Science.gov

Sample records for halbach magnet array

  1. Design of nested Halbach cylinder arrays for magnetic refrigeration applications

    NASA Astrophysics Data System (ADS)

    Trevizoli, Paulo V.; Lozano, Jaime A.; Peixer, Guilherme F.; Barbosa, Jader R., Jr.

    2015-12-01

    We present an experimentally validated analytical procedure to design nested Halbach cylinder arrays for magnetic cooling applications. The procedure aims at maximizing the magnetic flux density variation in the core of the array for a given set of design parameters, namely the inner diameter of the internal magnet, the air gap between the magnet cylinders, the number of segments of each magnet and the remanent flux density of the Nd2Fe14B magnet grade. The design procedure was assisted and verified by 3-D numerical modeling using a commercial software package. An important aspect of the optimal design is to maintain an uniform axial distribution of the magnetic flux density in the region of the inner gap occupied by the active magnetocaloric regenerator. An optimal nested Halbach cylinder array was manufactured and experimentally evaluated for the magnetic flux density in the inner gap. The analytically calculated magnetic flux density variation agreed to within 5.6% with the experimental value for the center point of the magnet gap.

  2. Radial Halbach Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2009-01-01

    Radial Halbach magnetic bearings have been investigated as part of an effort to develop increasingly reliable noncontact bearings for future high-speed rotary machines that may be used in such applications as aircraft, industrial, and land-vehicle power systems and in some medical and scientific instrumentation systems. Radial Halbach magnetic bearings are based on the same principle as that of axial Halbach magnetic bearings, differing in geometry as the names of these two types of bearings suggest. Both radial and axial Halbach magnetic bearings are passive in the sense that unlike most other magnetic bearings that have been developed in recent years, they effect stable magnetic levitation without need for complex active control. Axial Halbach magnetic bearings were described in Axial Halbach Magnetic Bearings (LEW-18066-1), NASA Tech Briefs, Vol. 32, No. 7 (July 2008), page 85. In the remainder of this article, the description of the principle of operation from the cited prior article is recapitulated and updated to incorporate the present radial geometry. In simplest terms, the basic principle of levitation in an axial or radial Halbach magnetic bearing is that of the repulsive electromagnetic force between (1) a moving permanent magnet and (2) an electric current induced in a stationary electrical conductor by the motion of the magnetic field. An axial or radial Halbach bearing includes multiple permanent magnets arranged in a Halbach array ("Halbach array" is defined below) in a rotor and multiple conductors in the form of wire coils in a stator, all arranged so the rotary motion produces an axial or radial repulsion that is sufficient to levitate the rotor. A basic Halbach array (see Figure 1) consists of a row of permanent magnets, each oriented so that its magnetic field is at a right angle to that of the adjacent magnet, and the right-angle turns are sequenced so as to maximize the magnitude of the magnetic flux density on one side of the row while minimizing it on the opposite side. The advantage of this configuration is that it makes it possible to approach the theoretical maximum force per unit area that could be exerted by a given amount of permanent-magnet material. The configuration is named after physicist Klaus Halbach, who conceived it for use in particle accelerators. Halbach arrays have also been studied for use in magnetic-levitation ("maglev") railroad trains. In a radial Halbach magnetic bearing, the basic Halbach arrangement is modified into a symmetrical arrangement of sector-shaped permanent magnets mounted on the outer cylindrical surface of a drum rotor (see Figure 2). The magnets are oriented to concentrate the magnetic field on their radially outermost surface. The stator coils are mounted in a stator shell surrounding the rotor.

  3. A new magnetic bearing using Halbach magnet arrays for a magnetic levitation stage

    NASA Astrophysics Data System (ADS)

    Choi, Young-Man; Lee, Moon G.; Gweon, Dae-Gab; Jeong, Jaehwa

    2009-04-01

    Next-generation lithography requires a high precision stage, which is compatible with a high vacuum condition. A magnetic levitation stage with six degrees-of-freedom is considered state-of-the-art technology for a high vacuum condition. The noncontact characteristic of magnetic levitation enables high precision positioning as well as no particle generation. To position the stage against gravity, z-directional electromagnetic levitation mechanisms are widely used. However, if electromagnetic actuators for levitation are used, heat is inevitably generated, which deforms the structures and degrades accuracy of the stage. Thus, a gravity compensator is required. In this paper, we propose a new magnetic bearing using Halbach magnet arrays for a magnetic levitation stage. The novel Halbach magnetic bearing exerts a force four times larger than a conventional magnetic bearing with the same volume. We also discuss the complementary characteristics of the two magnetic bearings. By modifying the height of the center magnet in a Halbach magnetic bearing, a performance compromise between levitating force density and force uniformity is obtained. The Halbach linear active magnetic bearing can be a good solution for magnetic levitation stages because of its large and uniform levitation force.

  4. Analysis and modeling of the EDS Maglev system based on the Halbach permanent magnet array

    NASA Astrophysics Data System (ADS)

    Han, Qinghua

    Electro-dynamic suspension (EDS) Magnetic levitation (Maglev) with its advantage in maintenance, safety, efficiency, speed, and noise is regarded as a leading candidate for the next generation transportation/space launch assist system. The Halbach array due to its unique magnetic field feature has been widely used in various applications. The EDS system using Halbach arrays leads to the potential EDS system without super-conductor (SC) technology. In this thesis, the Halbach array magnetic field and the dynamics of a novel Halbach array EDS Maglev system were considered. The practical Halbach array magnetic field was analyzed using both a Fourier series approach and the finite element method (FEM). In addition, the optimal Halbach array geometry was derived and analyzed. A novel active magnetic array was introduced and used in the Halbach array EDS Maglev configuration. Furthermore, since the system is self-regulated in lateral, roll, pitch, and yaw directions, the control was simplified and can be implemented electronically. The dynamic stability analysis and simulation results showed that the system is marginally stable and a control mechanism is needed for stability and ride comfort control. The six degree of freedom (DOF) dynamics, and the vehicle's mass center offset effects on those dynamics were investigated with multiple passive and active magnetic forces. The results indicated that the vehicle's mass center offset has a strong effect on the dynamics of the Maglev system due to the uniqueness of the magnetic force and also that the mass center offset can cause Maglev oscillations at the take off stage. In order to guarantee the dynamic stability and ride comfort of the Maglev system, an optimized active damping and a linear quadratic regulator (LQR) control were developed. Finally, the simulation confirmed the effectiveness of the proposed multi-input and multi-output (MIMO) control designs.

  5. Dynamics of magnetic particles in cylindrical Halbach array: implications for magnetic cell separation and drug targeting.

    TOXLINE Toxicology Bibliographic Information

    Babinec P; Krafcík A; Babincová M; Rosenecker J

    2010-08-01

    Magnetic nanoparticles for therapy and diagnosis are at the leading edge of the rapidly developing field of bionanotechnology. In this study, we have theoretically studied motion of magnetic nano- as well as micro-particles in the field of cylindrical Halbach array of permanent magnets. Magnetic flux density was modeled as magnetostatic problem by finite element method and particle motion was described using system of ordinary differential equations--Newton law. Computations were done for nanoparticles Nanomag-D with radius 65 nm, which are often used in magnetic drug targeting, as well as microparticles DynaBeads-M280 with radius 1.4 microm, which can be used for magnetic separation. Analyzing snapshots of trajectories of hundred magnetite particles of each size in the water as well as in the air, we have found that optimally designed magnetic circuits of permanent magnets in quadrupolar Halbach array have substantially shorter capture time than simple blocks of permanent magnets commonly used in experiments, therefore, such a Halbach array may be useful as a potential source of magnetic field for magnetic separation and targeting of magnetic nanoparticles as well as microparticles for delivery of drugs, genes, and cells in various biomedical applications.

  6. Halbach Magnetic Rotor Development

    NASA Technical Reports Server (NTRS)

    Gallo, Christopher A.

    2008-01-01

    The NASA John H. Glenn Research Center has a wealth of experience in Halbach array technology through the Fundamental Aeronautics Program. The goals of the program include improving aircraft efficiency, reliability, and safety. The concept of a Halbach magnetically levitated electric aircraft motor will help reduce harmful emissions, reduce the Nation s dependence on fossil fuels, increase efficiency and reliability, reduce maintenance and decrease operating noise levels. Experimental hardware systems were developed in the GRC Engineering Development Division to validate the basic principles described herein and the theoretical work that was performed. A number of Halbach Magnetic rotors have been developed and tested under this program. A separate test hardware setup was developed to characterize each of the rotors. A second hardware setup was developed to test the levitation characteristics of the rotors. Each system focused around a unique Halbach array rotor. Each rotor required original design and fabrication techniques. A 4 in. diameter rotor was developed to test the radial levitation effects for use as a magnetic bearing. To show scalability from the 4 in. rotor, a 1 in. rotor was developed to also test radial levitation effects. The next rotor to be developed was 20 in. in diameter again to show scalability from the 4 in. rotor. An axial rotor was developed to determine the force that could be generated to position the rotor axially while it is rotating. With both radial and axial magnetic bearings, the rotor would be completely suspended magnetically. The purpose of this report is to document the development of a series of Halbach magnetic rotors to be used in testing. The design, fabrication and assembly of the rotors will be discussed as well as the hardware developed to test the rotors.

  7. Axial Halbach Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2008-01-01

    Axial Halbach magnetic bearings have been investigated as part of an effort to develop increasingly reliable noncontact bearings for future high-speed rotary machines that may be used in such applications as aircraft, industrial, and land-vehicle power systems and in some medical and scientific instrumentation systems. Axial Halbach magnetic bearings are passive in the sense that unlike most other magnetic bearings that have been developed in recent years, they effect stable magnetic levitation without need for complex active control.

  8. Halbach arrays consisting of cubic elements optimised for high field gradients in magnetic drug targeting applications

    NASA Astrophysics Data System (ADS)

    Barnsley, Lester C.; Carugo, Dario; Owen, Joshua; Stride, Eleanor

    2015-11-01

    A key challenge in the development of magnetic drug targeting (MDT) as a clinically relevant technique is designing systems that can apply sufficient magnetic force to actuate magnetic drug carriers at useful tissue depths. In this study an optimisation routine was developed to generate designs of Halbach arrays consisting of multiple layers of high grade, cubic, permanent magnet elements, configured to deliver the maximum pull or push force at a position of interest between 5 and 50?mm from the array, resulting in arrays capable of delivering useful magnetic forces to depths past 20?mm. The optimisation routine utilises a numerical model of the magnetic field and force generated by an arbitrary configuration of magnetic elements. Simulated field and force profiles of optimised arrays were evaluated, also taking into account the forces required for assembling the array in practice. The resultant selection for the array, consisting of two layers, was then constructed and characterised to verify the simulations. Finally the array was utilised in a set of in vitro experiments to demonstrate its capacity to separate and retain microbubbles loaded with magnetic nanoparticles against a constant flow. The optimised designs are presented as light-weight, inexpensive options for applying high-gradient, external magnetic fields in MDT applications.

  9. Analysis of eddy current losses in cylindrical linear oscillatory actuator with Halbach permanent magnet array mover

    NASA Astrophysics Data System (ADS)

    Ko, Kyoung-Jin; Choi, Ji-Hwan; Jang, Seok-Myeong; Choi, Jang-Young

    2012-04-01

    This paper describes calculations and comparisons of eddy current losses in a cylindrical linear oscillatory actuator with a Halbach array permanent magnet mover for different voltage source waveforms. Using the magnetic vector potential and a two-dimensional cylindrical coordinate system, the paper presents an analytical procedure and obtains solutions for the eddy current losses using the Poynting theorem. To verify the proposed method, the eddy current losses obtained from the analytical solutions are compared with the results of a non-linear finite element method. Moreover, this paper shows that the eddy current losses are more significant when the actuator is driven by a square voltage waveform than when it is driven by a sinusoidal voltage waveform.

  10. Circular Halbach array for fast magnetic separation of hyaluronan-expressing tissue progenitors.

    PubMed

    Joshi, Powrnima; Williams, P Stephen; Moore, Lee R; Caralla, Tonya; Boehm, Cynthia; Muschler, George; Zborowski, Maciej

    2015-10-01

    Connective tissue progenitors (CTPs) are a promising therapeutic agent for bone repair. Hyaluronan, a high molecular mass glycosaminoglycan, has been shown by us to be a suitable biomarker for magnetic separation of CTPs from bone marrow aspirates in a canine model. For the therapy to be applicable in humans, the magnetic separation process requires scale-up without compromising the viability of the cells. The scaled-up device presented here utilizes a circular Halbach array of diametrically magnetized, cylindrical permanent magnets. This allows precise control of the magnetic field gradient driving the separation, with theoretical analysis favoring a hexapole field. The separation vessel has the external diameter of a 50 mL conical centrifuge tube and has an internal rod that excludes cells from around the central axis. The magnet and separation vessel (collectively dubbed the hexapole magnet separator or HMS) was tested on four human and four canine bone marrow aspirates. Each CTP-enriched cell product was tested using cell culture bioassays as surrogates for in vivo engraftment quality. The magnetically enriched cell fractions showed statistically significant, superior performance compared to the unenriched and depleted cell fractions for all parameters tested, including CTP prevalence (CTPs per 10(6) nucleated cells), proliferation by colony forming unit (CFU) counts, and differentiation by staining for the presence of osteogenic and chondrogenic cells. The simplicity and speed of the HMS operation could allow both CTP isolation and engraftment during a single surgical procedure, minimizing trauma to patients and lowering cost to health care providers. PMID:26368657

  11. Halbach array motor/generators: A novel generalized electric machine

    SciTech Connect

    Merritt, B.T.; Post, R.F.; Dreifuerst, G.R.; Bender, D.A.

    1994-10-28

    In August 1979, Halbach submitted a paper entitled ``Design of Permanent Multipole Magnets with Oriented Rare Earth Cobalt Material.`` In this paper, he presented a novel method of generating multipole magnetic fields using non-intuitive geometrical arrangements of permanent magnets. In subsequent publications, he further defined these concepts. Of particular interest to one of the authors (RFP) was the special magnet array that generated a uniform dipole field. In 1990 Post proposed the construction of an electric machine (a motor/generator) using a dipole field based on Klaus Halbach`s array of permanent magnets. He further proposed that such a system should be employed as an integral part of ``an electromechanical battery`` (EMB), i.e., a modular flywheel system to be used as a device for storing electrical energy, as an alternative to the electrochemical storage battery. This paper reviews Halbach`s theory for the generation of a dipole field using an array of permanent magnet bars, presents a simple analysis of a family of novel ``ironless`` electric machines designed using the dipole Halbach array, and describes the results obtained when they were tested in the laboratory.

  12. Position sensor for linear synchronous motors employing halbach arrays

    DOEpatents

    Post, Richard Freeman

    2014-12-23

    A position sensor suitable for use in linear synchronous motor (LSM) drive systems employing Halbach arrays to create their magnetic fields is described. The system has several advantages over previously employed ones, especially in its simplicity and its freedom from being affected by weather conditions, accumulated dirt, or electrical interference from the LSM system itself.

  13. Torque analysis and measurements of a permanent magnet type Eddy current brake with a Halbach magnet array based on analytical magnetic field calculations

    NASA Astrophysics Data System (ADS)

    Park, Min-Gyu; Choi, Jang-Young; Shin, Hyeon-Jae; Jang, Seok-Myeong

    2014-05-01

    This paper presents the torque analysis and measurements of a permanent magnet (PM) type eddy current brake (ECB) with a Halbach magnet array based on analytical magnetic field calculations. On the basis of a magnetic vector potential and using a two-dimensional (2D) polar coordinate system, the analytical solution for magnetic flux density, including the eddy current reaction is evaluated. Based on these solutions, the magnetic torque is also determined analytically. A 2D finite element analysis is employed to validate the method used. Practical issues in the analytical study of the PM type ECBs, such as the maximum braking torque, the required rotor speed, and the segment-dependent, are fully discussed. Finally, the braking torque as a function of the rotor speed is measured to verify the results of the analytical study.

  14. Numerical simulation of a simple low-speed model for an electrodynamic levitation system based on a Halbach magnet array

    NASA Astrophysics Data System (ADS)

    Íñiguez, J.; Raposo, V.

    2010-05-01

    The design and analysis of a small prototype of a magnetic levitation system at low-speed using a Halbach-type magnet array is presented here. For that purpose, we have arranged a copper rim over a carbon fiber wheel, which is driven by an electric motor in presence of the magnet array, in such a manner that allows performing the experiment readily. The analysis of the system is undertaken under a two-dimensional (2D)-approach which permits computing and extending the study of our model to higher speeds. Our work is completed with a series of experimental measurements of lift and drag forces for different circumstances. Initially, the drag force is significant but after the compensation speed (when both forces balance) it slowly decreases. Conversely, the lift force becomes progressively bigger in such a manner that it attains quickly noteworthy values. We observe that the theoretical compensation speed is always minor than the experimental one and that the measured values for both forces are slightly smaller than the expected, although the main features of the experiment are well matched by our numerical simulation.

  15. Halbach array DC motor/generator

    DOEpatents

    Merritt, Bernard T. (Livermore, CA); Dreifuerst, Gary R. (Livermore, CA); Post, Richard F. (Walnut Creek, CA)

    1998-01-01

    A new configuration of DC motor/generator is based on a Halbach array of permanent magnets. This motor does not use ferrous materials so that the only losses are winding losses and losses due to bearings and windage. An "inside-out" design is used as compared to a conventional motor/generator design. The rotating portion, i.e., the rotor, is on the outside of the machine. The stationary portion, i.e., the stator, is formed by the inside of the machine. The rotor contains an array of permanent magnets that provide a uniform field. The windings of the motor are placed in or on the stator. The stator windings are then "switched" or "commutated" to provide a DC motor/generator much the same as in a conventional DC motor. The commutation can be performed by mechanical means using brushes or by electronic means using switching circuits. The invention is useful in electric vehicles and adjustable speed DC drives.

  16. Halbach array DC motor/generator

    DOEpatents

    Merritt, B.T.; Dreifuerst, G.R.; Post, R.F.

    1998-01-06

    A new configuration of DC motor/generator is based on a Halbach array of permanent magnets. This motor does not use ferrous materials so that the only losses are winding losses and losses due to bearings and windage. An ``inside-out`` design is used as compared to a conventional motor/generator design. The rotating portion, i.e., the rotor, is on the outside of the machine. The stationary portion, i.e., the stator, is formed by the inside of the machine. The rotor contains an array of permanent magnets that provide a uniform field. The windings of the motor are placed in or on the stator. The stator windings are then ``switched`` or ``commutated`` to provide a DC motor/generator much the same as in a conventional DC motor. The commutation can be performed by mechanical means using brushes or by electronic means using switching circuits. The invention is useful in electric vehicles and adjustable speed DC drives. 17 figs.

  17. Energy harvesting from electric power lines employing the Halbach arrays.

    PubMed

    He, Wei; Li, Ping; Wen, Yumei; Zhang, Jitao; Lu, Caijiang; Yang, Aichao

    2013-10-01

    This paper proposes non-invasive energy harvesters to scavenge alternating magnetic field energy from electric power lines. The core body of a non-invasive energy harvester is a linear Halbach array, which is mounted on the free end of a piezoelectric cantilever beam. The Halbach array augments the magnetic flux density on the side of the array where the power line is placed and significantly lowers the magnetic field on the other side. Consequently, the magnetic coupling strength is enhanced and more alternating magnetic field energy from the current-carrying power line is converted into electrical energy. An analytical model is developed and the theoretical results verify the experimental results. A power of 566 ?W across a 196 k? resistor is generated from a single wire, and a power of 897 ?W across a 212 k? resistor is produced from a two-wire power cord carrying opposite currents at 10 A. The harvesters employing Halbach arrays for a single wire and a two-wire power cord, respectively, exhibit 3.9 and 3.2 times higher power densities than those of the harvesters employing conventional layouts of magnets. The proposed devices with strong response to the alternating currents are promising to be applied to electricity end-use environment in electric power systems. PMID:24182155

  18. Optimal Halbach permanent magnet designs for maximally pulling and pushing nanoparticles

    E-print Network

    Rubloff, Gary W.

    Optimal Halbach permanent magnet designs for maximally pulling and pushing nanoparticles A. Sarwar Available online 19 September 2011 Keywords: Magnetic nanoparticle Targeted drug deliver Magnetic drug targeting Optimal permanent magnet Nano-particle trapping Pushing nanoparticle Halbach array design a b

  19. Development and Testing of an Axial Halbach Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2006-01-01

    The NASA Glenn Research Center has developed and tested a revolutionary Axial Halbach Magnetic Bearing. The objective of this work is to develop a viable non-contact magnetic thrust bearing utilizing Halbach arrays for all-electric flight, and many other applications. This concept will help to reduce harmful emissions, reduce the Nation s dependence on fossil fuels and mitigate many of the concerns and limitations encountered in conventional axial bearings such as bearing wear, leaks, seals and friction loss. The Axial Halbach Magnetic Bearing is inherently stable and requires no active feedback control system or superconductivity as required in many magnetic bearing designs. The Axial Halbach Magnetic Bearing is useful for very high speed applications including turbines, instrumentation, medical systems, computer memory systems, and space power systems such as flywheels. Magnetic fields suspend and support a rotor assembly within a stator. Advanced technologies developed for particle accelerators, and currently under development for maglev trains and rocket launchers, served as the basis for this application. Experimental hardware was successfully designed and developed to validate the basic principles and analyses. The report concludes that the implementation of Axial Halbach Magnetic Bearings can provide significant improvements in rotational system performance and reliability.

  20. Development and Testing of a Radial Halbach Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2006-01-01

    The NASA John H. Glenn Research Center has developed and tested a revolutionary Radial Halbach Magnetic Bearing. The objective of this work is to develop a viable non-contact magnetic bearing utilizing Halbach arrays for all-electric flight, and many other applications. This concept will help reduce harmful emissions, reduce the Nation s dependence on fossil fuels and mitigate many of the concerns and limitations encountered in conventional axial bearings such as bearing wear, leaks, seals and friction loss. The Radial Halbach Magnetic Bearing is inherently stable and requires no active feedback control system or superconductivity as required in many magnetic bearing designs. The Radial Halbach Magnetic Bearing is useful for very high speed applications including turbines, instrumentation, medical applications, manufacturing equipment, and space power systems such as flywheels. Magnetic fields suspend and support a rotor assembly within a stator. Advanced technologies developed for particle accelerators, and currently under development for maglev trains and rocket launchers, served as the basis for this application. Experimental hardware was successfully designed and developed to validate the basic principles and analyses. The report concludes that the implementation of Radial Halbach Magnetic Bearings can provide significant improvements in rotational system performance and reliability.

  1. Halbach array generator/motor having mechanically regulated output voltage and mechanical power output

    DOEpatents

    Post, Richard F.

    2005-06-14

    A motor/generator has its stationary portion, i.e., the stator, positioned concentrically within its rotatable element, i.e., the rotor, along the axis of rotation of the rotor. The rotor includes a Halbach array of magnets. The voltage and power outputs are regulated by varying the radial gap in between the stator windings and the rotating Halbach array. The gap is varied by extensible and retractable supports attached to the stator windings that can move the windings in a radial direction.

  2. Inductional Effects in a Halbach Magnet Motion Above Distributed Inductance

    NASA Astrophysics Data System (ADS)

    Tchatchoua, Yves; Conrow, Ary; Kim, Dong; Morgan, Daniel; Majewski, Walerian; Zafar, Zaeema

    2013-03-01

    We experimented with attempts to levitate a linear (bar) Halbach array of five 1'' Nd magnets above a linear inductive track. Next, in order to achieve a control over the relative velocity, we designed a different experiment. In it a large wheel with circumferentially positioned along its rim inducting coils rotates, while the magnet is suspended directly above the rim of the wheel on a force sensor. Faraday's Law with the Lenz's Rule is responsible for the lifting and drag forces on the magnet; the horizontal drag force is measured by another force sensor. Approximating the magnet's linear relative motion over inductors with a motion along a large circle, we may use formulas derived earlier in the literature for linear inductive levitation. We measured lift and drag forces as functions of relative velocity of the Halbach magnet and the inductive ``track,'' in an approximate agreement with the existing theory. We then vary the inductance and shape of the inductive elements to find the most beneficial choice for the lift/drag ratio at the lowest relative speed.

  3. Laboratory Scale Prototype of a Low-Speed Electrodynamic Levitation System Based on a Halbach Magnet Array

    ERIC Educational Resources Information Center

    Iniguez, J.; Raposo, V.

    2009-01-01

    In this paper we analyse the behaviour of a small-scale model of a magnetic levitation system based on the Inductrack concept. Drag and lift forces acting on our prototype, moving above a continuous copper track, are studied analytically following a simple low-speed approach. The experimental results are in good agreement with the theoretical…

  4. Laboratory scale prototype of a low-speed electrodynamic levitation system based on a Halbach magnet array

    NASA Astrophysics Data System (ADS)

    Íñiguez, J.; Raposo, V.

    2009-03-01

    In this paper we analyse the behaviour of a small-scale model of a magnetic levitation system based on the Inductrack concept. Drag and lift forces acting on our prototype, moving above a continuous copper track, are studied analytically following a simple low-speed approach. The experimental results are in good agreement with the theoretical calculations. 3D-numerical simulations are also used to highlight the significance of the edge effects and to extrapolate the results to higher speeds.

  5. Halbach array generator/motor having an automatically regulated output voltage and mechanical power output

    DOEpatents

    Post, Richard F.

    2005-02-22

    A motor/generator having its stationary portion, i.e., the stator, positioned concentrically within its rotatable element, i.e., the rotor, along its axis of rotation. The rotor includes a Halbach array. The stator windings are switched or commutated to provide a DC motor/generator much the same as in a conventional DC motor/generator. The voltage and power are automatically regulated by using centrifugal force to change the diameter of the rotor, and thereby vary the radial gap in between the stator and the rotating Halbach array, as a function of the angular velocity of the rotor.

  6. Single-sided mobile NMR with a Halbach magnet.

    PubMed

    Chang, Wei-Hao; Chen, Jyh-Horng; Hwang, Lian-Pin

    2006-10-01

    A single-sided mobile NMR apparatus with a small Halbach magnet was constructed for the first time. It is lightweight, compact and exhibits good sensitivity. The weight of the device is only 2 kg, and the NMR signal of the pencil eraser block can be detected in one shot using the device. This study describes the characteristics of this instrument, including the profile of static magnetic flux density, B0, the sensitivity in the depth direction and its effectiveness in one-dimensional profiling. Its usefulness in differentiating soft materials and evaluating the extent of damage of a material is demonstrated based on T2 relaxation data. The moisture absorbance also can be observed from the increase of the echo amplitude of the NMR spin echo signal. PMID:16997080

  7. Three-Dimensional Field Solutions for Multi-Pole Cylindrical Halbach Arrays in an Axial Orientation

    NASA Technical Reports Server (NTRS)

    Thompson, William K.

    2006-01-01

    This article presents three-dimensional B field solutions for the cylindrical Halbach array in an axial orientation. This arrangement has applications in the design of axial motors and passive axial magnetic bearings and couplers. The analytical model described here assumes ideal magnets with fixed and uniform magnetization. The field component functions are expressed as sums of 2-D definite integrals that are easily computed by a number of mathematical analysis software packages. The analysis is verified with sample calculations and the results are compared to equivalent results from traditional finite-element analysis (FEA). The field solutions are then approximated for use in flux linkage and induced EMF calculations in nearby stator windings by expressing the field variance with angular displacement as pure sinusoidal function whose amplitude depends on radial and axial position. The primary advantage of numerical implementation of the analytical approach presented in the article is that it lends itself more readily to parametric analysis and design tradeoffs than traditional FEA models.

  8. Investigation of a 7-pole/6-slot Halbach-magnetized permanent-magnet linear alternator used for free-piston stirling engines

    NASA Astrophysics Data System (ADS)

    Zheng, Ping; Tong, Chengde; Zhao, Jing; Yu, Bin; Li, Lin; Bai, Jingang; Zhang, Lu

    2012-04-01

    This paper investigates a 7-pole/6-slot Halbach-magnetized permanent-magnet linear alternator used for free piston Stirling engines (FPSEs). Taking the advantages of Halbach array, a 1 kW prototype alternator is designed. Considering the rms value of electromotive force (EMF) and harmonic distortion, the optimal length ratio of the axial- and radial-magnetized permanent magnets and thicknesses of the permanent magnets are optimized by 2D finite element method. The alternator detent force, which is an important factor for smooth operation of FPSEs, is studied by optimizing slot tip and end tooth. The load and thermal performances of the final design are simulated. A prototype alternator was designed, built and tested. Experimental data indicated satisfactory design.

  9. The art and science of magnet design: Selected notes of Klaus Halbach. Volume 2

    SciTech Connect

    1995-02-01

    This volume contains a compilation of 57 notes written by Dr. Klaus Halbach selected from his collection of over 1650 such documents. It provides an historic snapshot of the evolution of magnet technology and related fields as the notes range from as early as 1965 to the present, and is intended to show the breadth of Dr. Halbach`s interest and ability that have long been an inspiration to his many friends and colleagues. As Halbach is an experimental physicist whose scientific interests span many areas, and who does his most innovative work with pencil and paper rather than at the workbench or with a computer, the vast majority of the notes in this volume were handwritten and their content varies greatly--some reflect original work or work for a specific project, while others are mere clarifications of mathematical calculations or design specifications. As the authors converted the notes to electronic form, some were superficially edited and corrected, while others were extensively re-written to reflect current knowledge and notation. The notes are organized under five categories which reflect their primary content: Beam Position Monitors, (bpm), Current Sheet Electron Magnets (csem), Magnet Theory, (thry), Undulators and Wigglers (u-w), and Miscellaneous (misc). Within the category, they are presented chronologically starting from the most recent note and working backwards in time.

  10. Torque Production in a Halbach Machine

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.; Vrnak, Daniel R.

    2006-01-01

    The NASA John H. Glenn Research Center initiated the investigation of torque production in a Halbach machine for the Levitated Ducted Fan (LDF) Project to obtain empirical data in determining the feasibility of using a Halbach motor for the project. LDF is a breakthrough technology for "Electric Flight" with the development of a clean, quiet, electric propulsor system. Benefits include zero emissions, decreased dependence on fossil fuels, increased efficiency, increased reliability, reduced maintenance, and decreased operating noise levels. A commercial permanent magnet brushless motor rotor was tested with a custom stator. An innovative rotor utilizing a Halbach array was designed and developed to fit directly into the same stator. The magnets are oriented at 90deg to the adjacent magnet, which cancels the magnetic field on the inside of the rotor and strengthens the field on the outside of the rotor. A direct comparison of the commercial rotor and the Halbach rotor was made. In addition, various test models were designed and developed to validate the basic principles described, and the theoretical work that was performed. The report concludes that a Halbach array based motor can provide significant improvements in electric motor performance and reliability.

  11. A Multi-axis Compact Positioner with a 6-coil Platen Moving Over a Superimposed Halbach Magnet Matrix 

    E-print Network

    Nguyen, Vu Huy

    2012-07-16

    -AXIS COMPACT POSITIONER WITH A 6-COIL PLATEN MOVING OVER A SUPERIMPOSED HALBACH MAGNET MATRIX A Thesis by VU HUY NGUYEN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE May 2011 Major Subject: Mechanical Engineering A Multi-axis Compact Positioner with a 6-coil Platen Moving Over a Superimposed Halbach Magnet Matrix Copyright 2011 Vu Huy Nguyen...

  12. A portable Halbach magnet that can be opened and closed without force: The NMR-CUFF

    NASA Astrophysics Data System (ADS)

    Windt, Carel W.; Soltner, Helmut; Dusschoten, Dagmar van; Blümler, Peter

    2011-01-01

    Portable equipment for nuclear magnetic resonance (NMR) is becoming increasingly attractive for use in a variety of applications. One of the main scientific challenges in making NMR portable is the design of light-weight magnets that possess a strong and homogeneous field. Existing NMR magnets can provide such magnetic fields, but only for small samples or in small regions, or are rather heavy. Here we show a simple yet elegant concept for a Halbach-type permanent magnet ring, which can be opened and closed with minimal mechanical force. An analytical solution for an ideal Halbach magnet shows that the magnetic forces cancel if the structure is opened at an angle of 35.3° relative to its poles. A first prototype weighed only 3.1 kg, and provided a flux density of 0.57 T with a homogeneity better than 200 ppm over a spherical volume of 5 mm in diameter without shimming. The force needed to close it was found to be about 20 N. As a demonstration, intact plants were imaged and water (xylem) flow measured. Magnets of this type (NMR-CUFF = Cut-open, Uniform, Force Free) are ideal for portable use and are eminently suited to investigate small or slender objects that are part of a larger or immobile whole, such as branches on a tree, growing fruit on a plant, or non-metallic tubing in industrial installations. This new concept in permanent-magnet design enables the construction of openable, yet strong and homogeneous magnets, which aside from use in NMR or MRI could also be of interest for applications in accelerators, motors, or magnetic bearings.

  13. Dynamic response characteristics of high temperature superconducting maglev systems: Comparison between Halbach-type and normal permanent magnet guideways

    NASA Astrophysics Data System (ADS)

    Wang, B.; Zheng, J.; Che, T.; Zheng, B. T.; Si, S. S.; Deng, Z. G.

    2015-12-01

    The permanent magnet guideway (PMG) is very important for the performance of the high temperature superconducting (HTS) system in terms of electromagnetic force and operational stability. The dynamic response characteristics of a HTS maglev model levitating on two types of PMG, which are the normal PMG with iron flux concentration and Halbach-type PMG, were investigated by experiments. The dynamic signals for different field-cooling heights (FCHs) and loading/unloading processes were acquired and analyzed by a vibration analyzer and laser displacement sensors. The resonant frequency, stiffness and levitation height of the model were discussed. It was found that the maglev model on the Halbach-type PMG has higher resonant frequency and higher vertical stiffness compared with the normal PMG. However, the low lateral stiffness of the model on the Halbach-type PMG indicates poor lateral stability. Besides, the Halbach-type PMG has better loading capacity than the normal PMG. These results are helpful to design a suitable PMG for the HTS system in practical applications.

  14. Inductrack magnet configuration

    DOEpatents

    Post, Richard Freeman

    2003-12-16

    A magnet configuration comprising a pair of Halbach arrays magnetically and structurally connected together are positioned with respect to each other so that a first component of their fields substantially cancels at a first plane between them, and a second component of their fields substantially adds at this first plane. A track of windings is located between the pair of Halbach arrays and a propulsion mechanism is provided for moving the pair of Halbach arrays along the track. When the pair of Halbach arrays move along the track and the track is not located at the first plane, a current is induced in the windings and a restoring force is exerted on the pair of Halbach arrays.

  15. Inductrack magnet configuration

    DOEpatents

    Post, Richard Freeman

    2003-10-14

    A magnet configuration comprising a pair of Halbach arrays magnetically and structurally connected together are positioned with respect to each other so that a first component of their fields substantially cancels at a first plane between them, and a second component of their fields substantially adds at this first plane. A track of windings is located between the pair of Halbach arrays and a propulsion mechanism is provided for moving the pair of Halbach arrays along the track. When the pair of Halbach arrays move along the track and the track is not located at the first plane, a current is induced in the windings and a restoring force is exerted on the pair of Halbach arrays.

  16. Magnetic arrays

    DOEpatents

    Trumper, D.L.; Kim, W.; Williams, M.E.

    1997-05-20

    Electromagnet arrays are disclosed which can provide selected field patterns in either two or three dimensions, and in particular, which can provide single-sided field patterns in two or three dimensions. These features are achieved by providing arrays which have current densities that vary in the windings both parallel to the array and in the direction of array thickness. 12 figs.

  17. Magnetic arrays

    DOEpatents

    Trumper, David L. (Plaistow, NH); Kim, Won-jong (Cambridge, MA); Williams, Mark E. (Pelham, NH)

    1997-05-20

    Electromagnet arrays which can provide selected field patterns in either two or three dimensions, and in particular, which can provide single-sided field patterns in two or three dimensions. These features are achieved by providing arrays which have current densities that vary in the windings both parallel to the array and in the direction of array thickness.

  18. Passive magnetic bearing for a horizontal shaft

    DOEpatents

    Post, Richard F.

    2003-12-02

    A passive magnetic bearing is composed of a levitation element and a restorative element. The levitation element is composed of a pair of stationary arcuate ferromagnetic segments located within an annular radial-field magnet array. The magnet array is attached to the inner circumference of a hollow shaft end. An attractive force between the arcuate segments and the magnet array acts vertically to levitate the shaft, and also in a horizontal transverse direction to center the shaft. The restorative element is comprised of an annular Halbach array of magnets and a stationary annular circuit array located within the Halbach array. The Halbach array is attached to the inner circumference of the hollow shaft end. A repulsive force between the Halbach array and the circuit array increases inversely to the radial space between them, and thus acts to restore the shaft to its equilibrium axis of rotation when it is displaced therefrom.

  19. Comparison of conventional and novel quadrupole drift tube magnets inspired by Klaus Halbach

    SciTech Connect

    Feinberg, B.

    1995-02-01

    Quadrupole drift tube magnets for a heavy-ion linac provide a demanding application of magnet technology. A comparison is made of three different solutions to the problem of providing an adjustable high-field-strength quadrupole magnet in a small volume. A conventional tape-wound electromagnet quadrupole magnet (conventional) is compared with an adjustable permanent-magnet/iron quadrupole magnet (hybrid) and a laced permanent-magnet/iron/electromagnet (laced). Data is presented from magnets constructed for the SuperHILAC heavy-ion linear accelerator, and conclusions are drawn for various applications.

  20. Biotemplated magnetic nanoparticle arrays.

    PubMed

    Galloway, Johanna M; Bramble, Jonathan P; Rawlings, Andrea E; Burnell, Gavin; Evans, Stephen D; Staniland, Sarah S

    2012-01-23

    Immobilized biomineralizing protein Mms6 templates the formation of uniform magnetite nanoparticles in situ when selectively patterned onto a surface. Magnetic force microscopy shows that the stable magnetite particles maintain their magnetic orientation at room temperature, and may be exchange coupled. This precision-mixed biomimetic/soft-lithography methodology offers great potential for the future of nanodevice fabrication. PMID:22052737

  1. Magnetic nanoparticle array with perpendicular crystal magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Haginoya, Chiseki; Heike, Seiji; Ishibashi, Masayoshi; Nakamura, Kimio; Koike, Kazuyuki; Yoshimura, Toshiyuki; Yamamoto, Jiro; Hirayama, Yoshiyuki

    1999-06-01

    By using electron beam lithography, a continuous CoCrPt film with a perpendicular crystal magnetic anisotropy has been patterned into a magnetic nanoparticle array of 29 Gdot/in.2 with a 150 nm period, an 80 nm diameter, and a 44 nm height. Studies of magnetic properties using a magnetic force microscope and a vibrating sample magnetometer show that this patterning increases the remanent-to-saturation magnetization ratio from 0.2 of the continuous film to 1 of the particles, and that each particle has a single magnetic domain with perpendicular anisotropy. The application of this array to future high density magnetic recording media is discussed.

  2. Passive magnetic bearing system

    DOEpatents

    Post, Richard F.

    2014-09-02

    An axial stabilizer for the rotor of a magnetic bearing provides external control of stiffness through switching in external inductances. External control also allows the stabilizer to become a part of a passive/active magnetic bearing system that requires no external source of power and no position sensor. Stabilizers for displacements transverse to the axis of rotation are provided that require only a single cylindrical Halbach array in its operation, and thus are especially suited for use in high rotation speed applications, such as flywheel energy storage systems. The elimination of the need of an inner cylindrical array solves the difficult mechanical problem of supplying support against centrifugal forces for the magnets of that array. Compensation is provided for the temperature variation of the strength of the magnetic fields of the permanent magnets in the levitating magnet arrays.

  3. Patterning metallic electrodeposits with magnet arrays

    NASA Astrophysics Data System (ADS)

    Dunne, Peter; Coey, J. M. D.

    2012-06-01

    The influence of a pattern of a magnetic field on the structure of metal deposits at the cathode of a small electrochemical cell is investigated for cobalt, nickel, copper, and zinc. The different magnetic properties of the ions in their oxidized and reduced states, together with the influence on the patterned electrodeposits of variables, including the structure of the array of small magnets used to generate the field pattern, applied magnetic field, ion concentration, cell orientation, and deposition time lead to an understanding of the physical processes involved. The results for direct deposits from paramagnetic cations such as Cu2+ when convection is minimized are largely explained in terms of magnetic pressure, which modifies the thickness of the diffusion layer that governs mass transport. Patterning is governed by the susceptibility of the electroactive species relative to the nonelectroactive background. No patterning is observed until the diffusion layer begins to form, as it requires orthogonal concentration and magnetic field gradients. An inverse effect, whereby deposits are structured in complementary patterns, such as antidot arrays, is observed when a strongly paramagnetic but nonelectroactive cation such as Dy3+ is present in the electrolyte, together with an electroactive cation such as Cu2+or Zn2. Inverse patterning is related to magnetically induced convection produced by the inhomogeneous magnetic field. Blocking of sites in the double layer by the rare-earth ions may also be involved. The inverse deposits are concentrated in regions where the magnitude of the field is lowest; they can also be produced directly by superposing a uniform magnetic field on that of the magnet array.

  4. Three-Magnet Arrays for Unilateral Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Garcia Naranjo, Juan Carlos

    Unilateral Magnetic Resonance (UMR) has become, in different research areas, a powerful tool to interrogate samples of arbitrary size. The three-magnet array developed by the MRI Centre of the University of New Brunswick has features that make it a simple and robust approach for UMR. This thesis introduces a group of solutions to broaden the range of application of this design. Practical applications for non-destructive testing and reservoir core plug characterization are presented. We have shown that it is also possible to monitor the curing process of an epoxy/polyamidoamine system by employing a three-magnet array. A new version of the three-magnet array which features extended constant magnetic field gradients is also introduced. Constant gradients of more than 3 cm extent can be achieved in a very simple, compact and safe design. The application of the three-magnet array in combination with a solenoid as the RF probe for analysis of long core plugs has been presented. Core plugs of different diameter can be analyzed by simply changing the diameter of the RF probe employed for the measurement. Results of an initial survey of selective excitation in UMR are presented. The low SNR and inhomogeneities in the selective spot reduce the effectiveness of selective excitation for UMR.

  5. Heat flow control in thermo-magnetic convective systems using engineered magnetic fields

    NASA Astrophysics Data System (ADS)

    Lee, Jaewook; Nomura, Tsuyoshi; Dede, Ercan M.

    2012-09-01

    We present the design of a magnetically controlled convective heat transfer system. The underlying thermo-magnetic instability phenomenon is described, and enhanced convective fluid flow patterns are determined using non-linear programming techniques plus a design sensitivity analysis. Specifically, the magnetic fluid body force is computed by finding the optimal distribution and magnetization direction of a magnetic field source, where the objective is to minimize the maximum temperature of a closed loop heat transfer system. Sizeable fluid recirculation zones are induced by arranging magnetic field generation elements in configurations similar to Halbach arrays. Applications include improved heat flow control for electromechanical systems.

  6. Electrodynamic boundary conditions for planar arrays of thin magnetic elements

    NASA Astrophysics Data System (ADS)

    Lisenkov, Ivan; Tyberkevych, Vasyl; Nikitov, Sergei; Slavin, Andrei

    2015-08-01

    Approximate electrodynamic boundary conditions are derived for an array of dipolarly coupled magnetic elements. It is assumed that the elements' thickness is small compared to the wavelength of an electromagnetic wave in a free space. The boundary conditions relate electric and magnetic fields existing at the top and bottom sides of the array through the averaged uniform dynamic magnetization of the array. This dynamic magnetization is determined by the collective dynamic eigen-excitations (spin wave modes) of the array and is found using the external magnetic susceptibility tensor. The problem of oblique scattering of a plane electromagnetic wave on the array is considered to illustrate the use of the derived boundary conditions.

  7. The Inductrack Approach to Magnetic Levitation

    SciTech Connect

    Post, R.F.; Ryutov, D.D.

    2000-04-19

    Concepts developed during research on passive magnetic bearing systems at the Lawrence Livermore National Laboratory gave rise to a new approach to magnetic levitation, the Inductrack. A passive induced-current system employing permanent magnets on the moving vehicle, the Inductrack maximizes levitation forces by a combination of two elements. First, the permanent magnets on the vehicle are arranged in a ''Halbach array,'' a magnet configuration that optimally produces a periodic magnetic field below the array, while canceling the field above the array. Second, the track is made up of close-packed shorted electrical circuits. These circuits couple optimally to the magnetic field of the Halbach array. As a result, levitating forces of order 40 metric tonnes per square meter of Halbach array can be generated, using NdFeB magnets whose weight is a few percent of the levitated weight. Being an induced-current system, the levitation requires motion of the vehicle above a low transition speed. For maglev applications this speed is a few kilometers per hour, walking speed. At rest or in the station auxiliary wheels are needed. The Inductrack is thus fail-safe, that is, drive system failure would only result in the vehicle slowing down and finally settling on its auxiliary wheels. On the basis of theoretical analyses a small model vehicle and a 20-meter-long track was built and tested at speeds of order 12 meters per second. A second model, designed to achieve 10-g acceleration levels and much higher speeds, is under construction under NASA sponsorship, en route to the design of maglev-based launchers for rockets. Some of the presently perceived practical problems of implementing full-scale maglev systems based on the Inductrack concept will be discussed.

  8. Magnetic flux array for spontaneous magnetic reconnection experiments A. Kesich, J. Bonde, J. Egedal,a

    E-print Network

    Egedal, Jan

    Magnetic flux array for spontaneous magnetic reconnection experiments A. Kesich, J. Bonde, J; published online 24 June 2008 Experimental investigation of reconnection in magnetized plasmas relies on accurate characterization of the evolving magnetic fields. In experimental configurations where the plasma

  9. Assembly of ordered magnetic microsphere arrays

    NASA Astrophysics Data System (ADS)

    Xu, Wanling; Ketterson, John

    2008-08-01

    We have developed a straightforward technique to assemble ordered arrays of magnetic microspheres on patterned thin Permalloy (Py) films deposited on the surface of a silicon wafer. Droplets containing micrometer-sized carboxyl paramagnetic microspheres are placed on a horizontally oriented wafer. The field produced by a permanent magnet placed under the wafer is rendered inhomogeneous by the patterned Py features and the resulting field gradients attract and hold the paramagnetic microspheres to these features. While the magnetic microspheres are being attracted to and secured on the pattered Permalloy features, a horizontal flow is created by a pipette, which also removes loose (unsecured) microspheres. By applying this technique to a cocktail of individually functionalized microspheres, a sensor could be realized, which will screen, in parallel, for a large number of targets per unit area. The ability to resolve individual microspheres is close to 100%. A desirable feature is that the substrate is reusable; removing the magnet allows an existing batch of microspheres, which may have lost sensitivity due to environmental exposure, to be flushed from the substrate and replaced with a new batch. The technique complements existing approaches in the field of microarrays widely used in immunoassay, DNA fragment detection, pathogen detection, and other applications in functional genomics and diagnostics.

  10. Practical method using superposition of individual magnetic fields for initial arrangement of undulator magnets

    SciTech Connect

    Tsuchiya, K.; Shioya, T.

    2015-04-15

    We have developed a practical method for determining an excellent initial arrangement of magnetic arrays for a pure-magnet Halbach-type undulator. In this method, the longitudinal magnetic field distribution of each magnet is measured using a moving Hall probe system along the beam axis with a high positional resolution. The initial arrangement of magnetic arrays is optimized and selected by analyzing the superposition of all distribution data in order to achieve adequate spectral quality for the undulator. We applied this method to two elliptically polarizing undulators (EPUs), called U#16-2 and U#02-2, at the Photon Factory storage ring (PF ring) in the High Energy Accelerator Research Organization (KEK). The measured field distribution of the undulator was demonstrated to be excellent for the initial arrangement of the magnet array, and this method saved a great deal of effort in adjusting the magnetic fields of EPUs.

  11. Arrays of carbon nanoscrolls as deep subwavelength magnetic metamaterials

    NASA Astrophysics Data System (ADS)

    Yannopapas, Vassilios; Tzavala, Marilena; Tsetseris, Leonidas

    2013-10-01

    We demonstrate theoretically that an array of carbon nanoscrolls acts as a hyperbolic magnetic metamaterial in the terahertz regime with genuine subwavelength operation corresponding to a wavelength-to-structure ratio of about 200. Due to the low sheet resistance of graphene, the electromagnetic losses in an array of carbon nanoscrolls are almost negligible, offering a very sharp magnetic resonance of extreme positive and negative values of the effective magnetic permeability. The latter property leads to superior imaging properties for arrays of carbon nanoscrolls which can operate as magnetic endoscopes in the terahertz range where magnetic materials are scarce. Our optical modeling is supplemented with ab initio density functional calculations of the self-winding of a single layer of graphene onto a carbon nanotube so as to form a carbon nanoscroll. The latter process is viewed as a means to realize ordered arrays of carbon nanoscrolls in the laboratory based on arrays of aligned carbon nanotubes which are now routinely fabricated.

  12. Arrays of elliptical Fe(001) nanoparticles: Magnetization reversal, dipolar interactions, and effects of finite array sizes

    NASA Astrophysics Data System (ADS)

    Hanson, Maj; Bru?as, Rimantas; Antosiewicz, Tomasz J.; Dumas, Randy K.; Hjörvarsson, Björgvin; Flovik, Vegard; Wahlström, Erik

    2015-09-01

    The magnetic properties of arrays of nanoparticles are determined by the interplay between the individual particle properties and the dipolar interactions between them. Here we present a study of arrays of elliptical Fe(001) particles of thickness 10-50 nm. The aspect ratios of the ellipses are 1:3, their short axes a =50 , 100, or 150 nm, and the periodicity of the rectangular arrays is either two or four times the corresponding axes of the ellipses. Magnetic measurements together with numerical and micromagnetic calculations yield a consistent picture of the arrays, comprising single-domain nanoparticles. We show that the magnetization reversal, occurring in the range 100-400 mT for fields applied along the long axis, is mainly determined by the properties of the corresponding single Fe ellipses. The interaction fields of the order of tens of mT can be tuned by the array configurations. For the actual arrays the interactions promote switching. For film thicknesses below the Bloch wall width parameter of Fe, lw=22 nm, magnetization reversal occurs without formation of domain walls or vortices. Within this range arrays may be tuned to obtain a well-defined switching field. Two general conclusions are drawn from the calculations: the character of the interaction, whether it promotes or delays magnetization reversal, is determined by the aspect ratio of the array grid, and the interaction strength saturates as the size of the array increases.

  13. Manipulation of Magnetic Particles for Use in Photonic Biosensor Arrays

    NASA Astrophysics Data System (ADS)

    Siebe, Craig

    Trapping magnetic nanoparticles in wells in a photonic crystal biosensor array using magnetophoresis is desirable because it would allow for covalent bonding of antibodies onto the particles which would lead to an increase in sensitivity of the sensor. It was hypothesized that this could be achieved by engineering a magnetic field at each well by placing a, "magnetic tip," under each well and exposing the array to a uniform magnetic field which would create a magnetic gradient at each well in order to trap magnetic particles. A computational COMSOL model was created to determine the ideal shapes for the magnetic tips, but fabrication factors and the COMSOL model led to the tips being the same shape as the wells. Dip coating, centrifuging, and electrophoresis of iron oxide particles were tried as methods to fabricate magnetic tips. Electroplating the particles was determined to be the best method. Microscale arrays were fabricated and tested with micron scale beads in 3 different well sizes. Then smaller grooves were created by drop casting PMMA groves using PDMS imprints of CDs. Electron beam lithography and stamping into spin coated PMMA were also tried briefly. Trapping of 350 nm magnetic beads was attempted but was unsuccessful. Probably this occurred because the gradient produced by the magnetic tips was not strong enough to overcome the hydrodynamic forces of water that was swept over the array with Couette flows to clean the surface.

  14. Collective Magnetic Behavior of Geometrically Frustrated Arrays with Perpendicular Anisotropy

    NASA Astrophysics Data System (ADS)

    Pan, Y.; Kohli, K. K.; Fraleigh, R.; Balk, A. L.; Finkel, D.; Zhang, S.; Li, J.; Gilbert, I.; Lammert, P. E.; Misra, R.; Crespi, V. H.; Schiffer, P.; Samarth, N.; Erickson, M.; Leighton, C.

    2012-02-01

    We use the magneto-optical Kerr effect (MOKE) to study the global and local magnetic behavior of geometrically frustrated arrays of single domain ferromagnetic islands with perpendicular anisotropy. MOKE measurements over macroscopic length scales probe the global properties of arrays with different lattice geometries and island spacings. The variation of switching field as a function of island spacing gives us insight into the influence of local frustration on the collective magnetic response of the arrays. The experimental results are compared with mean field calculations. Finally, we use spatially resolved Kerr microscopy to probe nucleation and domain propagation in the magnetization reversal process. Supported by U.S. Department of Energy Award DE-SC0005313. Lithography performed with the support of the National Nanotechnology Infrastructure Network

  15. Optimizing colloidal dispersity of magnetic nanoparticles based on magnetic separation with magnetic nanowires array

    NASA Astrophysics Data System (ADS)

    Sun, Jianfei; He, Miaomiao; Liu, Xuan; Gu, Ning

    2014-09-01

    Based on sharp geometry of Ni nanowires, we developed a novel high-gradient magnetic separator that was composed of a nanowires array and a uniform magnetic field. When suspension of magnetic nanoparticles (MNPs) flowed through it, the relatively large nanoparticles or clusters were removed from the suspension so that the size distribution can be improved. The separation resulted from magnetic force so that extra molecules or solvents were unnecessary to add. The performance was proved by scanned electron microscopy characterization and dynamic light scattering measurement. The improvement in magnetic colloidal dispersivity is important for the biomedical application of MNPs. Our results may also play a role in microfluidic application and nanoparticle-based detection.

  16. Optimizing colloidal dispersity of magnetic nanoparticles based on magnetic separation with magnetic nanowires array

    NASA Astrophysics Data System (ADS)

    Sun, Jianfei; He, Miaomiao; Liu, Xuan; Gu, Ning

    2015-02-01

    Based on sharp geometry of Ni nanowires, we developed a novel high-gradient magnetic separator that was composed of a nanowires array and a uniform magnetic field. When suspension of magnetic nanoparticles (MNPs) flowed through it, the relatively large nanoparticles or clusters were removed from the suspension so that the size distribution can be improved. The separation resulted from magnetic force so that extra molecules or solvents were unnecessary to add. The performance was proved by scanned electron microscopy characterization and dynamic light scattering measurement. The improvement in magnetic colloidal dispersivity is important for the biomedical application of MNPs. Our results may also play a role in microfluidic application and nanoparticle-based detection.

  17. Levitation Force Investigation of Bulk HTSC Above Halbach PMG with Different Cross-Section Physical Dimensions by 3D-Modeling Numerical Method

    NASA Astrophysics Data System (ADS)

    Lu, Yiyun; Liu, Guoliang; Qin, Yujie

    2014-10-01

    The levitation force of a bulk high temperature superconductor (HTSC) over Halbach permanent magnet guideways (PMG) with different cross-section configuration is studied by numerical method. The Halbach PMG is composed of three host permanent magnets (HPMs) and two slave permanent magnets (SPMs). One cylindrical bulk HTSC with a diameter of 30 mm and height of 15 mm is used. The 3D-modeling is formulated by the H-method. The numerical resolving codes are practiced using finite element method (FEM). The E-J power law is used to describe the electric current nonlinear characteristics of bulk HTSC. By the method, the influence of the cross-section physical dimensions of Halbach PMG on the levitation forces of bulk HTSC levitated above the PMG is studied. The simulation results show that increasing the width of SPM ( can enhance the bulk HTSC levitation performance immediately under the condition of keeping the ratio of ( : the width of HPM) to between 1.6 and 1.8, the ratio of td (the height of the PMG) to between 1.2 and 1.4. By the method, the bulk HTSC better levitation performance can be expected.

  18. Array combination for parallel imaging in Magnetic Resonance Imaging 

    E-print Network

    Spence, Dan Kenrick

    2007-09-17

    In Magnetic Resonance Imaging, the time required to generate an image is proportional to the number of steps used to encode the spatial information. In rapid imaging, an array of coil elements and receivers are used to reduce the number of encoding...

  19. Controlling superconductivity in thin film with an external array of magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Bang, Wonbae; Teizer, W.; Rathnayaka, K. K. D.; Lyuksyutov, I. F.; Naugle, D. G.

    2015-09-01

    We have fabricated a new type of magnet-superconductor hybrid (MSH): an ordered array of magnetic nanorods atop a superconducting film electrically insulated from the array. Transport properties of this MSH, R(T) and R(H) are reported. We compare these results with those for a superconducting film atop an alumina template with an array of magnetic nanowires.

  20. MIXTURE OF COMPETITIVE LINEAR MODELS FOR PHASED-ARRAY MAGNETIC RESONANCE IMAGING

    E-print Network

    Slatton, Clint

    MIXTURE OF COMPETITIVE LINEAR MODELS FOR PHASED-ARRAY MAGNETIC RESONANCE IMAGING£ Deniz Erdogmus-array magnetic resonance imaging is an important contem- porary research field in terms of the expected clinical. INTRODUCTION Magnetic resonance image (MRI) image reconstruction with phased-array coils is being widely

  1. Microfabricated atomic vapor cell arrays for magnetic field measurements

    SciTech Connect

    Woetzel, S.; Schultze, V.; IJsselsteijn, R.; Schulz, T.; Anders, S.; Stolz, R.; Meyer, H.-G.

    2011-03-15

    We describe a method for charging atomic vapor cells with cesium and buffer gas. By this, it is possible to adjust the buffer gas pressure in the cells with good accuracy. Furthermore, we present a new design of microfabricated vapor cell arrays, which combine silicon wafer based microfabrication and ultrasonic machining to achieve the arrays of thermally separated cells with 50 mm{sup 3} volume. With cells fabricated in the outlined way, intrinsic magnetic field sensitivities down to 300 fT/Hz{sup 1/2} are reached.

  2. Life on Magnets: Stem Cell Networking on Micro-Magnet Arrays

    PubMed Central

    Zablotskii, Vitalii; Dejneka, Alexandr; Kubinová, Šárka; Le-Roy, Damien; Dumas-Bouchiat, Frédéric; Givord, Dominique; Dempsey, Nora M.; Syková, Eva

    2013-01-01

    Interactions between a micro-magnet array and living cells may guide the establishment of cell networks due to the cellular response to a magnetic field. To manipulate mesenchymal stem cells free of magnetic nanoparticles by a high magnetic field gradient, we used high quality micro-patterned NdFeB films around which the stray field’s value and direction drastically change across the cell body. Such micro-magnet arrays coated with parylene produce high magnetic field gradients that affect the cells in two main ways: i) causing cell migration and adherence to a covered magnetic surface and ii) elongating the cells in the directions parallel to the edges of the micro-magnet. To explain these effects, three putative mechanisms that incorporate both physical and biological factors influencing the cells are suggested. It is shown that the static high magnetic field gradient generated by the micro-magnet arrays are capable of assisting cell migration to those areas with the strongest magnetic field gradient, thereby allowing the build up of tunable interconnected stem cell networks, which is an elegant route for tissue engineering and regenerative medicine. PMID:23936425

  3. Micro-magnet arrays for specific single bacterial cell positioning

    NASA Astrophysics Data System (ADS)

    Pivetal, Jérémy; Royet, David; Ciuta, Georgeta; Frenea-Robin, Marie; Haddour, Naoufel; Dempsey, Nora M.; Dumas-Bouchiat, Frédéric; Simonet, Pascal

    2015-04-01

    In various contexts such as pathogen detection or analysis of microbial diversity where cellular heterogeneity must be taken into account, there is a growing need for tools and methods that enable microbiologists to analyze bacterial cells individually. One of the main challenges in the development of new platforms for single cell studies is to perform precise cell positioning, but the ability to specifically target cells is also important in many applications. In this work, we report the development of new strategies to selectively trap single bacterial cells upon large arrays, based on the use of micro-magnets. Escherichia coli bacteria were used to demonstrate magnetically driven bacterial cell organization. In order to provide a flexible approach adaptable to several applications in the field of microbiology, cells were magnetically and specifically labeled using two different strategies, namely immunomagnetic labeling and magnetic in situ hybridization. Results show that centimeter-sized arrays of targeted, isolated bacteria can be successfully created upon the surface of a flat magnetically patterned hard magnetic film. Efforts are now being directed towards the integration of a detection tool to provide a complete micro-system device for a variety of microbiological applications.

  4. The Square Kilometre Array: A new probe of cosmic magnetism

    E-print Network

    Bryan M. Gaensler

    2006-03-02

    Magnetic fields are a fundamental part of many astrophysical phenomena, but the evolution, structure and origin of magnetic fields are still unresolved problems in physics and astrophysics. When and how were the first fields generated? Are present-day magnetic fields the result of standard dynamo action, or do they represent rapid or recent field amplification through other processes? What role do magnetic fields play in turbulence, cosmic ray acceleration and structure formation? I explain how the Square Kilometre Array (SKA), a next-generation radio telescope, can deliver stunning new data-sets that will address these currently unanswered issues. The foundation for these experiments will be an all-sky survey of rotation measures, in which Faraday rotation toward >10^7 background sources will provide a dense grid for probing magnetism in the Milky Way, nearby galaxies, and in distant galaxies, clusters and protogalaxies. Using these data, we can map out the evolution of magnetized structures from redshifts z > 3 to the present, can distinguish between different origins for seed magnetic fields in galaxies, and can develop a detailed model of the magnetic field geometry of the intergalactic medium and of the overall Universe. In addition, the SKA will certainly discover new magnetic phenomena beyond what we can currently predict or imagine.

  5. Design and optimization of arrays of neodymium iron boron-based magnets for magnetic tweezers applications

    SciTech Connect

    Zacchia, Nicholas A.; Valentine, Megan T.

    2015-05-15

    We present the design methodology for arrays of neodymium iron boron (NdFeB)-based magnets for use in magnetic tweezers devices. Using finite element analysis (FEA), we optimized the geometry of the NdFeB magnet as well as the geometry of iron yokes designed to focus the magnetic fields toward the sample plane. Together, the magnets and yokes form a magnetic array which is the basis of the magnetic tweezers device. By systematically varying 15 distinct shape parameters, we determined those features that maximize the magnitude of the magnetic field gradient as well as the length scale over which the magnetic force operates. Additionally, we demonstrated that magnetic saturation of the yoke material leads to intrinsic limitations in any geometric design. Using this approach, we generated a compact and light-weight magnetic tweezers device that produces a high field gradient at the image plane in order to apply large forces to magnetic beads. We then fabricated the optimized yoke and validated the FEA by experimentally mapping the magnetic field of the device. The optimization data and iterative FEA approach outlined here will enable the streamlined design and construction of specialized instrumentation for force-sensitive microscopy.

