Science.gov

Sample records for hall effect characterization

  1. Characterization of Hall effect thruster propellant distributors with flame visualization.

    PubMed

    Langendorf, S; Walker, M L R

    2013-01-01

    A novel method for the characterization and qualification of Hall effect thruster propellant distributors is presented. A quantitative measurement of the azimuthal number density uniformity, a metric which impacts propellant utilization, is obtained from photographs of a premixed flame anchored on the exit plane of the propellant distributor. The technique is demonstrated for three propellant distributors using a propane-air mixture at reservoir pressure of 40 psi (gauge) (377 kPa) exhausting to atmosphere, with volumetric flow rates ranging from 15-145 cfh (7.2-68 l/min) with equivalence ratios from 1.2 to 2.1. The visualization is compared with in-vacuum pressure measurements 1 mm downstream of the distributor exit plane (chamber pressure held below 2.7 × 10(-5) Torr-Xe at all flow rates). Both methods indicate a non-uniformity in line with the propellant inlet, supporting the validity of the technique of flow visualization with flame luminosity for propellant distributor characterization. The technique is applied to a propellant distributor with a manufacturing defect in a known location and is able to identify the defect and characterize its impact. The technique is also applied to a distributor with numerous small orifices at the exit plane and is able to resolve the resulting non-uniformity. Luminosity data are collected with a spatial resolution of 48.2-76.1 μm (pixel width). The azimuthal uniformity is characterized in the form of standard deviation of azimuthal luminosities, normalized by the mean azimuthal luminosity. The distributors investigated achieve standard deviations of 0.346 ± 0.0212, 0.108 ± 0.0178, and 0.708 ± 0.0230 mean-normalized luminosity units respectively, where a value of 0 corresponds to perfect uniformity and a value of 1 represents a standard deviation equivalent to the mean. PMID:23387637

  2. The Hall coefficient: a tool for characterizing graphene field effect transistors

    NASA Astrophysics Data System (ADS)

    Wehrfritz, Peter; Seyller, Thomas

    2014-12-01

    Graphene field effect transistors are considered as a candidate for future high-frequency applications. For their realization, the optimal combination of substrate, graphene preparation, and insulator deposition and composition is required. This optimization must be based on an in-depth characterization of the obtained graphene insulator metal (GIM) stack. Hall effect measurements are frequently employed to study such systems, thereby focussing primarily on the charge carrier mobility. In this work we show how an analysis of the sheet Hall coefficient can reveal further important properties of the GIM stack, like, e.g., the interface trap density and the spacial charge inhomogeneity. To that end, we provide an extensive description of the GIM diode, which leads to an accurate calculation of the sheet Hall coefficient dependent on temperature and gate voltage. The gate dependent inverse sheet Hall coefficient is discussed in detail before we introduce the concept of an equivalent temperature, which is a measure of the spacial charge inhomogeneity. In order to test the concept, we apply it to evaluate already measured Hall data taken from the literature. This evaluation allows us to determine the Drude mobility, even at the charge neutrality point, which is inaccessible with a simple one band Hall mobility analysis, and to shed light on the spacial charge inhomogeneity. The formalism is easily adaptable and provides experimentalists a powerful tool for the characterization of their graphene field effect devices.

  3. Characterization of partially ordered GaInP/GaAs heterointerfaces by the quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Uchida, Kazuo; Satoh, Kiwamu; Asano, Keita; Koizumi, Atsushi; Nozaki, Shinji

    2013-05-01

    The new approach to the characterization of semiconductor interfacial properties by the quantum Hall effect (QHE) and the scanning near field optical microscopy (SNOM) is demonstrated to the heterointerfaces of partially ordered GaInP/GaAs grown by low-pressure Metal Organic Vapor Phase Epitaxy. The Shubnikov de-Haas (SdH) oscillations and the Hall plateaus are observed in the heterointerfaces of both the less-ordered and more-ordered GaInP/GaAs samples with a large clover-shape, but these samples exhibit both 2D and 3D electron behaviors. In contrast to large clover-shaped samples, the distinct SdH oscillations and the Hall plateaus in the less-ordered sample, while the single SdH oscillation and the corresponding large plateau in the more-ordered small Hall-bar sample are observed. These results suggest that there may be many domains, each having a different carrier density and sizes in the less-ordered sample, while one or few large domains with uniform carrier concentration and sizes in the more-ordered sample. In SNOM measurements, PL intensity varies in the mapping of the more-ordered sample and it is concluded that the variation of the PL intensity may result from an inhomogeneous distribution of non-radiative recombination centers in the more-ordered sample.

  4. Quantum Spin Hall Effect

    SciTech Connect

    Bernevig, B.Andrei; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-01-15

    The quantum Hall liquid is a novel state of matter with profound emergent properties such as fractional charge and statistics. Existence of the quantum Hall effect requires breaking of the time reversal symmetry caused by an external magnetic field. In this work, we predict a quantized spin Hall effect in the absence of any magnetic field, where the intrinsic spin Hall conductance is quantized in units of 2 e/4{pi}. The degenerate quantum Landau levels are created by the spin-orbit coupling in conventional semiconductors in the presence of a strain gradient. This new state of matter has many profound correlated properties described by a topological field theory.

  5. Hall effect in hopping regime

    NASA Astrophysics Data System (ADS)

    Avdonin, A.; Skupiński, P.; Grasza, K.

    2016-02-01

    A simple description of the Hall effect in the hopping regime of conductivity in semiconductors is presented. Expressions for the Hall coefficient and Hall mobility are derived by considering averaged equilibrium electron transport in a single triangle of localization sites in a magnetic field. Dependence of the Hall coefficient is analyzed in a wide range of temperature and magnetic field values. Our theoretical result is applied to our experimental data on temperature dependence of Hall effect and Hall mobility in ZnO.

  6. Optical Hall effect-model description: tutorial.

    PubMed

    Schubert, Mathias; Kühne, Philipp; Darakchieva, Vanya; Hofmann, Tino

    2016-08-01

    The optical Hall effect is a physical phenomenon that describes the occurrence of magnetic-field-induced dielectric displacement at optical wavelengths, transverse and longitudinal to the incident electric field, and analogous to the static electrical Hall effect. The electrical Hall effect and certain cases of the optical Hall effect observations can be explained by extensions of the classic Drude model for the transport of electrons in metals. The optical Hall effect is most useful for characterization of electrical properties in semiconductors. Among many advantages, while the optical Hall effect dispenses with the need of electrical contacts, electrical material properties such as effective mass and mobility parameters, including their anisotropy as well as carrier type and density, can be determined from the optical Hall effect. Measurement of the optical Hall effect can be performed within the concept of generalized ellipsometry at an oblique angle of incidence. In this paper, we review and discuss physical model equations, which can be used to calculate the optical Hall effect in single- and multiple-layered structures of semiconductor materials. We define the optical Hall effect dielectric function tensor, demonstrate diagonalization approaches, and show requirements for the optical Hall effect tensor from energy conservation. We discuss both continuum and quantum approaches, and we provide a brief description of the generalized ellipsometry concept, the Mueller matrix calculus, and a 4×4 matrix algebra to calculate data accessible by experiment. In a follow-up paper, we will discuss strategies and approaches for experimental data acquisition and analysis. PMID:27505654

  7. Nonlocal Anomalous Hall Effect

    NASA Astrophysics Data System (ADS)

    Zhang, Steven S.-L.; Vignale, Giovanni

    2016-04-01

    The anomalous Hall (AH) effect is deemed to be a unique transport property of ferromagnetic metals, caused by the concerted action of spin polarization and spin-orbit coupling. Nevertheless, recent experiments have shown that the effect also occurs in a nonmagnetic metal (Pt) in contact with a magnetic insulator [yttrium iron garnet (YIG)], even when precautions are taken to ensure that there is no induced magnetization in the metal. We propose a theory of this effect based on the combined action of spin-dependent scattering from the magnetic interface and the spin-Hall effect in the bulk of the metal. At variance with previous theories, we predict the effect to be of first order in the spin-orbit coupling, just as the conventional anomalous Hall effect—the only difference being the spatial separation of the spin-orbit interaction and the magnetization. For this reason we name this effect the nonlocal anomalous Hall effect and predict that its sign will be determined by the sign of the spin-Hall angle in the metal. The AH conductivity that we calculate from our theory is in order of magnitude agreement with the measured values in Pt /YIG structures.

  8. Hall Effect in a Plasma.

    ERIC Educational Resources Information Center

    Kunkel, W. B.

    1981-01-01

    Describes an apparatus and procedure for conducting an undergraduate laboratory experiment to quantitatively study the Hall effect in a plasma. Includes background information on the Hall effect and rationale for conducting the experiment. (JN)

  9. Nonlocal anomalous Hall effect

    NASA Astrophysics Data System (ADS)

    Zhang, Shulei; Vignale, Giovanni

    Anomalous Hall effect (AHE) is a distinctive transport property of ferromagnetic metals arising from spin orbit coupling (SOC) in concert with spontaneous spin polarization. Nonetheless, recent experiments have shown that the effect also appears in a nonmagnetic metal in contact with a magnetic insulator. The main puzzle lies in the apparent absence of spin polarized electrons in the non-magnetic metal. Here, we theoretically demonstrate that the scattering of electrons from a rough metal-insulator interface is generally spin-dependent, which results in mutual conversion between spin and charge currents flowing in the plane of the layer. It is the current-carrying spin polarized electrons and the spin Hall effect in the bulk of the metal layer that conspire to generate the AH current. This novel AHE differs from the conventional one only in the spatial separation of the SOC and the magnetization, so we name it as nonlocal AHE. In contrast to other previously proposed mechanisms (e.g., spin Hall AHE and magnetic proximity effect (MPE)), the nonlocal AHE appears on the first order of spin Hall angle and does not rely on the induced moments in the metal layer, which make it experimentally detectable by contrasting the AH current directions of two layered structures such as Pt/Cu/YIG and β -Ta/Cu/YIG (with a thin inserted Cu layer to eliminate the MPE). We predict that the directions of the AH currents in these two trilayers would be opposite since the spin Hall angles of Pt and β -Ta are of opposite signs. Work supported by NSF Grants DMR-1406568.

  10. Spin Hall effects

    NASA Astrophysics Data System (ADS)

    Sinova, Jairo; Valenzuela, Sergio O.; Wunderlich, J.; Back, C. H.; Jungwirth, T.

    2015-10-01

    Spin Hall effects are a collection of relativistic spin-orbit coupling phenomena in which electrical currents can generate transverse spin currents and vice versa. Despite being observed only a decade ago, these effects are already ubiquitous within spintronics, as standard spin-current generators and detectors. Here the theoretical and experimental results that have established this subfield of spintronics are reviewed. The focus is on the results that have converged to give us the current understanding of the phenomena, which has evolved from a qualitative to a more quantitative measurement of spin currents and their associated spin accumulation. Within the experimental framework, optical-, transport-, and magnetization-dynamics-based measurements are reviewed and linked to both phenomenological and microscopic theories of the effect. Within the theoretical framework, the basic mechanisms in both the extrinsic and intrinsic regimes are reviewed, which are linked to the mechanisms present in their closely related phenomenon in ferromagnets, the anomalous Hall effect. Also reviewed is the connection to the phenomenological treatment based on spin-diffusion equations applicable to certain regimes, as well as the spin-pumping theory of spin generation used in many measurements of the spin Hall angle. A further connection to the spin-current-generating spin Hall effect to the inverse spin galvanic effect is given, in which an electrical current induces a nonequilibrium spin polarization. This effect often accompanies the spin Hall effect since they share common microscopic origins. Both can exhibit the same symmetries when present in structures comprising ferromagnetic and nonmagnetic layers through their induced current-driven spin torques or induced voltages. Although a short chronological overview of the evolution of the spin Hall effect field and the resolution of some early controversies is given, the main body of this review is structured from a pedagogical

  11. Performance and Thermal Characterization of the NASA-300MS 20 kW Hall Effect Thruster

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Shastry, Rohit; Soulas, George; Smith, Timothy; Mikellides, Ioannis; Hofer, Richard

    2013-01-01

    NASA's Space Technology Mission Directorate is sponsoring the development of a high fidelity 15 kW-class long-life high performance Hall thruster for candidate NASA technology demonstration missions. An essential element of the development process is demonstration that incorporation of magnetic shielding on a 20 kW-class Hall thruster will yield significant improvements in the throughput capability of the thruster without any significant reduction in thruster performance. As such, NASA Glenn Research Center and the Jet Propulsion Laboratory collaborated on modifying the NASA-300M 20 kW Hall thruster to improve its propellant throughput capability. JPL and NASA Glenn researchers performed plasma numerical simulations with JPL's Hall2De and a commercially available magnetic modeling code that indicated significant enhancement in the throughput capability of the NASA-300M can be attained by modifying the thruster's magnetic circuit. This led to modifying the NASA-300M magnetic topology to a magnetically shielded topology. This paper presents performance evaluation results of the two NASA-300M magnetically shielded thruster configurations, designated 300MS and 300MS-2. The 300MS and 300MS-2 were operated at power levels between 2.5 and 20 kW at discharge voltages between 200 and 700 V. Discharge channel deposition from back-sputtered facility wall flux, and plasma potential and electron temperature measurements made on the inner and outer discharge channel surfaces confirmed that magnetic shielding was achieved. Peak total thrust efficiency of 64% and total specific impulse of 3,050 sec were demonstrated with the 300MS-2 at 20 kW. Thermal characterization results indicate that the boron nitride discharge chamber walls temperatures are approximately 100 C lower for the 300MS when compared to the NASA- 300M at the same thruster operating discharge power.

  12. Relativistic Hall effect.

    PubMed

    Bliokh, Konstantin Y; Nori, Franco

    2012-03-23

    We consider the relativistic deformation of quantum waves and mechanical bodies carrying intrinsic angular momentum (AM). When observed in a moving reference frame, the centroid of the object undergoes an AM-dependent transverse shift. This is the relativistic analogue of the spin-Hall effect, which occurs in free space without any external fields. Remarkably, the shifts of the geometric and energy centroids differ by a factor of 2, and both centroids are crucial for the Lorentz transformations of the AM tensor. We examine manifestations of the relativistic Hall effect in quantum vortices and mechanical flywheels and also discuss various fundamental aspects of this phenomenon. The perfect agreement of quantum and relativistic approaches allows applications at strikingly different scales, from elementary spinning particles, through classical light, to rotating black holes. PMID:22540559

  13. Hall Effect Imaging

    PubMed Central

    Shah, Jatin; Balaban, Robert S.

    2010-01-01

    This paper presents a new imaging method based on the classical Hall effect (HE), which describes the origin of a detectable voltage from a conductive object moving in a magnetic field. HE images are formed using ultrasound imaging techniques in a magnetic field. These images reflect the electrical properties of the sample. To demonstrate the feasibility of this method, images of plastic and biological samples are collected. The contrast mechanism and signal-to-noise issues are discussed. Since electrical parameters vary widely among tissue types and pathological states, HE imaging may be a useful tool for biological research and medical diagnosis. PMID:9444846

  14. A CMOS Hall-Effect Sensor for the Characterization and Detection of Magnetic Nanoparticles for Biomedical Applications.

    PubMed

    Liu, Paul; Skucha, Karl; Megens, Mischa; Boser, Bernhard

    2011-10-01

    A CMOS Hall-effect sensor chip designed for the characterization and detection of magnetic nanoparticles (MNPs) achieves over three orders of magnitude better temporal resolution than prior solutions based on superconducting quantum interference devices and fluxgate sensors. The sensor relies on wires embedded in the chip to generate a local magnetizing field that is switched OFF rapidly to observe the relaxation field of the MNPs. The CMOS sensor chip, with integrated high-speed readout electronics, occupies 6.25 mm(2). It can be easily integrated with microfluidics and is suitable for lab-on-a-chip and point-of-care applications. PMID:25308989

  15. A CMOS Hall-Effect Sensor for the Characterization and Detection of Magnetic Nanoparticles for Biomedical Applications

    PubMed Central

    Liu, Paul; Skucha, Karl; Megens, Mischa; Boser, Bernhard

    2014-01-01

    A CMOS Hall-effect sensor chip designed for the characterization and detection of magnetic nanoparticles (MNPs) achieves over three orders of magnitude better temporal resolution than prior solutions based on superconducting quantum interference devices and fluxgate sensors. The sensor relies on wires embedded in the chip to generate a local magnetizing field that is switched OFF rapidly to observe the relaxation field of the MNPs. The CMOS sensor chip, with integrated high-speed readout electronics, occupies 6.25 mm2. It can be easily integrated with microfluidics and is suitable for lab-on-a-chip and point-of-care applications. PMID:25308989

  16. Design and Characterization of a Three-Axis Hall Effect-Based Soft Skin Sensor.

    PubMed

    Tomo, Tito Pradhono; Somlor, Sophon; Schmitz, Alexander; Jamone, Lorenzo; Huang, Weijie; Kristanto, Harris; Sugano, Shigeki

    2016-01-01

    This paper presents an easy means to produce a 3-axis Hall effect-based skin sensor for robotic applications. It uses an off-the-shelf chip and is physically small and provides digital output. Furthermore, the sensor has a soft exterior for safe interactions with the environment; in particular it uses soft silicone with about an 8 mm thickness. Tests were performed to evaluate the drift due to temperature changes, and a compensation using the integral temperature sensor was implemented. Furthermore, the hysteresis and the crosstalk between the 3-axis measurements were evaluated. The sensor is able to detect minimal forces of about 1 gf. The sensor was calibrated and results with total forces up to 1450 gf in the normal and tangential directions of the sensor are presented. The test revealed that the sensor is able to measure the different components of the force vector. PMID:27070604

  17. Hall-effect characterization of the metamagnetic transition in FeRh

    NASA Astrophysics Data System (ADS)

    de Vries, M. A.; Loving, M.; Mihai, A. P.; Lewis, L. H.; Heiman, D.; Marrows, C. H.

    2013-01-01

    The antiferromagnetic ground state and the metamagnetic transition to the ferromagnetic state of CsCl-ordered FeRh epilayers have been characterized using Hall and magnetoresistance measurements. On cooling into the ground state, the metamagnetic transition is found to coincide with a suppression in carrier density of at least an order of magnitude below the typical metallic level that is shown by the ferromagnetic state. The carrier density in the antiferromagnetic state is limited by intrinsic doping from Fe/Rh substitution defects, with approximately two electrons per pair of atoms swapped, showing that the decrease in carrier density could be even larger in more perfect specimens. The surprisingly large change in carrier density is a clear quantitative indication of the extent of change at the Fermi surface at the metamagnetic transition, confirming that entropy release at the transition is of electronic origin, and hence that an electronic transition underlies the metamagnetic transition. Regarding the nature of this electronic transition, it is suggested that an orbital selective Mott transition, selective to strongly-correlated Fe 3d electrons, could cause the reduction in the Fermi surface and change in sign of the magnetic exchange from FM to AF on cooling.

  18. Anomalous Hall effect

    NASA Astrophysics Data System (ADS)

    Nagaosa, Naoto; Sinova, Jairo; Onoda, Shigeki; MacDonald, A. H.; Ong, N. P.

    2010-04-01

    The anomalous Hall effect (AHE) occurs in solids with broken time-reversal symmetry, typically in a ferromagnetic phase, as a consequence of spin-orbit coupling. Experimental and theoretical studies of the AHE are reviewed, focusing on recent developments that have provided a more complete framework for understanding this subtle phenomenon and have, in many instances, replaced controversy by clarity. Synergy between experimental and theoretical works, both playing a crucial role, has been at the heart of these advances. On the theoretical front, the adoption of the Berry-phase concepts has established a link between the AHE and the topological nature of the Hall currents. On the experimental front, new experimental studies of the AHE in transition metals, transition-metal oxides, spinels, pyrochlores, and metallic dilute magnetic semiconductors have established systematic trends. These two developments, in concert with first-principles electronic structure calculations, strongly favor the dominance of an intrinsic Berry-phase-related AHE mechanism in metallic ferromagnets with moderate conductivity. The intrinsic AHE can be expressed in terms of the Berry-phase curvatures and it is therefore an intrinsic quantum-mechanical property of a perfect crystal. An extrinsic mechanism, skew scattering from disorder, tends to dominate the AHE in highly conductive ferromagnets. The full modern semiclassical treatment of the AHE is reviewed which incorporates an anomalous contribution to wave-packet group velocity due to momentum-space Berry curvatures and correctly combines the roles of intrinsic and extrinsic (skew-scattering and side-jump) scattering-related mechanisms. In addition, more rigorous quantum-mechanical treatments based on the Kubo and Keldysh formalisms are reviewed, taking into account multiband effects, and demonstrate the equivalence of all three linear response theories in the metallic regime. Building on results from recent experiment and theory, a

  19. Hall effect magnetometer

    NASA Technical Reports Server (NTRS)

    Woollam, J. A.; Beale, H. A.; Spain, I. L. (Inventor)

    1974-01-01

    A magnetometer which uses a single crystal of bismuth selenide is described. The rhombohedral crystal structure of the sensing element is analyzed. The method of construction of the magnetometer is discussed. It is stated that the sensing crystal has a positive or negative Hall coefficient and a carrier concentration of about 10 to the 18th power to 10 to the 20th power per cubic centimeter.

  20. Multilayer thin film Hall effect device

    NASA Technical Reports Server (NTRS)

    Peters, Palmer N. (Inventor); Sisk, R. Charles (Inventor)

    1994-01-01

    A Hall effect device and a method of obtaining a magnetic field map of a magnetic body with the Hall effect device are presented. The device comprises: (1) a substrate, (2) a first layer having a first Hall coefficient deposited over the substrate, and (3) a second layer having a second Hall coefficient deposited over the first layer, the first and second layers cooperating to create, in the Hall effect device, a third Hall coefficient different from the first and second Hall coefficients. Creation of the third Hall coefficient by cooperation of the first and second layers allows use of materials for the first and second layers that were previously unavailable for Hall effect devices due to their relatively weak Hall coefficient.

  1. Design and Characterization of a Three-Axis Hall Effect-Based Soft Skin Sensor

    PubMed Central

    Tomo, Tito Pradhono; Somlor, Sophon; Schmitz, Alexander; Jamone, Lorenzo; Huang, Weijie; Kristanto, Harris; Sugano, Shigeki

    2016-01-01

    This paper presents an easy means to produce a 3-axis Hall effect–based skin sensor for robotic applications. It uses an off-the-shelf chip and is physically small and provides digital output. Furthermore, the sensor has a soft exterior for safe interactions with the environment; in particular it uses soft silicone with about an 8 mm thickness. Tests were performed to evaluate the drift due to temperature changes, and a compensation using the integral temperature sensor was implemented. Furthermore, the hysteresis and the crosstalk between the 3-axis measurements were evaluated. The sensor is able to detect minimal forces of about 1 gf. The sensor was calibrated and results with total forces up to 1450 gf in the normal and tangential directions of the sensor are presented. The test revealed that the sensor is able to measure the different components of the force vector. PMID:27070604

  2. Planar Hall effect bridge magnetic field sensors

    SciTech Connect

    Henriksen, A. D.; Dalslet, B. T.; Skieller, D. H.; Lee, K. H.; Okkels, F.; Hansen, M. F.

    2010-07-05

    Until now, the planar Hall effect has been studied in samples with cross-shaped Hall geometry. We demonstrate theoretically and experimentally that the planar Hall effect can be observed for an exchange-biased ferromagnetic material in a Wheatstone bridge topology and that the sensor signal can be significantly enhanced by a geometric factor. For the samples in the present study, we demonstrate an enhancement of the sensor output by a factor of about 100 compared to cross-shaped sensors. The presented construction opens a new design and application area of the planar Hall effect, which we term planar Hall effect bridge sensors.

  3. The Other Hall Effect: College Board Physics

    ERIC Educational Resources Information Center

    Sheppard, Keith; Gunning, Amanda M.

    2013-01-01

    Edwin Herbert Hall (1855-1938), discoverer of the Hall effect, was one of the first winners of the AAPT Oersted Medal for his contributions to the teaching of physics. While Hall's role in establishing laboratory work in high schools is widely acknowledged, his position as chair of the physics section of the Committee on College Entrance…

  4. Hyperbolic supersymmetric quantum Hall effect

    SciTech Connect

    Hasebe, Kazuki

    2008-12-15

    Developing a noncompact version of the supersymmetric Hopf map, we formulate the quantum Hall effect on a superhyperboloid. Based on OSp(1|2) group theoretical methods, we first analyze the one-particle Landau problem, and successively explore the many-body problem where the Laughlin wave function, hard-core pseudopotential Hamiltonian, and topological excitations are derived. It is also shown that the fuzzy superhyperboloid emerges at the lowest Landau level.

  5. Fractional quantum Hall effect revisited

    NASA Astrophysics Data System (ADS)

    Jacak, J.; Łydżba, P.; Jacak, L.

    2015-10-01

    The topology-based explanation of the fractional quantum Hall effect (FQHE) is summarized. The cyclotron braid subgroups crucial for this approach are introduced in order to identify the origin of the Laughlin correlations in 2D (two-dimensional) Hall systems. Flux-tubes and vortices for composite fermions in their standard constructions are explained in terms of cyclotron braids. The derivation of the hierarchy of the FQHE is proposed by mapping onto the integer effect within the topology-based approach. The experimental observations of the FQHE supporting the cyclotron braid picture are reviewed with a special attention paid to recent experiments with a suspended graphene. The triggering role of a carrier mobility for organization of the fractional state in Hall configuration is emphasized. The prerequisites for the FQHE are indicated including topological conditions substantially increasing the previously accepted set of physical necessities. The explanation of numerical studies by exact diagonalizations of the fractional Chern insulator states is formulated in terms of the topology condition applied to the Berry field flux quantization. Some new ideas withz regard to the synthetic fractional states in the optical lattices are also formulated.

  6. The Other Hall Effect: College Board Physics

    NASA Astrophysics Data System (ADS)

    Sheppard, Keith; Gunning, Amanda M.

    2013-09-01

    Edwin Herbert Hall (1855-1938), discoverer of the Hall effect, was one of the first winners of the AAPT Oersted Medal for his contributions to the teaching of physics. While Hall's role in establishing laboratory work in high schools is widely acknowledged, his position as chair of the physics section of the Committee on College Entrance Requirements was contentious and his involvement in launching College Board Physics, what we call the "other Hall effect," has largely been overlooked. This article details Hall's role in the development of College Board Physics.

  7. Quantum Hall effects in a non-Abelian honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Li, Ling; Hao, Ningning; Liu, Guocai; Bai, Zhiming; Li, Zai-Dong; Chen, Shu; Liu, W. M.

    2015-12-01

    We study the tunable quantum Hall effects in a non-Abelian honeycomb optical lattice which is a multi-Dirac-point system. We find that the quantum Hall effects present different features with the change in relative strengths of several perturbations. Namely, the quantum spin Hall effect can be induced by gauge-field-dressed next-nearest-neighbor hopping, which, together with a Zeeman field, can induce the quantum anomalous Hall effect characterized by different Chern numbers. Furthermore, we find that the edge states of the multi-Dirac-point system represent very different features for different boundary geometries, in contrast with the generic two-Dirac-point system. Our study extends the borders of the field of quantum Hall effects in a honeycomb optical lattice with multivalley degrees of freedom.

  8. Performance and Facility Background Pressure Characterization Tests of NASAs 12.5-kW Hall Effect Rocket with Magnetic Shielding Thruster

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Shastry, Rohit; Thomas, Robert; Yim, John; Herman, Daniel; Williams, George; Myers, James; Hofer, Richard; Mikellides, Ioannis; Sekerak, Michael; Polk, James

    2015-01-01

    NASA's Space Technology Mission Directorate (STMD) Solar Electric Propulsion Technology Demonstration Mission (SEP/TDM) project is funding the development of a 12.5-kW Hall thruster system to support future NASA missions. The thruster designated Hall Effect Rocket with Magnetic Shielding (HERMeS) is a 12.5-kW Hall thruster with magnetic shielding incorporating a centrally mounted cathode. HERMeS was designed and modeled by a NASA GRC and JPL team and was fabricated and tested in vacuum facility 5 (VF5) at NASA GRC. Tests at NASA GRC were performed with the Technology Development Unit 1 (TDU1) thruster. TDU1's magnetic shielding topology was confirmed by measurement of anode potential and low electron temperature along the discharge chamber walls. Thermal characterization tests indicated that during full power thruster operation at peak magnetic field strength, the various thruster component temperatures were below prescribed maximum allowable limits. Performance characterization tests demonstrated the thruster's wide throttling range and found that the thruster can achieve a peak thruster efficiency of 63% at 12.5 kW 500 V and can attain a specific impulse of 3,000 s at 12.5 kW and a discharge voltage of 800 V. Facility background pressure variation tests revealed that the performance, operational characteristics, and magnetic shielding effectiveness of the TDU1 design were mostly insensitive to increases in background pressure.

  9. Combinatorial measurements of Hall effect and resistivity in oxide films.

    PubMed

    Clayhold, J A; Kerns, B M; Schroer, M D; Rench, D W; Logvenov, G; Bollinger, A T; Bozovic, I

    2008-03-01

    A system for the simultaneous measurement of the Hall effect in 31 different locations as well as the measurement of the resistivity in 30 different locations on a single oxide thin film grown with a composition gradient is described. Considerations for designing and operating a high-throughput system for characterizing highly conductive oxides with Hall coefficients as small as 10(-10) m3/C are discussed. Results from measurements on films grown using combinatorial molecular beam epitaxy show the usefulness of characterizing combinatorial libraries via both the resistivity and the Hall effect. PMID:18377026

  10. Hall-effect arc protector

    DOEpatents

    Rankin, R.A.; Kotter, D.K.

    1997-05-13

    The Hall-Effect Arc Protector is used to protect sensitive electronics from high energy arcs. The apparatus detects arcs by monitoring an electrical conductor, of the instrument, for changes in the electromagnetic field surrounding the conductor which would be indicative of a possible arcing condition. When the magnitude of the monitored electromagnetic field exceeds a predetermined threshold, the potential for an instrument damaging are exists and the control system logic activates a high speed circuit breaker. The activation of the breaker shunts the energy imparted to the input signal through a dummy load to the ground. After the arc condition is terminated, the normal signal path is restored. 2 figs.

  11. Hall-effect arc protector

    DOEpatents

    Rankin, Richard A.; Kotter, Dale K.

    1997-01-01

    The Hall-Effect Arc Protector is used to protect sensitive electronics from high energy arcs. The apparatus detects arcs by monitoring an electrical conductor, of the instrument, for changes in the electromagnetic field surrounding the conductor which would be indicative of a possible arcing condition. When the magnitude of the monitored electromagnetic field exceeds a predetermined threshold, the potential for an instrument damaging are exists and the control system logic activates a high speed circuit breaker. The activation of the breaker shunts the energy imparted to the input signal through a dummy load to the ground. After the arc condition is terminated, the normal signal path is restored.

  12. Characterization of photo-induced anomalous Hall effect in the two-dimensional MoS2

    NASA Astrophysics Data System (ADS)

    Peng, Yingzi; Chen, Ji; Song, Yang; Li, Yuan

    2016-03-01

    We report the observation of a small but finite valley Hall effect (VHE) signal in two-dimensional MoS2 channels which is grown on SiO2/Si substrates under the circularly polarized light. And the angular dependence of VHE in two-dimensional MoS2 is studied. The VHE signal is a periodic function (period π) but with a phase shift, which confirms the presence of strong coupling between spin and valley. Furthermore, using a weak measurement under the condition of the optical circular dichroism, we find resembling beating phenomena, which suggests that a static electric field can induce oscillations. It is interesting that the interval time of the peak starts from an certain value, which is related to carrier densities. We suppose that this certain value is explained by a quasi-two-dimensional electron gas model, which is based on the Hall conductance quantized value of e2/h. To our knowledge, it is the first experiment that realizes such quantized values.

  13. Tunneling Anomalous and Spin Hall Effects.

    PubMed

    Matos-Abiague, A; Fabian, J

    2015-07-31

    We predict, theoretically, the existence of the anomalous Hall effect when a tunneling current flows through a tunnel junction in which only one of the electrodes is magnetic. The interfacial spin-orbit coupling present in the barrier region induces a spin-dependent momentum filtering in the directions perpendicular to the tunneling current, resulting in a skew tunneling even in the absence of impurities. This produces an anomalous Hall conductance and spin Hall currents in the nonmagnetic electrode when a bias voltage is applied across the tunneling heterojunction. If the barrier is composed of a noncentrosymmetric material, the anomalous Hall conductance and spin Hall currents become anisotropic with respect to both the magnetization and crystallographic directions, allowing us to separate this interfacial phenomenon from the bulk anomalous and spin Hall contributions. The proposed effect should be useful for proving and quantifying the interfacial spin-orbit fields in metallic and metal-semiconductor systems. PMID:26274432

  14. Anomalous Hall effect in localization regime

    NASA Astrophysics Data System (ADS)

    Wu, Lin; Zhu, Kai; Yue, Di; Tian, Yuan; Jin, Xiaofeng

    2016-06-01

    The anomalous Hall effect in the ultrathin film regime is investigated in Fe(001)(1-3 nm) films epitaxial on MgO(001). The logarithmic localization correction to longitudinal resistivity and anomalous Hall resistivity are observed at low temperature. We identify that the coefficient of skew scattering has a reduction from metallic to localized regime, while the contribution of side jump has inconspicuous change except for a small drop below 10 K. Furthermore, we discover that the intrinsic anomalous Hall conductivity decreases with the reduction of thickness below 2 nm. Our results provide unambiguous experimental evidence to clarify the problem of localization correction to the anomalous Hall effect.

  15. The quantum Hall effect helicity

    SciTech Connect

    Shrivastava, Keshav N.

    2015-04-16

    The quantum Hall effect in semiconductor heterostructures is explained by two signs in the angular momentum j=l±s and g=(2j+1)/(2l+1) along with the Landau factor (n+1/2). These modifications in the existing theories explain all of the fractional charges. The helicity which is the sign of the product of the linear momentum with the spin p.s plays an important role for the understanding of the data at high magnetic fields. In particular it is found that particles with positive sign in the spin move in one direction and those with negative sign move in another direction which explains the up and down stream motion of the particles.

  16. Metal-Film Hall-Effect Devices

    NASA Technical Reports Server (NTRS)

    Peters, Palmer N.

    1994-01-01

    Large positive and negative Hall coefficients achievable. Family of Hall-effect devices made from multilayer metal films instead of semiconductor materials. Metal films easier to fabricate; formed by deposition on variety of substrates, and leads readily attached to them. Fabricated with larger areas, potentially more reliable, and less affected by impurities. Also used to measure magnetic fields. Devices especially useful at low temperatures.

  17. Quantum Hall effect in quantum electrodynamics

    SciTech Connect

    Penin, Alexander A.

    2009-03-15

    We consider the quantum Hall effect in quantum electrodynamics and find a deviation from the quantum-mechanical prediction for the Hall conductivity due to radiative antiscreening of electric charge in an external magnetic field. A weak dependence of the universal von Klitzing constant on the magnetic field strength, which can possibly be observed in a dedicated experiment, is predicted.

  18. The Design and Fabrication of Bismuth Hall Effect Biosensors

    NASA Astrophysics Data System (ADS)

    Sigillito, A. J.; Rudolph, M.; Soghomonian, V.; Heremans, J. J.

    2011-03-01

    Because of their high sensitivity, accuracy, and low cost, the use of Hall biosensors promises to be an effective diagnostic technique that may aid in the early diagnosis of diseases. In this research, Hall sensors were fabricated from thermally evaporated bismuth thin films. The bismuth films were deposited under high vacuum onto heated Si/ Si O2 substrates using a two layer deposition technique. The films varied in thickness from 60 nm to 75 nm and were etched into Hall bar geometries using photolithography and wet chemical etching. Magnetoresistance and Hall measurements were taken from 4 K to 300 K. The data indicate that the sensors may be characterized using a two carrier model with high mobility, low density holes and low mobility, high density electrons. Additionally, the sensors were exposed to magnetite nanoparticles and characterized using atomic force microscopy. The results will be reported. This research was funded by the National Science Foundation (NSF Grant DMR-0851662).

  19. The Design and Fabrication of Bismuth Hall Effect Biosensors

    NASA Astrophysics Data System (ADS)

    Sigillito, Anthony; Rudolph, Martin; Soghomonian, Vicki; Heremans, J. J.

    2010-10-01

    Because of their high sensitivity, accuracy, and low cost, the use of Hall biosensors promises to be an effective diagnostic technique that may aid in the early diagnosis of diseases. In this research, Hall sensors were fabricated from thermally evaporated bismuth thin films. The bismuth films were deposited under high vacuum onto heated Si/SiO2 substrates using a two layer deposition technique. The films varied in thickness from 60 nm to 75 nm and were etched into Hall bar geometries using photolithography and wet chemical etching. Magnetoresistance and Hall measurements were taken from 4 K to 300 K. The data indicate that the sensors may be characterized using a two carrier model with high mobility, low density holes and low mobility, high density electrons. Additionally, the sensors were exposed to magnetite nanoparticles and characterized using atomic force microscopy. The results will be reported. This research was funded by the National Science Foundation (NSF Grant DMR-0851662).

  20. Experimental realization of quantized anomalous Hall effect

    NASA Astrophysics Data System (ADS)

    Xue, Qi-Kun

    2014-03-01

    Anomalous Hall effect was discovered by Edwin Hall in 1880. In this talk, we report the experimental observation of the quantized version of AHE, the quantum anomalous Hall effect (QAHE) in thin films of Cr-doped (Bi,Sb)2Te3 magnetic topological insulator. At zero magnetic field, the gate-tuned anomalous Hall resistance exhibits a quantized value of h /e2 accompanied by a significant drop of the longitudinal resistance. The longitudinal resistance vanishes under a strong magnetic field whereas the Hall resistance remains at the quantized value. The realization of QAHE paves a way for developing low-power-consumption electronics. Implications on observing Majorana fermions and other exotic phenomena in magnetic topological insulators will also be discussed. The work was collaborated with Ke He, Yayu Wang, Xucun Ma, Xi Chen, Li Lv, Dai Xi, Zhong Fang and Shoucheng Zhang.

  1. Observation of spin Hall effective field

    NASA Astrophysics Data System (ADS)

    Fan, Xin; Wu, Jun; Chen, Yunpeng; Jerry, Matthew; Zhang, Huaiwu; Xiao, John

    2013-03-01

    Recent development in spin Hall driven spin transfer torque has attracted intensive interests1. Liu et. al. has shown that the spin transfer torque induced by the spin Hall effect in a normal metal-ferromagnetic metal bilayer can switch the magnetization of the ferromagnetic layer, which may be a potential candidate for magnetic random access memory2. The switching of the magnetization was primarily attributed to the Slonczewski torque3. We show that besides the Slonczewski torque, the spin Hall effect also produces an effective field that can also facilitate the magnetization reversal. This effective field persists even with a Cu spacer layer, and reduces quickly with the increase of the ferromagnetic layer thickness. The observation of the spin Hall effective field shall have ramification on the understanding of both spin transfer torque and spin Hall effect. 1. K. Ando et. al., Electric manipulation of spin relaxation using the spin Hall effect, Physical Review Letters, 101, 036601 (2008). 2. L. Liu et. al., Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum. Science 336, 555-558 (2012). 3. J. Slonczewski, Current-driven excitation of magnetic multilayers. Journal of Magnetism and Magnetic Materials, 159, L1-L7 (1996).

  2. Geometric Hall effects in topological insulator heterostructures

    NASA Astrophysics Data System (ADS)

    Yasuda, K.; Wakatsuki, R.; Morimoto, T.; Yoshimi, R.; Tsukazaki, A.; Takahashi, K. S.; Ezawa, M.; Kawasaki, M.; Nagaosa, N.; Tokura, Y.

    2016-06-01

    Geometry, both in momentum and in real space, plays an important role in the electronic dynamics of condensed matter systems. Among them, the Berry phase associated with nontrivial geometry can be an origin of the transverse motion of electrons, giving rise to various geometric effects such as the anomalous, spin and topological Hall effects. Here, we report two unconventional manifestations of Hall physics: a sign-reversal of the anomalous Hall effect, and the emergence of a topological Hall effect in magnetic/non-magnetic topological insulator heterostructures, Crx(Bi1-ySby)2-xTe3/(Bi1-ySby)2Te3. The sign-reversal in the anomalous Hall effect is driven by a Rashba splitting at the bulk bands, which is caused by the broken spatial inversion symmetry. Instead, the topological Hall effect arises in a wide temperature range below the Curie temperature, in a region where the magnetic-field dependence of the Hall resistance largely deviates from the magnetization. Its origin is assigned to the formation of a Néel-type skyrmion induced by the Dzyaloshinskii-Moriya interaction.

  3. The quantum Hall effects: Philosophical approach

    NASA Astrophysics Data System (ADS)

    Lederer, P.

    2015-05-01

    The Quantum Hall Effects offer a rich variety of theoretical and experimental advances. They provide interesting insights on such topics as gauge invariance, strong interactions in Condensed Matter physics, emergence of new paradigms. This paper focuses on some related philosophical questions. Various brands of positivism or agnosticism are confronted with the physics of the Quantum Hall Effects. Hacking's views on Scientific Realism, Chalmers' on Non-Figurative Realism are discussed. It is argued that the difficulties with those versions of realism may be resolved within a dialectical materialist approach. The latter is argued to provide a rational approach to the phenomena, theory and ontology of the Quantum Hall Effects.

  4. Quantum Hall effect in momentum space

    NASA Astrophysics Data System (ADS)

    Ozawa, Tomoki; Price, Hannah M.; Carusotto, Iacopo

    2016-05-01

    We theoretically discuss a momentum-space analog of the quantum Hall effect, which could be observed in topologically nontrivial lattice models subject to an external harmonic trapping potential. In our proposal, the Niu-Thouless-Wu formulation of the quantum Hall effect on a torus is realized in the toroidally shaped Brillouin zone. In this analogy, the position of the trap center in real space controls the magnetic fluxes that are inserted through the holes of the torus in momentum space. We illustrate the momentum-space quantum Hall effect with the noninteracting trapped Harper-Hofstadter model, for which we numerically demonstrate how this effect manifests itself in experimental observables. Extension to the interacting trapped Harper-Hofstadter model is also briefly considered. We finally discuss possible experimental platforms where our proposal for the momentum-space quantum Hall effect could be realized.

