, transfusions.

  7. Multicenter retrospective analysis regarding the clinical manifestations and treatment results in patients with hairy cell leukemia: twenty-four year Turkish experience in cladribine therapy.

    PubMed

    Hacioglu, Sibel; Bilen, Yusuf; Eser, Ali; Sivgin, Serdar; Gurkan, Emel; Yildirim, Rahsan; Aydogdu, Ismet; Dogu, Mehmet Hilmi; Yilmaz, Mehmet; Kayikci, Omur; Tombak, Anil; Kuku, Irfan; Celebi, Harika; Akay, Meltem Olga; Esen, Ramazan; Korkmaz, Serdal; Keskin, Ali

    2015-12-01

    In this multicenter retrospective analysis, we aimed to present clinical, laboratory and treatment results of 94 patients with Hairy cell leukemia diagnosed in 13 centers between 1990 and 2014. Sixty-six of the patients were males and 28 were females, with a median age of 55. Splenomegaly was present in 93.5% of cases at diagnosis. The laboratory findings that came into prominence were pancytopenia with grade 3 bone marrow fibrosis. Most of the patients with an indication for treatment were treated with cladribine as first-line treatment. Total and complete response of cladribine was 97.3% and 80.7%. The relapse rate after cladribine was 16.6%, and treatment related mortality was 2.5%. Most preferred therapy (95%) was again cladribine at second-line, and third line with CR rate of 68.4% and 66.6%, respectively. The 28-month median OS was 91.7% in all patients and 25-month median OS 96% for patients who were given cladribine as first-line therapy. In conclusion, the first multicenter retrospective Turkish study where patients with HCL were followed up for a long period has revealed demographic characteristics of patients with HCL, and confirmed that cladribine treatment might be safe and effective in a relatively large series of the Turkish study population. Copyright © 2014 John Wiley & Sons, Ltd. PMID:25393847

  8. Concentrations of organochlorines related to titers to Epstein-Barr virus early antigen IgG as risk factors for hairy cell leukemia.

    PubMed Central

    Nordstrm, M; Hardell, L; Lindstrm, G; Wingfors, H; Hardell, K; Linde, A

    2000-01-01

    Hairy cell leukemia (HCL) is a rare chronic B-cell malignancy that, according to modern classifications, is a subgroup of non-Hodgkin lymphomas (NHLs). A rapid increase in incidence of NHL has been reported in many countries. The reasons for this increase are largely unknown, but exposure to organochlorines has been suggested as a risk factor. Epstein-Barr virus is a human herpesvirus that has been associated with certain subgroups of NHL. In this study, we measured lipid adjusted blood concentrations (in nanogram per gram) of 36 congeners of polychlorinated biphenyls (PCBs), p, p'-dichlorodiphenyldichloroethylene (p,p'-DDE), hexachlorobenzene (HCB), and four subgroups of chlordanes (trans-nonachlor, cis-nonachlor, MC6, and oxychlordane) in incident cases of HCL and controls from the general population. We obtained results on organochlorines and antibodies for 54 cases and 54 controls. Titers of antibodies to the Epstein-Barr early antigen and Epstein-Barr nuclear antigen, measured as P107, were correlated to concentrations of organochlorines to evaluate the possibility of an interaction between these factors in the pathogenesis of HCL. We found no significant difference in lipid-adjusted blood concentrations of total PCBs, p,p'-DDE, HCB, or the sum of the chlordanes between cases and controls. Titers of antibodies to Epstein-Barr early antigen IgG [Greater and equal to] 40 were correlated to an increased risk for HCL. This risk was further increased in those with a level above the median value of p,p'-DDE, HCB, or the sum of the chlordanes, suggesting an interaction between Epstein-Barr virus and a higher concentration of these chemicals. We also found increased risk for the sum of immunotoxic PCB group. PMID:10811571

  9. Leukemia stem cells.

    PubMed

    Testa, Ugo

    2011-03-01

    Leukemia-initiating cells (LICs) or leukemia stem cells (LSCs) are defined by their ability to form tumors after xenotransplantation in immunodeficient mice and appear to be rare in most human leukemias. In various leukemias, only small subpopulations of cells can transfer disease upon transplantation into immunocompromised NOD/SCID mice, and markers that distinguish the leukemogenic cancer cells from the bulk populations of non-leukemogenic cells have been identified. However, the phenotype of LICs is heterogeneous: it is variable for the different types of acute myeloid leukemias; cells with different membrane phenotype can act as LICs in each B-acute lymphoid leukemia; LICs change during the evolution of chronic myeloid leukemia from the chronic to the acute phase. There is a general consensus that the identification and characterization of leukemic stem cells might lead to the identification of new therapeutic targets and, through this way, to more effective treatments by focusing therapy on the most malignant cells. PMID:21107841

  10. A predictive nutritional model for plant cells and hairy roots.

    PubMed

    Cloutier, M; Bouchard-Marchand, E; Perrier, M; Jolicoeur, M

    2008-01-01

    A structured nutritional model is proposed to describe growth and nutritional behavior of Eschscholtzia californica suspension cells and Catharanthus roseus and Daucus carota hairy roots in in vitro culture. The model describes the cells specific growth rate from concentration of intracellular nutrients such as inorganic phosphate (Pi), nitrogen sources (NO(3) (-) and NH(4) (+)) and sugars. Two-level Michaelis-Menten kinetics are used to describe Pi and NO(3) (-) uptake and simple Michaelis-Menten kinetics for description of sugars uptake. Model parameters for each cell line were calibrated using data from batch cultures. The predictive capacity of the model was tested using data from medium exchange hairy root cultures. The model describes growth and nutritional behavior for the cell and hairy root lines. A sensitivity analysis was performed to identify critical model parameters and effect of initial conditions. The cell and hairy roots lines are also compared from their kinetic parameters. The kinetic model is efficient for describing and predicting growth and nutritional behaviors of suspension cells and hairy roots. PMID:17614323

  11. Diagnostic relevance of peripheral blood immunocytochemistry in hairy cell leukaemia.

    PubMed Central

    Cordone, I; Annino, L; Masi, S; Pescarmona, E; Rahimi, S; Ferrari, A; Giubilei, E; Pignoloni, P; Faraggiana, T; Mandelli, F

    1995-01-01

    AIMS--(1) To assess the diagnostic relevance of peripheral blood immunocytochemistry in hairy cell leukaemia (HCL); (2) to compare the immunostaining of bone marrow biopsy specimens with bone marrow and peripheral blood cytospins; (3) to evaluate the sensitivity of the different markers used; (4) to identify the ultrastructural localisation of DBA.44 in HCL variant. METHODS--Immunoenzymatic staining procedures, immunoperoxidase and immunoalkaline phosphatase, were used with a panel of monoclonal antibodies directed to HCL associated antigens. Ultrastructural immunostaining was performed using colloidal gold conjugated antibodies. RESULTS--HCL showed strong cytoplasmic reactivity for CD22, CD25, CD103, DBA.44, kappa, or lambda light chains. Peripheral blood diagnostic hairy cells were found in all the cases with absolute counts ranging from 0.11 x 10(9)/l up to 6.4 x 10(9)/l and values increasing with the size of the spleen. A median of 36.5% of leukaemic cells was found in bone marrow aspirates and 70% in bone marrow trephine specimens. The monoclonal antibodies CD22 and DBA.44 showed the highest and the lowest percentage of positive hairy cells, respectively; this difference was statistically significant (p = 0.0025). Ultrastructural immunolabelling with DBA.44 showed a cytoplasmic membrane localisation of the antigen in one case of HCL variant. CONCLUSIONS--(1) Immunocytochemistry is a useful technique which enhances the accuracy of diagnosis in HCL; (2) peripheral blood immunocytochemistry is recommended because it highlights hairy cells in all cases; (3) CD22 appears to be the most sensitive of the markers tested; (4) ultrastructural analysis is a useful tool in selected cases of HCL variant. Images PMID:8537498

  12. Cellular Immunotherapy Following Chemotherapy in Treating Patients With Recurrent Non-Hodgkin Lymphomas, Chronic Lymphocytic Leukemia or B-Cell Prolymphocytic Leukemia

    ClinicalTrials.gov

    2016-01-28

    Post-transplant Lymphoproliferative Disorder; B-Cell Prolymphocytic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; B-Cell Lymphoma, Unclassifiable, With Features Intermediate Between Diffuse Large B-Cell Lymphoma and Burkitt Lymphoma; B-Cell Lymphoma, Unclassifiable, With Features Intermediate Between Diffuse Large B-Cell Lymphoma and Classical Hodgkin Lymphoma; Recurrent Lymphoplasmacytic Lymphoma

  13. Childhood Leukemia--A Look at the Past, the Present and the Future.

    ERIC Educational Resources Information Center

    Findeisen, Regina; Barber, William H.

    1997-01-01

    Provides an overview of childhood leukemia. The causes, the survival period, different types (acute lymphocytic leukemia, acute myeloid leukemia, chronic lymphocytic leukemia, chronic myeloid leukemia, and hairy cell leukemia), symptoms, treatment, side effects of treatment (including learning problems), and the expected future direction of…

  14. Childhood Leukemia--A Look at the Past, the Present and the Future.

    ERIC Educational Resources Information Center

    Findeisen, Regina; Barber, William H.

    1997-01-01

    Provides an overview of childhood leukemia. The causes, the survival period, different types (acute lymphocytic leukemia, acute myeloid leukemia, chronic lymphocytic leukemia, chronic myeloid leukemia, and hairy cell leukemia), symptoms, treatment, side effects of treatment (including learning problems), and the expected future direction of

  15. Mast cell leukemia.

    PubMed

    Georgin-Lavialle, Sophie; Lhermitte, Ludovic; Dubreuil, Patrice; Chandesris, Marie-Olivia; Hermine, Olivier; Damaj, Gandhi

    2013-02-21

    Mast cell leukemia (MCL) is a very rare form of aggressive systemic mastocytosis accounting for < 1% of all mastocytosis. It may appear de novo or secondary to previous mastocytosis and shares more clinicopathologic aspects with systemic mastocytosis than with acute myeloid leukemia. Symptoms of mast cell activation-involvement of the liver, spleen, peritoneum, bones, and marrow-are frequent. Diagnosis is based on the presence of ≥ 20% atypical mast cells in the marrow or ≥ 10% in the blood; however, an aleukemic variant is frequently encountered in which the number of circulating mast cells is < 10%. The common phenotypic features of pathologic mast cells encountered in most forms of mastocytosis are unreliable in MCL. Unexpectedly, non-KIT D816V mutations are frequent and therefore, complete gene sequencing is necessary. Therapy usually fails and the median survival time is < 6 months. The role of combination therapies and bone marrow transplantation needs further investigation. PMID:23243287

  16. Hairy cell leukaemia-variant: Disease features and treatment.

    PubMed

    Matutes, Estella; Martínez-Trillos, Alejandra; Campo, Elias

    2015-12-01

    Hairy cell leukaemia-variant (HCL-V) is a rare B-cell malignancy that affects elderly males and manifests with splenomegaly, lymphocytosis and cytopenias without monocytopenia. The neoplastic cells have morphological features of prolymphocytes and hairy cells. The immunophenotype is that of a clonal B-cell CD11c and CD103 positive but, unlike classical HCL, CD25, CD123 and CD200 negative. The spleen histology is similar to classical HCL and the pattern of bone marrow infiltration is interstitial and/or intrasinusoidal. Mutations of the immunoglobulin heavy chain (IGVH) are seen in two thirds of cases with a preferential VH4-34 family usage. There is no distinct chromosomal abnormality but del17p13 and mutations of the TP53 gene are frequent. Mutations in the MAP2K1 gene have been documented in half of the cases. The course is chronic with median survivals of 7-9 years. Patients are refractory to purine analogues and the most effective therapy is the combination of 2-chlorodeoxyadenosine and Rituximab. PMID:26614904

  17. Bone marrow and splenic histology in hairy cell leukaemia.

    PubMed

    Wotherspoon, Andrew; Attygalle, Ayoma; Mendes, Larissa Sena Teixeira

    2015-12-01

    Hairy cell leukaemia is a rare chronic neoplastic B-cell lymphoproliferation that characteristically involves blood, bone marrow and spleen with liver, lymph node and skin less commonly involved. Histologically, the cells have a characteristic appearance with pale/clear cytoplasm and round or reniform nuclei. In the spleen, the infiltrate involves the red pulp and is frequently associated with areas of haemorrhage (blood lakes). The cells stain for B-cell related antigens as well as with antibodies against tartrate-resistant acid phosphatase, DBA44 (CD72), CD11c, CD25, CD103, CD123, cyclin D1 and annexin A1. Mutation of BRAF -V600E is present and antibody to the mutant protein can be used as a specific marker. Bone marrow biopsy is essential in the initial assessment of disease as the bone marrow may be inaspirable or unrepresentative of degree of marrow infiltration as a result of the tumour associated fibrosis preventing aspiration of the tumour cell component. Bone marrow biopsy is important in the assessment of therapy response but in this context staining for CD11c and Annexin A1 is not helpful as they are also markers of myeloid lineage and identification of low level infiltration may be obscured. In this context staining for CD20 may be used in conjunction with morphological assessment and staining of serial sections for cyclin D1 and DBA44 to identify subtle residual infiltration. Staining for CD79a and CD19 is not recommended as these antibodies will identify plasma cells and can lead to over-estimation of disease. Staining for CD20 should not be used in patients following with anti-CD20 based treatments. Down regulation of cyclin D1 and CD25 has been reported in patients following BRAF inhibitor therapy and assessment of these antigens should not be used in this context. Histologically, hairy cell leukaemia needs to be distinguished from other B-cell lymphoproliferations associated with splenomegaly including splenic marginal zone lymphoma, splenic diffuse red pulp small B-cell lymphoma and hairy cell leukaemia variant. This can be done by assessment of the spleen but as this is now rarely performed in this disorder distinction is almost always possible by a combination of morphological and immunophenotypic studies on bone marrow trephine biopsy, which can be supplemented by assessment of BRAF-V600E mutation assessment in borderline cases. PMID:26614898

  18. [Plasma cell leukemia].

    PubMed

    Ravinet, Aurlie; Bay, Jacques Olivier; Tournilhac, Olivier

    2014-11-01

    Plasma cell leukemia (PCL) is a rare disorder which develops spontaneously (primary PCL) or evolves in patients with multiple myeloma (secondary PCL). It is defined by the presence of 2 10(9)/L peripheral blood plasma cells or plasmacytosis accounting for more than 20 % of the differential white cell count. PCL presents more often extramedullary involvement, anemia, thrombocytopenia, hypercalcemia, as well as impaired renal function. Cytogenetic abnormalities and mutations observed in PCL lead to escape from immune surveillance and independence from the bone marrow microenvironment with changes in expression of adhesion molecules or chemokines receptors. The outcome of PCL has improved with combination approaches with novel agents (including bortezomib and immunomodulatory drugs, such as lenalidomide) and with autologous stem cell transplantation. Allogeneic hematopoietic stem cell transplantation is currently available for young patients. This article is an overview of this rare and severe disease and the different therapeutics options that are recommended. PMID:25418598

  19. Fludarabine Phosphate and Total-Body Irradiation Before Donor Peripheral Blood Stem Cell Transplant in Treating Patients With Chronic Lymphocytic Leukemia or Small Lymphocytic Leukemia

    ClinicalTrials.gov

    2015-07-21

    B-Cell Prolymphocytic Leukemia; Chronic Lymphocytic Leukemia; Prolymphocytic Leukemia; Recurrent Chronic Lymphocytic Leukemia; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; T-Cell Prolymphocytic Leukemia

  20. PLASMA CELL LEUKEMIA

    PubMed Central

    de Larrea, Carlos Fernandez; Kyle, Robert A.; Durie, Brian GM; Ludwig, Heinz; Usmani, Saad; Vesole, David H.; Hajek, Roman; Miguel, Jésus San; Sezer, Orhan; Sonneveld, Pieter; Kumar, Shaji K.; Mahindra, Anuj; Comenzo, Ray; Palumbo, Antonio; Mazumber, Amitabha; Anderson, Kenneth C.; Richardson, Paul G.; Badros, Ashraf Z.; Caers, Jo; Cavo, Michele; LeLeu, Xavier; Dimopoulos, Meletios A.; Chim, CS; Schots, Rik; Noeul, Amara; Fantl, Dorotea; Mellqvist, Ulf-Henrik; Landgren, Ola; Chanan-Khan, Asher; Moreau, Philippe; Fonseca, Rafael; Merlini, Giampaolo; Lahuerta, JJ; Bladé, Joan; Orlowski, Robert Z.; Shah, Jatin J.

    2014-01-01

    Plasma cell leukemia (PCL) is a rare and aggressive variant of myeloma characterized by the presence of circulating plasma cells. It is classified as either primary PCL occurring at diagnosis or as secondary PCL in patients with relapsed/refractory myeloma. Primary PCL is a distinct clinic-pathologic entity with different cytogenetic and molecular findings. The clinical course is aggressive with short remissions and survival duration. The diagnosis is based upon the percentage (≥ 20%) and absolute number (≥ 2 × 10 9/L) of plasma cells in the peripheral blood. It is proposed that the thresholds for diagnosis be reexamined and consensus recommendations are made for diagnosis, as well as, response and progression criteria. Induction therapy needs to begin promptly and have high clinical activity leading to rapid disease control in an effort to minimize the risk of early death. Intensive chemotherapy regimens and bortezomib-based regimens are recommended followed by high-dose therapy with autologous stem-cell transplantation (HDT/ASCT) if feasible. Allogeneic transplantation can be considered in younger patients. Prospective multicenter studies are required to provide revised definitions and better understanding of the pathogenesis of PCL. PMID:23288300

  1. MK2206 in Treating Younger Patients With Recurrent or Refractory Solid Tumors or Leukemia

    ClinicalTrials.gov

    2014-04-28

    Accelerated Phase Chronic Myelogenous Leukemia; Acute Leukemias of Ambiguous Lineage; Acute Myeloid Leukemia/Transient Myeloproliferative Disorder; Acute Undifferentiated Leukemia; Aggressive NK-cell Leukemia; Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Blastic Phase Chronic Myelogenous Leukemia; Blastic Plasmacytoid Dendritic Cell Neoplasm; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Grade III Lymphomatoid Granulomatosis; Childhood Immunoblastic Large Cell Lymphoma; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Intraocular Lymphoma; Juvenile Myelomonocytic Leukemia; Mast Cell Leukemia; Myeloid/NK-cell Acute Leukemia; Noncutaneous Extranodal Lymphoma; Post-transplant Lymphoproliferative Disorder; Primary Central Nervous System Hodgkin Lymphoma; Primary Central Nervous System Non-Hodgkin Lymphoma; Progressive Hairy Cell Leukemia, Initial Treatment; Prolymphocytic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Unspecified Childhood Solid Tumor, Protocol Specific; Waldenström Macroglobulinemia

  2. Hairy cell leukaemia and occupational exposure to benzene.

    PubMed Central

    Clavel, J; Conso, F; Limasset, J C; Mandereau, L; Roche, P; Flandrin, G; Hmon, D

    1996-01-01

    OBJECTIVES: The role of occupational exposures in hairy cell leukaemia (HCL) was investigated through a multicentre, hospital based, case-control study. This paper analyses the role of exposure to benzene in HCL. METHODS: A population of 226 male cases of HCL and 425 matched controls were included in the study. Benzene exposure was evaluated by expert review of the detailed data on occupational exposures generated by case-control interviews. RESULTS: No association was found between HCL and employment in a job exposed to benzene (odds ratio (OR) 0.9 (95% confidence interval (95% CI) 0.6-1.3)). The sample included 125 subjects, 34 cases (15%), and 91 controls (21%) who had been exposed to benzene, as individually assessed by the experts, for at least one hour a month during one of their jobs. Benzene exposure was not associated with a risk of HCL (OR 0.8 (0.5-1.2)). No trend towards an increase in OR was detected for increasing exposures, the percentage of work time involving exposure to > 1 ppm, or the duration of exposure. No findings suggested a particular risk period, when the OR associated with the time since first or last exposure, or since the end of exposure, were examined. CONCLUSIONS: In conclusion, with the low exposures prevalent in the sample, the study did not show any association between benzene exposure and HCL. PMID:8983464

  3. Leukemia

    MedlinePLUS

    Leukemia is cancer of the white blood cells. White blood cells help your body fight infection. Your blood cells form in your bone marrow. In leukemia, the bone marrow produces abnormal white blood cells. ...

  4. Stress-Induced Mast Cell Activation in Glabrous and Hairy Skin

    PubMed Central

    C?runtu, Constantin; Boda, Daniel; Musat, Sorin; C?runtu, Ana; Mandache, Eugen

    2014-01-01

    Mast cells play a key role in modulation of stress-induced cutaneous inflammation. In this study we investigate the impact of repeated exposure to stress on mast cell degranulation, in both hairy and glabrous skin. Adult male Wistar rats were randomly divided into four groups: Stress 1 day (n = 8), Stress 10 days (n = 7), Stress 21 days (n = 6), and Control (n = 8). Rats in the stress groups were subjected to 2?h/day restraint stress. Subsequently, glabrous and hairy skin samples from animals of all groups were collected to assess mast cell degranulation by histochemistry and transmission electron microscopy. The impact of stress on mast cell degranulation was different depending on the type of skin and duration of stress exposure. Short-term stress exposure induced an amplification of mast cell degranulation in hairy skin that was maintained after prolonged exposure to stress. In glabrous skin, even though acute stress exposure had a profound stimulating effect on mast cell degranulation, it diminished progressively with long-term exposure to stress. The results of our study reinforce the view that mast cells are active players in modulating skin responses to stress and contribute to further understanding of pathophysiological mechanisms involved in stress-induced initiation or exacerbation of cutaneous inflammatory processes. PMID:24904196

  5. Leukemia -- Chronic T-Cell Lymphocytic

    MedlinePLUS

    ... Lymphocytic: Overview Print to PDF Leukemia - Chronic T-Cell Lymphocytic: Overview Approved by the Cancer.Net Editorial ... blood cells change and grow uncontrollably. About blood cells Blood cells are made in the bone marrow, ...

  6. Leukemia stem cells: the root of chronic myeloid leukemia.

    PubMed

    Zhou, Hong; Xu, Rongzhen

    2015-06-01

    Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder characterized by a chromosome translocation that generates the Bcr-Abl oncogene encoding a constitutive kinase activity. Despite remarkable success in controlling CML at chronic phase by Bcr-Abl tyrosine kinase inhibitors (TKIs), a significant proportion of CML patients treated with TKIs develop drug resistance due to the inability of TKIs to kill leukemia stem cells (LSCs) that are responsible for initiation, drug resistance, and relapse of CML. Therefore, there is an urgent need for more potent and safer therapies against leukemia stem cells for curing CML. A number of LSC-associated targets and corresponding signaling pathways, including CaMKII-γ, a critical molecular switch for co-activating multiple LSC-associated signaling pathways, have been identified over the past decades and various small inhibitors targeting LSC are also under development. Increasing evidence shows that leukemia stem cells are the root of CML and targeting LSC may offer a curable treatment option for CML patients. This review summarizes the molecular biology of LSC and its-associated targets, and the potential clinical application in chronic myeloid leukemia. PMID:25749979

  7. Leukemia

    MedlinePLUS

    ... meaning they get worse quickly. chronic lymphocytic leukemia chronic myeloid leukemia acute myeloid leukemia acute lymphocytic leukemia Chronic and Acute Leukemia Chronic lymphocytic leukemia, chronic myeloid leukemia, and acute myeloid leukemia are diagnosed more often ...

  8. Adoptive T-cell therapy for Leukemia.

    PubMed

    Garber, Haven R; Mirza, Asma; Mittendorf, Elizabeth A; Alatrash, Gheath

    2014-01-01

    Allogeneic stem cell transplantation (alloSCT) is the most robust form of adoptive cellular therapy (ACT) and has been tremendously effective in the treatment of leukemia. It is one of the original forms of cancer immunotherapy and illustrates that lymphocytes can specifically recognize and eliminate aberrant, malignant cells. However, because of the high morbidity and mortality that is associated with alloSCT including graft-versus-host disease (GvHD), refining the anti-leukemia immunity of alloSCT to target distinct antigens that mediate the graft-versus-leukemia (GvL) effect could transform our approach to treating leukemia, and possibly other hematologic malignancies. Over the past few decades, many leukemia antigens have been discovered that can separate malignant cells from normal host cells and render them vulnerable targets. In concert, the field of T-cell engineering has matured to enable transfer of ectopic high-affinity antigen receptors into host or donor cells with greater efficiency and potency. Many preclinical studies have demonstrated that engineered and conventional T-cells can mediate lysis and eradication of leukemia via one or more leukemia antigen targets. This evidence now serves as a foundation for clinical trials that aim to cure leukemia using T-cells. The recent clinical success of anti-CD19 chimeric antigen receptor (CAR) cells for treating patients with acute lymphoblastic leukemia and chronic lymphocytic leukemia displays the potential of this new therapeutic modality. In this review, we discuss some of the most promising leukemia antigens and the novel strategies that have been implemented for adoptive cellular immunotherapy of lymphoid and myeloid leukemias. It is important to summarize the data for ACT of leukemia for physicians in-training and in practice and for investigators who work in this and related fields as there are recent discoveries already being translated to the patient setting and numerous accruing clinical trials. We primarily focus on ACT that has been used in the clinical setting or that is currently undergoing preclinical testing with a foreseeable clinical endpoint. PMID:26056592

  9. Immunotoxins for leukemia

    PubMed Central

    FitzGerald, David J.; Kreitman, Robert J.; Pastan, Ira

    2014-01-01

    Unconjugated monoclonal antibodies that target hematopoietic differentiation antigens have been developed to treat hematologic malignancies. Although some of these have activity against chronic lymphocytic leukemia and hairy cell leukemia, in general, monoclonal antibodies have limited efficacy as single agents in the treatment of leukemia. To increase their potency, the binding domains of monoclonal antibodies can be attached to protein toxins. Such compounds, termed immunotoxins, are delivered to the interior of leukemia cells based on antibody specificity for cell surface target antigens. Recombinant immunotoxins have been shown to be highly cytotoxic to leukemic blasts in vitro, in xenograft model systems, and in early-phase clinical trials in humans. These agents will likely play an increasing role in the treatment of leukemia. PMID:24578503

  10. Selective T-Cell Depletion to Reduce GVHD (Patients) Receiving Stem Cell Tx to Treat Leukemia, Lymphoma or MDS

    ClinicalTrials.gov

    2011-12-09

    Graft vs Host Disease; Myelodysplastic Syndromes; Leukemia; Leukemia, Myeloid; Leukemia, Myelomonocytic, Chronic; Leukemia, Lymphocytic; Lymphoma; Lymphoma, Mantle-cell; Lymphoma, Non-Hodgkin; Hodgkin Disease

  11. Hairy Math: Add Wnt-3a to Multiply Bulge Cells

    PubMed Central

    Hossain, M. Zulfiquer; Garza, Luis A.

    2015-01-01

    Canonical Wnt signals are important for activation of epithelial skin stem cells, but the role of individual Wnt ligands remains uncertain. Ouji et al. demonstrate a key role for Wnt-3a in partial maintenance and long-term expansion of epithelial skin stem cells in vitro. They also report a method for expanding these cells in vitro without feeder cells. PMID:25964269

  12. Sensory Cells of the Fish Ear: A Hairy Enigma

    NASA Technical Reports Server (NTRS)

    Popper, A. N.; Saidel, W. M.

    1995-01-01

    Analysis of the structure of the ears in teleost fishes has led to the tentative suggestion that otolithic endorgans may function differently, in different species. Recently, evidence has demonstrated different 'types' of sensory hair cells can be found in the ears of teleost fishes, and individual hair cell types are found in discrete regions of individual sensory, epithelia. The presence of multiple hair cell types in fishes provides strong support to the hypothesis of regional differences in the responses of individual otolithic sensory epithelia. The finding of hair cell types in fishes that closely resemble those found in amniote vestibular endorgans also suggests that hair cell heterogeneity arose earlier in the evolution of the vertebrate ear than previously thought.

  13. Coexistent hairy cell leukaemia and hepatosplenic t-cell lymphoma: a case report

    PubMed Central

    2014-01-01

    Background Hairy cell leukaemia (HCL) is a chronic B-cell leukaemia characterized by expansion of neoplastic cells in the spleen, bone marrow and blood. Symptoms of HCL are related to pancytopenia and immune deficiency. Patients with HCL have an increased risk of second malignancy either in a form of synchronous disease or in a form of an increased incidence of a second neoplasm after the treatment of HCL. Hepatosplenic T-cell lymphoma (HSTCL) is a rare form of aggressive extranodal T-cell lymphoma. Its pathogenesis is connected to a chronic immune deficiency status and its coexistence with other neoplasms is practically non-existent. Case We present a case of a 53-year-old female patient suffering from hepatosplenomegaly, peripheral lymphadenopathy and related B symptoms. An excisional biopsy of the enlarged axillary lymph node revealed partial infiltration with CD3+/CD56+/TIA + T cell lymphoma. Bone marrow trephine biopsy and flow cytometric immunophenotypization of bone marrow cells and peripheral blood showed presence of two types of neoplastic cells in the peripheral blood and in the bone marrow (composite lymphoma). One of them showed typical morphologic characteristics and immunohistochemical features of HCL, while another one was morphologically and immunophenotypically consistent with the diagnosis of HSTCL, respectively. The patient was treated with multivalent chemotherapy including rituximab but all treatments turned out to be only partially effective. While HCL responded to the treatment, HSTCL was refractory to the chemotherapy and the patient died 7 months after the initial diagnosis because of haematemesis induced by Mallory-Weiss syndrome. Conclusion This is the first recorded case of coexistent HCL and HSTCL in the same patient. A multidisciplinary approach, encompassing careful morphology interpretation, immunophenotypic, cytogenetic and molecular analyses, is mandatory to obtain an accurate diagnosis of composite lymphoma. Virtual slides The virtual slides for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/9354870531161685. PMID:24621139

  14. Accumulation of cell wall-bound phenolic metabolites and their upliftment in hairy root cultures of tomato (Lycopersicon esculentum Mill.).

    PubMed

    Mandal, Sudhamoy; Mitra, Adinpunya

    2008-07-01

    Alkaline hydrolysis of cell wall material of tomato hairy roots yielded ferulic acid as the major phenolic compound. Other phenolics were 4-hydroxybenzoic acid, vanillic acid, 4-hydroxybenzaldehyde, vanillin and 4-coumaric acid. The content of phenolics was much higher at the early stage of hairy root growth. The ferulic acid content decreased up to 30 days and then sharply increased to 360 microg/g at 60 days of growth. Elicitation of hairy root cultures with Fusarium mat extract (FME) increased ferulic acid content 4-fold after 24 h. As the pathogen-derived elicitors have specific receptors in plants, FME may thus be used for inducing resistance against Fusarium oxysporum f. sp. lycopersici. PMID:18273552

  15. Leukemia among participants in military maneuvers at a nuclear bomb test

    SciTech Connect

    Caldwell, G.G.; Kelley, D.B.; Heath, C.W.

    1980-10-03

    To test the possibility of a casual relationship between leukemia and exposure to nuclear radiation, the frequency of leukemia in personnel observing the detonation of a nuclear device called ''Smoky'' during August 1957 was determined. Of some 3224 men who witnessed the detonation, nine cases of leukemia were observed. They included four cases of acute myelocytic leukemia, three of chronic myelocytic leukemia, one of hairy cell lymphocyctic leukemia, and one of acute lymphocytic luekemia. These findings represent a significant increase over the expected leukemia incidence of 3.5 cases. Mean film-badge gamma radiation dose for the study group was 466.2 mrem. (17 references, 3 tables)

  16. Lenalidomide With or Without Rituximab in Treating Patients With Progressive or Relapsed Chronic Lymphocytic Leukemia, Small Lymphocytic Lymphoma, Prolymphocytic Leukemia, or Non-Hodgkin Lymphoma Previously Treated With Donor Stem Cell Transplant

    ClinicalTrials.gov

    2014-04-03

    Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Prolymphocytic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Waldenström Macroglobulinemia

  17. Leukemia cells induce changes in human bone marrow stromal cells

    PubMed Central

    2013-01-01

    Background Bone marrow stromal cells (BMSCs) are multipotent cells that support angiogenesis, wound healing, and immunomodulation. In the hematopoietic niche, they nurture hematopoietic cells, leukemia, tumors and metastasis. BMSCs secrete of a wide range of cytokines, growth factors and matrix proteins which contribute to the pro-tumorigenic marrow microenvironment. The inflammatory cytokines IFN-? and TNF-? change the BMSC secretome and we hypothesized that factors produced by tumors or leukemia would also affect the BMSC secretome and investigated the interaction of leukemia cells with BMSCs. Methods BMSCs from healthy subjects were co-cultured with three myeloid leukemia cell lines (TF-1, TF-1? and K562) using a trans-well system. Following co-culture, the BMSCs and leukemia cells were analyzed by global gene expression analysis and culture supernatants were analyzed for protein expression. As a control, CD34+ cells were also cocultured with BMSCs. Results Co-culture induced leukemia cell gene expression changes in stem cell pluripotency, TGF-? signaling and carcinoma signaling pathways. BMSCs co-cultured with leukemia cells up-regulated a number of proinflammatory genes including IL-17 signaling-related genes and IL-8 and CCL2 levels were increased in co-culture supernatants. In contrast, purine metabolism, mTOR signaling and EIF2 signaling pathways genes were up-regulated in BMSCs co-cultured with CD34+ cells. Conclusions BMSCs react to the presence of leukemia cells undergoing changes in the cytokine and chemokine secretion profiles. Thus, BMSCs and leukemia cells both contribute to the creation of a competitive niche more favorable for leukemia stem cells. PMID:24304929

  18. Nivolumab in Treating Patients With HTLV-Associated T-Cell Leukemia/Lymphoma

    ClinicalTrials.gov

    2015-12-15

    Acute Adult T-Cell Leukemia/Lymphoma; Adult T-Cell Leukemia/Lymphoma; Chronic Adult T-Cell Leukemia/Lymphoma; HTLV-1 Infection; Lymphomatous Adult T-Cell Leukemia/Lymphoma; Recurrent Adult T-Cell Leukemia/Lymphoma; Smoldering Adult T-Cell Leukemia/Lymphoma

  19. Targeting leukemia stem cells: The new goal of therapy in adult acute myeloid leukemia.

    PubMed

    Thomas, Xavier

    2009-12-31

    The most popular view of hematopoietic cell lineage organization is that of complex reactive or adaptative systems. Leukemia contains a subpopulation of cells that display characteristics of stem cells. These cells maintain tumor growth. The properties of leukemia stem cells indicate that current conventional chemotherapy, directed against the bulk of the tumor, will not be effective. Leukemia stem cells are quiescent and do not respond to cell cycle-specific cytotoxic agents used to treat leukemia and thus contribute to treatment failure. New strategies are required that specifically target this malignant stem cell population. PMID:21607107

  20. Targeting leukemia stem cells: The new goal of therapy in adult acute myeloid leukemia

    PubMed Central

    Thomas, Xavier

    2009-01-01

    The most popular view of hematopoietic cell lineage organization is that of complex reactive or adaptative systems. Leukemia contains a subpopulation of cells that display characteristics of stem cells. These cells maintain tumor growth. The properties of leukemia stem cells indicate that current conventional chemotherapy, directed against the bulk of the tumor, will not be effective. Leukemia stem cells are quiescent and do not respond to cell cycle-specific cytotoxic agents used to treat leukemia and thus contribute to treatment failure. New strategies are required that specifically target this malignant stem cell population. PMID:21607107

  1. Long-term follow-up after purine analogue therapy in hairy cell leukaemia.

    PubMed

    Else, Monica; Dearden, Claire E; Catovsky, Daniel

    2015-12-01

    Since 2006 when we last reviewed the literature concerning the use of purine analogues in hairy cell leukaemia (HCL), results from several new and updated series have been published. Here we examine these reports and consider their implications for patient management. The two purine analogues pentostatin and cladribine remain the first-line treatments of choice for all patients with HCL. Although they have not been compared in randomised trials, they appear to be equally effective. A complete response is important for the long-term outcome and we look at how best this can be achieved. Evidence is emerging which supports the use of either purine analogue plus an anti-CD20 monoclonal antibody after relapse, though questions remain concerning the scheduling of the monoclonal antibody. Patients refractory to the purine analogues may require alternative agents. PMID:26614900

  2. In vitro radiosensitivity of human leukemia cell lines

    SciTech Connect

    Weichselbaum, R.R.; Greenberger, J.S.; Schmidt, A.; Karpas, A.; Moloney, W.C.; Little, J.B.

    1981-05-01

    The in vitro radiobiologic survival values (anti n, D/sub 0/) of four tumor lines derived from human hematopoietic tumors were studied. These cell lines were HL60 promyelocytic leukemia; K562 erythroleukemia; 45 acute lymphocytic leukemia; and 176 acute monomyelogenous leukemia. More cell lines must be examined before the exact relationship between in vitro radiosensitivity and clinical radiocurability is firmly established.

  3. Bringing Leukemia Stem Cells into the Clinic.

    PubMed

    Wang, Jean C Y

    2015-11-01

    Outcomes in acute myeloid leukemia (AML) remain poor due to high rates of relapse. Thus, there is an urgent unmet medical need for new therapies that can more effectively kill the leukemia stem cells (LSC) and recently recognized preleukemic hematopoietic stem cells (preL-HSC) that can drive relapsed disease. In order to develop such therapies, a better understanding of the biology of these stem cell populations is required. The best functional assays for stem cells are xenotransplantation models using immunodeficient mouse recipients. Here, we present evidence of the clinical validity of such models for studying the biology of AML stem cells and propose a new paradigm for the development of LSC-targeted agents and biomarker tools for patient selection. PMID:26551024

  4. Overexpression of Rac1 in leukemia patients and its role in leukemia cell migration and growth

    SciTech Connect

    Wang, Jiying; Rao, Qing; Wang, Min; Wei, Hui; Xing, Haiyan; Liu, Hang; Wang, Yanzhong; Tang, Kejing; Peng, Leiwen; Tian, Zheng; Wang, Jianxiang

    2009-09-04

    Rac1 belongs to the Rho family that act as critical mediators of signaling pathways controlling cell migration and proliferation and contributes to the interactions of hematopoietic stem cells with their microenvironment. Alteration of Rac1 might result in unbalanced interactions and ultimately lead to leukemogenesis. In this study, we analyze the expression of Rac1 protein in leukemia patients and determine its role in the abnormal behaviours of leukemic cells. Rac1 protein is overexpressed in primary acute myeloid leukemia cells as compared to normal bone marrow mononuclear cells. siRNA-mediated silencing of Rac1 in leukemia cell lines induced inhibition of cell migration, proliferation, and colony formation. Additionally, blocking Rac1 activity by an inhibitor of Rac1-GTPase, NSC23766, suppressed cell migration and growth. We conclude that overexpression of Rac1 contributes to the accelerated migration and high proliferation potential of leukemia cells, which could be implicated in leukemia development and progression.

  5. Obatoclax Mesylate, Vincristine Sulfate, Doxorubicin Hydrochloride, and Dexrazoxane Hydrochloride in Treating Young Patients With Relapsed or Refractory Solid Tumors, Lymphoma, or Leukemia

    ClinicalTrials.gov

    2014-04-30

    Acute Leukemias of Ambiguous Lineage; Acute Undifferentiated Leukemia; Angioimmunoblastic T-cell Lymphoma; Blastic Phase Chronic Myelogenous Leukemia; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Relapsing Chronic Myelogenous Leukemia; Small Intestine Lymphoma; Unspecified Childhood Solid Tumor, Protocol Specific

  6. Mast cell leukemia: an extremely rare disease.

    PubMed

    Lu, Dai-Yin; Gau, Jyh-Pyng; Hong, Ying-Chung; Liu, Chun-Yu; Yu, Yuan-Bin; Hsiao, Liang-Tsai; Liu, Jin-Hwang; Chen, Po-Min; Chiou, Tzeon-Jye; Tzeng, Cheng-Hwai

    2014-08-01

    Systemic mastocytosis is characterized by pathologic proliferation and accumulation of mast cells in at least one extracutaneous organ such as liver, spleen, bone marrow, or lymph nodes. The clinical features are highly variable depending on impairment of the involved organ systems. It often raises diagnostic challenges. Here we report a case of a 78-year-old patient with mast cell leukemia. The literature is reviewed regarding the diagnosis and updated management of this rare disease. PMID:25028296

  7. Biological Therapy in Treating Patients With Advanced Myelodysplastic Syndrome, Acute or Chronic Myeloid Leukemia, or Acute Lymphoblastic Leukemia Who Are Undergoing Stem Cell Transplantation

    ClinicalTrials.gov

    2013-07-03

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); B-cell Adult Acute Lymphoblastic Leukemia; B-cell Childhood Acute Lymphoblastic Leukemia; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; Essential Thrombocythemia; Polycythemia Vera; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia

  8. Survival regulation of leukemia stem cells.

    PubMed

    Hu, Yiguo; Li, Shaoguang

    2016-03-01

    Leukemia stem cells (LSCs) are a subpopulation cells at the apex of hierarchies in leukemia cells and responsible for disease continuous propagation. In this article, we discuss some cellular and molecular components, which are critical for LSC survival. These components include intrinsic signaling pathways and extrinsic microenvironments. The intrinsic signaling pathways to be discussed include Wnt/β-catenin signaling, Hox genes, Hh pathway, Alox5, and some miRNAs, which have been shown to play important roles in regulating LSC survival and proliferation. The extrinsic components to be discussed include selectins, CXCL12/CXCR4, and CD44, which involve in LSC homing, survival, and proliferation by affecting bone marrow microenvironment. Potential strategies for eradicating LSCs will also discuss. PMID:26686687

  9. Cx25 contributes to leukemia cell communication and chemosensitivity

    PubMed Central

    Sinyuk, Maksim; Alvarado, Alvaro G.; Nesmiyanov, Pavel; Shaw, Jeremy; Mulkearns-Hubert, Erin E.; Eurich, Jennifer T.; Hale, James S.; Bogdanova, Anna; Hitomi, Masahiro; Maciejewski, Jaroslaw; Huang, Alex Y.; Saunthararajah, Yogen; Lathia, Justin D.

    2015-01-01

    Leukemia encompasses several hematological malignancies with shared phenotypes that include rapid proliferation, abnormal leukocyte self-renewal, and subsequent disruption of normal hematopoiesis. While communication between leukemia cells and the surrounding stroma supports tumor survival and expansion, the mechanisms underlying direct leukemia cell-cell communication and its contribution to tumor growth are undefined. Gap junctions are specialized intercellular connections composed of connexin proteins that allow free diffusion of small molecules and ions directly between the cytoplasm of adjacent cells. To characterize homotypic leukemia cell communication, we employed in vitro models for both acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) and measured gap junction function through dye transfer assays. Additionally, clinically relevant gap junction inhibitors, carbenoxolone (CBX) and 1-octanol, were utilized to uncouple the communicative capability of leukemia cells. Furthermore, a qRT-PCR screen revealed several connexins with higher expression in leukemia cells compared with normal hematopoietic stem cells. Cx25 was identified as a promising adjuvant therapeutic target, and Cx25 but not Cx43 reduction via RNA interference reduced intercellular communication and sensitized cells to chemotherapy. Taken together, our data demonstrate the presence of homotypic communication in leukemia through a Cx25-dependent gap junction mechanism that can be exploited for the development of anti-leukemia therapies. PMID:26375552

  10. Cx25 contributes to leukemia cell communication and chemosensitivity.

    PubMed

    Sinyuk, Maksim; Alvarado, Alvaro G; Nesmiyanov, Pavel; Shaw, Jeremy; Mulkearns-Hubert, Erin E; Eurich, Jennifer T; Hale, James S; Bogdanova, Anna; Hitomi, Masahiro; Maciejewski, Jaroslaw; Huang, Alex Y; Saunthararajah, Yogen; Lathia, Justin D

    2015-10-13

    Leukemia encompasses several hematological malignancies with shared phenotypes that include rapid proliferation, abnormal leukocyte self-renewal, and subsequent disruption of normal hematopoiesis. While communication between leukemia cells and the surrounding stroma supports tumor survival and expansion, the mechanisms underlying direct leukemia cell-cell communication and its contribution to tumor growth are undefined. Gap junctions are specialized intercellular connections composed of connexin proteins that allow free diffusion of small molecules and ions directly between the cytoplasm of adjacent cells. To characterize homotypic leukemia cell communication, we employed in vitro models for both acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) and measured gap junction function through dye transfer assays. Additionally, clinically relevant gap junction inhibitors, carbenoxolone (CBX) and 1-octanol, were utilized to uncouple the communicative capability of leukemia cells. Furthermore, a qRT-PCR screen revealed several connexins with higher expression in leukemia cells compared with normal hematopoietic stem cells. Cx25 was identified as a promising adjuvant therapeutic target, and Cx25 but not Cx43 reduction via RNA interference reduced intercellular communication and sensitized cells to chemotherapy. Taken together, our data demonstrate the presence of homotypic communication in leukemia through a Cx25-dependent gap junction mechanism that can be exploited for the development of anti-leukemia therapies. PMID:26375552

  11. Human T-cell leukemia virus types I and II exhibit different DNase I protection patterns

    SciTech Connect

    Altman, R.; Harrich, D.; Garcia, J.A. ); Gaynor, R.B. Wadsworth Veterans Hospital, Los Angeles, CA )

    1988-04-01

    Human T-cell leukemia virus types I (HTLV-I) and II (HTLV-II) are human retroviruses which normally infect T-lymphoid cells. HTLV-I infection is associated with adult T-cell leukemia-lymphoma, and HTLV-II is associated with an indolent form of hairy-cell leukemia. To identify potential transcriptional regulatory elements of these two related human retroviruses, the authors performed DNase I footprinting of both the HTLV-I and HTLV-II long terminal repeats (LTRs) by using extracts prepared from uninfected T cells, HTLV-I and HTLV-II transformed T cells, and HeLa cells. Five regions of the HTLV-I LTR and three regions of the HTLV-II LTR showed protection by DNase I footprinting. All three of the 21-base-pair repeats previously shown to be important in HTLV transcriptional regulation were protected in the HTLV-I LTR, whereas only one of these repeats was protected in the HTLV-II LTR. Several regions exhibited altered protection in extracts prepared from lymphoid cells as compared with HeLa cells, but there were minimal differences in the protection patterns between HTLV-infected and uninfected lymphoid extracts. A number of HTLV-I and HTLV-II LTR fragments which contained regions showing protection in DNase I footprinting were able to function as inducible enhancer elements in transient CAT gene expression assays in the presence of the HTLV-II tat protein. The alterations in the pattern of the cellular proteins which bind to the HTLV-I and HTLV-II LTRs may in part be responsible for differences in the transcriptional regulation of these two related viruses.

  12. Advances in Stem Cell Therapy for Leukemia.

    PubMed

    Tian, Hong; Qu, Qi; Liu, Liming; Wu, Depei

    2016-01-01

    Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the most effective post remission treatment for leukemia, resulting in lower relapse rates than alternative therapies. However, it is limited by the lack of suitable human leukocyte antigen (HLA) matched donors and high rates of transplant-related morbidity and mortality. Cord blood transplantation (CBT) and haploidentical SCT (haplo-SCT) expand the potential donor pool but are also associated with major complications. Co-infusion of third-party donor stem cells with a CBT/haplo-SCT, which is called "dual transplantation," has been reported to improve the outcome of HSCT by accelerating hematopoietic reconstitution and reducing the incidence of graft-versus-host disease (GVHD). In addition, infusion of HLA-mismatched donor granulocyte colony-stimulating factor-mobilized donor peripheral blood stem cells after chemotherapy, the so called "microtransplantation", has been shown to promote the graft-versus-leukemia effect and hasten hematopoietic recovery without amplifying GVHD. Herein, we review recent advances in stem cell therapy for leukemia with a specific focus on dual transplantation and microtransplantation. PMID:26477621

  13. Molecular Hallmarks of Adult T Cell Leukemia

    PubMed Central

    Yamagishi, Makoto; Watanabe, Toshiki

    2012-01-01

    The molecular hallmarks of adult T cell leukemia (ATL) comprise outstanding deregulations of signaling pathways that control the cell cycle, resistance to apoptosis, and proliferation of leukemic cells, all of which have been identified by early excellent studies. Nevertheless, we are now confronted the therapeutic difficulties of ATL that is a most aggressive T cell leukemia/lymphoma. Using next-generation strategies, emerging molecular characteristics such as specific surface markers and an additional catalog of signals affecting the fate of leukemic cells have been added to the molecular hallmarks that constitute an organizing principle for rationalizing the complexities of ATL. Although human T cell leukemia virus type 1 is undoubtedly involved in ATL leukemogenesis, most leukemic cells do not express the viral protein Tax. Instead, cellular gene expression changes dominate homeostasis disorders of infected cells and characteristics of ATL. In this review, we summarize the state of the art of ATL molecular pathology, which supports the biological properties of leukemic cells. In addition, we discuss the recent discovery of two molecular hallmarks of potential generality; an abnormal microRNA pattern and epigenetic reprogramming, which strongly involve the imbalance of the molecular network of lymphocytes. Global analyses of ATL have revealed the functional impact of crosstalk between multifunctional pathways. Clinical and biological studies on signaling inhibitory agents have also revealed novel oncogenic drivers that can be targeted in future. ATL cells, by deregulation of such pathways and their interconnections, may become masters of their own destinies. Recognizing and understanding of the widespread molecular applicability of these concepts will increasingly affect the development of novel strategies for treating ATL. PMID:23060864

  14. CXCR4 Is Required for Leukemia-Initiating Cell Activity in T Cell Acute Lymphoblastic Leukemia.

    PubMed

    Passaro, Diana; Irigoyen, Marta; Catherinet, Claire; Gachet, Stéphanie; Da Costa De Jesus, Cindy; Lasgi, Charlène; Tran Quang, Christine; Ghysdael, Jacques

    2015-06-01

    Impaired cell migration has been demonstrated in T cell acute lymphoblastic leukemia (T-ALL) cells upon calcineurin inactivation, among other phenotypic traits including increased apoptosis, inhibition of cell proliferation, and ultimately inhibition of leukemia-initiating cell (LIC) activity. Herein we demonstrate that the chemokine receptor CXCR4 is essential to the LIC activity of T-ALL leukemic cells both in NOTCH-induced mouse T-ALL and human T-ALL xenograft models. We further demonstrate that calcineurin regulates CXCR4 cell-surface expression in a cortactin-dependent manner, a mechanism essential to the migratory properties of T-ALL cells. Because 20%-25% of pediatric and over 50% of adult patients with T-ALL do not achieve complete remission and relapse, our results call for clinical trials incorporating CXCR4 antagonists in T-ALL treatment. PMID:26058076

  15. Haematological profile of 21 patients with hairy cell leukaemia in a tertiary care centre of north India

    PubMed Central

    Gupta, Arvind Kumar; Sachdeva, Man Updesh Singh; Ahluwalia, Jasmina; Das, Reena; Naseem, Shano; Sharma, Prashant; Kumar, Narender; Malhotra, Pankaj; Varma, Neelam; Varma, Subhash

    2015-01-01

    Background & objectives: Hairy cell leukaemia (HCL) is a B cell neoplasm which constitutes around 2 per cent of all the lymphoid leukaemias. It has a characteristic morphology and immunophenotypic profile. It is important to distinguish HCL from other B cell lymphoproliferative disorders due to availability of different chemotherapeutic agents. This study presents clinical, haematological and immunophenotypic profile of patients with HCL seen over a period of four years in a tertiary care hospital in north India. Methods: Twenty one cases of hairy cell leukaemia were analyzed for their clinical details, haemogram, bone marrow examination and immunophenotypic findings. Results: Age of the patients ranged from 28-76 yr with male predominance. Weakness and fever were commonest presentations. Splenomegaly, hepatomegaly, lymphadenopathy were seen in decreasing order of frequency. Anaemia was noted in all 21 patients, leukopenia in 15 and thrombocytopenia in 19 cases. Fourteen patients were pancytopenic. Bone marrow examination showed typical hairy cells in all cases. Immunophenotyping showed expression of CD19, CD20, CD103, CD25 and CD11c in all cases, while positivity was seen for CD79b in 93.7 per cent, kappa light chain restriction in 60 per cent and lambda in 40 per cent cases. Notably, 20 per cent showed CD10 and 12 per cent showed CD23 expression. Interpretation & conclusions: This study reveals some unusual findings in otherwise classical disease entity, like absence of palpable spleen, presence of lymphadenopathy, normal or elevated leukocyte counts, expression of CD10, which at times could be diagnostically challenging. PMID:26609034

  16. Acute myelogenous leukemia stem cells: From Bench to Bedside

    PubMed Central

    Rico, J. Felipe; Hassane, Duane C.; Guzman, Monica L.

    2015-01-01

    Despite reaching remission with traditional chemotherapy, most adult patients with acute myeloid leukemia (AML) will relapse and die of their disease. Numerous studies have identified a rare subset of leukemia cells that evade traditional chemotherapy and are capable of self-renewal and initiating leukemia. These cells are thought to be responsible for relapse and are termed leukemia stem cells (LSCs). This article will review the current LSC translational research and focus on new approaches to detect LSC burden and its prognostic implications, as well as the identification and development of therapeutic agents active against LSCs. PMID:22713929

  17. Laboratory Treated T Cells in Treating Patients With Relapsed or Refractory Chronic Lymphocytic Leukemia, Non-Hodgkin Lymphoma, or Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-03-04

    Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Chronic Lymphocytic Leukemia; Recurrent Diffuse Large B-Cell Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Non-Hodgkin Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Diffuse Large B-Cell Lymphoma

  18. Characterization of chronic myeloid leukemia stem cells

    PubMed Central

    Gerber, Jonathan M.; Qin, Lu; Kowalski, Jeanne; Smith, B. Douglas; Griffin, Constance A.; Vala, Milada S.; Collector, Michael I.; Perkins, Brandy; Zahurak, Marianna; Matsui, William; Gocke, Christopher D.; Sharkis, Saul J.; Levitsky, Hyam I.; Jones, Richard J.

    2010-01-01

    Though tyrosine kinase inhibitors have redefined the care of chronic myeloid leukemia (CML), these agents have not proved curative, likely due to resistance of the leukemia stem cells (LSC). While a number of potential therapeutic targets have emerged in CML, their expression in the LSC remains largely unknown. We therefore isolated subsets of CD34+ stem/progenitor cells from normal donors and from patients with chronic phase or blast crisis CML. These cell subsets were then characterized based on ability to engraft immunodeficient mice and expression of candidate therapeutic targets. The CD34+CD38? CML cell population with high aldehyde dehydrogenase (ALDH) activity was the most enriched for immunodeficient mouse engrafting capacity. The putative targets: PROTEINASE 3, SURVIVIN, and hTERT were expressed only at relatively low levels by the CD34+CD38?ALDHhigh CML cells, similar to the normal CD34+CD38?ALDHhigh cells and less than in the total CML CD34+ cells. In fact, the highest expression of these antigens was in normal, unfractionated CD34+ cells. In contrast, PRAME and WT1 were more highly expressed by all CML CD34+ subsets than their normal counterparts. Thus, ALDH activity appears to enrich for CML stem cells, which display an expression profile that is distinct from normal stem/progenitor cells and even the CML progenitors. Indeed, expression of a putative target by the total CD34+ population in CML does not guarantee expression by the LSC. These expression patterns suggest that PROTEINASE 3, SURVIVIN, and hTERT are not optimal therapeutic targets in CML stem cells; whereas PRAME and WT1 seem promising. PMID:21132730

  19. An unusual indication for splenectomy in hairy cell leukaemia: a report of three cases with persistent splenomegaly after chemoimmunotherapy.

    PubMed

    Sarid, Nadav; Ahmad, Humayun N; Wotherspoon, Andrew; Dearden, Claire E; Else, Monica; Catovsky, Daniel

    2015-12-01

    We describe three cases of relapsed hairy cell leukaemia (HCL) treated with pentostatin plus rituximab. All three achieved bone marrow complete remission but had persistent splenomegaly and hypersplenism. Because of the clinical uncertainty of its significance, they were all splenectomized. The spleen histology showed no evidence of HCL, but a five-fold thickening of the splenic capsule and areas of fibrosis in the red pulp. This process may have contributed to the lack of elasticity and caused the persistent splenomegaly. We discuss the clinical implications for future patient management. The three patients remain in remission at 1 + , 5 +  and 9 +  years. PMID:26403440

  20. Laser activated nanothermolysis of leukemia cells monitored by photothermal microscopy

    NASA Astrophysics Data System (ADS)

    Lapotko, Dmitri; Lukianova, Ekaterina; Shnip, Alexander; Zheltov, George; Potapnev, Michail; Savitsky, Valeriy; Klimovich, Olga; Oraevsky, Alexander

    2005-04-01

    We are developing new diagnostic and therapeutic technologies for leukemia based on selective targeting of leukemia cells with gold nanoparticles and thermomechanical destruction of the tumor cells with laser-induced microbubbles. Clusters of spherical gold nanoparticles that have strong optical absorption of laser pulses at 532 nm served as nucleation sites of vapor microbubbles. The nanoparticles were targeted selectively to leukemia cells using leukemia-specific surface receptors and a set of two monoclonal antibodies. Application of a primary myeloid-specific antibody to tumor cells followed by targeting the cells with 30-nm nanoparticles conjugated with a secondary antibody (IgG) resulted in formation of nanoparticulate clusters due to aggregation of IgGs. Formation of clusters resulted in substantial decrease of the damage threshold for target cells. The results encourage development of Laser Activated Nanothermolysis as a Cell Elimination Therapy (LANCET) for leukemia. The proposed technology can be applied separately or in combination with chemotherapy for killing leukemia cells without damage to other blood cells. Potential applications include initial reduction of concentration of leukemia cells in blood prior to chemotherapy and treatment of residual tumor cells after the chemotherapy. Laser-induced bubbles in individual cells and cell damage were monitored by analyzing profile of photothermal response signals over the entire cell after irradiation with a single 10-ns long laser pulse. Photothermal microscopy was utilized for imaging formation of microbubbles around nanoparticulate clusters.

  1. Cordycepin Regulates GSK-3?/?-Catenin Signaling in Human Leukemia Cells

    PubMed Central

    Liu, Tzu-An; Tzean, Shean-Shong; Shen, Tang-Long; Liou, Jun-Yang

    2013-01-01

    Background Leukemia stem cells (LSCs) are a limitless cell source for the initiation and maintenance of leukemia. Activation of the Wnt/?-catenin pathway is required for the survival and development of LSCs. Therefore, targeting ?-catenin is considered a therapeutic strategy for the treatment of leukemia. The goal of this study was to explore whether cordycepin, an active component of the traditional medicine Cordyceps sinensis, regulates ?-catenin expression in leukemia cells. Methodology and Principal Findings In this study, we found that cordycepin significantly suppressed cell proliferation in all malignant cancer cells, including U937, K562, A549, HepG2, SK-Hep1 and MCF7 in a dose-dependent manner. However, cordycepin reduced ?-catenin levels in U937, K562 and THP1 leukemia cells and had no effect on other solid cancer cells. In addition, treatment with cordycepin significantly suppressed leukemia colony formation in soft agar assay. Cordycepin enhanced proteasome-dependent degradation and inhibited nuclear translocation of ?-catenin in leukemia cells. Cordycepin-reduced ?-catenin stability was restored by the addition of a pharmacological inhibitor of GSK-3?, indicating that cordycepin-suppressed ?-catenin stability is mediated by the activation of GSK-3?. Furthermore, cordycepin abolished the effect of Wnt3a-induced ?-catenin in leukemia cells. In addition, cordycepin-impaired ?-catenin is regulated by Akt activation but is not significantly influenced by AMPK or mTOR signal pathways. Significance Our findings show for the first time that codycepin selectively reduces ?-catenin stability in leukemia but not in other solid tumor cells. This suppressive effect is mediated by regulating GSK-3?. A synergistic combination of cordycepin with other treatments should be used as a novel strategy to eradicate leukemia via elimination of LSCs. PMID:24086728

  2. Stem Cell Biomarkers in Chronic Myeloid Leukemia

    PubMed Central

    Jiang, Xiaoyan; Zhao, Yun; Forrest, Donna; Smith, Clayton; Eaves, Allen; Eaves, Connie

    2008-01-01

    Chronic myeloid leukemia (CML) is a clonal multi-step myeloproliferative disease that is initially produced and ultimately sustained by a rare subpopulation of BCR-ABL+ cells with multi-lineage stem cell properties. These BCR-ABL+ CML stem cells are phenotypically similar to normal hematopoietic stem cells which are also maintained throughout the course of the disease at varying levels in different patients. Defining the unique properties of the leukemic stem cells that produce the chronic phase of CML has therefore had to rely heavily on access to samples from rare patients in which the stem cell compartment is dominated by leukemic elements. Here we review past and ongoing approaches using such samples to identify biologically and clinically relevant biomarkers of BCR-ABL+ stem cells that explain their unusual biology and that may help to design, or at least predict, improved treatment responses in CML patients. These studies are of particular interest in light of recent evidence that chronic phase CML stem cells are not only innately resistant to imatinib mesylate and other drugs that target the BCR-ABL oncoprotein, but are also genetically unstable. PMID:18525114

  3. Dendritic cell leukemia in a Golden Retriever.

    PubMed

    Allison, Robin W; Brunker, Jill D; Breshears, Melanie A; Avery, Anne C; Moore, Peter F; Affolter, Verena K; Vernau, William

    2008-06-01

    An 8-year-old castrated male Golden Retriever was evaluated for decreased appetite, lethargy, and labored breathing of 1-week duration. Bilateral pulmonary infiltrates, hepatomegaly, and splenomegaly were present. Results of a CBC revealed marked leukocytosis (62,600/microL; reference interval 4000-15,500/microL) and large numbers of atypical cells (30,700/microL) with abundant cytoplasm. There was no concurrent anemia, neutropenia, or thrombocytopenia. Morphology of the atypical cells was most consistent with a histiocytic origin. Similar cells were identified in bone marrow aspirates, and were morphologically suggestive of the macrophage variant of disseminated histiocytic sarcoma. However, flow cytometry of the abnormal circulating cells revealed CD1c, CD11c, and major histocompatibility complex (MHC) Class II expression without expression of CD11d or lymphoid markers, consistent with myeloid dendritic antigen-presenting cells. At necropsy, the splenic architecture was effaced by neoplastic histiocytes that were also infiltrating lung, liver, an abdominal lymph node, myocardium, an bone marrow. Immunohistochemistry of the splenic neoplastic cells confirmed dendritic cell origin (CD1c+, CD11c+, MHC II+, no expression of CD11d and lymphoid markers). To the authors' knowledge, this is the first report of canine dendritic cell leukemia-in this instance accompanied by marked tissue infiltration. PMID:18533919

  4. Pushing the Limits: Defeating Leukemia Stem Cells by Depleting Telomerase

    PubMed Central

    Kuo, Ya-Huei; Bhatia, Ravi

    2015-01-01

    Leukemia stem cells (LSCs), featuring unlimited self-renewal capacity and chemoresistance, are critical cellular targets for new treatments to improve outcomes for acute myeloid leukemia (AML). In this issue, Bruedigam et al. demonstrate that inhibition of telomerase is damaging to LSCs and may represent a promising therapeutic approach in AML. PMID:25479742

  5. Alvocidib in Treating Patients With B-Cell Chronic Lymphocytic Leukemia or Small Lymphocytic Lymphoma

    ClinicalTrials.gov

    2013-07-01

    B-cell Chronic Lymphocytic Leukemia; Contiguous Stage II Small Lymphocytic Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Small Lymphocytic Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage III Chronic Lymphocytic Leukemia; Stage III Small Lymphocytic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Small Lymphocytic Lymphoma

  6. An Immunocompetent Mouse Model for MLL/AF9 Leukemia Reveals the Potential of Spontaneous Cytotoxic T-Cell Response to an Antigen Expressed in Leukemia Cells

    PubMed Central

    Hasegawa, Kana; Tanaka, Satomi; Fujiki, Fumihiro; Morimoto, Soyoko; Nakajima, Hiroko; Tatsumi, Naoya; Nakata, Jun; Takashima, Satoshi; Nishida, Sumiyuki; Tsuboi, Akihiro; Oka, Yoshihiro; Oji, Yusuke; Kumanogoh, Atsushi; Sugiyama, Haruo; Hosen, Naoki

    2015-01-01

    Leukemia differs substantially with respect to stromal milieu from tumors that progress locally as solid masses, and the physiological importance of immunosurveillance in leukemia remains unclear. However, currently available mouse leukemia models have critical limitations in the context of analyzing immunological regulation of leukemia development. In this study, we transferred mouse MLL/AF9 leukemia-initiating cells into immunocompetent recipient mice without any pre-conditioning such as irradiation, and then analyzed the spontaneous T cell response to an immunogenic antigen expressed in leukemia cells. When the minimum numbers of leukemia-initiating cells for engraftment were transferred, leukemia cells were eradicated by the adaptive immune response in most, if not all, wild-type mice, but not in Rag2-/- recipient mice, which lack adaptive immunity. By contrast, mice transplanted with larger numbers of leukemia cells always developed leukemia. In mice with advanced leukemia, antigen-specific CTLs were also expanded, but were unresponsive to antigen stimulation and expressed high levels of PD-1 and LAG-3. These results provide the first clear demonstration that the spontaneous CTL response to a tumor-cell antigen has the potential to eradicate leukemia, whereas antigen-specific CTLs are exhausted in animals with advanced leukemia. This immunocompetent mouse leukemia model provides a useful platform for developing effective immunotherapies against leukemia. PMID:26658107

  7. Leukemia

    MedlinePLUS

    ... FR. The acute leukemias. In: Goldman L, Schafer AI, eds. Goldman's Cecil Medicine . 24th ed. Philadelphia, Pa: ... Brien S. The chronic leukemias. In: Goldman L, Schafer AI, eds. Goldman's Cecil Medicine . 24th ed. Philadelphia, Pa: ...

  8. Dendritic Cell-Based Immunotherapy for Myeloid Leukemias

    PubMed Central

    Schürch, Christian M.; Riether, Carsten; Ochsenbein, Adrian F.

    2013-01-01

    Acute and chronic myeloid leukemia (AML, CML) are hematologic malignancies arising from oncogene-transformed hematopoietic stem/progenitor cells known as leukemia stem cells (LSCs). LSCs are selectively resistant to various forms of therapy including irradiation or cytotoxic drugs. The introduction of tyrosine kinase inhibitors has dramatically improved disease outcome in patients with CML. For AML, however, prognosis is still quite dismal. Standard treatments have been established more than 20 years ago with only limited advances ever since. Durable remission is achieved in less than 30% of patients. Minimal residual disease (MRD), reflected by the persistence of LSCs below the detection limit by conventional methods, causes a high rate of disease relapses. Therefore, the ultimate goal in the treatment of myeloid leukemia must be the eradication of LSCs. Active immunotherapy, aiming at the generation of leukemia-specific cytotoxic T cells (CTLs), may represent a powerful approach to target LSCs in the MRD situation. To fully activate CTLs, leukemia antigens have to be successfully captured, processed, and presented by mature dendritic cells (DCs). Myeloid progenitors are a prominent source of DCs under homeostatic conditions, and it is now well established that LSCs and leukemic blasts can give rise to “malignant” DCs. These leukemia-derived DCs can express leukemia antigens and may either induce anti-leukemic T cell responses or favor tolerance to the leukemia, depending on co-stimulatory or -inhibitory molecules and cytokines. This review will concentrate on the role of DCs in myeloid leukemia immunotherapy with a special focus on their generation, application, and function and how they could be improved in order to generate highly effective and specific anti-leukemic CTL responses. In addition, we discuss how DC-based immunotherapy may be successfully integrated into current treatment strategies to promote remission and potentially cure myeloid leukemias. PMID:24427158

  9. Different Roles of the Mevalonate and Methylerythritol Phosphate Pathways in Cell Growth and Tanshinone Production of Salvia miltiorrhiza Hairy Roots

    PubMed Central

    Yang, Dongfeng; Du, Xuhong; Liang, Xiao; Han, Ruilian; Liang, Zongsuo; Liu, Yan; Liu, Fenghua; Zhao, Jianjun

    2012-01-01

    Salvia miltiorrhiza has been widely used in the treatment of coronary heart disease. Tanshinones, a group of diterpenoids are the main active ingredients in S. miltiorrhiza. Two biosynthetic pathways were involved in tanshinone biosynthesis in plants: the mevalonate (MVA) pathway in the cytosol and the methylerythritol phosphate (MEP) pathway in the plastids. The 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) is the rate-limiting enzyme of the MVA pathway. The 1-deoxy-D-xylulose 5-phosphate synthase (DXS) and 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) are the key enzymes of the MEP pathway. In this study, to reveal roles of the MVA and the MEP pathways in cell growth and tanshinone production of S. miltiorrhiza hairy roots, specific inhibitors of the two pathways were used to perturb metabolic flux. The results showed that the MVA pathway inhibitor (mevinolin, MEV) was more powerful to inhibit the hairy root growth than the MEP pathway inhibitor (fosmidomycin, FOS). Both MEV and FOS could significantly inhibit tanshinone production, and FOS was more powerful than MEV. An inhibitor (D, L-glyceraldehyde, DLG) of IPP translocation strengthened the inhibitory effects of MEV and FOS on cell growth and tanshinone production. Application of MEV resulted in a significant increase of expression and activity of HMGR at 6 h, and a sharp decrease at 24 h. FOS treatment resulted in a significant increase of DXR and DXS expression and DXS activity at 6 h, and a sharp decrease at 24 h. Our results suggested that the MVA pathway played a major role in cell growth, while the MEP pathway was the main source of tanshinone biosynthesis. Both cell growth and tanshinone production could partially depend on the crosstalk between the two pathways. The inhibitor-mediated changes of tanshinone production were reflected in transcript and protein levels of genes of the MVA and MEP pathways. PMID:23209548

  10. Targeting Myelogenous Leukemia Stem Cells: Role of the Circulation

    PubMed Central

    Liesveld, Jane

    2012-01-01

    Unlike stem cells from solid tumors, the stem cells which initiate myelogenous leukemias arise in marrow, an organ with a unique circulation which allows ready access of leukemia cells, including leukemia stem cells (LSCs), to the vasculature. This poses unique problems in the targeting of LSCs since these cells are found circulating in the majority of leukemia cases at diagnosis and are usually not detectable during remission states. Because most cases of leukemia relapse, it is suggested that LSCs remain quiescent in the marrow until they eventually proliferate and circulate again. This indicates that effective targeting of LSCs must occur not only in peripheral circulation but in the micro-circulation of the marrow. Targeting such interactions may overcome cell adhesion-mediated treatment resistance, other multi-drug resistance mechanisms, and opportunities for clonal evolution in the marrow environment. Targeting selectins and integrins, signal transduction mediators, and chemokine/cytokine networks in the marrow micro-circulation may aid in abrogating leukemia-initiating stem cells which contribute to disease relapse. LSCs possess surface antigen profiles and signal transduction activation profiles which may allow differential targeting as compared with normal hematopoietic stem cells. PMID:22876360

  11. In vitro radiosensitivity of human leukemia cell lines

    SciTech Connect

    Weichselbaum, R.R.; Greenberger, J.S.; Schmidt, A.; Karpas, A.; Moloney, W.C.; Little, J.B.