  6. Magnetic Field Measurements in Wire-Array Z-Pinches

    NASA Astrophysics Data System (ADS)

    Syed, Wasif; Hammer, David; Lipson, Michal

    2006-10-01

    Understanding the evolution of the magnetic field topology and magnitude in the high energy density plasmas produced by wire-array Z-pinches is of critical importance for their ultimate application to stockpile stewardship and inertial confinement fusion^1. A method to determine the magnetic field profile in megampere level wire-array Z-pinches with high spatial and temporal resolution is under development. An ideal method would be passive and non-perturbing, such as Faraday rotation of laser light. We are developing a method involving temporally-resolved Faraday rotation through a sensing waveguide placed in the vicinity of, and eventually in, a wire-array Z-pinch^2. We present measurements of the magnetic field outside of a wire-array, and progress on measurements within the array. Our ideal device is a ``thin film waveguide'' coupled to an optical fiber system. While these sensing devices may not survive for long in a dense Z-pinch, they may provide useful information for a significant fraction of the current pulse. We present preliminary theoretical and experimental results. 1. M. Keith Matzen, M. A. Sweeney, R. G. Adams et al., Phys. Plasmas 12, 055503 (2005). 2. W. Syed, D. A. Hammer, M. Lipson, R. B. van Dover, AIP Proceedings of the 6th International Conference on Dense Z-Pinches, University of Oxford, UK, July 25-28, 2005. *This research was sponsored by the National Nuclear Security Administration under the Stockpile Stewardship Academic Alliances program through DOE Cooperative Agreement DE-F03-02NA00057.

  7. Phase transition of dissipative Josephson arrays in a magnetic field

    SciTech Connect

    Kampf, A.; Schoen, G.

    1988-04-01

    The phase diagram of an array of Josephson junctions in a transverse magnetic field is investigated. The capacitive interactions of charges on the superconducting islands and the associated quantum-mechanical effects, as well as the dissipation due to the flow of normal Ohmic currents, are taken into account. The mean-field approximation of this system can be mapped onto the tight-binding Schroedinger equation for Bloch electrons in a magnetic field, which had been analyzed by Hofstadter. We show how the transition temperature depends on the dissipation and the charging energy.

  8. Domain configuration and magnetization switching in arrays of permalloy nanostripes

    NASA Astrophysics Data System (ADS)

    Iglesias-Freire, Ó.; Jaafar, M.; Pérez, L.; de Abril, O.; Vázquez, M.; Asenjo, A.

    2014-04-01

    The proximity effect in the collective behavior of arrays of magnetic nanostripes is currently a subject of intensive research. The imperative of reducing the size and distances between elements in order to achieve higher storage capacity, faster access to the information as well as low energy consumption, brings consequences about the isolated behavior of the elements and devices. Parallel to each other permalloy nanostripes with high aspect ratio have been prepared by the nanolithography technique. The evolution of the closure domains and the magnetization direction in individual nanostructures has been imaged under applied magnetic fields using Variable Field Magnetic Force Microscopy. Moreover, the magnetostatic interactions between neighboring elements and the proximity effects in arrays of such nanostructures have been quantitatively analyzed by Magnetic Force Microscopy and micromagnetic simulations. The agreement between simulations and the experimental results allows us to conclude the relevance of those interactions depending on the geometry characteristics. In particular, results suggest that the magnetostatic coupling between adjacent nanostripes vanishes for separation distances higher than 500 nm.

  9. Localization of dense intracranial electrode arrays using magnetic resonance imaging

    PubMed Central

    Doyle, Werner K.; Halgren, Eric; Carlson, Chad; Belcher, Thomas L.; Cash, Sydney S.; Devinsky, Orrin; Thesen, Thomas

    2013-01-01

    Intracranial electrode arrays are routinely used in the pre-surgical evaluation of patients with medically refractory epilepsy, and recordings from these electrodes have been increasingly employed in human cognitive neurophysiology due to their high spatial and temporal resolution. For both researchers and clinicians, it is critical to localize electrode positions relative to the subject-specific neuroanatomy. In many centers, a post-implantation MRI is utilized for electrode detection because of its higher sensitivity for surgical complications and the absence of radiation. However, magnetic susceptibility artifacts surrounding each electrode prohibit unambiguous detection of individual electrodes, especially those that are embedded within dense grid arrays. Here, we present an efficient method to accurately localize intracranial electrode arrays based on pre- and post-implantation MR images that incorporates array geometry and the individual's cortical surface. Electrodes are directly visualized relative to the underlying gyral anatomy of the reconstructed cortical surface of individual patients. Validation of this approach shows high spatial accuracy of the localized electrode positions (mean of 0.96 mm±0.81 mm for 271 electrodes across 8 patients). Minimal user input, short processing time, and utilization of radiation-free imaging are strong incentives to incorporate quantitatively accurate localization of intracranial electrode arrays with MRI for research and clinical purposes. Co-registration to a standard brain atlas further allows inter-subject comparisons and relation of intracranial EEG findings to the larger body of neuroimaging literature. PMID:22759995

  10. Dependence of magnetization process on thickness of Permalloy antidot arrays

    SciTech Connect

    Merazzo, K. J.; Real, R. P. del; Asenjo, A.; Vazquez, M.

    2011-04-01

    Nanohole films or antidot arrays of Permalloy have been prepared by the sputtering of Ni{sub 80}Fe{sub 20} onto anodic alumina membrane templates. The film thickness varies from 5 to 47 nm and the antidot diameters go from 42 to 61 nm, for a hexagonal lattice parameter of 105 nm. For the thinner antidot films (5 and 10 nm thick), magnetic moments locally distribute in a complex manner to reduce the magnetostatic energy, and their mostly reversible magnetization process is ascribed to spin rotations. In the case of the thicker (20 and 47 nm) antidot films, pseudodomain walls appear and the magnetization process is mostly irreversible where hysteresis denotes the effect of nanoholes pinning to wall motion.

  11. Magnetic field mapping of the UCNTau magneto-gravitational trap: design study

    SciTech Connect

    Libersky, Matthew Murray

    2014-09-04

    The beta decay lifetime of the free neutron is an important input to the Standard Model of particle physics, but values measured using different methods have exhibited substantial disagreement. The UCN r experiment in development at Los Alamos National Laboratory (LANL) plans to explore better methods of measuring the neutron lifetime using ultracold neutrons (UCNs). In this experiment, UCNs are confined in a magneto-gravitational trap formed by a curved, asymmetric Halbach array placed inside a vacuum vessel and surrounded by holding field coils. If any defects present in the Halbach array are sufficient to reduce the local field near the surface below that needed to repel the desired energy level UCNs, loss by material interaction can occur at a rate similar to the loss by beta decay. A map of the magnetic field near the surface of the array is necessary to identify any such defects, but the array's curved geometry and placement in a vacuum vessel make conventional field mapping methods difficult. A system consisting of computer vision-based tracking and a rover holding a Hall probe has been designed to map the field near the surface of the array, and construction of an initial prototype has begun at LANL. The design of the system and initial results will be described here.

  12. Spinmotive force due to motion of magnetic bubble arrays driven by magnetic field gradient

    PubMed Central

    Yamane, Yuta; Hemmatiyan, Shayan; Ieda, Jun'ichi; Maekawa, Sadamichi; Sinova, Jairo

    2014-01-01

    Interaction between local magnetization and conduction electrons is responsible for a variety of phenomena in magnetic materials. It has been recently shown that spin current and associated electric voltage can be induced by magnetization that depends on both time and space. This effect, called spinmotive force, provides for a powerful tool for exploring the dynamics and the nature of magnetic textures, as well as a new source for electromotive force. Here we theoretically demonstrate the generation of electric voltages in magnetic bubble array systems subjected to a magnetic field gradient. It is shown by deriving expressions for the electric voltages that the present system offers a direct measure of phenomenological parameter ? that describes non-adiabaticity in the current induced magnetization dynamics. This spinmotive force opens a door for new types of spintronic devices that exploit the field-gradient. PMID:25365971

  13. Parallel RNA extraction using magnetic beads and a droplet array

    PubMed Central

    Shi, Xu; Chen, Chun-Hong; Gao, Weimin; Meldrum, Deirdre R.

    2015-01-01

    Nucleic acid extraction is a necessary step for most genomic/transcriptomic analyses, but it often requires complicated mechanisms to be integrated into a lab-on-a-chip device. Here, we present a simple, effective configuration for rapidly obtaining purified RNA from low concentration cell medium. This Total RNA Extraction Droplet Array (TREDA) utilizes an array of surface-adhering droplets to facilitate the transportation of magnetic purification beads seamlessly through individual buffer solutions without solid structures. The fabrication of TREDA chips is rapid and does not require a microfabrication facility or expertise. The process takes less than 5 minutes. When purifying mRNA from bulk marine diatom samples, its repeatability and extraction efficiency are comparable to conventional tube-based operations. We demonstrate that TREDA can extract the total mRNA of about 10 marine diatom cells, indicating that the sensitivity of TREDA approaches single-digit cell numbers. PMID:25519439

  14. Development of a magnetic nanoparticle susceptibility magnitude imaging array

    NASA Astrophysics Data System (ADS)

    Ficko, Bradley W.; Nadar, Priyanka M.; Hoopes, P. Jack; Diamond, Solomon G.

    2014-02-01

    There are several emerging diagnostic and therapeutic applications of magnetic nanoparticles (mNPs) in medicine. This study examines the potential for developing an mNP imager that meets these emerging clinical needs with a low cost imaging solution that uses arrays of digitally controlled drive coils in a multiple-frequency, continuous-wave operating mode and compensated fluxgate magnetometers. The design approach is described and a mathematical model is developed to support measurement and imaging. A prototype is used to demonstrate active compensation of up to 185 times the primary applied magnetic field, depth sensitivity up to 2.5 cm (p < 0.01), and linearity over five dilutions (R2 > 0.98, p < 0.001). System frequency responses show distinguishable readouts for iron oxide mNPs with single magnetic domain core diameters of 10 and 40 nm, and multi-domain mNPs with a hydrodynamic diameter of 100 nm. Tomographic images show a contrast-to-noise ratio of 23 for 0.5 ml of 12.5 mg Fe ml-1 mNPs at 1 cm depth. A demonstration involving the injection of mNPs into pork sausage shows the potential for use in biological systems. These results indicate that the proposed mNP imaging approach can potentially be extended to a larger array system with higher-resolution.

  15. Development of a Magnetic Nanoparticle Susceptibility Magnitude Imaging Array

    PubMed Central

    Ficko, Bradley W.; Nadar, Priyanka M.; Hoopes, P. Jack; Diamond, Solomon G.

    2014-01-01

    There are several emerging diagnostic and therapeutic applications of magnetic nanoparticles (mNPs) in medicine. This study examines the potential for developing an mNP imager that meets these emerging clinical needs with a low cost imaging solution that uses arrays of digitally controlled drive coils in a multiple-frequency, continuous-wave operating mode and compensated fluxgate magnetometers. The design approach is described and a mathematical model is developed to support measurement and imaging. A prototype is used to demonstrate active compensation of up to 185 times the primary applied magnetic field, depth sensitivity up to 2.5 cm (p < 0.01), and linearity over 5 dilutions (R2 > 0.98, p <0.001). System frequency responses show distinguishable readouts for iron oxide mNPs with single magnetic domain core diameters of 10 nm and 40 nm, and multi-domain mNPs with a hydrodynamic diameter of 100 nm. Tomographic images show a contrast-to-noise ratio of 23 for 0.5 ml of 12.5 mg Fe/ml mNPs at 1 cm depth. A demonstration involving the injection of mNPs into pork sausage shows the potential for use in biological systems. These results indicate that the proposed mNP imaging approach can potentially be extended to a larger array system with higher-resolution. PMID:24504184

  16. Probing arrays of circular magnetic microdots by ferromagnetic resonance.

    SciTech Connect

    Kakazei, G. N.; Mewes, T.; Wigen, P. E.; Hammel, P. C.; Slavin, A. N.; Pogorelov, Y. G.; Costa, M. D.; Golub, V. O.; Guslienko, K. Y.; Novosad, V.

    2008-06-01

    X-band ferromagnetic resonance (FMR) was used to characterize in-plane magnetic anisotropies in rectangular and square arrays of circular nickel and Permalloy microdots. In the case of a rectangular lattice, as interdot distances in one direction decrease, the in-plane uniaxial anisotropy field increases, in good agreement with a simple theory of magnetostatically interacting uniformly magnetized dots. In the case of a square lattice a four-fold anisotropy of the in-plane FMR field H(r) was found when the interdot distance a gets comparable to the dot diameter D. This anisotropy, not expected in the case of uniformly magnetized dots, was explained by a non-uniform magnetization m(r) in a dot in response to dipolar forces in the patterned magnetic structure. It is well described by an iterative solution of a continuous variation procedure. In the case of perpendicular magnetization multiple sharp resonance peaks were observed below the main FMR peak in all the samples, and the relative positions of these peaks were independent of the interdot separations. Quantitative description of the observed multiresonance FMR spectra was given using the dipole-exchange spin wave dispersion equation for a perpendicularly magnetized film where in-plane wave vector is quantized due to the finite dot radius, and the inhomogenetiy of the intradot static demagnetization field in the nonellipsoidal dot is taken into account. It was demonstrated that ferromagnetic resonance force microscopy (FMRFM) can be used to determine both local and global properties of patterned submicron ferromagnetic samples. Local spectroscopy together with the possibility to vary the tip-sample spacing enables the separation of those two contributions to a FMRFM spectrum. The global FMR properties of circular submicron dots determined using magnetic resonance force microscopy are in a good agreement with results obtained using conventional FMR and with theoretical descriptions.

  17. A superconducting quadrupole magnet array for a heavy ion fusion driver

    SciTech Connect

    Caspi, S.; Bangerter, r.; Chow, K.; Faltens, A.; Gourley, S.; Hinkins, R.; Gupta, R.; Lee, E.; McInturff, A.; Scanlan, R.; Taylor, C.; Wolgast, D.

    2000-06-27

    A multi-channel quadrupole array has been proposed to increase beam intensity and reduce space charge effects in a Heavy Ion Fusion Driver. A single array unit composed of several quadrupole magnets, each with its own beam line, will be placed within a ferromagnetic accelerating core whose cost is directly affected by the array size. A large number of focusing arrays will be needed along the accelerating path. The use of a superconducting quadrupole magnet array will increase the field and reduce overall cost. We report here on the design of a compact 3 x 3 superconducting quadrupole magnet array. The overall array diameter and length including the cryostat is 900 x 700 mm. Each of the 9 quadrupole magnets has a 78 mm warm bore and an operating gradient of 50 T/m over an effective magnetic length of 320 mm.

  18. Magnetic antenna excitation of whistler modes. II. Antenna arrays

    NASA Astrophysics Data System (ADS)

    Stenzel, R. L.; Urrutia, J. M.

    2014-12-01

    The excitation of whistler modes from magnetic loop antennas has been investigated experimentally. The field topology of the excited wave driven by a single loop antenna has been measured for different loop orientations with respect to the uniform background field. The fields from two or more antennas at different locations are then created by superposition of the single-loop data. It is shown that an antenna array can produce nearly plane waves which cannot be achieved with single antennas. By applying a phase shift along the array, oblique wave propagation is obtained. This allows a meaningful comparison with plane wave theory. The Gendrin mode and oblique cyclotron resonance are demonstrated. Wave helicity and polarization in space and time are demonstrated and distinguished from the magnetic helicity of the wave field. The superposition of two oblique plane whistler modes produces in a "whistler waveguide" mode whose polarization and helicity properties are explained. The results show that single point measurements cannot properly establish the wave character of wave packets. The laboratory observations are relevant for excitation and detection of whistler modes in space plasmas.

  19. Magnetic antenna excitation of whistler modes. II. Antenna arrays

    SciTech Connect

    Stenzel, R. L.; Urrutia, J. M.

    2014-12-15

    The excitation of whistler modes from magnetic loop antennas has been investigated experimentally. The field topology of the excited wave driven by a single loop antenna has been measured for different loop orientations with respect to the uniform background field. The fields from two or more antennas at different locations are then created by superposition of the single-loop data. It is shown that an antenna array can produce nearly plane waves which cannot be achieved with single antennas. By applying a phase shift along the array, oblique wave propagation is obtained. This allows a meaningful comparison with plane wave theory. The Gendrin mode and oblique cyclotron resonance are demonstrated. Wave helicity and polarization in space and time are demonstrated and distinguished from the magnetic helicity of the wave field. The superposition of two oblique plane whistler modes produces in a “whistler waveguide” mode whose polarization and helicity properties are explained. The results show that single point measurements cannot properly establish the wave character of wave packets. The laboratory observations are relevant for excitation and detection of whistler modes in space plasmas.

  20. Comparing artificial frustrated magnets: geometric effects in nanomagnet arrays

    NASA Astrophysics Data System (ADS)

    Li, Jie; Ke, Xianglin; Nisoli, Cristiano; Lammert, Paul; Crespi, Vincent; Schiffer, Peter

    2009-03-01

    We have studied arrays of single-domain ferromagnetic islands arranged on lattices such that the magnetostatic interactions between the islands are frustrated by the geometry of the arrays. We compare results for three different lattice geometries: the previously studied square ``artificial spin ice'' lattice[1,2], a hexagonal lattice, and a ladder lattice which is topologically-equivalent to the former one. After the ac demagnetization the magnetic moment configurations are imaged via Magnetic Force Microscopy (MFM). We find that the ladder lattice shows local correlations which are similar to those of the square lattice, suggesting it as a basis for comparison of the energetics of the other two lattices. The normalized magnetostatic energy of all three geometries decreases with decreasing demagnetization step size, but the lattices approach their ground states at different rates. 1. R. F. Wang, C. Nisoli, R. S. Freitas, J. Li, W. McConville, B. J. Cooley, M. S. Lund, N. Samarth, C. Leighton, V. H. Crespi, and P. Schiffer, Nature 439, 303 (2006). 2. X. Ke, J. Li, C. Nisoli, P. E. Lammert, W. McConville, R. F. Wang, V. H. Crespi, and P. Schiffer, Phys. Rev. Lett. 101, 037205 (2008).

  1. Magnetic-field sensor based on tapered all-solid waveguide-array fiber and magnetic fluids

    NASA Astrophysics Data System (ADS)

    Miao, Yinping; Mao, Jia; Wu, Jixuan; Lin, Wei; Song, Binbin; Zhang, Kailiang; Zhang, Hao; Liu, Bo

    2015-09-01

    A compact fiber-optic magnetic-field sensor based on tapered all-solid waveguide-array fiber (WAF) and magnetic fluid (MF) has been proposed and experimentally demonstrated. The transmission spectra of the fiber-optic magnetic field sensor have been measured and analyzed under different magnetic field intensities. Experimental results show that the acquired magnetic field sensitivity is 44.57 pm/Oe for a linear magnetic field intensity range from 50 Oe to 200 Oe. It also indicates that the magnetic field sensor based on tapered all-solid WAF and MF is helpful to reduce temperature cross-sensitivity for the measurement of magnetic field.

  2. Enhanced magnetism in highly ordered magnetite nanoparticle-filled nanohole arrays.

    PubMed

    Duong, Binh; Khurshid, Hafsa; Gangopadhyay, Palash; Devkota, Jagannath; Stojak, Kristen; Srikanth, Hariharan; Tetard, Laurene; Norwood, Robert A; Peyghambarian, N; Phan, Manh-Huong; Thomas, Jayan

    2014-07-23

    A new approach to develop highly ordered magnetite (Fe3O4) nanoparticle-patterned nanohole arrays with desirable magnetic properties for a variety of technological applications is presented. In this work, the sub-100 nm nanohole arrays are successfully fabricated from a pre-ceramic polymer mold using spin-on nanoprinting (SNAP). These nanoholes a then filled with monodispersed, spherical Fe3O4 nanoparticles of about 10 nm diameter using a novel magnetic drag and drop procedure. The nanohole arrays filled with magnetic nanoparticles a imaged using magnetic force microscopy (MFM). Magnetometry and MFM measurements reveal room temperature ferromagnetism in the Fe3O4-filled nanohole arrays, while the as-synthesized Fe3O4 nanoparticles exhibit superparamagnetic behavior. As revealed by MFM measurements, the enhanced magnetism in the Fe3O4-filled nanohole arrays originates mainly from the enhanced magnetic dipole interactions of Fe3 O4 nanoparticles within the nanoholes and between adjacent nanoholes. Nanoparticle filled nanohole arrays can be highly beneficial in magnetic data storage and other applications such as microwave devices and biosensor arrays that require tunable and anisotropic magnetic properties. PMID:24706405

  3. Highly stable and finely tuned magnetic fields generated by permanent magnet assemblies.

    PubMed

    Danieli, E; Perlo, J; Blümich, B; Casanova, F

    2013-05-01

    Permanent magnetic materials are the only magnetic source that can be used to generate magnetic fields without power consumption or maintenance. Such stand-alone magnets are very attractive for many scientific and engineering areas, but they suffer from poor temporal field stability, which arises from the strong sensitivity of the magnetic materials and mechanical support to temperature variation. In this work, we describe a highly efficient method useful to cancel the temperature coefficient of permanent magnet assemblies in a passive and accurate way. It is based on the combination of at least two units made of magnetic materials with different temperature coefficients arranged in such a way that the ratio of the fields generated by each unit matches the ratio of their effective temperature coefficients defined by both the magnetic and mechanical contributions. Although typically available magnetic materials have negative temperature coefficients, the cancellation is achieved by aligning the fields generated by each unit in the opposite direction. We demonstrate the performance of this approach by stabilizing the field generated by a dipolar Halbach magnet, recently proposed to achieve high field homogeneity. Both the field drift and the homogeneity are monitored via nuclear magnetic resonance spectroscopy experiments. The results demonstrate the compatibility of the thermal compensation approach with existing strategies useful to fine-tune the spatial dependence of the field generated by permanent magnet arrays. PMID:23683185

  4. Highly Stable and Finely Tuned Magnetic Fields Generated by Permanent Magnet Assemblies

    NASA Astrophysics Data System (ADS)

    Danieli, E.; Perlo, J.; Blümich, B.; Casanova, F.

    2013-05-01

    Permanent magnetic materials are the only magnetic source that can be used to generate magnetic fields without power consumption or maintenance. Such stand-alone magnets are very attractive for many scientific and engineering areas, but they suffer from poor temporal field stability, which arises from the strong sensitivity of the magnetic materials and mechanical support to temperature variation. In this work, we describe a highly efficient method useful to cancel the temperature coefficient of permanent magnet assemblies in a passive and accurate way. It is based on the combination of at least two units made of magnetic materials with different temperature coefficients arranged in such a way that the ratio of the fields generated by each unit matches the ratio of their effective temperature coefficients defined by both the magnetic and mechanical contributions. Although typically available magnetic materials have negative temperature coefficients, the cancellation is achieved by aligning the fields generated by each unit in the opposite direction. We demonstrate the performance of this approach by stabilizing the field generated by a dipolar Halbach magnet, recently proposed to achieve high field homogeneity. Both the field drift and the homogeneity are monitored via nuclear magnetic resonance spectroscopy experiments. The results demonstrate the compatibility of the thermal compensation approach with existing strategies useful to fine-tune the spatial dependence of the field generated by permanent magnet arrays.

  5. 2D and 3D ordered arrays of Co magnetic nanowires

    NASA Astrophysics Data System (ADS)

    Garcia, J.; Prida, V. M.; Vega, V.; Rosa, W. O.; Caballero-Flores, R.; Iglesias, L.; Hernando, B.

    2015-06-01

    Cobalt nanowire arrays spatially distributed in 2D and 3D arrangements have been performed by pulsed electrodeposition into the pores of planar and cylindrical nanoporous anodic alumina membranes, respectively. Morphological characterization points out the good filling factor reached by electroplated Co nanowires in both kinds of alumina membranes exhibiting hexagonally self-ordered porous structures. Co nanowires grown in both kinds of alumina templates exhibit the same crystalline phases. DC magnetometry and First Order Reversal Curve (FORC) analysis were carried out in order to determine the overall magnetic behavior for both nanowire array geometries. It is found that when the Co nanowires of two kinds of arrays are perpendicularly magnetized, both hysteresis loops are identical, suggesting that neither the intrinsic magnetic behavior of the nanowires nor the collective one depend on the arrays geometry. FORC analysis performed along the radial direction of the Co nanowire arrays embedded in the cylindrical alumina template reveals that the contribution of each nanowire to the magnetization reversal process involves its specific orientation with respect to the applied field direction. Furthermore, the comparison between the magnetic properties for both kinds of Co nanowire arrays allows discussing about the effect of the cylindrical geometry of the template on the magnetostatic interaction among nanowires.

  6. Least Squares Magnetic-Field Optimization for Portable Nuclear Magnetic Resonance Magnet Design

    SciTech Connect

    Paulsen, Jeffrey L; Franck, John; Demas, Vasiliki; Bouchard, Louis-S.

    2008-03-27

    Single-sided and mobile nuclear magnetic resonance (NMR) sensors have the advantages of portability, low cost, and low power consumption compared to conventional high-field NMR and magnetic resonance imaging (MRI) systems. We present fast, flexible, and easy-to-implement target field algorithms for mobile NMR and MRI magnet design. The optimization finds a global optimum ina cost function that minimizes the error in the target magnetic field in the sense of least squares. When the technique is tested on a ring array of permanent-magnet elements, the solution matches the classical dipole Halbach solution. For a single-sided handheld NMR sensor, the algorithm yields a 640 G field homogeneous to 16 100 ppm across a 1.9 cc volume located 1.5 cm above the top of the magnets and homogeneous to 32 200 ppm over a 7.6 cc volume. This regime is adequate for MRI applications. We demonstrate that the homogeneous region can be continuously moved away from the sensor by rotating magnet rod elements, opening the way for NMR sensors with adjustable"sensitive volumes."

  7. Inscription and stabilization of ferromagnetic patterns on arrays of magnetic nanocylinders

    NASA Astrophysics Data System (ADS)

    Cisternas, E.; Vogel, E. E.

    2013-07-01

    Magnetic Nanocylinders (MNs) result axially parallel and forming triangular arrays immersed in the membrane used to produce them. As the individual magnetization points along each cylinder axis either inward or outward of the membrane plane, the net magnetization of the set is nil. However, a localized and strong enough magnetic field applied over such MNs array can revert the magnetization of individual MNs. This fact opens the possibility to inscribe ferromagnetic patterns (FPs) over the membrane surface as an alternative way to store fixed information. Patterns with different geometrical shapes and also letters under the arial font were tested. In this frame we have studied the total energy per cylinder for FPs within a circular membrane containing a huge amount of MNs. To prevent spontaneous magnetization reversion, with the consequently information lost, we propose a simple stabilization mechanism.

  8. A decoupled control approach for magnetic suspension systems using electromagnets mounted in a planar array

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.

    1993-01-01

    A decoupled control approach for a Large Gap Magnetic Suspension System (LGMSS) is presented. The control approach is developed for an LGMSS which provides five degree-of-freedom control of a cylindrical suspended element that contains a core composed of permanent magnet material. The suspended element is levitated above five electromagnets mounted in a planar array. Numerical results are obtained by using the parameters of the Large Angle Magnetic Suspension Test Fixture (LAMSTF) which is a small scale laboratory model LGMSS.

  9. Tilted Microstrip Phased Arrays With Improved Electromagnetic Decoupling for Ultrahigh-Field Magnetic Resonance Imaging

    PubMed Central

    Pang, Yong; Wu, Bing; Jiang, Xiaohua; Vigneron, Daniel B.; Zhang, Xiaoliang

    2014-01-01

    Abstract One of the technical challenges in designing a dedicated transceiver radio frequency (RF) array for MR imaging in humans at ultrahigh magnetic fields is how to effectively decouple the resonant elements of the array. In this work, we propose a new approach using tilted microstrip array elements for improving the decoupling performance and potentially parallel imaging capability. To investigate and validate the proposed design technique, an 8-channel volume array with tilted straight-type microstrip elements was designed, capable for human imaging at the ultrahigh field of 7 Tesla. In this volume transceiver array, its electromagnetic decoupling behavior among resonant elements, RF field penetration to biological samples, and parallel imaging performance were studied through bench tests and in vivo MR imaging experiments. In this specific tilted element array design, decoupling among array elements changes with the tilted angle of the elements and the best decoupling can be achieved at certain tilted angle. In vivo human knee MR images were acquired using the tilted volume array at 7 Tesla for method validation. Results of this study demonstrated that the electromagnetic decoupling between array elements and the B1 field strength can be improved by using the tilted element method in microstrip RF coil array designs at the ultrahigh field of 7T. PMID:25526481

  10. Nonlithographic fabrication of 25 nm magnetic nanodot arrays with perpendicular anisotropy over a large area

    SciTech Connect

    Rahman, M. Tofizur; Shams, Nazmun N.; Lai, C.-H.

    2009-04-01

    A simple method is demonstrated to fabricate 25 nm magnetic nanodot arrays with perpendicular anisotropy over 10 cm{sup 2} coverage area. The nanodot arrays are fabricated by depositing Co/Pt multilayers (MLs) onto the SiO{sub 2} dot arrays formed on a Si wafer. At first, arrays of the SiO{sub 2} dots are fabricated on a Si wafer by anodizing a thin Al film deposited on it. The SiO{sub 2} dots are formed at the base of the anodized alumina (AAO) pores due to the selective oxidation of the Si through the AAO pores during over anodization of the Al film. The average diameter, periodicity, and height of the SiO{sub 2} dots are about 24, 43, and 17 nm, respectively. Then (Co(0.4 nm)/Pt(0.08 nm)){sub 8} MLs with a 3 nm Pt buffer layer is deposited onto the SiO{sub 2} dot arrays by sputtering. The average diameter and periodicity of the Co/Pt nanodot arrays are 25.4 and 43 nm, respectively, with narrow distribution. The nanodot arrays exhibit strong perpendicular anisotropy with a squareness ratio of unity and negative nucleation fields. The coercivity of the nanodot arrays is about one order higher than that of the continuous film, i.e., the same structure deposited on the SiO{sub 2} substrate. The magnetization reversal of the continuous film is governed by domain-wall motion, while the magnetization reversal of the nanodot arrays is dominated by the Stoner-Wohlfarth-like rotation. These results indicate that the fabricated structure can be considered as an isolated nanodot array.

  11. Nonlithographic fabrication of 25 nm magnetic nanodot arrays with perpendicular anisotropy over a large area

    NASA Astrophysics Data System (ADS)

    Rahman, M. Tofizur; Shams, Nazmun N.; Lai, Chih-Huang

    2009-04-01

    A simple method is demonstrated to fabricate 25 nm magnetic nanodot arrays with perpendicular anisotropy over 10 cm2 coverage area. The nanodot arrays are fabricated by depositing Co/Pt multilayers (MLs) onto the SiO2 dot arrays formed on a Si wafer. At first, arrays of the SiO2 dots are fabricated on a Si wafer by anodizing a thin Al film deposited on it. The SiO2 dots are formed at the base of the anodized alumina (AAO) pores due to the selective oxidation of the Si through the AAO pores during over anodization of the Al film. The average diameter, periodicity, and height of the SiO2 dots are about 24, 43, and 17 nm, respectively. Then {Co(0.4 nm)/Pt(0.08 nm)}8 MLs with a 3 nm Pt buffer layer is deposited onto the SiO2 dot arrays by sputtering. The average diameter and periodicity of the Co/Pt nanodot arrays are 25.4 and 43 nm, respectively, with narrow distribution. The nanodot arrays exhibit strong perpendicular anisotropy with a squareness ratio of unity and negative nucleation fields. The coercivity of the nanodot arrays is about one order higher than that of the continuous film, i.e., the same structure deposited on the SiO2 substrate. The magnetization reversal of the continuous film is governed by domain-wall motion, while the magnetization reversal of the nanodot arrays is dominated by the Stoner-Wohlfarth-like rotation. These results indicate that the fabricated structure can be considered as an isolated nanodot array.

  12. Magnetic wall decoupling method for monopole coil array in ultrahigh field MRI: a feasibility test.

    PubMed

    Yan, Xinqiang; Zhang, Xiaoliang; Wei, Long; Xue, Rong

    2014-04-01

    Ultrahigh field (UHF) MR imaging of deeply located target in high dielectric biological samples faces challenges due to the reduced penetration depth at the corresponding high frequencies. Radiative coils, e.g., dipole and monopole coils, have recently been applied for UHF MRI applications to obtain better signal-noise-ratio (SNR) in the area deep inside the human head and body. However, due to the unique structure of radiative coil elements, electromagnetic (EM) coupling between elements in radiative coil arrays cannot be readily addressed by using traditional decoupling methods such as element overlapping and L/C decoupling network. A new decoupling method based on induced current elimination (ICE) or magnetic wall technique has recently been proposed and has demonstrated feasibility in designing microstrip transmission line (MTL) arrays and L/C loop arrays. In this study, an array of two monopole elements decoupled using magnetic wall decoupling technique was designed, constructed and analyzed numerically and experimentally to investigate the feasibility of the decoupling technique in radiative coil array designs for MR imaging at 7 T. An L-shaped capacitive network was employed as the matching circuit and the reflection coefficients (S11) of the monopole element achieved -30 dB or better. Isolation between the two monopole elements was improved from about -10 dB (without decoupling treatment) to better than -30 dB with the ICE/magnetic wall decoupling method. B1 maps and MR images of the phantom were acquired and SNR maps were measured and calculated to evaluate the performance of the ICE/magnetic wall decoupling method. Compared with the monopole elements without decoupling methods, the ICE-decoupled array demonstrated more independent image profiles from each element and had a higher SNR in the peripheral area of the imaging subject. The experimental and simulation results indicate that the ICE/magnetic wall decoupling technique might be a promising solution to reducing the EM coupling of monopole arrays for UHF MRI. PMID:24834419

  13. Magnetic wall decoupling method for monopole coil array in ultrahigh field MRI: a feasibility test

    PubMed Central

    Yan, Xinqiang; Zhang, Xiaoliang; Wei, Long

    2014-01-01

    Ultrahigh field (UHF) MR imaging of deeply located target in high dielectric biological samples faces challenges due to the reduced penetration depth at the corresponding high frequencies. Radiative coils, e.g., dipole and monopole coils, have recently been applied for UHF MRI applications to obtain better signal-noise-ratio (SNR) in the area deep inside the human head and body. However, due to the unique structure of radiative coil elements, electromagnetic (EM) coupling between elements in radiative coil arrays cannot be readily addressed by using traditional decoupling methods such as element overlapping and L/C decoupling network. A new decoupling method based on induced current elimination (ICE) or magnetic wall technique has recently been proposed and has demonstrated feasibility in designing microstrip transmission line (MTL) arrays and L/C loop arrays. In this study, an array of two monopole elements decoupled using magnetic wall decoupling technique was designed, constructed and analyzed numerically and experimentally to investigate the feasibility of the decoupling technique in radiative coil array designs for MR imaging at 7 T. An L-shaped capacitive network was employed as the matching circuit and the reflection coefficients (S11) of the monopole element achieved –30 dB or better. Isolation between the two monopole elements was improved from about –10 dB (without decoupling treatment) to better than –30 dB with the ICE/magnetic wall decoupling method. B1 maps and MR images of the phantom were acquired and SNR maps were measured and calculated to evaluate the performance of the ICE/magnetic wall decoupling method. Compared with the monopole elements without decoupling methods, the ICE-decoupled array demonstrated more independent image profiles from each element and had a higher SNR in the peripheral area of the imaging subject. The experimental and simulation results indicate that the ICE/magnetic wall decoupling technique might be a promising solution to reducing the EM coupling of monopole arrays for UHF MRI. PMID:24834419

  14. Synthesis, Magnetic Anisotropy and Optical Properties of Preferred Oriented Zinc Ferrite Nanowire Arrays

    PubMed Central

    2010-01-01

    Preferred oriented ZnFe2O4 nanowire arrays with an average diameter of 16 nm were fabricated by post-annealing of ZnFe2 nanowires within anodic aluminum oxide templates in atmosphere. Selected area electron diffraction and X-ray diffraction exhibit that the nanowires are in cubic spinel-type structure with a [110] preferred crystallite orientation. Magnetic measurement indicates that the as-prepared ZnFe2O4 nanowire arrays reveal uniaxial magnetic anisotropy, and the easy magnetization direction is parallel to the axis of nanowire. The optical properties show the ZnFe2O4 nanowire arrays give out 370–520 nm blue-violet light, and their UV absorption edge is around 700 nm. The estimated values of direct and indirect band gaps for the nanowires are 2.23 and 1.73 eV, respectively. PMID:20676211

  15. Vectorial calibration of 3-D magnetic field sensor arrays

    SciTech Connect

    Lassahn, M.; Trenkler, G.

    1994-12-31

    Measuring devices for field structure analysis or the vectorial measurement of field distributions must be calibrated vectorially in three axis. This paper presents and compares two procedures for the calibration of sensor arrays. The measurements used for this are derived from a solenoid coil, which can be calibrated by the Pbysikalische Technisch Bundesanstallt PTB.

  16. Mid-Range Coil Array for Magnetic Resonance Imaging of Small Animals

    NASA Astrophysics Data System (ADS)

    Solis, S. E.; Tomasi, D.; Rodríguez, A. O.

    2008-08-01

    The vast majority of articles on MRI RF coils over the past two decades have focused on large coils, where sample losses dominate, or on micro-coils, where sample and capacitor losses are negligible. Few have addressed the mid-range coils, seen in the majority of small-animal applications, where all the sources of loss are important, for example, mouse brain and body coils from 125 to 750 MHz. We developed a four-saddle coil array for magnetic resonance imaging of small animals. The saddle coil elements in the array were evenly distributed to cover the rat's head. The coil array was tuned to the resonant frequency of 170 MHz. Due to the close proximity of the coil elements, it was necessary to decouple the coil array using nonmagnetic trimmers and, it was operated in the transceiver mode and quadrature-driven. To test the coil array performance at high field, phantom images were acquired with our saddle coil array and standard pulse sequences on a research-dedicated 4 Tesla scanner. Ex vivo brain images of a rat were also acquired, and proved the feasibility of the scaled version of a saddle coil array and, its compatibility with standard pulse sequences when used in a high field magnetic resonance imager.

  17. Mid-Range Coil Array for Magnetic Resonance Imaging of Small Animals

    SciTech Connect

    Solis, S. E.; Tomasi, D.; Rodriguez, A. O.

    2008-08-11

    The vast majority of articles on MRI RF coils over the past two decades have focused on large coils, where sample losses dominate, or on micro-coils, where sample and capacitor losses are negligible. Few have addressed the mid-range coils, seen in the majority of small-animal applications, where all the sources of loss are important, for example, mouse brain and body coils from 125 to 750 MHz. We developed a four-saddle coil array for magnetic resonance imaging of small animals. The saddle coil elements in the array were evenly distributed to cover the rat's head. The coil array was tuned to the resonant frequency of 170 MHz. Due to the close proximity of the coil elements, it was necessary to decouple the coil array using nonmagnetic trimmers and, it was operated in the transceiver mode and quadrature-driven. To test the coil array performance at high field, phantom images were acquired with our saddle coil array and standard pulse sequences on a research-dedicated 4 Tesla scanner. Ex vivo brain images of a rat were also acquired, and proved the feasibility of the scaled version of a saddle coil array and, its compatibility with standard pulse sequences when used in a high field magnetic resonance imager.

  18. Visible broadband magnetic response from Ag chiral Z-shaped nanohole array

    E-print Network

    Han, Chunrui

    2015-01-01

    We show that broadband magnetic response in visible range can be achieved through an Ag chiral Z-shaped nanohole array. The broadband effect is realized by incorporating multi-scaled inverted SRRs and metal/dielectric nanostrip antenna in one unit cell of only 260 nm square lattice, resulting in multiple excitations of magnetic resonances at different wavelengths. The collective modes show structure dependence and respond separately to LCP and RCP incident light. The Ag Z- and reverse-Z-shaped nanohole arrays have been experimentally realized by shadowing vapor deposition method which exhibit broadband transmission difference, in good agreement with numerical simulations.

  19. Three-dimensional finite element modeling of a magnet array spinning above a conductor

    SciTech Connect

    Lorimer, W.L.; Lieu, D.K.; Hull, J.R.; Mulcahy, T.M.; Rossing, T.D.

    1993-12-31

    Drag forces due to eddy currents induced by the relative motion of a conductor and a magnetic field occur in many practical devices: motors, brakes, magnetic bearings, and magnetically levitated vehicles. Recently, finite element codes have included solvers for 3-D eddy current geometries and have the potential to be very useful in the design and analysis of these devices. In this paper, numerical results from three-dimensional modeling of a magnet array spinning above a conductor are compared to experimental results in order to assess the capabilities of these codes.

  20. Discrete breathers in an one-dimensional array of magnetic dots

    NASA Astrophysics Data System (ADS)

    Pylypchuk, Roman L.; Zolotaryuk, Yaroslav

    2015-09-01

    The dynamics of the one-dimensional array of magnetic particles (dots) with the easy-plane anisotropy is investigated. The particles interact with each other via the magnetic dipole interaction and the whole system is governed by the set of Landau-Lifshitz equations. The spatially localized and time-periodic solutions known as discrete breathers (or intrinsic localized modes) are identified. These solutions have no analogue in the continuum limit and consist of the core where the magnetization vectors precess around the hard axis and the tails where the magnetization vectors oscillate around the equilibrium position.

  1. Circular sensor array and nonlinear analysis of homopolar magnetic bearings 

    E-print Network

    Wiesenborn, Robert Kyle

    2007-04-25

    Magnetic bearings use variable attractive forces generated by electromagnetic control coils to support rotating shafts with low friction and no material wear while providing variable stiffness and damping. Rotor deflections are stabilized...

  2. Electro-magnetic Sensing and Actuation Array on Silicon Substrate Faisal T. Abu-Nimeh and Fathi M. Salem

    E-print Network

    Salem, Fathi M.

    Electro-magnetic Sensing and Actuation Array on Silicon Substrate Platforms Faisal T. Abu technology as a platform for col- lective non-contact sensing and manipulation of magnetic or magnetized and manipulating magnetized beads on its surface using standard silicon CMOS technology. The vision

  3. Magnetic microscopy/metrology potential of metamaterials using nanosized spherical particle arrays

    NASA Astrophysics Data System (ADS)

    Eason, Kwaku; Luk'yanchuk, Boris; Zhou, Yi; Miroshnichenko, Andrey E.; Kivshar, Yuri S.

    2011-12-01

    Techniques for imaging and characterizing magnetic samples have been widely used in many areas of research involving magnetic materials. Nowadays, magnetic microscopy techniques play a critical role in characterizing magnetic thin film structures. In considering the various techniques, optical techniques offer some unique advantages over alternative techniques (e.g. MFM), as they are least affected by magnetic noise and, for the same underlying reasons, have also proven to be more suitable for "high speed" magnetization measurements of magnetization dynamics, which are increasingly important in many of today's research scopes. At the same time, development of metamaterials are opening the doors for newly behaving materials, such as those demonstrating negative refractive index, potentially useful in a variety of applications, such as imaging. Metamaterials deploying arrays of silicon particles, and even alternating silicon particles and split ring resonators have recently been shown to demonstrate interesting behavior, such as negative magnetic susceptibility and large resonant peaks in the Terahertz regime. Such high frequencies offer the potential bandwidth of extraordinarily fast dynamics, which are increasingly being generated in magnetic materials, for example, in optically-induced demagnetization and all-optical magnetic recording. Here, initial investigations toward ultra high-speed imaging and/or information extraction from magnetic samples is discussed considering metamaterials deploying mainly spherical particle arrays. In addition to the frequency spectrums of the system, the response of the system to external magnetic fields and background permeability changes due to external fields are investigated. Our results suggest a significant potential of metamaterials for use in probing information from magnetic materials.

  4. A six-degree-of-freedom magnetic levitation fine stage for a high-precision and high-acceleration dual-servo stage

    NASA Astrophysics Data System (ADS)

    Kim, MyeongHyeon; Jeong, Jae-heon; Kim, HyoYoung; Gweon, DaeGab

    2015-10-01

    This paper presents a novel six-degree-of-freedom magnetic levitation fine stage for a dual-servo stage. The proposed fine stage is levitated and actuated, using a voice coil motor actuator with a Halbach magnet array. For a dual-servo stage, fine stage performance is deeply intertwined with coarse stage performance. Because the fine stage is installed over the coarse stage, the overall size of the fine stage can be limited by the moving plate of the coarse stage. Therefore, magnetic flux modeling and optimization are performed to manufacture optimal fine stages. To control the fine stage, actuator kinetics and sensor kinematics are proposed. Homing control is implemented by using linear variable differential transformers, whereas fine control is implemented by capacitance sensors and laser interferometers. Finally, experimental results of in-position stability, moving range, and repeatability are presented.

  5. Ordering, thermal excitations and phase transitions in dipolar coupled mono-domain magnet arrays

    NASA Astrophysics Data System (ADS)

    Kapaklis, Vassilios

    2015-03-01

    Magnetism has provided a fertile test bed for physical models, such as the Heisenberg and Ising models. Most of these investigations have focused on solid materials and relate to their atomic properties such as the atomic magnetic moments and their interactions. Recently, advances in nanotechnology have enabled the controlled patterning of nano-sized magnetic particles, which can be arranged in extended lattices. Tailoring the geometry and the magnetic material of these lattices, the magnetic interactions and magnetization reversal energy barriers can be tuned. This enables interesting interaction schemes to be examined on adjustable length and energy scales. As a result such nano-magnetic systems represent an ideal playground for the study of physical model systems, being facilitated by direct magnetic imaging techniques. One particularly interesting case is that of systems exhibiting frustration, where competing interactions cannot be simultaneously satisfied. This results in a degeneracy of the ground state and intricate thermodynamic properties. An archetypical frustrated physical system is water ice. Similar physics can be mirrored in nano-magnetic arrays, by tuning the arrangement of neighboring magnetic islands, referred to as artificial spin ice. Thermal excitations in such systems resemble magnetic monopoles. In this presentation key concepts related to nano-magnetism and artificial spin ice will be introduced and discussed, along with recent experimental and theoretical developments.

  6. Magnetic Field Measurements in Wire-Array Z-Pinches using Magneto-Optically Active Waveguides

    NASA Astrophysics Data System (ADS)

    Syed, Wasif; Blesener, Isaac; Hammer, David A.; Lipson, Michal

    2009-01-01

    Understanding the magnetic field topology in wire-array Z-pinches as a function of time is of great significance to understanding these high-energy density plasmas especially for their ultimate application to stockpile stewardship and inertial confinement fusion. We are developing techniques to measure magnetic fields as a function of space and time using Faraday rotation of a single longitudinal mode (SLM) laser through a magneto-optically active bulk waveguide (multicomponent terbium borate glass) placed adjacent to, or within, the wire array in 1 MA experiments. We have measured fields >10 T with 100 ns rise times outside of a wire-array for the entire duration of the current pulse and as much as ˜2 T inside a wire-array for ˜40 ns from the start of current. This is the first time that such rapidly varying and large fields have been measured using these materials. In a dense Z-pinch, these sensing devices may not survive for long but may provide the magnetic field at the position of the sensor that can be used to corroborate magnetic probes, with which we compare our results.

  7. Magnetic Field Measurements in Wire-Array Z-Pinches using Magneto-Optically Active Waveguides

    SciTech Connect

    Syed, Wasif; Blesener, Isaac; Hammer, David A.; Lipson, Michal

    2009-01-21

    Understanding the magnetic field topology in wire-array Z-pinches as a function of time is of great significance to understanding these high-energy density plasmas especially for their ultimate application to stockpile stewardship and inertial confinement fusion. We are developing techniques to measure magnetic fields as a function of space and time using Faraday rotation of a single longitudinal mode (SLM) laser through a magneto-optically active bulk waveguide (multicomponent terbium borate glass) placed adjacent to, or within, the wire array in 1 MA experiments. We have measured fields >10 T with 100 ns rise times outside of a wire-array for the entire duration of the current pulse and as much as {approx}2 T inside a wire-array for {approx}40 ns from the start of current. This is the first time that such rapidly varying and large fields have been measured using these materials. In a dense Z-pinch, these sensing devices may not survive for long but may provide the magnetic field at the position of the sensor that can be used to corroborate magnetic probes, with which we compare our results.

  8. Magnetic properties of Sr-ferrite dot arrays by electron beam lithography

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoxi; Itoh, Fumitake

    2003-05-01

    We have successfully prepared Sr-ferrite dot arrays with perpendicular magnetic anisotropy by electron beam lithography. Virgin magnetic configurations detected by magnetic force microscopy (MFM) show single domain configuration for a 0.5 ?m dot, while multidomain configurations are found for larger dots. The magnetization reversal mechanism in dots larger than 0.5 ?m is found to be domain wall motion. While the magnetization reversal mechanism in 0.5 ?m dots is found to be magnetization rotation. A normalized dc demagnetization remanence curve (DCD) measured by a superconducting quantum interference device (SQUID) indicates that with a decrease of dot size, the DCD curve is approaching the curve predicted by the coherent rotation model. Both MFM and SQUID results indicate that the single-domain dots reversed individually free from interdot magnetostatic coupling.

  9. Study on magnetic mirror array image intensifier to work at room temperature.

    PubMed

    Tang, Yuanhe; Yu, Yang; Gao, HaiYang; Liu, Shulin; Wang, Xiaolin

    2015-09-10

    In order to improve the detection capability of the current low-light-level (LLL) imaging systems at room temperature, a new device, a magnetic mirror array image intensifier (MMAII), is proposed in this paper. A magnetic mirror array device (MMAD) is coupled into an image intensifier which sits between the photocathode and the microchannel plate (MCP). The trace photoelectrons, one after another, are first sufficiently accumulated by the MMAD over a long time at room temperature, and then they are released and enter the MCP for further gain. These two steps are used to improve the detection capability at the LLL imaging system at room temperature. After the two-dimensional magnetic field distribution of the magnetic mirror array (MMA) is calculated, the MMA is designed and optimized with a rubidium Nd-Fe-B permanent magnet. Three groups of ideal parameters for the Nd-Fe-B permanent magnet MMAD, with a magnetic mirror ratio of 1.69, for all of them have been obtained. According to the research results on the noise of the escape cone of the MMAII, the angle between the incident direction and the axis is greater than 57°, so the trace electrons must be constrained by the magnetic mirror. We made 54 MMAs from Nd-Fe-B permanent magnets and packaged them in a container. Then the system was evacuated to 10-3??Pa at room temperature. It was found by experiment that the trace electrons could be actually constrained by the MMAD. The MMAII can be applied to images for static LLL objects. PMID:26368978

  10. Open-loop characteristics of magnetic suspension systems using electromagnets mounted in a planar array

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.; Britcher, Colin P.

    1992-01-01

    The open-loop characteristics of a Large-Gap Magnetic Suspension System (LGMSS) were studied and numerical results are presented. The LGMSS considered provides five-degree-of-freedom control. The suspended element is a cylinder that contains a core composed of permanent magnet material. The magnetic actuators are air core electromagnets mounted in a planar array. Configurations utilizing five, six, seven, and eight electromagnets were investigated and all configurations were found to be controllable from coil currents and observable from suspended element positions. Results indicate that increasing the number of coils has an insignificant effect on mode shapes and frequencies.

  11. Magnetization plateaus and frequency dispersion of hysteresis on frustrated dipolar array

    NASA Astrophysics Data System (ADS)

    Zhang, You-Tian

    2015-08-01

    Competings or frustrated interactions are common for condensed matter systems. In consideration of the effect of dipole-dipole interaction, the static properties of square lattice spin systems are investigated using the Wang-Landau algorithm. The dynamic hysteresis is also simulated using the Monte Carlo (MC) method. The step-like magnetization under a DC magnetic field and two distinct peaks in hysteresis dispersion under an AC magnetic field are observed. Then, the formation of the properties of the frustrated dipolar array are discussed.

  12. Pulse electrodeposition and electrochemical quartz crystal microbalance techniques for high perpendicular magnetic anisotropy cobalt nanowire arrays

    SciTech Connect

    Ursache, Andrei; Goldbach, James T.; Russell, Thomas P.; Tuominen, Mark T.

    2005-05-15

    This research is focused on the development of pulse electrodeposition techniques to fabricate a high-density array of vertically oriented, high-magnetic anisotropy cobalt nanowires using a porous polymer film template. This type of array is a competitive candidate for future perpendicular magnetic media capable of storage densities exceeding 1 Terabit/in.{sup 2} The polymer template, derived from a self-assembling P(S-b-MMA) diblock copolymer film, provides precise control over the nanowire diameter (15 nm) and interwire spacing (24 nm), whereas nanowire length (typically 50 to 1000 nm) is controlled accurately with the aid of real-time electrochemical quartz crystal monitoring. Pulse and pulse-reversed electrodeposition techniques, as compared to dc, are shown to significantly enhance the perpendicular magnetic anisotropy of the magnetic nanowire array and ultimately result in coercivity as large as 2.7 kOe at 300 K. Magnetic and structural characterizations suggest that these properties arise from an improved degree of magnetocrystalline anisotropy (due to c-axis oriented crystal growth and improvements in crystal quality) that strongly supplements the basic shape anisotropy of the nanowires. Low temperature magnetometry is used to investigate exchange bias effects due to the incorporation of CoO antiferromagnetic impurities during the electrodeposition process and subsequent Co oxidation in air.

  13. A microfabricated magnetic actuation device for mechanical conditioning of arrays of 3D microtissues

    PubMed Central

    Xu, Fan; Zhao, Ruogang; Liu, Alan S.; Metz, Tristin; Shi, Yu; Bose, Prasenjit; Reich, Daniel H.

    2015-01-01

    This paper describes an approach to actuate magnetically arrays of microtissue constructs for long-term mechanical conditioning and subsequent biomechanical measurements. Each construct consists of cell/matrix material self-assembled around a pair of flexible poly(dimethylsiloxane) (PDMS) pillars. The deflection of the pillars reports the tissues’ contractility. Magnetic stretching of individual microtissues via magnetic microspheres mounted on the cantilevers has been used to elucidate the tissues’ elastic modulus and response to varying mechanical boundary conditions. This paper describes the fabrication of arrays of micromagnetic structures that can transduce an externally applied uniform magnetic field to actuate simultaneously multiple microtissues. These structures are fabricated on silicon-nitride coated Si wafers and contain electrodeposited Ni bars. Through-etched holes provide optical and culture media access when the devices are mounted on the PDMS microtissue scaffold devices. Both static and AC forces (up to 20 ?N on each microtissue) at physiological frequencies are readily generated in external fields of 40 mT. Operation of the magnetic arrays was demonstrated via measurements of elastic modulus and dynamic stiffening in response to AC actuation of fibroblast populated collagen microtissues. PMID:25959132

  14. Experiments with 2D quasistatic and shaken arrays of permanent magnet N-mers (N >=1)

    NASA Astrophysics Data System (ADS)

    Koch, Peter; Shattuck, Mark

    2010-03-01

    We extend methods used to study macroscopic grains (contact forces) to 2D (x,y) arrays of N-mers of cylindrical (L=D=3.18 mm) Nd-Fe-B magnets in a rectangular cell with glass plates ?z ˜3.3 mm apart and parallel to magnet faces. Aligned monomers repel with a measured d-4 (dipole-dipole) force dependence, with d the separation between cylinder axes. With fixed, aligned monomers separated by 6.35 mm along the cell walls, hundreds of aligned monomers can move in the cell subject to magnet-glass friction and gravity (either or to z) but without contacting each other or the walls. Quasistatically moving one wall to decrease volume V increases pressure P on the magnetic particles and leads to ordering observed with annealing. Driving the array, e.g., by shaking one wall, can produce disorder; we study how this varies with driving strength at fixed V or P. Replacing all non-wall monomers with similarly aligned tetramers (3 magnets magnetically bound to an inverted magnet) allows for more ordered states in quasistatic experiments; macroscopic, internal degrees of freedom into which energy can flow in driven experiments; and rearrangements (``chemical reactions") for strong driving.

  15. Preparing magnetic yttrium iron garnet nanodot arrays by ultrathin anodic alumina template on silicon substrate

    NASA Astrophysics Data System (ADS)

    Zheng, Hui; Han, Mangui; Zheng, Liang; Zheng, Peng; Wu, Qiong; Deng, Longjiang; Qin, Huibin

    2015-08-01

    Ultrahigh density periodically ordered magnetic yttrium iron garnet (Y3Fe5O12, YIG) nanodot arrays have been prepared by pulsed laser deposition through an ultrathin alumina mask (UTAM). UTAM having periodically ordered circularly shaped holes with 350 nm in diameter, 450 nm in inter-pore distance, and 700 nm in height has been prepared on silicon substrate. Furthermore, the microstructure and magnetic properties of YIG nanodot arrays have been characterized. Nanodot arrays with a sharp distribution in diameter centered at 340 nm with standard deviation of 10 nm have been fabricated. Moreover, typical hysteresis loops and ferromagnetic resonance spectra in in-plane and out-of-plane revealed that this unique structure greatly influences the magnetics properties of YIG. First, coercivity of YIG nanodot arrays in in-plane was increased about from 15 Oe of YIG films to 500 Oe. Then, the degree of uniformity about nanodot height decided that two or more resonance peaks in out-of-plane were detected in the spectra. The peak-to-peak linewidth values were about 94 Oe and 40 Oe in the parallel and perpendicular directions, respectively, which indicated that the values were larger by the two-magnon scattering. Consequently, this pattering method creates opportunities for studying physics in oxide nanomagnets and may be applied in spin-wave devices.

  16. An Orientation Measurement Method Based on Hall-effect Sensors for Permanent Magnet Spherical Actuators with 3D Magnet Array

    PubMed Central

    Yan, Liang; Zhu, Bo; Jiao, Zongxia; Chen, Chin-Yin; Chen, I-Ming

    2014-01-01

    An orientation measurement method based on Hall-effect sensors is proposed for permanent magnet (PM) spherical actuators with three-dimensional (3D) magnet array. As there is no contact between the measurement system and the rotor, this method could effectively avoid friction torque and additional inertial moment existing in conventional approaches. Curved surface fitting method based on exponential approximation is proposed to formulate the magnetic field distribution in 3D space. The comparison with conventional modeling method shows that it helps to improve the model accuracy. The Hall-effect sensors are distributed around the rotor with PM poles to detect the flux density at different points, and thus the rotor orientation can be computed from the measured results and analytical models. Experiments have been conducted on the developed research prototype of the spherical actuator to validate the accuracy of the analytical equations relating the rotor orientation and the value of magnetic flux density. The experimental results show that the proposed method can measure the rotor orientation precisely, and the measurement accuracy could be improved by the novel 3D magnet array. The study result could be used for real-time motion control of PM spherical actuators. PMID:25342000

  17. Magnetic properties of Ni-Fe nanowire arrays: effect of template material and deposition conditions

    SciTech Connect

    Singleton, John; Aravamudhan, Shyan; Goddard, Paul A; Bhansali, Shekhar

    2008-01-01

    The objective of this work is to study the magnetic properties of arrays of Ni-Fe nanowires electrodeposited in different template materials such as porous silicon, polycarbonate and alumina. Magnetic properties were studied as a function of template material, applied magnetic field (parallel and perpendicular) during deposition, wire length, as well as magnetic field orientation during measurement. The results show that application of magnetic field during deposition strongly influences the c-axis preferred orientation growth of Ni-Fe nanowires. The samples with magnetic field perpendicular to template plane during deposition exhibits strong perpendicular anisotropy with greatly enhanced coercivity and squareness ratio, particularly in Ni-Fe nanowires deposited in polycarbonate templates. In case of polycarbonate template, as magnetic field during deposition increases, both coercivity and squareness ratio also increase. The wire length dependence was also measured for polycarbonate templates. As wire length increases, coercivity and squarness ratio decrease, but saturation field increases. Such magnetic behavior (dependence on template material, magnetic field, wire length) can be qualitatively explained by preferential growth phenomena, dipolar interactions among nanowires, and perpendicular shape anisotropy in individual nanowires.

  18. A fully automated in vitro diagnostic system based on magnetic tunnel junction arrays and superparamagnetic particles

    NASA Astrophysics Data System (ADS)

    Lian, Jie; Chen, Si; Qiu, Yuqin; Zhang, Suohui; Shi, Stone; Gao, Yunhua

    2012-04-01

    A fully automated in vitro diagnostic (IVD) system for diagnosing acute myocardial infarction was developed using high sensitivity MTJ array as sensors and nano-magnetic particles as tags. On the chip is an array of 12 × 106 MTJ devices integrated onto a 3 metal layer CMOS circuit. The array is divided into 48 detection areas, therefore 48 different types of bio targets can be analyzed simultaneously if needed. The chip is assembled with a micro-fluidic cartridge which contains all the reagents necessary for completing the assaying process. Integrated with electrical, mechanical and micro-fluidic pumping devices and with the reaction protocol programed in a microprocessor, the system only requires a simple one-step analyte application procedure to operate and yields results of the three major AMI bio-markers (cTnI, MYO, CK-MB) in 15 mins.

  19. Magnetic response at visible and near-infrared frequencies from black phosphorus sheet arrays.

    PubMed

    Wang, Tiecheng; Zhang, Xiangdong

    2015-11-30

    We study theoretically optical properties of black phosphorus (BP) sheet arrays being embedded in the dielectric multilayer structure using transfer-matrix method. It is found that the dielectric multilayer structures containing BP sheet arrays can exhibit rich optical properties. In some frequency regions, strong anisotropy appears for the scattering and absorption of polarized waves. Thus, they can be used as the selective absorption materials for two kinds of polarized wave. In contrast, in some visible and near-infrared frequency regions, low absorption and strong magnetic response have been observed. This means that they can be also used as good magnetic response materials at visible and near-infrared frequencies. Our results could find applications in various control of polarized waves. PMID:26698699

  20. Magnetization reversal in lithographically patterned sub-200-nm Co particle arrays

    NASA Astrophysics Data System (ADS)

    Hao, Y.; Castaño, F. J.; Ross, C. A.; Vögeli, B.; Walsh, M. E.; Smith, Henry I.