  5. Piezo Voltage Controlled Planar Hall Effect Devices

    NASA Astrophysics Data System (ADS)

    Zhang, Bao; Meng, Kang-Kang; Yang, Mei-Yin; Edmonds, K. W.; Zhang, Hao; Cai, Kai-Ming; Sheng, Yu; Zhang, Nan; Ji, Yang; Zhao, Jian-Hua; Zheng, Hou-Zhi; Wang, Kai-You

    2016-06-01

    The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT)/ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90° in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials.

  6. Spin-Hall effects in metallic antiferromagnets

    NASA Astrophysics Data System (ADS)

    Zhang, Wei

    Materials possessing new parameters for efficient and tunable spin Hall effects are being explored, among which antiferromagnets have become one of the most promising candidates. Two distinct properties of antiferromagnets are the microscopic spin magnetic moment ordering and the intrinsic anisotropy. Thus the natural question arises whether these two unique features of antiferromagnets can become new degrees of freedom for tuning their spin Hall effects. We performed experimental studies using spin pumping and inverse spin Hall detection on prototypical CuAu-I-type metallic antiferromagnets, PtMn, IrMn, PdMn, and FeMn, in which we observed increasing spin Hall effects for the alloys with heavier elements included. In particular, PtMn shows a large spin Hall effect that is comparable to Pt. We also demonstrated that the spin transfer torques from the antiferromagnets are large enough to excite ferromagnetic resonance of an adjacent ferromagnetic layer. We conclude that the sign and magnitude of the spin Hall effects in these antiferromagnets are determined by the atomic spin-orbit coupling of the heavy elements (e.g. Pt and Ir) as well as the large spin magnetic moments of Mn. In addition, by using epitaxial growth, we investigated the influence of the different crystalline and magnetic orientations on the anisotropic spin Hall effects of these antiferromagnets. Most of the experimental results were further corroborated by first-principles calculations, which determine the intrinsic spin Hall effect contribution and suggest pronounced anisotropies. Thus metallic antiferromagnets may become an active component for manipulating spin dependent transport properties in spintronic concepts. Work at Argonne was supported by the U.S. DOE, OS, Materials Sciences and Engineering Division. Work at Center for Nanoscale Materials was supported by DOE, OS-BES (DE-AC02-06CH11357). Work at Julich was supported by SPP 1538 Programme of the DFG.

  7. Boundary Effective Action for Quantum Hall States.

    PubMed

    Gromov, Andrey; Jensen, Kristan; Abanov, Alexander G

    2016-03-25

    We consider quantum Hall states on a space with boundary, focusing on the aspects of the edge physics which are completely determined by the symmetries of the problem. There are four distinct terms of Chern-Simons type that appear in the low-energy effective action of the state. Two of these protect gapless edge modes. They describe Hall conductance and, with some provisions, thermal Hall conductance. The remaining two, including the Wen-Zee term, which contributes to the Hall viscosity, do not protect gapless edge modes but are instead related to the local boundary response fixed by symmetries. We highlight some basic features of this response. It follows that the coefficient of the Wen-Zee term can change across an interface without closing a gap or breaking a symmetry. PMID:27058090

  8. Boundary Effective Action for Quantum Hall States

    NASA Astrophysics Data System (ADS)

    Gromov, Andrey; Jensen, Kristan; Abanov, Alexander G.

    2016-03-01

    We consider quantum Hall states on a space with boundary, focusing on the aspects of the edge physics which are completely determined by the symmetries of the problem. There are four distinct terms of Chern-Simons type that appear in the low-energy effective action of the state. Two of these protect gapless edge modes. They describe Hall conductance and, with some provisions, thermal Hall conductance. The remaining two, including the Wen-Zee term, which contributes to the Hall viscosity, do not protect gapless edge modes but are instead related to the local boundary response fixed by symmetries. We highlight some basic features of this response. It follows that the coefficient of the Wen-Zee term can change across an interface without closing a gap or breaking a symmetry.

  9. The fluctuation induced Hall effect

    SciTech Connect

    Shen, W.; Prager, S.C.

    1993-02-01

    The fluctuation induced Hall term, [le][approximately][ovr J] [times] [approximately][ovr B][ge], has been measured in the MST reversed field pinch. The term is of interest as a possible source of current self-generation (dynamo). It is found to be non-negligible, but small in that it can account for less than 25% of the dynamo driven current.

  10. The fluctuation induced Hall effect

    SciTech Connect

    Shen, W.; Prager, S.C.

    1993-02-01

    The fluctuation induced Hall term, {le}{approximately}{ovr J} {times} {approximately}{ovr B}{ge}, has been measured in the MST reversed field pinch. The term is of interest as a possible source of current self-generation (dynamo). It is found to be non-negligible, but small in that it can account for less than 25% of the dynamo driven current.

  11. Extrinsic spin Hall effect in graphene

    NASA Astrophysics Data System (ADS)

    Rappoport, Tatiana

    The intrinsic spin-orbit coupling in graphene is extremely weak, making it a promising spin conductor for spintronic devices. In addition, many applications also require the generation of spin currents in graphene. Theoretical predictions and recent experimental results suggest one can engineer the spin Hall effect in graphene by greatly enhancing the spin-orbit coupling in the vicinity of an impurity. The extrinsic spin Hall effect then results from the spin-dependent skew scattering of electrons by impurities in the presence of spin-orbit interaction. This effect can be used to efficiently convert charge currents into spin-polarized currents. I will discuss recent experimental results on spin Hall effect in graphene decorated with adatoms and metallic cluster and show that a large spin Hall effect can appear due to skew scattering. While this spin-orbit coupling is small if compared with what it is found in metals, the effect is strongly enhanced in the presence of resonant scattering, giving rise to robust spin Hall angles. I will present our single impurity scattering calculations done with exact partial-wave expansions and complement the analysis with numerical results from a novel real-space implementation of the Kubo formalism for tight-binding Hamiltonians. The author acknowledges the Brazilian agencies CNPq, CAPES, FAPERJ and INCT de Nanoestruturas de Carbono for financial support.

  12. Charge carrier coherence and Hall effect in organic semiconductors

    PubMed Central

    Yi, H. T.; Gartstein, Y. N.; Podzorov, V.

    2016-01-01

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor. PMID:27025354

  13. Charge carrier coherence and Hall effect in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Yi, H. T.; Gartstein, Y. N.; Podzorov, V.

    2016-03-01

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor.

  14. Charge carrier coherence and Hall effect in organic semiconductors.

    PubMed

    Yi, H T; Gartstein, Y N; Podzorov, V

    2016-01-01

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor. PMID:27025354

  15. Spin Hall Effect in Doped Semiconductor Structures

    NASA Astrophysics Data System (ADS)

    Tse, Wang-Kong; Das Sarma, Sankar

    2006-03-01

    We present a microscopic theory of the extrinsic spin Hall effect based on the diagrammatic perturbation theory. Side-jump (SJ) and skew-scattering (SS) contributions are explicitly taken into account to calculate the spin Hall conductivity, and we show their effects scale as σxy^SJ/σxy^SS ˜(/τ)/ɛF, where τ being the transport relaxation time. Motivated by recent experimental work we apply our theory to n-doped and p-doped 3D and 2D GaAs structures, obtaining analytical formulas for the SJ and SS contributions. Moreover, the ratio of the spin Hall conductivity to longitudinal conductivity is found as σs/σc˜10-3-10-4, in reasonable agreement with the recent experimental results of Kato et al. [Science 306, 1910 (2004)] in n-doped 3D GaAs system.

  16. Spin Hall Effect in Doped Semiconductor Structures

    NASA Astrophysics Data System (ADS)

    Tse, Wang-Kong; Das Sarma, S.

    2006-02-01

    In this Letter we present a microscopic theory of the extrinsic spin Hall effect based on the diagrammatic perturbation theory. Side-jump and skew-scattering contributions are explicitly taken into account to calculate the spin Hall conductivity, and we show that their effects scale as σxySJ/σxySS˜(ℏ/τ)/ɛF, with τ being the transport relaxation time. Motivated by recent experimental work we apply our theory to n- and p-doped 3D and 2D GaAs structures, obtaining σs/σc˜10-3-10-4, where σs(c) is the spin Hall (charge) conductivity, which is in reasonable agreement with the recent experimental results of Kato et al. [Science 306, 1910 (2004)]SCIEAS0036-807510.1126/science.1105514 in n-doped 3D GaAs system.

  17. Piezo Voltage Controlled Planar Hall Effect Devices.

    PubMed

    Zhang, Bao; Meng, Kang-Kang; Yang, Mei-Yin; Edmonds, K W; Zhang, Hao; Cai, Kai-Ming; Sheng, Yu; Zhang, Nan; Ji, Yang; Zhao, Jian-Hua; Zheng, Hou-Zhi; Wang, Kai-You

    2016-01-01

    The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT)/ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90° in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials. PMID:27329068

  18. Piezo Voltage Controlled Planar Hall Effect Devices

    PubMed Central

    Zhang, Bao; Meng, Kang-Kang; Yang, Mei-Yin; Edmonds, K. W.; Zhang, Hao; Cai, Kai-Ming; Sheng, Yu; Zhang, Nan; Ji, Yang; Zhao, Jian-Hua; Zheng, Hou-Zhi; Wang, Kai-You

    2016-01-01

    The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT)/ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90° in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials. PMID:27329068

  19. The fractional quantum hall effect (experiment)

    NASA Astrophysics Data System (ADS)

    Stormer, H. L.

    1984-11-01

    Quantization of the Hall resistance ϱ XY in two-dimensional electron systems and simultaneously vanishing resistivity ϱ XX have been observed at fractional filling ν of Landau levels, ν being close to various rational fractions of p/q with exclusively odd denominator. Where resolved, the Hall resistance is quantized to ϱ XY=h/νe 2 to high accuracy. While the normal quantized Hall effect at integer values of ν=i, (i=1,2,3...) reflects the Landau and spin gaps in the single particle density of states of electrons in a magnetic field, this new phenomena is believed to indicate the condensation of the carriers into a novel, highly-correlated electronic state best described as an electron quantum liquid.

  20. Inverse spin Hall effect by spin injection

    NASA Astrophysics Data System (ADS)

    Liu, S. Y.; Horing, Norman J. M.; Lei, X. L.

    2007-09-01

    Motivated by a recent experiment [S. O. Valenzuela and M. Tinkham, Nature (London) 442, 176 (2006)], the authors present a quantitative microscopic theory to investigate the inverse spin-Hall effect with spin injection into aluminum considering both intrinsic and extrinsic spin-orbit couplings using the orthogonalized-plane-wave method. Their theoretical results are in good agreement with the experimental data. It is also clear that the magnitude of the anomalous Hall resistivity is mainly due to contributions from extrinsic skew scattering.

  1. A Small Modular Laboratory Hall Effect Thruster

    NASA Astrophysics Data System (ADS)

    Lee, Ty Davis

    Electric propulsion technologies promise to revolutionize access to space, opening the door for mission concepts unfeasible by traditional propulsion methods alone. The Hall effect thruster is a relatively high thrust, moderate specific impulse electric propulsion device that belongs to the class of electrostatic thrusters. Hall effect thrusters benefit from an extensive flight history, and offer significant performance and cost advantages when compared to other forms of electric propulsion. Ongoing research on these devices includes the investigation of mechanisms that tend to decrease overall thruster efficiency, as well as the development of new techniques to extend operational lifetimes. This thesis is primarily concerned with the design and construction of a Small Modular Laboratory Hall Effect Thruster (SMLHET), and its operation on argon propellant gas. Particular attention was addressed at low-cost, modular design principles, that would facilitate simple replacement and modification of key thruster parts such as the magnetic circuit and discharge channel. This capability is intended to facilitate future studies of device physics such as anomalous electron transport and magnetic shielding of the channel walls, that have an impact on thruster performance and life. Preliminary results demonstrate SMLHET running on argon in a manner characteristic of Hall effect thrusters, additionally a power balance method was utilized to estimate thruster performance. It is expected that future thruster studies utilizing heavier though more expensive gases like xenon or krypton, will observe increased efficiency and stability.

  2. Fractional Quantization of the Hall Effect

    DOE R&D Accomplishments Database

    Laughlin, R. B.

    1984-02-27

    The Fractional Quantum Hall Effect is caused by the condensation of a two-dimensional electron gas in a strong magnetic field into a new type of macroscopic ground state, the elementary excitations of which are fermions of charge 1/m, where m is an odd integer. A mathematical description is presented.

  3. The Quantum Anomalous Hall Effect: Theory and Experiment

    NASA Astrophysics Data System (ADS)

    Liu, Chao-Xing; Zhang, Shou-Cheng; Qi, Xiao-Liang

    2016-03-01

    The quantum anomalous Hall effect is defined as a quantized Hall effect realized in a system without an external magnetic field. The quantum anomalous Hall effect is a novel manifestation of topological structure in many-electron systems and may have potential applications in future electronic devices. In recent years, the quantum anomalous Hall effect was proposed theoretically and realized experimentally. In this review article, we provide a systematic overview of the theoretical and experimental developments in this field.

  4. Improved Hall-Effect Sensors For Magnetic Memories

    NASA Technical Reports Server (NTRS)

    Wu, Jiin-Chuan; Stadler, Henry L.; Katti, Romney R.; Chen, Y. C.; Bhattacharya, Pallab K.

    1993-01-01

    High-electron-mobility sensor films deposited on superlattice buffer (strain) layers. Improved Hall-effect sensors offer combination of adequate response and high speed needed for use in micromagnet/Hall-effect random-access memories. Hall-effect material chosen for use in sensors is InAs.

  5. Improved Readout For Micromagnet/Hall-Effect Memories

    NASA Technical Reports Server (NTRS)

    Wu, Jiin-Chuan; Stadler, Henry L.; Katti, Romney R.

    1993-01-01

    Two improved readout circuits for micromagnet/Hall-effect random-access memories designed to eliminate current shunts introducing errors into outputs of older readout circuits. Incorporate additional switching transistors to isolate Hall sensors as needed.

  6. Destruction of the Fractional Quantum Hall Effect by Disorder

    DOE R&D Accomplishments Database

    Laughlin, R. B.

    1985-07-01

    It is suggested that Hall steps in the fractional quantum Hall effect are physically similar to those in the ordinary quantum Hall effect. This proposition leads to a simple scaling diagram containing a new type of fixed point, which is identified with the destruction of the fractional states by disorder. 15 refs., 3 figs.

  7. High temperature Hall measurement setup for thin film characterization.

    PubMed

    Adnane, L; Gokirmak, A; Silva, H

    2016-07-01

    Hall measurement using the van der Pauw technique is a common characterization approach that does not require patterning of contacts. Measurements of the Hall voltage and electrical resistivity lead to the product of carrier mobility and carrier concentration (Hall coefficient) which can be decoupled through transport models. Based on the van der Paw method, we have developed an automated setup for Hall measurements from room temperature to ∼500 °C of semiconducting thin films of a wide resistivity range. The resistivity of the film and Hall coefficient is obtained from multiple current-voltage (I-V) measurements performed using a semiconductor parameter analyzer under applied constant "up," zero, and "down" magnetic field generated with two neodymium permanent magnets. The use of slopes obtained from multiple I-Vs for the three magnetic field conditions offer improved accuracy. Samples are preferred in square shape geometry and can range from 2 mm to 25 mm side length. Example measurements of single-crystal silicon with known doping concentration show the accuracy and reliability of the measurement. PMID:27475605

  8. High temperature Hall measurement setup for thin film characterization

    NASA Astrophysics Data System (ADS)

    Adnane, L.; Gokirmak, A.; Silva, H.

    2016-07-01

    Hall measurement using the van der Pauw technique is a common characterization approach that does not require patterning of contacts. Measurements of the Hall voltage and electrical resistivity lead to the product of carrier mobility and carrier concentration (Hall coefficient) which can be decoupled through transport models. Based on the van der Paw method, we have developed an automated setup for Hall measurements from room temperature to ˜500 °C of semiconducting thin films of a wide resistivity range. The resistivity of the film and Hall coefficient is obtained from multiple current-voltage (I-V) measurements performed using a semiconductor parameter analyzer under applied constant "up," zero, and "down" magnetic field generated with two neodymium permanent magnets. The use of slopes obtained from multiple I-Vs for the three magnetic field conditions offer improved accuracy. Samples are preferred in square shape geometry and can range from 2 mm to 25 mm side length. Example measurements of single-crystal silicon with known doping concentration show the accuracy and reliability of the measurement.

  9. Developments in the quantum Hall effect.

    PubMed

    von Klitzing, Klaus

    2005-09-15

    The most important applications of the quantum Hall effect (QHE) are in the field of metrology. The observed quantization of the resistance is primarily used for the reproduction of the SI unit ohm, but is also important for high precision measurements of both the fine structure constant and the Planck constant. Some current QHE research areas include the analysis of new electron-electron correlation phenomena and the development of a more complete microscopic picture of this quantum effect. Recently, scanning force microscopy (SFM) of the potential distribution in QHE devices has been used to enhance the microscopic understanding of current flow in quantum Hall systems. This confirms the importance of the theoretically predicted stripes of compressible and incompressible electronic states close to the boundary of the QHE devices. PMID:16147506

  10. Multipole expansion in the quantum hall effect

    NASA Astrophysics Data System (ADS)

    Cappelli, Andrea; Randellini, Enrico

    2016-03-01

    The effective action for low-energy excitations of Laughlin's states is obtained by systematic expansion in inverse powers of the magnetic field. It is based on the W- infinity symmetry of quantum incompressible fluids and the associated higher-spin fields. Besides reproducing the Wen and Wen-Zee actions and the Hall viscosity, this approach further indicates that the low-energy excitations are extended objects with dipolar and multipolar moments.

  11. High temperature Hall-effect apparatus

    NASA Technical Reports Server (NTRS)

    Wood, C.; Lockwood, A.; Chmielewski, A.; Parker, J.; Zoltan, A.

    1984-01-01

    A high-temperature Hall-effect apparatus is described which allows measurements up to temperatures greater than 1200 K using the van der Pauw method. The apparatus was designed for measurements on refractory materials having high charge carrier concentrations and generally low mobilities. Pressure contacts are applied to the samples. Consequently, special contacting methods, peculiar to a specific sample material, are not required. The apparatus has been semiautomated to facilitate measurements. Results are presented on n- and p-type silicon.

  12. Generic superweak chaos induced by Hall effect.

    PubMed

    Ben-Harush, Moti; Dana, Itzhack

    2016-05-01

    We introduce and study the "kicked Hall system" (KHS), i.e., charged particles periodically kicked in the presence of uniform magnetic (B) and electric (E) fields that are perpendicular to each other and to the kicking direction. We show that for resonant values of B and E and in the weak-chaos regime of sufficiently small nonintegrability parameter κ (the kicking strength), there exists a generic family of periodic kicking potentials for which the Hall effect from B and E significantly suppresses the weak chaos, replacing it by "superweak" chaos (SWC). This means that the system behaves as if the kicking strength were κ^{2} rather than κ. For E=0, SWC is known to be a classical fingerprint of quantum antiresonance, but it occurs under much less generic conditions, in particular only for very special kicking potentials. Manifestations of SWC are a decrease in the instability of periodic orbits and a narrowing of the chaotic layers, relative to the ordinary weak-chaos case. Also, for global SWC, taking place on an infinite "stochastic web" in phase space, the chaotic diffusion on the web is much slower than the weak-chaos one. Thus, the Hall effect can be relatively stabilizing for small κ. In some special cases, the effect is shown to cause ballistic motion for almost all parameter values. The generic global SWC on stochastic webs in the KHS appears to be the two-dimensional closest analog to the Arnol'd web in higher dimensional systems. PMID:27300880

  13. Generic superweak chaos induced by Hall effect

    NASA Astrophysics Data System (ADS)

    Ben-Harush, Moti; Dana, Itzhack

    2016-05-01

    We introduce and study the "kicked Hall system" (KHS), i.e., charged particles periodically kicked in the presence of uniform magnetic (B ) and electric (E ) fields that are perpendicular to each other and to the kicking direction. We show that for resonant values of B and E and in the weak-chaos regime of sufficiently small nonintegrability parameter κ (the kicking strength), there exists a generic family of periodic kicking potentials for which the Hall effect from B and E significantly suppresses the weak chaos, replacing it by "superweak" chaos (SWC). This means that the system behaves as if the kicking strength were κ2 rather than κ . For E =0 , SWC is known to be a classical fingerprint of quantum antiresonance, but it occurs under much less generic conditions, in particular only for very special kicking potentials. Manifestations of SWC are a decrease in the instability of periodic orbits and a narrowing of the chaotic layers, relative to the ordinary weak-chaos case. Also, for global SWC, taking place on an infinite "stochastic web" in phase space, the chaotic diffusion on the web is much slower than the weak-chaos one. Thus, the Hall effect can be relatively stabilizing for small κ . In some special cases, the effect is shown to cause ballistic motion for almost all parameter values. The generic global SWC on stochastic webs in the KHS appears to be the two-dimensional closest analog to the Arnol'd web in higher dimensional systems.

  14. Photoinduced Anomalous Hall Effects in Weyl Semimetals

    NASA Astrophysics Data System (ADS)

    Chan, Ching-Kit; Lee, Patrick A.; Burch, Kenneth S.; Han, Jung Hoon; Ran, Ying

    We examine theoretically the interplay between chiral photons and chiral electrons in Weyl semimetals. Owing to its monopole nature, a three-dimensional Weyl node is topologically-robust against a circularly polarized light. A driven Weyl system exhibits node shifts in the momentum space, in sharp contrast to the gap opening in a driven two-dimensional Dirac system. We show that the node shift leads to a change of the Chern vector which gives arise to a net photoinduced anomalous Hall conductivity, in the plane perpendicular to the light propagation. We shall describe the basic idea behind this generic photoinduced Hall effect, illustrate it with a concrete microscope model, and estimate its feasibility based on current optical experimental techniques.

  15. Anomalous Hall effect in Weyl superconductors

    NASA Astrophysics Data System (ADS)

    Bednik, G.; Zyuzin, A. A.; Burkov, A. A.

    2016-08-01

    We present a theory of the anomalous Hall effect in a topological Weyl superconductor with broken time reversal symmetry. Specifically, we consider a ferromagnetic Weyl metal with two Weyl nodes of opposite chirality near the Fermi energy. In the presence of inversion symmetry, such a metal experiences a weak-coupling Bardeen–Cooper–Schrieffer instability, with pairing of parity-related eigenstates. Due to the nonzero topological charge, carried by the Weyl nodes, such a superconductor is necessarily topologically nontrivial, with Majorana surface states coexisting with the Fermi arcs of the normal Weyl metal. We demonstrate that, surprisingly, the anomalous Hall conductivity of such a superconducting Weyl metal coincides with that of a nonsuperconducting one, under certain conditions, in spite of the nonconservation of charge in a superconductor. We relate this to the existence of an extra (nearly) conserved quantity in a Weyl metal, the chiral charge.

  16. Mode Transitions in Hall Effect Thrusters

    NASA Technical Reports Server (NTRS)

    Sekerak, Michael J.; Longmier, Benjamin W.; Gallimore, Alec D.; Brown, Daniel L.; Hofer, Richard R.; Polk, James E.

    2013-01-01

    Mode transitions have been commonly observed in Hall Effect Thruster (HET) operation where a small change in a thruster operating parameter such as discharge voltage, magnetic field or mass flow rate causes the thruster discharge current mean value and oscillation amplitude to increase significantly. Mode transitions in a 6-kW-class HET called the H6 are induced by varying the magnetic field intensity while holding all other operating parameters constant and measurements are acquired with ion saturation probes and ultra-fast imaging. Global and local oscillation modes are identified. In the global mode, the entire discharge channel oscillates in unison and azimuthal perturbations (spokes) are either absent or negligible. Downstream azimuthally spaced probes show no signal delay between each other and are very well correlated to the discharge current signal. In the local mode, signals from the azimuthally spaced probes exhibit a clear delay indicating the passage of "spokes" and are not well correlated to the discharge current. These spokes are localized oscillations propagating in the ExB direction that are typically 10-20% of the mean value. In contrast, the oscillations in the global mode can be 100% of the mean value. The transition between global and local modes occurs at higher relative magnetic field strengths for higher mass flow rates or higher discharge voltages. The thrust is constant through mode transition but the thrust-to-power decreased by 25% due to increasing discharge current. The plume shows significant differences between modes with the global mode significantly brighter in the channel and the near-field plasma plume as well as exhibiting a luminous spike on thruster centerline. Mode transitions provide valuable insight to thruster operation and suggest improved methods for thruster performance characterization.

  17. Spin Hall Effect in Disordered Organic Solids

    NASA Astrophysics Data System (ADS)

    Yu, Z. G.

    2015-07-01

    We study the spin Hall effect (SHE) in disordered π -conjugated organic solids, where individual molecules are oriented randomly and electrical conduction is via carrier hopping. The SHE, which arises from interference between direct (i →j ) and indirect (i →k →j ) hoppings in a triad consisting of three molecules i , j , and k , is found to be proportional to λ (ni×nj+nj×nk+nk×ni), where λ is the spin admixture of π electrons due to the spin-orbit coupling and ni is the orientation vector of molecule i . Electrical conductivity σq q (q =x ,y ,z ) and spin Hall conductivity σsh are computed by numerically solving the master equations of a system containing 32 ×32 ×32 molecules and summing over contributions from all triads in the system. The obtained value of the spin Hall angle Θsh is consistent with experimental data in PEDOT:PSS, with a predicted temperature dependence of log Θsh˜T-1 /4 .

  18. A Magnetic Balance with Hall Effect Sensors

    NASA Astrophysics Data System (ADS)

    Sawada, Hideo; Kunimasu, Tetsuya; Suda, Shinichi; Mizoguti, Yasushi; Okada, Takumi

    Magnetic force acting on a model fixed at the center of the JAXA 60cm MSBS was measured with an industry manufactured balance system when MSBS control coil currents were varied. At the same time, magnetic field intensity was also measured with 11 Hall sensors, which were arranged around the MSBS test section. From relations between coil currents and its corresponding controlled magnetic forces, regressive curves were given and maximum deviation from the curves was evaluated. From relations between Hall sensor outputs and the magnetic forces, regressive curves and deviation were also obtained. Obtained results show Hall sensor outputs are much better indexes of balance than the coil currents. The maximum deviations were reduced to a half or one-third times as much as those evaluated using the control coil currents. However, when couples acting on the model are controlled, they are not effective to reduce hysteresis phenomenon in the relation. The deviation can be reduced by decreasing the range of calibration. Then, the error of the balance of the MSBS was reduced to about 1% of the calibration range.

  19. Optical spin Hall effects in plasmonic chains.

    PubMed

    Shitrit, Nir; Bretner, Itay; Gorodetski, Yuri; Kleiner, Vladimir; Hasman, Erez

    2011-05-11

    Observation of optical spin Hall effects (OSHEs) manifested by a spin-dependent momentum redirection is presented. The effect occurring solely as a result of the curvature of the coupled localized plasmonic chain is regarded as the locally isotropic OSHE, while the locally anisotropic OSHE arises from the interaction between the optical spin and the local anisotropy of the plasmonic mode rotating along the chain. A wavefront phase dislocation was observed in a circular curvature, in which the dislocation strength was enhanced by the locally anisotropic effect. PMID:21513279

  20. Stacking order dependence of inverse spin Hall effect and anomalous Hall effect in spin pumping experiments

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Il; Kim, Dong-Jun; Seo, Min-Su; Park, Byong-Guk; Park, Seung-Young

    2015-05-01

    The dependence of the measured DC voltage on the non-magnetic material (NM) in NM/CoFeB and CoFeB/NM bilayers is studied under ferromagnetic resonance conditions in a TE011 resonant cavity. The directional change of the inverse spin Hall effect (ISHE) voltage VISHE for the stacking order of the bilayer can separate the pure VISHE and the anomalous Hall effect (AHE) voltage VAHE utilizing the method of addition and subtraction. The Ta and Ti NMs show a broad deviation of the spin Hall angle θISH, which originates from the AHE in accordance with the high resistivity of NMs. However, the Pt and Pd NMs show that the kinds of NMs with low resistivity are consistent with the previously reported θISH values. Therefore, the characteristics that NM should simultaneously satisfy to obtain a reasonable VISHE value in bilayer systems are large θISH and low resistivity.

  1. Excitons in the Fractional Quantum Hall Effect

    DOE R&D Accomplishments Database

    Laughlin, R. B.

    1984-09-01

    Quasiparticles of charge 1/m in the Fractional Quantum Hall Effect form excitons, which are collective excitations physically similar to the transverse magnetoplasma oscillations of a Wigner crystal. A variational exciton wavefunction which shows explicitly that the magnetic length is effectively longer for quasiparticles than for electrons is proposed. This wavefunction is used to estimate the dispersion relation of these excitons and the matrix elements to generate them optically out of the ground state. These quantities are then used to describe a type of nonlinear conductivity which may occur in these systems when they are relatively clean.

  2. Volumetric Hall Effect Tomography – A Feasibility Study

    PubMed Central

    Wen, Han

    2010-01-01

    Hall effect imaging is an ultrasound-based method of mapping spatial variations in the dielectric constants of an acoustically-uniform sample. This paper presents three-dimensional Hall effect images of phantoms obtained by scanning a single transducer across a two-dimensional grid, effectively simulating two-dimensional phased-array signal reception. The experiments demonstrate the feasibility of volumetric Hall effect tomography and show the advantage of volumetric scans over planar scans. The images reflect several limitations of the current scanning method and point to directions for further hardware development. The inherent limitations of Hall effect imaging are also discussed in light of these results. PMID:10604800

  3. Anomalous Hall Effect in a Kagome Ferromagnet

    NASA Astrophysics Data System (ADS)

    Ye, Linda; Wicker, Christina; Suzuki, Takehito; Checkelsky, Joseph; Joseph Checkelsky Team

    The ferromagnetic kagome lattice is theoretically known to possess topological band structures. We have synthesized large single crystals of a kagome ferromagnet Fe3Sn2 which orders ferromagnetically well above room temperature. We have studied the electrical and magnetic properties of these crystals over a broad temperature and magnetic field range. Both the scaling relation of anomalous Hall effect and anisotropic magnetic susceptibility show that the ferromagnetism of Fe3Sn2 is unconventional. We discuss these results in the context of magnetism in kagome systems and relevance to the predicted topological properties in this class of compounds. This research is supported by DMR-1231319.

  4. Prospect of quantum anomalous Hall and quantum spin Hall effect in doped kagome lattice Mott insulators.

    PubMed

    Guterding, Daniel; Jeschke, Harald O; Valentí, Roser

    2016-01-01

    Electronic states with non-trivial topology host a number of novel phenomena with potential for revolutionizing information technology. The quantum anomalous Hall effect provides spin-polarized dissipation-free transport of electrons, while the quantum spin Hall effect in combination with superconductivity has been proposed as the basis for realizing decoherence-free quantum computing. We introduce a new strategy for realizing these effects, namely by hole and electron doping kagome lattice Mott insulators through, for instance, chemical substitution. As an example, we apply this new approach to the natural mineral herbertsmithite. We prove the feasibility of the proposed modifications by performing ab-initio density functional theory calculations and demonstrate the occurrence of the predicted effects using realistic models. Our results herald a new family of quantum anomalous Hall and quantum spin Hall insulators at affordable energy/temperature scales based on kagome lattices of transition metal ions. PMID:27185665

  5. Prospect of quantum anomalous Hall and quantum spin Hall effect in doped kagome lattice Mott insulators

    PubMed Central

    Guterding, Daniel; Jeschke, Harald O.; Valentí, Roser

    2016-01-01

    Electronic states with non-trivial topology host a number of novel phenomena with potential for revolutionizing information technology. The quantum anomalous Hall effect provides spin-polarized dissipation-free transport of electrons, while the quantum spin Hall effect in combination with superconductivity has been proposed as the basis for realizing decoherence-free quantum computing. We introduce a new strategy for realizing these effects, namely by hole and electron doping kagome lattice Mott insulators through, for instance, chemical substitution. As an example, we apply this new approach to the natural mineral herbertsmithite. We prove the feasibility of the proposed modifications by performing ab-initio density functional theory calculations and demonstrate the occurrence of the predicted effects using realistic models. Our results herald a new family of quantum anomalous Hall and quantum spin Hall insulators at affordable energy/temperature scales based on kagome lattices of transition metal ions. PMID:27185665

  6. Prospect of quantum anomalous Hall and quantum spin Hall effect in doped kagome lattice Mott insulators

    NASA Astrophysics Data System (ADS)

    Guterding, Daniel; Jeschke, Harald O.; Valentí, Roser

    2016-05-01

    Electronic states with non-trivial topology host a number of novel phenomena with potential for revolutionizing information technology. The quantum anomalous Hall effect provides spin-polarized dissipation-free transport of electrons, while the quantum spin Hall effect in combination with superconductivity has been proposed as the basis for realizing decoherence-free quantum computing. We introduce a new strategy for realizing these effects, namely by hole and electron doping kagome lattice Mott insulators through, for instance, chemical substitution. As an example, we apply this new approach to the natural mineral herbertsmithite. We prove the feasibility of the proposed modifications by performing ab-initio density functional theory calculations and demonstrate the occurrence of the predicted effects using realistic models. Our results herald a new family of quantum anomalous Hall and quantum spin Hall insulators at affordable energy/temperature scales based on kagome lattices of transition metal ions.

  7. Faster Hall-Effect Current-Measuring Circuit

    NASA Technical Reports Server (NTRS)

    Sullender, Craig C.; Johnson, Daniel D.; Walker, Daniel D.

    1993-01-01

    Current-measuring circuit operates on Hall-effect-sensing and magnetic-field-nulling principles similar to those described in article, "Nulling Hall-Effect Current-Measuring Circuit" (LEW-15023), but simpler and responds faster. Designed without feedback loop, and analog pulse-width-modulated output indicates measured current. Circuit measures current at frequency higher than bandwidth of its Hall-effect sensor.

  8. Charge carrier coherence and Hall effect in organic semiconductors

    DOE PAGESBeta

    Yi, H. T.; Gartstein, Y. N.; Podzorov, V.

    2016-03-30

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force actingmore » on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Lastly, our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor.« less

  9. Kinetic effects in a Hall thruster discharge

    SciTech Connect

    Kaganovich, I. D.; Raitses, Y.; Sydorenko, D.; Smolyakov, A.

    2007-05-15

    Recent analytical studies and particle-in-cell simulations suggested that the electron velocity distribution function in ExB discharge of annular geometry Hall thrusters is non-Maxwellian and anisotropic. The average kinetic energy of electron motion in the direction parallel to the thruster channel walls (across the magnetic field) is several times larger than that in the direction normal to the walls. Electrons are stratified into several groups depending on their origin (e.g., plasma or channel walls) and confinement (e.g., lost on the walls or trapped in the plasma). Practical analytical formulas are derived for the plasma flux to the wall, secondary electron fluxes, plasma potential, and electron cross-field conductivity. Calculations based on these formulas fairly agree with the results of numerical simulations. The self-consistent analysis demonstrates that the elastic electron scattering in collisions with atoms and ions plays a key role in formation of the electron velocity distribution function and the plasma potential with respect to the walls. It is shown that the secondary electron emission from the walls may significantly enhance the electron conductivity across the magnetic field but only weakly affects the insulating properties of the near-wall sheath. Such self-consistent decoupling between the secondary electron emission effects on the electron energy losses and the electron cross-field transport is currently not captured by the existing fluid and hybrid models of Hall thrusters.

  10. Hall Effect Measured Using a Waveguide Tee

    NASA Astrophysics Data System (ADS)

    Coppock, Joyce; Anderson, James; Johnson, William

    2014-03-01

    We describe a simple microwave apparatus to measure the Hall effect in semiconductor wafers. The advantage of this technique is that it does not require contacts on the sample or the use of a resonant cavity. Our method consists of placing the semiconductor wafer into a slot cut in an X-band waveguide tee, which lies in the center of an electromagnet, injecting power into the two opposing arms of the tee, and measuring the output at the third arm. Application of a magnetic field gives a Hall signal that is linear in the magnetic field and which reverses phase when the magnetic field is reversed. This method yields the semiconductor mobility, which we can compare for calibration purposes with mobility data from direct-current (Van der Pauw1) measurements. We are in the process of modeling the system using a finite-difference time-domain (FDTD) simulation to better understand the behavior of the electric fields inside the sample. Resistivity data is obtained by measuring the microwave reflection coefficient of the sample. This talk presents data for silicon and germanium samples doped with boron or phosphorus. Measured mobilities ranged from 270-3000 cm2/V.s . 1L. J. van der Pauw, PhilipsResearchReports 13, 1 (1958)

  11. Topological honeycomb magnon Hall effect: A calculation of thermal Hall conductivity of magnetic spin excitations

    NASA Astrophysics Data System (ADS)

    Owerre, S. A.

    2016-07-01

    Quite recently, the magnon Hall effect of spin excitations has been observed experimentally on the kagome and pyrochlore lattices. The thermal Hall conductivity κxy changes sign as a function of magnetic field or temperature on the kagome lattice, and κxy changes sign upon reversing the sign of the magnetic field on the pyrochlore lattice. Motivated by these recent exciting experimental observations, we theoretically propose a simple realization of the magnon Hall effect in a two-band model on the honeycomb lattice. The magnon Hall effect of spin excitations arises in the usual way via the breaking of inversion symmetry of the lattice, however, by a next-nearest-neighbour Dzyaloshinsky-Moriya interaction. We find that κxy has a fixed sign for all parameter regimes considered. These results are in contrast to the Lieb, kagome, and pyrochlore lattices. We further show that the low-temperature dependence on the magnon Hall conductivity follows a T2 law, as opposed to the kagome and pyrochlore lattices. These results suggest an experimental procedure to measure thermal Hall conductivity within a class of 2D honeycomb quantum magnets and ultracold atoms trapped in a honeycomb optical lattice.

  12. Automated High-Temperature Hall-Effect Apparatus

    NASA Technical Reports Server (NTRS)

    Parker, James B.; Zoltan, Leslie D.

    1992-01-01

    Automated apparatus takes Hall-effect measurements of specimens of thermoelectric materials at temperatures from ambient to 1,200 K using computer control to obtain better resolution of data and more data points about three times as fast as before. Four-probe electrical-resistance measurements taken in 12 electrical and 2 magnetic orientations to characterize specimens at each temperature. Computer acquires data, and controls apparatus via three feedback loops: one for temperature, one for magnetic field, and one for electrical-potential data.

  13. Hall effect in a moving liquid

    NASA Astrophysics Data System (ADS)

    Di Lieto, Alberto; Giuliano, Alessia; Maccarrone, Francesco; Paffuti, Giampiero

    2012-01-01

    A simple experiment, suitable for performing in an undergraduate physics laboratory, illustrates electromagnetic induction through the water entering into a cylindrical rubber tube by detecting the voltage developed across the tube in the direction transverse both to the flow velocity and to the magnetic field. The apparatus is a very simple example of an electromagnetic flowmeter, a device which is commonly used both in industrial and physiological techniques. The phenomenology observed is similar to that of the Hall effect in the absence of an electric current in the direction of motion of the carriers. The experimental results show a dependence on the intensity of the magnetic field and on the carrier velocity, in good agreement with the theory. Discussion of the system, based on classical electromagnetism, indicates that the effect depends only on the flow rate, and is independent both of the velocity profile and of the electrical conductivity of the medium.

  14. Gauge Physics of Spin Hall Effect

    NASA Astrophysics Data System (ADS)

    Tan, Seng Ghee; Jalil, Mansoor B. A.; Ho, Cong Son; Siu, Zhuobin; Murakami, Shuichi

    2015-12-01

    Spin Hall effect (SHE) has been discussed in the context of Kubo formulation, geometric physics, spin orbit force, and numerous semi-classical treatments. It can be confusing if the different pictures have partial or overlapping claims of contribution to the SHE. In this article, we present a gauge-theoretic, time-momentum elucidation, which provides a general SHE equation of motion, that unifies under one theoretical framework, all contributions of SHE conductivity due to the kinetic, the spin orbit force (Yang-Mills), and the geometric (Murakami-Fujita) effects. Our work puts right an ambiguity surrounding previously partial treatments involving the Kubo, semiclassical, Berry curvatures, or the spin orbit force. Our full treatment shows the Rashba 2DEG SHE conductivity to be instead of -, and Rashba heavy hole instead of -. This renewed treatment suggests a need to re-derive and re-calculate previously studied SHE conductivity.

  15. Gauge Physics of Spin Hall Effect

    PubMed Central

    Tan, Seng Ghee; Jalil, Mansoor B. A.; Ho, Cong Son; Siu, Zhuobin; Murakami, Shuichi

    2015-01-01

    Spin Hall effect (SHE) has been discussed in the context of Kubo formulation, geometric physics, spin orbit force, and numerous semi-classical treatments. It can be confusing if the different pictures have partial or overlapping claims of contribution to the SHE. In this article, we present a gauge-theoretic, time-momentum elucidation, which provides a general SHE equation of motion, that unifies under one theoretical framework, all contributions of SHE conductivity due to the kinetic, the spin orbit force (Yang-Mills), and the geometric (Murakami-Fujita) effects. Our work puts right an ambiguity surrounding previously partial treatments involving the Kubo, semiclassical, Berry curvatures, or the spin orbit force. Our full treatment shows the Rashba 2DEG SHE conductivity to be instead of −, and Rashba heavy hole instead of −. This renewed treatment suggests a need to re-derive and re-calculate previously studied SHE conductivity. PMID:26689260

  16. Useful Pedagogical Applications of the Classical Hall Effect

    ERIC Educational Resources Information Center

    Houari, Ahmed

    2007-01-01

    One of the most known phenomena in physics is the Hall effect. This is mainly due to its simplicity and to the wide range of its theoretical and practical applications. To complete the pedagogical utility of the Hall effect in physics teaching, I will apply it here to determine the Faraday constant as a fundamental physical number and the number…

  17. Hall-Effect Thruster Utilizing Bismuth as Propellant

    NASA Technical Reports Server (NTRS)

    Szabo, James; Gasdaska, Charles; Hruby, Vlad; Robin, Mike

    2008-01-01

    A laboratory-model Hall-effect spacecraft thruster was developed that utilizes bismuth as the propellant. Xenon was used in most prior Hall-effect thrusters. Bismuth is an attractive alternative because it has a larger atomic mass, a larger electron-impact-ionization cross-section, and is cheaper and more plentiful.