    1981-05-01

    The in vitro radiobiologic survival values (n, D0) of four tumor lines derived from human hematopoietic tumors were studied. These cell lines were HL50 (n . 1.3, D0 . 117 rad(1.17 Gy)), promyelocytic leukemia; K562 (n . 1.4, D0 . 165 rad(1.65 Gy)), erythroleukemia; 45 (n . 1.1, D0 . 147 rad(1.47 Gy)), acute lymphocyte leukemia; and 176 (n . 4.0, D0 . 76 rad(0.76 Gy)), acute monomyelogenous leukemia. More cell lines must be examined before the exact relationship between in vitro radiosensitivity and clinical radiocurability is firmly established.

  12. Laser nanothermolysis of human leukemia cells using functionalized plasmonic nanoparticles

    PubMed Central

    Liopo, Anton V.; Conjusteau, Andr; Konopleva, Marina; Andreeff, Michael; Oraevsky, Alexander A.

    2012-01-01

    In the present work, we present the use of gold nanorods as plasmonic nanoparticles for selective photothermal therapy of human acute (HL-60) and chronicle (K-562) leukemia cells using a near-infrared laser. We improved a published methodology of gold nanorods conjugation to generate high yields of narrow band gold nanorods with an optical absorption centered at 760 nm. The manufactured nanorods were pegylated and conjugated with monoclonal antibody to become non-toxic as biocompatible nanothermolysis agent. Gold nanorods are synthesized and conjugated to CD33 monoclonal antibody. After pegylation, or conjugation with CD33 antibody, gold nanorods were non-toxic to acute and chronic leukemia cells. Our modified gold nanorods CD33 conjugates shown high level of accumulation for both leukemia cell lines, and successful used for nanothermolysis of human leukemia cells in vitro. Each sample was illuminated with 1 or 3 laser shots as for low and for high laser fluence. The radiation was provided by a Quanta Systems q-switched titanium sapphire laser, and the system was designed for maximum sample coverage using non-focused illumination. HL-60 and K-562 cells were treated for 45 min with gold nanorods CD33 conjugated, or with pegylated gold nanorods. The effect of pulsed-laser nanothermolysis for acute and chronic leukemia cells were investigated with cell counting for number of living cells, percentage of cell death and functional parameters such as damage of cell membrane and metabolic activity. Gold nanorods CD33 conjugates significantly increase cell damage for low fluence laser and completely destroyed cancer cells after 3 pulses for low fluence (acute leukemia) and for high fluence laser as for HL-60 (acute) and for K-562 (chronicle) leukemia cells. PMID:22720194

  13. The role of natural killer cells in chronic myeloid leukemia

    PubMed Central

    Danier, Anna Carolyna Arajo; de Melo, Ricardo Pereira; Napimoga, Marcelo Henrique; Laguna-Abreu, Maria Theresa Cervolo

    2011-01-01

    Chronic myeloid leukemia is a neoplasia resulting from a translocation between chromosomes 9 and 22 producing the BCR-ABL hybrid known as the Philadelphia chromosome (Ph). In chronic myeloid leukemia a proliferation of malignant myeloid cells occurs in the bone marrow due to excessive tyrosine kinase activity. In order to maintain homeostasis, natural killer cells, by means of receptors, identify the major histocompatibility complex on the surface of tumor cells and subsequently induce apoptosis. The NKG2D receptor in the natural killer cells recognizes the transmembrane proteins related to major histocompatibility complex class I chain-related genes A and B (MICA and MICB), and it is by the interaction between NKG2D and MICA that natural killer cells exert cytotoxic activity against chronic myeloid leukemia tumor cells. However, in the case of chronic exposure of the NKG2D receptor, the MICA ligand releases soluble proteins called sMICA from the tumor cell surface, which negatively modulate NKG2D and enable the tumor cells to avoid lysis mediated by the natural killer cells. Blocking the formation of sMICA may be an important antitumor strategy. Treatment using tyrosine kinase inhibitors induces modulation of NKG2DL expression, which could favor the activity of the natural killer cells. However this mechanism has not been fully described in chronic myeloid leukemia. In the present study, we analyze the role of natural killer cells to reduce proliferation and in the cellular death of tumor cells in chronic myeloid leukemia. PMID:23049299

  14. Targeting Mitochondria with Avocatin B Induces Selective Leukemia Cell Death.

    PubMed

    Lee, Eric A; Angka, Leonard; Rota, Sarah-Grace; Hanlon, Thomas; Mitchell, Andrew; Hurren, Rose; Wang, Xiao Ming; Gronda, Marcela; Boyaci, Ezel; Bojko, Barbara; Minden, Mark; Sriskanthadevan, Shrivani; Datti, Alessandro; Wrana, Jeffery L; Edginton, Andrea; Pawliszyn, Janusz; Joseph, Jamie W; Quadrilatero, Joe; Schimmer, Aaron D; Spagnuolo, Paul A

    2015-06-15

    Treatment regimens for acute myeloid leukemia (AML) continue to offer weak clinical outcomes. Through a high-throughput cell-based screen, we identified avocatin B, a lipid derived from avocado fruit, as a novel compound with cytotoxic activity in AML. Avocatin B reduced human primary AML cell viability without effect on normal peripheral blood stem cells. Functional stem cell assays demonstrated selectivity toward AML progenitor and stem cells without effects on normal hematopoietic stem cells. Mechanistic investigations indicated that cytotoxicity relied on mitochondrial localization, as cells lacking functional mitochondria or CPT1, the enzyme that facilitates mitochondria lipid transport, were insensitive to avocatin B. Furthermore, avocatin B inhibited fatty acid oxidation and decreased NADPH levels, resulting in ROS-dependent leukemia cell death characterized by the release of mitochondrial proteins, apoptosis-inducing factor, and cytochrome c. This study reveals a novel strategy for selective leukemia cell eradication based on a specific difference in mitochondrial function. PMID:26077472

  15. Plasma cell leukemia: from biology to treatment.

    PubMed

    Jelinek, Tomas; Kryukov, Fedor; Rihova, Lucie; Hajek, Roman

    2015-07-01

    Plasma cell leukemia (PCL) is a very aggressive and rare form of malignant monoclonal gammopathy characterized by the presence of plasmocytes in peripheral blood. It is classified as primary PCL occuring 'de novo', or as secondary PCL in patients with relapsed/refractory multiple myeloma. Primary PCL is a distinct clinicopathological entity from myeloma with different cytogenetic abnormalities and molecular findings, which are usually found only in advanced multiple myeloma. The clinical course is aggressive with short remissions and reduced overall survival. The diagnostic criteria are based on the percentage (>20%) and absolute number (2נ10(9) /L) of plasma cells in peripheral blood. After establishing diagnosis, induction therapy should begin promptly which is aimed to rapid disease control and to minimize the risk of early death. Intensive chemotherapy regimens and bortezomib-based regimens, followed by high-dose therapy with autologous stem cell transplantation, are recommended. Allogeneic transplantation can be considered in younger patients. This article reviews recent knowledge of this hematological malignancy that is associated with a very poor prognosis. PMID:25778450

  16. Conjugated linoleic acid modulation of cell membrane in leukemia cells.

    PubMed

    Agatha, Gerhard; Voigt, Astrid; Kauf, Eberhard; Zintl, Felix

    2004-06-01

    This study compared the cellular uptake of pure conjugated linoleic acid isomers (CLA(9c,11t) and CLA(9c,11c)) to linoleic acid (LA) and their effects on polyunsaturated fatty acid (PUFA) synthesis, its metabolism into conjugated long chain fatty acids (FAs) by desaturation and chain-elongation as well as cell proliferation and the associated anticarcinogenic effects on various human leukemia cell lines (K562, REH, CCRF-CEM and U937 cells). Furthermore, selective effects of this individual isomers of CLA on desaturation steps involved in the biosynthesis of PUFAs associated with cell growth were investigated. CLA isomers supplemented in the culture medium was readily incorporated and esterified into phospholipids (PLs) in the four cell lines in a concentration- and time-dependent manner. The incorporation of the specific CLA isomers in PLs was similar to LA. All four incubating leukemia cells (40 microM CLA for 48 h) showed very high cellular CLA content in PLs (range: 32-63 g FA/100 g total phospholipid fatty acid) affected by the nature of CLA and the cell type. Supplementation with CLA or LA altered also cell membrane composition by n-6 PUFA synthesis. Accordingly, CLA metabolism interferes with LA metabolism. We were able to show that CLA isomers are converted by the leukemia cells of the same metabolic pathway into conjugated diene fatty acids (CDFAs) as LA into non-conjugated PUFAs. In this view, the gas chromatography-flame ionization detector detection of major CDFAs (CD-18:3, CD-20:2 and CD-20:3) in cell membrane of CLA-treated cultures resulted from successive Delta6-desaturation, elongation and Delta5-desaturation of CLA isomers. However, in comparison to LA, relatively lower amounts of elongation and/or desaturation metabolites were detected for CLA(9c,11t), and only minor amounts or trace CDFAs were observed for CLA(9c,11c). Furthermore, CLA(9c,11t) revealed only very low levels of CD-20:4 FA and no CLA(9c,11c)-conversion could be detected. The metabolization of CLA indicated that CLA(9c,11c)cells or for the Delta5-desaturation/elongation in the K562 cells. CLA(9c,11t) suppresses Delta6-desaturation in CCRF-CEM, REH, and U937 cells (43.5, 54.6 and 58.8% Delta6-inhibition, respectively) and as well Delta9-desaturation in all four cell lines (Delta9-inhibition; 47.1, 33.9, 29.8 and 25.9% for CCRF-CEM, REH, K562 and U937 cells, respectively). However, CLA(9c,11c) does not inhibit or only slightly affected these desaturations. CLA(9c,11t) isomer was found as an Delta6-desaturase inhibitor with a dose-dependent relationship between inhibition of Delta6-desaturase activity and decreases in cell growth. The growth inhibitory effects of CLA (with 30-120 microM) on leukemia cells were dependent upon the type and concentration of CLA isomers present. CLA-supplemented cells with low concentrations (<60 microM) were not sufficient to impair cell proliferation. Nevertheless, higher amounts of CLAs (>60 microM) had the CLA type dependent antiproliferative effects. Thus, the 9cis,11trans- and the 9cis,11cis-CLA isomers regulate cell growth and survival in different leukemia cell types through their existence alone and/or by their inhibitory effects of desaturase activity. PMID:15145524

  17. 75 FR 53202 - Diseases Associated With Exposure to Certain Herbicide Agents (Hairy Cell Leukemia and Other...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... number.) SUPPLEMENTARY INFORMATION: On March 25, 2010, VA published in the Federal Register (75 FR 14391... between myocardial oxygen supply and demand.'' 75 FR 14393; See Harrison's Principles of Internal Medicine...; it typically occurs when there is an imbalance between myocardial oxygen supply and demand.'' 75...

  18. Low-Dose Total Body Irradiation and Donor Peripheral Blood Stem Cell Transplant Followed by Donor Lymphocyte Infusion in Treating Patients With Non-Hodgkin Lymphoma, Chronic Lymphocytic Leukemia, or Multiple Myeloma

    ClinicalTrials.gov

    2015-10-30

    Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage II Multiple Myeloma; Stage III Multiple Myeloma; Testicular Lymphoma; Waldenström Macroglobulinemia

  19. Alvocidib, Fludarabine Phosphate, and Rituximab in Treating Patients With Lymphoproliferative Disorders or Mantle Cell Lymphoma

    ClinicalTrials.gov

    2013-06-03

    B-cell Chronic Lymphocytic Leukemia; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Progressive Hairy Cell Leukemia, Initial Treatment; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Splenic Marginal Zone Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Small Lymphocytic Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Untreated Hairy Cell Leukemia; Waldenström Macroglobulinemia

  20. Signaling proteins and pathways affected by flavonoids in leukemia cells.

    PubMed

    Liu, Xiaoliang; Ye, Fei; Wu, Josephine; How, Brian; Li, Wei; Zhang, David Y

    2015-01-01

    Flavonoids are a class of plant secondary metabolites that are found ubiquitously in plants and in the human diet. Our objective is to investigate the antiproliferative effects of flavonoids (baicalein, luteolin, genistein, apigenin, scutellarin, galangin, chrysin, and naringenin) toward leukemia cells (HL-60, NB4, U937, K562, Jurkat) as well as the relationship between their antileukemic potencies and molecular structures. At the proteomic level, we evaluate the effects of different flavonoids on the expression levels of various proteins using Protein Pathway Array (PPA) technology. Our results showed a dose-dependent cytotoxicity of flavonoids toward various types of leukemia cells. The results of PPA illustrated that flavonoids, such as baicalein, genistein, and scutellarin affected different proteins in different leukemia cell lines. Cell cycle regulatory proteins, such as CDK4, CDK6, Cyclin D1, Cyclin B1, p-CDC2, and p-RB were affected in different leukemia cells. Furthermore, we found that baicalein suppresses CDK4 and activates p-ERK in most leukemia cells; genistein mainly affects CDK4, p-ERK, p-CDC2, while scutellarin dysregulated the proteins, cell division control protein 42, Notch4, and XIAP. Collectively, a wide variety of dysregulation of key signaling proteins related to apoptosis and cell-cycle regulation contributes to the antileukemic properties of these flavonoids. PMID:25588108

  1. Novel and Emerging Drugs for Acute Myeloid Leukemia

    PubMed Central

    Stein, E.M.; Tallman, M.S.

    2014-01-01

    Acute myeloid leukemia (AML) is a challenging disease to treat with the majority of patients dying from their illness. While overall survival has been markedly prolonged in acute promyelocytic leukemia (APL), survival in younger adults with other subtypes of AML has only modestly improved over the last twenty years. Physicians who treat AML eagerly await drugs like Imatinib for chronic myeloid leukemia, Cladribine for hairy cell leukemia, and Rituximab for non-Hodgkin Lymphoma which have had an important impact on improving outcome. Recent research efforts have focused on refining traditional chemotherapeutic agents to make them more active in AML, targeting specific genetic mutations in myeloid leukemia cells, and utilizing novel agents such as Lenalidomide that have shown activity in other hematologic malignancies. Here, we focus on reviewing the recent literature on agents that may assume a role in clinical practice for patients with AML over the next five years. PMID:22483153

  2. Allogeneic Hematopoietic Cell Transplant for Prolymphocytic Leukemia

    PubMed Central

    Kalaycio, Matt E.; Kukreja, Manisha; Woolfrey, Ann E.; Szer, Jeffrey; Cortes, Jorge; Maziarz, Richard T.; Bolwell, Brian J.; Buser, Andreas; Copelan, Edward; Gale, Robert Peter; Gupta, Vikas; Maharaj, Dipnarine; Marks, David I; Pavletic, Steven Z.; Horowitz, Mary M.; Arora, Mukta

    2009-01-01

    The poor prognosis of patients with prolymphocytic leukemia (PLL) has led some clinicians to recommend allogeneic hematopoietic cell transplant (HCT). However, the data to support this approach is limited to case-reports and small case-series. We reviewed the database of the Center for International Blood & Marrow Transplant Research to determine outcomes after allotransplant for patients with PLL. We identified 47 patients with a median age of 54 years (range, 3075). With a median follow-up of 13 months, progression-free survival was 33% (95% Confidence Interval 2047%) at 2 years. The most common cause of death was relapse or progression in 49%. The cumulative incidence of treatment-related mortality at 1-year post transplant was 28%. The small patient population prohibited prognostic factor analysis but these data support consideration of allotransplant for PLL. Further study of a larger population of patients is needed to determine which patients are more likely to benefit. PMID:19961946

  3. Mitochondrial DNA sequence variation in single cells from leukemia patients

    PubMed Central

    Yao, Yong-Gang; Ogasawara, Yoji; Kajigaya, Sachiko; Molldrem, Jeffrey J.; Falco, Roberto P.; Pinto, Maria-Carolina; McCoy, J. Philip; Rizzatti, Edgar Gil; Young, Neal S.

    2007-01-01

    A high frequency of mtDNA somatic mutation has been observed in many tumors as well as in aging tissues. In this study, we analyzed the mtDNA control region sequence variation in 3534 single normal cells and individual blasts from 18 patients with leukemia and 10 healthy donors, to address the mutation process in leukemic cells. We found significant differences in mtDNA sequence, as represented by the number of haplotypes and the mean number of cells with each nonaggregate haplotype in a population of cells, in patients compared to controls. Patients with similar clinical leukemia types, particularly acute myeloid leukemia (AML), did not show a uniform pattern of sequence variation in single blasts. Some patients at relapse presented a complex shift of major haplotypes in single cells. Four patients showed high frequencies of cells containing mutations 189, 260, 16150, and 16488, respectively, as a result of clonal expansion and could be considered as potential markers for their respective disease progression. To our knowledge, this is the first large-scale study of mtDNA variation in single malignant cells. Our results suggest that the somatic mutation process in leukemia is complex, leading to diverse levels of genetic alterations due to either intrinsic aspects of leukemia pathophysiology or chemotherapy effects. PMID:16946307

  4. Akt inhibitors induce apoptosis in chronic lymphocytic leukemia cells

    PubMed Central

    de Frias, Mercè; Iglesias-Serret, Daniel; Cosialls, Ana M.; Coll-Mulet, Llorenç; Santidrián, Antonio F.; González-Gironès, Diana M.; de la Banda, Esmeralda; Pons, Gabriel; Gil, Joan

    2009-01-01

    Background The phosphatidylinositol-3-kinase/Akt pathway has been described to be critical in the survival of chronic lymphocytic leukemia cells. In this study we analyzed the effect of two selective chemical inhibitors of Akt (Akti-1/2 and A-443654) on the survival of chronic lymphocytic leukemia cells. Design and Methods Using cytometry we studied the cytotoxic effects of Akt inhibitors on peripheral B and T lymphocytes from patients with chronic lymphocytic leukemia and from healthy donors. We studied the changes induced by Akti-1/2 and A-443654 at the mRNA level by performing reverse transcriptase multiplex ligation–dependent probe amplification. We also studied the changes induced by both Akt inhibitors in some BCL-2 protein family members on chronic lymphocytic leukemia cells by western blotting. Moreover, we analyzed the cytotoxic effect of Akt inhibitors in patients’ cells with deleted/mutated TP53. Results Both inhibitors induced apoptosis in chronic lymphocytic leukemia cells in a dose-dependent manner. Moreover, B cells from patients with chronic lymphocytic leukemia were more sensitive to Akt inhibitors than T cells from leukemic patients, and B or T cells from healthy donors. Survival factors for chronic lymphocytic leukemia cells, such as interleukin-4 and stromal cell-derived factor-1α, were not able to block the apoptosis induced by either Akt inhibitor. Akti-1/2 did not induce any change in the mRNA expression profile of genes involved in apoptosis, while A-443654 induced some changes, including an increase in NOXA and PUMA mRNA levels, suggesting the existence of additional targets for A-443654. Both inhibitors induced an increase in PUMA and NOXA protein levels, and a decrease in MCL-1 protein level. Moreover, Akti-1/2 and A-443654 induced apoptosis irrespective of TP53 status. Conclusions These results demonstrate that Akt inhibitors induce apoptosis of chronic lymphocytic leukemia cells and might be a new therapeutic option for the treatment of chronic lymphocytic leukemia. PMID:19815839

  5. Stem Cell Modeling of Core Binding Factor Acute Myeloid Leukemia

    PubMed Central

    Mosna, Federico

    2016-01-01

    Even though clonally originated from a single cell, acute leukemia loses its homogeneity soon and presents at clinical diagnosis as a hierarchy of cells endowed with different functions, of which only a minority possesses the ability to recapitulate the disease. Due to their analogy to hematopoietic stem cells, these cells have been named “leukemia stem cells,” and are thought to be chiefly responsible for disease relapse and ultimate survival after chemotherapy. Core Binding Factor (CBF) Acute Myeloid Leukemia (AML) is cytogenetically characterized by either the t(8;21) or the inv(16)/t(16;16) chromosomal abnormalities, which, although being pathognomonic, are not sufficient per se to induce overt leukemia but rather determine a preclinical phase of disease when preleukemic subclones compete until the acquisition of clonal dominance by one of them. In this review we summarize the concepts regarding the application of the “leukemia stem cell” theory to the development of CBF AML; we will analyze the studies investigating the leukemogenetic role of t(8;21) and inv(16)/t(16;16), the proposed theories of its clonal evolution, and the role played by the hematopoietic niches in preserving the disease. Finally, we will discuss the clinical implications of stem cell modeling of CBF AML for the therapy of the disease. PMID:26880987

  6. Establishment and culture of leukemia-lymphoma cell lines.

    PubMed

    Drexler, Hans G

    2011-01-01

    The advent of continuous human leukemia-lymphoma cell lines as a rich resource of abundant, accessible, and manipulable living cells has contributed significantly to a better understanding of the pathophysiology of hematopoietic tumors. The first leukemia-lymphoma cell lines were established in 1963 and since then large numbers of new cell lines have been described. The major advantages of continuous leukemia-lymphoma cell lines are the unlimited supply and worldwide availability of identical cell material and the infinite viable storability in liquid nitrogen. These cell lines are characterized generally by monoclonal origin and differentiation arrest, sustained proliferation in vitro under preservation of most cellular features, and by specific genetic alterations. Here some of the more promising techniques for establishing new leukemia-lymphoma cell lines and the basic principles for culturing these cells are described. Several clinical and cell culture parameters might have some influence on the success rate, e.g., choice of culture medium and culture conditions, specimen site of the primary cells, and status of the patient at the time of sample collection. PMID:21516408

  7. Leukomogenic factors downregulate heparanase expression in acute myeloid leukemia cells

    SciTech Connect

    Eshel, Rinat; Ben-Zaken, Olga; Vainas, Oded; Nadir, Yona; Minucci, Saverio; Polliack, Aaron; Naparstek, Ella; Vlodavsky, Israel; Katz, Ben-Zion; E-mail: bkatz@tasmc.healt.gov.il

    2005-10-07

    Heparanase is a heparan sulfate-degrading endoglycosidase expressed by mature monocytes and myeloid cells, but not by immature hematopoietic progenitors. Heparanase gene expression is upregulated during differentiation of immature myeloid cells. PML-RAR{alpha} and PLZF-RAR{alpha} fusion gene products associated with acute promyelocytic leukemia abrogate myeloid differentiation and heparanase expression. AML-Eto, a translocation product associated with AML FAB M2, also downregulates heparanase gene expression. The common mechanism that underlines the activity of these three fusion gene products involves the recruitment of histone deacetylase complexes to specific locations within the DNA. We found that retinoic acid that dissociates PML-RAR{alpha} from the DNA, and which is used to treat acute promyelocytic leukemia patients, restores heparanase expression to normal levels in an acute promyelocytic leukemia cell line. The retinoic acid effects were also observed in primary acute promyelocytic leukemia cells and in a retinoic acid-treated acute promyelocytic leukemia patient. Histone deacetylase inhibitor reverses the downregulation of heparanase expression induced by the AML-Eto fusion gene product in M2 type AML. In summary, we have characterized a link between leukomogenic factors and the downregulation of heparanase in myeloid leukemic cells.

  8. Antibody May Lower Rejection Rates After Stem Cell Transplant in Leukemia Patients

    MedlinePLUS

    ... 156552.html Antibody May Lower Rejection Rates After Stem Cell Transplant in Leukemia Patients Study showed many were ... leukemia who were given antibody therapy before a stem cell transplant fared better than those who didn't ...

  9. Novel non-viral method for transfection of primary leukemia cells and cell lines.

    PubMed

    Schakowski, Frank; Buttgereit, Peter; Mazur, Martin; Mrten, Angela; Schttker, Bjrn; Gorschlter, Marcus; Schmidt-Wolf, Ingo GH

    2004-01-12

    BACKGROUND: Tumor cells such as leukemia and lymphoma cells are possible targets for gene therapy. However, previously leukemia and lymphoma cells have been demonstrated to be resistant to most of non-viral gene transfer methods. METHODS: The aim of this study was to analyze various methods for transfection of primary leukemia cells and leukemia cell lines and to improve the efficiency of gene delivery. Here, we evaluated a novel electroporation based technique called nucleofection. This novel technique uses a combination of special electrical parameters and specific solutions to deliver the DNA directly to the cell nucleus under mild conditions. RESULTS: Using this technique for gene transfer up to 75% of primary cells derived from three acute myeloid leukemia (AML) patients and K562 cells were transfected with the green flourescent protein (GFP) reporter gene with low cytotoxicity. In addition, 49(+/- 9.7%) of HL60 leukemia cells showed expression of GFP. CONCLUSION: The non-viral transfection method described here may have an impact on the use of primary leukemia cells and leukemia cell lines in cancer gene therapy. PMID:14715084

  10. A novel self-lipid antigen targets human T cells against CD1c+ leukemias

    PubMed Central

    Lepore, Marco; de Lalla, Claudia; Gundimeda, S. Ramanjaneyulu; Gsellinger, Heiko; Consonni, Michela; Garavaglia, Claudio; Sansano, Sebastiano; Piccolo, Francesco; Scelfo, Andrea; Hussinger, Daniel; Montagna, Daniela; Locatelli, Franco; Bonini, Chiara; Bondanza, Attilio; Forcina, Alessandra; Li, Zhiyuan; Ni, Guanghui; Ciceri, Fabio; Jen, Paul; Xia, Chengfeng

    2014-01-01

    T cells that recognize self-lipids presented by CD1c are frequent in the peripheral blood of healthy individuals and kill transformed hematopoietic cells, but little is known about their antigen specificity and potential antileukemia effects. We report that CD1c self-reactive T cells recognize a novel class of self-lipids, identified as methyl-lysophosphatidic acids (mLPAs), which are accumulated in leukemia cells. Primary acute myeloid and B cell acute leukemia blasts express CD1 molecules. mLPA-specific T cells efficiently kill CD1c+ acute leukemia cells, poorly recognize nontransformed CD1c-expressing cells, and protect immunodeficient mice against CD1c+ human leukemia cells. The identification of immunogenic self-lipid antigens accumulated in leukemia cells and the observed leukemia control by lipid-specific T cells in vivo provide a new conceptual framework for leukemia immune surveillance and possible immunotherapy. PMID:24935257

  11. Large-scale production of hairy root.

    PubMed

    Uozumi, Nobuyuki

    2004-01-01

    Many products of interest are synthesized in organized tissues, but not formed in suspension or callus culture. Therefore, most attention has been focused on root cultures. The transgenic plant,"hairy root", has brought us to dramatic improvements in growth rate and high content of desirable products. Since the roots are quite different from callus in morphology, the culture manner should be explored independently. By providing a growth environment, an elite hairy root can be a more attractive plant. Both of strain selection to generate more competent plants in breeding and engineering development are necessary to overcome various limitations. In this chapter the engineering issues involved in using hairy root culture are discussed, as follows. 1. Measurement of cell concentration on line, and a designing bioreactors for hairy root in liquid culture. 2. High cell density culture and its kinetic parameters. 3. Secretion of target products. 4. The micropropagation of the regenerated hairy root by means of artificial seed system. In some cases where callus and suspension culture show negligible productivity, organ culture will be necessary to achieve good formation. This study on hairy root culture indicates one of the best attempts to the recovery of products from the organ culture in plant biotechnology. PMID:15453193

  12. Feline leukemia virus subgroup B uses the same cell surface receptor as gibbon ape leukemia virus.

    PubMed Central

    Takeuchi, Y; Vile, R G; Simpson, G; O'Hara, B; Collins, M K; Weiss, R A

    1992-01-01

    Pseudotypes of gibbon ape leukemia virus/simian sarcoma-associated virus (GALV/SSAV) and feline leukemia virus subgroup B (FeLV-B) have been constructed by rescuing a Moloney murine leukemia virus vector genome with wild-type GALV/SSAV or FeLV-B. The resulting recombinant viruses utilized core and envelope proteins from the wild-type virus and conferred resistance to growth in L-histidinol upon infected cells by virtue of the HisD gene encoded by the vector genome. They displayed the host range specificity of the rescuing viruses and could be neutralized by virus-specific antisera. Receptor cross-interference was observed when the GALV/SSAV or FeLV-B pseudotypes were used to superinfect cells productively infected with either GALV/SSAV or FeLV-B. Although murine cells are resistant to FeLV-B infection, murine cells expressing the human gene for the GALV/SSAV receptor became susceptible to FeLV-B infection. Therefore GALV/SSAV and FeLV-B utilize the same cell surface receptor. PMID:1309898

  13. Effects of cytosine arabinoside on human leukemia cells.

    PubMed

    Crisp, L B; Smith, S M; Mathers, M A; Young, G A; Lyons, S D; Christopherson, R I

    1996-09-01

    Cytosine arabinoside (Ara-C) is used to treat leukemias, with complete remission induced by combination chemotherapy in approximately 70% of cases of acute myelogenous leukemia (AML). Ara-CTP acts as a competitive inhibitor of DNA polymerase and may also be incorporated into DNA. Accumulation of deoxyribonucleoside triphosphates (dNTPs) induced by Ara-C may indicate disruption of DNA synthesis in susceptible leukemia cells. A procedure has been developed for the quantification of Ara-CTP and dNTPs from small samples of leukaemia cells from patients (4 x 10(7) cells) activated with concanavalin A (10 micrograms/ml, 48 hr) and grown in the presence of [32P]orthophosphate (1.1 microM, 9 x 10(6) Ci/mol, 16 hr). The susceptibilities to Ara-C of the human leukemia cell lines CCRF-CEM (IC50 = 6.30 nM), CCRF-HSB-2 (IC50 = 10.4 nM) and MOLT-4 (IC50 = 10.0 nM) may be correlated with their abilities to accumulate high concentrations of Ara-CTP (> 1000 amol/cell) with increases of between 1.3- and 3.4-fold in dATP, dGTP and dTTP for the four cell lines, while dCTP decreased between 0.23- and 0.78-fold. By contrast, an Ara-C-resistant derivative of HL-60 cells (IC50 = 400 nM) accumulated only low concentrations of Ara-CTP (71 amol/cell) without significant changes in dNTPs. High concentrations of Ara-CTP in leukemia cells induce accumulations of dATP, dGTP and dTTP due to inhibition of DNA synthesis, and depletion of dCTP. This imbalance in the pools of the four dNTPs could lead to genetic miscoding and cell death. PMID:8930129

  14. Inducible T-cell receptor expression in precursor T cells for leukemia control.

    PubMed

    Hoseini, S S; Hapke, M; Herbst, J; Wedekind, D; Baumann, R; Heinz, N; Schiedlmeier, B; Vignali, D A A; van den Brink, M R M; Schambach, A; Blazar, B R; Sauer, M G

    2015-07-01

    Co-transplantation of hematopoietic stem cells with those engineered to express leukemia-reactive T-cell receptors (TCRs) and differentiated ex vivo into precursor T cells (preTs) may reduce the risk of leukemia relapse. As expression of potentially self-(leukemia-) reactive TCRs will lead to negative selection or provoke autoimmunity upon thymic maturation, we investigated a novel concept whereby TCR expression set under the control of an inducible promoter would allow timely controlled TCR expression. After in vivo maturation and gene induction, preTs developed potent anti-leukemia effects. Engineered preTs provided protection even after repeated leukemia challenges by giving rise to effector and central memory cells. Importantly, adoptive transfer of TCR-transduced allogeneic preTs mediated anti-leukemia effect without evoking graft-versus-host disease (GVHD). Earlier transgene induction forced CD8(+) T-cell development was required to obtain a mature T-cell subset of targeted specificity, allowed engineered T cells to efficiently pass positive selection and abrogated the endogenous T-cell repertoire. Later induction favored CD4 differentiation and failed to produce a leukemia-reactive population emphasizing the dominant role of positive selection. Taken together, we provide new functional insights for the employment of TCR-engineered precursor cells as a controllable immunotherapeutic modality with significant anti-leukemia activity. PMID:25652739

  15. Fludarabine Phosphate, Radiation Therapy, and Rituximab in Treating Patients Who Are Undergoing Donor Stem Cell Transplant Followed by Rituximab for High-Risk Chronic Lymphocytic Leukemia or Small Lymphocytic Lymphoma

    ClinicalTrials.gov

    2016-03-28

    Chronic Lymphocytic Leukemia; Prolymphocytic Leukemia; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Stage III Chronic Lymphocytic Leukemia; Stage III Small Lymphocytic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Small Lymphocytic Lymphoma; T-Cell Large Granular Lymphocyte Leukemia

  16. Serological analysis of cell surface antigens of null cell acute lymphocytic leukemia by mouse monoclonal antibodies.

    PubMed Central

    Ueda, R; Tanimoto, M; Takahashi, T; Ogata, S; Nishida, K; Namikawa, R; Nishizuka, Y; Ota, K

    1982-01-01

    Nine antigens systems were defined. Two were related to HLA-A,B,C and to Ia-like antigens; the others could be grouped into three categories. (i) NL-22, NL-1: NL-22 antibody reacted with leukemia cells from 12 to 16 cases of null cell acute lymphocytic leukemia (null-ALL) but not with any other type of leukemia tested or with lymphoid cells of various origins. Among cultured cell lines tested, one (NALM-6) of three null-ALL cell lines was positive, the others were negative. Absorption analysis confirmed the restriction of NL-22 antigen to null-ALL. NL-1 antibody was reactive with leukemia cells from 10 to 16 cases of null-ALL and 3 of 6 cases of chronic myelocytic leukemia in blastic crisis (CML-BC). The antigen was present also on a minor population of normal lymphoid cells. The distribution and molecular weight (100,000; glycoprotein) of the NL-1 antigen resembled that of the previously described common ALL antigen (cALL). (ii) NL-30, NL-4: Both antibodies exhibited almost identical patterns of reactivities against cultured cell lines tested. They reacted with leukemia cells from some cases of null-ALL, adult T-cell leukemia, and CML-BC, although they showed discordance in their reactivities against a panel of leukemia cells, (iii) NL-9, NL-8, NL-25: These three antibodies detect serologically distinguishable determinants on a broad range of leukemias and normal lymphoid and hematopoietic cell types. The antibodies analyzed in this study provide evidence for the heterogeneity of null-ALL by demonstrating a variety of antigen phenotypes on leukemia cells. One of the antigens (NL-22) appears to be restricted to null-ALL. PMID:6956869

  17. Acute myeloid leukemia stem cells and CD33-targeted immunotherapy

    PubMed Central

    Appelbaum, Frederick R.; Estey, Elihu H.; Bernstein, Irwin D.

    2012-01-01

    Although the identification of cancer stem cells as therapeutic targets is now actively being pursued in many human malignancies, the leukemic stem cells in acute myeloid leukemia (AML) are a paradigm of such a strategy. Heterogeneity of these cells was suggested by clonal analyses indicating the existence of both leukemias resulting from transformed multipotent CD33? stem cells as well others arising from, or predominantly involving, committed CD33+ myeloid precursors. The latter leukemias, which may be associated with an intrinsically better prognosis, offer a particularly attractive target for stem cell-directed therapies. Targeting the CD33 differentiation antigen with gemtuzumab ozogamicin was the first attempt of such an approach. Emerging clinical data indicate that gemtuzumab ozogamicin is efficacious not only for acute promyelocytic leukemia but, in combination with conventional chemotherapy, also for other favorable- and intermediate-risk AMLs, providing the first proof-of-principle evidence for the validity of this strategy. Herein, we review studies on the nature of stem cells in AML, discuss clinical data on the effectiveness of CD33-directed therapy, and consider the mechanistic basis for success and failure in various AML subsets. PMID:22286199

  18. Identification and targeting leukemia stem cells: The path to the cure for acute myeloid leukemia

    PubMed Central

    Zhou, Jianbiao; Chng, Wee-Joo

    2014-01-01

    Accumulating evidence support the notion that acute myeloid leukemia (AML) is organized in a hierarchical system, originating from a special proportion of leukemia stem cells (LSC). Similar to their normal counterpart, hematopoietic stem cells (HSC), LSC possess self-renewal capacity and are responsible for the continued growth and proliferation of the bulk of leukemia cells in the blood and bone marrow. It is believed that LSC are also the root cause for the treatment failure and relapse of AML because LSC are often resistant to chemotherapy. In the past decade, we have made significant advancement in identification and understanding the molecular biology of LSC, but it remains a daunting task to specifically targeting LSC, while sparing normal HSC. In this review, we will first provide a historical overview of the discovery of LSC, followed by a summary of identification and separation of LSC by either cell surface markers or functional assays. Next, the review will focus on the current, various strategies for eradicating LSC. Finally, we will highlight future directions and challenges ahead of our ultimate goal for the cure of AML by targeting LSC. PMID:25258669

  19. Occupational exposures, animal exposure and smoking as risk factors for hairy cell leukaemia evaluated in a case-control study.

    PubMed Central

    Nordström, M.; Hardell, L.; Magnuson, A.; Hagberg, H.; Rask-Andersen, A.

    1998-01-01

    To evaluate occupational exposures as risk factors for hairy cell leukaemia (HCL), a population-based case-control study on 121 male HCL patients and 484 controls matched for age and sex was conducted. Elevated odds ratio (OR) was found for exposure to farm animals in general: OR 2.0, 95% confidence interval (CI) 1.2-3.2. The ORs were elevated for exposure to cattle, horse, hog, poultry and sheep. Exposure to herbicides (OR 2.9, CI 1.4-5.9), insecticides (OR 2.0, CI 1.1-3.5), fungicides (OR 3.8, CI 1.4-9.9) and impregnating agents (OR 2.4, CI 1.3-4.6) also showed increased risk. Certain findings suggested that recall bias may have affected the results for farm animals, herbicides and insecticides. Exposure to organic solvents yielded elevated risk (OR 1.5, CI 0.99-2.3), as did exposure to exhaust fumes (OR 2.1, CI 1.3-3.3). In an additional multivariate model, the ORs remained elevated for all these exposures with the exception of insecticides. We found a reduced risk for smokers with OR 0.6 (CI 0.4-1.1) because of an effect among non-farmers. PMID:9667691

  20. Nilotinib and Imatinib Mesylate After Donor Stem Cell Transplant in Treating Patients With Acute Lymphoblastic Leukemia or Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2014-12-09

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Chronic Phase Chronic Myelogenous Leukemia; Philadelphia Chromosome Positive Adult Precursor Acute Lymphoblastic Leukemia; Philadelphia Chromosome Positive Childhood Precursor Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Relapsing Chronic Myelogenous Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  1. Diethyldithiocarbamate-induced cytotoxicity and apoptosis in leukemia cell lines.

    PubMed

    Kanno, Syu-ichi; Matsukawa, Emi; Miura, Ai; Shouji, Ai; Asou, Keiko; Ishikawa, Masaaki

    2003-07-01

    Diethyldithiocarbamate (DDTC) has been shown to induce cytotoxicity in several different systems. We examined whether the DDTC-induced cytotoxicity was via apoptosis, or in relation to intracellular glutathione (GSH) in various murine and human leukemia cell lines. The cells most sensitive to DDTC-induced cytotoxicity were P388 lymphoid neoplasma cells and NALM-6, a B cell line of acute lymphocytic leukemia (ALL). The next level of susceptible cells included J774.1, having a macrophage function, HL-60 premyelocytic leukemia cells, MOLT-4, an acute lymphoblastic leukemia cell, and Jurkat, a T-cell leukemia. U937 (expressing many monocyte-like characteristics), K562 erythroleukemia and K562/DXR (a multidrug-resistant clone derived from K562) were almost unaffected by DDTC. P388 was also highly susceptible to H(2)O(2), a most useful exogenous reactive oxygen species generator, and was lower in intracellular total GSH content than other leukemia cells. DDTC-induced cytotoxicity was closely related to intracellular GSH, but the level of cellular GSH did not always correlate with H(2)O(2)-induced cytotoxicity in this experiment. K562 had a higher intracellular total GSH content and showed lower susceptibility to DDTC and H(2)O(2), but with the combination of DDTC and DL-buthionine-(S,R)-sulfoximine (BSO), cytotoxicity increased significantly. The ratio of GSH/GSSG in P388 was reduced by DDTC or H(2)O(2). H(2)O(2)-induced cytotoxicity was completely blocked by catalase (CAT), while it was enhanced by superoxide dismutase (SOD). CAT or SOD did not affect DDTC-induced cytotoxicity. N-Acetylcysteine (NAC: 1 mM), a vanguard substance of GSH, and aurintricarboxylic acid (ATA: 100 microM), an endonuclease inhibitor, ameliorated DDTC-induced cytotoxicity and apoptosis. In conclusion, we suggest that DDTC-induced cytotoxicity was via an oxidative shift in the intracellular redox state, and accompanied the activation of endonuclease through apoptosis in leukemia cell lines. PMID:12843619

  2. Novel Pharmacotherapies for B-Cell Lymphomas and Leukemias.

    PubMed

    Tees, Michael T; Sokol, Lubomir

    2016-01-01

    Novel pharmacotherapeutic agents were recently approved for treatment of low-grade B-cell neoplasms, and many other agents are under investigation. Several agents have demonstrated impressive activity in targeting malignant B-cell processes and specific pathways, all with the potential to expand our ability to effectively treat B-cell malignancies. The inhibitors of several cell regulatory proteins, including Bruton tyrosine kinase (Btk), phosphoinositide 3-kinase (PI3-K), B-cell lymphoma/leukemia-2 (Bcl-2), and histone deacetylases, as well as immunomodulatory agents are a few of the many pharmacotherapeutic agents under study. A comprehensive review and assessment is presented of the current pharmacotherapies under investigation targeting B-cell lymphomas and leukemias. PMID:25549076

  3. Lysosomal disruption preferentially targets acute myeloid leukemia cells and progenitors

    PubMed Central

    Sukhai, Mahadeo A.; Prabha, Swayam; Hurren, Rose; Rutledge, Angela C.; Lee, Anna Y.; Sriskanthadevan, Shrivani; Sun, Hong; Wang, Xiaoming; Skrtic, Marko; Seneviratne, Ayesh; Cusimano, Maria; Jhas, Bozhena; Gronda, Marcela; MacLean, Neil; Cho, Eunice E.; Spagnuolo, Paul A.; Sharmeen, Sumaiya; Gebbia, Marinella; Urbanus, Malene; Eppert, Kolja; Dissanayake, Dilan; Jonet, Alexia; Dassonville-Klimpt, Alexandra; Li, Xiaoming; Datti, Alessandro; Ohashi, Pamela S.; Wrana, Jeff; Rogers, Ian; Sonnet, Pascal; Ellis, William Y.; Corey, Seth J.; Eaves, Connie; Minden, Mark D.; Wang, Jean C.Y.; Dick, John E.; Nislow, Corey; Giaever, Guri; Schimmer, Aaron D.

    2012-01-01

    Despite efforts to understand and treat acute myeloid leukemia (AML), there remains a need for more comprehensive therapies to prevent AML-associated relapses. To identify new therapeutic strategies for AML, we screened a library of on- and off-patent drugs and identified the antimalarial agent mefloquine as a compound that selectively kills AML cells and AML stem cells in a panel of leukemia cell lines and in mice. Using a yeast genome-wide functional screen for mefloquine sensitizers, we identified genes associated with the yeast vacuole, the homolog of the mammalian lysosome. Consistent with this, we determined that mefloquine disrupts lysosomes, directly permeabilizes the lysosome membrane, and releases cathepsins into the cytosol. Knockdown of the lysosomal membrane proteins LAMP1 and LAMP2 resulted in decreased cell viability, as did treatment of AML cells with known lysosome disrupters. Highlighting a potential therapeutic rationale for this strategy, leukemic cells had significantly larger lysosomes compared with normal cells, and leukemia-initiating cells overexpressed lysosomal biogenesis genes. These results demonstrate that lysosomal disruption preferentially targets AML cells and AML progenitor cells, providing a rationale for testing lysosomal disruption as a novel therapeutic strategy for AML. PMID:23202731

  4. Leukemia

    MedlinePLUS

    ... at a Glance Show More At a Glance Estimated New Cases in 2015 54,270 % of All New Cancer Cases 3.3% Estimated Deaths in 2015 24,450 % of All Cancer ... of This Cancer : In 2012, there were an estimated 318,389 people living with leukemia in the ...

  5. Adult T-Cell Leukemia-Lymphoma during Pregnancy

    PubMed Central

    Olaso, Aedan Simon; Cohen, Seth; Kossev, Plamen

    2013-01-01

    Adult T-cell leukemia-lymphoma (ATL) is an uncommon highly aggressive T-cell lymphoma associated with human T-cell lymphotropic virus type 1 (HTLV-1) infection. It is rarely encountered during pregnancy and is particularly challenging to treat due to its aggressive nature and because of the lack of robust data on optimal chemotherapy. We report a case of a Jamaican immigrant diagnosed with ATL during pregnancy. PMID:23840994

  6. [Treatment of acute leukemia with allogeneic stem cell transplantation].

    PubMed

    Seiwerth, Ranka Serventi; Mrsi?, Mirando; Nemet, Damir; Bogdani?, Vinko; Mikuli?, Mirta; Serti?, Dubravka; Grkovi?, Lana; Cecuk, Esma; Bojani?, Ines; Batini?, Drago; Labar, Boris

    2009-06-01

    Allogeneic hematopoietic stem cell transplantation is a standard therapeutic option in the treatment of patients with malignant hematologic diseases and some acquired or inherited nonmalignant hematologic disorders. It is the most efficacious method for eradication of acute leukemia, its efficacy being described by DFS (Disease Free Survival) and OS (Overall Survival), however, still associated with a high Transplant Related Mortality (TRM) rate. At Department of Hematology, University Department of Medicine, Zagreb University Hospital Center, bone marrow transplantation has been a standard procedure since 1983. Since that time, 281 patients with acute leukemia have undergone allotransplantation at our Department. Results are presented of 72 patients with acute myeloid leukemia transplanted at our Department during the 1993-2007 period. PMID:19827346

  7. Systemic mastocytosis: progressive evolution of an occult disease into fatal mast cell leukemia: unique findings on an unusual hematological neoplasm.

    PubMed

    Gülen, T; Sander, B; Nilsson, G; Palmblad, J; Sotlar, K; Horny, H-P; Hägglund, H

    2012-12-01

    Systemic mastocytosis (SM) may be associated with a clonal hematopoietic non-mast cell-lineage disease (AHNMD). SM and AHNMD even may be clonally related. This report contributes to a better understanding of the different morphological aspects of SM by demonstrating that various AHNMDs can be detected in one patient during the course of disease. Routinely processed biopsy specimens of bone marrow and spleen removed from a 63-year-old man were investigated including a broad panel of immunohistochemical stainings. KIT codon 816 mutation analysis was carried out by melting point analysis of nested PCR products amplified from DNA of pooled microdissected mast cells. The histomorphological features of the initial bone marrow showed diffuse infiltration by hairy cell leukemia (HCL). Occult SM was only detected retrospectively by demonstration of a slight diffuse increase in loosely scattered, spindle-shaped mast cells carrying the activating point mutation KIT ( D816V ). In the second bone marrow, core biopsy removed about two years later HCL had been completely eradicated, while a diagnosis of SM-AHNMD with multifocal compact mast cell infiltrates associated with a myeloproliferative neoplasm (MPN) and significant increase in eosinophilic granulocytes was established. The third and last bone marrow biopsy specimen lacked the features of both MPN and HCL but showed progression into a secondary mast cell leukemia (MCL) with a focal sarcomatous component. To the best of the authors' knowledge, this is the first description of a case of SM-AHNMD with coexisting hematological neoplasms of lymphatic and myeloid origin initially presenting as occult disease and terminating as secondary MCL. PMID:22661384

  8. Childhood Leukemia

    MedlinePLUS

    Leukemia is cancer of the white blood cells. It is the most common type of childhood cancer. ... blood cells help your body fight infection. In leukemia, the bone marrow produces abnormal white blood cells. ...

  9. Discovery of survival factor for primitive chronic myeloid leukemia cells using induced pluripotent stem cells.

    PubMed

    Suknuntha, Kran; Ishii, Yuki; Tao, Lihong; Hu, Kejin; McIntosh, Brian E; Yang, David; Swanson, Scott; Stewart, Ron; Wang, Jean Y J; Thomson, James; Slukvin, Igor

    2015-11-01

    A definitive cure for chronic myeloid leukemia (CML) requires identifying novel therapeutic targets to eradicate leukemia stem cells (LSCs). However, the rarity of LSCs within the primitive hematopoietic cell compartment remains a major limiting factor for their study in humans. Here we show that primitive hematopoietic cells with typical LSC features, including adhesion defect, increased long-term survival and proliferation, and innate resistance to tyrosine kinase inhibitor (TKI) imatinib, can be generated de novo from reprogrammed primary CML cells. Using CML iPSC-derived primitive leukemia cells, we discovered olfactomedin 4 (OLFM4) as a novel factor that contributes to survival and growth of somatic lin(-)CD34(+) cells from bone marrow of patients with CML in chronic phase, but not primitive hematopoietic cells from normal bone marrow. Overall, this study shows the feasibility and advantages of using reprogramming technology to develop strategies for targeting primitive leukemia cells. PMID:26561938

  10. Cytomegalovirus induces apoptosis in acute leukemia cells as a virus-versus-leukemia function.

    PubMed

    Koldehoff, Michael; Lindemann, Monika; Opalka, Bertram; Bauer, Sebastian; Ross, Rudolf Stefan; Elmaagacli, Ahmet H

    2015-11-01

    Cytomegalovirus (HCMV) reactivation occurs frequently after hematopoietic stem cell transplantation and is associated with an increased treatment-related mortality. Induction of apoptosis by HCMV is unusual because HCMV utilizes various strategies to prevent apoptosis in infected cells in order to delay cell death and maintain viral replication. Here we show that HCMV can infect the acute leukemia cell lines Kasumi-1 (AML) and SD-1 (BCR-ABL-positive ALL), which inhibited their proliferation and induced apoptosis in almost all cells after 14 days. Although HCMV induced a significant up-regulation of the anti-apoptotic gene cFLIP and the anti-stress gene Gadd45a, and simultaneously down-regulated the pro-apoptotic genes p53, Gadd45gamma in Kasumi-1 and SD-1 cells, we found that these anti-apoptotic mechanisms failed in HCMV-infected acute leukemia cells and apoptosis occurred via a caspase-dependent pathway. We conclude that HCMV can provide anti-leukemic effects in vitro. To determine if this phenomenon may be clinically relevant further investigations will be required. PMID:25818505

  11. Myeloid/natural killer cell precursor acute leukemia with tetraploidy.

    PubMed

    Dinol, Gna?; Palandz, Skr; Nalaci, Meliha; Uur, Ali; Bykaydin, Banu

    2005-12-01

    Myeloid/natural killer (NK) cell precursor acute leukemia is characterized by coexpression of myeloid and natural killer cell antigens and an aggressive clinical course. Here we report a case of myeloid/NK precursor acute leukemia in a 37-year-old woman. Clinical presentation was correlated with leukemic blast morphology, immunophenotype, and cytogenetic analysis. The patient had noted fever, weakness, purpura, peripheral lymphadenopathy, and moderate hepatosplenomegaly. Peripheral blood smears and bone marrow aspirate smears at presentation revealed blastic cells, which were generally L2 shaped, with variation in cell size, round to moderately irregular nuclei and prominent nucleoli, pale cytoplasm, and a lack of azurophilic granules. Immunophenotypic analysis of the blasts displayed coexpression of myeloid and natural killer cell antigens with relatively immature phenotype: CD7+, CD33+, CD34+, CD56+, CD57+, CD16-, MPO-. Cytogenetic analysis of marrow cells showed 62% of cells with a normal female karyotype; in the remaining 38%, tetraploid changes were detected, where the chromosome number was 92, with no preferential losses or gains of chromosomes. Fluorescence in situ hybridization analysis revealed the same abnormality. The patient did not respond to chemotherapy (cytosine arabinoside and idarubicin) and died of a septic complication on the 34th day after admission. To our knowledge, this is the first description of tetraploidy in myeloid/NK cell precursor acute leukemia. PMID:16337859

  12. Dispirocyclopropyldehydrocostus lactone selectively inhibits acute myelogenous leukemia cells.

    PubMed

    Ding, Ya-Hui; Gao, Xue; Long, Jing; Kuang, Bei-Jia; Chen, Yue; Zhang, Quan

    2016-02-15

    Acute myeloid leukemia (AML) is a refractory disease, and the majority of AML patients died from relapse and multidrug resistance. More and more studies demonstrate that AML stem cells play key role in multidrug resistance of AML. Here, we report a derivative of dehydrocostus lactone, that is, dispirocyclopropyldehydrocostus lactone (DDL), showed preferable cytotoxicity against a series of leukemia cell lines and AML stem cells from clinical samples of AML patient. Meanwhile, DDL demonstrated no significant toxicity to normal hematopoietic cells. Therefore, the prodrug of DDL, DMADDL, was evaluated for its in vivo anti-AML activity. The result revealed that DMADDL could inhibit the tumor growth in SCID mice tumorigenicity assay. Further study suggested that DDL induced apoptosis mainly through the up-regulation of apoptosis related protein Bax, followed by the cleavage of caspase-3, caspase-9, and PARP. PMID:26832219

  13. Tacrolimus and Methotrexate With or Without Sirolimus in Preventing Graft-Versus-Host Disease in Young Patients Undergoing Donor Stem Cell Transplant for Acute Lymphoblastic Leukemia in Complete Remission

    ClinicalTrials.gov

    2014-01-23

    B-cell Childhood Acute Lymphoblastic Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Graft Versus Host Disease; L1 Childhood Acute Lymphoblastic Leukemia; L2 Childhood Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia

  14. Cannabinoids induce incomplete maturation of cultured human leukemia cells

    SciTech Connect

    Murison, G.; Chubb, C.B.H.; Maeda, S.; Gemmell, M.A.; Huberman, E.

    1987-08-01

    Monocyte maturation markers were induced in cultured human myeloblastic ML-2 leukemia cells after treatment for 1-6 days with 0.03-30 ..mu..M ..delta../sup 9/-tetrahydrocannabinol (THC), the major psychoactive component of marijuana. After a 2-day or longer treatment, 2- to 5-fold increases were found in the percentages of cells exhibiting reactivity with either the murine OKM1 monoclonal antibody of the Leu-M5 monoclonal antibody, staining positively for nonspecific esterase activity, and displaying a promonocyte morphology. The increases in these differentiation markers after treatment with 0.03-1 ..mu..M THC were dose dependent. At this dose range, THC did not cause an inhibition of cell growth. The THC-induced cell maturation was also characterized by specific changes in the patterns of newly synthesized proteins. The THC-induced differentiation did not, however, result in cells with a highly developed mature monocyte phenotype. However, treatment of these incompletely matured cells with either phorbol 12-myristate 13-acetate of 1..cap alpha..,25-dihydroxycholecalciferol, which are inducers of differentiation in myeloid leukemia cells (including ML-2 cells), produced cells with a mature monocyte morphology. The ML-2 cell system described here may be a useful tool for deciphering critical biochemical events that lead to the cannabinoid-induced incomplete cell differentiation of ML-2 cells and other related cell types. Findings obtained from this system may have important implications for studies of cannabinoid effects on normal human bone-marrow progenitor cells.

  15. Identification of leukemia cell surface proteins in clams

    SciTech Connect

    Reinisch, C.L.; Smolowitz, R.; Miosky, D. Marine Biological Lab., Woods Hole, MA )

    1988-09-01

    Soft-shell clams, Mya arenaria, develop leukemias which, in the advanced stages of disease, kill the host. The authors laboratory has developed an extensive panel of murine monoclonal antibodies to leukemia cells of Mya, and has used these powerful reagents to diagnose the disease with extreme accuracy. They have now ascertained that one membrane-associated protein of approximately 200kD is immunodominant. The function of this protein, regulation of its production and potential site of synthesis are being evaluated. Monoclonal antibodies have also permitted the exploration of the mechanism of leukemogensis. They have evaluated the specific staining pattern of one monoclonal antibody, and have concluded that at least one ontogenic source of leukemic cells may be connective tissue cells lining the sinusoids. Whether or not exposure to severely polluted sites such as New Bedford Harbor stimulates the export of immature hemocytes which then become transformed is at least one possibility amenable to testing using the monoclonal reagents.

  16. Inhibition of histone methyltransferase EZH2 depletes leukemia stem cell of mixed lineage leukemia fusion leukemia through upregulation of p16.

    PubMed

    Ueda, Koki; Yoshimi, Akihide; Kagoya, Yuki; Nishikawa, Satoshi; Marquez, Victor E; Nakagawa, Masahiro; Kurokawa, Mineo

    2014-05-01

    Leukemia stem cells (LSC) are resistant to conventional chemotherapy and persistent LSC after chemotherapy are supposed to be a major cause of relapse. However, information on genetic or epigenetic regulation of stem cell properties is still limited and LSC-targeted drugs have scarcely been identified. Epigenetic regulators are associated with many cellular processes including maintenance of stem cells. Of note are polycomb group proteins, because they potentially control stemness, and can be pharmacologically targeted by a selective inhibitor (DZNep). Therefore, we investigated the therapeutic potential of EZH2 inhibition in mixed lineage leukemia (MLL) fusion leukemia. Intriguingly, EZH2 inhibition by DZNep or shRNA not only suppressed MLL fusion leukemia proliferation but also reduced leukemia initiating cells (LIC) frequency. Expression analysis suggested that p16 upregulation was responsible for LICs reduction. Knockdown of p16 canceled the survival advantage of mice treated with DZNep. Chromatin immunoprecipitation assays demonstrated that EZH2 was highly enriched around the transcription-start-site of p16, together with H3K27 methylation marks in MLL/ENL and Hoxa9/Meis1 transduced cells but not in E2A/HLF transduced cells. Although high expression of Hoxa9 in MLL fusion leukemia is supposed to be responsible for the recruitment of EZH2, our data also suggest that there may be some other mechanisms independent of Hoxa9 activation to suppress p16 expression, because expression levels of Hoxa9 and p16 were not inversely related between MLL/ENL and Hoxa9/Meis1 transduced cells. In summary, our findings show that EZH2 is a potential therapeutic target of MLL fusion leukemia stem cells. PMID:24612037

  17. Identification of CD34+ and CD34? leukemia-initiating cells in MLL-rearranged human acute lymphoblastic leukemia

    PubMed Central

    Aoki, Yuki; Watanabe, Takashi; Saito, Yoriko; Kuroki, Yoko; Hijikata, Atsushi; Takagi, Masatoshi; Tomizawa, Daisuke; Eguchi, Mariko; Eguchi-Ishimae, Minenori; Kaneko, Akiko; Ono, Rintaro; Sato, Kaori; Suzuki, Nahoko; Fujiki, Saera; Koh, Katsuyoshi; Ishii, Eiichi; Shultz, Leonard D.; Ohara, Osamu; Mizutani, Shuki

    2015-01-01

    Translocation of the mixed-lineage leukemia (MLL) gene with AF4, AF9, or ENL results in acute leukemia with both lymphoid and myeloid involvement. We characterized leukemia-initiating cells (LICs) in primary infant MLL-rearranged leukemia using a xenotransplantation model. In MLL-AF4 patients, CD34+CD38+CD19+ and CD34?CD19+ cells initiated leukemia, and in MLL-AF9 patients, CD34?CD19+ cells were LICs. In MLL-ENL patients, either CD34+ or CD34? cells were LICs, depending on the pattern of CD34 expression. In contrast, in patients with these MLL translocations, CD34+CD38?CD19?CD33? cells were enriched for normal hematopoietic stem cells (HSCs) with in vivo long-term multilineage hematopoietic repopulation capacity. Although LICs developed leukemic cells with clonal immunoglobulin heavy-chain (IGH) rearrangement in vivo, CD34+CD38?CD19?CD33? cells repopulated recipient bone marrow and spleen with B cells, showing broad polyclonal IGH rearrangement and recipient thymus with CD4+ single positive (SP), CD8+ SP, and CD4+CD8+ double-positive (DP) T cells. Global gene expression profiling revealed that CD9, CD32, and CD24 were over-represented in MLL-AF4, MLL-AF9, and MLL-ENL LICs compared with normal HSCs. In patient samples, these molecules were expressed in CD34+CD38+ and CD34? LICs but not in CD34+CD38?CD19?CD33? HSCs. Identification of LICs and LIC-specific molecules in primary human MLL-rearranged acute lymphoblastic leukemia may lead to improved therapeutic strategies for MLL-rearranged leukemia. PMID:25538041

  18. Autophagy is associated with cucurbitacin D-induced apoptosis in human T cell leukemia cells.

    PubMed

    Nakanishi, Tsukasa; Song, Yuan; He, Cuiying; Wang, Duo; Morita, Kentaro; Tsukada, Junichi; Kanazawa, Tamotsu; Yoshida, Yasuhiro

    2016-04-01

    We previously reported that the inflammasome inhibitor cucurbitacin D (CuD) induces apoptosis in human leukemia cell lines. In the present study, we investigated the effects of co-treatment with an additional Bcl-xL inhibitor, Z36. Treatment with Z36 induced cell death in leukemia cell lines, with MT-4 cells exhibiting the lowest sensitivity to Z36. Co-treatment of cells with Z36 and CuD resulted in a greater degree of cell death for Hut78 and Jurkat cells than treatment with CuD alone. In contrast, co-treatment of MT-4 cells with Z36 and CuD had a suppressive effect on cell death. The autophagy inhibitor 3-methyladenine (3-MA) suppressed the growth of leukemia cell lines HuT78, Jurkat, MT-1, and MT-4. CuD-induced cell death was enhanced by 3-MA in Jurkat cells, but inhibited in MT-4 cells. Western blotting results revealed cleavage of poly(ADP ribose) polymerase (PARP), supporting CuD-induced cell death; 3-MA enhanced CuD-Z36-induced PARP cleavage. Taken together, our results indicate that autophagy negatively regulates chemical-induced cell death of leukemia cells, and that controlling autophagy could be beneficial in the development of more effective chemotherapies against leukemia. PMID:26913856

  19. Survivin Selectively Modulates Genes Deregulated in Human Leukemia Stem Cells

    PubMed Central

    Fukuda, Seiji; Abe, Mariko; Onishi, Chie; Taketani, Takeshi; Purevsuren, Jamiyan; Yamaguchi, Seiji; Conway, Edward M.; Pelus, Louis M.

    2011-01-01

    ITD-Flt3 mutations are detected in leukemia stem cells (LSCs) in acute myeloid leukemia (AML) patients. While antagonizing Survivin normalizes ITD-Flt3-induced acute leukemia, it also impairs hematopoietic stem cell (HSC) function, indicating that identification of differences in signaling pathways downstream of Survivin between LSC and HSC are crucial to develop selective Survivin-based therapeutic strategies for AML. Using a Survivin-deletion model, we identified 1,096 genes regulated by Survivin in ITD-Flt3-transformed c-kit+, Sca-1+, and lineageneg (KSL) cells, of which 137 are deregulated in human LSC. Of the 137, 124 genes were regulated by Survivin exclusively in ITD-Flt3+ KSL cells but not in normal CD34neg KSL cells. Survivin-regulated genes in LSC connect through a network associated with the epidermal growth factor receptor signaling pathway and falls into various functional categories independent of effects on apoptosis. Pathways downstream of Survivin in LSC that are distinct from HSC can be potentially targeted for selective anti-LSC therapy. PMID:21253548

  20. Survivin selectively modulates genes deregulated in human leukemia stem cells.

    PubMed

    Fukuda, Seiji; Abe, Mariko; Onishi, Chie; Taketani, Takeshi; Purevsuren, Jamiyan; Yamaguchi, Seiji; Conway, Edward M; Pelus, Louis M

    2011-01-01

    ITD-Flt3 mutations are detected in leukemia stem cells (LSCs) in acute myeloid leukemia (AML) patients. While antagonizing Survivin normalizes ITD-Flt3-induced acute leukemia, it also impairs hematopoietic stem cell (HSC) function, indicating that identification of differences in signaling pathways downstream of Survivin between LSC and HSC are crucial to develop selective Survivin-based therapeutic strategies for AML. Using a Survivin-deletion model, we identified 1,096 genes regulated by Survivin in ITD-Flt3-transformed c-kit(+), Sca-1(+), and lineage(neg) (KSL) cells, of which 137 are deregulated in human LSC. Of the 137, 124 genes were regulated by Survivin exclusively in ITD-Flt3(+) KSL cells but not in normal CD34(neg) KSL cells. Survivin-regulated genes in LSC connect through a network associated with the epidermal growth factor receptor signaling pathway and falls into various functional categories independent of effects on apoptosis. Pathways downstream of Survivin in LSC that are distinct from HSC can be potentially targeted for selective anti-LSC therapy. PMID:21253548

  1. Heterogeneity of leukemia-initiating capacity of chronic myelogenous leukemia stem cells.

    PubMed

    Zhang, Bin; Li, Ling; Ho, Yinwei; Li, Min; Marcucci, Guido; Tong, Wei; Bhatia, Ravi

    2016-03-01

    Chronic myelogenous leukemia (CML) results from transformation of a long-term hematopoietic stem cell (LTHSC) by expression of the BCR-ABL fusion gene. However, BCR-ABL-expressing LTHSCs are heterogeneous in their capacity as leukemic stem cells (LSCs). Although discrepancies in proliferative, self-renewal, and differentiation properties of normal LTHSCs are being increasingly recognized, the mechanisms underlying heterogeneity of leukemic LTHSCs are poorly understood. Using a CML mouse model, we identified gene expression differences between leukemic and nonleukemic LTHSCs. Expression of the thrombopoietin (THPO) receptor MPL was elevated in leukemic LTHSC populations. Compared with LTHSCs with low MPL expression, LTHSCs with high MPL expression showed enhanced JAK/STAT signaling and proliferation in response to THPO in vitro and increased leukemogenic capacity in vivo. Although both G0 and S phase subpopulations were increased in LTHSCs with high MPL expression, LSC capacity was restricted to quiescent cells. Inhibition of MPL expression in CML LTHSCs reduced THPO-induced JAK/STAT signaling and leukemogenic potential. These same phenotypes were also present in LTHSCs from patients with CML, and patient LTHSCs with high MPL expression had reduced sensitivity to BCR-ABL tyrosine kinase inhibitor treatment but increased sensitivity to JAK inhibitors. Together, our studies identify MPL expression levels as a key determinant of heterogeneous leukemia-initiating capacity and drug sensitivity of CML LTHSCs and suggest that high MPL-expressing CML stem cells are potential targets for therapy. PMID:26878174

  2. Use of image analysis and immunostaining of bone marrow trephine biopsy specimens to quantify residual disease in patients with B-cell chronic lymphocytic leukemia.