    2002-05-01

    A series of Co particle arrays with rectangular elements having a thickness of 10 nm, a width of 90 nm and aspect ratios of 1.3, 2.2, and 3.3, has been fabricated using interference lithography. The switching behavior of these arrays has been studied by measuring isothermal remanence measurement (IRM), dc demagnetization measurement (DCD), and hysteresis loops using magnetometry and magnetic force microscopy (MFM). The single domain structure is the only stable structure at remanence. Nonuniformity and redeposition debris from ion beam etching (IBE) cause a large reversible magnetization component. The comparison between IRM and DVD curves shows that the interactions between the dots are negligible. Both vibrating sample magnetometer (VSM) measurements and MFM images show that the dots switch over a large range of fields, which is believed due mainly to the crystallographic orientation distribution of the grams within each element.

  1. Magnetic alignment of high-aspect ratio microwires into vertical arrays

    NASA Astrophysics Data System (ADS)

    Beardslee, Joseph

    Fundamental studies of magnetic alignment of highly anisotropic mesostructures can enable the clean-room-free fabrication of flexible, array-based solar and electronic devices, in which preferential orientation of nano- or microwire-type objects is desired. In this study, ensembles of 100 micron long Si microwires with ferromagnetic Ni and Co coatings are oriented vertically in the presence of magnetic fields. The degree of vertical alignment and threshold field strength depend on geometric factors, such as microwire length and ferromagnetic coating thickness, as well as interfacial interactions, which are modulated by varying solvent and substrate surface chemistry. Microwire ensembles with vertical alignment over 97% within 10 degrees of normal, as measured by X-ray diffraction, are achieved over square cm scale areas and set into flexible polymer films. A force balance model has been developed as a predictive tool for magnetic alignment, incorporating magnetic torque and empirically derived surface adhesion parameters. As supported by these calculations, microwires are shown to detach from the surface and align vertically in the presence of magnetic fields on the order of 100 gauss. Microwires aligned in this manner are set into a polydimethylsiloxane film where they retain their vertical alignment after the field has been removed and can subsequently be used as a flexible solar absorber layer. Finally, these microwires arrays can be protected for use in electrochemical cells by the conformal deposition of a graphene layer.

  2. Ordering and thermal excitations in dipolar coupled single domain magnet arrays (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Östman, Erik; Arnalds, Unnar; Kapaklis, Vassilios; Hjörvarsson, Björgvin

    2015-09-01

    For a small island of a magnetic material the magnetic state of the island is mainly determined by the exchange interaction and the shape anisotropy. Two or more islands placed in close proximity will interact through dipolar interactions. The state of a large system will thus be dictated by interactions at both these length scales. Enabling internal thermal fluctuations, e.g. by the choice of material, of the individual islands allows for the study of thermal ordering in extended nano-patterned magnetic arrays [1,2]. As a result nano-magnetic arrays represent an ideal playground for the study of physical model systems. Here we present three different studies all having used magneto-optical imaging techniques to observe, in real space, the order of the systems. The first study is done on a square lattice of circular islands. The remanent magnetic state of each island is a magnetic vortex structure and we can study the temperature dependence of the vortex nucleation and annihilation fields [3]. The second are long chains of dipolar coupled elongated islands where the magnetization direction in each island only can point in one of two possible directions. This creates a system which in many ways mimics the Ising model [4] and we can relate the correlation length to the temperature. The third one is a spin ice system where elongated islands are placed in a square lattice. Thermal excitations in such systems resemble magnetic monopoles [2] and we can investigate their properties as a function of temperature and lattice parameters. [1] V. Kapaklis et al., New J. Phys. 14, 035009 (2012) [2] V. Kapaklis et al., Nature Nanotech 9, 514(2014) [3] E. Östman et al.,New J. Phys. 16, 053002 (2014) [4] E. Östman et al.,Thermal ordering in mesoscopic Ising chains, In manuscript.

  3. Shielding of Sensitive Electronic Devices in Magnetic Nanoparticle Hyperthermia Using Arrays of Coils

    NASA Astrophysics Data System (ADS)

    Spirou, S. V.; Tsialios, P.; Loudos, G.

    2015-09-01

    In Magnetic Nanoparticle Hyperthermia (MNH) an externally applied electromagnetic field transfers energy to the magnetic nanoparticles in the body, which in turn convert this energy into heat, thus locally heating the tissue they are located in. This external electromagnetic field is sufficiently strong so as to cause interference and affect sensitive electronic equipment. Standard shielding of magnetic fields involves Faraday cages or coating with high-permeability shielding alloys; however, these techniques cannot be used with optically sensitive devices, such as those employed in Optical Coherence Tomography or radionuclide imaging. In this work we present a method to achieve magnetic shielding using an array of coils. The magnetic field generated by a single coil was calculated using the COMSOL physics simulation toolkit. Software was written in C/C++ to import the single-coil data, and then calculate the positions, number of turns and currents in the shielding coils in order to minimize the magnetic field strength at the desired location. Simulations and calculations have shown that just two shielding coils can reduce the magnetic field by 2-3 orders of magnitude.

  4. Temperature dependent magnetization in Co-base nanowire arrays: Role of crystalline anisotropy

    NASA Astrophysics Data System (ADS)

    Vivas, L. G.; Vázquez, M.; Vega, V.; García, J.; Rosa, W. O.; del Real, R. P.; Prida, V. M.

    2012-04-01

    Co, Co(1-x)Pdx, and Co(1-y)Niy nanowire arrays have been prepared by electrochemical template-assisted growth. Hcp, fcc or both phases are detected in Co nanowires depending on their length (300 nm to 40 ?m) and on the content of Pd (0 ? x ? 0.4) and Ni (0 ? y ? 0.8). Their magnetic behavior has been studied under longitudinal and perpendicular applied fields. The effective magnetic anisotropy is mostly determined by the balance between the shape and the crystalline terms, the latter depending on the fractional volume of hcp phase with strong perpendicular anisotropy and fcc phase with weaker longitudinal anisotropy. The temperature dependence of remanence and coercivity and the eventual observation of compensation temperature is interpreted as due to the different temperature dependence of shape and hcp crystalline anisotropy. Optimum longitudinal magnetic anisotropy is achieved in low Pd-content CoPd nanowires and in short Co nanowires.

  5. Robotic apparatuses, systems and methods

    NASA Technical Reports Server (NTRS)

    Ross, William P. (Inventor); Hoburg, James F. (Inventor); Fromme, Christopher (Inventor); Bares, John (Inventor); DeLouis, Mark (Inventor)

    2006-01-01

    A mobile device for traversing a ferromagnetic surface. The device includes a frame and at least one surface contacting device attached to the frame. The device also includes a Halbach magnet array attached to the frame, wherein the Halbach magnet array provides a magnetic force to maintain the surface contacting device substantially into contact with the ferromagnetic surface.

  6. Robotic apparatuses, systems and methods

    NASA Technical Reports Server (NTRS)

    Ross, William P. (Inventor); Hoburg, James F. (Inventor); Fromme, Christopher (Inventor); Bares, John (Inventor); DeLouis, Mark (Inventor)

    2004-01-01

    A mobile device for traversing a ferromagnetic surface. The device includes a frame and at least one surface contacting device attached to the frame. The device also includes a Halbach magnet array attached to the frame, wherein the Halbach magnet array provides a magnetic force to maintain the surface contacting device substantially into contact with the ferromagnetic surface.

  7. A nested phosphorus and proton coil array for brain magnetic resonance imaging and spectroscopy.

    PubMed

    Brown, Ryan; Lakshmanan, Karthik; Madelin, Guillaume; Parasoglou, Prodromos

    2016-01-01

    A dual-nuclei radiofrequency coil array was constructed for phosphorus and proton magnetic resonance imaging and spectroscopy of the human brain at 7T. An eight-channel transceive degenerate birdcage phosphorus module was implemented to provide whole-brain coverage and significant sensitivity improvement over a standard dual-tuned loop coil. A nested eight-channel proton module provided adequate sensitivity for anatomical localization without substantially sacrificing performance on the phosphorus module. The developed array enabled phosphorus spectroscopy, a saturation transfer technique to calculate the global creatine kinase forward reaction rate, and single-metabolite whole-brain imaging with 1.4cm nominal isotropic resolution in 15min (2.3cm actual resolution), while additionally enabling 1mm isotropic proton imaging. This study demonstrates that a multi-channel array can be utilized for phosphorus and proton applications with improved coverage and/or sensitivity over traditional single-channel coils. The efficient multi-channel coil array, time-efficient pulse sequences, and the enhanced signal strength available at ultra-high fields can be combined to allow volumetric assessment of the brain and could provide new insights into the underlying energy metabolism impairment in several neurodegenerative conditions, such as Alzheimer's and Parkinson's diseases, as well as mental disorders such as schizophrenia. PMID:26375209

  8. Magnetic-optical bifunctional CoPt3/Co multilayered nanowire arrays

    NASA Astrophysics Data System (ADS)

    Su, Yi-Kun; Yan, Zhi-Long; Wu, Xi-Ming; Liu, Huan; Ren, Xiao; Yang, Hai-Tao

    2015-10-01

    CoPt3/Co multilayered nanowire (NW) arrays are synthesized by pulsed electrodeposition into nanoporous anodic aluminum oxide (AAO) templates. The electrochemistry deposition parameters are determined by cyclic voltammetry to realize the well control of the ratio of Co to Pt and the length of every segment. The x-ray diffraction (XRD) patterns show that both Co and CoPt3 NWs exhibit face-centered cubic (fcc) structures. In the UV-visible absorption spectra, CoPt3/Co NW arrays show a red-shift with respect to pure CoPt3NWs. Compared with the pure Co nanowire arrays, the CoPt3/Co multilayered nanowire arrays show a weak shape anisotropy and well-modulated magnetic properties. CoPt3/Co multilayered nanowires are highly encouraging that new families of bimetallic nanosystems may be developed to meet the needs of nanomaterials in emerging multifunctional nanotechnologies. Project supported by the National Natural Science Foundation of China (Grant Nos. 51472165, 51471185, and 11274370).

  9. Influence of the properties of soft collective spin wave modes on the magnetization reversal in finite arrays of dipolarly coupled magnetic dots

    NASA Astrophysics Data System (ADS)

    Stebliy, Maxim; Ognev, Alexey; Samardak, Alexander; Chebotkevich, Ludmila; Verba, Roman; Melkov, Gennadiy; Tiberkevich, Vasil; Slavin, Andrei

    2015-06-01

    Magnetization reversal in finite chains and square arrays of closely packed cylindrical magnetic dots, having vortex ground state in the absence of the external bias field, has been studied experimentally by measuring static hysteresis loops, and also analyzed theoretically. It has been shown that the field Bn of a vortex nucleation in a dot as a function of the finite number N of dots in the array's side may exhibit a monotonic or an oscillatory behavior depending on the array geometry and the direction of the external bias magnetic field. The oscillations in the dependence Bn(N) are shown to be caused by the quantization of the collective soft spin wave mode, which corresponds to the vortex nucleation in a finite array of dots. These oscillations are directly related to the form and symmetry of the dispersion law of the soft SW mode: the oscillation could appear only if the minimum of the soft mode spectrum is not located at any of the symmetric points inside the first Brillouin zone of the array's lattice. Thus, the purely static measurements of the hysteresis loops in finite arrays of coupled magnetic dots can yield important information about the properties of the collective spin wave excitations in these arrays.

  10. 2730 IEEE TRANSACTIONS ON MAGNETICS, VOL. 44, NO. 11, NOVEMBER 2008 Interaction Effects in Ni Nanowire Arrays

    E-print Network

    Spinu, Leonard

    Nanowire Arrays Ovidiu Cezar Trusca1;2, Dorin Cimpoesu2;4, Jin-Hee Lim2;3, Xiequn Zhang2;3, John B. Wiley2 of magnetic nanowires are considered strong candidates in many technological applications as microwave filters, sensors or for data storage. The main parameter that controls the response of magnetic nanowires

  11. Application of an array processor to the analysis of magnetic data for the Doublet III tokamak

    SciTech Connect

    Wang, T.S.; Saito, M.T.

    1980-08-01

    Discussed herein is a fast computational technique employing the Floating Point Systems AP-190L array processor to analyze magnetic data for the Doublet III tokamak, a fusion research device. Interpretation of the experimental data requires the repeated solution of a free-boundary nonlinear partial differential equation, which describes the magnetohydrodynamic (MHD) equilibrium of the plasma. For this particular application, we have found that the array processor is only 1.4 and 3.5 times slower than the CDC-7600 and CRAY computers, respectively. The overhead on the host DEC-10 computer was kept to a minimum by chaining the complete Poisson solver and free-boundary algorithm into one single-load module using the vector function chainer (VFC). A simple time-sharing scheme for using the MHD code is also discussed.

  12. Magnetic Nanoparticle Arrays Self-Assembled on Perpendicular Magnetic Recording Media.

    PubMed

    Mohtasebzadeh, Abdul Rahman; Ye, Longfei; Crawford, Thomas M

    2015-01-01

    We study magnetic-field directed self-assembly of magnetic nanoparticles onto templates recorded on perpendicular magnetic recording media, and quantify feature width and height as a function of assembly time. Feature widths are determined from Scanning Electron Microscope (SEM) images, while heights are obtained with Atomic Force Microscopy (AFM). For short assembly times, widths were ~150 nm, while heights were ~14 nm, a single nanoparticle on average with a 10:1 aspect ratio. For long assembly times, widths approach 550 nm, while the average height grows to 3 nanoparticles, ~35 nm; a 16:1 aspect ratio. We perform magnetometry on these self-assembled structures and observe the slope of the magnetic moment vs. field curve increases with time. This increase suggests magnetic nanoparticle interactions evolve from nanoparticle-nanoparticle interactions to cluster-cluster interactions as opposed to feature-feature interactions. We suggest the aspect ratio increase occurs because the magnetic field gradients are strongest near the transitions between recorded regions in perpendicular media. If these gradients can be optimized for assembly, strong potential exists for using perpendicular recording templates to assemble complex heterogeneous materials. PMID:26307967

  13. Magnetic Nanoparticle Arrays Self-Assembled on Perpendicular Magnetic Recording Media

    PubMed Central

    Mohtasebzadeh, Abdul Rahman; Ye, Longfei; Crawford, Thomas M.

    2015-01-01

    We study magnetic-field directed self-assembly of magnetic nanoparticles onto templates recorded on perpendicular magnetic recording media, and quantify feature width and height as a function of assembly time. Feature widths are determined from Scanning Electron Microscope (SEM) images, while heights are obtained with Atomic Force Microscopy (AFM). For short assembly times, widths were ~150 nm, while heights were ~14 nm, a single nanoparticle on average with a 10:1 aspect ratio. For long assembly times, widths approach 550 nm, while the average height grows to 3 nanoparticles, ~35 nm; a 16:1 aspect ratio. We perform magnetometry on these self-assembled structures and observe the slope of the magnetic moment vs. field curve increases with time. This increase suggests magnetic nanoparticle interactions evolve from nanoparticle–nanoparticle interactions to cluster–cluster interactions as opposed to feature–feature interactions. We suggest the aspect ratio increase occurs because the magnetic field gradients are strongest near the transitions between recorded regions in perpendicular media. If these gradients can be optimized for assembly, strong potential exists for using perpendicular recording templates to assemble complex heterogeneous materials. PMID:26307967

  14. Standing-wave excited soft x-ray photoemission microscopy: application to Co microdot magnetic arrays

    SciTech Connect

    Gray, Alexander; Kronast, Florian; Papp, Christian; Yang, See-Hun; Cramm, Stefan; Krug, Ingo P.; Salmassi, Farhad; Gullikson, Eric M.; Hilken, Dawn L.; Anderson, Erik H.; Fischer, Peter; Durr, Hermann A.; Schneider, Claus M.; Fadley, Charles S.

    2010-10-29

    We demonstrate the addition of depth resolution to the usual two-dimensional images in photoelectron emission microscopy (PEEM), with application to a square array of circular magnetic Co microdots. The method is based on excitation with soft x-ray standing-waves generated by Bragg reflection from a multilayer mirror substrate. Standing wave is moved vertically through sample simply by varying the photon energy around the Bragg condition. Depth-resolved PEEM images were obtained for all of the observed elements. Photoemission intensities as functions of photon energy were compared to x-ray optical calculations in order to quantitatively derive the depth-resolved film structure of the sample.

  15. Diffraction-induced subradiant transverse-magnetic lattice plasmon modes in metal nanoparticle arrays

    SciTech Connect

    Nikitin, Andrey G.

    2014-02-10

    This Letter reports theoretical and experimental study of transverse-magnetic-like lattice plasmon modes originating from diffraction in periodic two dimensional arrays of metal nanoparticles. These modes lead to the transmission and reflection spectra exhibiting narrow linewidth Fano-like resonances which can appear as maxima, minima, or can have asymmetric peak-and-dip profile. The dependencies of the position and lineshape of the resonance on the lattice periodicity and angle of incidence are investigated. Numerical simulations of electric field distributions for different excitation conditions of lattice plasmon modes are also performed.

  16. Implementation of a decoupled controller for a magnetic suspension system using electromagnets mounted in a planar array

    NASA Technical Reports Server (NTRS)

    Cox, D. E.; Groom, N. J.

    1994-01-01

    An implementation of a decoupled, single-input/single-output control approach for a large angle magnetic suspension test fixture is described. Numerical and experimental results are presented. The experimental system is a laboratory model large gap magnetic suspension system which provides five degree-of-freedom control of a cylindrical suspended element. The suspended element contains a core composed of permanent magnet material and is levitated above five electromagnets mounted in a planar array.

  17. Precision formed micro magnets: LDRD project summary report

    SciTech Connect

    CHRISTENSON,TODD R.; GARINO,TERRY J.; VENTURINI,EUGENE L.

    2000-02-01

    A microfabrication process is described that provides for the batch realization of miniature rare earth based permanent magnets. Prismatic geometry with features as small as 5 microns, thicknesses up through several hundred microns and with submicron tolerances may be accommodated. The processing is based on a molding technique using deep x-ray lithography as a means to generate high aspect-ratio precision molds from PMMA (poly methyl methacrylate) used as an x-ray photoresist. Subsequent molding of rare-earth permanent magnet (REPM) powder combined with a thermosetting plastic binder may take place directly in the PMMA mold. Further approaches generate an alumina form replicated from the PMMA mold that becomes an intermediate mold for pressing higher density REPM material and allows for higher process temperatures. Maximum energy products of 3--8 MGOe (Mega Gauss Oersted, 1 MGOe = 100/4{pi} kJ/m{sup 3}) are obtained for bonded isotropic forms of REPM with dimensions on the scale of 100 microns and up to 23 MGOe for more dense anisotropic REPM material using higher temperature processing. The utility of miniature precision REPMs is revealed by the demonstration of a miniature multipole brushless DC motor that possesses a pole-anisotropic rotor with dimensions that would otherwise prohibit multipole magnetization using a multipole magnetizing fixture at this scale. Subsequent multipole assembly also leads to miniaturized Halbach arrays, efficient magnetic microactuators, and mechanical spring-like elements which can offset miniaturized mechanical scaling behavior.

  18. Bidirectional microfluidic pumping using an array of magnetic Janus microspheres rotating around magnetic disks.

    PubMed

    van den Beld, Wesley T E; Cadena, Natalia L; Bomer, Johan; de Weerd, Eddy L; Abelmann, Leon; van den Berg, Albert; Eijkel, Jan C T

    2015-07-01

    We demonstrate a novel, flexible and programmable method to pump liquid through microchannels in lab-on-a-chip systems without the use of an external pump. The pumping principle is based on the rotation of ferromagnetic Janus microspheres around permalloy disks, driven by an external rotating magnetic field. By placing the disks close to the edge of the microchannel, a pumping rate of at least 0.3 nL min(-1) was measured using tracking microspheres. Geometric programming of the pumping direction is possible by positioning the magnetic disk close to the side wall. A second degree of freedom in the pumping direction is offered by the rotational direction of the external magnetic field. This method is especially suited for flow-controlled recirculation of chemical and biological species in microchannels - for example, medium recirculation in culture chambers - opening the way towards novel, portable, on-chip applications without the need for external fluidic or electrical connections. PMID:26030131

  19. Structure -- Magnetic Property Correlations in TiO 2 Nanotube Arrays

    NASA Astrophysics Data System (ADS)

    Mohammad Hosseinpour, Pegah

    TiO2 nanotube arrays are promising candidates for applications such as photocatalysis and for potential employment in spin-electronic (spintronic) devices. The functionality of TiO2-based nanotubes is highly dependent on their structure (microstructure and crystallographic symmetry) and magnetic properties. Unified understanding of the influence of these factors on the electronic structure of TiO2 is of paramount importance towards engineering these materials. This Dissertation aims at investigating the correlations of the morphology, crystallinity, crystal structure, electronic structure and magnetic properties of TiO2 nanotubes, with potential relevance to their functionality. Self-ordered arrays of amorphous TiO2 nanotubes (pure and Fe-doped with cationic concentration of ~2.1 at%) were synthesized by the electrochemical anodization technique, followed by subjecting them to thermal treatments up to 450 °C to crystallize these nanostructures. A variety of probes---morphological, structural, magnetic and spectroscopic---were used to characterize the properties of these nanostructures as functions of their processing conditions and the dopant content. Structure-functionality relationships in these nanostructures were verified by examining the photodegradation rate of methyl orange (a model water pollutant) in presence of TiO2 nanotubes under UV-Visible light irradiation. Results from this Dissertation research demonstrated that post-synthesis processing conditions---specifically, the nature of the annealing environment, as well as the presence of an external dopant, can alter the crystal structure and local electronic environment in TiO2 nanotubes, with subsequent effects on the magnetic properties of these nanostructures. The fundamental knowledge obtained in this research, on the interrelations of structural-magnetic properties and their potential influence on the functionality of TiO 2-based nanotubes, can be extended to the metal oxide semiconducting systems in general and is anticipated to provide avenues toward novel materials with enhanced functionality that originates from such tailored structural and magnetic characteristics. Despite the success achieved in this Dissertation, there are still open questions to be addressed in order to further enhance the fundamental knowledge of structure---magnetic property correlations in TiO2 nanotubes. In this regard, the concluding section of this Dissertation provides recommendations for additional experiments. Accomplishment of these recommendations is anticipated to provide enhanced insight into the various aspects of property-functionality relationships in TiO2-based nanomaterials, and provides paths to engineer novel multifunctional oxide-based materials for energy-related applications.

  20. Dynamic Magnetic Responsive Wall Array with Droplet Shedding-off Properties

    PubMed Central

    Wang, Lei; Zhang, Miaoxin; Shi, Weiwei; Hou, Yongping; Liu, Chengcheng; Feng, Shile; Guo, Zhenyu; Zheng, Yongmei

    2015-01-01

    Directional control of droplets on a surface is an important issue for tasks of long-range liquid-transport, self-cleaning and water repellency. However, it is still challenging to control the structure motions in orientations so as to control the shedding-off of droplets. Herein, we report a novel dynamic magnetic responsive wall (DMRW) array on PDMS (polydimethylsiloxane) -based surface. The walls can easily tilt through the effect of the external magnet because of the magnetic material in the DMRW. The droplets can be shed off directionally on the surface. Particularly, with the shape recovery and flexible properties, it achieves simultaneous control of the tilt angles (0-60°) of DMRW for shedding-off of droplets with different volumes (1-15??L) under magnetic action on DMRW. The mechanism of droplet shedding-off on DMRW is elucidated by theory of interfaces. It offers an insight into design of dynamic interface for water repellency. This strategy realizes the preparation of multifunctional, tunable and directional drive functions. PMID:26061176

  1. Dynamic Magnetic Responsive Wall Array with Droplet Shedding-off Properties

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Zhang, Miaoxin; Shi, Weiwei; Hou, Yongping; Liu, Chengcheng; Feng, Shile; Guo, Zhenyu; Zheng, Yongmei

    2015-06-01

    Directional control of droplets on a surface is an important issue for tasks of long-range liquid-transport, self-cleaning and water repellency. However, it is still challenging to control the structure motions in orientations so as to control the shedding-off of droplets. Herein, we report a novel dynamic magnetic responsive wall (DMRW) array on PDMS (polydimethylsiloxane) -based surface. The walls can easily tilt through the effect of the external magnet because of the magnetic material in the DMRW. The droplets can be shed off directionally on the surface. Particularly, with the shape recovery and flexible properties, it achieves simultaneous control of the tilt angles (0-60°) of DMRW for shedding-off of droplets with different volumes (1-15??L) under magnetic action on DMRW. The mechanism of droplet shedding-off on DMRW is elucidated by theory of interfaces. It offers an insight into design of dynamic interface for water repellency. This strategy realizes the preparation of multifunctional, tunable and directional drive functions.

  2. Dynamic Magnetic Responsive Wall Array with Droplet Shedding-off Properties.

    PubMed

    Wang, Lei; Zhang, Miaoxin; Shi, Weiwei; Hou, Yongping; Liu, Chengcheng; Feng, Shile; Guo, Zhenyu; Zheng, Yongmei

    2015-01-01

    Directional control of droplets on a surface is an important issue for tasks of long-range liquid-transport, self-cleaning and water repellency. However, it is still challenging to control the structure motions in orientations so as to control the shedding-off of droplets. Herein, we report a novel dynamic magnetic responsive wall (DMRW) array on PDMS (polydimethylsiloxane)-based surface. The walls can easily tilt through the effect of the external magnet because of the magnetic material in the DMRW. The droplets can be shed off directionally on the surface. Particularly, with the shape recovery and flexible properties, it achieves simultaneous control of the tilt angles (0-60°) of DMRW for shedding-off of droplets with different volumes (1-15 ?L) under magnetic action on DMRW. The mechanism of droplet shedding-off on DMRW is elucidated by theory of interfaces. It offers an insight into design of dynamic interface for water repellency. This strategy realizes the preparation of multifunctional, tunable and directional drive functions. PMID:26061176

  3. Magnetic behavior of NiCu nanowire arrays: Compositional, geometry and temperature dependence

    SciTech Connect

    Palmero, E. M. Bran, C.; Real, R. P. del; Vázquez, M.; Magén, C.

    2014-07-21

    Arrays of Ni{sub 100?x}Cu{sub x} nanowires ranging in composition 0???x???75, diameter from 35 to 80?nm, and length from 150?nm to 28??m have been fabricated by electrochemical co-deposition of Ni and Cu into self-ordered anodic aluminum oxide membranes. As determined by X-ray diffraction and Transmission Electron Microscopy, the crystalline structure shows fcc cubic symmetry with [111] preferred texture and preferential Ni or Cu lattice depending on the composition. Their magnetic properties such as coercivity and squareness have been determined as a function of composition and geometry in a Vibrating Sample Magnetometer in the temperature range from 10 to 290?K for applied magnetic fields parallel and perpendicular to the nanowires axis. Addition of Cu into the NiCu alloy up to 50% enhances both parallel coercivity and squareness. For the higher Cu content, these properties decrease and the magnetization easy axis becomes oriented perpendicular to the wires. In addition, coercivity and squareness increase by decreasing the diameter of nanowires which is ascribed to the increase of shape anisotropy. The temperature dependent measurements reflect a complex behavior of the magnetic anisotropy as a result of energy contributions with different evolution with temperature.

  4. Cryogenic Characterization and Testing of Magnetically-Actuated Microshutter Arrays for the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    King, T. T.; Kletetschka, G.; Jah, M. A.; Li, M. J.; Jhabvala, M. D.; Wang, L. L.; Beamesderfer, M. A.; Kutyrev, A. S.; Silverberg, R. F.; Rapchun, D.; Schwinger, D. S.

    2004-01-01

    Two-dimensional MEMS microshutter arrays (MSA) have been fabricated at the NASA Goddard Space Flight Center (GSFC) for the James Webb Space Telescope (JWST) to enable cryogenic (approximately 35 K) spectrographic astronomy measurements in the near-infrared region. Functioning as a focal plane object selection device, the MSA is a 2-D programmable aperture mask with fine resolution, high efficiency and high contrast. The MSA are close- packed silicon nitride shutters (cell size of 100 x 200 microns) patterned with a torsion flexure to allow opening to 90 degrees. A layer of magnetic material is deposited onto each shutter to permit magnetic actuation. Two electrodes are deposited, one onto each shutter and another onto the support structure side-wall, permitting electrostatic latching and 2-D addressing. New techniques were developed to test MSA under mission-similar conditions (8 K less than or equal to T less than 300K). The magnetic rotisserie has proven to be an excellent tool for rapid characterization of MSA. Tests conducted with the magnetic rotisserie method include accelerated cryogenic lifetesting of unpackaged 128 x 64 MSA and parallel measurement of the magneto-mechanical stiffness of shutters in pathfinder test samples containing multiple MSA designs. Lifetest results indicate a logarithmic failure rate out to approximately 10(exp 6) shutter actuations. These results have increased our understanding of failure mechanisms and provide a means to predict the overall reliability of MSA devices.

  5. Morphology and magnetic properties of Fe3O 4 nanodot arrays using template-assisted epitaxial growth.

    PubMed

    Guan, Xiao-Fen; Chen, Dan; Quan, Zhi-Yong; Jiang, Feng-Xian; Deng, Chen-Hua; Gehring, Gillian Anne; Xu, Xiao-Hong

    2015-12-01

    Arrays of epitaxial Fe3O4 nanodots were prepared using laser molecular beam epitaxy (LMBE), with the aid of ultrathin porous anodized aluminum templates. An Fe3O4 film was also prepared using LMBE. Atomic force microscopy and scanning electron microscopy images showed that the Fe3O4 nanodots existed over large areas of well-ordered hexagonal arrays with dot diameters (D) of 40, 70, and 140 nm; height of approximately 20 nm; and inter-dot distances (D int) of 67, 110, and 160 nm. The calculated nanodot density was as high as 0.18 Tb in.(-2) when D?=?40 nm. X-ray diffraction patterns indicated that the as-grown Fe3O4 nanodots and the film had good textures of (004) orientation. Both the film and the nanodot arrays exhibited magnetic anisotropy; the anisotropy of the nanoarray weakened with decreasing dot size. The Verwey transition temperature of the film and nanodot arrays with D???70 nm was observed at around 120 K, similar to that of the Fe3O4 bulk; however, no clear transition was observed from the small nanodot array with D?=?40 nm. Results showed that magnetic properties could be tailored through the morphology of nanodots. Therefore, Fe3O4 nanodot arrays may be applied in high-density magnetic storage and spintronic devices. PMID:26055471

  6. Resistive transition and magnetic field response of a Penrose-tile array of weakly coupled superconductor islands

    SciTech Connect

    Springer, K.N.; Van Harlingen, D.J.

    1987-11-01

    We have studied the effects of geometry- and magnetic-field-induced frustration on the transport properties of a Penrose-tile array of proximity-coupled superconductor islands. The arrays exhibit a broad transition to a zero-resistance state at a field-dependent critical temperature. Above this temperature, the resistance of the array modulates quasiperiodically with applied field. Measurements at different excitation levels distinguish structure arising from the irrational tile area ratio in the Penrose pattern from fine structure generated by the long-range quasiperiodic order.

  7. Development of novel techniques to study the magnetic field evolution in wire array Z-pinches and X pinches

    NASA Astrophysics Data System (ADS)

    Syed, Wasif

    Understanding the magnetic field topology in wire-array Z-pinches is of great significance for their ultimate application to stockpile stewardship and inertial confinement fusion. We have developed and tested several novel techniques involving material-based sensors to measure magnetic fields as a function of space and time in high energy density plasmas on pulsed power machines. We first briefly introduce a technique that was used to measure a lower limit of the maximum magnetic field of a sub-microsecond duration pulse using magnetic reversal in CoPt thin films. The time-varying magnetic field was generated by an exploding wire array plasma called an X pinch produced on the 0.5 MA, 100 ns pulse duration, XP pulsed power generator. We then introduce a technique based on Faraday rotation that was used to measure magnetic fields in wire-array Z-pinches produced on the 1 MA, 100 ns rise time, COBRA pulsed power generator as well as on the XP generator. This technique measures magnetic fields as a function of space and time using Faraday rotation of a single longitudinal mode (SLM) laser through a magneto-optically active bulk waveguide, multicomponent terbium borate glass, placed adjacent to, or within, the wire array. We have measured fields > 10 T with 100 ns rise times outside of a wire-array Z-pinch for the entire duration (˜250 ns) of the current pulse and as much as ˜2 T inside a wire-array for ˜40 ns from the start of current. This is the first time that such rapidly varying and large fields have been measured using the terbium borate glass. The third method, also based on Faraday rotation of SLM laser light utilized an integrated optical fiber sensor (a fiber-sensor-fiber assembly) on the XP pulsed power generator that also yielded a measurement of the magnetic field of a wire-array Z-pinch for part of the current pulse. Finally, we repeated the third method by fabricating a "thin film waveguide" of terbium borate glass to increase the spatial resolution of the measurement. The thin film waveguide was then coupled to an optical fiber system. Although we successfully fabricated thin film nanowaveguides of terbium borate glass, the first time such waveguides have been made, due to poor coupling efficiency of light between components, preliminary Faraday rotation measurements were unsuccessful. The technique developed in this dissertation is potentially viable for magnetic field measurements in high current pulsed power systems if the device is protected from intimate interaction with the high energy density plasma during the time that a magnetic field measurement is to be made.

  8. Room- and low-temperature magnetic properties of 2-D magnetite particle arrays

    NASA Astrophysics Data System (ADS)

    Krása, David; Muxworthy, Adrian R.; Williams, Wyn

    2011-04-01

    Palaeomagnetic observations are being used in increasingly sophisticated geological and geophysical interpretations. It is therefore important to test the theories behind palaeomagnetic recording by rocks, and this can only be achieved using samples containing precisely controlled magnetic mineralogy, grain size and interparticle spacing, the last of which controls the degree of magnetostatic interactions within the samples. Here we report the room- and low temperature magnetic behaviour of a set of samples produced by the nano-scale patterning technique electron beam lithography. The samples consist of 2-D arrays of near-identical magnetite dots of various sizes, geometries and spatial configurations, with dot sizes from ranging from near the single domain threshold of 74-333 nm. We have made a series of magnetic measurements including hysteresis, first-order-reversal curve measurements and remanence acquisition, many as a function of temperature between 20 and 300 K, to quantify the samples’ behaviour to routine palaeomagnetic measurement procedures. We have also examined the behaviour of saturation isothermal remanences (SIRM) to cooling and warming cycling of the sample below room temperature. In addition, we investigated the samples’ responses to alternating-field demagnetization of room temperature induced SIRM, anhysteretic remanent magnetization (ARM) and partial ARM. ARM was used as a non-heating analogue for natural thermoremanence. Given the 2-D spatial distribution of the samples, in all the experiments we conducted both in-plane and out-of-plane measurements. Generally, the samples were found to display pseudo-single-domain hysteresis characteristics, but were found to be reliable recorders of weak-field remanences like ARM. For the closely packed samples, the samples’ magnetic response was highly dependent on measurement orientation.

  9. Resolving sub-cellular force dynamics using arrays of magnetic microposts

    NASA Astrophysics Data System (ADS)

    Reich, Daniel

    2010-03-01

    The biological response of cells to mechanical forces is integral to both normal cell function and the progression of many diseases, such as hypertensive vascular wall thickening. This likely results from the fact that mechanical stresses can directly affect many cellular processes, including signal transduction, gene expression, growth, differentiation, and survival. The need to understand the relationship between applied forces and the mechanical response of cells as a critical step towards understanding mechanotransduction calls for tools that can apply forces to cells while measuring their contractile response. This talk will describe an approach that simultaneously allows local mechanical stimulation of the adherent surface of a cell and spatially resolved measurement of the local force fields generated throughout the cell in response to this stimulation. Cells are cultured on the top surfaces of arrays of micrometer-scale posts made from a flexible elastomer (PDMS), and the contractile forces generated by an adherent cell bend the posts. Measurements of the displacement of each post allow the contractile force field of the cell to be mapped out with sub-cellular precision. To apply forces to cells, rod- shaped magnetic nanoparticles are embedded in some of the posts so that externally applied magnetic fields selectively deform these ``magnetic posts,'' thereby exerting tunable local, mechanical stresses to the adherent surface of attached cells. Alternatively, magnetic particles bound to or internalized by the cell may be employed to apply forces and torques to the cell. With either approach, measuring the deflection of the surrounding non-magnetic posts probes the full mechanical response of the cell to these stresses. Results that illustrate the temporal dynamics and spatial distribution of the non-local response of fibroblasts and smooth muscle cells to local stresses will be discussed.

  10. Tailoring magnetic properties in arrays of pulse-electrodeposited Co nanowires: The role of Cu additive

    NASA Astrophysics Data System (ADS)

    Esmaeili, A.; Almasi Kashi, M.; Ramazani, A.; Montazer, A. H.

    2016-01-01

    In this study, we aim to report the role of Cu additive in arrays of pulse-electrodeposited Co nanowires (NWs) with diameters from 30 to 75 nm, embedded in porous aluminum oxide templates. This features the role of Cu additive in composition and crystalline characteristics as well as in the magnetic properties of Co NWs. Increasing the duration of off-time between pulses during the electrodeposition of Co NWs made it possible to increase the amount of Cu content, so that Co-rich CoCu NWs were obtained. The parallel coercivity and squareness values increased up to 1500 Oe and 0.8 for 30 nm diameter Co94Cu6 NWs, starting from 500 Oe and 0.3 for pure Co NWs. On the other hand, although there was a substantial difference between the crystalline characteristics of 75 nm diameter pure Co and CoCu NWs, no considerable change in their magnetic properties was observed using hysteresis loop measurements. In this respect, the first-order reversal curve (FORC) analysis revealed strong inter-wire magnetostatic interactions for the CoCu NWs. Moreover, we studied the effect of thermal annealing, which resulted in an increase in the coercivity of CoCu NWs with different diameters up to 15%. As a result, the addition of small amount of Cu provides an alternative approach to tailoring the magnetic properties of Co NWs.

  11. Degradation of Phosphate Ester Hydraulic Fluid in Power Station Turbines Investigated by a Three-Magnet Unilateral Magnet Array

    PubMed Central

    Guo, Pan; He, Wei; García-Naranjo, Juan C.

    2014-01-01

    A three-magnet array unilateral NMR sensor with a homogeneous sensitive spot was employed for assessing aging of the turbine oils used in two different power stations. The Carr-Purcell-Meiboom-Gill (CPMG) sequence and Inversion Recovery-prepared CPMG were employed for measuring the 1H-NMR transverse and longitudinal relaxation times of turbine oils with different service status. Two signal components with different lifetimes were obtained by processing the transverse relaxation curves with a numeric program based on the Inverse Laplace Transformation. The long lifetime components of the transverse relaxation time T2eff and longitudinal relaxation time T1 were chosen to monitor the hydraulic fluid aging. The results demonstrate that an increase of the service time of the turbine oils clearly results in a decrease of T2eff,long and T1,long. This indicates that the T2eff,long and T1,long relaxation times, obtained from the unilateral magnetic resonance measurements, can be applied as indices for degradation of the hydraulic fluid in power station turbines. PMID:24736132

  12. Magnetic hysteresis in small-grained CoxPd1-x nanowire arrays

    NASA Astrophysics Data System (ADS)

    Viqueira, M. S.; Pozo-López, G.; Urreta, S. E.; Condó, A. M.; Cornejo, D. R.; Fabietti, L. M.

    2015-11-01

    Co-Pd nanowires with small grain size are fabricated by AC electrodeposition into hexagonally ordered alumina pores, 20-35 nm in diameter and about 1 ?m long. The effects of the alloy composition, the nanowire diameter and the grain size on the hysteresis properties are considered. X-ray diffraction indicates that the nanowires are single phase, a fcc Co-Pd solid solution; electron microscopy results show that they are polycrystalline, with randomly oriented grains (7-12 nm), smaller than the wire diameter. Nanowire arrays are ferromagnetic, with an easy magnetization axis parallel to the nanowire long axis. Both, the coercive field and the loop squareness monotonously increase with the Co content and with the grain size, but no clear correlation with the wire diameter is found. The Co and Co-rich nanowire arrays exhibit coercive fields and reduced remanence values quite insensitive to temperature in the range 4 K-300 K; on the contrary, in Pd-rich nanowires both magnitudes are smaller and they largely increase during cooling below 100 K. These behaviors are systematized by considering the strong dependences displayed by the magneto-crystalline anisotropy and the saturation magnetostriction on composition and temperature. At low temperatures the effective anisotropy value and the domain-wall width to grain size ratio drastically change, promoting less cooperative and harder nucleation modes.

  13. Size and space controlled hexagonal arrays of superparamagnetic iron oxide nanodots: magnetic studies and application

    PubMed Central

    Ghoshal, Tandra; Maity, Tuhin; Senthamaraikannan, Ramsankar; Shaw, Matthew T.; Carolan, Patrick; Holmes, Justin D.; Roy, Saibal; Morris, Michael A.

    2013-01-01

    Highly dense hexagonally arranged iron oxide nanodots array were fabricated using PS-b-PEO self-assembled patterns. The copolymer molecular weight, composition and choice of annealing solvent/s allows dimensional and structural control of the nanopatterns at large scale. A mechanism is proposed to create scaffolds through degradation and/or modification of cylindrical domains. A methodology based on selective metal ion inclusion and subsequent processing was used to create iron oxide nanodots array. The nanodots have uniform size and shape and their placement mimics the original self-assembled nanopatterns. For the first time these precisely defined and size selective systems of ordered nanodots allow careful investigation of magnetic properties in dimensions from 50?nm to 10?nm, which delineate the nanodots are superparamagnetic, well-isolated and size monodispersed. This diameter/spacing controlled iron oxide nanodots systems were demonstrated as a resistant mask over silicon to fabricate densely packed, identical ordered, high aspect ratio silicon nanopillars and nanowire features. PMID:24072037

  14. Fabrication and structural characterization of highly ordered sub-100-nm planar magnetic nanodot arrays over 1 cm2

    E-print Network

    Roshchin, Igor V.

    Fabrication and structural characterization of highly ordered sub-100-nm planar magnetic nanodot; published online 11 October 2006 Porous alumina masks are fabricated by anodization of aluminum films grown ferromagnetic nanodot arrays covering over 1 cm2 were fabricated by electron beam evaporation and subsequent

  15. A digital magnetic resonance imaging spectrometer using digital signal processor and field programmable gate array.

    PubMed

    Liang, Xiao; Binghe, Sun; Yueping, Ma; Ruyan, Zhao

    2013-05-01

    A digital spectrometer for low-field magnetic resonance imaging is described. A digital signal processor (DSP) is utilized as the pulse programmer on which a pulse sequence is executed as a subroutine. Field programmable gate array (FPGA) devices that are logically mapped into the external addressing space of the DSP work as auxiliary controllers of gradient control, radio frequency (rf) generation, and rf receiving separately. The pulse programmer triggers an event by setting the 32-bit control register of the corresponding FPGA, and then the FPGA automatically carries out the event function according to preset configurations in cooperation with other devices; accordingly, event control of the spectrometer is flexible and efficient. Digital techniques are in widespread use: gradient control is implemented in real-time by a FPGA; rf source is constructed using direct digital synthesis technique, and rf receiver is constructed using digital quadrature detection technique. Well-designed performance is achieved, including 1 ?s time resolution of the gradient waveform, 1 ?s time resolution of the soft pulse, and 2 MHz signal receiving bandwidth. Both rf synthesis and rf digitalization operate at the same 60 MHz clock, therefore, the frequency range of transmitting and receiving is from DC to ~27 MHz. A majority of pulse sequences have been developed, and the imaging performance of the spectrometer has been validated through a large number of experiments. Furthermore, the spectrometer is also suitable for relaxation measurement in nuclear magnetic resonance field. PMID:23742570

  16. Nonlinear effects in magnetic garnet films and nonreciprocal optical Bloch oscillations in waveguide arrays

    NASA Astrophysics Data System (ADS)

    Kumar, Pradeep

    This dissertation presents detailed experimental and theoretical investigations of nonlinear and nonreciprocal effects in magnetic garnet films. The dissertation thus comprises two major sections. The first section concentrates on the study of a new class of nonlinear magneto-optic thin film materials possessing strong higher order magnetic susceptibility for nonlinear optical applications. The focus was on enlarging the nonlinear performance of ferrite garnet films by strain generation and compositional gradients in the sputter-deposition growth of these films. Under this project several bismuth-substituted yttrium iron garnet (Bi,Y)3(Fe,Ga)5O12 (acronym as Bi:YIG) films have been sputter-deposited over gadolinium gallium garnet (Gd 3Ga5O12) substrates and characterized for their nonlinear optical response. One of the important findings of this work is that lattice mismatch strain drives the second harmonic (SH) signal in the Bi:YIG films, in agreement with theoretical predictions; whereas micro-strain was found not to correlate significantly with SH signal at the micro-strain levels present in these films. This study also elaborates on the role of the film's constitutive elements and their concentration gradients in nonlinear response of the films. Ultrahigh sensitivity delivered by second harmonic generation provides a new exciting tool for studying magnetized surfaces and buried interfaces, making this work important from both a fundamental and application point of view. The second part of the dissertation addresses an important technological need; namely the development of an on-chip optical isolator for use in photonic integrated circuits. It is based on two related novel effects, nonreciprocal and unidirectional optical Bloch oscillations (BOs), recently proposed and developed by Professor Miguel Levy and myself. This dissertation work has established a comprehensive theoretical background for the implementation of these effects in magneto-optic waveguide arrays. The model systems we developed consist of photonic lattices in the form of one-dimensional waveguide arrays where an optical force is introduced into the array through geometrical design turning the beam sideways. Laterally displaced photons are periodically returned to a central guide by photonic crystal action. The effect leads to a novel oscillatory optical phenomenon that can be magnetically controlled and rendered unidirectional. An on-chip optical isolator was designed based on the unidirectionality of the magneto-opticBloch oscillatory motion. The proposed device delivers an isolation ratio as high as 36 dB that remains above 30 dB in a 0.7 nm wavelength bandwidth, at the telecommunication wavelength 1.55 mum. Slight modifications in isolator design allow one to achieve an even more impressive isolation ratio ~ 55 dB, but at the expense of smaller bandwidth. Moreover, the device allows multifunctionality, such as optical switching with a simultaneous isolation function, well suited for photonic integrated circuits.

  17. Low-temperature cross-talk magnetic-field sensor based on tapered all-solid waveguide-array fiber and magnetic fluids.

    PubMed

    Miao, Yinping; Ma, Xixi; Wu, Jixuan; Song, Binbin; Zhang, Hao; Zhang, Kailiang; Liu, Bo; Yao, Jianquan

    2015-08-15

    A compact fiber-optic magnetic-field sensor based on tapered all-solid waveguide-array fiber (WAF) and magnetic fluid (MF) has been proposed and experimentally demonstrated. The tapered all-solid WAF is fabricated by using a fusion splicer, and the sensor is formed by immersing the tapered all-solid WAF into the MF. The transmission spectra have been measured and analyzed under different magnetic-field intensities. Experimental results show that the acquired magnetic-field sensitivity is 44.57 pm/Oe for a linear magnetic-field intensity range from 50 to 200 Oe. All-solid WAF has very similar thermal expansion coefficient for high- and low-refractive-index glasses, so mode profile is not affected by thermal drifts. Also, magnetically induced refractive-index changes into the ferrofluid are of the order of ?5×10(-2), while the corresponding thermally induced refractive-index changes into the ferrofluid are expected to be lower. The temperature response has also been detected, and the temperature-induced wavelength shift perturbation is less than 0.3 nm from temperature of 26.9°C-44°C. The proposed magnetic-field sensor has such advantages as low temperature sensitivity, simple structure, and ease of fabrication. It also indicates that the magnetic-field sensor based on tapered all-solid WAF and MF is helpful to reduce temperature cross-sensitivity for the measurement of magnetic field. PMID:26274690

  18. Research on ambient temperature passive magnetic bearings at the Lawrence Livermore National Laboratory

    SciTech Connect

    Post, R.F.; Ryitov, D.D.` Smith, J.R.; Tung, L.S.

    1997-04-01

    Research performed at the Lawrence Livermore National Laboratory on the equilibrium and stability of a new class of ambient-temperature passive bearing systems is described. The basic concepts involved are: (1) Stability of the rotating system is only achieved in the rotating state. That is, disengaging mechanical systems are used to insure stable levitation at rest (when Earnshaw`s theorem applies). (2) Stable levitation by passive magnetic elements can be achieved if the vector sum of the force derivatives of the several elements of the system is net negative (i.e. restoring) for axial, transverse, and tilt-type perturbations from equilibrium. To satisfy the requirements of (2) using only permanent magnet elements we have employed periodic ``Halbach arrays.`` These interact with passive inductive loaded circuits and act as stabilizers, with the primary forces arising from axially symmetric permanent-magnet elements. Stabilizers and other elements needed to create compact passive magnetic bearing systems have been constructed. Novel passive means for stabilizing classes of rotor-dynamic instabilities in such systems have also been investigated.

  19. Laminated track design for inductrack maglev systems

    DOEpatents

    Post, Richard F.

    2004-07-06

    A magnet configuration comprising a pair of Halbach arrays magnetically and structurally connected together are positioned with respect to each other so that a first component of their fields substantially cancels at a first plane between them, and a second component of their fields substantially adds at this first plane. A track is located between the pair of Halbach arrays and a propulsion mechanism is provided for moving the pair of Halbach arrays along the track. When the pair of Halbach arrays move along the track and the track is not located at the first plane, a current is induced in the windings and a restoring force is exerted on the pair of Halbach arrays.

  20. Single-crystal NMR approach for determining chemical shift tensors from powder samples via magnetically oriented microcrystal arrays

    NASA Astrophysics Data System (ADS)

    Song, Guangjie; Kusumi, Ryosuke; Kimura, Fumiko; Kimura, Tsunehisa; Deguchi, Kenzo; Ohki, Shinobu; Fujito, Teruaki; Simizu, Tadashi

    2015-06-01

    The single-crystal rotation technique was applied to magnetically oriented microcrystal arrays (MOMAs) of cellobiose (monoclinic) to determine the principal values and principal axes of the chemical shift tensors of C1 and C1? carbons. Rotations were performed about the magnetic ?1, ?2, and ?3 axes of MOMA, and the measurements were taken at six different orientations with respect to the applied magnetic field. Under these rotations, crowded peaks were reduced and the peaks for the C1 and C1? carbons were identified by comparing with simulation results. Six components of the chemical shift tensor expressed with respect to the magnetic ?1?2?3-frame were determined. The tensors thus obtained were transformed into those relative to the molecular frame.

  1. Enhanced synchronization in an array of spin torque nano oscillators in the presence of oscillating external magnetic field

    E-print Network

    B. Subash; V. K. Chandrasekar; M. Lakshmanan

    2014-12-23

    We demonstrate that the synchronization of an array of electrically coupled spin torque nano-oscillators (STNO) modelled by Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation can be enhanced appreciably in the presence of a common external microwave magnetic field. The applied microwave magnetic field stabilizes and enhances the regions of synchronization in the parameter space of our analysis, where the oscillators are exhibiting synchronized oscillations thereby emitting improved microwave power. To characterize the synchronized oscillations we have calculated the locking range in the domain of external source frequency.

  2. Tuning of structural, optical, and magnetic properties of ultrathin and thin ZnO nanowire arrays for nano device applications

    PubMed Central

    2014-01-01

    One-dimensional (1-D) ultrathin (15 nm) and thin (100 nm) aligned 1-D (0001) and (0001¯) oriented zinc oxide (ZnO) nanowire (NW) arrays were fabricated on copper substrates by one-step electrochemical deposition inside the pores of polycarbonate membranes. The aspect ratio dependence of the compressive stress because of the lattice mismatch between NW array/substrate interface and crystallite size variations is investigated. X-ray diffraction results show that the polycrystalline ZnO NWs have a wurtzite structure with a?=?3.24 Å, c?=?5.20 Å, and [002] elongation. HRTEM and SAED pattern confirmed the polycrystalline nature of ultrathin ZnO NWs and lattice spacing of 0.58 nm. The crystallite size and compressive stress in as-grown 15- and 100-nm wires are 12.8 nm and 0.2248 GPa and 22.8 nm and 0.1359 GPa, which changed to 16.1 nm and 1.0307 GPa and 47.5 nm and 1.1677 GPa after annealing at 873 K in ultrahigh vacuum (UHV), respectively. Micro-Raman spectroscopy showed that the increase in E2 (high) phonon frequency corresponds to much higher compressive stresses in ultrathin NW arrays. The minimum-maximum magnetization magnitude for the as-grown ultrathin and thin NW arrays are approximately 8.45?×?10?3 to 8.10?×?10?3 emu/g and approximately 2.22?×?10?7 to 2.190?×?10?7 emu/g, respectively. The magnetization in 15-nm NW arrays is about 4 orders of magnitude higher than that in the 100 nm arrays but can be reduced greatly by the UHV annealing. The origin of ultrathin and thin NW array ferromagnetism may be the exchange interactions between localized electron spin moments resulting from oxygen vacancies at the surfaces of ZnO NWs. The n-type conductivity of 15-nm NW array is higher by about a factor of 2 compared to that of the 100-nm ZnO NWs, and both can be greatly enhanced by UHV annealing. The ability to tune the stresses and the structural and relative occupancies of ZnO NWs in a wide range by annealing has important implications for the design of advanced photonic, electronic, and magneto-optic nano devices. PMID:24636275

  3. Magnetic field dependent small-angle neutron scattering on a Co nanorod array: evidence for intraparticle spin misalignment

    PubMed Central

    Günther, A.; Bick, J.-P.; Szary, P.; Honecker, D.; Dewhurst, C. D.; Keiderling, U.; Feoktystov, A. V.; Tschöpe, A.; Birringer, R.; Michels, A.

    2014-01-01

    The structural and magnetic properties of a cobalt nanorod array have been studied by means of magnetic field dependent small-angle neutron scattering (SANS). Measurement of the unpolarized SANS cross section d?/d? of the saturated sample in the two scattering geometries where the applied magnetic field H is either perpendicular or parallel to the wavevector k i of the incoming neutron beam allows one to separate nuclear from magnetic SANS, without employing the usual sector-averaging procedure. The analysis of the SANS data in the saturated state provides structural parameters (rod radius and centre-to-centre distance) that are in good agreement with results from electron microscopy. Between saturation and the coercive field, a strong field dependence of d?/d? is observed (in both geometries), which cannot be explained using the conventional expression of the magnetic SANS cross section of magnetic nanoparticles in a homogeneous nonmagnetic matrix. The origin of the strong field dependence of d?/d? is believed to be related to intradomain spin misalignment, due to magnetocrystalline and magnetoelastic anisotropies and magnetostatic stray fields. PMID:24904245

  4. Magnetic field dependent small-angle neutron scattering on a Co nanorod array: evidence for intraparticle spin misalignment.

    PubMed

    Günther, A; Bick, J-P; Szary, P; Honecker, D; Dewhurst, C D; Keiderling, U; Feoktystov, A V; Tschöpe, A; Birringer, R; Michels, A

    2014-06-01

    The structural and magnetic properties of a cobalt nanorod array have been studied by means of magnetic field dependent small-angle neutron scattering (SANS). Measurement of the unpolarized SANS cross section d?/d? of the saturated sample in the two scattering geometries where the applied magnetic field H is either perpendicular or parallel to the wavevector k i of the incoming neutron beam allows one to separate nuclear from magnetic SANS, without employing the usual sector-averaging procedure. The analysis of the SANS data in the saturated state provides structural parameters (rod radius and centre-to-centre distance) that are in good agreement with results from electron microscopy. Between saturation and the coercive field, a strong field dependence of d?/d? is observed (in both geometries), which cannot be explained using the conventional expression of the magnetic SANS cross section of magnetic nanoparticles in a homogeneous nonmagnetic matrix. The origin of the strong field dependence of d?/d? is believed to be related to intradomain spin misalignment, due to magnetocrystalline and magnetoelastic anisotropies and magnetostatic stray fields. PMID:24904245

  5. Standing spin-wave mode structure and linewidth in partially disordered hexagonal arrays of perpendicularly magnetized sub-micron Permalloy discs

    SciTech Connect

    Ross, N. Kostylev, M.; Stamps, R. L.

    2014-09-21

    Standing spin wave mode frequencies and linewidths in partially disordered perpendicular magnetized arrays of sub-micron Permalloy discs are measured using broadband ferromagnetic resonance and compared to analytical results from a single, isolated disc. The measured mode structure qualitatively reproduces the structure expected from the theory. Fitted demagnetizing parameters decrease with increasing array disorder. The frequency difference between the first and second radial modes is found to be higher in the measured array systems than predicted by theory for an isolated disc. The relative frequencies between successive spin wave modes are unaffected by reduction of the long-range ordering of discs in the array. An increase in standing spin wave resonance linewidth at low applied magnetic fields is observed and grows more severe with increased array disorder.

  6. Microfluidic multiplexed partitioning enables flexible and effective utilization of magnetic sensor arrays.

    PubMed

    Bechstein, Daniel J B; Ng, Elaine; Lee, Jung-Rok; Cone, Stephanie G; Gaster, Richard S; Osterfeld, Sebastian J; Hall, Drew A; Weaver, James A; Wilson, Robert J; Wang, Shan X

    2015-10-27

    We demonstrate microfluidic partitioning of a giant magnetoresistive sensor array into individually addressable compartments that enhances its effective use. Using different samples and reagents in each compartment enables measuring of cross-reactive species and wide dynamic ranges on a single chip. This compartmentalization technique motivates the employment of high density sensor arrays for highly parallelized measurements in lab-on-a-chip devices. PMID:26395039

  7. Performance of a multi-axis ionization chamber array in a 1.5 T magnetic field

    NASA Astrophysics Data System (ADS)

    Smit, K.; Kok, J. G. M.; Lagendijk, J. J. W.; Raaymakers, B. W.

    2014-04-01

    At the UMC Utrecht a prototype MR-linac has been installed. The system consists of an 8 MV Elekta linear accelerator and a 1.5 T Philips MRI system. This paper investigates the performance of the IC PROFILER™, a multi-axis ionization chamber array, in a 1.5 T magnetic field. The influence of the magnetic field on the IC PROFILER™ reproducibility, dose response linearity, pulse rate frequency dependence, power to electronics, panel orientation and ionization chamber shape were investigated. The linearity, reproducibility, pulse rate frequency dependence, panel orientation and ionization chamber shape are unaffected by the magnetic field. When the measurements results are normalized to the centre reference chamber, the measurements can commence unaltered. Orientation of the ionization chambers in the magnetic field is of importance, therefore caution must be taken when comparing or normalizing results from several different axes. IC PROFILER™ dose profiles were compared with film dose profiles obtained simultaneously in the MR-linac. Deviation between the film and the IC PROFILER™ data was caused by the noise in the film, indicating correct performance of the IC PROFILER™ in the transverse 1.5 T magnetic field.

  8. Magnetization Reversal and Magnetic Anisotropy in Ordered CoNiP Nanowire Arrays: Effects of Wire Diameter

    PubMed Central

    Van Thiem, Luu; Tu, Le Tuan; Phan, Manh-Huong

    2015-01-01

    Ordered CoNiP nanowires with the same length of 4 µm and varying diameters (d = 100 nm–600 nm) were fabricated by electrodeposition of CoNiP onto polycarbonate templates. X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy confirmed the quality of the fabricated nanowires. Magnetic measurements and theoretical analysis revealed that the magnetization reversal and magnetic anisotropy were significantly influenced by varying of the diameters of the nanowires. There existed a critical wire diameter (dc ? 276 nm), below which the magnetization reversal occurred via a coherent rotation mode, and above which the magnetization reversal occurred via a curling rotation mode. The easy axis of the magnetization tended to change in direction from parallel to perpendicular with respect to the wire axis as the wire diameter exceeded dc ? 276 nm. With increasing wire diameter, the coercive field (Hc) and the remanent to saturation magnetization ratio (Mr/Ms) were also found to rapidly decrease in the range d = 100–400 nm and gradually decrease for d > 400 nm. PMID:25760054

  9. Designed fabrication and characterization of three-dimensionally ordered arrays of core-shell magnetic mesoporous carbon microspheres.

    PubMed

    Yuan, Kaiping; Che, Renchao; Cao, Qi; Sun, Zhenkun; Yue, Qin; Deng, Yonghui

    2015-03-11

    A confined interface coassembly coating strategy based on three-dimensional (3-D) ordered macroporous silica as the nanoreactor was demonstrated for the designed fabrication of novel 3-D ordered arrays of core-shell microspheres consisting of Fe3O4 cores and ordered mesoporous carbon shells. The obtained 3-D ordered arrays of Fe3O4@mesoporous carbon materials possess two sets of periodic structures at both mesoscale and submicrometer scale, high surface area of 326 m(2)/g, and large mesopore size of 19 nm. Microwave absorption test reveals that the obtained materials have excellent microwave absorption performances with maximum reflection loss of up to -57 dB at 8 GHz, and large absorption bandwidth (7.3-13.7 GHz, < -10 dB), due to the combination of the large magnetic loss from iron oxides, the strong dielectric loss from carbonaceous shell, and the strong reflection and scattering of electromagnetic waves of the ordered structures of the mesopores and 3-D arrays of core-shell microspheres. PMID:25647306

  10. Comparing artificial frustrated magnets by tuning the symmetry of nanoscale permalloy arrays

    NASA Astrophysics Data System (ADS)

    Li, J.; Ke, X.; Zhang, S.; Garand, D.; Nisoli, C.; Lammert, P.; Crespi, V. H.; Schiffer, P.

    2010-03-01

    We study the impact of geometry on magnetostatically frustrated single-domain nanomagnet arrays. We examine square and hexagonal lattice arrays, as well as a brickwork geometry that combines the anisotropy of the square lattice and the topology of the hexagonal lattice. We find that the more highly frustrated hexagonal lattice allows for the most thorough minimization of the magnetostatic energy, and that the pairwise correlations between moments differ qualitatively between hexagonal and brickwork lattices, although they share the same lattice topology. The results indicate that the symmetry of local interaction is more important than overall lattice topology in the accommodation of frustrated interactions.

  11. Magnetization mechanisms in ordered arrays of polycrystalline Fe{sub 100?x}Co{sub x} nanowires

    SciTech Connect

    Viqueira, M. S.; Bajales, N.; Urreta, S. E.; Bercoff, P. G.