  18. Magnonic Hall effect and topological magnonic crystals (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Murakami, Shuichi

    2015-09-01

    In electronic systems it is well established that when there is a magnetic field or spontaneous magnetization, the Hall effect, and in some cases the quantum Hall effect appears. We theoretically pursue analogs of these phenomena in magnons (spin waves) and plasmons. In the case of magnons in ferromagnets, the Hall effect or quantum Hall effect requires some kind of a spin-orbit coupling (similar to electronic systems), and we show that the dipolar interaction, as well as the Dyaloshinskii-Moriya interaction, plays the role. By calculating the Berry curvature from the wavefunction, we can calculate thermal Hall effect for magnons in ferromagnets with dipolar interaction. We found that only the magnetostatic forward volume-wave mode exhibits the thermal Hall effect while the backward mode and the surface mode do not. In addition, by introducing some artificial spatial periodicity into the magnet, for example by fabricating nanostructures with two different magnets in a periodic structure or by making a periodic array of nanomagnets, we theoretically find appearance of quantum Hall effect in a certain range of the magnetic field. There appear chiral edge states which propagate along the edge of the magnet in one way. We call this a topological magnonic crystal. In the plasmon case, we should begin with constructing a fundamental band theory, and we theoretically show that on a metal surface with corrugations forming a triangular lattice under the magnetic field, the quantum Hall effect appears. It can be called a topological plasmonic crystal.

  19. Mesoscopic spin Hall effect in semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Zarbo, Liviu

    The spin Hall effect (SHE) is a name given to a collection of diverse phenomena which share two principal features: (i) longitudinal electric current flowing through a paramagnetic semiconductor or metallic sample leads to transverse spin current and spin accumulation of opposite sign at opposing lateral edges; (ii) SHE does not require externally applied magnetic field or magnetic ordering in the equilibrium state of the sample, instead it relies on the presence of spin-orbit (SO) couplings within the sample. This thesis elaborates on a new type of phenomenon within the SHE family, predicted in our recent studies [Phys. Rev. B 72, 075361 (2005); Phys. Rev. Lett. 95, 046601 (2005); Phys. Rev. B 72, 075335 (2005); Phys. Rev. B 73 , 075303 (2006); and Europhys. Lett. 77, 47004 (2007)], where pure spin current flows through the transverse electrodes attached to a clean finitesize two-dimensional electron gas (2DEG) due to unpolarized charge current injected through its longitudinal leads. If transverse leads are removed, the effect manifests as nonequilibrium spin Hall accumulation at the lateral edges of 2DEG wires. The SO coupling driving this SHE effect is of the Rashba type, which arises due to structural inversion asymmetry of semiconductor heterostructure hosting the 2DEG. We term the effect "mesoscopic" because the spin Hall currents and accumulations reach optimal value in samples of the size of the spin precession length---the distance over which the spin of an electron precesses by an angle pi. In strongly SO-coupled structures this scale is of the order of ˜100 nm, and, therefore, mesoscopic in the sense of being much larger than the characteristic microscopic scales (such as the Fermi wavelength, screening length, or the mean free path in disordered systems), but still much smaller than the macroscopic ones. Although the first theoretical proposal for SHE, driven by asymmetry in SO-dependent scattering of spin-up and spin-down electrons off impurities

  20. Cathode Effects in Cylindrical Hall Thrusters

    SciTech Connect

    Granstedt, E.M.; Raitses, Y.; Fisch, N. J.

    2008-09-12

    Stable operation of a cylindrical Hall thruster (CHT) has been achieved using a hot wire cathode, which functions as a controllable electron emission source. It is shown that as the electron emission from the cathode increases with wire heating, the discharge current increases, the plasma plume angle reduces, and the ion energy distribution function shifts toward higher energies. The observed effect of cathode electron emission on thruster parameters extends and clarifies performance improvements previously obtained for the overrun discharge current regime of the same type of thruster, but using a hollow cathode-neutralizer. Once thruster discharge current saturates with wire heating, further filament heating does not affect other discharge parameters. The saturated values of thruster discharge parameters can be further enhanced by optimal placement of the cathode wire with respect to the magnetic field.

  1. Cathode effects in cylindrical Hall thrusters

    SciTech Connect

    Granstedt, E. M.; Raitses, Y.; Fisch, N. J.

    2008-11-15

    Stable operation of a cylindrical Hall thruster has been achieved using a hot wire cathode, which functions as a controllable electron emission source. It is shown that as the electron emission from the cathode increases with wire heating, the discharge current increases, the plasma plume angle reduces, and the ion energy distribution function shifts toward higher energies. The observed effect of cathode electron emission on thruster parameters extends and clarifies performance improvements previously obtained for the overrun discharge current regime of the same type of thruster, but using a hollow cathode neutralizer. Once thruster discharge current saturates with wire heating, further filament heating does not affect other discharge parameters. The saturated values of thruster discharge parameters can be further enhanced by optimal placement of the cathode wire with respect to the magnetic field.

  2. Radial spin Hall effect of light

    NASA Astrophysics Data System (ADS)

    Shu, Weixing; Ke, Yougang; Liu, Yachao; Ling, Xiaohui; Luo, Hailu; Yin, Xiaobo

    2016-01-01

    We propose and realize a radial spin Hall effect (SHE) of light by using a dielectric metasurface. The metasurface with radially varying optical axes introduces a Pancharatnam-Berry (PB) geometrical phase to the incident light. The spatial gradient of PB phase accounts for a shift in the momentum space and thus leads the light to split radially into two concentric rays with opposite spin in the position space, which is called a radial SHE. Further experiments verify that the magnitude of the splitting increases with the rotation rate of the optical-axis orientation and the propagation distance, thereby allowing for macroscopic observation of the SHE. We also find that the phase of the incident light influences the profiles of the two split rays, while the polarization determines their intensities. The results provide methods to tune the SHE of light by engineering metasurfaces and modulating the incident light, and this radial SHE may be extrapolated to other physical systems.

  3. Quantum Numbers of Textured Hall Effect Quasiparticles

    SciTech Connect

    Nayak, C.; Wilczek, F.

    1996-11-01

    We propose a class of variational wave functions with slow variation in spin and charge density and simple vortex structure at infinity, which properly generalize both the Laughlin quasiparticles and baby Skyrmions. We argue, on the basis of these wave functions and a spin-statistics relation in the relevant effective field theory, that the spin of the corresponding quasiparticle has a fractional part related in a universal fashion to the properties of the bulk state. We propose a direct experimental test of this claim. We show that certain spin-singlet quantum Hall states can be understood as arising from primary polarized states by Skyrmion condensation. {copyright} {ital 1996 The American Physical Society.}

  4. Magnetic circuit for hall effect plasma accelerator

    NASA Technical Reports Server (NTRS)

    Manzella, David H. (Inventor); Jacobson, David T. (Inventor); Jankovsky, Robert S. (Inventor); Hofer, Richard (Inventor); Peterson, Peter (Inventor)

    2009-01-01

    A Hall effect plasma accelerator includes inner and outer electromagnets, circumferentially surrounding the inner electromagnet along a thruster centerline axis and separated therefrom, inner and outer magnetic conductors, in physical connection with their respective inner and outer electromagnets, with the inner magnetic conductor having a mostly circular shape and the outer magnetic conductor having a mostly annular shape, a discharge chamber, located between the inner and outer magnetic conductors, a magnetically conducting back plate, in magnetic contact with the inner and outer magnetic conductors, and a combined anode electrode/gaseous propellant distributor, located at a bottom portion of the discharge chamber. The inner and outer electromagnets, the inner and outer magnetic conductors and the magnetically conducting back plate form a magnetic circuit that produces a magnetic field that is largely axial and radially symmetric with respect to the thruster centerline.

  5. Formulation of the relativistic quantum Hall effect and parity anomaly

    NASA Astrophysics Data System (ADS)

    Yonaga, Kouki; Hasebe, Kazuki; Shibata, Naokazu

    2016-06-01

    We present a relativistic formulation of the quantum Hall effect on Haldane sphere. An explicit form of the pseudopotential is derived for the relativistic quantum Hall effect with/without mass term. We clarify particular features of the relativistic quantum Hall states with the use of the exact diagonalization study of the pseudopotential Hamiltonian. Physical effects of the mass term to the relativistic quantum Hall states are investigated in detail. The mass term acts as an interpolating parameter between the relativistic and nonrelativistic quantum Hall effects. It is pointed out that the mass term unevenly affects the many-body physics of the positive and negative Landau levels as a manifestation of the "parity anomaly." In particular, we explicitly demonstrate the instability of the Laughlin state of the positive first relativistic Landau level with the reduction of the charge gap.

  6. Anomalous Hall effect in YIG|Pt bilayers

    SciTech Connect

    Meyer, Sibylle Schlitz, Richard; Geprägs, Stephan; Opel, Matthias; Huebl, Hans; Goennenwein, Sebastian T. B.; Gross, Rudolf

    2015-03-30

    We measure the ordinary and the anomalous Hall effect in a set of yttrium iron garnet|platinum (YIG|Pt) bilayers via magnetization orientation dependent magnetoresistance experiments. Our data show that the presence of the ferrimagnetic insulator YIG leads to an anomalous Hall effect like voltage in Pt, which is sensitive to both Pt thickness and temperature. Interpretation of the experimental findings in terms of the spin Hall anomalous Hall effect indicates that the imaginary part of the spin mixing conductance G{sub i} plays a crucial role in YIG|Pt bilayers. In particular, our data suggest a sign change in G{sub i} between 10 K and 300 K. Additionally, we report a higher order Hall effect contribution, which appears in thin Pt films on YIG at low temperatures.

  7. Asymmetric nonlinear response of the quantized Hall effect

    NASA Astrophysics Data System (ADS)

    Siddiki, A.; Horas, J.; Kupidura, D.; Wegscheider, W.; Ludwig, S.

    2010-11-01

    An asymmetric breakdown of the integer quantized Hall effect (IQHE) is investigated. This rectification effect is observed as a function of the current value and its direction in conjunction with an asymmetric lateral confinement potential defining the Hall bar. Our electrostatic definition of the Hall bar via Schottky gates allows a systematic control of the steepness of the confinement potential at the edges of the Hall bar. A softer edge (flatter confinement potential) results in more stable Hall plateaus, i.e. a breakdown at a larger current density. For one soft and one hard edge, the breakdown current depends on its direction, resembling rectification. This nonlinear magneto-transport effect confirms the predictions of an emerging screening theory of the IQHE.

  8. Stacking order dependence of inverse spin Hall effect and anomalous Hall effect in spin pumping experiments

    SciTech Connect

    Kim, Sang-Il; Seo, Min-Su; Park, Seung-Young; Kim, Dong-Jun; Park, Byong-Guk

    2015-05-07

    The dependence of the measured DC voltage on the non-magnetic material (NM) in NM/CoFeB and CoFeB/NM bilayers is studied under ferromagnetic resonance conditions in a TE{sub 011} resonant cavity. The directional change of the inverse spin Hall effect (ISHE) voltage V{sub ISHE} for the stacking order of the bilayer can separate the pure V{sub ISHE} and the anomalous Hall effect (AHE) voltage V{sub AHE} utilizing the method of addition and subtraction. The Ta and Ti NMs show a broad deviation of the spin Hall angle θ{sub ISH}, which originates from the AHE in accordance with the high resistivity of NMs. However, the Pt and Pd NMs show that the kinds of NMs with low resistivity are consistent with the previously reported θ{sub ISH} values. Therefore, the characteristics that NM should simultaneously satisfy to obtain a reasonable V{sub ISHE} value in bilayer systems are large θ{sub ISH} and low resistivity.

  9. High temperature hall effect measurement system design, measurement and analysis

    NASA Astrophysics Data System (ADS)

    Berkun, Isil

    A reliable knowledge of the transport properties of semiconductor materials is essential for the development and understanding of a number of electronic devices. In this thesis, the work on developing a Hall Effect measurement system with software based data acqui- sition and control for a temperature range of 300K-700K will be described. A system was developed for high temperature measurements of materials including single crystal diamond, poly-crystalline diamond, and thermoelectric compounds. An added capability for monitor- ing the current versus voltage behavior of the contacts was used for studying the influence of ohmic and non-ohmic contacts on Hall Effect measurements. The system has been primar- ily used for testing the transport properties of boron-doped single crystal diamond (SCD) deposited in a microwave plasma-assisted chemical vapor deposition (MPCVD) reactor [1]. Diamond has several outstanding properties that are of high interest for its development as an electronic material. These include a relatively wide band gap of 5.5 (eV), high thermal conductivity, high mobility, high saturation velocity, and a high breakdown voltage. For a temperature range of 300K-700K, IV curves, Hall mobilities and carrier concentrations are shown. Temperature dependent Hall effect measurements have shown carrier concentrations from below 1017cm --3 to approximately 1021 cm--3 with mobilities ranging from 763( cm2/V s) to 0.15(cm 2/V s) respectively. Simulation results have shown the effects of single and mixed carrier models, activation energies, effective mass and doping concentrations. These studies have been helpful in the development of single crystal diamond for diode applications. Reference materials of Ge and GaAs were used to test the Hall Effect system. The system was also used to characterize polycrystalline diamond deposited on glass for electrochemical applications, and Mg2(Si,Sn) compounds which are promising candidates of low-cost, light weight and non

  10. Optical Emission Characterization of High-Power Hall Thruster Wear

    NASA Technical Reports Server (NTRS)

    WIlliams, George J.; Kamhawi, Hani

    2013-01-01

    Optical emission spectroscopy is employed to correlate BN insulator erosion with high-power operation of the NASA 300M Hall-effect thruster. Actinometry leveraging excited xenon states is used to normalize the emission spectra of ground state boron as a function of thruster operating condition. Trends in the strength of the boron signal are correlated with thruster power, discharge voltage, discharge current and magnetic field strength. The boron signals are shown to trend with discharge current and show weak dependence on discharge voltage. The trends are consistent with data previously collected on the NASA 300M and NASA 457M thrusters but are different from conventional wisdom.

  11. Unconventional quantum Hall effect in Floquet topological insulators

    NASA Astrophysics Data System (ADS)

    Tahir, M.; Vasilopoulos, P.; Schwingenschlögl, U.

    2016-09-01

    We study an unconventional quantum Hall effect for the surface states of ultrathin Floquet topological insulators in a perpendicular magnetic field. The resulting band structure is modified by photon dressing and the topological property is governed by the low-energy dynamics of a single surface. An exchange of symmetric and antisymmetric surface states occurs by reversing the light’s polarization. We find a novel quantum Hall state in which the zeroth Landau level undergoes a phase transition from a trivial insulator state, with Hall conductivity {σyx}=0 at zero Fermi energy, to a Hall insulator state with {σyx}={{e}2}/2h . These findings open new possibilities for experimentally realizing nontrivial quantum states and unusual quantum Hall plateaus at (+/- 1/2,+/- 3/2,+/- 5/2,...){{e}2}/h .

  12. Unconventional quantum Hall effect in Floquet topological insulators.

    PubMed

    Tahir, M; Vasilopoulos, P; Schwingenschlögl, U

    2016-09-28

    We study an unconventional quantum Hall effect for the surface states of ultrathin Floquet topological insulators in a perpendicular magnetic field. The resulting band structure is modified by photon dressing and the topological property is governed by the low-energy dynamics of a single surface. An exchange of symmetric and antisymmetric surface states occurs by reversing the light's polarization. We find a novel quantum Hall state in which the zeroth Landau level undergoes a phase transition from a trivial insulator state, with Hall conductivity [Formula: see text] at zero Fermi energy, to a Hall insulator state with [Formula: see text]. These findings open new possibilities for experimentally realizing nontrivial quantum states and unusual quantum Hall plateaus at [Formula: see text]. PMID:27460419

  13. Topological insulator in junction with ferromagnets: Quantum Hall effects

    NASA Astrophysics Data System (ADS)

    Chudnovskiy, A. L.; Kagalovsky, V.

    2015-06-01

    The ferromagnet-topological insulator-ferromagnet (FM-TI-FM) junction exhibits thermal and electrical quantum Hall effects. The generated Hall voltage and transverse temperature gradient can be controlled by the directions of magnetizations in the FM leads, which inspires the use of FM-TI-FM junctions as electrical and as heat switches in spintronic devices. Thermal and electrical Hall coefficients are calculated as functions of the magnetization directions in ferromagnets and the spin-relaxation time in TI. Both the Hall voltage and the transverse temperature gradient decrease but are not completely suppressed even at very short spin-relaxation times. The Hall coefficients turn out to be independent of the spin-relaxation time for symmetric configuration of FM leads.

  14. Fractional quantum Hall effect in a tilted magnetic field

    NASA Astrophysics Data System (ADS)

    Papić, Z.

    2013-06-01

    We discuss the orbital effect of a tilted magnetic field on the quantum Hall effect in parabolic quantum wells. Many-body states realized at the fractional (1)/(3) and (1)/(2) filling of the second electronic subband are studied using finite-size exact diagonalization. In both cases, we obtain the phase diagram consisting of a fractional quantum Hall fluid phase that persists for moderate tilts, and eventually undergoes a direct transition to the stripe phase. It is shown that tilting of the field probes the geometrical degree of freedom of fractional quantum Hall fluids, and can be partly related to the effect of band-mass anisotropy.

  15. Magnet/Hall-Effect Random-Access Memory

    NASA Technical Reports Server (NTRS)

    Wu, Jiin-Chuan; Stadler, Henry L.; Katti, Romney R.

    1991-01-01

    In proposed magnet/Hall-effect random-access memory (MHRAM), bits of data stored magnetically in Perm-alloy (or equivalent)-film memory elements and read out by using Hall-effect sensors to detect magnetization. Value of each bit represented by polarity of magnetization. Retains data for indefinite time or until data rewritten. Speed of Hall-effect sensors in MHRAM results in readout times of about 100 nanoseconds. Other characteristics include high immunity to ionizing radiation and storage densities of order 10(Sup6)bits/cm(Sup 2) or more.

  16. Gauge Physics of Spin Hall Effect.

    PubMed

    Tan, Seng Ghee; Jalil, Mansoor B A; Ho, Cong Son; Siu, Zhuobin; Murakami, Shuichi

    2015-01-01

    Spin Hall effect (SHE) has been discussed in the context of Kubo formulation, geometric physics, spin orbit force, and numerous semi-classical treatments. It can be confusing if the different pictures have partial or overlapping claims of contribution to the SHE. In this article, we present a gauge-theoretic, time-momentum elucidation, which provides a general SHE equation of motion, that unifies under one theoretical framework, all contributions of SHE conductivity due to the kinetic, the spin orbit force (Yang-Mills), and the geometric (Murakami-Fujita) effects. Our work puts right an ambiguity surrounding previously partial treatments involving the Kubo, semiclassical, Berry curvatures, or the spin orbit force. Our full treatment shows the Rashba 2DEG SHE conductivity to be [formula in text] instead of [formula in text], and Rashba heavy hole [formula in text] instead of [formula in text]. This renewed treatment suggests a need to re-derive and re-calculate previously studied SHE conductivity. PMID:26689260

  17. Giant Room Temperature Interface Spin Hall and Inverse Spin Hall Effects

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Wesselink, R. J. H.; Liu, Yi; Yuan, Zhe; Xia, Ke; Kelly, Paul J.

    2016-05-01

    The spin Hall angle (SHA) is a measure of the efficiency with which a transverse spin current is generated from a charge current by the spin-orbit coupling and disorder in the spin Hall effect (SHE). In a study of the SHE for a Pt |Py (Py =Ni80Fe20 ) bilayer using a first-principles scattering approach, we find a SHA that increases monotonically with temperature and is proportional to the resistivity for bulk Pt. By decomposing the room temperature SHE and inverse SHE currents into bulk and interface terms, we discover a giant interface SHA that dominates the total inverse SHE current with potentially major consequences for applications.

  18. Observing the Quantum Spin Hall Effect with Ultracold Atoms

    NASA Astrophysics Data System (ADS)

    Vaishnav, J. Y.; Stanescu, Tudor D.; Clark, Charles W.; Galitski, Victor

    2009-03-01

    The quantum spin Hall (QSH) state is a topologically nontrivial state of matter proposed to exist in certain 2-D systems with spin-orbit coupling. While the electronic states of a QSH insulator are gapped in the bulk, a QSH insulator is characterized by gapless edge states of different spins which counterpropagate at a given edge; the spin is correlated with the direction of propagation. Recent proposals ootnotetextT. D. Stanescu, C. Zhang, V. Galitski, Physical Review Letters 99, 110403 (2007), J. Y. Vaishnav, Charles W. Clark, Physical Review Letters 100, 153002 (2008). suggest that synthetic spin-orbit couplings can be created for cold atoms moving in spatially varying light fields. Here, we identify an optical lattice setup which generates an effective QSH effect for cold, multilevel atoms. We also discuss methods for experimental detection of the atomic QSH effect.

  19. Hall Effect and Magneto Optical MFL Sensing

    NASA Astrophysics Data System (ADS)

    Jallouli, Wissem

    The need for a reliable sensing tool has stimulated countless researchers to develop techniques trying to extract maximum information. In the field of nondestructive testing (NDT), various sensors have been established to fulfill that function. Examples include the ultrasonic, eddy current, and magnetic flux leakage (MFL) based techniques. Because they are extremely reliable, MFL based techniques represent one of the best inspection technologies. These technologies have numerous applications in diverse domains, including petroleum pipeline and tank inspections, airplane inspections, and production quality control. In this work, we will present two technologies based on MFL technique. The first is the Hall Effect sensor. This device has been extensively developed during the last century, especially after the use of integrated circuit technology. Its reliable results even under extreme conditions made it an extremely useful tool. The second technology is Magneto Optical Imaging. This technique rose very recently, and scientists hold high expectations about its performance once proper techniques are developed. The study of these two sensing devices gives a better understanding of the MFL technique by allowing us to investigate the potential of each technology, experience each in studied conditions to derive its characteristics, and discuss its performance.

  20. A non-invasive Hall current distribution measurement system for Hall Effect thrusters

    NASA Astrophysics Data System (ADS)

    Mullins, Carl Raymond

    A direct, accurate method to measure thrust produced by a Hall Effect thruster on orbit does not currently exist. The ability to calculate produced thrust will enable timely and precise maneuvering of spacecraft---a capability particularly important to satellite formation flying. The means to determine thrust directly is achievable by remotely measuring the magnetic field of the thruster and solving the inverse magnetostatic problem for the Hall current density distribution. For this thesis, the magnetic field was measured by employing an array of eight tunneling magnetoresistive (TMR) sensors capable of milligauss sensitivity when placed in a high background field. The array was positioned outside the channel of a 1.5 kW Colorado State University Hall thruster equipped with a center-mounted electride cathode. In this location, the static magnetic field is approximately 30 Gauss, which is within the linear operating range of the TMR sensors. Furthermore, the induced field at this distance is greater than tens of milligauss, which is within the sensitivity range of the TMR sensors. Due to the nature of the inverse problem, the induced-field measurements do not provide the Hall current density by a simple inversion; however, a Tikhonov regularization of the induced field along with a non-negativity constraint and a zero boundary condition provides current density distributions. Our system measures the sensor outputs at 2 MHz allowing the determination of the Hall current density distribution as a function of time. These data are shown in contour plots in sequential frames. The measured ratios between the average Hall current and the discharge current ranged from 0.1 to 10 over a range of operating conditions from 1.3 kW to 2.2 kW. The temporal inverse solution at 2.0 kW exhibited a breathing mode of 37 kHz, which was in agreement with temporal measurements of the discharge current.

  1. Synchronization of spin-transfer torque oscillators by spin pumping, inverse spin Hall, and spin Hall effects

    SciTech Connect

    Elyasi, Mehrdad; Bhatia, Charanjit S.; Yang, Hyunsoo

    2015-02-14

    We have proposed a method to synchronize multiple spin-transfer torque oscillators based on spin pumping, inverse spin Hall, and spin Hall effects. The proposed oscillator system consists of a series of nano-magnets in junction with a normal metal with high spin-orbit coupling, and an accumulative feedback loop. We conduct simulations to demonstrate the effect of modulated charge currents in the normal metal due to spin pumping from each nano-magnet. We show that the interplay between the spin Hall effect and inverse spin Hall effect results in synchronization of the nano-magnets.

  2. Emergence of integer quantum Hall effect from chaos

    NASA Astrophysics Data System (ADS)

    Tian, Chushun; Chen, Yu; Wang, Jiao

    2016-02-01

    We present an analytic microscopic theory showing that in a large class of spin-1/2 quasiperiodic quantum kicked rotors, a dynamical analog of the integer quantum Hall effect (IQHE) emerges from an intrinsic chaotic structure. Specifically, the inverse of the Planck's quantum (he) and the rotor's energy growth rate mimic the "filling fraction" and the "longitudinal conductivity" in conventional IQHE, respectively, and a hidden quantum number is found to mimic the "quantized Hall conductivity." We show that for an infinite discrete set of critical values of he, the long-time energy growth rate is universal and of order of unity ("metallic" phase), but otherwise vanishes ("insulating" phase). Moreover, the rotor insulating phases are topological, each of which is characterized by a hidden quantum number. This number exhibits universal behavior for small he, i.e., it jumps by unity whenever he decreases, passing through each critical value. This intriguing phenomenon is not triggered by the likes of Landau band filling, well known to be the mechanism for conventional IQHE, and far beyond the canonical Thouless-Kohmoto-Nightingale-Nijs paradigm for quantum Hall transitions. Instead, this dynamical phenomenon is of strong chaos origin; it does not occur when the dynamics is (partially) regular. More precisely, we find that a topological object, similar to the topological theta angle in quantum chromodynamics, emerges from strongly chaotic motion at microscopic scales, and its renormalization gives the hidden quantum number. Our analytic results are confirmed by numerical simulations. Our findings indicate that rich topological quantum phenomena can emerge from chaos and might point to a new direction of study in the interdisciplinary area straddling chaotic dynamics and condensed matter physics. This work is a substantial extension of a short paper published earlier by two of us [Y. Chen and C. Tian, Phys. Rev. Lett. 113, 216802 (2014), 10.1103/PhysRevLett.113.216802].

  3. Enigmatic 12/5 fractional quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Pakrouski, Kiryl; Troyer, Matthias; Wu, Yang-Le; Das Sarma, Sankar; Peterson, Michael R.

    2016-08-01

    We numerically study the fractional quantum Hall effect at filling factors ν =12 /5 and 13/5 (the particle-hole conjugate of 12/5) in high-quality two-dimensional GaAs heterostructures via exact diagonalization including finite well width and Landau-level mixing. We find that Landau-level mixing suppresses the ν =13 /5 fractional quantum Hall effect relative to ν =12 /5 . By contrast, we find both ν =2 /5 and (its particle-hole conjugate) ν =3 /5 fractional quantum Hall effects in the lowest Landau level to be robust under Landau-level mixing and finite well-width corrections. Our results provide a possible explanation for the experimental absence of the 13/5 fractional quantum Hall state as caused by Landau-level mixing effects.

  4. The Hall effect in ballistic junctions

    NASA Astrophysics Data System (ADS)

    Ford, C. J. B.; Washburn, S.; Büttiker, M.; Knoedler, C. M.; Hong, J. M.

    1990-04-01

    In narrow high-mobility conductors the predominant source of scattering is reflection of carriers off the confining potential. We demonstrate that by changing the geometry of the intersection of the Hall probes with the conductor, the Hall resistance can be quenched, negative or enhanced. More complex junction geometries can lead to one of these phenomena for one field polarity and to another for the other field polarity. At liquid helium temperatures these results can be explained by following trajectories. In the milli-Kelvin range fluctuations are superimposed. At high fields strong resonant depressions of the Hall resistance are found which may be associated with bound states in the region of the cross.

  5. Nulling Hall-Effect Current-Measuring Circuit

    NASA Technical Reports Server (NTRS)

    Sullender, Craig C.; Vazquez, Juan M.; Berru, Robert I.

    1993-01-01

    Circuit measures electrical current via combination of Hall-effect-sensing and magnetic-field-nulling techniques. Known current generated by feedback circuit adjusted until it causes cancellation or near cancellation of magnetic field produced in toroidal ferrite core by current measured. Remaining magnetic field measured by Hall-effect sensor. Circuit puts out analog signal and digital signal proportional to current measured. Accuracy of measurement does not depend on linearity of sensing components.

  6. Hall-Petch effect: Another manifestation of size effect

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Dunstan, David; Bushby, Andy

    In the 1950s, Hall and Petch first established a quantitative relationship, expressed by the famous Hall-Petch equation: σd =σ0 +kHP/√{ d} There is a very large body of experimental data in the literature reinforcing this dependence in a very wide range of metals. Recently, we presented some of the classic data sets which have been considered to confirm the Hall-Petch equation and showed they are equally well consistent with the equation ɛel (d) =ɛ0 +kln/(d) d Eq. 2 is based on critical thickness theory. Fitting to Eq.1 with the exponent 0.5 replaced by the free fitting parameter x, the confidence interval for the exponent is 0.5 Hall-Petch dependence of the strength on grain size, if it obeys Eq.2, is another manifestation of the size effect.

  7. Is the quantum Hall effect influenced by the gravitational field?

    PubMed

    Hehl, Friedrich W; Obukhov, Yuri N; Rosenow, Bernd

    2004-08-27

    Most of the experiments on the quantum Hall effect (QHE) were made at approximately the same height above sea level. A future international comparison will determine whether the gravitational field g(x) influences the QHE. In the realm of (1+2)-dimensional phenomenological macroscopic electrodynamics, the Ohm-Hall law is metric independent ("topological"). This suggests that it does not couple to g(x). We corroborate this result by a microscopic calculation of the Hall conductance in the presence of a post-Newtonian gravitational field. PMID:15447125

  8. Linear Magnetization Dependence of the Intrinsic Anomalous Hall Effect

    SciTech Connect

    Zeng, C.; Yao, Y.; Niu, Q.; Weitering, Harm H

    2006-01-01

    The anomalous Hall effect is investigated experimentally and theoretically for ferromagnetic thin films of Mn{sub 5}Ge{sub 3}. We have separated the intrinsic and extrinsic contributions to the experimental anomalous Hall effect and calculated the intrinsic anomalous Hall conductivity from the Berry curvature of the Bloch states using first-principles methods. The intrinsic anomalous Hall conductivity depends linearly on the magnetization, which can be understood from the long-wavelength fluctuations of the spin orientation at finite temperatures. The quantitative agreement between theory and experiment is remarkably good, not only near 0 K but also at finite temperatures, up to about -240 K (0.8T{sub c}).

  9. Azimuthal Spoke Propagation in Hall Effect Thrusters

    NASA Technical Reports Server (NTRS)

    Sekerak, Michael J.; Longmier, Benjamin W.; Gallimore, Alec D.; Brown, Daniel L.; Hofer, Richard R.; Polk, James E.

    2013-01-01

    Spokes are azimuthally propagating perturbations in the plasma discharge of Hall Effect Thrusters (HETs) that travel in the E x B direction and have been observed in many different systems. The propagation of azimuthal spokes are investigated in a 6 kW HET known as the H6 using ultra-fast imaging and azimuthally spaced probes. A spoke surface is a 2-D plot of azimuthal light intensity evolution over time calculated from 87,500 frames/s videos. The spoke velocity has been determined using three methods with similar results: manual fitting of diagonal lines on the spoke surface, linear cross-correlation between azimuthal locations and an approximated dispersion relation. The spoke velocity for three discharge voltages (300, 400 and 450 V) and three anode mass flow rates (14.7, 19.5 and 25.2 mg/s) yielded spoke velocities between 1500 and 2200 m/s across a range of normalized magnetic field settings. The spoke velocity was inversely dependent on magnetic field strength for low B-field settings and asymptoted at B-field higher values. The velocities and frequencies are compared to standard drifts and plasma waves such as E x B drift, electrostatic ion cyclotron, magnetosonic and various drift waves. The empirically approximated dispersion relation yielded a characteristic velocity that matched the ion acoustic speed for 5 eV electrons that exist in the near-anode and near-field plume regions of the discharge channel based on internal measurements. Thruster performance has been linked to operating mode where thrust-to-power is maximized when azimuthal spokes are present so investigating the underlying mechanism of spokes will benefit thruster operation.

  10. Modulation of effective damping constant using spin Hall effect

    SciTech Connect

    Kasai, Shinya Kondou, Kouta; Sukegawa, Hiroaki; Mitani, Seiji; Tsukagoshi, Kazuhito; Otani, Yoshichika

    2014-03-03

    We have investigated modulation of the effective damping constant α{sub eff} via spin currents through the spin Hall effect for Permalloy/Pt bilayer films with various thicknesses. The observed linear and sinusoidal dependences of current density and field direction on α{sub eff} are in agreement with the analytical model. By comparing the thickness dependence of spin Hall angle obtained from the damping modulation with that previously obtained by spin-torque-induced ferromagnetic resonance, we show that there is no clear extrinsic contribution in the present method. We also show the large modulation of the effective damping constant (down to ∼20%) in the high-current-density region.

  11. Detection of a History Dependent Topological Hall Effect Due to Skyrmion Formation in FeGe Thin Films

    NASA Astrophysics Data System (ADS)

    Gallagher, James; Page, Michael; Bhallamudi, Vidya; Brangham, Jack; Meng, Keng Yuan; Esser, Bryan; Wang, Hailong; McComb, Dave; Hammel, Chris; Yang, Fengyuan

    B20 phase crystal structures, such as FeGe and MnSi, have been of interest because they enable magnetic skyrmion phases, which can potentially lead to low energy cost spintronic device applications. We report the synthesis of pure phase FeGe epitaxial thin films grown on Si (111) substrates by ultra-high vacuum off-axis magnetron sputtering. The FeGe films were characterized by x-ray diffraction, scanning transmission electron microscopy (STEM) and Hall effect measurements. The topological Hall effect (THE) signals were extracted by subtracting out the anomalous Hall effect and ordinary Hall effect, demonstrating the existence of the skyrmion phase in FeGe films between 5 and 275 K. Topological hall effect was observed at zero field at all temperatures below the Curie temperature, showing the possibility of metastable skymion particles at zero field and high temperatures. We will also discuss the study of dynamics of the ferromagnetic phases using ferromagnetic resonance.

  12. Quantum Hall effect in bilayer system with array of antidots

    NASA Astrophysics Data System (ADS)

    Pagnossin, I. R.; Gusev, G. M.; Sotomayor, N. M.; Seabra, A. C.; Quivy, A. A.; Lamas, T. E.; Portal, J. C.

    2007-04-01

    We have studied the Quantum Hall effect in a bilayer system modulated by gate-controlled antidot lattice potential. The Hall resistance shows plateaus which are quantized to anomalous multiplies of h/e2. We suggest that this complex behavior is due to the nature of the edge-states in double quantum well (DQW) structures coupled to an array of antidots: these plateaus may be originated from the coexistence of normal and counter-rotating edge-states in different layers.

  13. Giant Room Temperature Interface Spin Hall and Inverse Spin Hall Effects.

    PubMed

    Wang, Lei; Wesselink, R J H; Liu, Yi; Yuan, Zhe; Xia, Ke; Kelly, Paul J

    2016-05-13

    The spin Hall angle (SHA) is a measure of the efficiency with which a transverse spin current is generated from a charge current by the spin-orbit coupling and disorder in the spin Hall effect (SHE). In a study of the SHE for a Pt|Py (Py=Ni_{80}Fe_{20}) bilayer using a first-principles scattering approach, we find a SHA that increases monotonically with temperature and is proportional to the resistivity for bulk Pt. By decomposing the room temperature SHE and inverse SHE currents into bulk and interface terms, we discover a giant interface SHA that dominates the total inverse SHE current with potentially major consequences for applications. PMID:27232030

  14. New Method for Studying Localization effects in Quantum Hall Systems

    NASA Astrophysics Data System (ADS)

    Bhatt, R. N.; Geraedts, Scott

    Disorder is central to the study of the fractional quantum Hall effect. It is responsible for the finite width of the quantum Hall plateaus, and it is of course present in experiment. Numerical studies of the disordered fractional quantum Hall effect are nonetheless very difficult, because the lack of symmetry present in clean systems limits the size of systems that can be studied. We introduce a new method for studying the integer and fractional quantum Hall effect in the presence of disorder that allows larger system sizes to be studied. The method relies on truncating the single particle Hilbert space, which leads to an exponential reduction in the Hilbert space of the many-particle system while preserving the essential topological nature of the state. We apply the model to the study of disorder transitions in the quantum Hall effect, both for the ground state and excited states. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, through Grant DE-SC0002140.

  15. Spin Hall magnetoresistance induced by a nonequilibrium proximity effect.

    PubMed

    Nakayama, H; Althammer, M; Chen, Y-T; Uchida, K; Kajiwara, Y; Kikuchi, D; Ohtani, T; Geprägs, S; Opel, M; Takahashi, S; Gross, R; Bauer, G E W; Goennenwein, S T B; Saitoh, E

    2013-05-17

    We report anisotropic magnetoresistance in Pt|Y(3)Fe(5)O(12) bilayers. In spite of Y(3)Fe(5)O(12) being a very good electrical insulator, the resistance of the Pt layer reflects its magnetization direction. The effect persists even when a Cu layer is inserted between Pt and Y(3)Fe(5)O(12), excluding the contribution of induced equilibrium magnetization at the interface. Instead, we show that the effect originates from concerted actions of the direct and inverse spin Hall effects and therefore call it "spin Hall magnetoresistance." PMID:25167435

  16. Proximity-Induced Anomalous Hall Effect in Graphene

    NASA Astrophysics Data System (ADS)

    Wang, Zhiyong; Tang, Chi; Sachs, Raymond; Barlas, Yafis; Shi, Jing

    2014-03-01

    Pre-patterned graphene devices are transferred from SiO2/Si to atomically flat magnetic insulator thin films, yttrium iron garnet (YIG) deposited by a laser molecular beam epitaxial system on gadolinium gallium garnet (GGG) substrate. Room temperature Raman spectroscopy reveals both single-layer graphene and YIG characteristic peaks. In addition to the ordinary Hall effect, there is a clear non-linear Hall component correlated with the magnetization of the YIG films, which we attribute to the anomalous Hall effect (AHE). The magnitude of AHE in graphene/YIG devices decreases as temperature increases. With device-to-device variations, in some devices, AHE persists to room temperature, indicating a strong proximity-induced exchange interaction. By sweeping top gate voltages, one can tune the carrier density across the Dirac point. We also find that the carrier mobility is not significantly different in graphene/YIG. As the graphene is tuned from the electron- to hole-type, the ordinary Hall changes the sign as expected, but the sign of the AHE contribution remains the same. It suggests that AHE does not simply originate from the carrier density change which is responsible for the ordinary Hall effect, but is related to the spin-orbit interaction in the system. This work was supported in part by DOE and NSF.

  17. Anomalous cross field electron transport in a Hall effect thruster

    SciTech Connect

    Boniface, C.; Garrigues, L.; Hagelaar, G. J. M.; Boeuf, J. P.; Gawron, D.; Mazouffre, S.

    2006-10-16

    The origin of anomalous electron transport across the magnetic field in the channel of a Hall effect thruster has been the subject of controversy, and the relative importance of electron-wall collisions and plasma turbulence on anomalous transport is not clear. From comparisons between Fabry-Perot measurements and hybrid model calculations of the ion velocity profile in a 5 kW Hall effect thruster, we deduce that one and the same mechanism is responsible for anomalous electron transport inside and outside the Hall effect thruster channel. This suggests that the previous assumption that Bohm anomalous conductivity is dominant outside the thruster channel whereas electron-wall conductivity prevails inside the channel is not valid.

  18. Study of correlations in fractional quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Shi, Chuntai

    Bulk two-dimensional electron systems in a strong perpendicular magnetic field exhibit the fascinating phenomenon of fractional quantum Hall effect. Composite fermion theory was developed in the process of understanding the fractional quantum Hall effect and was proven to work successfully for the FQHE and even beyond. In this dissertation, we explore the effect of the strong correlation between electrons in several cases. All of them belong to the category of 2DES in strong perpendicular magnetic field and they are listed below: (i) A fractional quantum Hall island surrounded by a bulk fractional quantum Hall state with a different filling factor. Specifically, we study the resonant tunneling composite fermions through their quasibound states around the island. A rich set of possible transitions are found and the possible relevance to an interesting experiment is discussed. Also, we discuss the subtlety of separating the effect of fractional braiding statistics from other factors. (ii) Correlated states of a quantum dot, at high magnetic fields, assuming four electrons with two components. Such a dot can be realized by reducing the two lateral dimensions of a 2DES tremendously. Both the liquid states and crystallites (the latter occurring at large angular momenta) of four electrons in terms of composite fermions are considered. Residual interaction between composite fermions is shown to leads to complex spin correlations. (iii) Bilayer quantum Hall effect at total filling nuT = 5. This can accommodate an excitonic superfluid state at small layer separations just like at nuT = 1. At large layer separations, however, nuT = 5 state evolves into uncorrelated nu = 5/2 fractional quantum Hall states in both layers, in contrast to uncorrelated composite Fermi sea in nu T = 1 case. We focus on finding the critical layer separation at which the correlation between electrons on different layers are destroyed. Effects due to the finite width of the layers are also considered.

  19. Spin Hall and spin Nernst effects: temperature dependence

    NASA Astrophysics Data System (ADS)

    Dyrdal, Anna; Barnas, Jozef; Dugaev, Vitalii

    We have considered temperature dependence of spin Hall and spin Nernst effect in two-dimensional electron gas with spin-orbit interaction of Rashba type [arXiv:1510.03080]. In our considerations we have employed the approach based on the Matsubara Green functions. The formalism used in the case of electric field as a driving force was subsequently adopted to the situation of a spin current driven by a temperature gradient. To achieve this, we have used the concept of an auxiliary vector field. Such a description gives the possibility to consider all mechanisms leading to the spin Hall and spin Nernst effect on equal footing and also their behavior at finite temperatures. Both spin Hall and spin Nernst conductivities were calculated in the approximation including the vertex correction. The total spin Hall conductivity, including vertex correction, has been shown to vanish exactly in the whole temperature range. Thus, our results extend the earlier ones to an arbitrary temperatures. In turn, the total spin Nernst conductivity remains finite when the vertex corrections are included. Using the Ioffe-Regel localization criterion, we have also estimated the range of parameters where the calculated results for the spin Hall and spin Nernst conductivities are applicable.