    PubMed

    Gala, J L; Guiot, Y; Delannoy, A; Scheiff, J M; Philippe, M; Martiat, P

    1999-04-01

    Marrow residual disease (RD) in patients with B-cell chronic lymphocytic leukemia (B-CLL) who are in complete remission (CR) after treatment with purine analogues is reported to have a prognostic value, but sample dilution, factors interfering with marrow aspiration, or undetectable immunoglobulin rearrangement can affect the assessment of RD by molecular or immunologic methods. As demonstrated for hairy cell leukemia and follicular lymphoma, bone marrow trephine biopsy specimen immunostaining (BMT/IS) can successfully detect residual malignant cells. The aim of this study was to use BMT/IS and computerized image analysis (CIMA) of bcl-2-positive cells to quantify RD in B-CLL patients in CR, after achievement of CR and more than 1 year later. This methodology was compared with other conventional techniques, i.e., cytologic, flow cytometric, cytogenetic, and molecular analysis. BMT/IS readily detected RD in every trephine biopsy specimen examined, either after CR or at distant follow-up. CIMA allowed an objective quantification of residual B-CLL cells, as evidenced by the correlation with semiquantitative polymerase chain reaction results. Both analyses indicated a progression of RD. This finding was also supported (but inconsistently) by the other techniques. CIMA with an interstitial labeling index, therefore, seems to be a reproducible and sensitive method to detect persistence and progression of RD in patients with B-CLL. This method could apply to other hematologic malignancies infiltrating the bone marrow. PMID:10229504

  3. Optimizing Management of Patients with Adult T Cell Leukemia-Lymphoma

    PubMed Central

    Yared, Jean A.; Kimball, Amy S.

    2015-01-01

    Adult T cell leukemia-lymphoma is a rare disease with a high mortality rate, and is challenging for the clinician. Early allogeneic stem cell transplant can confer durable remission. As novel therapeutic agents become available to treat T cell malignancies, it is increasingly important that medical oncologists, hematologists, and hematopathologists recognize and accurately diagnose adult T cell leukemia-lymphoma. There is no uniform standard of treatment of adult T cell leukemia-lymphoma, and clinical trials remain critical to improving outcomes. Here we present one management approach based on the recent advances in treatment for adult T cell leukemia-lymphoma patients. PMID:26610571

  4. Zerumbone induces apoptosis in T-acute lymphoblastic leukemia cells.

    PubMed

    Abdelwahab, Siddig Ibrahim; Abdul, Ahmad Bustamam; Mohan, Syam; Taha, Manal Mohamed Elhassan; Syam, Suvitha; Ibrahim, Mohamed Yousif; Mariod, Abdelbasit Adam

    2011-02-01

    Zerumbone (ZER) is a potential anticancer natural compound, isolated from Zingiber zerumbet Smith. In this investigation, the anticancer properties of ZER were evaluated on cancer cells of T-acute lymphoblastic leukemia, CEM-ss. The results showed that ZER has cytotoxic effect against CEM-ss cells with an IC(50) of 8.4 ± 1.9 μg/ml (coefficient of variation < 30%). Comparatively, 5-fluorouracil (positive control), imposed an inhibitory effect on CEM-ss cells with an IC(50) of 1.94 ± 0.06 μg/ml. Scanning electron microscopy (SEM) results revealed abnormalities such as membrane blebbing, holes and cytoplasmic extrusions, all of which are characteristics of apoptosis. In addition, ZER has increased the number of TUNEL-positive stain and the cellular level of caspase-3, the hallmarks of apoptosis, on treated CEM-ss cells. It could be concluded that, ZER was able to produce apoptosis on T-acute lymphoblastic leukemia, CEM-ss. The current findings suggest that ZER might be helpful for improving the usefulness of anticancer agents in the therapy of leukemia. PMID:20708800

  5. Targeting leukemia stem cells in vivo with antagomiR-126 nanoparticles in acute myeloid leukemia.

    PubMed

    Dorrance, A M; Neviani, P; Ferenchak, G J; Huang, X; Nicolet, D; Maharry, K S; Ozer, H G; Hoellarbauer, P; Khalife, J; Hill, E B; Yadav, M; Bolon, B N; Lee, R J; Lee, L J; Croce, C M; Garzon, R; Caligiuri, M A; Bloomfield, C D; Marcucci, G

    2015-11-01

    Current treatments for acute myeloid leukemia (AML) are designed to target rapidly dividing blast populations with limited success in eradicating the functionally distinct leukemia stem cell (LSC) population, which is postulated to be responsible for disease resistance and relapse. We have previously reported high miR-126 expression levels to be associated with a LSC-gene expression profile. Therefore, we hypothesized that miR-126 contributes to 'stemness' and is a viable target for eliminating the LSC in AML. Here we first validate the clinical relevance of miR-126 expression in AML by showing that higher expression of this microRNA (miR) is associated with worse outcome in a large cohort of older (⩾60 years) cytogenetically normal AML patients treated with conventional chemotherapy. We then show that miR-126 overexpression characterizes AML LSC-enriched cell subpopulations and contributes to LSC long-term maintenance and self-renewal. Finally, we demonstrate the feasibility of therapeutic targeting of miR-126 in LSCs with novel targeting nanoparticles containing antagomiR-126 resulting in in vivo reduction of LSCs likely by depletion of the quiescent cell subpopulation. Our findings suggest that by targeting a single miR, that is, miR-126, it is possible to interfere with LSC activity, thereby opening potentially novel therapeutic approaches to treat AML patients. PMID:26055302

  6. B-cell leukemia/lymphoma panel

    MedlinePLUS

    B lymphocyte cell surface markers ... sample is needed. In some cases, white blood cells are removed during a bone marrow biopsy . The ... to a laboratory, where a specialist checks the cell type and characteristics. This procedure is called immunophenotyping. ...

  7. Targeting leukemia stem cells: which pathways drive self-renewal activity in T-cell acute lymphoblastic leukemia?

    PubMed

    Belmonte, M; Hoofd, C; Weng, A P; Giambra, V

    2016-02-01

    T-Cell acute lymphoblastic leukemia (t-all) is a malignancy of white blood cells, characterized by an uncontrolled accumulation of T-cell progenitors. During leukemic progression, immature T cells grow abnormally and crowd into the bone marrow, preventing it from making normal blood cells and spilling out into the bloodstream. Recent studies suggest that only discrete cell populations that possess the ability to recreate the entire tumour might be responsible for the initiation and propagation of t-all. Those unique cells are commonly called "cancer stem cells" or, in the case of hematopoietic malignancies, "leukemia stem cells" (lscs). Like normal hematopoietic stem cells, lscs are thought to be capable of self-renewal, during which, by asymmetrical division, they give rise to an identical copy of themselves as well as to a daughter cell that is no longer capable of self-renewal activity and represents a more "differentiated" progeny. Here, we review the main pathways of self-renewal activity in lscs, focusing on their involvement in the maintenance and development of t-all. New stem cell-directed therapies and lsc-targeted agents are also discussed. PMID:26966402

  8. Insights into leukemia initiating cell frequency and self-renewal from a novel canine model of leukemia

    PubMed Central

    Imren, Suzan; Zhang, Xiao-Bing; Humphries, R. Keith; Kiem, Hans-Peter

    2011-01-01

    Objective Leukemia initiating cells (LICs) have been the subject of considerable investigation because of their ability to self-renew and maintain leukemia. Thus, selective targeting and killing of LIC would provide highly efficient and novel therapeutic strategies. Here we explored whether we could use a canine leukemia cell line (G374) derived from a dog that received HOXB4 transduced repopulating cells to study leukemia in the murine xenograft model and the dog. Materials and Methods G374 cells were infused in dogs intravenously (IV) and in NOD/SCID and NOD/SCID/IL2R?null mice either IV or directly into the bone cavity (IF). Animals were bled to track engraftment and proliferation of G374 cells, and were sacrificed when they appeared ill. Results We found that canine LICs are capable of sustained in vitro self-renewal while maintaining their ability to induce AML that resembles human disease in both dogs and mice. Furthermore, we developed a novel strategy for the quantification of LIC frequency in large animals and showed that this frequency was highly comparable to that determined by limited dilution in mouse xenotransplants. We also demonstrated, using single cell analysis, that LICs are heterogenous in their self-renewal capacity and regenerate a leukemic cell population consistent with a hierarchical leukemia model. Conclusions The availability of this novel framework should accelerate the characterization of LICs and the translation of animal studies into clinical trials. PMID:20933571

  9. Chronic mast cell leukemia: a novel leukemia-variant with distinct morphological and clinical features.

    PubMed

    Valent, Peter; Sotlar, Karl; Sperr, Wolfgang R; Reiter, Andreas; Arock, Michel; Horny, Hans-Peter

    2015-01-01

    Mast cell leukemia (MCL) is a rare form of systemic mastocytosis characterized by leukemic expansion of mostly immature mast cells, organ damage, drug-resistance, and a poor prognosis. Even when treated with chemotherapy, most patients have a life-expectancy of less than one year. However, there are rare patients with MCL in whom the condition is less aggressive and does not cause organ damage within a short time. In these patients, mast cells exhibit a more mature morphology when compared to acute MCL. A recently proposed classification suggests that these cases are referred to as chronic MCL. In the present article, we discuss clinical, histopathological and morphological aspects of acute and chronic MCL. PMID:25443885

  10. Recent advances in acute myeloid leukemia stem cell biology

    PubMed Central

    Horton, Sarah J.; Huntly, Brian J.P.

    2012-01-01

    The existence of cancer stem cells has long been postulated, but was proven less than 20 years ago following the demonstration that only a small sub-fraction of leukemic cells from acute myeloid leukemia patients were able to propagate the disease in xenografts. These cells were termed leukemic stem cells since they exist at the apex of a loose hierarchy, possess extensive self-renewal and the ability to undergo limited differentiation into leukemic blasts. Acute myeloid leukemia is a heterogeneous condition at both the phenotypic and molecular level with a variety of distinct genetic alterations giving rise to the disease. Recent studies have highlighted that this heterogeneity extends to the leukemic stem cell, with this dynamic compartment evolving to overcome various selection pressures imposed upon it during disease progression. The result is a complex situation in which multiple pools of leukemic stem cells may exist within individual patients which differ both phenotypically and molecularly. Since leukemic stem cells are thought to be resistant to current chemotherapeutic regimens and mediate disease relapse, their study also has potentially profound clinical implications. Numerous studies have generated important recent advances in the field, including the identification of novel leukemic stem cell-specific cell surface antigens and gene expression signatures. These tools will no doubt prove invaluable for the rational design of targeted therapies in the future. PMID:22511496

  11. Targeting the MYC and PI3K pathways eliminates leukemia-initiating cells in T-cell acute lymphoblastic leukemia.

    PubMed

    Schubbert, Suzanne; Cardenas, Anjelica; Chen, Harrison; Garcia, Consuelo; Guo, Wei; Bradner, James; Wu, Hong

    2014-12-01

    Disease relapse remains the major clinical challenge in treating T-cell acute lymphoblastic leukemia (T-ALL), particularly those with PTEN loss. We hypothesized that leukemia-initiating cells (LIC) are responsible for T-ALL development and treatment relapse. In this study, we used a genetically engineered mouse model of Pten(-/-) T-ALL with defined blast and LIC-enriched cell populations to demonstrate that LICs are responsible for therapeutic resistance. Unlike acute and chronic myelogenous leukemia, LICs in T-ALL were actively cycling, were distinct biologically, and responded differently to targeted therapies in comparison with their differentiated blast cell progeny. Notably, we found that T-ALL LICs could be eliminated by cotargeting the deregulated pathways driven by PI3K and Myc, which are altered commonly in human T-ALL and are associated with LIC formation. Our findings define critical events that may be targeted to eliminate LICs in T-ALL as a new strategy to treat the most aggressive relapsed forms of this disease. PMID:25287161

  12. XC cell fusion by murine leukemia viruses: fusion from without.

    PubMed

    Ogura, H

    1976-12-01

    Concentrated murine leukemia virus (MuLV) or MuLV producing cells induce XC cell fusion within an hour leading to syncytia formation. While MuLV inactivated by UV irradiation, beta-propiolactone or hydroxylamine treatment still caused cell fusion, Bromelin- or trypsin treated MuLV was no longer able to fuse XC cells. Though sonicated MuLV induced no XC cell fusion, it interfered with cell fusion as caused by untreated MuLV. XC cells infected by diluted MuLV of a titer lower than 1 X 10(5) PFU/ml formed no syncytia although they produced MuLV. The cell fusion mechanism is discussed. PMID:187916

  13. Bone Marrow Stromal Cells Modulate Mouse ENT1 Activity and Protect Leukemia Cells from Cytarabine Induced Apoptosis

    PubMed Central

    Macanas-Pirard, Patricia; Leisewitz, Andrea; Broekhuizen, Richard; Cautivo, Kelly; Barriga, Francisco M.; Leisewitz, Francisco; Gidi, Victoria; Riquelme, Erick; Montecinos, Viviana P.; Swett, Pilar; Besa, Pelayo; Ramirez, Pablo; Ocqueteau, Mauricio; Kalergis, Alexis M.; Holt, Matthew; Rettig, Michael; DiPersio, John F.; Nervi, Bruno

    2012-01-01

    Background Despite a high response rate to chemotherapy, the majority of patients with acute myeloid leukemia (AML) are destined to relapse due to residual disease in the bone marrow (BM). The tumor microenvironment is increasingly being recognized as a critical factor in mediating cancer cell survival and drug resistance. In this study, we propose to identify mechanisms involved in the chemoprotection conferred by the BM stroma to leukemia cells. Methods Using a leukemia mouse model and a human leukemia cell line, we studied the interaction of leukemia cells with the BM microenvironment. We evaluated in vivo and in vitro leukemia cell chemoprotection to different cytotoxic agents mediated by the BM stroma. Leukemia cell apoptosis was assessed by flow cytometry and western blotting. The activity of the equilibrative nucleoside transporter 1 (ENT1), responsible for cytarabine cell incorporation, was investigated by measuring transport and intracellular accumulation of 3H-adenosine. Results Leukemia cell mobilization from the bone marrow into peripheral blood in vivo using a CXCR4 inhibitor induced chemo-sensitization of leukemia cells to cytarabine, which translated into a prolonged survival advantage in our mouse leukemia model. In vitro, the BM stromal cells secreted a soluble factor that mediated significant chemoprotection to leukemia cells from cytarabine induced apoptosis. Furthermore, the BM stromal cell supernatant induced a 50% reduction of the ENT1 activity in leukemia cells, reducing the incorporation of cytarabine. No protection was observed when radiation or other cytotoxic agents such as etoposide, cisplatin and 5-fluorouracil were used. Conclusion The BM stroma secretes a soluble factor that significantly protects leukemia cells from cytarabine-induced apoptosis and blocks ENT1 activity. Strategies that modify the chemo-protective effects mediated by the BM microenvironment may enhance the benefit of conventional chemotherapy for patients with AML. PMID:22629369

  14. Natural compounds and pharmaceuticals reprogram leukemia cell differentiation pathways.

    PubMed

    Morceau, Franck; Chateauvieux, Sbastien; Orsini, Marion; Trcul, Anne; Dicato, Mario; Diederich, Marc

    2015-11-01

    In addition to apoptosis resistance and cell proliferation capacities, the undifferentiated state also characterizes most cancer cells, especially leukemia cells. Cell differentiation is a multifaceted process that depends on complex regulatory networks that involve transcriptional, post-transcriptional and epigenetic regulation of gene expression. The time- and spatially-dependent expression of lineage-specific genes and genes that control cell growth and cell death is implicated in the process of maturation. The induction of cancer cell differentiation is considered an alternative approach to elicit cell death and proliferation arrest. Differentiation therapy has mainly been developed to treat acute myeloid leukemia, notably with all-trans retinoic acid (ATRA). Numerous molecules from diverse natural or synthetic origins are effective alone or in association with ATRA in both in vitro and in vivo experiments. During the last two decades, pharmaceuticals and natural compounds with various chemical structures, including alkaloids, flavonoids and polyphenols, were identified as potential differentiating agents of hematopoietic pathways and osteogenesis. PMID:25886879

  15. Antileukemic potency of CD19-specific T cells against chemoresistant pediatric acute lymphoblastic leukemia.

    PubMed

    Dolnikov, Alla; Shen, Sylvie; Klamer, Guy; Joshi, Swapna; Xu, Ning; Yang, Lu; Micklethwaite, Kenneth; O'Brien, Tracey A

    2015-12-01

    Adoptive therapy with chimeric antigen receptor (CAR) Tcells (CART cells) has exhibited great promise in clinical trials, with efficient response correlated with CART-cell expansion and persistence. Despite extensive clinical use, the mechanisms regulating CART-cell expansion and persistence have not been completely elucidated. We have examined the antileukemia potency of CART cells targeting CD19 antigen using second-generation CAR containing a CD28 co-stimulatory domain cloned into piggyBac-transposon vector and patient-derived chemoresistant pediatric acute lymphoblastic leukemia samples. In the presence of large numbers of target cells characteristic of patients with high leukemia burden, excessive proliferation of CART cells leads to differentiation into short-lived effector cells. Transient leukemia growth delay was induced by CART-cell infusion in mice xenografted with rapidly growing CD19+ acute lymphoblastic leukemia cells and was followed by rapid CART-cell extinction. Conditioning with the hypomethylating agent 5-aza-2'-deoxycytidine-activating caspase 3 and promotion of apoptosis in leukemia cells maximized the effect of CART cells and improved CART-cell persistence. These data suggest that the clinical use of 5-aza-2'-deoxycytidine before CART cells could be considered. Coculture of leukemia cells with bone marrow stroma cells reduced target cell loss, suggesting that leukemia cell mobilization into circulation may help to remove the protective effect of bone marrow stroma and increase the efficacy of CART-cell therapy. PMID:26384559

  16. Safety and Tolerability Study of PCI-32765 in B Cell Lymphoma and Chronic Lymphocytic Leukemia

    ClinicalTrials.gov

    2016-01-19

    B-cell Chronic Lymphocytic Leukemia; Small Lymphocytic Lymphoma; Diffuse Well-differentiated Lymphocytic Lymphoma; B Cell Lymphoma; Follicular Lymphoma,; Mantle Cell Lymphoma; Non-Hodgkin's Lymphoma; Waldenstrom Macroglobulinemia; Burkitt Lymphoma; B-Cell Diffuse Lymphoma

  17. Targeting leukemia stem cells: which pathways drive self-renewal activity in T-cell acute lymphoblastic leukemia?

    PubMed Central

    Belmonte, M.; Hoofd, C.; Weng, A.P.; Giambra, V.

    2016-01-01

    T-Cell acute lymphoblastic leukemia (t-all) is a malignancy of white blood cells, characterized by an uncontrolled accumulation of T-cell progenitors. During leukemic progression, immature T cells grow abnormally and crowd into the bone marrow, preventing it from making normal blood cells and spilling out into the bloodstream. Recent studies suggest that only discrete cell populations that possess the ability to recreate the entire tumour might be responsible for the initiation and propagation of t-all. Those unique cells are commonly called “cancer stem cells” or, in the case of hematopoietic malignancies, “leukemia stem cells” (lscs). Like normal hematopoietic stem cells, lscs are thought to be capable of self-renewal, during which, by asymmetrical division, they give rise to an identical copy of themselves as well as to a daughter cell that is no longer capable of self-renewal activity and represents a more “differentiated” progeny. Here, we review the main pathways of self-renewal activity in lscs, focusing on their involvement in the maintenance and development of t-all. New stem cell–directed therapies and lsc-targeted agents are also discussed. PMID:26966402

  18. Mast cell leukemia with rapidly progressing portal hypertension.

    PubMed

    Yoshida, Masayuki; Nishikawa, Yuji; Yamamoto, Yohei; Doi, Yuko; Tokairin, Takuo; Yoshioka, Toshiaki; Omori, Yasufumi; Watanabe, Atsushi; Takahashi, Naoto; Yoshioka, Tomoko; Miura, Ikuo; Sawada, Ken-ichi; Enomoto, Katsuhiko

    2009-11-01

    Reported herein is an autopsy case of mast cell leukemia, a rare form of systemic mastocytosis, complicated with portal hypertension. A 52-year-old woman presented with urticaria-like skin symptoms, anemia, and thrombocytopenia. Atypical mast cells (CD2+, CD25+, CD117+) with toluidine blue metachromasia were found in the peripheral blood and on bone marrow aspiration smears. Chemotherapy with cytosine arabinoside and idarubicin was ineffective and the patient died of multi-organ failure with rapidly progressing hepatosplenomegaly and large-volume ascites 3 months after admission. At autopsy the bone marrow, spleen, liver, and lymph nodes were extensively infiltrated by atypical tumor cells with occasional bi- or multi-lobated nuclei. They were positive for mast cell tryptase and possessed an activating mutation of the c-kitgene (D816V). Ascites (2200 mL) and non-ruptured esophageal varices with submucosal hemorrhage indicated the presence of severe portal hypertension. Although there was no evidence of liver cirrhosis, the hepatic sinusoids were clogged with tumor cells, with a tendency to be more severe in the perivenular areas, and the lumens of central veins were obliterated by tumor cell infiltration. The present case demonstrates that non-cirrhotic portal hypertension due to blocking of sinusoidal and venous flow could be a serious complication in mast cell leukemia. PMID:19883434

  19. Integrated molecular analysis of adult T cell leukemia/lymphoma.

    PubMed

    Kataoka, Keisuke; Nagata, Yasunobu; Kitanaka, Akira; Shiraishi, Yuichi; Shimamura, Teppei; Yasunaga, Jun-Ichirou; Totoki, Yasushi; Chiba, Kenichi; Sato-Otsubo, Aiko; Nagae, Genta; Ishii, Ryohei; Muto, Satsuki; Kotani, Shinichi; Watatani, Yosaku; Takeda, June; Sanada, Masashi; Tanaka, Hiroko; Suzuki, Hiromichi; Sato, Yusuke; Shiozawa, Yusuke; Yoshizato, Tetsuichi; Yoshida, Kenichi; Makishima, Hideki; Iwanaga, Masako; Ma, Guangyong; Nosaka, Kisato; Hishizawa, Masakatsu; Itonaga, Hidehiro; Imaizumi, Yoshitaka; Munakata, Wataru; Ogasawara, Hideaki; Sato, Toshitaka; Sasai, Ken; Muramoto, Kenzo; Penova, Marina; Kawaguchi, Takahisa; Nakamura, Hiromi; Hama, Natsuko; Shide, Kotaro; Kubuki, Yoko; Hidaka, Tomonori; Kameda, Takuro; Nakamaki, Tsuyoshi; Ishiyama, Ken; Miyawaki, Shuichi; Yoon, Sung-Soo; Tobinai, Kensei; Miyazaki, Yasushi; Takaori-Kondo, Akifumi; Matsuda, Fumihiko; Takeuchi, Kengo; Nureki, Osamu; Aburatani, Hiroyuki; Watanabe, Toshiki; Shibata, Tatsuhiro; Matsuoka, Masao; Miyano, Satoru; Shimoda, Kazuya; Ogawa, Seishi

    2015-11-01

    Adult T cell leukemia/lymphoma (ATL) is a peripheral T cell neoplasm of largely unknown genetic basis, associated with human T cell leukemia virus type-1 (HTLV-1) infection. Here we describe an integrated molecular study in which we performed whole-genome, exome, transcriptome and targeted resequencing, as well as array-based copy number and methylation analyses, in a total of 426 ATL cases. The identified alterations overlap significantly with the HTLV-1 Tax interactome and are highly enriched for T cell receptor-NF-κB signaling, T cell trafficking and other T cell-related pathways as well as immunosurveillance. Other notable features include a predominance of activating mutations (in PLCG1, PRKCB, CARD11, VAV1, IRF4, FYN, CCR4 and CCR7) and gene fusions (CTLA4-CD28 and ICOS-CD28). We also discovered frequent intragenic deletions involving IKZF2, CARD11 and TP73 and mutations in GATA3, HNRNPA2B1, GPR183, CSNK2A1, CSNK2B and CSNK1A1. Our findings not only provide unique insights into key molecules in T cell signaling but will also guide the development of new diagnostics and therapeutics in this intractable tumor. PMID:26437031

  20. Fludarabine Phosphate, Low-Dose Total Body Irradiation, and Donor Stem Cell Transplant in Treating Patients With Hematologic Malignancies or Kidney Cancer

    ClinicalTrials.gov

    2015-10-13

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); B-cell Chronic Lymphocytic Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Childhood Renal Cell Carcinoma; Chronic Phase Chronic Myelogenous Leukemia; Clear Cell Renal Cell Carcinoma; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Splenic Marginal Zone Lymphoma; Stage III Renal Cell Cancer; Stage IV Renal Cell Cancer; T-cell Large Granular Lymphocyte Leukemia; Type 1 Papillary Renal Cell Carcinoma; Type 2 Papillary Renal Cell Carcinoma; Waldenström Macroglobulinemia

  1. Cutaneous sarcoidlike lesions in B-cell chronic lymphocytic leukemia.

    PubMed

    Bachmeyer, Claude; Debs, Rima; Aractingi, Selim

    2003-08-01

    The development of systemic sarcoidosis in patients with malignancies is a well-known phenomenon. However, cutaneous sarcoidlike lesions are a rare finding. We report 2 patients with B-cell chronic lymphocytic leukemia and hypogammaglobulinemia who presented isolated cutaneous sarcoidlike lesions 9 years after the diagnosis of the hematologic malignancy in one case and after the second course of chemotherapy regimen in the other case. The role of cytokines released from malignant cells and of the hypogammaglobulinemia facilitating an unidentified infectious agent is questionable. PMID:12894116

  2. A pediatric case of T-cell prolymphocytic leukemia.

    PubMed

    Mitton, Bryan; Coutre, Steven; Willert, Jennifer; Schlis, Krysta; Porteus, Matthew; Kharbanda, Sandhya; Agarwal-Hashmi, Rajni

    2015-06-01

    T-cell Prolymphocytic Leukemia (T-PLL) is a rare entity, and to date has never been reported in children. Here, we describe the first pediatric case of T-PLL in a 16-year old male and review his clinical course through treatment. He underwent therapy with alemtuzumab and pentostatin, which was successful in inducing initial remission. He then underwent an allogeneic matched sibling stem cell transplant following a myeloablative conditioning regimen and remains disease-free 1.5 years after diagnosis. PMID:25417638

  3. Stem cell niche as a prognostic factor in leukemia

    PubMed Central

    Lee, Ga-Young; Kim, Jin-A; Oh, Il-Hoan

    2015-01-01

    Despite high interests on microenvironmental regulation of leukemic cells, little is known for bone marrow (BM) niche in leukemia patients. Our recent study on BMs of acute myeloid leukemia (AML) patients showed that the mesenchymal stromal cells (MSCs) are altered during leukemic conditions in a clinical course-dependent manner. Leukemic blasts caused reprogramming of transcriptomes in MSCs and remodeling of niche cross-talk, selectively suppressing normal primitive hematopoietic cells while supporting leukemogenesis and chemo-resistance. Notably, differences in BM stromal remodeling were correlated to heterogeneity in subsequent clinical courses of AML, i.e., low numbers of mesenchymal progenitors at initial diagnosis were correlated to complete remission for 5-8 years, and high contents of mesenchymal progenitor or MSCs correlated to early or late relapse, respectively. Thus, stromal remodeling by leukemic cell is an intrinsic part of leukemogenesis that can contribute to the clonal dominance of leukemic cells over normal hematopoietic cells, and can serve as a biomarker for prediction of prognosis. [BMB Reports 2015; 48(8): 427-428] PMID:26198094

  4. Increased regulatory T cells in acute lymphoblastic leukemia patients.

    PubMed

    Idris, Siti-Zuleha; Hassan, Norfarazieda; Lee, Le-Jie; Md Noor, Sabariah; Osman, Raudhawati; Abdul-Jalil, Marsitah; Nordin, Abdul-Jalil; Abdullah, Maha

    2015-10-01

    Introduction Regulation in adaptive immune response balances a fine line that prevents instigation of self-damage or fall into unresponsiveness permitting abnormal cell growth. Mechanisms that keep this balance in check include regulatory T cells (Tregs). Tregs consist of a small but heterogeneous population which may be identified by the phenotype, CD3+CD4+CD25+CD127-. Role of Tregs in pathogenesis of cancers is thus far supported by evidence of increased Tregs in various cancers and may contribute to poorer prognosis. Tregs may also be important in acute leukemias. Objective A review of the literature on Tregs in acute leukemias was conducted and Tregs were determined in B-cell acute lymphoblastic leukemias (ALLs). Results Studies on Tregs in B-cell ALL are few and controversial. We observed a significantly increased percentage of Tregs (meanSD, 9.723.79% vs. 7.051.74%; P=0.047) in the bone marrow/peripheral blood of ALL (n=17) compared to peripheral blood of normal controls (n=35). A positive trend between Tregs and age (R=0.474, P=0.055, n=17) implicates this factor of poor prognosis in B-cell ALL. Discussion Tregs in cancer are particularly significant in immunotherapy. The manipulation of the immune system to treat cancer has for a long time ignored regulatory mechanisms inducible or in place. In lymphoma studies tumor-specific mechanisms that are unlike conventional methods in the induction of Tregs have been hypothesized. In addition, tumor-infiltrating Tregs may present different profiles from peripheral blood pictures. Tregs will continue to be dissected to reveal their mysteries and their impact on clinical significance. PMID:26119924

  5. Scalarized hairy black holes

    NASA Astrophysics Data System (ADS)

    Kleihaus, Burkhard; Kunz, Jutta; Yazadjiev, Stoytcho

    2015-05-01

    In the presence of a complex scalar field scalar-tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and hairy black holes of General Relativity. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.

  6. Potential role of AKT/mTOR signalling proteins in hairy cell leukaemia: association with BRAF/ERK activation and clinical outcome

    PubMed Central

    Lakiotaki, Eleftheria; Levidou, Georgia; Angelopoulou, Maria K.; Adamopoulos, Christos; Pangalis, Gerassimos; Rassidakis, George; Vassilakopoulos, Theodoros; Gainaru, Gabriella; Flevari, Pagona; Sachanas, Sotirios; Saetta, Angelica A.; Sepsa, Athanasia; Moschogiannis, Maria; Kalpadakis, Christina; Tsesmetzis, Nikolaos; Milionis, Vassilios; Chatziandreou, Ilenia; Thymara, Irene; Panayiotidis, Panayiotis; Dimopoulou, Maria; Plata, Eleni; Konstantopoulos, Konstantinos; Patsouris, Efstratios; Piperi, Christina; Korkolopoulou, Penelope

    2016-01-01

    The potential role of AKT/mTOR signalling proteins and its association with the Raf-MEK-ERK pathway was investigated in hairy cell leukaemia (HCL). BRAFV600E expression and activated forms of AKT, mTOR, ERK1/2, p70S6k and 4E-BP1 were immunohistochemically assessed in 77 BM biopsies of HCL patients and correlated with clinicopathological and BM microvascular characteristics, as well as with c-Caspase-3 levels in hairy cells. Additionally, we tested rapamycin treatment response of BONNA-12 wild-type cells or transfected with BRAFV600E. Most HCL cases expressed p-p70S6K and p-4E-BP1 but not p-mTOR, being accompanied by p-ERK1/2 and p-AKT. AKT/mTOR activation was evident in BONNA-12 cells irrespective of the presence of BRAFV600E mutation and was implicated in cell proliferation enhancement. In multivariate analysis p-AKT/p-mTOR/p-4E-BP1 overexpression was an adverse prognostic factor for time to next treatment conferring earlier relapse. When p-AKT, p-mTOR and p-4E-BP1 were examined separately only p-4E-BP1 remained significant. Our findings indicate that in HCL, critical proteins up- and downstream of mTOR are activated. Moreover, the strong associations with Raf-MEK-ERK signalling imply a possible biologic interaction between these pathways. Most importantly, expression of p-4E-BP1 alone or combined with p-AKT and p-mTOR is of prognostic value in patients with HCL. PMID:26893254

  7. Stem Cell Hierarchy and Clonal Evolution in Acute Lymphoblastic Leukemia

    PubMed Central

    Lang, Fabian; Wojcik, Bartosch; Rieger, Michael A.

    2015-01-01

    Cancer is characterized by a remarkable intertumoral, intratumoral, and cellular heterogeneity that might be explained by the cancer stem cell (CSC) and/or the clonal evolution models. CSCs have the ability to generate all different cells of a tumor and to reinitiate the disease after remission. In the clonal evolution model, a consecutive accumulation of mutations starting in a single cell results in competitive growth of subclones with divergent fitness in either a linear or a branching succession. Acute lymphoblastic leukemia (ALL) is a highly malignant cancer of the lymphoid system in the bone marrow with a dismal prognosis after relapse. However, stabile phenotypes and functional data of CSCs in ALL, the so-called leukemia-initiating cells (LICs), are highly controversial and the question remains whether there is evidence for their existence. This review discusses the concepts of CSCs and clonal evolution in respect to LICs mainly in B-ALL and sheds light onto the technical controversies in LIC isolation and evaluation. These aspects are important for the development of strategies to eradicate cells with LIC capacity. Common properties of LICs within different subclones need to be defined for future ALL diagnostics, treatment, and disease monitoring to improve the patients' outcome in ALL. PMID:26236346

  8. Alemtuzumab, Fludarabine Phosphate, and Total-Body Irradiation Followed by Cyclosporine and Mycophenolate Mofetil in Treating Patients Who Are Undergoing Donor Stem Cell Transplant for Hematologic Cancer

    ClinicalTrials.gov

    2015-06-15

    Acute Undifferentiated Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Myelomonocytic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Juvenile Myelomonocytic Leukemia; Mast Cell Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Secondary Myelodysplastic Syndromes; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Testicular Lymphoma; Waldenström Macroglobulinemia

  9. Phytosphingosine promotes megakaryocytic differentiation of myeloid leukemia cells

    PubMed Central

    Han, Sang Hee; Kim, Jusong; Her, Yerim; Seong, Ikjoo; Park, Sera; Bhattarai, Deepak; Jin, Guanghai; Lee, Kyeong; Chung, Gukhoon; Hwang, Sungkee; Bae, Yun Soo; Kim, Jaesang

    2015-01-01

    We report that phytosphingosine, a sphingolipid found in many organisms and implicated in cellular signaling, promotes megakaryocytic differentiation of myeloid leukemia cells. Specifically, phytosphingosine induced several hallmark changes associated with megakaryopoiesis from K562 and HEL cells including cell cycle arrest, cell size increase and polyploidization. We also confirmed that cell type specific markers of megakaryocytes, CD41a and CD42b are induced by phytosphingosine. Phospholipids with highly similar structures were unable to induce similar changes, indicating that the activity of phytosphingosine is highly specific. Although phytosphingosine is known to activate p38 mitogen-activated protein kinase (MAPK)-mediated apoptosis, the signaling mechanisms involved in megakaryopoiesis appear to be distinct. In sum, we present another model for dissecting molecular details of megakaryocytic differentiation which in large part remains obscure. [BMB Reports 2015; 48(12): 691-695] PMID:26077028

  10. Chemomodulating Effects of Flavonoids in Human Leukemia Cells.

    PubMed

    Sak, Katrin; Everaus, Hele

    2015-01-01

    Flavonoids, a diverse class of polyphenolic compounds, are well known for their anticancer properties. Moreover, it is generally accepted that these plant secondary metabolites can also sensitize malignant cells to conventional chemotherapeutic drugs and could thus be considered as potential adjunctive agents in cancer treatment. In this review article we show that besides potentiating the anticancer activity of standard chemotherapeutics by modifying the molecular events that are involved in cell growth, differentiation and apoptosis, flavonoids might also act as inhibitory modulators in human leukemia cells. The specific behavior of a certain flavonoid in such combination treatments is multifactorial being dependent on various aspects, including cellular context, molecular mechanisms of clinical drugs, temporal regimen of administration, as well as doses of agents. Based on the highly complex nature of leukemogenesis it is feasible that a multifaceted therapeutic approach is also required to cure this disease and therefore, combined chemotherapeutic schemes incorporating natural plant metabolites as chemosensitizing agents can represent a new attractive strategy for more successful treatment of leukemia patients in the future. However, as highlighted in this review, caution should be taken when affecting malignant cells concurrently with chemotherapeutic drugs and flavonoids as unwisely chosen combinations can lead to inadvisable results and sometimes even deteriorate the clinical outcomes. PMID:25986578

  11. Selected epidemiologic observations of cell-specific leukemia mortality in the United States, 1969-1977

    SciTech Connect

    Selvin, S.; Levin, L.I.; Merrill, D.W.; Winkelstein, W. Jr.

    1983-01-01

    Utilizing a newly available data set which includes for the first time cell-specific leukemia mortality rates for the United States during 1969-1977, age and sex distributions, time trends and geographic patterns were analyzed. Four major cell types of leukemia were considered. Acute lymphatic leukemia had a bimodal distribution with the first peak in the 5-9-year age group and lowest rates in age group 35-44, after which rates rose geometrically. Acute myeloid leukemia had only a very small childhood peak with a low in the age group 5-9, after which the rates also rose geometrically. For both chronic lymphatic and myeloid leukemia the rates rose geometrically after age 15. Rates among females were consistently lower for each age group. The highest sex ratio was found for chronic lymphatic leukemia and is proposed to be the result of a lag period between male and female rates. During the period under study acute lymphatic leukemia mortality in adults declined by almost 10% while acute myeloid leukemia mortality increased by almost 20%. Analysis of the geographic variation of the four major cell types revealed a geographic association between acute lymphatic and acute myeloid leukemia in children, a lack of association between childhood and adult cell types, and an association of acute and chronic cell types in adults.

  12. Obatoclax, Fludarabine, and Rituximab in Treating Patients With Previously Treated Chronic Lymphocytic Leukemia

    ClinicalTrials.gov

    2013-09-27

    B-cell Chronic Lymphocytic Leukemia; Leukemia; Prolymphocytic Leukemia; Refractory Chronic Lymphocytic Leukemia; Stage I Chronic Lymphocytic Leukemia; Stage II Chronic Lymphocytic Leukemia; Stage III Chronic Lymphocytic Leukemia; Stage IV Chronic Lymphocytic Leukemia

  13. Leukemia Stem Cells in Personalized Medicine

    PubMed Central

    Guzman, Monica L.; Allan, John N.

    2015-01-01

    Despite increased comprehension of AML pathogenesis, current treatment strategies have done little to improve upon standard induction chemotherapy to induce long-term remissions. Since the identification of the leukemic stem cell, efforts have been placed on identifying therapeutically actionable pathways that distinguish this increasingly important cellular compartment. With the advent of increased genome sequencing efforts and phenotypic characterization, opportunities for personalized treatment strategies are rapidly emerging. In this review, we highlight recent advances in the understanding of leukemic stem cell biology and their potential for translation into clinically relevant therapeutics. NF-kappa B activation, Bcl-2 expression, oxidative and metabolic state, and epigenetic modifications all bear their own clinical implications. With advancements in genetic, epigenetic, and metabolic profiling, personalized strategies may be feasible in the near future to improve outcomes for AML patients. PMID:24214290

  14. The Newly Identified T Helper 22 Cells Lodge in Leukemia

    PubMed Central

    Azizi, Gholamreza; Rastegar Pouyani, Mohsen; Navabi, Shadi sadat; Yazdani, Reza; Kiaee, Fatemeh; Mirshafiey, Abbas

    2015-01-01

    Leukemia is a hematological tumor in which the malignant myeloid or lymphoid subsets play a pivotal role. Newly identified T helper cell 22 (Th22) is a subset of CD4+ T cells with distinguished gene expression, function and specific properties apart from other known CD4+ T cell subsets.Th22 cells are characterized by production of a distinct profile of effector cytokines, including interleukin (IL)-22, IL-13, and tumor necrosis factor-? (TNF-?). The levels of Th22 and cytokine IL-22 are increased and positively related to inflammatory and autoimmune disorders. Recently, several studies have reported the changes in frequency and function of Th22 in acute leukemic disorders as AML and ALL. This review discusses the role of Th22 and its cytokine IL-22 in the immunopathogenesis of leukemic disease. PMID:26261700

  15. The Newly Identified T Helper 22 Cells Lodge in Leukemia.

    PubMed

    Azizi, Gholamreza; Rastegar Pouyani, Mohsen; Navabi, Shadi Sadat; Yazdani, Reza; Kiaee, Fatemeh; Mirshafiey, Abbas

    2015-07-01

    Leukemia is a hematological tumor in which the malignant myeloid or lymphoid subsets play a pivotal role. Newly identified T helper cell 22 (Th22) is a subset of CD4(+) T cells with distinguished gene expression, function and specific properties apart from other known CD4(+) T cell subsets.Th22 cells are characterized by production of a distinct profile of effector cytokines, including interleukin (IL)-22, IL-13, and tumor necrosis factor-? (TNF-?). The levels of Th22 and cytokine IL-22 are increased and positively related to inflammatory and autoimmune disorders. Recently, several studies have reported the changes in frequency and function of Th22 in acute leukemic disorders as AML and ALL. This review discusses the role of Th22 and its cytokine IL-22 in the immunopathogenesis of leukemic disease. PMID:26261700

  16. Targeting of the BLT2 in chronic myeloid leukemia inhibits leukemia stem/progenitor cell function.

    PubMed

    Xiao, Meifang; Ai, Hongmei; Li, Tao; Rajoria, Pasupati; Shahu, Prakash; Li, Xiansong

    2016-04-15

    Imatinib, a tyrosine kinase inhibitor (TKI) has significantly improved clinical outcome for chronic myeloid leukemia (CML) patients. However, patients develop resistance when the disease progresses to the blast phase (BP) and the mechanisms are not well understood. Here we show that BCR-ABL activates BLT2 in hematopoietic stem/progenitor cells to promote leukemogenesis and this involves the p53 signaling pathway. Compared to normal bone marrow (NBM), the mRNA and protein levels of BLT2 are significantly increased in BP-CML CD34(+) stem/progenitor cells. This is correlated with increasing BCR-ABL expression. In contrast, knockdown of BCR-ABL or inhibition of its tyrosine kinase activity decreases Blt2 protein level. BLT2 inhibition induces apoptosis, inhibits proliferation, colony formation and self-renewal capacity of CD34(+) cells from TKI-resistant BP-CML patients. Importantly, the inhibitory effects of BCR-ABL TKI on CML stem/progenitor cells are further enhanced upon combination with BLT2 inhibition. We further show that BLT2 activation selectively suppresses p53 but not Wnt or BMP-mediated luciferase activity and transcription. Our results demonstrate that BLT2 is a novel pathway activated by BCR-ABL and critically involved in the resistance of BP-CML CD34(+) stem/progenitors to TKIs treatment. Our findings suggest that BLT2 and p53 can serve as therapeutic targets for CML treatment. PMID:26966074

  17. Combination Chemotherapy in Treating Young Patients With Newly Diagnosed T-Cell Acute Lymphoblastic Leukemia or T-cell Lymphoblastic Lymphoma

    ClinicalTrials.gov

    2016-03-30

    Adult T Acute Lymphoblastic Leukemia; Childhood T Acute Lymphoblastic Leukemia; Stage II Adult T-Cell Leukemia/Lymphoma; Stage II Childhood Lymphoblastic Lymphoma; Stage II Contiguous Adult Lymphoblastic Lymphoma; Stage II Non-Contiguous Adult Lymphoblastic Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-Cell Leukemia/Lymphoma; Stage III Childhood Lymphoblastic Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-Cell Leukemia/Lymphoma; Stage IV Childhood Lymphoblastic Lymphoma; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  18. Insights into cell ontogeny, age, and acute myeloid leukemia.

    PubMed

    Chaudhury, Shahzya S; Morison, Jessica K; Gibson, Brenda E S; Keeshan, Karen

    2015-09-01

    Acute myeloid leukemia (AML) is a heterogenous disease of hematopoietic stem cells (HSCs) and progenitor cells (HSPCs). The pathogenesis of AML involves cytogenetic abnormalities, genetic mutations, and epigenetic anomalies. Although it is widely accepted that the cellular biology, gene expression, and epigenetic landscape of normal HSCs change with age, little is known about the interplay between the age at which the cell becomes leukemic and the resultant leukemia. Despite its rarity, childhood AML is a leading cause of childhood cancer mortality. Treatment is in general extrapolated from adult AML on the assumption that adult AML and pediatric AML are similar biological entities. However, distinct biological processes and epigenetic modifications in pediatric and adult AML may mean that response to novel therapies in children may differ from that in adults with AML. A better understanding of the key pathways involved in transformation and how these differ between childhood and adult AML is an important step in identifying effective treatment. This review highlights both the commonalities and differences between pediatric and adult AML disease biology with respect to age. PMID:26051919

  19. Increased expression of CX43 on stromal cells promotes leukemia apoptosis

    PubMed Central

    Liu, Yao; Zhang, Cheng; Wang, Maihong; Chen, Guo; Gong, Yi; Zhong, Jiangjian; Chen, Xuelian; Stucky, Andres; Zhong, Jiang F.; Zhang, Xi

    2015-01-01

    Connexin 43 (Cx43) induced apoptosis has been reported in solid tumors, but the effect of Cx43 expressed by bone marrow stromal cells (BMSC) in leukemia has not been fully investigated. Manipulating Cx43 expression could be a potential therapeutic strategy for leukemia. Here, we investigate the effect of Cx43 expressed by BMSCs (human Umbilical Cord Stem Cells over-expressed CX43, Cx43-hUCSC) on leukemia cells. When co-cultured with Cx43-hUCSC, leukemia cells show significant lower growth rate with increasing apoptosis activity, and more leukemia cells enter S phase. Functional assays of fluorescence recovery after photo bleaching (FRAP) showed improved gap junctional intercellular communication (GJIC) on leukemia cells when co-cultured with Cx43-hUCSC (p < 0.01). In a mouse minimal disease model, the mean survival time and mortality rate were significantly improved in mice transplanted with Cx43-hUCSC. Our results indicate that Cx43 expressed by BMSC induces apoptosis on leukemia cells. Small molecules or other pharmaceutical approaches for modulating Cx43 expression in BMSCs could be used for delaying relapse of leukemia. PMID:26517241

  20. Hairy and Enhancer of Split 6 (Hes6) Deficiency in Mouse Impairs Neuroblast Differentiation in Dentate Gyrus Without Affecting Cell Proliferation and Integration into Mature Neurons.

    PubMed

    Nam, Sung Min; Kim, Yo Na; Kim, Jong Whi; Kyeong, Dong Soo; Lee, Seo Hyun; Son, Yeri; Shin, Jae Hoon; Kim, Jaesang; Yi, Sun Shin; Yoon, Yeo Sung; Seong, Je Kyung

    2016-01-01

    Hes6 is a member of the hairy-enhancer of split homolog (Hes) family of transcription factors and interacts with other Hes family genes. During development, Hes genes are expressed in neural stem cells and progenitor cells. However, the role of Hes6 in adult hippocampal neurogenesis remains unclear. We therefore investigated the effects of Hes6 on adult hippocampal neurogenesis, by comparing Hes6 knockout and wild-type mice. To this end, we immunostained for markers of neural stem cells and progenitor cells (nestin), proliferating cells (Ki67), post-mitotic neuroblasts and immature neurons (doublecortin, DCX), mature neuronal cells (NeuN), and astrocyte (S100?). We also injected 5-bromo-2'-deoxyuridine (BrdU) to trace the fate of mitotic cells. Nestin- and Ki67-positive proliferating cells did now show any significant differences between wild and knockout groups. Hes6 knockout negatively affects neuroblast differentiation based on DCX immunohistochemistry. On the contrary, the ratio of the BrdU and NeuN double-positive cells did not show any significance, even though it was slightly higher in the knockout group. These results suggest that Hes6 is involved in the regulation of neuroblast differentiation during adult neurogenesis, but does not influence integration into mature neurons. PMID:26105991

  1. New strategies in the chemotherapy of leukemia: eradicating cancer stem cells in chronic myeloid leukemia.

    PubMed

    Stefanachi, A; Leonetti, F; Nicolotti, O; Catto, M; Pisani, L; Cellamare, S; Altomare, C; Carotti, A

    2012-06-01

    Chronic myeloid leukemia (CML) is a myeloproliferative disorder caused by the Philadelphia-positive chromosome deriving from a translocation between chromosomes 22 and 9. The oncogenic product of this aberrant chromosome is the constitutively active tyrosine kinase BCR-ABL that is responsible for leukemic cell growth, proliferation and survival driven by the dysregulation of a large array of signal transduction pathways. Inhibition of BCR-ABL with tyrosine kinase inhibitors proved to be an efficient therapy of CML in the chronic phase. Unfortunately, the impressive success of BCR-ABL inhibitors as front-line therapy in CML has been tempered by problems of disease persistence or relapse arising from different mechanisms, including mutations in the kinase domain of the enzyme BCRABL and mechanisms independent from BCR-ABL activity. Growing evidence has also suggested a pivotal role of persistent leukemic cancer stem cells, characterized by high self-renewal and pluripotency, in CML maintenance and/or relapse. The present review deals with the most recent advances in this challenging field and focuses on the development of new drugs and therapeutic approaches to eradicate the subtle and dangerous leukemic stem cells responsible for maintaining and sustaining tumor growth. PMID:22414010

  2. Docosahexaenoic Acid Induces Apoptosis in Primary Chronic Lymphocytic Leukemia Cells.

    PubMed

    Guize, Romain; Gyan, Emmanuel; Tournilhac, Olivier; Halty, Christelle; Veyrat-Masson, Richard; Akil, Sada; Berger, Marc; Hrault, Olivier; Callanan, Mary; Bay, Jacques-Olivier

    2015-11-23

    Chronic lymphocytic leukemia is an indolent disorder with an increased infectious risk remaining one of the main causes of death. Development of therapies with higher safety profile is thus a challenging issue. Docosahexaenoic acid (DHA, 22:6) is an omega-3 fatty acid, a natural compound of normal cells, and has been shown to display antitumor potency in cancer. We evaluated the potential in vitro effect of DHA in primary CLL cells. DHA induces high level of in vitro apoptosis compared to oleic acid in a dose-dependent and time-dependent manner. Estimation of IC50 was only of 4.813 M, which appears lower than those reported in solid cancers. DHA is highly active on CLL cells in vitro. This observation provides a rationale for further studies aiming to understand its mechanisms of action and its potent in vivo activity. PMID:26734128

  3. Docosahexaenoic Acid Induces Apoptosis in Primary Chronic Lymphocytic Leukemia Cells

    PubMed Central

    Gyan, Emmanuel; Tournilhac, Olivier; Halty, Christelle; Veyrat-Masson, Richard; Akil, Saïda; Berger, Marc; Hérault, Olivier; Callanan, Mary; Bay, Jacques-Olivier

    2015-01-01

    Chronic lymphocytic leukemia is an indolent disorder with an increased infectious risk remaining one of the main causes of death. Development of therapies with higher safety profile is thus a challenging issue. Docosahexaenoic acid (DHA, 22:6) is an omega-3 fatty acid, a natural compound of normal cells, and has been shown to display antitumor potency in cancer. We evaluated the potential in vitro effect of DHA in primary CLL cells. DHA induces high level of in vitro apoptosis compared to oleic acid in a dose-dependent and time-dependent manner. Estimation of IC50 was only of 4.813 µM, which appears lower than those reported in solid cancers. DHA is highly active on CLL cells in vitro. This observation provides a rationale for further studies aiming to understand its mechanisms of action and its potent in vivo activity. PMID:26734128

  4. Cannabinoids induce incomplete maturation of cultured human leukemia cells.

    PubMed Central

    Murison, G; Chubb, C B; Maeda, S; Gemmell, M A; Huberman, E

    1987-01-01

    Monocyte maturation markers were induced in cultured human myeloblastic ML-2 leukemia cells after treatment for 1-6 days with 0.03-30 microM delta 9-tetrahydrocannabinol (THC), the major psychoactive component of marijuana. After a 2-day or longer treatment, 2- to 5-fold increases were found in the percentages of cells exhibiting reactivity with either the murine OKM1 monoclonal antibody or the Leu-M5 monoclonal antibody, staining positively for nonspecific esterase activity, and displaying a promonocyte morphology. The increases in these differentiation markers after treatment with 0.03-1 microM THC were dose dependent. At this dose range, THC did not cause an inhibition of cell growth. The THC-induced cell maturation was also characterized by specific changes in the patterns of newly synthesized proteins. Pronounced among these changes was an increase in the synthesis of at least 10 proteins that are found abundantly in monocytes. The THC-induced differentiation did not, however, result in cells with a highly developed mature monocyte phenotype; the THC-treated cells failed to exhibit other monocyte markers such as attachment to the surface of tissue culture dishes or morphological maturation beyond the promonocyte stage. However, treatment of these "incompletely" matured cells with either phorbol 12-myristate 13-acetate or 1 alpha,25-dihydroxycholecalciferol, which are inducers of differentiation in myeloid leukemia cells (including ML-2 cells), produced cells with a mature monocyte morphology. Two other cannabinoids, cannabidiol and cannabinol, which were more cytotoxic than THC at comparable doses, also caused an increase in the expression of maturation markers, but at doses higher than those required for THC. The ML-2 cell system described here may be a useful tool for deciphering critical biochemical events that lead to the cannabinoid-induced "incomplete" cell differentiation of ML-2 cells and other related cell types. Findings obtained from this system may have important implications for studies of cannabinoid effects on normal human bone-marrow progenitor cells. Images PMID:3037549

  5. Reducing the serine availability complements the inhibition of the glutamine metabolism to block leukemia cell growth.

    PubMed

    Polet, Florence; Corbet, Cyril; Pinto, Adan; Rubio, Laila Illan; Martherus, Ruben; Bol, Vanesa; Drozak, Xavier; Grgoire, Vincent; Riant, Olivier; Feron, Olivier

    2016-01-12

    Leukemia cells are described as a prototype of glucose-consuming cells with a high turnover rate. The role of glutamine in fueling the tricarboxylic acid cycle of leukemia cells was however recently identified confirming its status of major anaplerotic precursor in solid tumors. Here we examined whether glutamine metabolism could represent a therapeutic target in leukemia cells and whether resistance to this strategy could arise. We found that glutamine deprivation inhibited leukemia cell growth but also led to a glucose-independent adaptation maintaining cell survival. A proteomic study revealed that glutamine withdrawal induced the upregulation of phosphoglycerate dehydrogenase (PHGDH) and phosphoserine aminotransferase (PSAT), two enzymes of the serine pathway. We further documented that both exogenous and endogenous serine were critical for leukemia cell growth and contributed to cell regrowth following glutamine deprivation. Increase in oxidative stress upon inhibition of glutamine metabolism was identified as the trigger of the upregulation of PHGDH. Finally, we showed that PHGDH silencing in vitro and the use of serine-free diet in vivo inhibited leukemia cell growth, an effect further increased when glutamine metabolism was blocked. In conclusion, this study identified serine as a key pro-survival actor that needs to be handled to sensitize leukemia cells to glutamine-targeting modalities. PMID:26625201

  6. [Anti-leukemia immunity induced by dendritic cells fused with L615 tumor cells].

    PubMed

    Yu, Jin-Pu; Li, Mu; Ge, Wei; Ma, Shuang; You, Sheng-Guo

    2006-04-01

    This study was aimed to investigate the specific anti-L615 leukemia cell immunity induced by L615/DC fused cell vaccine in vivo and in vitro. BM-derived DCs were generated from bone marrow of 615 mice by culturing for 9 - 10 days in culture medium supplemented with GM-CSF and IL-4. Irradiated L615 tumor cells were fused with DC by using PEG to form fused cell vaccine, with which 615 mice were immunized. After immunization, the specific proliferation ability and cytotoxicity against L615 leukemia cells in vitro were examined by MTT and LDH methods. Anti-leukemia effect of fused cell vaccine in vivo was studied by observing the immunotherapy effects on L615 tumor-bearing mice. The results showed that fully mature and functional bone marrow-derived DC were obtained. L615/DC fused cell vaccine could elicit potent specific proliferation response of spleen T cells from immunized mice when contacting with the same antigen at the second time, and could also elicit the effective cytotoxic activity against L615 leukemia cells in vitro, which were significantly different from other groups. In vivo the average survival time of the tumor-bearing mice received immunotherapy with L615/DC fused cell vaccine was 25.7 +/- 1 days, and one fourth of treated tumor-bearing mice survived for long time, but the mice of control group died all, their average of survival time was 17.5 +/- 1 days. The immunized mice survived with no evidence of recurrence when exposed to the second attack of lethal dose of living L615 cells 2 months later. It is concluded that L615/DC fused cell vaccine can improve the immunogenecity of L615 and induce effectively the specific anti-leukemia immunity against L615 leukemia cells to eliminate the residual leukemia cells, prolong the survival time and induce the immune memory to avoid the relapse. Thus, the fused cell vaccine may be an attractive strategy for malignance immunotherapy. PMID:16638213

  7. Resistance to RadLV-induced leukemia: non-participation of splenic natural killer cells

    SciTech Connect

    St.-Pierre, Y.; Hugo, P.; Lemieux, S.; Lussier, G.; Potworowski, E.F.

    1988-08-01

    The phenotypic expression of genetically determined resistance to radiation leukemia virus (RadLV)-induced leukemia in mice has been shown to reside in the bone marrow. Because the bone marrow contains precursors of natural killer (NK) cells, known to play a role in retrovirally induced infections, and because these cells have been suggested as participating in resistance to radiation-induced leukemia, it was pertinent to establish whether their levels differed in strains of mice susceptible and resistant to leukemia. We therefore tested splenic NK cell levels in C57BL/Ka (susceptible) and B10.A(5R) (resistant) mice before viral inoculation, immediately after viral inoculation, and throughout the preleukemic period and showed that they were not different. This indicates that splenic NK cell levels have no bearing on the resistance to RadLV-induced leukemia and that other immune or non-immune mechanisms must be sought.

  8. Induction of cell cycle entry eliminates human leukemia stem cells in a mouse model of AML.

    PubMed

    Saito, Yoriko; Uchida, Naoyuki; Tanaka, Satoshi; Suzuki, Nahoko; Tomizawa-Murasawa, Mariko; Sone, Akiko; Najima, Yuho; Takagi, Shinsuke; Aoki, Yuki; Wake, Atsushi; Taniguchi, Shuichi; Shultz, Leonard D; Ishikawa, Fumihiko

    2010-03-01

    Cancer stem cells have been proposed to be important for initiation, maintenance and recurrence of various malignancies, including acute myeloid leukemia (AML). We have previously reported that CD34+CD38- human primary AML stem cells residing in the endosteal region of the bone marrow are relatively chemotherapy resistant. Using a NOD/SCID/IL2rgamma(null) mouse model of human AML, we now show that the AML stem cells in the endosteal region are cell cycle quiescent and that these stem cells can be induced to enter the cell cycle by treatment with granulocyte colony-stimulating factor (G-CSF). In combination with cell cycle-dependent chemotherapy, G-CSF treatment significantly enhances induction of apoptosis and elimination of human primary AML stem cells in vivo. The combination therapy leads to significantly increased survival of secondary recipients after transplantation of leukemia cells compared with chemotherapy alone. PMID:20160717

  9. Targeting SLUG sensitizes leukemia cells to ADR-induced apoptosis

    PubMed Central

    Wei, Chang-Rong; Liu, Jun; Yu, Xiao-Jun

    2015-01-01

    Background and Aims: Slug is an E-cadherin repressor and a suppressor of PUMA (p53 upregulated modulator of apoptosis) and it has recently been demonstrated that Slug plays an important role in controlling apoptosis. In this study, we examined whether Slug’s ability to silence expression suppresses the growth of leukemia HL-60 cells and/or sensitizes leukemia HL-60 cells to adriamycin (ADR) through induction of apoptosis. Methods: SLUG siRNA was transfected into the HL-60 and HL-60ADR cell lines (an adriamycin resistant cell line). The stably SLUG siRNA transfected HL-60 and HL-60ADR cells was transiently transfected with PUMA siRNA. The mRNA and protein expression of SLUG and PUMA were determined by Quantitative real-time RT-PCR and Western blot assay. The effects of SLUG siRNA alone or combined with ADR or PUMA siRNA on growth and apoptosis in HL-60 and HL-60ADR cells was detected by MTT, ELISA and terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) assay. Results: The results showed that SLUG was less expressed in the HL-60 cells, and high expressed in the HL-60ADR cells. Obvious down-regulation of SLUG mRNA and protein levels and up-regulation of PUMA mRNA and protein levels after SLUG siRNA transfection was showed in the HL-60ADR cells. Treatment with ADR induced SLUG mRNA and protein in the HL-60 cells. Significant positive correlation was observed between basal SLUG mRNA and protein and ADR sensitivity. SLUG gene silencing by SLUG siRNA transfection inhibited growth and induced apoptosis, and increased ADR killing of the HL-60 and HL-60ADR cell lines. After the SLUG siRNA transfected HL-60 and HL-60ADR cells was transiently transfected with PUMA siRNA, did not increase ADR killing of the HL-60 and HL-60ADR cell lines. Conclusion: SLUG level positively correlated with sensitivity to ADR. SLUG siRNA could effectively reduce SLUG expression and induce PUMA expression and restore the drug sensitivity of resistant leukemic cells to conventional chemotherapeutic agents. PMID:26885188

  10. Molecular mechanisms of cisplatin cytotoxicity in acute promyelocytic leukemia cells

    PubMed Central

    Kumar, Sanjay; Tchounwou, Paul B.

    2015-01-01

    Cis-diamminedichloroplatinum (II) (cisplatin) is a widely used anti-tumor drug for the treatment of a broad range of human malignancies with successful therapeutic outcomes for head and neck, ovarian, and testicular cancers. It has been found to inhibit cell cycle progression and to induce oxidative stress and apoptosis in acute promyelocytic leukemia (APL) cells. However, its molecular mechanisms of cytotoxic action are poorly understood. We hypothesized that cisplatin induces cytotoxicity through DNA adduct formation, oxidative stress, transcriptional factors (p53 and AP-1), cell cycle regulation, stress signaling and apoptosis in APL cells. We used the APL cell line as a model, and applied a variety of molecular tools to elucidate the cytototoxic mode of action of cisplatin. We found that cisplatin inhibited cell proliferation by a cytotoxicity, characterized by DNA damage and modulation of oxidative stress. Cisplatin also activated p53 and phosphorylated activator protein (AP-1) component, c-Jun at serine (63, 73) residue simultaneously leading to cell cycle arrest through stimulation of p21 and down regulation of cyclins and cyclin dependent kinases in APL cell lines. It strongly activated the intrinsic pathway of apoptosis through alteration of the mitochondrial membrane potential, release of cytochrome C, and up-regulation of caspase 3 activity. It also down regulated the p38MAPK pathway. Overall, this study highlights the molecular mechanisms that underline cisplatin toxicity to APL cells, and provides insights into selection of novel targets and/or design of therapeutic agents to treat APL. PMID:26486083

  11. Molecular mechanisms of cisplatin cytotoxicity in acute promyelocytic leukemia cells.

    PubMed

    Kumar, Sanjay; Tchounwou, Paul B

    2015-12-01

    Cis-diamminedichloroplatinum (II) (cisplatin) is a widely used anti-tumor drug for the treatment of a broad range of human malignancies with successful therapeutic outcomes for head and neck, ovarian, and testicular cancers. It has been found to inhibit cell cycle progression and to induce oxidative stress and apoptosis in acute promyelocytic leukemia (APL) cells. However, its molecular mechanisms of cytotoxic action are poorly understood. We hypothesized that cisplatin induces cytotoxicity through DNA adduct formation, oxidative stress, transcriptional factors (p53 and AP-1), cell cycle regulation, stress signaling and apoptosis in APL cells. We used the APL cell line as a model, and applied a variety of molecular tools to elucidate the cytotoxic mode of action of cisplatin. We found that cisplatin inhibited cell proliferation by a cytotoxicity, characterized by DNA damage and modulation of oxidative stress. Cisplatin also activated p53 and phosphorylated activator protein (AP-1) component, c-Jun at serine (63, 73) residue simultaneously leading to cell cycle arrest through stimulation of p21 and down regulation of cyclins and cyclin dependent kinases in APL cell lines. It strongly activated the intrinsic pathway of apoptosis through alteration of the mitochondrial membrane potential, release of cytochrome C, and up-regulation of caspase 3 activity. It also down regulated the p38MAPK pathway. Overall, this study highlights the molecular mechanisms that underline cisplatin toxicity to APL cells, and provides insights into selection of novel targets and/or design of therapeutic agents to treat APL. PMID:26486083

  12. Lenalidomide interferes with tumor-promoting properties of nurse-like cells in chronic lymphocytic leukemia

    PubMed Central

    Fiorcari, Stefania; Martinelli, Silvia; Bulgarelli, Jenny; Audrito, Valentina; Zucchini, Patrizia; Colaci, Elisabetta; Potenza, Leonardo; Narni, Franco; Luppi, Mario; Deaglio, Silvia; Marasca, Roberto; Maffei, Rossana

    2015-01-01

    Lenalidomide is an immunomodulatory agent clinically active in chronic lymphocytic leukemia patients. The specific mechanism of action is still undefined, but includes modulation of the microenvironment. In chronic lymphocytic leukemia patients, nurse-like cells differentiate from CD14+ mononuclear cells and protect chronic lymphocytic leukemia cells from apoptosis. Nurse-like cells resemble M2 macrophages with potent immunosuppressive functions. Here, we examined the effect of lenalidomide on the monocyte/macrophage population in chronic lymphocytic leukemia patients. We found that lenalidomide induces high actin polymerization on CD14+ monocytes through activation of small GTPases, RhoA, Rac1 and Rap1 that correlated with increased adhesion and impaired monocyte migration in response to CCL2, CCL3 and CXCL12. We observed that lenalidomide increases the number of nurse-like cells that lost the ability to nurture chronic lymphocytic leukemia cells, acquired properties of phagocytosis and promoted T-cell proliferation. Gene expression signature, induced by lenalidomide in nurse-like cells, indicated a reduction of pivotal pro-survival signals for chronic lymphocytic leukemia, such as CCL2, IGF1, CXCL12, HGF1, and supported a modulation towards M1 phenotype with high IL2 and low IL10, IL8 and CD163. Our data provide new insights into the mechanism of action of lenalidomide that mediates a pro-inflammatory switch of nurse-like cells affecting the protective microenvironment generated by chronic lymphocytic leukemia into tissues. PMID:25398834

  13. Lenalidomide interferes with tumor-promoting properties of nurse-like cells in chronic lymphocytic leukemia.

    PubMed

    Fiorcari, Stefania; Martinelli, Silvia; Bulgarelli, Jenny; Audrito, Valentina; Zucchini, Patrizia; Colaci, Elisabetta; Potenza, Leonardo; Narni, Franco; Luppi, Mario; Deaglio, Silvia; Marasca, Roberto; Maffei, Rossana

    2015-02-01

    Lenalidomide is an immunomodulatory agent clinically active in chronic lymphocytic leukemia patients. The specific mechanism of action is still undefined, but includes modulation of the microenvironment. In chronic lymphocytic leukemia patients, nurse-like cells differentiate from CD14(+) mononuclear cells and protect chronic lymphocytic leukemia cells from apoptosis. Nurse-like cells resemble M2 macrophages with potent immunosuppressive functions. Here, we examined the effect of lenalidomide on the monocyte/macrophage population in chronic lymphocytic leukemia patients. We found that lenalidomide induces high actin polymerization on CD14(+) monocytes through activation of small GTPases, RhoA, Rac1 and Rap1 that correlated with increased adhesion and impaired monocyte migration in response to CCL2, CCL3 and CXCL12. We observed that lenalidomide increases the number of nurse-like cells that lost the ability to nurture chronic lymphocytic leukemia cells, acquired properties of phagocytosis and promoted T-cell proliferation. Gene expression signature, induced by lenalidomide in nurse-like cells, indicated a reduction of pivotal pro-survival signals for chronic lymphocytic leukemia, such as CCL2, IGF1, CXCL12, HGF1, and supported a modulation towards M1 phenotype with high IL2 and low IL10, IL8 and CD163. Our data provide new insights into the mechanism of action of lenalidomide that mediates a pro-inflammatory switch of nurse-like cells affecting the protective microenvironment generated by chronic lymphocytic leukemia into tissues. PMID:25398834

  14. Increased NK Cell Maturation in Patients with Acute Myeloid Leukemia

    PubMed Central

    Chretien, Anne-Sophie; Granjeaud, Samuel; Gondois-Rey, Franoise; Harbi, Samia; Orlanducci, Florence; Blaise, Didier; Vey, Norbert; Arnoulet, Christine; Fauriat, Cyril; Olive, Daniel

    2015-01-01

    Understanding immune alterations in cancer patients is a major challenge and requires precise phenotypic study of immune subsets. Improvement of knowledge regarding the biology of natural killer (NK) cells and technical advances leads to the generation of high dimensional dataset. High dimensional flow cytometry requires tools adapted to complex dataset analyses. This study presents an example of NK cell maturation analysis in Healthy Volunteers (HV) and patients with Acute Myeloid Leukemia (AML) with an automated procedure using the FLOCK algorithm. This procedure enabled to automatically identify NK cell subsets according to maturation profiles, with 2D mapping of a four-dimensional dataset. Differences were highlighted in AML patients compared to HV, with an overall increase of NK maturation. Among patients, a strong heterogeneity in NK cell maturation defined three distinct profiles. Overall, automatic gating with FLOCK algorithm is a recent procedure, which enables fast and reliable identification of cell populations from high-dimensional cytometry data. Such tools are necessary for immune subset characterization and standardization of data analyses. This tool is adapted to new immune cell subsets discovery, and may lead to a better knowledge of NK cell defects in cancer patients. Overall, 2D mapping of NK maturation profiles enabled fast and reliable identification of NK cell subsets. PMID:26594214

  15. Leydig cell damage after testicular irradiation for lymphoblastic leukemia

    SciTech Connect

    Shalet, S.M.; Horner, A.; Ahmed, S.R.; Morris-Jones, P.H.