    2015-05-28

    Magnetization reversal processes and coercivity mechanisms in polycrystalline Fe{sub 100?x}Co{sub x} nanowire arrays, resulting from an AC electrodeposition process, are investigated. The array coercivity is described on the basis of polarization reversal mechanisms operating in individual wires, under the effect of inter-wire dipolar interactions described by a mean field approximation. For individual wires, a reversal mechanism involving the nucleation and further expansion of domain-wall like spin configuration is considered. The wires have a mean grain size larger than both the nanowire diameter and the exchange length, so localized and non-cooperative nucleation modes are considered. As the Co content increases, the alloy saturation polarization gradually decreases, but the coercive field and the relative remanence of the arrays increase, indicating that they are not controlled by the shape anisotropy in all the composition range. The coercive field dependence on the angle between the applied field and the wire long axis is not well described by reversal mechanisms involving nucleation and further displacement of neither vortex nor transverse ideal domain walls. On the contrary, the angular dependence of the coercive field observed at room temperature is well predicted by a model considering nucleation of inverse domains by localized curling, in regions smaller than the grain size, exhibiting quite small aspect ratios as compared to those of the entire nanowire. In arrays with higher Co contents, a transition from an initial (small angle) localized curling nucleation mechanism to another one, involving localized coherent rotation is observed at about ?/4.

  12. Wettability manipulation of magnetic transition metal nanorod arrays by X-ray irradiation

    NASA Astrophysics Data System (ADS)

    Xie, Qian; Wang, Weipeng; Xie, Zheng; Shuang, Shuang; Li, Zhengcao; Zhang, Zhengjun

    2015-09-01

    Wettability manipulation of glancing angle deposited Fe/Co/Ni nanorod arrays was realized by X-ray irradiation in ultra-high vacuum chamber. Reversible transition was also purchased by alternating ethanol immersion and X-ray irradiation. Alkyl group adsorption-desorption mechanism and corresponding morphology dependence of wettability manipulation were revealed.

  13. Large voltage modulation in magnetic field sensors from two-dimensional arrays of Y-Ba-Cu-O nano Josephson junctions

    SciTech Connect

    Cybart, Shane A. Dynes, R. C.; Cho, E. Y.; Wong, T. J.; Glyantsev, V. N.; Huh, J. U.; Yung, C. S.; Moeckly, B. H.; Beeman, J. W.; Ulin-Avila, E.; Wu, S. M.

    2014-02-10

    We have fabricated and tested two-dimensional arrays of YBa{sub 2}Cu{sub 3}O{sub 7??} superconducting quantum interference devices. The arrays contain over 36?000 nano Josephson junctions fabricated from ion irradiation of YBa{sub 2}Cu{sub 3}O{sub 7??} through narrow slits in a resist-mask that was patterned with electron beam lithography and reactive ion etching. Measurements of current-biased arrays in magnetic field exhibit large voltage modulations as high as 30?mV.

  14. Gas-assisted growth of boron-doped nickel nanotube arrays: rapid synthesis, growth mechanisms, tunable magnetic properties, and super-efficient reduction of 4-nitrophenol

    NASA Astrophysics Data System (ADS)

    Li, Xiang-Zi; Wu, Kong-Lin; Ye, Yin; Wei, Xian-Wen

    2013-04-01

    Highly ordered noncrystalline boron-doped nickel nanotube arrays are rapidly synthesized within 150 s by template-based electroless deposition. The as-prepared nanotubes have tunable magnetic properties and exhibit super efficient catalytic activity (~70 s) for the reduction of 4-nitrophenol.Highly ordered noncrystalline boron-doped nickel nanotube arrays are rapidly synthesized within 150 s by template-based electroless deposition. The as-prepared nanotubes have tunable magnetic properties and exhibit super efficient catalytic activity (~70 s) for the reduction of 4-nitrophenol. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00411b

  15. Off-Axis Electron Holography of Magnetic Nanowires and Chains, Rings, and Planar Arrays of Magnetic Nanoparticles

    E-print Network

    Dunin-Borkowski, Rafal E.

    - raphy to the study of magnetic microstructure in closely-spaced nanoparticles and nanowires is reviewed and the electrostatic potential in the speci- men, an electron hologram can be used to provide quantitative information are then allowed to interfere to form a hologram in a slightly defocused image plane. When examining mag- netic

  16. Commensurate states on incommensurate lattices. [for superconducting arrays in magnetic fields

    NASA Technical Reports Server (NTRS)

    Grest, Gary S.; Chaikin, Paul M.; Levine, Dov

    1988-01-01

    A simple one-dimensional model related to flux quantization on superconducting networks or charged particles on a substrate is proposed to investigate whether commensurate states can exist on incommensurate lattices. For both periodic and quasi-crystalline patterns, a set of low-energy states is found which is related to decimation symmetry and periodicity. It is suggested that the present quasi-periodic arrays which possess a decimation operation can be generalized to more-dimensional quasi-crystalline systems.

  17. A 16-Channel Receive Array Insert for Magnetic Resonance Imaging of the Breast at 7T 

    E-print Network

    By, Samantha

    2014-04-01

    Breast cancer is the second leading cause of cancer death among females in the United States. Magnetic resonance imaging (MRI) has emerged as a powerful tool for detecting and evaluating the disease, with notable advantages over other modalities...

  18. Eight-Channel Head Array and Control System for Parallel Transmit/Receive Magnetic Resonance Imaging 

    E-print Network

    Moody, Katherine

    2014-08-11

    Interest in magnetic resonance imaging (MRI) at high fields strengths (3 Tesla and above) is driven by the associated improvements in signal-to-noise ratio and spectral resolution. In practice, however, technical challenges prevent these benefits...

  19. Origin of transverse magnetization in epitaxial Cu/Ni/Cu nanowire arrays

    E-print Network

    Ciria, M.

    The patterning-induced changes in the magnetic anisotropy and hysteresis of epitaxial (100)-oriented Cu/Ni(9, 10, 15 nm)/Cu planar nanowires have been quantified. When the Ni films are patterned into lines, strain relaxation ...

  20. Increased Efficiency of a Permanent Magnet Synchronous Generator through Optimization of NdFeB Magnet Arrays

    NASA Astrophysics Data System (ADS)

    Khazdozian, Helena; Hadimani, Ravi; Jiles, David

    2014-03-01

    The United States is currently dependent on fossil fuels for the majority of its energy needs, which has many negative consequences such as climate change. Wind turbines present a viable alternative, with the highest energy return on investment among even fossil fuel generation. Traditional commercial wind turbines use an induction generator for energy conversion. However, induction generators require a gearbox to increase the rotational speed of the drive shaft. These gearboxes increase the overall cost of the wind turbine and account for about 35 percent of reported wind turbine failures. Direct drive permanent magnet synchronous generators (PMSGs) offer an alternative to induction generators which eliminate the need for a gearbox. Yet, PMSGs can be more expensive than induction generators at large power output due to their size and weight. To increase the efficiency of PMSGs, the geometry and configuration of NdFeB permanent magnets were investigated using finite element techniques. The optimized design of the PMSG increases flux density and minimizes cogging torque with NdFeB permanent magnets of a reduced volume. These factors serve to increase the efficiency and reduce the overall cost of the PMSG. This work is supported by a National Science Foundation IGERT fellowship and the Barbara and James Palmer Endowment at the Department of Electrical and Computer Engineering of Iowa State University.

  1. Force measurements of a magnetic micro actuator proposed for a microvalve array

    NASA Astrophysics Data System (ADS)

    Chang, Pauline J.; Chang, Frank W.; Yuen, Michelle C.; Otillar, Robert; Horsley, David A.

    2014-03-01

    Low-cost, easily-fabricated and power-efficient microvalves are necessary for many microfluidic lab-on-a-chip applications. In this study, we present a simple, low-power, scalable, CMOS-compatible magnetic actuator for microvalve applications composed of a paramagnetic bead as the ball valve over a picoliter reaction well etched into a silicon substrate. The paramagnetic bead, composed of either pure FeSi or magnetite in a SiO2 matrix, is actuated by the local magnetic field gradient generated by a microcoil in an aqueous environment, and the reaction well is situated at the microcoil center. A permanent magnet beneath the microvalve device provides an external magnetic biasing field that magnetizes the bead, enabling bidirectional actuation and reducing the current required to actuate the bead to a level below 10 mA. The vertical and radial magnetic forces exerted on the bead by the microcoil were measured for both pure FeSi and composite beads and agree well with the predictions of 2D axisymmetric finite element method models. Vertical forces were within a range of 13-80 nN, and radial forces were 11-60 nN depending on the bead type. The threshold current required to initiate bead actuation was measured as a function of bead diameter and is found to scale inversely with volume for small beads, as expected based on the magnetic force model. To provide an estimate of the stiction force acting between the bead and the passivation layer on the substrate, repeated actuation trials were used to study the bead throw distance for substrates coated with silicon dioxide, Parylene-C, and photoresist. The stiction observed was lowest for a photoresist-coated substrate, while silicon dioxide and Parylene-C coated substrates exhibited similar levels of stiction.

  2. Preparation and magnetic properties of cylindrical NiFe films and antidot arrays.

    PubMed

    Sanz, R; Navas, D; Vazquez, M; Hernández-Vélez, M; Ross, C A

    2010-10-01

    Continuous NiFe (Permalloy) cylindrical films and arrays of cylindrical NiFe antidots 7 nm thick have been prepared by sputtering onto cylindrical aluminum wires and onto wires anodized to form a porous anodic alumina layer. The antidots are arranged in a close-packed pattern determined by the hexagonal pore arrangement in the porous alumina, with period 103 nm and diameter 42 nm. Hysteresis loops were measured at different angles with respect to the cylinder axis and indicate an easy plane normal to the radius of the wire. The antidots enhance the coercivity compared to the continuous cylindrical film. PMID:21137795

  3. Phase and vortex correlations in superconducting Josephson-junction arrays at irrational magnetic frustration.

    PubMed

    Granato, Enzo

    2008-07-11

    Phase coherence and vortex order in a Josephson-junction array at irrational frustration are studied by extensive Monte Carlo simulations using the parallel-tempering method. A scaling analysis of the correlation length of phase variables in the full equilibrated system shows that the critical temperature vanishes with a power-law divergent correlation length and critical exponent nuph, in agreement with recent results from resistivity scaling analysis. A similar scaling analysis for vortex variables reveals a different critical exponent nuv, suggesting that there are two distinct correlation lengths associated with a decoupled zero-temperature phase transition. PMID:18764218

  4. Gas-assisted growth of boron-doped nickel nanotube arrays: rapid synthesis, growth mechanisms, tunable magnetic properties, and super-efficient reduction of 4-nitrophenol.

    PubMed

    Li, Xiang-Zi; Wu, Kong-Lin; Ye, Yin; Wei, Xian-Wen

    2013-05-01

    Highly ordered noncrystalline boron-doped nickel nanotube arrays are rapidly synthesized within 150 s by template-based electroless deposition. The as-prepared nanotubes have tunable magnetic properties and exhibit super efficient catalytic activity (?70 s) for the reduction of 4-nitrophenol. PMID:23546439

  5. Taking a hard line with biotemplating: cobalt-doped magnetite magnetic nanoparticle arrays.

    PubMed

    Bird, Scott M; Galloway, Johanna M; Rawlings, Andrea E; Bramble, Jonathan P; Staniland, Sarah S

    2015-04-28

    Rapid advancements made in technology, and the drive towards miniaturisation, means that we require reliable, sustainable and cost effective methods of manufacturing a wide range of nanomaterials. In this bioinspired study, we take advantage of millions of years of evolution, and adapt a biomineralisation protein for surface patterning of biotemplated magnetic nanoparticles (MNPs). We employ soft-lithographic micro-contact printing to pattern a recombinant version of the biomineralisation protein Mms6 (derived from the magnetotactic bacterium Magnetospirillum magneticum AMB-1). The Mms6 attaches to gold surfaces via a cysteine residue introduced into the N-terminal region. The surface bound protein biotemplates highly uniform MNPs of magnetite onto patterned surfaces during an aqueous mineralisation reaction (with a mean diameter of 90 ± 15 nm). The simple addition of 6% cobalt to the mineralisation reaction maintains the uniformity in grain size (with a mean diameter of 84 ± 14 nm), and results in the production of MNPs with a much higher coercivity (increased from ? 156 Oe to ? 377 Oe). Biotemplating magnetic nanoparticles on patterned surfaces could form a novel, environmentally friendly route for the production of bit-patterned media, potentially the next generation of ultra-high density magnetic data storage devices. This is a simple method to fine-tune the magnetic hardness of the surface biotemplated MNPs, and could easily be adapted to biotemplate a wide range of different nanomaterials on surfaces to create a range of biologically templated devices. PMID:25825205

  6. Stability considerations for magnetic suspension systems using electromagnets mounted in a planar array

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.; Britcher, Colin P.

    1991-01-01

    Mathematical models of a 5, 6, 7, and 8 coil large gap magnetic suspension system (MSDS) are presented. Some of the topics covered include: force and torque equations, reduction of state-space form, natural modes, origins of modes, effect of rotation in azimuth (yaw), future work, and n-coil ring conclusions.

  7. Design and Application of Combined 8-Channel Transmit and 10-Channel Receive Arrays and Radiofrequency Shimming for 7-T Shoulder Magnetic Resonance Imaging

    PubMed Central

    Brown, Ryan; Deniz, Cem Murat; Zhang, Bei; Chang, Gregory; Sodickson, Daniel K.; Wiggins, Graham C.

    2014-01-01

    Objective The objective of the study was to investigate the feasibility of 7-T shoulder magnetic resonance imaging by developing transmit and receive radiofrequency (RF) coil arrays and exploring RF shim methods. Materials and Methods A mechanically flexible 8-channel transmit array and an anatomically conformable 10-channel receive array were designed and implemented. The transmit performance of various RF shim methods was assessed through local flip angle measurements in the right and left shoulders of 6 subjects. The receive performance was assessed through signal-to-noise ratio measurements using the developed 7-T coil and a baseline commercial 3-T coil. Results The 7-T transmit array driven with phase-coherent RF shim weights provided adequate B1+ efficiency and uniformity for turbo spin echo shoulder imaging. B1+ twisting that is characteristic of high-field loop coils necessitates distinct RF shim weights in the right and left shoulders. The 7-T receive array provided a 2-fold signal-to-noise ratio improvement over the 3-T array in the deep articular shoulder cartilage. Conclusions Shoulder imaging at 7-T is feasible with a custom transmit/receive array either in a single-channel transmit mode with a fixed RF shim or in a parallel transmit mode with a subject-specific RF shim. PMID:24056112

  8. Very Large Array, SOHO, and RHESSI Observations of Magnetic Interactions and Particle Propagation across Large-Scale Coronal Loops

    NASA Astrophysics Data System (ADS)

    Willson, Robert F.; Groff, Tyler D.

    2008-07-01

    Very Large Array (VLA) observations at wavelengths of 20 and 91 cm have been combined with data from the SOHO and RHESSI solar missions to study the evolution of transequatorial loops connecting active regions on the solar surface. The radio observations provide information about the acceleration and propagation of energetic electrons in these large-scale coronal magnetic structures where energy release and transport take place. On one day, a long-lasting Type I noise storm at 91 cm was seen to intensify and shift position above the northern hemisphere region following an impulsive hard X-ray burst in the southern hemisphere footpoint region. VLA 20-cm observations as well as SOHO EIT EUV images showed evolving coronal plasma that appeared to move across the solar equator during this time period. This suggests that the transequatorial loop acted as a conduit for energetic particles or fields that may have triggered magnetic changes in the corona where the northern noise storm region was seen. On another day, a hard X-ray burst detected at the limb was accompanied by impulsive 20- and 91-cm burst emission along a loop connecting to an active region in the same hemisphere but about 5' away, again suggesting particle propagation and remote flare triggering across interconnecting loops.

  9. Development of multielement SQUID arrays for magnetic source imaging. Final report

    SciTech Connect

    Hassenzahl, W.V.; Casper, T.A.; Miller, D.E.

    1995-06-01

    Superconducting quantum interference devices (SQUIDs) were initially developed in the late 1960s as biomagnetic detectors to monitor electrical activity in the body. Research in this area has increased in recent years as electronics and computer diagnositcs have improved. The basis of this proposal was to asses: (1) the advantages of using this technique over other technologies and (2) the requirements for development of a complete system that would advance the state of the art. In our assessment of this technology, we collaborated with the Medical School at the University of California, San Francisco (UCSF), General Electric (GE), Biomagnetic Technologies (BTi), and Conductus, each of which has unqiue expertise in biomedical applications. UCSF is one of the foremost clinical institutions in the US developing imaging techniques. GE is the primary US supplier of medical imaging systems. Conductus is the major US supplier of SQUIDs and BTi is a developer of SQUID array systems.

  10. Taking a hard line with biotemplating: cobalt-doped magnetite magnetic nanoparticle arrays

    NASA Astrophysics Data System (ADS)

    Bird, Scott M.; Galloway, Johanna M.; Rawlings, Andrea E.; Bramble, Jonathan P.; Staniland, Sarah S.

    2015-04-01

    Rapid advancements made in technology, and the drive towards miniaturisation, means that we require reliable, sustainable and cost effective methods of manufacturing a wide range of nanomaterials. In this bioinspired study, we take advantage of millions of years of evolution, and adapt a biomineralisation protein for surface patterning of biotemplated magnetic nanoparticles (MNPs). We employ soft-lithographic micro-contact printing to pattern a recombinant version of the biomineralisation protein Mms6 (derived from the magnetotactic bacterium Magnetospirillum magneticum AMB-1). The Mms6 attaches to gold surfaces via a cysteine residue introduced into the N-terminal region. The surface bound protein biotemplates highly uniform MNPs of magnetite onto patterned surfaces during an aqueous mineralisation reaction (with a mean diameter of 90 +/- 15 nm). The simple addition of 6% cobalt to the mineralisation reaction maintains the uniformity in grain size (with a mean diameter of 84 +/- 14 nm), and results in the production of MNPs with a much higher coercivity (increased from ~156 Oe to ~377 Oe). Biotemplating magnetic nanoparticles on patterned surfaces could form a novel, environmentally friendly route for the production of bit-patterned media, potentially the next generation of ultra-high density magnetic data storage devices. This is a simple method to fine-tune the magnetic hardness of the surface biotemplated MNPs, and could easily be adapted to biotemplate a wide range of different nanomaterials on surfaces to create a range of biologically templated devices.Rapid advancements made in technology, and the drive towards miniaturisation, means that we require reliable, sustainable and cost effective methods of manufacturing a wide range of nanomaterials. In this bioinspired study, we take advantage of millions of years of evolution, and adapt a biomineralisation protein for surface patterning of biotemplated magnetic nanoparticles (MNPs). We employ soft-lithographic micro-contact printing to pattern a recombinant version of the biomineralisation protein Mms6 (derived from the magnetotactic bacterium Magnetospirillum magneticum AMB-1). The Mms6 attaches to gold surfaces via a cysteine residue introduced into the N-terminal region. The surface bound protein biotemplates highly uniform MNPs of magnetite onto patterned surfaces during an aqueous mineralisation reaction (with a mean diameter of 90 +/- 15 nm). The simple addition of 6% cobalt to the mineralisation reaction maintains the uniformity in grain size (with a mean diameter of 84 +/- 14 nm), and results in the production of MNPs with a much higher coercivity (increased from ~156 Oe to ~377 Oe). Biotemplating magnetic nanoparticles on patterned surfaces could form a novel, environmentally friendly route for the production of bit-patterned media, potentially the next generation of ultra-high density magnetic data storage devices. This is a simple method to fine-tune the magnetic hardness of the surface biotemplated MNPs, and could easily be adapted to biotemplate a wide range of different nanomaterials on surfaces to create a range of biologically templated devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00651a

  11. The MAIN Shirt: a textile-integrated magnetic induction sensor array.

    PubMed

    Teichmann, Daniel; Kuhn, Andreas; Leonhardt, Steffen; Walter, Marian

    2014-01-01

    A system is presented for long-term monitoring of respiration and pulse. It comprises four non-contact sensors based on magnetic eddy current induction that are textile-integrated into a shirt. The sensors are technically characterized by laboratory experiments that investigate the sensitivity and measuring depth, as well as the mutual interaction between adjacent pairs of sensors. The ability of the device to monitor respiration and pulse is demonstrated by measurements in healthy volunteers. The proposed system (called the MAIN (magnetic induction) Shirt) does not need electrodes or any other skin contact. It is wearable, unobtrusive and can easily be integrated into an individual's daily routine. Therefore, the system appears to be a suitable option for long-term monitoring in a domestic environment or any other unsupervised telemonitoring scenario. PMID:24412900

  12. The MAIN Shirt: A Textile-Integrated Magnetic Induction Sensor Array

    PubMed Central

    Teichmann, Daniel; Kuhn, Andreas; Leonhardt, Steffen; Walter, Marian

    2014-01-01

    A system is presented for long-term monitoring of respiration and pulse. It comprises four non-contact sensors based on magnetic eddy current induction that are textile-integrated into a shirt. The sensors are technically characterized by laboratory experiments that investigate the sensitivity and measuring depth, as well as the mutual interaction between adjacent pairs of sensors. The ability of the device to monitor respiration and pulse is demonstrated by measurements in healthy volunteers. The proposed system (called the MAIN (magnetic induction) Shirt) does not need electrodes or any other skin contact. It is wearable, unobtrusive and can easily be integrated into an individual's daily routine. Therefore, the system appears to be a suitable option for long-term monitoring in a domestic environment or any other unsupervised telemonitoring scenario. PMID:24412900

  13. A family of rare earth molybdenum bronzes: Oxides consisting of periodic arrays of interacting magnetic units

    NASA Astrophysics Data System (ADS)

    Schneemeyer, L. F.; Siegrist, T.; Besara, T.; Lundberg, M.; Sun, J.; Singh, D. J.

    2015-07-01

    The family of rare earth molybdenum bronzes, reduced ternary molybdates of composition LnMo16O44, was synthesized and a detailed structural study carried out. Bond valence sum (BVS) calculations clearly show that the molybdenum ions in tetrahedral coordination are hexavalent while the electron count in the primitive unit cell is odd. Yet, measurements show that the phases are semiconductors. The temperature dependence of the magnetic susceptibility of samples containing several different rare earth elements was measured. These measurements verified the presence of a 6.5 K magnetic phase transition not arising from the rare earth constituent, but likely associated with the unique isolated ReO3-type Mo8O36 structural subunits in this phase. To better understand the behavior of these materials, electronic structure calculations were performed within density functional theory. Results suggest a magnetic state in which these structural moieties have an internal ferromagnetic arrangement, with small ~1/8 ?B moments on each Mo. We suggest that the Mo8O36 units behave like pseudoatoms with spin 1/2 derived from a single hole distributed over the eight Mo atoms that are strongly hybridized with the O atoms of the subunit. Interestingly, while the compound is antiferromagnetic, our calculations suggest that a field-stabilized ferromagnetic state, if achievable, will be a narrow band half-metal.

  14. Seismo-magnetic multi-point ULF studies before the 2009 L'Aquila earthquake using the South European GeoMagnetic Array

    NASA Astrophysics Data System (ADS)

    Prattes, G.; Schwingenschuh, K.; Eichelberger, H.; Besser, B.; Magnes, W.; Stachel, M.; Vellante, M.; Villante, U.; Nenovski, P.

    2010-05-01

    A strong earthquake (Ml=5.8, Mw=6.3) hit L'Aquila (Central Italy, Abruzzo region, LT=UT+1) on April 6, 2009, 01:32 UT, causing more than 300 deaths. We present a seismo-magnetic analysis of local ULF measurements for the time period one year before the main stroke. As part of the South European GeoMagnetic Array (SEGMA) the evaluated station L'Aquila in closest distance to the epicentre of the main seismic event is ~ 6 km. We consider three further SEGMA stations: Castello Tesino, Ranchio (both Italy) and Nagycenk (Hungary) for comparison and the Kp geomagnetic index to distinguish local- , global- and geomagnetic effects. Further local seismic activities are respected. The instrumentation consists of fluxgate magnetometers with a sampling frequency of 1 Hz. Concerning signal processing the standardized polarization method was applied based on the ratio between the vertical and horizontal power spectral density. A frequency band from 10-100 mHz focused on 10-15 mHz was used during the nighttime period from 22.00 - 02.00 UT. The polarization analysis was introduced and applied for previous seismic events by Hayakawa et al., GRL, 23, 241, 1996.; Molchanov et al., GRL, 19, 1495, 1992.; Prattes et al., NHESS, 2008. A sophisticated method was performed by Ida, et al, NHESS, 2008. With these calculations we expect clearer precursor signatures and they could contribute to EQ forecast. The results are explained using a simple source magnetic dipole model near the EQ focus. The results obtained are explained by the attenuation in the electrical conductive lithosphere.

  15. Tunable configurational anisotropy in collective magnetization dynamics of Ni{sub 80}Fe{sub 20} nanodot arrays with varying dot shapes

    SciTech Connect

    Mahato, B. K.; Choudhury, S.; Mandal, R.; Barman, S.; Barman, A.; Otani, Y.

    2015-06-07

    We present broadband ferromagnetic resonance measurements of tunable spin wave anisotropy in arrays of nanodots with different dot shapes. Magnetization dynamics of the circular dot array shows two modes, while square, diamond, and triangular dot arrays show three, three, and four modes, respectively. Various distinct rotational symmetries in the configurational anisotropy of the nanodot arrays are observed with the variation of dot shape. The observed spin wave modes are reproduced by micromagnetic simulations and the calculated mode profiles show different collective modes determined by internal and stray magnetic fields. Effects of dot shapes are observed in combination with the effects of lattice symmetry and the shape of the boundary of the array. The collective behaviour is observed to be weakest in the diamond shaped dots and strongest in circular shaped dots. This is further confirmed by the stray field calculation. The large variation of spin wave mode frequencies and their configurational anisotropies with dot shapes are important for selection of suitable basis structures for future magnonic crystals.

  16. MgO-based magnetic tunnel junction sensors array for non-destructive testing applications

    NASA Astrophysics Data System (ADS)

    Guo, D. W.; Cardoso, F. A.; Ferreira, R.; Paz, E.; Cardoso, S.; Freitas, P. P.

    2014-05-01

    A MgO-based magnetic tunnel junction (MTJ) sensor including 72 MTJs in series with 50 × 50 ?m2 was successfully microfabricated. Due to a two-step annealing strategy, a linear transfer curve was obtained. The tunneling magnetoresistance (TMR) value is as high as 159% and the sensitivity reaches 2.9%/Oe. The field detectivity exhibits the lowest value at 1 V bias current, attaining 1.76 nT/Hz0.5 and 170 pT/Hz0.5 for 10 Hz and 1 kHz, respectively. The results show that the sensor could be applied in non-destructive testing systems which are used for detecting small defects inside conductive materials.

  17. Nonuniform radiation damage in permanent magnet quadrupoles

    SciTech Connect

    Danly, C. R.; Merrill, F. E.; Barlow, D.; Mariam, F. G.

    2014-08-15

    We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL’s pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components.

  18. Nonuniform radiation damage in permanent magnet quadrupoles.

    PubMed

    Danly, C R; Merrill, F E; Barlow, D; Mariam, F G

    2014-08-01

    We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL's pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components. PMID:25173260

  19. Magnetic and electrical properties of PbTiO3/Mn-Zn ferrite multiphase nanotube arrays by electro-deposition

    NASA Astrophysics Data System (ADS)

    Guo, Limin; Wang, Xiaohui; Nan, Cewen; Li, Longtu

    2012-11-01

    Composite nanotube (NT) array layers incorporating PbTiO3 and Mn-Zn ferrite were prepared by electrophoretic deposition and hydrothermal method using TiO2 NT arrays as templates. Crystal structure and micrograph of the hybrid NTs were characterized by x-ray diffraction and field-emission scanning electron microscopy. The samples showed multiphase of tetragonal PbTiO3 and spinel Mn-Zn ferrite structure. Temperature depended magnetic properties of the layers were studied when the applied field paralleled the NT's channel axis. Temperature increasing caused an increase in magnetization by the enhanced shape anisotropy at higher temperatures. Good ferroelectricity and piezoelectricity were well remained in the hybrid NT layers. A maximum displacement of 0.3 nm and d33* of 55 pm V-1 was observed in the layers.

  20. Electrodeposited Co{sub 93.2}P{sub 6.8} nanowire arrays with core-shell microstructure and perpendicular magnetic anisotropy

    SciTech Connect

    Nasirpouri, F.; Peighambari, S. M.; Samardak, A. S. Ognev, A. V.; Sukovatitsina, E. V.; Modin, E. B.; Chebotkevich, L. A.; Komogortsev, S. V.; Bending, S. J.

    2015-05-07

    We demonstrate the formation of an unusual core-shell microstructure in Co{sub 93.2}P{sub 6.8} nanowires electrodeposited by alternating current (ac) in an alumina template. By means of transmission electron microscopy, it is shown that the coaxial-like nanowires contain amorphous and crystalline phases. Analysis of the magnetization data for Co-P alloy nanowires indicates that a ferromagnetic core is surrounded by a weakly ferromagnetic or non-magnetic phase, depending on the phosphor content. The nanowire arrays exhibit an easy axis of magnetization parallel to the wire axis. For this peculiar composition and structure, the coercivity values are 2380?±?50 and 1260?±?35?Oe, parallel and perpendicular to the plane directions of magnetization, respectively. This effect is attributed to the core-shell structure making the properties and applications of these nanowires similar to pure cobalt nanowires with an improved perpendicular anisotropy.

  1. Leaves and stems, rotons and solitons, magnets and arrays, one ground state lost, many found, and two fields

    NASA Astrophysics Data System (ADS)

    Nisoli, Cristiano

    A complete physical system typically requires three elements: particle, interaction, and manifold. Condensed matter physics provides a rich framework for generating new effective particles and new interactions such as quasiparticles, Cooper pairs or composite fermions. Rather than generate new effective particles or interactions within familiar flat space, one can also ask how novel geometrical constraints on the underlying manifold can generate new physics, even for old familiar interactions [1, 2]. Perhaps the simplest effective interaction is a featureless long-ranged repulsion, which leads to simple structures in flat space: in two dimensions, a triangular lattice. In contrast, interacting repulsive particles on a cylinder generate a rich degenerate family of helical structures that follow Fibonacci rules first seen in phyllotaxis, the study of plant morphology [3, 4, 5, 6, 7, 8]. After demonstrating phyllotactic patterns in an experimental "magnetic cactus" we show that linear dynamics of phyllotaxis generates rotons and the nonlinear regime supports a large family of dynamically stable topological solitons that can fragment, merge, or interconvert upon collision, with propagation speeds governed by energy conservation and phase matching. These new phenomena should be observable in a wide range of systems, from quantum to classical and from nanometer-scale to macroscopic. In an attempt to mimic the zero point entropy of water and spin ice [9, 10, 11], we have engineered arrays of nanoislands, called "artificial spin ice" such that their simple magnetic interaction can be frustrated by their mutual disposition. While the magnetic cactus was degenerate---although not extensively so---yet could be annealed into its ground state, the artificial spin ice is theoretically non degenerate, yet attempts to anneal it yield a disordered state, described by an athermal manifold of extensive degeneracy. We show how to predict its non trivial thermodynamics with good agreement with experimental data and no fitted parameters, using a principle of maximum likelihood reminiscent of entropy. When a flat graphene sheet is rolled in the cylindrical geometry of a carbon nanotube, a mesoscopic system is born, with macroscopic length, yet atomic scale radius [12, 13, 14]. We will show here how to adapt to it the standard elastic formalism for macroscopic objects so that its atomic complexities can be taken into account, and yet still solved analytically. Disparate experimental and numerical results find explanation in this unifying framework.

  2. SUBMILLIMETER ARRAY OBSERVATIONS OF MAGNETIC FIELDS IN G240.31+0.07: AN HOURGLASS IN A MASSIVE CLUSTER-FORMING CORE

    SciTech Connect

    Qiu, Keping; Zhang, Qizhou; Menten, Karl M.; Liu, Hauyu B.; Tang, Ya-Wen; Girart, Josep M.

    2014-10-10

    We report the first detection of an hourglass magnetic field aligned with a well-defined outflow rotation system in a high-mass, star-forming region. The observations were performed with the Submillimeter Array toward G240.31+0.07, which harbors a massive, flattened, and fragmenting molecular cloud core and a wide-angle bipolar outflow. The polarized dust emission at 0.88 mm reveals a clear hourglass-shaped magnetic field aligned within 20° of the outflow axis. Maps of high-density tracing spectral lines, e.g., H{sup 13}CO{sup +} (4-3), show that the core is rotating about its minor axis, which is also aligned with the magnetic field axis. Therefore, both the magnetic field and kinematic properties observed in this region are surprisingly consistent with the theoretical predictions of the classic paradigm of isolated low-mass star formation. The strength of the magnetic field in the plane of sky is estimated to be ?1.1 mG, resulting in a mass-to-magnetic flux ratio of 1.4 times the critical value and a turbulent-to-ordered magnetic energy ratio of 0.4. We also find that the specific angular momentum almost linearly decreases from r ? 0.6 pc to 0.03 pc scales, which is most likely attributed to magnetic braking.

  3. Unraveling the roles of thermal annealing and off-time duration in magnetic properties of pulsed electrodeposited NiCu nanowire arrays

    NASA Astrophysics Data System (ADS)

    Haji jamali, Z.; Almasi Kashi, M.; Ramazani, A.; Montazer, A. H.

    2015-05-01

    Magnetic alloy nanowires (ANWs) have long been studied owing to both their fundamental aspects and possible applications in magnetic storage media and magnetoresistance devices. Here, we report on the roles of thermal annealing and duration of off-time between pulses (toff) in crystalline characteristics and magnetic properties of arrays of pulsed electrodeposited NiCu ANWs (35 nm in diameter and a length of 1.2 ?m), embedded in porous anodic alumina template. Increasing toff enabled us to increase the Cu content thereby fabricating NiCu ANWs with different crystallinity and alloy compositions. Although major hysteresis curve measurements showed no considerable change in magnetic properties before and after annealing, the first-order reversal curve (FORC) analysis provided new insights into the roles of thermal annealing and toff. In other words, FORC diagrams indicated the presence of low and high coercive field regions in annealed Ni-rich ANWs, coinciding with the increase in toff in as-deposited ANWs. The former has a small coercivity with strong demagnetizing magnetostatic interactions from neighboring NWs and may correspond to a soft magnetic phase. The latter has a greater coercivity with weak interactions, corresponding to a hard magnetic phase. On the other hand, for as-deposited and annealed Cu-rich NiCu ANWs, a mixed phase of the soft and hard segments could be found. Furthermore, a transition from the interacting Ni-rich to non-interacting Cu-rich ANWs took place with a magnetic field applied parallel to the NW axis. Thus, these arrays of ANWs with tunable magnetic phases and interactions may have potential applications in the nanoscale devices.

  4. Pinning properties and vortex dynamics in thin superconducting films with ferromagnetic and antiferromagnetic arrays of magnetic dots

    E-print Network

    the same magnetization orientation. We calculated the critical depinning force and magnetization- dicular to the film.8­10 The magnetic dot can produce an at- tractive pinning potential when H is parallel

  5. Magnetic resonance tomography using elongated transmitter and in-loop receiver arrays for time-efficient 2-D imaging of subsurface aquifer structures

    NASA Astrophysics Data System (ADS)

    Jiang, C.; Müller-Petke, M.; Lin, J.; Yaramanci, U.

    2015-02-01

    Surface nuclear magnetic resonance (surface-NMR) is a promising technique for exploring shallow subsurface aquifer structures. Surface-NMR can be applied in environments that are characterized as a 1-D layered Earth. The technique utilizes a single loop and is referred to as magnetic resonance sounding. The technique referred to as magnetic resonance tomography (MRT) allows complex 2-D aquifer structures to be explored. Currently, MRT requires multiple loops and a roll along measurement scheme, which causes long survey time. We propose a loop layout using an elongated transmitter and an in-loop receiver arrays (ETRA) to conduct a 2-D survey with just one measurement. We present a comprehensive comparison between the new layout and the common approaches based on sensitivity and resolution analyses and show synthetic and field data. The results show that ETRA generates subsurface images at sufficient resolution with significantly lower survey times than other loop layouts.

  6. Array of Hall Effect Sensors for Linear Positioning of a Magnet Independently of Its Strength Variation. A Case Study: Monitoring Milk Yield during Milking in Goats

    PubMed Central

    García-Diego, Fernando-Juan; Sánchez-Quinche, Angel; Merello, Paloma; Beltrán, Pedro; Peris, Cristófol

    2013-01-01

    In this study we propose an electronic system for linear positioning of a magnet independent of its modulus, which could vary because of aging, different fabrication process, etc. The system comprises a linear array of 24 Hall Effect sensors of proportional response. The data from all sensors are subject to a pretreatment (normalization) by row (position) making them independent on the temporary variation of its magnetic field strength. We analyze the particular case of the individual flow in milking of goats. The multiple regression analysis allowed us to calibrate the electronic system with a percentage of explanation R2 = 99.96%. In our case, the uncertainty in the linear position of the magnet is 0.51 mm that represents 0.019 L of goat milk. The test in farm compared the results obtained by direct reading of the volume with those obtained by the proposed electronic calibrated system, achieving a percentage of explanation of 99.05%. PMID:23793020

  7. Wireless charing pillow for a fully implantable hearing aid: Design of a circular array coil based on finite element analysis for reducing magnetic weak zones.

    PubMed

    Lim, Hyung-Gyu; Kim, Jong Hoon; Shin, Dong Ho; Woo, Seong Tak; Seong, Ki Woong; Lee, Jyung Hyun; Kim, Myoung Nam; Wei, Qun; Cho, Jin-Ho

    2015-08-17

    Many types of fully implantable hearing aids have been developed. Most of these devices are implanted behind the ear. To maintain the implanted device for a long period of time, a rechargeable battery and wireless power transmission are used. Because inductive coupling is the most renowned method for wireless power transmission, many types of fully implantable hearing aids are transcutaneously powered using inductively coupled coils. Some patients with an implantable hearing aid require a method for conveniently charging their hearing aid while they are resting or sleeping. To address this need, a wireless charging pillow has been developed that employs a circular array coil as one of its primary parts. In this device, all primary coils are simultaneously driven to maintain an effective charging area regardless of head motion. In this case, however, there may be a magnetic weak zone that cannot be charged at the specific secondary coil's location on the array coil. In this study, assuming that a maximum charging distance is 4 cm, a circular array coil-serving as a primary part of the charging pillow-was designed using finite element analysis. Based on experimental results, the proposed device can charge an implantable hearing aid without a magnetic weak zone within 4 cm of the perpendicular distance between the primary and secondary coils. PMID:26405942

  8. The reliability of the seismo-magnetic method derived from ULF/ELF observations by the South European Geomagnetic Array (SEGMA)

    NASA Astrophysics Data System (ADS)

    Schwingenschuh, Konrad; Prattes, Gustav; Eichelberger, Hans Ulrich; Magnes, Werner; Berghofer, Gerhard; Aydogar, Özer; Besser, Bruno P.; Boudjada, Mohammed; Stangl, Günter; Zhang, Tie Long; Wolbang, Daniel; Vellante, Massimo; Villante, Umberto; Rozhnoi, Alexander; Solovieva, Maria; Nenovski, Petko; Veztergom, Victor; Szendr?i, Judith

    2013-04-01

    In the frame of the South European GeoMagnetic Array (SEGMA) project magnetic field variations are studied in the frequency range from several milli-Hz to several Hz. The fluxgate and induction coil magnetometers are located in Italy, Bulgaria and Hungary. The scientific objectives comprises field-line resonances, space weather phenomena and seismo-magnetic (SM) studies. In our present study on the reliability of the seismo-magnetic method we emphasize on the influence of external non-seismic sources on the quality of seismo-magnetic studies. External magnetic sources include lightning, power lines, railway and traffic as well as geomagnetic variations of magnetospheric origin. We observe anomalies of the ratio of the vertical to horizontal magnetic field component in the ultra/extreme-low-frequency (ULF/ELF) frequency range up to several Hz [2]. These signals can be produced in the lithosphere near a seismic active region and are interpreted as earthquake precursors. In order to differentiate geomagnetic from seismo-magnetic fluctuations, we use mainly observations around midnight because the night time geomagnetic fluctuations are much smaller than during day time. The SEGMA network provides the unique opportunity to use multipoint observations, which are also useful to distinguish local from global phenomena. In order to get undisturbed magnetic field observations, the stations are located outside populated areas [2]. The electrical conductivity of the soil in the vicinity of magnetometers on the terrestrial surface is a further source for interferences. This type of disturbances caused by induced electrical currents can be minimized either by a careful selection of the magnetometer site ans/or by the measurement of the conductivity profile in the vicinity of the instrument site. In the frame of the investigation of the April 6, 2009 L'Aquila earthquake magneto-telluric methods have been used to measure the conductivity profile near the epicenter of the earthquake and thus correct the observed magnetic field fluctuations [1]. A further interference source which can reduce the sensitivity of the seismo-magnetic methods (SM) is the mechanical vibration of the magnetometer sensors. We present a SM reliability number taking into account all above mentioned interference sources. The SM number can be used to improve the sensitivity of the seismo-magnetic method. References [1] G. Prattes, et al.: Ultra Low Frequency (ULF) European multi station magnetic field analysis before and during the 2009 earthquake at L'Aquila regarding regional geotechnical information, Nat. Hazards Earth Syst. Sci., 11, 1959-1968, 2011 [2] K. Schwingenschuh, et al.: 'Clean' observations of magnetic field fluctuations on planetary surfaces, Aerospace EMC, 2012 Proceedings ESA Workshop on 21-23 May 2012, 4 p., 2012.

  9. An improved permanent magnet quadrupole design with larger good field region for high intensity proton linacs

    NASA Astrophysics Data System (ADS)

    Mathew, Jose V.; Rao, S. V. L. S.; Krishnagopal, S.; Singh, P.

    2013-11-01

    The Low Energy High Intensity Proton Accelerator (LEHIPA), being developed at the Bhabha Atomic Research Centre (BARC) will produce a 20 MeV, 30 mA, continuous wave (CW) proton beam. At these low velocities, space-charge forces dominate, and could lead to larger beam sizes and beam halos. Hence in the design of the focusing lattice of the LEHIPA drift tube linac (DTL) using permanent magnet quadrupoles (PMQs), a larger good field region is preferred. Here we study, using the two dimensional (2D) and three dimensional (3D) simulation codes PANDIRA and RADIA, four different types of cylindrical PMQ designs: 16-segment trapezoidal Halbach configuration, bullet-nosed geometry and 8- and 16-segment rectangular geometries. The trapezoidal Halbach geometry is used in a variety of accelerators since it provides very high field gradients in small bores, while the bullet-nosed geometry, which is a combination of the trapezoidal and rectangular designs, is used in some DTLs. This study shows that a larger good field region is possible in the 16-segment rectangular design as compared to the Halbach and bullet-nosed designs, making it more attractive for high-intensity proton linacs. An improvement in good-field region by ˜16% over the Halbach design is obtained in the optimized 16-segment rectangular design, although the field gradient is lower by ˜20%. Tolerance studies show that the rectangular segment PMQ design is substantially less sensitive to the easy axis orientation errors and hence will be a better choice for DTLs.

  10. Effect of ordered array of magnetic dots on the dynamics of Josephson vortices in stacked SNS Josephson junctions under DC and AC current

    NASA Astrophysics Data System (ADS)

    Berdiyorov, Golibjon R.; Savel'ev, Sergey; Kusmartsev, Feodor V.; Peeters, François M.

    2015-11-01

    We use the anisotropic time-dependent Ginzburg-Landau theory to investigate the effect of a square array of out-of-plane magnetic dots on the dynamics of Josephson vortices (fluxons) in artificial stacks of superconducting-normal-superconducting (SNS) Josephson junctions in the presence of external DC and AC currents. Periodic pinning due to the magnetic dots distorts the triangular lattice of fluxons and results in the appearance of commensurability features in the current-voltage characteristics of the system. For the larger values of the magnetization, additional peaks appear in the voltage-time characteristics of the system due to the creation and annihilation of vortex-antivortex pairs. Peculiar changes in the response of the system to the applied current is found resulting in a "superradiant" vortex-flow state at large current values, where a rectangular lattice of moving vortices is formed. Synchronizing the motion of fluxons by adding a small ac component to the biasing dc current is realized. However, we found that synchronization becomes difficult for large magnetization of the dots due to the formation of vortex-antivortex pairs.

  11. Magnetic field induced controllable self-assembly of maghemite nanocrystals: From 3D arrays to 1D nanochains

    NASA Astrophysics Data System (ADS)

    Tang, Yan; Chen, Qianwang; Chen, Rongsheng

    2015-08-01

    A hydrothermal process has been used to synthesize walnut-like maghemite superstructures which can be further self-assembled in a controllable manner into ordered three-dimensional (3D) architectures and one-dimensional (1D) nanochains in the presence of different external magnetic field. The assembly behavior of the maghemite nanoparticles isclosely related to the van der Waals interactions and external-field-induced magnetic dipole interactions. The magnetic properties of these nanostructures are also investigated.

  12. Quantitative Study of Liver Magnetic Resonance Spectroscopy Quality at 3T Using Body and Phased Array Coils with Physical Analysis and Clinical Evaluation

    PubMed Central

    Xu, Li; Gu, Shiyong; Feng, Qianjin; Liang, Changhong; Xin, Sherman Xuegang

    2015-01-01

    This study aims to investigate the quality difference of short echo time (TE) breathhold 1H magnetic resonance spectroscopy (MRS) of the liver at 3.0T using the body and phased array coils, respectively. In total, 20 pairs of single-voxel proton spectra of the liver were acquired at 3.0T using the phased array and body coils as receivers. Consecutive stacks of breathhold spectra were acquired using the point resolved spectroscopy (PRESS) technique at a short TE of 30 ms and a repetition time (TR) of 1500 ms. The first spectroscopy sequence was “copied” for the second acquisition to ensure identical voxel positioning. The MRS prescan adjustments of shimming and water suppression, signal-to noise ratio (SNR), and major liver quantitative information were compared between paired spectra. Theoretical calculation of the SNR and homogeneity of the region of interest (ROI, 2 cm×2 cm×2 cm) using different coils loaded with 3D liver electromagnetic model of real human body was implemented in the theoretical analysis. The theoretical analysis showed that, inside the ROI, the SNR of the phase array coil was 2.8387 times larger than that of body coil and the homogeneity of the phase array coil and body coil was 80.10% and 93.86%, respectively. The experimental results showed excellent correlations between the paired data (all r > 0.86). Compared with the body coil group, the phased array group had slightly worse shimming effect and better SNR (all P values < .01). The discrepancy of the line width because of the different coils was approximately 0.8 Hz (0.00625 ppm). No significant differences of the major liver quantitative information of Cho/Lip2 height, Cho/Lip2 area, and lipid content were observed (all P values >0.05). The theoretical analysis and clinical experiment showed that the phased array coil was superior to the body coil with respect to 3.0T breathhold hepatic proton MRS. PMID:25881016

  13. Dynamic templating: A new pathway for the assembly of large-area arrays of plasmonic, magnetic and semiconductor nanomaterials

    NASA Astrophysics Data System (ADS)

    Farzinpour, Pouyan

    Substrate-based nanostructures are of great importance due to their applications in microelectronic devices, chemical sensors, catalysis and photovoltaics. This dissertation describes a novel fabrication technique for the formation of periodic arrays of substrate-based nanoparticles. The prescribed route, referred to as dynamic templating, requires modest levels of instrumentation consisting of a sputter coater, micrometer-scale shadow masks and a tube furnace. The route has broad applicability, having already produced periodic arrays of gold, silver, copper, platinum, nickel, cobalt, germanium and Au--Ag alloys on substrates as diverse as silicon, sapphire, silicon--carbide, and glass. The newly devised method offers large-area, high-throughput capabilities for the fabrication of periodic arrays of sub-micrometer and nanometer-scale structures and overcomes a significant technological barrier to the widespread use of substrate-based templated assembly by eliminating the need for periodic templates having nanoscale features. Because this technique only requires modest levels of instrumentation, researchers are now able to fabricate periodic arrays of nanostructures that would otherwise require advanced fabrication facilities.

  14. Construction of hysteresis loops of single domain elements and coupled permalloy ring arrays by magnetic force microscopy

    E-print Network

    Grütter, Peter

    Construction of hysteresis loops of single domain elements and coupled permalloy ring arrays, the hysteresis loop is constructed by counting the percentage of switched elements imaged at remanence. Their hysteresis loop is obtained by MFM imaging at a field between the switching fields of these two states

  15. 3738 IEEE TRANSACTIONS ON MAGNETICS, VOL. 44, NO. 11, NOVEMBER 2008 A Case for Redundant Arrays of Hybrid Disks (RAHD)

    E-print Network

    Kent, University of

    University, MK43 0AL, U.K. Department of Computer Science, University of Hertfordshire, Hatfield AL10 9AB, U incorporates a Flash memory in a magnetic disk. The combined ultra-high-density benefits of magnetic storage functional disk drive to combine NAND- based Flash with rotating storage media. The ultra

  16. OH MASER SOURCES IN W49N: PROBING MAGNETIC FIELD AND DIFFERENTIAL ANISOTROPIC SCATTERING WITH ZEEMAN PAIRS USING THE VERY LONG BASELINE ARRAY

    SciTech Connect

    Deshpande, Avinash A.; Goss, W. M.; Mendoza-Torres, J. E. E-mail: mgoss@aoc.nrao.edu

    2013-09-20

    Our analysis of a Very Long Baseline Array 12 hr synthesis observation of the OH masers in the well-known star-forming region W49N has yielded valuable data that enable us to probe distributions of magnetic fields in both the maser columns and the intervening interstellar medium (ISM). The data, consisting of detailed high angular resolution images (with beam width ?20 mas) of several dozen OH maser sources, or spots, at 1612, 1665, and 1667 MHz, reveal anisotropic scatter broadening with typical sizes of a few tens of milliarcseconds and axial ratios between 1.5 and 3. Such anisotropies have been reported previously by Desai et al. and have been interpreted as being induced by the local magnetic field parallel to the Galactic plane. However, we find (1) apparent angular sizes of, on average, a factor of about 2.5 less than those reported by Desai et al., indicating significantly less scattering than inferred previously, and (2) a significant deviation in the average orientation of the scatter-broadened images (by ?10°) from that implied by the magnetic field in the Galactic plane. More intriguingly, for a few Zeeman pairs in our set, significant differences (up to 6?) are apparent in the scatter-broadened images for the two hands of circular polarization, even when the apparent velocity separation is less than 0.1 km s{sup –1}. This may possibly be the first example of a Faraday rotation contribution to the diffractive effects in the ISM. Using the Zeeman pairs, we also study the distribution of the magnetic field in the W49N complex, finding no significant trend in the spatial structure function. In this paper, we present the details of our observations and analysis leading to these findings, discuss implications of our results for the intervening anisotropic magneto-ionic medium, and suggest possible implications for the structure of magnetic fields within this star-forming region.

  17. Magnetic nanohole superlattices

    SciTech Connect

    Liu, Feng

    2013-05-14

    A magnetic material is disclosed including a two-dimensional array of carbon atoms and a two-dimensional array of nanoholes patterned in the two-dimensional array of carbon atoms. The magnetic material has long-range magnetic ordering at a temperature below a critical temperature Tc.

  18. Structural and magnetic characterization of as-prepared and annealed FeCoCu nanowire arrays in ordered anodic aluminum oxide templates

    SciTech Connect

    Rodríguez-González, B.; Bran, C.; Warnatz, T.; Vazquez, M.; Rivas, J.

    2014-04-07

    Herein, we report on the preparation, structure, and magnetic characterization of FeCoCu nanowire arrays grown by DC electrodeposition inside self-assembled ordered nanopores of anodic aluminum oxide templates. A systematic study of their structure has been performed both in as-prepared samples and after annealing in the temperature range up to 800?°C, although particular attention has been paid to annealing at 700?°C after which maximum magnetic hardening is achieved. The obtained nanowires have a diameter of 40?nm and their Fe{sub 0.28}Co{sub 0.67}Cu{sub 0.05} composition was confirmed by energy dispersive X-ray spectroscopy (EDS). Focused ion-beam lamellas of two samples (as-prepared and annealed at 700?°C) were prepared for their imaging in the high-resolution transmission electron microscopy (HRTEM) perpendicularly to the electron beam, where the obtained EDS compositional mappings show a homogeneous distribution of the elements. X-ray diffraction analysis, and selected area electron diffraction (SAED) patterns confirm that nanowires exhibit a bcc cubic structure (space group Im-3m). In addition, bright-dark field images show that the nanowires have a polycrystalline structure that remains essentially the same after annealing, but some modifications were observed: (i) an overall increase and sharpening of recrystallized grains, and (ii) an apparent shrinkage of the nanowires diameter. Obtained SAED patterns also show strong textured components with determined <111> and <112> crystalline directions parallel to the wires growth direction. The presence of both directions was also confirmed in the HRTEM images doing Fourier transform analyses. Magnetic measurements show strong magnetic anisotropy with magnetization easy axis parallel to the nanowires in as-prepared and annealed samples. The magnetic properties are tuned by suitable thermal treatments so that, maximum enhanced coercivity (?2.7 kOe) and normalized remanence (?0.91 Ms) values are achieved after annealing at temperature of 700?°C. The contribution of the changes in the crystalline structure, induced by the heat treatment, to the magnetic hardening of the FeCoCu nanowires is discussed.

  19. Structural and magnetic characterization of as-prepared and annealed FeCoCu nanowire arrays in ordered anodic aluminum oxide templates

    NASA Astrophysics Data System (ADS)

    Rodríguez-González, B.; Bran, C.; Warnatz, T.; Rivas, J.; Vazquez, M.

    2014-04-01

    Herein, we report on the preparation, structure, and magnetic characterization of FeCoCu nanowire arrays grown by DC electrodeposition inside self-assembled ordered nanopores of anodic aluminum oxide templates. A systematic study of their structure has been performed both in as-prepared samples and after annealing in the temperature range up to 800 °C, although particular attention has been paid to annealing at 700 °C after which maximum magnetic hardening is achieved. The obtained nanowires have a diameter of 40 nm and their Fe0.28Co0.67Cu0.05 composition was confirmed by energy dispersive X-ray spectroscopy (EDS). Focused ion-beam lamellas of two samples (as-prepared and annealed at 700 °C) were prepared for their imaging in the high-resolution transmission electron microscopy (HRTEM) perpendicularly to the electron beam, where the obtained EDS compositional mappings show a homogeneous distribution of the elements. X-ray diffraction analysis, and selected area electron diffraction (SAED) patterns confirm that nanowires exhibit a bcc cubic structure (space group Im-3m). In addition, bright-dark field images show that the nanowires have a polycrystalline structure that remains essentially the same after annealing, but some modifications were observed: (i) an overall increase and sharpening of recrystallized grains, and (ii) an apparent shrinkage of the nanowires diameter. Obtained SAED patterns also show strong textured components with determined ?111? and ?112? crystalline directions parallel to the wires growth direction. The presence of both directions was also confirmed in the HRTEM images doing Fourier transform analyses. Magnetic measurements show strong magnetic anisotropy with magnetization easy axis parallel to the nanowires in as-prepared and annealed samples. The magnetic properties are tuned by suitable thermal treatments so that, maximum enhanced coercivity (˜2.7 kOe) and normalized remanence (˜0.91 Ms) values are achieved after annealing at temperature of 700 °C. The contribution of the changes in the crystalline structure, induced by the heat treatment, to the magnetic hardening of the FeCoCu nanowires is discussed.

  20. Use of a SQUID array to detect T-cells with magnetic nanoparticles in determining transplant rejection

    NASA Astrophysics Data System (ADS)

    Flynn, Edward R.; Bryant, H. C.; Bergemann, Christian; Larson, Richard S.; Lovato, Debbie; Sergatskov, Dmitri A.

    2007-04-01

    Acute rejection in organ transplant is signaled by the proliferation of T-cells that target and kill the donor cells requiring painful biopsies to detect rejection onset. An alternative non-invasive technique is proposed using a multi-channel superconducting quantum interference device (SQUID) magnetometer to detect T-cell lymphocytes in the transplanted organ labeled with magnetic nanoparticles conjugated to antibodies specifically attached to lymphocytic ligand receptors. After a magnetic field pulse, the T-cells produce a decaying magnetic signal with a characteristic time of the order of a second. The extreme sensitivity of this technique, 10 5 cells, can provide early warning of impending transplant rejection and monitor immune-suppressive chemotherapy.

  1. Method and apparatus for control of a magnetic structure

    SciTech Connect

    Challenger, M.P.; Valla, A.S.

    1996-06-18

    A method and apparatus for independently adjusting the spacing between opposing magnet arrays in charged particle based light sources. Adjustment mechanisms between each of the magnet arrays and the supporting structure allow the gap between the two magnet arrays to be independently adjusted. In addition, spherical bearings in the linkages to the magnet arrays permit the transverse angular orientation of the magnet arrays to also be adjusted. The opposing magnet arrays can be supported above the ground by the structural support. 4 figs.

  2. Method and apparatus for control of a magnetic structure

    DOEpatents

    Challenger, Michael P. (Bothell, WA); Valla, Arthur S. (Bothell, WA)

    1996-06-18

    A method and apparatus for independently adjusting the spacing between opposing magnet arrays in charged particle based light sources. Adjustment mechanisms between each of the magnet arrays and the supporting structure allow the gap between the two magnet arrays to be independently adjusted. In addition, spherical bearings in the linkages to the magnet arrays permit the transverse angular orientation of the magnet arrays to also be adjusted. The opposing magnet arrays can be supported above the ground by the structural support.

  3. Interdigitated array microelectrode based impedance biosensor coupled with magnetic nanoparticle-antibody conjugates for detection of Escherichia coli O157:H7 in food samples.

    PubMed

    Varshney, Madhukar; Li, Yanbin

    2007-05-15

    An impedance biosensor based on interdigitated array microelectrode (IDAM) coupled with magnetic nanoparticle-antibody conjugates (MNAC) was developed and evaluated for rapid and specific detection of E. coli O157:H7 in ground beef samples. MNAC were prepared by immobilizing biotin-labeled polyclonal goat anti-E. coli antibodies onto streptavidin-coated magnetic nanoparticles, which were used to separate and concentrate E. coli O157:H7 from ground beef samples. Magnitude of impedance and phase angle were measured in a frequency range of 10 Hz to 1 MHz in the presence of 0.1M mannitol solution. The lowest detection limits of this biosensor for detection of E. coli O157:H7 in pure culture and ground beef samples were 7.4 x 10(4) and 8.0 x 10(5)CFU ml(-1), respectively. The regression equation for the normalized impedance change (NIC) versus E. coli O157:H7 concentration (N) in ground beef samples was NIC=15.55 N-71.04 with R(2)=0.95. Sensitivity of the impedance biosensor was improved by 35% by concentrating bacterial cells attached to MNAC in the active layer of IDAM above the surface of electrodes with the help of a magnetic field. Based on equivalent circuit analysis, it was observed that bulk resistance and double layer capacitance were responsible for the impedance change caused by the presence of E. coli O157:H7 on the surface of IDAM. Surface immobilization techniques, redox probes, or sample incubation were not used in this impedance biosensor. The total detection time from sampling to measurement was 35 min. PMID:17045791

  4. Nanocylinder arrays

    DOEpatents

    Tuominen, Mark (Shutesbury, MA); Schotter, Joerg (Bielefeld, DE); Thurn-Albrecht, Thomas (Freiburg, DE); Russell, Thomas P. (Amherst, MA)

    2009-08-11

    Pathways to rapid and reliable fabrication of nanocylinder arrays are provided. Simple methods are described for the production of well-ordered arrays of nanopores, nanowires, and other materials. This is accomplished by orienting copolymer films and removing a component from the film to produce nanopores, that in turn, can be filled with materials to produce the arrays. The resulting arrays can be used to produce nanoscale media, devices, and systems.

  5. Nanocylinder arrays

    DOEpatents

    Tuominen, Mark; Schotter, Joerg; Thurn-Albrecht, Thomas; Russell, Thomas P.

    2007-03-13

    Pathways to rapid and reliable fabrication of nanocylinder arrays are provided. Simple methods are described for the production of well-ordered arrays of nanopores, nanowires, and other materials. This is accomplished by orienting copolymer films and removing a component from the film to produce nanopores, that in turn, can be filled with materials to produce the arrays. The resulting arrays can be used to produce nanoscale media, devices, and systems.

  6. Crustal thickness and Vp/Vs estimates near the Brunswick magnetic anomaly using receiver functions from the SESAME array

    NASA Astrophysics Data System (ADS)

    Parker, E. H.; Hawman, R. B.; Fischer, K. M.; Wagner, L. S.

    2012-12-01

    The Southeastern Suture of the Appalachian Margin Experiment (SESAME) is designed to investigate lithospheric dynamics associated with the Paleozoic collision between the Suwanee terrane and Laurentia as well as subsequent Mesozoic rifting and passive margin formation. So far, we have deployed 63 broadband instruments along two N-S trending profiles across Georgia and northern Florida. A third NW-trending profile consisting of 19 stations extends across accreted terranes of the southern Appalachians from Augusta, GA to eastern TN. The N-S profiles are intended to provide constraints on variations in crustal structure across the Brunswick magnetic anomaly (BMA), a prominent magnetic low coinciding with south-dipping crustal-scale seismic reflectors evident on COCORP profiles in south Georgia. The seismic reflectivity is likely a consequence of suturing, but the BMA has been interpreted as an edge effect related to collision as well as an effect of mafic magmatism south of the suture zone. H-k stacking using 10 teleseismic receiver functions from station W27, located ~50-km north of the suture on the western N-S profile, suggests a crustal thickness (H) of 42-44 km and average crustal Vp/Vs (k) of 1.73-1.80. These estimates are in agreement with previous well-constrained stacking results from USNSN station GOGA, located ~70-km to the northeast, that suggest a crustal thickness of 41-43 km and average Vp/Vs 1.72-1.76. The proposed suture zone itself lies beneath sediments of the Atlantic Coastal Plain, and receiver functions from stations in this region appear to be strongly affected by high-amplitude reverberations within the sedimentary column. Therefore, preliminary H-k stacking results from stations directly over the BMA may be unreliable. However, receiver functions from station W23 near the Inner Piedmont-Coastal Plain boundary (near the north, up-dip end of the suture zone) display variations in Ps delay time and amplitude with event back-azimuth. Receiver functions from the S-azimuth (South American trench) display a relatively weak Ps conversion at ~4 seconds, while receiver functions from the NW-azimuth (Aleutian trench) show a more complex signal with an arrival at ~4 s followed by a higher-amplitude arrival at ~6 seconds. This may be indicative of compositional heterogeneity across the suture, anisotropy within the crust or mantle, or complexity at the crust-mantle interface related to collision of the Suwanee terrane. Forthcoming data from additional stations will provide improved constraints on crustal structure across the BMA.