  20. Anomalous Hall Effect in a Feromagnetic Rare-Earth Cobalite

    NASA Technical Reports Server (NTRS)

    Samoilov, A. V.; Yeh, N. C.; Vasquez, R. P.

    1996-01-01

    Rare-Earth manganites and cobalites with the perovskite structure have been a subject of great recent interest because their electrical resistance changes significantly when a magnetic field is applied...we have studied the Hall effect in thin film La(sub 0.5)Ca(sub 0.5)CoO(sub 3) material and have obtained convincing evidence fo the so called anomalous Hall effect, typical for magnetic metals...Our results suggest that near the ferromagnetic ordering temperature, the dominant electron scattering mechanism is the spin fluctuation.

  1. Shielding of Piezoelectric Ultrasonic Probes in Hall Effect Imaging

    PubMed Central

    Wen, Han; Bennett, Eric; Wiesler, David G.

    2010-01-01

    This paper addresses significant sources of electromagnetic noise in Hall effect imaging. Hall effect imaging employs large electrical pulses for signal generation and high sensitivity ultrasonic probes for signal reception. Coherent noise arises through various coupling mechanisms between the excitation pulse and the probe. In this paper, the coupling mechanisms are experimentally isolated and theoretically analyzed. Several methods of shielding the probe from electromagnetic interference are devised and tested. These methods are able to reduce the noise to levels below the random thermal noise, thereby improving the signal-to-noise ratio in HEI by two orders of magnitude. PMID:9921620

  2. Spin-Drag Hall Effect in a Rotating Bose Mixture

    SciTech Connect

    Driel, H. J. van; Duine, R. A.; Stoof, H. T. C.

    2010-10-08

    We show that in a rotating two-component Bose mixture, the spin drag between the two different spin species shows a Hall effect. This spin-drag Hall effect can be observed experimentally by studying the out-of-phase dipole mode of the mixture. We determine the damping of this mode due to spin drag as a function of temperature. We find that due to Bose stimulation there is a strong enhancement of the damping for temperatures close to the critical temperature for Bose-Einstein condensation.

  3. Nonlinear analysis of magnetization dynamics excited by spin Hall effect

    NASA Astrophysics Data System (ADS)

    Taniguchi, Tomohiro

    2015-03-01

    We investigate the possibility of exciting self-oscillation in a perpendicular ferromagnet by the spin Hall effect on the basis of a nonlinear analysis of the Landau-Lifshitz-Gilbert (LLG) equation. In the self-oscillation state, the energy supplied by the spin torque during a precession on a constant energy curve should equal the dissipation due to damping. Also, the current to balance the spin torque and the damping torque in the self-oscillation state should be larger than the critical current to destabilize the initial state. We find that these conditions in the spin Hall system are not satisfied by deriving analytical solutions of the energy supplied by the spin transfer effect and the dissipation due to the damping from the nonlinear LLG equation. This indicates that the self-oscillation of a perpendicular ferromagnet cannot be excited solely by the spin Hall torque.

  4. Thermal Hall Effect of Spin Excitations in a Kagome Magnet.

    PubMed

    Hirschberger, Max; Chisnell, Robin; Lee, Young S; Ong, N P

    2015-09-01

    At low temperatures, the thermal conductivity of spin excitations in a magnetic insulator can exceed that of phonons. However, because they are charge neutral, the spin waves are not expected to display a thermal Hall effect. However, in the kagome lattice, theory predicts that the Berry curvature leads to a thermal Hall conductivity κ(xy). Here we report observation of a large κ(xy) in the kagome magnet Cu(1-3, bdc) which orders magnetically at 1.8 K. The observed κ(xy) undergoes a remarkable sign reversal with changes in temperature or magnetic field, associated with sign alternation of the Chern flux between magnon bands. The close correlation between κ(xy) and κ(xx) firmly precludes a phonon origin for the thermal Hall effect. PMID:26382691

  5. The quantum Hall effect in quantum dot systems

    NASA Astrophysics Data System (ADS)

    Beltukov, Y. M.; Greshnov, A. A.

    2014-12-01

    It is proposed to use quantum dots in order to increase the temperatures suitable for observation of the integer quantum Hall effect. A simple estimation using Fock-Darwin spectrum of a quantum dot shows that good part of carriers localized in quantum dots generate the intervals of plateaus robust against elevated temperatures. Numerical calculations employing local trigonometric basis and highly efficient kernel polynomial method adopted for computing the Hall conductivity reveal that quantum dots may enhance peak temperature for the effect by an order of magnitude, possibly above 77 K. Requirements to potentials, quality and arrangement of the quantum dots essential for practical realization of such enhancement are indicated. Comparison of our theoretical results with the quantum Hall measurements in InAs quantum dot systems from two experimental groups is also given.

  6. Hall viscosity and momentum transport in lattice and continuum models of the integer quantum Hall effect in strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Tuegel, Thomas I.; Hughes, Taylor L.

    2015-10-01

    The Hall viscosity describes a nondissipative response to strain in systems with broken time-reversal symmetry. We develop a method for computing the Hall viscosity of lattice systems in strong magnetic fields based on momentum transport, which we compare to the method of momentum polarization used by Tu et al. [Phys. Rev. B 88, 195412 (2013), 10.1103/PhysRevB.88.195412] and Zaletel et al. [Phys. Rev. Lett. 110, 236801 (2013), 10.1103/PhysRevLett.110.236801] for noninteracting systems. We compare the Hall viscosity of square-lattice tight-binding models in magnetic field to the continuum integer quantum Hall effect (IQHE) showing agreement when the magnetic length is much larger than the lattice constant, but deviation as the magnetic field strength increases. We also relate the Hall viscosity of relativistic electrons in magnetic field (the Dirac IQHE) to the conventional IQHE. The Hall viscosity of the lattice Dirac model in magnetic field agrees with the continuum Dirac Hall viscosity when the magnetic length is much larger than the lattice constant. We also show that the Hall viscosity of the lattice model deviates further from the continuum model if the C4 symmetry of the square lattice is broken to C2, but the deviation is again minimized as the magnetic length increases.

  7. Depletion effect of oxide semiconductor analyzed by Hall effects.

    PubMed

    Oh, Teresa

    2014-12-01

    This letter discusses the tunneling behavior of amorphous indium-gallium-zinc-oxide (a-IGZO) analyzed through the observation of its Hall effects. The properties of the a-IGZO changed from those of a majority carrier to those of a minority carrier after the annealing process as a result of the electron-hole recombination due to the thermal activation energy and the formation of a depletion layer with a high-potential Schottky barrier. Therefore, the diffusion current of these minority charge carriers caused ambipolar transfer characteristics, a tunneling behavior, in the metal-oxide semiconductor (MOS) transistor. PMID:25971008

  8. Band Collapse and the Quantum Hall Effect in Graphene

    SciTech Connect

    Bernevig, B.Andrei; Hughes, Taylor L.; Zhang, Shou-Cheng; Chen, Han-Dong; Wu, Congjun; /Santa Barbara, KITP

    2010-03-16

    The recent Quantum Hall experiments in graphene have confirmed the theoretically well-understood picture of the quantum Hall (QH) conductance in fermion systems with continuum Dirac spectrum. In this paper we take into account the lattice, and perform an exact diagonalization of the Landau problem on the hexagonal lattice. At very large magnetic fields the Dirac argument fails completely and the Hall conductance, given by the number of edge states present in the gaps of the spectrum, is dominated by lattice effects. As the field is lowered, the experimentally observed situation is recovered through a phenomenon which we call band collapse. As a corollary, for low magnetic field, graphene will exhibit two qualitatively different QHE's: at low filling, the QHE will be dominated by the 'relativistic' Dirac spectrum and the Hall conductance will be odd-integer; above a certain filling, the QHE will be dominated by a non-relativistic spectrum, and the Hall conductance will span all integers, even and odd.

  9. Quantum spin Hall effect of light

    NASA Astrophysics Data System (ADS)

    Bliokh, Konstantin Y.; Smirnova, Daria; Nori, Franco

    2015-06-01

    Maxwell’s equations, formulated 150 years ago, ultimately describe properties of light, from classical electromagnetism to quantum and relativistic aspects. The latter ones result in remarkable geometric and topological phenomena related to the spin-1 massless nature of photons. By analyzing fundamental spin properties of Maxwell waves, we show that free-space light exhibits an intrinsic quantum spin Hall effect—surface modes with strong spin-momentum locking. These modes are evanescent waves that form, for example, surface plasmon-polaritons at vacuum-metal interfaces. Our findings illuminate the unusual transverse spin in evanescent waves and explain recent experiments that have demonstrated the transverse spin-direction locking in the excitation of surface optical modes. This deepens our understanding of Maxwell’s theory, reveals analogies with topological insulators for electrons, and offers applications for robust spin-directional optical interfaces.

  10. OPTICS. Quantum spin Hall effect of light.

    PubMed

    Bliokh, Konstantin Y; Smirnova, Daria; Nori, Franco

    2015-06-26

    Maxwell's equations, formulated 150 years ago, ultimately describe properties of light, from classical electromagnetism to quantum and relativistic aspects. The latter ones result in remarkable geometric and topological phenomena related to the spin-1 massless nature of photons. By analyzing fundamental spin properties of Maxwell waves, we show that free-space light exhibits an intrinsic quantum spin Hall effect—surface modes with strong spin-momentum locking. These modes are evanescent waves that form, for example, surface plasmon-polaritons at vacuum-metal interfaces. Our findings illuminate the unusual transverse spin in evanescent waves and explain recent experiments that have demonstrated the transverse spin-direction locking in the excitation of surface optical modes. This deepens our understanding of Maxwell's theory, reveals analogies with topological insulators for electrons, and offers applications for robust spin-directional optical interfaces. PMID:26113717

  11. Planar Hall effect bridge geometries optimized for magnetic bead detection

    NASA Astrophysics Data System (ADS)

    Østerberg, Frederik Westergaard; Rizzi, Giovanni; Henriksen, Anders Dahl; Hansen, Mikkel Fougt

    2014-05-01

    Novel designs of planar Hall effect bridge sensors optimized for magnetic bead detection are presented and characterized. By constructing the sensor geometries appropriately, the sensors can be tailored to be sensitive to an external magnetic field, the magnetic field due to beads being magnetized by the sensor self-field or a combination thereof. The sensors can be made nominally insensitive to small external magnetic fields, while being maximally sensitive to magnetic beads, magnetized by the sensor self-field. Thus, the sensor designs can be tailored towards specific applications with minimal influence of external variables. Three different sensor designs are analyzed theoretically. To experimentally validate the theoretical signals, two sets of measurements are performed. First, the sensor signals are characterized as function of an externally applied magnetic field. Then, measurements of the dynamic magnetic response of suspensions of magnetic beads with a nominal diameter of 80 nm are performed. Furthermore, a method to amplify the signal by appropriate combinations of multiple sensor segments is demonstrated.

  12. Study of the effects of guide field on Hall reconnection

    SciTech Connect

    Tharp, T. D.; Yamada, M.; Ji, H.; Lawrence, E.; Dorfman, S.; Myers, C.; Yoo, J.; Huang, Y.-M.; Bhattacharjee, A.

    2013-05-15

    The results from guide field studies on the Magnetic Reconnection Experiment (MRX) are compared with results from Hall magnetohydrodynamic (HMHD) reconnection simulation with guide field. The quadrupole field, a signature of two-fluid reconnection at zero guide field, is modified by the presence of a finite guide field in a manner consistent with HMHD simulation. The modified Hall current profile contains reduced electron flows in the reconnection plane, which quantitatively explains the observed reduction of the reconnection rate. The present results are consistent with the hypothesis that the local reconnection dynamics is dominated by Hall effects in the collisionless regime of the MRX plasmas. While very good agreement is seen between experiment and simulations, we note that an important global feature of the experiments, a compression of the guide field by the reconnecting plasma, is not represented in the simulations.

  13. Quantum anomalous Hall effect in topological insulator memory

    SciTech Connect

    Jalil, Mansoor B. A.; Tan, S. G.; Siu, Z. B.

    2015-05-07

    We theoretically investigate the quantum anomalous Hall effect (QAHE) in a magnetically coupled three-dimensional-topological insulator (3D-TI) system. We apply the generalized spin-orbit coupling Hamiltonian to obtain the Hall conductivity σ{sup xy} of the system. The underlying topology of the QAHE phenomenon is then analyzed to show the quantization of σ{sup xy} and its relation to the Berry phase of the system. Finally, we analyze the feasibility of utilizing σ{sup xy} as a memory read-out in a 3D-TI based memory at finite temperatures, with comparison to known magnetically doped 3D-TIs.

  14. Inverse spin Hall effect in Pt/(Ga,Mn)As

    SciTech Connect

    Nakayama, H.; Chen, L.; Chang, H. W.; Ohno, H.; Matsukura, F.

    2015-06-01

    We investigate dc voltages under ferromagnetic resonance in a Pt/(Ga,Mn)As bilayer structure. A part of the observed dc voltage is shown to originate from the inverse spin Hall effect. The sign of the inverse spin Hall voltage is the same as that in Py/Pt bilayer structure, even though the stacking order of ferromagnetic and nonmagnetic layers is opposite to each other. The spin mixing conductance at the Pt/(Ga,Mn)As interface is determined to be of the order of 10{sup 19 }m{sup −2}, which is about ten times greater than that of (Ga,Mn)As/p-GaAs.

  15. Inverse spin Hall effect in a closed loop circuit

    SciTech Connect

    Omori, Y.; Auvray, F.; Wakamura, T.; Niimi, Y.; Fert, A.

    2014-06-16

    We present measurements of inverse spin Hall effects (ISHEs), in which the conversion of a spin current into a charge current via the ISHE is detected not as a voltage in a standard open circuit but directly as the charge current generated in a closed loop. The method is applied to the ISHEs of Bi-doped Cu and Pt. The derived expression of ISHE for the loop structure can relate the charge current flowing into the loop to the spin Hall angle of the SHE material and the resistance of the loop.

  16. Effect of Anode Dielectric Coating on Hall Thruster Operation

    SciTech Connect

    L. Dorf; Y. Raitses; N.J. Fisch; V. Semenov

    2003-10-20

    An interesting phenomenon observed in the near-anode region of a Hall thruster is that the anode fall changes from positive to negative upon removal of the dielectric coating, which is produced on the anode surface during the normal course of Hall thruster operation. The anode fall might affect the thruster lifetime and acceleration efficiency. The effect of the anode coating on the anode fall is studied experimentally using both biased and emissive probes. Measurements of discharge current oscillations indicate that thruster operation is more stable with the coated anode.

  17. Anomalous Hall Effect in a 2D Rashba Ferromagnet.

    PubMed

    Ado, I A; Dmitriev, I A; Ostrovsky, P M; Titov, M

    2016-07-22

    Skew scattering on rare impurity configurations is shown to dominate the anomalous Hall effect in a 2D Rashba ferromagnet. The mechanism originates in scattering on rare impurity pairs separated by distances of the order of the Fermi wavelength. The corresponding theoretical description goes beyond the conventional noncrossing approximation. The mechanism provides the only contribution to the anomalous Hall conductivity in the most relevant metallic regime and strongly modifies previously obtained results for lower energies in the leading order with respect to impurity strength. PMID:27494487

  18. Sign change of the flux flow Hall effect in HTSC

    SciTech Connect

    Feigel`man, M.V.; Geshkenbein, V.B.; Larkin, A.I.; Vinokur, V.M.

    1996-11-01

    A novel mechanism for the sign change of the Hall effect in the flux flow region is proposed. The difference {delta}{ital n} between the electron density at the center of the vortex core and that far outside the vortex causes the additional contribution to the Hall conductivity {delta}{sigma}{sub xy} = -{delta}{ital nec}/{ital B}. This contribution can be larger than the conventional one in the dirty case {Delta}{ital T}{tau} {lt} 1. If the electron density inside the core exceeds the electron density far outside, a double sign change may occur as a function of temperature.

  19. Interaction-Driven Spontaneous Quantum Hall Effect on a Kagome Lattice.

    PubMed

    Zhu, W; Gong, Shou-Shu; Zeng, Tian-Sheng; Fu, Liang; Sheng, D N

    2016-08-26

    Topological states of matter have been widely studied as being driven by an external magnetic field, intrinsic spin-orbital coupling, or magnetic doping. Here, we unveil an interaction-driven spontaneous quantum Hall effect (a Chern insulator) emerging in an extended fermion-Hubbard model on a kagome lattice, based on a state-of-the-art density-matrix renormalization group on cylinder geometry and an exact diagonalization in torus geometry. We first demonstrate that the proposed model exhibits an incompressible liquid phase with doublet degenerate ground states as time-reversal partners. The explicit spontaneous time-reversal symmetry breaking is determined by emergent uniform circulating loop currents between nearest neighbors. Importantly, the fingerprint topological nature of the ground state is characterized by quantized Hall conductance. Thus, we identify the liquid phase as a quantum Hall phase, which provides a "proof-of-principle" demonstration of the interaction-driven topological phase in a topologically trivial noninteracting band. PMID:27610866

  20. Valley Hall Effect in Two-Dimensional Hexagonal Lattices

    NASA Astrophysics Data System (ADS)

    Yamamoto, Michihisa; Shimazaki, Yuya; Borzenets, Ivan V.; Tarucha, Seigo

    2015-12-01

    Valley is a quantum number defined for energetically degenerate but nonequivalent structures in energy bands of a crystalline material. Recent discoveries of two-dimensional (2D) layered materials have shed light on the potential use of this degree of freedom for information carriers because the valley can now be potentially manipulated in integrated 2D architectures. The valleys separated by a long distance in a momentum space are robust against external disturbance and the flow of the valley, the valley current, is nondissipative because it carries no net electronic current. Among the various 2D valley materials, graphene has by far the highest crystal quality, leading to an extremely long valley relaxation length in the bulk. In this review, we first describe the theoretical background of the valley Hall effect, which converts an electric field into a valley current. We then describe the first observation of the valley Hall effect in monolayer MoS2. Finally, we describe experiments on the generation and detection of the pure valley current in monolayer and bilayer graphene, achieved recently using the valley Hall effect and inverse valley Hall effect. While we show unambiguous evidence of a pure valley current flowing in graphene, we emphasize that the field of "valleytronics" is still in its infancy and that further theoretical and experimental investigations are necessary.

  1. Characterization of power law exponent when tunneling into the edge of the fractional quantum Hall effect around ν = 1/3 and 2/5

    NASA Astrophysics Data System (ADS)

    Grayson, M.; Tsui, D. C.; Chang, A. M.; Pfeiffer, L. N.; West, K. W.

    1997-03-01

    We study current vs. voltage when tunneling into the edge of the FQHE around ν = 1/3 and 2/5 for samples of differing mobility. For voltages above the thermal voltage the device manifests the previously observed power law I-V behavior (A.M. Chang, L.N. Pfeiffer, K. West, Phys. Rev. Lett, 77, 2538 (1996)) which eventually saturates to the linear Hall conductance. The high mobility samples yield a power law exponent of α = 2.70 +/- 0.05 at ν = 1/3. Near ν = 1/3, the exponent varies roughly as σ_xy-1. The highest mobility sample fits a universal curve over 6 orders of magnitude in voltage scaled by the Kondo temperature. (C. Chamon, E. Fradkin, private communication) This characteristic covers the entire range from weak to strong coupling beyond the weak coupling scaling regime of Kane and Fisher. In contrast, samples with lower mobililty break off from this universal curve to a weaker power law, suggesting that another relevant energy scale comes into play. In addition, we will report observation of a resonance at ν = 1/3 which appears to exhibit an anomalous lineshape.

  2. The integer quantum hall effect revisited

    SciTech Connect

    Michalakis, Spyridon; Hastings, Matthew

    2009-01-01

    For T - L x L a finite subset of Z{sup 2}, let H{sub o} denote a Hamiltonian on T with periodic boundary conditions and finite range, finite strength intetactions and a unique ground state with a nonvanishing spectral gap. For S {element_of} T, let q{sub s} denote the charge at site s and assume that the total charge Q = {Sigma}{sub s {element_of} T} q{sub s} is conserved. Using the local charge operators q{sub s}, we introduce a boundary magnetic flux in the horizontal and vertical direction and allow the ground state to evolve quasiadiabatically around a square of size one magnetic flux, in flux space. At the end of the evolution we obtain a trivial Berry phase, which we compare, via a method reminiscent of Stokes Theorem. to the Berry phase obtained from an evolution around an exponentially small loop near the origin. As a result, we show, without any averaging assumption, that the Hall conductance is quantized in integer multiples of e{sup 2}/h up to exponentially small corrections of order e{sup -L/{zeta}}, where {zeta}, is a correlation length that depends only on the gap and the range and strength of the interactions.

  3. Nonlinear dynamics induced anomalous Hall effect in topological insulators

    PubMed Central

    Wang, Guanglei; Xu, Hongya; Lai, Ying-Cheng

    2016-01-01

    We uncover an alternative mechanism for anomalous Hall effect. In particular, we investigate the magnetisation dynamics of an insulating ferromagnet (FM) deposited on the surface of a three-dimensional topological insulator (TI), subject to an external voltage. The spin-polarised current on the TI surface induces a spin-transfer torque on the magnetisation of the top FM while its dynamics can change the transmission probability of the surface electrons through the exchange coupling and hence the current. We find a host of nonlinear dynamical behaviors including multistability, chaos, and phase synchronisation. Strikingly, a dynamics mediated Hall-like current can arise, which exhibits a nontrivial dependence on the channel conductance. We develop a physical understanding of the mechanism that leads to the anomalous Hall effect. The nonlinear dynamical origin of the effect stipulates that a rich variety of final states exist, implying that the associated Hall current can be controlled to yield desirable behaviors. The phenomenon can find applications in Dirac-material based spintronics. PMID:26819223

  4. Nonlinear dynamics induced anomalous Hall effect in topological insulators

    NASA Astrophysics Data System (ADS)

    Wang, Guanglei; Xu, Hongya; Lai, Ying-Cheng

    2016-01-01

    We uncover an alternative mechanism for anomalous Hall effect. In particular, we investigate the magnetisation dynamics of an insulating ferromagnet (FM) deposited on the surface of a three-dimensional topological insulator (TI), subject to an external voltage. The spin-polarised current on the TI surface induces a spin-transfer torque on the magnetisation of the top FM while its dynamics can change the transmission probability of the surface electrons through the exchange coupling and hence the current. We find a host of nonlinear dynamical behaviors including multistability, chaos, and phase synchronisation. Strikingly, a dynamics mediated Hall-like current can arise, which exhibits a nontrivial dependence on the channel conductance. We develop a physical understanding of the mechanism that leads to the anomalous Hall effect. The nonlinear dynamical origin of the effect stipulates that a rich variety of final states exist, implying that the associated Hall current can be controlled to yield desirable behaviors. The phenomenon can find applications in Dirac-material based spintronics.

  5. Nonlinear dynamics induced anomalous Hall effect in topological insulators.

    PubMed

    Wang, Guanglei; Xu, Hongya; Lai, Ying-Cheng

    2016-01-01

    We uncover an alternative mechanism for anomalous Hall effect. In particular, we investigate the magnetisation dynamics of an insulating ferromagnet (FM) deposited on the surface of a three-dimensional topological insulator (TI), subject to an external voltage. The spin-polarised current on the TI surface induces a spin-transfer torque on the magnetisation of the top FM while its dynamics can change the transmission probability of the surface electrons through the exchange coupling and hence the current. We find a host of nonlinear dynamical behaviors including multistability, chaos, and phase synchronisation. Strikingly, a dynamics mediated Hall-like current can arise, which exhibits a nontrivial dependence on the channel conductance. We develop a physical understanding of the mechanism that leads to the anomalous Hall effect. The nonlinear dynamical origin of the effect stipulates that a rich variety of final states exist, implying that the associated Hall current can be controlled to yield desirable behaviors. The phenomenon can find applications in Dirac-material based spintronics. PMID:26819223

  6. Plasma Oscillations and Operational Modes in Hall Effect Thrusters

    NASA Astrophysics Data System (ADS)

    Sekerak, Michael J.

    Mode transitions have been commonly observed in Hall effect thruster (HET) operation where a small change in a thruster operating parameter such as discharge voltage, magnetic field or mass flow rate causes the thruster discharge current mean value and oscillation amplitude to increase significantly. In this study, mode transitions in HETs are induced by varying the magnetic field intensity while holding all other operating parameters constant and measurements are acquired with high-speed probes and ultra-fast imaging. Two primary oscillatory modes were identified and extensively characterized called global oscillation mode and local oscillation mode. In the global mode, the entire discharge channel oscillates in unison and azimuthal perturbations (spokes) are either absent or negligible. Downstream azimuthally spaced probes show no signal delay between each other and are very well correlated to the discharge current signal. In the local mode, signals from the azimuthally spaced probes exhibit a clear delay indicating the passage of spokes. These spokes are localized oscillations in discharge current density propagating in the E x B direction that are typically 10-20% of the mean value. In contrast, the oscillations in the global mode can be 100% of the mean discharge current density value. The spoke velocity is determined from high-speed image analysis using three methods yielding values between 1500 and 2200 m/s across a range of magnetic field settings. The transition between global and local modes occurs at higher relative magnetic field strengths for higher mass flow rates or higher discharge voltages. It is proposed that mode transitions represent de-stabilization of the ionization front similar to excitation of the well-studied Hall thruster breathing mode, which is supported by time-resolved simulations of the discharge channel plasma. The thrust is approximately constant in both modes, but the thrust-to-power and anode efficiency decrease in global mode

  7. SO(5) symmetry in the quantum Hall effect in graphene

    NASA Astrophysics Data System (ADS)

    Wu, Fengcheng; Sodemann, Inti; Araki, Yasufumi; MacDonald, Allan H.; Jolicoeur, Thierry

    2014-12-01

    Electrons in graphene have four flavors associated with low-energy spin and valley degrees of freedom. The fractional quantum Hall effect in graphene is dominated by long-range Coulomb interactions, which are invariant under rotations in spin-valley space. This SU(4) symmetry is spontaneously broken at most filling factors, and also weakly broken by atomic scale valley-dependent and valley-exchange interactions with coupling constants gz and g⊥. In this paper, we demonstrate that when gz=-g⊥ , an exact SO(5) symmetry survives which unifies the Néel spin order parameter of the antiferromagnetic state and the X Y valley order parameter of the Kekulé distortion state into a single five-component order parameter. The proximity of the highly insulating quantum Hall state observed in graphene at ν =0 to an ideal SO(5) symmetric quantum Hall state remains an open experimental question. We illustrate the physics associated with this SO(5) symmetry by studying the multiplet structure and collective dynamics of filling factor ν =0 quantum Hall states based on exact-diagonalization and low-energy effective theory approaches. This allows to illustrate how manifestations of the SO(5) symmetry would survive even when it is weakly broken.

  8. 4.5-kW Hall Effect Thruster Evaluated

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2000-01-01

    As part of an Interagency Agreement with the Air Force Research Lab (AFRL), a space simulation test of a Russian SPT 140 Hall Effect Thruster was completed in September 1999 at Vacuum Facility 6 at the NASA Glenn Research Center at Lewis Field. The thruster was subjected to a three-part test sequence that included thrust and performance characterization, electromagnetic interference, and plume contamination. SPT 140 is a 4.5-kW thruster developed under a joint agreement between AFRL, Atlantic Research Corp, and Space Systems/Loral, and was manufactured by the Fakal Experimental Design Bureau of Russia. All objectives were satisfied, and the thruster performed exceptionally well during the 120-hr test program, which comprised 33 engine firings. The Glenn testing provided a critical contribution to the thruster development effort, and the large volume and high pumping speed of this vacuum facility was key to the test s success. The low background pressure (1 10 6 torr) provided a more accurate representation of space vacuum than is possible in most vacuum chambers. The facility had been upgraded recently with new cryogenic pumps and sputter shielding to support the active electric propulsion program at Glenn. The Glenn test team was responsible for all test support equipment, including the thrust stand, power supplies, data acquisition, electromagnetic interference measurement equipment, and the contamination measurement system.

  9. Quantum Hall effect in polycrystalline CVD graphene: grain boundaries impact

    NASA Astrophysics Data System (ADS)

    Ribeiro-Palau, Rebeca; Lafont, Fabien; Schopfer, Felicien; Poirier, Wilfrid; Bouchiat, Vincent; Han, Zhen; Cresti, Alessandro; Cummings, Aron; Roche, Stephan

    2014-03-01

    It was demonstrated by Janssen et al. (New J. Phys. 2011) that graphene could surpass GaAs for quantum Hall resistance standards with an accuracy better than 10-10. Graphene should render possible the realization of a standard operating at T > 4 K and B < 4 T, easing its dissemination towards industry. To materialize this goal scalable graphene with outstanding electronic transport properties is required. We present measurements performed in large area Hall bars made of polycrystalline CVD graphene on Si/SiO2, with a carrier mobility of 0.6 T-1. Even at 20.2 T and 300 mK, the Hall resistance plateaus are insufficiently quantized at ν = +/- 2 and +/- 6 . This is due to a high dissipation manifested by a longitudinal resistance which does not drop to zero. We pointed out unusual power-law temperature dependencies of Rxx and an exponential magnetic field dependence. We do not observe the common thermally activated or VRH behaviors. This can be attributed to the grain boundaries in the sample that short-circuit the edge states, as supported by our numerical simulations. This reveals new and peculiar aspects of the quantum Hall effect in polycrystalline systems. Another unexpected feature is the observation of the ν = 0 and 1 states in such low mobility systems.

  10. Low-field Hall effect near the percolation threshold

    NASA Astrophysics Data System (ADS)

    Marianer, S.; Bergman, D. J.

    1989-06-01

    We use a random-resistor-network model to study the critical behavior of the low-field Hall constant in a three-dimensional (3D) metal-insulator composite near the percolation threshold. The transfer-matrix method, which was originally introduced for calculating conductivity, is generalized to be applicable to the calculation of the Hall constant and the magnetoresistance as well. We then use this generalized method to perform a renormalization-group calculation for a cubic random resistor network and two simulations of random resistor networks at the percolation threshold: one of cubes and the other of long (3D) strips. Fitting an expression RH~(p-pc)-g to the effective Hall constant RH of the network, we find a divergent Hall constant both from the renormalization-group calculation (g=0.625) and from the simulation of cubes (g=0.25), while the long-strips simulation yields one that is concentration independent, i.e., g=0.

  11. Anomalous Hall effect in Cr doped FeSi

    NASA Astrophysics Data System (ADS)

    Yadam, Sankararao; Lakhani, Archana; Singh, Durgesh; Prasad, Rudra; Ganesan, V.

    2016-05-01

    Investigations of economically affordable bulk materials for the spin based electronics are in huge demand. In this direction, electrical and Hall transport properties of the polycrystalline Cr doped Kondo insulator FeSi, i.e Fe0.975Cr0.025Si is reported. Well agreement between temperature dependence of the Hall and linear resistivity are observed. The observed minimum at ~19K in the resistivity is attributed to the ferromagnetic transition temperature (TC). Anomalous Hall resistivity is seen in the itinerant ferromagnet, Fe0.975Cr0.025Si well below the TC. The obtained Hall resistivity is comparable with that of the spintronic material Fe0.9Co0.1Si. The present study proves that the electrical transport properties of bulk materials made by low cost elements such as Fe, Cr and Si exhibits large magnetic field effects and are useful for the spintronics applications, unlike spintronics material (Ga, Mn)As that demand higher costs.

  12. Far-infrared Hall Effect in YBCO films

    NASA Astrophysics Data System (ADS)

    Grayson, M.; Rigal, L.; Cerne, J.; Schmadel, D. C.; Drew, H. D.; Kung, P.-J.

    2001-03-01

    In order to gain insight into the so-called "anomalous Hall effect" in Hi Tc superconductors(T.R. Chien, D.A. Brawner, Z.Z. Wang, and N.P. Ong, PRB 43, 6242(1991).) we explore Hall measurements at far-infrared (FIR) frequencies and study the temperature dependence. We separately measure the real and imaginary parts of the magneto-optical response of YBCO thin films to polarized FIR light (15-250 cm-1). The induced rotation of linearly polarized light tells us the real part of the Faraday angle, Re[θ_F(ω)], and the induced dichroism of circularly polarized light tells us Im[θ_F(ω)]. We can then deduce the complex Hall angle without resorting to Kramers-Kronig (K-K) analysis. Since both the Hall angle and the Faraday angle obey sum rules, we can compare to higher frequencies(Cerne, et al., invited talk) and determine additional information about the spectral response at intermediate frequencies. The consistency of these results is verified with K-K analysis.

  13. Strong spin Hall effect in the antiferromagnet PtMn

    NASA Astrophysics Data System (ADS)

    Ou, Yongxi; Shi, Shengjie; Ralph, D. C.; Buhrman, R. A.

    2016-06-01

    Effectively manipulating magnetism in ferromagnet (FM) thin-film nanostructures with an in-plane current has become feasible since the determination of a "giant" spin Hall effect (SHE) in certain heavy metal/FM systems. Recently, both theoretical and experimental reports indicate that metallic antiferromagnet materials can have both a large anomalous Hall effect and a strong SHE. Here we report a systematic study of the SHE in PtMn with several PtMn/FM systems. By using interface engineering to reduce the "spin memory loss" we obtain, in the best instance, a spin-torque efficiency ξDLPtMn≡TintθSHPtMn≃0.24 , where Tint is the effective interface spin transparency. This is more than twice the previously reported spin-torque efficiency for PtMn. We also find that the apparent spin diffusion length in PtMn is surprisingly long, λsPtMn≈2.3 nm .

  14. Vortices in superconducting films: Statistics and fractional quantum Hall effect

    SciTech Connect

    Dziarmaga, J.

    1996-03-01

    We present a derivation of the Berry phase picked up during exchange of parallel vortices. This derivation is based on the Bogolubov{endash}de Gennes formalism. The origin of the Magnus force is also critically reanalyzed. The Magnus force can be interpreted as an interaction with the effective magnetic field. The effective magnetic field may be even of the order 10{sup 6}{ital T}/A. We discuss a possibility of the fractional quantum Hall effect (FQHE) in vortex systems. As the real magnetic field is varied to drive changes in vortex density, the vortex density will prefer to stay at some quantized values. The mere existence of the FQHE does not depend on vortex quantum statistics, although the pattern of the plateaux does. We also discuss how the density of anyonic vortices can lower the effective strengh of the Magnus force, what might be observable in measurements of Hall resistivity. {copyright} {ital 1996 The American Physical Society.}

  15. Hall effect in electrolyte flow measurements: introduction to blood flow measurements.

    PubMed

    Szwast, Maciej; Piatkiewicz, Wojciech

    2012-06-01

    The Hall effect has been applied to electrolyte flow measurement. It has been proven that Hall voltage does not depend on electrolyte concentration; however, there is a linear relationship between Hall voltage and flow velocity. Obtained results for electrolyte allow us to suppose that Hall effect can be used to determine blood flow. Research on blood will be conducted as the next step. PMID:22145845

  16. Quantum Hall effect in graphene decorated with disordered multilayer patches

    SciTech Connect

    Nam, Youngwoo; Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-412 96 Gothenburg ; Sun, Jie Lindvall, Niclas; Kireev, Dmitry; Yurgens, August; Jae Yang, Seung; Rae Park, Chong; Woo Park, Yung

    2013-12-02

    Quantum Hall effect (QHE) is observed in graphene grown by chemical vapour deposition using platinum catalyst. The QHE is even seen in samples which are irregularly decorated with disordered multilayer graphene patches and have very low mobility (<500 cm{sup 2}V{sup −1}s{sup −1}). The effect does not seem to depend on electronic mobility and uniformity of the resulting material, which indicates the robustness of QHE in graphene.

  17. Generalized Hall-effect measurement geometries and limitations of van der Pauw-type Hall-effect measurements

    SciTech Connect

    Boerger, D.M.; Kramer, J.J.; Partain, L.D.

    1981-01-01

    A rigorous derivation is given to generalize the allowed, Hall effect, sample shapes from the restrictive, rectangular parallelepiped configurations to a much more general class of geometries characterized by mirror symmetry for materials whose mobile carriers have surfaces of constant energy in k-bar space that are well described by ellipsoids. However, this mirror symmetry condition is more restrictive than the almost arbitrary sample shapes proposed with the van der Pauw technique for thin films. Experimental data taken on n-type CdS at liquid-nitrogen temperatures in magnetic field strengths of 8 and 145 kG show that errors ranging from 1 to 600% can result from van der Pauw-type geometries depending on how much the sample shape and/or contact arrangement differs from the mirror symmetry. An empirically derived averaging technique is described that reduces the observed errors to less than 13% even with van der Pauw-type shapes that do not meet the mirror symmetry conditions.

  18. Quantum spin Hall effect in inverted type-II semiconductors.

    PubMed

    Liu, Chaoxing; Hughes, Taylor L; Qi, Xiao-Liang; Wang, Kang; Zhang, Shou-Cheng

    2008-06-13

    The quantum spin Hall (QSH) state is a topologically nontrivial state of quantum matter which preserves time-reversal symmetry; it has an energy gap in the bulk, but topologically robust gapless states at the edge. Recently, this novel effect has been predicted and observed in HgTe quantum wells and in this Letter we predict a similar effect arising in Type-II semiconductor quantum wells made from InAs/GaSb/AlSb. The quantum well exhibits an "inverted" phase similar to HgTe/CdTe quantum wells, which is a QSH state when the Fermi level lies inside the gap. Due to the asymmetric structure of this quantum well, the effects of inversion symmetry breaking are essential. Remarkably, the topological quantum phase transition between the conventional insulating state and the quantum spin Hall state can be continuously tuned by the gate voltage, enabling quantitative investigation of this novel phase transition. PMID:18643529

  19. A silicon metal-oxide-semiconductor field-effect transistor Hall bar for scanning Hall probe microscopy.

    PubMed

    Yamaguchi, Akinobu; Saito, Hiromasa; Shimizu, Masayoshi; Miyajima, Hideki; Matsumoto, Satoru; Nakamura, Yoshiharu; Hirohata, Atsufumi

    2008-08-01

    We demonstrate successful operation of a scanning Hall probe microscope with a few micron-size resolution by using a silicon metal-oxide semiconductor field-effect transistor (Si-MOSFET) Hall bar, which is designed to improve not only the mechanical strength but also the temperature stability. The Si-MOSFET micro-Hall probe is cheaper than the current micro-Hall probes and is found to be as sensitive as a micro-Hall probe with GaAs/AlGaAs heterostructure or an epitaxial InSb two-dimensional electron gas. This was used to magnetically image the surface of a Sm(2)Co(17) permanent magnet during the magnetization reversal process as a function of an external magnetic field below 1.5 T. This revealed firm evidence of the presence of the inverse magnetic seed as theoretically predicted earlier. Magnetically pinned centers, with a typical size 80 mum, are observed to persist even under a high magnetic field, clearly indicating the robustness of the Si Hall probe against the field application as well as the repetition of the measurement. PMID:19044353

  20. Kinetic Analysis of Pasma Transport in a Hall Effect Thruster

    NASA Astrophysics Data System (ADS)

    Batishchev, O.; Martinez-Sanchez, M.

    2002-01-01

    Peculiarities of the plasma transport and oscillation phenomena in the Xe-gas discharge of the SPT and TAL Hall effect thruster were subject of many theoretical-numerical and experimental studies [1-4]. Despite this fact, the origin of a so-called anomalous transport is not understood to this date. As a result, in the theoretical and numerical models [5-6] researches assume ad-hoc cross-field diffusion coefficients, which may differ by several times from the classical Bohm result. To study the transport phenomenon we develop a specialized kinetic model. Our model is 2-dimensional in space (for axial and azimuthal directions), but 3-dimensional in velocity. A similar geometry was adopted in references [1,3]. However, we try to push the simulation to the realistic scale (several centimeters), while keeping the minimum spatial resolution on the order of the local Debye length. New transport results will be compared to the results from the 2D3V axisymmetrical model [6], which is a further development of the fully kinetic model for plasma and neutral gas [5]. The PIC [7] code is applied to the realistic SPT thruster geometry. We add new elementary plasma-chemistry reaction and modify boundary conditions to capture self-consistent dynamics of high ionization states of xenon atoms. It is hoped that the numerical results will provide a better understanding of the anomalous transport in a Hall effect thruster due to the collective modes, and shed light on the nature of the experimentally observed high-frequency oscillations. [1] M.Hirakawa and Y.Arakawa, Particle simulation of plasma phenomena in Hall thrusters, IEPC-95-164 technical paper, 1995. [2] V. I. Baranov et al, "New Conceptions of Oscillation Mechanisms in the Accelerator with Closed Drift of Electrons". IEPC-95-44, 24thInternational Electric Propulsion Conference, Moscow, 1995. [3] M.Hirakawa, Electron transport mechanism in a Hall thruster, IEPC-97-021 technical paper, 1997. [4] N.B.Meerzan, W.A.Hargus, M

  1. Hall effect in quantum critical charge-cluster glass

    NASA Astrophysics Data System (ADS)

    Wu, Jie; Bollinger, Anthony T.; Sun, Yujie

    2016-04-01

    Upon doping, cuprates undergo a quantum phase transition from an insulator to a d-wave superconductor. The nature of this transition and of the insulating state is vividly debated. Here, we study the Hall effect in La2-xSrxCuO4 (LSCO) samples doped near the quantum critical point at x ˜ 0.06. Dramatic fluctuations in the Hall resistance appear below TCG ˜ 1.5 K and increase as the sample is cooled down further, signaling quantum critical behavior. We explore the doping dependence of this effect in detail, by studying a combinatorial LSCO library in which the Sr content is varied in extremely fine steps, Δx ˜ 0.00008. We observe that quantum charge fluctuations wash out when superconductivity emerges but can be restored when the latter is suppressed by applying a magnetic field, showing that the two instabilities compete for the ground state.