    1985-01-01

    The effect of testicular irradiation on Leydig cell function has been studied in a group of boys irradiated between 1 and 5 years earlier for a testicular relapse of acute lymphoblastic leukemia. Six of the seven boys irradiated during prepubertal life had an absent testosterone response to HCG stimulation. Two of the four boys irradiated during puberty had an appropriate basal testosterone level, but the testosterone response to HCG stimulation was subnormal in three of the four. Abnormalities in gonadotropin secretion consistent with testicular damage were noted in nine of the 11 boys. Evidence of severe Leydig cell damage was present irrespective of whether the boys were studied within 1 year or between 3 and 5 years after irradiation, suggesting that recovery is unlikely. Androgen replacement therapy has been started in four boys and will be required by the majority of the remainder to undergo normal pubertal development.

  16. Identification of H7 as a novel peroxiredoxin I inhibitor to induce differentiation of leukemia cells.

    PubMed

    Wei, Wei; Ma, Chunmin; Cao, Yang; Yang, Li; Huang, Zhimin; Qin, Dongjun; Chen, Yingyi; Liu, Chuanxu; Xia, Li; Wang, Tongdan; Lei, Hu; Yu, Yun; Huang, Min; Tong, Yin; Xu, Hanzhang; Gao, Fenghou; Zhang, Jian; Wu, Ying-Li

    2016-01-26

    Identifying novel targets to enhance leukemia-cell differentiation is an urgent requirement. We have recently proposed that inhibiting the antioxidant enzyme peroxiredoxin I (Prdx I) may induce leukemia-cell differentiation. However, this concept remains to be confirmed. In this work, we identified H7 as a novel Prdx I inhibitor through virtual screening, in vitro activity assay, and surface plasmon resonance assay. Cellular thermal shift assay showed that H7 directly bound to Prdx I but not to Prdxs II-V in cells. H7 treatment also increased reactive oxygen species (ROS) level and cell differentiation in leukemia cells, as reflected by the upregulation of the cell surface differentiation marker CD11b/CD14 and the morphological maturation of cells. The differentiation-induction effect of H7 was further observed in some non-acute promyelocytic leukemia (APL) and primary leukemia cells apart from APL NB4 cells. Moreover, the ROS scavenger N-acetyl cysteine significantly reversed the H7-induced cell differentiation. We demonstrated as well that H7-induced cell differentiation was associated with the activation of the ROS-Erk1/2-C/EBPβ axis. Finally, we showed H7 treatment induced cell differentiation in an APL mouse model. All of these data confirmed that Prdx I was novel target for inducing leukemia-cell differentiation and that H7 was a novel lead compound for optimizing Prdx I inhibition. PMID:26716647

  17. Leukemia among participants in military maneuvers at a nuclear bomb test. A preliminary report.

    PubMed

    Caldwell, G G; Kelley, D B; Heath, C W

    1980-10-01

    Preliminary studies indicate that nine cases of leukemia have occurred among 3,224 men who participated in military maneuvers during the 1957 nuclear test explosion "Smoky." This represents a significant increase over the expected incidence of 3.5 cases. They included four cases of acute myelocytic leukemia, three of chronic myelocytic leukemia, and one each of hairy cell and acute lymphocytic leukemia. At time of diagnosis, patient ages ranged from 21 to 60 years (mean, 41.8 years) and the interval from time of nuclear test to diagnosis from two to 19 years (mean, 14.2 years). Film-badge records, which are available for eight of the nine men, indicated gamma radiation exposure levels ranging from 0 to 2,977 mrem (mean, 1,033 mrem). Mean film-badge gamma dose for the entire Smoky cohort was 466.2 mrem. PMID:6932516

  18. Leukemia among participants in military maneuvers at a nuclear bomb test. [Plumbbob Project

    SciTech Connect

    Caldwell, G.G.; Kelley, D.B.; Heath, C.W. Jr.

    1980-10-03

    Preliminary studies indicate that nine cases of leukemia have occurred among 3224 men who participated in military maneuvers during the 1957 nuclear test explosion Smoky. This represents a significant increase over the expected incidence of 3.5 cases. They included four cases of acute myelocytic leukemia, three of chronic myelocytic leukemia, and one each of hairy cell and acute lymphocytic leukemia. At time of diagnosis, patient ages ranged from 21 to 60 years (mean, 41.8 years) and the interval from time of nuclear test to diagnosis from two to 19 years (mean, 14.2 years). Film-badge records, which are available for eight of the nine men, indicated gamma radiation exposure levels ranging from 0 to 2977 mrem (mean, 1033 mrem). Mean film-badge gamma dose for the entire Smoky cohort was 466.2 mrem.

  19. Positive feedback between NF-?B and TNF-? promotes leukemia-initiating cell capacity

    PubMed Central

    Kagoya, Yuki; Yoshimi, Akihide; Kataoka, Keisuke; Nakagawa, Masahiro; Kumano, Keiki; Arai, Shunya; Kobayashi, Hiroshi; Saito, Taku; Iwakura, Yoichiro; Kurokawa, Mineo

    2014-01-01

    Acute myeloid leukemia (AML) is a heterogeneous hematologic malignancy that originates from leukemia-initiating cells (LICs). The identification of common mechanisms underlying LIC development will be important in establishing broadly effective therapeutics for AML. Constitutive NF-?B pathway activation has been reported in different types of AML; however, the mechanism of NF-?B activation and its importance in leukemia progression are poorly understood. Here, we analyzed myeloid leukemia mouse models to assess NF-?B activity in AML LICs. We found that LICs, but not normal hematopoietic stem cells or non-LIC fractions within leukemia cells, exhibited constitutive NF-?B activity. This activity was maintained through autocrine TNF-? secretion, which formed an NF-?B/TNF-? positive feedback loop. LICs had increased levels of active proteasome machinery, which promoted the degradation of I?B? and further supported NF-?B activity. Pharmacological inhibition of the proteasome complex markedly suppressed leukemia progression in vivo. Conversely, enhanced activation of NF-?B signaling expanded LIC frequency within leukemia cell populations. We also demonstrated a strong correlation between NF-?B activity and TNF-? secretion in human AML samples. Our findings indicate that NF-?B/TNF-? signaling in LICs contributes to leukemia progression and provide a widely applicable approach for targeting LICs. PMID:24382349

  20. Defective immunoregulatory T-cell function in chronic lymphocytic leukemia

    SciTech Connect

    Han, T.; Ozer, H.; Henderson, E.S.; Dadey, B.; Nussbaum-Blumenson, A.; Barcos, M.

    1981-12-01

    Chronic lymphocytic leukemia (CLL) of B-cell origin results in the malignant proliferation of small immunoglobulin-bearing lymphocytes. There is currently a controversy in the literature regarding both the ability of this leukemic population to differentiate into mature plasma cells, as well as the ability of apparently normal T cells from these patients to regulate allogeneic B-cell differentiation. In the present study we have examined the lymphocytes of CLL patients in various clinical stages of their disease and with different surface phenotypes of their leukemic B-cell population. Our results show that leukemic CLL B cells from all 20 patients (including one patient with a monoclonal IgM paraprotein and another with a monoclonal IgG paraprotein) are incapable of further differentiation even in the absence of suppressor T cells and the presence of helper T lymphocytes. This lack of capacity to differentiate is unaffected by clinical stage, by therapy, or by the phenotype of the malignant population. Since the leukemic B population did not suppress normal allogeneic B-cell differentiation, the maturation deficit is evidently intrinsic to the leukemic clone rather than a result of activity of non-T suppressor cells. T helper function was also variably depressed in the blood of some patients with CLL, and this depression did not correlate with clinical stage, with therapy, or with the degree of lymphocytosis. Dysfunction of radiosensitive T suppressor cells was found to be the most consistent regulatory deficit of CLL T cells. Each of 11 patients whose leukemic cell population was of the ..mu..delta, ..mu cap alpha.., or ..mu.. phenotype had both helper and suppressor cell defects.

  1. Functional Niche Competition Between Normal Hematopoietic Stem and Progenitor Cells and Myeloid Leukemia Cells.

    PubMed

    Glait-Santar, Chen; Desmond, Ronan; Feng, Xingmin; Bat, Taha; Chen, Jichun; Heuston, Elisabeth; Mizukawa, Benjamin; Mulloy, James C; Bodine, David M; Larochelle, Andre; Dunbar, Cynthia E

    2015-12-01

    Hematopoietic stem and progenitor cells (HSPCs) reside in a specialized niche that regulates their proliferative capacity and their fate. There is increasing evidence for similar roles of marrow niches on controlling the behavior of leukemic cells; however, whether normal hematopoietic stem cell (HSC) and leukemic cells reside in or functionally compete for the same marrow niche is unclear. We used the mixed lineage leukemia-AF9 (MLL-AF9) murine acute myeloid leukemia (AML) in a competitive repopulation model to investigate whether normal HSPC and leukemic cells functionally compete for the same marrow niches. Irradiated recipient mice were transplanted with fixed numbers of MLL-AF9 cells mixed with increasing doses of normal syngeneic whole bone marrow (WBM) or with purified HSPC (LSK). Survival was significantly increased and leukemic progression was delayed proportional to increasing doses of normal WBM or normal LSK cells in multiple independent experiments, with all doses of WBM or LSK cells studied above the threshold for rapid and complete hematopoietic reconstitution in the absence of leukemia. Confocal microscopy demonstrated nests of either leukemic cells or normal hematopoietic cells but not both in the marrow adjacent to endosteum. Early following transplantation, leukemic cells from animals receiving lower LSK doses were cycling more actively than in those receiving higher doses. These results suggest that normal HSPC and AML cells compete for the same functional niche. Manipulation of the niche could impact on response to antileukemic therapies, and the numbers of normal HSPC could impact on leukemia outcome, informing approaches to cell dose in the context of stem cell transplantation. Stem Cells 2015;33:3635-3642. PMID:26388434

  2. S100A8 Contributes to Drug Resistance by Promoting Autophagy in Leukemia Cells

    PubMed Central

    Yang, Minghua; Zeng, Pei; Kang, Rui; Yu, Yan; Yang, Liangchun; Tang, Daolin; Cao, Lizhi

    2014-01-01

    Autophagy is a double-edged sword in tumorigenesis and plays an important role in the resistance of cancer cells to chemotherapy. S100A8 is a member of the S100 calcium-binding protein family and plays an important role in the drug resistance of leukemia cells, with the mechanisms largely unknown. Here we report that S100A8 contributes to drug resistance in leukemia by promoting autophagy. S100A8 level was elevated in drug resistance leukemia cell lines relative to the nondrug resistant cell lines. Adriamycin and vincristine increased S100A8 in human leukemia cells, accompanied with upregulation of autophagy. RNA interference-mediated knockdown of S100A8 restored the chemosensitivity of leukemia cells, while overexpression of S100A8 enhanced drug resistance and increased autophagy. S100A8 physically interacted with the autophagy regulator BECN1 and was required for the formation of the BECN1-PI3KC3 complex. In addition, interaction between S100A8 and BECN1 relied upon the autophagic complex ULK1-mAtg13. Furthermore, we discovered that exogenous S100A8 induced autophagy, and RAGE was involved in exogenous S100A8-regulated autophagy. Our data demonstrated that S100A8 is involved in the development of chemoresistance in leukemia cells by regulating autophagy, and suggest that S100A8 may be a novel target for improving leukemia therapy. PMID:24820971

  3. Establishment and characterization of a new canine B-cell leukemia cell line.

    PubMed

    Nakaichi, M; Taura, Y; Kanki, M; Mamba, K; Momoi, Y; Tsujimoto, H; Nakama, S

    1996-05-01

    A new cell line derived from a spontaneous canine leukemia was established and designated GL-1. The cells have been cultured in a floating fashion and passaged for over two years. They were round with rich cytoplasm containing many rough endoplasmic reticula and mitochondria. Peroxidase staining was negative. The nuclei of many cells were round, but segmented nuclei were seen frequently. The doubling time of the cells was 27.3 hr and they had 78 chromosomes. Surface marker analysis using monoclonal antibodies (MABs) and flowcytometry revealed that GL-1 possessed CD45 and surface IgG. However, the cells did not react with MABs detecting T-cell markers. These results indicate that GL-1 has a lymphocytic lineage and is derived from a B-cell leukemia. PMID:8741612

  4. TWIST-1 promotes cell growth, drug resistance and progenitor clonogenic capacities in myeloid leukemia and is a novel poor prognostic factor in acute myeloid leukemia

    PubMed Central

    Wang, Nan; Guo, Dan; Zhao, YangYang; Dong, ChengYa; Liu, XiaoYan; Yang, BinXia; Wang, ShuWei; Wang, Lin; Liu, QingGuo; Ren, Qian; Lin, YongMin; Ma, XiaoTong

    2015-01-01

    Alterations of TWIST-1 expression are often seen in solid tumors and contribute to tumorigenesis and cancer progression. However, studies concerning its pathogenic role in leukemia are scarce. Our study shows that TWIST-1 is overexpressed in bone marrow mononuclear cells of patients with acute myeloid leukemia (AML) and chronic myeloid leukemia (CML). Gain-of-function and loss-of-function analyses demonstrate that TWIST-1 promotes cell growth, colony formation and drug resistance of AML and CML cell lines. Furthermore, TWIST-1 is aberrantly highly expressed in CD34+CD38? leukemia stem cell candidates and its expression declines with differentiation. Down-modulation of TWIST-1 in myeloid leukemia CD34+ cells impairs their colony-forming capacity. Mechanistically, c-MPL, which is highly expressed in myeloid leukemia cells and associated with poor prognosis, is identified as a TWIST-1 coexpressed gene in myeloid leukemia patients and partially contributes to TWIST-1-mediated leukemogenic effects. Moreover, patients with higher TWIST-1 expression have shorter overall and event-free survival (OS and EFS) in AML. Multivariate analysis further demonstrates that TWIST-1 overexpression is a novel independent unfavourable predictor for both OS and EFS in AML. These data highlight TWIST-1 as a new candidate gene contributing to leukemogenesis of myeloid leukemia, and propose possible new avenues for improving risk and treatment stratification in AML. PMID:26023795

  5. MLL leukemia induction by genome editing of human CD34+ hematopoietic cells.

    PubMed

    Buechele, Corina; Breese, Erin H; Schneidawind, Dominik; Lin, Chiou-Hong; Jeong, Johan; Duque-Afonso, Jesus; Wong, Stephen H K; Smith, Kevin S; Negrin, Robert S; Porteus, Matthew; Cleary, Michael L

    2015-10-01

    Chromosomal rearrangements involving the mixed-lineage leukemia (MLL) gene occur in primary and treatment-related leukemias and confer a poor prognosis. Studies based primarily on mouse models have substantially advanced our understanding of MLL leukemia pathogenesis, but often use supraphysiological oncogene expression with uncertain implications for human leukemia. Genome editing using site-specific nucleases provides a powerful new technology for gene modification to potentially model human disease, however, this approach has not been used to re-create acute leukemia in human cells of origin comparable to disease observed in patients. We applied transcription activator-like effector nuclease-mediated genome editing to generate endogenous MLL-AF9 and MLL-ENL oncogenes through insertional mutagenesis in primary human hematopoietic stem and progenitor cells (HSPCs) derived from human umbilical cord blood. Engineered HSPCs displayed altered in vitro growth potentials and induced acute leukemias following transplantation in immunocompromised mice at a mean latency of 16 weeks. The leukemias displayed phenotypic and morphologic similarities with patient leukemia blasts including a subset with mixed phenotype, a distinctive feature seen in clinical disease. The leukemic blasts expressed an MLL-associated transcriptional program with elevated levels of crucial MLL target genes, displayed heightened sensitivity to DOT1L inhibition, and demonstrated increased oncogenic potential ex vivo and in secondary transplant assays. Thus, genome editing to create endogenous MLL oncogenes in primary human HSPCs faithfully models acute MLL-rearranged leukemia and provides an experimental platform for prospective studies of leukemia initiation and stem cell biology in a genetic subtype of poor prognosis leukemia. PMID:26311362

  6. MLL leukemia induction by genome editing of human CD34+ hematopoietic cells

    PubMed Central

    Buechele, Corina; Breese, Erin H.; Schneidawind, Dominik; Lin, Chiou-Hong; Jeong, Johan; Duque-Afonso, Jesus; Wong, Stephen H. K.; Smith, Kevin S.; Negrin, Robert S.; Porteus, Matthew

    2015-01-01

    Chromosomal rearrangements involving the mixed-lineage leukemia (MLL) gene occur in primary and treatment-related leukemias and confer a poor prognosis. Studies based primarily on mouse models have substantially advanced our understanding of MLL leukemia pathogenesis, but often use supraphysiological oncogene expression with uncertain implications for human leukemia. Genome editing using site-specific nucleases provides a powerful new technology for gene modification to potentially model human disease, however, this approach has not been used to re-create acute leukemia in human cells of origin comparable to disease observed in patients. We applied transcription activator-like effector nuclease–mediated genome editing to generate endogenous MLL-AF9 and MLL-ENL oncogenes through insertional mutagenesis in primary human hematopoietic stem and progenitor cells (HSPCs) derived from human umbilical cord blood. Engineered HSPCs displayed altered in vitro growth potentials and induced acute leukemias following transplantation in immunocompromised mice at a mean latency of 16 weeks. The leukemias displayed phenotypic and morphologic similarities with patient leukemia blasts including a subset with mixed phenotype, a distinctive feature seen in clinical disease. The leukemic blasts expressed an MLL-associated transcriptional program with elevated levels of crucial MLL target genes, displayed heightened sensitivity to DOT1L inhibition, and demonstrated increased oncogenic potential ex vivo and in secondary transplant assays. Thus, genome editing to create endogenous MLL oncogenes in primary human HSPCs faithfully models acute MLL-rearranged leukemia and provides an experimental platform for prospective studies of leukemia initiation and stem cell biology in a genetic subtype of poor prognosis leukemia. PMID:26311362

  7. Complete suppression of in vivo growth of human leukemia cells by specific immunotoxins: nude mouse models

    SciTech Connect

    Hara, H.; Seon, B.K.

    1987-05-01

    In this study, immunotoxins containing monoclonal anti-human T-cell leukemia antibodies are shown to be capable of completely suppressing the tumor growth of human T-cell leukemia cells in vivo without any overt undersirable toxicity. These immunotoxins were prepared by conjugating ricin A chain (RA) with our monoclonal antibodies, SN1 and SN2, directed specifically to the human T-cell leukemia cell surface antigens TALLA and GP37, respectively. The authors have shown that these monoclonal antibodies are highly specific for human T-cell leukemia cells and do not react with various normal cells including normal T and B cells, thymocytes, and bone marrow cells. Ascitic and solid human T-cell leukemia cell tumors were generated in nude mice. The ascitic tumor was generated by transplanting Ichikawa cells (a human T-cell leukemia cell) i.p. into nude mice, whereas the solid tumor was generated by transplanting s.c. MOLT-4 cells (a human T-cell leukemia cell line) and x-irradiated human fibrosarcoma cells into x-irradiated nude mice. To investigate the efficacy of specific immunotoxins in suppression the in vivo growth of the ascitic tumor, they divided 40 nude mice that were injected with Ichikawa cells into four groups. None of the mice in group 4 that were treated with SN1-RA and SN2-RA showed any signs of a tumor or undesirable toxic effects for the 20 weeks that they were followed after the transplantation. Treatment with SN1-RA plus SN2-RA completely suppressed solid tumor growth in 4 of 10 nude mice carrying solid tumors and partially suppressed the tumor growth in the remaining 6 nude mice. These results strongly suggest that SN1-RA and SN2-RA may be useful for clinical treatment.

  8. Enhancement of anti-leukemia activity of NK cells in vitro and in vivo by inhibition of leukemia cell-induced NK cell damage.

    PubMed

    Arriga, Roberto; Caratelli, Sara; Coppola, Andrea; Spagnoli, Giulio Cesare; Venditti, Adriano; Amadori, Sergio; Lanzilli, Giulia; Lauro, Davide; Palomba, Patrizia; Sconocchia, Tommaso; Del Principe, Maria Ilaria; Maurillo, Luca; Buccisano, Francesco; Capuani, Barbara; Ferrone, Soldano; Sconocchia, Giuseppe

    2016-01-12

    Acute myeloid leukemia (AML) cells induce, in vitro, NK cell abnormalities (NKCAs) including apoptosis and activating receptor down-regulation. The potential negative impact of AML cells on the therapeutic efficacy of NK cell-based strategies prompted us to analyze the mechanisms underlying NKCAs and to develop approaches to protect NK cells from NKCAs. NKCA induction by the AML leukemia cells target a subpopulation of peripheral blood NK cells and is interleukin-2 independent but is abrogated by a long-term culture of NK (LTNK) cells at 37C. LTNK cells displayed a significantly enhanced ability to damage AML cells in vitro and inhibited the subcutaneous growth of ML-2 cells grafted into CB17 SCID mice. Actinomycin D restored the susceptibility of LTNK cells to NKCAs while TAPI-0, a functional analog of the tissue inhibitor of metalloproteinase (TIMP) 3, inhibits ML-2 cell-induced NKCAs suggesting that the generation of NK cell resistance to NKCAs involves RNA transcription and metalloproteinase (MPP) inactivation. This conclusion is supported by the reduced susceptibility to AML cell-induced NKCAs of LTNK cells in which TIMP3 gene and protein are over-expressed. This information may contribute to the rational design of targeted strategies to enhance the efficacy of NK cell-based-immunotherapy of AML with haploidentical NK cells. PMID:26655503

  9. Pediatric donor cell leukemia after allogeneic hematopoietic stem cell transplantation in AML patient from related donor.

    PubMed

    Bobadilla-Morales, Lucina; Pimentel-Gutiérrez, Helia J; Gallegos-Castorena, Sergio; Paniagua-Padilla, Jenny A; Ortega-de-la-Torre, Citlalli; Sánchez-Zubieta, Fernando; Silva-Cruz, Rocio; Corona-Rivera, Jorge R; Zepeda-Moreno, Abraham; González-Ramella, Oscar; Corona-Rivera, Alfredo

    2015-01-01

    Here we present a male patient with acute myeloid leukemia (AML) initially diagnosed as M5 and with karyotype 46,XY. After induction therapy, he underwent a HLA-matched allogeneic hematopoietic stem cell transplantation, and six years later he relapsed as AML M1 with an abnormal karyotype //47,XX,+10[2]/47,XX,+11[3]/48,XX,+10,+11[2]/46,XX[13]. Based on this, we tested the possibility of donor cell origin by FISH and molecular STR analysis. We found no evidence of Y chromosome presence by FISH and STR analysis consistent with the success of the allogeneic hematopoietic stem cell transplantation from the female donor. FISH studies confirmed trisomies and no evidence of MLL translocation either p53 or ATM deletion. Additionally 28 fusion common leukemia transcripts were evaluated by multiplex reverse transcriptase-polymerase chain reaction assay and were not rearranged. STR analysis showed a complete donor chimerism. Thus, donor cell leukemia (DCL) was concluded, being essential the use of cytological and molecular approaches. Pediatric DCL is uncommon, our patient seems to be the sixth case and additionally it presented a late donor cell leukemia appearance. Different extrinsic and intrinsic mechanisms have been considered to explain this uncommon finding as well as the implications to the patient. PMID:25674158

  10. Molecular Pathology of Adult T-Cell Leukemia/Lymphoma.

    PubMed

    Ohshima, Koichi

    2015-01-01

    Adult T-cell leukemia/lymphoma (ATLL) is a peripheral T-cell neoplasm of highly pleomorphic lymphoid cells. ATLL is usually widely disseminated, and it is caused by human T-cell leukemia virus type 1 (HTLV-1). It is a disease with a long latency, and affected individuals are usually exposed to the virus very early in life. The cumulative incidence of ATLL is estimated to be 2.5% among HTLV-1 carriers. ATLL cells express CD2, CD3, CD5, CD4, and CD25, as well as CCR4 and FoxP3 of the regulatory T-cell marker. HTLV-1 is causally linked to ATLL, but infection alone is not sufficient to result in neoplastic transformation. A significant finding in this connection is that the Tax viral protein leads to transcriptional activation of many genes, while the HTLV-1 basic leucine zipper factor is thought to be important for T-cell proliferation and oncogenesis. Half of ATLL cases retain the ability to express HTLV-1 Tax, which is a target of HTLV-1-specific cytotoxic T lymphocytes (CTL). An increase in HTLV-1-specific CTL responses is observed in some asymptomatic HTLV-1 carriers. Although HTLV-1-specific CTL are also present in the peripheral blood of ATLL patients, they do not expand sufficiently. We investigated the clinicopathological features and analyzed the staining of Tax-specific CTL and FoxP3. Tax-specific CTL correlated inversely with FoxP3, an increase in the ratio of CD163+ tumor-associated macrophages was associated with worse clinical prognosis, and ATLL cell lines proliferated significantly following direct co-culture with M2 macrophages. Several clinical variants of ATLL have been identified: acute, lymphomatous, chronic, and smoldering. Oligo-array comparative genomic hybridization revealed that genomic loss of 9p21.3 was a significant characteristic of acute-type, but not of chronic-type ATLL. Furthermore, we found that genomic alteration of CD58, which is implicated in immune escape, is more frequently observed in acute than in chronic ATLL. Interestingly, the chronic cases with cell cycle deregulation and disruption of immunosurveillance mechanism were associated with faster progression to acute ATLL. Immune evasion, microenvironment, and genetic alteration are therefore important in the multi-step progression of ATLL lymphomagenesis. PMID:26550829

  11. Functional inhibition of mesenchymal stromal cells in acute myeloid leukemia.

    PubMed

    Geyh, S; Rodrguez-Paredes, M; Jger, P; Khandanpour, C; Cadeddu, R-P; Gutekunst, J; Wilk, C M; Fenk, R; Zilkens, C; Hermsen, D; Germing, U; Kobbe, G; Lyko, F; Haas, R; Schroeder, T

    2016-03-01

    Hematopoietic insufficiency is the hallmark of acute myeloid leukemia (AML) and predisposes patients to life-threatening complications such as bleeding and infections. Addressing the contribution of mesenchymal stromal cells (MSC) to AML-induced hematopoietic failure we show that MSC from AML patients (n=64) exhibit significant growth deficiency and impaired osteogenic differentiation capacity. This was molecularly reflected by a specific methylation signature affecting pathways involved in cell differentiation, proliferation and skeletal development. In addition, we found distinct alterations of hematopoiesis-regulating factors such as Kit-ligand and Jagged1 accompanied by a significantly diminished ability to support CD34+ hematopoietic stem and progenitor cells in long-term culture-initiating cells (LTC-ICs) assays. This deficient osteogenic differentiation and insufficient stromal support was reversible and correlated with disease status as indicated by Osteocalcin serum levels and LTC-IC frequencies returning to normal values at remission. In line with this, cultivation of healthy MSC in conditioned medium from four AML cell lines resulted in decreased proliferation and osteogenic differentiation. Taken together, AML-derived MSC are molecularly and functionally altered and contribute to hematopoietic insufficiency. Inverse correlation with disease status and adoption of an AML-like phenotype after exposure to leukemic conditions suggests an instructive role of leukemic cells on bone marrow microenvironment. PMID:26601782

  12. Discrimination and classification of acute lymphoblastic leukemia cells by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Managò, Stefano; Valente, Carmen; Mirabelli, Peppino; De Luca, Anna Chiara

    2015-05-01

    Currently, a combination of technologies is typically required to identify and classify leukemia cells. These methods often lack the specificity and sensitivity necessary for early and accurate diagnosis. Here, we demonstrate the use of Raman spectroscopy to identify normal B cells, collected from healthy patients, and three ALL cell lines (RS4;11, REH and MN60 at different differentiation level, respectively). Raman markers associated with DNA and protein vibrational modes have been identified that exhibit excellent discriminating power for leukemia cell identification. Principal Component Analysis was finally used to confirm the significance of these markers for identify leukemia cells and classifying the data. The obtained results indicate a sorting accuracy of 96% between the three leukemia cell lines.

  13. Adaptive Immunity to Leukemia Is Inhibited by Cross-Reactive Induced Regulatory T Cells.

    PubMed

    Manlove, Luke S; Berquam-Vrieze, Katherine E; Pauken, Kristen E; Williams, Richard T; Jenkins, Marc K; Farrar, Michael A

    2015-10-15

    BCR-ABL(+) acute lymphoblastic leukemia patients have transient responses to current therapies. However, the fusion of BCR to ABL generates a potential leukemia-specific Ag that could be a target for immunotherapy. We demonstrate that the immune system can limit BCR-ABL(+) leukemia progression although ultimately this immune response fails. To address how BCR-ABL(+) leukemia escapes immune surveillance, we developed a peptide: MHC class II tetramer that labels endogenous BCR-ABL-specific CD4(+) T cells. Naive mice harbored a small population of BCR-ABL-specific T cells that proliferated modestly upon immunization. The small number of naive BCR-ABL-specific T cells was due to negative selection in the thymus, which depleted BCR-ABL-specific T cells. Consistent with this observation, we saw that BCR-ABL-specific T cells were cross-reactive with an endogenous peptide derived from ABL. Despite this cross-reactivity, the remaining population of BCR-ABL reactive T cells proliferated upon immunization with the BCR-ABL fusion peptide and adjuvant. In response to BCR-ABL(+) leukemia, BCR-ABL-specific T cells proliferated and converted into regulatory T (Treg) cells, a process that was dependent on cross-reactivity with self-antigen, TGF-?1, and MHC class II Ag presentation by leukemic cells. Treg cells were critical for leukemia progression in C57BL/6 mice, as transient Treg cell ablation led to extended survival of leukemic mice. Thus, BCR-ABL(+) leukemia actively suppresses antileukemia immune responses by converting cross-reactive leukemia-specific T cells into Treg cells. PMID:26378075

  14. Targeting acute myeloid leukemia stem cells: a review and principles for the development of clinical trials

    PubMed Central

    Pollyea, Daniel A.; Gutman, Jonathan A.; Gore, Lia; Smith, Clayton A.; Jordan, Craig T.

    2014-01-01

    Despite an increasingly rich understanding of its pathogenesis, acute myeloid leukemia remains a disease with poor outcomes, overwhelmingly due to disease relapse. In recent years, work to characterize the leukemia stem cell population, the disease compartment most difficult to eliminate with conventional therapy and most responsible for relapse, has been undertaken. This, in conjunction with advances in drug development that have allowed for increasingly targeted therapies to be engineered, raises the hope that we are entering an era in which the leukemia stem cell population can be eliminated, resulting in therapeutic cures for acute myeloid leukemia patients. For these therapies to become available, they must be tested in the setting of clinical trials. A long-established clinical trials infrastructure has been employed to shepherd new therapies from proof-of-concept to approval. However, due to the unique features of leukemia stem cells, drugs that are designed to specifically eliminate this population may not be adequately tested when applied to this model. Therefore, in this review article, we seek to identify the relevant features of acute myeloid leukemia stem cells for clinical trialists, discuss potential strategies to target leukemia stem cells, and propose a set of guidelines outlining the necessary elements of clinical trials to allow for the successful testing of stem cell-directed therapies. PMID:25082785

  15. Fludarabine Phosphate and Total-Body Radiation Followed by Donor Peripheral Blood Stem Cell Transplant and Immunosuppression in Treating Patients With Hematologic Malignancies

    ClinicalTrials.gov

    2015-12-01

    Acute Myeloid Leukemia/Transient Myeloproliferative Disorder; Acute Undifferentiated Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Blastic Plasmacytoid Dendritic Cell Neoplasm; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Burkitt Lymphoma; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Myelomonocytic Leukemia; Cutaneous B-cell Non-Hodgkin Lymphoma; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Juvenile Myelomonocytic Leukemia; Mast Cell Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Primary Systemic Amyloidosis; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage II Multiple Myeloma; Stage III Multiple Myeloma; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies; Waldenström Macroglobulinemia

  16. Ayanin diacetate-induced cell death is amplified by TRAIL in human leukemia cells.

    PubMed

    Marrero, Mara Teresa; Estvez, Sara; Negrn, Gledy; Quintana, Jos; Lpez, Mariana; Prez, Francisco J; Triana, Jorge; Len, Francisco; Estvez, Francisco

    2012-11-01

    Here we demonstrate that the semi-synthetic flavonoid ayanin diacetate induces cell death selectively in leukemia cells without affecting the proliferation of normal lymphocytes. Incubation of human leukemia cells with ayanin diacetate induced G(2)-M phase cell cycle arrest and apoptosis which was prevented by the non-specific caspase inhibitor z-VAD-fmk and reduced by the overexpression of Bcl-x(L). Ayanin diacetate-induced cell death was found to be associated with: (i) loss of inner mitochondrial membrane potential, (ii) the release of cytochrome c, (iii) the activation of multiple caspases, (iv) cleavage of poly(ADP-ribose) polymerase and (v) the up-regulation of death receptors for TRAIL, DR4 and DR5. Moreover, the combined treatment with ayanin diacetate and TRAIL amplified cell death, compared to single treatments. These results provide a basis for further exploring the potential applications of this combination for the treatment of cancer. PMID:23063980

  17. Essential role of PU.1 in maintenance of mixed lineage leukemia-associated leukemic stem cells

    PubMed Central

    Aikawa, Yukiko; Yamagata, Kazutsune; Katsumoto, Takuo; Shima, Yutaka; Shino, Mika; Stanley, E Richard; Cleary, Michael L; Akashi, Koichi; Tenen, Daniel G; Kitabayashi, Issay

    2015-01-01

    Acute myeloid leukemia is a clonal malignant disorder derived from a small number of leukemic stem cells (LSCs). Rearrangements of the mixed lineage leukemia (MLL) gene are found in acute myeloid leukemia associated with poor prognosis. The upregulation of Hox genes is critical for LSC induction and maintenance, but is unlikely to support malignancy and the high LSC frequency observed in MLL leukemias. The present study shows that MLL fusion proteins interact with the transcription factor PU.1 to activate the transcription of CSF-1R, which is critical for LSC activity. Acute myeloid leukemia is cured by either deletion of PU.1 or ablation of cells expressing CSF-1R. Kinase inhibitors specific for CSF-1R prolong survival time. These findings indicate that PU.1-mediated upregulation of CSF-1R is a critical effector of MLL leukemogenesis. PMID:25529853

  18. Involvement of memory T-cells in the pathophysiology of chronic lymphocytic leukemia

    PubMed Central

    Correia, Rodolfo Patussi; Matos e Silva, Flávia Amoroso; Bacal, Nydia Strachman; Campregher, Paulo Vidal; Hamerschlak, Nelson; Amarante-Mendes, Gustavo P.

    2014-01-01

    The role of T-cells in the pathogenesis of chronic lymphocytic leukemia has recently gained much attention due to the importance of the constant interaction between neoplastic B-cells with microenvironment substratum and T-cells. It is believed that these interactions modulate the clinical course of the disease, mainly through the regulation of the expansion, differentiation, and survival of chronic lymphocytic leukemia B-cells. Importantly, this crosstalk may also change the number, function, and memory phenotype of normal T-cells, thereby altering the amplitude and/or efficiency of adaptive immunity in chronic lymphocytic leukemia patients. The present study presents an overview on important aspects of this immunological crosstalk, particularly on the abnormalities of chronic lymphocytic leukemia B-cells and the alterations in normal T-cells, with focus on the CD4 memory T-cell compartment that could offer survival signals to chronic lymphocytic leukemia B-cell clone(s) and contribute to the establishment and progression of the disease. The authors believe that understanding the biological consequences of the interaction between normal T- and neoplastic B-cells in chronic lymphocytic leukemia may allow for improvements in the prognostic information and therapeutic approaches for this disease. PMID:24624038

  19. Acute myelogenous leukemia cells with the MLL-ELL translocation convert morphologically and functionally into adherent myofibroblasts

    SciTech Connect

    Tashiro, Haruko; Mizutani-Noguchi, Mitsuho; Shirasaki, Ryosuke

    2010-01-01

    Bone marrow-myofibroblasts, a major component of bone marrow-stroma, are reported to originate from hematopoietic stem cells. We show in this paper that non-adherent leukemia blasts can change into myofibroblasts. When myeloblasts from two cases of acute myelogenous leukemia with a fusion product comprising mixed lineage leukemia and RNA polymerase II elongation factor, were cultured long term, their morphology changed to that of myofibroblasts with similar molecular characteristics to the parental myeloblasts. The original leukemia blasts, when cultured on the leukemia blast-derived myofibroblasts, grew extensively. Leukemia blasts can create their own microenvironment for proliferation.

  20. Mast cell leukemia with prolonged survival on PKC412/midostaurin

    PubMed Central

    Xu, Xiangdong; Kreisel, Friederike H; Frater, John L; Hassan, Anjum

    2014-01-01

    Mast cell leukemia (MCL) is a rare and aggressive form of systemic mastocytosis. There are approximately 50 reported cases since 1950s. MCL is refractory to cytoreduction chemotherapy and the average survival is only six months. We report a MCL case in a 71 year-old woman with high tumor load at the initial presentation in 2005, who did not respond to either interleukin-2 or dasatinib therapy. After enrolled in a clinical trial of PKC412 (or Midostaurin) with a daily dose of 100 mg, the patient responded well to PKC412 and became transfusion independent in three months. Since then, her disease had been stably controlled. This is the first report of a high-tumor-load MCL case which achieved prolonged survival (101 months) by PKC 412. The 101-month overall survival is the longest among reported MCL cases in the English literature. PMID:25031773

  1. Mast cell leukemia with prolonged survival on PKC412/midostaurin.

    PubMed

    Xu, Xiangdong; Kreisel, Friederike H; Frater, John L; Hassan, Anjum

    2014-01-01

    Mast cell leukemia (MCL) is a rare and aggressive form of systemic mastocytosis. There are approximately 50 reported cases since 1950s. MCL is refractory to cytoreduction chemotherapy and the average survival is only six months. We report a MCL case in a 71 year-old woman with high tumor load at the initial presentation in 2005, who did not respond to either interleukin-2 or dasatinib therapy. After enrolled in a clinical trial of PKC412 (or Midostaurin) with a daily dose of 100 mg, the patient responded well to PKC412 and became transfusion independent in three months. Since then, her disease had been stably controlled. This is the first report of a high-tumor-load MCL case which achieved prolonged survival (101 months) by PKC 412. The 101-month overall survival is the longest among reported MCL cases in the English literature. PMID:25031773

  2. Targeting IRAK1 in T-Cell acute lymphoblastic leukemia

    PubMed Central

    Lhermitte, Ludovic; Latiri, Mehdi; Simonin, Mathieu; Cieslak, Agata; Bedjaoui, Nawel; Villarse, Patrick; Verhoeyen, Els; Dombret, Herv; Ifrah, Norbert; Macintyre, Elizabeth; Asnafi, Vahid

    2015-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) represents expansion of cells arrested at specific stages of thymic development with the underlying genetic abnormality often determining the stage of maturation arrest. Although their outcome has been improved with current therapy, survival rates remain only around 50% at 5 years and patients may therefore benefit from specific targeted therapy. Interleukin receptor associated kinase 1 (IRAK1) is a ubiquitously expressed serine/threonine kinase that mediates signaling downstream to Toll-like (TLR) and Interleukin-1 Receptors (IL1R). Our data demonstrated that IRAK1 is overexpressed in all subtypes of T-ALL, compared to normal human thymic subpopulations, and is functional in T-ALL cell lines. Genetic knock-down of IRAK1 led to apoptosis, cell cycle disruption, diminished proliferation and reversal of corticosteroid resistance in T-ALL cell lines. However, pharmacological inhibition of IRAK1 using a small molecule inhibitor (IRAK1/4-Inh) only partially reproduced the results of the genetic knock-down. Altogether, our data suggest that IRAK1 is a candidate therapeutic target in T-ALL and highlight the requirement of next generation IRAK1 inhibitors. PMID:26068967

  3. Targeting IRAK1 in T-cell acute lymphoblastic leukemia.

    PubMed

    Dussiau, Charles; Trinquand, Amlie; Lhermitte, Ludovic; Latiri, Mehdi; Simonin, Mathieu; Cieslak, Agata; Bedjaoui, Nawel; Villarse, Patrick; Verhoeyen, Els; Dombret, Herv; Ifrah, Norbert; Macintyre, Elizabeth; Asnafi, Vahid

    2015-08-01

    T-cell acute lymphoblastic leukemia (T-ALL) represents expansion of cells arrested at specific stages of thymic development with the underlying genetic abnormality often determining the stage of maturation arrest. Although their outcome has been improved with current therapy, survival rates remain only around 50% at 5 years and patients may therefore benefit from specific targeted therapy. Interleukin receptor associated kinase 1 (IRAK1) is a ubiquitously expressed serine/threonine kinase that mediates signaling downstream to Toll-like (TLR) and Interleukin-1 Receptors (IL1R). Our data demonstrated that IRAK1 is overexpressed in all subtypes of T-ALL, compared to normal human thymic subpopulations, and is functional in T-ALL cell lines. Genetic knock-down of IRAK1 led to apoptosis, cell cycle disruption, diminished proliferation and reversal of corticosteroid resistance in T-ALL cell lines. However, pharmacological inhibition of IRAK1 using a small molecule inhibitor (IRAK1/4-Inh) only partially reproduced the results of the genetic knock-down. Altogether, our data suggest that IRAK1 is a candidate therapeutic target in T-ALL and highlight the requirement of next generation IRAK1 inhibitors. PMID:26068967

  4. Transcriptome sequencing of hematopoietic stem cells and chronic myelgenous leukemia stem cells.

    PubMed

    Kim, Junil; Kim, Seong-Jin; Naka, Kazuhito

    2016-03-01

    Dipeptide species are accumulated in the chronic myelogenous leukemia (CML) stem cells [1]. To investigate the molecular mechanisms of the accumulation of dipeptide species in CML stem cells, we performed transcriptome sequencing of long-term stem cells, short-term stem cells, progenitor cells from healthy control and CML-affected mice (GSE70031). The transcriptome data revealed that the expression of a dipeptide transporter (solute carrier family 15, member 2 (SLC15A2)) was elevated only in the CML stem cells. This result indicates that dipeptide species accumulates in CML stem cells through a dipeptide transporter SLC15A2. PMID:26981360

  5. Transcriptome sequencing of hematopoietic stem cells and chronic myelgenous leukemia stem cells

    PubMed Central

    Kim, Junil; Kim, Seong-Jin; Naka, Kazuhito

    2015-01-01

    Dipeptide species are accumulated in the chronic myelogenous leukemia (CML) stem cells [1]. To investigate the molecular mechanisms of the accumulation of dipeptide species in CML stem cells, we performed transcriptome sequencing of long-term stem cells, short-term stem cells, progenitor cells from healthy control and CML-affected mice (GSE70031). The transcriptome data revealed that the expression of a dipeptide transporter (solute carrier family 15, member 2 (SLC15A2)) was elevated only in the CML stem cells. This result indicates that dipeptide species accumulates in CML stem cells through a dipeptide transporter SLC15A2. PMID:26981360

  6. Maintenance of Leukemia-Initiating Cells Is Regulated by the CDK Inhibitor Inca1

    PubMed Central

    Bumer, Nicole; Bumer, Sebastian; Berkenfeld, Frank; Stehling, Martin; Khler, Gabriele; Berdel, Wolfgang E.; Mller-Tidow, Carsten; Tschanter, Petra

    2014-01-01

    Functional differences between healthy progenitor and cancer initiating cells may provide unique opportunities for targeted therapy approaches. Hematopoietic stem cells are tightly controlled by a network of CDK inhibitors that govern proliferation and prevent stem cell exhaustion. Loss of Inca1 led to an increased number of short-term hematopoietic stem cells in older mice, but Inca1 seems largely dispensable for normal hematopoiesis. On the other hand, Inca1-deficiency enhanced cell cycling upon cytotoxic stress and accelerated bone marrow exhaustion. Moreover, AML1-ETO9a-induced proliferation was not sustained in Inca1-deficient cells in vivo. As a consequence, leukemia induction and leukemia maintenance were severely impaired in Inca1?/? bone marrow cells. The re-initiation of leukemia was also significantly inhibited in absence of Inca1?/? in MLLAF9- and c-myc/BCL2-positive leukemia mouse models. These findings indicate distinct functional properties of Inca1 in normal hematopoietic cells compared to leukemia initiating cells. Such functional differences might be used to design specific therapy approaches in leukemia. PMID:25525809

  7. Ayanin diacetate-induced cell death is amplified by TRAIL in human leukemia cells

    SciTech Connect

    Marrero, Maria Teresa; Estevez, Sara; Negrin, Gledy; Quintana, Jose; Leon, Francisco; Estevez, Francisco

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer Ayanin diacetate as apoptotic inducer in leukemia cells. Black-Right-Pointing-Pointer Cell death was prevented by caspase inhibitors and by the overexpression of Bcl-x{sub L}. Black-Right-Pointing-Pointer The intrinsic and the extrinsic pathways are involved in the mechanism of action. Black-Right-Pointing-Pointer Death receptors are up-regulated and TRAIL enhances apoptotic cell death. -- Abstract: Here we demonstrate that the semi-synthetic flavonoid ayanin diacetate induces cell death selectively in leukemia cells without affecting the proliferation of normal lymphocytes. Incubation of human leukemia cells with ayanin diacetate induced G{sub 2}-M phase cell cycle arrest and apoptosis which was prevented by the non-specific caspase inhibitor z-VAD-fmk and reduced by the overexpression of Bcl-x{sub L}. Ayanin diacetate-induced cell death was found to be associated with: (i) loss of inner mitochondrial membrane potential, (ii) the release of cytochrome c, (iii) the activation of multiple caspases, (iv) cleavage of poly(ADP-ribose) polymerase and (v) the up-regulation of death receptors for TRAIL, DR4 and DR5. Moreover, the combined treatment with ayanin diacetate and TRAIL amplified cell death, compared to single treatments. These results provide a basis for further exploring the potential applications of this combination for the treatment of cancer.

  8. Flavopiridol in Treating Patients With Chronic Lymphocytic Leukemia

    ClinicalTrials.gov

    2013-01-16

    B-cell Chronic Lymphocytic Leukemia; Refractory Chronic Lymphocytic Leukemia; Stage I Chronic Lymphocytic Leukemia; Stage II Chronic Lymphocytic Leukemia; Stage III Chronic Lymphocytic Leukemia; Stage IV Chronic Lymphocytic Leukemia

  9. CPI-613, Bendamustine Hydrochloride, and Rituximab in Treating Patients With Relapsed or Refractory B-Cell Non-Hodgkin Lymphoma

    ClinicalTrials.gov

    2015-07-27

    B-cell Adult Acute Lymphoblastic Leukemia; B-cell Chronic Lymphocytic Leukemia; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Testicular Lymphoma; Waldenstrm Macroglobulinemia

  10. Exome Sequencing in Classic Hairy Cell Leukaemia Reveals Widespread Variation in Acquired Somatic Mutations between Individual Tumours Apart from the Signature BRAF V(600)E Lesion

    PubMed Central

    Weston-Bell, Nicola J.; Tapper, Will; Gibson, Jane; Bryant, Dean; Moreno, Yurany; John, Melford; Ennis, Sarah; Kluin-Nelemans, Hanneke C.; Collins, Andrew R.; Sahota, Surinder S.

    2016-01-01

    In classic Hairy cell leukaemia (HCLc), a single case has thus far been interrogated by whole exome sequencing (WES) in a treatment naive patient, in which BRAF V(600)E was identified as an acquired somatic mutation and confirmed as occurring near-universally in this form of disease by conventional PCR-based cohort screens. It left open however the question whether other genome-wide mutations may also commonly occur at high frequency in presentation HCLc disease. To address this, we have carried out WES of 5 such typical HCLc cases, using highly purified splenic tumour cells paired with autologous T cells for germline. Apart from BRAF V(600)E, no other recurrent somatic mutation was identified in these HCLc exomes, thereby excluding additional acquired mutations as also prevalent at a near-universal frequency in this form of the disease. These data then place mutant BRAF at the centre of the neoplastic drive in HCLc. A comparison of our exome data with emerging genetic findings in HCL indicates that additional somatic mutations may however occur recurrently in smaller subsets of disease. As mutant BRAF alone is insufficient to drive malignant transformation in other histological cancers, it suggests that individual tumours utilise largely differing patterns of genetic somatic mutations to coalesce with BRAF V(600)E to drive pathogenesis of malignant HCLc disease. PMID:26871591

  11. Leukemia cell microvesicles promote survival in umbilical cord blood hematopoietic stem cells

    PubMed Central

    Razmkhah, Farnaz; Soleimani, Masoud; Mehrabani, Davood; Karimi, Mohammad Hossein; Kafi-abad, Sedigheh Amini

    2015-01-01

    Microvesicles can transfer their contents, proteins and RNA, to target cells and thereby transform them. This may induce apoptosis or survival depending on cell origin and the target cell. In this study, we investigate the effect of leukemic cell microvesicles on umbilical cord blood hematopoietic stem cells to seek evidence of apoptosis or cell survival. Microvesicles were isolated from both healthy donor bone marrow samples and Jurkat cells by ultra-centrifugation and were added to hematopoietic stem cells sorted from umbilical cord blood samples by magnetic associated cell sorting (MACS) technique. After 7 days, cell count, cell viability, flow cytometry analysis for hematopoietic stem cell markers and qPCR for P53 gene expression were performed. The results showed higher cell number, higher cell viability rate and lower P53 gene expression in leukemia group in comparison with normal and control groups. Also, CD34 expression as the most important hematopoietic stem cell marker, did not change during the treatment and lineage differentiation was not observed. In conclusion, this study showed anti-apoptotic effect of leukemia cell derived microvesicles on umbilical cord blood hematopoietic stem cells.

  12. Palliative Radiation for Leukemic Arthropathy from Human T-Cell Lymphoma Virus-associated Adult T-Cell Leukemia Lymphoma

    PubMed Central

    Birckhead, Brandon J.; Peterson, Jennifer L.; Patel, Ajay B.; Miller, Robert C.

    2015-01-01

    Human T-cell lymphoma virus (HTLV)-associated adult T-cell leukemia lymphoma is a rare cancer in the United States, but there are several areas around the world where the virus is endemic. HTLV-associated adult T-cell leukemia lymphoma has been associated with leukemic arthropathy. We present a patient with HTLV-associated adult T-cell leukemia lymphoma with leukemic arthropathy. Although non-steroidal anti-inflammatory drugs and chemotherapy are often used for treatment, we describe the successful use of radiation therapy in the palliative relief of symptoms from leukemic arthropathy. PMID:26500728

  13. Establishment and characterization of human B cell precursor-leukemia cell lines.

    PubMed

    Matsuo, Y; Drexler, H G

    1998-07-01

    A large number of continuous human leukemia cell lines have been established over the last three decades. Clearly, leukemia cell lines have become important research tools. Here, we have summarized the immunological, molecular and standard cytogenetic features of a panel of well characterized B cell precursor (BCP)-leukemia cell lines which were derived from patients with acute lymphoblastic/undifferentiated leukemia (ALL/AUL) or chronic myeloid leukemia (CML) in blast crisis. Following the recently proposed immunological EGIL classification, we assigned our panel of 27 BCP-cell lines to one of the following categories: B-I pro-B cell line; B-II common-B cell line; and B-III pre-B cell line. All cell lines express general B-lineage associated surface markers (HLA-DR, CD22, CD79a) being negative for surface immunoglobulin (Ig); the differences between the subgroups reside in expression of CD10 and cytoplasmic Ig. Several BCP-cell lines show the myelomonocytic cell-associated markers CD13 and/or CD33. These immunologically 'biphenotypic' BCP-cell lines are generally TdT+ CD10+ CD13+ CD19+ CD22+ CD34+ and carry the Philadelphia (Ph) translocation. The BCP-cell lines display surface receptors for interferon-gamma (CD119), interleukin-7 (CD127) and FLT-3 ligand (CD135). All BCP-cell lines examined have complex numerical and structural chromosomal alterations including translocations commonly seen in BCP-ALL such as t(4;11), t(9;22), t(11;19), t(12;21), and t(17;19) involving the fusion genes MLL-AF4, BCR-ABL, ENL-MLL, TEL/ETV6-AML1 and E2A-HLF, respectively. Besides the expected rearrangement of the Ig heavy chain receptor gene, several cell lines also have rearrangements of the T cell receptor genes beta, gamma or delta. While some BCP-cell lines express (aberrantly) myeloperoxidase at the mRNA level, most lines are negative in the immunological or cytochemical staining. Several large series documented the difficulty in establishing such BCP cell lines with success rates in the range of 10-20% (on average 15%). Still, since the establishment of the first bonafide BCP-cell line in 1974 (cell line REH), some 150 cell lines have been established of which, however, only a small percentage have been sufficiently well characterized and described. A higher success rate for immortalizing any given leukemia cell might depend on a closer emulation of the physiological in vivo microenvironment. The possibility to grow in vitro leukemia cells at will would represent ideal experimental systems permitting basic research and patient-specific investigations. In summary, the use of well-characterized BCP-cell lines provide unprecedented opportunities for studying a multitude of biological aspects related to normal and neoplastic B-lymphocytes. PMID:9680106

  14. Leukemia patient-derived lymphoblastoid cell lines exhibit increased induction of leukemia-associated transcripts following high-dose irradiation.

    PubMed

    Spencer, A; Granter, N

    1999-09-01

    Improvement in diagnostic cytogenetic techniques has led to the recognition of an increasing number of leukemia-associated chromosomal translocations and inversions. These genetic lesions frequently are associated with the disruption of putative transcription factors and the production of hybrid transcripts that are implicated in leukemogenesis. Epidemiologic evidence suggests that some, but not all, individuals with a history of gamma-irradiation exposure are at increased risk of developing chronic myeloid leukemia (CML). CML is characterized by the Philadelphia chromosome and transcription of the resulting hybrid BCR-ABL gene. Utilizing the leukemia-associated BCR-ABL p210 transcript as a marker, we sought differences in the induction of illegitimate genetic recombination following high-dose gamma-irradiation of karyotypically normal lymphoblastoid cell lines (LCL) derived from individuals with and without a history of myeloid leukemias. Six LCL [4 leukemia patient derived [2 acute myeloid leukemia and 2 CML] and 2 from normal individuals were analyzed with reverse transcriptase polymerase chain reaction for BCR-ABL under stringent conditions following exposure to 0, 50, or 100 Gy of LET gamma-irradiation delivered via a Varian linear accelerator at 4 MV. Transcripts identical to disease-associated b2a2 and b3a2 transcripts were detected both spontaneously (background illegitimate genetic recombination) and following gamma-irradiation. Background BCR-ABL positivity was demonstrable in 4 of the 6 LCL, with no significant difference in detection between leukemic- and nonleukemic-derived LCL. Overall, increasing gamma-irradiation dose resulted in an increased frequency of BCR-ABL transcript detection (0 Gy vs 50 Gy vs 100 Gy,p = 0.0023, Chi-square test). Within the leukemic- but not the nonleukemic-derived LCL there was significantly greater BCR-ABL positivity after gamma-irradiation compared to unirradiated equivalents. Furthermore, the BCR-ABL positivity of both the AML- and CML-derived LCL after gamma-irradiation was significantly greater than that of the nonleukemic-derived LCL after gamma-irradiation. We speculate that this difference in the detection of illegitimate after gamma-irradiation recombination may be due to aberrant DNA double strand break repair mechanisms in individuals predisposed to the development of myeloid leukemias. PMID:10480430

  15. Combination Chemotherapy With or Without Rituximab in Treating Younger Patients With Stage III-IV Non-Hodgkin Lymphoma or B-Cell Acute Leukemia

    ClinicalTrials.gov

    2015-10-20

    Childhood B Acute Lymphoblastic Leukemia; Childhood Burkitt Leukemia; Childhood Diffuse Large Cell Lymphoma; Mediastinal (Thymic) Large B-Cell Lymphoma; Stage III Childhood Large Cell Lymphoma; Stage IV Childhood Large Cell Lymphoma

  16. Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction

    PubMed Central

    Samudio, Ismael; Harmancey, Romain; Fiegl, Michael; Kantarjian, Hagop; Konopleva, Marina; Korchin, Borys; Kaluarachchi, Kumar; Bornmann, William; Duvvuri, Seshagiri; Taegtmeyer, Heinrich; Andreeff, Michael

    2009-01-01

    The traditional view is that cancer cells predominately produce ATP by glycolysis, rather than by oxidation of energy-providing substrates. Mitochondrial uncoupling the continuing reduction of oxygen without ATP synthesis has recently been shown in leukemia cells to circumvent the ability of oxygen to inhibit glycolysis, and may promote the metabolic preference for glycolysis by shifting from pyruvate oxidation to fatty acid oxidation (FAO). Here we have demonstrated that pharmacologic inhibition of FAO with etomoxir or ranolazine inhibited proliferation and sensitized human leukemia cells cultured alone or on bone marrow stromal cells to apoptosis induction by ABT-737, a molecule that releases proapoptotic Bcl-2 proteins such as Bak from antiapoptotic family members. Likewise, treatment with the fatty acid synthase/lipolysis inhibitor orlistat also sensitized leukemia cells to ABT-737, which supports the notion that fatty acids promote cell survival. Mechanistically, we generated evidence suggesting that FAO regulates the activity of Bak-dependent mitochondrial permeability transition. Importantly, etomoxir decreased the number of quiescent leukemia progenitor cells in approximately 50% of primary human acute myeloid leukemia samples and, when combined with either ABT-737 or cytosine arabinoside, provided substantial therapeutic benefit in a murine model of leukemia. The results support the concept of FAO inhibitors as a therapeutic strategy in hematological malignancies. PMID:20038799

  17. Nucleotide composition analysis of tRNA from leukemia patient cell samples and human cell lines.

    PubMed Central

    Agris, P F

    1975-01-01

    A technique developed for analysis of less than microgram quantities of tRNA has been applied to the study of human leukemia. Leucocytes from peripheal blood and bone marrow samples of six, untreated leukemia patients and cells of five different established human cell lines were maintained for 18 hours in media containing (32P)-phosphate. Incorporation of radioactive phosphate into the cells from the patient samples was slightly less than that of the cell lines. Likewise, incorporation of (32P)-phosphate into the tRNA of the patient samples (approximately 5 x 106 DPM/mug tRNA) was also less then that incorporated into the tRNA of the cell lines. The major and minor nucleotide compositions of the unfractionated tRNA preparations from each patient sample and each cell line were determined and compared. Similarities and differences in the major and minor nucleotide compositions of the tRNA preparations are discussed with reference to types of leukemia and the importance of patient sample analysis versus analysis of cultured human cells. PMID:1057159

  18. Establishment and characterization of a rare atypical chronic myeloid leukemia cell line NT-1.

    PubMed

    Qian, Juan; Wang, Qin-Rong; Liu, Jie; Jiang, Sheng-Hua; Ni, Xiao-Qing; Lin, Zeng-Hua; Zhang, Ya-Ping; Liu, Hong

    2014-09-01

    Human leukemia cell lines are of great value in leukemia research. In this study, we established and described the biological characteristics of a rare atypical chronic myeloid (aCML) leukemia cell line (NT-1). Mononuclear cells were isolated from the bone marrow of a patient with atypical chronic myeloid leukemia (Ph(-)/bcr(-)/abl(-)), and were passaged by liquid culture. Cells were maintained without any cytokines for over 1 year, and named NT-1. This cell line was extensively characterized using morphological assays, flow cytometry, cytogenetic analysis, clonogenic culture, quantitative fluorescent PCR, short tandem repeating sequence PCR (STR-PCR) and array-CGH. Its tumorigenic capacity was also examined in nude mice. The NT-1 cell line had morphological features of chronic myeloid leukemia and major myeloid markers (CD13, CD33, CD11b). Additionally, NT-1 expressed progenitor cells and natural killer cell-related antigens such as CD34, CD117, CD56. Cytogenetic analysis initially demonstrated two abnormalities: 47, xx, +8 and 47, xx, +8 accompanied by t(5;12)(q31;p13) translocation. The one-year passage process did not alter the karyotype. NT-1 cells maintained the same morphology, immunophenotyping and cytogenetic features as primary leukemia cells, which was strongly supported by STR-PCR results. Neither Epstein-Barr virus nor mycoplasma was detected in the NT-1 line. In addition, NT-1 cells showed high tumorigenic capacity in nude mice. NT-1 is a new atypical chronic myeloid leukemia cell line with the +8 and t(5,12) translocation, and exhibits high tumorigenicity in nude mice. This new cell line provides a useful tool for the study of leukemogenesis. PMID:25012564

  19. Successful hematopoietic cell transplantation in a patient with X-linked agammaglobulinemia and acute myeloid leukemia.

    PubMed

    Abu-Arja, Rolla F; Chernin, Leah R; Abusin, Ghada; Auletta, Jeffery; Cabral, Linda; Egler, Rachel; Ochs, Hans D; Torgerson, Troy R; Lopez-Guisa, Jesus; Hostoffer, Robert W; Tcheurekdjian, Haig; Cooke, Kenneth R

    2015-09-01

    X-linked agammaglobulinemia (XLA) is a primary immunodeficiency characterized by marked reduction in all classes of serum immunoglobulins and the near absence of mature CD19(+) B-cells. Although malignancy has been observed in patients with XLA, we present the first reported case of acute myeloid leukemia (AML) in a patient with XLA. We also demonstrate the complete correction of the XLA phenotype following allogeneic hematopoietic cell transplantation for treatment of the patient's leukemia. PMID:25900577

  20. Musashi2 sustains the mixed-lineage leukemiadriven stem cell regulatory program

    PubMed Central

    Park, Sun-Mi; Gnen, Mithat; Vu, Ly; Minuesa, Gerard; Tivnan, Patrick; Barlowe, Trevor S.; Taggart, James; Lu, Yuheng; Deering, Raquel P.; Hacohen, Nir; Figueroa, Maria E.; Paietta, Elisabeth; Fernandez, Hugo F.; Tallman, Martin S.; Melnick, Ari; Levine, Ross; Leslie, Christina; Lengner, Christopher J.; Kharas, Michael G.

    2015-01-01

    Leukemia stem cells (LSCs) are found in most aggressive myeloid diseases and contribute to therapeutic resistance. Leukemia cells exhibit a dysregulated developmental program as the result of genetic and epigenetic alterations. Overexpression of the RNA-binding protein Musashi2 (MSI2) has been previously shown to predict poor survival in leukemia. Here, we demonstrated that conditional deletion of Msi2 in the hematopoietic compartment results in delayed leukemogenesis, reduced disease burden, and a loss of LSC function in a murine leukemia model. Gene expression profiling of these Msi2-deficient animals revealed a loss of the hematopoietic/leukemic stem cell self-renewal program and an increase in the differentiation program. In acute myeloid leukemia patients, the presence of a gene signature that was similar to that observed in Msi2-deficent murine LSCs correlated with improved survival. We determined that MSI2 directly maintains the mixed-lineage leukemia (MLL) self-renewal program by interacting with and retaining efficient translation of Hoxa9, Myc, and Ikzf2 mRNAs. Moreover, depletion of MLL target Ikzf2 in LSCs reduced colony formation, decreased proliferation, and increased apoptosis. Our data provide evidence that MSI2 controls efficient translation of the oncogenic LSC self-renewal program and suggest MSI2 as a potential therapeutic target for myeloid leukemia. PMID:25664853

  1. Musashi2 sustains the mixed-lineage leukemia-driven stem cell regulatory program.

    PubMed

    Park, Sun-Mi; Gnen, Mithat; Vu, Ly; Minuesa, Gerard; Tivnan, Patrick; Barlowe, Trevor S; Taggart, James; Lu, Yuheng; Deering, Raquel P; Hacohen, Nir; Figueroa, Maria E; Paietta, Elisabeth; Fernandez, Hugo F; Tallman, Martin S; Melnick, Ari; Levine, Ross; Leslie, Christina; Lengner, Christopher J; Kharas, Michael G

    2015-03-01

    Leukemia stem cells (LSCs) are found in most aggressive myeloid diseases and contribute to therapeutic resistance. Leukemia cells exhibit a dysregulated developmental program as the result of genetic and epigenetic alterations. Overexpression of the RNA-binding protein Musashi2 (MSI2) has been previously shown to predict poor survival in leukemia. Here, we demonstrated that conditional deletion of Msi2 in the hematopoietic compartment results in delayed leukemogenesis, reduced disease burden, and a loss of LSC function in a murine leukemia model. Gene expression profiling of these Msi2-deficient animals revealed a loss of the hematopoietic/leukemic stem cell self-renewal program and an increase in the differentiation program. In acute myeloid leukemia patients, the presence of a gene signature that was similar to that observed in Msi2-deficent murine LSCs correlated with improved survival. We determined that MSI2 directly maintains the mixed-lineage leukemia (MLL) self-renewal program by interacting with and retaining efficient translation of Hoxa9, Myc, and Ikzf2 mRNAs. Moreover, depletion of MLL target Ikzf2 in LSCs reduced colony formation, decreased proliferation, and increased apoptosis. Our data provide evidence that MSI2 controls efficient translation of the oncogenic LSC self-renewal program and suggest MSI2 as a potential therapeutic target for myeloid leukemia. PMID:25664853

  2. Hairy Root Transformation Using Agrobacterium rhizogenes as a Tool for Exploring Cell Type-Specific Gene Expression and Function Using Tomato as a Model1[W][OPEN

    PubMed Central

    Ron, Mily; Kajala, Kaisa; Pauluzzi, Germain; Wang, Dongxue; Reynoso, Mauricio A.; Zumstein, Kristina; Garcha, Jasmine; Winte, Sonja; Masson, Helen; Inagaki, Soichi; Federici, Fernán; Sinha, Neelima; Deal, Roger B.; Bailey-Serres, Julia; Brady, Siobhan M.

    2014-01-01

    Agrobacterium rhizogenes (or Rhizobium rhizogenes) is able to transform plant genomes and induce the production of hairy roots. We describe the use of A. rhizogenes in tomato (Solanum spp.) to rapidly assess gene expression and function. Gene expression of reporters is indistinguishable in plants transformed by Agrobacterium tumefaciens as compared with A. rhizogenes. A root cell type- and tissue-specific promoter resource has been generated for domesticated and wild tomato (Solanum lycopersicum and Solanum pennellii, respectively) using these approaches. Imaging of tomato roots using A. rhizogenes coupled with laser scanning confocal microscopy is facilitated by the use of a membrane-tagged protein fused to a red fluorescent protein marker present in binary vectors. Tomato-optimized isolation of nuclei tagged in specific cell types and translating ribosome affinity purification binary vectors were generated and used to monitor associated messenger RNA abundance or chromatin modification. Finally, transcriptional reporters, translational reporters, and clustered regularly interspaced short palindromic repeats-associated nuclease9 genome editing demonstrate that SHORT-ROOT and SCARECROW gene function is conserved between Arabidopsis (Arabidopsis thaliana) and tomato. PMID:24868032

  3. Phase 1 Study of Terameprocol (EM-1421) in Patients With Leukemia

    ClinicalTrials.gov

    2016-02-20

    Leukemias; Acute Myeloid Leukemia (AML); Acute Lymphocytic Leukemia (ALL); Adult T Cell Leukemia (ATL); Chronic Myeloid Leukemia (CML-BP); Chronic Lymphocytic Leukemia (CLL); Myelodysplastic Syndrome (MDS); Chronic Myelomonocytic Leukemia (CMML)

  4. Unusual immunophenotype of T-cell large granular lymphocytic leukemia: report of two cases.

    PubMed

    Rabade, Nikhil; Mansukhani, Dia; Khodaiji, Shanaz; Padte, Balkrishna; Bhave, Abhay; Tembhare, Prashant; Subramanian, Papagudi Ganesan; Sehgal, Kunal

    2015-01-01

    Large granular lymphocytes (LGL) leukemias are commonly of the T-cell or NK-cell type. T-cell LGL leukemia is typically a disorder of mature CD3, CD8 and T-cell receptor TCR (TCR - T cell receptor)-?? positive cytotoxic T-cells. Rare variants include TCR??+ variants and CD4 + TCR??+ cases. We report a case of each of these rare variants. An 83-year-old female presented with anemia and lymphocytosis with LGLs on peripheral smear. Six-color multiparametric flowcytometric analysis showed expression of CD3, heterogeneous CD7, dim CD2 and TCR?? and lacked expression of CD5, TCR??, CD56, CD4 and CD8. A final diagnosis of TCR??+ T-cell LGL leukemia was made. Differentiation between TCR??+ T-cell LGL leukemia and other ??+ T-cell malignancies is of utmost importance due to the indolent nature of the former as compared to the highly aggressive behavior of the latter. An 85-year-old male diagnosed with liposarcoma was identified to have lymphocytosis during preoperative evaluation. Peripheral smear showed presence of LGLs. Flowcytometric immunophenotyping showed expression of TCR??, CD3, CD2, CD5, CD4, dim CD8, CD56 with aberrant loss of CD7 expression. V? repertoire analysis by flowcytometry showed 97% cells with V?14 clonality. A final diagnosis of TCR??+ CD4 + T-cell LGL leukemia was made. CD4 + T-cell large granular lymphocytic leukemias have an indolent, less aggressive course when compared to their CD8 + counterparts and are not necessarily associated with cytopenias. However, their association with secondary neoplasia (29% of the cases) warrants a high degree of suspicion in the diagnosis as also noted in the index case. Use of a wide panel of antibodies and newer modalities such as V? repertoire analysis helps in accurate subtyping of LGL leukemia. PMID:25673609

  5. Indirubin-3'-monoxime promotes autophagic and apoptotic death in JM1 human acute lymphoblastic leukemia cells and K562 human chronic myelogenous leukemia cells.