  7. Striped tape arrays

    NASA Technical Reports Server (NTRS)

    Drapeau, Ann L.; Katz, Randy H.

    1992-01-01

    A growing number of applications require high capacity, high throughput tertiary storage systems. How data striping ideas apply to arrays of magnetic tape drives is investigated. Data striping increases throughput and reduces response time for large accesses to a storage system. Striped magnetic tape systems are particularly appealing because many inexpensive magnetic tape drives have low bandwidth; striping may offer dramatic performance improvements for these systems. There are several important issues in designing striped tape systems: the choice of tape drives and robots, whether to stripe within or between robots, and the choice of the best scheme for distributing data on cartridges. One of the most troublesome problems in striped tape arrays is the synchronization of transfers across tape drives. Another issue is how improved devices will affect the desirability of striping in the future. The results of simulations comparing the performance of striped tape systems to non-striped systems are presented.

  8. Striped tertiary storage arrays

    NASA Technical Reports Server (NTRS)

    Drapeau, Ann L.

    1993-01-01

    Data stripping is a technique for increasing the throughput and reducing the response time of large access to a storage system. In striped magnetic or optical disk arrays, a single file is striped or interleaved across several disks; in a striped tape system, files are interleaved across tape cartridges. Because a striped file can be accessed by several disk drives or tape recorders in parallel, the sustained bandwidth to the file is greater than in non-striped systems, where access to the file are restricted to a single device. It is argued that applying striping to tertiary storage systems will provide needed performance and reliability benefits. The performance benefits of striping for applications using large tertiary storage systems is discussed. It will introduce commonly available tape drives and libraries, and discuss their performance limitations, especially focusing on the long latency of tape accesses. This section will also describe an event-driven tertiary storage array simulator that is being used to understand the best ways of configuring these storage arrays. The reliability problems of magnetic tape devices are discussed, and plans for modeling the overall reliability of striped tertiary storage arrays to identify the amount of error correction required are described. Finally, work being done by other members of the Sequoia group to address latency of accesses, optimizing tertiary storage arrays that perform mostly writes, and compression is discussed.

  9. Direct measurements of the magnetic entropy change

    NASA Astrophysics Data System (ADS)

    Nielsen, K. K.; Bez, H. N.; von Moos, L.; Bjørk, R.; Eriksen, D.; Bahl, C. R. H.

    2015-10-01

    An experimental device that can accurately measure the magnetic entropy change, ?s, as a function of temperature, T, and magnetic field, H, is presented. The magnetic field source is in this case a set of counter-rotating concentric Halbach-type magnets, which produce a highly homogeneous applied field with constant orientation. The field may be varied from 0 to 1.5 T in a continuous way. The temperature stability of the system is controlled to within ±10 mK and the standard range for the current setup is from 230 K to 330 K. The device is under high vacuum and we show that thermal losses to the ambient are negligible in terms of the calorimetric determination of the magnetic entropy change, while the losses cannot be ignored when correcting for the actual sample temperature. We apply the device to two different types of samples; one is commercial grade Gd, i.e., a pure second-order phase transition material, while the other is Gd5Si2Ge2, a first order magnetic phase transition material. We demonstrate the device's ability to fully capture the thermal hysteresis of the latter sample by following appropriate thermal resetting scheme and magnetic resetting scheme.

  10. Direct measurements of the magnetic entropy change.

    PubMed

    Nielsen, K K; Bez, H N; von Moos, L; Bjørk, R; Eriksen, D; Bahl, C R H

    2015-10-01

    An experimental device that can accurately measure the magnetic entropy change, ?s, as a function of temperature, T, and magnetic field, H, is presented. The magnetic field source is in this case a set of counter-rotating concentric Halbach-type magnets, which produce a highly homogeneous applied field with constant orientation. The field may be varied from 0 to 1.5 T in a continuous way. The temperature stability of the system is controlled to within ±10 mK and the standard range for the current setup is from 230 K to 330 K. The device is under high vacuum and we show that thermal losses to the ambient are negligible in terms of the calorimetric determination of the magnetic entropy change, while the losses cannot be ignored when correcting for the actual sample temperature. We apply the device to two different types of samples; one is commercial grade Gd, i.e., a pure second-order phase transition material, while the other is Gd5Si2Ge2, a first order magnetic phase transition material. We demonstrate the device's ability to fully capture the thermal hysteresis of the latter sample by following appropriate thermal resetting scheme and magnetic resetting scheme. PMID:26520967

  11. Microlens arrays

    NASA Astrophysics Data System (ADS)

    Hutley, Michael C.; Stevens, Richard F.; Daly, Daniel J.

    1992-04-01

    Microlenses have been with us for a long time as indeed the very word lens reminds us. Many early lenses,including those made by Hooke and Leeuwenhoek in the 17th century were small and resembled lentils. Many languages use the same word for both (French tilentillelt and German "Linse") and the connection is only obscure in English because we use the French word for the vegetable and the German for the optic. Many of the applications for arrays of inicrolenses are also well established. Lippmann's work on integral photography at the turn of the century required lens arrays and stimulated an interest that is very much alive today. At one stage, lens arrays played an important part in high speed photography and various schemes have been put forward to take advantage of the compact imaging properties of combinations of lens arrays. The fact that many of these ingenious schemes have not been developed to their full potential has to a large degree been due to the absence of lens arrays of a suitable quality and cost.

  12. Very large array and green bank telescope observations of Orion B (NGC 2024, W12): photodissociation region properties and magnetic field

    SciTech Connect

    Roshi, D. Anish; Goss, W. M.; Jeyakumar, S. E-mail: mgoss@nrao.edu

    2014-10-01

    We present images of C110? and H110? radio recombination line (RRL) emission at 4.8 GHz and images of H166?, C166?, and X166? RRL emission at 1.4 GHz, observed toward the star-forming region NGC 2024. The 1.4 GHz image with angular resolution ?70'' is obtained using Very Large Array (VLA) data. The 4.8 GHz image with angular resolution ?17'' is obtained by combining VLA and Green Bank Telescope data in order to add the short and zero spacing data in the uv plane. These images reveal that the spatial distributions of C110? line emission is confined to the southern rim of the H II region close to the ionization front whereas the C166? line emission is extended in the north-south direction across the H II region. The LSR velocity of the C110? line is 10.3 km s{sup –1} similar to that of lines observed from molecular material located at the far side of the H II region. This similarity suggests that the photodissociation region (PDR) responsible for C110? line emission is at the far side of the H II region. The LSR velocity of C166? is 8.8 km s{sup –1}. This velocity is comparable with the velocity of molecular absorption lines observed from the foreground gas, suggesting that the PDR is at the near side of the H II region. Non-LTE models for carbon line-forming regions are presented. Typical properties of the foreground PDR are T {sub PDR} ? 100 K, n{sub e}{sup PDR}?5 cm{sup –3}, n {sub H} ? 1.7 × 10{sup 4} cm{sup –3}, and path length l ? 0.06 pc, and those of the far side PDR are T {sub PDR} ? 200 K, n{sub e}{sup PDR}? 50 cm{sup –3}, n {sub H} ? 1.7 × 10{sup 5} cm{sup –3}, and l ? 0.03 pc. Our modeling indicates that the far side PDR is located within the H II region. We estimate the magnetic field strength in the foreground PDR to be 60 ?G and that in the far side PDR to be 220 ?G. Our field estimates compare well with the values obtained from OH Zeeman observations toward NGC 2024. The H166? spectrum shows narrow (1.7 km s{sup –1}) and broad (33 km s{sup –1}) line features. The narrow line has spatial distribution and central velocity (?9 km s{sup –1}) similar to that of the foreground carbon line emission, suggesting that they are associated. Modeling the narrow H166? emission provides physical properties T {sub PDR} ? 50 K, n{sub e}{sup PDR}?4 cm{sup –3}, and l ? 0.01 pc and implies an ionization fraction of ?10{sup –4}. The broad H166? line originates from the H II region. The X166? line has a different spatial distribution compared to other RRLs observed toward NGC 2024 and is probably associated with cold dust clouds. Based on the expected low depletion of sulfur in such clouds and the –8.1 km s{sup –1} velocity separation between the X166? and C166? lines, we interpret that the X166? transition arises from sulfur.

  13. Sonar Arrays and Array Processing

    NASA Astrophysics Data System (ADS)

    Baggeroer, A. B.

    2005-04-01

    Arrays of hydrophones have been part of Navy sonar systems for over fifty years now. They are used both passively and actively and now are quite sophisticated. These arrays were used in fixed configuration such as the SOSUS system and towed arrays deployed from surface ships and submarines. One can assert that these arrays were a key factor in winning the cold war. Similarly, medical ultrasonics have used many of the techniques initially developed for sonar systems save four orders of magnitude in frequency. The major area where modern sonars differ involves the use of adaptive array processing whereby one usually needs to localize a weak signal in the presence of strong interference in a nonstationary environment. Most of the recent literature concerns advancing these techniques especially making them more robust to environmental uncertainties including calibration and properties of the ocean. This presentation will give an overview of the state of the art in sonar and hopefully establish a few points of relevance with nondestructive testing.

  14. Pacific Array

    NASA Astrophysics Data System (ADS)

    Kawakatsu, H.; Takeo, A.; Isse, T.; Nishida, K.; Shiobara, H.; Suetsugu, D.

    2014-12-01

    Based on our recent results on broadband ocean bottom seismometry, we propose a next generation large-scale array experiment in the ocean. Recent advances in ocean bottom broadband seismometry (e.g., Suetsugu & Shiobara, 2014, Annual Review EPS), together with advances in the seismic analysis methodology, have now enabled us to resolve the regional 1-D structure of the entire lithosphere/asthenosphere system, including seismic anisotropy (both radial and azimuthal), with deployments of ~10-15 broadband ocean bottom seismometers (BBOBSs) (namely "ocean-bottom broadband dispersion survey"; Takeo et al., 2013, JGR; Kawakatsu et al., 2013, AGU; Takeo, 2014, Ph.D. Thesis; Takeo et al., 2014, JpGU). Having ~15 BBOBSs as an array unit for 2-year deployment, and repeating such deployments in a leap-frog way (an array of arrays) for a decade or so would enable us to cover a large portion of the Pacific basin. Such efforts, not only by giving regional constraints on the 1-D structure, but also by sharing waveform data for global scale waveform tomography, would drastically increase our knowledge of how plate tectonics works on this planet, as well as how it worked for the past 150 million years. International collaborations might be sought.

  15. Global Arrays

    Energy Science and Technology Software Center (ESTSC)

    2006-02-23

    The Global Arrays (GA) toolkit provides an efficient and portable ?shared-memory? programming interface for distributed-memory computers. Each process in a MIMD parallel program can asynchronously access logical blocks of physically distributed dense multi-dimensional arrays, without need for explicit cooperation by other processes. Unlike other shared-memory environments, the GA model exposes to the programmer the non-uniform memory access (NUMA) characteristics of the high performance computers and acknowledges that access to a remote portion of the sharedmore »data is slower than to the local portion. The locality information for the shared data is available, and a direct access to the local portions of shared data is provided. Global Arrays have been designed to complement rather than substitute for the message-passing programming model. The programmer is free to use both the shared-memory and message-passing paradigms in the same program, and to take advantage of existing message-passing software libraries. Global Arrays are compatible with the Message Passing Interface (MPI).« less

  16. Electromagnetically Clean Solar Arrays

    NASA Technical Reports Server (NTRS)

    Stem, Theodore G.; Kenniston, Anthony E.

    2008-01-01

    The term 'electromagnetically clean solar array' ('EMCSA') refers to a panel that contains a planar array of solar photovoltaic cells and that, in comparison with a functionally equivalent solar-array panel of a type heretofore used on spacecraft, (1) exhibits less electromagnetic interferences to and from other nearby electrical and electronic equipment and (2) can be manufactured at lower cost. The reduction of electromagnetic interferences is effected through a combination of (1) electrically conductive, electrically grounded shielding and (2) reduction of areas of current loops (in order to reduce magnetic moments). The reduction of cost is effected by designing the array to be fabricated as a more nearly unitary structure, using fewer components and fewer process steps. Although EMCSAs were conceived primarily for use on spacecraft they are also potentially advantageous for terrestrial applications in which there are requirements to limit electromagnetic interference. In a conventional solar panel of the type meant to be supplanted by an EMCSA panel, the wiring is normally located on the back side, separated from the cells, thereby giving rise to current loops having significant areas and, consequently, significant magnetic moments. Current-loop geometries are chosen in an effort to balance opposing magnetic moments to limit far-0field magnetic interactions, but the relatively large distances separating current loops makes full cancellation of magnetic fields problematic. The panel is assembled from bare photovoltaic cells by means of multiple sensitive process steps that contribute significantly to cost, especially if electomagnetic cleanliness is desired. The steps include applying a cover glass and electrical-interconnect-cell (CIC) sub-assemble, connecting the CIC subassemblies into strings of series-connected cells, laying down and adhesively bonding the strings onto a panel structure that has been made in a separate multi-step process, and mounting the wiring on the back of the panel. Each step increases the potential for occurrence of latent defects, loss of process control, and attrition of components. An EMCSA panel includes an integral cover made from a transparent material. The silicone cover supplants the individual cover glasses on the cells and serves as an additional unitary structural support that offers the advantage, relative to glass, of the robust, forgiving nature of the silcone material. The cover contains pockets that hold the solar cells in place during the lamination process. The cover is coated with indium tin oxide to make its surface electrically conductive, so that it serves as a contiguous, electrically grounded shield over the entire panel surface. The cells are mounted in proximity to metallic printed wiring. The painted-wiring layer comprises metal-film traces on a sheet of Kapton (or equivalent) polyimide. The traces include contact pads on one side of the sheet for interconnecting the cells. Return leads are on the opposite side of the sheet, positioned to form the return currents substantially as mirror images of, and in proximity to, the cell sheet currents, thereby minimizing magnetic moments. The printed-wiring arrangement mimics the back-wiring arrangement of conventional solar arrays, but the current-loop areas and the resulting magnetic moments are much smaller because the return-current paths are much closer to the solar-cell sheet currents. The contact pads are prepared with solder fo electrical and mechanical bonding to the cells. The pocketed cover/shield, the solar cells, the printed-wiring layer, an electrical bonding agent, a mechanical-bonding agent, a composite structural front-side face sheet, an aluminum honeycomb core, and a composite back-side face sheet are all assembled, then contact pads are soldered to the cells and the agents are cured in a single lamination process.

  17. Emerging Protein Array Technologies for Proteomics

    PubMed Central

    Lee, Jung-Rok; Magee, Dewey Mitchell; Gaster, Richard Samuel; LaBaer, Joshua; Wang, Shan X.

    2014-01-01

    Numerous efforts have been made to understand fundamental biology of diseases based on gene expressions. However, the relationship between gene expressions and onset of diseases often remains obscure. The great advances in protein microarrays allow us to investigate this unclear question through protein profiles, which are regarded as more reliable than gene expressions to serve as the harbinger of disease onset or as the biomarker of disease treatment monitoring. We review two relatively new platforms of protein arrays, along with an introduction to the common basis of protein array technologies. Immobilization of proteins on the surface of arrays and neutralizing reactive areas after the immobilization are key practical issues in the field of protein array. One of the emerging protein array technologies is the magneto-nanosensor array where giant magnetoresistive (GMR) sensors are used to quantitatively measure analyte of interest which are labeled with magnetic nanoparticles (MNP). Similar to GMR, several different ways of utilizing magnetic properties for biomolecular detection have been developed and are reviewed here. Another emerging protein array technology is Nucleic Acid Programmable Protein Arrays (NAPPA), which have thousands of protein features directly expressed by nucleic acids on array surface. We anticipate these two emerging protein array platforms can be combined to produce synergistic benefits and open new applications in proteomics and clinical diagnostics. PMID:23414360

  18. Design and characteristics analysis of linear oscillatory actuator with ferrite permanent magnet for refrigerator compressor

    NASA Astrophysics Data System (ADS)

    Kim, Kwan-Ho; Jang, Seok-Myeong; Ahn, Ji-Hun; Choi, Jang-Young; Jeong, Sang-Sub

    2015-05-01

    Actuators using NdFeB permanent magnets (PMs) are widely used, but they are costly and are affected by unstable material supply. In this study, a linear oscillatory actuator (LOA) using a ferrite PM is designed for use in the compressor for refrigerators, instead of the NdFeB PM. In spite of benefits of ferrite PM, it has not been widely used because the residual magnetic flux density of the ferrite PM is normally 35% less than that of a NdFeB PM. To overcome this shortcoming, we analyze the mover features of the LOA using two types of the ferrite PMs: interior PM type and Halbach PM type. The LOA designed has the same outer stator outer radius and number of coil turns as a conventional LOA with the NdFeB PM. The validity of the designed model is verified by comparing the analysis results using the nonlinear finite element method.

  19. Genotyping Arrays

    NASA Astrophysics Data System (ADS)

    Lodes, Michael J.; Suciu, Dominic; Danley, David; McShea, Andrew

    Although the most common use of DNA microarrays is gene expression profiling, microarrays are also used for many other applications, including genotyping, resequencing, SNP analysis, and DNA methylation assays. Here we describe genotyping arrays for Influenza A subtype identification and for upper respiratory pathogen diagnostics using standard hybridization techniques and we also describe resequencing, SNP, and methylation assays using an enzyme-based strategy [25, 26].

  20. Silane modified magnetic nanoparticles as a novel adsorbent for determination of morphine at trace levels in human hair samples by high-performance liquid chromatography with diode array detection.

    PubMed

    Boojaria, Ali; Masrournia, Mahboubeh; Ghorbani, Hamideh; Ebrahimitalab, Abdolhossein; Miandarhoie, Mina

    2015-12-01

    In this paper we report a novel, sensitive, and rapid method of magnetic solid phase extraction based on surface modified magnetic nanoparticles as a novel nano sorbent for HPLC determination of morphine with diode array detection in human hair samples. Factors affecting the extraction efficiency of the proposed method, including the sample pH, quantity of magnetic nanoparticles, sample volume, desorption solvent type and its volume, and extraction time were investigated and optimized. Under the optimized experimental conditions, a good linearity was observed in the range of 1-800 µgL(-1) for the morphine, with a correlation coefficient (R (2)) of 0.990. The pre-concentration factor of 208.69 was achieved in this method. The detection limit of the method was 0.1 ?gL(-1) based on S/N = 3 and good reproducibility with a relative standard deviations lower than (n = 5) 2.59 %. The proposed method has been successfully applied to the analysis of trace amounts of morphine in human hair samples with satisfactory results. This method can be applied in medical toxicology research and forensic medical centers. PMID:26318597

  1. Magnetic

    NASA Astrophysics Data System (ADS)

    Aboud, Essam; El-Masry, Nabil; Qaddah, Atef; Alqahtani, Faisal; Moufti, Mohammed R. H.

    2015-06-01

    The Rahat volcanic field represents one of the widely distributed Cenozoic volcanic fields across the western regions of the Arabian Peninsula. Its human significance stems from the fact that its northern fringes, where the historical eruption of 1256 A.D. took place, are very close to the holy city of Al-Madinah Al-Monawarah. In the present work, we analyzed aeromagnetic data from the northern part of Rahat volcanic field as well as carried out a ground gravity survey. A joint interpretation and inversion of gravity and magnetic data were used to estimate the thickness of the lava flows, delineate the subsurface structures of the study area, and estimate the depth to basement using various geophysical methods, such as Tilt Derivative, Euler Deconvolution and 2D modeling inversion. Results indicated that the thickness of the lava flows in the study area ranges between 100 m (above Sea Level) at the eastern and western boundaries of Rahat Volcanic field and getting deeper at the middle as 300-500 m. It also showed that, major structural trend is in the NW direction (Red Sea trend) with some minor trends in EW direction.

  2. Coupling Between Waveguide-Fed Slot Arrays

    NASA Technical Reports Server (NTRS)

    Rengarajan, Sembiam

    2011-01-01

    Coupling between two waveguide-fed planar slot arrays has been investigated using full-wave analysis. The analysis employs the method-of-moments solution to the pertinent coupled integral equations for the aperture electric field of all slots. In order to compute coupling between two arrays, the input port of the first array is excited with a TE(sub 10) mode wave while the second one is match-terminated. After solving the moment method matrix equations, the aperture fields of all slots are obtained and thereby the TE(sub 10) mode wave received at the input port of the second array is determined. Coupling between two arrays is the ratio of the wave amplitude arriving in the second array port to the incident wave amplitude at the first array port. The coupling mechanism has been studied as a function of spacing between arrays in different directions, e.g. the electric field plane, the magnetic field plane, and the diagonal plane. Computed coupling values are presented for different array geometries. This work is novel since it provides a good understanding of coupling between waveguide-fed slot arrays as a function of spacing and orientation for different aperture distributions and array architectures. This serves as a useful tool for antenna design engineers and system engineers.

  3. Radio detector array simulation A full simulation chain for an array of antenna detectors

    E-print Network

    Hörandel, Jörg R.

    to their emission of electro-magnetic waves at frequencies in the radio regime [1,2]. This radio technique givesRadio detector array simulation A full simulation chain for an array of antenna detectors Stefan a r t i c l e i n f o Available online 21 March 2009 Keywords: Cosmic rays Air showers Radio detection

  4. The NASA Inductrack Model Rocket Launcher at the Lawrence Livermore National Laboratory

    NASA Technical Reports Server (NTRS)

    Tung, L. S.; Post, R. F.; Cook, E.; Martinez-Frias, J.

    2000-01-01

    The Inductrack magnetic levitation system, developed at the Lawrence Livermore National Laboratory, is being studied for its possible use for launching rockets. Under NASA sponsorship, a small model system is being constructed at the Laboratory to pursue key technical aspects of this proposed application. The Inductrack is a passive magnetic levitation system employing special arrays of high-field permanent magnets (Halbach arrays) on the levitating carrier, moving above a "track" consisting of a close-packed array of shorted coils with which are interleaved with special drive coils. Halbach arrays produce a strong spatially periodic magnetic field on the front surface of the arrays, while canceling the field on their back surface. Relative motion between the Halbach arrays and the track coils induces currents in those coils. These currents levitate the carrier cart by interacting with the horizontal component of the magnetic field. Pulsed currents in the drive coils, synchronized with the motion of the carrier, interact with the vertical component of the magnetic field to provide acceleration forces. Motional stability, including resistance to both vertical and lateral aerodynamic forces, is provided by having Halbach arrays that interact with both the upper and the lower sides of the track coils. In its completed form the model system that is under construction will have a track approximately 100 meters in length along which the carrier cart will be propelled up to peak speeds of Mach 0.4 to 0.5 before being decelerated. Preliminary studies of the parameters of a full-scale system have also been made. These studies address the problems of scale-up, including means to simplify the track construction and to reduce the cost of the pulsed-power systems needed for propulsion.

  5. The Auger Engineering Radio Array

    NASA Astrophysics Data System (ADS)

    Fuchs, Benjamin

    2012-11-01

    High and ultra-high energy cosmic rays hitting the Earth's atmosphere cause extensive air showers (EAS). In recent years, these cosmic rays have been extensively studied at the Pierre Auger Observatory in Argentina. The EAS mainly consist of charged particles, especially electrons and positrons, which cause electro-magnetic emission in the MHz range by interaction with the Earth's magnetic field. To measure this radio emission, AERA, the Auger Engineering Radio Array, was deployed in October 2010 and commenced regular data acquisition in April 2011. AERA was designed as an engineering array for technology and methodology development towards future large-scale radio arrays. It will allow studies on the radio emission mechanism and the physics capabilities of the detection technique. AERA's unique site within the surface detector array (SD) of the Pierre Auger Observatory provides the possibility of coincident hybrid and super-hybrid EAS detection especially in overlap with the fluorescence telescopes Coihueco and HEAT. Besides a description of the setup, we present an overview of analyses of commissioning data taken between November 2010 and April 2011. Also, we show the first hybrid and self-triggered events detected with AERA in April 2011.

  6. Experiments with Electrodynamic Wheels

    NASA Astrophysics Data System (ADS)

    Gaul, Nathan; Corey, Daniel; Cordrey, Vincent; Majewski, Walerian

    2015-04-01

    Our experiments were involving inductive magnetic levitation. A Halbach array is a system in which a series of magnets is arranged in a manner such that the magnetic field is cancelled on one side of the array while strengthening the field on the other. We constructed two circular Halbach wheels, making the strong magnetic field on the outer rim of the ring. Such system is usually dubbed as an Electrodynamic Wheel (EDW). Rotating this wheel around a horizontal axis above a flat conducting surface should induce eddy currents in said surface through the variable magnetic flux. The eddy currents produce, in turn, their own magnetic fields which interact with the magnets of the EDW. We demonstrated that these interactions produce both drag and lift forces on the EDW which can theoretically be used for lift and propulsion of the EDW. The focus of our experiments is determining how to maximize the lift-to-drag ratio by the proper choice of the induction element. We will also describe our experiments with a rotating circular Halbach array having the strong magnetic field of about 1 T on the flat side of the ring, and acting as a hovercraft.

  7. nanotube arrays

    NASA Astrophysics Data System (ADS)

    Tan, Yu; Zhang, Shenghan; Liang, Kexin

    2014-02-01

    We reported Ce and its oxide-modified TiO2 nanotube arrays (TNTs) and their semiconductor properties. The TNTs were prepared by anodic oxidation on pure Ti and investigated by electrochemical photocurrent response analysis. Then, the TNT electrodes were deposited of Ce by cathodic reduction of Ce(NO3)3 6H2O. After deposition, the TNT electrodes were fabricated by anodic oxidation at E = 1.0 V(SCE) for various electricity as Ce-Ce2O3-CeO2 modification. The Ce-deposited TNTs (band gap energy E g = 2.92 eV) exhibited enhanced photocurrent responses under visible light region and indicated more negative flat band potential ( E fb) compared with the TNTs without deposition. After anodic oxidation, the mixed Ce and its oxide (Ce2O3-CeO2)-modified TNT photoelectrodes exhibited higher photocurrent responses under both visible and UV light regions than the TNTs without deposition. The photocurrent responses and E fb were found to be strongly dependent on the contents of Ce2O3 and CeO2 deposited on TNTs. A new characteristic of E g = 2.1 ± 0.1 eV was investigated in the Ce2O3- and CeO2-modified photoelectrodes. X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) were also employed to characterize various modified TNTs photoelectrodes.

  8. Development of a monolithic ferrite memory array

    NASA Technical Reports Server (NTRS)

    Heckler, C. H., Jr.; Bhiwandker, N. C.

    1972-01-01

    The results of the development and testing of ferrite monolithic memory arrays are presented. This development required the synthesis of ferrite materials having special magnetic and physical characteristics and the development of special processes; (1) for making flexible sheets (laminae) of the ferrite composition, (2) for embedding conductors in ferrite, and (3) bonding ferrite laminae together to form a monolithic structure. Major problems encountered in each of these areas and their solutions are discussed. Twenty-two full-size arrays were fabricated and fired during the development of these processes. The majority of these arrays were tested for their memory characteristics as well as for their physical characteristics and the results are presented. The arrays produced during this program meet the essential goals and demonstrate the feasibility of fabricating monolithic ferrite memory arrays by the processes developed.

  9. Resonance spectra of diabolo optical antenna arrays

    NASA Astrophysics Data System (ADS)

    Guo, Hong; Simpkins, Blake; Caldwell, Joshua D.; Guo, Junpeng

    2015-10-01

    A complete set of diabolo optical antenna arrays with different waist widths and periods was fabricated on a sapphire substrate by using a standard e-beam lithography and lift-off process. Fabricated diabolo optical antenna arrays were characterized by measuring the transmittance and reflectance with a microscope-coupled FTIR spectrometer. It was found experimentally that reducing the waist width significantly shifts the resonance to longer wavelength and narrowing the waist of the antennas is more effective than increasing the period of the array for tuning the resonance wavelength. Also it is found that the magnetic field enhancement near the antenna waist is correlated to the shift of the resonance wavelength.

  10. Magnetic multipole redirector of moving plasmas

    DOEpatents

    Crow, James T. (Albuquerque, NM); Mowrer, Gary R. (Cedar Crest, NM)

    1999-01-01

    A method and apparatus for redirecting moving plasma streams using a multiple array of magnetic field generators (e.g., permanent magnets or current bearing wires). Alternate rows of the array have opposite magnetic field directions. A fine wire mesh may be employed to focus as well as redirect the plasma.

  11. Investigation of magnetic field manipulated electrons produced from laser-driven ultrafast x-ray sources using x-ray emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Changju; Davidson, R. Andrew; Guo, Ting

    2015-03-01

    We used x-ray emission spectroscopy to study energetic electrons (10-100?keV) generated at the laser focus of an intense ultrafast laser interacting with a primary thin film tape target. The electrons penetrated the tape and reached a secondary target of thin metal foils as the probe. The trajectories of these electrons were manipulated with an external magnetic field generated from a home-made Halbach magnet. The interaction of these energetic electrons with the probe produced characteristic x-rays, which were used to infer the flux and temperature of the electrons emitted from the laser focus at the primary tape target. A potential application using these energetic electrons is discussed.

  12. Orthogonal Arrays Plans Screening

    E-print Network

    MASCOT NUM Jean-Marc Azaïs Orthogonal Arrays Plans Screening Orthogonal Arrays Plans Screening Surface de réponse : Plans pour l'approximation de codes numériques Jean-Marc AZAÏS Modélisation Aléatoire NUM #12;MASCOT NUM Jean-Marc Azaïs Orthogonal Arrays Plans Screening Orthogonal Arrays Plans Screening

  13. Integration of magnetic solid phase fishing and off-line two-dimensional high-performance liquid chromatography-diode array detector-mass spectrometry for screening and identification of human serum albumin binders from Radix Astragali.

    PubMed

    Zhang, Yuping; Nie, Mingkun; Shi, Shuyun; You, Qingping; Guo, Junfang; Liu, Liangliang

    2014-03-01

    Radix Astragali is one of the most popular traditional medicinal herb and healthy dietary supplement. Isoflavonoids and astragalosides are the main bioactive ingredients. However, the systematic bioactive component analysis is inadequate so far. Then a facile method based on Fe3O4@SiO2-human serum albumin (Fe3O4@SiO2-HSA) magnetic solid phase fishing integrated with two-dimensional high-performance liquid chromatography-diode array detector-mass spectrometry (2D HPLC-DAD-MS(n)) was developed to fish out and identify HSA binders from Radix Astragali. The immobilized HSA displayed a high stability with 96.2% retained after ten consecutive cycles. 2D HPLC system (size exclusion chromatography×reversed phase chromatography, SEC×RP) were developed and optimised. Forty-seven bioactive compounds including thirty-four isoflavonoids and thirteen astragalosides were screened and identified or tentatively deduced based on their retention time, ultraviolet (UV), accurate molecular weight and diagnostic fragment ions. The results indicated that the integrated method could be widely applied for systematical fishing and identification of bioactive compounds, especially for low-abundance and overlapped compounds, from complex mixtures. PMID:24176313

  14. Integrated infrared array technology

    NASA Technical Reports Server (NTRS)

    Goebel, J. H.; Mccreight, C. R.

    1987-01-01

    An overview of integrated infrared (IR) array technology is presented. Although the array pixel formats are smaller, and the readout noise of IR arrays is larger than the corresponding values achieved with optical charge-coupled-device silicon technology, substantial progress is being made in IR technology. Both existing IR arrays and those being developed are described. Examples of astronomical images are given which illustrate the potential of integrated IR arrays for scientific investigations.

  15. Integrated infrared array technology

    NASA Technical Reports Server (NTRS)

    Goebel, J. H.; Mccreight, C. R.

    1986-01-01

    An overview of integrated infrared (IR) array technology is presented. Although the array pixel formats are smaller, and the readout noise of IR arrays is larger, than the corresponding values achieved with optical charge-coupled-device silicon technology, substantial progress is being made in IR technology. Both existing IR arrays and those being developed are described. Examples of astronomical images are given which illustrate the potential of integrated IR arrays for scientific investigations.

  16. Magnetic bead based immuno-detection of Listeria monocytogenes and Listeria ivanovii from infant formula and leafy green vegetables using the Bio-Plex suspension array system.

    PubMed

    Day, J B; Basavanna, U

    2015-04-01

    Listeriosis, a disease contracted via the consumption of foods contaminated with pathogenic Listeria species, can produce severe symptoms and high mortality in susceptible people and animals. The development of molecular methods and immuno-based techniques for detection of pathogenic Listeria in foods has been challenging due to the presence of assay inhibiting food components. In this study, we utilize a macrophage cell culture system for the isolation and enrichment of Listeria monocytogenes and Listeria ivanovii from infant formula and leafy green vegetables for subsequent identification using the Luminex xMAP technique. Macrophage monolayers were exposed to infant formula, lettuce and celery contaminated with L. monocytogenes or L. ivanovii. Magnetic microspheres conjugated to Listeria specific antibody were used to capture Listeria from infected macrophages and then analyzed using the Bio-Plex 200 analyzer. As few as 10 CFU/mL or g of L. monocytogenes was detected in all foods tested. The detection limit for L. ivanovii was 10 CFU/mL in infant formula and 100 CFU/g in leafy greens. Microsphere bound Listeria obtained from infected macrophage lysates could also be isolated on selective media for subsequent confirmatory identification. This method presumptively identifies L. monocytogenes and L. ivanovii from infant formula, lettuce and celery in less than 28 h with confirmatory identifications completed in less than 48 h. PMID:25475329

  17. 7-T magnetic resonance imaging of the inner ear's anatomy by using dual four-element radiofrequency coil arrays and the VIBE sequence

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung-Nam; Heo, Phil; Kim, Young-Bo; Han, Gyu-Cheol

    2015-02-01

    An ultra-high-field magnetic resonance (MR) scanner and a specially-optimized radiofrequency (RF) coil and sequence protocol are required to obtain high-resolution images of the inner ear that can noninvasively confirm pathologic diagnoses. In phantom studies, the MR signal distribution of the gradient echo MR images generated by using a customized RF coil was compared with that of a commercial volume coil. The MR signal intensity of the customized RF coil decreases rapidly from near the RF coil plane toward the exterior of the phantom. However, the signal sensitivity of this coil is superior on both sides of the phantom, corresponding to the petrous pyramid. In in-vivo 7-T MR imaging, a customized RF coil and a volumetric-interpolated breath-hold examination imaging sequence are employed for visualization of the inner ear's structure. The entire membranous portion of the cochlear and the three semicircular canals, including the ductus reunions, oval window, and round window with associated nervous tissue, were clearly depicted with sufficient spatial coverage for adequate inspection of the surrounding anatomy. Developments from a new perspective to inner ear imaging using the 7-T modality could lead to further improved image sensitivity and, thus, enable ultra-structural MR imaging.

  18. Geometrical optimization of microstripe arrays for microbead magnetophoresis.

    PubMed

    Henriksen, Anders Dahl; Rozlosnik, Noemi; Hansen, Mikkel Fougt

    2015-09-01

    Manipulation of magnetic beads plays an increasingly important role in molecular diagnostics. Magnetophoresis is a promising technique for selective transportation of magnetic beads in lab-on-a-chip systems. We investigate periodic arrays of exchange-biased permalloy microstripes fabricated using a single lithography step. Magnetic beads can be continuously moved across such arrays by combining the spatially periodic magnetic field from microstripes with a rotating external magnetic field. By measuring and modeling the magnetophoresis properties of thirteen different stripe designs, we study the effect of the stripe geometry on the magnetophoretic transport properties of the magnetic microbeads between the stripes. We show that a symmetric geometry with equal width of and spacing between the microstripes facilitates faster transportation and that the optimal period of the periodic stripe array is approximately three times the height of the bead center over the microstripes. PMID:26543515

  19. Parallel arrays of Josephson junctions for submillimeter local oscillators

    NASA Technical Reports Server (NTRS)

    Pance, Aleksandar; Wengler, Michael J.

    1992-01-01

    In this paper we discuss the influence of the DC biasing circuit on operation of parallel biased quasioptical Josephson junction oscillator arrays. Because of nonuniform distribution of the DC biasing current along the length of the bias lines, there is a nonuniform distribution of magnetic flux in superconducting loops connecting every two junctions of the array. These DC self-field effects determine the state of the array. We present analysis and time-domain numerical simulations of these states for four biasing configurations. We find conditions for the in-phase states with maximum power output. We compare arrays with small and large inductances and determine the low inductance limit for nearly-in-phase array operation. We show how arrays can be steered in H-plane using the externally applied DC magnetic field.

  20. Exploration of Artificial Frustrated Magnets

    SciTech Connect

    Samarth, Nitin; Schiffer, Peter

    2015-02-17

    This program encompasses experimental and theoretical studies of arrays of nanometer-scale magnets known as “artificial frustrated magnets”. These magnets are small and closely spaced, so that their behavior as a collective group is complex and reveals insights into how such collections of interacting objects behave as a group. In particular, the placement of the magnets is such that the interactions between them are “frustrated”, in that they compete with each other. These systems are analogs to a class of magnetic materials in which the lattice geometry frustrates interactions between individual atomic moments, and in which a wide range of novel physical phenomena have been recently observed. The advantage to studying the arrays is that they are both designable and resolvable: i.e., the experiments can control all aspects of the array geometry, and can also observe how individual elements of the arrays behave. This research program demonstrated a number of phenomena including the role of multiple collective interactions, the feasibility of using systems with their magnetism aligned perpendicular to the plane of the array, the importance of disorder in the arrays, and the possibility of using high temperatures to adjust the magnet orientations. All of these phenomena, and others explored in this program, add to the body of knowledge around collective magnetic behavior and magnetism in general. Aside from building scientific knowledge in an important technological area, with relevance to computing and memory, the program also gave critical support to the education of students working on the experiments.

  1. Exploring Functional Connectivity Networks with Multichannel Brain Array Coils

    E-print Network

    Anteraper, Sheeba Arnold

    The use of multichannel array head coils in functional and structural magnetic resonance imaging (MRI) provides increased signal-to-noise ratio (SNR), higher sensitivity, and parallel imaging capabilities. However, their ...

  2. Final Progress Report for the NASA Inductrack Model Rocket Launcher at the Lawrence Livermore National Laboratory

    SciTech Connect

    Tung, L S; Post, R F; Martinez-Frias, J

    2001-06-27

    The Inductrack magnetic levitation system, developed at the Lawrence Livermore National Laboratory, was studied for its possible use for launching rockets. Under NASA sponsorship, a small model system was constructed at the Laboratory to pursue key technical aspects of this proposed application. The Inductrack is a passive magnetic levitation system employing special arrays of high-field permanent magnets (Halbach arrays) on the levitating cradle, moving above a ''track'' consisting of a close-packed array of shorted coils with which are interleaved with special drive coils. Halbach arrays produce a strong spatially periodic magnetic field on the front surface of the arrays, while canceling the field on their back surface. Relative motion between the Halbach arrays and the track coils induces currents in those coils. These currents levitate the cradle by interacting with the horizontal component of the magnetic field. Pulsed currents in the drive coils, synchronized with the motion of the carrier, interact with the vertical component of the magnetic field to provide acceleration forces. Motional stability, including resistance to both vertical and lateral aerodynamic forces, is provided by having Halbach arrays that interact with both the upper and the lower sides of the track coils. At present, a 7.8 meter track composed of drive and levitation coils has been built and the electronic drive circuitry performs as designed. A 9 kg cradle that carries the Halbach array of permanent magnets has been built. A mechanical launcher is nearly complete which will provide an initial cradle velocity of 9 m/s into the electronic drive section. We have found that the drag forces from the levitation coils were higher than in our original design. However, measurements of drag force at velocities less than 1 m/s are exactly as predicted by theory. Provided here are recommended design changes to improve the track's performance so that a final velocity of 40 m/s can be achieved with the existing track. This project was designed and built as part of a Phase II contract that started in Feb. 1999 and ended in Sep. 2000 at a cost of $600K. A detailed budget on how this funding was spent is also included here.

  3. Demonstration of successful construction of linear arrays of Hall probes used to digitally image

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Researchers at Marshall's Space Science Laboratory successfully demonstrate that linear arrays of Hall probes can be constructed in high Hall coefficient films and used to digitally image magnetic fields. This research is beneficial to visually imaging any magnetic field.

  4. Thermophotovoltaic Array Optimization

    SciTech Connect

    SBurger; E Brown; K Rahner; L Danielson; J Openlander; J Vell; D Siganporia

    2004-07-29

    A systematic approach to thermophotovoltaic (TPV) array design and fabrication was used to optimize the performance of a 192-cell TPV array. The systematic approach began with cell selection criteria that ranked cells and then matched cell characteristics to maximize power output. Following cell selection, optimization continued with an array packaging design and fabrication techniques that introduced negligible electrical interconnect resistance and minimal parasitic losses while maintaining original cell electrical performance. This paper describes the cell selection and packaging aspects of array optimization as applied to fabrication of a 192-cell array.

  5. Energy Minimization and ac Demagnetization in a Nanomagnet Array

    NASA Astrophysics Data System (ADS)

    Ke, X.; Li, J.; Nisoli, C.; Lammert, Paul E.; McConville, W.; Wang, R. F.; Crespi, V. H.; Schiffer, P.

    2008-07-01

    We study ac demagnetization in frustrated arrays of single-domain ferromagnetic islands, exhaustively resolving every (Ising-like) magnetic degree of freedom in the systems. Although the net moment of the arrays is brought near zero by a protocol with sufficiently small step size, the final magnetostatic energy of the demagnetized array continues to decrease for finer-stepped protocols and does not extrapolate to the ground-state energy. The resulting complex disordered magnetic state can be described by a maximum-entropy ensemble constrained to satisfy just nearest-neighbor correlations.

  6. Optimized Superconducting Quadrupole Arrays for Multiple Beam Transport

    SciTech Connect

    Meinke, Rainer, B.; Goodzeit, Carl, L.; Ball, Millicent, J.

    2005-09-20

    This research project advanced the development of reliable, cost-effective arrays of superconducting quadrupole magnets for use in multi-beam inertial fusion accelerators. The field in each array cell must be identical and meet stringent requirements for field quality and strength. An optimized compact array design using flat double-layer pancake coils was developed. Analytical studies of edge termination methods showed that it is feasible to meet the requirements for field uniformity in all cells and elimination of stray external field in several ways: active methods that involve placement of field compensating coils on the periphery of the array or a passive method that involves use of iron shielding.

  7. Results from a prototype permanent magnet dipole-quadrupole hybrid for the PEP-II B-factory

    SciTech Connect

    Sullivan, M.; Bowden, G.; Ecklund, S.

    1997-06-01

    We describe the construction of a prototype hybrid permanent magnet dipole and quadrupole. The magnet consists of two concentric rings of Sm{sub 2}Co{sub 17} magnetic material 5 cm in length. The outer ring is made of 16 uniformly magnetized blocks assembled as a Halbach dipole and the inner ring has 32 blocks oriented in a similar fashion so as to generate a quadrupole field. The resultant superimposed field is an offset quadrupole field which allows us to center the field on the high-energy beam in the interaction region of the PEP-II B-factory. The dipole blocks are glued to the inside surface of an outer support collar and the quadrupole blocks are held in a fixture that allows radial adjustment of the blocks prior to potting the entire assembly with epoxy. An extensive computer model of the magnet has been made and from this model we developed a tuning algorithm that allowed us to greatly reduce the n=3 17 harmonics of the magnet.

  8. The HELIOS silicon detector array

    NASA Astrophysics Data System (ADS)

    Marley, S. T.

    2008-10-01

    A prototype detector array has been constructed for use in the Helical Orbit Spectrometer (HELIOS) at the ATLAS facility at Argonne National Laboratory. HELIOS is a high-resolution spectrometer for use in studying reactions in inverse kinematics on hydrogen or helium targets. HELIOS consists of a large bore, 3T superconducting solenoid oriented with the magnetic and beam axes aligned. The detector array is comprised of four modules each with six 1.2 x 5.6cm position sensitive silicon detectors. On each module, the detectors were affixed with conductive epoxy and wire bonded to custom made multi-layer printed circuit boards. To keep the radial extent of the detectors to a minimum, the modules were assembled on a hollow 1.6 x 1.6 x 68.8 cm aluminum rail centered on the beam axis located upstream from the target. To characterize the timing, position, and energy resolutions, the detectors were evaluated at the Western Michigan University Accelerator Laboratory using elastic proton-proton scattering. The construction, assembly and preliminary testing of the array will be discussed.

  9. Microshutter Arrays for James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Li, Mary J.; Acuna, Nadine; Beamesderfer, Michael; Ewin, Audrey; Fettig, Rainer; Franz, Dave; Hess, Larry; Hu, Ron; Kelly, Dan; King, Todd

    2004-01-01

    Two-dimensional MEMS microshutter arrays are being developed at NASA Goddard Space Flight Center for use in the near-infrared region on the James Webb Space Telescope (JWST). The microshutter arrays are designed for the selective transmission of light with high efficiency and high contrast. The JWST environment requires cryogenic operation at 35K. Microshutter arrays are fabricated out of silicon-oxide-insulated (SOI) silicon wafers. Arrays are close-packed silicon nitride membranes with a pixel size of 100x200 p. Individual shutters are patterned with a torsion flexure permitting shutters to open 90 degrees with a minimized mechanical stress concentration. The mechanical shutter arrays are fabricated using MEMS technologies. The processing includes a multi- layer metal deposition and patterning of shutter electrodes and magnetic pads, reactive ion etching (NE) of the front side to form shutters out of the nitride membrane, an anisotropic back-etch for wafer thinning, followed by a deep RIE (DRIE) back-etch down to the nitride shutter membrane to form W e s and relieve shutters from the silicon substrate. An additional metal deposition and patterning is used to form back electrodes. Shutters are actuated using a magnetic force and latched using an electrostatic force. . . . KEYWORDS: microshutter, MEMS, RIE, DRIE, micro-optics, near inbred, space telescope

  10. Programmable Aperture with MEMS Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Moseley, Samuel; Li, Mary; Kutyrev, Alexander; Kletetschka, Gunther; Fettig, Rainer

    2011-01-01

    A microshutter array (MSA) has been developed for use as an aperture array for multi-object selections in James Webb Space Telescope (JWST) technology. Light shields, molybdenum nitride (MoN) coating on shutters, and aluminum/aluminum oxide coatings on interior walls are put on each shutter for light leak prevention, and to enhance optical contrast. Individual shutters are patterned with a torsion flexure that permits shutters to open 90 deg. with a minimized mechanical stress concentration. The shutters are actuated magnetically, latched, and addressed electrostatically. Also, micromechanical features are tailored onto individual shutters to prevent stiction. An individual shutter consists of a torsion hinge, a shutter blade, a front electrode that is coated on the shutter blade, a backside electrode that is coated on the interior walls, and a magnetic cobalt-iron coating. The magnetic coating is patterned into stripes on microshutters so that shutters can respond to an external magnetic field for the magnetic actuation. A set of column electrodes is placed on top of shutters, and a set of row electrodes on sidewalls is underneath the shutters so that they can be electrostatically latched open. A linear permanent magnet is aligned with the shutter rows and is positioned above a flipped upside-down array, and sweeps across the array in a direction parallel to shutter columns. As the magnet sweeps across the array, sequential rows of shutters are rotated from their natural horizontal orientation to a vertical open position, where they approach vertical electrodes on the sidewalls. When the electrodes are biased with a sufficient electrostatic force to overcome the mechanical restoring force of torsion bars, shutters remain latched to vertical electrodes in their open state. When the bias is removed, or is insufficient, the shutters return to their horizontal, closed positions. To release a shutter, both the electrode on the shutter and the one on the back wall where the shutter sits are grounded. The shutters with one or both ungrounded electrodes are held open. Sub-micron bumps underneath light shields and silicon ribs on back walls are the two features to prevent stiction. These features ensure that the microshutter array functions properly in mechanical motions. The MSA technology can be used primarily in multi-object imaging and spectroscopy, photomask generation, light switches, and in the stepper equipment used to make integrated circuits and MEMS (microelectromechanical systems) devices.

  11. Superconducting Bolometer Array Architectures

    NASA Technical Reports Server (NTRS)

    Benford, Dominic; Chervenak, Jay; Irwin, Kent; Moseley, S. Harvey; Shafer, Rick; Staguhn, Johannes; Wollack, Ed; Oegerle, William (Technical Monitor)

    2002-01-01

    The next generation of far-infrared and submillimeter instruments require large arrays of detectors containing thousands of elements. These arrays will necessarily be multiplexed, and superconducting bolometer arrays are the most promising present prospect for these detectors. We discuss our current research into superconducting bolometer array technologies, which has recently resulted in the first multiplexed detections of submillimeter light and the first multiplexed astronomical observations. Prototype arrays containing 512 pixels are in production using the Pop-Up Detector (PUD) architecture, which can be extended easily to 1000 pixel arrays. Planar arrays of close-packed bolometers are being developed for the GBT (Green Bank Telescope) and for future space missions. For certain applications, such as a slewed far-infrared sky survey, feedhorncoupling of a large sparsely-filled array of bolometers is desirable, and is being developed using photolithographic feedhorn arrays. Individual detectors have achieved a Noise Equivalent Power (NEP) of -10(exp 17) W/square root of Hz at 300mK, but several orders of magnitude improvement are required and can be reached with existing technology. The testing of such ultralow-background detectors will prove difficult, as this requires optical loading of below IfW. Antenna-coupled bolometer designs have advantages for large format array designs at low powers due to their mode selectivity.

  12. Magnetic Graphene Nanohole Superlattices

    E-print Network

    Yu, Decai; Liu, Miao; Liu, Wei; Liu, Feng

    2008-01-01

    We investigate the magnetic properties of nano-holes (NHs) patterned in graphene using first principles calculations. We show that superlattices consisting of a periodic array of NHs form a new family of 2D crystalline "bulk" magnets whose collective magnetic behavior is governed by inter-NH spin-spin interaction. They exhibit long-range magnetic order well above room temperature. Furthermore, magnetic semiconductors can be made by doping magnetic NHs into semiconducting NH superlattices. Our findings offer a new material system for fundamental studies of spin-spin interaction and magnetic ordering in low dimensions, and open up the exciting opportunities of making engineered magnetic materials for storage media and spintronics applications.

  13. Using Simulation to Characterize Silicon Detector Arrays

    NASA Astrophysics Data System (ADS)

    Erikson, L.; Thomas, J. S.; Blackmon, J. C.; Jones, K. L.; Greife, U.; Sarazin, F.; Wousmaa, A.

    2004-11-01

    Some recent proposals to study (d,p) transfer reactions make use of silicon strip detectors to measure the energies of outgoing protons. These measurements can provide valuable insights into nuclear structure relevant for astrophysics and stockpile stewardship. The ORRUBA (Oak Ridge Rutgers Barrel Array) and a proposed combination of magnetic solenoid with silicon detectors can be used to measure neutron transfer reactions in reverse kinematics. This presentation describes efforts at Oak Ridge National Lab to characterize acceptance and resolution of these two arrays via GEANT4 Monte Carlo simulations.

  14. Sorting white blood cells in microfabricated arrays

    NASA Astrophysics Data System (ADS)

    Castelino, Judith Andrea Rose

    Fractionating white cells in microfabricated arrays presents the potential for detecting cells with abnormal adhesive or deformation properties. A possible application is separating nucleated fetal red blood cells from maternal blood. Since fetal cells are nucleated, it is possible to extract genetic information about the fetus from them. Separating fetal cells from maternal blood would provide a low cost noninvasive prenatal diagnosis for genetic defects, which is not currently available. We present results showing that fetal cells penetrate further into our microfabricated arrays than adult cells, and that it is possible to enrich the fetal cell fraction using the arrays. We discuss modifications to the array which would result in further enrichment. Fetal cells are less adhesive and more deformable than adult white cells. To determine which properties limit penetration, we compared the penetration of granulocytes and lymphocytes in arrays with different etch depths, constriction size, constriction frequency, and with different amounts of metabolic activity. The penetration of lymphocytes and granulocytes into constrained and unconstrained arrays differed qualitatively. In constrained arrays, the cells were activated by repeated shearing, and the number of cells stuck as a function of distance fell superexponentially. In unconstrained arrays the number of cells stuck fell slower than an exponential. We attribute this result to different subpopulations of cells with different sticking parameters. We determined that penetration in unconstrained arrays was limited by metabolic processes, and that when metabolic activity was reduced penetration was limited by deformability. Fetal cells also contain a different form of hemoglobin with a higher oxygen affinity than adult hemoglobin. Deoxygenated cells are paramagnetic and are attracted to high magnetic field gradients. We describe a device which can separate cells using 10 ?m magnetic wires to deflect the paramagnetic cells. We present preliminary results from a test system that separates paramagnetic beads from latex beads. The separation is limited by our ability to produce the high field gradients which are necessary to separate cells according to their hemoglobin content, and we present estimates of the magnetic gradients we achieved.

  15. Testing Microshutter Arrays Using Commercial FPGA Hardware

    NASA Technical Reports Server (NTRS)

    Rapchun, David

    2008-01-01

    NASA is developing micro-shutter arrays for the Near Infrared Spectrometer (NIRSpec) instrument on the James Webb Space Telescope (JWST). These micro-shutter arrays allow NIRspec to do Multi Object Spectroscopy, a key part of the mission. Each array consists of 62414 individual 100 x 200 micron shutters. These shutters are magnetically opened and held electrostatically. Individual shutters are then programmatically closed using a simple row/column addressing technique. A common approach to provide these data/clock patterns is to use a Field Programmable Gate Array (FPGA). Such devices require complex VHSIC Hardware Description Language (VHDL) programming and custom electronic hardware. Due to JWST's rapid schedule on the development of the micro-shutters, rapid changes were required to the FPGA code to facilitate new approaches being discovered to optimize the array performance. Such rapid changes simply could not be made using conventional VHDL programming. Subsequently, National Instruments introduced an FPGA product that could be programmed through a Labview interface. Because Labview programming is considerably easier than VHDL programming, this method was adopted and brought success. The software/hardware allowed the rapid change the FPGA code and timely results of new micro-shutter array performance data. As a result, numerous labor hours and money to the project were conserved.

  16. Carbon nanotube nanoelectrode arrays

    DOEpatents

    Ren, Zhifeng (Newton, MA); Lin, Yuehe (Richland, WA); Yantasee, Wassana (Richland, WA); Liu, Guodong (Fargo, ND); Lu, Fang (Burlingame, CA); Tu, Yi (Camarillo, CA)

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  17. Focal plane array with modular pixel array components for scalability

    SciTech Connect

    Kay, Randolph R; Campbell, David V; Shinde, Subhash L; Rienstra, Jeffrey L; Serkland, Darwin K; Holmes, Michael L

    2014-12-09

    A modular, scalable focal plane array is provided as an array of integrated circuit dice, wherein each die includes a given amount of modular pixel array circuitry. The array of dice effectively multiplies the amount of modular pixel array circuitry to produce a larger pixel array without increasing die size. Desired pixel pitch across the enlarged pixel array is preserved by forming die stacks with each pixel array circuitry die stacked on a separate die that contains the corresponding signal processing circuitry. Techniques for die stack interconnections and die stack placement are implemented to ensure that the desired pixel pitch is preserved across the enlarged pixel array.

  18. Integrated avalanche photodiode arrays

    DOEpatents

    Harmon, Eric S.

    2015-07-07

    The present disclosure includes devices for detecting photons, including avalanche photon detectors, arrays of such detectors, and circuits including such arrays. In some aspects, the detectors and arrays include a virtual beveled edge mesa structure surrounded by resistive material damaged by ion implantation and having side wall profiles that taper inwardly towards the top of the mesa structures, or towards the direction from which the ion implantation occurred. Other aspects are directed to masking and multiple implantation and/or annealing steps. Furthermore, methods for fabricating and using such devices, circuits and arrays are disclosed.

  19. Modifying Wire Array Z-pinch Ablation Structure and Implosion Dynamics Using Coiled Arrays

    SciTech Connect

    Hall, Gareth N.; Bland, Simon N.; Lebedev, Sergey V.; Chittenden, Jeremy P.; Palmer, James B. A.; Suzuki-Vidal, Francisco A.; Swadling, George F.; Niasse, Nicolas; Knapp, P. F.; Blesener, I. C.; McBride, R. D.; Chalenski, D. A.; Bell, K. S.; Greenly, J. B.; Blanchard, T.; Wilhelm, H.; Hammer, D. A.; Kusse, B. R.; Bott, Simon C.

    2009-01-21

    Coiled arrays, a cylindrical array in which each wire is formed into a helix, suppress the modulation of ablation at the fundamental wavelength. Outside the vicinity of the wire cores, ablation flow from coiled arrays is modulated at the coil wavelength and has a 2-stream structure in the r,{theta} plane. Within the vicinity of the helical wires, ablation is concentrated at positions with the greatest azimuthal displacement and plasma is axially transported from these positions such that the streams become aligned with sections of the coil furthest from the array axis. The GORGON MHD code accurately reproduces this observed ablation structure, which can be understood in terms of JxB forces that result from the interaction of the global magnetic field with a helical current path as well as additional current paths suggested by the simulations. With this ability to control where ablation streamers occur, large wavelength coils were constructed such that the breaks that form in the wires had sufficient axial separation to prevent perturbations in the implosion sheath from merging. This produces a new mode of implosion in which the global instability can be controlled and perturbations correlated between all wires in an array. For large wavelength 8-wire coiled arrays, this produced a dramatic increase in x-ray power, equalling that of a 32-wire straight array. These experiments were carried out on the MAGPIE generator (1 MA, 240 ns) at Imperial College, and the COBRA generator (1 MA, 100 ns) at Cornell University.

  20. A Compact, Modular Superconducting Bolometer Array Package

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.

    2008-01-01

    We have designed a detector package to house a superconducting bolometer array, SQUID multiplexers, bias and integration circuitry, optical filtering, electrical connectors, and thermal/mechanical interfaces. This package has been used successfully in the GISMO 2mm camera, a 128-pixel camera operating at a base temperature of 270mK. Operation at lower temperatures is allowed by providing direct heat sinking to the SQUIDS and bias resistors, which generate the bulk of the dissipation in the package. Standard electrical connectors provide reliable contact while enabling quick installation and removal of the package. Careful design has gone into the compensation for differing thermal expansions, the need for heat sinking of the bolometer array, and the placement of magnetic shielding in critical areas. In this presentation, we detail the design and performance of this detector package and describe its scalability to 1280- pixel arrays in the near future.

  1. Versatile microfluidic droplets array for bioanalysis.

    PubMed

    Hu, Shan-Wen; Xu, Bi-Yi; Ye, Wei-Ke; Xia, Xing-Hua; Chen, Hong-Yuan; Xu, Jing-Juan

    2015-01-14

    We propose a novel method to obtain versatile droplets arrays on a regional hydrophilic chip that is fabricated by PDMS soft lithography and regional plasma treatment. It enables rapid liquid dispensation and droplets array formation just making the chip surface in contact with solution. By combining this chip with a special Christmas Tree structure, the droplets array with concentrations in gradient is generated. It possesses the greatly improved performance of convenience and versatility in bioscreening and biosensing. For example, high throughput condition screening of toxic tests of CdSe quantum dots on HL-60 cells are conducted and cell death rates are successfully counted quickly and efficiently. Furthermore, a rapid biosensing approach for cancer biomarkers carcinoma embryonic antigen (CEA) is developed via magnetic beads (MBs)-based sandwich immunoassay methods. PMID:25525675

  2. Solar array cost reduction

    NASA Technical Reports Server (NTRS)

    Bernatowicz, D. T.

    1972-01-01

    A brief description is given of the cost of solar power systems over the last decade and means by which cost reductions may be achieved in the future. Costs were broken down into nonrecurring and recurring costs for solar array, battery, and power conditioning. Correlation of costs with power were poor; however, costs correlated reasonably well with the array area.

  3. Array for detecting microbes

    DOEpatents

    Andersen, Gary L.; DeSantis, Todd D.

    2014-07-08

    The present embodiments relate to an array system for detecting and identifying biomolecules and organisms. More specifically, the present embodiments relate to an array system comprising a microarray configured to simultaneously detect a plurality of organisms in a sample at a high confidence level.

  4. ISS Solar Array Management

    NASA Technical Reports Server (NTRS)

    Williams, James P.; Martin, Keith D.; Thomas, Justin R.; Caro, Samuel

    2010-01-01

    The International Space Station (ISS) Solar Array Management (SAM) software toolset provides the capabilities necessary to operate a spacecraft with complex solar array constraints. It monitors spacecraft telemetry and provides interpretations of solar array constraint data in an intuitive manner. The toolset provides extensive situational awareness to ensure mission success by analyzing power generation needs, array motion constraints, and structural loading situations. The software suite consists of several components including samCS (constraint set selector), samShadyTimers (array shadowing timers), samWin (visualization GUI), samLock (array motion constraint computation), and samJet (attitude control system configuration selector). It provides high availability and uptime for extended and continuous mission support. It is able to support two-degrees-of-freedom (DOF) array positioning and supports up to ten simultaneous constraints with intuitive 1D and 2D decision support visualizations of constraint data. Display synchronization is enabled across a networked control center and multiple methods for constraint data interpolation are supported. Use of this software toolset increases flight safety, reduces mission support effort, optimizes solar array operation for achieving mission goals, and has run for weeks at a time without issues. The SAM toolset is currently used in ISS real-time mission operations.

  5. Paramagnetic Meissner effect in Pb nanowire arrays

    NASA Astrophysics Data System (ADS)

    Yuan, Shijun; Ren, Liyuan; Li, Fashen

    2004-03-01

    The Meissner effect is one of the basic properties of superconductors. Recently, many experiments have shown that small-size superconducting samples may be paramagnetic in a weak magnetic field, the so-called paramagnetic Meissner effect (PME). In this paper, we report the observation of the PME in Pb nanowire arrays. We find that the signal of the PME increases with decreasing diameter of the nanowires. In a lead nanowire array of diameter about 40 nm, the oscillations of the PME are observed in field-cooling temperature-dependent magnetization M(T) curves. Surprisingly, the PME was also observed in zero-field-cooling M(T) curves. We conclude that the PME is in association with the metastable states in superconductors. The PME plays an important role only if the proportion of surface superconductors is sufficiently large.