  2. Design and construction of a Hall Effect Measurement system

    NASA Astrophysics Data System (ADS)

    Gully, Ethan; Little, Travis; Requena, Sebastian; Sauncy, Toni

    2010-10-01

    We have constructed a Hall Effect sample holder that facilitates quick sample change and insures that the sample is uniformly located for each measurement. The 4 point off-the-shelf sample card was integrated into an existing floor magnet with custom designed and constructed mounts. The sample holder is well suited for these measurements, allowing for adjustments in all three of the coordinate axes directions so that even small samples can be accurately positioned for measurement between the poles of the magnet. The sample holder is interfaced and controlled with LABView software. The measurements are made using a suite of Keithley instruments. The design and construction will be discussed and preliminary calibration of the Hall Effect system will be presented.

  3. Hall effect in quantum critical charge-cluster glass.

    PubMed

    Wu, Jie; Bollinger, Anthony T; Sun, Yujie; Božović, Ivan

    2016-04-19

    Upon doping, cuprates undergo a quantum phase transition from an insulator to a d-wave superconductor. The nature of this transition and of the insulating state is vividly debated. Here, we study the Hall effect in La2-xSrxCuO4(LSCO) samples doped near the quantum critical point atx∼ 0.06. Dramatic fluctuations in the Hall resistance appear belowTCG∼ 1.5 K and increase as the sample is cooled down further, signaling quantum critical behavior. We explore the doping dependence of this effect in detail, by studying a combinatorial LSCO library in which the Sr content is varied in extremely fine steps,Δx∼ 0.00008. We observe that quantum charge fluctuations wash out when superconductivity emerges but can be restored when the latter is suppressed by applying a magnetic field, showing that the two instabilities compete for the ground state. PMID:27044081

  4. Quasiparticle Aggregation in the Fractional Quantum Hall Effect

    DOE R&D Accomplishments Database

    Laughlin, R. B.

    1984-10-10

    Quasiparticles in the Fractional Quantum Hall Effect behave qualitatively like electrons confined to the lowest landau level, and can do everything electrons can do, including condense into second generation Fractional Quantum Hall ground states. I review in this paper the reasoning leading to variational wavefunctions for ground state and quasiparticles in the 1/3 effect. I then show how two-quasiparticle eigenstates are uniquely determined from symmetry, and how this leads in a natural way to variational wavefunctions for composite states which have the correct densities (2/5, 2/7, ...). I show in the process that the boson, anyon and fermion representations for the quasiparticles used by Haldane, Halperin, and me are all equivalent. I demonstrate a simple way to derive Halperin`s multiple-valued quasiparticle wavefunction from the correct single-valued electron wavefunction. (auth)

  5. Precise quantization of anomalous Hall effect near zero magnetic field

    SciTech Connect

    Bestwick, A. J.; Fox, E. J.; Kou, Xufeng; Pan, Lei; Wang, Kang L.; Goldhaber-Gordon, D.

    2015-05-04

    In this study, we report a nearly ideal quantum anomalous Hall effect in a three-dimensional topological insulator thin film with ferromagnetic doping. Near zero applied magnetic field we measure exact quantization in the Hall resistance to within a part per 10,000 and a longitudinal resistivity under 1 Ω per square, with chiral edge transport explicitly confirmed by nonlocal measurements. Deviations from this behavior are found to be caused by thermally activated carriers, as indicated by an Arrhenius law temperature dependence. Using the deviations as a thermometer, we demonstrate an unexpected magnetocaloric effect and use it to reach near-perfect quantization by cooling the sample below the dilution refrigerator base temperature in a process approximating adiabatic demagnetization refrigeration.

  6. Critical current destabilizing perpendicular magnetization by the spin Hall effect

    NASA Astrophysics Data System (ADS)

    Taniguchi, Tomohiro; Mitani, Seiji; Hayashi, Masamitsu

    2015-07-01

    The critical current needed to destabilize the magnetization of a perpendicular ferromagnet via the spin Hall effect is studied. Both the dampinglike and fieldlike torques associated with the spin current generated by the spin Hall effect are included in the Landau-Lifshitz-Gilbert equation to model the system. In the absence of the fieldlike torque, the critical current is independent of the damping constant and is much larger than that of conventional spin torque switching of collinear magnetic systems, as in magnetic tunnel junctions. With the fieldlike torque included, we find that the critical current scales with the damping constant as α0 (i.e., damping independent), α , and α1 /2 depending on the sign of the fieldlike torque and other parameters such as the external field. Numerical and analytical results show that the critical current can be significantly reduced when the fieldlike torque possesses the appropriate sign, i.e., when the effective field associated with the fieldlike torque is pointing opposite to the spin direction of the incoming electrons. These results provide a pathway to reducing the current needed to switch magnetization using the spin Hall effect.

  7. Quantum Hall effect and semiconductor-to-semimetal transition in biased black phosphorus

    NASA Astrophysics Data System (ADS)

    Yuan, Shengjun; van Veen, Edo; Katsnelson, Mikhail I.; Roldán, Rafael

    2016-06-01

    We study the quantum Hall effect of two-dimensional electron gas in black phosphorus in the presence of perpendicular electric and magnetic fields. In the absence of a bias voltage, the external magnetic field leads to a quantization of the energy spectrum into equidistant Landau levels, with different cyclotron frequencies for the electron and hole bands. The applied voltage reduces the band gap, and eventually a semiconductor-to-semimetal transition takes place. This nontrivial phase is characterized by the emergence of a pair of Dirac points in the spectrum. As a consequence, the Landau levels are not equidistant anymore but follow the ɛn∝√{n B } characteristic of Dirac crystals as graphene. By using the Kubo-Bastin formula in the context of the kernel polynomial method, we compute the Hall conductivity of the system. We obtain a σx y∝2 n quantization of the Hall conductivity in the gapped phase (standard quantum Hall effect regime) and a σx y∝4 (n +1 /2 ) quantization in the semimetallic phase, characteristic of Dirac systems with nontrivial topology.

  8. Effects of Segmented Electrode in Hall Current Plasma Thrusters

    SciTech Connect

    Y. Raitses; M. Keidar; D. Staack; N.J. Fisch

    2001-12-03

    Segmented electrodes with a low secondary electron emission are shown to alter significantly plasma flow in the ceramic channel of the Hall thruster. The location of the axial acceleration region relative to the magnetic field can be moved. The radial potential distribution can also be altered near the channel walls. A hydrodynamic model shows that these effects are consistent with a lower secondary electron emission of the segmented electrode as compared to ceramic channel walls.

  9. Another Nulling Hall-Effect Current-Measuring Circuit

    NASA Technical Reports Server (NTRS)

    Thibodeau, Phillip E.; Sullender, Craig C.

    1993-01-01

    Lightweight, low-power circuit provides noncontact measurement of alternating or direct current of many ampheres in main conductor. Advantages of circuit over other nulling Hall-effect current-measuring circuits is stability and accuracy increased by putting both analog-to-digital and digital-to-analog converters in nulling feedback loop. Converters and rest of circuit designed for operation at sampling rate of 100 kHz, but rate changed to alter time or frequency response of circuit.

  10. Simulation of the many-body dynamical quantum Hall effect in an optical lattice

    NASA Astrophysics Data System (ADS)

    Zhang, Dan-Wei; Yang, Xu-Chen

    2016-05-01

    We propose an experimental scheme to simulate the many-body dynamical quantum Hall effect with ultra-cold bosonic atoms in a one-dimensional optical lattice. We first show that the required model Hamiltonian of a spin-1/2 Heisenberg chain with an effective magnetic field and tunable parameters can be realized in this system. For dynamical response to ramping the external fields, the quantized plateaus emerge in the Berry curvature of the interacting atomic spin chain as a function of the effective spin-exchange interaction. The quantization of this response in the parameter space with the interaction-induced topological transition characterizes the many-body dynamical quantum Hall effect. Furthermore, we demonstrate that this phenomenon can be observed in practical cold atom experiments with numerical simulations.

  11. Spin Hall effect of light in inhomogeneous nonlinear medium

    NASA Astrophysics Data System (ADS)

    Li, Hehe; Li, Xinzhong

    2016-01-01

    In this paper, we investigate the spin Hall effect of a polarized Gaussian beam (GB) in a smoothly inhomogeneous isotropic and nonlinear medium using the method of the eikonal-based complex geometrical optics which describes the phase front and cross-section of a light beam using the quadratic expansion of a complex-valued eikonal. The linear complex-valued eikonal terms are introduced to describe the polarization-dependent transverse shifts of the beam in inhomogeneous nonlinear medium which is called the spin Hall effect of beam. We know that the spin Hall effect of beam is affected by the nonlinearity of medium and include two parts, one originates from the coupling between the spin angular momentum and the extrinsic orbital angular momentum due to the curve trajectory of the center of gravity of the polarized GB and the other from the coupling between the spin angular momentum and the intrinsic orbital angular momentum due to the rotation of the beam with respect to the central ray.

  12. Enhancement of the anomalous Hall effect in ternary alloys

    NASA Astrophysics Data System (ADS)

    Tauber, Katarina; Hönemann, Albert; Fedorov, Dmitry V.; Gradhand, Martin; Mertig, Ingrid

    2015-06-01

    We consider ternary alloys of the composition Cu(Mn 1 -wTw) , where T corresponds to different nonmagnetic impurities. As was discovered by Fert et al. [J. Magn. Magn. Mater. 24, 231 (1981)], 10.1016/0304-8853(81)90079-2, the anomalous Hall effect (AHE) in the binary Cu(Mn) alloy can be significantly enhanced by means of codoping using 5 d impurities. Moreover, they attempted to quantify the spin Hall effect (SHE) in Cu (T ) binary alloys via the AHE measured in the related ternary alloys. Here, we present a theoretical study serving as a detailed background of the experimental findings by clarifying the conditions required for a maximal enhancement of the AHE as well as the relations between both Hall effects. Based on the proposed approach, we perform first-principles calculations for several Cu(Mn 1 -wTw)[T = Au, Bi, Ir, Lu, Sb, or Ta] alloys, which are underpinned by theoretical investigations via Matthiessen's rule.

  13. The plasmoid instability and Hall effect during chromospheric magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Murphy, Nicholas Arnold; Lukin, Vyacheslav

    2016-01-01

    Magnetic reconnection is a ubiquitous process in the partially ionized solar chromosphere. Recent two-dimensional simulations have shown that the plasmoid instability onsets during partially ionized reconnection [1-4]. We use the plasma-neutral module of the HiFi framework to simulate the nonlinear evolution of the plasmoid instability during symmetric and asymmetric reconnection. These simulations model the plasma and neutrals as separate fluids and include ionization, recombination, charge exchange, thermal conduction, and the Hall effect. The Hall effect leads to the development of significant out-of-plane magnetic fields in the current sheet region in the laminar phase, but we do not observe shortening of the current sheet or significant acceleration of the reconnection rate as a result. After the onset of the plasmoid instability, structure develops on scales comparable to the ion inertial length. We compare simulations of the plasmoid instability with and without the Hall effect to determine its impact on the reconnection process. Finally, we discuss ongoing efforts to connect these simulations with solar observations and laboratory experiments.[1] Leake et al. 2012, ApJ, 760, 109 [2] Leake et al. 2013, PhPl, 20, 062102 [3] Ni et al. 2015, ApJ, 799, 79 [4] Murphy & Lukin 2015, ApJ, 805, 134

  14. Dynamical quantum Hall effect in the parameter space

    PubMed Central

    Gritsev, V.; Polkovnikov, A.

    2012-01-01

    Geometric phases in quantum mechanics play an extraordinary role in broadening our understanding of fundamental significance of geometry in nature. One of the best known examples is the Berry phase [M.V. Berry (1984), Proc. Royal. Soc. London A, 392:45], which naturally emerges in quantum adiabatic evolution. So far the applicability and measurements of the Berry phase were mostly limited to systems of weakly interacting quasi-particles, where interference experiments are feasible. Here we show how one can go beyond this limitation and observe the Berry curvature, and hence the Berry phase, in generic systems as a nonadiabatic response of physical observables to the rate of change of an external parameter. These results can be interpreted as a dynamical quantum Hall effect in a parameter space. The conventional quantum Hall effect is a particular example of the general relation if one views the electric field as a rate of change of the vector potential. We illustrate our findings by analyzing the response of interacting spin chains to a rotating magnetic field. We observe the quantization of this response, which we term the rotational quantum Hall effect. PMID:22493228

  15. Current contacts and the breakdown of the quantum Hall effect

    NASA Astrophysics Data System (ADS)

    van Son, P. C.; Kruithof, G. H.; Klapwijk, T. M.

    1990-12-01

    The nonlinearities in the I-V characteristics have been studied of high-mobility Si metal oxide semiconductor field-effect transistors in the quantum Hall regime. The breakdown curves were measured with different sets of voltage contacts and for different directions of magnetic field and current. Comparison of these curves shows that the breakdown of the quantum Hall effect (QHE) in these samples is an intrinsic effect that starts at the current contact where the electrons are injected into the two-dimensional electron gas (2DEG). This fundamental asymmetry and the crucial role of the current contact are explained using the Büttiker-Landauer approach to the QHE and its recent extension to the nonlinear regime. The electron-injection process contains two mechanisms that lead to breakdown voltages in the 2DEG. We have identified both experimentally by comparing the critical currents of different configurations of current and voltage contacts. In one of the mechanisms, the nonequilibrium distribution of electrons that is injected into the 2DEG extends to the voltage contacts. This means that the equilibration length of the 2D electrons is at least of the order of 100 μm. For currents far beyond breakdown and for voltage contacts that are further from the electron-injection contact, the breakdown characteristics are harder to understand. The variation of the electron density of the 2DEG due to the large Hall voltage has to be taken into account as well as the equilibration induced by additional voltage contacts.

  16. Interaction and multiband effects in the intrinsic spin-Hall effect of an interacting multiorbital metal

    NASA Astrophysics Data System (ADS)

    Arakawa, Naoya

    The spin-Hall effect is a spin-current version of the usual-Hall effect, and its potential for application may be great. For the efficient application utilizing the spin-Hall effect, an understanding of interaction effects may be helpful because the interaction effects sometimes become remarkable in transport phenomena (e.g., fractional-quantum-Hall effect). However, a lot of theoretical studies neglected the interaction effects, and the interaction effects in the spin-Hall effect had been little understood. To improve this situation, I developed a general formalism for the intrinsic spin-Hall effect including the interaction effects and multiband effects by using the linear-response theory with approximations appropriate for an interacting multiorbital metal (see arXiv:1510.03988). In this talk, I explain how the electron-electron interaction modifies the spin-Hall conductivity and show several new and remarkable interactions effects, new mechanisms of the damping dependence and a crossover of the damping dependence in a clean system and a temperature-dependent correction due to the spin-Coulomb drag. I also show guidelines useful for general formulations of other transport phenomena including the interaction effects and multiband effects.

  17. Development and Characterization of High-Efficiency, High-Specific Impulse Xenon Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Hofer, Richard R.; Jacobson, David (Technical Monitor)

    2004-01-01

    This dissertation presents research aimed at extending the efficient operation of 1600 s specific impulse Hall thruster technology to the 2000 to 3000 s range. Motivated by previous industry efforts and mission studies, the aim of this research was to develop and characterize xenon Hall thrusters capable of both high-specific impulse and high-efficiency operation. During the development phase, the laboratory-model NASA 173M Hall thrusters were designed and their performance and plasma characteristics were evaluated. Experiments with the NASA-173M version 1 (v1) validated the plasma lens magnetic field design. Experiments with the NASA 173M version 2 (v2) showed there was a minimum current density and optimum magnetic field topography at which efficiency monotonically increased with voltage. Comparison of the thrusters showed that efficiency can be optimized for specific impulse by varying the plasma lens. During the characterization phase, additional plasma properties of the NASA 173Mv2 were measured and a performance model was derived. Results from the model and experimental data showed how efficient operation at high-specific impulse was enabled through regulation of the electron current with the magnetic field. The electron Hall parameter was approximately constant with voltage, which confirmed efficient operation can be realized only over a limited range of Hall parameters.

  18. Interaction driven quantum Hall effect in artificially stacked graphene bilayers.

    PubMed

    Iqbal, Muhammad Zahir; Iqbal, Muhammad Waqas; Siddique, Salma; Khan, Muhammad Farooq; Ramay, Shahid Mahmood; Nam, Jungtae; Kim, Keun Soo; Eom, Jonghwa

    2016-01-01

    The honeycomb lattice structure of graphene gives rise to its exceptional electronic properties of linear dispersion relation and its chiral nature of charge carriers. The exceptional electronic properties of graphene stem from linear dispersion relation and chiral nature of charge carries, originating from its honeycomb lattice structure. Here, we address the quantum Hall effect in artificially stacked graphene bilayers and single layer graphene grown by chemical vapor deposition. The quantum Hall plateaus started to appear more than 3 T and became clearer at higher magnetic fields up to 9 T. Shubnikov-de Hass oscillations were manifestly observed in graphene bilayers texture. These unusual plateaus may have been due to the layers interaction in artificially stacked graphene bilayers. Our study initiates the understanding of interactions between artificially stacked graphene layers. PMID:27098387

  19. Fractionally charged skyrmions in fractional quantum Hall effect.

    PubMed

    Balram, Ajit C; Wurstbauer, U; Wójs, A; Pinczuk, A; Jain, J K

    2015-01-01

    The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeeman energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region. PMID:26608906

  20. Interaction driven quantum Hall effect in artificially stacked graphene bilayers

    PubMed Central

    Iqbal, Muhammad Zahir; Iqbal, Muhammad Waqas; Siddique, Salma; Khan, Muhammad Farooq; Ramay, Shahid Mahmood; Nam, Jungtae; Kim, Keun Soo; Eom, Jonghwa

    2016-01-01

    The honeycomb lattice structure of graphene gives rise to its exceptional electronic properties of linear dispersion relation and its chiral nature of charge carriers. The exceptional electronic properties of graphene stem from linear dispersion relation and chiral nature of charge carries, originating from its honeycomb lattice structure. Here, we address the quantum Hall effect in artificially stacked graphene bilayers and single layer graphene grown by chemical vapor deposition. The quantum Hall plateaus started to appear more than 3 T and became clearer at higher magnetic fields up to 9 T. Shubnikov-de Hass oscillations were manifestly observed in graphene bilayers texture. These unusual plateaus may have been due to the layers interaction in artificially stacked graphene bilayers. Our study initiates the understanding of interactions between artificially stacked graphene layers. PMID:27098387

  1. Effects of enhanced cathode electron emission on Hall thruster operation

    SciTech Connect

    Raitses, Y.; Smirnov, A.; Fisch, N. J.

    2009-05-15

    Interesting discharge phenomena are observed that have to do with the interaction between the magnetized Hall thruster plasma and the neutralizing cathode. The steady-state parameters of a highly ionized thruster discharge are strongly influenced by the electron supply from the cathode. The enhancement of the cathode electron emission above its self-sustained level affects the discharge current and leads to a dramatic reduction in the plasma divergence and a suppression of large amplitude, low frequency discharge current oscillations usually related to an ionization instability. These effects correlate strongly with the reduction in the voltage drop in the region with the fringing magnetic field between the thruster channel and the cathode. The measured changes in the plasma properties suggest that the electron emission affects the electron cross-field transport in the thruster discharge. These trends are generalized for Hall thrusters of various configurations.

  2. Effects of Enhanced Eathode Electron Emission on Hall Thruster Operation

    SciTech Connect

    Y. Raitses, A. Smirnov and N. J. Fisch

    2009-04-24

    Interesting discharge phenomena are observed that have to do with the interaction between the magnetized Hall thruster plasma and the neutralizing cathode. The steadystate parameters of a highly ionized thruster discharge are strongly influenced by the electron supply from the cathode. The enhancement of the cathode electron emission above its self-sustained level affects the discharge current and leads to a dramatic reduction of the plasma divergence and a suppression of large amplitude, low frequency discharge current oscillations usually related to an ionization instability. These effects correlate strongly with the reduction of the voltage drop in the region with the fringing magnetic field between the thruster channel and the cathode. The measured changes of the plasma properties suggest that the electron emission affects the electron cross-field transport in the thruster discharge. These trends are generalized for Hall thrusters of various configurations.

  3. Influences of a topological defect on the spin Hall effect

    NASA Astrophysics Data System (ADS)

    Wang, Jian-hua; Ma, Kai; Li, Kang

    2013-03-01

    We study the influence of topological defects on the spin current as well as the spin Hall effect. We find that the nontrivial deformation of the space time due to topological defects can generate a spin-dependent current which then induces an imbalanced accumulation of spin states on the edges of the sample. The corresponding spin Hall conductivity has also been calculated for the topological defect of a cosmic string. Compared to the ordinary value, a correction which is linear with mass density of the cosmic string appears. Our approach to the dynamics of nonrelativistic spinors in the presence of a topological defect is based on the Foldy-Wouthuysen transformation. The spin current is obtained by using the extended Drude model, which is independent of the scattering mechanism.

  4. Hall effect in the extremely large magnetoresistance semimetal WTe2

    NASA Astrophysics Data System (ADS)

    Luo, Yongkang; Li, H.; Dai, Y. M.; Miao, H.; Shi, Y. G.; Ding, H.; Taylor, A. J.; Yarotski, D. A.; Prasankumar, R. P.; Thompson, J. D.

    2015-11-01

    We systematically measured the Hall effect in the extremely large magnetoresistance semimetal WTe2. By carefully fitting the Hall resistivity to a two-band model, the temperature dependencies of the carrier density and mobility for both electron- and hole-type carriers were determined. We observed a sudden increase in the hole density below ˜160 K, which is likely associated with the temperature-induced Lifshitz transition reported by a previous photoemission study. In addition, a more pronounced reduction in electron density occurs below 50 K, giving rise to comparable electron and hole densities at low temperature. Our observations indicate a possible electronic structure change below 50 K, which might be the direct driving force of the electron-hole "compensation" and the extremely large magnetoresistance as well. Numerical simulations imply that this material is unlikely to be a perfectly compensated system.

  5. Fractionally charged skyrmions in fractional quantum Hall effect

    SciTech Connect

    Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; Pinczuk, A.; Jain, J. K.

    2015-11-26

    The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeeman energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region.

  6. Fractionally charged skyrmions in fractional quantum Hall effect

    PubMed Central

    Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; Pinczuk, A.; Jain, J. K.

    2015-01-01

    The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeeman energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region. PMID:26608906

  7. Scaling of the anomalous Hall effect in lower conductivity regimes

    NASA Astrophysics Data System (ADS)

    Karel, J.; Bordel, C.; Bouma, D. S.; de Lorimier-Farmer, A.; Lee, H. J.; Hellman, F.

    2016-06-01

    The scaling of the anomalous Hall effect (AHE) was investigated using amorphous and epitaxial Fe x Si1‑x (0.43 < x < 0.71) magnetic thin films by varying the longitudinal conductivity (σxx) using two different approaches: modifying the carrier mean free path (l) with chemical or structural disorder while holding the carrier concentration (nh) constant or varying n h and keeping l constant. The anomalous Hall conductivity (σxy) , when suitably normalized by magnetization and n h , is shown to be independent of σxx for all samples. This observation suggests a primary dependence on an intrinsic mechanism, unsurprising for the epitaxial high conductivity films where the Berry phase curvature mechanism is expected, but remarkable for the amorphous samples. That the amorphous samples show this scaling indicates a local atomic level description of a Berry phase, resulting in an intrinsic AHE in a system that lacks lattice periodicity.

  8. Hall effect analysis in irradiated silicon samples with different resistivities

    SciTech Connect

    Borchi, E.; Bruzzi, M.; Pirollo, S. |; Dezillie, B.; Li, Z.; Lazanu, S.

    1999-08-01

    The changes induced by neutron irradiation in n- and p-type silicon samples with starting resistivities from 10 {Omega}-cm up to 30 K{Omega}-cm, grown using different techniques, as Float-Zone (FZ), Czochralski (CZ) and epitaxial, have been analyzed by Van der Pauw and Hall effect measurements. Increasing the fluence, each set of samples evolved toward a quasi-intrinsic p-type material. This behavior has been explained in the frame of a two-level model, that considers the introduction during irradiation of mainly two defects. A deep acceptor and a deep donor, probably related to the divacancy and to the C{sub i}O{sub i} complex, are placed in the upper and lower half of the forbidden gap, respectively. This simple model explains quantitatively the data on resistivity and Hall coefficient of each set of samples up to the fluence of {approx} 10{sup 14} n/cm{sup 2}.

  9. Interaction driven quantum Hall effect in artificially stacked graphene bilayers

    NASA Astrophysics Data System (ADS)

    Iqbal, Muhammad Zahir; Iqbal, Muhammad Waqas; Siddique, Salma; Khan, Muhammad Farooq; Ramay, Shahid Mahmood; Nam, Jungtae; Kim, Keun Soo; Eom, Jonghwa

    2016-04-01

    The honeycomb lattice structure of graphene gives rise to its exceptional electronic properties of linear dispersion relation and its chiral nature of charge carriers. The exceptional electronic properties of graphene stem from linear dispersion relation and chiral nature of charge carries, originating from its honeycomb lattice structure. Here, we address the quantum Hall effect in artificially stacked graphene bilayers and single layer graphene grown by chemical vapor deposition. The quantum Hall plateaus started to appear more than 3 T and became clearer at higher magnetic fields up to 9 T. Shubnikov-de Hass oscillations were manifestly observed in graphene bilayers texture. These unusual plateaus may have been due to the layers interaction in artificially stacked graphene bilayers. Our study initiates the understanding of interactions between artificially stacked graphene layers.

  10. Fractionally charged skyrmions in fractional quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; Pinczuk, A.; Jain, J. K.

    2015-11-01

    The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeeman energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region.

  11. Spin pumping and inverse spin Hall effect in germanium

    NASA Astrophysics Data System (ADS)

    Rojas Sanchez, Juan-Carlos; Vergnaud, C.; Vila, L.; Attane, J.-P.; Marty, A.; Jaffres, Henri; Jamet, Matthieu; George, Jean-Marie

    2014-03-01

    We have measured the inverse spin Hall effect (ISHE) in n-Ge at room temperature. The spin current in germanium was generated by spin pumping from a CoFeB/MgO magnetic tunnel junction in order to prevent the impedance mismatch issue. A clear electromotive force was measured in Ge at the ferromagnetic resonance of CFB. The same study was then carried out on several test samples, in particular, we have investigated the influence of the MgO tunnel barrier and sample annealing on the ISHE signal. The reference CFB/MgO bilayer grown on SiO2 exhibits a clear electromotive force due to anisotropic magnetoresistance and anomalous Hall effect, which is dominated by an asymmetric contribution with respect to the resonance field. We also found that the MgO tunnel barrier is essential to observe ISHE in Ge and that sample annealing systematically leads to an increase of the signal. We propose a theoretical model based on the presence of localized states at the interface to account for these observations. Finally, all of our results are fully consistent with the observation of ISHE in heavily doped n-Ge with a spin Hall angle around 0.001. JCRS acknowledges the Eurotalent CEA program.

  12. Effects of wall electrodes on Hall effect thruster plasma

    SciTech Connect

    Langendorf, S. Walker, M.; Xu, K.

    2015-02-15

    This paper investigates the physical mechanisms that cause beneficial and detrimental performance effect observed to date in Hall effect thrusters with wall electrodes. It is determined that the wall electrode sheath can reduce ion losses to the wall if positioned near the anode (outside the dense region of the plasma) such that an ion-repelling sheath is able to form. The ability of the wall electrode to form an ion-repelling sheath is inversely proportional to the current drawn—if the wall electrode becomes the dominant sink for the thruster discharge current, increases in wall electrode bias result in increased local plasma potential rather than an ion-repelling sheath. A single-fluid electron flow model gives results that mimic the observed potential structures and the current-sharing fractions between the anode and wall electrodes, showing that potential gradients in the presheath and bulk plasma come at the expense of current draw to the wall electrodes. Secondary electron emission from the wall electrodes (or lack thereof) is inferred to have a larger effect if the electrodes are positioned near the exit plane than if positioned near the anode, due to the difference in energy deposition from the plasma.

  13. Effects of wall electrodes on Hall effect thruster plasma

    NASA Astrophysics Data System (ADS)

    Langendorf, S.; Xu, K.; Walker, M.

    2015-02-01

    This paper investigates the physical mechanisms that cause beneficial and detrimental performance effect observed to date in Hall effect thrusters with wall electrodes. It is determined that the wall electrode sheath can reduce ion losses to the wall if positioned near the anode (outside the dense region of the plasma) such that an ion-repelling sheath is able to form. The ability of the wall electrode to form an ion-repelling sheath is inversely proportional to the current drawn—if the wall electrode becomes the dominant sink for the thruster discharge current, increases in wall electrode bias result in increased local plasma potential rather than an ion-repelling sheath. A single-fluid electron flow model gives results that mimic the observed potential structures and the current-sharing fractions between the anode and wall electrodes, showing that potential gradients in the presheath and bulk plasma come at the expense of current draw to the wall electrodes. Secondary electron emission from the wall electrodes (or lack thereof) is inferred to have a larger effect if the electrodes are positioned near the exit plane than if positioned near the anode, due to the difference in energy deposition from the plasma.

  14. Diagnostic Setup for Characterization of Near-Anode Processes in Hall Thrusters

    SciTech Connect

    L. Dorf; Y. Raitses; N.J. Fisch

    2003-09-08

    A diagnostic setup for characterization of near-anode processes in Hall-current plasma thrusters consisting of biased and emissive electrostatic probes, high-precision positioning system and low-noise electronic circuitry was developed and tested. Experimental results show that radial probe insertion does not cause perturbations to the discharge and therefore can be used for accurate near-anode measurements.

  15. Diagnostic Setup for Characterization of Near-Anode Processes in Hall Thrusters

    SciTech Connect

    L. Dorf; Y. Raitses; N. J. Fisch

    2003-05-29

    A diagnostic setup for characterization of the near-anode processes in Hall thrusters was designed and assembled. Experimental results with a single floating probe show that radial probe insertion does not cause perturbations to the discharge and therefore can be used for near-anode measurements.

  16. High-Resolution ac Measurements of the Hall Effect in Organic Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Yi, H. T.; Podzorov, V.

    2016-03-01

    We describe a high resolving power technique for Hall-effect measurements, efficient in determining Hall mobility and carrier density in organic field-effect transistors and other low-mobility systems. We utilize a small low-frequency ac magnetic field (Brms<0.25 T ) and a phase-sensitive (lock-in) detection of Hall voltage, with the necessary corrections for Faraday induction. This method significantly enhances the signal-to-noise ratio and eliminates the necessity of using high magnetic fields in Hall-effect studies. With the help of this method, we are able to obtain the Hall mobility and carrier density in organic transistors with a mobility as low as μ ˜0.3 cm2 V-1 s-1 by using a compact desktop apparatus and low magnetic fields. We find a good agreement between Hall-effect and electric-field-effect measurements, indicating that, contrary to the common belief, certain organic semiconductors with mobilities below 1 cm2 V-1 s-1 can still exhibit a fully developed, band-semiconductor-like Hall effect, with the Hall mobility and carrier density matching those obtained in longitudinal transistor measurements. This suggests that, even when μ <1 cm2 V-1 s-1 , charges in organic semiconductors can still behave as delocalized coherent carriers. This technique paves the way to ubiquitous Hall-effect studies in a wide range of low-mobility materials and devices, where it is typically very difficult to resolve the Hall effect even in very high dc magnetic fields.

  17. Hall effect in a strong magnetic field: Direct comparisons of compressible magnetohydrodynamics and the reduced Hall magnetohydrodynamic equations

    SciTech Connect

    Martin, L. N.; Dmitruk, P.; Gomez, D. O.

    2010-11-15

    In this work we numerically test a model of Hall magnetohydrodynamics in the presence of a strong mean magnetic field: the reduced Hall magnetohydrodynamic model (RHMHD) derived by [Gomez et al., Phys. Plasmas 15, 102303 (2008)] with the addition of weak compressible effects. The main advantage of this model lies in the reduction of computational cost. Nevertheless, up until now the degree of agreement with the original Hall MHD system and the range of validity in a regime of turbulence were not established. In this work direct numerical simulations of three-dimensional Hall MHD turbulence in the presence of a strong mean magnetic field are compared with simulations of the weak compressible RHMHD model. The results show that the degree of agreement is very high (when the different assumptions of RHMHD, such as spectral anisotropy, are satisfied). Nevertheless, when the initial conditions are isotropic but the mean magnetic field is maintained strong, the results differ at the beginning but asymptotically reach a good agreement at relatively short times. We also found evidence that the compressibility still plays a role in the dynamics of these systems, and the weak compressible RHMHD model is able to capture these effects. In conclusion the weak compressible RHMHD model is a valid approximation of the Hall MHD turbulence in the relevant physical context.

  18. Application of the quantum Hall effect to resistance metrology

    NASA Astrophysics Data System (ADS)

    Poirier, Wilfrid; Schopfer, Félicien; Guignard, Jérémie; Thévenot, Olivier; Gournay, Pierre

    2011-05-01

    The quantum Hall effect (QHE) discovery has revolutionized metrology by providing with a representation of the unit of resistance, R, that can be reproduced within a relative uncertainty of one part in 10 9 and is theoretically only linked to Planck's constant h and the electron charge e. This breakthrough also results from the development of resistance comparison bridges using cryogenic current comparator (CCC). The QHE experimental know-how now allows the realization of perfectly quantized Quantum Hall Array Resistance Standards (QHARS) by combining a large number of single Hall bars. In the context of an evolution of the Système International (SI) of units by fixing some fundamental constants of physics, the determination of the von Klitzing constant R through the use of the so-called Thompson-Lampard calculable capacitor and the realization of refined universality tests of the QHE are of prime importance. Finally, the fascinating graphene material might be a new turning point in resistance metrology.

  19. The Microwave Hall Effect Measured Using a Waveguide Tee

    NASA Astrophysics Data System (ADS)

    Johnson, William; Coppock, Joyce; Anderson, J. Robert

    We describe a simple microwave apparatus to measure the Hall effect in semiconductor wafers. This technique does not require contacts on the sample or the use of a resonant cavity. Our method consists of placing a semiconductor wafer into a slot in an X-band (8 - 12 GHz) waveguide series tee, injecting microwave power into the two opposite arms of the tee, and measuring the microwave output at the third arm. A magnetic field is applied perpendicular to the wafer and produces a microwave Hall signal that is linear in the magnetic field and which reverses phase when the magnetic field is reversed. The microwave Hall signal is proportional to the semiconductor mobility, which we compare for calibration purposes with d. c. mobility measurements obtained using the van der Pauw method. We obtain the resistivity by measuring the microwave reflection coefficient of the sample. We determine a calibration constant as a function of the ratio of thickness to skin depth for two and three inch silicon and germanium samples doped with boron or phosphorus. The measured mobilities ranged from 270 to 3000 cm2 / (Vsec)

  20. The microwave Hall effect measured using a waveguide tee

    NASA Astrophysics Data System (ADS)

    Coppock, J. E.; Anderson, J. R.; Johnson, W. B.

    2016-03-01

    This paper describes a simple microwave apparatus to measure the Hall effect in semiconductor wafers. The advantage of this technique is that it does not require contacts on the sample or the use of a resonant cavity. Our method consists of placing the semiconductor wafer into a slot cut in an X-band (8-12 GHz) waveguide series tee, injecting microwave power into the two opposite arms of the tee, and measuring the microwave output at the third arm. A magnetic field applied perpendicular to the wafer gives a microwave Hall signal that is linear in the magnetic field and which reverses phase when the magnetic field is reversed. The microwave Hall signal is proportional to the semiconductor mobility, which we compare for calibration purposes with d.c. mobility measurements obtained using the van der Pauw method. We obtain the resistivity by measuring the microwave reflection coefficient of the sample. This paper presents data for silicon and germanium samples doped with boron or phosphorus. The measured mobilities ranged from 270 to 3000 cm2/(V s).

  1. Quantum anomalous Hall effect in stable dumbbell stanene

    NASA Astrophysics Data System (ADS)

    Zhang, Huisheng; Zhang, Jiayong; Zhao, Bao; Zhou, Tong; Yang, Zhongqin

    2016-02-01

    Topological property of the dumbbell (DB) stanene, more stable than the stanene with a honeycomb lattice, is investigated by using ab initio methods. The magnetic DB stanene demonstrates an exotic quantum anomalous Hall (QAH) effect due to inversion of the Sn spin-up px,y and spin-down pz states. The QAH gap is found to be opened at Γ point rather than the usual K and K' points, beneficial to observe the effect in experiments. When a 3% tensile strain is applied, a large nontrivial gap (˜50 meV) is achieved. Our results provide another lighthouse for realizing QAH effects in two-dimensional systems.

  2. Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures

    SciTech Connect

    Xiao, Di; Zhu, Wenguang; Ran, Ying; Nagaosa, Naoto; Okamoto, Satoshi

    2011-01-01

    Topological insulators (TIs) are characterized by a non-trivial band topology driven by the spin-orbit coupling. To fully explore the fundamental science and application of TIs, material realization is indispensable. Here we predict, based on tight-binding modeling and first-principles calculations, that bilayers of perovskite-type transition-metal oxides grown along the [111] crystallographic axis are potential candidates for two-dimensional TIs. The topological band structure of these materials can be fine-tuned by changing dopant ions, substrates and external gate voltages. We predict that LaAuO$_3$ bilayers have a topologically non-trivial energy gap of about 0.15~eV, which is sufficiently large to realize the quantum spin Hall effect at room temperature. Intriguing phenomena, such as fractional quantum Hall effect, associated with the nearly flat topologically non-trivial bands found in $e_g$ systems are also discussed.

  3. Non-Contact Thermal Characterization of NASA's HERMeS Hall Thruster

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Kamhawi, Hani; Myers, James L.; Yim, John T.; Neff, Gregory

    2015-01-01

    The thermal characterization test of NASA's 12.5-kW Hall Effect Rocket with Magnetic Shielding has been completed. This thruster was developed to support a number of potential Solar Electric Propulsion Technology Demonstration Mission concepts, including the Asteroid Redirect Robotic Mission concept. As a part of the preparation for this characterization test, an infrared-based, non-contact thermal imaging system was developed to measure the temperature of various thruster surfaces that are exposed to high voltage or plasma. An in-situ calibration array was incorporated into the setup to improve the accuracy of the temperature measurement. The key design parameters for the calibration array were determined in a separate pilot test. The raw data from the characterization test was analyzed though further work is needed to obtain accurate anode temperatures. Examination of the front pole and discharge channel temperatures showed that the thruster temperature was driven more by discharge voltage than by discharge power. Operation at lower discharge voltages also yielded more uniform temperature distributions than at higher discharge voltages. When operating at high discharge voltage, increasing the magnetic field strength appeared to have made the thermal loading azimuthally more uniform.

  4. Chirality-Dependent Hall Effect in Weyl Semimetals.

    PubMed

    Yang, Shengyuan A; Pan, Hui; Zhang, Fan

    2015-10-01

    We generalize a semiclassical theory and use the argument of angular momentum conservation to examine the ballistic transport in lightly doped Weyl semimetals, taking into account various phase-space Berry curvatures. We predict universal transverse shifts of the wave-packet center in transmission and reflection, perpendicular to the direction in which the Fermi energy or velocities change adiabatically. The anomalous shifts are opposite for electrons with different chirality, and they can be made imbalanced by breaking inversion symmetry. We discuss how to utilize local gates, strain effects, and circularly polarized lights to generate and probe such a chirality-dependent Hall effect. PMID:26550743

  5. Chirality-dependent Hall Effect in Weyl Semimetals

    NASA Astrophysics Data System (ADS)

    Yang, Shengyuan; Pan, Hui; Zhang, Fan

    We generalize a semiclassical theory and use the argument of angular momentum conservation to examine the ballistic transport in lightly-doped Weyl semimetals, taking into account various phase-space Berry curvatures. We predict universal transverse shifts of the wave-packet center in transmission and reflection, perpendicular to the direction in which the Fermi energy or velocities change adiabatically. The anomalous shifts are opposite for electrons with different chirality, and can be made imbalanced by breaking inversion symmetry. We discuss how to utilize local gates, strain effects, and circularly polarized lights to generate and probe such a chirality-dependent Hall effect. Journal Ref: Phys. Rev. Lett. 115 , 156603 (2015).

  6. Orbitronics: the Intrinsic Orbital Hall Effect in p-Doped Silicon

    SciTech Connect

    Bernevig, B.Andrei; Hughes, Taylor L.; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-01-15

    The spin Hall effect depends crucially on the intrinsic spin-orbit coupling of the energy band. Because of the smaller spin-orbit coupling in silicon, the spin Hall effect is expected to be much reduced. We show that the electric field in p-doped silicon can induce a dissipationless orbital current in a fashion reminiscent of the spin Hall effect. The vertex correction due to impurity scattering vanishes and the effect is therefore robust against disorder. The orbital Hall effect can lead to the accumulation of local orbital momentum at the edge of the sample, and can be detected by the Kerr effect.