    PubMed

    Lee, Ming-Yang; Liu, Yi-Wen; Chen, Ming-Ho; Wu, Jin-Yi; Ho, Hsing-Ying; Wang, Qwa-Fun; Chuang, Jing-Jing

    2013-05-01

    Indirubin is the active component of Dang gui Long hui Wan, a traditional Chinese herbal medicine used as therapy for chronic myelogenous leukemia(CML). In clinical studies, indirubin seldom caused major side-effects. However, the functional effect of indirubin on acute lymphoblastic leukemia (ALL) is unclear. Therefore, we investigated the effects of indirubin-3'-monoxime (I3M) on the ALL cell line JM1 and the CML cell line K562 (control). The anti-leukemia effects and mechanisms of I3M were similar on ALL and CML cells. I3M significantly and dose-dependently decreased cell viability. The G2/M cell cycle phase was arrested and the sub-G1 proportion was relatively increased. In addition, caspase-3 activation led to poly(ADP-ribose) polymerase (PARP)-1 cleavage and the progression of apoptosis. Notably, I3M induced autophagy. However, I3M had no effect on necrosis in either cell line. We specifically found that I3M only marginally affected the survival of primary mature lymphocytes, and was not cytotoxic to granulocytes. Since I3M induced apoptosis and autophagy in human lymphocytic leukemia cells and caused few side-effects in healthy lymphocytes and granulocytes, I3M may be useful for clinical anti-ALL therapy. PMID:23468088

  6. Adult T-cell leukemia cells overexpress Wnt5a and promote osteoclast differentiation.

    PubMed

    Bellon, Marcia; Ko, Nga Ling; Lee, Min-Jung; Yao, Yuan; Waldmann, Thomas A; Trepel, Jane B; Nicot, Christophe

    2013-06-20

    Adult T-cell leukemia/lymphoma (ATL) is etiologically linked to infection with the human T-cell leukemia/lymphoma virus type 1 (HTLV-I). ATL is classified into 4 distinct clinical diseases: acute, lymphoma, chronic, and smoldering. Acute ATL is the most aggressive form, representing 60% of cases and has a 4-year survival of < 5%. A frequent complication and cause of death in acute ATL patients is the presence of lytic bone lesions and hypercalcemia. We analyzed the Wnt/?-catenin pathway because of its common role in cancer and bone remodeling. Our study demonstrated that ATL cells do not express high levels of ?-catenin but displayed high levels of LEF-1/TCF genes along with elevated levels of ?-catenin (LEF-1/TCF target genes) responsive genes. By profiling Wnt gene expression, we discovered that ATL patient leukemia cells shifted expression toward the noncanonical Wnt pathway. Interestingly, ATL cells overexpressed the osteolytic-associated genes-Wnt5a, PTHLH, and RANKL. We further show that Wnt5a secreted by ATL cells favors osteoclast differentiation and expression of RANK. Our results suggest that Wnt5a is a major contributing factor to the increase in osteolytic bone lesions and hypercalcemia found in ATL patients. Anti-Wnt5a therapy may prevent or reduce osteolytic lesions found in ATL patients and improve therapy outcome. PMID:23660959

  7. The receptors for gibbon ape leukemia virus and amphotropic murine leukemia virus are not downregulated in productively infected cells

    PubMed Central

    2011-01-01

    Background Over the last several decades it has been noted, using a variety of different methods, that cells infected by a specific gammaretrovirus are resistant to infection by other retroviruses that employ the same receptor; a phenomenon termed receptor interference. Receptor masking is thought to provide an earlier means of blocking superinfection, whereas receptor down regulation is generally considered to occur in chronically infected cells. Results We used replication-competent GFP-expressing viruses containing either an amphotropic murine leukemia virus (A-MLV) or the gibbon ape leukemia virus (GALV) envelope. We also constructed similar viruses containing fluorescence-labeled Gag proteins for the detection of viral particles. Using this repertoire of reagents together with a wide range of antibodies, we were able to determine the presence and availability of viral receptors, and detect viral envelope proteins and particles presence on the cell surface of chronically infected cells. Conclusions A-MLV or GALV receptors remain on the surface of chronically infected cells and are detectable by respective antibodies, indicating that these receptors are not downregulated in these infected cells as previously proposed. We were also able to detect viral envelope proteins on the infected cell surface and infected cells are unable to bind soluble A-MLV or GALV envelopes indicating that receptor binding sites are masked by endogenously expressed A-MLV or GALV viral envelope. However, receptor masking does not completely prevent A-MLV or GALV superinfection. PMID:21729311

  8. Kinase-Independent Mechanisms of Resistance of Leukemia Stem Cells to Tyrosine Kinase Inhibitors

    PubMed Central

    2014-01-01

    Summary Tyrosine kinase inhibitors such as imatinib mesylate have changed the clinical course of chronic myeloid leukemia; however, the observation that these inhibitors do not target the leukemia stem cell implies that patients need to maintain lifelong therapy. The mechanism of this phenomenon is unclear: the question of whether tyrosine kinase inhibitors are inactive inside leukemia stem cells or whether leukemia stem cells do not require breakpoint cluster region (Bcr)-Abl signaling is currently under debate. Herein, I propose an alternative model: perhaps the leukemia stem cell requires Bcr-Abl, but is dependent on its kinase-independent functions. Kinases such as epidermal growth factor receptor and Janus kinase 2 possess kinase-independent roles in regulation of gene expression; it is worth investigating whether Bcr-Abl has similar functions. Mechanistically, Bcr-Abl is able to activate the Ras, phosphatidylinositol 3-kinase/Akt, and/or the Src-kinase Hck/Stat5 pathways in a scaffolding-dependent manner. Whereas the scaffolding activity of Bcr-Abl with Grb2 is dependent on autophosphorylation, kinases such as Hck can use Bcr-Abl as substrate, inducing phosphorylation of Y177 to enable scaffolding ability in the absence of Bcr-Abl catalytic activity. It is worth investigating whether leukemia stem cells exclusively express kinases that are able to use Bcr-Abl as substrate. A kinase-independent role for Bcr-Abl in leukemia stem cells would imply that drugs that target Bcr-Abls scaffolding ability or its DNA-binding ability should be used in conjunction with current therapeutic regimens to increase their efficacy and eradicate the stem cells of chronic myeloid leukemia PMID:24598782

  9. Human T-cell leukemia virus type I (HTLV-I) infection and the onset of adult T-cell leukemia (ATL)

    PubMed Central

    Matsuoka, Masao

    2005-01-01

    The clinical entity of adult T-cell leukemia (ATL) was established around 1977, and human T-cell leukemia virus type 1 (HTLV-I) was subsequently identified in 1980. In the 25 years since the discovery of HTLV-I, HTLV-I infection and its associated diseases have been extensively studied, and many of their aspects have been clarified. However, the detailed mechanism of leukemogenesis remains unsolved yet, and the prognosis of ATL patients still poor because of its resistance to chemotherapy and immunodeficiency. In this review, I highlight the recent progress and remaining enigmas in HTLV-I infection and its associated diseases, especially ATL. PMID:15854229

  10. Chronic Lymphocytic Leukemia

    MedlinePLUS

    Leukemia is cancer of the white blood cells. White blood cells help your body fight infection. Your blood cells form in your bone marrow. In leukemia, the bone marrow produces abnormal white blood cells. ...

  11. Leukemic Stem Cell Frequency: A Strong Biomarker for Clinical Outcome in Acute Myeloid Leukemia

    PubMed Central

    Terwijn, Monique; Zeijlemaker, Wendelien; Kelder, Angle; Rutten, Arjo P.; Snel, Alexander N.; Scholten, Willemijn J.; Pabst, Thomas; Verhoef, Gregor; Lwenberg, Bob; Zweegman, Sonja; Ossenkoppele, Gert J.; Schuurhuis, Gerrit J.

    2014-01-01

    Introduction Treatment failure in acute myeloid leukemia is probably caused by the presence of leukemia initiating cells, also referred to as leukemic stem cells, at diagnosis and their persistence after therapy. Specific identification of leukemia stem cells and their discrimination from normal hematopoietic stem cells would greatly contribute to risk stratification and could predict possible relapses. Results For identification of leukemic stem cells, we developed flow cytometric methods using leukemic stem cell associated markers and newly-defined (light scatter) aberrancies. The nature of the putative leukemic stem cells and normal hematopoietic stem cells, present in the same patient's bone marrow, was demonstrated in eight patients by the presence or absence of molecular aberrancies and/or leukemic engraftment in NOD-SCID IL-2R?-/- mice. At diagnosis (n?=?88), the frequency of the thus defined neoplastic part of CD34+CD38- putative stem cell compartment had a strong prognostic impact, while the neoplastic parts of the CD34+CD38+ and CD34- putative stem cell compartments had no prognostic impact at all. After different courses of therapy, higher percentages of neoplastic CD34+CD38- cells in complete remission strongly correlated with shorter patient survival (n?=?91). Moreover, combining neoplastic CD34+CD38- frequencies with frequencies of minimal residual disease cells (n?=?91), which reflect the total neoplastic burden, revealed four patient groups with different survival. Conclusion and Perspective Discrimination between putative leukemia stem cells and normal hematopoietic stem cells in this large-scale study allowed to demonstrate the clinical importance of putative CD34+CD38- leukemia stem cells in AML. Moreover, it offers new opportunities for the development of therapies directed against leukemia stem cells, that would spare normal hematopoietic stem cells, and, moreover, enables in vivo and ex vivo screening for potential efficacy and toxicity of new therapies. PMID:25244440

  12. Black hairy tongue syndrome.

    PubMed

    Gurvits, Grigoriy E; Tan, Amy

    2014-08-21

    Black hairy tongue (BHT) is a benign medical condition characterized by elongated filiform lingual papillae with typical carpet-like appearance of the dorsum of the tongue. Its prevalence varies geographically, typically ranging from 0.6% to 11.3%. Known predisposing factors include smoking, excessive coffee/black tea consumption, poor oral hygiene, trigeminal neuralgia, general debilitation, xerostomia, and medication use. Clinical presentation varies but is typically asymptomatic, although aesthetic concerns are common. Differential diagnosis includes pseudo-BHT, acanthosis nigricans, oral hairy leukoplakia, pigmented fungiform papillae of the tongue, and congenital melanocytic/melanotic nevi/macules. Clinical diagnosis relies on visual observation, detailed history taking, and occasionally microscopic evaluation. Treatment involves identification and discontinuation of the offending agent, modifications of chronic predisposing factors, patient's re-assurance to the benign nature of the condition, and maintenance of adequate oral hygiene with gentle debridement to promote desquamation. Complications of BHT (burning mouth syndrome, halitosis, nausea, gagging, dysgeusia) typically respond to therapy. Prognosis is excellent with treatment of underlying medical conditions. BHT remains an important medical condition which may result in additional burden on the patient and health care system and requires appropriate prevention, recognition and treatment. PMID:25152586

  13. Black hairy tongue syndrome

    PubMed Central

    Gurvits, Grigoriy E; Tan, Amy

    2014-01-01

    Black hairy tongue (BHT) is a benign medical condition characterized by elongated filiform lingual papillae with typical carpet-like appearance of the dorsum of the tongue. Its prevalence varies geographically, typically ranging from 0.6% to 11.3%. Known predisposing factors include smoking, excessive coffee/black tea consumption, poor oral hygiene, trigeminal neuralgia, general debilitation, xerostomia, and medication use. Clinical presentation varies but is typically asymptomatic, although aesthetic concerns are common. Differential diagnosis includes pseudo-BHT, acanthosis nigricans, oral hairy leukoplakia, pigmented fungiform papillae of the tongue, and congenital melanocytic/melanotic nevi/macules. Clinical diagnosis relies on visual observation, detailed history taking, and occasionally microscopic evaluation. Treatment involves identification and discontinuation of the offending agent, modifications of chronic predisposing factors, patients re-assurance to the benign nature of the condition, and maintenance of adequate oral hygiene with gentle debridement to promote desquamation. Complications of BHT (burning mouth syndrome, halitosis, nausea, gagging, dysgeusia) typically respond to therapy. Prognosis is excellent with treatment of underlying medical conditions. BHT remains an important medical condition which may result in additional burden on the patient and health care system and requires appropriate prevention, recognition and treatment. PMID:25152586

  14. Metformin inhibits cell cycle progression of B-cell chronic lymphocytic leukemia cells

    PubMed Central

    Bruno, Silvia; Ledda, Bernardetta; Tenca, Claudya; Ravera, Silvia; Orengo, Anna Maria; Mazzarello, Andrea Nicola; Pesenti, Elisa; Casciaro, Salvatore; Racchi, Omar; Ghiotto, Fabio; Marini, Cecilia; Sambuceti, Gianmario; DeCensi, Andrea; Fais, Franco

    2015-01-01

    B-cell chronic lymphocytic leukemia (CLL) was believed to result from clonal accumulation of resting apoptosis-resistant malignant B lymphocytes. However, it became increasingly clear that CLL cells undergo, during their life, iterative cycles of re-activation and subsequent clonal expansion. Drugs interfering with CLL cell cycle entry would be greatly beneficial in the treatment of this disease. 1, 1-Dimethylbiguanide hydrochloride (metformin), the most widely prescribed oral hypoglycemic agent, inexpensive and well tolerated, has recently received increased attention for its potential antitumor activity. We wondered whether metformin has apoptotic and anti-proliferative activity on leukemic cells derived from CLL patients. Metformin was administered in vitro either to quiescent cells or during CLL cell activation stimuli, provided by classical co-culturing with CD40L-expressing fibroblasts. At doses that were totally ineffective on normal lymphocytes, metformin induced apoptosis of quiescent CLL cells and inhibition of cell cycle entry when CLL were stimulated by CD40-CD40L ligation. This cytostatic effect was accompanied by decreased expression of survival- and proliferation-associated proteins, inhibition of signaling pathways involved in CLL disease progression and decreased intracellular glucose available for glycolysis. In drug combination experiments, metformin lowered the apoptotic threshold and potentiated the cytotoxic effects of classical and novel antitumor molecules. Our results indicate that, while CLL cells after stimulation are in the process of building their full survival and cycling armamentarium, the presence of metformin affects this process. PMID:26265439

  15. Staphylococcal SSL5 Binding to Human Leukemia Cells Inhibits Cell Adhesion to Endothelial Cells and Platelets

    PubMed Central

    Walenkamp, Annemiek M. E.; Bestebroer, Jovanka; Boer, Ingrid G. J.; Kruizinga, Roeline; Verheul, Henk M.; van Strijp, Jos A. G.; de Haas, Carla J. C.

    2010-01-01

    Bacterial proteins provide promising tools for novel anticancer therapies. Staphylococcal superantigen-like 5 (SSL5) was recently described to bind P-selectin glycoprotein ligand-1 (PSGL-1) on leukocytes and to inhibit neutrophil rolling on a P-selectin surface. As leukocytes and tumor cells share many characteristics in migration and dissemination, we explored the potential of SSL5 as an antagonist of malignant cell behavior. Previously, it was demonstrated that rolling of human HL-60 leukemia cells on activated endothelial cells was mediated by P-selectin. In this study, we show that SSL5 targets HL-60 cells. Binding of SSL5 was rapid and without observed toxicity. Competition of SSL5 with the binding of three anti-PSGL-1 antibodies and P-selectin to HL-60 cells identified PSGL-1 as the ligand on HL-60 cells. Presence of sialyl Lewis x epitopes on PSGL-1 was crucial for its interaction with SSL5. Importantly, SSL5 not only inhibited the interaction of HL-60 cells with activated endothelial cells but also with platelets, which both play an important role in growth and metastasis of cancers. These data support the concept that SSL5 could be a lead in the search for novel strategies against hematological malignancies. PMID:20208131

  16. Epigenetic therapy overcomes treatment resistance in T cell prolymphocytic leukemia.

    PubMed

    Hasanali, Zainul S; Saroya, Bikramajit Singh; Stuart, August; Shimko, Sara; Evans, Juanita; Vinod Shah, Mithun; Sharma, Kamal; Leshchenko, Violetta V; Parekh, Samir; Loughran, Thomas P; Epner, Elliot M

    2015-06-24

    T cell prolymphocytic leukemia (T-PLL) is a rare, mature T cell neoplasm with distinct features and an aggressive clinical course. Early relapse and short overall survival are commonplace. Use of the monoclonal anti-CD52 antibody alemtuzumab has improved the rate of complete remission and duration of response to more than 50% and between 6 and 12 months, respectively. Despite this advance, without an allogeneic transplant, resistant relapse is inevitable. We report seven complete and one partial remission in eight patients receiving alemtuzumab and cladribine with or without a histone deacetylase inhibitor. These data show that administration of epigenetic agents can overcome alemtuzumab resistance. We also report epigenetically induced expression of the surface receptor protein CD30 in T-PLL. Subsequent treatment with the anti-CD30 antibody-drug conjugate brentuximab vedotin overcame organ-specific (skin) resistance to alemtuzumab. Our findings demonstrate activity of combination epigenetic and immunotherapy in the incurable illness T-PLL, particularly in the setting of previous alemtuzumab therapy. PMID:26109102

  17. Drug screen in patient cells suggests quinacrine to be repositioned for treatment of acute myeloid leukemia.

    PubMed

    Eriksson, A; sterroos, A; Hassan, S; Gullbo, J; Rickardson, L; Jarvius, M; Nygren, P; Frykns, M; Hglund, M; Larsson, R

    2015-01-01

    To find drugs suitable for repositioning for use against leukemia, samples from patients with chronic lymphocytic, acute myeloid and lymphocytic leukemias as well as peripheral blood mononuclear cells (PBMC) were tested in response to 1266 compounds from the LOPAC(1280) library (Sigma). Twenty-five compounds were defined as hits with activity in all leukemia subgroups (<50% cell survival compared with control) at 10 ?M drug concentration. Only one of these compounds, quinacrine, showed low activity in normal PBMCs and was therefore selected for further preclinical evaluation. Mining the NCI-60 and the NextBio databases demonstrated leukemia sensitivity and the ability of quinacrine to reverse myeloid leukemia gene expression. Mechanistic exploration was performed using the NextBio bioinformatic software using gene expression analysis of drug exposed acute myeloid leukemia cultures (HL-60) in the database. Analysis of gene enrichment and drug correlations revealed strong connections to ribosomal biogenesis nucleoli and translation initiation. The highest drug-drug correlation was to ellipticine, a known RNA polymerase I inhibitor. These results were validated by additional gene expression analysis performed in-house. Quinacrine induced early inhibition of protein synthesis supporting these predictions. The results suggest that quinacrine have repositioning potential for treatment of acute myeloid leukemia by targeting of ribosomal biogenesis. PMID:25885427

  18. Drug screen in patient cells suggests quinacrine to be repositioned for treatment of acute myeloid leukemia

    PubMed Central

    Eriksson, A; sterroos, A; Hassan, S; Gullbo, J; Rickardson, L; Jarvius, M; Nygren, P; Frykns, M; Hglund, M; Larsson, R

    2015-01-01

    To find drugs suitable for repositioning for use against leukemia, samples from patients with chronic lymphocytic, acute myeloid and lymphocytic leukemias as well as peripheral blood mononuclear cells (PBMC) were tested in response to 1266 compounds from the LOPAC1280 library (Sigma). Twenty-five compounds were defined as hits with activity in all leukemia subgroups (<50% cell survival compared with control) at 10 ?M drug concentration. Only one of these compounds, quinacrine, showed low activity in normal PBMCs and was therefore selected for further preclinical evaluation. Mining the NCI-60 and the NextBio databases demonstrated leukemia sensitivity and the ability of quinacrine to reverse myeloid leukemia gene expression. Mechanistic exploration was performed using the NextBio bioinformatic software using gene expression analysis of drug exposed acute myeloid leukemia cultures (HL-60) in the database. Analysis of gene enrichment and drug correlations revealed strong connections to ribosomal biogenesis nucleoli and translation initiation. The highest drugdrug correlation was to ellipticine, a known RNA polymerase I inhibitor. These results were validated by additional gene expression analysis performed in-house. Quinacrine induced early inhibition of protein synthesis supporting these predictions. The results suggest that quinacrine have repositioning potential for treatment of acute myeloid leukemia by targeting of ribosomal biogenesis. PMID:25885427

  19. Cardiopulmonary Failure Requiring ECMO Bypass Resulting from Leukemia Cell Lysis in a Patient with Childhood Acute Myelomonocytic Leukemia.

    PubMed

    Huang, Michael; Owen, Erin; Myers, Scott; Raj, Ashok

    2015-01-01

    Background. Childhood AML patients are at increased risk for early fatal pulmonary complications. Pulmonary leukostasis and systemic inflammatory response syndrome (SIRS) following leukemia cell lysis are the likely etiologies. Observation. Soon after initiation of AML chemotherapy, an 18-month-old female who met SIRS criteria sustained cardiopulmonary failure requiring ECMO support. Upon recovery, the patient went on to complete therapy and remains in remission without permanent neurologic or cardiac sequelae. Conclusion. Cytokine release syndrome from rapid cell lysis was the likely cause as infectious workup failed to reveal a definitive etiology and drug hypersensitivity testing to the chemotherapy agents was negative. PMID:26124967

  20. Glycosylation Status of CD43 Protein Is Associated with Resistance of Leukemia Cells to CTL-Mediated Cytolysis

    PubMed Central

    Hasegawa, Kana; Tanaka, Satomi; Fujiki, Fumihiro; Morimoto, Soyoko; Nakano, Katsuhiko; Kinoshita, Hiroko; Okumura, Atsushi; Fujioka, Yuka; Urakawa, Rika; Nakajima, Hiroko; Tatsumi, Naoya; Nakata, Jun; Takashima, Satoshi; Nishida, Sumiyuki; Tsuboi, Akihiro; Oka, Yoshihiro; Oji, Yusuke; Miyoshi, Eiji; Hirata, Takako; Kumanogoh, Atsushi; Sugiyama, Haruo; Hosen, Naoki

    2016-01-01

    To improve cancer immunotherapy, it is important to understand how tumor cells counteract immune-surveillance. In this study, we sought to identify cell-surface molecules associated with resistance of leukemia cells to cytotoxic T cell (CTL)-mediated cytolysis. To this end, we first established thousands of monoclonal antibodies (mAbs) that react with MLL/AF9 mouse leukemia cells. Only two of these mAbs, designated R54 and B2, bound preferentially to leukemia cells resistant to cytolysis by a tumor cell antigen–specific CTLs. The antigens recognized by these mAbs were identified by expression cloning as the same protein, CD43, although their binding patterns to subsets of hematopoietic cells differed significantly from each other and from a pre-existing pan-CD43 mAb, S11. The epitopes of R54 and B2, but not S11, were sialidase-sensitive and expressed at various levels on leukemia cells, suggesting that binding of R54 or B2 is associated with the glycosylation status of CD43. R54high leukemia cells, which are likely to express sialic acid-rich CD43, were highly resistant to CTL-mediated cytolysis. In addition, loss of CD43 in leukemia cells or neuraminidase treatment of leukemia cells sensitized leukemia cells to CTL-mediated cell lysis. These results suggest that sialic acid-rich CD43, which harbors multiple sialic acid residues that impart a net negative surface charge, protects leukemia cells from CTL-mediated cell lysis. Furthermore, R54high or B2high leukemia cells preferentially survived in vivo in the presence of adaptive immunity. Taken together, these results suggest that the glycosylation status of CD43 on leukemia is associated with sensitivity to CTL-mediated cytolysis in vitro and in vivo. Thus, regulation of CD43 glycosylation is a potential strategy for enhancing CTL-mediated immunotherapy. PMID:27011118

  1. Chimeric Antigen Receptor T Cells for Sustained Remissions in Leukemia

    PubMed Central

    Maude, Shannon L.; Frey, Noelle; Shaw, Pamela A.; Aplenc, Richard; Barrett, David M.; Bunin, Nancy J.; Chew, Anne; Gonzalez, Vanessa E.; Zheng, Zhaohui; Lacey, Simon F.; Mahnke, Yolanda D.; Melenhorst, Jan J.; Rheingold, Susan R.; Shen, Angela; Teachey, David T.; Levine, Bruce L.; June, Carl H.; Porter, David L.; Grupp, Stephan A.

    2014-01-01

    BACKGROUND Relapsed acute lymphoblastic leukemia (ALL) is difficult to treat despite the availability of aggressive therapies. Chimeric antigen receptormodified T cells targeting CD19 may overcome many limitations of conventional therapies and induce remission in patients with refractory disease. METHODS We infused autologous T cells transduced with a CD19-directed chimeric antigen receptor (CTL019) lentiviral vector in patients with relapsed or refractory ALL at doses of 0.76106 to 20.6106 CTL019 cells per kilogram of body weight. Patients were monitored for a response, toxic effects, and the expansion and persistence of circulating CTL019 T cells. RESULTS A total of 30 children and adults received CTL019. Complete remission was achieved in 27 patients (90%), including 2 patients with blinatumomab-refractory disease and 15 who had undergone stem-cell transplantation. CTL019 cells proliferated in vivo and were detectable in the blood, bone marrow, and cerebrospinal fluid of patients who had a response. Sustained remission was achieved with a 6-month event-free survival rate of 67% (95% confidence interval [CI], 51 to 88) and an overall survival rate of 78% (95% CI, 65 to 95). At 6 months, the probability that a patient would have persistence of CTL019 was 68% (95% CI, 50 to 92) and the probability that a patient would have relapse-free B-cell aplasia was 73% (95% CI, 57 to 94). All the patients had the cytokine-release syndrome. Severe cytokine-release syndrome, which developed in 27% of the patients, was associated with a higher disease burden before infusion and was effectively treated with the antiinterleukin-6 receptor antibody tocilizumab. CONCLUSIONS Chimeric antigen receptormodified T-cell therapy against CD19 was effective in treating relapsed and refractory ALL. CTL019 was associated with a high remission rate, even among patients for whom stem-cell transplantation had failed, and durable remissions up to 24 months were observed. (Funded by Novartis and others; CART19 ClinicalTrials.gov numbers, NCT01626495 and NCT01029366.) PMID:25317870

  2. YM155 suppresses cell proliferation and induces cell death in human adult T-cell leukemia/lymphoma cells.

    PubMed

    Sasaki, Ryousei; Ito, Shigeki; Asahi, Maki; Ishida, Yoji

    2015-12-01

    Adult T-cell leukemia (ATL) is an aggressive malignancy of peripheral T cells infected with human T-cell leukemia virus type 1 (HTLV-1). The prognosis of patients with aggressive ATL remains poor because ATL cells acquire resistance to conventional cytotoxic agents. Therefore, development of novel agents is urgently needed. We examined the effects of YM155, sepantronium bromide, on cell proliferation and survival of ATL or HTLV-1-infected T-cell lines, S1T, MT-1, and MT-2. We found that YM155 suppressed cell proliferation in these cells and induced cell death in S1T and MT-1 cells. Both real-time quantitative polymerase chain reaction and immunoblot analyses showed suppression of survivin expression in S1T, MT-1, and MT-2 cells. In addition, we observed the cleavage of caspase-3 and poly(ADP-ribose) polymerase in YM155-treated S1T and MT-1 cells, indicating that YM155 induces caspase-dependent apoptosis in these cells. To clarify the mechanism of drug tolerance of MT-2 cells in terms of YM155-induced cell death, we examined intracellular signaling status in these cells. We found that STAT3, STAT5, and AKT were constitutively phosphorylated in MT-2 cells but not in S1T and MT-1 cells. Treatment with YM155 combined with the STAT3 inhibitor S3I-201 significantly suppressed cell proliferation compared to that with either YM155 or S3I-201 in MT-2 cells, indicating that STAT3 may play a role in tolerance of MT-2 cells to YM155 and that STAT3 may therefore be a therapeutic target for YM155-resistant ATL cells. These results suggest that YM155 presents potent antiproliferative and apoptotic effects via suppression of survivin in ATL cells in which STAT3 is not constitutively phosphorylated. YM155 merits further investigation as a potential chemotherapeutic agent for ATL. PMID:26547260

  3. RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells

    SciTech Connect

    Wang, Houcai; Yu, Jing; Zhang, Lixia; Xiong, Yuanyuan; Chen, Shuying; Xing, Haiyan; Tian, Zheng; Tang, Kejing; Wei, Hui; Rao, Qing; Wang, Min; Wang, Jianxiang

    2014-04-18

    Highlights: • RPS27a expression was up-regulated in advanced-phase CML and AL patients. • RPS27a knockdown changed biological property of K562 and K562/G01 cells. • RPS27a knockdown affected Raf/MEK/ERK, P21 and BCL-2 signaling pathways. • RPS27a knockdown may be applicable for new combination therapy in CML patients. - Abstract: Ribosomal protein S27a (RPS27a) could perform extra-ribosomal functions besides imparting a role in ribosome biogenesis and post-translational modifications of proteins. The high expression level of RPS27a was reported in solid tumors, and we found that the expression level of RPS27a was up-regulated in advanced-phase chronic myeloid leukemia (CML) and acute leukemia (AL) patients. In this study, we explored the function of RPS27a in leukemia cells by using CML cell line K562 cells and its imatinib resistant cell line K562/G01 cells. It was observed that the expression level of RPS27a was high in K562 cells and even higher in K562/G01 cells. Further analysis revealed that RPS27a knockdown by shRNA in both K562 and K562G01 cells inhibited the cell viability, induced cell cycle arrest at S and G2/M phases and increased cell apoptosis induced by imatinib. Combination of shRNA with imatinib treatment could lead to more cleaved PARP and cleaved caspase-3 expression in RPS27a knockdown cells. Further, it was found that phospho-ERK(p-ERK) and BCL-2 were down-regulated and P21 up-regulated in RPS27a knockdown cells. In conclusion, RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells. It appears that drugs targeting RPS27a combining with tyrosine kinase inhibitor (TKI) might represent a novel therapy strategy in TKI resistant CML patients.

  4. Differential effects of antofine N-oxide on solid tumor and leukemia cells.

    PubMed

    Bour, Tania; Yang, Xianwen; Li, Weihong; Bernardin, Francois; Kaoma, Tony; Muller, Arnaud; Vallar, Laurent; Steinmetz, André

    2014-01-01

    We have studied the anti-cancer activities of antofine N-oxide isolated and purified from the medicinal plant Cynanchum vincetoxicum. Antofine N-oxide displayed a strong inhibitory effect on several solid tumor cell lines (glioblastoma, breast carcinoma and lung carcinoma) and on a T-cell leukemia cell line. Remarkably, its cytotoxic effect was considerably weaker in non-cancer cells. Antofine N-oxide was found to inhibit proliferation of the solid tumor cells whereas it caused apoptotic cell death in the leukemia cells. A microarray analysis after a short treatment revealed that the number of differentially expressed genes was considerably higher in solid tumor than in leukemia cells. Up-regulated genes in the three solid tumor cell lines include genes related to TNFα signaling, of which TNFα was among the most significantly induced. A functional analysis revealed that TNFR1 signaling was most likely activated in the solid tumor cells. The increased mRNA levels of several genes of this pathway (namely TNFα, TNFAIP3 and BIRC3) were confirmed by real-time quantitative PCR after different treatment durations. Finally a slight inhibition of NFκB-mediated transcription was observed in the same cells. Together our results suggest that inhibition of cell proliferation in solid tumor cells essentially occurs through TNFα signaling whereas this pathway is not activated in leukemia cells. Apoptotic cell death in the latter is induced by a distinct yet unknown pathway. PMID:24962072

  5. Immature MEF2C-dysregulated T-cell leukemia patients have an early T-cell precursor acute lymphoblastic leukemia gene signature and typically have non-rearranged T-cell receptors

    PubMed Central

    Zuurbier, Linda; Gutierrez, Alejandro; Mullighan, Charles G.; Cant-Barrett, Kirsten; Gevaert, A. Olivier; de Rooi, Johan; Li, Yunlei; Smits, Willem K.; Buijs-Gladdines, Jessica G.C.A.M.; Sonneveld, Edwin; Look, A. Thomas; Horstmann, Martin; Pieters, Rob; Meijerink, Jules P.P.

    2014-01-01

    Three distinct immature T-cell acute lymphoblastic leukemia entities have been described including cases that express an early T-cell precursor immunophenotype or expression profile, immature MEF2C-dysregulated T-cell acute lymphoblastic leukemia cluster cases based on gene expression analysis (immature cluster) and cases that retain non-rearranged TRG@ loci. Early T-cell precursor acute lymphoblastic leukemia cases exclusively overlap with immature cluster samples based on the expression of early T-cell precursor acute lymphoblastic leukemia signature genes, indicating that both are featuring a single disease entity. Patients lacking TRG@ rearrangements represent only 40% of immature cluster cases, but no further evidence was found to suggest that cases with absence of bi-allelic TRG@ deletions reflect a distinct and even more immature disease entity. Immature cluster/early T-cell precursor acute lymphoblastic leukemia cases are strongly enriched for genes expressed in hematopoietic stem cells as well as genes expressed in normal early thymocyte progenitor or double negative-2A T-cell subsets. Identification of early T-cell precursor acute lymphoblastic leukemia cases solely by defined immunophenotypic criteria strongly underestimates the number of cases that have a corresponding gene signature. However, early T-cell precursor acute lymphoblastic leukemia samples correlate best with a CD1 negative, CD4 and CD8 double negative immunophenotype with expression of CD34 and/or myeloid markers CD13 or CD33. Unlike various other studies, immature cluster/early T-cell precursor acute lymphoblastic leukemia patients treated on the COALL-97 protocol did not have an overall inferior outcome, and demonstrated equal sensitivity levels to most conventional therapeutic drugs compared to other pediatric T-cell acute lymphoblastic leukemia patients. PMID:23975177

  6. Radotinib Induces Apoptosis of CD11b+ Cells Differentiated from Acute Myeloid Leukemia Cells

    PubMed Central

    Heo, Sook-Kyoung; Noh, Eui-Kyu; Yoon, Dong-Joon; Jo, Jae-Cheol; Choi, Yunsuk; Koh, SuJin; Baek, Jin Ho; Park, Jae-Hoo; Min, Young Joo; Kim, Hawk

    2015-01-01

    Radotinib, developed as a BCR/ABL tyrosine kinase inhibitor (TKI), is approved for the second-line treatment of chronic myeloid leukemia (CML) in South Korea. However, therapeutic effects of radotinib in acute myeloid leukemia (AML) are unknown. In the present study, we demonstrate that radotinib significantly decreases the viability of AML cells in a dose-dependent manner. Kasumi-1 cells were more sensitive to radotinib than NB4, HL60, or THP-1 cell lines. Furthermore, radotinib induced CD11b expression in NB4, THP-1, and Kasumi-1 cells either in presence or absence of all trans-retinoic acid (ATRA). We found that radotinib promoted differentiation and induced CD11b expression in AML cells by downregulating LYN. However, CD11b expression induced by ATRA in HL60 cells was decreased by radotinib through upregulation of LYN. Furthermore, radotinib mainly induced apoptosis of CD11b+ cells in the total population of AML cells. Radotinib also increased apoptosis of CD11b+ HL60 cells when they were differentiated by ATRA/dasatinib treatment. We show that radotinib induced apoptosis via caspase-3 activation and the loss of mitochondrial membrane potential (??m) in CD11b+ cells differentiated from AML cells. Our results suggest that radotinib may be used as a candidate drug in AML or a chemosensitizer for treatment of AML by other therapeutics. PMID:26065685

  7. Cytotoxicity of CD56-positive lymphocytes against autologous B-cell precursor acute lymphoblastic leukemia cells.

    PubMed

    Fei, F; Lim, M; George, A A; Kirzner, J; Lee, D; Seeger, R; Groffen, J; Abdel-Azim, H; Heisterkamp, N

    2015-04-01

    Precursor B-lineage acute lymphoblastic leukemia (pre-B ALL) affects hematopoietic development and therefore is associated with immune deficiencies that can be further exacerbated by chemotherapy. It is unclear if and when monoclonal antibodies (mAbs) that stimulate antibody-mediated cellular cytotoxicity (ADCC) can be used for treatment because this depends on the presence of functional effector cells. Here, we used flow cytometry to determine that patient samples at diagnosis, post-induction and relapse contain detectable numbers of CD56+ cells. We were able to selectively expand CD56+ immune effector cells from bone marrow and peripheral blood samples at diagnosis and at various stages of treatment by co-culture with artificial antigen-presenting K562 clone 9.mbIL-21 cells. Amplified CD56+CD3- cells had spontaneous and anti-B cell-activating factor receptor mAb-stimulated ADCC activity against allogeneic ALL cells, which could be further enhanced by IL-15. Importantly, matched CD56+ effector cells also killed autologous ALL cells grown out from leukemia samples of the same patient, through both spontaneous as well as antibody-dependent cellular cytotoxicity. Since autologous cell therapy will not be complicated by graft-versus-host disease, our results show that expanded CD56+ cells could be applied for treatment of pre-B ALL without transplantation, or for purging of bone marrow in the setting of autologous bone marrow transplants. PMID:25134458

  8. Homoharringtonine acts synergistically with SG235-TRAIL, a conditionally replicating adenovirus, in human leukemia cell lines

    PubMed Central

    Meng, Hai-tao; Li, Lu; Liu, Hui; Wang, Ying; Li, Gong-chu; Qian, Wen-bin

    2009-01-01

    Aim: To investigate the synergistic effects of SG235-TRAIL, a novel oncolytic adenovirus expressing tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and homoharringtonine (HHT) in human leukemia cell lines. Methods: The combined effect of SG235-TRAIL and HHT was assessed using a crystal violet assay and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, followed by combination index analysis. Cell apoptosis was measured using flow cytometry combined with fluorescein-isothiocyanate-Annexin V staining. The activation of caspase pathway and the expression of Bcl-2 family proteins, TRAIL, and E1A were examined using Western blotting. Results: HHT synergized the cytotoxicity of SG235-TRAIL against leukemia cell lines Kasumi-1, KG-1, HL-60, and U937, concomitantly with increased apoptosis and enhanced activity of caspase-3 and -9. The combination therapy resulted in significantly lower levels of Bcl-2, Mcl-1, and Bid compared to treatment of cells with either HHT or SG235-TRAIL alone, suggesting that HHT sensitizes leukemia cells to SG235-TRAIL virus through alteration of anti-apoptotic signaling elements. Importantly, HHT combined with SG235-TRAIL did not show significant cytotoxicity to normal human mononuclear cells and mesenchymal stem cells. Conclusion: Combining oncolytic adenovirus SG235-TRAIL and HHT synergistically enhances cytotoxicity in leukemia cells in vitro, suggesting that the combination therapy could represent a rational approach for the treatment of leukemia. PMID:19820719

  9. Re-evaluation of various molecular targets located on CD34+CD38?Lin? leukemia stem cells and other cell subsets in pediatric acute myeloid leukemia

    PubMed Central

    CHENG, YUPING; JIA, MING; CHEN, YUANYUAN; ZHAO, HAIZHAO; LUO, ZEBIN; TANG, YONGMIN

    2016-01-01

    Leukemia stem cells (LSCs) are hypothesized to be capable of driving the development of leukemia, and are responsible for disease relapse. Antibody therapy targeting cell surface antigens has significantly improved the treatment outcomes of leukemia. Therefore, it is important to identify cell surface markers that are expressed on LSCs, and that are unexpressed or expressed at reduced levels on normal hematopoietic stem cells (HSCs), in order to establish novel therapeutic targets. In the present study, the immunophenotypic characteristics of cluster of differentiation (CD)34+CD38?lineage (Lin)? stem cells were analyzed, and antigen expression levels were compared with the expression of other cell components, using multicolor flow cytometry, in 54 patients with newly diagnosed acute myeloid leukemia (AML) and 11 control patients with immune thrombocytopenia. The findings indicated that CD133 and human leukocyte antigen (HLA)-DR were expressed on normal HSCs and on AML LSCs, with no significant difference (P>0.05). By contrast, CD33, CD123 and CD44 were highly expressed on AML LSCs, and demonstrated significant differences compared with their expression on normal HSCs (CD33, 81.7 vs. 18.3%; CD123, 75.8 vs. 19.1%; CD44, 97.7 vs. 84.4%). Among the aforementioned antigens, CD33 and CD123 were promising candidates for targeted therapy for the treatment of AML. This was particularly evident for CD123 in immature AML subtype cells, which may require additional investigation within a clinical trial setting. CD44, CD133 and HLA-DR may not be suitable for leukemia targeting due to their broad and high expression levels on normal HSCs and other tissues. PMID:26870301

  10. Transmembrane TNF-α preferentially expressed by leukemia stem cells and blasts is a potent target for antibody therapy.

    PubMed

    Zhou, Xiaoxi; Zhou, Shiqiu; Li, Baihua; Li, Qinlu; Gao, Lili; Li, Dan; Gong, Quan; Zhu, Li; Wang, Jue; Wang, Na; Huang, Liang; Zhao, Lei; Li, Zhuoya; Zhou, Jianfeng

    2015-09-17

    To design an effective antibody therapy to improve clinical outcomes in leukemia, the identification of novel cell surface antigens is needed. Herein, we demonstrate a role for transmembrane tumor necrosis factor-α (tmTNF-α) in leukemia. To characterize tmTNF-α expression in acute leukemia (AL), normal hematopoietic cells, and nonhematopoietic tissues, we used a monoclonal antibody, termed C1, which specifically recognizes the tmTNF-α domain. We found that tmTNF-α was preferentially expressed by AL and leukemia stem cells (LSCs). More abundant expression correlated with poor risk stratification, extramedullary infiltration, and adverse clinical parameters. Moreover, knockdown of tmTNF-α(+) expression rendered leukemia cells more sensitive to chemotherapy in vitro and delayed regeneration of leukemia in NOD-SCID mice. Targeting tmTNF-α by C1 resulted in leukemia cell killing via antibody-dependent cell-mediated and complement-dependent cytotoxicity in vitro and inhibited leukemia cell growth in vivo while simultaneously sparing normal hematopoietic cells. Notably, C1 administration impaired the regeneration of leukemia in secondary serial transplantation into NOD-SCID mice. In conclusion, tmTNF-α has a favorable AL- and LSC-associated expression profile and is important for the survival and proliferation of these cells. C1-mediated targeting shows potent anti-LSC activity, indicating that tmTNF-α represents a novel target antigen in AL. PMID:26224647

  11. Aspects of hairy black holes

    SciTech Connect

    Anabalón, Andrés; Astefanesei, Dumitru

    2015-03-26

    We review the existence of exact hairy black holes in asymptotically flat, anti-de Sitter and de Sitter space-times. We briefly discuss the issue of stability and the charging of the black holes with a Maxwell field.

  12. Role for protein geranylgeranylation in adult T-cell leukemia cell survival

    SciTech Connect

    Nonaka, Mizuho; Uota, Shin; Saitoh, Yasunori; Takahashi, Mayumi; Sugimoto, Haruyo; Amet, Tohti; Arai, Ayako; Miura, Osamu; Yamamoto, Naoki; Yamaoka, Shoji

    2009-01-15

    Adult T-cell leukemia (ATL) is a fatal lymphoproliferative disease that develops in human T-cell leukemia virus type I (HTLV-I)-infected individuals. Despite the accumulating knowledge of the molecular biology of HTLV-I-infected cells, effective therapeutic strategies remain to be established. Recent reports showed that the hydroxyl-3-methylglutaryl (HMG)-CoA reductase inhibitor statins have anti-proliferative and apoptotic effects on certain tumor cells through inhibition of protein prenylation. Here, we report that statins hinder the survival of ATL cells and induce apoptotic cell death. Inhibition of protein geranylgeranylation is responsible for these effects, since simultaneous treatment with isoprenoid precursors, geranylgeranyl pyrophosphate or farnesyl pyrophosphate, but not a cholesterol precursor squalene, restored the viability of ATL cells. Simvastatin inhibited geranylgeranylation of small GTPases Rab5B and Rac1 in ATL cells, and a geranylgeranyl transferase inhibitor GGTI-298 reduced ATL cell viability more efficiently than a farnesyl transferase inhibitor FTI-277. These results not only unveil an important role for protein geranylgeranylation in ATL cell survival, but also implicate therapeutic potentials of statins in the treatment of ATL.

  13. Cytotoxicity of CD56-positive lymphocytes against autologous B-cell precursor acute lymphoblastic leukemia cells

    PubMed Central

    Fei, Fei; Lim, Min; George, Aswathi A.; Kirzner, Jonathan; Lee, Dean; Seeger, Robert; Groffen, John; Abdel-Azim, Hisham; Heisterkamp, Nora

    2014-01-01

    Precursor B-lineage acute lymphoblastic leukemia (pre-B ALL) affects hematopoietic development and therefore is associated with immune deficiencies that can be further exacerbated by chemotherapy. It is unclear if and when monoclonal antibodies (mAbs) that stimulate antibody-mediated cellular cytotoxicity (ADCC) can be used for treatment because this depends on the presence of functional effector cells. Here, we used flow cytometry to determine that patient samples at diagnosis, post-induction and relapse contain detectable numbers of CD56+ cells. We were able to selectively expand CD56+ immune effector cells from bone marrow and peripheral blood samples at diagnosis and at various stages of treatment by co-culture with artificial antigen-presenting K562 clone 9.mbIL-21 cells. Amplified CD56+CD3- cells had spontaneous and anti-BAFF-R mAb-stimulated ADCC activity against autologous ALL cells, which could be further enhanced by IL15. Importantly, matched CD56+ effector cells also killed autologous ALL cells grown out from leukemia samples of the same patient, through both spontaneous as well as antibody-dependent cellular cytotoxicity. Since autologous cell therapy will not be complicated by graft-versus-host disease, our results show that expanded CD56+ cells could be applied for treatment of pre-B-ALL without transplantation, or for purging of bone marrow in the setting of autologous bone marrow transplants. PMID:25134458

  14. Nonsecretory myeloma, immunoglobulin D myeloma, and plasma cell leukemia.

    PubMed

    Bladé, J; Kyle, R A

    1999-12-01

    Nonsecretory myeloma, which accounts for 1% to 5% of all myelomas, is characterized by the absence of detectable M-protein in serum and urine. The presenting features of nonsecretory myeloma are similar to those in patients with a detectable M-protein, except for the absence of renal function impairment. The response to therapy and survival of patients with nonsecretory myeloma are similar to those of patients with measurable M-protein. Immunoglobulin D myeloma represents 2% of all myelomas. Patients with IgD myeloma usually present with a small band or no evident M-spike on serum electrophoresis and heavy light-chain proteinuria. Thus, IgD myeloma can be considered a variant of Bence Jones myeloma; the presence of the IgD M-protein and the predominance of the lambda light chain are the only distinctive features. The median survival of patients with IgD myeloma is almost 2 years, with one fifth of them surviving for more than 5 years. Plasma cell leukemia is also a rare form of plasma cell dyscrasia (2% to 4% of all myelomas). The primary form accounts for 60% of the cases. In primary PCL, the constellation of adverse biologic prognostic factors in patients with advanced aggressive myeloma is already present at diagnosis. In fact, primary PCL has a more aggressive clinical presentation than MM, with a higher frequency of extramedullary involvement, anemia, thrombocytopenia, hypercalcemia, and renal failure. Treatment with a single alkylating agent plus prednisone is not appropriate. Combination chemotherapy with VAD, cyclophosphamide and etoposide, or VCMP/VBAP is a better initial option. Given the poor prognosis of primary PCL, intensification with high-dose therapy followed by stem cell rescue should be offered to affected patients. PMID:10626149

  15. Hematopoietic stem cell transplantation for chronic lymphocytic leukemia

    PubMed Central

    Gladstone, Douglas E.; Fuchs, Ephraim

    2015-01-01

    Purpose of review Although hematopoietic stem cell transplantation (HSCT) is the treatment of choice for many aggressive hematologic malignancies, the role of HSCT in chronic lymphocytic leukemia (CLL) has remained controversial. Now in the era of improved conventional treatment and better prognostication of long-term outcome, a review of autologous and allogeneic HSCT in CLL treatment is warranted. Recent findings Despite an improved disease-free survival in some patients, multiple, prospective, randomized autologous HSCT CLL trials fail to demonstrate an overall survival benefit as compared to conventional therapy. Allogeneic bone marrow transplantation, although limited by donor availability, can successfully eradicate CLL with adverse prognostic features. In the older CLL patients, nonmyeloablative allogeneic transplants are better tolerated than myeloablative transplants. Nonmyeloablative allogeneic transplants are less effective in heavily diseased burdened patients. Summary Outside of a clinical protocol, autologous HSCT for CLL cannot be justified. Nonmyeloablative allogeneic transplantation should be considered in high-risk populations early in the disease process, when disease burden is most easily controlled. Alternative donor selection using haploidentical donors and posttransplantation cyclophosphamide has the potential to vastly increase the availability of curative therapy in CLL while retaining a low treatment-related toxicity. PMID:22234253

  16. Proposals for the characterization and description of new human leukemia-lymphoma cell lines.

    PubMed

    Drexler, H G; Matsuo, Y; Minowada, J

    1998-03-01

    Continuous human leukemia-lymphoma cell lines have become invaluable tools for hematological research as they provide an unlimited amount of cellular material. The first human lymphoma cell line Raji was established in 1963; since then several hundred leukemia-lymphoma cell lines spanning almost the whole spectrum of hematopoietic cell lineages (except for dendritric cells) have been described. The cardinal features of leukemia-lymphoma cell lines are their monoclonal origin, arrest of differentiation, and (growth factor-independent or -dependent) unlimited proliferation. Categorization of cell lines usually follows the physiological stages of hematopoietic differentiation in the various cell lineages. For an adequate classification, a detailed characterization of both primary and cultured cells in absolutely necessary. New cell lines, in particular, must be adequately, characterized; while cell culture data and immunological and cytogenetic features are essential, cell lines should be described in as much detail as possible. In addition to this recommended multiparameter characterization and the obligatory immortality of the culture, authentication of the true origin of the cells, novelty, scientific significance and availability of the cell line for other investigators are of utmost importance. It is still extremely difficult to establish new leukemia-lymphoma cell lines (except for some subtypes), and most attempts fail. Paramount to the lack of our understanding as to why certain cells start to proliferate in culture and others do not (thus implying a random process), is probably the difficulty of mimicking in vitro the physiological in vivo microenvironment. Attempts to improve the efficiency of cell line establishment should focus on examining the appropriateness of the in vitro culture conditions; these conditions should emulate as closely as possible the in vivo situation. In summary, leukemia-lymphoma cell lines have the potential to greatly facilitate diverse studies of normal and malignant hematopoiesis; to that end, these cell lines must be extensively characterized and adequately described. PMID:9710721

  17. HDAC1 and Klf4 interplay critically regulates human myeloid leukemia cell proliferation

    PubMed Central

    Huang, Y; Chen, J; Lu, C; Han, J; Wang, G; Song, C; Zhu, S; Wang, C; Li, G; Kang, J; Wang, J

    2014-01-01

    Acute myeloid leukemia (AML) is recognized as a complex disease of hematopoietic stem cell disorders, but its pathogenesis mechanisms, diagnosis, and treatment remain unclear. General histone deacetylase (HDAC) inhibitors have been used in blood cancers including AML, but the lack of gene specificity greatly limits their anti-cancer effects and clinical applications. Here, we found that HDAC1 expression was negatively correlated with that of Krppel-like factor 4 (Klf4) and that AML patients with lower HDAC1 level had better prognosis. Further, knockdown of HDAC1 in leukemia cells K562, HL-60, and U937 significantly increased Klf4 expression and inhibited cell cycle progression and cell proliferation, similar results were found for HDAC inhibitors (VPA and mocetinostat). Moreover, overexpression or knockdown of Klf4 could markedly block the effects of HDAC1 overexpression or knockdown on leukemia cells in vitro and in vivo, respectively. Mechanistic analyses demonstrated that HDAC1 and Klf4 competitively bound to the promoter region of Klf4 and oppositely regulated Klf4 expression in myeloid leukemia. We identified HDAC1 as a potential specific target for repressing cell proliferation and inducing cell cycle arrest through interplay and modulation of Klf4 expression, suggests that HDAC1 and Klf4 are potential new molecular markers and targets for clinical diagnosis, prognosis, and treatment of myeloid leukemia. PMID:25341045

  18. Leukemia stem cells in T-ALL require active Hif1α and Wnt signaling.

    PubMed

    Giambra, Vincenzo; Jenkins, Catherine E; Lam, Sonya H; Hoofd, Catherine; Belmonte, Miriam; Wang, Xuehai; Gusscott, Sam; Gracias, Deanne; Weng, Andrew P

    2015-06-18

    The Wnt signaling pathway has been shown to play important roles in normal hematopoietic stem cell biology and in the development of both acute and chronic myelogenous leukemia. Its role in maintaining established leukemia stem cells, which are more directly relevant to patients with disease, however, is less clear. To address what role Wnt signaling may play in T-cell acute lymphoblastic leukemia (T-ALL), we used a stably integrated fluorescent Wnt reporter construct to interrogate endogenous Wnt signaling activity in vivo. In this study, we report that active Wnt signaling is restricted to minor subpopulations within bulk tumors, that these Wnt-active subsets are highly enriched for leukemia-initiating cells (LICs), and that genetic inactivation of β-catenin severely reduces LIC frequency. We show further that β-catenin transcription is upregulated by hypoxia through hypoxia-inducible factor 1α (Hif1α) stabilization, and that deletion of Hif1α also severely reduces LIC frequency. Of note, the deletion of β-catenin or Hif1α did not impair the growth or viability of bulk tumor cells, suggesting that elements of the Wnt and Hif pathways specifically support leukemia stem cells. We also confirm the relevance of these findings to human disease using cell lines and patient-derived xenografts, suggesting that targeting these pathways could benefit patients with T-ALL. PMID:25934477

  19. Antitumor activity of D-mannosamine in vitro: different sensitivities among human leukemia cell lines possessing T-cell properties.

    PubMed

    Onoda, T; Morikawa, S; Harada, T; Suzuki, Y; Inoue, K; Nishigami, K

    1982-07-01

    D-Mannosamine is toxic to human malignant T-lymphoid cell lines derived from patients with T-cell leukemia. We observed heterogeneity of mannosamine susceptibility among those cell lines. The leukemic T-cell lines, subgrouped according to the degree of mannosamine inhibition on nucleic acid biosyntheses, were: Subgroup 1, HPB-MLT cells; Subgroup 2, CCRF-HSB-2 and HPB-ALL cells; and Subgroup 3, MOLT-4 cells. The most sensitive line, HPB-MLT, originated from the patient with adult T-cell leukemia. The cytotoxicity of mannosamine was potentiated by a fatty acid, sodium oleate, at concentrations that were noncytolytic, and the interaction between the two drugs was synergistic. These results would suggest that mannosamine induces changes in the membrane structure of the leukemia cells. Thus, the primary target of the tumoricidal activity of mannosamine may also be the cellular membranes. PMID:6979385

  20. Hairy and Groucho mediate the action of juvenile hormone receptor Methoprene-tolerant in gene repression.

    PubMed

    Saha, Tusar T; Shin, Sang Woon; Dou, Wei; Roy, Sourav; Zhao, Bo; Hou, Yuan; Wang, Xue-Li; Zou, Zhen; Girke, Thomas; Raikhel, Alexander S

    2016-02-01

    The arthropod-specific juvenile hormone (JH) controls numerous essential functions. Its involvement in gene activation is known to be mediated by the transcription factor Methoprene-tolerant (Met), which turns on JH-controlled genes by directly binding to E-box-like motifs in their regulatory regions. However, it remains unclear how JH represses genes. We used the Aedes aegypti female mosquito, in which JH is necessary for reproductive maturation, to show that a repressor, Hairy, is required for the gene-repressive action of JH and Met. The RNA interference (RNAi) screen for Met and Hairy in the Aedes female fat body revealed a large cohort of Met- and Hairy-corepressed genes. Analysis of selected genes from this cohort demonstrated that they are repressed by JH, but RNAi of either Met or Hairy renders JH ineffective in repressing these genes in an in vitro fat-body culture assay. Moreover, this JH action was prevented by the addition of the translational inhibitor cycloheximide (CHX) to the culture, indicating the existence of an indirect regulatory hierarchy. The lack of Hairy protein in the CHX-treated tissue was verified using immunoblot analysis, and the upstream regions of Met/Hairy-corepressed genes were shown to contain common binding motifs that interact with Hairy. Groucho (gro) RNAi silencing phenocopied the effect of Hairy RNAi knockdown, indicating that it is involved in the JH/Met/Hairy hierarchy. Finally, the requirement of Hairy and Gro for gene repression was confirmed in a cell transfection assay. Thus, our study has established that Hairy and its cofactor Gro mediate the repressive function of JH and Met. PMID:26744312

  1. Acute Myeloid Leukemia

    MedlinePLUS

    Leukemia is cancer of the white blood cells. White blood cells help your body fight infection. Your blood cells form in your bone marrow. In leukemia, however, the bone marrow produces abnormal white blood ...

  2. Delineation of immunoregulatory properties of adult T-cell leukemia cells.

    PubMed

    Matsubar, Yasushi; Hori, Toshiyuki; Morita, Rimpei; Sakaguchi, Shimon; Uchiyama, Takashi

    2006-07-01

    We characterized leukemic cells from 20 adult T-cell leukemia (ATL) cases and 7 ATL-derived cell lines in terms of Foxp3 messenger RNA (mRNA) expression, cytokine production, cell surface markers associated with regulatory T-cells (Treg), and in vitro immunoregulatory activity and compared the results with those of cells from 3 T-cell-type chronic lymphocytic leukemia (T-CLL) patients and normal CD4+ T-cells. Real-time polymerase chain reaction analysis showed that cells from 10 ATL cases, 1 T-CLL case, and 1 ATL cell line had higher Foxp3 mRNA levels than CD4+ T-cells. In 5 ATL cases, Foxp3 levels were comparable to those of CD4+CD25+ T-cells. Flow cytometric analysis revealed that CTLA-4 expression correlated with Foxp3 mRNA level in ATL cells. The cells of all ATL cases examined produced no interleukin 2 or interferon gamma after iono-mycin and phorbolmyristate acetate stimulation. Cases with low Foxp3 expression (Foxp3-low) tended to express higher levels of transforming growth factor beta mRNA, but this trend was not statistically significant. An in vitro inhibition assay showed that the proliferation of normal CD4+CD25- T-cells stimulated with anti-CD3 monoclonal antibody and autologous dendritic cells was significantly suppressed by coculture with Foxp3-high ATL cells. These results indicate that Foxp3 expression is variable in ATL cases and that Foxp3-high ATL cells, which resemble Treg phenotypically as well as functionally, may be involved in immune suppression in ATL. PMID:16867905

  3. Maturation and proliferation capacity of blood cells from untreated acute myeloid leukemia and its prognostic significance.

    PubMed

    Koeppen, K M; Boll, I T

    1978-08-01

    Blood cells from 68 patients with untreated acute myeloid luekemia were cultured in RPMI-medium without stimulating factors up to ten days. The cultures showed in part maturation and proliferation to monocytes-macrophages, in part to promyelocytes, myelocytes and Pelger-like cells, in part we did not find any differentiation or the cultures were degenerated during the first days. Retrospectively we found that in the 16 blood cell cultures with capacity to differentiation into the monocyte-macrophages-system 5 patients had a smouldering leukemia. Our preliminary evidences suggest that the diagnosis "smouldering leukemia" is to be found with out in vitro culture system. Further analysis suggest that patients with acute leukemia whose blood cells have the capacity for maturation to monocytes-macrophages or to promyelocytes, myelocytes and Pelger-like cells have a better chance of achieving a complete remission and a longer median survival time. PMID:277739

  4. Hollow core photonic crystal fiber for monitoring leukemia cells using surface enhanced Raman scattering (SERS)

    PubMed Central

    Khetani, Altaf; Momenpour, Ali; Alarcon, Emilio I.; Anis, Hanan

    2015-01-01

    The present paper demonstrates an antibody-free, robust, fast, and portable platform for detection of leukemia cells using Raman spectroscopy with a 785-nm laser diode coupled to a hollow core photonic crystal (HC-PCF) containing silver nanoparticles. Acute myeloid leukemia is one of the most common bone marrow cancers in children and youths. Clinical studies suggest that early diagnosis and remission evaluation of myoblasts in the bone marrow are pivotal for improving patient survival. However, the current protocols for leukemic cells detection involve the use of expensive antibodies and flow cytometers. Thus, we have developed a new technology for detection of leukemia cells up to 300 cells/ml using a compact fiber HC-PCF, which offers a novel alternative to existing clinical standards. Furthermore, we were also able to accurately distinguish live, apoptotic and necrotic leukemic cells. PMID:26601021

  5. Hollow core photonic crystal fiber for monitoring leukemia cells using surface enhanced Raman scattering (SERS).

    PubMed

    Khetani, Altaf; Momenpour, Ali; Alarcon, Emilio I; Anis, Hanan

    2015-11-01

    The present paper demonstrates an antibody-free, robust, fast, and portable platform for detection of leukemia cells using Raman spectroscopy with a 785-nm laser diode coupled to a hollow core photonic crystal (HC-PCF) containing silver nanoparticles. Acute myeloid leukemia is one of the most common bone marrow cancers in children and youths. Clinical studies suggest that early diagnosis and remission evaluation of myoblasts in the bone marrow are pivotal for improving patient survival. However, the current protocols for leukemic cells detection involve the use of expensive antibodies and flow cytometers. Thus, we have developed a new technology for detection of leukemia cells up to 300 cells/ml using a compact fiber HC-PCF, which offers a novel alternative to existing clinical standards. Furthermore, we were also able to accurately distinguish live, apoptotic and necrotic leukemic cells. PMID:26601021

  6. Ibrutinib in Treating Relapsed or Refractory B-Cell Non-Hodgkin Lymphoma in Patients With HIV Infection

    ClinicalTrials.gov

    2015-08-18

    Adult B Acute Lymphoblastic Leukemia; Chronic Lymphocytic Leukemia; Cutaneous B-Cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone Lymphoma of Mucosa-Associated Lymphoid Tissue; HIV Infection; Intraocular Lymphoma; Multicentric Angiofollicular Lymphoid Hyperplasia; Nodal Marginal Zone Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Plasma Cell Myeloma; Small Intestinal Lymphoma; Splenic Marginal Zone Lymphoma; Testicular Lymphoma; Waldenstrom Macroglobulinemia

  7. Monoclonal Antibody Therapy in Treating Patients With Ovarian Epithelial Cancer, Melanoma, Acute Myeloid Leukemia, Myelodysplastic Syndrome, or Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-01-09

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Recurrent Melanoma; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Stage IV Melanoma; Stage IV Non-small Cell Lung Cancer

  8. Combination Chemotherapy With or Without Donor Stem Cell Transplant in Treating Patients With Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-03-22

    Adult Acute Lymphoblastic Leukemia in Remission; Adult B Acute Lymphoblastic Leukemia; Adult B Acute Lymphoblastic Leukemia With t(9;22)(q34;q11.2); BCR-ABL1; Adult L1 Acute Lymphoblastic Leukemia; Adult L2 Acute Lymphoblastic Leukemia; Adult T Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia

  9. Metformin Induces Cell Cycle Arrest and Apoptosis in Drug-Resistant Leukemia Cells

    PubMed Central

    Rodríguez-Lirio, A.; Pérez-Yarza, G.; Fernández-Suárez, M. R.; Alonso-Tejerina, E.; Boyano, M. D.; Asumendi, A.

    2015-01-01

    Recent epidemiological studies indicate that the antidiabetic drug metformin has chemosensitizing and chemopreventive effects against carcinogenesis. Here, we demonstrate that metformin exerts varying degrees of antitumor activity against human leukemia cells, as reflected by differences in growth inhibition, apoptosis, and alterations to metabolic enzymes. In metformin-sensitive cells, autophagy was not induced but rather it blocked proliferation by means of arresting cells in the S and G2/M phases which was associated with the downregulation of cyclin A, cyclin B1, and cdc2, but not that of cyclin E. In 10E1-CEM cells that overexpress Bcl-2 and are drug-resistant, the effect of metformin on proliferation was more pronounced, also inducing the activation of the caspases 3/7 and hence apoptosis. In all sensitive cells, metformin decreased the Δψm and it modified the expression of enzymes involved in energy metabolism: PKCε (PKCepsilon) and PKCδ (PKCdelta). In sensitive cells, metformin altered PKCε and PKCδ expression leading to a predominance of PKCε over PKCδ which implies a more glycolytic state. The opposite occurs in the nonresponsive cells. In conclusion, we provide new insights into the activity of metformin as an antitumoral agent in leukemia cells that could be related to its capability to modulate energy metabolism. PMID:26688757

  10. Fludarabine Phosphate, Melphalan, and Low-Dose Total-Body Irradiation Followed by Donor Peripheral Blood Stem Cell Transplant in Treating Patients With Hematologic Malignancies

    ClinicalTrials.gov

    2015-10-28

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Grade III Lymphomatoid Granulomatosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Aplastic Anemia; Burkitt Lymphoma; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Grade III Lymphomatoid Granulomatosis; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Myelomonocytic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Congenital Amegakaryocytic Thrombocytopenia; Diamond-Blackfan Anemia; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Juvenile Myelomonocytic Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Paroxysmal Nocturnal Hemoglobinuria; Peripheral T-cell Lymphoma; Polycythemia Vera; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Secondary Myelofibrosis; Severe Combined Immunodeficiency; Severe Congenital Neutropenia; Shwachman-Diamond Syndrome; Splenic Marginal Zone Lymphoma; T-cell Large Granular Lymphocyte Leukemia; Waldenstrom Macroglobulinemia; Wiskott-Aldrich Syndrome

  11. BCR-ABL1 induces aberrant splicing of IKAROS and lineage infidelity in pre-B lymphoblastic leukemia cells.

    PubMed

    Klein, F; Feldhahn, N; Herzog, S; Sprangers, M; Mooster, J L; Jumaa, H; Mschen, M

    2006-02-16

    Pre-B lymphoblastic leukemia cells carrying a BCR-ABL1 gene rearrangement exhibit an undifferentiated phenotype. Comparing the genome-wide gene expression profiles of normal B-cell subsets and BCR-ABL1+ pre-B lymphoblastic leukemia cells by SAGE, the leukemia cells show loss of B lymphoid identity and aberrant expression of myeloid lineage-specific molecules. Consistent with this, BCR-ABL1+ pre-B lymphoblastic leukemia cells exhibit defective expression of IKAROS, a transcription factor needed for early lymphoid lineage commitment. As shown by inducible expression of BCR-ABL1 in human and murine B-cell precursor cell lines, BCR-ABL1 induces the expression of a dominant-negative IKAROS splice variant, termed IK6. Comparing matched leukemia sample pairs from patients before and during therapy with the BCR-ABL1 kinase inhibitor STI571 (Imatinib), inhibition of BCR-ABL1 partially corrected aberrant expression of IK6 and lineage infidelity of the leukemia cells. To elucidate the contribution of IK6 to lineage infidelity in BCR-ABL1+ cell lines, IK6 expression was silenced by RNA interference. Upon inhibition of IK6, BCR-ABL1+ leukemia cells partially restored B lymphoid lineage commitment. Therefore, we propose that BCR-ABL1 induces aberrant splicing of IKAROS, which interferes with lineage identity and differentiation of pre-B lymphoblastic leukemia cells. PMID:16205638

  12. Donor T Cells After Donor Stem Cell Transplant in Treating Patients With Hematologic Malignancies

    ClinicalTrials.gov

    2016-01-06

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Blastic Phase Chronic Myelogenous Leukemia; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Phase Chronic Myelogenous Leukemia; Cutaneous B-cell Non-Hodgkin Lymphoma; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Myelodysplastic Syndromes; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Waldenstrm Macroglobulinemia

  13. Natural History Study of Monoclonal B Cell Lymphocytosis (MBL), Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma (CLL/SLL), Lymphoplasmacytic Lymphoma (LPL)/Waldenstrom Macroglobulinemia (WM), and Splenic Marginal Zone Lymphoma (SMZL)

    ClinicalTrials.gov

    2015-09-30

    B-Cell Chronic Lymphocytic Leukemia; Monoclonal B-Cell Lymphocytosis; Lymhoma, Small Lymphocytic; Chronic Lymphocytic Leukemia; Lymphoplasmacytic Lymphoma; Waldenstrom Macroglobulinemia; Splenic Marginal Zone Lymphoma

  14. MCL-1-dependent leukemia cells are more sensitive to chemotherapy than BCL-2-dependent counterparts.

    PubMed

    Brunelle, Joslyn K; Ryan, Jeremy; Yecies, Derek; Opferman, Joseph T; Letai, Anthony

    2009-11-01

    Myeloid cell leukemia sequence 1 (MCL-1) and B cell leukemia/lymphoma 2 (BCL-2) are anti-apoptotic proteins in the BCL-2 protein family often expressed in cancer. To compare the function of MCL-1 and BCL-2 in maintaining cancer survival, we constructed complementary mouse leukemia models based on Emu-Myc expression in which either BCL-2 or MCL-1 are required for leukemia maintenance. We show that the principal anti-apoptotic mechanism of both BCL-2 and MCL-1 in these leukemias is to sequester pro-death BH3-only proteins rather than BAX and BAK. We find that the MCL-1-dependent leukemias are more sensitive to a wide range of chemotherapeutic agents acting by disparate mechanisms. In common across these varied treatments is that MCL-1 protein levels rapidly decrease in a proteosome-dependent fashion, whereas those of BCL-2 are stable. We demonstrate for the first time that two anti-apoptotic proteins can enable tumorigenesis equally well, but nonetheless differ in their influence on chemosensitivity. PMID:19948485

  15. Strong, specific anti-human leukemia antisera prepared with the use of purified cell membrane antigen.

    PubMed

    Negoro, S; Seon, B K

    1981-07-01

    Two rabbits immunized with 15 micrograms of a purified human thymus leukemia-associated antigen preparation and boosted once with the same amount of the antigen preparation yielded antisera that showed strong specificity for human leukemic T-cells without any prior absorptions. These antisera from the two rabbits showed a 50% killing of cells at antiserum dilutions of 5700- and 1600-fold, respectively, against JM, a leukemic T-cell line, and slightly weaker activity against MOLT-4, another leukemia T-cell line. These antisera, without any absorption, showed no or minimal reaction against two nonmalignant B-cell lines (RPMI 1788 and RPMI 8057), a leukemic non-T, non-B-cell line (NALM-16), a leukemic pre-B-cell line (NALM-1), normal peripheral blood lymphocytes, and T-cells isolated from peripheral blood lymphocytes. Antiserum 7557, which showed the higher antibody activity, was further studied by an absorption test using various human cell lines. The antiserum showed strong activity against all three leukemic T-cell lines tested, i.e., CCRF-CEM, RPMI 8402, and CCRF-HSB-2, whereas it showed no significant activity against other cell lines which included two leukemic non-T, non-B-cell lines (KM-3 and NALM-6), NALM-1 and RPMI 1788. These are the first anti-human leukemia antisera, except for monoclonal hybridoma antibodies, that showed good specificity for leukemia cells without prior absorption. The present procedure of immunizing animals with a small amount of human thymus leukemia-associated antigen preparation isolated from cell membrane will also be useful for obtaining strong, specific antisera of other cell membrane antigens. PMID:6972802

  16. [Mitochondrial mechanisms of apoptosis of human leukemia K562 cells induced by AVVC-1].