  6. Size Reduction Techniques for Large Scale Permanent Magnet Generators in Wind Turbines

    NASA Astrophysics Data System (ADS)

    Khazdozian, Helena; Hadimani, Ravi; Jiles, David

    2015-03-01

    Increased wind penetration is necessary to reduce U.S. dependence on fossil fuels, combat climate change and increase national energy security. The U.S Department of Energy has recommended large scale and offshore wind turbines to achieve 20% wind electricity generation by 2030. Currently, geared doubly-fed induction generators (DFIGs) are typically employed in the drivetrain for conversion of mechanical to electrical energy. Yet, gearboxes account for the greatest downtime of wind turbines, decreasing reliability and contributing to loss of profit. Direct drive permanent magnet generators (PMGs) offer a reliable alternative to DFIGs by eliminating the gearbox. However, PMGs scale up in size and weight much more rapidly than DFIGs as rated power is increased, presenting significant challenges for large scale wind turbine application. Thus, size reduction techniques are needed for viability of PMGs in large scale wind turbines. Two size reduction techniques are presented. It is demonstrated that 25% size reduction of a 10MW PMG is possible with a high remanence theoretical permanent magnet. Additionally, the use of a Halbach cylinder in an outer rotor PMG is investigated to focus magnetic flux over the rotor surface in order to increase torque. This work was supported by the National Science Foundation under Grant No. 1069283 and a Barbara and James Palmer Endowment at Iowa State University.

  7. Multibeam Phased Array Antennas

    NASA Technical Reports Server (NTRS)

    Popovic, Zoya; Romisch, Stefania; Rondineau, Sebastien

    2004-01-01

    In this study, a new architecture for Ka-band multi-beam arrays was developed and demonstrated experimentally. The goal of the investigation was to demonstrate a new architecture that has the potential of reducing the cost as compared to standard expensive phased array technology. The goals of this specific part of the project, as stated in the yearly statement of work in the original proposal are: 1. Investigate bounds on performance of multi-beam lens arrays in terms of beamwidths, volume (size), isolation between beams, number of simultaneous beams, etc. 2. Design a small-scale array to demonstrate the principle. The array will be designed for operation around 3OGHz (Ka-band), with two 10-degree beamwidth beams. 3. Investigate most appropriate way to accomplish fine-tuning of the beam pointing within 5 degrees around the main beam pointing angle.

  8. High density pixel array

    NASA Technical Reports Server (NTRS)

    Wiener-Avnear, Eliezer (Inventor); McFall, James Earl (Inventor)

    2004-01-01

    A pixel array device is fabricated by a laser micro-milling method under strict process control conditions. The device has an array of pixels bonded together with an adhesive filling the grooves between adjacent pixels. The array is fabricated by moving a substrate relative to a laser beam of predetermined intensity at a controlled, constant velocity along a predetermined path defining a set of grooves between adjacent pixels so that a predetermined laser flux per unit area is applied to the material, and repeating the movement for a plurality of passes of the laser beam until the grooves are ablated to a desired depth. The substrate is of an ultrasonic transducer material in one example for fabrication of a 2D ultrasonic phase array transducer. A substrate of phosphor material is used to fabricate an X-ray focal plane array detector.

  9. Microfabricated ion trap array

    DOEpatents

    Blain, Matthew G. (Albuquerque, NM); Fleming, James G. (Albuquerque, NM)

    2006-12-26

    A microfabricated ion trap array, comprising a plurality of ion traps having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale ion traps to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The reduced electrode voltage enables integration of the microfabricated ion trap array with on-chip circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of the microfabricated ion trap array can be realized in truly field portable, handheld microanalysis systems.

  10. Micromachined electrode array

    DOEpatents

    Okandan, Murat (Edgewood, NM); Wessendorf, Kurt O. (Albuquerque, NM)

    2007-12-11

    An electrode array is disclosed which has applications for neural stimulation and sensing. The electrode array, in certain embodiments, can include a plurality of electrodes each of which is flexibly attached to a common substrate using a plurality of springs to allow the electrodes to move independently. In other embodiments of the electrode array, the electrodes can be fixed to the substrate. The electrode array can be formed from a combination of bulk and surface micromachining, and can include electrode tips having an electroplated metal (e.g. platinum, iridium, gold or titanium) or a metal oxide (e.g. iridium oxide) for biocompatibility. The electrode array can be used to form a part of a neural prosthesis, and is particularly well adapted for use in an implantable retinal prosthesis.

  11. Fabrication and anomalous transport properties of an Sb/Bi segment nanowire nanojunction array.

    PubMed

    Zhang, Y; Li, L; Li, G H

    2005-10-01

    An Sb (40 nm diameter)-Bi (30 nm diameter) segment nanowire nanojunction array was fabricated by pulsed electrodeposition. Electric transport properties of the junction array were studied down to 4.2 K and in magnetic fields up to 5 T. Temperature versus resistance measurements exhibited a resistive switching behaviour at zero magnetic field, but this feature disappeared with increasing magnetic field. These features might find application in sub-100 nm metal-semiconductor field effect transistors. PMID:20817978

  12. Polymeric microbead arrays for microfluidic applications

    NASA Astrophysics Data System (ADS)

    Thompson, Jason A.; Du, Xiaoguang; Grogan, Joseph M.; Schrlau, Michael G.; Bau, Haim H.

    2010-11-01

    Microbeads offer a convenient and efficient means of immobilizing biomolecules and capturing target molecules of interest in microfluidic immunoassay devices. In this study, hot embossing is used to form wells enabling the direct incorporation of a microbead array in a plastic substrate. We demonstrate two techniques to populate the well array with beads. In the first case, encoded beads with various functionalizations are distributed randomly among the wells and their position is registered by reading their encoding. Alternatively, beads are controllably placed at predetermined positions and decoding is not required. The random placement technique is demonstrated with two functionalized bead types that are distributed among the wells and then decoded to register their locations. The alternative, deliberate placement technique is demonstrated by controllably placing magnetic beads at selected locations in the array using a magnetic probe. As a proof of concept to illustrate the biosensing capability of the randomly assembled array, an on-chip, bead-based immunoassay is employed to detect the inflammatory protein Interleukin-8. The principle of the assay, however, can be extended to detect multiple targets simultaneously. Our method eliminates the need to interface silicon components with plastic devices to form microarrays containing individually addressable beads. This has the potential to reduce the cost and complexity of lab-on-chip devices for medical diagnosis, food and water quality inspection, and environmental monitoring.

  13. SERS based immuno-microwell arrays for multiplexed detection of foodborne pathogenic bacteria

    NASA Astrophysics Data System (ADS)

    Sun, Jian; Hankus, Mikella E.; Cullum, Brian M.

    2009-05-01

    A novel surface enhanced Raman scattering (SERS)-based immuno-microwell array has been developed for multiplexed detection of foodborne pathogenic bacteria. The immuno-microwell array was prepared by immobilizing the optical addressable immunomagnetic beads (IMB) into the microwell array on one end of a fiber optic bundle. The IMBs, magnetic beads coated with specific antibody to specific bacteria, were used for immunomagnetic separation (IMS) of corresponding bacteria. The magnetic separation by the homemade magnetic separation system was evaluated in terms of the influences of several important parameters including the beads concentration, the sample volume and the separation time. IMS separation efficiency of the model bacteria E.coli O157:H7 was 63% in 3 minutes. The microwell array was fabricated on hydrofluoric acid etched end of a fiber optic bundle containing 30,000 fiber elements. After being coated with silver, the microwell array was used as a uniform SERS substrate with the relative standard deviation of the SERS enhancement across the microwell array < 2% and the enhancement factor as high as 2.18 x 107. The antibody modified microwell array was prepared for bacteria immobilization into the microwell array, which was characterized by a sandwich immunoassay. To demonstrate the potential of multiplexed SERS detection with the immuno-microwell array, the SERS spectra of different Raman dye labeled magnetic beads as well as mixtures were measured on the mircrowell array. In bead mixture, different beads were identified by the characteristic SERS bands of the corresponding Raman label.

  14. Tunable Magnetic Properties of Heterogeneous Nanobrush: From Nanowire to Nanofilm

    PubMed Central

    2010-01-01

    With a bottom-up assemble technology, heterogeneous magnetic nanobrushes, consisting of Co nanowire arrays and ferromagnetic Fe70Co30 nanofilm, have been fabricated using an anodic aluminum oxide template method combining with sputtering technology. Magnetic measurement suggests that the magnetic anisotropy of nanobrush depends on the thickness of Fe70Co30 layer, and its total anisotropy originates from the competition between the shape anisotropy of nanowire arrays and nanofilm. Micromagnetic simulation result indicates that the switching field of nanobrush is 1900 Oe, while that of nanowire array is 2700 Oe. These suggest that the nanobrush film can promote the magnetization reversal processes of nanowire arrays in nanobrush. PMID:20672098

  15. Assembly of ordered microsphere arrays: Platforms for microarrays

    NASA Astrophysics Data System (ADS)

    Xu, Wanling

    Microarrays are powerful tools in gene expression assessment, protein profiling, and protein function screening, as well as cell and tissue analysis. With thousands of small array spots assembled in an ordered array, these small devices makes it possible to screen for multiple targets in a fast, parallel, high-throughput manner. The well-developed technology of DNA microarrays, also called DNA chips, has proved successful in all kinds of biological experiments, including the human genome-sequencing project. The development of protein arrays has lagged behind that of DNA arrays mainly because of the greater complexity of proteins. Some parts of the microarray technology can be transplanted into the realm of protein arrays, while others cannot. The challenges from the complexity of protein targets demand more robust and powerful devices. Traditional planar arrays, in which proteins bind directly to a planar surface, have a drawback in that some proteins will be denatured or cluster together after immobilization. Microsphere-based microarrays represent a more advanced strategy. The functional proteins are first attached to microspheres; these microspheres are then immobilized in arrays on a planar surface. In this dissertation, two approaches to assembling arrays of microspheres will be discussed. The hydrodynamic approach uses surface micromachining and Deep Reactive Ion Etching techniques to form an array of channels through a silicon wafer. By drawing fluid containing the microspheres through the channels they become trapped in the channels and thereby immobilized. In the magnetic approach, permalloy films are deposited on a silicon substrate and subsequently patterned to form magnetic attachment sites. An external magnetic field is then applied and the magnetic microspheres then assemble on these sites. Both devices are able to immobilize microspheres in an ordered array, as opposed to coarsely grouping them in array spots. The assembled arrays are robust in that they ensure a resolution rate of almost 100%. In addition, different patterns of array spots with various spacings and diameters can be fabricated to satisfy different requirements. Moreover, the devices are easy to clean and reuse, and the experimental set-ups are relatively simple and portable. All these features make them good platforms for all kinds of microarrays.

  16. Compound semiconductor SPAD arrays

    NASA Astrophysics Data System (ADS)

    Harmon, Eric S.; Naydenkov, Mikhail; Hyland, James T.

    2013-06-01

    Single photon avalanche diodes (SPADs) are revolutionizing ultra-sensitive photodetection applications, providing single photon sensitivity, high quantum efficiency and low dark noise at or near room temperature. When aggregated into arrays, these devices have demonstrated the ability to operate as photon number resolving detectors with wide dynamic range, or as single-photon imaging detectors. SPAD array performance has reached a point where replacing vacuum tube based MCP and PMT photodetectors for most applications is inevitable. Compound semiconductor SPAD arrays offer the unique proposition to tailor performance to match application specific wavelength, speed and radiation hardness requirements. We present a theoretical framework describing performance limits to compound semiconductor SPAD arrays and our latest experimental results detailing the performance of GaAs SPAD arrays. These devices achieve nanosecond rise and fall times, excellent photon number resolving capability, and low dark count rates. Single photon number resolving is demonstrated with 4% single photon detection efficiency at room temperature with dark count rates below 7 Mcps/mm2. Compound semiconductor SPAD arrays have the opportunity to provide orders of magnitude improvement in dark count rate and radiation hardness over silicon SPAD arrays, as well as the ability to detect wavelengths where silicon is blind.

  17. BIG KARL and COSY: Examples for high performance magnet design taught by {open_quotes}Papa Klaus{close_quotes}

    SciTech Connect

    Bechtstedt, U.; Hacker, U.; Maier, R.; Martin, S.; Berg, G.P.A.; Hardt, A.; Huerlimann, W.; Meissburger, J.; Roemer, J.G.M.

    1995-02-01

    The past decades have seen a tremendous development in nuclear, middle, and high energy physics. This advance was in a great part promoted by the availability of newer and more powerful instruments. Over time, these instruments grew in size as well as in sophistication and precision. Nearly all these devices had one fundamental thing in common - magnetic fields produced with currents and iron. The precision demanded by the new experiments and machines did bring the magnet technology to new frontiers requiring the utmost in the accuracy of magnetic fields. The complex properties of the iron challenged innumerable physicists in the attempt to force the magnetic fields into the desired shape. Experience and analytical insight were the pillars for coping with those problems and only few mastered the skills and were in addition able to communicate their intricate knowledge. It was a fortuitous situation that the authors got to know Klaus Halbach who belonged to those few and who shared his knowledge contributing thus largely to the successful completion of two large instruments that were built at the Forschungszentrum Juelich, KFA, for nuclear and middle energy physics. In one case the efforts went to the large spectrometer named BIG KARL whose design phase started in the early 70`s. In the second case the work started in the early 80`s with the task to build a high precision 2.5 GeV proton accelerator for cooled stored and extracted beams known as COSY-Juelich.

  18. Levitated Duct Fan (LDF) Aircraft Auxiliary Generator

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Emerson, Dawn C.; Gallo, Christopher A.; Thompson, William K.

    2011-01-01

    This generator concept includes a novel stator and rotor architecture made from composite material with blades attached to the outer rotating shell of a ducted fan drum rotor, a non-contact support system between the stator and rotor using magnetic fields to provide levitation, and an integrated electromagnetic generation system. The magnetic suspension between the rotor and the stator suspends and supports the rotor within the stator housing using permanent magnets attached to the outer circumference of the drum rotor and passive levitation coils in the stator shell. The magnets are arranged in a Halbach array configuration.

  19. Arrays of Metal Nanostructures Produced by Focussed Ion Beam

    NASA Astrophysics Data System (ADS)

    Luches, P.; di Bona, A.; Contri, S. F.; Gazzadi, G. C.; Vavassori, P.; Albertini, F.; Casoli, F.; Nasi, L.; Fabbrici, S.; Valeri, S.

    2007-12-01

    We present a study of the magnetic properties of arrays of nanostructures produced in a focussed ion beam-scanning electron microscope dual beam system. The single magnetic units have been isolated either by direct removal of parts of the metallic film or by local modification of the film magnetic properties. The final quality of the shape and the residual damage strictly depend on beam parameters (spot size and pixel dwell time) and on the swelling properties of the patterned materials. On square Fe(001) elements with a well-defined intrinsic (magnetocristalline) and shape- and size- induced (shape plus configurational) anisotropy we show that the overall magnetic anisotropy is not a mere superposition of the individual contributions. We also demonstrate that with ion irradiation doses below the milling threshold L10 FePt films with perpendicular magnetic anisotropy undergo a transition from the magnetically hard L10 phase to the magnetically soft A1 phase leading to an out-of-plane to in-plane spin reorientation. The magnetic properties of the planar arrays obtained by local modification of the film are compared to arrays of sculpted structures of the same material.

  20. MEMS Microshutter Arrays for James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Li, Mary J.; Beamesderfer, Michael; Babu, Sachi; Bajikar, Sateesh; Ewin, Audrey; Franz, Dave; Hess, Larry; Hu, Ron; Jhabvala, Murzy; Kelly, Dan; King, Todd; Kletetschkar, Gunther; Kutyrev, Alexander; Lynch, Barney; Moseley, Harvey; Mott, Brent; Oh, Lance; Rapchum, Dave; Ray, Chris; Sappington, Carol; Silverberg, Robert; Smith, Wayne; Snodgrass, Steve; Steptoe-Jackson, Rosalind; Valeriano

    2006-01-01

    MEMS microshutter arrays are being developed at NASA Goddard Space Flight Center for use as an aperture array for a Near-Infrared Spectrometer (NirSpec). The instruments will be carried on the James Webb Space Telescope (JWST), the next generation of space telescope after Hubble Space Telescope retires. The microshutter arrays are designed for the selective transmission of light with high efficiency and high contrast, Arrays are close-packed silicon nitride membranes with a pixel size of 100x200 microns. Individual shutters are patterned with a torsion flexure permitting shutters to open 90 degrees with a minimized mechanical stress concentration. Light shields are made on to each shutter for light leak prevention so to enhance optical contrast, Shutters are actuated magnetically, latched and addressed electrostatically. The shutter arrays are fabricated using MEMS technologies.

  1. For publication in the Terrestrial, Atmospheric, and Oceanic Sciences, 1999 On two methods using magnetometer-array data for studying

    E-print Network

    Chi, Pi-Jen "Peter"

    magnetometer-array data for studying magnetic pulsations P. J. Chi and C. T. Russell Institute of Geophysics-phase spectrum, ionospheric Hall currents, geomagnetic induction. Abstract Ground magnetometer data have been arrays of magnetometer stations have been established. However, the usage of magnetometer arrays

  2. Parametric array calibration 

    E-print Network

    Wan, Shuang

    2011-01-01

    The subject of this thesis is the development of parametric methods for the calibration of array shape errors. Two physical scenarios are considered, the online calibration (self-calibration) using far-field sources and ...

  3. Intelligent field emission arrays

    E-print Network

    Hong, Ching-yin, 1973-

    2003-01-01

    Field emission arrays (FEAs) have been studied extensively as potential electron sources for a number of vacuum microelectronic device applications. For most applications, temporal current stability and spatial current ...

  4. Arrays in Sisal

    SciTech Connect

    Feo, J.T.

    1990-09-01

    Although Sisal (Streams and Iterations in a Single Assignment Language) is a general-purpose applicative language, its expected program domain is large-scale scientific applications. Since arrays are an indispensable data structure for such applications, the designers of Sisal included arrays and a robust set of array operations in the language definition. In this paper, we review and evaluate those design decisions in light of the first Sisal compilers and runtime systems for shared-memory multiprocessor systems. In general, array intensive applications written in Sisal 1.2 execute as fast as their Fortran equivalents. However, a number of design decisions have hurt expressiveness and performance. We discuss these flaws and describe how the new language definition (Sisal 2.0) corrects them. 14 refs., 2 figs.

  5. Flexible retinal electrode array

    DOEpatents

    Okandan, Murat (Albuquerque, NM); Wessendorf, Kurt O. (Albuquerque, NM); Christenson, Todd R. (Albuquerque, NM)

    2006-10-24

    An electrode array which has applications for neural stimulation and sensing. The electrode array can include a large number of electrodes each of which is flexibly attached to a common substrate using a plurality of springs to allow the electrodes to move independently. The electrode array can be formed from a combination of bulk and surface micromachining, with electrode tips that can include an electroplated metal (e.g. platinum, iridium, gold or titanium) or a metal oxide (e.g. iridium oxide) for biocompatibility. The electrode array can be used to form a part of a neural prosthesis, and is particularly well adapted for use in an implantable retinal prosthesis where the electrodes can be tailored to provide a uniform gentle contact pressure with optional sensing of this contact pressure at one or more of the electrodes.

  6. OncoArray Network

    Cancer.gov

    The overall goal of the OncoArray Network is to gain new insight into the genetic architecture and mechanisms underlying breast, ovarian, prostate, colorectal, and lung cancers. The Network's major aim is to discover new cancer susceptibility variants.

  7. Expandable LED array interconnect

    DOEpatents

    Yuan, Thomas Cheng-Hsin; Keller, Bernd

    2011-03-01

    A light emitting device that can function as an array element in an expandable array of such devices. The light emitting device comprises a substrate that has a top surface and a plurality of edges. Input and output terminals are mounted to the top surface of the substrate. Both terminals comprise a plurality of contact pads disposed proximate to the edges of the substrate, allowing for easy access to both terminals from multiple edges of the substrate. A lighting element is mounted to the top surface of the substrate. The lighting element is connected between the input and output terminals. The contact pads provide multiple access points to the terminals which allow for greater flexibility in design when the devices are used as array elements in an expandable array.

  8. Full light absorption in single arrays of spherical nanoparticles

    E-print Network

    Ra'di, Y; Kosulnikov, S U; Omelyanovich, M M; Morits, D; Osipov, A V; Simovski, C R; Tretyakov, S A

    2015-01-01

    In this paper we show that arrays of core-shell nanoparticles function as effective thin absorbers of light. In contrast to known metamaterial absorbers, the introduced absorbers are formed by single planar arrays of spherical inclusions and enable full absorption of light incident on either or both sides of the array. We demonstrate possibilities for realizing different kinds of symmetric absorbers, including resonant, ultra-broadband, angularly selective, and all-angle absorbers. The physical principle behind these designs is explained considering balanced electric and magnetic responses of unit cells. Photovoltaic devices and thermal emitters are the two most important potential applications of the proposed designs.

  9. Random array grid collimator

    DOEpatents

    Fenimore, E.E.

    1980-08-22

    A hexagonally shaped quasi-random no-two-holes touching grid collimator. The quasi-random array grid collimator eliminates contamination from small angle off-axis rays by using a no-two-holes-touching pattern which simultaneously provides for a self-supporting array increasng throughput by elimination of a substrate. The presentation invention also provides maximum throughput using hexagonally shaped holes in a hexagonal lattice pattern for diffraction limited applications. Mosaicking is also disclosed for reducing fabrication effort.

  10. Incipient magnetic rotation? A magnetic dipole band in 104Cd

    E-print Network

    D. G. Jenkins; R. Wadsworth; J. A. Cameron; M. P. Carpenter; C. J. Chiara; R. M. Clark M. Devlin; P. Fallon; D. B. Fossan; I. M. Hibbert; R. V. F. Janssens; V. P. Janzen; R. Kruecken; D. R. LaFosse; G. J. Lane; T. Lauritsen; I. Y. Lee; A. O. Macchiavelli; C. M. Parry; D. G. Sarsantities; J. M. Sears; D. Seweryniak; J. F. Smith; K. Starosta; D. Ward; I. Wiedenhoever; A. N. Wilson; J. N. Wilson; S. Frauendorf

    2000-07-05

    High spin states of the nucleus 104Cd have been studied using the Gammapshere array. The level scheme for 104Cd has been revised and evidence for a structure consisting of magnetic dipole transitions is presented. Shell model calculations, published previously, are invoked to support an interpretation of this structure as an incpient case of magnetic rotation where the transversal magnetic dipole moment is not strong enough to break the signature symmetry.

  11. Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist

    E-print Network

    Murphy, Thomas E.

    Society. S0734-211X 99 06806-7 I. INTRODUCTION Lithographically defined, discrete, magnetic nanoparticles the feasibility of magnetic data storage in dis- crete nanoparticles, as well as to design the optimal nano period array of holes in a positive resist and electrodeposited magnetic nickel and cobalt pillars.4 We

  12. Design and numerical evaluation of a volume coil array for parallel MR imaging at ultrahigh fields

    PubMed Central

    Pang, Yong; Wong, Ernest W.H.; Yu, Baiying

    2014-01-01

    In this work, we propose and investigate a volume coil array design method using different types of birdcage coils for MR imaging. Unlike the conventional radiofrequency (RF) coil arrays of which the array elements are surface coils, the proposed volume coil array consists of a set of independent volume coils including a conventional birdcage coil, a transverse birdcage coil, and a helix birdcage coil. The magnetic fluxes of these three birdcage coils are intrinsically cancelled, yielding a highly decoupled volume coil array. In contrast to conventional non-array type volume coils, the volume coil array would be beneficial in improving MR signal-to-noise ratio (SNR) and also gain the capability of implementing parallel imaging. The volume coil array is evaluated at the ultrahigh field of 7T using FDTD numerical simulations, and the g-factor map at different acceleration rates was also calculated to investigate its parallel imaging performance. PMID:24649435

  13. Magnetic ratchet for biotechnological applications

    NASA Astrophysics Data System (ADS)

    Auge, A.; Weddemann, A.; Wittbracht, F.; Hütten, A.

    2009-05-01

    Transport and separation of magnetic beads are important in "lab on a chip" environments for biotechnological applications. One possible solution for this is the on-off ratchet concept. An asymmetric magnetic potential and Brownian motion of magnetic beads are required for such a ratchet. The asymmetric magnetic potential is achieved by combining an external magnetic field with a spatially periodic array of conducting lines. In this work finite element method simulations are carried out to design this asymmetric potential and to evaluate transport rates. Furthermore, experiments are carried out so as to compare to the simulation results.

  14. Composite arrays of superconducting microstrip line resonators

    SciTech Connect

    Mohebbi, H. R. Miao, G. X.; Benningshof, O. W. B.; Taminiau, I. A. J.; Cory, D. G.

    2014-03-07

    A novel design of an array of half-wave superconductive microstrip resonators is described. The resonator is intended to be useful for electron spin resonance studies of thin film samples at cryogenic temperatures. It achieves a high quality factor, has a small mode-volume, and creates a uniform magnetic field in a plane above the resonator. The device is made of thin film Niobium on sapphire wafer and is tested with a static magnetic field. Variation of Q-factor versus the magnetic field's strength at different temperatures is reported and is in a good agreement with simulation when the loss due to the vortices is included. Also, the power-dependence response of the resonator is shown in experiments and is verified by capturing the nonlinearity associated with the surface impedance of the superconducting film into the circuit model of the device.

  15. Thickness dependence of the levitation performance of double-layer high-temperature superconductor bulks above a magnetic rail

    NASA Astrophysics Data System (ADS)

    Sun, R. X.; Zheng, J.; Liao, X. L.; Che, T.; Gou, Y. F.; He, D. B.; Deng, Z. G.

    2014-10-01

    A double-layer high-temperature superconductor (HTSC) arrangement was proposed and proved to be able to bring improvements to both levitation force and guidance force compared with present single-layer HTSC arrangement. To fully exploit the applied magnetic field by a magnetic rail, the thickness dependence of a double-layer HTSC arrangement on the levitation performance was further investigated in the paper. In this study, the lower-layer bulk was polished step by step to different thicknesses, and the upper-layer bulk with constant thickness was directly superimposed on the lower-layer one. The levitation force and the force relaxation of the double-layer HTSC arrangement were measured above a Halbach magnetic rail. Experimental result shows that a bigger levitation force and a less levitation force decay could be achieved by optimizing the thickness of the lower-layer bulk HTSC. This thickness optimization method could be applied together with former reported double-layer HTSC arrangement method with aligned growth sector boundaries pattern. This series of study on the optimized combination method do bring a significant improvement on the levitation performance of present HTS maglev systems.

  16. Folding of Nucleosome Arrays

    NASA Astrophysics Data System (ADS)

    Howell, Steven; Jimenez-Useche, Isabel; Andresen, Kurt; Yuan, Chongli; Qiu, Xiangyun

    2014-03-01

    Chromatin conformation and dynamics is central to gene functions including packaging, regulation, and repair. At the molecular level, the basic building block of chromatin is a nucleosome core particle (NCP) made of 147 base pairs (bp) of dsDNA wrapped around an octamer of histone proteins. These NCPs are connected by short 10-90 bps of linker DNA as beads on a string. Key factors determining the packaging of NCP arrays to form chromatin include ionic condition, linker DNA length, and epigenetic modifications, especially of the histone tails. We have investigated how the conformations of model tetra-NCP arrays are modulated by these factors using small angle x-ray scattering (SAXS). Here we present recent studies of the effects of ion (KCl and MgCl2), linker length, and histone modification (tail deletions) on NCP arrays. Our SAXS measurement makes it possible to learn about both the global compaction of NCP arrays and local inter-NCP spatial correlations within the same array.

  17. Solar array flight experiment

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Emerging satellite designs require increasing amounts of electrical power to operate spacecraft instruments and to provide environments suitable for human habitation. In the past, electrical power was generated by covering rigid honeycomb panels with solar cells. This technology results in unacceptable weight and volume penalties when large amounts of power are required. To fill the need for large-area, lightweight solar arrays, a fabrication technique in which solar cells are attached to a copper printed circuit laminated to a plastic sheet was developed. The result is a flexible solar array with one-tenth the stowed volume and one-third the weight of comparably sized rigid arrays. An automated welding process developed to attack the cells to the printed circuit guarantees repeatable welds that are more tolerant of severe environments than conventional soldered connections. To demonstrate the flight readiness of this technology, the Solar Array Flight Experiment (SAFE) was developed and flown on the space shuttle Discovery in September 1984. The tests showed the modes and frequencies of the array to be very close to preflight predictions. Structural damping, however, was higher than anticipated. Electrical performance of the active solar panel was also tested. The flight performance and postflight data evaluation are described.

  18. Synthesis Array Topology Metrics in Location Characterization

    NASA Astrophysics Data System (ADS)

    Shanmugha Sundaram, GA

    2015-08-01

    Towards addressing some of the fundamental mysteries in physics at the micro- and macro-cosm level, that form the Key Science Projects (KSPs) for the Square Kilometer Array (SKA; such as Probing the Dark Ages and the Epoch of Reionization in the course of an Evolving Universe; Galaxy Evolution, Cosmology, and Dark Energy; and the Origin and evolution of Cosmic Magnetism) a suitable interfacing of these goals has to be achieved with its optimally designed array configuration, by means of a critical evaluation of the radio imagingcapabilities and metrics. Of the two forerunner sites, viz. Australia and South Africa, where pioneering advancements to state-of-the-art in synthesis array radio astronomy instrumentation are being attempted in the form of pathfinders to the SKA, for its eventual deployment, a diversity of site-dependent topology and design metrics exists. Here, the particular discussion involves those KSPs that relate to galactic morphology and evolution, and explores their suitability as a scientific research goal from the prespective of the location-driven instrument design specification. Relative merits and adaptability with regard to either site shall be presented from invoking well-founded and established array-design and optimization principles designed into a customized software tool.

  19. Pyroelectric detector arrays

    NASA Technical Reports Server (NTRS)

    Fripp, A. L.; Robertson, J. B.; Breckenridge, R. A. (inventors)

    1982-01-01

    A pryoelectric detector array and the method for making it are described. A series of holes formed through a silicon dioxide layer on the surface of a silicon substrate forms the mounting fixture for the pyroelectric detector array. A series of nontouching strips of indium are formed around the holes to make contact with the backside electrodes and form the output terminals for individual detectors. A pyroelectric detector strip with front and back electrodes, respectively, is mounted over the strip. Biasing resistors are formed on the surface of the silicon dioxide layer and connected to the strips. A metallized pad formed on the surface of the layer is connected to each of the biasing resistors and to the film to provide the ground for the pyroelectric detector array.

  20. Pyroelectric detector arrays

    NASA Technical Reports Server (NTRS)

    Fripp, A. L.; Robertson, J. B.; Breckenridge, R. (inventors)

    1982-01-01

    A pyroelectric detector array and the method for using it are described. A series of holes formed through a silicon dioxide layer on the surface of a silicon substrate forms the mounting fixture for the pyroelectric detector array. A series of nontouching strips of indium are formed around the holes to make contact with the backside electrodes and form the output terminals for individual detectors. A pyroelectric detector strip with front and back electrodes, respectively, is mounted over the strips. Biasing resistors are formed on the surface of the silicon dioxide layer and connected to the strips. A metallized pad formed on the surface of layer is connected to each of the biasing resistors and to the film to provide the ground for the pyroelectric detector array.

  1. Interagency Array Study Report

    NASA Technical Reports Server (NTRS)

    Wayland, J. W.; Ruskin, A. M.; Bathker, D. A.; Rydgig, R. C.; Brown, D. W.; Madsen, B. D.; Clauss, R. C.; Levy, G. S.; Kerridge, S. J.; Klein, M. J.

    1983-01-01

    The interagency array study that was convened in early 1982 to determine which of the world's large radio reception facilities might be feasibly and beneficially enlisted to help support the Voyager encounters at Uranus (1986) and Neptune (1989), and also to examine the future for such similar events and options as might appear is discussed. A similar but more specific study of the Parkes Radio Telescope at Uranus Encounter was just then being completed with a strong positive recommendation, and formed the foundation of the broader study. The approach, driving considerations, and outcome of the interagency array study are discussed. The recommendations of the study team concentrated upon the Voyager Encounters are: specifically to develop Parkes for the Uranus Encounter, while pursuing related Advanced Systems development work with the Owens Valley Radio Observatory, and to seek support for the Neptune Encounter from Parkes, the Very Large Array near Socorro, Mexico, and the Japanese institute of Space and Astronautical Sciences 64 meter station.

  2. Supersymmetric laser arrays

    NASA Astrophysics Data System (ADS)

    El-Ganainy, R.; Ge, Li; Khajavikhan, M.; Christodoulides, D. N.

    2015-09-01

    We introduce the concept of supersymmetric laser arrays that consist of a main optical lattice and its superpartner structure, and we investigate the onset of their lasing oscillations. Due to the coupling of the two constituent lattices, their degenerate optical modes form doublets, while the extra mode associated with unbroken supersymmetry forms a singlet state. Singlet lasing can be achieved for a wide range of design parameters, either by introducing stronger loss in the partner lattice or by pumping only the main array. Our findings suggest the possibility of building single-mode, high-power laser arrays and are also important for understanding light transport dynamics in multimode parity-time symmetric photonic structures.

  3. Electrostatically clean solar array

    NASA Technical Reports Server (NTRS)

    Stern, Theodore Garry (Inventor); Krumweide, Duane Eric (Inventor)

    2004-01-01

    Provided are methods of manufacturing an electrostatically clean solar array panel and the products resulting from the practice of these methods. The preferred method uses an array of solar cells, each with a coverglass where the method includes machining apertures into a flat, electrically conductive sheet so that each aperture is aligned with and undersized with respect to its matched coverglass sheet and thereby fashion a front side shield with apertures (FSA). The undersized portion about each aperture of the bottom side of the FSA shield is bonded to the topside portions nearest the edges of each aperture's matched coverglass. Edge clips are attached to the front side aperture shield edges with the edge clips electrically and mechanically connecting the tops of the coverglasses to the solar panel substrate. The FSA shield, edge clips and substrate edges are bonded so as to produce a conductively grounded electrostatically clean solar array panel.

  4. Flux avalanches in superconducting films with periodic arrays of holes.

    SciTech Connect

    Vlasko-Vlasov, V.; Welp, U.; Metlushko, V.; Crabtree, G. W.; Materials Science Division; Inst. of Solid State Physics RAS

    2000-01-01

    The magnetic flux dynamics in Nb films with periodic hole arrays is studied magneto-optically. Flux motion in the shape of microavalanches along {l_brace}100{r_brace} and {l_brace}110{r_brace} directions of the hole lattice is observed. At lower temperatures anisotropic large scale thermo-magnetic avalanches dominate flux entry and exit. At T-T{sub c} critical-state-like field patterns periodically appear at fractions of the matching field.

  5. Permanent Magnet Ecr Plasma Source With Magnetic Field Optimization

    DOEpatents

    Doughty, Frank C. (Plano, TX); Spencer, John E. (Plano, TX)

    2000-12-19

    In a plasma-producing device, an optimized magnet field for electron cyclotron resonance plasma generation is provided by a shaped pole piece. The shaped pole piece adjusts spacing between the magnet and the resonance zone, creates a convex or concave resonance zone, and decreases stray fields between the resonance zone and the workpiece. For a cylindrical permanent magnet, the pole piece includes a disk adjacent the magnet together with an annular cylindrical sidewall structure axially aligned with the magnet and extending from the base around the permanent magnet. The pole piece directs magnetic field lines into the resonance zone, moving the resonance zone further from the face of the magnet. Additional permanent magnets or magnet arrays may be utilized to control field contours on a local scale. Rather than a permeable material, the sidewall structure may be composed of an annular cylindrical magnetic material having a polarity opposite that of the permanent magnet, creating convex regions in the resonance zone. An annular disk-shaped recurve section at the end of the sidewall structure forms magnetic mirrors keeping the plasma off the pole piece. A recurve section composed of magnetic material having a radial polarity forms convex regions and/or magnetic mirrors within the resonance zone.

  6. Solar array subsystems study

    NASA Technical Reports Server (NTRS)

    Richardson, P. W.; Miller, F. Q.; Badgley, M. B.

    1980-01-01

    The effects on life cycle costs of a number of technology areas are examined for a LEO, 500 kW solar array. A baseline system conceptual design is developed and the life cycle costs estimated in detail. The baseline system requirements and design technologies are then varied and their relationships to life cycle costs quantified. For example, the thermal characteristics of the baseline design are determined by the array materials and masses. The thermal characteristics in turn determine configuration, performance and hence life cycle cost.

  7. Array signal processing

    SciTech Connect

    Haykin, S.; Justice, J.H.; Owsley, N.L.; Yen, J.L.; Kak, A.C.

    1985-01-01

    This is the first book to be devoted completely to array signal processing, a subject that has become increasingly important in recent years. The book consists of six chapters. Chapter 1, which is introductory, reviews some basic concepts in wave propagation. The remaining five chapters deal with the theory and applications of array signal processing in (a) exploration seismology, (b) passive sonar, (c) radar, (d) radio astronomy, and (e) tomographic imaging. The various chapters of the book are self-contained. The book is written by a team of five active researchers, who are specialists in the individual fields covered by the pertinent chapters.

  8. Wire Array Photovoltaics

    NASA Astrophysics Data System (ADS)

    Turner-Evans, Dan

    Over the past five years, the cost of solar panels has dropped drastically and, in concert, the number of installed modules has risen exponentially. However, solar electricity is still more than twice as expensive as electricity from a natural gas plant. Fortunately, wire array solar cells have emerged as a promising technology for further lowering the cost of solar. Si wire array solar cells are formed with a unique, low cost growth method and use 100 times less material than conventional Si cells. The wires can be embedded in a transparent, flexible polymer to create a free-standing array that can be rolled up for easy installation in a variety of form factors. Furthermore, by incorporating multijunctions into the wire morphology, higher efficiencies can be achieved while taking advantage of the unique defect relaxation pathways afforded by the 3D wire geometry. The work in this thesis shepherded Si wires from undoped arrays to flexible, functional large area devices and laid the groundwork for multijunction wire array cells. Fabrication techniques were developed to turn intrinsic Si wires into full p-n junctions and the wires were passivated with a-Si:H and a-SiNx:H. Single wire devices yielded open circuit voltages of 600 mV and efficiencies of 9%. The arrays were then embedded in a polymer and contacted with a transparent, flexible, Ni nanoparticle and Ag nanowire top contact. The contact connected >99% of the wires in parallel and yielded flexible, substrate free solar cells featuring hundreds of thousands of wires. Building on the success of the Si wire arrays, GaP was epitaxially grown on the material to create heterostructures for photoelectrochemistry. These cells were limited by low absorption in the GaP due to its indirect bandgap, and poor current collection due to a diffusion length of only 80 nm. However, GaAsP on SiGe offers a superior combination of materials, and wire architectures based on these semiconductors were investigated for multijunction arrays. These devices offer potential efficiencies of 34%, as demonstrated through an analytical model and optoelectronic simulations. SiGe and Ge wires were fabricated via chemical-vapor deposition and reactive ion etching. GaAs was then grown on these substrates at the National Renewable Energy Lab and yielded ns lifetime components, as required for achieving high efficiency devices.

  9. Automated array assembly

    NASA Technical Reports Server (NTRS)

    Williams, B. F.

    1976-01-01

    Manufacturing techniques are evaluated using expenses based on experience and studying basic cost factors for each step to evaluate expenses from a first-principles point of view. A formal cost accounting procedure is developed which is used throughout the study for cost comparisons. The first test of this procedure is a comparison of its predicted costs for array module manufacturing with costs from a study which is based on experience factors. A manufacturing cost estimate for array modules of $10/W is based on present-day manufacturing techniques, expenses, and materials costs.

  10. Soldered solar arrays

    NASA Astrophysics Data System (ADS)

    Allen, H. C.

    1982-06-01

    The ability of soldered interconnects to withstand a combination of long life and severe environmental conditions was investigated. Improvements in joint life from the use of solder mixes appropriate to low temperature conditons were studied. Solder samples were placed in a 150 C oven for 5 weeks (= 12 yr at 80 C, or 24 at 70 C according to Arrhenius's rule). Conventional and high solder melting point array samples underwent 1000 thermal cycles between -186 and 100 C. Results show that conventional and lead rich soldered arrays can survive 10 yr geostationary orbit missions.

  11. Terahertz Magnetic Mirror Realized with Dielectric Resonator Antennas.

    PubMed

    Headland, Daniel; Nirantar, Shruti; Withayachumnankul, Withawat; Gutruf, Philipp; Abbott, Derek; Bhaskaran, Madhu; Fumeaux, Christophe; Sriram, Sharath

    2015-11-01

    Single-crystal silicon is bonded to a metal-coated substrate and etched in order to form an array of microcylinder passive terahertz dielectric resonator antennas (DRAs). The DRAs exhibit a magnetic response, and hence the array behaves as an efficient artificial magnetic conductor (AMC), with potential for terahertz antenna and sensing applications. PMID:26450363

  12. The interaction field in arrays of ferromagnetic barcode nanowires

    NASA Astrophysics Data System (ADS)

    Clime, L.; Zhao, S. Y.; Chen, P.; Normandin, F.; Roberge, H.; Veres, T.

    2007-10-01

    A theoretical model and an experimental approach to the identification of the interaction field in ferromagnetic barcode nanowires are described and applied to electrodeposited Ni/Au cylindrical barcode arrays. Elementary hysteresis loops of individual magnetic segments in these barcode nanowires are considered as superpositions of fully irreversible and locally reversible magnetization processes, whose distributions of switching fields are experimentally identified by first order reversal curve measurements. Non-interacting major hysteresis loops of the arrays are computed as superpositions of several elementary loops by considering the distributions of switching fields as probability density functions. The interaction field is then computed from the condition that the geometric transformation of the experimental major hysteresis loop into the Preisach operative plane be well approximated by this non-interacting hysteresis loop. Experimental interaction field values are compared with those obtained by numerical micromagnetic computations and a very good agreement is obtained on extended Ni/Au barcode arrays. The simple and accurate phenomenological model for the interaction field in multisegmented ferromagnetic nanowire arrays proposed here provides an insight into the morphology of these magnetic nanomaterials, as quantitative information about individual nano-objects may be extracted from macroscopic measurements of their arrays.

  13. Ferromagnetic resonance response of electron-beam patterned arrays of ferromagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Jung, Sukkoo; Watkins, Byron; Feller, Jeffrey; Ketterson, John; Chandrasekhar, Venkat

    2001-03-01

    We report on the fabrication and the dynamic magnetic properties of periodic permalloy dot arrays. Electron-beam lithography and e-gun evaporation have been used to make the arrays with the aspect ratio of 2 (dot diameter : 40 nm, height : 80 nm) and periods of 100 - 200 nm. The magnetic properties of the arrays and their interactions have been investigated by ferromagnetic resonance (FMR), magnetic force microscopy (MFM), and SQUID magnetometry. The measured FMR data show that the position and magnitude of resonant absorption peaks strongly depend on the angle between magnetic field and the lattice structure. The results of dot arrays with various kinds of structural parameters will be presented. Supported by Army Research Office, DAAD19-99-1-0334/P001

  14. Multi-array borehole resistivity and induced polarization method with mathematical inversion of redundant data

    DOEpatents

    Ward, Stanley H. (Salt Lake City, UT)

    1989-01-01

    Multiple arrays of electric or magnetic transmitters and receivers are used in a borehole geophysical procedure to obtain a multiplicity of redundant data suitable for processing into a resistivity or induced polarization model of a subsurface region of the earth.

  15. Automated inspection of surface breaking cracks using GMR sensor arrays

    SciTech Connect

    Pelkner, Matthias; Reimund, Verena; Erthner, Thomas; Panke, Nicolai; Kreutzbruck, Marc

    2014-02-18

    We present a prototype for automated magnetic stray field testing of ferromagnetic roller bearings. For this purpose NDE-adapted GMR sensor arrays (giant magneto resistance) are used for the detection of surface breaking cracks. The sensors are miniaturized down to the lower ?m-regime to achieve adequate spatial resolution. In doing so, sensor arrays with up to 48 elements are used to inspect the bearing surface within a few seconds only. In contrast to magnetic particle inspection (MPI), where the global magnetization requires a further inspection step and succeeding demagnetization, the presented prototype only locally magnetize the surface area in the vicinity of the GMR Sensors. For the local magnetization, the applied sub-surface magnetic field was simulated and proofed for detecting flaws with a depth of a few 10 ?m. By multiplexing the sensor array with an adapted read out electronics we quasi simultaneously detect the normal field component of about 100?m above the surface. The detection of artificial notches with a depth of 40 ?m and more could be resolved with a SNR better than 20 dB. The presented testing facility is fast and provides a step towards automated testing of safety relevant steel components.

  16. Science with the Square Kilometre Array

    NASA Technical Reports Server (NTRS)

    Lazio, Joseph; Huynh, Minh

    2010-01-01

    The Square Kilometre Array (SKA) is the centimeter- and meter-wavelength telescope for the 21st Century. Its Key Science Projects are (a) The end of the Dark Ages, involving searches for an H i signature and the first metalrich systems; (b) Testing theories of gravitation using an array of pulsars to search for gravitational waves and relativistic binaries to probe the strong-field regime; (c) Observations of H i to a redshift z 2 from which to study the evolution of galaxies and dark energy. (d) Astrobiology including planetary formation within protoplanetary disks; and (c) The origin and evolution of cosmic magnetism, both within the Galaxy and in intergalactic space. The SKA will operate over the wavelength range of at least 1.2 cm to 4 m (70 MHz to 25 GHz), providing milliarcsecond resolution at the shortest wavelengths.

  17. The AGATA Demonstrator Array at Laboratori Nazionali di Legnaro: Status of the Project

    SciTech Connect

    Farnea, E.

    2009-08-26

    The AGATA Demonstrator Array is presently under installation at Laboratori Nazionali di Legnaro, Italy, where it will replace the CLARA array at the target position of the PRISMA magnetic spectrometer. In the present contribution, the details of the installation will be reviewed. Preliminary results from the first in-beam commissioning test will be given.

  18. Two-dimensional cyclotron-resonance maser array: Spectral measurements with one and two electron beams

    E-print Network

    Jerby, Eli

    with a single Bloch wave in an artificial lattice. The CRM array has the capability of generating high around 7 GHz in an axial magnetic field of 3 kG. Spectral measurements of the CRM outputs reveal interaction with a single Bloch wave in an artificial lattice. The CRM array has the capability of generating

  19. A superconducting quadrupole array for transport of multiple high current beams

    SciTech Connect

    Faltens, A.; Shuman, D.

    1999-11-01

    We present a conceptual design of a superconducting quadrupole magnet array for the side-by-side transport of multiple high current particle beams in induction linear accelerators. The magnetic design uses a modified cosine 20 current distribution inside a square cell boundary. Each interior magnet's neighbors serve as the return flux paths and the poles are placed as close as possible to each other to facilitate this. No iron is present in the basic 2-D magnetic design; it will work at any current level without correction windings. Special 1/8th quadrupoles are used along the transverse periphery of the array to contain and channel flux back into the array, making every channel look as part of an infinite array. This design provides a fixed dimension array boundary equal to the quadrupole radius that can be used for arrays of any number of quadrupole channels, at any field level. More importantly, the design provides magnetic field separation between the array and the induction cores which may be surrounding it. Flux linkage between these two components can seriously affect the operation of both of them.

  20. Highly Parallel Magnetic Resonance Imaging with a Fourth Gradient Channel for Compensation of RF Phase Patterns 

    E-print Network

    Bosshard, John 1983-

    2012-08-20

    A fourth gradient channel was implemented to provide slice dependent RF coil phase compensation for arrays in dual-sided or "sandwich" configurations. The use of highly parallel arrays for single echo acquisition magnetic resonance imaging allows...

  1. Automatic design tool for robust radio frequency decoupling matrices in magnetic resonance imaging

    E-print Network

    Mahmood, Zohaib

    2015-01-01

    In this thesis we study the design of robust decoupling matrices for coupled transmit radio frequency arrays used in magnetic resonance imaging (MRI). In a coupled parallel transmit array, because of the coupling itself, ...

  2. Solar array flight experiment

    NASA Technical Reports Server (NTRS)

    Slaby, J.

    1985-01-01

    This is a closed form solution for the longitudinal oscillation of the Solar Array Flight Experiment (SAFE) blanket for all phases of deployment. The frequency response shows that the blanket frequency increases shortly before full deployment. That fact causes a coupling between the mast and the blanket frequency but, because of the relatively high speed of deployment, a buildup of resonance is unlikely.

  3. TRMM Solar Array Panels

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This final report presents conclusions/recommendations concerning the TRMM Solar Array; deliverable list and schedule summary; waivers and deviations; as-shipped performance data, including flight panel verification matrix, panel output detail, shadow test summary, humidity test summary, reverse bias test panel; and finally, quality assurance summary.

  4. The Askaryan Radio Array

    NASA Astrophysics Data System (ADS)

    Hoffman, Kara D.

    2013-01-01

    Ultra high energy cosmogenic neutrinos could be most efficiently detected in dense, radio frequency (RF) transparent media via the Askaryan effect. Building on the expertise gained by RICE, ANITA and IceCube's radio extension in the use of the Askaryan effect in cold Antarctic ice, we are currently developing an antenna array known as ARA (The Askaryan Radio Array) to be installed in boreholes extending 200 m below the surface of the ice near the geographic South Pole. The unprecedented scale of ARA, which will cover a fiducial area of ~ 100 square kilometers, was chosen to ensure the detection of the flux of neutrinos suggested by the observation of a drop in high energy cosmic ray flux consistent with the GZK cutoff by HiRes and the Pierre Auger Observatory. Funding to develop the instrumentation and install the first prototypes has been granted, and the first components of ARA were installed during the austral summer of 2010-2011. Within 3 years of commencing operation, the full ARA will exceed the sensitivity of any other instrument in the 0.1-10 EeV energy range by an order of magnitude. The primary goal of the ARA array is to establish the absolute cosmogenic neutrino flux through a modest number of events. This information would frame the performance requirements needed to expand the array in the future to measure a larger number of neutrinos with greater angular precision in order to study their spectrum and origins.

  5. Automated array assembly

    NASA Technical Reports Server (NTRS)

    Daiello, R. V.

    1977-01-01

    A general technology assessment and manufacturing cost analysis was presented. A near-term (1982) factory design is described, and the results of an experimental production study for the large-scale production of flat-panel silicon and solar-cell arrays are detailed.

  6. Large scale two-dimensional arrays of magnesium diboride superconducting quantum interference devices

    SciTech Connect

    Cybart, Shane A. Dynes, R. C.; Wong, T. J.; Cho, E. Y.; Beeman, J. W.; Yung, C. S.; Moeckly, B. H.

    2014-05-05

    Magnetic field sensors based on two-dimensional arrays of superconducting quantum interference devices were constructed from magnesium diboride thin films. Each array contained over 30?000 Josephson junctions fabricated by ion damage of 30?nm weak links through an implant mask defined by nano-lithography. Current-biased devices exhibited very large voltage modulation as a function of magnetic field, with amplitudes as high as 8?mV.

  7. Mutual coupling effects in antenna arrays, volume 1

    NASA Technical Reports Server (NTRS)

    Collin, R. E.

    1986-01-01

    Mutual coupling between rectangular apertures in a finite antenna array, in an infinite ground plane, is analyzed using the vector potential approach. The method of moments is used to solve the equations that result from setting the tangential magnetic fields across each aperture equal. The approximation uses a set of vector potential model functions to solve for equivalent magnetic currents. A computer program was written to carry out this analysis and the resulting currents were used to determine the co- and cross-polarized far zone radiation patterns. Numerical results for various arrays using several modes in the approximation are presented. Results for one and two aperture arrays are compared against published data to check on the agreement of this model with previous work. Computer derived results are also compared against experimental results to test the accuracy of the model. These tests of the accuracy of the program showed that it yields valid data.

  8. Detail of array structural elements through axis of array, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of array structural elements through axis of array, looking north-northeast - Over-the-Horizon Backscatter Radar Network, Columbia Falls Radar Site Receive Sector Two Antenna Array, At the end of Shadagee Ridge Road, Columbia Falls, Washington County, ME

  9. Spatially resolved single photon detection with a quantum sensor array.

    PubMed

    Zagoskin, A M; Wilson, R D; Everitt, M; Savel'ev, S; Gulevich, D R; Allen, J; Dubrovich, V K; Il'ichev, E

    2013-01-01

    We propose a method of resolving a spatially coherent signal, which contains on average just a single photon, against the background of local noise at the same frequency. The method is based on detecting the signal simultaneously in several points more than a wavelength apart through the entangling interaction of the incoming photon with the quantum metamaterial sensor array. The interaction produces the spatially correlated quantum state of the sensor array, characterised by a collective observable (e.g., total magnetic moment), which is read out using a quantum nondemolition measurement. We show that the effects of local noise (e.g., fluctuations affecting the elements of the array) are suppressed relative to the signal from the spatially coherent field of the incoming photon as , where N is the number of array elements. The realisation of this approach in the microwave range would be especially useful and is within the reach of current experimental techniques. PMID:24322568

  10. The Murchison Widefield Array Correlator

    E-print Network

    Cappallo, Roger J.

    The Murchison Widefield Array is a Square Kilometre Array Precursor. The telescope is located at the Murchison Radio–astronomy Observatory in Western Australia. The MWA consists of 4 096 dipoles arranged into 128 dual ...

  11. Concurrent array-based queue

    DOEpatents

    Heidelberger, Philip; Steinmacher-Burow, Burkhard

    2015-01-06

    According to one embodiment, a method for implementing an array-based queue in memory of a memory system that includes a controller includes configuring, in the memory, metadata of the array-based queue. The configuring comprises defining, in metadata, an array start location in the memory for the array-based queue, defining, in the metadata, an array size for the array-based queue, defining, in the metadata, a queue top for the array-based queue and defining, in the metadata, a queue bottom for the array-based queue. The method also includes the controller serving a request for an operation on the queue, the request providing the location in the memory of the metadata of the queue.

  12. Tissue Array Research Program (TARP)

    Cancer.gov

    Multi-Tumor Tissue Microarrays A novel tool for high- throughput molecular profiling of tumor tissues Arrays Are Currently Available. Array Details To Order Slides Intramural Ordering Information: NCI/NIH personnel may directly contact Stephen M. Hewitt,

  13. Carbon nanotube array based sensor

    SciTech Connect

    Lee, Christopher L.; Noy, Aleksandr; Swierkowski, Stephan P.; Fisher, Karl A.; Woods, Bruce W.

    2005-09-20

    A sensor system comprising a first electrode with an array of carbon nanotubes and a second electrode. The first electrode with an array of carbon nanotubes and the second electrode are positioned to produce an air gap between the first electrode with an array of carbon nanotubes and the second electrode. A measuring device is provided for sensing changes in electrical capacitance between the first electrode with an array of carbon nanotubes and the second electrode.

  14. Flexible transceiver array for ultrahigh field human MR imaging.

    PubMed

    Wu, Bing; Zhang, Xiaoliang; Wang, Chunsheng; Li, Ye; Pang, Yong; Lu, Jonathan; Xu, Duan; Majumdar, Sharmila; Nelson, Sarah J; Vigneron, Daniel B

    2012-10-01

    A flexible transceiver array, capable of multiple-purpose imaging applications in vivo at ultrahigh magnetic fields was designed, implemented and tested on a 7 T MR scanner. By alternately placing coil elements with primary and secondary harmonics, improved decoupling among coil elements was accomplished without requiring decoupling circuitry between resonant elements, which is commonly required in high-frequency transceiver arrays to achieve sufficient element-isolation during radiofrequency excitation. This flexible array design is capable of maintaining the required decoupling among resonant elements in different array size and geometry and is scalable in coil size and number of resonant elements (i.e., number of channels), yielding improved filling factors for various body parts with different geometry and size. To investigate design feasibility, flexibility, and array performance, a multichannel, 16-element transceiver array was designed and constructed, and in vivo images of the human head, knee, and hand were acquired using a whole-body 7 T MR system. Seven Tesla parallel imaging with generalized autocalibrating partially parallel acquisitions (GRAPPA) performed using this flexible transceiver array was also presented. PMID:22246803

  15. Flexible Transceiver Array for Ultrahigh Field Human MR Imaging

    PubMed Central

    Wu, Bing; Zhang, Xiaoliang; Wang, Chunsheng; Li, Ye; Pang, Yong; Lu, Jonathan; Xu, Duan; Majumdar, Sharmila; Nelson, Sarah J.; Vigneron, Daniel B.

    2012-01-01

    A flexible transceiver array, capable of multiple-purpose imaging applications in vivo at ultrahigh magnetic fields was designed, implemented and tested on a 7 T MR scanner. By alternately placing coil elements with primary and secondary harmonics, improved decoupling among coil elements was accomplished without requiring decoupling circuitry between resonant elements, which is commonly required in high frequency transceiver arrays in order to achieve sufficient element-isolation during RF excitation. This flexible array design is capable of maintaining the required decoupling among resonant elements in different array size and geometry, and is scalable in coil size and number of resonant elements (i.e. number of channels), yielding improved filling factors for various body parts with different geometry and size. To investigate design feasibility, flexibility, and array performance, a multi-channel, 16-element transceiver array was designed and constructed, and in vivo images of the human head, knee, and hand were acquired using a whole-body 7T MR system. 7T parallel imaging with GRAPPA performed using this flexible transceiver array was also presented. PMID:22246803

  16. Tissue Array Research Program (TARP)

    Cancer.gov

    GENERAL QUESTIONS: How can I use TMA slides? Tissue arrays have wide utility; in theory, anything you can do with a regular section of tissue you can do with a tissue array. Arrays can be used for in situ hybridization (both RNA and DNA), immunofluorescen

  17. Magnetic levitation transport of mining products. Report of investigations/1995

    SciTech Connect

    Geraghty, J.J.; Wright, W.E.; Lombardi, J.A.

    1995-07-01

    U.S. Bureau of Mines researchers have developed innovative magnetic levitation (mag-lev) technology that allows for noncontact, frictionless conveyance of materials within a dedicated transit corridor. A transport system incorporating this technology could improve the safety and reduce the cost of underground mining and materials handling. The mag-lev transport technology uses two types of permanent magnets. An array of neodymium-iron-boron magnets is contained in the base of each levitated materials container, and an array of ceramic-5 magnets lines the bottom of the transit corridor. The orientation of the magnets is such that the two arrays repel each other. An electronic position control system, located on the levitated materials containers, overcomes the inherent lateral instability of the repelling magnet arrays.

  18. Status of UCLA Helical Permanent-Magnet Inverse Free Electron Laser

    SciTech Connect

    Knyazik, A.; Tikhoplav, R.; Frederico, J. T.; Affolter, M.; Rosenzweig, J. B.

    2009-01-22

    A helical undulator, utilizing permanent-magnet of cylindrically symmetric (Halbach) geometry is being developed at UCLA's Neptune Facility. The initial prototype is a short 10 cm, 7 periods long helical undulator, designed to test the electron-photon coupling by observing the micro-bunching is currently being constructed. The Neptune IFEL facility utilizes a 15 MeV Photoinjector-generated electron beam of 0.5 nC interacting with CO{sub 2} of peak energy up to 100 J, estimated to have acceleration of 100 MeV/m. An Open Iris-Loaded Waveguide Structure (OILS) scheme which conserves laser mode size and wave fronts throughout the undulator, is utilized to avoid Gouy phase shift caused by focusing of the drive laser. Undulator design was tested by computer simulations Radia and Genesis 1.3. Coherent Transition Radiation and Coherent Cherenkov Radiation will be used for micro-bunching diagnostic. Currently permanent dipoles and their aluminum holders have been built, and the project is in its final state of assembly and undulator testing.

  19. Microreactor Array Device

    NASA Astrophysics Data System (ADS)

    Wiktor, Peter; Brunner, Al; Kahn, Peter; Qiu, Ji; Magee, Mitch; Bian, Xiaofang; Karthikeyan, Kailash; Labaer, Joshua

    2015-03-01

    We report a device to fill an array of small chemical reaction chambers (microreactors) with reagent and then seal them using pressurized viscous liquid acting through a flexible membrane. The device enables multiple, independent chemical reactions involving free floating intermediate molecules without interference from neighboring reactions or external environments. The device is validated by protein expressed in situ directly from DNA in a microarray of ~10,000 spots with no diffusion during three hours incubation. Using the device to probe for an autoantibody cancer biomarker in blood serum sample gave five times higher signal to background ratio compared to standard protein microarray expressed on a flat microscope slide. Physical design principles to effectively fill the array of microreactors with reagent and experimental results of alternate methods for sealing the microreactors are presented.

  20. Microreactor Array Device

    PubMed Central

    Wiktor, Peter; Brunner, Al; Kahn, Peter; Qiu, Ji; Magee, Mitch; Bian, Xiaofang; Karthikeyan, Kailash; LaBaer, Joshua

    2015-01-01

    We report a device to fill an array of small chemical reaction chambers (microreactors) with reagent and then seal them using pressurized viscous liquid acting through a flexible membrane. The device enables multiple, independent chemical reactions involving free floating intermediate molecules without interference from neighboring reactions or external environments. The device is validated by protein expressed in situ directly from DNA in a microarray of ~10,000 spots with no diffusion during three hours incubation. Using the device to probe for an autoantibody cancer biomarker in blood serum sample gave five times higher signal to background ratio compared to standard protein microarray expressed on a flat microscope slide. Physical design principles to effectively fill the array of microreactors with reagent and experimental results of alternate methods for sealing the microreactors are presented. PMID:25736721

  1. Optically interconnected phased arrays

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Kunath, Richard R.

    1988-01-01

    Phased-array antennas are required for many future NASA missions. They will provide agile electronic beam forming for communications and tracking in the range of 1 to 100 GHz. Such phased arrays are expected to use several hundred GaAs monolithic integrated circuits (MMICs) as transmitting and receiving elements. However, the interconnections of these elements by conventional coaxial cables and waveguides add weight, reduce flexibility, and increase electrical interference. Alternative interconnections based on optical fibers, optical processing, and holography are under evaluation as possible solutions. In this paper, the current status of these techniques is described. Since high-frequency optical components such as photodetectors, lasers, and modulators are key elements in these interconnections, their performance and limitations are discussed.

  2. Radio Interferometric Array - SCMA

    NASA Astrophysics Data System (ADS)

    Zekovic, V.; Segan, S.