  7. Resonant spin Hall effect in two dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Shen, Shun-Qing

    2005-03-01

    Remarkable phenomena have been observed in 2DEG over last two decades, most notably, the discovery of integer and fractional quantum Hall effect. The study of spin transport provides a good opportunity to explore spin physics in two-dimensional electron gas (2DEG) with spin-orbit coupling and other interaction. It is already known that the spin-orbit coupling leads to a zero-field spin splitting, and competes with the Zeeman spin splitting if the system is subjected to a magnetic field perpendicular to the plane of 2DEG. The result can be detected as beating of the Shubnikov-de Haas oscillation. Very recently the speaker and his collaborators studied transport properties of a two-dimensional electron system with Rashba spin-orbit coupling in a perpendicular magnetic field. The spin-orbit coupling competes with the Zeeman splitting to generate additional degeneracies between different Landau levels at certain magnetic fields. It is predicted theoretically that this degeneracy, if occurring at the Fermi level, gives rise to a resonant spin Hall conductance, whose height is divergent as 1/T and whose weight is divergent as -lnT at low temperatures. The charge Hall conductance changes by 2e^2/h instead of e^2/h as the magnetic field changes through the resonant point. The speaker will address the resonance condition, symmetries in the spin-orbit coupling, the singularity of magnetic susceptibility, nonlinear electric field effect, the edge effect and the disorder effect due to impurities. This work was supported by the Research Grants Council of Hong Kong under Grant No.: HKU 7088/01P. *S. Q. Shen, M. Ma, X. C. Xie, and F. C. Zhang, Phys. Rev. Lett. 92, 256603 (2004) *S. Q. Shen, Y. J. Bao, M. Ma, X. C. Xie, and F. C. Zhang, cond-mat/0410169

  8. Quantum anomalous Hall effect in magnetic topological insulators

    SciTech Connect

    Wang, Jing; Lian, Biao; Zhang, Shou -Cheng

    2015-08-25

    The search for topologically non-trivial states of matter has become an important goal for condensed matter physics. Here, we give a theoretical introduction to the quantum anomalous Hall (QAH) effect based on magnetic topological insulators in two-dimensions (2D) and three-dimensions (3D). In 2D topological insulators, magnetic order breaks the symmetry between the counter-propagating helical edge states, and as a result, the quantum spin Hall effect can evolve into the QAH effect. In 3D, magnetic order opens up a gap for the topological surface states, and chiral edge state has been predicted to exist on the magnetic domain walls. We present the phase diagram in thin films of a magnetic topological insulator and review the basic mechanism of ferromagnetic order in magnetically doped topological insulators. We also review the recent experimental observation of the QAH effect. Furthermore, we discuss more recent theoretical work on the coexistence of the helical and chiral edge states, multi-channel chiral edge states, the theory of the plateau transition, and the thickness dependence in the QAH effect.

  9. Quantum anomalous Hall effect in magnetic topological insulators

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Lian, Biao; Zhang, Shou-Cheng

    2015-12-01

    The search for topologically non-trivial states of matter has become an important goal for condensed matter physics. Here, we give a theoretical introduction to the quantum anomalous Hall (QAH) effect based on magnetic topological insulators in two-dimensions (2D) and three-dimensions (3D). In 2D topological insulators, magnetic order breaks the symmetry between the counter-propagating helical edge states, and as a result, the quantum spin Hall effect can evolve into the QAH effect. In 3D, magnetic order opens up a gap for the topological surface states, and chiral edge state has been predicted to exist on the magnetic domain walls. We present the phase diagram in thin films of a magnetic topological insulator and review the basic mechanism of ferromagnetic order in magnetically doped topological insulators. We also review the recent experimental observation of the QAH effect. We discuss more recent theoretical work on the coexistence of the helical and chiral edge states, multi-channel chiral edge states, the theory of the plateau transition, and the thickness dependence in the QAH effect.

  10. Quantum anomalous Hall effect in magnetic topological insulators

    DOE PAGESBeta

    Wang, Jing; Lian, Biao; Zhang, Shou -Cheng

    2015-08-25

    The search for topologically non-trivial states of matter has become an important goal for condensed matter physics. Here, we give a theoretical introduction to the quantum anomalous Hall (QAH) effect based on magnetic topological insulators in two-dimensions (2D) and three-dimensions (3D). In 2D topological insulators, magnetic order breaks the symmetry between the counter-propagating helical edge states, and as a result, the quantum spin Hall effect can evolve into the QAH effect. In 3D, magnetic order opens up a gap for the topological surface states, and chiral edge state has been predicted to exist on the magnetic domain walls. We presentmore » the phase diagram in thin films of a magnetic topological insulator and review the basic mechanism of ferromagnetic order in magnetically doped topological insulators. We also review the recent experimental observation of the QAH effect. Furthermore, we discuss more recent theoretical work on the coexistence of the helical and chiral edge states, multi-channel chiral edge states, the theory of the plateau transition, and the thickness dependence in the QAH effect.« less

  11. Anomalous Hall effect in the prospective spintronic material Eu1-x Gd x O integrated with Si.

    PubMed

    Parfenov, Oleg E; Averyanov, Dmitry V; Tokmachev, Andrey M; Taldenkov, Alexander N; Storchak, Vyacheslav G

    2016-06-01

    Remarkable properties of EuO make it a versatile spintronic material. Despite numerous experimental and theoretical studies of EuO, little is known about the anomalous Hall effect in this ferromagnet. So far, the effect has not been observed in bulk EuO, though has been detected in EuO films with uncontrolled distribution of defects. In the present work doping is taken under control: epitaxial films of Gd-doped EuO are synthesized integrated with Si using molecular beam epitaxy and characterized with x-ray diffraction and magnetization measurements. Nanoscale transport studies reveal the anomalous Hall effect in the ferromagnetic region for samples with different Gd concentration. The saturated anomalous Hall effect conductivity value of 5.0 S·cm(-1) in Gd-doped EuO is more than an order of magnitude larger than those reported so far for Eu chalcogenides doped with anion vacancies. PMID:27165844

  12. Anomalous Hall effect in the prospective spintronic material Eu1‑x Gd x O integrated with Si

    NASA Astrophysics Data System (ADS)

    Parfenov, Oleg E.; Averyanov, Dmitry V.; Tokmachev, Andrey M.; Taldenkov, Alexander N.; Storchak, Vyacheslav G.

    2016-06-01

    Remarkable properties of EuO make it a versatile spintronic material. Despite numerous experimental and theoretical studies of EuO, little is known about the anomalous Hall effect in this ferromagnet. So far, the effect has not been observed in bulk EuO, though has been detected in EuO films with uncontrolled distribution of defects. In the present work doping is taken under control: epitaxial films of Gd-doped EuO are synthesized integrated with Si using molecular beam epitaxy and characterized with x-ray diffraction and magnetization measurements. Nanoscale transport studies reveal the anomalous Hall effect in the ferromagnetic region for samples with different Gd concentration. The saturated anomalous Hall effect conductivity value of 5.0 S·cm‑1 in Gd-doped EuO is more than an order of magnitude larger than those reported so far for Eu chalcogenides doped with anion vacancies.

  13. Vortex equations governing the fractional quantum Hall effect

    SciTech Connect

    Medina, Luciano

    2015-09-15

    An existence theory is established for a coupled non-linear elliptic system, known as “vortex equations,” describing the fractional quantum Hall effect in 2-dimensional double-layered electron systems. Via variational methods, we prove the existence and uniqueness of multiple vortices over a doubly periodic domain and the full plane. In the doubly periodic situation, explicit sufficient and necessary conditions are obtained that relate the size of the domain and the vortex numbers. For the full plane case, existence is established for all finite-energy solutions and exponential decay estimates are proved. Quantization phenomena of the magnetic flux are found in both cases.

  14. Four-Dimensional Quantum Hall Effect with Ultracold Atoms

    NASA Astrophysics Data System (ADS)

    Price, H. M.; Zilberberg, O.; Ozawa, T.; Carusotto, I.; Goldman, N.

    2015-11-01

    We propose a realistic scheme to detect the 4D quantum Hall effect using ultracold atoms. Based on contemporary technology, motion along a synthetic fourth dimension can be accomplished through controlled transitions between internal states of atoms arranged in a 3D optical lattice. From a semiclassical analysis, we identify the linear and nonlinear quantized current responses of our 4D model, relating these to the topology of the Bloch bands. We then propose experimental protocols, based on current or center-of-mass-drift measurements, to extract the topological second Chern number. Our proposal sets the stage for the exploration of novel topological phases in higher dimensions.

  15. Quantum Hall effect in supersymmetric Chern-Simons theories

    NASA Astrophysics Data System (ADS)

    Tong, David; Turner, Carl

    2015-12-01

    We introduce a supersymmetric Chern-Simons theory whose low energy physics is that of the fractional quantum Hall effect. The supersymmetry allows us to solve the theory analytically. We quantize the vortices and, by relating their dynamics to a matrix model, show that their ground state wave function is in the same universality class as the Laughlin state. We further construct coherent state representations of the excitations of a finite number of vortices. These are quasiholes. By an explicit computation of the Berry phase, without resorting to a plasma analogy, we show that these excitations have fractional charge and spin.

  16. On the magnetic mirror effect in Hall thrusters

    SciTech Connect

    Keidar, M.; Boyd, I.D.

    2005-09-19

    The magnetic mirror effect is studied in the channel of a Hall thruster. It is shown that gradients in magnetic field affect the presheath structure and electric potential distribution. The length of the radial presheath region decreases in the presence of a magnetic field gradient. The two-dimensional potential shape can be affected by proper choice of the magnetic mirror ratio. In particular, it is possible to obtain a concave shape of the potential profile in the channel even in the case of a primarily radial magnetic field. This, in turn, can be used to efficiently control the ion dynamics in the acceleration region.

  17. Redundant speed control for brushless Hall effect motor

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1973-01-01

    A speed control system for a brushless Hall effect device equipped direct current (D.C.) motor is described. Separate windings of the motor are powered by separate speed responsive power sources. A change in speed, upward or downward, because of the failure of a component of one of the power sources results in a corrective signal being generated in the other power source to supply an appropriate power level and polarity to one winding to cause the motor to be corrected in speed.

  18. Anomalous conductivity and secondary electron emission in Hall effect thrusters

    SciTech Connect

    Garrigues, L.; Hagelaar, G. J. M.; Boniface, C.; Boeuf, J. P.

    2006-12-15

    This paper is devoted to the study of the effects of electron-wall interactions on cross magnetic field electron momentum and energy losses in Hall effect thrusters. By coupling a semianalytical model of the wall sheath similar to models used by several authors in this context, with a two-dimensional hybrid simulation of a Hall effect thruster, we find that the cross magnetic field conductivity enhanced by electron-wall collisions and secondary electron emission is not sufficient to explain the conductivity deduced from experiments. Calculated current-voltage curves including electron-wall collisions from a standard sheath model as the sole 'anomalous' conductivity mechanism do not reproduce the measurements, especially at high discharge voltages, and for various wall ceramics. Results also show that a one-dimensional description of electron-wall collisions with a constant radial plasma density profile as used by many authors leads to an overestimation of the contribution of electron-wall interactions to cross magnetic field conductivity.

  19. Krypton charge exchange cross sections for Hall effect thruster models

    SciTech Connect

    Hause, Michael L.; Prince, Benjamin D.; Bemish, Raymond J.

    2013-04-28

    Following discharge from a Hall effect thruster, charge exchange occurs between ions and un-ionized propellant atoms. The low-energy cations produced can disturb operation of onboard instrumentation or the thruster itself. Charge-exchange cross sections for both singly and doubly charged propellant atoms are required to model these interactions. While xenon is the most common propellant currently used in Hall effect thrusters, other propellants are being considered, in particular, krypton. We present here guided-ion beam measurements and comparisons to semiclassical calculations for Kr{sup +} + Kr and Kr{sup 2+} + Kr cross sections. The measurements of symmetric Kr{sup +} + Kr charge exchange are in good agreement with both the calculations including spin-orbit effects and previous measurements. For the symmetric Kr{sup 2+} + Kr reaction, we present cross section measurements for center-of-mass energies between 1 eV and 300 eV, which spans energies not previously examined experimentally. These cross section measurements compare well with a simple one-electron transfer model. Finally, cross sections for the asymmetric Kr{sup 2+} + Kr {yields} Kr{sup +} + Kr{sup +} reaction show an onset near 12 eV, reaching cross sections near constant value of 1.6 A{sup 2} with an exception near 70-80 eV.

  20. Plasma Characterization of Hall Thruster with Active and Passive Segmented Electrodes

    SciTech Connect

    Raitses, Y.; Staack, D.; Fisch, N.J.

    2002-09-04

    Non-emissive electrodes and ceramic spacers placed along the Hall thruster channel are shown to affect the plasma potential distribution and the thruster operation. These effects are associated with physical properties of the electrode material and depend on the electrode configuration, geometry and the magnetic field distribution. An emissive segmented electrode was able to maintain thruster operation by supplying an additional electron flux to sustain the plasma discharge between the anode and cathode neutralizer. These results indicate the possibility of new configurations for segmented electrode Hall thruster.

  1. Spin Hall effects for cold atoms in a light induced gauge potential

    SciTech Connect

    Zhu, Shi-Liang; Fu, Hao; Wu, C.-J.; Zhang, S.-C.; Duan, L.-M. /Michigan U., MCTP

    2010-03-16

    We propose an experimental scheme to observe spin Hall effects with cold atoms in a light induced gauge potential. Under an appropriate configuration, the cold atoms moving in a spatially varying laser field experience an effective spin-dependent gauge potential. Through numerical simulation, we demonstrate that such a gauge field leads to observable spin Hall currents under realistic conditions. We also discuss the quantum spin Hall state in an optical lattice.

  2. 2. QUANTUM HALL EFFECT: The problem of Coulomb interactions in the theory of the quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Baranov, M. A.; Pruisken, A. M. M.; Škoric, B.

    2001-10-01

    We summarize the main ingredients of a unifying theory for abelian quantum Hall states. This theory combines the Finkel'stein approach to localization and interaction effects with the topological concept of an instanton vacuum as well as Chern-Simons gauge theory. We elaborate on the meaning of a new symmetry (Script F invariance) for systems with an infinitely ranged interaction potential. We address the renormalization of the theory and present the main results in terms of a scaling diagram of the conductances.

  3. Strong Spin Hall effect in PtMn

    NASA Astrophysics Data System (ADS)

    Ou, Yongxi; Shi, Shengjie; Ralph, Daniel; Buhrman, Robert

    Recent reports indicate that certain metallic antiferromagnets (AFM) can exhibit a significant spin Hall effect. Here we report a large damping-like spin torque efficiency (ξDL) in PtMn/ferromagnet(FM) bilayer structures, determined from both FM-thickness-dependent spin-torque ferromagnetic resonance (ST-FMR), and harmonic response (HR) measurements of layers with perpendicular magnetic anisotropy (PMA). We find that ξDL can vary from <0.1 to >0.15, depending on the thickness of PtMn, the stacking order of the samples, and the choice of the FM material. The field-like spin torque efficiency (ξFL) is also quite variable, 0<|ξFL|<0.5. The large broadening of the ST-FMR linewidth suggests extra spin attenuation at the AFM/FM interface that is possibly due to intermixing. The PtMn/FeCoB/MgO structures that exhibit PMA have a comparatively low switching current density and an unusual asymmetric switching phase diagram. These results indicate that AFM PtMn has significant potential both for advancing the understanding the physics of the spin Hall effect in Pt alloys, and for enabling new spintronics functionality.

  4. Hall effect in quantum critical charge-cluster glass

    DOE PAGESBeta

    Bozovic, Ivan; Wu, Jie; Bollinger, Anthony T.; Sun, Yujie

    2016-04-04

    Upon doping, cuprates undergo a quantum phase transition from an insulator to a d-wave superconductor. The nature of this transition and of the insulating state is vividly debated. Here, we study the Hall effect in La2-xSrxCuO4 (LSCO) samples doped near the quantum critical point at x ≈ 0.06. Dramatic fluctuations in the Hall resistance appear below TCG ≈ 1.5 K and increase as the sample is cooled down further, signaling quantum critical behavior. We explore the doping dependence of this effect in detail, by studying a combinatorial LSCO library in which the Sr content is varied in extremely fine steps,more » Δx ≈ 0.00008. Furthermore, we observe that quantum charge fluctuations wash out when superconductivity emerges but can be restored when the latter is suppressed by applying a magnetic field, showing that the two instabilities compete for the ground state.« less

  5. Anomalous Hall effect in NiPt thin films

    NASA Astrophysics Data System (ADS)

    Golod, T.; Rydh, A.; Krasnov, V. M.

    2011-08-01

    We have studied the Hall effect in sputtered NixPt1-x thin films with different Ni concentrations. Temperature, magnetic field, and angular dependencies are analyzed and the phase diagram of NiPt thin films is obtained. It is found that films with sub-critical Ni concentration exhibit cluster-glass behavior at low temperatures with a perpendicular magnetic anisotropy below the freezing temperature. Films with super-critical Ni concentration are ferromagnetic with parallel anisotropy. At the critical concentration the state of the film is strongly frustrated. Such films demonstrate canted magnetization with the easy axis rotating as a function of temperature. The magnetism appears via consecutive paramagnetic-cluster glass-ferromagnetic transitions, rather than a single second-order phase transition. But most remarkably, the extraordinary Hall effect changes sign at the critical concentration. We suggest that this is associated with a reconstruction of the electronic structure of the alloy at the normal metal-ferromagnet quantum phase transition.

  6. Spin current swapping and spin hall effect in disordered metals

    NASA Astrophysics Data System (ADS)

    Saidaoui, Hamed; Pauyac, Christian; Manchon, Aurelien

    2015-03-01

    The conversion of charge currents into spin currents via the spin Hall effect has attracted intense experimental and theoretical efforts lately, providing an efficient means to generate electric signals and manipulate the magnetization of single layers. More recently, it was proposed that spin-dependent scattering induced by spin-orbit coupled impurities also produces a so-called spin swapping, i.e. an exchange between the spin angular momentum and linear momentum of itinerant electrons. In this work, we investigate the nature of spin swapping and its interplay with extrinsic spin Hall effect and spin relaxation in finite size normal metals. We use two complementary methods based on non-equilibrium Green's function technique. The first method consists in rigorously deriving the drift-diffusion equation of the spin accumulation in the presence of spin-orbit coupled impurities from quantum kinetics using Wigner expansion. The second method is the real-space tight binding modeling of a finite system in the presence of spin-orbit coupled disorder.

  7. Characterization of Compounds Formed and added on surface of outdoor Seville city hall

    NASA Astrophysics Data System (ADS)

    Robador, Maria Dolores; Alcalde, Manuel; Arroyo, Fatima; Albardonedo, Antonio; Perez-Rodriguez, Jose Luis

    2013-04-01

    The building of the City Hall of Seville constitutes one of the samples more important of the architecture plateresque in Andalusia. For centuries the stone façade has suffered different stages of restoration. These treatments joined the effects of the environmental pollution are responsible for formation and deposition of different chemical compounds on the surface of the monuments. This study will supply information of the environmental effects on the rock, and the treatments that have been performed in previous interventions. The petrographic study showed the presence of a carbonate rock of thin grain constituted essentially by bioclastos and fine sand. The study by scanning electron microscopy showed a compact and continuous cover that suggested a polymer layer. The infrared spectroscopy study confirmed presence of acrylic resin. This resin covered sometimes a black crust constituted by alkanes characterized by mass spectrometry. In addition was found nodules constitutes by C, Ca, Fe, Si and Ca. These compounds appeared with gypsum and were attributed to environment contamination produced by combustion. Materials were observed that cover volumetric lagoons for losses of pieces or were used to fix fragments of stones that were free or displaced. The study by X-ray diffraction and infrared spectroscopy confirmed the presence of gypsum. Mortars constituted by calcite (60%) and inert material (40%; mainly quartz, feldspar and mica) were also characterized. In flute of the stone was found a black crust under which appeared a yellowish layer. The portable X-ray fluorescence and X-ray diffraction confirmed the presence of gypsum produced by environmental contamination. Gypsum was also found in the interior of the stone confirming that this mineral has emigrated due the high porosity of the stone. In some zones of the façade was detected some possible wall paintings. Cross-sections were prepared and studied by optical and scanning electron microscopes. A layer of

  8. Spin polarized tunneling study on spin Hall effect metals and topological insulators

    NASA Astrophysics Data System (ADS)

    Liu, Luqiao

    2015-03-01

    Spin orbit interactions give rise to interesting physics phenomena in solid state materials such as the spin Hall effect (SHE) and topological insulator surface states. Those effects have been extensively studied using electrical detection techniques so far. However, to date most experiments focus only on characterizing electrons near Fermi surface, while the spin-orbit interaction is expected to be dependent on electrons' energies. Here we develop a tunneling spectroscopy technique to measure spin Hall materials and topological insulators under finite bias voltages. By electrically injecting spin polarized current into spin Hall metals or topological insulators through nonmagnetic material/oxide/ferromagnet (FM) junctions and measuring the induced transverse voltage, we are able to quantify the magnitude of the SHE in typical 5d transition metals and the spin momentum locking in topological insulators. The obtained spin Hall angles in Ta, Pt, W and Ir at zero bias are consistent with the results from spin torque experiments, verifying the SHE origin of those earlier observations. At finite biases, the transverse signals provide important information in determining the mechanisms of the observed effects, such as intrinsic vs extrinsic, surface vs bulk. Because of the impedance matching capability of tunnel junctions, the spin polarized tunneling spectroscopy technique is expected to be a powerful tool to measure a wide group of matters including the various newly discovered or proposed topological materials. with Ching-tzu Chen, Y. Zhu, J. Z. Sun, A. Richardella, N. Samarth and I. Garate. The work is partially supported by the DARPA MESO program (N66001-11-1-4110).

  9. Large extrinsic spin Hall effect in Au-Cu alloys by extensive atomic disorder scattering

    NASA Astrophysics Data System (ADS)

    Zou, L. K.; Wang, S. H.; Zhang, Y.; Sun, J. R.; Cai, J. W.; Kang, S. S.

    2016-01-01

    Spin Hall angle, which denotes the conversion efficiency between spin and charge current, is a key parameter in the pure spin current phenomenon. The search for materials with large spin Hall angle is indeed important for scientific interest and potential application in spintronics. Here the large enhanced spin Hall effect (SHE) of Au-Cu alloy is reported by investigating the spin Seebeck effect, spin Hall anomalous Hall effect, and spin Hall magnetoresistance of the Y3F e5O12 (YIG)/A uxC u1 -x hybrid structure over the full composition. At the near equiatomic Au-Cu composition with maximum atomic disorder scattering, the spin Hall angle of the Au-Cu alloy increases by two to three times together with a moderate spin diffusion length in comparison with Au. The longitudinal spin Seebeck voltage and the spin Hall magnetoresistance ratio also increase by two to three times. More importantly, no evidence of anomalous Hall effect is observed in all YIG/Au-Cu samples, in contrast to the cases of other giant SHE materials Pt(Pd), Ta, and W. This behavior makes Au-Cu free from any suspicion of the magnetic proximity effect involved in the hybrid structure, and thus the Au-Cu alloy can be an ideal material for pure spin current study.

  10. Fractionally charged skyrmions in fractional quantum Hall effect

    DOE PAGESBeta

    Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; Pinczuk, A.; Jain, J. K.

    2015-11-26

    The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeemanmore » energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region.« less

  11. Observation of room-temperature skyrmion Hall effect

    NASA Astrophysics Data System (ADS)

    Jiang, W.; Zhang, X.; Upadhyaya, P.; Zhang, W.; Yu, G.; Jungfleisch, M.; Fradin, F.; Pearson, J.; Tserkovnyak, Y.; Wang, K.; Heinonen, O.; Zhou, Y.; Te Velthuis, Suzanne; Hoffmann, A.

    The realization of room-temperature magnetic skyrmions is key to enabling the implementation of skyrmion-based spintronics. In this work, we present the efficient conversion of chiral stripe domains into Néel skyrmions through a geometrical constriction patterned in a Ta/CoFeB/TaOx trilayer film at room temperature. This is enabled by an interfacial Dzyaloshinskii-Moriya interaction, and laterally divergent current-induced spin-orbit torques. We further show the generation of magnetic skyrmions solely by the divergent spin-orbit torques through a nonmagnetic point contact. By increasing the current density, we observe the skyrmion Hall effect - that is the accumulation of skyrmions at one side of the device. The related Hall angle for skyrmion motion is also revealed under an ac driving current. Financial support for the work at Argonne came from Department of Energy, Office of Science, Basic Energy Science, Materials Sciences and Engineering Division, work at UCLA was supported by TANMS.

  12. Hall effect measurements on proton-irradiated ROSE samples

    SciTech Connect

    Biggeri, U.; Bruzzi, M.; Borchi, E.

    1997-01-01

    Bulk samples obtained from two wafers of a silicon monocrystal material produced by Float-Zone refinement have been analyzed using the four-point probe method. One of the wafers comes from an oxygenated ingot; two sets of pure and oxygenated samples have been irradiated with 24 GeV/c protons in the fluence range from 10{sup 13} p/cm{sup 2} to 2x10{sup 14} p/cm{sup 2}. Van der Pauw resistivity and Hall coefficient have been measured before and after irradiation as a function of the temperature. A thermal treatment (30 minutes at 100C) has been performed to accelerate the reverse annealing effect in the irradiated silicon. The irradiated samples show the same exponential dependence of the resistivity and of the Hall coefficient on the temperature from 370K to 100K, corresponding to the presence of radiation-induced deep energy levels around 0.6-0.7eV in the silicon gap. The free carrier concentrations (n, p) have been evaluated in the investigated fluence range. The inversion of the conductivity type from n to p occurred respectively at 7x10{sup 13} p/cm{sup 2} and at 4x10{sup 13} p/cm{sup 2} before and after the annealing treatment, for both the two sets. Only slight differences have been detected between the pure and oxygenated samples.

  13. Electronic simulation of a multiterminal quantum Hall effect device

    NASA Astrophysics Data System (ADS)

    Sosso, A.; Capra, P. P.

    1999-04-01

    A circuit with only resistors and unity gain amplifiers can be proven to be equivalent to the Ricketts and Kemeny electrical model of multiterminal quantum Hall effect (QHE) devices. By means of the new equivalent circuit, commercial software for electronic circuit analysis can be used to study a QHE measurement system. Moreover, it can be easily implemented, and we were able to build a circuit that simulates the electrical behavior of a QHE device. Particular care was taken in the design to reduce the effect of parasitic capacitances, which act as loads connected to the device terminals. Bootstrap buffers have been adopted to significantly reduce the capacitance of input stage. The small residual loading effect can be calculated and eliminated, allowing simulation of a QHE device with good accuracy.

  14. Aspects of anisotropic fractional quantum Hall effect in phosphorene

    NASA Astrophysics Data System (ADS)

    Ghazaryan, Areg; Chakraborty, Tapash

    2015-10-01

    We have analyzed the effects of the anisotropic energy bands of phosphorene on magnetoroton branches for electrons and holes in the two Landau levels close to the band edges. We have found that the fractional quantum Hall effect gap in the lowest (highest) Landau level in the conduction (valence) band is slightly larger than that for conventional semiconductor systems and therefore the effect should be experimentally observable in phosphorene. We also found that the magnetoroton mode for both electrons and holes consists of two branches with two minima due to the anisotropy. Most importantly, in the long-wavelength limit a second mode with upward dispersion, well separated from the magnetoroton mode was found to appear, that is entirely a consequence of the anisotropy in the system. These novel features of the collective mode, unique to phosphorene, can be observed in resonant inelastic light-scattering experiments.

  15. Quantum Hall effect in a system with an electron reservoir

    NASA Astrophysics Data System (ADS)

    Dorozhkin, S. I.

    2016-04-01

    Precise measurements of the magnetic-field and gate-voltage dependences of the capacitance of a field-effect transistor with an electron system in a wide GaAs quantum well have been carried out. It has been found that the capacitance minima caused by the gaps in the Landau spectrum of the electron system become anomalously wide when two size-quantization subbands are occupied. The effect is explained by retention of the chemical potential in the gap between the Landau levels of one of the subbands owing to redistribution of electrons between the subbands under a change in the magnetic field. The calculation taking into account this redistribution has been performed in a model of the electron system formed by two two-dimensional electron layers. The calculation results describe both the wide capacitance features and the observed disappearance of certain quantum Hall effect states.

  16. Hall and ion slip effects on peristaltic flow of Jeffrey nanofluid with Joule heating

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Shafique, Maryam; Tanveer, A.; Alsaedi, A.

    2016-06-01

    This paper addresses mixed convective peristaltic flow of Jeffrey nanofluid in a channel with complaint walls. The present investigation includes the viscous dissipation, thermal radiation and Joule heating. Hall and ion slip effects are also taken into account. Related problems through long wavelength and low Reynolds number are examined for stream function, temperature and concentration. Impacts of thermal radiation, Hartman number, Brownian motion parameter, thermophoresis, Joule heating, Hall and ion slip parameters are investigated in detail. It is observed that velocity increases and temperature decreases with Hall and ion slip parameters. Further the thermal radiation on temperature has qualitatively similar role to that of Hall and ion slip effects.

  17. Anomalous Hall effect in magnetic disordered alloys: Effects of spin orbital coupling

    SciTech Connect

    Ma, L.; Gao, W. B.; Zhou, S. M.; Shi, Z.; He, P.; Miao, J.; Jiang, Y.

    2013-12-28

    For disordered ternary Fe{sub 0.5}(Pd{sub 1−x}Pt{sub x}){sub 0.5} alloy films, the anomalous Hall effect obeys the conventional scaling law ρ{sub AH}=aρ{sub xx}+bρ{sub xx}{sup 2} with the longitudinal resistivity ρ{sub xx} and anomalous Hall resistivity ρ{sub AH}. Contributed by the intrinsic term and the extrinsic side-jump one, the scattering-independent anomalous Hall conductivity b increases with increasing Pt/Pd concentration. In contrast, the skew scattering parameter a is mainly influenced by the residual resistivity. The present results will facilitate the theoretical studies of the anomalous Hall effect in magnetic disordered alloys.

  18. Supersymmetric Quantum-Hall Effect on a Fuzzy Supersphere

    SciTech Connect

    Hasebe, Kazuki

    2005-05-27

    Supersymmetric quantum-Hall liquids are constructed on a supersphere in a supermonopole background. We derive a supersymmetric generalization of the Laughlin wave function, which is a ground state of a hard-core OSp(1 vertical bar 2) invariant Hamiltonian. We also present excited topological objects, which are fractionally charged deficits made by super Hall currents. Several relations between quantum-Hall systems and their supersymmetric extensions are discussed.

  19. Hall and Nernst effects in monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Zhang, Yun-Hai; Zhang, Ming-Hua

    2016-03-01

    We study Hall and Nernst transports in monolayer MoS2 based on Green’s function formalism. We have derived analytical results for spin and valley Hall conductivities in the zero temperature and spin and valley Nernst conductivities in the low temperature. We found that tuning of the band gap and spin-orbit splitting can drive system transition from spin Hall insulator (SHI) to valley Hall insulator (VHI). When the system is subjected to a temperature gradient, the spin and valley Nernst conductivities are dependent on Berry curvature.

  20. Spin Hall effect of light in photon tunneling

    SciTech Connect

    Luo Hailu; Wen Shuangchun; Shu Weixing; Fan Dianyuan

    2010-10-15

    We resolve the breakdown of angular momentum conservation on two-dimensional photon tunneling by considering the spin Hall effect (SHE) of light. This effect manifests itself as polarization-dependent transverse shifts of the field centroid when a classic wave packet tunnels through a prism-air-prism barrier. For the left or the right circularly polarized component, the transverse shift can be modulated by altering the refractive index gradient associated with the two prisms. We find that the SHE in conventional beam refraction can be evidently enhanced via photon tunneling mechanism. The transverse spatial shift is governed by the total angular momentum conservation law, while the transverse angular shift is governed by the total linear momentum conservation law. These findings open the possibility for developing new nanophotonic devices and can be extrapolated to other physical systems.

  1. Perturbation analysis of ionization oscillations in Hall effect thrusters

    SciTech Connect

    Hara, Kentaro Sekerak, Michael J.; Boyd, Iain D.; Gallimore, Alec D.

    2014-12-15

    A perturbation analysis of ionization oscillations, which cause low frequency oscillations of the discharge plasma, in Hall effect thrusters is presented including the electron energy equation in addition to heavy-species transport. Excitation and stabilization of such oscillations, often called the breathing mode, are discussed in terms of the growth rate obtained from the linear perturbation equations of the discharge plasma. The instability induced from the ionization occurs only when the perturbation in the electron energy is included while the neutral atom flow contributes to the damping of the oscillation. Effects of the electron energy loss mechanisms such as wall heat loss, inelastic collisions, and convective heat flux are discussed. It is shown that the ionization oscillations can be damped when the electron transport is reduced and the electron temperature increases so that the energy loss to the wall stabilizes the ionization instability.

  2. Perturbation analysis of ionization oscillations in Hall effect thrusters

    NASA Astrophysics Data System (ADS)

    Hara, Kentaro; Sekerak, Michael J.; Boyd, Iain D.; Gallimore, Alec D.

    2014-12-01

    A perturbation analysis of ionization oscillations, which cause low frequency oscillations of the discharge plasma, in Hall effect thrusters is presented including the electron energy equation in addition to heavy-species transport. Excitation and stabilization of such oscillations, often called the breathing mode, are discussed in terms of the growth rate obtained from the linear perturbation equations of the discharge plasma. The instability induced from the ionization occurs only when the perturbation in the electron energy is included while the neutral atom flow contributes to the damping of the oscillation. Effects of the electron energy loss mechanisms such as wall heat loss, inelastic collisions, and convective heat flux are discussed. It is shown that the ionization oscillations can be damped when the electron transport is reduced and the electron temperature increases so that the energy loss to the wall stabilizes the ionization instability.

  3. Anomalous transport induced by sheath instability in Hall effect thrusters

    SciTech Connect

    Taccogna, Francesco; Schneider, Ralf

    2009-06-22

    It is well recognized to ascribe the anomalous cross-field conductivity inside Hall-effect thrusters to fluctuation-induced transport due to gradient-driven instabilities (Rayleigh or electron drift) and to electron-wall interaction (near-wall conductivity). In this letter, we have performed numerical experiments showing the possibility of another mechanism inducing azimuthal fluctuations: the lateral sheath instability. It is created by a negative differential resistance of the current-voltage I-V characteristic of the floating wall as a consequence of high secondary electron emission. The contribution from this effect to the anomalous axial current is calculated and it accounts of more than 80% of the experimental value.

  4. Investigating dissipation in the quantum anomalous Hall effect

    NASA Astrophysics Data System (ADS)

    Fox, Eli; Bestwick, Andrew; Goldhaber-Gordon, David; Feng, Yang; Ou, Yunbo; He, Ke; Wang, Yayu; Xue, Qi-Kun; Kou, Xufeng; Pan, Lei; Wang, Kang

    In the quantum anomalous Hall effect, a magnetic exchange gap in a 3D topological insulator gives rise to dissipationless chiral edge states. Though the effect has recently been realized in a family of ferromagnetically-doped (Bi,Sb)2Te3 topological insulator thin films, experiments to date have found non-vanishing longitudinal resistance, contrary to initial theoretical expectations. Proposed sources of this dissipation include extra gapless or activated quasi-helical edge states, thermally activated 2D conduction, and variable-range hopping. Here, we discuss transport measurements of Corbino disk and non-local geometries to identify the mechanism of non-ideal behavior. This work supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award No. 19-7503.

  5. Giant gap quantum spin Hall effect and valley-polarized quantum anomalous Hall effect in cyanided bismuth bilayers

    NASA Astrophysics Data System (ADS)

    Ji, Wei-xiao; Zhang, Chang-wen; Ding, Meng; Zhang, Bao-min; Li, Ping; Li, Feng; Ren, Miao-juan; Wang, Pei-ji; Zhang, Run-wu; Hu, Shu-jun; Yan, Shi-shen

    2016-08-01

    Bismuth (Bi) has attracted a great deal of attention for its strongest spin–orbit coupling (SOC) strength among main group elements. Although quantum anomalous Hall (QAH) state is predicted in half-hydrogenated Bi honeycomb monolayers Bi2H, the experimental results are still missing. Halogen atoms (X = F, Cl and Br) were also frequently used as modifications, but Bi2X films show a frustrating metallic character that masks the QAH effects. Here, first-principle calculations are performed to predict the full-cyanided bismuthene (Bi2(CN)2) as 2D topological insulator supporting quantum spin Hall state with a record large gap up to 1.10 eV, and more importantly, half-cyanogen saturated bismuthene (Bi2(CN)) as a Chern insulator supporting a valley-polarized QAH state, with a Curie temperature to be 164 K, as well as a large gap reaching 0.348 eV which could be further tuned by bi-axial strain and SOC strength. Our findings provide an appropriate and flexible material family candidate for spintronic and valleytronic devices.

  6. Development and experimental characterization of a wall-less Hall thruster

    NASA Astrophysics Data System (ADS)

    Mazouffre, S.; Tsikata, S.; Vaudolon, J.

    2014-12-01

    An alternative Hall thruster architecture that shifts the ionization and acceleration regions outside the plasma chamber is demonstrated. This unconventional design is here termed a "wall-less Hall thruster," as the bulk of the magnetized discharge is no longer limited by solid boundaries. A 200 W prototype with permanent magnets has been developed and characterized. Experimental results concerning the thruster operation, discharge oscillations, electric field distribution, and ionization zone characteristics are presented and discussed. Our first experiments show that the cross-field discharge can be moved outside the cavity without drastically disturbing the ion production and acceleration mechanisms. This design offers the benefit of reduced plasma-wall interaction and lower wall losses, while also greatly facilitating diagnostic access to the entire discharge ionization and acceleration regions.

  7. Hořava-Lifshitz gravity and effective theory of the fractional quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Wu, Chaolun; Wu, Shao-Feng

    2015-01-01

    We show that Hořava-Lifshitz gravity theory can be employed as a covariant framework to build an effective field theory for the fractional quantum Hall effect that respects all the spacetime symmetries such as non-relativistic diffeomorphism invariance and anisotropic Weyl invariance as well as the gauge symmetry. The key to this formalism is a set of correspondence relations that maps all the field degrees of freedom in the Hořava-Lifshitz gravity theory to external background (source) fields among others in the effective action of the quantum Hall effect, according to their symmetry transformation properties. We originally derive the map as a holographic dictionary, but its form is independent of the existence of holographic duality. This paves the way for the application of Hořava-Lifshitz holography on fractional quantum Hall effect. Using the simplest holographic Chern-Simons model, we compute the low energy effective action at leading orders and show that it captures universal electromagnetic and geometric properties of quantum Hall states, including the Wen-Zee shift, Hall viscosity, angular momentum density and their relations. We identify the shift function in Hořava-Lifshitz gravity theory as minus of guiding center velocity and conjugate to guiding center momentum. This enables us to distinguish guiding center angular momentum density from the internal one, which is the sum of Landau orbit spin and intrinsic (topological) spin of the composite particles. Our effective action shows that Hall viscosity is minus half of the internal angular momentum density and proportional to Wen-Zee shift, and Hall bulk viscosity is half of the guiding center angular momentum density.

  8. Inverse spin Hall effect in a complex ferromagnetic oxide heterostructure

    PubMed Central

    Wahler, Martin; Homonnay, Nico; Richter, Tim; Müller, Alexander; Eisenschmidt, Christian; Fuhrmann, Bodo; Schmidt, Georg

    2016-01-01

    We present spin pumping and inverse spin Hall effect (ISHE) in an epitaxial complex oxide heterostructure. Ferromagnetic La0.7Sr0.3MnO3 (LSMO) is used as a source of spin pumping while the spin sink exhibiting the ISHE consists of SrRuO3 (SRO). SRO is a ferromagnetic oxide with metallic conductivity, however, with a Curie temperature (TC) of 155 K, thus well below room temperature. This choice allows to perform the experiment above and below TC of the SRO and to demonstrate that SRO not only shows an ISHE of a magnitude comparable to Pt (though with opposite sign) in its non magnetic state but also exhibits a finite ISHE even 50 K below TC. PMID:27346793

  9. Domain wall assisted GMR head with spin-Hall effect

    NASA Astrophysics Data System (ADS)

    Arun, R.; Sabareesan, P.; Daniel, M.

    2016-05-01

    We theoretically study the dynamics of a field induced domain wall in the Py/Pt bi-layer structure in the presence of spin-Hall effect (SHE) by solving the Landau-Lifshitz-Gilbert (LLG) equation along with the adiabatic, nonadiabatic and SHE spin-transfer torques (STTs). It is observed that a weak magnetic field moves the domain wall with high velocity in the presence of SHE and the direction of the velocity is changed by changing the direction of the weak field. The numerical results show that the magnetization of the ferromagnetic layer can be reversed quickly through domain wall motion by changing the direction of a weak external field in the presence of SHE while the direction of current is fixed. The SHE reduces the magnetization reversal time of 1000 nm length strip by 14.7 ns. This study is extended to model a domain wall based GMR (Giant Magnetoresistance) read head with SHE.

  10. Magnetic bilayer-skyrmions without skyrmion Hall effect

    PubMed Central

    Zhang, Xichao; Zhou, Yan; Ezawa, Motohiko

    2016-01-01

    Magnetic skyrmions might be used as information carriers in future advanced memories, logic gates and computing devices. However, there exists an obstacle known as the skyrmion Hall effect (SkHE), that is, the skyrmion trajectories bend away from the driving current direction due to the Magnus force. Consequently, the skyrmions in constricted geometries may be destroyed by touching the sample edges. Here we theoretically propose that the SkHE can be suppressed in the antiferromagnetically exchange-coupled bilayer system, since the Magnus forces in the top and bottom layers are exactly cancelled. We show that such a pair of SkHE-free magnetic skyrmions can be nucleated and be driven by the current-induced torque. Our proposal provides a promising means to move magnetic skyrmions in a perfectly straight trajectory in ultra-dense devices with ultra-fast processing speed. PMID:26782905

  11. Physics of Hall-effect thruster by particle model

    SciTech Connect

    Taccogna, Francesco; Minelli, Pierpaolo; Capitelli, Mario; Longo, Savino

    2012-11-27

    A realistic three-dimensional fully kinetic particle simulation of a Hall-effect thruster discharge has been developed. The model consists of a Particle-in-Cell methodology tracking electrons, Xe{sup +} and Xe{sup ++} ions in their selfconsistent electric field. A detailed secondary electron emission from lateral walls is also implemented in addition with electron-atom and electron-ion volume collisions. The model is able to capture the most relevant features of axial, radial and azimuthal behaviors of the start-up transient and steady state phases detecting inverted sheaths and azimuthal modulation in the acceleration region. The model has the potentiality to investigate the driving mechanisms at the origin of the electron anomalous cross-field transport.

  12. Matrix method analysis of quantum Hall effect device connections

    NASA Astrophysics Data System (ADS)

    Ortolano, M.; Callegaro, L.

    2012-02-01

    The modelling of electrical connections of single, or several, multiterminal quantum Hall effect (QHE) devices is relevant for electrical metrology: it is known, in fact, that certain particular connections allow (i) the realization of multiples or fractions of the quantized resistance, or (ii) the rejection of stray impedances, so that the configuration maintains the status of quantum standard. Ricketts-Kemeny and Delahaye equivalent circuits are known to be accurate models of the QHE: however, the numerical or analytical solution of electrical networks including these equivalent circuits can be difficult. In this paper, we introduce a method of analysis based on the representation of a QHE device by means of the indefinite admittance matrix: external connections are then represented with another matrix, easily written by inspection. Some examples, including the solution of double- and triple-series connections, are shown.