    PubMed

    Zheng, Ru-Qi; Zhang, Gen-Bao; Huang, Lu; Ma, Kai-Ran; Wu, Juan; Li, Shu

    2013-06-01

    This study was purpose to investigate apoptosis pathway of leukemia K562 cells induced by anticoagulant fraction from Agkistrodon acutus venom (AVVC-1). The mitochondrial transmembrane potential (??m) of leukemia K562 cells was detected by flow cytometry with JC-1 single staining. The expression of cytochrome C in the mitochondrial of leukemia K562 cells was analyzed by Western blot after AVVC-1 treatment. The distribution of cytochrome C in leukemia K562 cells was measured by immuno-fluorescence test. The results showed that the potential of mitochondrial membrane decreased after treatment with different concentrations of AVVC-1 (12.5, 25, 50, 100 g/ml) for 6 h (P < 0.01). The expression level of cytochrome C protein in mitochondria obviously declined after treatment with 30 g/ml AVVC-1 for 48 h, and the fluorescent intensity of cytochrome C in cytosol was enhanced at the same time. It is concluded that AVVC-1-induced K562 cell apoptosis is related with mitochondrial damage, and cytochrome C may be a useful agent for investigating human leukemia therapy by using AVVC-1. PMID:23815904

  17. Occupational exposure to formaldehyde, hematotoxicity and leukemia-specific chromosome changes in cultured myeloid progenitor cells

    PubMed Central

    Zhang, Luoping; Tang, Xiaojiang; Rothman, Nathaniel; Vermeulen, Roel; Ji, Zhiying; Shen, Min; Qiu, Chuangyi; Guo, Weihong; Liu, Songwang; Reiss, Boris; Laura Beane, Freeman; Ge, Yichen; Hubbard, Alan E.; Hua, Ming; Blair, Aaron; Galvan, Noe; Ruan, Xiaolin; Alter, Blanche P.; Xin, Kerry X.; Li, Senhua; Moore, Lee E.; Kim, Sungkyoon; Xie, Yuxuan; Hayes, Richard B.; Azuma, Mariko; Hauptmann, Michael; Xiong, Jun; Stewart, Patricia; Li, Laiyu; Rappaport, Stephen M.; Huang, Hanlin; Fraumeni, Joseph F.; Smith, Martyn T.; Lan, Qing

    2010-01-01

    There are concerns about the health effects of formaldehyde exposure, including carcinogenicity, in light of elevated indoor air levels in new homes and occupational exposures experienced by workers in health care, embalming, manufacturing and other industries. Epidemiological studies suggest that formaldehyde exposure is associated with an increased risk of leukemia. However, the biological plausibility of these findings has been questioned because limited information is available on formaldehydes ability to disrupt hematopoietic function. Our objective was to determine if formaldehyde exposure disrupts hematopoietic function and produces leukemia-related chromosome changes in exposed humans. We examined the ability of formaldehyde to disrupt hematopoiesis in a study of 94 workers in China (43 exposed to formaldehyde and 51 frequency-matched controls) by measuring complete blood counts and peripheral stem/progenitor cell colony formation. Further, myeloid progenitor cells, the target for leukemogenesis, were cultured from the workers to quantify the level of leukemia-specific chromosome changes, including monosomy 7 and trisomy 8, in metaphase spreads of these cells. Among exposed workers, peripheral blood cell counts were significantly lowered in a manner consistent with toxic effects on the bone marrow and leukemia-specific chromosome changes were significantly elevated in myeloid blood progenitor cells. These findings suggest that formaldehyde exposure can have an adverse impact on the hematopoietic system and that leukemia induction by formaldehyde is biologically plausible, which heightens concerns about its leukemogenic potential from occupational and environmental exposures. PMID:20056626

  18. CD317 is over-expressed in B-cell chronic lymphocytic leukemia, but not B-cell acute lymphoblastic leukemia

    PubMed Central

    Gong, Shunyou; Osei, Ebenezer S; Kaplan, David; Chen, Youhai H; Meyerson, Howard

    2015-01-01

    CD317 was first identified as a multiple myeloma-associated antigen. Here we report the expression of CD317 in normal B cells and B-cell malignancies. In normal bone marrow, CD317 demonstrates a biphasic expression pattern, with higher expression on stage 1 and stage 3 hematogones, but not on stage 2 hematogones. CD317 is over-expressed in B-cell chronic lymphocytic leukemia, and appears associated with negative CD38 expression. Moreover, CD317 is barely detectable in B-cell acute lymphoblastic leukemia. Our results suggest that CD317 expression might be of prognostic significance for B-CLL, and CD317 could be used as a new marker for minimal residual disease detection in B-ALL. PMID:25973046

  19. Potentiation of Acute Promyelocytic Leukemia Cell Differentiation and Prevention of Leukemia Development in Mice by Oleanolic Acid.

    PubMed

    Rawendra, Reynetha D S; Lin, Ping-Yuan; Chang, Ching-Dong; Hsu, Jue-Liang; Huang, Tzou-Chi; Shih, Wen-Ling

    2015-12-01

    Although differentiation therapy with all-trans retinoic acid (ATRA) induces complete remission in most acute promyelocytic leukemia (APL) patients, it is associated with organ toxicity. The present study focused on investigating the effects of the natural compounds oleanolic acid (OA) and ursolic acid (UA) on proliferation and differentiation of human APL HL-60 cells in vitro and murine APL WEHI-3 cells in vivo. Results demonstrated that OA and UA significantly inhibited cellular proliferation of HL-60 in a concentration- and time-dependent manner. Non-cytotoxic concentration of OA exhibited a marked differentiation-inducing effect on HL-60 and enhanced ATRA-induced HL-60 differentiation. In contrast, UA showed only a moderate effect. Activation of MAPK/NF-?B signaling pathway was likely found to be involved in the mechanism. Moreover, OA increased survival duration of WEHI-3 transplanted BALB/c mice, and decreased leukemia cells infiltration in the liver and spleen. Thus, these results may provide new insight for developing alternative therapy in APL patients. PMID:26637873

  20. Systemic mastocytosis in association with chronic lymphocytic leukemia and plasma cell myeloma

    PubMed Central

    Du, Shouying; Rashidi, Hooman H; Le, Dzung T; Kipps, Thomas J; Broome, H Elizabeth; Wang, Huan-You

    2010-01-01

    Systemic mastocytosis with associated clonal haematological non-mast cell lineage disease (SM-AHNMD) is a heterogeous group of mast cell disorders with different clinical, pathologic and underlying molecular characteristics. While myelomonocytic/myeloid neoplasia overwhelmingly predominates the AHNMD component, lymphoproliferative disorders rarely occur as an AHNMD component of SM-AHNMD. Here we report two cases of SM-AHNMD, in which the AHNMD component is chronic lymphocytic leukemia in one case, and concurrent chronic lymphocytic leukemia as well as plasma cell myeloma in another case. To the best of our knowledge, this is the first case report of SM-AHNMD with chronic lymphocytic leukemia and plasma cell dyscrasia simultaneously. PMID:20490336

  1. All-trans retinoic acid inhibits HOXA7 expression in leukemia cell NB4.

    PubMed

    Guo, Q; Jiang, Q; Liu, W; Bai, Y

    2016-01-01

    Leukemia is a malignant proliferative disease of blood system, which is caused by hyperplasia of white blood cells and infiltration into other tissues and organs with blood flow, leading to a series of clinical manifestations. In this study, we detected the expression of HOXA7 gene in human acute promyelocytic leukemia cell line NB4. The expression level of HOXA7 decreased in the presence of ATRA, which was able to inhibit the proliferation of NB4 cells. Furthermore, ATRA altered the morphology of NB4 cells. The study suggested that HOXA7 might be a new gene candidate that influences the maturation of acute myeloid leukemia, and provided the molecular basis for the treatment for acute promyelocyticleukemia. PMID:26828989

  2. CXCL12-Producing Vascular Endothelial Niches Control Acute T Cell Leukemia Maintenance.

    PubMed

    Pitt, Lauren A; Tikhonova, Anastasia N; Hu, Hai; Trimarchi, Thomas; King, Bryan; Gong, Yixiao; Sanchez-Martin, Marta; Tsirigos, Aris; Littman, Dan R; Ferrando, Adolfo A; Morrison, Sean J; Fooksman, David R; Aifantis, Iannis; Schwab, Susan R

    2015-06-01

    The role of the microenvironment in T cell acute lymphoblastic leukemia (T-ALL), or any acute leukemia, is poorly understood. Here we demonstrate that T-ALL cells are in direct, stable contact with CXCL12-producing bone marrow stroma. Cxcl12 deletion from vascular endothelial, but not perivascular, cells impeded tumor growth, suggesting a vascular niche for T-ALL. Moreover, genetic targeting of Cxcr4 in murine T-ALL after disease onset led to rapid, sustained disease remission, and CXCR4 antagonism suppressed human T-ALL in primary xenografts. Loss of CXCR4 targeted key T-ALL regulators, including the MYC pathway, and decreased leukemia initiating cell activity in vivo. Our data identify a T-ALL niche and suggest targeting CXCL12/CXCR4 signaling as a powerful therapeutic approach for T-ALL. PMID:26058075

  3. Differential mechanisms of cell death induction via delivery of therapeutic nanoliposomal ceramide in leukemias

    NASA Astrophysics Data System (ADS)

    Ryland, Lindsay K.

    Large granular lymphocyte (LGL) leukemia is a rare lymphoproliferative malignancy that involves blood, bone marrow and spleen infiltration. Clinically, LGL leukemia can manifest as a chronic lymphocytosis or as an aggressive leukemia that is fatal within a short period of time. A segment of LGL leukemia patients are unresponsive to immunosuppressive therapy and currently there is no known curative treatment for this disease. Another hematological malignancy, chronic lymphocytic leukemia (CLL) is the most prevalent leukemia in adults in Western countries and accounts for approximately 30% of all diagnosed leukemia cases. Around 95% of all CLL cases involve clonal expansion and abnormal proliferation of neoplastic B lymphocytes in lymphoid organs, bone marrow and peripheral blood. Similar to LGL leukemia, CLL is also incurable with current therapies. Therefore, this represents a need for new therapeutic approaches for treatment of these diseases. Recent advances in nanotechnology have illustrated the feasibility of generating nanoliposomes that encapsulate hydrophobic compounds, like ceramide, to facilitate treatment of LGL leukemia and CLL. Ceramide is an anti-proliferative sphingolipid metabolite that has been shown to selectively induce cell death in cancer cells. However, the use of ceramide as a chemotherapeutic agent is limited due to hydrophobicity. While it is understood how nanoliposomal ceramide induces cell death in several types of cancers and hematological malignancies, the effect of nanoliposomal ceramide treatment in LGL leukemia and CLL remains unclear. In this study, we investigate the differential mechanisms of cell death induction following nanoliposomal C6-ceramide treatment in both LGL leukemia and CLL. We show that nanoliposomal C6-ceramide displays minimal cytotoxicity in normal donors. peripheral blood mononuclear cells (PBMCs) and is a well-tolerated therapy during in vivo treatment in these leukemia models. To further examine this mechanism of selectivity, we utilize CLL as a cancer model which has an increased dependency on glycolysis. As most tumors exhibit a preferential switch to glycolysis, as described in the "Warburg effect," we hypothesize that ceramide nanoliposomes selectively target this activated glycolytic pathway in cancer. We demonstrate that nanoliposomal ceramide inhibits both the RNA and protein expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), an intermediate enzyme in the glycolytic pathway, which is overexpressed in a subset of CLL patients. Taken together, our results suggest that C6-ceramide nanoliposomes preferentially inhibit the enhanced metabolism of glucose in leukemic CLL cells, which results in induction of cell death. We conclude that selective inhibition of the glycolytic pathway in CLL cells with nanoliposomal C6-ceramide could potentially be an effective therapy for this leukemia by targeting the Warburg effect. In addition, we conclude that nanoliposomal C6-ceramide could also be an effective therapy for patients with LGL leukemia. Collectively, the results of this dissertation emphasize exploitation of sphingolipids and sphingolipid metabolism in design and development of novel chemotherapeutics.

  4. Congenital Hairy Polyp of Posterior Tonsillar Pillar

    PubMed Central

    Iqbal, Shahid; Talat, Nabila; Saleem, Muhammad

    2014-01-01

    Congenital hairy polyps are exceedingly rare congenital anomalies. We report a case of congenital hairy polyp arising from posterior tonsillar pillar which was excised with bipolar cautry. PMID:26023478

  5. PD-1hiTIM-3+ T cells associate with and predict leukemia relapse in AML patients post allogeneic stem cell transplantation

    PubMed Central

    Kong, Y; Zhang, J; Claxton, D F; Ehmann, W C; Rybka, W B; Zhu, L; Zeng, H; Schell, T D; Zheng, H

    2015-01-01

    Prognosis of leukemia relapse post allogeneic stem cell transplantation (alloSCT) is poor and effective new treatments are urgently needed. T cells are pivotal in eradicating leukemia through a graft versus leukemia (GVL) effect and leukemia relapse is considered a failure of GVL. T-cell exhaustion is a state of T-cell dysfunction mediated by inhibitory molecules including programmed cell death protein 1 (PD-1) and T-cell immunoglobulin domain and mucin domain 3 (TIM-3). To evaluate whether T-cell exhaustion and inhibitory pathways are involved in leukemia relapse post alloSCT, we performed phenotypic and functional studies on T cells from peripheral blood of acute myeloid leukemia patients receiving alloSCT. Here we report that PD-1hiTIM-3+ cells are strongly associated with leukemia relapse post transplantation. Consistent with exhaustion, PD-1hiTIM-3+ T cells are functionally deficient manifested by reduced production of interleukin 2 (IL-2), tumor necrosis factor-? (TNF-?) and interferon-? (IFN-?). In addition, these cells demonstrate a phenotype consistent with exhausted antigen-experienced T cells by losing TN and TEMRA subsets. Importantly, increase of PD-1hiTIM-3+ cells occurs before clinical diagnosis of leukemia relapse, suggesting their predictive value. Results of our study provide an early diagnostic approach and a therapeutic target for leukemia relapse post transplantation. PMID:26230954

  6. CD44, Hyaluronan, the Hematopoietic Stem Cell, and Leukemia-Initiating Cells.

    PubMed

    Zöller, Margot

    2015-01-01

    CD44 is an adhesion molecule that varies in size due to glycosylation and insertion of so-called variant exon products. The CD44 standard isoform (CD44s) is highly expressed in many cells and most abundantly in cells of the hematopoietic system, whereas expression of CD44 variant isoforms (CD44v) is more restricted. CD44s and CD44v are known as stem cell markers, first described for hematopoietic stem cells and later on confirmed for cancer- and leukemia-initiating cells. Importantly, both abundantly expressed CD44s as well as CD44v actively contribute to the maintenance of stem cell features, like generating and embedding in a niche, homing into the niche, maintenance of quiescence, and relative apoptosis resistance. This is surprising, as CD44 is not a master stem cell gene. I here will discuss that the functional contribution of CD44 relies on its particular communication skills with neighboring molecules, adjacent cells and, last not least, the surrounding matrix. In fact, it is the interaction of the hyaluronan receptor CD44 with its prime ligand, which strongly assists stem cells to fulfill their special and demanding tasks. Recent fundamental progress in support of this "old" hypothesis, which may soon pave the way for most promising new therapeutics, is presented for both hematopoietic stem cell and leukemia-initiating cell. The contribution of CD44 to the generation of a stem cell niche, to homing of stem cells in their niche, to stem cell quiescence and apoptosis resistance will be in focus. PMID:26074915

  7. CD44, Hyaluronan, the Hematopoietic Stem Cell, and Leukemia-Initiating Cells

    PubMed Central

    Zöller, Margot

    2015-01-01

    CD44 is an adhesion molecule that varies in size due to glycosylation and insertion of so-called variant exon products. The CD44 standard isoform (CD44s) is highly expressed in many cells and most abundantly in cells of the hematopoietic system, whereas expression of CD44 variant isoforms (CD44v) is more restricted. CD44s and CD44v are known as stem cell markers, first described for hematopoietic stem cells and later on confirmed for cancer- and leukemia-initiating cells. Importantly, both abundantly expressed CD44s as well as CD44v actively contribute to the maintenance of stem cell features, like generating and embedding in a niche, homing into the niche, maintenance of quiescence, and relative apoptosis resistance. This is surprising, as CD44 is not a master stem cell gene. I here will discuss that the functional contribution of CD44 relies on its particular communication skills with neighboring molecules, adjacent cells and, last not least, the surrounding matrix. In fact, it is the interaction of the hyaluronan receptor CD44 with its prime ligand, which strongly assists stem cells to fulfill their special and demanding tasks. Recent fundamental progress in support of this “old” hypothesis, which may soon pave the way for most promising new therapeutics, is presented for both hematopoietic stem cell and leukemia-initiating cell. The contribution of CD44 to the generation of a stem cell niche, to homing of stem cells in their niche, to stem cell quiescence and apoptosis resistance will be in focus. PMID:26074915

  8. AZD1775 sensitizes T cell acute lymphoblastic leukemia cells to cytarabine by promoting apoptosis over DNA repair

    PubMed Central

    Burleson, Tamara M.; Van Linden, Annemie A.; Kim, Yong-Mi; Porter, Christopher C.

    2015-01-01

    While some children with acute lymphoblastic leukemia (ALL) have excellent prognoses, the prognosis for adults and children with T cell ALL is more guarded. Treatment for T-ALL is heavily dependent upon antimetabolite chemotherapeutics, including cytarabine. Targeted inhibition of WEE1 with AZD1775 has emerged as a strategy to sensitize cancer cells to cytarabine and other chemotherapeutics. We sought to determine if this strategy would be effective for T-ALL with clinically relevant anti-leukemia agents. We found that AZD1775 sensitizes T-ALL cells to several traditional anti-leukemia agents, acting synergistically with cytarabine by enhancing DNA damage and apoptosis. In addition to increased phosphorylation of H2AX at serine 139 (?H2AX), AZD1775 led to increased phosphorylation of H2AX at tyrosine 142, a signaling event associated with promotion of apoptosis over DNA repair. In a xenograft model of T-ALL, the addition of AZD1775 to cytarabine slowed leukemia progression and prolonged survival. Inhibition of WEE1 with AZD1775 sensitizes T-ALL to several anti-leukemia agents, particularly cytarabine. Mechanistically, AZD1775 promotes apoptosis over DNA repair in cells treated with cytarabine. These data support the development of clinical trials including AZD1775 in combination with conventional chemotherapy for acute leukemia. PMID:26334102

  9. Compound MMH01 possesses toxicity against human leukemia and pancreatic cancer cells.

    PubMed

    Chen, Yu-Jen; Chou, Cheng-Jen; Chang, Tun-Tschu

    2009-04-01

    MMH01 is a compound isolated from Antrodia cinnamomea. MMH01 markedly inhibited growth of human leukemia U937 and pancreatic cancer BxPC3 cells. It resulted in distinct patterns of cell cycle distribution in U937 (G2/M, sub-G1 and polyploidy) and BxPC3 cells (G0/G1 and sub-G1). The modes of cell death in U937 cells include apoptosis and mitotic catastrophe, whereas apoptosis-associated events or necrosis in BxPC3 cells. Neither mitochondrial membrane permeabilization nor caspase dependence was noted. Proteins involving mitotic catastrophe-associated cell death such as cyclin B1 and checkpoint kinase 2 were activated in U937 cells. Only slight to moderate viability inhibition was noted to human monocytes, the normal counterpart of these myeloid leukemic cells. In conclusion, MMH01 possesses cytotoxicity against human leukemia and pancreatic cancer cells. PMID:19344682

  10. Antileukemic Effect of Tualang Honey on Acute and Chronic Leukemia Cell Lines

    PubMed Central

    Nik Man, Nik Muhd Khuzaimi; Hassan, Rosline; Ang, Cheng Yong; Abdullah, Abu Dzarr; Mohd Radzi, Muhammad Amiro Rasheeq; Sulaiman, Siti Amrah

    2015-01-01

    Complementary medicine using natural product as antitumor is on the rise. Much research has been performed on Tualang Honey and it was shown to have therapeutic potential in wound healing, and antimicrobial activity and be antiproliferative against several cancer models such as human osteosarcoma (HOS), human breast (MCF-7 and MDA-MB-231), and cervical (HeLa) cancer cell lines. To date, there was limited study on antileukemic properties of Tualang (Koompassia excelsa) Honey. The aim of this study was to evaluate the antileukemic effect of Tualang Honey on acute and chronic leukemia cell lines. Leukemia cell lines (K562 and MV4-11) and human mononuclear cell isolated from peripheral blood were grown in RPM1 1640 culture medium. The cells were incubated with increasing concentrations of Tualang Honey. After incubation, the evaluation of viability and apoptosis was performed. The morphological changes of leukemia cells were the presence of cytoplasmic blebs followed by apoptotic bodies and round shape of cells. IC50 against K562 and MV4-11 was determined. Tualang Honey gave 53.9% and 50.6% apoptosis activity on K562 and MV4-11, respectively, while on human mononuclear cell it was 37.4%. Tualang Honey has the apoptosis-inducing ability for acute and chronic myeloid leukemia (K562 and MV4-11) cell lines. PMID:26613081

  11. Antileukemic Effect of Tualang Honey on Acute and Chronic Leukemia Cell Lines.

    PubMed

    Nik Man, Nik Muhd Khuzaimi; Hassan, Rosline; Ang, Cheng Yong; Abdullah, Abu Dzarr; Mohd Radzi, Muhammad Amiro Rasheeq; Sulaiman, Siti Amrah

    2015-01-01

    Complementary medicine using natural product as antitumor is on the rise. Much research has been performed on Tualang Honey and it was shown to have therapeutic potential in wound healing, and antimicrobial activity and be antiproliferative against several cancer models such as human osteosarcoma (HOS), human breast (MCF-7 and MDA-MB-231), and cervical (HeLa) cancer cell lines. To date, there was limited study on antileukemic properties of Tualang (Koompassia excelsa) Honey. The aim of this study was to evaluate the antileukemic effect of Tualang Honey on acute and chronic leukemia cell lines. Leukemia cell lines (K562 and MV4-11) and human mononuclear cell isolated from peripheral blood were grown in RPM1 1640 culture medium. The cells were incubated with increasing concentrations of Tualang Honey. After incubation, the evaluation of viability and apoptosis was performed. The morphological changes of leukemia cells were the presence of cytoplasmic blebs followed by apoptotic bodies and round shape of cells. IC50 against K562 and MV4-11 was determined. Tualang Honey gave 53.9% and 50.6% apoptosis activity on K562 and MV4-11, respectively, while on human mononuclear cell it was 37.4%. Tualang Honey has the apoptosis-inducing ability for acute and chronic myeloid leukemia (K562 and MV4-11) cell lines. PMID:26613081

  12. Fludarabine Phosphate, Low-Dose Total-Body Irradiation, and Donor Stem Cell Transplant Followed by Cyclosporine, Mycophenolate Mofetil, Donor Lymphocyte Infusion in Treating Patients With Hematopoietic Cancer

    ClinicalTrials.gov

    2015-08-03

    Acute Undifferentiated Leukemia; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Childhood Burkitt Lymphoma; Childhood Diffuse Large Cell Lymphoma; Childhood Grade III Lymphomatoid Granulomatosis; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Myelomonocytic Leukemia; Cutaneous B-cell Non-Hodgkin Lymphoma; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Juvenile Myelomonocytic Leukemia; Mast Cell Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Myeloid/NK-cell Acute Leukemia; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Primary Systemic Amyloidosis; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Renal Cell Cancer; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage II Multiple Myeloma; Stage III Multiple Myeloma; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Waldenström Macroglobulinemia

  13. Quantitation, in vitro propagation, and characterization of preleukemic cells induced by radiation leukemia virus

    SciTech Connect

    Yefenof, E.; Epszteyn, S.; Kotler, M. )

    1991-04-15

    Intrathymic (i.t.) inoculation of radiation leukemia virus into C57BL/6 mice induces a population of preleukemic (PL) cells that can progress into mature thymic lymphomas upon transfer into syngeneic recipients. A minimum of 10(3) PL thymic cells are required to induce lymphomas in the recipient. Most of the individual lymphomas developed in mice which were inoculated with cells of a single PL thymus, derived from different T-cell precursors. PL thymic cells could be grown in vitro on a feeder layer consisting of splenic stromal cells. Growth medium was supplemented with supernatant harvested from an established radiation leukemia virus-induced lymphoma cell line (SR4). The in vitro-grown PL cells were characterized as Thy-1+, CD4+, CD8- T-cells, most of which expressed radiation leukemia virus antigens. Cultured PL cells were found to be nontumorigenic, based on their inability to form s.c. tumors. However, these cells could develop into thymic lymphomas if inoculated i.t. into syngeneic recipients. A culture of PL cells, maintained for 2 mo, showed clonal T-cell receptor arrangement. Lymphomas which developed in several recipient mice upon injection with these PL cells were found to possess the same T-cell receptor arrangement. These results indicate that PL cells can be adapted for in vitro growth while maintaining their preleukemic character.

  14. Leukemia mortality by cell type in petroleum workers with potential exposure to benzene.

    PubMed Central

    Raabe, G K; Wong, O

    1996-01-01

    Workers in the petroleum industry are potentially exposed to a variety of petrochemicals, including benzene or benzene-containing liquids. Although a large number of studies of petroleum workers have been conducted to examine leukemia and other cancer risks, few existing studies have investigated cell-type-specific leukemias. One of the major reasons for the lack of cell-type-specific analysis was the small number of deaths by cell type in individual studies. In the present investigation, all cohort studies of petroleum workers in the United States and the United Kingdom were combined into a single database for cell-type-specific leukemia analysis. The majority of these workers were petroleum refinery employees, but production, pipeline, and distribution workers in the petroleum industry were also included. The combined cohort consisted of more than 208,000 petroleum workers, who contributed more than 4.6 million person-years of observation. Based on a meta-analysis of the combined data, cell-type-specific leukemia risks were expressed in terms of standardized mortality ratios (meta-SMRs). The meta-SMR for acute myeloid leukemia was 0.96. The lack of an increase of acute myeloid leukemia was attributed to the low levels of benzene exposure in the petroleum industry, particularly in comparison to benzene exposure levels in some previous studies of workers in other industries, who had been found to experience an increased risk of acute myeloid leukemia. Similarly, no increase in chronic myeloid, acute lymphocytic, or chronic lymphocytic leukemias was found in petroleum workers (meta-SMRs of 0.89, 1.16, and 0.84, respectively). Stratified meta-analyses restricted to refinery studies or to studies with at least 15 years of follow-up yielded similar results. The findings of the present investigation are consistent with those from several recent case-control studies of cell-type-specific leukemia. Patterns and levels of benzene exposure in the petroleum industry are reviewed. The results of the present epidemiologic investigation are discussed in conjunction with recent advances in leukemogenesis from other scientific disciplines. PMID:9118924

  15. Therapeutic antagonists of microRNAs deplete leukemia-initiating cell activity

    PubMed Central

    Velu, Chinavenmeni S.; Chaubey, Aditya; Phelan, James D.; Horman, Shane R.; Wunderlich, Mark; Guzman, Monica L.; Jegga, Anil G.; Zeleznik-Le, Nancy J.; Chen, Jianjun; Mulloy, James C.; Cancelas, Jose A.; Jordan, Craig T.; Aronow, Bruce J.; Marcucci, Guido; Bhat, Balkrishen; Gebelein, Brian; Grimes, H. Leighton

    2013-01-01

    Acute myelogenous leukemia (AML) subtypes that result from oncogenic activation of homeobox (HOX) transcription factors are associated with poor prognosis. The HOXA9 transcription activator and growth factor independent 1 (GFI1) transcriptional repressor compete for occupancy at DNA-binding sites for the regulation of common target genes. We exploited this HOXA9 versus GFI1 antagonism to identify the genes encoding microRNA-21 and microRNA-196b as transcriptional targets of HOX-based leukemia oncoproteins. Therapeutic inhibition of microRNA-21 and microRNA-196b inhibited in vitro leukemic colony forming activity and depleted in vivo leukemia-initiating cell activity of HOX-based leukemias, which led to leukemia-free survival in a murine AML model and delayed disease onset in xenograft models. These data establish microRNA as functional effectors of endogenous HOXA9 and HOX-based leukemia oncoproteins, provide a concise in vivo platform to test RNA therapeutics, and suggest therapeutic value for microRNA antagonists in AML. PMID:24334453

  16. Signal transduction pathways and transcription factors triggered by arsenic trioxide in leukemia cells

    SciTech Connect

    Sumi, Daigo; Shinkai, Yasuhiro; Kumagai, Yoshito

    2010-05-01

    Arsenic trioxide (As{sub 2}O{sub 3}) is widely used to treat acute promyelocytic leukemia (APL). Several lines of evidence have indicated that As{sub 2}O{sub 3} affects signal transduction and transactivation of transcription factors, resulting in the stimulation of apoptosis in leukemia cells, because some transcription factors are reported to associate with the redox condition of the cells, and arsenicals cause oxidative stress. Thus, the disturbance and activation of the cellular signaling pathway and transcription factors due to reactive oxygen species (ROS) generation during arsenic exposure may explain the ability of As{sub 2}O{sub 3} to induce a complete remission in relapsed APL patients. In this report, we review recent findings on ROS generation and alterations in signal transduction and in transactivation of transcription factors during As{sub 2}O{sub 3} exposure in leukemia cells.

  17. Acute Hepatitis A Induction of Precursor B-Cell Acute Lymphoblastic Leukemia: A Causal Relationship?

    PubMed Central

    Senadhi, V.; Emuron, D.; Gupta, R.

    2010-01-01

    Background Precursor B-cell acute lymphoblastic leukemia accounts for 2% of all lymphoid neoplasms in the United States and occurs most frequently in childhood, but can also occur in adults with a median age of 39 years. It is more commonly seen in males and in Caucasians. Case Report We present a case of a 51-year-old Caucasian female with the development of precursor B-cell acute lymphoblastic leukemia after suffering acute hepatitis A 4 weeks prior to her diagnosis. She presented with malaise for a month without spontaneous bruising/bleeding, infections, or B-symptoms, such as fevers, night sweats, or unintentional weight loss. Conclusion Nonspecific viral transformation of bone marrow has been discussed in the literature, but we specifically describe hepatitis A-induced adult-onset precursor B-cell acute lymphoblastic leukemia, which is the first reported case in the literature. PMID:21611106

  18. Novel Therapeutic Agents Against Cancer Stem Cells of Chronic Myeloid Leukemia

    PubMed Central

    Chen, Yaoyu; Peng, Cong; Sullivan, Con; Li, Dongguang; Li, Shaoguang

    2011-01-01

    Chronic myeloid leukemia (CML) is induced by the BCR-ABL oncogene, a product of Philadelphia (Ph) chromosome. The BCR-ABL kinase inhibitor imatinib is a standard treatment for Ph+ leukemia, and has been shown to induce a complete hematologic and cytogenetic response in most chronic phrase CML patients. However, imatinib does not cure CML, and one of the reasons is that imatinib does not kill leukemia stem cells (LSCs) in CML both in vitro and in vivo. Recently, several new targets or drugs have been reported to inhibit LSCs in cultured human CD34+ CML cells or in mouse model of BCR-ABL induced CML, including an Alox5 pathway inhibitor, Hsp90 inhibitors, omacetaxine, hedgehog inhibitor and BMS-214662. Specific targeting of LSCs but not normal stem cell is a correct strategy for developing new anti-cancer therapies in the future. PMID:20184539

  19. Naive Donor NK Cell Repertoires Associated with Less Leukemia Relapse after Allogeneic Hematopoietic Stem Cell Transplantation.

    PubMed

    Bjrklund, Andreas T; Clancy, Trevor; Goodridge, Jodie P; Bziat, Vivien; Schaffer, Marie; Hovig, Eivind; Ljunggren, Hans-Gustaf; Ljungman, Per T; Malmberg, Karl-Johan

    2016-02-01

    Acute and latent human CMV cause profound changes in the NK cell repertoire, with expansion and differentiation of educated NK cells expressing self-specific inhibitory killer cell Ig-like receptors. In this study, we addressed whether such CMV-induced imprints on the donor NK cell repertoire influenced the outcome of allogeneic stem cell transplantation. Hierarchical clustering of high-resolution immunophenotyping data covering key NK cell parameters, including frequencies of CD56(bright), NKG2A(+), NKG2C(+), and CD57(+) NK cell subsets, as well as the size of the educated NK cell subset, was linked to clinical outcomes. Clusters defining naive (NKG2A(+)CD57(-)NKG2C(-)) NK cell repertoires in the donor were associated with decreased risk for relapse in recipients with acute myeloid leukemia and myelodysplastic syndrome (hazard ratio [HR], 0.09; 95% confidence interval [CI]: 0.03-0.27; p < 0.001). Furthermore, recipients with naive repertoires at 9-12 mo after hematopoietic stem cell transplantation had increased disease-free survival (HR, 7.2; 95% CI: 1.6-33; p = 0.01) and increased overall survival (HR, 9.3; 95% CI: 1.1-77, p = 0.04). Conversely, patients with a relative increase in differentiated NK cells at 9-12 mo displayed a higher rate of late relapses (HR, 8.41; 95% CI: 6.7-11; p = 0.02), reduced disease-free survival (HR, 0.12; 95% CI: 0.12-0.74; p = 0.02), and reduced overall survival (HR, 0.07; 95% CI: 0.01-0.69; p = 0.02). Thus, our data suggest that naive donor NK cell repertoires are associated with protection against leukemia relapse after allogeneic HSCT. PMID:26746188

  20. Synthesis and activities of new indolopyrrolobenzodiazepine derivatives toward acute myeloid leukemia cells.

    PubMed

    Giraud, Francis; Bourhis, Marion; Ebrahimi, Edris; Herfindal, Lars; Choudhury, Romy Roy; Bjrnstad, Ronja; Dskeland, Stein Ove; Anizon, Fabrice; Moreau, Pascale

    2015-11-15

    The synthesis of new indolopyrrolobenzodiazepine derivatives is described. Six compounds were selected for evaluation of cytotoxicity towards acute myeloid leukemia (AML) cells and normal fibroblasts. One compound (29) showed selective AML cell death induction. Its action was only partly overcome by knock-down of p53 or Bcl-2 overexpression, suggesting a strong activation of intrinsic apoptotic pathways. PMID:26526744

  1. Induction of apoptosis in acute lymphoblastic leukemia cells by isolated fractions from strawberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Strawberries contain phytochemicals that have anti-inflammatory and anti-cancer activity. We investigated the ability of isolated fractions from strawberry extracts to induce apoptotic cell death in three pre-B acute lymphoblastic leukemia (ALL) lines, including SEM and RS4;11 cell lines derived fr...

  2. Inhibition of tumor necrosis factor-α enhances apoptosis induced by nuclear factor-κB inhibition in leukemia cells

    PubMed Central

    DONG, QIAO-MEI; LING, CHUN; CHEN, XUAN; ZHAO, LI

    2015-01-01

    Inhibition of nuclear factor-κB (NF-κB) results in antitumor activity in leukemia cells, and may be a potential therapeutic strategy for the treatment of leukemia. However, a significant limitation of NF-κB inhibition in the treatment of leukemia is the low efficiency of this technique. NF-κB inhibitor treatment induces apoptosis in leukemia cells; however, it additionally causes inflammatory molecules to induce increased sensitivity of healthy hematopoietic cells to cell death signals, therefore limiting its clinical applications. Tumor necrosis factor-α (TNF-α) is a key regulator of inflammation, and induces a variety of actions in leukemic and healthy hematopoietic cells. TNF-α induces NF-κB-dependent and -independent survival signals, promoting the proliferation of leukemia cells. However, in healthy hematopoietic cells, TNF-α induces death signaling, an effect which is enhanced by the inhibition of NF-κB. Based on these observations, the present study hypothesized that inhibition of TNF-α signaling may be able to protect healthy hematopoietic cells and other tissue cells, while increasing the anti-leukemia effects of NF-κB inhibition on leukemia cells. The role and underlying molecular mechanisms of TNF-α inhibition in the regulation of NF-κB inhibition-induced apoptosis in leukemia cells was therefore investigated in the present study. The results indicated that inhibition of TNF-α enhanced NF-κB inhibition-induced apoptosis in leukemia cells. It was also revealed that protein kinase B was significant in the regulation of TNF-α and NF-κB inhibition-induced apoptosis. During this process, intrinsic apoptotic pathways were activated. A combination of NF-κB and TNF-α inhibition may be a potential specific and effective novel therapeutic strategy for the treatment of leukemia. PMID:26788210

  3. The outcome of B-cell receptor signaling in chronic lymphocytic leukemia: proliferation or anergy

    PubMed Central

    Packham, Graham; Krysov, Serge; Allen, Alex; Savelyeva, Natalia; Steele, Andrew J.; Forconi, Francesco; Stevenson, Freda K.

    2014-01-01

    Biologists and clinicians agree that the B-cell receptor influences the behavior of chronic lymphocytic leukemia, and promising new drugs are aimed at receptor-associated kinases. Engagement of surface immunoglobulin by antigen is a key driver of malignant cells with outcome influenced by the nature of the cell, the level of stimulation and the microenvironment. Analysis of surface immunoglobulin-mediated signaling in the two major disease subsets defined by IGHV mutational status reveals bifurcation of responses toward proliferation or anergy. Mutated chronic lymphocytic leukemia, generally of relatively good prognosis, is mainly, but not exclusively, driven towards anergy in vivo. In contrast, unmutated chronic lymphocytic leukemia shows less evidence for anergy in vivo retaining more responsiveness to surface immunoglobulin M-mediated signaling, possibly explaining increased tumor progression. Expression and function of surface immunoglobulin M in unmutated chronic lymphocytic leukemia appear rather homogeneous, but mutated chronic lymphocytic leukemia exhibits a highly heterogeneous profile that may relate to further variable clinical behavior within this subset. Anergy should increase susceptibility to apoptosis but, in leukemic cells, this may be countered by overexpression of the B-cell lymphoma-2 survival protein. Maintained anergy spreads to chemokines and adhesion molecules, restraining homing and migration. However, anergy is not necessarily completely benign, being able to reverse and regenerate surface immunoglobulin M-mediated responses. A two-pronged attack on proliferative and anti-apoptotic pathways may succeed. Increased understanding of how chronic lymphocytic leukemia cells are driven to anergy or proliferation should reveal predictive biomarkers of progression and of likely response to kinase inhibitors, which could assist therapeutic decisions. PMID:24986876

  4. What Is Acute Lymphocytic Leukemia (ALL)?

    MedlinePLUS

    ... key statistics about acute lymphocytic leukemia? What is acute lymphocytic leukemia? Cancer starts when cells in the body begin ... leukemias). The rest of this document focuses on acute lymphocytic leukemia (ALL) in adults. For information on ALL in ...

  5. Radiolabeled Monoclonal Antibody and Combination Chemotherapy Before Stem Cell Transplant in Treating Patients With High-Risk Lymphoid Malignancies

    ClinicalTrials.gov

    2015-12-14

    Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; B-cell Adult Acute Lymphoblastic Leukemia; B-cell Chronic Lymphocytic Leukemia; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Waldenström Macroglobulinemia

  6. Disruption of Annexin II /p11 Interaction Suppresses Leukemia Cell Binding, Homing and Engraftment, and Sensitizes the Leukemia Cells to Chemotherapy

    PubMed Central

    Gopalakrishnapillai, Anilkumar; Kolb, E. Anders; Dhanan, Priyanka; Mason, Robert W.; Napper, Andrew; Barwe, Sonali P.

    2015-01-01

    The bone marrow microenvironment plays an important role in acute lymphoblastic leukemia (ALL) cell proliferation, maintenance, and resistance to chemotherapy. Annexin II (ANX2) is abundantly expressed on bone marrow cells and complexes with p11 to form ANX2/p11-hetero-tetramer (ANX2T). We present evidence that p11 is upregulated in refractory ALL cell lines and patient samples. A small molecule inhibitor that disrupts ANX2/p11 interaction (ANX2T inhibitor), an anti-ANX2 antibody, and knockdown of p11, abrogated ALL cell adhesion to osteoblasts, indicating that ANX2/p11 interaction facilitates binding and retention of ALL cells in the bone marrow. Furthermore, ANX2T inhibitor increased the sensitivity of primary ALL cells co-cultured with osteoblasts to dexamethasone and vincristine induced cell death. Finally, in an orthotopic leukemia xenograft mouse model, the number of ALL cells homing to the bone marrow was reduced by 4050% in mice injected with anti-ANX2 antibody, anti-p11 antibody or ANX2T inhibitor compared to respective controls. In a long-term engraftment assay, the percentage of ALL cells in mouse blood, bone marrow and spleen was reduced in mice treated with agents that disrupt ANX2/p11 interaction. These data show that disruption of ANX2/p11 interaction results in reduced ALL cell adhesion to osteoblasts, increased ALL cell sensitization to chemotherapy, and suppression of ALL cell homing and engraftment. PMID:26465153

  7. Induction of apoptosis and differentiation by atractylenolide-1 isolated from Atractylodes macrocephala in human leukemia cells.

    PubMed

    Huang, Huey-Lan; Lin, Tzu-Wen; Huang, Yu-Ling; Huang, Ray-Ling

    2016-04-15

    Atractylodes macrocephula Koidz (A. macrocephula, also known as Baizhu) is an important ingredient in several traditional Chinese herb complexes for the treatment of abdominal pain and gastroenterology diseases for thousands of years. We previously demonstrated the induction of ROS-mediated apoptosis by methanol extract of A. macrocephula in human leukemia cells. After purification and assessment of those active compounds from A. macrocephula ethanol extracts, in this study, we focused on the major active compound, atractylenolide I (ATL-I). Through MTT assay and morphology observation, we found cytotoxic effect of ATL-I in human K562 chronic myeloblastic leukemia (CML), U937 acute myeloblastic leukemia (AML) and Jurkat T lymphoma cells. In addition, ATL-I-induced apoptosis was demonstrated by sub G1 and fragmented chromosomal DNA detection using flow cytometry, enzyme-linked immunosorbent assay (ELISA) and agarose electrophoresis. Finally, we found ATL-I also induced caspase-3 and caspase-9 activation through the detection of procaspase-3, procaspase-9 and caspase-3 substrate poly(ADP-ribose) polymerase (PARP) by immunoblotting. Interestingly, we found that ATL-I induced not only apoptosis but also differentiation, as upregulation of CD14 and CD68 surface markers and increase of phagocytosis ability were discovered in ATL-I-treated K562 CML and U937 AML cells. Our study thus suggests the potential of developing new leukemia therapies by using ATL-I for leukemia treatment in the future. PMID:26988300

  8. Treosulfan, Fludarabine Phosphate, and Total-Body Irradiation Before Donor Stem Cell Transplant in Treating Patients With High-Risk Acute Myeloid Leukemia, Myelodysplastic Syndrome, Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2013-10-29

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  9. Modeling T-cell acute lymphoblastic leukemia induced by the SCL and LMO1 oncogenes

    PubMed Central

    Tremblay, Mathieu; Tremblay, Cdric S.; Herblot, Sabine; Aplan, Peter D.; Hbert, Jose; Perreault, Claude; Hoang, Trang

    2010-01-01

    Deciphering molecular events required for full transformation of normal cells into cancer cells remains a challenge. In T-cell acute lymphoblastic leukemia (T-ALL), the genes encoding the TAL1/SCL and LMO1/2 transcription factors are recurring targets of chromosomal translocations, whereas NOTCH1 is activated in >50% of samples. Here we show that the SCL and LMO1 oncogenes collaborate to expand primitive thymocyte progenitors and inhibit later stages of differentiation. Together with pre-T-cell antigen receptor (pre-TCR) signaling, these oncogenes provide a favorable context for the acquisition of activating Notch1 mutations and the emergence of self-renewing leukemia-initiating cells in T-ALL. All tumor cells harness identical and specific Notch1 mutations and Tcr? clonal signature, indicative of clonal dominance and concurring with the observation that Notch1 gain of function confers a selective advantage to SCL-LMO1 transgenic thymocytes. Accordingly, a hyperactive Notch1 allele accelerates leukemia onset induced by SCL-LMO1 and bypasses the requirement for pre-TCR signaling. Finally, the time to leukemia induced by the three transgenes corresponds to the time required for clonal expansion from a single leukemic stem cell, suggesting that SCL, LMO1, and Notch1 gain of function, together with an active pre-TCR, might represent the minimum set of complementing events for the transformation of susceptible thymocytes. PMID:20516195

  10. Transcription factor networks in B-cell differentiation link development to acute lymphoid leukemia

    PubMed Central

    Somasundaram, Rajesh; Prasad, Mahadesh A. J.; Ungerbäck, Jonas

    2015-01-01

    B-lymphocyte development in the bone marrow is controlled by the coordinated action of transcription factors creating regulatory networks ensuring activation of the B-lymphoid program and silencing of alternative cell fates. This process is tightly connected to malignant transformation because B-lineage acute lymphoblastic leukemia cells display a pronounced block in differentiation resulting in the expansion of immature progenitor cells. Over the last few years, high-resolution analysis of genetic changes in leukemia has revealed that several key regulators of normal B-cell development, including IKZF1, TCF3, EBF1, and PAX5, are genetically altered in a large portion of the human B-lineage acute leukemias. This opens the possibility of directly linking the disrupted development as well as aberrant gene expression patterns in leukemic cells to molecular functions of defined transcription factors in normal cell differentiation. This review article focuses on the roles of transcription factors in early B-cell development and their involvement in the formation of human leukemia. PMID:25990863

  11. Enkephalins stimulate leukemia cell migration and surface expression of CD9.

    PubMed Central

    Heagy, W; Duca, K; Finberg, R W

    1995-01-01

    Opioid peptides have been implicated in the regulation of tumor growth and biology; however, little attention has been given to the mechanisms that are involved. In this study we show that physiological concentrations of the endogenous opioid neuropeptide methionine-enkephalin (MET-ENK) and the synthetic enkephalins D-Ala2, Me-Phe4, Gly(ol)5 and D-Ala2, D-Leu5 are stimulants for the in vitro migration of pre-B acute lymphoblastoid leukemia (ALL) cells. Activation of the human pre-B ALL cell lines NALM 6 and LAZ 221 with MET-ENK resulted in both an increase in their migration and an augmentation in the surface expression of the leukemia cell marker CD9. The opiate receptor antagonist naloxone reversed these enkephalin-induced effects on the leukemia cells. When the pre-B ALL cells were preincubated with an anti-CD9 mAb before challenge with MET-ENK their migration to the enkephalin was markedly reduced. These studies show that endogenous and synthetic opioid peptides are stimulants for pre-B ALL cell migration and suggest that CD9 is important in the regulation of leukemia cell motility. Images PMID:7657811

  12. Bioactivity of umbilical cord blood dendritic cells and anti-leukemia effect

    PubMed Central

    Wei, Xu-Cang; Yang, Di-Di; Han, Xiu-Rui; Zhao, Yu-An; Li, Yan-Chun; Zhang, Li-Jie; Wang, Jiu-Ju

    2015-01-01

    Objective: We investigated the effect of umbilical cord blood dendritic cells (DCs) on in vitro proliferation, immunophenotypes and levels of homologous cytokine-induced killer cells (CIK) and the toxicity on leukemia cells. Method: Mononuclear cell-induced DC-CIK cells derived from umbilical cord blood were collected and co-cultured in the proportion of 1:5. Cord blood CIK cells or peripheral blood DC-CIK cells were used as control. Phenotypes were analyzed by flow cytometry; vial cell counting was performed using trypan blue, and the killing activity of effector cells against leukemia cells was measured by MTT assay. The levels of interferon-r (IFN-r), tumor necrosis factor-a (TNF-?) and interleukin-12 (IL-12) were determined by ELISA. Results: The proliferative capacity of DC-CIK cells was obviously improved compared with cord blood CIK cells and peripheral blood DC-CIK cells (P<0.05, P<0.05). During the co-culture of cord blood DC-CIK cells, the ratios of CD 3 + CD 8 + and CD 3 + CD 56 + cells were obviously higher than that of CIK cells under the same conditions (P<0.05). On day 3 of co-culture, the levels of IL-12, IFN-r and TNF-a in cultured supernatant of cord blood DC-CIK cells were all higher than those secreted by CIK cells cultured alone (P<0.01, P<0.05, P<0.05). When the effector to target ratio was 2.5-20:1, the killing effect of cord blood DC-CIK cells against each subtype of acute leukemia cells was obviously higher than that of CIK cells (P<0.05). No significant differences in killing effect were observed for different subtypes. This finding was consistent with the killing effect of peripheral blood DC-CIK cells against leukemia cells. Conclusion: Cord blood DCs can enhance the proliferative capacity of homologous CIK cells and its anti-leukemia effect. Though cord blood DC-CIK cells showed a higher proliferative capacity than peripheral blood DC-CIK cells, the two types of DC-CIK cells did not differ significantly in terms of cytoxicity. With a high availability and the low probability of graft rejection reaction, cord blood DC-CIK cells have a brighter prospect for application in immunotherapy.

  13. Anti-leukemic properties of deferasirox via apoptosis in murine leukemia cell lines

    PubMed Central

    Jeon, Sol-Rim; Lee, Jae-Wook; Jang, Pil-Sang; Cho, Bin; Jeong, Dae-Chul

    2015-01-01

    Background Although deferasirox (DFX) is reported to have anti-tumor effects, its anti-leukemic activity remains unclear. We evaluated the effect of DFX treatment on two murine lymphoid leukemia cell lines, and clarified the mechanisms underlying its potential anti-leukemic activity. Methods L1210 and A20 murine lymphoid leukemia cell lines were treated with DFX. Cell viability and apoptosis were evaluated by the 3-(4,5-dimethylthaizol-2-yl)-5-(3-carboxymethylphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay and fluorescence-activated cell sorting (FACS) analysis, respectively. Immunoblotting was performed to detect the expression of key apoptotic proteins. Results In dose- and time-dependent manner, DFX decreased viability and increased apoptosis of murine leukemic cells. Fas expression was significantly higher in A20 cells than in L1210 cells at all DFX concentrations tested. Although both cell lines exhibited high caspase 3 and caspase 9 expression, a critical component of the intrinsic mitochondrial apoptotic pathway, expression was greater in L1210 cells. In contrast, caspase 8, a key factor in the extrinsic apoptotic pathway, showed greater expression in A20 cells. Cytochrome c expression was significantly higher in L1210 cells. In both cell lines, co-treatment with ferric chloride and DFX diminished the expression of these intracellular proteins, as compared to DFX treatment alone. Conclusion Treatment with DFX increased caspase-dependent apoptosis in two murine lymphoid leukemia cell lines, with differing apoptotic mechanisms in each cell line. PMID:25830128

  14. A model with competition between the cell lines in leukemia under treatment

    SciTech Connect

    Halanay, A.; Cândea, D.; Rădulescu, R.

    2014-12-10

    The evolution of leukemia is modeled with a delay differential equation model of four cell populations: two populations (healthy and leukemic) ) of stem-like cells involving a larger category consisting of proliferating stem and progenitor cells with self-renew capacity and two populations (healthy and leukemic) of mature cells, considering the competition of healthy vs. leukemic cell populations and three types of division that a stem-like cell can exhibit: self-renew, asymmetric division and differentiation. In the model it is assumed that the treatment acts on the proliferation rate of the leukemic stem cells and on the apoptosis of stem and mature cells. The emphasis in this model is on establishing relevant parameters for chronic and acute manifestations of leukemia. Stability of equilibria is investigated and sufficient conditions for local asymptotic stability will be given using a Lyapunov-Krasovskii functional.

  15. A model with competition between the cell lines in leukemia under treatment

    NASA Astrophysics Data System (ADS)

    Halanay, A.; Cândea, D.; Rǎdulescu, R.

    2014-12-01

    The evolution of leukemia is modeled with a delay differential equation model of four cell populations: two populations (healthy and leukemic) ) of stem-like cells involving a larger category consisting of proliferating stem and progenitor cells with self-renew capacity and two populations (healthy and leukemic) of mature cells, considering the competition of healthy vs. leukemic cell populations and three types of division that a stem-like cell can exhibit: self-renew, asymmetric division and differentiation. In the model it is assumed that the treatment acts on the proliferation rate of the leukemic stem cells and on the apoptosis of stem and mature cells. The emphasis in this model is on establishing relevant parameters for chronic and acute manifestations of leukemia. Stability of equilibria is investigated and sufficient conditions for local asymptotic stability will be given using a Lyapunov-Krasovskii functional.

  16. Outcomes of acute leukemia patients transplanted with naive T celldepleted stem cell grafts

    PubMed Central

    Bleakley, Marie; Heimfeld, Shelly; Loeb, Keith R.; Jones, Lori A.; Chaney, Colette; Seropian, Stuart; Gooley, Ted A.; Sommermeyer, Franziska; Riddell, Stanley R.; Shlomchik, Warren D.

    2015-01-01

    BACKGROUND. Graft-versus-host disease (GVHD) is a major cause of morbidity and mortality following allogeneic hematopoietic stem cell transplantation (HCT). In mice, naive T cells (TN) cause more severe GVHD than memory T cells (TM). We hypothesized that selective depletion of TN from human allogeneic peripheral blood stem cell (PBSC) grafts would reduce GVHD and provide sufficient numbers of hematopoietic stem cells and TM to permit hematopoietic engraftment and the transfer of pathogen-specific T cells from donor to recipient, respectively. METHODS. In a single-arm clinical trial, we transplanted 35 patients with high-risk leukemia with TN-depleted PBSC grafts following conditioning with total body irradiation, thiotepa, and fludarabine. GVHD prophylactic management was with tacrolimus immunosuppression alone. Subjects received CD34-selected PBSCs and a defined dose of TM purged of CD45RA+ TN. Primary and secondary objectives included engraftment, acute and chronic GVHD, and immune reconstitution. RESULTS. All recipients of TN-depleted PBSCs engrafted. The incidence of acute GVHD was not reduced; however, GVHD in these patients was universally corticosteroid responsive. Chronic GVHD was remarkably infrequent (9%; median follow-up 932 days) compared with historical rates of approximately 50% with T cellreplete grafts. TM in the graft resulted in rapid T cell recovery and transfer of protective virus-specific immunity. Excessive rates of infection or relapse did not occur and overall survival was 78% at 2 years. CONCLUSION. Depletion of TN from stem cell allografts reduces the incidence of chronic GVHD, while preserving the transfer of functional T cell memory. TRIAL REGISTRATION. ClinicalTrials.gov (NCT 00914940). FUNDING. NIH, Burroughs Wellcome Fund, Leukemia and Lymphoma Society, Damon Runyon Cancer Research Foundation, and Richard Lumsden Foundation. PMID:26053664

  17. Renal complications in chronic lymphocytic leukemia and monoclonal B-cell lymphocytosis: the Mayo Clinic experience

    PubMed Central

    Strati, Paolo; Nasr, Samih H.; Leung, Nelson; Hanson, Curtis A.; Chaffee, Kari G.; Schwager, Susan M.; Achenbach, Sara J.; Call, Timothy G.; Parikh, Sameer A.; Ding, Wei; Kay, Neil E.; Shanafelt, Tait D.

    2015-01-01

    While the renal complications of plasma cell dyscrasia have been well-described, most information in patients with chronic lymphocytic leukemia and monoclonal B-cell lymphocytosis is derived from case reports. This is a retrospective analysis of patients with chronic lymphocytic leukemia or monoclonal B-cell lymphocytosis who underwent kidney biopsy for renal insufficiency and/or nephrotic syndrome. Between January 1995 and June 2014, 49 of 4,024 (1.2%) patients with chronic lymphocytic leukemia (n=44) or monoclonal B-cell lymphocytosis (n=5) had a renal biopsy: 34 (69%) for renal insufficiency and 15 (31%) for nephrotic syndrome. The most common findings on biopsy were: membranoproliferative glomerulonephritis (n=10, 20%), chronic lymphocytic leukemia interstitial infiltration as primary etiology (n=6, 12%), thrombotic microangiopathy (n=6, 12%), and minimal change disease (n=5, 10%). All five membranoproliferative glomerulonephritis patients treated with rituximab, cyclophosphamide and prednisone-based regimens had recovery of renal function compared to 0/3 patients treated with rituximab with or without steroids. Chronic lymphocytic leukemia infiltration as the primary cause of renal abnormalities was typically observed in relapsed/refractory patients (4/6). Thrombotic microangiopathy primarily occurred as a treatment-related toxicity of pentostatin (4/6 cases), and resolved with drug discontinuation. All cases of minimal change disease resolved with immunosuppressive agents only. Renal biopsy plays an important role in the management of patients with chronic lymphocytic leukemia or monoclonal B-cell lymphocytosis who develop renal failure and/or nephrotic syndrome. PMID:26088927

  18. Expression and regulation of COP1 in chronic lymphocytic leukemia cells for promotion of cell proliferation and tumorigenicity.

    PubMed

    Fu, Chunling; Gong, Yanqing; Shi, Xuanxuan; Shi, Hengliang; Wan, Yan; Wu, Qingyun; Xu, Kailin

    2016-03-01

    Chronic lymphocytic leukemia (CLL) is the most common leukemia in Western countries, and mainly originates from an accumulation of abnormal B cells caused by the dysregulation of cell proliferation and apoptosis. The aberration of proliferation-related gene in CLL cells induces cell arrest at G0/G1 phase, or a small section shows rapid cell growth, which further complicates the pathogenesis of CLL. The constitutively photomorphogenic 1 (COP1), as an E3 ubiquitin ligase, is involved in many biological processes in mammalian cells, but its role in chronic lymphocytic leukemia (CLL) progression remains unclear. In the present study, we analyzed the expression of COP1 in peripheral blood mononuclear cells (PBMCs) from 23 CLL patients and 3 healthy donors. The observed upregulated expression of COP1 in CLL patients was positively correlated with CLL clinical stage and ZAP-70 expression, but not del(13q14) and del(17q-). Overexpression of COP1 significantly promoted cell colony formation and proliferation, especially contributing to the accumulation of cells in S-phase by inhibition of FoxO1 and p21. Moreover, overexpression of COP1 accelerated tumorigenicity of HG3 cells and promoted xenograft growth. Therefore, the present study revealed that COP1 plays an important role in CLL cell proliferation and tumorigenicity, and may be a useful indicator of the chronic lymphocytic leukemia processes. PMID:26717976

  19. TRAIL-mediated killing of acute lymphoblastic leukemia by plasmacytoid dendritic cell-activated natural killer cells

    PubMed Central

    Lelaidier, Martin; Daz-Rodriguez, Yildian; Cordeau, Martine; Cordeiro, Paulo; Haddad, Elie; Herblot, Sabine; Duval, Michel

    2015-01-01

    Acute lymphoblastic leukemia (ALL) still frequently recurs after hematopoietic stem cell transplantation (HSCT), underscoring the need to improve the graft-versus-leukemia (GvL) effect. Natural killer (NK) cells reconstitute in the first months following HSCT when leukemia burden is at its lowest, but ALL cells have been shown to be resistant to NK cell-mediated killing. We show here that this resistance is overcome by NK cell stimulation with TLR-9-activated plasmacytoid dendritic cells (pDCs). NK cell priming with activated pDCs resulted in TRAIL and CD69 up-regulation on NK cells and IFN-? production. NK cell activation was dependent on IFN-? produced by pDCs, but was not reproduced by IFN-? alone. ALL killing was further enhanced by inhibition of KIR engagement. We showed that ALL lysis was mainly mediated by TRAIL engagement, while the release of cytolytic granules was involved when ALL expressed NK cell activating receptor ligands. Finally, adoptive transfers of activated-pDCs in ALL-bearing humanized mice delayed the leukemia onset and cure 30% of mice. Our data therefore demonstrate that TLR-9 activated pDCs are a powerful tool to overcome ALL resistance to NK cell-mediated killing and to reinforce the GvL effect of HSCT. These results open new therapeutic avenues to prevent relapse in children with ALL. PMID:26320191

  20. What Is Chronic Myeloid Leukemia?

    MedlinePLUS

    ... Next Topic Normal bone marrow and blood What is chronic myeloid leukemia? Cancer starts when cells in ... treatment is the same as for adults. What is leukemia? Leukemia is a cancer that starts in ...

  1. What Is Chronic Lymphocytic Leukemia?

    MedlinePLUS

    ... Normal bone marrow, blood, and lymphoid tissue What is chronic lymphocytic leukemia? Cancer starts when cells in ... including the lymph nodes, liver, and spleen. What is leukemia? Leukemia is a cancer that starts in ...

  2. Leukemia stem cells in a genetically defined murine model of blast-crisis CML

    PubMed Central

    Neering, Sarah J.; Bushnell, Timothy; Sozer, Selcuk; Ashton, John; Rossi, Randall M.; Wang, Pin-Yi; Bell, Deborah R.; Heinrich, David; Bottaro, Andrea

    2007-01-01

    Myeloid leukemia arises from leukemia stem cells (LSCs), which are resistant to standard chemotherapy agents and likely to be a major cause of drug-resistant disease and relapse. To investigate the in vivo properties of LSCs, we developed a mouse model in which the biologic features of human LSCs are closely mimicked. Primitive normal hematopoietic cells were modified to express the BCR/ABL and Nup98/HoxA9 translocation products, and a distinct LSC population, with the aberrant immunophenotype of lineage?, Kit+/?, Flt3+, Sca+, CD34+, and CD150?, was identified. In vivo studies were then performed to assess the response of LSCs to therapeutic insult. Treatment of animals with the ABL kinase inhibitor imatinib mesylate induced specific modulation of blasts and progenitor cells but not stem- cell populations, thereby recapitulating events inferred to occur in human chronic myelogenous leukemia (CML) patients. In addition, challenge of leukemic mice with total body irradiation was selectively toxic to normal hematopoietic stem cells (HSCs), suggesting that LSCs are resistant to apoptosis and/or senescence in vivo. Taken together, the system provides a powerful means by which the in vivo behavior of LSCs versus HSCs can be characterized and candidate treatment regimens can be optimized for maximal specificity toward primitive leukemia cells. PMID:17601986

  3. Susceptibility to cytosine arabinoside (Ara-C)-induced cytotoxicity in human leukemia cell lines.

    PubMed

    Kanno, Syu-Ichi; Higurashi, Ayako; Watanabe, Yurie; Shouji, Ai; Asou, Keiko; Ishikawa, Masaaki

    2004-09-10

    Cytosine arabinoside (1-beta-d-arabinofuranosylcytosine; Ara-C) is the most important antimetabolite chemotherapeutic drug used for acute leukemia. We examined the difference in susceptibility to Ara-C-induced cell death among a number of typical human leukemia cell lines, NALM-6, MOLT-4, Jurkat, U937 and HL-60. NALM-6, which had a high expression level of p53, a tumor suppressor gene, was most susceptible to Ara-C. U937 and HL-60, with p53-null human leukemia cell lines were little affected by Ara-C. There was not always a correlation between susceptibility and the uptake of Ara-C. The production of reactive oxygen species (ROS) was increased in all leukemia cells. Pifithrin-alpha, a chemical inhibitor of wild-type p53, ameliorated the cytotoxicity of Ara-C in NALM-6 and MOLT-4, but not Jurkat, U937 or HL-60. Our data suggest that the mechanism of Ara-C-induced cell death is a common one, involving an increase in the production of ROS and p53-dependent cell death. PMID:15302096

  4. [Effect of cucurmosin on chronic myeloid leukemia K562 cell line].