    2012-12-01

    This paper gives the analysis and the solution to a radio interferometric array - SCMA (Serbian Centimeter/Millimeter Array). SCMA will be made of three experimental dish antennas, with an aim to study the high energy processes mainly in the Solar atmosphere, by application of detection and localization in the microwave frequency range (1-50 GHz). System design is modeled as e-VLBI configuration, providing the maximum angular resolution of ? 0?004. We simulate interferometric observations using models of idealized radio sources. The corresponding data were reconstructed using the CLEAN algorithm. The research shows that SCMA observing efficiency of non-thermal, thermal and line emissions of Galactic and cosmic scale sources is theoretically affirmed.

  3. Fetal Magnetocardiography with an Atomic Magnetometer Array

    NASA Astrophysics Data System (ADS)

    Sulai, Ibrahim; Deland, Zack; Wahl, Colin; Wakai, Ronald; Walker, Thad

    2014-05-01

    Fetal magnetocardiography (fMCG) is a powerful technique for analyzing the heartbeat patterns of inutero fetuses. We present results from our array of four Spin-Exchange Relaxation-Free (SERF) rubidium-87 atomic magnetometers which has been used to detect and create these magnetocardiograms. We have demonstrated a magnetic noise sensitivity of < 10 fT /?{ Hz} , limited by the Johnson noise of the magnetically-shielded room. We discuss new design features and experimental practices that have increased our sensitivity and allowed us to successfully measure an fMCG at a gestational age of only 21 weeks. We hope to eventually apply these techniques to the detection and diagnosis of heartbeat arrhythmias, which, if detected early enough, can be treated inutero . This work is supported by the National Institutes of Health.

  4. Weld quality evaluation using a high temperature SQUID array

    SciTech Connect

    Clark, D. D.; Espy, M. A.; Kraus, Robert H., Jr.; Matlachov, A. N.; Lamb, J. S.

    2002-01-01

    This paper presents preliminary data for evaluating weld quality using high temperature SQUIDS. The SQUIDS are integrated into an instrument known as the SQUID Array Microscope, or SAMi. The array consists of ll SQUIDs evenly distributed over an 8.25 mm baseline. Welds are detected using SAMi by using an on board coil to induce eddy currents in a conducting sample and measuring the resulting magnetic fields. The concept is that the induced magnetic fields will differ in parts of varying weld quality. The data presented here was collected from three stainless steel parts using SAMi. Each part was either solid, included a good weld, or included a bad weld. The induced magnetic field's magnitude and phase relative to the induction signal were measured. For each sample considered, both the magnitude and phase data were measurably different than the other two samples. These results indicate that it is possible to use SAMi to evaluate weld quality.

  5. Solid state neutron detector array

    DOEpatents

    Seidel, John G. (Pittsburgh, PA); Ruddy, Frank H. (Monroeville, PA); Brandt, Charles D. (Mount Lebanon, PA); Dulloo, Abdul R. (Pittsburgh, PA); Lott, Randy G. (Pittsburgh, PA); Sirianni, Ernest (Monroeville, PA); Wilson, Randall O. (Greensburg, PA)

    1999-01-01

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors.

  6. Solid state neutron detector array

    DOEpatents

    Seidel, J.G.; Ruddy, F.H.; Brandt, C.D.; Dulloo, A.R.; Lott, R.G.; Sirianni, E.; Wilson, R.O.

    1999-08-17

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors. 7 figs.

  7. Solar collector array

    DOEpatents

    Hall, John Champlin; Martins, Guy Lawrence

    2015-09-06

    A method and apparatus for efficient manufacture, assembly and production of solar energy. In one aspect, the apparatus may include a number of modular solar receiver assemblies that may be separately manufactured, assembled and individually inserted into a solar collector array housing shaped to receive a plurality of solar receivers. The housing may include optical elements for focusing light onto the individual receivers, and a circuit for electrically connecting the solar receivers.

  8. Photovoltaic cell array

    NASA Technical Reports Server (NTRS)

    Eliason, J. T. (inventor)

    1976-01-01

    A photovoltaic cell array consisting of parallel columns of silicon filaments is described. Each fiber is doped to produce an inner region of one polarity type and an outer region of an opposite polarity type to thereby form a continuous radial semi conductor junction. Spaced rows of electrical contacts alternately connect to the inner and outer regions to provide a plurality of electrical outputs which may be combined in parallel or in series.

  9. Magnetocardiography with a modular spin-exchange relaxation free atomic magnetometer array

    PubMed Central

    Wyllie, R; Kauer, M; Smetana, G S; Wakai, R T; Walker, T G

    2012-01-01

    We present a portable four-channel atomic magnetometer array operating in the spin exchange relaxation-free regime. The magnetometer array has several design features intended to maximize its suitability for biomagnetic measurement, specifically foetal magnetocardiography, such as a compact modular design and fibre coupled lasers. The modular design allows the independent positioning and orientation of each magnetometer. Using this array in a magnetically shielded room, we acquire adult magnetocadiograms. These measurements were taken with a 6–11 fT Hz?1/2 single-channel baseline sensitivity that is consistent with the independently measured noise level of the magnetically shielded room. PMID:22504066

  10. Spaceborne Processor Array

    NASA Technical Reports Server (NTRS)

    Chow, Edward T.; Schatzel, Donald V.; Whitaker, William D.; Sterling, Thomas

    2008-01-01

    A Spaceborne Processor Array in Multifunctional Structure (SPAMS) can lower the total mass of the electronic and structural overhead of spacecraft, resulting in reduced launch costs, while increasing the science return through dynamic onboard computing. SPAMS integrates the multifunctional structure (MFS) and the Gilgamesh Memory, Intelligence, and Network Device (MIND) multi-core in-memory computer architecture into a single-system super-architecture. This transforms every inch of a spacecraft into a sharable, interconnected, smart computing element to increase computing performance while simultaneously reducing mass. The MIND in-memory architecture provides a foundation for high-performance, low-power, and fault-tolerant computing. The MIND chip has an internal structure that includes memory, processing, and communication functionality. The Gilgamesh is a scalable system comprising multiple MIND chips interconnected to operate as a single, tightly coupled, parallel computer. The array of MIND components shares a global, virtual name space for program variables and tasks that are allocated at run time to the distributed physical memory and processing resources. Individual processor- memory nodes can be activated or powered down at run time to provide active power management and to configure around faults. A SPAMS system is comprised of a distributed Gilgamesh array built into MFS, interfaces into instrument and communication subsystems, a mass storage interface, and a radiation-hardened flight computer.

  11. Mir Cooperative Solar Array

    NASA Technical Reports Server (NTRS)

    Skor, Mike; Hoffman, Dave J.

    1997-01-01

    The Mir Cooperative Solar Array (MCSA), produced jointly by the United States and Russia, was deployed on the Mir Russian space station on May 25, 1996. The MCSA is a photovoltaic electrical power system that can generate up to 6 kW. The power from the MCSA is needed to extend Mir's lifetime and to support experiments conducted there by visiting U.S. astronauts. The MCSA was brought to Mir via the Space Shuttle Atlantis on the STS-74 mission, launched November 12, 1995. This cooperative venture combined the best technology of both countries: the United States provided high-efficiency, lightweight photovoltaic panel modules, whereas Russia provided the array structure and deployment mechanism. Technology developed in the Space Station Freedom Program, and now being used in the International Space Station, was used to develop MCSA's photovoltaic panel. Performance data obtained from MCSA operation on Mir will help engineers better understand the performance of the photovoltaic panel modules in orbit. This information will be used to more accurately predict the performance of the International Space Station solar arrays. Managed by the NASA Lewis Research Center for NASA's International Space Station Program Office in Houston, Texas, the MCSA Project was completed on time and under budget despite a very aggressive schedule.

  12. Transmissive Microshutter Arrays

    NASA Astrophysics Data System (ADS)

    Kutyrev, A. S.; Moseley, H. S.; Fettig, R. K.; Kuhn, J. L.; Woodgate, B. E.; Kimble, R. A.; Orloff, J. H.

    1999-12-01

    We report further progress on the development of a two-dimensional array of microshutters, which can be used as a high efficiency, high contrast field selection device for a multi-object spectrometer for the Next Generation Space Telescope (NGST). The device is a close packed array of shutters, with a typical size of 100 microns square and an area filling factor of up to 80%. Each shutter, made of single crystal silicon or silicon nitride with an appropriate optical coating, pivots on a torsion flexure along one edge. Each of the shutters is individually selectable. Although these devices can be used as reflection devices, their primary mode of operation is in transmission, which provides the minimum possible level of scattered light. An original double-shutter mechanism is employed for actuation. Small shutter arrays have been built using a Focus Ion Beam milling machine is a 3 x 3 double shutter actuation with a micro-manipulator under electron microscope observation has been demonstrated. An important aspect of this study has been to demonstrate the reliability of the structures over its expected lifetime. We analyzed stiffness, strength and fatigue issues of two good candidate materials, single crystal silicon and silicon nitride. Both appear to be suitable from the mechanical point of view. This project is supported by NASA grants.

  13. Status of The General Atomics Low Speed Urban Maglev Technology Development Program

    SciTech Connect

    Gurol, S; Baldi, R; Bever, D; Post, R

    2004-06-16

    This paper presents the status of General Atomics Urban Maglev Program. The development provides an innovative approach for low speed transportation suitable for very challenging urban environments. Permanent magnets arranged in a 'Halbach' array configuration produce a relatively stiff magnetic suspension operating with an air gap of 25 mm. The project has progressed from design and prototype hardware testing, to the construction of a 120-meter full-scale test track, located in San Diego, California. Dynamic testing of the levitation, propulsion and guidance systems is being performed.

  14. Learning Objectives Arrays as subscripted variables

    E-print Network

    Clement, Prabhakar

    (e.g., matrix with real numbers or integer numbers) · Used to store large sets of numbers 3 Array dimensioning 1 Arrays · Arrays are a group of numbers whose elements are arranged in a single or multi variable is an array and tell the maximum number of members in the array · If x is an array of integers

  15. ICE decoupling technique for RF coil array designs

    PubMed Central

    Li, Ye; Xie, Zhentian; Pang, Yong; Vigneron, Daniel; Zhang, Xiaoliang

    2011-01-01

    Purpose: Parallel magnetic resonance imaging (MRI) requires an array of RF coil elements with different sensitivity distributions and with minimal electromagnetic coupling. The goal of this project was to develop a new method based on induced current compensation or elimination (ICE) for improved coil element decoupling and to investigate its performance in phantom MR images. Methods: An electromagnetic decoupling method based on induced current compensation or elimination for nonoverlapping RF coil arrays was developed with the design criteria of high efficiency, easy implementation, and no physical connection to RF array elements. An eigenvalue/eigenvector approach was employed to analyze the decoupling mechanism and condition. A two-channel microstrip array and an eight-channel coil array were built to test the performance of the method. Following workbench tests, MR imaging experiments were performed on a 7T MR scanner. Results: The bench tests showed that both arrays achieved sufficient decoupling with a S21 less than ?25 dB among the coil elements at 298 MHz. The MR phantom images demonstrated well-defined sensitivity distributions from each coil element and the unique decoupling capability of the proposed ICE decoupling technique. B1 distributions of the individual elements were also measured and calculated. Conclusions: The theoretical analysis and experiments demonstrated the feasibility of the decoupling method for high field RF coil array designs without overlapping or direct physical connections between coil elements, which provide more flexibility for coil array design and optimization. The method offers a new approach to address the RF array decoupling issue, which is a major challenge in implementing parallel imaging. PMID:21859008

  16. Antenna arrays for producing plane whistler waves

    NASA Astrophysics Data System (ADS)

    Stenzel, Reiner; Urrutia, J. Manuel

    2014-10-01

    Linear whistler modes with ? ~= 0 . 3?ce <magnetic loop antennas. A single antenna always produces a spatially bounded wave packet whose propagation cannot be directly compared to plane wave theories. By superimposing the fields from spatially separated antennas, the wavenumber along the antenna array can be nearly eliminated. 2D arrays nearly produce plane waves. The angle ? of wave propagation has been varied by a phase shift along the array. The refractive index surface n (?) has been measured. The parallel phase and group velocities for Gendrin modes has been demonstrated. The interference between two oblique plane whistlers creates a whistler ``waveguide'' mode, i.e. standing waves for k ?B0 and propagation for k | |B0 . It also describes the reflection of oblique whistlers from a sharp discontinuity in the refractive index or conductivity. Radial reflections are also a dominant factor in small plasma columns of helicon devices. These results are of interest to space and laboratory plasmas. Work supported by NSF/DOE.

  17. The Expanded Owens Valley Solar Array (EOVSA)

    NASA Astrophysics Data System (ADS)

    Gary, Dale E.; Hurford, Gordon J.; Nita, Gelu M.; White, Stephen M.; McTiernan, James; Fleishman, Gregory D.

    2014-06-01

    The Expanded Owens Valley Solar Array (EOVSA) near Big Pine, CA is undergoing commissioning as a solar-dedicated microwave imaging array operating in the frequency range 2.5-18 GHz. The solar science to be addressed focuses on the 3D structure of the solar corona (magnetic field, temperature and density), and on the particle acceleration, transport and heating in solar flares. The project will support the scientific community by providing open data access and software tools for analysis and modeling of the data, to exploit synergies with on-going solar research in other wavelengths. The array consists of a total of 15 antennas, including the two 27-m antennas with He-cooled receivers for sensitive calibration, and thirteen 2.1-m antennas that each view the entire disk of the Sun. The system includes a completely new control system, broadband signal transmission, and high-speed digital signal processing, using new technology developed for the Frequency Agile Solar Radiotelescope (FASR). We present an overview of the instrument, the current status of commissioning activities, and some initial observations to assess performance.This research is supported by NSF grants AST-1312802, and NASA grants NNX11AB49G and NNX10AF27G to New Jersey Institute of Technology.

  18. Demonstration of solar array vibration suppression

    NASA Astrophysics Data System (ADS)

    Kienholz, David A.; Pendleton, Scott C.; Richards, Kenneth E., Jr.; Morgenthaler, Daniel R.

    1994-05-01

    An adaptive passive damping system is described for the low-order modes of spacecraft large solar arrays. The work is motivated by the stringent sensor pointing requirements of several current satellite programs. Realistic system-level requirements are developed relating pointing error of a representative spacecraft to damping of its solar arrays. Performance is specified in terms of gain envelopes on open-loop frequency response functions for the structure with dampers. A family of remotely tunable, eddy-current tuned mass dampers (TMDs) is described which suppress several modes of a 430-lb solar array simulator in the frequency range of 0.1 - 1.0 Hz. The magnetic dampers are ground demonstration units, suitable for use in 1-G, but are designed around traceable, system-level dynamic requirements. The damper design is intended from the outset to be evolved into flight hardware. Tuning of TMD natural frequency and damping ratio to their optimum values is demonstrated through component-level base transmissibility test results.

  19. Fabrication of Microshutter Arrays for James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Li, Mary J.; Zheng, Yun; Hess, Larry; Hu, Ron; Kelly, Dan; Lynch, Barney; Oh, Lance; Ray, Chris; Smith, Wayne; Babu, Sachi

    2004-01-01

    Two-dimensional MEMS microshutter arrays are being developed at NASA Goddard Space Flight Center for use in the near-infrared region on the Next Generation Space Telescope (NGST). The microshutter arrays are designed for the selective transmission of light with high efficiency and high contrast. The NGST environment requires cryogenic operation at 45K. Microshutter arrays are fabricated out of silicon-oxide-insulated (SOI) silicon wafers. Arrays are close-packed silicon nitride membranes with a pixel size of 100x100 microns. Individual shutters are patterned with a torsion flexure permitting shutters to open 90 degrees with a minimized mechanical stress concentration. The mechanical shutter arrays are fabricated using MEMS technologies. The processing includes a multi-layer metal deposition and patterning of shutter electrodes and magnetic pads, reactive ion etching (RE) of the front side to form shutters out of the nitride membrane, an anisotropic back-etch for wafer thinning, followed by a deep RIE (DRIE) back-etch down to the nitride shutter membrane to form frames and relieve shutters from the silicon substrate. An additional metal deposition and patterning is used to form back electrodes. Shutters are actuated using a magnetic force and latched using an electrostatic force.

  20. Numerical calculations of magnetic properties of nanostructures

    E-print Network

    Kapitan, Vitalii; Nefedev, Konstantin

    2015-01-01

    Magnetic force microscopy and scanning tunneling microscopy data could be used to test computer numerical models of magnetism. The elaborated numerical model of a face-centered lattice Ising spins is based on pixel distribution in the image of magnetic nanostructures obtained by using scanning microscope. Monte Carlo simulation of the magnetic structure model allowed defining the temperature dependence of magnetization; calculating magnetic hysteresis curves and distribution of magnetization on the surface of submonolayer and monolayer nanofilms of cobalt, depending on the experimental conditions. Our developed package of supercomputer parallel software destined for a numerical simulation of the magnetic-force experiments and allows obtaining the distribution of magnetization in one-dimensional arrays of nanodots and on their basis. There has been determined interpretation of magneto-force microscopy images of magnetic nanodots states. The results of supercomputer simulations and numerical calculations are in...

  1. STRUCTURE AND MAGNETIC FIELDS IN THE PRECESSING JET SYSTEM SS 433. III. EVOLUTION OF THE INTRINSIC BRIGHTNESS OF THE JETS FROM A DEEP MULTI-EPOCH VERY LARGE ARRAY CAMPAIGN

    SciTech Connect

    Bell, Michael R.; Roberts, David H.; Wardle, John F. C. E-mail: roberts@brandeis.edu

    2011-08-01

    We present a sequence of five deep observations of SS 433 made over the summer of 2007 using the Very Large Array in the A configuration at 5 and 8 GHz. In this paper, we study the brightness profiles of the jets and their time evolution. We also examine the spectral index distribution in the source. We find (as previously reported from the analysis of a single earlier image) that the profiles of the east and west jets are remarkably similar if projection and Doppler beaming are taken into account. The sequence of five images allows us to disentangle the evolution of brightness of individual pieces of jet from the variations of jet power originating at the core. We find that the brightness of each piece of the jet fades as an exponential function of age (or distance from the core), e{sup -}{tau}/{tau}{sup '}, where {tau} is the age at emission and {tau}' = 55.9 {+-} 1.7 days. This evolutionary model describes both the east and west jets equally well. There is also significant variation (by a factor of at least five) in jet power with birth epoch, with the east and west jets varying in synchrony. The lack of deceleration between the scale of the optical Balmer line emission (10{sup 15} cm) and that of the radio emission (10{sup 17} cm) requires that the jet material is much denser than its surroundings. We find that the density ratio must exceed 300:1.

  2. Diode laser array

    NASA Technical Reports Server (NTRS)

    Carlson, Nils W. (Inventor); Evans, Gary A. (Inventor); Kaiser, Charlie J. (Inventor)

    1990-01-01

    A diode laser array comprises a substrate of a semiconductor material having first and second opposed surfaces. On the first surface is a plurality of spaced gain sections and a separate distributed Bragg reflector passive waveguide at each end of each gain section and optically connecting the gain sections. Each gain section includes a cavity therein wherein charge carriers are generated and recombine to generate light which is confined in the cavity. Also, the cavity, which is preferably a quantum well cavity, provides both a high differential gain and potentially large depth of loss modulation. Each waveguide has a wavelength which is preferably formed by an extension of the cavity of the gain sections and a grating. The grating has a period which provides a selective feedback of light into the gain sections to supporting lasing, which allows some of the light to be emitted from the waveguide normal to the surface of the substrate and which allows optical coupling of the gain sections. Also, the grating period provides an operating wavelength which is on the short wavelength side of the gain period of the gain sections required for laser oscillation. An RF pulse is applied so as to maximize the magnitude of the loss modulation and the differential gain in the gain sections. The array is operated by applying a DC bias to all the gain sections at a level just below the threshold of the gain sections to only one of the gain sections which raises the bias in all of the gain sections to a level that causes all of the gain sections to oscillate. Thus, a small bias can turn the array on and off.

  3. Finite size effect on spread of resonance frequencies in arrays of coupled vortices

    SciTech Connect

    Vogel, Andreas; Drews, André; Im, Mi-Young; Fischer, Peter; Meier, Guido

    2011-01-25

    Dynamical properties of magnetic vortices in arrays of magnetostatically coupled ferromagnetic disks are studied by means of a broadband ferromagnetic-resonance (FMR) setup. Magnetic force microscopy and magnetic transmission soft X-ray microscopy are used to image the core polarizations and the chiralities which are both found to be randomly distributed. The resonance frequency of vortex-core motion strongly depends on the magnetostatic coupling between the disks. The parameter describing the relative broadening of the absorption peak observed in the FMR transmission spectra for a given normalized center-to-center distance between the elements is shown to depend on the size of the array.

  4. Electrode array for neural stimulation

    DOEpatents

    Wessendorf, Kurt O. (Albuquerque, NM); Okandan, Murat (Edgewood, NM); Stein, David J. (Albuquerque, NM); Yang, Pin (Albuquerque, NM); Cesarano, III, Joseph (Albuquerque, NM); Dellinger, Jennifer (Albuquerque, NM)

    2011-08-16

    An electrode array for neural stimulation is disclosed which has particular applications for use in a retinal prosthesis. The electrode array can be formed as a hermetically-sealed two-part ceramic package which includes an electronic circuit such as a demultiplexer circuit encapsulated therein. A relatively large number (up to 1000 or more) of individually-addressable electrodes are provided on a curved surface of a ceramic base portion the electrode array, while a much smaller number of electrical connections are provided on a ceramic lid of the electrode array. The base and lid can be attached using a metal-to-metal seal formed by laser brazing. Electrical connections to the electrode array can be provided by a flexible ribbon cable which can also be used to secure the electrode array in place.

  5. Beamforming with collocated microphone arrays

    NASA Astrophysics Data System (ADS)

    Lockwood, Michael E.; Jones, Douglas L.; Su, Quang; Miles, Ronald N.

    2003-10-01

    A collocated microphone array, including three gradient microphones with different orientations and one omnidirectional microphone, was used to acquire data in a sound-treated room and in an outdoor environment. This arrangement of gradient microphones represents an acoustic vector sensor used in air. Beamforming techniques traditionally associated with much larger uniformly spaced arrays of omnidirectional sensors are extended to this compact array (1 cm3) with encouraging results. A frequency-domain minimum-variance beamformer was developed to work with this array. After a calibration of the array, the recovery of sources from any direction is achieved with high fidelity, even in the presence of multiple interferers. SNR gains of 5-12 dB with up to four speech sources were obtained with both indoor and outdoor recordings. This algorithm has been developed for new MEMS-type microphones that further reduce the size of the sensor array.

  6. High-throughput magnetic flow sorting of human cells selected on the basis of magnetophoretic mobility

    NASA Astrophysics Data System (ADS)

    Reece, Lisa M.; Sanders, Lehanna; Kennedy, David; Guernsey, Byron; Todd, Paul; Leary, James F.

    2010-02-01

    We have shown the potential of a new method for optimizing the separation of human stem cell subsets from peripheral blood based on a novel cell labeling technique that leverages the capabilities of a new commercially available high speed magnetic cell sorting system (IKOTECH LLC, New Albany, IN). This new system sorts cells in a continuously flowing manner using a Quadrupole Magnetic cell Sorter (QMS). The sorting mechanism is based upon the magnetophoretic mobility of the cells, a property related to the relative binding distributions of magnetic particles per cell, as determined by the utilization of a Magnetic Cell Tracking Velocimeter (MCTV). KG-1 cells were competitively labeled with anti-CD34 magnetic beads and anti-CD34 FITC to obtain an optimal level of magnetophoretic mobility as visualized by the MCTV for high throughput sort recovery in the QMS. In QMS sorting, the concept of split-flow thin channel (SPLITT) separation technology is applied by having a sample stream enter a vertical annular flow channel near the channel's interior wall followed by another sheath flow entering near the exterior wall. The two flows are initially separated by a flow splitter. They pass through the bore of a Halbach permanent quadrupole magnet assembly, which draws magnetized cells outward and deflects them into a positive outflow, while negative cells continue straight out via the inner flow lamina. QMS sorts cells based upon their magnetophoretic mobility, or the velocity of a cell per unit ponderomotive force, the counterpart of fluorescence intensity in flow cytometry. The magnetophoretic mobility distribution of a cell population, measured by automated MCTV, is used as input data for the algorithmic control of sample, sheath, and outlet flow velocities of the QMS. In this study, the relative binding distributions of magnetic particles per cell were determined by MCTV using novel sorting and sizing algorithms. The resulting mobility histograms were used to set the QMS flow parameters so that desired cell populations could be selected on the basis of a mobility "window". The MCTV and the QMS are able to work together to provide good sort boundaries for cell populations that are mathematically defined as opposed to the traditional magnetic sort systems that solely rely on whether a cell is simply "magnetized" or not. One long-term application of this new high speed cell sorting system is to sterilely isolate large numbers of human stem cells directly from a donor's blood for subsequent manipulation in tissue culture for regenerative medicine within that same patient. This will eliminate the need for immune suppressive drugs in an autologous transplantation procedure.

  7. Electrodynamic Arrays Having Nanomaterial Electrodes

    NASA Technical Reports Server (NTRS)

    Trigwell, Steven (Inventor); Biris, Alexandru S. (Inventor); Calle, Carlos I. (Inventor)

    2013-01-01

    An electrodynamic array of conductive nanomaterial electrodes and a method of making such an electrodynamic array. In one embodiment, a liquid solution containing nanomaterials is deposited as an array of conductive electrodes on a substrate, including rigid or flexible substrates such as fabrics, and opaque or transparent substrates. The nanomaterial electrodes may also be grown in situ. The nanomaterials may include carbon nanomaterials, other organic or inorganic nanomaterials or mixtures.

  8. Solid state image sensing arrays

    NASA Technical Reports Server (NTRS)

    Sadasiv, G.

    1972-01-01

    The fabrication of a photodiode transistor image sensor array in silicon, and tests on individual elements of the array are described along with design for a scanning system for an image sensor array. The spectral response of p-n junctions was used as a technique for studying the optical-absorption edge in silicon. Heterojunction structures of Sb2S3- Si were fabricated and a system for measuring C-V curves on MOS structures was built.

  9. Biomolecule derived nanostructured arrays

    NASA Astrophysics Data System (ADS)

    Yuan, Zhen

    During the last decade, intensive research have been reported on biomimetic approaches towards achieving mono-dispersed nanoparticles, and building self-assembled system out of those (organizing nanoparticles). However the development of this research avenue is being hindered by the limited knowledge and very few practical, efficient, cost-effective approaches for implementation of the bio-derived arrays into engineering practice. The objective of this work is to biomimeticaly form nanocomposite materials using a simple, rapid, inexpensive, scalable approach, which is general enough and not limited to colloidal particle self-assembly. Throughout the studies, we have developed a universally applicable process, which is to fabricate macro-biomolecular arrays on solid substrates based on the convective self-assembly of colloidal particles. We have demonstrated that protein (ferritin) and virus (phage) arrays were directly deposited onto solid substrates such as glass, silicon wafer, and gold substrate in closed or near closed-packed order. The arrays were further incorporated into a more robust silica matrix, in such that strengthens the thermal stability and provides porous accessibility. After treatment in controlled pyrolysis, the organic protein shell was removed, left mono-dispersed iron-oxide nanoparticles intact on the substrate or in the silica matrix. Both iron-oxide nanoparticles arrays with or without silica matrix have been further characterized to possess superferromagnetic properties at low temperature (15 K), same as that in bulk material. Initial work on protein patterning, through combining either lithography based top-down or bottom-up techniques with our novel deposition approach, was presented as well. Thin film deposition of mesoporous materials using convective self-assembly is another main part in this work. Both silica and carbon mesoporous thin films were successfully formed using the convective self-assembly horizontal-coating approach. We have shown that ultra thin mesoporous film (less than 100 nm) could be obtained through increasing the coating speed with the solution concentration remained same. Combining with lithographically patterned surface, the mesoporous thin films will be well suited for applications for bio-sensing, separations and etc. Studies were also carried out on the transport of fluid and electric current in fluidic channels with size in nanometer range; particular attention was paid on the effect of the electrolyte valence. At these dimensions new physical phenomena begin to occur because the electric double layers formed at the channel walls become comparable to the channel width and the overall wall surface to channel volume ratio increases. Numerical analysis predicts that the electrokinetic transport phenomena differ from multivalent ions to monovalent ions in the nanochannel when double layer overlap is large. This dependence affects the transport of current, fluid and dissolved analytes in a fluidic channel. The valence of the dissolved counterions determines the electric current and fluid flow in a nanochannel by shaping the electrostatic potential distribution. Our calculation shows that in absence of strong adsorption at the wall, divalent counterions lead to greater current and fluid flow than monovalent electrolyte for the same overall ionic strength. The results also indicate that control over the transport processes in fluidic nanochannels can be accomplished through properly selecting and combining electrolytes.

  10. Integrated residential photovoltaic array development

    NASA Technical Reports Server (NTRS)

    Shepard, N. F., Jr.

    1981-01-01

    An advanced, universally-mountable, integrated residential photovoltaic array concept was defined based upon an in-depth formulation and evaluation of three candidate approaches which were synthesized from existing or proposed residential array concepts. The impact of module circuitry and process sequence is considered and technology gaps and performance drivers associated with residential photovoltaic array concepts are identified. The actual learning experience gained from the comparison of the problem areas of the hexagonal shingle design with the rectangular module design led to what is considered an advanced array concept. Building the laboratory mockup provided actual experience and the opportunity to uncover additional technology gaps.

  11. Future directions for NICMOS arrays

    NASA Technical Reports Server (NTRS)

    Thompson, R.; Rieke, Marcia J.; Young, Erick T.; Mccarthy, D.; Rasche, Robert; Blessinger, Michael; Vural, Kadri; Kleinhans, William

    1989-01-01

    The Near Infrared Camera and Multi-Object Spectrometer (NICMOS) for the Hubble Space Telescope (HST) requires focal plane arrays of 256x256 pixels for both its cameras and its spectrometers. The new arrays, developed by the Rockwell Corporation for NICMOS, have 40 microns pixels of HgCdTe bump bonded to a switched MOSFET readout. Expected read noise and dark current for the arrays at 60 K are 30 e and 1 e/sec. respectively. The basis for these numbers is previous experience with 128x128 arrays.

  12. Nanoelectrode array for electrochemical analysis

    DOEpatents

    Yelton, William G. (Sandia Park, NM); Siegal, Michael P. (Albuquerque, NM)

    2009-12-01

    A nanoelectrode array comprises a plurality of nanoelectrodes wherein the geometric dimensions of the electrode controls the electrochemical response, and the current density is independent of time. By combining a massive array of nanoelectrodes in parallel, the current signal can be amplified while still retaining the beneficial geometric advantages of nanoelectrodes. Such nanoelectrode arrays can be used in a sensor system for rapid, non-contaminating field analysis. For example, an array of suitably functionalized nanoelectrodes can be incorporated into a small, integrated sensor system that can identify many species rapidly and simultaneously under field conditions in high-resistivity water, without the need for chemical addition to increase conductivity.

  13. COMPETITIVE MIXTURE OF LOCAL LINEAR EXPERTS FOR MAGNETIC RESONANCE IMAGING

    E-print Network

    Slatton, Clint

    COMPETITIVE MIXTURE OF LOCAL LINEAR EXPERTS FOR MAGNETIC RESONANCE IMAGING By RUI YAN.1 Literature Review of Magnetic Resonance Imaging . . . . . . . . . . 1 1.1.1 History of MRI Reconstruction in Phased-Array MRI . . . . . . . . . 2 1.2 Magnetic Resonance Imaging Basics

  14. Integrated semiconductor-magnetic random access memory system

    NASA Technical Reports Server (NTRS)

    Katti, Romney R. (Inventor); Blaes, Brent R. (Inventor)

    2001-01-01

    The present disclosure describes a non-volatile magnetic random access memory (RAM) system having a semiconductor control circuit and a magnetic array element. The integrated magnetic RAM system uses CMOS control circuit to read and write data magnetoresistively. The system provides a fast access, non-volatile, radiation hard, high density RAM for high speed computing.

  15. Permanent magnet edge-field quadrupole

    DOEpatents

    Tatchyn, R.O.

    1997-01-21

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis. 10 figs.

  16. Permanent magnet edge-field quadrupole

    DOEpatents

    Tatchyn, Roman O. (Mountain View, CA)

    1997-01-01

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis.

  17. Study of the precursor and non-precursor implosion regimes in wire array Z-pinches

    NASA Astrophysics Data System (ADS)

    Papp, D.; Ivanov, V. V.; Jones, B.; Haboub, A.; Anderson, A. A.; Altemara, S. D.; Talbot, B. R.

    2012-09-01

    Star-like and closely spaced nested wire array configurations were investigated in precursor and non-precursor implosions. Closely spaced nested cylindrical arrays have inner and outer arrays with equal wire numbers, and inner and outer wires aligned to each other. The gap between the outer and inner wires is not more than 1 mm. Calculation of magnetic fields shows that the small gap results in a reversed, outward j × B force on the inner wires. Closely spaced arrays of 6-16 wires with outer diameter of 16 mm and with gaps of ?R = 0.25-1 mm were tested. 6-8-wire arrays with a gap of ?R = 0.4-1 mm imploded without precursor, but precursor was present in loads with 12-16 wires and ?R = 0.25-1 mm. Implosion dynamics of closely spaced arrays was similar to that of star-like arrays. Implosion time was found to decrease with decreased wire numbers. Star array configurations were designed with a numerical scheme to implode with or without precursor. The lack of precursor resulted in a marginal improvement in total x-ray yield and power, and up to 20% increase in Al K-shell yield. The Al K-shell radiated energy was found to increase with decreasing the number of arrays in closely spaced and star-like wire arrays.

  18. 2210 IEEE TRANSACTIONS ON MAGNETICS, VOL. 37, NO. 4, JULY 2001 Synthesis, Structural Order and Magnetic Behavior of

    E-print Network

    Krishnan, Kannan M.

    2210 IEEE TRANSACTIONS ON MAGNETICS, VOL. 37, NO. 4, JULY 2001 Synthesis, Structural Order and Magnetic Behavior of Self-Assembled "-Co Nanocrystal Arrays Victor F. Puntes and Kannan M. Krishnan Abstract--The synthesis of magnetic nanoparticles with monodispere size distributions, their self assembly

  19. Passive microfluidic array card and reader

    DOEpatents

    Dugan, Lawrence Christopher (Modesto, CA); Coleman, Matthew A. (Oakland, CA)

    2011-08-09

    A microfluidic array card and reader system for analyzing a sample. The microfluidic array card includes a sample loading section for loading the sample onto the microfluidic array card, a multiplicity of array windows, and a transport section or sections for transporting the sample from the sample loading section to the array windows. The microfluidic array card reader includes a housing, a receiving section for receiving the microfluidic array card, a viewing section, and a light source that directs light to the array window of the microfluidic array card and to the viewing section.

  20. Vortices in dense self-assembled hole arrays.

    SciTech Connect

    Crabtree, G. W.; Welp, U.; Xiao, Z. L.; Jiang, J. S.; Vlasko-Vlasov, V. K.; Bader, S. D.; Liang, J.; Chik, H.; Xu, J. M.

    2002-10-09

    We present a study of the upper critical field and pinning strength from the resistivity and magnetization of a Nb film containing a dense array of 45 nm diameter holes on a hexagonal lattice with a spacing of 101 nm. The holes were formed by self-assembly in anodic aluminum oxide (AAO) using an electrochemical procedure. Confinement effects and Little-Parks oscillations are seen above 6 K, and strong pinning with matching field effects is seen below 6 K. Above the first matching field interstitial vortices coexist with vortices trapped in the hole array. Pinning in the Nb films with hole arrays is enhanced by two orders of magnitude over that in continuous Nb films. At low temperature, flux avalanches are observed and imaged using the magneto-optical Faraday effect.

  1. Diagnosable structured logic array

    NASA Technical Reports Server (NTRS)

    Whitaker, Sterling (Inventor); Miles, Lowell (Inventor); Gambles, Jody (Inventor); Maki, Gary K. (Inventor)

    2009-01-01

    A diagnosable structured logic array and associated process is provided. A base cell structure is provided comprising a logic unit comprising a plurality of input nodes, a plurality of selection nodes, and an output node, a plurality of switches coupled to the selection nodes, where the switches comprises a plurality of input lines, a selection line and an output line, a memory cell coupled to the output node, and a test address bus and a program control bus coupled to the plurality of input lines and the selection line of the plurality of switches. A state on each of the plurality of input nodes is verifiably loaded and read from the memory cell. A trusted memory block is provided. The associated process is provided for testing and verifying a plurality of truth table inputs of the logic unit.

  2. Advanced Solidstate Array Spectroradiometer

    NASA Technical Reports Server (NTRS)

    Huegel, F. G.; Irons, J.

    1988-01-01

    During the Summer of 1987, the Advanced Solidstate Array Spectroradiometer (ASAS) was installed and flown on the NASA Ames C-130 in support of the First International Field Experiment (FIFE) missions. The study site was over the grassland areas of the Konza Prairie in Kansas. The data collected with ASAS during these flights has been used to produce the first nearly simultaneous multiangular/multispectral images of selected terrestrial study sites. This data will be valuable in the study of surface bidirectional reflectance and albedo. The data will also be useful for the development of data analysis algorithms for future spaceborne instruments such as the Goddard MODIS-T and JPL's HIRIS. The flight data acquired is further analyzed.

  3. Array biosensor: recent developments

    NASA Astrophysics Data System (ADS)

    Golden, Joel P.; Rowe-Taitt, Chris A.; Feldstein, Mark J.; Ligler, Frances S.

    1999-05-01

    A fluorescence-based immunosensor has been developed for simultaneous analyses of multiple samples for 1 to 6 different antigens. A patterned array of recognition antibodies immobilized on the surface of a planar waveguide is used to 'capture' analyte present in samples. Bound analyte is then quantified by means of fluorescent detector molecules. Upon excitation of the fluorescent label by a small diode laser, a CCD camera detects the pattern of fluorescent antigen:antibody complexes on the sensor surface. Image analysis software correlates the position of fluorescent signals with the identity of the analyte. A new design for a fluidics distribution system is shown, as well as results from assays for physiologically relevant concentrations of staphylococcal enterotoxin B (SEB), F1 antigen from Yersinia pestis, and D- dimer, a marker of sepsis and thrombotic disorders.

  4. Next-Generation Microshutter Arrays for Large-Format Imaging and Spectroscopy

    NASA Technical Reports Server (NTRS)

    Moseley, Samuel; Kutyrev, Alexander; Brown, Ari; Li, Mary

    2012-01-01

    A next-generation microshutter array, LArge Microshutter Array (LAMA), was developed as a multi-object field selector. LAMA consists of small-scaled microshutter arrays that can be combined to form large-scale microshutter array mosaics. Microshutter actuation is accomplished via electrostatic attraction between the shutter and a counter electrode, and 2D addressing can be accomplished by applying an electrostatic potential between a row of shutters and a column, orthogonal to the row, of counter electrodes. Microelectromechanical system (MEMS) technology is used to fabricate the microshutter arrays. The main feature of the microshutter device is to use a set of standard surface micromachining processes for device fabrication. Electrostatic actuation is used to eliminate the need for macromechanical magnet actuating components. A simplified electrostatic actuation with no macro components (e.g. moving magnets) required for actuation and latching of the shutters will make the microshutter arrays robust and less prone to mechanical failure. Smaller-size individual arrays will help to increase the yield and thus reduce the cost and improve robustness of the fabrication process. Reducing the size of the individual shutter array to about one square inch and building the large-scale mosaics by tiling these smaller-size arrays would further help to reduce the cost of the device due to the higher yield of smaller devices. The LAMA development is based on prior experience acquired while developing microshutter arrays for the James Webb Space Telescope (JWST), but it will have different features. The LAMA modular design permits large-format mosaicking to cover a field of view at least 50 times larger than JWST MSA. The LAMA electrostatic, instead of magnetic, actuation enables operation cycles at least 100 times faster and a mass significantly smaller compared to JWST MSA. Also, standard surface micromachining technology will simplify the fabrication process, increasing yield and reducing cost.

  5. Solar Array Tracking Control

    Energy Science and Technology Software Center (ESTSC)

    1995-06-22

    SolarTrak used in conjunction with various versions of 68HC11-based SolarTrack hardware boards provides control system for one or two axis solar tracking arrays. Sun position is computed from stored position data and time from an on-board clock/calendar chip. Position feedback can be by one or two offset motor turn counter square wave signals per axis, or by a position potentiometer. A limit of 256 counts resolution is imposed by the on-board analog to digital (A/D)more »convertor. Control is provided for one or two motors. Numerous options are provided to customize the controller for specific applications. Some options are imposed at compile time, some are setable during operation. Software and hardware board designs are provided for Control Board and separate User Interface Board that accesses and displays variables from Control Board. Controller can be used with range of sensor options ranging from a single turn count sensor per motor to systems using dual turn-count sensors, limit sensors, and a zero reference sensor. Dual axis trackers oriented azimuth elevation, east west, north south, or polar declination can be controlled. Misalignments from these orientations can also be accommodated. The software performs a coordinate transformation using six parameters to compute sun position in misaligned coordinates of the tracker. Parameters account for tilt of tracker in two directions, rotation about each axis, and gear ration errors in each axis. The software can even measure and compute these prameters during an initial setup period if current from a sun position sensor or output from photovoltaic array is available as an anlog voltage to the control board''s A/D port. Wind or emergency stow to aj present position is available triggered by digital or analog signals. Night stow is also available. Tracking dead band is adjustable from narrow to wide. Numerous features of the hardware and software conserve energy for use with battery powered systems.« less

  6. Networked Sensor Arrays

    SciTech Connect

    R. J. Tighe

    2002-10-01

    A set of independent radiation sensors, coupled with real-time data telemetry, offers the opportunity to run correlation algorithms for the sensor array as well as to incorporate non-radiological data into the system. This may enhance the overall sensitivity of the sensors and provide an opportunity to project the location of a source within the array. In collaboration with Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL), we have conducted field experiments to test a prototype system. Combining the outputs of a set of distributed sensors permits the correlation that the independent sensor outputs. Combined with additional information such as traffic patterns and velocities, this can reduce random/false detections and enhance detection capability. The principle components of such a system include: (1) A set of radiation sensors. These may be of varying type and complexity, including gamma and/or neutron detectors, gross count and spectral-capable sensors, and low to high energy-resolution sensors. (2) A set of non-radiation sensors. These may include sensors such as vehicle presence and imaging sensors. (3) A communications architecture for near real-time telemetry. Depending upon existing infrastructure and bandwidth requirements, this may be a radio or hard-wire based system. (4) A central command console to pole the sensors, correlate their output, and display the data in a meaningful form to the system operator. Both sensitivity and selectivity are important considerations when evaluating the performance of a detection system. Depending on the application, the optimization of sensitivity as well as the rejection of ''nuisance'' radioactive sources may or may not be critical.

  7. TRMM Solar Array

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Basic requirement of 978.59 watts per Panel output @ 58.9 volts B.O.L. was met on an average basis per agreement with NASA. Lower grade Cells were used on the shadowed Panel (Boom shadow) to maximize available power to the Spacecraft. The average output @ 58.9 volts was 991 watts. The outputs of the four t4) Panels ranged from 960 to 1,022 watts. The Panels successfully passed environmental testing at TRW to the contract specification and subsequent testing at NASA which involved output measurements at elevated temperatures. As this type of Array had never previously been built by TRW (aluminum Substrate with 4 cm x 4.4 cm GaAs Cells), the TRMM Program was a development effort combined with a Qual and Flight production effort. The most significant technical problem was Cell cracking during Qual thermal cycling. The cracking problem was determined to be generic within our Solar Array factory in the application of GaAs Cells to our designs. As a result, a TRW funded manufacturing process verification panel (known as the Manufacturing Verification Panel) was built to demonstrate our ability to properly apply GaAs Cells. The original Qual Panel comprised three (3) design variations with respect to Coverglass-to-Cell and Cell-to-Substrate adhesives. The intent was to qualify multiple designs in case one or more failed. When two of the three combinations failed due to excessive Cell breakage during thermal cycling, NASA was reluctant to allow Flight production based on the one remaining good Qual Panel Quadrant. This issue was pivotal for continuing the contract. Facts and recommendations are as follows: (1) The cause of the excessive cracking was never determined. and (2) The areas where the excessive cracking occurred utilized DC93-500 glassing adhesive which was NASA approved, and had been widely used by TRW on a multitude of projects.

  8. Arrays of ferromagnetic FeCo and FeCr binary nanocluster wires G. H. Lee,a)

    E-print Network

    Kim, Bongsoo

    Korea Received 25 November 2002; accepted 27 June 2003 We report fabrication of the arrays nanowires NWs are important be- cause they may be applied to a high density perpendicular magnetic recording the electrochemical deposition of metals into the well defined arrays of nanopore templates made of either aluminum

  9. Multidimensional solitons in fiber arrays

    SciTech Connect

    Aceves, A.B.; De Angelis, C.; Rubenchik, A.M.; Turitsyn, S.K.

    1993-08-16

    We demonstrate that nonlinear optical fiber arrays can support stable soliton-like pulses with finite energy. The bound state that we have found is localized both in time and in a spatial domain in the direction perpendicular to the pulse propagation. We have proved the boundedness of the Hamiltonian function for the array. Finally, numerical studies support our analytical conclusions.

  10. High Voltage Space Solar Arrays

    NASA Technical Reports Server (NTRS)

    Ferguson, D. C.; Hillard, G. B.; Vayner, B. V.; Galofaro, J. T.; Lyons, Valerie (Technical Monitor)

    2002-01-01

    Recent tests performed at the NASA Glenn Research Center and elsewhere have shown promise in the design and construction of high voltage (300-1000 V) solar arrays for space applications. Preliminary results and implications for solar array design will be discussed, with application to direct-drive electric propulsion and space solar power.

  11. Integrated residential photovoltaic array development

    NASA Technical Reports Server (NTRS)

    Shepard, N. F., Jr.

    1981-01-01

    Three basic module design concepts were analyzed with respect to both production and installation costs. The results of this evaluation were used to synthesize a fourth design which incorporates the best features of these initial concepts to produce a module/array design approach which offers the promise of a substantial reduction in the installed cost of a residential array. A unique waterproofing and mounting scheme was used to reduce the cost of installing an integral array while still maintaining a high probability that the installed array will be watertight for the design lifetime of the system. This recommended concept will also permit the array to be mounted as a direct or stand-off installation with no changes to the module design.

  12. PEP solar array definition study

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The conceptual design of a large, flexible, lightweight solar array is presented focusing on a solar array overview assessment, solar array blanket definition, structural-mechanical systems definition, and launch/reentry blanket protection features. The overview assessment includes a requirements and constraints review, the thermal environment assessment on the design selection, an evaluation of blanket integration sequence, a conceptual blanket/harness design, and a hot spot analysis considering the effects of shadowing and cell failures on overall array reliability. The solar array blanket definition includes the substrate design, hinge designs and blanket/harness flexibility assessment. The structural/mechanical systems definition includes an overall loads and deflection assessment, a frequency analysis of the deployed assembly, a components weights estimate, design of the blanket housing and tensioning mechanism. The launch/reentry blanket protection task includes assessment of solar cell/cover glass cushioning concepts during ascent and reentry flight condition.

  13. Massively Parallel MRI Detector Arrays

    PubMed Central

    Keil, Boris; Wald, Lawrence L

    2013-01-01

    Originally proposed as a method to increase sensitivity by extending the locally high-sensitivity of small surface coil elements to larger areas, the term parallel imaging now includes the use of array coils to perform image encoding. This methodology has impacted clinical imaging to the point where many examinations are performed with an array comprising multiple smaller surface coil elements as the detector of the MR signal. This article reviews the theoretical and experimental basis for the trend towards higher channel counts relying on insights gained from modeling and experimental studies as well as the theoretical analysis of the so-called “ultimate” SNR and g-factor. We also review the methods for optimally combining array data and changes in RF methodology needed to construct massively parallel MRI detector arrays and show some examples of state-of-the-art for highly accelerated imaging with the resulting highly parallel arrays. PMID:23453758

  14. Nanocoax Arrays for Sensing Devices

    NASA Astrophysics Data System (ADS)

    Rizal, Binod

    We have adapted a nanocoax array architecture for high sensitivity, all-electronic, chemical and biological sensing. Arrays of nanocoaxes with various dielectric annuli were developed using polymer replicas of Si nanopillars made via soft lithography. These arrays were implemented in the development of two different kinds of chemical detectors. First, arrays of nanocoaxes constructed with different porosity dielectric annuli were employed to make capacitive detectors for gaseous molecules and to investigate the role of dielectric porosity in the sensitivity of the device. Second, arrays of nanocoaxes with partially hollowed annuli were used to fabricate three-dimensional electrochemical biosensors within which we studied the role of nanoscale gap between electrodes on device sensitivity. In addition, we have employed a molecular imprint technique to develop a non-conducting molecularly imprinted polymer thin film of thickness comparable to size of biomolecules as an "artificial antibody" architecture for the detection of biomolecules.

  15. Chunking of Large Multidimensional Arrays

    SciTech Connect

    Rotem, Doron; Otoo, Ekow J.; Seshadri, Sridhar

    2007-02-28

    Data intensive scientific computations as well on-lineanalytical processing applications as are done on very large datasetsthat are modeled as k-dimensional arrays. The storage organization ofsuch arrays on disks is done by partitioning the large global array intofixed size hyper-rectangular sub-arrays called chunks or tiles that formthe units of data transfer between disk and memory. Typical queriesinvolve the retrieval of sub-arrays in a manner that accesses all chunksthat overlap the query results. An important metric of the storageefficiency is the expected number of chunks retrieved over all suchqueries. The question that immediately arises is "what shapes of arraychunks give the minimum expected number of chunks over a query workload?"In this paper we develop two probabilistic mathematical models of theproblem and provide exact solutions using steepest descent and geometricprogramming methods. Experimental results, using synthetic workloads onreal life data sets, show that our chunking is much more efficient thanthe existing approximate solutions.

  16. Dipolar mode localization and spectral gaps in quasi-periodic arrays of ferromagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Forestiere, Carlo; Miano, Giovanni; Serpico, Claudio; D'Aquino, Massimiliano; Dal Negro, Luca

    2009-06-01

    In this paper we study the spectral, localization, and dispersion properties of the ferromagnetic dipolar modes around a stable, saturated, and spatially uniform equilibrium in quasi-periodically modulated arrays of ferromagnetic nanoparticles based on the Fibonacci sequence. The Fibonacci sequence is the chief example of deterministic quasi-periodic order. The problem is reduced to the study of a linear-generalized eigenvalue equation for a suitable Hermitian operator connected to the micromagnetic effective field, which accounts for the magnetostatic, anisotropy, and Zeeman interactions. The coupling with a weak applied magnetic field, varying sinusoidally in time, is dealt with and the role of the losses is highlighted. By calculating the resonance frequencies and eigenmodes of the Fibonacci arrays we demonstrate the presence of large spectral gaps and strongly localized modes and we evaluate the pseudodispersion diagrams. The magnetization oscillation modes in quasi-periodic arrays of magnetic nanoparticles show, at microwave frequencies, behaviors that are very similar to those shown, at optical frequencies, by plasmon modes in quasi-periodic arrays of metal nanoparticles. The presence of band gaps and strongly localized states in magnetic nanoparticle arrays based on quasi-periodic order may have an impact in the design and fabrication of new microwave nanodevices and magnetic nanosensors.

  17. Experimental studies and micromagnetic simulations of electrodeposited Co nanotube arrays

    SciTech Connect

    Pathak, Sachin; Singh, Sukhvinder; Gaur, Rajmani; Sharma, Manish

    2014-08-07

    Magnetic hollow nanotubes of cobalt forming close-packed arrays are synthesized by controlling the growth during electrodeposition in AAO template. Superconducting quantum interference device (SQUID) magnetometry is used to experimentally measure the static magnetization of the array of nanotubes. Excellent qualitative agreements of SQUID and micromagnetic simulations for static measurements are observed. This motivates us to evaluate dynamic response measurements via micromagnetic simulations. The coercivity simulated along the longitudinal axis of the nanotube is found increase with the length of isolated as well as for array of nanotubes. The effect of interactions is also clearly observed both in static as well as in dynamic evaluations. The interactions cause reduction in coercivity along with the switching which depends upon the length of the nanotubes. The calculation for FMR modes also indicates that propagation of the spin waves are greatly influenced by the hollow centre of nanotube as compare to nanowire and support to maintain the stable vortex configuration. For array of nanotubes, multiple peaks are found over larger number of frequencies which is anticipated due the interactions between nanotubes. Simulation for bias field and angular dependence of spin wave modes also yields a significant influenced by the presence of neighbouring nanotubes.

  18. A Compact, Modular Package for Superconducting Bolometer Arrays

    NASA Technical Reports Server (NTRS)

    Benford, D.

    2008-01-01

    As bolometer arrays grow to ever-larger formats, packaging becomes a more critical engineering issue. We have designed a detector package to house a superconducting bolometer array, SQUID multiplexers, bias and filtering circuitry, and electrical connectors. The package includes an optical filter, magnetic shielding, and has well-defined thermal and mechanical interfaces. An early version of this package has been used successfully in the GISMO 2mm camera, a 128-pixel camera operating at a base temperature of 270mK. A more advanced package permits operation at lower temperatures by providing direct heat sinking to the SQUIDS and bias resistors, which generate the bulk of the dissipation in the package. Standard electrical connectors provide reliable contact while enabling quick installation and removal of the package. We describe how the design compensates for differing thermal expansions, allows heat sinking of the bolometer array, and features magnetic shielding in critical areas. We highlight the performance of this detector package and describe its scalability to 1280-pixel arrays in the near future.

  19. Sequential vortex hopping in an array of artificial pinning centers

    SciTech Connect

    Keay, J. C.

    2010-02-24

    We use low-temperature magnetic force microscopy (MFM) to study the hopping motion of vortices in an array of artificial pinning centers (APCs). The array consists of nanoscale holes etched in a niobium thin film by Ar-ion sputtering through an anodic aluminum-oxide template. Variable-temperature magnetometry shows a transition temperature of 7.1 K and an enhancement of the magnetization up to the third matching field at 5 K. Using MFM with attractive and repulsive tip-vortex interaction, we measure the vortex-pinning strength and investigate the motion of individual vortices in the APC array. The depinning force for individual vortices at low field ranged from 0.7 to 1.2 pN. The motion of individual vortices was found to be reproducible and consistent with movement between adjacent holes in the film. The movements are repeatable but the sequence of hops depends on the scan direction. This asymmetry in the motion indicates nonuniform local pinning, a consequence of array disorder and hole-size variation.

  20. A novel electron gun with an independently addressable cathode array.

    SciTech Connect

    Rudys, Joseph Matthew; Reed, Kim Warren; Peña, Gary Edward; Schneider, Larry X.

    2006-08-01

    The design of a novel electron gun with an array of independently addressable cathode elements is presented. Issues relating to operation in a 6.5 Tesla axial magnetic field are discussed. Simulations with the TriComp [1] electromagnetic field code that were used to determine the space charge limited tube characteristic and to model focusing of the electron beam in the magnetic field are reviewed. Foil heating and stress calculations are discussed. The results of CYLTRAN [2] simulations yielding the energy spectrum of the electron beam and the current transmitted through the foil window are presented.

  1. Artificial kagome arrays of nanomagnets: a frozen dipolar spin ice.

    PubMed

    Rougemaille, N; Montaigne, F; Canals, B; Duluard, A; Lacour, D; Hehn, M; Belkhou, R; Fruchart, O; El Moussaoui, S; Bendounan, A; Maccherozzi, F

    2011-02-01

    Magnetic frustration effects in artificial kagome arrays of nanomagnets are investigated using x-ray photoemission electron microscopy and Monte Carlo simulations. Spin configurations of demagnetized networks reveal unambiguous signatures of long range, dipolar interaction between the nanomagnets. As soon as the system enters the spin ice manifold, the kagome dipolar spin ice model captures the observed physics, while the short range kagome spin ice model fails. PMID:21405433

  2. Imaging Radio Photospheres with the Jansky Very Large Array

    NASA Astrophysics Data System (ADS)

    Matthews, L. D.; Reid, M. J.; Menten, K. M.

    2015-08-01

    Using the Jansky Very Large Array (JVLA), we have imaged the radio photosphere of the long-period variable star W Hya at 45 GHz (˜ 7 mm) with a resolution of ˜ 40 mas. Our data reveal a non-spherical photospheric shape, consistent with earlier measurements. We also find evidence for an elongation along PA ? -5°, the orientation of which is consistent with the previously measured projected magnetic field direction and an extension in the 18 ?m dust emission, both at larger scales.

  3. Diastolic arrays : throughput-driven reconfigurable computing

    E-print Network

    Cho, Myong Hyon, Ph. D. Massachusetts Institute of Technology

    2008-01-01

    In this thesis, we propose a new reconfigurable computer substrate: diastolic arrays. Diastolic arrays are arrays of processing elements that communicate exclusively through First-In First-Out (FIFO) queues, and provide ...

  4. Replica amplification of nucleic acid arrays

    DOEpatents

    Church, George M. (Brookline, MA); Mitra, Robi D. (Chestnut Hill, MA)

    2010-08-31

    Disclosed are improved methods of making and using immobilized arrays of nucleic acids, particularly methods for producing replicas of such arrays. Included are methods for producing high density arrays of nucleic acids and replicas of such arrays, as well as methods for preserving the resolution of arrays through rounds of replication. Also included are methods which take advantage of the availability of replicas of arrays for increased sensitivity in detection of sequences on arrays. Improved methods of sequencing nucleic acids immobilized on arrays utilizing single copies of arrays and methods taking further advantage of the availability of replicas of arrays are disclosed. The improvements lead to higher fidelity and longer read lengths of sequences immobilized on arrays. Methods are also disclosed which improve the efficiency of multiplex PCR using arrays of immobilized nucleic acids.

  5. DC and RF Measurements of Serial Bi-SQUID Arrays

    E-print Network

    Prokopenko, G V; de Escobar, A Leese; Taylor, B; de Andrade, M C; Berggren, S; Longhini, P; Palacios, A; Nisenoff, M; Fagaly, R L

    2012-01-01

    SQUID arrays are promising candidates for low profile antennas and low noise amplifier applications. We present the integrated circuit designs and results of DC and RF measurements of the wideband serial arrays based on integration of linear bi-SQUID cells forming a Superconducting Quantum Interference Filter (bi-SQUID SQIF). Various configurations of serial arrays designs are described. The measured linearity, power gain, and noise temperature are analyzed and compared. The experimental results are matched to results of mathematical modeling. A serial bi-SQUID SQIF arrays are mounted into a coplanar waveguide (CPW) and symmetrically grounded to corresponding sides of CPW. The RF output comes out from the central common line, which is also used for DC biasing and forms a symmetrical balanced output. The signal and DC flux biasing line is designed as coplanar lines passed in parallel over each bi-SQUID cell in a bidirectional fashion concentrating magnetic flux inside of each cell. Serial bi-SQUID SQIF arrays ...

  6. Magnetocardiography with a modular spin-exchange relaxation free atomic magnetometer array

    E-print Network

    Wyllie, R; Smetana, G; Wakai, R; Walker, T

    2011-01-01

    We present a portable four-channel atomic magnetometer array operating in the spin exchange relaxation-free regime. The magnetometer array has several design features intended to maximize its suitability for biomagnetic measurement, specifically foetal magnetocardiography, such as a compact modular design, and fibre coupled lasers. The modular design allows the independent positioning and orientation of each magnetometer, in principle allowing for non-planar array geometries. Using this array in a magnetically shielded room, we acquire adult magnetocadiograms. These measurements were taken with a 6-11 fT Hz^(-1/2) single-channel baseline sensitivity that is consistent with the independently measured noise level of the magnetically shielded room.

  7. High performance hybrid magnetic structure for biotechnology applications

    DOEpatents

    Humphries, David E.; Pollard, Martin J.; Elkin, Christopher J.

    2006-12-12

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides for separation and other biotechnology applications involving holding, manipulation, or separation of magnetic or magnetizable molecular structures and targets. Also disclosed are: a method of assembling the hybrid magnetic plates, a high throughput protocol featuring the hybrid magnetic structure, and other embodiments of the ferromagnetic pole shape, attachment and adapter interfaces for adapting the use of the hybrid magnetic structure for use with liquid handling and other robots for use in high throughput processes.

  8. JWST microshutter array system and beyond

    NASA Astrophysics Data System (ADS)

    Li, M. J.; Brown, A. D.; Kutyrev, A. S.; Moseley, H. S.; Mikula, V.

    2010-02-01

    We have developed the Microshutter Array (MSA) system at NASA Goddard Space Flight Center (GSFC) as a multi-object aperture array for the Near Infrared Spectrograph (NIRSpec) instrument on the James Webb Space Telescope (JWST). The MSA system will enable NIRSpec to simultaneously obtain spectra from more than 100 targets, which, in turn, increases instrument efficiency one-hundred fold. Consequently, this system represents one of the three major innovations on the JWST, which has been selected by the National Research Council's 2001 decadal survey as the top-ranked space-based mission and is scheduled to be the successor to the Hubble Space Telescope. Furthermore, the MSA system will be one of the first MEMS devices serving observation missions in space. Microshutters are designed for the selective transmission of light with high efficiency and contrast and feature torsion hinges, light shields, deep-reactive ion-etched silicon windows, magnetic actuation, and electrostatic latching and addressing. Complete MSA quadrant assemblies consisting of 365 x 181 microshutters have been successfully fabricated. The assemblies have passed a series of critical reviews, which include programmable 2-D addressing, life tests, optical contrast tests, and environmental tests, required by the design specifications of JWST. Both the MSA and NIRSpec will be delivered to ESA for final assembly, and JWST is scheduled to launch in 2014. During final assembly and testing of the MSA system, we have begun to develop the Next Generation Microshutter Arrays (NGMSA) for future telescopes. These telescopes will require a much larger field of view than JWST's, and we discuss strategies for fabrication of a proof-of-concept NGMSA which will be modular in design and electrostatically actuated.

  9. Micromagnetic study of lithographically defined non-magnetic periodic nanostructures in magnetic thin films

    NASA Astrophysics Data System (ADS)

    Torres, L.; Lopez-Diaz, L.; Alejos, O.; Iñiguez, J.