  13. Magnetic bilayer-skyrmions without skyrmion Hall effect.

    PubMed

    Zhang, Xichao; Zhou, Yan; Ezawa, Motohiko

    2016-01-01

    Magnetic skyrmions might be used as information carriers in future advanced memories, logic gates and computing devices. However, there exists an obstacle known as the skyrmion Hall effect (SkHE), that is, the skyrmion trajectories bend away from the driving current direction due to the Magnus force. Consequently, the skyrmions in constricted geometries may be destroyed by touching the sample edges. Here we theoretically propose that the SkHE can be suppressed in the antiferromagnetically exchange-coupled bilayer system, since the Magnus forces in the top and bottom layers are exactly cancelled. We show that such a pair of SkHE-free magnetic skyrmions can be nucleated and be driven by the current-induced torque. Our proposal provides a promising means to move magnetic skyrmions in a perfectly straight trajectory in ultra-dense devices with ultra-fast processing speed. PMID:26782905

  14. Magnetic bilayer-skyrmions without skyrmion Hall effect

    NASA Astrophysics Data System (ADS)

    Zhang, Xichao; Zhou, Yan; Ezawa, Motohiko

    2016-01-01

    Magnetic skyrmions might be used as information carriers in future advanced memories, logic gates and computing devices. However, there exists an obstacle known as the skyrmion Hall effect (SkHE), that is, the skyrmion trajectories bend away from the driving current direction due to the Magnus force. Consequently, the skyrmions in constricted geometries may be destroyed by touching the sample edges. Here we theoretically propose that the SkHE can be suppressed in the antiferromagnetically exchange-coupled bilayer system, since the Magnus forces in the top and bottom layers are exactly cancelled. We show that such a pair of SkHE-free magnetic skyrmions can be nucleated and be driven by the current-induced torque. Our proposal provides a promising means to move magnetic skyrmions in a perfectly straight trajectory in ultra-dense devices with ultra-fast processing speed.

  15. Spin quantum Hall effects in featureless nonfractionalized spin-1 magnets

    NASA Astrophysics Data System (ADS)

    Lu, Yuan-Ming; Lee, Dung-Hai

    2014-05-01

    The Affleck-Kennedy-Lieb-Tasaki state (or Haldane phase) in a spin-1 chain represents a large class of gapped topological paramagnets that host symmetry-protected gapless excitations on the boundary. In this work, we show how to realize this type of featureless spin-1 state on a generic two-dimensional lattice. These states have a gapped spectrum in the bulk, but they support gapless edge states protected by spin rotational symmetry along a certain direction, and they exhibit the spin quantum Hall effect. Using a fermion representation of integer spins, we show a concrete example of such spin-1 topological paramagnets on a kagome lattice, and we suggest a microscopic spin-1 Hamiltonian that may realize it.

  16. Determination of Avogadro's number via the Hall effect

    NASA Astrophysics Data System (ADS)

    Houari, Ahmed

    2007-03-01

    Many researchers and lecturers have reported that the concept of the mole and Avogadro's number are frequently misunderstood by first-year science students. For this reason, it is highly recommended to introduce this fundamental number to high school and freshman science students as clearly as possible. Therefore, it is pedagogically very useful to diversify the methods of determination of Avogadro's number which are based on basic physics phenomena accessible to those classes of students. Along these lines, I will describe here an unusual method based on the classical Hall effect for determining Avogadro's number. The present method is not relevant for its accuracy but mainly for its simplicity and its 'cleanness' compared to the usual electrochemical method used at this instruction level. In addition, this method provides an extra useful test for the validity of the free electron model.

  17. Robustness of topological Hall effect of nontrivial spin textures

    NASA Astrophysics Data System (ADS)

    Jalil, Mansoor B. A.; Tan, Seng Ghee

    2014-05-01

    We analyze the topological Hall conductivity (THC) of topologically nontrivial spin textures like magnetic vortices and skyrmions and investigate its possible application in the readback for magnetic memory based on those spin textures. Under adiabatic conditions, such spin textures would theoretically yield quantized THC values, which are related to topological invariants such as the winding number and polarity, and as such are insensitive to fluctuations and smooth deformations. However, in a practical setting, the finite size of spin texture elements and the influence of edges may cause them to deviate from their ideal configurations. We calculate the degree of robustness of the THC output in practical magnetic memories in the presence of edge and finite size effects.

  18. Hall Effect Thruster Plume Contamination and Erosion Study

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.

    2000-01-01

    The objective of the Hall effect thruster plume contamination and erosion study was to evaluate the impact of a xenon ion plume on various samples placed in the vicinity of a Hall effect thruster for a continuous 100 hour exposure. NASA Glenn Research Center was responsible for the pre- and post-test evaluation of three sample types placed around the thruster: solar cell cover glass, RTV silicone, and Kapton(R). Mass and profilometer), were used to identify the degree of deposition and/or erosion on the solar cell cover glass, RTV silicone, and Kapton@ samples. Transmittance, reflectance, solar absorptance, and room temperature emittance were used to identify the degree of performance degradation of the solar cell cover glass samples alone. Auger spectroscopy was used to identify the chemical constituents found on the surface of the exposed solar cell cover glass samples. Chemical analysis indicated some boron nitride contamination on the samples, from boron nitride insulators used in the body of the thruster. However, erosion outweighted contamination. All samples exhibited some degree of erosion. with the most erosion occurring near the centerline of the plume and the least occurring at the +/- 90 deg positions. For the solar cell cover glass samples, erosion progressed through the antireflective coating and into the microsheet glass itself. Erosion occurred in the solar cell cover glass, RTV silicone and Kapton(R) at different rates. All optical properties changed with the degree of erosion, with solar absorptance and room temperature emittance increasing with erosion. The transmittance of some samples decreased while the reflectance of some samples increased and others decreased. All results are consistent with an energetic plume of xenon ions serving as a source for erosion.

  19. Domain-wall depinning dominated by the Spin Hall effect

    NASA Astrophysics Data System (ADS)

    Swagten, Henk

    2013-03-01

    Current induced domain wall motion (CIDWM) in perpendicular materials is believed to be very efficient. We will show that the Spin Hall effect (SHE) provides a radically new mechanism for CIDWM in these systems. Using focused-ion-beam irradiation we are able to stabilize and pin two DWs in a Pt/Co/Pt nanowire. By depinning the DWs under the application of a perpendicular field as well as an injected charge current and in-plane magnetic field, we are able to disentangle the contributions to DW motion originating from (1) conventional spin transfer torques that act on magnetization gradients and (2) from the hitherto unexplored SHE torques. The fact the perpendicular depinning field H as a function of charge current J for the two DWs has equal slope dH/dJ, as well as a sign change of the slope when we change the polarity of the DWs, directly proves the dominance of the SHE contribution. To further proof that the SHE is governing the depinning process, we have tuned the internal spin structure of the DW from Bloch to Néel, by varying the in-plane field parallel to the current, and find that the influence of current on the depinning is highest when the DW has the Néel structure. This behavior is verified by macrospin simulations, which can quantitatively explain our data. As a final compelling evidence, we have varied the thickness of the bottom and top Pt, showing that we are able to tune the spin Hall currents originating from the nonmagnetic Pt layers. The work is part of the research programme of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific Research (NWO).

  20. Edge states and integer quantum Hall effect in topological insulator thin films.

    PubMed

    Zhang, Song-Bo; Lu, Hai-Zhou; Shen, Shun-Qing

    2015-01-01

    The integer quantum Hall effect is a topological state of quantum matter in two dimensions, and has recently been observed in three-dimensional topological insulator thin films. Here we study the Landau levels and edge states of surface Dirac fermions in topological insulators under strong magnetic field. We examine the formation of the quantum plateaux of the Hall conductance and find two different patterns, in one pattern the filling number covers all integers while only odd integers in the other. We focus on the quantum plateau closest to zero energy and demonstrate the breakdown of the quantum spin Hall effect resulting from structure inversion asymmetry. The phase diagrams of the quantum Hall states are presented as functions of magnetic field, gate voltage and chemical potential. This work establishes an intuitive picture of the edge states to understand the integer quantum Hall effect for Dirac electrons in topological insulator thin films. PMID:26304795

  1. Electronic properties and the quantum Hall effect in bilayer graphene.

    PubMed

    Fal'ko, Vladimir I

    2008-01-28

    In this paper, I review the quantum Hall effect (QHE) and far-infra red (FIR) absorption properties of bilayer graphene in a strong magnetic field. This includes a derivation of the effective low-energy Hamiltonian for this system and the consequences of this Hamiltonian for the sequencing of the Landau levels in the material: the form of this effective Hamiltonian gives rise to the presence of a level with doubled degeneracy at zero energy. The effect of a potential difference between the layer of a bilayer is also investigated. It is found that there is a density-dependent gap near the K points in the band structure. The consequences of this gap on the QHE are then described. Also, the magneto-absorption spectrum is investigated and an experiment proposed to distinguish between model groundstates of the bilayer QHE system based on the different absorption characteristics of right- and left-handed polarization of FIR light. Finally, the effects of trigonal warping are taken into account in the absorption picture. PMID:18024357

  2. Effective Field Theory of Fractional Quantized Hall Nematics

    SciTech Connect

    Mulligan, Michael; Nayak, Chetan; Kachru, Shamit; /Stanford U., Phys. Dept. /SLAC

    2012-06-06

    We present a Landau-Ginzburg theory for a fractional quantized Hall nematic state and the transition to it from an isotropic fractional quantum Hall state. This justifies Lifshitz-Chern-Simons theory - which is shown to be its dual - on a more microscopic basis and enables us to compute a ground state wave function in the symmetry-broken phase. In such a state of matter, the Hall resistance remains quantized while the longitudinal DC resistivity due to thermally-excited quasiparticles is anisotropic. We interpret recent experiments at Landau level filling factor {nu} = 7/3 in terms of our theory.

  3. Bosonic Integer Quantum Hall Effect in Optical Flux Lattices

    NASA Astrophysics Data System (ADS)

    Sterdyniak, A.; Cooper, Nigel R.; Regnault, N.

    2015-09-01

    In two dimensions strongly interacting bosons in a magnetic field can realize a bosonic integer quantum Hall state, the simplest two-dimensional example of a symmetry-protected topological phase. We propose a realistic implementation of this phase using an optical flux lattice. Through exact diagonalization calculations, we show that the system exhibits a clear bulk gap and the topological signature of the bosonic integer quantum Hall state. In particular, the calculation of the many-body Chern number leads to a quantized Hall conductance in agreement with the analytical predictions. We also study the stability of the phase with respect to some of the experimentally relevant parameters.

  4. The Hall dynamo effect and nonlinear mode coupling during sawtooth magnetic reconnection

    SciTech Connect

    Ding, W. X.; Brower, D. L.; Deng, B. H.; Almagri, A. F.; Craig, D.; Fiksel, G.; Mirnov, V.; Prager, S. C.; Sarff, J. S.; Svidzinski, V.

    2006-11-15

    During magnetic reconnection associated with sawtooth activity in a reversed field pinch, we observe a large fluctuation-induced Hall electromotive force, <{delta}Jx{delta}B>/n{sub e}e, which is capable of modifying the equilibrium current. This Hall dynamo effect is determined in the hot plasma core by laser Faraday rotation which measures equilibrium and fluctuating magnetic field and current density. We find that the Hall dynamo is strongest when nonlinear mode coupling between three spatial Fourier modes of the resistive tearing instability is present. Mode coupling alters the phase relation between magnetic and current density fluctuations for individual Fourier modes leading to a finite Hall effect. Detailed measurements of the spatial and temporal dynamics for the dominant core resonant mode under various plasma configurations are described providing evidence regarding the origin of the Hall dynamo.

  5. Magnetic Topological Insulators and Quantum Anomalous Hall Effect

    NASA Astrophysics Data System (ADS)

    Kou, Xufeng

    The engineering of topological surface states is a key to realize applicable devices based on topological insulators (TIs). Among various proposals, introducing magnetic impurities into TIs has been proven to be an effective way to open a surface gap and integrate additional ferromagnetism with the original topological order. In this Dissertation, we study both the intrinsic electrical and magnetic properties of the magnetic TI thin films grown by molecular beam epitaxy. By doping transition element Cr into the host tetradymite-type V-VI semiconductors, we achieve robust ferromagnetic order with a strong perpendicular magnetic anisotropy. With additional top-gating capability, we realize the electric-field-controlled ferromagnetism in the magnetic TI systems, and demonstrate such magneto-electric effects can be effectively manipulated, depending on the interplays between the band topology, magnetic exchange coupling, and structural engineering. Most significantly, we report the observation of quantum anomalous Hall effect (QAHE) in the Cr-doped (BiSb)2Te3 samples where dissipationless chiral edge conduction is realized in the macroscopic millimeter-size devices without the presence of any external magnetic field, and the stability of the quantized Hall conductance of e2/h is well-maintained as the film thickness varies across the 2D hybridization limit. With additional quantum confinement, we discover the metal-to-insulator switching between two opposite QAHE states, and reveal the universal QAHE phase diagram in the thin magnetic TI samples. In addition to the uniform magnetic TIs, we further investigate the TI/Cr-doped TI bilayer structures prepared by the modulation-doped growth method. By controlling the magnetic interaction profile, we observe the Dirac hole-mediated ferromagnetism and develop an effective way to manipulate its strength. Besides, the giant spin-orbit torque in such magnetic TI-based heterostructures enables us to demonstrate the current

  6. Size effects and Hall-Petch relation in polycrystalline cobalt

    NASA Astrophysics Data System (ADS)

    Fleurier, Gwendoline; Hug, Eric; Martinez, Mayerling; Dubos, Pierre-Antoine; Keller, Clément

    2015-02-01

    The mechanical behaviour of polycrystalline hexagonal close-packed cobalt was investigated over a large range of grain size d in order to examine the occurrence of size effects. Crystallographic texture and amount of face centred cubic allotropic phase were maintained unchanged thanks to appropriate heat treatment procedures. The Hall-Petch (HP) relation exhibits two distinct behaviours from the very beginning of plastic strain levels. The conventional HP law is fulfilled for a number of grains across the thickness t higher than a critical value (t/d)c = 14. For t/d lower than (t/d)c, a multicrystalline regime is evidenced highlighting a strong reduction in flow stress. The high value of (t/d)c is related to the low-stacking fault energy of cobalt in the basal plane. The size effect is predominant in the first work hardening stage where slip mechanisms and stacking faults predominate. In the second stage, driven by mechanical twinning processes, this effect is less sensitive. Finally, the size effect could also affect the end of the elastic stage, in link with nonlinear elasticity mechanisms.

  7. All electrical manipulation of magnetization dynamics in a ferromagnet by antiferromagnets with anisotropic spin Hall effects.

    SciTech Connect

    Zhang, Wei; Jungfleisch, Matthias B.; Freimuth, Frank; Jiang, Wanjun; Sklenar, Joseph; Pearson, John E.; Ketterson, John B.; Mokrousov, Yuri; Hoffmann, Axel

    2015-10-06

    We investigate spin-orbit torques of metallic CuAu-I-type antiferromagnets using spin-torque ferromagnetic resonance tuned by a dc-bias current. The observed spin torques predominantly arise from diffusive transport of spin current generated by the spin Hall effect. We find a growth-orientation dependence of the spin torques by studying epitaxial samples, which may be correlated to the anisotropy of the spin Hall effect. The observed anisotropy is consistent with first-principles calculations on the intrinsic spin Hall effect. Our work suggests large tunable spin-orbit effects in magnetically-ordered materials.

  8. Quantum Anomalous Hall Effect in Hg_1-yMn_yTe Quantum Wells

    SciTech Connect

    Liu, Chao-Xing; Qi, Xiao-Liang; Dai, Xi; Fang, Zhong; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-19

    The quantum Hall effect is usually observed when the two-dimensional electron gas is subjected to an external magnetic field, so that their quantum states form Landau levels. In this work we predict that a new phenomenon, the quantum anomalous Hall effect, can be realized in Hg{sub 1-y}Mn{sub y}Te quantum wells, without the external magnetic field and the associated Landau levels. This effect arises purely from the spin polarization of the Mn atoms, and the quantized Hall conductance is predicted for a range of quantum well thickness and the concentration of the Mn atoms. This effect enables dissipationless charge current in spintronics devices.

  9. Framing Anomaly in the Effective Theory of the Fractional Quantum Hall Effect

    NASA Astrophysics Data System (ADS)

    Gromov, Andrey; Cho, Gil Young; You, Yizhi; Abanov, Alexander G.; Fradkin, Eduardo

    2015-01-01

    We consider the geometric part of the effective action for the fractional quantum Hall effect (FQHE). It is shown that accounting for the framing anomaly of the quantum Chern-Simons theory is essential to obtain the correct gravitational linear response functions. In the lowest order in gradients, the linear response generating functional includes Chern-Simons, Wen-Zee, and gravitational Chern-Simons terms. The latter term has a contribution from the framing anomaly which fixes the value of thermal Hall conductivity and contributes to the Hall viscosity of the FQH states on a sphere. We also discuss the effects of the framing anomaly on linear responses for non-Abelian FQH states.

  10. Framing anomaly in the effective theory of the fractional quantum Hall effect.

    PubMed

    Gromov, Andrey; Cho, Gil Young; You, Yizhi; Abanov, Alexander G; Fradkin, Eduardo

    2015-01-01

    We consider the geometric part of the effective action for the fractional quantum Hall effect (FQHE). It is shown that accounting for the framing anomaly of the quantum Chern-Simons theory is essential to obtain the correct gravitational linear response functions. In the lowest order in gradients, the linear response generating functional includes Chern-Simons, Wen-Zee, and gravitational Chern-Simons terms. The latter term has a contribution from the framing anomaly which fixes the value of thermal Hall conductivity and contributes to the Hall viscosity of the FQH states on a sphere. We also discuss the effects of the framing anomaly on linear responses for non-Abelian FQH states. PMID:25615495

  11. Quantum Spin Hall Effect in Inverted Type II Semiconductors

    SciTech Connect

    Liu, Chaoxing; Hughes, Taylor L.; Qi, Xiao-Liang; Wang, Kang; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-19

    The quantum spin Hall (QSH) state is a topologically non-trivial state of quantum matter which preserves time-reversal symmetry; it has an energy gap in the bulk, but topologically robust gapless states at the edge. Recently, this novel effect has been predicted and observed in HgTe quantum wells. In this work we predict a similar effect arising in Type-II semiconductor quantum wells made from InAs/GaSb/AlSb. Because of a rare band alignment the quantum well band structure exhibits an 'inverted' phase similar to CdTe/HgTe quantum wells, which is a QSH state when the Fermi level lies inside the gap. Due to the asymmetric structure of this quantum well, the effects of inversion symmetry breaking and inter-layer charge transfer are essential. By standard self-consistent calculations, we show that the QSH state persists when these corrections are included, and a quantum phase transition between the normal insulator and the QSH phase can be electrically tuned by the gate voltage.

  12. Configuration interaction matrix elements for the quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Wooten, Rachel; Macek, Joseph

    2015-03-01

    In the spherical model of the quantum Hall system, the two-body matrix elements and pseudopotentials can be found analytically in terms of a general scalar pair interaction potential by expressing the pair interaction as a weighted sum over Legendre polynomials. For non-infinite systems, only a finite set of terms in the potential expansion contribute to the interactions; the contributing terms define an effective spatial potential for the system. The connection between the effective spatial potential and the pseudopotential is one-to-one for finite systems, and any completely defined model pseudopotential can be analytically inverted to give a unique corresponding spatial potential. This technique of inverting the pseudopotential to derive effective spatial potentials may be of use for developing accurate model spatial potentials for quantum Monte Carlo simulations. We demonstrate the technique and the corresponding spatial potentials for a few example model pseudopotentials. Supported by Office of Basic Energy Sciences, U.S. DOE, Grant DE-FG02-02ER15283 to the University of Tennessee.

  13. Influence of the Hall effect and electron inertia in collisionless magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Andrés, Nahuel; Dmitruk, Pablo; Gómez, Daniel

    2016-02-01

    We study the role of the Hall current and electron inertia in collisionless magnetic reconnection within the framework of full two-fluid MHD. At spatial scales smaller than the electron inertial length, a topological change of magnetic field lines exclusively due to the electron inertia becomes possible. Assuming stationary conditions, we derive a theoretical scaling for the reconnection rate, which is simply proportional to the Hall parameter. Using a pseudo-spectral code with no dissipative effects, our numerical results confirm this theoretical scaling. In particular, for a sequence of different Hall parameter values, our numerical results show that the width of the current sheet is independent of the Hall parameter, while its thickness is of the order of the electron inertial range, thus confirming that the stationary reconnection rate is proportional to the Hall parameter.

  14. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature.

    PubMed

    Nakatsuji, Satoru; Kiyohara, Naoki; Higo, Tomoya

    2015-11-12

    In ferromagnetic conductors, an electric current may induce a transverse voltage drop in zero applied magnetic field: this anomalous Hall effect is observed to be proportional to magnetization, and thus is not usually seen in antiferromagnets in zero field. Recent developments in theory and experiment have provided a framework for understanding the anomalous Hall effect using Berry-phase concepts, and this perspective has led to predictions that, under certain conditions, a large anomalous Hall effect may appear in spin liquids and antiferromagnets without net spin magnetization. Although such a spontaneous Hall effect has now been observed in a spin liquid state, a zero-field anomalous Hall effect has hitherto not been reported for antiferromagnets. Here we report empirical evidence for a large anomalous Hall effect in an antiferromagnet that has vanishingly small magnetization. In particular, we find that Mn3Sn, an antiferromagnet that has a non-collinear 120-degree spin order, exhibits a large anomalous Hall conductivity of around 20 per ohm per centimetre at room temperature and more than 100 per ohm per centimetre at low temperatures, reaching the same order of magnitude as in ferromagnetic metals. Notably, the chiral antiferromagnetic state has a very weak and soft ferromagnetic moment of about 0.002 Bohr magnetons per Mn atom (refs 10, 12), allowing us to switch the sign of the Hall effect with a small magnetic field of around a few hundred oersted. This soft response of the large anomalous Hall effect could be useful for various applications including spintronics--for example, to develop a memory device that produces almost no perturbing stray fields. PMID:26524519

  15. Anomalous Hall effect in the noncollinear antiferromagnet Mn5Si3

    NASA Astrophysics Data System (ADS)

    Sürgers, Christoph; Kittler, Wolfram; Wolf, Thomas; Löhneysen, Hilbert v.

    2016-05-01

    Metallic antiferromagnets with noncollinear orientation of magnetic moments provide a playground for investigating spin-dependent transport properties by analysis of the anomalous Hall effect. The intermetallic compound Mn5Si3 is an intinerant antiferromagnet with collinear and noncollinear magnetic structures due to Mn atoms on two inequivalent lattice sites. Here, magnetotransport measurements on polycrstalline thin films and a single crystal are reported. In all samples, an additional contribution to the anomalous Hall effect attributed to the noncollinear arrangment of magnetic moments is observed. Furthermore, an additional magnetic phase between the noncollinear and collinear regimes above a metamagnetic transition is resolved in the single crystal by the anomalous Hall effect.

  16. Intrinsic spin hall effect induced by quantum phase transition in HgCdTe quantum wells.

    PubMed

    Yang, Wen; Chang, Kai; Zhang, Shou-Cheng

    2008-02-01

    The spin Hall effect can be induced by both extrinsic impurity scattering and intrinsic spin-orbit coupling in the electronic structure. The HgTe/CdTe quantum well has a quantum phase transition where the electronic structure changes from normal to inverted. We show that the intrinsic spin Hall effect of the conduction band vanishes on the normal side, while it is finite on the inverted side. By tuning the Cd content, the well width, or the bias electric field across the quantum well, the intrinsic spin Hall effect can be switched on or off and tuned into resonance under experimentally accessible conditions. PMID:18352404

  17. Intrinsic Spin Hall Effect Induced by Quantum Phase Transition in HgCdTe Quantum Wells

    SciTech Connect

    Yang, Wen; Chang, Kai; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-19

    Spin Hall effect can be induced both by the extrinsic impurity scattering and by the intrinsic spin-orbit coupling in the electronic structure. The HgTe/CdTe quantum well has a quantum phase transition where the electronic structure changes from normal to inverted. We show that the intrinsic spin Hall effect of the conduction band vanishes on the normal side, while it is finite on the inverted side. This difference gives a direct mechanism to experimentally distinguish the intrinsic spin Hall effect from the extrinsic one.

  18. Prediction of giant intrinsic spin-Hall effect in strained p-GaAs quantum wells

    NASA Astrophysics Data System (ADS)

    Schindler, C.; Vogl, P.

    2009-11-01

    We perform spin resolved non-equilibrium Green's function calculations in nanostructured, strained two-dimensional GaAs electron and hole gases. Inelastic scattering is taken into account. We show theoretically that the intrinsic inverse spin-Hall effect provides a simple, sensitive, and purely electrical scheme to measure the spin polarization in nanostructures. We predict large spin polarizations and spin-Hall voltages for several concrete device geometries. We propose tensile strained p-GaAs as being optimally suited for detecting the inverse spin Hall effect and show that the effect is absent in n-GaAs.

  19. Hall effects on the steady structure of the rotational layer at the dayside magnetopause

    SciTech Connect

    Westerberg, Lars G.; Aakerstedt, Hans O.

    2007-10-15

    The influence of the Hall term in the generalized Ohm's law on the large-scale plasma flow during conditions of ongoing magnetic reconnection at the dayside magnetopause (MP) is investigated. Of special interest is the plasma flow behavior during the transition of the MP transition layer as the Hall effect grows in proportion to the viscous-resistive effects. The governing equations are solved approximately by an ordinary perturbation expansion in orders of large Reynolds and Lundqvist numbers. It is shown that the flow pattern is strongly dependent on the magnitude of the Hall parameter; as it approaches zero, the viscous-resistive solution is obtained, while for an ordering of the same magnitude as the resistivity/viscosity, the Hall effect begins to affect the flow structure severely. For an increasing value on the Hall parameter, oscillations are brought into the system, an effect that is enhanced with the magnitude of the Hall parameter. Furthermore, it is shown that as the Hall effect begins to dominate, the transition layer thickens.

  20. Near-Surface Plasma Characterization of the 12.5-kW NASA TDU1 Hall Thruster

    NASA Technical Reports Server (NTRS)

    Shastry, Rohit; Huang, Wensheng; Kamhawi, Hani

    2015-01-01

    To advance the state-of-the-art in Hall thruster technology, NASA is developing a 12.5-kW, high-specific-impulse, high-throughput thruster for the Solar Electric Propulsion Technology Demonstration Mission. In order to meet the demanding lifetime requirements of potential missions such as the Asteroid Redirect Robotic Mission, magnetic shielding was incorporated into the thruster design. Two units of the resulting thruster, called the Hall Effect Rocket with Magnetic Shielding (HERMeS), were fabricated and are presently being characterized. The first of these units, designated the Technology Development Unit 1 (TDU1), has undergone extensive performance and thermal characterization at NASA Glenn Research Center. A preliminary lifetime assessment was conducted by characterizing the degree of magnetic shielding within the thruster. This characterization was accomplished by placing eight flush-mounted Langmuir probes within each discharge channel wall and measuring the local plasma potential and electron temperature at various axial locations. Measured properties indicate a high degree of magnetic shielding across the throttle table, with plasma potential variations along each channel wall being less than or equal to 5 eV and electron temperatures being maintained at less than or equal to 5 eV, even at 800 V discharge voltage near the thruster exit plane. These properties indicate that ion impact energies within the HERMeS will not exceed 26 eV, which is below the expected sputtering threshold energy for boron nitride. Parametric studies that varied the facility backpressure and magnetic field strength at 300 V, 9.4 kW, illustrate that the plasma potential and electron temperature are insensitive to these parameters, with shielding being maintained at facility pressures 3X higher and magnetic field strengths 2.5X higher than nominal conditions. Overall, the preliminary lifetime assessment indicates a high degree of shielding within the HERMeS TDU1, effectively

  1. Framing Anomaly in the Effective Theory of Fractional Quantum Hall Effect

    NASA Astrophysics Data System (ADS)

    Gromov, Andrey; Abanov, Alexander; Cho, Gil Young; You, Yizhi; Fradkin, Eduardo

    2015-03-01

    While the classical Chern-Simons theory is topological, it's quantum version is not as it depends on the metric of the base manifold through the path integral measure. This phenomenon is known as the framing anomaly. It is shown that accounting for the framing anomaly of the quantum Chern-Simons theory is essential to obtain the correct gravitational linear response functions of fractional quantum Hall systems (FQH). In the lowest order in gradients the effective action includes Chern-Simons, Wen-Zee and gravitational Chern-Simons terms. The latter term has a contribution from the framing anomaly which fixes the value of thermal Hall conductivity and generates a ``finite size correction'' to the Hall viscosity of the FQH states on a sphere. We also discuss the effects of the framing anomaly on linear responses of non-Abelian FQH states.

  2. Field-effect modulation of anomalous Hall effect in diluted ferromagnetic topological insulator epitaxial films

    NASA Astrophysics Data System (ADS)

    Chang, CuiZu; Liu, MinHao; Zhang, ZuoCheng; Wang, YaYu; He, Ke; Xue, QiKun

    2016-03-01

    High quality chromium (Cr) doped three-dimensional topological insulator (TI) Sb2Te3 films are grown via molecular beam epitaxy on heat-treated insulating SrTiO3 (111) substrates. We report that the Dirac surface states are insensitive to Cr doping, and a perfect robust long-range ferromagnetic order is unveiled in epitaxial Sb2- x Cr x Te3 films. The anomalous Hall effect is modulated by applying a bottom gate, contrary to the ferromagnetism in conventional diluted magnetic semiconductors (DMSs), here the coercivity field is not significantly changed with decreasing carrier density. Carrier-independent ferromagnetism heralds Sb2- x Cr x Te3 films as the base candidate TI material to realize the quantum anomalous Hall (QAH) effect. These results also indicate the potential of controlling anomalous Hall voltage in future TI-based magneto-electronics and spintronics.

  3. Kinetic simulation of secondary electron emission effects in Hall thrusters

    SciTech Connect

    Sydorenko, D.; Smolyakov, A.; Kaganovich, I.; Raitses, Y.

    2006-01-15

    The particle-in-cell code has been developed for kinetic simulations of Hall thrusters with a focus on plasma-wall interaction. It is shown that the effect of secondary electron emission on wall losses is different from predictions of previous fluid and kinetic studies. In simulations, the electron velocity distribution function is strongly anisotropic, depleted at high energy, and nonmonotonic. Secondary electrons form two beams propagating between the walls of a thruster channel in opposite radial directions. The beams produce secondary electron emission themselves depending on their energy at the moment of impact with the wall, which is defined by the electric and magnetic fields in the thruster as well as by the electron transit time between the walls. The condition for the space-charge-limited secondary electron emission depends not only on the energy of bulk plasma electrons but also on the energy of beam electrons. The contribution of the beams to the particles and energy wall losses may be much larger than that of the plasma bulk electrons. Recent experimental studies may indirectly support the results of these simulations, in particular, with respect to the electron temperature saturation and the channel width effect on the thruster discharge.

  4. Intrinsic quantum spin Hall and anomalous Hall effects in h-Sb/Bi epitaxial growth on a ferromagnetic MnO2 thin film

    NASA Astrophysics Data System (ADS)

    Zhou, Jian; Sun, Qiang; Wang, Qian; Kawazoe, Yoshiyuki; Jena, Puru

    2016-05-01

    Exploring a two-dimensional intrinsic quantum spin Hall state with a large band gap as well as an anomalous Hall state in realizable materials is one of the most fundamental and important goals for future applications in spintronics, valleytronics, and quantum computing. Here, by combining first-principles calculations with a tight-binding model, we predict that Sb or Bi can epitaxially grow on a stable and ferromagnetic MnO2 thin film substrate, forming a flat honeycomb sheet. The flatness of Sb or Bi provides an opportunity for the existence of Dirac points in the Brillouin zone, with its position effectively tuned by surface hydrogenation. The Dirac points in spin up and spin down channels split due to the proximity effects induced by MnO2. In the presence of both intrinsic and Rashba spin-orbit coupling, we find two band gaps exhibiting a large band gap quantum spin Hall state and a nearly quantized anomalous Hall state which can be tuned by adjusting the Fermi level. Our findings provide an efficient way to realize both quantized intrinsic spin Hall conductivity and anomalous Hall conductivity in a single material.Exploring a two-dimensional intrinsic quantum spin Hall state with a large band gap as well as an anomalous Hall state in realizable materials is one of the most fundamental and important goals for future applications in spintronics, valleytronics, and quantum computing. Here, by combining first-principles calculations with a tight-binding model, we predict that Sb or Bi can epitaxially grow on a stable and ferromagnetic MnO2 thin film substrate, forming a flat honeycomb sheet. The flatness of Sb or Bi provides an opportunity for the existence of Dirac points in the Brillouin zone, with its position effectively tuned by surface hydrogenation. The Dirac points in spin up and spin down channels split due to the proximity effects induced by MnO2. In the presence of both intrinsic and Rashba spin-orbit coupling, we find two band gaps exhibiting a large

  5. Observation of topological Hall effect in Mn2RhSn films

    NASA Astrophysics Data System (ADS)

    Rana, K. G.; Meshcheriakova, O.; Kübler, J.; Ernst, B.; Karel, J.; Hillebrand, R.; Pippel, E.; Werner, P.; Nayak, A. K.; Felser, C.; Parkin, S. S. P.

    2016-08-01

    Recently non-collinear magnetic structures have attracted renewed attention due to the novel Hall effects that they display. In earlier work evidence for a non-collinear magnetic structure has been reported for the ferromagnetic Heusler compound Mn2RhSn. Using sputtering techniques we have prepared high quality epitaxial thin films of Mn2RhSn by high temperature growth on MgO (001) substrates. The films are tetragonally distorted with an easy magnetization axis along the c-axis. Moreover, we find evidence for an anomalous Hall effect whose magnitude increases strongly below the Curie temperature that is near room temperature. Consistent with theoretical calculations of the anomalous Hall conductivity that we have carried out by deriving the Berry curvature from the electronic structure of perfectly ordered Mn2RhSn, the sign of the anomalous Hall conductivity is negative, although the measured value is considerably smaller than the calculated value. We attribute this difference to small deviations in stoichiometry and chemical ordering. We also find evidence for a topological Hall resistivity of about 50 nΩ cm, which is ∼5% of the anomalous Hall effect, for temperatures below 100 K. The topological Hall effect signifies the presence of a chiral magnetic structure that evolves from the non-collinear magnetic structure that Mn2RhSn is known to exhibit.

  6. Electrical characterization of all-optical helicity-dependent switching in ferromagnetic Hall crosses

    NASA Astrophysics Data System (ADS)

    El Hadri, M. S.; Pirro, P.; Lambert, C.-H.; Bergeard, N.; Petit-Watelot, S.; Hehn, M.; Malinowski, G.; Montaigne, F.; Quessab, Y.; Medapalli, R.; Fullerton, E. E.; Mangin, S.

    2016-02-01

    We present an experimental study of all-optical helicity-dependent switching (AO-HDS) of ferromagnetic Pt/Co/Pt heterostructures with perpendicular magnetic anisotropy. The sample is patterned into a Hall cross and the AO-HDS is measured via the anomalous Hall effect. This all-electrical probing of the magnetization during AO-HDS enables a statistical quantification of the switching ratio for different laser parameters, such as the threshold power to achieve AO-HDS and the exposure time needed to reach complete switching at a given laser power. We find that the AO-HDS is a cumulative process, a certain number of optical pulses is needed to obtain a full and reproducible helicity-dependent switching. The deterministic switching of the ferromagnetic Pt/Co/Pt Hall cross provides a full "opto-spintronic device," where the remanent magnetization can be all-optically and reproducibly written and erased without the need of an external magnetic field.

  7. a Variational Ground State for the Fractional Quantum Hall Effect.

    NASA Astrophysics Data System (ADS)

    Galejs, Robert Julian

    1987-09-01

    The fractional quantum Hall effect has aroused much interest in recent years. A large portion of the research in this field has centered on the theoretical understanding of the ground state properties of a system of two-dimensional electrons in a perpendicular magnetic field. One of the most successful models for such a system is that of Laughlin, who proposed a trial wavefunction to model the ground state for certain electron densities. The present work examines the ground state of this system variationally for three and four electrons. The ground state was modeled as a sum of Slater determinants composed of one-electron functions from the lowest Landau level. This wavefunction was placed on a disk of neutralizing charge and the coefficients of the determinants varied to minimize the energy. This variational wavefunction may be compared directly with Laughlin's, as well as model densities not described by Laughlin. The energy per electron was found to vary smoothly as a function of filling factor except at discrete points where there was an upward cusp. Downward cusps, as found by other investigators, were not found in this work. In the smooth portions, the wavefunction is incompressible whereas at the cusps, the wavefunction undergoes a drastic change. In the presence of impurities, these upward cusps smooth out and the wavefunction is now charge-density-wave -like near the former location of the cusps. This variation between incompressible and charge-density-wave behavior may give an explanation of the behavior of the Hall plateau widths as a function of impurity concentration. At a filling factor of 1/3 it was found that the Laughlin wavefunction is a very good approximation to the ground state, giving a very large overlap with and only a slightly higher energy than the variational state calculated here. Laughlin's excited states appear to be a good approximation as well, although the details of their charge density may not be. A new class of wavefunctions was

  8. Giant spin Hall effect in CuBi alloys

    NASA Astrophysics Data System (ADS)

    Otani, Yoshichika

    2013-03-01

    Spintronic devices manipulating pure spin currents, flows of spin angular momentum without net charge current, should play an important role in low energy consumption electronics for next generation. This explains the current interest for the spin Hall effect (SHE) which provides a purely electrical way to create spin currents without ferromagnets and magnetic fields. In this work, we have studied extrinsic SHEs in Cu-based alloys. Copper itself does not show any SHE, but by adding impurities with strong spin-orbit interactions such as Ir and Bi, the extrinsic SHEs can be generated and one can tune the SH angle which represents the maximum yield of conversion of charge to spin current density. The SH resistance was measured by means of spin absorption method using a lateral spin valve structure with an inserted wire of SHE material. We found that Cu99.5Bi0.5 exhibited a very large negative SH resistance whereas Pt and a Cu99Ir1 alloy had positive SH resistances. From nonlocal spin valve measurements with the SHE materials, we can obtain the spin absorption rates as well as the spin diffusion lengths of the SHE materials. The spin Hall angle was determined by fitting experimental data to two theoretical models, i.e., a purely 1D model and a 3D spin transport model based on an extension to 3D of the Valet-Fert formalism. For Pt and CuIr alloys, the spin diffusion lengths are smaller than their thickness (20 nm), and the SH angles obtained from the 1D and 3D analyses are similar to each other (about 2% for both Pt and CuIr). For CuBi alloys, however, the analysis in the 3D model gave much larger SH angle of about - 24% than the 1D of about -12%. More interestingly the fact that Bi impurities generated much larger SH angle than Pt and Ir, was consistent with a recent ab-initio theoretical calculation.

  9. Hall current effect on tearing mode instability. [possible cause of magnetic field reconnection in space

    NASA Technical Reports Server (NTRS)

    Terasawa, T.

    1983-01-01

    From a linear 2-D eigenmode analysis, it is found that the Hall current effect on collisional tearing mode instability becomes important for the thin magnetic reversal layer whose width is comparable to the ion inertia length; Hall currents produce a three-dimensional field structure and increase the reconnection (growth) rate. Since the magnetaic reversal layer widths both in the magnetopause and in the magnetotail are reported to become as thin as the ion inertial length (several hundred km) when the reconnection process is supposed to occur, the Hall current effect may explain the appearance of the dawn-dusk component of the magnetic field in the magnetotail reconnection region.

  10. Comparative Study on the Performance of Five Different Hall Effect Devices

    PubMed Central

    Paun, Maria-Alexandra; Sallese, Jean-Michel; Kayal, Maher

    2013-01-01

    Five different Hall Effect sensors were modeled and their performance evaluated using a three dimensional simulator. The physical structure of the implemented sensors reproduces a certain technological fabrication process. Hall voltage, absolute, current-related, voltage-related and power-related sensitivities were obtained for each sensor. The effect of artificial offset was also investigated for cross-like structures. The simulation procedure guides the designer in choosing the Hall cell optimum shape, dimensions and device polarization conditions that would allow the highest performance. PMID:23385419

  11. Quantum Hall Effect near the charge neutrality point in graphene

    NASA Astrophysics Data System (ADS)

    Leon, Jorge; Gusev, Guennadii; Plentz, Flavio

    2013-03-01

    The Quantum Hall effect (QHE) of a two-dimensional (2D) electron gas in a strong magnetic field is one of the most fascinating quantum phenomena discovered in condensed matter physics. In this work we propose to study the transport properties of the single layer and bilayer of graphene at the charge neutrality point (CNP) and compare it with random magnetic model developed in theoretical papers in which we argue that at CNP graphene layer is still inhomogeneous, very likely due to random potential of impurities. The random potential fluctuations induce smooth fluctuations in the local filling factor around ν = 0. In this case the transport is determined by special class of trajectories, ``the snake states'', propagating along contour ν = 0. The situation is very similar to the transport of a two-dimensional particles moving in a spatially modulated random magnetic field with zero mean value. We especially emphasize that our results may be equally relevant to the composite fermions description of the half-filled Landau level. The authors thank to CNPq and FAPESP for financial support for this work.