    PubMed

    Liu, Ting-Bo; Liu, Hui-Li; Xie, Jie-Ming; Hu, Jian-Da

    2013-08-01

    This study was aimed to investigate the antitumor effect of pumpkin protein (cucurmosin, CUS) on subcutaneous transplant tumor in chronic myeloid leukemia K562 cell-NOD/SCID mice and leukemia model. The subcutaneous transplant tumor in K562-NOD/SCID mice and leukemia model were established; using two models, the antitumor activity of CUS in mice was evaluated. The results indicated that the inhibitory rate of 0.5 mg/kg and 1 mg/kg CUS on subcutaneous transplant tumor were 53.45% and 59.43% respectively; survival time of mice received 0.25 mg/kg and 0.5 mg/kg CUS was 39.8 5.5 d and 43.4 6.6 d, antitumor rate was 24.9% and 36% respectively. It is concluded that CUS has significant inhibitory effect on mice with CML cell line K562. PMID:23998580

  5. Activity of the Type II JAK2 Inhibitor CHZ868 in B Cell Acute Lymphoblastic Leukemia.

    PubMed

    Wu, Shuo-Chieh; Li, Loretta S; Kopp, Nadja; Montero, Joan; Chapuy, Bjoern; Yoda, Akinori; Christie, Amanda L; Liu, Huiyun; Christodoulou, Alexandra; van Bodegom, Diederik; van der Zwet, Jordy; Layer, Jacob V; Tivey, Trevor; Lane, Andrew A; Ryan, Jeremy A; Ng, Samuel Y; DeAngelo, Daniel J; Stone, Richard M; Steensma, David; Wadleigh, Martha; Harris, Marian; Mandon, Emeline; Ebel, Nicolas; Andraos, Rita; Romanet, Vincent; Dlemeyer, Arno; Sterker, Dario; Zender, Michael; Rodig, Scott J; Murakami, Masato; Hofmann, Francesco; Kuo, Frank; Eck, Michael J; Silverman, Lewis B; Sallan, Stephen E; Letai, Anthony; Baffert, Fabienne; Vangrevelinghe, Eric; Radimerski, Thomas; Gaul, Christoph; Weinstock, David M

    2015-07-13

    A variety of cancers depend on JAK2 signaling, including the high-risk subset of B cell acute lymphoblastic leukemias (B-ALLs) with CRLF2 rearrangements. Type I JAK2 inhibitors induce paradoxical JAK2 hyperphosphorylation in these leukemias and have limited activity. To improve the efficacy of JAK2 inhibition in B-ALL, we developed the type II inhibitor CHZ868, which stabilizes JAK2 in an inactive conformation. CHZ868 potently suppressed the growth of CRLF2-rearranged human B-ALL cells, abrogated JAK2 signaling, and improved survival in mice with human or murine B-ALL. CHZ868 and dexamethasone synergistically induced apoptosis in JAK2-dependent B-ALLs and further improved invivo survival compared to CHZ868 alone. These data support the testing of type II JAK2 inhibition in patients with JAK2-dependent leukemias and other disorders. PMID:26175414

  6. Bafilomycin A1 targets both autophagy and apoptosis pathways in pediatric B-cell acute lymphoblastic leukemia.

    PubMed

    Yuan, Na; Song, Lin; Zhang, Suping; Lin, Weiwei; Cao, Yan; Xu, Fei; Fang, Yixuan; Wang, Zhen; Zhang, Han; Li, Xin; Wang, Zhijian; Cai, Jinyang; Wang, Jian; Zhang, Yi; Mao, Xinliang; Zhao, Wenli; Hu, Shaoyan; Chen, Suning; Wang, Jianrong

    2015-03-01

    B-cell acute lymphoblastic leukemia is the most common type of pediatric leukemia. Despite improved remission rates, current treatment regimens for pediatric B-cell acute lymphoblastic leukemia are often associated with adverse effects and central nervous system relapse, necessitating more effective and safer agents. Bafilomycin A1 is an inhibitor of vacuolar H(+)-ATPase that is frequently used at high concentration to block late-phase autophagy. Here, we show that bafilomycin A1 at a low concentration (1 nM) effectively and specifically inhibited and killed pediatric B-cell acute lymphoblastic leukemia cells. It targeted both early and late stages of the autophagy pathway by activating mammalian target of rapamycin signaling and by disassociating the Beclin 1-Vps34 complex, as well as by inhibiting the formation of autolysosomes, all of which attenuated functional autophagy. Bafilomycin A1 also targeted mitochondria and induced caspase-independent apoptosis by inducing the translocation of apoptosis-inducing factor from mitochondria to the nucleus. Moreover, bafilomycin A1 induced the binding of Beclin 1 to Bcl-2, which further inhibited autophagy and promoted apoptotic cell death. In primary cells from pediatric patients with B-cell acute lymphoblastic leukemia and a xenograft model, bafilomycin A1 specifically targeted leukemia cells while sparing normal cells. An in vivo mouse toxicity assay confirmed that bafilomycin A1 is safe. Our data thus suggest that bafilomycin A1 is a promising candidate drug for the treatment of pediatric B-cell acute lymphoblastic leukemia. PMID:25512644

  7. The AF4-mimetic peptide, PFWT, induces necrotic cell death in MV4-11 leukemia cells

    PubMed Central

    Palermo, Christine M.; Bennett, Cecily A.; Winters, Amanda C.; Hemenway, Charles S.

    2008-01-01

    Despite ongoing success in the treatment of childhood acute lymphoblastic leukemia, patients harboring translocations involving the MLL gene at chromosome 11q23 remain resistant to treatment. To improve outcomes, novel therapeutics designed to target the unusual biology of these leukemias need to be developed. Previously, we identified an interaction between the two most common MLL fusion proteins, AF4 and AF9, and designed a synthetic peptide (PFWT) capable of disrupting this interaction. PFWT induced cell death in leukemia cells expressing MLL-AF4 with little effect on the colony forming potential of hematopoietic progenitor cells, suggesting the AF4AF9 complex is an important pharmacological target for leukemia therapy and PFWT is a promising chemotherapeutic prototype. In these studies, we demonstrate that PFWT induces death by necrosis in MV4-11 cells. Cell death is characterized by rapid loss of plasma membrane integrity with maintenance of nuclear membrane integrity, and is independent of caspase activation, DNA fragmentation, and mitochondrial membrane depolarization. PFWT-mediated necrosis is inhibited by the serine protease inhibitor TLCK, suggesting this death pathway is regulated. Given the resistance of t(4;11) leukemias to conventional chemotherapeutic agents that induce apoptosis, further identification of the molecular events mediating this death process should uncover new avenues for therapeutic intervention. PMID:17875318

  8. Targeting fusion protein/corepressor contact restores differentiation response in leukemia cells

    PubMed Central

    Racanicchi, Serena; Maccherani, Chiara; Liberatore, Concetta; Billi, Monia; Gelmetti, Vania; Panigada, Maddalena; Rizzo, Giovanni; Nervi, Clara; Grignani, Francesco

    2005-01-01

    The AML1/ETO and PML/RAR? leukemia fusion proteins induce acute myeloid leukemia by acting as transcriptional repressors. They interact with corepressors, such as N-CoR and SMRT, that recruit a multiprotein complex containing histone deacetylases on crucial myeloid differentiation genes. This leads to gene repression contributing to generate a differentiation block. We expressed in leukemia cells containing PML/RAR? and AML1/ETO N-CoR protein fragments derived from fusion protein/corepressor interaction surfaces. This blocks N-CoR/SMRT binding by these fusion proteins, and disrupts the repressor protein complex. In consequence, the expression of genes repressed by these fusion proteins increases and differentiation response to vitamin D3 and retinoic acid is restored in previously resistant cells. The alteration of PML/RAR?N-CoR/SMRT connections triggers proteasomal degradation of the fusion protein. The N-CoR fragments are biologically effective also when directly transduced by virtue of a protein transduction domain. Our data indicate that fusion protein activity is permanently required to maintain the leukemia phenotype and show the route to developing a novel therapeutic approach for leukemia, based on its molecular pathogenesis. PMID:15729358

  9. Transplantability of human lymphoid cell line, lymphoma, and leukemia in splenectomized and/or irradiated nude mice

    SciTech Connect

    Watanabe, S.; Shimosato, Y.; Kuroki, M.; Sato, Y.; Nakajima, T.

    1980-07-01

    The effects of splenectomy and/or whole-body irradiation of nude mice before xenotransplantation of lymphoid cell lines, lymphoma, and leukemia were studied. Transplantation after whole-body irradiation resulted in the increased ''take'' rate of three cultured cell lines (two of T-cell-derived acute lymphocytic leukemia and one of B-cell derived acute lymphocytic leukemia) and in the tumorous growth of Burkitt-derived Raji and spontaneously transformed lymphoblastoid cell lines. With splenectomy plus irradiation as a pretreatment, tumorous growth occurred in four other cell lines which were not transplantable after irradiation only (two cell lines of Epstein-Barr virus-transformed cord blood cells and one each of null acute lymphocytic leukemia and nodular lymphoma-derived cell lines). Direct transplantation of leukemia and lymphoma cells into the pretreated mice was successful in 7 of 24 cases (29%). B-cell-derived diffuse large lymphoid lymphoma was transplantable in three of seven cases (43%). However, lymphoma and leukemia of peripheral T-cell origin was difficult to transplant even with pretreatment, and only one pleomorphic T-cell lymphoma grew to a significant size (2 cm). One tumor each of B-cell-derived diffuse large lymphoid and T-cell diffuse lymphoblastic lymphoma became transplantable.

  10. B-cell precursor acute lymphoblastic leukemia cells use tunneling nanotubes to orchestrate their microenvironment.

    PubMed

    Polak, Roel; de Rooij, Bob; Pieters, Rob; den Boer, Monique L

    2015-11-19

    Acute lymphoblastic leukemia (ALL) cells reside in the bone marrow microenvironment which nurtures and protects cells from chemotherapeutic drugs. The disruption of cell-cell communication within the leukemic niche may offer an important new therapeutic strategy. Tunneling nanotubes (TNTs) have been described as a novel mode of intercellular communication, but their presence and importance in the leukemic niche are currently unknown. Here, we show for the first time that primary B-cell precursor ALL (BCP-ALL) cells use TNTs to signal to primary mesenchymal stromal cells (MSCs). This signaling results in secretion of prosurvival cytokines, such as interferon-?-inducible protein 10/CXC chemokine ligand 10, interleukin 8, and monocyte chemotactic protein-1/CC chemokine ligand 2. A combination of TNT-disrupting conditions allows us to analyze the functional importance of TNTs in an ex vivo model. Our results indicate that TNT signaling is important for the viability of patient-derived B-cell precursor ALL cells and induces stroma-mediated prednisolone resistance. Disruption of TNTs significantly inhibits these leukemogenic processes and resensitizes B-cell precursor ALL cells to prednisolone. Our findings establish TNTs as a novel communication mechanism by which ALL cells modulate their bone marrow microenvironment. The identification of TNT signaling in ALL-MSC communication gives insight into the pathobiology of ALL and opens new avenues to develop more effective therapies that interfere with the leukemic niche. PMID:26297738

  11. Alisertib in Combination With Vorinostat in Treating Patients With Relapsed or Recurrent Hodgkin Lymphoma, B-Cell Non-Hodgkin Lymphoma, or Peripheral T-Cell Lymphoma

    ClinicalTrials.gov

    2016-02-11

    Adult B Acute Lymphoblastic Leukemia; Adult T Acute Lymphoblastic Leukemia; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-Cell Lymphoma; Chronic Lymphocytic Leukemia; Cutaneous B-Cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone Lymphoma of Mucosa-Associated Lymphoid Tissue; Hepatosplenic T-Cell Lymphoma; Intraocular Lymphoma; Lymphomatous Involvement of Non-Cutaneous Extranodal Site; Mature T-Cell and NK-Cell Non-Hodgkin Lymphoma; Nodal Marginal Zone Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-Cell Leukemia/Lymphoma; Recurrent Cutaneous T-Cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides and Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Small Intestinal Lymphoma; Splenic Marginal Zone Lymphoma; T-Cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Waldenstrom Macroglobulinemia

  12. Lenalidomide Induces Immunomodulation in Chronic Lymphocytic Leukemia and Enhances Antitumor Immune Responses Mediated by NK and CD4 T Cells

    PubMed Central

    Acebes-Huerta, Andrea; Huergo-Zapico, Leticia; Gonzalez-Rodriguez, Ana Pilar; Fernandez-Guizan, Azahara; Payer, Angel R.; Gonzalez, Segundo

    2014-01-01

    Lenalidomide is an immunomodulatory drug with therapeutic activity in chronic lymphocytic leukemia (CLL). However, it has pleiotropic effects, and the mechanism of action responsible for its therapeutic activity has not been well defined yet. Herein, we show that lenalidomide treatment does not have an effect on the proliferation of leukemia cells, but it increases the proliferation of B cells from healthy donors. Lenalidomide did not exert a direct effect on the apoptosis of leukemia cells obtained from CLL patients, although it indirectly induced their apoptosis through the activation of nonmalignant immune cells. Thus, lenalidomide markedly increased the proliferation of NK and CD4 T cells. The effect of lenalidomide on NK cells was secondary to the induction of IL-2 production by CD4 T cells. Accordingly, depletion of T cells or blockade of IL-2 activity completely abrogated the proliferation of NK cells. Additionally, lenalidomide enhanced NK and NKT-like cell-mediated natural cytotoxicity against leukemia cells from CLL patients. Lenalidomide also upregulated CD20 expression on leukemia cells and, accordingly, it had a synergistic effect with rituximab on promoting antibody-dependent cell-mediated cytotoxicity against primary leukemia cells. Overall, these observations provide a support for combining lenalidomide with rituximab as a treatment in CLL. PMID:25313353

  13. Factors associated with improved outcomes after second allogeneic hematopoietic cell transplantation for relapsed pediatric leukemia.

    PubMed

    Menon, Neethu N; Jenkins, Lydia M; Cui, Haiyan; Jenkins, Craig; Anwer, Faiz; Yeager, Andrew M; Katsanis, Emmanuel

    2016-03-01

    A second allogeneic (allo) hematopoietic cell transplant (HCT) is an important therapeutic consideration for patients relapsing after their first. We conducted a retrospective review of 41 pediatric patients with leukemia that underwent a second allo-HCT at our institution. Overall, 53.7 and 43.9 % of patients were alive and disease-free at 1 and 5 years, respectively, after the second allo-HCT. The factors affecting outcome by both univariate and multivariate analysis were interval between transplants and the use of a myeloablative conditioning (MAC) regimen prior to second transplant. Outcomes were inferior in patients who received their second transplant <6 months from their first HCT when compared to patients in whom the interval between HCTs was 6-12 or more than 12 months. Interval between HCTs was also significant when each type of leukemia (acute lymphoblastic leukemia (ALL) n = 21, acute myelogenous leukemia (AML) n = 11, and chronic myelogenous leukemia (CML) n = 7) was analyzed separately. In univariate analysis, use of the same donor and use of a matched sibling donor resulted in significant improved outcome. There was not a significant association between disease-free survival (DFS) and age, remission status, use of total body irradiation (TBI) before second HCT, or type of leukemia. Second allogeneic HCT can be a curative therapeutic option for leukemia patients relapsing after their first transplant. As more targeted therapies have become available, patients that relapse after first HCT are more likely to achieve remission. Therefore, it is anticipated that there will be more candidates for second HCT with improved performance and remission status, ultimately leading to a better outcome with the second HCT. PMID:26787415

  14. Rituximab in Treating Patients Undergoing Donor Peripheral Blood Stem Cell Transplant for Relapsed or Refractory B-cell Lymphoma

    ClinicalTrials.gov

    2015-11-23

    B-cell Adult Acute Lymphoblastic Leukemia; B-cell Childhood Acute Lymphoblastic Leukemia; B-cell Chronic Lymphocytic Leukemia; Childhood Burkitt Lymphoma; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Testicular Lymphoma; Waldenström Macroglobulinemia

  15. Sensitization of acute lymphoblastic leukemia cells for LCL161-induced cell death by targeting redox homeostasis.

    PubMed

    Haß, Christina; Belz, Katharina; Schoeneberger, Hannah; Fulda, Simone

    2016-04-01

    Disturbed redox homeostasis with both elevated reactive oxygen species (ROS) levels and antioxidant defense mechanisms has been reported in acute lymphoblastic leukemia (ALL). We therefore hypothesized that inhibition of pathways responsible for ROS detoxification renders ALL cells more susceptible for cell death. Here, we report that pharmacological inhibitors of key pathways for the elimination of ROS, i.e. Erastin, buthionine sulfoximine (BSO) and Auranofin, sensitize ALL cells for cell death upon treatment with the Smac mimetic LCL161 that antagonizes Inhibitor of Apoptosis (IAP) proteins. Erastin, BSO or Auranofin significantly increase LCL161-induced cell death and also act in concert with LCL161 to profoundly suppress long-term clonogenic survival in several ALL cell lines. Erastin or BSO cooperates with LCL161 to stimulate ROS production and lipid peroxidation prior to cell death. ROS production and lipid peroxidation are required for this cotreatment-induced cell death, since ROS scavengers or pharmacological inhibition of lipid peroxidation provides significant protection against cell death. These results emphasize that inhibition of antioxidant defense mechanisms can serve as a potent approach to prime ALL cells for LCL161-induced cell death. PMID:26774450

  16. Genetically Engineered Lymphocyte Therapy in Treating Patients With B-Cell Leukemia or Lymphoma That is Resistant or Refractory to Chemotherapy

    ClinicalTrials.gov

    2015-07-31

    Hematopoietic/Lymphoid Cancer; Adult Acute Lymphoblastic Leukemia in Remission; B-cell Adult Acute Lymphoblastic Leukemia; B-cell Chronic Lymphocytic Leukemia; Prolymphocytic Leukemia; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Refractory Chronic Lymphocytic Leukemia; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma

  17. Specific binding of murine leukemia inhibitory factor to normal and leukemic monocytic cells.

    PubMed Central

    Hilton, D J; Nicola, N A; Metcalf, D

    1988-01-01

    Leukemia inhibitory factor (LIF), a glycoprotein capable of suppressing the clonogenicity and inducing the differentiation of the murine myeloid leukemia cell line M1, was radioiodinated to a high specific radioactivity with retention of full biological activity. Binding of 125I-labeled LIF to M1 cells reached a steady state at 37 degrees C after approximately equal to 40 min and was in competition with unlabeled LIF but not granulocyte colony-stimulating factor or a range of other cytokines or differentiation-inducing agents. Specific binding was demonstrable to cells from a range of murine hemopoietic tissues including the bone marrow, the spleen, and the peritoneal cavity. Autoradiography revealed macrophages, monocytes, and their precursors to be the major cell types responsible for 125I-labeled LIF binding within these tissues. Receptors on M1 cells were of high affinity (apparent Kd, 100-200 pM) and few in number (300-500 per cell). Images PMID:3137563

  18. Modes of Human T Cell Leukemia Virus Type 1 Transmission, Replication and Persistence

    PubMed Central

    Carpentier, Alexandre; Barez, Pierre-Yves; Hamaidia, Malik; Gazon, Hlne; de Brogniez, Alix; Perike, Srikanth; Gillet, Nicolas; Willems, Luc

    2015-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus that causes cancer (Adult T cell Leukemia, ATL) and a spectrum of inflammatory diseases (mainly HTLV-associated myelopathytropical spastic paraparesis, HAM/TSP). Since virions are particularly unstable, HTLV-1 transmission primarily occurs by transfer of a cell carrying an integrated provirus. After transcription, the viral genomic RNA undergoes reverse transcription and integration into the chromosomal DNA of a cell from the newly infected host. The virus then replicates by either one of two modes: (i) an infectious cycle by virus budding and infection of new targets and (ii) mitotic division of cells harboring an integrated provirus. HTLV-1 replication initiates a series of mechanisms in the host including antiviral immunity and checkpoint control of cell proliferation. HTLV-1 has elaborated strategies to counteract these defense mechanisms allowing continuous persistence in humans. PMID:26198240

  19. Cytosine arabinoside promotes cytotoxic effect of T cells on leukemia cells mediated by bispecific antibody.

    PubMed

    Li, Wei; Fan, DongMei; Yang, Ming; Yan, Yan; Shi, RuiZan; Cheng, JunPing; Li, ZhenZhen; Zhang, MengNan; Wang, JianXiang; Xiong, Dongsheng

    2013-08-01

    Chemotherapeutic drugs can enhance an immune response of the host against the tumor in addition to killing cancer cells by direct cytotoxicity. Therefore, the combination of chemotherapy and immunotherapy is a promising approach for eliminating tumors, particularly in advanced stages. A strategic medication is to use a bispecific antibody format that is capable of recruiting polyclonal T cells around antibody-target-expressing tumor cells. Recently, we have constructed a bispecific antibody, anti-CD3anti-CD19, in a diabody configuration. In this study, we measured B7 family members B7.1 (CD80) and B7.2 (CD86) expressed on a CD19(+) human leukemia cell line, Nalm-6, stimulated by cytosine arabinoside (Ara-C). We found that a low concentration of Ara-C could upregulate CD80 expressed on CD19(+) Nalm-6 cells. The cytotoxicity of T lymphocytes against Nalm-6 cells in vitro and in vivo mediated by the anti-CD3anti-CD19 diabody with or without a low dose of Ara-C was compared. The combination of the anti-CD3anti-CD19 diabody and Ara-C showed the greatest effectiveness in enhancing the cytotoxicity of T cells against the tumor cells in vitro and in vivo. Activated T cells expressed higher levels of CD25 and CD69 and released more interleukin 2. Both perforin/granzyme B system and Fas/FasL pathway were involved in the diabody-induced T-cell cytotoxicity. Moreover, the activated T cells could upregulate ICAM-3 expression on Nalm-6 cells, and inhibition of LFA-1-ICAM-3 interaction impaired cytotoxicity of T cells. It was noted that Ara-C could upregulate CD80 expressed on two of five specimens of acute B lymphoblastic leukemia patient-derived cells. Cytotoxicity of T cells against these two patient-derived cells was enhanced in the presence of the anti-CD3anti-CD19 diabody. These findings indicate that treatment strategy using both cytotoxic lymphocyte-based immunotherapy and chemotherapy may have synergistic effects. PMID:23879717

  20. Kinetics of indium-111-labeled leukemic cells in patients with acute nonlymphocytic leukemia

    SciTech Connect

    Yamauchi, K.; Suzuki, Y.; Sugihara, M.; Nagao, T.; Arimori, S.

    1984-08-01

    The distribution within the body of autologous leukemic cells labeled with indium-111 oxine was studied in seven patients with acute nonlymphocytic leukemia. The leukemic blood cells initially entered the spleen and liver, and the major site of localization was the former rather than the latter. The majority of the leukemic cells had not left the spleen and liver within 48 hr. Liver radioactivity fell transitorily up to the third hr after the initial rise. The clearance curve of radioactivity from the blood showed a plateau or the appearance of a ''hump'' from 1 to 5 hr after injection of labeled leukemic cells. These results might reflect recirculation of a portion of the leukemic cells between these organs and the bloodstream. In a patient with acute monoblastic leukemia. OKM1 monoclonal-antibody-treated monoblasts showed the lowest recovery into the blood and a greater increase of liver than splenic radioactivity at 30 min after injection. These results suggest the removal of damaged cells by the cytotoxic effects of antibody mediated by reticuloendothelial clearance mainly of the liver and others. In one patient with acute promyelocytic leukemia, leukemic cells accumulated in both kidneys, indicating the possible infiltration of these cells. Since indium-111 oxine stays firmly attached to the cells in spite of the possibility of radiation damaged in a long-term survey, it seems an ideal label for studying leukemic cell kinetics.

  1. Growth inhibition of cultured human leukemia cells by 3-aminothymidine and its analogue.

    PubMed

    Asano, S; Yokoyama, Y; Kohda, K

    1997-01-01

    In a previous report, we demonstrated that 3-aminothymidine (1) strongly inhibits the growth of the human T-cell acute lymphoblastoid leukemia cell line CCRF-HSB-2. In order to further study cell growth inhibition by this compound, several of its derivatives and analogues were synthesized and their growth inhibition activities examined using various cultured cell lines. Compound 1 was the most active among the compounds tested and the most effective against cells of the human T-cell acute lymphoblastoid leukemia cell line CCRF-CEM. 3-Methylthymidine (2) also inhibited the growth of CCRF-CEM cells but at a level about one thirtieth that of 1. Introduction of a methyl or acetyl group at the 3-amino group of 1 resulted in the loss of growth inhibition activity. 3-Amino- and 3-methyl-5-bromo-2'-deoxyuridines (6 and 7), the analogues of 1 and 2 both exhibited an ability to inhibit cell growth and their levels of activity were similar in extent, in spite of the difference in their 3-amino and 3-methyl groups, however, these levels were less than that of 1. Compounds 1, 2, 6 and 7 all showed evidence of growth inhibition in every human leukemia cell line examined. PMID:9137414

  2. Lenalidomide in Treating Older Patients With Acute Myeloid Leukemia Who Have Undergone Stem Cell Transplant

    ClinicalTrials.gov

    2015-03-02

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia

  3. Donor Stem Cell Transplant in Treating Patients With High Risk Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-08-29

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myeloid Leukemia in Remission; Childhood Acute Myelomonocytic Leukemia (M4); Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  4. Deciphering the Evolution of Leukemia-Initiating Cells | Physical Sciences in Oncology

    Cancer.gov

    Cancer is a genetic disease, and a major focus in cancer research today is to tease out the details of how cancer cells evolve from a normal cell. Now, an international team of investigators has found that defective genes and the individual leukemia cells that carry them are organized in a more complex way than previously thought. These findings, which were published in the journal Nature, challenge the conventional scientific view that cancer progresses as a linear series of genetic events.

  5. Cryptococcal osteomyelitis in an adolescent survivor of T-cell acute lymphoblastic leukemia.

    PubMed

    Oh, Djin-Ye; Madhusoodhan, P Pallavi; Springer, Deborah J; Inglima, Kenneth; Chaudhri, Ali A; Heitman, Joseph; Raetz, Elizabeth A; Khaitan, Alka; Rigaud, Mona

    2015-06-01

    Cryptococcosis is infrequent in children, and isolated cryptococcal osteomyelitis is rarely encountered. Here, we describe a 14-year-old patient in remission from T-cell acute lymphoblastic leukemia with osteomyelitis because of Cryptococcus neoformans var. grubii. The patient was effectively treated with antifungal therapy. PMID:25806844

  6. The Multiple Mechanisms of Cell Death Triggered by Resveratrol in Lymphoma and Leukemia

    PubMed Central

    Frazzi, Raffaele; Tigano, Marco

    2014-01-01

    Lymphoma and leukemia represent a serious threat to human health and life expectancy. Resveratrol is, among the natural-derived chemopreventive molecules, one of the most effective and better studied. In this paper the main mechanisms of cell death triggered by- or linked to- resveratrol are reviewed and discussed. The main focus is on lymphoma and leukemia experimental models where resveratrol has been tested and investigated at the cellular, molecular or physiological levels. The most relevant in vivo challenges involving resveratrol are also reported and analyzed in order to define the key features of this polyphenol and the potential for the treatment of hematologic tumors. PMID:24658441

  7. Refined diagnostic criteria and classification of mast cell leukemia (MCL) and myelomastocytic leukemia (MML): a consensus proposal

    PubMed Central

    Valent, P.; Sotlar, K.; Sperr, W. R.; Escribano, L.; Yavuz, S.; Reiter, A.; George, T. I.; Kluin-Nelemans, H. C.; Hermine, O.; Butterfield, J. H.; Hägglund, H.; Ustun, C.; Hornick, J. L.; Triggiani, M.; Radia, D.; Akin, C.; Hartmann, K.; Gotlib, J.; Schwartz, L. B.; Verstovsek, S.; Orfao, A.; Metcalfe, D. D.; Arock, M.; Horny, H.-P.

    2014-01-01

    Mast cell leukemia (MCL), the leukemic manifestation of systemic mastocytosis (SM), is characterized by leukemic expansion of immature mast cells (MCs) in the bone marrow (BM) and other internal organs; and a poor prognosis. In a subset of patients, circulating MCs are detectable. A major differential diagnosis to MCL is myelomastocytic leukemia (MML). Although criteria for both MCL and MML have been published, several questions remain concerning terminologies and subvariants. To discuss open issues, the EU/US-consensus group and the European Competence Network on Mastocytosis (ECNM) launched a series of meetings and workshops in 2011–2013. Resulting discussions and outcomes are provided in this article. The group recommends that MML be recognized as a distinct condition defined by mastocytic differentiation in advanced myeloid neoplasms without evidence of SM. The group also proposes that MCL be divided into acute MCL and chronic MCL, based on the presence or absence of C-Findings. In addition, a primary (de novo) form of MCL should be separated from secondary MCL that typically develops in the presence of a known antecedent MC neoplasm, usually aggressive SM (ASM) or MC sarcoma. For MCL, an imminent prephase is also proposed. This prephase represents ASM with rapid progression and 5%–19% MCs in BM smears, which is generally accepted to be of prognostic significance. We recommend that this condition be termed ASM in transformation to MCL (ASM-t). The refined classification of MCL fits within and extends the current WHO classification; and should improve prognostication and patient selection in practice as well as in clinical trials. PMID:24675021

  8. Refined diagnostic criteria and classification of mast cell leukemia (MCL) and myelomastocytic leukemia (MML): a consensus proposal.

    PubMed

    Valent, P; Sotlar, K; Sperr, W R; Escribano, L; Yavuz, S; Reiter, A; George, T I; Kluin-Nelemans, H C; Hermine, O; Butterfield, J H; Hägglund, H; Ustun, C; Hornick, J L; Triggiani, M; Radia, D; Akin, C; Hartmann, K; Gotlib, J; Schwartz, L B; Verstovsek, S; Orfao, A; Metcalfe, D D; Arock, M; Horny, H-P

    2014-09-01

    Mast cell leukemia (MCL), the leukemic manifestation of systemic mastocytosis (SM), is characterized by leukemic expansion of immature mast cells (MCs) in the bone marrow (BM) and other internal organs; and a poor prognosis. In a subset of patients, circulating MCs are detectable. A major differential diagnosis to MCL is myelomastocytic leukemia (MML). Although criteria for both MCL and MML have been published, several questions remain concerning terminologies and subvariants. To discuss open issues, the EU/US-consensus group and the European Competence Network on Mastocytosis (ECNM) launched a series of meetings and workshops in 2011-2013. Resulting discussions and outcomes are provided in this article. The group recommends that MML be recognized as a distinct condition defined by mastocytic differentiation in advanced myeloid neoplasms without evidence of SM. The group also proposes that MCL be divided into acute MCL and chronic MCL, based on the presence or absence of C-Findings. In addition, a primary (de novo) form of MCL should be separated from secondary MCL that typically develops in the presence of a known antecedent MC neoplasm, usually aggressive SM (ASM) or MC sarcoma. For MCL, an imminent prephase is also proposed. This prephase represents ASM with rapid progression and 5%-19% MCs in BM smears, which is generally accepted to be of prognostic significance. We recommend that this condition be termed ASM in transformation to MCL (ASM-t). The refined classification of MCL fits within and extends the current WHO classification; and should improve prognostication and patient selection in practice as well as in clinical trials. PMID:24675021

  9. Metastatic Calcinosis Cutis: A Case in a Child with Acute Pre-B Cell Lymphoblastic Leukemia

    PubMed Central

    Castanedo-Czares, Juan Pablo; Reyes-Herrera, Amalia; Hernndez-Blanco, Diana; Oros-Ovalle, Cuauhtmoc; Torres-lvarez, Bertha

    2015-01-01

    Hypercalcemia in children with malignancy is an uncommon condition. It has been described in leukemia patients with impaired renal excretion of calcium or osteolytic lesions. Metastatic calcinosis cutis (MCC) may develop if hypercalcemia persists. We report the case of a 5-year-old girl with an atypical dermatosis and unspecific gastrointestinal symptoms. Considered clinical diagnoses were xanthomas, histiocytosis, molluscum contagiosum, and nongenital warts. Cutaneous histological analysis showed amorphous basophilic deposits in the dermis suggestive of calcium deposits. Laboratory tests confirmed serum hypercalcemia. Extensive investigations such as bone marrow biopsy established the diagnosis of an acute pre-B cell lymphoblastic leukemia. Hypercalcemia in hematopoietic malignancies is unusual, especially as initial manifestation of the disease. Careful review of the literature fails to reveal previous reports of these peculiar cutaneous lesions of MCC in children with leukemia. PMID:26346120

  10. p53 causes butein-mediated apoptosis of chronic myeloid leukemia cells

    PubMed Central

    WOO, SANG-MI; CHOI, YOUN KYNUG; KIM, AH JEONG; CHO, SUNG-GOOK; KO, SEONG-GYU

    2016-01-01

    Progression of chronic myeloid leukemia, marked by the oncogenic Bcr-Abl mutation, is tightly associated with an alteration of the p53 pathway. It is known that butein extracted from various plants represses cancer growth. Although the anticancer effects of butein are widely accepted, the mechanisms by which butein induces apoptosis of chronic myeloid leukemia cells remains to be elucidated. The present study demonstrated that butein-induced apoptosis was mediated by p53. KBM5 chronic myeloid leukemia (CML) cells expressing wild-type p53 were more sensitive to butein compared with p53-null K562 CML cells in terms of apoptotic cell death. In addition, butein arrested KBM5 cells at S-phase and altered the expression levels of certain cyclins and the p53-downstream targets, MDM2 and p21. In addition, while butein reduced the protein expression of MDM2 in the KBM5 and K562 cells, it resulted in proteasome-independent MDM2 degradation in p53-expressing KBM5 cells, however, not in p53-null K562 cells. Therefore, the present study suggested that p53 causes the butein-mediated apoptosis of leukemic cells. PMID:26676515

  11. Phosphatidylserine index as a marker of the procoagulant phenotype of acute myelogenous leukemia cells

    NASA Astrophysics Data System (ADS)

    Tormoen, Garth W.; Recht, Olivia; Gruber, András; Levine, Ross L.; McCarty, Owen J. T.

    2013-10-01

    Patients with acute myelogenous leukemia (AML) are at risk for thrombotic complications. Risk to develop thrombosis is closely tied to leukemia subtype, and studies have shown an association between leukocytosis and thrombosis in AML M3. We evaluated the relative roles of cell count and the surface expression of tissue factor (TF) and phosphatidylserine (PS) in the procoagulant phenotype of AML cell lines. The TF-positive AML M3 cell lines, NB4 and HL60, and AML M2 cell line, AML14, exhibited both extrinsic tenase and prothrombinase activity in a purified system and promoted experimental thrombus formation. In contrast, the TF-negative AML cell line, HEL, exhibited only prothrombinase activity and did not affect the rate of occlusive thrombus formation. In plasma, NB4, HL60 and AML14 shortened clotting times in a cell-count, PS- and TF-dependent manner. Exposure of cultured NB4, HL60, and AML14 cells to the chemotherapeutic agent daunorubicin increased their extrinsic tenase activity and PS expression. Clot initiation time inversely correlated with logarithm of PS index, defined as the product of multiplying leukocyte count with cell surface PS exposure. We propose that leukemia cell PS index may serve as a biomarker for procoagulant activity.

  12. p53 causes butein?mediated apoptosis of chronic myeloid leukemia cells.

    PubMed

    Woo, Sang-Mi; Choi, Youn Kynug; Kim, Ah Jeong; Cho, Sung-Gook; Ko, Seong-Gyu

    2016-02-01

    Progression of chronic myeloid leukemia, marked by the oncogenic Bcr?Abl mutation, is tightly associated with an alteration of the p53 pathway. It is known that butein extracted from various plants represses cancer growth. Although the anticancer effects of butein are widely accepted, the mechanisms by which butein induces apoptosis of chronic myeloid leukemia cells remains to be elucidated. The present study demonstrated that butein?induced apoptosis was mediated by p53. KBM5 chronic myeloid leukemia (CML) cells expressing wild?type p53 were more sensitive to butein compared with p53?null K562 CML cells in terms of apoptotic cell death. In addition, butein arrested KBM5 cells at S?phase and altered the expression levels of certain cyclins and the p53?downstream targets, MDM2 and p21. In addition, while butein reduced the protein expression of MDM2 in the KBM5 and K562cells, it resulted in proteasome?independent MDM2 degradation in p53?expressing KBM5 cells, however, not in p53?null K562cells. Therefore, the present study suggested that p53causes the butein?mediated apoptosis of leukemic cells. PMID:26676515

  13. [Aleukemic mast cell leukemia (formerly: "malignant mastocytosis"): an extremely rare form of leukemia. A case report and simultaneously a contribution to revised classification of mastocytosis].

    PubMed

    Horny, Hans-Peter; Krokowski, Manuela; Feller, Alfred C; Hintze, Gerhard; Sotlar, Karl; Valent, Peter

    2002-03-28

    The term mastocytosis denotes a heterogeneous group of rare hematological disorders characterized by abnormal accumulation of mast cells. While cutaneous mastocytosis is relatively frequent mast cell leukemia belongs to the rarest forms of human leukemia. In the following we present the case of an aleukemic mast cell leukemia and shall discuss the revised classification of mastocytosis based on the "Year 2000 Working Conference on Mastocytosis" held in Vienna, Austria. A 48 year-old caucasian man presented with a four-week history of diarrhea, obstipation, vomiting, rash, and mild fever. Clinical inspection revealed a disseminated itching rash and a mild hepatomegaly. Red and white blood cell counts were within the normal range. Levels of the alkaline phosphatase and serum histamine were significantly increased. There was no splenomegaly or lymphadenopathy. Cytologic and histologic investigation of the bone marrow revealed a marked increase in atypical mast cells. Since only a few circulating mast cells could be detected in a cytospin preparation of the blood, the diagnosis of an aleukemic mast cell leukemia was established. About four weeks after the diagnosis had been established, the patient died with signs of a hemorrhagic shock due to a massive gastrointestinal bleeding. Autopsy revealed widespread mast cell infiltration of bone marrow, spleen, liver and lungs, but also a small, deeply penetrating, non-specific duodenal ulcer. In conclusion, despite of presentation with signs of a primary gastrointestinal disorder, the patient was found to suffer from an exceedingly rare aleukemic mast cell leukemia ("malignant mastocytosis") and died after a total duration of the disease of only about three months. PMID:12238313

  14. Prevention of MDR development in leukemia cells by micelle-forming polymeric surfactant.

    PubMed

    Sharma, Amit K; Zhang, Li; Li, Shu; Kelly, David L; Alakhov, Valery Yu; Batrakova, Elena V; Kabanov, Alexander V

    2008-11-12

    Doxorubicin (Dox) incorporated in nanosized polymeric micelles, SP1049C, has shown promise as monotherapy in patients with advanced esophageal carcinoma. The formulation contains amphiphilic block copolymers, Pluronics, that exhibit the unique ability to chemosensitize multidrug resistant (MDR) tumors by inhibiting P-glycoprotein (Pgp) drug efflux system and enhancing pro-apoptotic signaling in cancer cells. This work evaluates whether a representative block copolymer, Pluronic P85 (P85) can also prevent development of Dox-induced MDR in leukemia cells. For in vitro studies murine lymphocytic leukemia cells (P388) were exposed to increasing concentrations of Dox with/without P85. For in vivo studies, BDF1 mice bearing P388 ascite were treated with Dox or Dox/P85. The selected P388 cell sublines and ascitic tumor-derived cells were characterized for Pgp expression and functional activity (RT-PCR, Western Blot, rhodamine 123 accumulation) as well as Dox resistance (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay). The global gene expression was determined by oligonucleotide gene microarrays. We demonstrated that P85 prevented development of MDR1 phenotype in leukemia cells in vitro and in vivo as determined by Pgp expression and functional assays of the selected cells. Cells selected with Dox in the presence of P85 in vitro and in vivo exhibited some increases in IC(50) values compared to parental cells, but these values were much less than IC(50) in respective cells selected with the drug alone. In addition to mdr1, P85 abolished alterations of genes implicated in apoptosis, drug metabolism, stress response, molecular transport and tumorigenesis. In conclusion, Pluronic formulation can prevent development of MDR in leukemia cells in vitro and in vivo. PMID:18722489

  15. Prevention of MDR Development in Leukemia Cells by Micelle-Forming Polymeric Surfactant

    PubMed Central

    Sharma, Amit K; Zhang, Li; Li, Shu; Kelly, David L.; Alakhov, Valery Yu.; Batrakova, Elena V.; Kabanov, Alexander V.

    2009-01-01

    Doxorubicin (Dox) incorporated in nanosized polymeric micelles, SP1049C, has shown promise as monotherapy in patients with advanced esophageal carcinoma. The formulation contains amphiphilic block copolymers, Pluronics, that exhibit unique ability to chemosensitize multidrug resistant (MDR) tumors by inhibiting P-glycoprotein (Pgp) drug efflux system and enhancing pro-apoptotic signaling in cancer cells. This work evaluates whether a representative block copolymer, Pluronic P85 (P85) can also prevent development of Dox-induced MDR in leukemia cells. For in vitro studies murine lymphocytic leukemia cells (P388) were exposed to increasing concentrations of Dox with/without P85. For in vivo studies, BDF1 mice bearing P388 ascite were treated with Dox or Dox/P85. The selected P388 cell sublines and ascitic tumor-derived cells were characterized for Pgp expression and functional activity (RT-PCR, Western Blot, rhodamine 123 accumulation) as well as Dox resistance (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay). The global gene expression was determined by oligonucleotide gene microarrays. We demonstrated that P85 prevented development of MDR1 phenotype in leukemia cells in vitro and in vivo as determined by Pgp expression and functional assays of the selected cells. Cells selected with Dox in the presence of P85 in vitro and in vivo exhibited some increases in IC50 values compared to parental cells, but these values were much less than IC50 in respective cells selected with the drug alone. In addition to mdr1, P85 abolished alterations of genes implicated in apoptosis, drug metabolism, stress response, molecular transport and tumorigenesis. In conclusion, Pluronic formulation can prevent development of MDR in leukemia cells in vitro and in vivo. PMID:18722489

  16. Escin sodium induces apoptosis of human acute leukemia Jurkat T cells.

    PubMed

    Zhang, Zhenzhen; Gao, Jian; Cai, Xueting; Zhao, Youlong; Wang, Yafei; Lu, Wuguang; Gu, Zhenhua; Zhang, Shuangquan; Cao, Peng

    2011-12-01

    Escin sodium has been used in the clinic as an antioedematous, antiexudative and vasoprotective agent for many years and has shown excellent tolerability. However, little is known about its anticancer activity. This is a report for the first time that escin sodium exerts a cytotoxic effect on human acute leukemia Jurkat T cells via the induction of apoptosis rather than cell cycle arrest. Escin sodium activated the initiator caspase-8, -9, and the effector caspase-3, degraded poly (ADP-ribose) polymerase (PARP) and attenuated the expression of Bcl-2. In addition, escin sodium inhibited the growth of cancer cells in a selective manner with Jurkat cells most sensitive to it. Taken together, the data show that escin sodium possesses potent apoptogenic activity toward human acute leukemia Jurkat T cells. PMID:21452372

  17. Diverse resveratrol sensitization to apoptosis induced by anticancer drugs in sensitive and resistant leukemia cells.

    PubMed

    Duraj, J; Bodo, J; Sulikova, M; Rauko, P; Sedlak, J

    2006-01-01

    Naturally occurring dietary compound resveratrol (RES), possessing chemopreventive and cytostatic properties, has been shown as potent sensitizer for apoptosis induced by a variety of anticancer drugs. Cell cycle analysis in sensitive promyelocytic leukemia HL60 cell line and its multidrug-resistant variant HL60/VCR (P-gp positive) treated with RES resulted in cell cycle arrest in S-phase in both cell variants. Flow cytometry measurements showed diverse activities of RES in combination with anticancer drugs doxorubicin (DOX), cycloheximide (CHX), busulfan (BUS), gemcitabine (GEM) and paclitaxel (PTX), in some cases resulting in apoptosis induction, preferentially at the expense of S-phase. Thus, RES could become a candidate to enhance the efficacy of combination anticancer therapy in a variety of human cancer cells inclusive leukemias. PMID:17013532

  18. Deoxynucleotide-polymerizing enzyme activities in T- and B-cells of acute lymphoblastic leukemia origin.

    PubMed

    Srivastava, B I

    1976-05-01

    All 5 thymus-dependent cell (T-cell) lines (Molt-3; Molt-4; RPMI-8402; CCRF-CEM; CCRF-HSB-2) and 7 thymus-independent cell (B-cell) lines (RPMI-8382, RPMI-8392, RPMI-8412, RPMI-8422, RPMI-8432, RPMI-8442, CCRF-SB) established so far from acute lymphoblastic leukemia patients were examined for deoxynucleotide polymerizing enzymes. All T- and B-cells had DNA polymerase gamma, DNA polymerase beta, and terminal deoxynucleotidyl transferase both in the soluble (the latter 2 enzymes only in small amounts) and chromatin fraction, whereas DNA polymerase alpha was found only in the soluble fraction. With respect to their sedimentation and chromatographic behavior, template-primer requirements, Km for deoxythymidine triphosphate or deoxyguanosine triphosphate divalent cation preference, effect of NaCI and inhibitors, the enzymes from T- and B-cells resembled each other and those from other mammalian cells. DNA polymerase alpha, beta, and gamma from T-cells like those from "fresh" acute lymphoblastic leukemia cells, were more thermolabile than those from B-cells or phytohemagglutinin-stimulated normal lymphocytes. In addition, the terminal deoxynucleotidyl transferase from the above cells was completely inactivated in 5 to 6 min at 50 degrees, whereas the DNA polymerase alpha, beta, and gamma retained considerable activity even after heating for 25 min at 50 degrees. DNA polymerase activity of the soluble fraction from T-cells was of the same magnitude as in B-cells when expressed on a DNA basis but twice that of B-cells when expressed on a protein basis. High terminal deoxynucleotidyl transferase activity, equivalent to that observed in acute lymphoblastic leukemia cells, was found in all T-cell lines that, when expressed on a DNA basis, was 30 to 100 times higher than the B-cell lines tested. These results support the suggestion of earlier investigators that T-cell lines examined here may have originated from leukemic cells. PMID:1083765

  19. Up-regulation of VEGF and its receptor in refractory leukemia cells

    PubMed Central

    Wang, Lei; Zhang, Wenjun; Ding, Yi; Xiu, Bing; Li, Ping; Dong, Yan; Zhu, Qi; Liang, Aibin

    2015-01-01

    Objective: To analyze the causative mechanisms in refractory leukemia cells. Methods: Vascular endothelial growth factor (VEGF) blood plasma concentrations in 35 de novo, 6 relapse, 20 remission leukemia patients and 10 healthy kids were determined via ELISA analyses. Transcription levels of the VEGF receptors (VEGFR) Fms-like tyrosine kinase-1 (Flt-1) and kinase-domain insert containing receptor (KDR) were determined in participants leucocytes with RT-PCR. Apoptosis rates as well as Cyt-C and Caspase-3 expression was determined in Jurkat, JurkatBcl-2, healthy and recurrent leukemia leukocytes with and without VP-16 applications via flow cytometry. Total Akt (t-Akt) expression and its phosphorylation (p-AKT) status in leukocytes of the participants were analyzed with western blots. Results: Healthy children and the remission group had the lowest blood plasma VEGF concentrations (91.16 41.34 vs. 135.80 111.28 pg/ml), followed by de novo leukemia patients (362.49 195.68 pg/ml-494.19 186.23 pg/ml) and relapse patients (574.37 278.45 pg/ml) (P < 0.01). The same trend was statistically significant visible for Flt-1 and KDR expressions in leukocytes of the participants. Stable Bcl-2 overexpression led to reduced apoptosis rates as well as Cyt-C and Caspase-3 expressions in Jurkat cells after VP-16 application, which was similar in leucocytes of remission patients. In contrast to no phosphorylation in healthy children, Akt was phosphorylated in 10% remission samples, 30% de novo leukemia samples and in 67% of recurrent leukemia leucocytes. Conclusion: High VEGF plus VEGFR expression and AKT phosphorylation are highest in leukocytes of remission patients, suggesting VEGF signaling as a cause of reduced apoptosis susceptibility upon treatments. PMID:26191229

  20. SPARC promotes leukemic cell growth and predicts acute myeloid leukemia outcome

    PubMed Central

    Alachkar, Houda; Santhanam, Ramasamy; Maharry, Kati; Metzeler, Klaus H.; Huang, Xiaomeng; Kohlschmidt, Jessica; Mendler, Jason H.; Benito, Juliana M.; Hickey, Christopher; Neviani, Paolo; Dorrance, Adrienne M.; Anghelina, Mirela; Khalife, Jihane; Tarighat, Somayeh S.; Volinia, Stefano; Whitman, Susan P.; Paschka, Peter; Hoellerbauer, Pia; Wu, Yue-Zhong; Han, Lina; Bolon, Brad N.; Blum, William; Mrzek, Krzysztof; Carroll, Andrew J.; Perrotti, Danilo; Andreeff, Michael; Caligiuri, Michael A.; Konopleva, Marina; Garzon, Ramiro; Bloomfield, Clara D.; Marcucci, Guido

    2014-01-01

    Aberrant expression of the secreted protein, acidic, cysteine-rich (osteonectin) (SPARC) gene, which encodes a matricellular protein that participates in normal tissue remodeling, is associated with a variety of diseases including cancer, but the contribution of SPARC to malignant growth remains controversial. We previously reported that SPARC was among the most upregulated genes in cytogenetically normal acute myeloid leukemia (CN-AML) patients with gene-expression profiles predictive of unfavorable outcome, such as mutations in isocitrate dehydrogenase 2 (IDH2-R172) and overexpression of the oncogenes brain and acute leukemia, cytoplasmic (BAALC) and v-ets erythroblastosis virus E26 oncogene homolog (ERG). In contrast, SPARC was downregulated in CN-AML patients harboring mutations in nucleophosmin (NPM1) that are associated with favorable prognosis. Based on these observations, we hypothesized that SPARC expression is clinically relevant in AML. Here, we found that SPARC overexpression is associated with adverse outcome in CN-AML patients and promotes aggressive leukemia growth in murine models of AML. In leukemia cells, SPARC expression was mediated by the SP1/NF-?B transactivation complex. Furthermore, secreted SPARC activated the integrin-linked kinase/AKT (ILK/AKT) pathway, likely via integrin interaction, and subsequent ?-catenin signaling, which is involved in leukemia cell self-renewal. Pharmacologic inhibition of the SP1/NF-?B complex resulted in SPARC downregulation and leukemia growth inhibition. Together, our data indicate that evaluation of SPARC expression has prognosticative value and SPARC is a potential therapeutic target for AML. PMID:24590286

  1. Recognition of adult and pediatric acute lymphoblastic leukemia blasts by natural killer cells.

    PubMed

    Torelli, Giovanni F; Peragine, Nadia; Raponi, Sara; Pagliara, Daria; De Propris, Maria S; Vitale, Antonella; Bertaina, Alice; Barberi, Walter; Moretta, Lorenzo; Basso, Giuseppe; Santoni, Angela; Guarini, Anna; Locatelli, Franco; Fo, Robin

    2014-07-01

    In this study, we aimed to investigate the pathways of recognition of acute lymphoblastic leukemia blasts by natural killer cells and to verify whether differences in natural killer cell activating receptor ligand expression among groups defined by age of patients, or presence of cytogenetic/molecular aberrations correlate with the susceptibility to recognition and killing. We analyzed 103 newly diagnosed acute lymphoblastic leukemia patients: 46 adults and 57 children. Pediatric blasts showed a significantly higher expression of Nec-2 (P=0.03), ULBP-1 (P=0.01) and ULBP-3 (P=0.04) compared to adult cells. The differential expression of these ligands between adults and children was confined to B-lineage acute lymphoblastic leukemia with no known molecular alterations. Within molecularly defined subgroups of patients, a high surface expression of NKG2D and DNAM1 ligands was found on BCR-ABL(+) blasts, regardless of patient age. Accordingly, BCR-ABL(+) blasts proved to be significantly more susceptible to natural killer-dependent lysis than B-lineage blasts without molecular aberrations (P=0.03). Cytotoxic tests performed in the presence of neutralizing antibodies indicated a pathway of acute lymphoblastic leukemia cell recognition in the setting of the Nec-2/DNAM-1 interaction. These data provide a biological explanation of the different roles played by alloreactive natural killer cells in pediatric versus adult acute lymphoblastic leukemia and suggest that new natural killer-based strategies targeting specific subgroups of patients, particularly those BCR-ABL(+), are worth pursuing further. PMID:24658822

  2. Recognition of adult and pediatric acute lymphoblastic leukemia blasts by natural killer cells

    PubMed Central

    Torelli, Giovanni F.; Peragine, Nadia; Raponi, Sara; Pagliara, Daria; De Propris, Maria S.; Vitale, Antonella; Bertaina, Alice; Barberi, Walter; Moretta, Lorenzo; Basso, Giuseppe; Santoni, Angela; Guarini, Anna; Locatelli, Franco; Fo, Robin

    2014-01-01

    In this study, we aimed to investigate the pathways of recognition of acute lymphoblastic leukemia blasts by natural killer cells and to verify whether differences in natural killer cell activating receptor ligand expression among groups defined by age of patients, or presence of cytogenetic/molecular aberrations correlate with the susceptibility to recognition and killing. We analyzed 103 newly diagnosed acute lymphoblastic leukemia patients: 46 adults and 57 children. Pediatric blasts showed a significantly higher expression of Nec-2 (P=0.03), ULBP-1 (P=0.01) and ULBP-3 (P=0.04) compared to adult cells. The differential expression of these ligands between adults and children was confined to B-lineage acute lymphoblastic leukemia with no known molecular alterations. Within molecularly defined subgroups of patients, a high surface expression of NKG2D and DNAM1 ligands was found on BCR-ABL+ blasts, regardless of patient age. Accordingly, BCR-ABL+ blasts proved to be significantly more susceptible to natural killer-dependent lysis than B-lineage blasts without molecular aberrations (P=0.03). Cytotoxic tests performed in the presence of neutralizing antibodies indicated a pathway of acute lymphoblastic leukemia cell recognition in the setting of the Nec-2/DNAM-1 interaction. These data provide a biological explanation of the different roles played by alloreactive natural killer cells in pediatric versus adult acute lymphoblastic leukemia and suggest that new natural killer-based strategies targeting specific subgroups of patients, particularly those BCR-ABL+, are worth pursuing further. PMID:24658822

  3. T-cell and natural killer cell therapies for hematologic malignancies after hematopoietic stem cell transplantation: enhancing the graft-versus-leukemia effect

    PubMed Central

    Cruz, C. Russell; Bollard, Catherine M.

    2015-01-01

    Hematopoietic stem cell transplantation has revolutionized the treatment of hematologic malignancies, but infection, graft-versus-host disease and relapse are still important problems. Calcineurin inhibitors, T-cell depletion strategies, and immunomodulators have helped to prevent graft-versus-host disease, but have a negative impact on the graft-versus-leukemia effect. T cells and natural killer cells are both thought to be important in the graft-versus-leukemia effect, and both cell types are amenable to ex vivo manipulation and clinical manufacture, making them versatile immunotherapeutics. We provide an overview of these immunotherapeutic strategies following hematopoietic stem cell transplantation, with discussions centered on natural killer and T-cell biology. We discuss the contributions of each cell type to graft-versus-leukemia effects, as well as the current research directions in the field as related to adoptive cell therapy after hematopoietic stem cell transplantation. PMID:26034113

  4. A novel SAHA-bendamustine hybrid induces apoptosis of leukemia cells

    PubMed Central

    Yu, Jing; Qiu, Shaowei; Ge, Qiufu; Wang, Ying; Wei, Hui; Guo, Dianwu; Chen, Shuying; Liu, Shuang; Li, Shouyun; Xing, Haiyan; Rao, Qing; Wang, Jianxiang; Wang, Min

    2015-01-01

    Hybrid anticancer drugs are of great therapeutic interests as they can potentially overcome the deficiencies of conventional chemotherapy drugs and improve the efficacy. Many studies have revealed that the combination of histone deacetylase inhibitors (HDACi) and alkylating agents have synergistic effects. We reported a novel hybrid NL-101, in which the side chain of bendamustine was replaced with the hydroxamic acid of HDACi vorinostat (SAHA). NL-101 exhibited efficient anti-proliferative activity on myeloid leukemia cells especially Kasumi-1 and NB4 cells, accompanied by S phase arrest and caspase-3 dependent apoptosis. Importantly, it presented both the properties of HDAC inhibition and DNA damaging, as assessed by the acetylation of histone H3 and DNA double-strand breaks marker γ-H2AX. NL-101 also down-regulated the expression of anti-apoptotic protein Bcl-xL which was involved in the mitochondrial death pathway. Meanwhile, NL-101 induced apoptosis and DNA damage in primary cells from acute myeloid leukemia (AML) patients. NL-101 treatment could significantly prolong the survival time of t(8;21) leukemia mice with enhanced efficacy than bendamustine. These data demonstrate that NL-101 could be a potent and selective agent for leukemia treatment. PMID:26015396

  5. Autologous stem cell transplantation versus alternative allogeneic donor transplants in adult acute leukemias.

    PubMed

    Claude Gorin, Norbert

    2016-04-01

    The availability of alternative sources of stem cells including most recently T-replete haploidentical marrow or peripheral blood, and the increasing use of reduced-intensity conditioning (RIC), renders feasible an allogeneic transplant to almost all patients with acute leukemia up to 70 years of age. Autologous stem cell transplantation (ASCT) for consolidation of complete remission (CR), however, offers in some circumstances an alternative option. Although associated with a higher relapse rate, autologous transplant benefits from a lower non-relapse mortality, the absence of graft-versus-host disease (GVHD), and a better quality of life for long-term survivors. The recent use of intravenous busulfan (IVBU) with high-dose melphalan, better monitoring of minimal residual disease (MRD), and maintenance therapy post autografting bring new interest. Few retrospective studies compared the outcome following alternative donor versus autologous transplants for remission consolidation. Genoidentical and phenoidentical allogeneic stem cell transplantations are undisputed gold standards, but there are no data showing the superiority of alternative allogeneic donor over autologous transplantation, at the time of undetectable MRD, in patients with good- and intermediate-1 risk acute myelocytic leukemia (AML) in first complete remission (CR1), acute promyelocytic leukemia in second complete remission (CR2), and Philadelphia chromosome-positive (Ph(+)) acute lymphocytic leukemia (ALL). PMID:27000734

  6. Stem cell transplantation in pediatric leukemia and myelodysplasia: state of the art and current challenges.

    PubMed

    Bierings, Marc; Nachman, James B; Zwaan, C Michel

    2007-01-01

    The role of stem cell transplantation in the treatment of leukemia and myelodysplasia (MDS) in children has changed over the past decade. In pediatric acute lymphoblastic leukemia (ALL), the overall cure-rate is high with conventional chemotherapy. However, selected patients with a high-risk of relapse are often treated with allogeneic hematopoietic stem cell transplantation (allo-HSCT) in first remission (CR1). Patients with a bone-marrow relapse who attain a second remission frequently receive HSCT. High minimal residual disease (MRD) levels directly prior to HSCT determines the relapse risk. Therefore, MRD positive patients are eligible for more experimental approaches such as intensified or experimental chemotherapy pre-HSCT, as well as immune modulation post-HSCT. In pediatric acute myeloid leukemia (AML) the role of allo-HSCT in CR1 is declining, due to better outcome with modern multi-agent chemotherapy. In relapsed AML patients, allo-HSCT still seems indispensable. Targeted therapy may change the role of HSCT, in particular in chronic myeloid leukemia, where the role of allografting is changing in the imatinib era. In MDS, patients are usually transplanted immediately without prior cytoreduction. New developments in HSCT, such as the role of alternative conditioning regimens, and innovative stem cell sources such as peripheral blood and cord blood, will also be addressed. PMID:18240454

  7. Acute Lymphocytic Leukemia

    MedlinePLUS

    ... hard for blood to do its work. In acute lymphocytic leukemia (ALL), also called acute lymphoblastic leukemia, there are too ... of white blood cells called lymphocytes or lymphoblasts. ALL is the most common type of cancer in ...

  8. Arachidin-1, a peanut stilbenoid, induces programmed cell death in human leukemia HL-60 cells.

    PubMed

    Huang, Cheng-Po; Au, Lo-Chun; Chiou, Robin Y-Y; Chung, Ping-Chen; Chen, Su-Yu; Tang, Wei-Chien; Chang, Chao-Lin; Fang, Woei-Horng; Lin, Shwu-Bin

    2010-12-01

    The stilbenoids, arachidin-1 (Ara-1), arachidin-3, isopentadienylresveratrol, and resveratrol, have been isolated from germinating peanut kernels and characterized as antioxidant and anti-inflammatory agents. Resveratrol possesses anticancer activity, and studies have indicated that it induces programmed cell death (PCD) in human leukemia HL-60 cells. In this study, the anticancer activity of these stilbenoids was determined in HL-60 cells. Ara-1 had the highest efficacy in inducing PCD in HL-60 cells, with an approximately 4-fold lower EC50 than resveratrol. Ara-1 treatment caused mitochondrial membrane damage, activation of caspases, and nuclear translocation of apoptosis-inducing factor, resulting in chromosome degradation and cell death. Therefore, Ara-1 induces PCD in HL-60 cells through caspase-dependent and caspase-independent pathways. Ara-1 demonstrates its efficacy as an anticancer agent by inducing caspase-independent cell death, which is an alternative death pathway of cancer cells with mutations in key apoptotic genes. These findings indicate the merits of screening other peanut stilbenoids for anticancer activity. PMID:21067217

  9. Donor Umbilical Cord Blood Transplant With or Without Ex-vivo Expanded Cord Blood Progenitor Cells in Treating Patients With Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, Chronic Myelogenous Leukemia, or Myelodysplastic Syndromes

    ClinicalTrials.gov

    2015-11-20

    Acute Biphenotypic Leukemia; Acute Lymphoblastic Leukemia in Remission; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Acute Myeloid Leukemia in Remission; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Mixed Phenotype Acute Leukemia; Myelodysplastic Syndrome; Pancytopenia; Refractory Anemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Secondary Acute Myeloid Leukemia

  10. Phospholipase A/sub 2/ stimulation during cell secretion in rat basophilic leukemia cells

    SciTech Connect

    Garcia-Gil, M.; Siraganian, R.P.

    1986-01-01

    The bridging of IgE receptors on rat basophilic leukemia cells (RBL-2H3) results in a number of biochemical events that accompany histamine secretion. Prominent among these is the release of arachidonic acid from cellular phospholipids, which could be due to the activation of phospholipase enzymes. In the present experiments they studied the intracellular activation of phospholipase A/sub 2/ (PLA/sub 2/) during histamine release. The enzyme in the homogenates was capable of cleaving arachidonic acid from different phospholipids. The production of lysophospholipids could play a critical role in histamine release from cells. These results demonstrate the activation of PLA/sub 2/ enzyme in cellular homogenates during the secretory process.

  11. Autologous Peripheral Blood Stem Cell Transplant Followed by Donor Bone Marrow Transplant in Treating Patients With High-Risk Hodgkin Lymphoma, Non-Hodgkin Lymphoma, Multiple Myeloma, or Chronic Lymphocytic Leukemia

    ClinicalTrials.gov

    2016-01-20

    B-Cell Prolymphocytic Leukemia; Plasma Cell Leukemia; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Non-Hodgkin Lymphoma; Recurrent Childhood Hodgkin Lymphoma; Recurrent Childhood Non-Hodgkin Lymphoma; Recurrent Chronic Lymphocytic Leukemia; Recurrent Plasma Cell Myeloma; Recurrent Small Lymphocytic Lymphoma; Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Non-Hodgkin Lymphoma; Refractory Plasma Cell Myeloma; Refractory Small Lymphocytic Lymphoma; T-Cell Prolymphocytic Leukemia; Waldenstrom Macroglobulinemia

  12. Differential expression of the ufo/axl oncogene in human leukemia-lymphoma cell lines.

    PubMed

    Challier, C; Uphoff, C C; Janssen, J W; Drexler, H G

    1996-05-01

    The ufo protein (also termed axl) is a member of a new family of receptor tyrosine kinases and is encoded by a transforming gene that was initially isolated from primary human myeloid leukemia cells by DNA-mediated transformation of NIH/3T3 cells. The ligand, Gas6, a protein S-related molecule lacking any known function yet, has recently been identified. We report the expression pattern of ufo mRNA in a panel of 76 human continuous leukemia-lymphoma cell lines. The gene was not expressed in cell lines derived from lymphoid malignancies (n=28), but transcription was seen in 3/11 myeloid, 0/6 monocytic, 9/13 erythroid and 11/18 megakaryocytic cell lines. Several cell lines were treated with phorbol ester leading to significant upregulation of the ufo message in constitutively positive cells. An apparent ufo mRNA overexpression was not found in any of the positive leukemia cell lines, but was identified in the drug-resistant subclones of the cervix carcinoma cell line HeLa. Southern blot analysis of restriction enzyme-digested genomic DNA did not provide evidence for gene amplification, but the HeLa subclones showed banding patterns suggestive of gene rearrangement. Two main ufo mRNA bands of 3.2 and 5.0 kb were identified; no differences in the half-lives (t1/2 = 2.5 h) of these two mRNA species could be identified. In summary, ufo, representing a novel type of receptor tyrosine kinase, is expressed solely in myeloid and erythro-megakaryocytic leukemias but not in lymphoid malignancies. These and previous data suggest an involvement of the ufo receptor tyrosine kinase in normal and malignant myelopoiesis; however, its exact role, if any, and mode of operation in leukemogenesis remains to be determined. PMID:8656672

  13. Resveratrol induces apoptosis of leukemia cell line K562 by modulation of sphingosine kinase-1 pathway

    PubMed Central

    Tian, Hongying; Yu, Zhongcui

    2015-01-01

    To explore the effects of resveratrol in a human myelogenous leukemia cell line K562 and its potential molecular mechanisms. The anti-proliferation effect of resveratrol-induced apoptosis on K562 cells were detected using MTT assay. Western blotting was performed for detecting changes of SphK1 expression in total cell protein and membrane/cytosol protein in K562 cells respectively after exposure to resveratrol. A biochemical assay was used to measure the activity of SphK after treatment of resveratrol, and then S1P and ceramide levels were examined using ELISA kits. Hochest 33258 staining and flow cytometry were applied to detect the apoptosis condition of K562 cells treated with resveratrol. Resveratrol inhibited the proliferation and induced apoptosis in K562 cells in a dose and time-dependent manner. Western blotting revealed that resveratrol did not affect total SphK1 expression level in K562 cells, but significantly changed the translocation of SphK1, the membrane SphK1 was decreased while cytosol SphK1 level was elevated. The activity of SphK1 in resveratrol treated groups was decreased compared to control group with a significant decrease of S1P and increase of ceramide level. Furthermore, Hoechst 33258 staining and Annexin V-FITC analysis confirmed the notable apoptotic effect of resveratrol in its anti-leukemia process. Resveratrol-induced proliferation inhibition of K562 cells might be mediated through its modulation activity of SphK1 pathway by regulating S1P and ceramide levels, which then affected the proliferation and apoptosis process of leukemia cells. SphK1/S1P pathway represents a target of resveratrol in human leukemia. PMID:26045781

  14. B-cell precursor acute lymphoblastic leukemia and stromal cells communicate through Galectin-3

    PubMed Central

    Fei, Fei; Joo, Eun Ji; Tarighat, Somayeh S.; Schiffer, Isabelle; Paz, Helicia; Fabbri, Muller; Abdel-Azim, Hisham; Groffen, John; Heisterkamp, Nora

    2015-01-01

    The molecular interactions between B-cell precursor acute lymphoblastic leukemia (pre-B ALL) cells and stromal cells in the bone marrow that provide microenvironmentally-mediated protection against therapeutic drugs are not well-defined. Galectin-3 (Lgals3) is a multifunctional galactose-binding lectin with reported location in the nucleus, cytoplasm and extracellular space in different cell types. We previously reported that ALL cells co-cultured with stroma contain high levels of Galectin-3. We here establish that, in contrast to more mature B-lineage cancers, Galectin-3 detected in and on the ALL cells originates from stromal cells, which express it on their surface, secrete it as soluble protein and also in exosomes. Soluble and stromal-bound Galectin-3 is internalized by ALL cells, transported to the nucleus and stimulates transcription of endogenous LGALS3 mRNA. When human and mouse ALL cells develop tolerance to different drugs while in contact with protective stromal cells, Galectin-3 protein levels are consistently increased. This correlates with induction of Galectin-3 transcription in the ALL cells. Thus Galectin-3 sourced from stroma becomes supplemented by endogenous Galectin-3 production in the pre-B ALL cells that are under continuous stress from drug treatment. Our data suggest that stromal Galectin-3 may protect ALL cells through auto-induction of Galectin-3 mRNA and tonic NF?B pathway activation. Since endogenously synthesized Galectin-3 protects pre-B ALL cells against drug treatment, we identify Galectin-3 as one possible target to counteract the protective effects of stroma. PMID:25869099

  15. B-cell precursor acute lymphoblastic leukemia and stromal cells communicate through Galectin-3.

    PubMed

    Fei, Fei; Joo, Eun Ji; Tarighat, Somayeh S; Schiffer, Isabelle; Paz, Helicia; Fabbri, Muller; Abdel-Azim, Hisham; Groffen, John; Heisterkamp, Nora

    2015-05-10

    The molecular interactions between B-cell precursor acute lymphoblastic leukemia (pre-B ALL) cells and stromal cells in the bone marrow that provide microenvironmentally-mediated protection against therapeutic drugs are not well-defined. Galectin-3 (Lgals3) is a multifunctional galactose-binding lectin with reported location in the nucleus, cytoplasm and extracellular space in different cell types. We previously reported that ALL cells co-cultured with stroma contain high levels of Galectin-3. We here establish that, in contrast to more mature B-lineage cancers, Galectin-3 detected in and on the ALL cells originates from stromal cells, which express it on their surface, secrete it as soluble protein and also in exosomes. Soluble and stromal-bound Galectin-3 is internalized by ALL cells, transported to the nucleus and stimulates transcription of endogenous LGALS3 mRNA. When human and mouse ALL cells develop tolerance to different drugs while in contact with protective stromal cells, Galectin-3 protein levels are consistently increased. This correlates with induction of Galectin-3 transcription in the ALL cells. Thus Galectin-3 sourced from stroma becomes supplemented by endogenous Galectin-3 production in the pre-B ALL cells that are under continuous stress from drug treatment. Our data suggest that stromal Galectin-3 may protect ALL cells through auto-induction of Galectin-3 mRNA and tonic NF?B pathway activation. Since endogenously synthesized Galectin-3 protects pre-B ALL cells against drug treatment, we identify Galectin-3 as one possible target to counteract the protective effects of stroma. PMID:25869099

  16. The significance of PTEN and AKT aberrations in pediatric T-cell acute lymphoblastic leukemia

    PubMed Central

    Zuurbier, Linda; Petricoin, Emanuel F.; Vuerhard, Maartje J.; Calvert, Valerie; Kooi, Clarissa; Buijs-Gladdines, Jessica G.C.A.M.; Smits, Willem K.; Sonneveld, Edwin; Veerman, Anjo J.P.; Kamps, Willem A.; Horstmann, Martin; Pieters, Rob; Meijerink, Jules P.P.