    2000-01-01

    A micromagnetic study of non-magnetic periodic structures in magnetic thin films has been carried out. Periodic arrays of non-magnetic squares and rectangles are pointed out as the most appropriate systems for engineering hysteresis properties and ultra-high density storage applications. Non-magnetic structures with size ranging from 2 lex to 10 lex have been studied, lex being the exchange length of the magnetic material. Variations in the coercivity of two orders of magnitude are found for some rectangle arrays depending on the direction of the applied field. Remanent states adequate for magnetic storage in rectangular bits for a theoretical alloy with lex/ ?=0.5 ( ??wall width parameter) have been found to record areal densities in the order of 750 Gbits/in 2.

  10. Synthesis and screening combinatorial arrays of zeolites

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    2003-11-18

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  11. CLAES focal plane array. [Cryogenic Limb Array Etalon Spectrometer

    NASA Technical Reports Server (NTRS)

    Roche, A. E.; Sterritt, L. W.; Kumer, J. B.; Callary, P. C.; Nielsen, R. L.

    1989-01-01

    The Cryogenic Limb Array Etalon Spectrometer for the NASA Upper Atmospheric Research Satellite uses solid-state focal plane arrays to detect emission from the earth's atmosphere over the IR wavelength range 3.5 to 13 microns. This paper discusses the design of the focal plane detector assembly and compares calculated performance with measurements. Measurements were made of focal plane noise and responsivity as functions of frequency (2 to 500 Hz) and temperature (12 to 19 K), pixel-to-pixel and across-array crosstalk, and linearity over a dynamic range of 100,000. The measurements demonstrate that the arrays satisfy the science requirements, and that, in general, there is reasonable agreement between the measurements and the analytical model.

  12. Living Microlens Arrays

    PubMed Central

    Zimberlin, Jessica A.; Wadsworth, Patricia; Crosby, Alfred J.

    2010-01-01

    Both individual cells and sheets of cells exert traction forces on the substrate and these forces have been investigated using a wide range of methods. Here we compare the mechanical properties of fibroblasts and epithelial cells using a novel surface geometry. Living cells are added to a thin film of polystyrene [PS] attached to a substrate of crosslinked poly(dimethyl siloxane) [PDMS] microwells. The contractile nature of the cells attached to the surface and the compliance of the PDMS surface geometry allows the PS thin film to buckle, forming arrays of convex microlenses. The resulting curvature of the microlenses allows us to determine the applied strain of growing cell sheets. We report that a monolayer of epithelial cells exerts more stress on the substrate than fibroblasts and attribute this to the collective behavior of the epithelium. By subsequently adding different chemical triggers to the system, the contractile nature of the cells changes, thus modifying the focal length of the microlenses. Together, these findings demonstrate the importance of studying the mechanics of cell sheets and also introduce a new design paradigm for advanced materials, offering great promise for a range of applications. PMID:18615631

  13. VLSI array processor

    NASA Astrophysics Data System (ADS)

    Greenwood, E.

    1982-07-01

    The Arithmetic Processor Unit (APU) data base design check was completed. Minor design rule violations and design improvements were accomplished. The APU mask set has been fabricated and checked. Initial checking of all mask layers revealed a design rule problem in one layer. That layer was corrected, refabricated and checked out. The mask set has been delivered to the chip fabrication area. The fabrication process has been initiated. All work on the Array Processor Demonstration System (APDS) has been suspended at CHI until the additionally requested funding was received. That funding has been authorized and CHI will begin work on the APDS in July. The following activities are planned in the following quarter: 1) Complete fabrication of the first lot of VLSI APU devices. 2) Complete integration and check-out of the APDS simulator. 3) Complete integration and check-out of the APU breadboard. 4) Verify the VLSI APU wafer tests with the APU breadboard. 5) Complete check-out of the APDS using the APU breadboard.

  14. Particle sensor array

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G. (Inventor); Blaes, Brent R. (Inventor); Lieneweg, Udo (Inventor)

    1994-01-01

    A particle sensor array which in a preferred embodiment comprises a static random access memory having a plurality of ion-sensitive memory cells, each such cell comprising at least one pull-down field effect transistor having a sensitive drain surface area (such as by bloating) and at least one pull-up field effect transistor having a source connected to an offset voltage. The sensitive drain surface area and the offset voltage are selected for memory cell upset by incident ions such as alpha-particles. The static random access memory of the present invention provides a means for selectively biasing the memory cells into the same state in which each of the sensitive drain surface areas is reverse biased and then selectively reducing the reversed bias on these sensitive drain surface areas for increasing the upset sensitivity of the cells to ions. The resulting selectively sensitive memory cells can be used in a number of applications. By way of example, the present invention can be used for measuring the linear energy transfer of ion particles, as well as a device for assessing the resistance of CMOS latches to Cosmic Ray induced single event upsets. The sensor of the present invention can also be used to determine the uniformity of an ion beam.

  15. RF Pulse Design for Parallel Excitation in Magnetic Resonance Imaging 

    E-print Network

    Liu, Yinan

    2012-07-16

    Parallel excitation is an emerging technique to improve or accelerate multi-dimensional spatially selective excitations in magnetic resonance imaging (MRI) using multi-channel transmit arrays. The technique has potential in many applications...

  16. Microfluidically Cryo-Cooled Planar Coils for Magnetic Resonance Imaging 

    E-print Network

    Koo, Chiwan

    2013-08-09

    High signal-to-noise ratio (SNR) is typically required for higher resolution and faster speed in magnetic resonance imaging (MRI). Planar microcoils as receiver probes in MRI systems offer the potential to be configured into array elements for fast...

  17. Magneto-optical Kerr Effect Studies of Artificial Frustrated Magnets

    NASA Astrophysics Data System (ADS)

    Kohli, K. K.; Balk, A. L.; Li, J.; Zhang, S.; Lammert, P.; Crespi, V. H.; Schiffer, P.; Samarth, N.

    2011-03-01

    We use the magneto-optical Kerr effect (MOKE) to study the collective magnetic behavior of geometrically frustrated arrays of single-domain ferromagnetic islands. By varying the island spacing, lattice geometry and the orientation relative to the magnetic field, we probe the properties of the arrays via MOKE measurements of the net moment of the arrays. We study the influence of local geometry and frustration on the collective magnetization reversal process, using the switching field as a measure. Further, angle-resolved MOKE measurements probe the influence of individual island shape anisotropy on the collective anisotropy of interacting arrays. Finally, we present preliminary measurements in an oscillating magnetic field. The results are compared to the results of micromagnetic simulation. We thank M. Ericson and C. Leighton for sample preparation. This research was supported by the US Dept. of Energy.

  18. The Active Sun Telescope Array

    NASA Technical Reports Server (NTRS)

    Walker, Arthur B. C., Jr.; Timothy, J. G.; Barbee, Troy W., Jr.; Hoover, Richard B.

    1991-01-01

    The concept of the Active Sun Telescope Array (ASTA) designed as a part of the NASA Orbiting Solar Laboratory is described together with the details of the ASTA instrument package. The ASTA, which will investigate the phenomenology of the solar chromosphere and the corona, consists of six EUV/XUV solar telescopes designed to provide wide field solar images in narrow wavelength bands, high-resolution spectroheliograms, and line profiles of the solar plasma in the temperature range from 10,000 K to 30,000 K. The detectors used in the ASTA are of the multianode multichannel array photon-counting array detector type.

  19. Fabrication of square arrays of inverted pyramids using ABC triblock terpolymer

    NASA Astrophysics Data System (ADS)

    Choi, Hong Kyoon; Ross, Caroline; Yu, Hang; Thompson, Carl

    2012-02-01

    Nanolithography using Self-assembly of block copolymer thin film is promising technique to fabricate a wide range of useful devices. Previously, we have reported that we could achieve square array which is one of most important device geometry by using Polyisoprene-b-polystyrene-b-polyferrocenylsilane triblock terpolymer. In this presentation, self-assembled PI-b-PS-b-PFS triblock terpolymer thin film was used as an etching mask to fabricate array of silicon inverted pyramids. Solvent annealed thin film PI-b-PS-b-PFS triblock terpolymer forms a square array of PFS and PI alternation cylinders in a PS matrix with a period of 44 nm. When this square arrayed polymer film immersed into hexane, a good solvent for PI and poor solvent for PS and PFS, an ordered square array of holes was produced by PI phase coming out from its cylindrical post and covering the surface. By using this hole patterned polymer film as an etching mask, KOH anisotropic silicon etching produce square array of inverted pyramids of period 44nm etched into silicon substrate. These square arrays of inverted pyramids are used to template the dewetting of metal film to form metal nanoparticle arrays. Produced ordered metal nanoparticles can be used as magnetic memory arrays and also useful as catalysts for nanowires/nanotube growth.

  20. Magnetic Levitation.

    ERIC Educational Resources Information Center

    Rossing, Thomas D.; Hull, John R.

    1991-01-01

    Discusses the principles of magnetic levitation presented in the physics classroom and applied to transportation systems. Topics discussed include three classroom demonstrations to illustrate magnetic levitation, the concept of eddy currents, lift and drag forces on a moving magnet, magnetic levitation vehicles, levitation with permanent magnets

  1. Areal array jetting device for ball grid arrays

    SciTech Connect

    Frear, D.R.; Yost, F.G.; Schmale, D.T.; Essien, M.

    1997-08-01

    Package designs for microelectronics devices have moved from through-hole to surface mount technology in order to increase the printed wiring board real estate available by utilizing both sides of the board. The traditional geometry for surface mount devices is peripheral arrays where the leads are on the edges of the device. As the technology drives towards high input/output (I/O) count (increasing number of leads) and smaller packages with finer pitch (less distance between peripheral leads), limitations on peripheral surface mount devices arise. A solution to the peripheral surface mount issue is to shift the leads to the area under the device. This scheme is called areal array packaging and is exemplified by the ball grid array (BGA) package. In a BGA package, the leads are on the bottom surface of the package in the form of an array of solder balls. The current practice of joining BGA packages to printed wiring boards involves a hierarchy of solder alloy compositions. A high melting temperature ball is typically used for standoff. A promising alternative to current methods is the use of jetting technology to perform monolithic solder ball attachment. This paper describes an areal array jetter that was designed and built to simultaneously jet arrays of solder balls directly onto BGA substrates.

  2. Statistical study of effective anisotropy field in ordered ferromagnetic nanowire arrays.

    PubMed

    Zhao, S; Clime, L; Chan, K; Normandin, F; Roberge, H; Yelon, A; Cochrane, R W; Veres, T

    2007-01-01

    Soft ferromagnetic nanowire arrays were obtained by electrodeposition of Co-Fe-P alloy into the pores of high quality home-made anodized aluminum oxide (AAO) templates. Bath acidity and current density were the two parameters used in order to tailor the orientation of local anisotropy axes in individual nanowires. In order to quantify the influence of the induced anisotropies on the magnetization processes in individual nanowires, the in-plane magnetization loops of the arrays are modeled as log-normal distributions of Stoner-Wohlfarth transverse magnetization processes. Using the lognormal mean parameter as an approximation for the saturation applied field of the array, we compute the effective anisotropy of the nanowires, which is found to increase with the pH of the electrodeposition bath. PMID:17455508

  3. Multiplexed readout of MMC detector arrays using non-hysteretic rf-SQUIDs

    E-print Network

    Kempf, S; Gastaldo, L; Fleischmann, A; Enss, C

    2013-01-01

    Metallic magnetic calorimeters (MMCs) are widely used for various experiments in fields ranging from atomic and nuclear physics to x-ray spectroscopy, laboratory astrophysics or material science. Whereas in previous experiments single pixel detectors or small arrays have been used, for future applications large arrays are needed. Therefore, suitable multiplexing techniques for MMC arrays are currently under development. A promising approach for the readout of large arrays is the microwave SQUID multiplexer that operates in the frequency domain and that employs non-hysteretic rf-SQUIDs to transduce the detector signals into a frequency shift of high $Q$ resonators which can be monitored by using standard microwave measurement techniques. In this paper we discuss the design and the expected performance of a recently developed and fabricated 64 pixel detector array with integrated microwave SQUID multiplexer. First experimental data were obtained characterizing dc-SQUIDs with virtually identical washer design.

  4. Magnetic Imaging of Micrometer and Nanometer-size Magnetic Structures and Their Flux-Pinning Effects on Superconducting Thin Films 

    E-print Network

    Ozmetin, Ali E.

    2010-07-14

    to various ferromagnetic structures. These magnetic structures include: (i) alternating iron-brass shims of 275 mu m period, (ii) an array of 4 mu m wide Co stripes with smaller period (9 mu m), (iii) a square array of 50nm diameter, high aspect ratio (5...

  5. Downsampling Photodetector Array with Windowing

    NASA Technical Reports Server (NTRS)

    Patawaran, Ferze D.; Farr, William H.; Nguyen, Danh H.; Quirk, Kevin J.; Sahasrabudhe, Adit

    2012-01-01

    In a photon counting detector array, each pixel in the array produces an electrical pulse when an incident photon on that pixel is detected. Detection and demodulation of an optical communication signal that modulated the intensity of the optical signal requires counting the number of photon arrivals over a given interval. As the size of photon counting photodetector arrays increases, parallel processing of all the pixels exceeds the resources available in current application-specific integrated circuit (ASIC) and gate array (GA) technology; the desire for a high fill factor in avalanche photodiode (APD) detector arrays also precludes this. Through the use of downsampling and windowing portions of the detector array, the processing is distributed between the ASIC and GA. This allows demodulation of the optical communication signal incident on a large photon counting detector array, as well as providing architecture amenable to algorithmic changes. The detector array readout ASIC functions as a parallel-to-serial converter, serializing the photodetector array output for subsequent processing. Additional downsampling functionality for each pixel is added to this ASIC. Due to the large number of pixels in the array, the readout time of the entire photodetector is greater than the time between photon arrivals; therefore, a downsampling pre-processing step is done in order to increase the time allowed for the readout to occur. Each pixel drives a small counter that is incremented at every detected photon arrival or, equivalently, the charge in a storage capacitor is incremented. At the end of a user-configurable counting period (calculated independently from the ASIC), the counters are sampled and cleared. This downsampled photon count information is then sent one counter word at a time to the GA. For a large array, processing even the downsampled pixel counts exceeds the capabilities of the GA. Windowing of the array, whereby several subsets of pixels are designated for processing, is used to further reduce the computational requirements. The grouping of the designated pixel frame as the photon count information is sent one word at a time to the GA, the aggregation of the pixels in a window can be achieved by selecting only the designated pixel counts from the serial stream of photon counts, thereby obviating the need to store the entire frame of pixel count in the gate array. The pixel count se quence from each window can then be processed, forming lower-rate pixel statistics for each window. By having this processing occur in the GA rather than in the ASIC, future changes to the processing algorithm can be readily implemented. The high-bandwidth requirements of a photon counting array combined with the properties of the optical modulation being detected by the array present a unique problem that has not been addressed by current CCD or CMOS sensor array solutions.

  6. A lightweight solar array study

    NASA Technical Reports Server (NTRS)

    Josephs, R. H.

    1977-01-01

    A sample module was assembled to model a portion of a flexible extendable solar array, a type that promises to become the next generation of solar array design. The resulting study of this module is intended to provide technical support to the array designer for lightweight component selection, specifications, and tests. Selected from available lightweight components were 127-micron-thick wrap-around contacted solar cells, 34- micron-thick sputtered glass covers, and as a substrate a 13-micron-thick polyimide film clad with a copper printed circuit. Each component displayed weaknesses. The thin solar cells had excessive breakage losses. Sputtered glass cover adhesion was poor, and the covered cell was weaker than the cell uncovered. Thermal stresses caused some cell delamination from the model solar array substrate.

  7. The Murchison Widefield Array Correlator

    E-print Network

    Ord, S M; Emrich, D; Pallot, D; Wayth, R B; Clark, M A; Tremblay, S E; Arcus, W; Barnes, D; Bell, M; Bernardi, G; Bhat, N D R; Bowman, J D; Briggs, F; Bunton, J D; Cappallo, R J; Corey, B E; Deshpande, A A; deSouza, L; Ewell-Wice, A; Feng, L; Goeke, R; Greenhill, L J; Hazelton, B J; Herne, D; Hewitt, J N; Hindson, L; Hurley-Walker, H; Jacobs, D; Johnston-Hollitt, M; Kaplan, D L; Kasper, J C; Kincaid, B B; Koenig, R; Kratzenberg, E; Kudryavtseva, N; Lenc, E; Lonsdale, C J; Lynch, M J; McKinley, B; McWhirter, S R; Mitchell, D A; Morales, M F; Morgan, E; Oberoi, D; Offringa, A; Pathikulangara, J; Pindor, B; Prabu, T; Procopio, P; Remillard, R A; Riding, J; Rogers, A E E; Roshi, A; Salah, J E; Sault, R J; Shankar, N Udaya; Srivani, K S; Stevens, J; Subrahmanyan, R; Tingay, S J; Waterson, M; Webster, R L; Whitney, A R; Williams, A; Williams, C L; Wyithe, J S B

    2015-01-01

    The Murchison Widefield Array (MWA) is a Square Kilometre Array (SKA) Precursor. The telescope is located at the Murchison Radio--astronomy Observatory (MRO) in Western Australia (WA). The MWA consists of 4096 dipoles arranged into 128 dual polarisation aperture arrays forming a connected element interferometer that cross-correlates signals from all 256 inputs. A hybrid approach to the correlation task is employed, with some processing stages being performed by bespoke hardware, based on Field Programmable Gate Arrays (FPGAs), and others by Graphics Processing Units (GPUs) housed in general purpose rack mounted servers. The correlation capability required is approximately 8 TFLOPS (Tera FLoating point Operations Per Second). The MWA has commenced operations and the correlator is generating 8.3 TB/day of correlation products, that are subsequently transferred 700 km from the MRO to Perth (WA) in real-time for storage and offline processing. In this paper we outline the correlator design, signal path, and proce...

  8. Localization in active incommensurate arrays

    E-print Network

    T. V. Laptyeva; S. V. Denisov; G. V. Osipov; M. V. Ivanchenko

    2014-12-01

    In a dissipationless linear lattice, spatial disorder or incommensurate modulation induce localization of the lattice eigenstates and block spreading of wave packets. Additionally, incommensurate arrays allow for the metal-insulator transition at a finite modulation amplitude already in one dimension. The addition of nonlinearity to the lattice Hamiltonian causes interaction between the eigenstates, which results in a slow packet spreading. We go beyond the dissipationless limit and consider nonlinear quasi-periodic arrays that are subjected to the dissipative losses and energy pumping. We find that there is a finite excitation of oscillations threshold in both metallic and insulating regimes. Moreover, excitation in the metallic and weakly insulating regime displays features of the second order phase transition to global oscillations, in contrast to disordered arrays. The Anderson attractor regime is recovered only in the limit of strong localization. The identified transition, and the further onset of chaos and synchronization can be potentially realized with polariton condensates lattices and cavity-QED arrays.

  9. Dynamically Reconfigurable Systolic Array Accelerator

    NASA Technical Reports Server (NTRS)

    Dasu, Aravind; Barnes, Robert

    2012-01-01

    A polymorphic systolic array framework has been developed that works in conjunction with an embedded microprocessor on a field-programmable gate array (FPGA), which allows for dynamic and complimentary scaling of acceleration levels of two algorithms active concurrently on the FPGA. Use is made of systolic arrays and a hardware-software co-design to obtain an efficient multi-application acceleration system. The flexible and simple framework allows hosting of a broader range of algorithms, and is extendable to more complex applications in the area of aerospace embedded systems. FPGA chips can be responsive to realtime demands for changing applications needs, but only if the electronic fabric can respond fast enough. This systolic array framework allows for rapid partial and dynamic reconfiguration of the chip in response to the real-time needs of scalability, and adaptability of executables.

  10. CMOS-Based Biosensor Arrays

    E-print Network

    Thewes, R; Schienle, M; Hofmann, F; Frey, A; Brederlow, R; Augustyniak, M; Jenkner, M; Eversmann, B; Schindler-Bauer, P; Atzesberger, M; Holzapfl, B; Beer, G; Haneder, T; Hanke, H -C

    2011-01-01

    CMOS-based sensor array chips provide new and attractive features as compared to today's standard tools for medical, diagnostic, and biotechnical applications. Examples for molecule- and cell-based approaches and related circuit design issues are discussed.

  11. Applications of Circular Array Sensors

    E-print Network

    Trawick, Charles D.

    The application of the Reticon RO-64 annular photo-diode array to the task of optical tracking of special targets, direct optical focusing, and automatic printed circuit board inspection were studied. In order to facilitate ...

  12. A comparison of vector and radial magnetometer arrays for whole-head magnetoencephalography

    SciTech Connect

    Hughett, P.; Miyauchi, S.

    1996-02-01

    The number of detectors in magnetometer arrays for magnetoencephalography (MEG) has been steadily increasing, with systems containing or more detectors now possible. It is of considerable interest to know how best to configure such a large array. In particular, is it useful to measure all three components of the magnetic field, rather than just the radial component? This paper compares the information content provided by three different magnetometer arrays for whole-head measurements, using a definition of information content developed by Kemppainen and Ilmoniemi.

  13. Silicon Heat Pipe Array

    NASA Technical Reports Server (NTRS)

    Yee, Karl Y.; Ganapathi, Gani B.; Sunada, Eric T.; Bae, Youngsam; Miller, Jennifer R.; Beinsford, Daniel F.

    2013-01-01

    Improved methods of heat dissipation are required for modern, high-power density electronic systems. As increased functionality is progressively compacted into decreasing volumes, this need will be exacerbated. High-performance chip power is predicted to increase monotonically and rapidly with time. Systems utilizing these chips are currently reliant upon decades of old cooling technology. Heat pipes offer a solution to this problem. Heat pipes are passive, self-contained, two-phase heat dissipation devices. Heat conducted into the device through a wick structure converts the working fluid into a vapor, which then releases the heat via condensation after being transported away from the heat source. Heat pipes have high thermal conductivities, are inexpensive, and have been utilized in previous space missions. However, the cylindrical geometry of commercial heat pipes is a poor fit to the planar geometries of microelectronic assemblies, the copper that commercial heat pipes are typically constructed of is a poor CTE (coefficient of thermal expansion) match to the semiconductor die utilized in these assemblies, and the functionality and reliability of heat pipes in general is strongly dependent on the orientation of the assembly with respect to the gravity vector. What is needed is a planar, semiconductor-based heat pipe array that can be used for cooling of generic MCM (multichip module) assemblies that can also function in all orientations. Such a structure would not only have applications in the cooling of space electronics, but would have commercial applications as well (e.g. cooling of microprocessors and high-power laser diodes). This technology is an improvement over existing heat pipe designs due to the finer porosity of the wick, which enhances capillary pumping pressure, resulting in greater effective thermal conductivity and performance in any orientation with respect to the gravity vector. In addition, it is constructed of silicon, and thus is better suited for the cooling of semiconductor devices.

  14. Phased arrays 1985 symposium: Proceedings

    NASA Astrophysics Data System (ADS)

    Steyskal, H. P.

    1985-08-01

    The Phased Arrays '85 Symposium, sponsored by the Rome Air Development Center, the MITRE Corporation, and the University of Massachusetts, was held at the MITRE Corporation 15 to 18 October and reviewed the state-of-the-art of phased array antenna systems and of the technology for next generation systems. This report contains the full papers which were presented with clearance for unlimited distribution.

  15. Phase-locked laser array

    NASA Technical Reports Server (NTRS)

    Botez, Dan (Inventor); Ackley, Donald E. (Inventor)

    1988-01-01

    A phase-locked laser array comprises a substrate with two spaced-apart pluralities of channels extending towards different reflecting surfaces of the array. The axes of symmetry of the channels of one plurality are offset from the axes of symmetry of the channels of the second plurality. Coupling of light propagating in the optical waveguides over one plurality of channels into the waveguides over the second plurality of channels induces a zero phase difference between the laser oscillations of adjacent channels.

  16. Dynamically Reconfigurable Systolic Array Accelorators

    NASA Technical Reports Server (NTRS)

    Dasu, Aravind (Inventor); Barnes, Robert C. (Inventor)

    2014-01-01

    A polymorphic systolic array framework that works in conjunction with an embedded microprocessor on an FPGA, that allows for dynamic and complimentary scaling of acceleration levels of two algorithms active concurrently on the FPGA. Use is made of systolic arrays and hardware-software co-design to obtain an efficient multi-application acceleration system. The flexible and simple framework allows hosting of a broader range of algorithms and extendable to more complex applications in the area of aerospace embedded systems.

  17. Peptide Arrays on Planar Supports.

    PubMed

    Mancilla, Víctor Tapia; Volkmer, Rudolf

    2016-01-01

    On a past volume of this monograph we have reviewed general aspects of the varied technologies available to generate peptide arrays. Hallmarks in the development of the technology and a main sketch of preparative steps and applications in binding assays were used to walk the reader through details of peptide arrays. In this occasion, we resume from that work and bring in some considerations on quantitative evaluation of measurements as well as on selected reports applying the technology. PMID:26490463

  18. Sensor arrays for detecting microorganisms

    NASA Technical Reports Server (NTRS)

    Lewis, Nathan S. (Inventor); Freund, Michael S. (Inventor)

    2000-01-01

    A sensor array for detecting a microorganism comprising first and second sensors electrically connected to an electrical measuring apparatus, wherein the sensors comprise a region of nonconducting organic material and a region of conducting material compositionally that is different than the nonconducting organic material and an electrical path through the regions of nonconducting organic material and the conducting material. A system for identifying microorganisms using the sensor array, a computer and a pattern recognition algorithm, such as a neural net are also disclosed.

  19. Advanced photovoltaic solar array development

    NASA Technical Reports Server (NTRS)

    Kurland, Richard M.; Stella, Paul

    1989-01-01

    Phase 2 of the Advanced Photovoltaic Solar Array (APSA) program, started in mid-1987, is currently in progress to fabricate prototype wing hardware that will lead to wing integration and testing in 1989. The design configuration and key details are reviewed. A status of prototype hardware fabricated to date is provided. Results from key component-level tests are discussed. Revised estimates of array-level performance as a function of solar cell device technology for geosynchronous missions are given.

  20. Probing cellular traction forces with magnetic nanowires and microfabricated force sensor This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-print Network

    Chen, Christopher S.

    nanowires' for separating and positioning cells in suspension under the control of external magnetic fieldsProbing cellular traction forces with magnetic nanowires and microfabricated force sensor arrays.1088/0957-4484/23/7/075101 Probing cellular traction forces with magnetic nanowires and microfabricated force sensor arrays Yi

  1. Films of Nanolayered Pillar Arrays

    NASA Astrophysics Data System (ADS)

    Tan, Ming; Hao, Yanming; Ren, Xiaobin

    2014-09-01

    In this work, it is found that unique pillar arrays with nanolayered structure can favorably influence the carrier and phonon transport properties of films. p-(Bi0.5Sb0.5)2Te3 pillar array film with (0 1 5) orientation was successfully achieved by a simple ion-beam-assisted technique at deposition temperature of 400°C, owing to the enhanced mobility of deposited atoms for more sufficient growth along the in-plane direction. The pillar diameter was about 250 nm, and the layered nanostructure was clear, with each layer in the pillar array being <30 nm. The properties of the oriented (Bi0.5Sb0.5)2Te3 pillar array were greatly enhanced in comparison with those of ordinary polycrystalline films synthesized at deposition temperature of 350°C and 250°C. The (Bi0.5Sb0.5)2Te3 pillar array film with (0 1 5) preferred orientation exhibited a thermoelectric dimensionless figure of merit of ZT = 1.25 at room temperature. The unique pillar array with nanolayered structure is the main reason for the observed improvement in the properties of the (Bi0.5Sb0.5)2Te3 film.

  2. Integrated residential photovoltaic array development

    NASA Astrophysics Data System (ADS)

    Royal, G. C., III

    1981-04-01

    Sixteen conceptual designs of residential photovoltaic arrays are described. Each design concept was evaluated by an industry advisory panel using a comprehensive set of technical, economic and institutional criteria. Key electrical and mechanical concerns that effect further array subsystem development are also discussed. Three integrated array design concepts were selected by the advisory panel for further optimization and development. From these concepts a single one will be selected for detailed analysis and prototype fabrication. The three concepts selected are: (1) An array of frameless panels/modules sealed in a T shaped zipper locking neoprene gasket grid pressure fitted into an extruded aluminum channel grid fastened across the rafters. (2) An array of frameless modules pressure fitted in a series of zipper locking EPDM rubber extrusions adhesively bonded to the roof. Series string voltage is developed using a set of integral tongue connectors and positioning blocks. (3) An array of frameless modules sealed by a silicone adhesive in a prefabricated grid of rigid tape and sheet metal attached to the roof.

  3. Integrated residential photovoltaic array development

    NASA Technical Reports Server (NTRS)

    Royal, G. C., III

    1981-01-01

    Sixteen conceptual designs of residential photovoltaic arrays are described. Each design concept was evaluated by an industry advisory panel using a comprehensive set of technical, economic and institutional criteria. Key electrical and mechanical concerns that effect further array subsystem development are also discussed. Three integrated array design concepts were selected by the advisory panel for further optimization and development. From these concepts a single one will be selected for detailed analysis and prototype fabrication. The three concepts selected are: (1) An array of frameless panels/modules sealed in a T shaped zipper locking neoprene gasket grid pressure fitted into an extruded aluminum channel grid fastened across the rafters. (2) An array of frameless modules pressure fitted in a series of zipper locking EPDM rubber extrusions adhesively bonded to the roof. Series string voltage is developed using a set of integral tongue connectors and positioning blocks. (3) An array of frameless modules sealed by a silicone adhesive in a prefabricated grid of rigid tape and sheet metal attached to the roof.

  4. X-Ray Calorimeter Arrays for Astrophysics

    NASA Technical Reports Server (NTRS)

    Kilbourne, Caroline A.

    2009-01-01

    High-resolution x-ray spectroscopy is a powerful tool for studying the evolving universe. The grating spectrometers on the XMM and Chandra satellites started a new era in x-ray astronomy, but there remains a need for instrumentation that can provide higher spectral resolution with high throughput in the Fe-K band (around 6 keV) and can enable imaging spectroscopy of extended sources, such as supernova remnants and galaxy clusters. The instrumentation needed is a broad-band imaging spectrometer - basically an x-ray camera that can distinguish tens of thousands of x-ray colors. The potential benefits to astrophysics of using a low-temperature calorimeter to determine the energy of an incident x-ray photon via measurement of a small change in temperature was first articulated by S. H. Moseley over two decades ago. In the time since, technological progress has been steady, though full realization in an orbiting x-ray telescope is still awaited. A low-temperature calorimeter can be characterized by the type of thermometer it uses, and three types presently dominate the field. The first two types are temperature-sensitive resistors - semiconductors in the metal-insulator transition and superconductors operated in the superconducting-normal transition. The third type uses a paramagnetic thermometer. These types can be considered the three generations of x-ray calorimeters; by now each has demonstrated a resolving power of 2000 at 6 keV, but only a semiconductor calorimeter system has been developed to spaceflight readiness. The Soft X-ray Spectrometer on Astro-H, expected to launch in 2013, will use an array of silicon thermistors with I-IgTe x-ray absorbers that will operate at 50 mK. Both the semiconductor and superconductor calorimeters have been implemented in small arrays, kilo-pixel arrays of the superconducting calorimeters are just now being produced, and it is anticipated that much larger arrays will require the non-dissipative advantage of magnetic thermometers.

  5. Array analysis of seismic signals considering an array beampattern

    NASA Astrophysics Data System (ADS)

    Imanishi, K.; Ito, H.; Kuwahara, Y.

    2001-12-01

    Seismic array data have been widely used in researches such as the discrimination of nuclear explosions, the analysis of seismic scattering, measurements of surface wave dispersion, and monitoring of the seismic activity in volcanic areas. In this study, we present a simple and high-resolution array processing method whose estimators are not pseudo but true ones. We apply the method to estimations of high-frequency rupture processes by converting temporal variations in slowness vectors and their associated amplitude into power distributions and rupture times on the fault plane. It has been shown that the minimum variance distortionless (HR) method and the multiple signal classification (MUSIC) method produce higher resolution for the location of the identified waves than the standard Fourier method (CV method). However, the estimators by the HR and MUSIC methods are pseudo ones. In order to obtain true spectral estimators with high resolutions, we propose a frequency-wavenumber method considering an array beampatterm. The observed power spectrum obtained by the CV method is a convolution of the array beampattern with the true power spectrum. Since the array beampatterm reduces the resolution of the spectral estimators, we deconvolve the observed power spectrum with the array beampattern in the wavenumber domain. The solution to this problem is determined using non-negative least squares because the power has a positive quantity. To illustrate the utility of the present method in resolving two closely separated signals, numerical tests are performed with synthetic waves. The present method successfully resolved two separate peaks at almost the correct slowness vectors. The resolution was superior to CV and HR methods and similar to MUSIC method. We then investigate the applicability of the present array processing method to estimations of high-frequency rupture processes. Using synthetic S body-wave seismograms from extended earthquake sources, we show that it is possible to image high-frequency source locations and their associated rupture times with high resolutions.

  6. Magnetic patterning using ion irradiation for highly ordered CoPt alloys with perpendicular anisotropy

    SciTech Connect

    Abes, M.; Venuat, J.; Muller, D.; Carvalho, A.; Schmerber, G.; Beaurepaire, E.; Dinia, A.; Pierron-Bohnes, V.

    2004-12-15

    We used a combination of ion irradiation and e-beam lithography to magnetically pattern an ordered CoPt alloy with strong perpendicular magnetic anisotropy. Ion irradiation disorders the alloy and strongly reduces the magnetic anisotropy. Magnetic force microscopy showed a regular array of 1 {mu}m{sup 2} square dots with perpendicular anisotropy separated by 1 {mu}m large ranges with in-plane anisotropy. This is further confirmed by magnetic measurements, which showed that arrays protected by a 200 nm Pt layer present the same coercive field and the same perpendicular anisotropy as before irradiation. This is promising for applications in magnetic recording technologies.

  7. The Upgraded CARISMA Magnetometer Array in the THEMIS Era

    NASA Astrophysics Data System (ADS)

    Mann, I. R.; Milling, D. K.; Rae, I. J.; Ozeke, L. G.; Kale, A.; Kale, Z. C.; Murphy, K. R.; Parent, A.; Usanova, M.; Pahud, D. M.; Lee, E.-A.; Amalraj, V.; Wallis, D. D.; Angelopoulos, V.; Glassmeier, K.-H.; Russell, C. T.; Auster, H.-U.; Singer, H. J.

    2008-12-01

    This review describes the infrastructure and capabilities of the expanded and upgraded Canadian Array for Realtime InvestigationS of Magnetic Activity (CARISMA) magnetometer array in the era of the THEMIS mission. Formerly operated as the Canadian Auroral Network for the OPEN Program Unified Study (CANOPUS) magnetometer array until 2003, CARISMA capabilities have been extended with the deployment of additional fluxgate magnetometer stations (to a total of 28), the upgrading of the fluxgate magnetometer cadence to a standard data product of 1 sample/s (raw sampled 8 samples/s data stream available on request), and the deployment of a new network of 8 pairs of induction coils (100 samples per second). CARISMA data, GPS-timed and backed up at remote field stations, is collected using Very Small Aperture Terminal (VSAT) satellite internet in real-time providing a real-time monitor for magnetic activity on a continent-wide scale. Operating under the magnetic footprint of the THEMIS probes, data from 5 CARISMA stations at 29-30 samples/s also forms part of the formal THEMIS ground-based observatory (GBO) data-stream. In addition to technical details, in this review we also outline some of the scientific capabilities of the CARISMA array for addressing all three of the scientific objectives of the THEMIS mission, namely: 1. Onset and evolution of the macroscale substorm instability, 2. Production of storm-time MeV electrons, and 3. Control of the solar wind-magnetosphere coupling by the bow shock, magnetosheath, and magnetopause. We further discuss some of the compelling questions related to these three THEMIS mission science objectives which can be addressed with CARISMA.

  8. Neodymium Magnets.

    ERIC Educational Resources Information Center

    Wida, Sam

    1992-01-01

    Uses extremely strong neodymium magnets to demonstrate several principles of physics including electromagnetic induction, Lenz's Law, domain theory, demagnetization, the Curie point, and magnetic flux lines. (MDH)

  9. Magnetographic array for the capture and enumeration of single cells and cell pairs

    PubMed Central

    Shields, C. Wyatt; Livingston, Carissa E.; Yellen, Benjamin B.; López, Gabriel P.; Murdoch, David M.

    2014-01-01

    We present a simple microchip device consisting of an overlaid pattern of micromagnets and microwells capable of capturing magnetically labeled cells into well-defined compartments (with accuracies >95%). Its flexible design permits the programmable deposition of single cells for their direct enumeration and pairs of cells for the detailed analysis of cell-cell interactions. This cell arraying device requires no external power and can be operated solely with permanent magnets. Large scale image analysis of cells captured in this array can yield valuable information (e.g., regarding various immune parameters such as the CD4:CD8 ratio) in a miniaturized and portable platform. PMID:25379081

  10. Coded aperture imaging with uniformly redundant arrays

    DOEpatents

    Fenimore, Edward E. (Los Alamos, NM); Cannon, Thomas M. (Los Alamos, NM)

    1982-01-01

    A system utilizing uniformly redundant arrays to image non-focusable radiation. The uniformly redundant array is used in conjunction with a balanced correlation technique to provide a system with no artifacts such that virtually limitless signal-to-noise ratio is obtained with high transmission characteristics. Additionally, the array is mosaicked to reduce required detector size over conventional array detectors.

  11. Coded aperture imaging with uniformly redundant arrays

    DOEpatents

    Fenimore, Edward E. (Los Alamos, NM); Cannon, Thomas M. (Los Alamos, NM)

    1980-01-01

    A system utilizing uniformly redundant arrays to image non-focusable radiation. The uniformly redundant array is used in conjunction with a balanced correlation technique to provide a system with no artifacts such that virtually limitless signal-to-noise ratio is obtained with high transmission characteristics. Additionally, the array is mosaicked to reduce required detector size over conventional array detectors.

  12. Fast algorithms for triangular Josephson junction arrays

    SciTech Connect

    Datta, S.; Sahdev, D.

    1997-04-01

    We develop fast algorithms for the numerical study of two-dimensional triangular Josephson junction arrays. The Dirac bra-ket formalism is introduced in the context of such arrays. We note that triangular arrays can have both hexagonal and rectangular periodicity and develop algorithms for each. Boundaries are next introduced and fast algorithms for finite arrays are developed. 40 refs., 4 figs.

  13. Multiwavelength guided mode resonance sensor array

    NASA Astrophysics Data System (ADS)

    Boonruang, Sakoolkan; Mohammed, Waleed S.

    2015-09-01

    A multiwavelength guided mode resonance (GMR) sensor array is proposed to minimize the need of complex detection systems. Using a chirped grating in the GMR sensor, a single spectrometer is needed to simultaneously receive the signal from each array without modulating or mechanical scanning techniques. The array elements placed along the direction of the grating chirp can form the GMR structure, and each array element shows a different average period. Thus, the resonance condition for each array element differs from the next. A multiline resonance spectrum can be detected without time delay concerns in each array. A two-channel sensor array is experimentally demonstrated in this study.

  14. Principle of Magnetodynamics for Composite Magnetic Pole

    NASA Astrophysics Data System (ADS)

    Animalu, Alexander

    2014-03-01

    It is shown in this paper that geometry provides the key to the new magnetodynamics principle of operation of the machine (invented by Dr. Ezekiel Izuogu) which has an unexpected feature of driving a motor with static magnetic field. Essentially, because an array of like magnetic poles of the machine is arranged in a half circular array of a cylindrical geometry, the array creates a non-pointlike magnet pole that may be represented by a ``magnetic current loop'' at the position of the pivot of the movable arm. As a result, in three-dimensional space, it is possible to characterize the symmetry of the stator magnetic field B and the magnetic current loop J as a cube-hexagon system by a 6-vector (J,B) (with J.B ?0) comprising a 4x4 antisymmetric tensor analogous to the conventional electric and magnetic 6-vector (E,B) (with E.B ?0) comprising the 4x4 antisymmetric tensor of classical electrodynamics The implications are discussed. Supported by International Centre for Basic Research, Abuja, Nigeria.

  15. The optics inside an automated single molecule array analyzer

    NASA Astrophysics Data System (ADS)

    McGuigan, William; Fournier, David R.; Watson, Gary W.; Walling, Les; Gigante, Bill; Duffy, David C.; Rissin, David M.; Kan, Cheuk W.; Meyer, Raymond E.; Piech, Tomasz; Fishburn, Matthew W.

    2014-02-01

    Quanterix and Stratec Biomedical have developed an instrument that enables the automated measurement of multiple proteins at concentration ~1000 times lower than existing immunoassays. The instrument is based on Quanterix's proprietary Single Molecule Array technology (Simoa™ ) that facilitates the detection and quantification of biomarkers previously difficult to measure, thus opening up new applications in life science research and in-vitro diagnostics. Simoa is based on trapping individual beads in arrays of femtoliter-sized wells that, when imaged with sufficient resolution, allows for counting of single molecules associated with each bead. When used to capture and detect proteins, this approach is known as digital ELISA (Enzyme-linked immunosorbent assay). The platform developed is a merger of many science and engineering disciplines. This paper concentrates on the optical technologies that have enabled the development of a fully-automated single molecule analyzer. At the core of the system is a custom, wide field-of-view, fluorescence microscope that images arrays of microwells containing single molecules bound to magnetic beads. A consumable disc containing 24 microstructure arrays was developed previously in collaboration with Sony DADC. The system cadence requirements, array dimensions, and requirement to detect single molecules presented significant optical challenges. Specifically, the wide field-of-view needed to image the entire array resulted in the need for a custom objective lens. Additionally, cost considerations for the system required a custom solution that leveraged the image processing capabilities. This paper will discuss the design considerations and resultant optical architecture that has enabled the development of an automated digital ELISA platform.

  16. Superconducting magnet needs for the ILC

    SciTech Connect

    Tompkins, J.C.; Kashikhin, Vl.; Parker, B.; Palmer, M.A. /; Clarke, J.A.; /Daresbury

    2007-06-01

    The ILC Reference Design Report was completed early in February 2007. The Magnet Systems Group was formed to translate magnetic field requirements into magnet designs and cost estimates for the Reference Design. As presently configured, the ILC will have more than 13,000 magnetic elements of which more than 2300 will be based on superconducting technology. This paper will describe the major superconducting magnet needs for the ILC as presently determined by the Area Systems Groups, responsible for beam line design, working with the Magnet Systems Group. The superconducting magnet components include Main Linac quadrupoles, Positron Source undulators, Damping Ring wigglers, a complex array of Final Focus superconducting elements in the Beam Delivery System, and large superconducting solenoids in the e{sup +} and e{sup -} Sources, and the Ring to Main Linac lines.

  17. SUPERCONDUCTING MAGNET NEEDS FOR THE ILC.

    SciTech Connect

    PARKER,B.; TOMPKINS, J.C.; KASHIKHIN, VI.; PALMER, M.A.; CLARKE, J.A.

    2007-06-25

    The ILC Reference Design Report was completed early in February 2007. The Magnet Systems Group was formed to translate magnetic field requirements into magnet designs and cost estimates for the Reference Design. As presently configured, the lLC will have more than 13,000 magnetic elements of which more than 2300 will be based on superconducting technology. This paper will describe the major superconducting magnet needs for the ILC as presently determined by the Area Systems Groups, responsible for beam line design, working with the Magnet Systems Group. The superconducting magnet components include Main Linac quadrupoles, Positron Source undulators, Damping Ring wigglers, a complex array of Final Focus superconducting elements in the Beam Delivery System, and large superconducting solenoids in the e{sup +} and e{sup -} Sources, and the Ring to Main Linac lines.

  18. Competing anisotropies and temperature dependence of exchange bias in Co ?IrMn metallic wire arrays fabricated by nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Weiss, Dirk N.; Krishnan, Kannan M.

    2010-05-01

    The magnetic behavior of exchange biased Co ?IrMn bilayer metallic wire arrays, fabricated by nanoimprint lithography, was studied and compared with identical thin film heterostructures. A significant uniaxial shape anisotropy, KU-shape, in addition to the unidirectional exchange anisotropy, KE, and the intrinsic uniaxial anisotropy, KU-intrinsic observed in the unpatterned film, was introduced in the wire arrays through wire patterning. The competing anisotropies were shown to modify the angular dependence of exchange bias, HEB, and coercivity, HC, for wire arrays. In addition, an asymmetric behavior is observed for both wire arrays and unpatterned film and is attributed to the noncollinear alignment of uniaxial and unidirectional anisotropies. Temperature dependence of HEB is different for the wire arrays from the unpatterned thin film. This and the large deviation from ideal cubic anisotropy in the antiferromagnet for the wire arrays are both in agreement with Malozemoff's model of exchange bias.

  19. Noise-cancelling quadrature magnetic position, speed and direction sensor

    DOEpatents

    Preston, Mark A. (Niskayuna, NY); King, Robert D. (Schenectady, NY)

    1996-01-01

    An array of three magnetic sensors in a single package is employed with a single bias magnet for sensing shaft position, speed and direction of a motor in a high magnetic noise environment. Two of the three magnetic sensors are situated in an anti-phase relationship (i.e., 180.degree. out-of-phase) with respect to the relationship between the other of the two sensors and magnetically salient target, and the third magnetic sensor is situated between the anti-phase sensors. The result is quadrature sensing with noise immunity for accurate relative position, speed and direction measurements.

  20. High performance hybrid magnetic structure for biotechnology applications

    DOEpatents

    Humphries, David E; Pollard, Martin J; Elkin, Christopher J

    2005-10-11

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetizable molecular structures and targets. Also disclosed are: a method of assembling the hybrid magnetic plates, a high throughput protocol featuring the hybrid magnetic structure, and other embodiments of the ferromagnetic pole shape, attachment and adapter interfaces for adapting the use of the hybrid magnetic structure for use with liquid handling and other robots for use in high throughput processes.

  1. High performance hybrid magnetic structure for biotechnology applications

    DOEpatents

    Humphries, David E. (El Cerrito, CA); Pollard, Martin J. (El Cerrito, CA); Elkin, Christopher J. (San Ramon, CA)

    2009-02-03

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetic or magnetizable molecular structures and targets. Also disclosed are further improvements to aspects of the hybrid magnetic structure, including additional elements and for adapting the use of the hybrid magnetic structure for use in biotechnology and high throughput processes.

  2. Fabrication and Performance of Large Format Transition Edge Sensor Microcalorimeter Arrays

    NASA Technical Reports Server (NTRS)

    Chervenak, James A.; Adams, James S.; Bandler, Simon R.; Busch, Sara E.; Eckart, M. E.; Ewin, A. E.; Finkbeiner, F. M.; Kilbourne, C. A.; Kelley, R. L.; Porst, Jan-Patrick; Porter, Frederick S.; Ray, C.; Sadleir, John E.; Smith, S. J.; Wassell, Edward J.

    2012-01-01

    We have produced a variety of superconducting transition edge sensor array designs for microcalorimetric detection of x-rays. Designs include kilopixel scale arrays of relatively small sensors (75 micron pitch) atop a thick metal heatsinking layer as well as arrays of membrane-isolated devices on 250 micron pitch and smaller arrays of devices up to 600 micron pitch. We discuss the fabrication techniques used for each type of array focusing on unique aspects where processes vary to achieve the particular designs and required device parameters. For example, we evaluate various material combinations in the production of the thick metal heatsinking, including superconducting and normal metal adhesion layers. We also evaluate the impact of added heatsinking on the membrane isolated devices as it relates to basic device parameters. Arrays can be characterized with a time division SQUID multiplexer such that greater than 10 devices from an array can be measured in the same cooldown. Device parameters can be measured simultaneously so that environmental events such as thermal drifts or changes in magnetic fields can be controlled. For some designs, we will evaluate the uniformity of parameters impacting the intrinsic performance of the microcalorimeters under bias in these arrays and assess the level of thermal crosstalk.

  3. Magnetic Spinner

    ERIC Educational Resources Information Center

    Ouseph, P. J.

    2006-01-01

    A science toy sometimes called the "magnetic spinner" is an interesting class demonstration to illustrate the principles of magnetic levitation. It can also be used to demonstrate Faraday's law and a horizontally suspended physical pendulum. The levitated part contains two circular magnets encased in a plastic housing. Each magnet stays…

  4. Integrated Array/Metadata Analytics

    NASA Astrophysics Data System (ADS)

    Misev, Dimitar; Baumann, Peter

    2015-04-01

    Data comes in various forms and types, and integration usually presents a problem that is often simply ignored and solved with ad-hoc solutions. Multidimensional arrays are an ubiquitous data type, that we find at the core of virtually all science and engineering domains, as sensor, model, image, statistics data. Naturally, arrays are richly described by and intertwined with additional metadata (alphanumeric relational data, XML, JSON, etc). Database systems, however, a fundamental building block of what we call "Big Data", lack adequate support for modelling and expressing these array data/metadata relationships. Array analytics is hence quite primitive or non-existent at all in modern relational DBMS. Recognizing this, we extended SQL with a new SQL/MDA part seamlessly integrating multidimensional array analytics into the standard database query language. We demonstrate the benefits of SQL/MDA with real-world examples executed in ASQLDB, an open-source mediator system based on HSQLDB and rasdaman, that already implements SQL/MDA.

  5. SEP solar array technology development

    NASA Technical Reports Server (NTRS)

    Elms, R. V., Jr.; Young, L. E.

    1976-01-01

    A technology development program is in progress to define a detail design of a lightweight 25 KW solar array for Solar Electric Propulsion (SEP) and to demonstrate technology readiness for fabrication, testing and flight of the large area solar array system. The requirements and baseline design for the 66 W/kg are discussed. The requirement for operation at 0.3 to 6.0 AU heliocentric distance presents a wide range of temperature environments as well as severe combined thermal/vacuum/UV radiation environments. The specific technology deficient areas are defined and the technology development program is presented. The program includes design and design evaluation testing on a component level followed by the fabrication and test of a developmental full-scale solar array wing. The results of the design studies and test program underway are presented. The test program covers the areas of fabrication testing, design support evaluation testing, zero-gravity array fold-up testing, full-scale array wing testing, and NDT development testing.

  6. Successive Standardization of Rectangular Arrays.

    PubMed

    Olshen, Richard A; Rajaratnam, Bala

    2012-02-29

    In this note we illustrate and develop further with mathematics and examples, the work on successive standardization (or normalization) that is studied earlier by the same authors in [1] and [2]. Thus, we deal with successive iterations applied to rectangular arrays of numbers, where to avoid technical difficulties an array has at least three rows and at least three columns. Without loss, an iteration begins with operations on columns: first subtract the mean of each column; then divide by its standard deviation. The iteration continues with the same two operations done successively for rows. These four operations applied in sequence completes one iteration. One then iterates again, and again, and again, … In [1] it was argued that if arrays are made up of real numbers, then the set for which convergence of these successive iterations fails has Lebesgue measure 0. The limiting array has row and column means 0, row and column standard deviations 1. A basic result on convergence given in [1] is true, though the argument in [1] is faulty. The result is stated in the form of a theorem here, and the argument for the theorem is correct. Moreover, many graphics given in [1] suggest that except for a set of entries of any array with Lebesgue measure 0, convergence is very rapid, eventually exponentially fast in the number of iterations. Because we learned this set of rules from Bradley Efron, we call it "Efron's algorithm". More importantly, the rapidity of convergence is illustrated by numerical examples. PMID:23355926

  7. Retrieval of Mir Solar Array

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.; deGroh, Kim K.

    1999-01-01

    A Russian solar array panel removed in November 1997 from the non-articulating photovoltaic array on the Mir core module was returned to Earth on STS-89 in January 1998. The panel had been exposed to low Earth orbit (LEO) for 10 years prior to retrieval. The retrieval provided a unique opportunity to study the effects of the LEO environment on a functional solar array. To take advantage of this opportunity, a team composed of members from RSC-Energia (Russia), the Boeing Company, and the following NASA Centers--Johnson Space Center, Kennedy Space Center, Langley Research Center, Marshall Space Flight Center, and Lewis Research Center--was put together to analyze the array. After post-retrieval inspections at the Spacehab Facility at Kennedy in Florida, the array was shipped to Lewis in Cleveland for electrical performance tests, closeup photodocumentation, and removal of selected solar cells and blanket material. With approval from RSC-Energia, five cell pairs and their accompanying blanket and mesh material, and samples of painted handrail materials were selected for removal on the basis of their ability to provide degradation information. Sites were selected that provided different sizes and shapes of micrometeoroid impacts and different levels of surface contamination. These materials were then distributed among the team for round robin testing.

  8. Magnetic vortex crystal formation in the antidot complement of square artificial spin ice

    SciTech Connect

    Araujo, C. I. L. de Silva, R. C.; Ribeiro, I. R. B.; Nascimento, F. S.; Felix, J. F.; Ferreira, S. O.; Moura-Melo, W. A.; Pereira, A. R.; Mól, L. A. S.

    2014-03-03

    We have studied ferromagnetic nickel thin films patterned with square lattices of elongated antidots that are negative analogues of square artificial spin ice. Micromagnetic simulations and direct current magnetic moment measurements reveal in-plane anisotropy of the magnetic hysteresis loops, and the formation of a dense array of magnetic vortices with random polarization and chirality. These multiply-connected antidot arrays could be superior to lattices of disconnected nanodisks for investigations of vortex switching by applied electric current.

  9. Dynamic Magnetization Reversal in Ring Structures

    NASA Astrophysics Data System (ADS)

    Metlushko, Vitali

    2002-03-01

    The major challenge in technological applications of magnetic arrays for storage is to control the magnetic switching precisely. Only in very few cases with well-defined anisotropies does the reversal take place via a coherent rotation of the magnetization. More common, however, is that the reversal occurs via the domain formation. For arbitrary shape nano-scale elongated elements, in general, it has been impossible to reliably calculate the field at which domain first forms from basic principles. If the memory element is ring instead of elongated, the magnetization flux forms a closure in the circular mode and the problems associated with the ends of the linear elements are eliminated. We found that the ring elements exhibit two different highly stable "onion" states in addition to the vortex states. The results of systematic characterization of arrays of small permalloy and cobalt rings with SQUID magnetization to determine the magnetic moment, with atomic force microscopy (AFM) and magnetic force microscopy (MFM) to determine the topography and the magnetic patterns inside the rings, and with magneto optical imaging to visualize the moment reversal process during a magnetization cycle, will be presented.

  10. Redundant Arrays of IDE Drives

    E-print Network

    D. A. Sanders; L. M. Cremaldi; V. Eschenburg; C. N. Lawrence; C. Riley; D. J. Summers; D. L. Petravick

    2002-12-05

    The next generation of high-energy physics experiments is expected to gather prodigious amounts of data. New methods must be developed to handle this data and make analysis at universities possible. We examine some techniques that use recent developments in commodity hardware. We test redundant arrays of integrated drive electronics (IDE) disk drives for use in offline high-energy physics data analysis. IDE redundant array of inexpensive disks (RAID) prices now equal the cost per terabyte of million-dollar tape robots! The arrays can be scaled to sizes affordable to institutions without robots and used when fast random access at low cost is important. We also explore three methods of moving data between sites; internet transfers, hot pluggable IDE disks in FireWire cases, and writable digital video disks (DVD-R).

  11. Sensitivity of Pulsar Timing Arrays

    NASA Astrophysics Data System (ADS)

    Siemens, Xavier

    2015-08-01

    For the better part of the last decade, the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) has been using the Green Bank and Arecibo radio telescopes to monitor millisecond pulsars. NANOGrav, along with similar international collaborations, the European Pulsar Timing Array and the Parkes Pulsar Timing Array in Australia, form a consortium of consortia: the International Pulsar Timing Array (IPTA). The goal of the IPTA is to directly detect low-frequency gravitational waves which cause small changes to the times of arrival of radio pulses from millisecond pulsars. In this talk I will discuss the work of NANOGrav and the IPTA as well as our sensitivity to gravitational waves from astrophysical sources. I will show that a detection is possible by the end of the decade.

  12. High efficiency, spectroscopic CZT array

    SciTech Connect

    Cirignano, L.; Klugerman, M.; Dmitriyev, Y.; Bennett, P.; Shah, K.S.; Bloser, P.; Narita, T.; Grindlay, J.

    1998-12-31

    Compact, efficient, spectroscopic detector arrays which preferably operate without cooling have applications in the fields of X-ray astronomy, nuclear medicine and radioactive materials management. The authors have fabricated a 16 element CdZnTe detector array that provides a stopping efficiency of greater than 80%, a photopeak fraction of 44% and an energy resolution of 3.2 keV FWHM at 122 keV. The 4 x 4 array uses a pixel size of (1.5 mm){sup 2} with 0.2 mm spacing on a 5 mm thick substrate. The variation in spectroscopic properties among pixels has been characterized in terms of energy resolution and detection efficiency. Operation in current (or flux) mode for transmission imaging has also been investigated.

  13. Acoustically driven arrayed waveguide grating.

    PubMed

    Crespo-Poveda, A; Hernández-Mínguez, A; Gargallo, B; Biermann, K; Tahraoui, A; Santos, P V; Muñoz, P; Cantarero, A; de Lima, M M

    2015-08-10

    We demonstrate compact tunable phased-array wavelength-division multiplexers driven by surface acoustic waves (SAWs) in the low GHz range. The devices comprise two couplers, which respectively split and combine the optical signal, linked by an array of single-mode waveguides (WGs). Two different layouts are presented, in which multi-mode interference couplers or free propagating regions were separately employed as couplers. The multiplexers operate on five equally distributed wavelength channels, with a spectral separation of 2 nm. A standing SAW modulates the refractive index of the arrayed WGs. Each wavelength component periodically switches paths between the output channel previously asigned by the design and the adjacent channels, at a fixed applied acoustic power. The devices were monolithically fabricated on (Al,Ga)As. A good agreement between theory and experiment is achieved. PMID:26367971

  14. Tunable Coulomb blockade and giant Coulomb blockade magnetoresistance in a double quantum dot array

    SciTech Connect

    Zhang, Xiaoguang; Xiang, T.

    2011-01-01

    We propose a Hubbard model to illuminate the tunneling effect of electrons in a double quantum dot array connected in the parallel circuit configuration to electrodes. The change in the interdot coupling is shown to dramatically influence the Coulomb blockade properties, consistent with earlier experimental observations. For magnetic double dots, the interdot coupling can be tuned by the external magnetic field, leading to a giant Coulomb blockade magnetoresistance.

  15. Adjustable permanent magnet assembly for NMR and MRI

    DOEpatents

    Pines, Alexander; Paulsen, Jeffrey; Bouchard, Louis S; Blumich, Bernhard

    2013-10-29

    System and methods for designing and using single-sided magnet assemblies for magnetic resonance imaging (MRI) are disclosed. The single-sided magnet assemblies can include an array of permanent magnets disposed at selected positions. At least one of the permanent magnets can be configured to rotate about an axis of rotation in the range of at least +/-10 degrees and can include a magnetization having a vector component perpendicular to the axis of rotation. The single-sided magnet assemblies can further include a magnet frame that is configured to hold the permanent magnets in place while allowing the at least one of the permanent magnets to rotate about the axis of rotation.

  16. Integrated residential photovoltaic array development

    SciTech Connect

    Shepard, N.F., Jr.

    1981-08-01

    The design details of an optimized integrated residential photovoltaic module/array are presented. This selected design features a waterproofing and mounting scheme which was devised to simplify the installation procedures by the avoidance of complex gasketed or caulked joints, while still maintaining a high confidence that the watertight integrity of the integral roofing surface will be achieved for the design lifetime of the system. The production and installation costs for the selected module/array design are reported for a range of annual production rates as a function of the cost of solar cells.

  17. Airborne electronically steerable phased array

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The results are presented of the second stage of a program for the design and development of a phased array capable of simultaneous and separate transmission and reception of radio frequency signals at S-band frequencies. The design goals of this stage were the development of three major areas of interest required for the final prototype model. These areas are the construction and testing of the low-weight, full-scale 128-element array of antenna elements, the development of the RF manifold feed system, and the construction and testing of a working module containing diplexer and transmit and receive circuits.

  18. Integrated residential photovoltaic array development

    NASA Technical Reports Server (NTRS)

    Shepard, N. F., Jr.

    1981-01-01

    The design details of an optimized integrated residential photovoltaic module/array are presented. This selected design features a waterproofing and mounting scheme which was devised to simplify the installation procedures by the avoidance of complex gasketed or caulked joints, while still maintaining a high confidence that the watertight integrity of the integral roofing surface will be achieved for the design lifetime of the system. The production and installation costs for the selected module/array design are reported for a range of annual production rates as a function of the cost of solar cells.

  19. Method for forming permanent magnets with different polarities for use in microelectromechanical devices

    DOEpatents

    Roesler, Alexander W. (Tijeras, NM); Christenson, Todd R. (Albuquerque, NM)

    2007-04-24

    Methods are provided for forming a plurality of permanent magnets with two different north-south magnetic pole alignments for use in microelectromechanical (MEM) devices. These methods are based on initially magnetizing the permanent magnets all in the same direction, and then utilizing a combination of heating and a magnetic field to switch the polarity of a portion of the permanent magnets while not switching the remaining permanent magnets. The permanent magnets, in some instances, can all have the same rare-earth composition (e.g. NdFeB) or can be formed of two different rare-earth materials (e.g. NdFeB and SmCo). The methods can be used to form a plurality of permanent magnets side-by-side on or within a substrate with an alternating polarity, or to form a two-dimensional array of permanent magnets in which the polarity of every other row of the array is alternated.

  20. Superconducting energy storage magnet

    NASA Technical Reports Server (NTRS)

    Boom, Roger W. (Inventor); Eyssa, Yehia M. (Inventor); Abdelsalam, Mostafa K. (Inventor); Huang, Xianrui (Inventor)

    1993-01-01

    A superconducting magnet is formed having composite conductors arrayed in coils having turns which lie on a surface defining substantially a frustum of a cone. The conical angle with respect to the central axis is preferably selected such that the magnetic pressure on the coil at the widest portion of the cone is substantially zero. The magnet structure is adapted for use as an energy storage magnet mounted in an earthen trench or tunnel where the strength the surrounding soil is lower at the top of the trench or tunnel than at the bottom. The composite conductor may be formed having a ripple shape to minimize stresses during charge up and discharge and has a shape for each ripple selected such that the conductor undergoes a minimum amount of bending during the charge and discharge cycle. By minimizing bending, the working of the normal conductor in the composite conductor is minimized, thereby reducing the increase in resistance of the normal conductor that occurs over time as the conductor undergoes bending during numerous charge and discharge cycles.