    2012-01-01

    Background PI3K/AKT pathway mutations are found in T-cell acute lymphoblastic leukemia, but their overall impact and associations with other genetic aberrations is unknown. PTEN mutations have been proposed as secondary mutations that follow NOTCH1-activating mutations and cause cellular resistance to ?-secretase inhibitors. Design and Methods The impact of PTEN, PI3K and AKT aberrations was studied in a genetically well-characterized pediatric T-cell leukemia patient cohort (n=146) treated on DCOG or COALL protocols. Results PTEN and AKT E17K aberrations were detected in 13% and 2% of patients, respectively. Defective PTEN-splicing was identified in incidental cases. Patients without PTEN protein but lacking exon-, splice-, promoter mutations or promoter hypermethylation were present. PTEN/AKT mutations were especially abundant in TAL- or LMO-rearranged leukemia but nearly absent in TLX3-rearranged patients (P=0.03), the opposite to that observed for NOTCH1-activating mutations. Most PTEN/AKT mutant patients either lacked NOTCH1-activating mutations (P=0.006) or had weak NOTCH1-activating mutations (P=0.011), and consequently expressed low intracellular NOTCH1, cMYC and MUSASHI levels. T-cell leukemia patients without PTEN/AKT and NOTCH1-activating mutations fared well, with a cumulative incidence of relapse of only 8% versus 35% for PTEN/AKT and/or NOTCH1-activated patients (P=0.005). Conclusions PI3K/AKT pathway aberrations are present in 18% of pediatric T-cell acute lymphoblastic leukemia patients. Absence of strong NOTCH1-activating mutations in these cases may explain cellular insensitivity to ?-secretase inhibitors. PMID:22491738

  17. Wnt pathway contributes to the protection by bone marrow stromal cells of acute lymphoblastic leukemia cells and is a potential therapeutic target

    PubMed Central

    Yang, Yang; Mallampati, Saradhi; Sun, Baohua; Zhang, Jing; Kim, Sangbae; Lee, Ju-Seog; Gong, Yun; Cai, Zhen; Sun, Xiaoping

    2013-01-01

    Leukemia cells are protected by various components of its microenvironment, including marrow stromal cells (MSCs). To understand the molecular mechanisms underlying this protection, we cultured acute lymphoblastic leukemia (ALL) cells with MSCs and studied the effect of the latter on the molecular profiling of ALL cells at the mRNA and protein levels. Our results indicated that activated Wnt signaling in ALL cells is involved in MSC-mediated drug resistance. Blocking the Wnt pathway sensitized the leukemia cells to chemotherapy and improved overall survival in a mouse model. Targeting the Wnt pathway may be an innovative approach to the treatment of ALL. PMID:23333798

  18. Wnt pathway contributes to the protection by bone marrow stromal cells of acute lymphoblastic leukemia cells and is a potential therapeutic target.

    PubMed

    Yang, Yang; Mallampati, Saradhi; Sun, Baohua; Zhang, Jing; Kim, Sang-Bae; Lee, Ju-Seog; Gong, Yun; Cai, Zhen; Sun, Xiaoping

    2013-06-01

    Leukemia cells are protected by various components of their microenvironment, including marrow stromal cells (MSCs). To understand the molecular mechanisms underlying this protection, we cultured acute lymphoblastic leukemia (ALL) cells with MSCs and studied the effect of the latter on the molecular profiling of ALL cells at the mRNA and protein levels. Our results indicated that activated Wnt signaling in ALL cells is involved in MSC-mediated drug resistance. Blocking the Wnt pathway sensitized the leukemia cells to chemotherapy and improved overall survival in a mouse model. Targeting the Wnt pathway may be an innovative approach to the treatment of ALL. PMID:23333798

  19. Recent Advances in Therapeutic Approaches for Adult T-cell Leukemia/Lymphoma

    PubMed Central

    Kato, Koji; Akashi, Koichi

    2015-01-01

    Adult T-cell leukemia/lymphoma (ATLL) is a peripheral T-cell lymphoma caused by human T-cell leukemia/lymphoma virus type 1 (HTLV-1). ATLL occurs in approximately 3%–5% of HTLV-1 carriers during their lifetime and follows a heterogeneous clinical course. The Shimoyama classification has been frequently used for treatment decisions in ATLL patients, and antiviral therapy has been reportedly promising, particularly in patients with indolent type ATLL; however, the prognosis continues to be dismal for patients with aggressive-type ATLL. Recent efforts to improve treatment outcomes have been focused on the development of prognostic stratification and improved dosage, timing, and combination of therapeutic modalities, such as antiviral therapy, chemotherapy, allogeneic hematopoietic stem cell transplantation, and molecular targeted therapy. PMID:26694446

  20. Sensitization of K562 Leukemia Cells to Doxorubicin by the Viscum album Extract.

    PubMed

    Srdic-Rajic, Tatjana; Tisma-Miletic, Nevena; Cavic, Milena; Kanjer, Ksenija; Savikin, Katarina; Galun, Danijel; Konic-Ristic, Aleksandra; Zoranovic, Tamara

    2016-03-01

    Toxicity of conventional chemotherapeutics highlights the requirement for complementary or alternative medicines that would reduce side effects and improve their anticancer effectiveness. European mistletoe (Viscum album) has long been used as a complementary and alternative medicine supporting cancer therapy. The aim of this study was to investigate synergistic antitumor action of V. album extract and doxorubicin during co-treatment of chemoresistant chronic myelogenic leukemia K562 cells. Combined treatment of leukemia cells led to inhibitory synergism at sub-apoptotic doxorubicin concentrations and multifold reduction of cytotoxic effects in healthy control cells. Prolonged co-treatment was associated with reduced G2/M accumulation and increased expression of early and late apoptotic markers. Our data indicate that V. album extract increases antileukemic effectiveness of doxorubicin against resistant K562 cells by preventing G2/M arrest and inducing apoptosis. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26692465

  1. Antisense RNA of survivin gene inhibits the proliferation of leukemia cells and sensitizes leukemia cell line to taxol-induced apoptosis.

    PubMed

    Li, Wenhan; Wang, Xiaojuan; Lei, Ping; Ye, Qing; Zhu, Huifen; Zhang, Yue; Shao, Jinfang; Yang, Jing; Shen, Guanxin

    2008-02-01

    The effects of survivin antisense RNA on proliferation of leukemia cell line HL-60 and taxol-induced chemotherapy was explored. A cDNA fragment of survivin obtained by RT-PCR was inserted into a plamid vector named pcDNA3 in the reverse direction. The vector encoding antisense RNA of survivin was confirmed by restriction enzyme digestion and DNA sequencing. The recombinant plasmid was delivered into HL-60 cells by electroporation. Growth curves were plotted based on cell counting. Trypan blue dye exclusion assay and MTT assay were carried out after the cells were incubated with taxol. DNA gel electrophoresis and nuclear staining were performed for cell apoptosis assay. The correct construction of the recombinant plasmid has been identified by restriction enzyme digestion and DNA sequencing. A stable down-regulation has been achieved in HL-60 SVVas cells after G418 selection. Compared to HL-60 cells, the proliferation of HL-60 SVVas cells was significantly inhibited (P<0.05). Cytotoxicity assays indicated that IC(50) of HL-60 SVVas for taxol was relatively lower than controls (P<0.01). Apoptosis assays revealed that taxol-induced apoptosis was detected in HL-60 SVVas cells incubated with 50 ng/ml taxol for 12 h, while in HL-60 cells incubated with 100 ng/ml taxol for 72 h. It was suggested that Survivin antisense RNA could inhibit the proliferation of HL-60 cells and enhance taxol-induced apoptosis in HL-60 cells, which may lay an experimental foundation for further research on gene therapy in leukemia. PMID:18278445

  2. Prevalence and Characterization of Murine Leukemia Virus Contamination in Human Cell Lines

    PubMed Central

    Uphoff, Cord C.; Lange, Sandra; Denkmann, Sabine A.; Garritsen, Henk S. P.; Drexler, Hans G.

    2015-01-01

    Contaminations of cell cultures with microbiological organisms are well documented and can be managed in cell culture laboratories applying reliable detection, elimination and prevention strategies. However, the presence of viral contaminations in cell cultures is still a matter of debate and cannot be determined with general detection methods. In the present study we screened 577 human cell lines for the presence of murine leukemia viruses (MLV). Nineteen cell lines were found to be contaminated with MLV, including 22RV1 which is contaminated with the xenotropic murine leukemia virus-related virus variant of MLV. Of these, 17 cell lines were shown to produce active retroviruses determined by product enhanced reverse transcriptase PCR assay for reverse transcriptase activity. The contaminated cell lines derive from various solid tumor types as well as from leukemia and lymphoma types. A contamination of primary human cells from healthy volunteers could not be substantiated. Sequence analyses of 17 MLV PCR products and five complete MLV genomes of different infected cell lines revealed at least three groups of related MLV genotypes. The viruses harvested from the supernatants of infected cell cultures were infectious to uninfected cell cultures. In the course of the study we found that contamination of human genomic DNA preparations with murine DNA can lead to false-positive results. Presumably, xenotransplantations of the human tumor cells into immune-deficient mice to determine the tumorigenicity of the cells are mainly responsible for the MLV contaminations. Furthermore, the use of murine feeder layer cells during the establishment of human cell lines and a cross-contamination with MLV from infected cultures might be sources of infection. A screening of cell cultures for MLV contamination is recommended given a contamination rate of 3.3%. PMID:25927683

  3. Abrupt Development of Plasma Cell Leukemia in a Patient with Chronic Anemia under Follow-up.

    PubMed

    Farzaneh, Mohamad Reza; Moradi, Ali; Ravanbod, Mohammad Reza; Daghbashi, Mohammad

    2016-01-01

    Plasma cell leukemia (PCL) is a very rare and progressive hematologic malignancy with unpleasant prognosis, which present with monoclonal proliferation of plasma cells in peripheral blood. Here we report a 52-year-old female case of PCL which diagnosed by morphology and immunohistochemistery (IHC) study. IHC revealed CD20+/CD38+/CD138+/CD56-/kappa-/lambda+. We diagnose PCL on peripheral blood. IHC can be helpful for prognostic determination. PMID:26702753

  4. Segmentation and Classification of Bone Marrow Cells Images Using Contextual Information for Medical Diagnosis of Acute Leukemias.

    PubMed

    Reta, Carolina; Altamirano, Leopoldo; Gonzalez, Jesus A; Diaz-Hernandez, Raquel; Peregrina, Hayde; Olmos, Ivan; Alonso, Jose E; Lobato, Ruben

    2015-01-01

    Morphological identification of acute leukemia is a powerful tool used by hematologists to determine the family of such a disease. In some cases, experienced physicians are even able to determine the leukemia subtype of the sample. However, the identification process may have error rates up to 40% (when classifying acute leukemia subtypes) depending on the physician's experience and the sample quality. This problem raises the need to create automatic tools that provide hematologists with a second opinion during the classification process. Our research presents a contextual analysis methodology for the detection of acute leukemia subtypes from bone marrow cells images. We propose a cells separation algorithm to break up overlapped regions. In this phase, we achieved an average accuracy of 95% in the evaluation of the segmentation process. In a second phase, we extract descriptive features to the nucleus and cytoplasm obtained in the segmentation phase in order to classify leukemia families and subtypes. We finally created a decision algorithm that provides an automatic diagnosis for a patient. In our experiments, we achieved an overall accuracy of 92% in the supervised classification of acute leukemia families, 84% for the lymphoblastic subtypes, and 92% for the myeloblastic subtypes. Finally, we achieved accuracies of 95% in the diagnosis of leukemia families and 90% in the diagnosis of leukemia subtypes. PMID:26107374

  5. Segmentation and Classification of Bone Marrow Cells Images Using Contextual Information for Medical Diagnosis of Acute Leukemias

    PubMed Central

    Reta, Carolina; Altamirano, Leopoldo; Gonzalez, Jesus A.; Diaz-Hernandez, Raquel; Peregrina, Hayde; Olmos, Ivan; Alonso, Jose E.; Lobato, Ruben

    2015-01-01

    Morphological identification of acute leukemia is a powerful tool used by hematologists to determine the family of such a disease. In some cases, experienced physicians are even able to determine the leukemia subtype of the sample. However, the identification process may have error rates up to 40% (when classifying acute leukemia subtypes) depending on the physicians experience and the sample quality. This problem raises the need to create automatic tools that provide hematologists with a second opinion during the classification process. Our research presents a contextual analysis methodology for the detection of acute leukemia subtypes from bone marrow cells images. We propose a cells separation algorithm to break up overlapped regions. In this phase, we achieved an average accuracy of 95% in the evaluation of the segmentation process. In a second phase, we extract descriptive features to the nucleus and cytoplasm obtained in the segmentation phase in order to classify leukemia families and subtypes. We finally created a decision algorithm that provides an automatic diagnosis for a patient. In our experiments, we achieved an overall accuracy of 92% in the supervised classification of acute leukemia families, 84% for the lymphoblastic subtypes, and 92% for the myeloblastic subtypes. Finally, we achieved accuracies of 95% in the diagnosis of leukemia families and 90% in the diagnosis of leukemia subtypes. PMID:26107374

  6. High CD33 expression levels in acute myeloid leukemia cells carrying the nucleophosmin (NPM1) mutation

    PubMed Central

    De Propris, Maria Stefania; Raponi, Sara; Diverio, Daniela; Milani, Maria Laura; Meloni, Giovanna; Falini, Brunangelo; Fo, Robin; Guarini, Anna

    2011-01-01

    The CD33 antigen is expressed on the blast cells of most cases of acute myeloid leukemia and represents a suitable tumor-associated target antigen for antibody-based therapies. The aim of this study was to investigate the relationship between the CD33 levels quantified by mean fluorescence intensity and antibody binding capacity, and the presence/absence of NPM1 and FLT3 gene mutations in 99 newly diagnosed acute myeloid leukemia cases. The CD33 intensity evaluated as mean fluorescence intensity and antibody binding capacity was significantly higher in the NPM1-mutated acute myeloid leukemia cases compared to the NPM1-unmutated cases (P=0.0001 and P=0.0088, respectively). On the contrary, FLT3 gene mutations did not influence the levels of CD33 expression on the leukemic cells. These results establish a rational basis for the therapeutic use of anti-CD33 antibodies in NPM1-mutated acute myeloid leukemia patients. PMID:21791474

  7. Antibody-dependent cell-mediated cytotoxicity overcomes NK cell-resistance in MLL-rearranged leukemia expressing inhibitory KIR ligands but not activating ligands

    PubMed Central

    Chan, Wing Keung; Sutherland, May Kung; Li, Ying; Zalevsky, Jonathan; Schell, Sarah; Leung, Wing

    2012-01-01

    Purpose Leukemias with MLL gene rearrangement are associated with a poor prognosis. Natural killer (NK) cell therapy is a potential treatment, but leukemia cells may be resistant. Here, we sought to determine the susceptibility of MLL-rearranged leukemia cells to NK cell lysis and to develop a novel immunotherapeutic approach to optimize NK cell therapy, including the use of an antibody against leukemia-associated antigen and the elimination of killer-cell immunoglobulin-like receptor (KIR)mediated inhibition. Experimental Design Three MLL-rearranged leukemia cell lines (RS4;11, SEM, and MV4-11) and primary leukemia blasts were assessed for surface phenotype and susceptibility to NK cell lysis with or without antibodies against CD19 (XmAb5574), CD33 (lintuzumab), or KIR ligands. Results All three cell lines were resistant to NK cell lysis, had some inhibitory KIR ligands and protease inhibitor-9, and expressed low levels of NKG2D activating ligands and adhesion molecules. After treatment with XmAb5574 or lintuzumab, MLL-rearranged leukemia cells were efficiently killed by NK cells. The addition of panmajor histocompatibility complex class I antibody, which blocked inhibitory KIR-HLA interaction, further augmented degranulation in all three KIR2DL1, KIR2DL2/3, and KIR3DL1 subsets of NK cells based on the rule of missing-self recognition. A mouse model showed a decreased rate of leukemia progression in vivo as monitored by bioluminescence imaging and longer survival after antibody treatment. Conclusion Our data support the use of a triple immunotherapy approach, including an antibody directed against tumor-associated antigen, KIR-mismatched NK cell transplantation, and inhibitory KIR blockade, for the treatment of NK cellresistant MLL-rearranged leukemias. PMID:23014531

  8. Genetically Modified T-cell Immunotherapy in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-02-01

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  9. Apoptosis of K562 leukemia cells by AbnobaviscumF, a European mistletoe extract.

    PubMed

    Park, Yu-Kyoung; Do, Young Rok; Jang, Byeong-Churl

    2012-12-01

    Evidence suggests that mistletoe extract has the potential to be used as an anticancer agent. AbnobaviscumF is a European mistletoe extract from the host tree Fraxinus. We investigated the effect of AbnobaviscumF on the growth and survival of different leukemia cell lines. AbnobaviscumF treatment strongly reduced survival and induced apoptosis of K562 (human myeloid leukemia), RPMI-8226 (human plasmacytoma) and L1210 (murine lymphocytic leukemia) cells in culture. Using K562 cells to further investigate the mechanism of action of AbnobaviscumF, we showed that AbnobaviscumF-induced cell death was associated with the activation of caspase-9, JNK-1/2 and p38 MAPK, as well as with the downregulation of Mcl-1, and inhibition of ERK-1/2 and PKB phosphorylation. Moreover, AbnobaviscumF treatment led to both a reduction of cellular glutathione (GSH) and the induction of ER stress (GRP78 and CHOP induction and eIF-2? phosphorylation). By contrast, AbnobaviscumF did not impact the expression of the DR4 and DR5 death receptors. The AbnobaviscumF-induced apoptosis of K562 cells was blocked by pretreatment with either GSH, z-VAD-fmk or SP600125. Our results, therefore, show that AbnobaviscumF induces apoptosis of K562 cells through the activation of the intrinsic caspase pathway, the phosphorylation of JNK-1, the reduction of cellular GSH, and the induction of ER stress. PMID:22972372

  10. Adipocytes cause leukemia cell resistance to L-asparaginase via release of glutamine.

    PubMed

    Ehsanipour, Ehsan A; Sheng, Xia; Behan, James W; Wang, Xingchao; Butturini, Anna; Avramis, Vassilios I; Mittelman, Steven D

    2013-05-15

    Obesity is a significant risk factor for cancer. A link between obesity and a childhood cancer has been identified: obese children diagnosed with high-risk acute lymphoblastic leukemia (ALL) had a 50% greater risk of relapse than their lean counterparts. l-asparaginase (ASNase) is a first-line therapy for ALL that breaks down asparagine and glutamine, exploiting the fact that ALL cells are more dependent on these amino acids than other cells. In the present study, we investigated whether adipocytes, which produce significant quantities of glutamine, may counteract the effects of ASNase. In children being treated for high-risk ALL, obesity was not associated with altered plasma levels of asparagine or glutamine. However, glutamine synthetase was markedly increased in bone marrow adipocytes after induction chemotherapy. Obesity substantially impaired ASNase efficacy in mice transplanted with syngeneic ALL cells and, like in humans, without affecting plasma asparagine or glutamine levels. In coculture, adipocytes inhibited leukemic cell cytotoxicity induced by ASNase, and this protection was dependent on glutamine secretion. These findings suggest that adipocytes work in conjunction with other cells of the leukemia microenvironment to protect leukemia cells during ASNase treatment. PMID:23585457

  11. Hepatic leukemia factor promotes resistance to cell death: Implications for therapeutics and chronotherapy

    SciTech Connect

    Waters, Katrina M.; Sontag, Ryan L.; Weber, Thomas J.

    2013-04-15

    Physiological variation related to circadian rhythms and aberrant gene expression patterns are believed to modulate therapeutic efficacy, but the precise molecular determinants remain unclear. Here we examine the regulation of cell death by hepatic leukemia factor (HLF), which is an output regulator of circadian rhythms and is aberrantly expressed in human cancers, using an ectopic expression strategy in JB6 mouse epidermal cells and human keratinocytes. Ectopic HLF expression inhibited cell death in both JB6 cells and human keratinocytes, as induced by serum-starvation, tumor necrosis factor alpha and ionizing radiation. Microarray analysis indicates that HLF regulates a complex multi-gene transcriptional program encompassing upregulation of anti-apoptotic genes, downregulation of pro-apoptotic genes, and many additional changes that are consistent with an anti-death program. Collectively, our results demonstrate that ectopic expression of HLF, an established transcription factor that cycles with circadian rhythms, can recapitulate many features associated with circadian-dependent physiological variation. - Highlights: ► Circadian-dependent physiological variation impacts therapeutic efficacy. ► Hepatic leukemia factor inhibits cell death and is a candidate circadian factor. ► Hepatic leukemia factor anti-death program is conserved in murine and human cells. ► Transcriptomics indicates the anti-death program results from a systems response.

  12. Efficacy of ponatinib against ABL tyrosine kinase inhibitor-resistant leukemia cells

    SciTech Connect

    Okabe, Seiichi Tauchi, Tetsuzo; Tanaka, Yuko; Ohyashiki, Kazuma

    2013-06-07

    Highlights: •Efficacy of ponatinib against ABL tyrosine kinase inhibitor-resistant leukemia cells okabe et al. •Imatinib or nilotinib resistance was involved Src family kinase. •The BCR-ABL point mutation (E334V) was highly resistant to imatinib or nilotinib. •Ponatinib was a powerful strategy against imatinib or nilotinib resistant Ph-positive cells. -- Abstract: Because a substantial number of patients with chronic myeloid leukemia acquire resistance to ABL tyrosine kinase inhibitors (TKIs), their management remains a challenge. Ponatinib, also known as AP24534, is an oral multi-targeted TKI. Ponatinib is currently being investigated in a pivotal phase 2 clinical trial. In the present study, we analyzed the molecular and functional consequences of ponatinib against imatinib- or nilotinib-resistant (R) K562 and Ba/F3 cells. The proliferation of imatinib- or nilotinib-resistant K562 cells did not decrease after treatment with imatinib or nilotinib. Src family kinase Lyn was activated. Point mutation Ba/F3 cells (E334 V) were also highly resistant to imatinib and nilotinib. Treatment with ponatinib for 72 h inhibited the growth of imatinib- and nilotinib-resistant cells. The phosphorylation of BCR-ABL, Lyn, and Crk-L was reduced. This study demonstrates that ponatinib has an anti-leukemia effect by reducing ABL and Lyn kinase activity and this information may be of therapeutic relevance.

  13. Natural Killer Cell Mediated Missing-Self Recognition Can Protect Mice from Primary Chronic Myeloid Leukemia In Vivo

    PubMed Central

    Kijima, Mika; Gardiol, Nomie; Held, Werner

    2011-01-01

    Background Natural Killer (NK) cells are thought to protect from residual leukemic cells in patients receiving stem cell transplantation. However, multiple retrospective analyses of patient data have yielded conflicting conclusions regarding a putative role of NK cells and the essential NK cell recognition events mediating a protective effect against leukemia. Further, a NK cell mediated protective effect against primary leukemia in vivo has not been shown directly. Methodology/Principal Findings Here we addressed whether NK cells have the potential to control chronic myeloid leukemia (CML) arising based on the transplantation of BCR-ABL1 oncogene expressing primary bone marrow precursor cells into lethally irradiated recipient mice. These analyses identified missing-self recognition as the only NK cell-mediated recognition strategy, which is able to significantly protect from the development of CML disease in vivo. Conclusion Our data provide a proof of principle that NK cells can control primary leukemic cells in vivo. Since the presence of NK cells reduced the abundance of leukemia propagating cancer stem cells, the data raise the possibility that NK cell recognition has the potential to cure CML, which may be difficult using small molecule BCR-ABL1 inhibitors. Finally, our findings validate approaches to treat leukemia using antibody-based blockade of self-specific inhibitory MHC class I receptors. PMID:22132120

  14. ESAM is a novel human hematopoietic stem cell marker associated with a subset of human leukemias.

    PubMed

    Ishibashi, Tomohiko; Yokota, Takafumi; Tanaka, Hirokazu; Ichii, Michiko; Sudo, Takao; Satoh, Yusuke; Doi, Yukiko; Ueda, Tomoaki; Tanimura, Akira; Hamanaka, Yuri; Ezoe, Sachiko; Shibayama, Hirohiko; Oritani, Kenji; Kanakura, Yuzuru

    2016-04-01

    Reliable markers are essential to increase our understanding of the biological features of human hematopoietic stem cells and to facilitate the application of hematopoietic stem cells in the field of transplantation and regenerative medicine. We previously identified endothelial cell-selective adhesion molecule (ESAM) as a novel functional marker of hematopoietic stem cells in mice. Here, we found that ESAM can also be used to purify human hematopoietic stem cells from all the currently available sources (adult bone marrow, mobilized peripheral blood, and cord blood). Multipotent colony-forming units and long-term hematopoietic-reconstituting cells in immunodeficient mice were found exclusively in the ESAM(High) fraction of CD34(+)CD38(-) cells. The CD34(+)CD38(-) fraction of cord blood and collagenase-treated bone marrow contained cells exhibiting extremely high expression of ESAM; these cells are likely to be related to the endothelial lineage. Leukemia cell lines of erythroid and megakaryocyte origin, but not those of myeloid or lymphoid descent, were ESAM positive. However, high ESAM expression was observed in some primary acute myeloid leukemia cells. Furthermore, KG-1a myeloid leukemia cells switched from ESAM negative to ESAM positive with repeated leukemia reconstitution in vivo. Thus, ESAM is a useful marker for studying both human hematopoietic stem cells and leukemia cells. PMID:26774386

  15. Antitumor effects with apoptotic death in human promyelocytic leukemia HL-60 cells and suppression of leukemia xenograft tumor growth by irinotecan HCl.

    PubMed

    Chen, Yung-Liang; Chueh, Fu-Shin; Yang, Jai-Sing; Hsueh, Shu-Ching; Lu, Chi-Cheng; Chiang, Jo-Hua; Lee, Ching-Sung; Lu, Hsu-Feng; Chung, Jing-Gung

    2015-07-01

    Irinotecan HCl (CPT-11) is an anticancer prodrug, but there is no available information addressing CPT-11-inhibited leukemia cells in in vitro and in vivo studies. Therefore, we investigated the cytotoxic effects of CPT-11 in promyelocytic leukemia HL-60 cells and in vivo and tumor growth in a leukemia xenograft model. Effects of CPT-11 on HL-60 cells were determined using flow cytometry, immunofluorescence staining, comet assay, real-time PCR, and Western blotting. CPT-11 demonstrated a dose- and time-dependent inhibition of cell growth, induction of apoptosis, and cell-cycle arrest at G0/G1 phase in HL-60 cells. CPT-11 promoted the release of AIF from mitochondria and its translocation to the nucleus. Bid, Bax, Apaf-1, caspase-9, AIF, Endo G, caspase-12, ATF-6b, Grp78, CDK2, Chk2, and cyclin D were all significantly upregulated and Bcl-2 was down-regulated by CPT-11 in HL-60 cells. Induction of cell-cycle arrest by CPT-11 was associated with changes in expression of key cell-cycle regulators such as CDK2, Chk2, and cyclin D in HL-60 cells. To test whether CPT-11 could augment antitumor activity in vivo, athymic BALB/c(nu/nu) nude mice were inoculated with HL-60 cells, followed by treatment with either CPT-11. The treatments significantly inhibited tumor growth and reduced tumor weight and volume in the HL-60 xenograft mice. The present study demonstrates the schedule-dependent antileukemia effect of CPT-11 using both in vitro and in vivo models. CPT-11 could potentially be a promising agent for the treatment of promyelocytic leukemia and requires further investigation. PMID:24474168

  16. Bryostatin 5 induces apoptosis in acute monocytic leukemia cells by activating PUMA and caspases.

    PubMed

    Wang, Yiwei; Zhang, Jinbao; Wang, Qixia; Zhang, Tao; Yang, Yang; Yi, Yanghua; Gao, Guangxun; Dong, Hongjuan; Zhu, Huafeng; Li, Yue; Lin, Houwen; Tang, Haifeng; Chen, Xiequn

    2013-10-15

    Acute leukemia is a malignant clonal hematopoietic stem cell disease. In the current study, we examined the effects of bryostatin 5 on acute monocytic leukemia cells in vitro and in vivo. We also explored the mechanisms and pathways underlying the increase in apoptosis induced by bryostatin 5. Bryostatin 5 inhibited the growth of primary acute monocytic leukemia cells and U937 cells in a dose- and time-dependent manners. Bryostatin 5 also induced an increase in apoptosis and a decrease in the mitochondrial membrane potential (MMP) in U937 cells. Transmission electron microscopy (TEM) revealed that bryostatin 5-treated cells displayed typical apoptotic characteristics (chromatin condensation, karyopyknosis and formation of crescents and apoptotic bodies). In addition, bryostatin 5 increased the expression of P53 upregulated modulator of apoptosis (PUMA) and slightly increased P53 expression. Bryostatin 5 also significantly decreased Bcl-XL expression and significantly increased the expression levels of Bak, Bax, cleaved caspase 9 and cleaved caspase 3. The pro-apoptotic activity of bryostatin 5 in U937 cells was inhibited by PUMA siRNA and z-LEHD-fmk (a specific caspase 9 inhibitor). In addition, the PUMA siRNA significantly affected the expression of cleaved caspase 9, whereas z-LEHD-fmk had little effect on the expression of PUMA. The results suggest that PUMA is located upstream of caspase 9 in this apoptotic signaling pathway. These novel findings provide mechanistic insight into the induction of apoptosis by bryostatin 5 and might facilitate the development of clinical strategies to enhance the therapeutic efficacy of treatments for acute monocytic leukemia. PMID:24036350

  17. PCFT/SLC46A1 promoter methylation and restoration of gene expression in human leukemia cells

    SciTech Connect

    Gonen, Nitzan; Bram, Eran E.; Assaraf, Yehuda G.

    2008-11-28

    The proton-coupled folate transporter (PCFT/SLC46A1) displays optimal and prominent folate and antifolate transport activity at acidic pH in human carcinoma cells but poor activity in leukemia cells. Consistently herein, human leukemia cell lines expressed poor PCFT transcript levels, whereas various carcinoma cell lines showed substantial PCFT gene expression. We identified a CpG island with high density at nucleotides -200 through +100 and explored its role in PCFT promoter silencing. Leukemia cells with barely detectable PCFT transcripts consistently harbored 85-100% methylation of this CpG island, whereas no methylation was found in carcinoma cells. Treatment with 5-Aza-2'-deoxycytidine which induced demethylation but not with the histone deacetylase inhibitor trichostatin A, restored 50-fold PCFT expression only in leukemia cells. These findings constitute the first demonstration of the dominant epigenetic silencing of the PCFT gene in leukemia cells. The potential translational implications of the restoration of PCFT expression in chemotherapy of leukemia are discussed.

  18. CD34⁺/CD38⁻ acute myelogenous leukemia cells aberrantly express CD82 which regulates adhesion and survival of leukemia stem cells.

    PubMed

    Nishioka, Chie; Ikezoe, Takayuki; Furihata, Mutsuo; Yang, Jing; Serada, Satoshi; Naka, Tetsuji; Nobumoto, Atsuya; Kataoka, Sayo; Tsuda, Masayuki; Udaka, Keiko; Yokoyama, Akihito

    2013-05-01

    To identify molecular targets in leukemia stem cells (LSCs), this study compared the protein expression profile of freshly isolated CD34(+) /CD38(-) cells with that of CD34(+) /CD38(+) counterparts from individuals with acute myelogenous leukemia (n = 2, AML) using isobaric tags for relative and absolute quantitation (iTRAQ). A total of 98 proteins were overexpressed, while six proteins were underexpressed in CD34(+) /CD38(-) AML cells compared with their CD34(+) /CD38(+) counterparts. Proteins overexpressed in CD34(+) /CD38(-) AML cells included a number of proteins involved in DNA repair, cell cycle arrest, gland differentiation, antiapoptosis, adhesion, and drug resistance. Aberrant expression of CD82, a family of adhesion molecules, in CD34(+) /CD38(-) AML cells was noted in additional clinical samples (n = 12) by flow cytometry. Importantly, down-regulation of CD82 in CD34(+) /CD38(-) AML cells by a short hairpin RNA (shRNA) inhibited adhesion to fibronectin via up-regulation of matrix metalloproteinases 9 (MMP9) and colony forming ability of these cells as assessed by transwell assay, real-time RT-PCR, and colony forming assay, respectively. Moreover, we found that down-regulation of CD82 in CD34(+) /CD38(-) AML cells by an shRNA significantly impaired engraftment of these cells in severely immunocompromised mice. Taken together, aberrant expression of CD82 might play a role in adhesion of LSCs to bone marrow microenvironment and survival of LSCs. CD82 could be an attractive molecular target to eradicate LSCs. PMID:23055153

  19. Myeloid cell leukemia-1 regulates the cell growth and predicts prognosis in gastric cancer.

    PubMed

    Lee, Wan-Sik; Park, Young-Lan; Kim, Nuri; Oh, Hyung-Hoon; Son, Dong-Jun; Kim, Mi-Young; Oak, Chan-Young; Chung, Cho-Yun; Park, Hyung-Chul; Kim, Jong-Sun; Myung, Dae-Seong; Cho, Sung-Bum; Joo, Young-Eun

    2015-05-01

    The expression of myeloid cell leukemia-1 (Mcl?1), a member of the anti-apoptotic Bcl-2 protein family, has been associated with tumor progression and adverse patient outcome. The aims of current study were to evaluate whether Mcl-1 affects the survival or death of gastric cancer cells, and to investigate the prognostic value of its expression in gastric cancer. PcDNA3.1-Mcl-1 expression and Mcl-1 siRNA vectors were used to overexpress and silence Mcl-1 expression in gastric cancer cell lines including SNU638 and TMK1, respectively. Immunohistochemistry was used to determine the expression of Mcl-1 in gastric cancer tissues. Apoptosis was determined by the TUNEL assay, and cell proliferation was determined by immunostaining with a Ki-67 antibody. Mcl-1 knockdown induced apoptosis through the upregulation of caspase-3, and -7, and PARP activity, and the release of Smac/DIABLO and Omi/HtrA2 into the cytoplasm. Additionally, cell cycle arrest occurred due to decrease of cyclin D1, cell division cycle gene 2 (cdc2), and cyclin-dependent kinase 4 and 6. In contrast, overexpression of Mcl-1 inhibited apoptosis and cell cycle arrest. Mcl-1 knockdown did not suppress tumor cell proliferation in gastric cancer cells, whereas overexpression of Mcl-1 enhanced tumor cell proliferation. The JAK2 and STAT3 signaling cascades were significantly blocked by Mcl-1 knockdown. The mean Ki-67 labeling index (KI) value of Mcl-1 positive tumors was significantly lower than that of Mcl-1 negative tumors. However, there was no significant difference between Mcl-1 expression and the apoptotic index (AI). Mcl-1 expression was significantly increased in gastric cancer tissues compared to normal gastric mucosa tissues, and was associated with age, tumor size, stage, depth of invasion, lymph node metastasis and poor survival. Our study showed that Mcl-1 regulates the cell growth and might be a potential prognostic marker for gastric cancer. PMID:25672320

  20. [Reduction of hairiness of a transsexual person].

    PubMed

    Karppinen, Ari

    2015-01-01

    Reduction of male pattern hairiness--especially facial hairiness--is important for the identity of a transsexual female. Methods of treatment include epilation, waxing, chemical depilation, planing, electrolysis, eflornitine cream and methods based on optical light. Also the hormonal therapies utilized in the treatment process reduce the degree of hairiness and make the hairs thinner. Instead of hair removal, one should rather speak of reducing hairiness, since life-long hairlessness is usually not achieved even by the most effective methods of hair reduction. Aspects affecting the choice of treatment include skin type, quality of hair, tolerability and availability of treatment, among other things. PMID:26237932

  1. Upsides and downsides to polarity and asymmetric cell division in leukemia.

    PubMed

    Hawkins, E D; Russell, S M

    2008-11-24

    The notion that polarity regulators can act as tumor suppressors in epithelial cells is now well accepted. The function of these proteins in lymphocytes is less well explored, and their possible function as suppressors of leukemia has had little attention so far. We review the literature on lymphocyte polarity and the growing recognition that polarity proteins have an important function in lymphocyte function. We then describe molecular relationships between the polarity network and signaling pathways that have been implicated in leukemogenesis, which suggest mechanisms by which the polarity network might impact on leukemogenesis. We particularly focus on the possibility that disruption of polarity might alter asymmetric cell division (ACD), and that this might be a leukemia-initiating event. We also explore the converse possibility that leukemic stem cells might be produced or maintained by ACD, and therefore that Dlg, Scribble and Lgl might be important regulators of this process. PMID:19029941

  2. Inhibition of Murine Leukemia Virus Production in Chronically Infected AKR Cells: A Novel Effect of Interferon

    PubMed Central

    Friedman, Robert M.; Ramseur, Janet M.

    1974-01-01

    Treatment of AKR cells that had spontaneously become procedures of a murine leukemia virus with a partially purified mouse interferon (> 5 × 107 international mouse reference units per mg of protein) inhibited endogenous virus production. This inhibitory effect decreased over a 72-hr period in a manner similar to interferon-induced antiviral activity directed against vesicular stomatitis virus in AKR cells. Despite the inhibitory effect of interferon on infectious murine leukemia virus and viral reverse transcriptase (RNA-dependent DNA polymerase) titers in the culture fluids, intracellular levels of viral groups-specific antigens were significantly increased. These results suggest that interferon treatment in AKR cells inhibited the assembly or release of the virus. PMID:4139716

  3. Ubiquitination of human T-cell leukemia virus type 1 tax modulates its activity.

    PubMed

    Peloponese, Jean-Marie; Iha, Hidekatsu; Yedavalli, Venkat R K; Miyazato, Akiko; Li, Yan; Haller, Kerstin; Benkirane, Monsef; Jeang, Kuan-Teh

    2004-11-01

    Human T-cell leukemia virus type 1 (HTLV-1) encodes a 40-kDa Tax phosphoprotein. Tax is a transcriptional activator which modulates expression of the viral long terminal repeat and transcription of many cellular genes. Because Tax is a critical HTLV-1 factor which mediates viral transformation of T cells during the genesis of adult T-cell leukemia, it is important to understand the processes which can activate or inactivate Tax function. Here, we report that ubiquitination of Tax is a posttranscriptional mechanism which regulates Tax function. We show that ubiquitination does not target Tax for degradation by the proteasome. Rather, ubiquitin addition modifies Tax in a proteasome-independent manner from an active to a less-active transcriptional form. PMID:15479810

  4. Ubiquitination of Human T-Cell Leukemia Virus Type 1 Tax Modulates Its Activity

    PubMed Central

    Peloponese, Jean-Marie; Iha, Hidekatsu; Yedavalli, Venkat R. K.; Miyazato, Akiko; Li, Yan; Haller, Kerstin; Benkirane, Monsef; Jeang, Kuan-Teh

    2004-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) encodes a 40-kDa Tax phosphoprotein. Tax is a transcriptional activator which modulates expression of the viral long terminal repeat and transcription of many cellular genes. Because Tax is a critical HTLV-1 factor which mediates viral transformation of T cells during the genesis of adult T-cell leukemia, it is important to understand the processes which can activate or inactivate Tax function. Here, we report that ubiquitination of Tax is a posttranscriptional mechanism which regulates Tax function. We show that ubiquitination does not target Tax for degradation by the proteasome. Rather, ubiquitin addition modifies Tax in a proteasome-independent manner from an active to a less-active transcriptional form. PMID:15479810

  5. Hyperoside enhances the suppressive effects of arsenic trioxide on acute myeloid leukemia cells

    PubMed Central

    Zhang, Feng; Zhu, Fang-Bing; Li, Jia-Jia; Zhang, Ping-Ping; Zhu, Jun-Feng

    2015-01-01

    Hyperoside (Hyp) is the chief component of some Chinese herbs which has anticancer effect and the present study is to identify whether it could enhance the anti leukemic properties of arsenic trioxide (As2O3) in acute myeloid leukemia (AML). We provide evidence on the concomitant treatment of HL-60 human AML cells with hyperoside potentiates As2O3-dependent induction of apoptosis. The activation of caspase-9, Bcl-2-associated agonist of cell death (BAD), p-BAD, p27 was assessed by Western blot. Results showed that hyperoside inhibited BAD from phosphorylating, reactivated caspase-9, and increased p27 levels. Importantly, hyperoside demonstrated its induction of autophagy effect by upregulation of LC-II in HL-60 AML cell line. Taken together, hyperoside may serve as a great candidate of concomitant treatment for leukemia; these effects were probably related to induction of autophagy and enhancing apoptosis-inducing action of As2O3. PMID:26629016

  6. Critical molecular pathways in cancer stem cells of chronic myeloid leukemia

    PubMed Central

    Chen, Yaoyu; Peng, Cong; Sullivan, Con; Li, Dongguang; Li, Shaoguang

    2011-01-01

    Inhibition of BCR-ABL with kinase inhibitors in the treatment of Philadelphia-positive (Ph+) chronic myeloid leukemia (CML) is highly effective in controlling but not curing the disease. This is largely due to the inability of these kinase inhibitors to kill leukemia stem cells (LSCs) responsible for disease relapse. This stem cell resistance is not associated with the BCR-ABL kinase domain mutations resistant to kinase inhibitors. Development of curative therapies for CML requires the identification of critical molecular pathways responsible for the survival and self-renewal of LSCs. In this review, we will discuss our current understanding of these critical molecular pathways in LSCs and the available therapeutic strategies for targeting these stem cells in CML. PMID:20574455

  7. Variant Human T-cell Lymphotropic Virus Type 1c and Adult T-cell Leukemia, Australia

    PubMed Central

    Cassar, Olivier; Bardy, Peter; Kearney, Daniel; Gessain, Antoine

    2013-01-01

    Human T-cell lymphotropic virus type 1 is endemic to central Australia among Indigenous Australians. However, virologic and clinical aspects of infection remain poorly understood. No attempt has been made to control transmission to indigenous children. We report 3 fatal cases of adult T-cell leukemia/lymphoma caused by human T-cell lymphotropic virus type 1 Australo-Melanesian subtype c. PMID:24047544

  8. T-cell chronic lymphocytic leukemia in a double yellow-headed Amazon parrot (Amazona ochrocephala oratrix).

    PubMed

    Osofsky, Anna; Hawkins, Michelle G; Foreman, Oded; Kent, Michael S; Vernau, William; Lowenstine, Linda J

    2011-12-01

    An adult, male double yellow-headed Amazon parrot (Amazona ochrocephala oratrix) was diagnosed with chronic lymphocytic leukemia based on results of a complete blood cell count and cytologic examination of a bone marrow aspirate. Treatment with oral chlorambucil was attempted, but no response was evident after 40 days. The bird was euthanatized, and the diagnosis of chronic lymphocytic leukemia was confirmed on gross and microscopic examination of tissues. Neoplastic lymphocytes were found in the bone marrow, liver, kidney, testes, and blood vessels. Based on CD3-positive immunocytochemical and immunohistochemical immunophenotyping, the chronic lymphocytic leukemia was determined to be of T-cell origin. PMID:22458185

  9. Immunoglobulin gene rearrangement and cell surface antigen expression in acute lymphocytic leukemias of T cell and B cell precursor origins.

    PubMed

    Korsmeyer, S J; Arnold, A; Bakhshi, A; Ravetch, J V; Siebenlist, U; Hieter, P A; Sharrow, S O; LeBien, T W; Kersey, J H; Poplack, D G; Leder, P; Waldmann, T A

    1983-02-01

    We have explored the relationship among immunoglobulin gene rearrangement, cytoplasmic immunoglobulin production, and cell surface antigen expression within 37 cases of acute lymphocytic leukemia. All 12 cases of the T cell type had germ-line kappa and lambda genes and 11 of 12 had germ-line heavy chain genes. In contrast, all 25 cases of the "non-T, non-B" classification, which lacked both definitive T cell markers and surface immunoglobulin, had rearranged immunoglobulin genes, indicating that they represent precursor cells already committed to the B cell lineage at the gene level. 14 had rearranged heavy chain genes, yet retained germ-line light chain genes, whereas 11 cases had both heavy and light chain gene reorganizations. All patterns of immunoglobulin gene rearrangement predicted by a model that proceeds from heavy chain gene recombination to light chain genes were observed. Despite the uniform presence of rearranged immunoglobulin genes, only five cases produced cytoplasmic mu-chain, one exceptional case produced gamma-chain, and another produced only lambda-chain. The cases of B cell precursor type that do not produce immunoglobulin may represent cells that frequently possess ineffectively rearranged immunoglobulin genes. Included in this group may be a set of cells trapped within the B cell precursor series because their ineffective rearrangements have eliminated certain gene subsegments necessary for the assemblage of an effective heavy chain gene. All seven cases of the non-T, non-B subgroup that bore HLA-DR but lacked CALLA (the common acute lymphocytic leukemia-associated antigen) represented the earliest recognizable stage of B cell precursors with rearranged heavy chain genes but germ-line light chain genes. Correlations here suggest that cells entering B cell development express HLA-DR and rearrange heavy chain genes before the expression of a B cell-associated antigen recognized by the antibody BA-1, the antigen CALLA, and any subsequent light chain gene rearrangements. PMID:6401769

  10. Immunoglobulin gene rearrangement and cell surface antigen expression in acute lymphocytic leukemias of T cell and B cell precursor origins.

    PubMed Central

    Korsmeyer, S J; Arnold, A; Bakhshi, A; Ravetch, J V; Siebenlist, U; Hieter, P A; Sharrow, S O; LeBien, T W; Kersey, J H; Poplack, D G; Leder, P; Waldmann, T A

    1983-01-01

    We have explored the relationship among immunoglobulin gene rearrangement, cytoplasmic immunoglobulin production, and cell surface antigen expression within 37 cases of acute lymphocytic leukemia. All 12 cases of the T cell type had germ-line kappa and lambda genes and 11 of 12 had germ-line heavy chain genes. In contrast, all 25 cases of the "non-T, non-B" classification, which lacked both definitive T cell markers and surface immunoglobulin, had rearranged immunoglobulin genes, indicating that they represent precursor cells already committed to the B cell lineage at the gene level. 14 had rearranged heavy chain genes, yet retained germ-line light chain genes, whereas 11 cases had both heavy and light chain gene reorganizations. All patterns of immunoglobulin gene rearrangement predicted by a model that proceeds from heavy chain gene recombination to light chain genes were observed. Despite the uniform presence of rearranged immunoglobulin genes, only five cases produced cytoplasmic mu-chain, one exceptional case produced gamma-chain, and another produced only lambda-chain. The cases of B cell precursor type that do not produce immunoglobulin may represent cells that frequently possess ineffectively rearranged immunoglobulin genes. Included in this group may be a set of cells trapped within the B cell precursor series because their ineffective rearrangements have eliminated certain gene subsegments necessary for the assemblage of an effective heavy chain gene. All seven cases of the non-T, non-B subgroup that bore HLA-DR but lacked CALLA (the common acute lymphocytic leukemia-associated antigen) represented the earliest recognizable stage of B cell precursors with rearranged heavy chain genes but germ-line light chain genes. Correlations here suggest that cells entering B cell development express HLA-DR and rearrange heavy chain genes before the expression of a B cell-associated antigen recognized by the antibody BA-1, the antigen CALLA, and any subsequent light chain gene rearrangements. Images PMID:6401769

  11. Fucoidan Suppresses the Growth of Human Acute Promyelocytic Leukemia Cells In Vitro and In Vivo.

    PubMed

    Atashrazm, Farzaneh; Lowenthal, Ray M; Woods, Gregory M; Holloway, Adele F; Karpiniec, Samuel S; Dickinson, Joanne L

    2016-03-01

    Fucoidan, a natural component of seaweeds, is reported to have immunomodulatory and anti-tumor effects. The mechanisms underpinning these activities remain poorly understood. In this study, the cytotoxicity and anti-tumor activities of fucoidan were investigated in acute myeloid leukemia (AML) cells. The human AML cell lines NB4, KG1a, HL60, and K562 were treated with fucoidan and cell cycle, cell proliferation, and expression of apoptotic pathways molecules were analyzed. Fucoidan suppressed the proliferation and induced apoptosis through the intrinsic and extrinsic pathways in the acute promyelocytic leukemia (APL) cell lines NB4 and HL60, but not in KG1a and K562 cells. In NB4 cells, apoptosis was caspase-dependent as it was significantly attenuated by pre-treatment with a pan-caspase inhibitor. P21/WAF1/CIP1 was significantly up-regulated leading to cell cycle arrest. Fucoidan decreased the activation of ERK1/2 and down-regulated the activation of AKT through hypo-phosphorylation of Thr(308) residue but not Ser(473). In vivo, a xenograft model using the NB4 cells was employed. Mice were fed with fucoidan and tumor growth was measured following inoculation with NB4 cells. Subsequently, splenic natural killer (NK) cell cytotoxic activity was also examined. Oral doses of fucoidan significantly delayed tumor growth in the xenograft model and increased cytolytic activity of NK cells. Taken together, these data suggest that the selective inhibitory effect of fucoidan on APL cells and its protective effect against APL development in mice warrant further investigation of fucoidan as a useful agent in treatment of certain types of leukemia. PMID:26241708

  12. Underground Adaptation to a Hostile Environment: Acute Myeloid Leukemia vs. Natural Killer Cells

    PubMed Central

    Dulphy, Nicolas; Chrétien, Anne-Sophie; Khaznadar, Zena; Fauriat, Cyril; Nanbakhsh, Arash; Caignard, Anne; Chouaib, Salem; Olive, Daniel; Toubert, Antoine

    2016-01-01

    Acute myeloid leukemia (AML) is a heterogeneous group of malignancies which incidence increases with age. The disease affects the differentiation of hematopoietic stem or precursor cells in the bone marrow and can be related to abnormal cytogenetic and/or specific mutational patterns. AML blasts can be sensitive to natural killer (NK) cell antitumor response. However, NK cells are frequently defective in AML patients leading to tumor escape. NK cell defects affect not only the expression of the activating NK receptors, including the natural cytotoxicity receptors, the NK group 2, member D, and the DNAX accessory molecule-1, but also cytotoxicity and IFN-γ release. Such perturbations in NK cell physiology could be related to the adaptation of the AML to the immune pressure and more generally to patient’s clinical features. Various mechanisms are potentially involved in the inhibition of NK-cell functions in AML, including defects in the normal lymphopoiesis, reduced expression of activating receptors through cell-to-cell contacts, and production of immunosuppressive soluble agents by leukemic blasts. Therefore, the continuous cross-talk between AML and NK cells participates to the leukemia immune escape and eventually to patient’s relapse. Methods to restore or stimulate NK cells seem to be attractive strategies to treat patients once the complete remission is achieved. Moreover, our capacity in stimulating the NK cell functions could lead to the development of preemptive strategies to eliminate leukemia-initiating cells before the emergence of the disease in elderly individuals presenting preleukemic mutations in hematopoietic stem cells. PMID:27014273

  13. Curcumin enhances the cytogenotoxic effect of etoposide in leukemia cells through induction of reactive oxygen species

    PubMed Central

    Papież, Monika A; Krzyściak, Wirginia; Szade, Krzysztof; Bukowska-Straková, Karolina; Kozakowska, Magdalena; Hajduk, Karolina; Bystrowska, Beata; Dulak, Jozef; Jozkowicz, Alicja

    2016-01-01

    Curcumin may exert a more selective cytotoxic effect in tumor cells with elevated levels of free radicals. Here, we investigated whether curcumin can modulate etoposide action in myeloid leukemia cells and in normal cells of hematopoietic origin. HL-60 cell line, normal myeloid progenitor cluster of differentiation (CD)-34+ cells, and granulocytes were incubated for 4 or 24 hours at different concentrations of curcumin and/or etoposide. Brown Norway rats with acute myeloid leukemia (BNML) were used to prove the influence of curcumin on etoposide action in vivo. Rats were treated with curcumin for 23 days and etoposide was administered for the final 3 days of the experiment. Curcumin synergistically potentiated the cytotoxic effect of etoposide, and it intensified apoptosis and phosphorylation of the histone H2AX induced by this cytostatic drug in leukemic HL-60 cells. In contrast, curcumin did not significantly modify etoposide-induced cytotoxicity and H2AX phosphorylation in normal CD34+ cells and granulocytes. Curcumin modified the cytotoxic action of etoposide in HL-60 cells through intensification of free radical production because preincubation with N-acetyl-l-cysteine (NAC) significantly reduced the cytotoxic effect of curcumin itself and a combination of two compounds. In contrast, NAC did not decrease the cytotoxic effect of etoposide. Thus, oxidative stress plays a greater role in the cytotoxic effect of curcumin than that of etoposide in HL-60 cells. In vitro results were confirmed in a BNML model. Pretreatment with curcumin enhanced the antileukemic activity of etoposide in BNML rats (1.57-fold tumor reduction versus etoposide alone; P<0.05) and induced apoptosis of BNML cells more efficiently than etoposide alone (1.54-fold change versus etoposide alone; P<0.05), but this treatment protected nonleukemic B-cells from apoptosis. Thus, curcumin can increase the antileukemic effect of etoposide through reactive oxygen species in sensitive myeloid leukemia cells, and it is harmless to normal human cells. PMID:26893544

  14. Metabolic Adaptation to Chronic Inhibition of Mitochondrial Protein Synthesis in Acute Myeloid Leukemia Cells

    PubMed Central

    Jhas, Bozhena; Sriskanthadevan, Shrivani; Skrtic, Marko; Sukhai, Mahadeo A.; Voisin, Veronique; Jitkova, Yulia; Gronda, Marcela; Hurren, Rose; Laister, Rob C.; Bader, Gary D.; Minden, Mark D.; Schimmer, Aaron D.

    2013-01-01

    Recently, we demonstrated that the anti-bacterial agent tigecycline preferentially induces death in leukemia cells through the inhibition of mitochondrial protein synthesis. Here, we sought to understand mechanisms of resistance to tigecycline by establishing a leukemia cell line resistant to the drug. TEX leukemia cells were treated with increasing concentrations of tigecycline over 4 months and a population of cells resistant to tigecycline (RTEX+TIG) was selected. Compared to wild type cells, RTEX+TIG cells had undetectable levels of mitochondrially translated proteins Cox-1 and Cox-2, reduced oxygen consumption and increased rates of glycolysis. Moreover, RTEX+TIG cells were more sensitive to inhibitors of glycolysis and more resistant to hypoxia. By electron microscopy, RTEX+TIG cells had abnormally swollen mitochondria with irregular cristae structures. RNA sequencing demonstrated a significant over-representation of genes with binding sites for the HIF1?:HIF1? transcription factor complex in their promoters. Upregulation of HIF1? mRNA and protein in RTEX+TIG cells was confirmed by Q-RTPCR and immunoblotting. Strikingly, upon removal of tigecycline from RTEX+TIG cells, the cells re-established aerobic metabolism. Levels of Cox-1 and Cox-2, oxygen consumption, glycolysis, mitochondrial mass and mitochondrial membrane potential returned to wild type levels, but HIF1? remained elevated. However, upon re-treatment with tigecycline for 72 hours, the glycolytic phenotype was re-established. Thus, we have generated cells with a reversible metabolic phenotype by chronic treatment with an inhibitor of mitochondrial protein synthesis. These cells will provide insight into cellular adaptations used to cope with metabolic stress. PMID:23520503

  15. Polyphenols are responsible for the proapoptotic properties of pomegranate juice on leukemia cell lines

    PubMed Central

    Dahlawi, Haytham; Jordan-Mahy, Nicola; Clench, Malcolm; McDougall, Gordon J; Maitre, Christine Lyn

    2013-01-01

    Pomegranates have shown great promise as anti-cancer agents in a number of cancers including clinical trials in prostate cancer. We have previously shown pomegranate juice (PGJ) induced apoptosis and preferentially alters the cell cycle in leukemia cell lines compared with nontumor control cells. However, the agents responsible have not yet been fully elucidated. Treatment of four leukemia cell lines with five fractions obtained from PGJ by solid phase extraction demonstrated that only the acetonitrile fractions decreased adenosine triphosphate (ATP) levels in all leukemia cell lines. Acetonitrile fractions also significantly activated caspase-3 and induced nuclear morphology characteristic of apoptosis. S phase arrest was induced by acetonitrile fractions which matched S phase arrest seen previously following whole PGJ treatments. The acetonitrile fractions contained higher phenol content than whole PGJ whereas only low levels of phenols were seen in any other fraction. Liquid chromatography mass spectrometry (LC–MS) analysis demonstrated that acetonitrile fractions were enriched in ellagitannins, ellagic acid, and hydroxycinnamic acid derivatives but depleted in anthocyanins. Individual treatments with identified compounds demonstrated that the ellagitannin: punicalagin was the most active and mimicked the responses seen following acetonitrile fraction treatment. Bioactive components within pomegranate were confined to the acetonitrile fraction of PGJ. The enrichment in ellagitannins and hydroxycinnamic acids suggest these may provide the majority of the bioactivities of PGJ. Individual treatments with compounds identified demonstrated that the ellagitannin: punicalagin was the most active agent, highlighting this compound as a key bioactive agent in PGJ. PMID:24804028

  16. Targeting the leukemic stem cell: the Holy Grail of leukemia therapy

    PubMed Central

    Misaghian, N; Ligresti, G; Steelman, LS; Bertrand, FE; Bäsecke, J; Libra, M; Nicoletti, F; Stivala, F; Milella, M; Tafuri, A; Cervello, M; Martelli, AM

    2008-01-01

    Since the discovery of leukemic stem cells (LSCs) over a decade ago, many of their critical biological properties have been elucidated, including their distinct replicative properties, cell surface phenotypes, their increased resistance to chemo-therapeutic drugs and the involvement of growth-promoting chromosomal translocations. Of particular importance is their ability to transfer malignancy to non-obese diabetic-severe combined immunodeficient (NOD-SCID) mice. Furthermore, numerous studies demonstrate that acute myeloid leukemia arises from mutations at the level of stem cell, and chronic myeloid leukemia is also a stem cell disease. In this review, we will evaluate the main characteristics of LSCs elucidated in several well-documented leukemias. In addition, we will discuss points of therapeutic intervention. Promising therapeutic approaches include the targeting of key signal transduction pathways (for example, PI3K, Rac and Wnt) with small-molecule inhibitors and specific cell surface molecules (for example, CD33, CD44 and CD123), with effective cytotoxic antibodies. Also, statins, which are already widely therapeutically used for a variety of diseases, show potential in targeting LSCs. In addition, drugs that inhibit ATP-binding cassette transporter proteins are being extensively studied, as they are important in drug resistance—a frequent characteristic of LSCs. Although the specific targeting of LSCs is a relatively new field, it is a highly promising battleground that may reveal the Holy Grail of cancer therapy. PMID:18800146

  17. Rituximab, Rasburicase, and Combination Chemotherapy in Treating Young Patients With Newly Diagnosed Advanced B-Cell Leukemia or Lymphoma

    ClinicalTrials.gov

    2014-09-10

    Childhood Burkitt Lymphoma; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Stage I Childhood Large Cell Lymphoma; Stage I Childhood Small Noncleaved Cell Lymphoma; Stage II Childhood Large Cell Lymphoma; Stage II Childhood Small Noncleaved Cell Lymphoma; Stage III Childhood Large Cell Lymphoma; Stage III Childhood Small Noncleaved Cell Lymphoma; Stage IV Childhood Large Cell Lymphoma; Stage IV Childhood Small Noncleaved Cell Lymphoma; Untreated Childhood Acute Lymphoblastic Leukemia

  18. Hyaluronan oligomers sensitize chronic myeloid leukemia cell lines to the effect of Imatinib.

    PubMed

    Lompardía, Silvina Laura; Díaz, Mariángeles; Papademetrio, Daniela Laura; Mascaró, Marilina; Pibuel, Matías; Álvarez, Elida; Hajos, Silvia Elvira

    2016-04-01

    Chronic myeloid leukemia is a myeloproliferative syndrome characterized by the presence of the Philadelphia chromosome (Ph), generated by a reciprocal translocation occurring between chromosomes 9 and 22 [t(9;22)(q34;q11)]. As a consequence, a fusion gene (bcr-abl) encoding a constitutively active kinase is generated. The first-line treatment consists on BCR-ABL inhibitors such as Imatinib, Nilotinib and Dasatinib. Nevertheless, such treatment may lead to the selection of resistant cells. Therefore, finding molecules that enhance the anti-proliferative effect of first-line drugs is of value. Hyaluronan oligomers (oHA) are known to be able to sensitize several tumor cells to chemotherapy. We have previously demonstrated that oHA can revert Vincristine resistance in mouse lymphoma and human leukemia cell lines. However, little is known about the role of oHA in hematological malignancies. The aim of this work was to determine whether oHA are able to modulate the anti-proliferative effect of Imatinib in chronic myeloid leukemia (CML) cell lines. The effect on apoptosis and senescence as well as the involvement of signaling pathways were also evaluated. For this purpose, the human CML cell lines K562 and Kv562 (resistant) were used. We demonstrated that oHA sensitized both cell lines to the anti-proliferative effect of Imatinib increasing apoptosis and senescence. Moreover, this effect would be accomplished through the down-regulation of the PI3K signaling pathway. These findings highlight the potential of oHA when used as a co-adjuvant therapy for chronic myeloid leukemia. PMID:26582603

  19. CCI-779 in Treating Patients With Recurrent or Refractory B-Cell Non-Hodgkin's Lymphoma or Chronic Lymphocytic Leukemia

    ClinicalTrials.gov

    2014-05-07

    B-cell Chronic Lymphocytic Leukemia; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Malignant Neoplasm; Nodal Marginal Zone B-cell Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Splenic Marginal Zone Lymphoma; Waldenstrm Macroglobulinemia

  20. Elicitation Approaches for Withanolide Production in Hairy Root Culture of Withania somnifera (L.) Dunal.

    PubMed

    Sivanandhan, Ganeshan; Selvaraj, Natesan; Ganapathi, Andy; Manickavasagam, Markandan

    2016-01-01

    Withania somnifera (L.) Dunal is a versatile medicinal plant extensively utilized for production of phytochemical drug preparations. The roots and whole plants are traditionally used in Ayurveda, Unani, and Siddha medicines, as well as in homeopathy. Several studies provide evidence for an array of pharmaceutical properties due to the presence of steroidal lactones named "withanolides." A number of research groups have focused their attention on the effects of biotic and abiotic elicitors on withanolide production using cultures of adventitious roots, cell suspensions, shoot suspensions, and hairy roots in large-scale bioreactor for producing withanolides. This chapter explains the detailed procedures for induction and establishment of hairy roots from leaf explants of W. somnifera, proliferation and multiplication of hairy root cultures, estimation of withanolide productivity upon elicitation with salicylic acid and methyl jasmonate, and quantification of major withanolides by HPLC. The protocol herein described could be implemented for large-scale cultivation of hairy root biomass to improve withanolide production. PMID:26843160

  1. A proteomic chronology of gene expression through the cell cycle in human myeloid leukemia cells

    PubMed Central

    Ly, Tony; Ahmad, Yasmeen; Shlien, Adam; Soroka, Dominique; Mills, Allie; Emanuele, Michael J; Stratton, Michael R; Lamond, Angus I

    2014-01-01

    Technological advances have enabled the analysis of cellular protein and RNA levels with unprecedented depth and sensitivity, allowing for an unbiased re-evaluation of gene regulation during fundamental biological processes. Here, we have chronicled the dynamics of protein and mRNA expression levels across a minimally perturbed cell cycle in human myeloid leukemia cells using centrifugal elutriation combined with mass spectrometry-based proteomics and RNA-Seq, avoiding artificial synchronization procedures. We identify myeloid-specific gene expression and variations in protein abundance, isoform expression and phosphorylation at different cell cycle stages. We dissect the relationship between protein and mRNA levels for both bulk gene expression and for over ?6000 genes individually across the cell cycle, revealing complex, gene-specific patterns. This data set, one of the deepest surveys to date of gene expression in human cells, is presented in an online, searchable database, the Encyclopedia of Proteome Dynamics (http://www.peptracker.com/epd/). DOI: http://dx.doi.org/10.7554/eLife.01630.001 PMID:24596151

  2. Sensitivity of different methods for the detection of myeloperoxidase in leukemia cells.

    PubMed

    Ma, W; Hu, Z B; Drexler, H G

    1994-02-01

    We examined the sensitivity of different myeloperoxidase (MPO) detection methods in leukemia cell lines. To this end the MPO-positive acute promyelocytic leukemia cell line NB-4 was diluted into cell populations of the MPO-negative myeloma cell line MM-1 at different ratios. MPO protein was identified by classical cytochemical staining and by a specific anti-MPO monoclonal antibody in an immunofluorescent reaction. Cytochemical staining detected 1% positive cells among 99% negative cells. Careful, but time-consuming observation enabled the detection of positive cells in even higher dilutions. At least a 10-fold increase in sensitivity was achieved with the immunofluorescent method, as brightly fluorescent cells are more amenable for a screening of slides at lower microscopic magnification than the cytochemically visualized cells. MPO mRNA expression was examined in whole cell populations by Northern blotting (maximal sensitivity 1%), a reverse transcriptase-polymerase chain reaction (RT-PCR) amplification assay (sensitivity 0.1%), and by RT-PCR followed by Southern blotting (sensitivity 0.05%). The high sensitivity of PCR-based techniques is offset by the fact that these methods do not allow for the identification and further characterization of the individual, MPO-positive cells. Thus, methods examining bulk populations require homogeneous cell samples in order to avoid false-positivity stemming from a few residual bystander cells. The five different techniques were used to determine the status of MPO expression in 20 randomly chosen leukemia cell lines of myelomonocytic origin. In 11 cell lines (8 positive and 3 negative) all five tests provided concordant results. Three cell lines were Northern-negative, but RT-PCR-positive and MPO protein-positive suggesting that Northern blot analysis is the least sensitive tool. Six cell lines were devoid of MPO protein, at least according to the methods used here, but trace expression of MPO message was documented by PCR. All five techniques have advantages and drawbacks and must be carefully selected in order to obtain useful data. The detection of MPO is of experimental and clinical importance in the distinction of myeloid from lymphoid leukemias, and in the lineage assignment of apparently biphenotypic or unclassifiable cases. PMID:8309258

  3. Modification of Gene Expression, Proliferation, and Function of OP9 Stroma Cells by Bcr-Abl-Expressing Leukemia Cells

    PubMed Central

    Supper, Emmanuelle; Tahir, Suhail; Imai, Takahiko; Inoue, Joe; Minato, Nagahiro

    2015-01-01

    Expression of the Bcr-Abl fusion gene in hematopoietic progenitor cells (HPCs) results in the development of chronic myelogenous leukemia (CML), for which hematopoietic microenvironment plays an important role. We investigated the specific effects of an HPC line transduced with Bcr-Abl, KOBA, on BM-derived OP9 stroma cells. DNA microarray analysis revealed that OP9 cells co-cultured with KOBA cells (OP9/L) show diverse changes in the gene expression. OP9/L cells showed significant down-regulation of Cdkn genes and up-regulation of Icam1, leading to the increased proliferation capacity of OP9 cells and enhanced transmigration of leukemia cells through them. The effects were attributed to direct Notch activation of OP9 cells by KOBA cells. OP9/L cells also showed a markedly altered cytokine gene expression pattern, including a robust increase in a variety of proinflammatory genes and a decrease in hematopoietic cytokines such as Cxcl12, Scf, and Angpt1. Consequently, OP9/L cells promoted the proliferation of KOBA cells more efficiently than parental OP9 cells, whereas the activity supporting normal myelopoiesis was attenuated. In mice bearing KOBA leukemia, the characteristic genetic changes observed in OP9/L cells were reflected differentially in the endothelial cells (ECs) and mesenchymal stroma cells (MCs) of the BM. The ECs were markedly increased with Notch-target gene activation and decreased Cdkn expression, whereas the MCs showed a marked increase in proinflammatory gene expression and a profound decrease in hematopoietic genes. Human CML cell lines also induced essentially similar genetic changes in OP9 cells. Our results suggest that CML cells remodel the hematopoietic microenvironment by changing the gene expression patterns differentially in ECs and MCs of BM. PMID:26218064