  12. Robust electron pairing in the integer quantum hall effect regime.

    PubMed

    Choi, H K; Sivan, I; Rosenblatt, A; Heiblum, M; Umansky, V; Mahalu, D

    2015-01-01

    Electron pairing is a rare phenomenon appearing only in a few unique physical systems; for example, superconductors and Kondo-correlated quantum dots. Here, we report on an unexpected electron pairing in the integer quantum Hall effect regime. The pairing takes place within an interfering edge channel in an electronic Fabry-Perot interferometer at a wide range of bulk filling factors, between 2 and 5. We report on three main observations: high-visibility Aharonov-Bohm conductance oscillations with magnetic flux periodicity equal to half the magnetic flux quantum; an interfering quasiparticle charge equal to twice the elementary electron charge as revealed by quantum shot noise measurements, and full dephasing of the pairs' interference by induced dephasing of the adjacent inner edge channel-a manifestation of inter-channel entanglement. Although this pairing phenomenon clearly results from inter-channel interaction, the exact mechanism that leads to electron-electron attraction within a single edge channel is not clear. We believe that substantial efforts are needed in order to clarify these intriguing and unexpected findings. PMID:26096516

  13. Does the Hall Effect Solve the Flux Pileup Saturation Problem?

    NASA Technical Reports Server (NTRS)

    Dorelli, John C.

    2010-01-01

    It is well known that magnetic flux pileup can significantly speed up the rate of magnetic reconnection in high Lundquist number resistive MHD,allowing reconnection to proceed at a rate which is insensitive to the plasma resistivity over a wide range of Lundquist number. Hence, pileup is a possible solution to the Sweet-Parker time scale problem. Unfortunately, pileup tends to saturate above a critical value of the Lundquist number, S_c, where the value ofS_c depends on initial and boundary conditions, with Sweet-Parker scaling returning above S_c. It has been argued (see Dorelli and Bim [2003] and Dorelli [2003]) that the Hall effect can allow flux pileup to saturate (when the scale of the current sheet approaches ion inertial scale, di) before the reconnection rate begins to stall. However, the resulting saturated reconnection rate, while insensitive to the plasma resistivity, was found to depend strongly on the di. In this presentation, we revisit the problem of magnetic island coalescence (which is a well known example of flux pileup reconnection), addressing the dependence of the maximum coalescence rate on the ratio of di in the "large island" limit in which the following inequality is always satisfied: l_eta di lambda, where I_eta is the resistive diffusion length and lambda is the island wavelength.

  14. A path integral approach to fractional quantum Hall effect

    SciTech Connect

    Kvale, M.N.

    1989-01-01

    In this paper the author reformulates and further develops the cooperative-ring-exchange (CRE) theory of the fractional quantum Hall effect. Initially, a classical two-dimensional electron gas is considered and a guiding-center approximation is made for strong magnetic fields. The resulting Lagrangian is quantized via path integration and the integral is evaluated using the semiclassical approximation. By considering the CRE processes and a time discretization procedure, the 2DEG is mapped to two different lattice models that bracket the behavior of the system. Analysis of the behavior of the system shows an underlying modular symmetry and allows one to made some new experimental predictions. By interpreting the CRE processes as a loop-space formulation of a lattice gauge field theory, a Landau-Ginzburg action is derived that contains most of the important physics associated with the FQHE and chose ground state can be identified with the Laughlin wave function. Finally, the Laughlin wave function is derived directly from the partition function in the FQHE regime.

  15. Quantum Anomalous Hall Effect in Low-buckled Honeycomb Lattice with In-plane Magnetization

    NASA Astrophysics Data System (ADS)

    Ren, Yafei; Pan, Hui; Yang, Fei; Li, Xin; Qiao, Zhenhua; Zhenhua Qiao's group Team; Hui Pan's group Team

    With out-of-plane magnetization, the quantum anomalous Hall effect has been extensively studied in quantum wells and two-dimensional atomic crystal layers. Here, we investigate the possibility of realizing quantum anomalous Hall effect (QAHE) in honeycomb lattices with in-plane magnetization. We show that the QAHE can only occur in low-buckled honeycomb lattice where both intrinsic and intrinsic Rashba spin-orbit coupling appear spontaneously. The extrinsic Rashba spin-orbit coupling is detrimental to this phase. In contrast to the out-of-plane magnetization induced QAHE, the QAHE from in-plane magnetization is achieved in the vicinity of the time reversal symmetric momenta at M points rather than Dirac points. In monolayer case, the QAHE can be characterized by Chern number  = +/- 1 whereas additional phases with Chern number  = +/- 2 appear in chiral stacked bilayer system. The Chern number strongly depends on the orientation of the magnetization. The bilayer system also provides additional tunability via out-of-plane electric field, which can reduce the critical magnetization strength required to induce QAHE. It can also lead to topological phase transitions from  = +/- 2 to +/- 1 and finally to 0 Equal contribution from Yafei Ren and Hui Pan.

  16. Automated quantum Hall resistance standard

    SciTech Connect

    Schumacher, B.

    1994-12-31

    For precision quantized Hall resistance measurements quantum Hall effect samples have to be checked according to the CCE-guidelines. To perform these checks an automated measuring system is described, which is able to examine and characterize various samples. With these measurements a calibration of a precision 10 k{Omega} resistance standard is obtained with an uncertainty of better than 5 x 10{sup -8} (1 {sigma}) using a long-scale digital multimeter.

  17. High Performance Power Module for Hall Effect Thrusters

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Peterson, Peter Y.; Bowers, Glen E.

    2002-01-01

    Previous efforts to develop power electronics for Hall thruster systems have targeted the 1 to 5 kW power range and an output voltage of approximately 300 V. New Hall thrusters are being developed for higher power, higher specific impulse, and multi-mode operation. These thrusters require up to 50 kW of power and a discharge voltage in excess of 600 V. Modular power supplies can process more power with higher efficiency at the expense of complexity. A 1 kW discharge power module was designed, built and integrated with a Hall thruster. The breadboard module has a power conversion efficiency in excess of 96 percent and weighs only 0.765 kg. This module will be used to develop a kW, multi-kW, and high voltage power processors.

  18. Hall effect sensors embedded within two-pole toothless stator assembly

    NASA Technical Reports Server (NTRS)

    Denk, Joseph (Inventor); Grant, Richard J. (Inventor)

    1994-01-01

    A two-pole toothless PM machine employs Hall effect sensors to indicate the position of the machine's rotor relative to power windings in the machine's stator. The Hall effect sensors are located in the main magnetic air gap underneath the power windings. The main magnetic air gap is defined by an outer magnetic surface of the rotor and an inner surface of the stator's flux collector ring.

  19. Thickness Dependence of the Quantum Anomalous Hall Effect in Magnetic Topological Insulator Films.

    PubMed

    Feng, Xiao; Feng, Yang; Wang, Jing; Ou, Yunbo; Hao, Zhenqi; Liu, Chang; Zhang, Zuocheng; Zhang, Liguo; Lin, Chaojing; Liao, Jian; Li, Yongqing; Wang, Li-Li; Ji, Shuai-Hua; Chen, Xi; Ma, Xucun; Zhang, Shou-Cheng; Wang, Yayu; He, Ke; Xue, Qi-Kun

    2016-08-01

    The evolution of the quantum anomalous Hall effect with the thickness of Cr-doped (Bi,Sb)2 Te3 magnetic topological insulator films is studied, revealing how the effect is caused by the interplay of the surface states, band-bending, and ferromagnetic exchange energy. Homogeneity in ferromagnetism is found to be the key to high-temperature quantum anomalous Hall material. PMID:27166762

  20. The Bulk-Edge Correspondence for the Quantum Hall Effect in Kasparov Theory

    NASA Astrophysics Data System (ADS)

    Bourne, Chris; Carey, Alan L.; Rennie, Adam

    2015-09-01

    We prove the bulk-edge correspondence in K-theory for the quantum Hall effect by constructing an unbounded Kasparov module from a short exact sequence that links the bulk and boundary algebras. This approach allows us to represent bulk topological invariants explicitly as a Kasparov product of boundary invariants with the extension class linking the algebras. This paper focuses on the example of the discrete integer quantum Hall effect, though our general method potentially has much wider applications.

  1. Hall and field-effect mobilities in few layered p-WSe₂ field-effect transistors.

    PubMed

    Pradhan, N R; Rhodes, D; Memaran, S; Poumirol, J M; Smirnov, D; Talapatra, S; Feng, S; Perea-Lopez, N; Elias, A L; Terrones, M; Ajayan, P M; Balicas, L

    2015-01-01

    Here, we present a temperature (T) dependent comparison between field-effect and Hall mobilities in field-effect transistors based on few-layered WSe2 exfoliated onto SiO2. Without dielectric engineering and beyond a T-dependent threshold gate-voltage, we observe maximum hole mobilities approaching 350 cm(2)/Vs at T = 300 K. The hole Hall mobility reaches a maximum value of 650 cm(2)/Vs as T is lowered below ~150 K, indicating that insofar WSe2-based field-effect transistors (FETs) display the largest Hall mobilities among the transition metal dichalcogenides. The gate capacitance, as extracted from the Hall-effect, reveals the presence of spurious charges in the channel, while the two-terminal sheet resistivity displays two-dimensional variable-range hopping behavior, indicating carrier localization induced by disorder at the interface between WSe2 and SiO2. We argue that improvements in the fabrication protocols as, for example, the use of a substrate free of dangling bonds are likely to produce WSe2-based FETs displaying higher room temperature mobilities, i.e. approaching those of p-doped Si, which would make it a suitable candidate for high performance opto-electronics. PMID:25759288

  2. Bosonic Integer Quantum Hall Effect in an Interacting Lattice Model

    NASA Astrophysics Data System (ADS)

    He, Yin-Chen; Bhattacharjee, Subhro; Moessner, R.; Pollmann, Frank

    2015-09-01

    We study a bosonic model with correlated hopping on a honeycomb lattice, and show that its ground state is a bosonic integer quantum Hall (BIQH) phase, a prominent example of a symmetry-protected topological (SPT) phase. By using the infinite density matrix renormalization group method, we establish the existence of the BIQH phase by providing clear numerical evidence: (i) a quantized Hall conductance with |σx y|=2 , (ii) two counterpropagating gapless edge modes. Our simple model is an example of a novel class of systems that can stabilize SPT phases protected by a continuous symmetry on lattices and opens up new possibilities for the experimental realization of these exotic phases.

  3. 3d Transition Metal Adsorption Induced the valley-polarized Anomalous Hall Effect in Germanene

    NASA Astrophysics Data System (ADS)

    Zhou, P.; Sun, L. Z.

    2016-06-01

    Based on DFT + U and Berry curvature calculations, we study the electronic structures and topological properties of 3d transition metal (TM) atom (from Ti to Co) adsorbed germanene (TM-germanene). We find that valley-polarized anomalous Hall effect (VAHE) can be realized in germanene by adsorbing Cr, Mn, or Co atoms on its surface. A finite valley Hall voltage can be easily detected in their nanoribbon, which is important for valleytronics devices. Moreover, different valley-polarized current and even reversible valley Hall voltage can be archived by shifting the Fermi energy of the systems. Such versatile features of the systems show potential in next generation electronics devices.

  4. Quantum Hall effect on centimeter scale chemical vapor deposited graphene films

    NASA Astrophysics Data System (ADS)

    Shen, Tian; Wu, Wei; Yu, Qingkai; Richter, Curt A.; Elmquist, Randolph; Newell, David; Chen, Yong P.

    2011-12-01

    We report observations of well developed half integer quantum Hall effect on mono layer graphene films of 7 mm × 7 mm in size. The graphene films are grown by chemical vapor deposition on copper, then transferred to SiO2/Si substrates, with typical carrier mobilities ≈4000 cm2/Vs. The large size graphene with excellent quality and electronic homogeneity demonstrated in this work is promising for graphene-based quantum Hall resistance standards and can also facilitate a wide range of experiments on quantum Hall physics of graphene and practical applications exploiting the exceptional properties of graphene.

  5. Quantum Hall effect on centimeter scale chemical vapor deposited graphene films

    NASA Astrophysics Data System (ADS)

    Shen, Tian; Wu, Wei; Yu, Qingkai; Richter, Curt; Elmquist, Randolph; Newell, David; Chen, Yong

    2012-02-01

    We report observations of well developed half integer quantum Hall effect on mono layer graphene films of 7 mm by 7 mm in size. The graphene films are grown by chemical vapor deposition on copper, then transferred to SiO2/Si substrates, with typical carrier mobilities 4000 cm^2/Vs. The large size graphene with excellent quality and electronic homogeneity demonstrated in this work is promising for graphene-based quantum Hall resistance standards, and can also facilitate a wide range of experiments on quantum Hall physics of graphene and practical applications exploiting the exceptional properties of graphene.

  6. Half integer features in the quantum Hall Effect: experiment and theory

    NASA Astrophysics Data System (ADS)

    Kramer, Tobias; Heller, E. J.; Parrott, R. E.; Liang, C.-T.; Huang, C. F.; Chen, K. Y.; Lin, L.-H.; Wu, J.-Y.; Lin, S.-D.

    2009-03-01

    We discuss experimental data and a new model of the integer quantum Hall effect (IQHE), which explains an intriguing substructure within Landau levels observed at higher currents. The experiments show inflection points in the Hall resistivity around filling factors 5/2 and 7/2. The experiments require to revisit the foundations of the IQHE and to establish an injection model which incorporates the correct boundary conditions imposed by a real Hall device and the Lorentz force. We have to follow the electrons to their source: one corner of the Hall bar and its steep electric field gradients, rather than focusing on the middle of the Hall device. We find the entire Hall resistivity curve is calculable as a function of magnetic field, temperature, and current. In contrast to previous theories of the IQHE, disorder plays no fundamental role in our theory. Contrary to the standard picture of Landau levels in disorder system, we predict and observe gaps right in the middle of certain Landau levels. The Hall plateaus and half integer inflections are shown to result from the LDOS appropriate to the magnetic field and the strong electric field at the injection corner.

  7. Electric field induced quantum anomalous Hall effect in two-dimensional antiferromagnetic triphenyl-lead lattice

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Jung; Li, Chaokai; Feng, Ji; Zhang, Zhenyu; Cho, Jun-Hyung

    The tuning of topological states is of significant fundamental and practical importance in contemporary condensed matter physics, for which the extension to two-dimensional (2D) organometallic systems is particularly attractive. Using first-principles calculations, we find that a 2D hexagonal triphenyl-lead lattice composed of only main group elements is susceptible to a magnetic instability, characterized by a antiferromagnetic (AFM) insulating state with a renormalized valley gaps with gap difference of 24 meV due to the spin and valley coupling. This AFM state will be subject to a anomalous valley Hall effect under the action of Berry curvature-induced spin and valley currents via, for example, injection of circularly polarized light. Furthermore, such a AFM band insulator can be tuned into a topologically nontrivial quantum anomalous Hall state with a Chern number of one by the application of an out-of-plane electric field. These findings further enrich our understanding of 2D hexagonal organometallic lattices for potential applications in spintronics and valleytronics.

  8. Non-Contact Thermal Characterization of NASA's HERMeS Hall Thruster

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Kamhawi, Hani; Meyers, James L.; Yim, John T.; Neff, Gregory

    2015-01-01

    The Thermal Characterization Test of NASAs 12.5-kW Hall thruster is being completed. This thruster is being developed to support of a number of potential Solar Electric Propulsion Technology Demonstration Mission concepts, including the Asteroid Redirect Robotic Mission concept. As a part of this test, an infrared-based, non-contact thermal imaging system was developed to measure Hall thruster surfaces that are exposed to high voltage or harsh environment. To increase the accuracy of the measurement, a calibration array was implemented, and a pilot test was performed to determine key design parameters for the calibration array. The raw data is analyzed in conjunction with a simplified thermal model of the channel to account for reflection. The reduced data will be used to refine the thruster thermal model, which is critical to the verification of the thruster thermal specifications. The present paper will give an overview of the decision process that led to identification of the need for a non-contact temperature diagnostic, the development of said diagnostic, the measurement results, and the simplified thermal model of the channel.

  9. Characterizing low-frequency oscillation of Hall thrusters by dielectric wall temperature variation

    SciTech Connect

    Ning, Guo; Liqiu, Wei E-mail: weiliqiu@hit.edu.cn; Yongjie, Ding

    2014-05-15

    The low-frequency oscillation characteristics of a Hall thruster were investigated by varying the dielectric wall temperature. Experimental results indicate that increasing the dielectric wall temperature can result in an increase in the amplitude of low-frequency oscillation and a slight decrease in its frequency. Physical analysis revealed that this change is related to the secondary electron emissions at different dielectric wall temperatures. The evidence suggests that this technique can serve as an effective way for future studies to examine how secondary electron emissions affect a discharging thruster.

  10. The Virtual Lecture Hall: Utilisation, Effectiveness and Student Perceptions

    ERIC Educational Resources Information Center

    Cramer, Kenneth M.; Collins, Kandice R.; Snider, Don; Fawcett, Graham

    2007-01-01

    We presently introduce the Virtual Lecture Hall (VLH), an instructional computer-based platform for delivering Microsoft PowerPoint slides threaded with audio clips for later review. There were 839 male and female university students enrolled in an introductory psychology class who had access to review class lectures via the VLH. This tool was…

  11. Hall effect and magnetoresistivity in the ternary molybdenum sulfides

    NASA Technical Reports Server (NTRS)

    Woollam, J. A.; Haugland, E. J.; Alterovitz, S. A.

    1978-01-01

    The Hall coefficient and magnetoresistance of sputtered films of Cu(x)Mo6S8 and PbMo6S8 have been measured, as well as the magnetoresistance in sintered samples of the same materials. Assuming a single band model, net carrier densities and mean mobilities are determined

  12. Understanding the physics of a possible non-Abelian fractional quantum hall effect state.

    SciTech Connect

    Pan, Wei; Crawford, Matthew; Tallakulam, Madhu; Ross, Anthony Joseph, III

    2010-10-01

    We wish to present in this report experimental results from a one-year Senior Council Tier-1 LDRD project that focused on understanding the physics of a possible non-Abelian fractional quantum Hall effect state. We first give a general introduction to the quantum Hall effect, and then present the experimental results on the edge-state transport in a special fractional quantum Hall effect state at Landau level filling {nu} = 5/2 - a possible non-Abelian quantum Hall state. This state has been at the center of current basic research due to its potential applications in fault-resistant topological quantum computation. We will also describe the semiconductor 'Hall-bar' devices we used in this project. Electron physics in low dimensional systems has been one of the most exciting fields in condensed matter physics for many years. This is especially true of quantum Hall effect (QHE) physics, which has seen its intellectual wealth applied in and has influenced many seemingly unrelated fields, such as the black hole physics, where a fractional QHE-like phase has been identified. Two Nobel prizes have been awarded for discoveries of quantum Hall effects: in 1985 to von Klitzing for the discovery of integer QHE, and in 1998 to Tsui, Stormer, and Laughlin for the discovery of fractional QHE. Today, QH physics remains one of the most vibrant research fields, and many unexpected novel quantum states continue to be discovered and to surprise us, such as utilizing an exotic, non-Abelian FQHE state at {nu} = 5/2 for fault resistant topological computation. Below we give a briefly introduction of the quantum Hall physics.

  13. Berry curvature induced nonlinear Hall effect in time-reversal invariant materials

    NASA Astrophysics Data System (ADS)

    Sodemann, Inti; Fu, Liang

    2015-03-01

    It is well-known that a non-vanishing Hall conductivity requires time-reversal symmetry breaking. However, in this work, we demonstrate that a Hall-like transverse current can occur in second-order response to an external electric field in a wide class of time-reversal invariant and inversion breaking materials. This nonlinear Hall effect arises from the dipole moment of the Berry curvature in momentum space, which generates a net anomalous velocity when the system is in a current-carrying state. We show that the nonlinear Hall coefficient is a rank-two pseudo-tensor, whose form is determined by point group symmetry. We will describe the optimal conditions and candidate materials to observe this effect. IS is supported by the Pappalardo Fellowship in Physics. LF is supported by DOE Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0010526.

  14. Metallization and Hall-effect of Mg{sub 2}Ge under high pressure

    SciTech Connect

    Li, Yuqiang; Gao, Yang; Han, Yonghao Liu, Cailong; Peng, Gang; Ke, Feng; Gao, Chunxiao; Wang, Qinglin; Ma, Yanzhang

    2015-10-05

    The electrical transport properties of Mg{sub 2}Ge under high pressure were studied with the in situ temperature-dependent resistivity and Hall-effect measurements. The theoretically predicted metallization of Mg{sub 2}Ge was definitely found around 7.4 GPa by the temperature-dependent resistivity measurement. Other two pressure-induced structural phase transitions were also reflected by the measurements. Hall-effect measurement showed that the dominant charge carrier in the metallic Mg{sub 2}Ge was hole, indicating the “bad metal” nature of Mg{sub 2}Ge. The Hall mobility and charge carrier concentration results pointed out that the electrical transport behavior in the antifluorite phase was controlled by the increase quantity of drifting electrons under high pressure, but in both anticotunnite and Ni{sub 2}In-type phases it was governed by the Hall mobility.

  15. The Quantum Spin Hall Effect: Theory and Experiment

    NASA Astrophysics Data System (ADS)

    König, Markus; Buhmann, Hartmut; Molenkamp, Laurens W.; Hughes, Taylor; Liu, Chao-Xing; Qi, Xiao-Liang; Zhang, Shou-Cheng

    2008-03-01

    The search for topologically non-trivial states of matter has become an important goal for condensed matter physics. Recently, a new class of topological insulators has been proposed. These topological insulators have an insulating gap in the bulk, but have topologically protected edge states due to the time reversal symmetry. In two dimensions the helical edge states give rise to the quantum spin Hall (QSH) effect, in the absence of any external magnetic field. Here we review a recent theory which predicts that the QSH state can be realized in HgTe/CdTe semiconductor quantum wells (QWs). By varying the thickness of the QW, the band structure changes from a normal to an “inverted” type at a critical thickness dc. We present an analytical solution of the helical edge states and explicitly demonstrate their topological stability. We also review the recent experimental observation of the QSH state in HgTe/(Hg,Cd)Te QWs. We review both the fabrication of the sample and the experimental setup. For thin QWs with well width dQW<6.3 nm, the insulating regime shows the conventional behavior of vanishingly small conductance at low temperature. However, for thicker QWs (dQW>6.3 nm), the nominally insulating regime shows a plateau of residual conductance close to 2e2/h. The residual conductance is independent of the sample width, indicating that it is caused by edge states. Furthermore, the residual conductance is destroyed by a small external magnetic field. The quantum phase transition at the critical thickness, dc=6.3 nm, is also independently determined from the occurrence of a magnetic field induced insulator to metal transition.

  16. The Quantum Spin Hall Effect: Theory and Experiment

    SciTech Connect

    Konig, Markus; Buhmann, Hartmut; Molenkamp, Laurens W.; Hughes, Taylor L.; Liu, Chao-Xing; Qi, Xiao-Liang; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-19

    The search for topologically non-trivial states of matter has become an important goal for condensed matter physics. Recently, a new class of topological insulators has been proposed. These topological insulators have an insulating gap in the bulk, but have topologically protected edge states due to the time reversal symmetry. In two dimensions the helical edge states give rise to the quantum spin Hall (QSH) effect, in the absence of any external magnetic field. Here we review a recent theory which predicts that the QSH state can be realized in HgTe/CdTe semiconductor quantum wells. By varying the thickness of the quantum well, the band structure changes from a normal to an 'inverted' type at a critical thickness d{sub c}. We present an analytical solution of the helical edge states and explicitly demonstrate their topological stability. We also review the recent experimental observation of the QSH state in HgTe/(Hg,Cd)Te quantum wells. We review both the fabrication of the sample and the experimental setup. For thin quantum wells with well width d{sub QW} < 6.3 nm, the insulating regime shows the conventional behavior of vanishingly small conductance at low temperature. However, for thicker quantum wells (d{sub QW} > 6.3 nm), the nominally insulating regime shows a plateau of residual conductance close to 2e{sup 2}/h. The residual conductance is independent of the sample width, indicating that it is caused by edge states. Furthermore, the residual conductance is destroyed by a small external magnetic field. The quantum phase transition at the critical thickness, d{sub c} = 6.3 nm, is also independently determined from the occurrence of a magnetic field induced insulator to metal transition.

  17. Higgs mechanism, phase transitions, and anomalous Hall effect in three-dimensional topological superconductors

    NASA Astrophysics Data System (ADS)

    Nogueira, Flavio S.; Sudbø, Asle; Eremin, Ilya

    2015-12-01

    We demonstrate that the Higgs mechanism in three-dimensional topological superconductors exhibits unique features with experimentally observable consequences. The Higgs model we discuss has two superconducting components and an axionlike magnetoelectric term with the phase difference of the superconducting order parameters playing the role of the axion field. Due to this additional term, quantum electromagnetic and phase fluctuations lead to a robust topologically nontrivial state that holds also in the presence of interactions. In this sense, we show that the renormalization flow of the topologically nontrivial phase cannot be continuously deformed into a topologically nontrivial one. One consequence of our analysis of quantum critical fluctuations is the possibility of having a first-order phase transition in the bulk and a second-order phase transition on the surface. We also explore another consequence of the axionic Higgs electrodynamics, namely, the anomalous Hall effect. In the low-frequency London regime an anomalous Hall effect is induced in the presence of an applied electric field parallel to the surface. This anomalous Hall current is induced by a Lorentz-like force arising from the axion term, and it involves the relative superfluid velocity of the superconducting components. The anomalous Hall current has a negative sign, a situation reminiscent of but quite distinct in physical origin from the anomalous Hall effect observed in high-Tc superconductors. In contrast to the latter, the anomalous Hall effect in topological superconductors is nondissipative and occurs in the absence of vortices.

  18. Probing the thermal Hall effect using miniature capacitive strontium titanate thermometry

    NASA Astrophysics Data System (ADS)

    Tinsman, Colin; Li, Gang; Su, Caroline; Asaba, Tomoya; Lawson, Benjamin; Yu, Fan; Li, Lu

    2016-06-01

    The thermal Hall effect is the thermal analog of the electrical Hall effect. Rarely observed in normal metals, thermal Hall signals have been argued to be a key property for a number of strongly correlated materials, such as high temperature superconductors, correlated topological insulators, and quantum magnets. The observation of the thermal Hall effect requires precise measurement of temperature in intense magnetic fields. Particularly at low temperature, resistive thermometers have a strong dependence on field, which makes them unsuitable for this purpose. We have created capacitive thermometers which instead measure the dielectric constant of strontium titanate (SrTiO3). SrTiO3 approaches a ferroelectric transition, causing its dielectric constant to increase by a few orders of magnitude at low temperature. As a result, these thermometers are very sensitive at low temperature while having very little dependence on the applied magnetic field, making them ideal for thermal Hall measurements. We demonstrate this method by making measurements of the thermal Hall effect in Bismuth in magnetic fields of up to 10 T.

  19. Temperature-dependent nonlinear Hall effect in macroscopic Si-MOS antidot array

    NASA Astrophysics Data System (ADS)

    Kuntsevich, A. Yu.; Shupletsov, A. V.; Nunuparov, M. S.

    2016-05-01

    By measuring magnetoresistance and the Hall effect in a classically moderate perpendicular magnetic field in a Si-MOSFET-type macroscopic antidot array, we found a nonlinear with field, temperature- and density-dependent Hall resistivity. We argue that this nonlinearity originates from low mobility shells of the antidots with a strong temperature dependence of the resistivity and suggest a qualitative explanation of the phenomenon.

  20. Electronic Transport and Quantum Hall Effect in Bipolar Graphene p-n-p Junctions

    NASA Astrophysics Data System (ADS)

    Özyilmaz, Barbaros; Jarillo-Herrero, Pablo; Efetov, Dmitri; Abanin, Dmitry A.; Levitov, Leonid S.; Kim, Philip

    2007-10-01

    We have developed a device fabrication process to pattern graphene into nanostructures of arbitrary shape and control their electronic properties using local electrostatic gates. Electronic transport measurements have been used to characterize locally gated bipolar graphene p-n-p junctions. We observe a series of fractional quantum Hall conductance plateaus at high magnetic fields as the local charge density is varied in the p and n regions. These fractional plateaus, originating from chiral edge states equilibration at the p-n interfaces, exhibit sensitivity to interedge backscattering which is found to be strong for some of the plateaus and much weaker for other plateaus. We use this effect to explore the role of backscattering and estimate disorder strength in our graphene devices.

  1. Effect of Background Pressure on the Plasma Oscillation Characteristics of the HiVHAc Hall Thruster

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Kamhawi, Hani; Lobbia, Robert B.; Brown, Daniel L.

    2014-01-01

    During a component compatibility test of the NASA HiVHAc Hall thruster, a number of plasma diagnostics were implemented to study the effect of varying facility background pressure on thruster operation. These diagnostics characterized the thruster performance, the plume, and the plasma oscillations in the thruster. Thruster performance and plume characteristics as functions of background pressure were previously published. This paper focuses on changes in the plasma oscillation characteristics with changing background pressure. The diagnostics used to study plasma oscillations include a high-speed camera and a set of high-speed Langmuir probes. The results show a rise in the oscillation frequency of the "breathing" mode with rising background pressure, which is hypothesized to be due to a shortening acceleration/ionization zone. An attempt is made to apply a simplified ingestion model to the data. The combined results are used to estimate the maximum acceptable background pressure for performance and wear testing.

  2. Anomalous Hall effect sensors based on magnetic element doped topological insulator thin films

    NASA Astrophysics Data System (ADS)

    Ni, Yan; Zhang, Zhen; Nlebedim, Ikenna; Jiles, David

    Anomalous Hall effect (AHE) is recently discovered in magnetic element doped topological insulators (TIs), which promises low power consumption highly efficient spintronics and electronics. This discovery broaden the family of Hall effect (HE) sensors. In this work, both HE and AHE sensor based on Mn and Cr doped Bi2Te3 TI thin films will be systematically studied. The influence of Mn concentration on sensitivity of MnxBi2-xTe3 HE sensors will be discussed. The Hall sensitivity increase 8 times caused by quantum AHE will be reported. AHE senor based on Cr-doped Bi2Te3 TI thin films will also be studied and compared with Mn doped Bi2Te3 AHE sensor. The influence of thickness on sensitivity of CrxBi2-xTe3 AHE sensors will be discussed. Ultrahigh Hall sensitivity is obtained in Cr doped Bi2Te3. The largest Hall sensitivity can reach 2620 Ω/T in sensor which is almost twice higher than that of the normal semiconductor HE sensor. Our work indicates that magnetic element doped topological insulator with AHE are good candidates for ultra-sensitive Hall effect sensors.

  3. Effect of magnetic field profile on the anode fall in a Hall-effect thruster discharge

    SciTech Connect

    Dorf, L.; Raitses, Y.; Fisch, N.J.

    2006-05-15

    The effect of the magnetic field configuration on the anode fall in an E-vectorxB-vector discharge of a Hall thruster is studied both experimentally and theoretically. Plasma potential, electron temperature, and plasma density in the near-anode region are measured with a biased probe in three configurations of the magnetic field. It is observed that the anode fall in a Hall thruster can be changed from negative to positive by creating a magnetic field configuration with a zero magnetic field region. Similar configurations are utilized in some advanced Hall thrusters, like an ATON thruster. Results of the measurements are employed to model a Hall thruster with different magnetic field configurations, including the one with a zero-field region. Different anode sheath regimes observed experimentally are used to set the boundary conditions for the quasineutral plasma. Numerical solutions obtained with a hydrodynamic quasi-one-dimensional model suggest that varying the magnetic field configuration affects the electron mobility both inside and outside the channel, as well as the plasma density distribution along the axis.

  4. Intrinsic quantum spin Hall and anomalous Hall effects in h-Sb/Bi epitaxial growth on a ferromagnetic MnO2 thin film.

    PubMed

    Zhou, Jian; Sun, Qiang; Wang, Qian; Kawazoe, Yoshiyuki; Jena, Puru

    2016-06-01

    Exploring a two-dimensional intrinsic quantum spin Hall state with a large band gap as well as an anomalous Hall state in realizable materials is one of the most fundamental and important goals for future applications in spintronics, valleytronics, and quantum computing. Here, by combining first-principles calculations with a tight-binding model, we predict that Sb or Bi can epitaxially grow on a stable and ferromagnetic MnO2 thin film substrate, forming a flat honeycomb sheet. The flatness of Sb or Bi provides an opportunity for the existence of Dirac points in the Brillouin zone, with its position effectively tuned by surface hydrogenation. The Dirac points in spin up and spin down channels split due to the proximity effects induced by MnO2. In the presence of both intrinsic and Rashba spin-orbit coupling, we find two band gaps exhibiting a large band gap quantum spin Hall state and a nearly quantized anomalous Hall state which can be tuned by adjusting the Fermi level. Our findings provide an efficient way to realize both quantized intrinsic spin Hall conductivity and anomalous Hall conductivity in a single material. PMID:27181160

  5. Anomalous Hall effect on the surface of topological Kondo insulators

    NASA Astrophysics Data System (ADS)

    König, E. J.; Ostrovsky, P. M.; Dzero, M.; Levchenko, A.

    2016-07-01

    We calculate the anomalous Hall conductivity σx y of the surface states in cubic topological Kondo insulators. We consider a generic model for the surface states with three Dirac cones on the (001) surface. The Fermi velocity, the Fermi momentum, and the Zeeman energy in different Dirac pockets may be unequal. The microscopic impurity potential mediates mixed intra- and interband extrinsic scattering processes. Our calculation of σx y is based on the Kubo-Streda diagrammatic approach. It includes diffractive skew scattering contributions originating from the rare two-impurity complexes. Remarkably, these contributions yield anomalous Hall conductivity that is independent of impurity concentration, and thus is of the same order as other known extrinsic side jump and skew scattering terms. We discuss various special cases of our results and the experimental relevance of our study in the context of the recent hysteretic magnetotransport data in SmB6 samples.

  6. Anomalous Hall effect studies on Tb-Fe thin films

    NASA Astrophysics Data System (ADS)

    Rajasekhar, P.; Deepak Kumar, K.; Markandeyulu, G.

    2016-08-01

    Tbx Fe100-x (with x=11, 25, 31 and 44) thin films were prepared with the substrates kept at a temperature of 300 °C and the Hall resistivities and electrical resistivities were investigated in the temperature range 25-300 K. The sign of Hall resistivity is found to change from positive for x=31 to negative for x=44 film at temperatures 25 K and 300 K, reflecting the compensation of Tb and Fe magnetic moments between these two compositions. Perpendicular magnetic anisotropy was observed in the films of x=25 and 31 at 25 K as well as at 300 K. The Hall resistivity is seen to increase for the films of x=11 and 31 with increasing temperature, while it decreases for the films of x=25 and 44 with increasing temperature. The temperature coefficients of electrical resistivities of these films are seen to be positive. The presence of perpendicular magnetic anisotropy (refers to magnetic anisotropy, in this paper) in the temperature range 25-300 K in Tb25Fe75 and Tb31Fe69 and their metallic nature are indicators that the Tb-Fe films deposited at higher temperatures are more suitable for magneto optic data storage applications than their amorphous counterparts, due to the stability of the former.

  7. Anomalous Hall effects in amorphous Ni74 Mn24 Pt2 film

    NASA Astrophysics Data System (ADS)

    Öner, Yildirhan

    2005-04-01

    Hall resistivity and magnetic measurements for the amorphous Ni74Mn24Pt2 film have been carried out as a function of magnetic field up to 120 kOe in a wide temperature range. The anomalous Hall coefficient, Rs , the ordinary Hall coefficient R0 , the total hysteresis width of the Hall resistivity ΔH are deduced for several temperatures in the temperature range of 1.5-150 K. The Hall voltage was observed in the zero external fields at the temperature below T=10K for both zero field cooling (ZFC) and field cooling (FC) cases. The Hall resistivity hysteresis curves become completely symmetric with respect to the field axis at the temperatures above 15 K where the unidirectional fields lost its rigidity All these anomalous effects have been explained in terms of asymmetric spin-orbit scattering of the conduction electron, which are polarized to the direction of the unidirectional exchange field. It is concluded that the surface becomes dominant at low temperatures. This assertion has been supported by the susceptibility measurements.

  8. Geometric spin Hall effect of light in tightly focused polarization-tailored light beams

    NASA Astrophysics Data System (ADS)

    Neugebauer, Martin; Banzer, Peter; Bauer, Thomas; Orlov, Sergej; Lindlein, Norbert; Aiello, Andrea; Leuchs, Gerd

    2014-01-01

    Recently, it was shown that a nonzero transverse angular momentum manifests itself in a polarization-dependent intensity shift of the barycenter of a paraxial light beam [Aiello et al., Phys. Rev. Lett. 103, 100401 (2009), 10.1103/PhysRevLett.103.100401]. The underlying effect is phenomenologically similar to the spin Hall effect of light but does not depend on the specific light-matter interaction and can be interpreted as a purely geometric effect. Thus, it was named the geometric spin Hall effect of light. Here, we experimentally investigate the appearance of this effect in tightly focused vector beams. We use an experimental nanoprobing technique in combination with a reconstruction algorithm to verify the relative shifts of the components of the electric energy density and the shift of the intensity in the focal plane. By that, we experimentally demonstrate the geometric spin Hall effect of light in a highly nonparaxial beam.

  9. The effect of segmented anodes on the performance and plume of a Hall thruster

    NASA Astrophysics Data System (ADS)

    Kieckhafer, Alexander W.

    Development of alternative propellants for Hall thruster operation is an active area of research. Xenon is the current propellant of choice for Hall thrusters, but can be costly in large thrusters and for extended test periods. Condensible propellants may offer an alternative to xenon, as they will not require costly active pumping to remove from a test facility, and may be less expensive to purchase. A method has been developed which uses segmented electrodes in the discharge channel of a Hall thruster to divert discharge current to and from the main anode and thus control the anode temperature. By placing a propellant reservoir in the anode, the evaporation rate, and hence, mass flow of propellant can be controlled. Segmented electrodes for thermal control of a Hall thruster represent a unique strategy of thruster design, and thus the performance of the thruster must be measured to determine the effect the electrodes have on the thruster. Furthermore, the source of any changes in thruster performance due to the adjustment of discharge current between the shims and the main anode must be characterized. A Hall thruster was designed and constructed with segmented electrodes. It was then tested at anode voltages between 300 and 400 V and mass flows between 4 and 6 mg/s, as well as 100%, 75%, 50%, 25%, and <5% of the discharge current on the shim electrodes. The level of current on the shims was adjusted by changing the shim voltage. At each operating point, the thruster performance, plume divergence, ion energy, and multiply charged ion fraction were measured. Thruster performance exhibited a small change with the level of discharge current on the shim electrodes. Thrust and specific impulse increased by as much as 6% and 7.7%, respectively, as discharge current was shifted from the main anode to the shims at constant anode voltage. Thruster efficiency did not change. Plume divergence was reduced by approximately 4 degrees of half-angle at high levels of current on

  10. When Chiral Photons Meet Chiral Fermions: Photoinduced Anomalous Hall Effects in Weyl Semimetals.

    PubMed

    Chan, Ching-Kit; Lee, Patrick A; Burch, Kenneth S; Han, Jung Hoon; Ran, Ying

    2016-01-15

    The Weyl semimetal is characterized by three-dimensional linear band touching points called Weyl nodes. These nodes come in pairs with opposite chiralities. We show that the coupling of circularly polarized photons with these chiral electrons generates a Hall conductivity without any applied magnetic field in the plane orthogonal to the light propagation. This phenomenon comes about because with all three Pauli matrices exhausted to form the three-dimensional linear dispersion, the Weyl nodes cannot be gapped. Rather, the net influence of chiral photons is to shift the positions of the Weyl nodes. Interestingly, the momentum shift is tightly correlated with the chirality of the node to produce a net anomalous Hall signal. Application of our proposal to the recently discovered TaAs family of Weyl semimetals leads to an order-of-magnitude estimate of the photoinduced Hall conductivity which is within the experimentally accessible range. PMID:26824561

  11. Coriolis effect and spin Hall effect of light in an inhomogeneous chiral medium.

    PubMed

    Zhang, Yongliang; Shi, Lina; Xie, Changqing

    2016-07-01

    We theoretically investigate the spin Hall effect of spinning light in an inhomogeneous chiral medium. The Hamiltonian equations of the photon are analytically obtained within eikonal approximation in the noninertial orthogonal frame. Besides the usual spin curvature coupling, the chiral parameter enters the Hamiltonian as a spin-torsion-like interaction. We reveal that both terms have parallel geometric origins as the Coriolis terms of Maxwell's equations in nontrivial frames. PMID:27367104

  12. Effective-field-theory model for the fractional quantum Hall effect

    NASA Technical Reports Server (NTRS)

    Zhang, S. C.; Hansson, T. H.; Kivelson, S.

    1989-01-01

    Starting directly from the microscopic Hamiltonian, a field-theory model is derived for the fractional quantum Hall effect. By considering an approximate coarse-grained version of the same model, a Landau-Ginzburg theory similar to that of Girvin (1986) is constructed. The partition function of the model exhibits cusps as a function of density. It is shown that the collective density fluctuations are massive.

  13. A novel NO2 gas sensor based on Hall effect operating at room temperature

    NASA Astrophysics Data System (ADS)

    Lin, J. Y.; Xie, W. M.; He, X. L.; Wang, H. C.

    2016-09-01

    Tungsten trioxide nanoparticles were obtained by a simple thermal oxidation approach. The structural and morphological properties of these nanoparticles are investigated using XRD, SEM and TEM. A WO3 thick film was deposited on the four Au electrodes to be a WO3 Hall effect sensor. The sensor was tested between magnetic field in a plastic test chamber. Room-temperature nitrogen dioxide sensing characteristics of Hall effect sensor were studied for various concentration levels of nitrogen dioxide at dry air and humidity conditions. A typical room-temperature response of 3.27 was achieved at 40 ppm of NO2 with a response and recovery times of 36 and 45 s, respectively. NO2 gas sensing mechanism of Hall effect sensor was also studied. The room-temperature operation, with the low deposition cost of the sensor, suggests suitability for developing a low-power cost-effective nitrogen dioxide sensor.

  14. Spin wave amplification using the spin Hall effect in permalloy/platinum bilayers

    NASA Astrophysics Data System (ADS)

    Gladii, O.; Collet, M.; Garcia-Hernandez, K.; Cheng, C.; Xavier, S.; Bortolotti, P.; Cros, V.; Henry, Y.; Kim, J.-V.; Anane, A.; Bailleul, M.

    2016-05-01

    We investigate the effect of an electrical current on the attenuation length of a 900 nm wavelength spin-wave in a permalloy/Pt bilayer using propagating spin-wave spectroscopy. The modification of the spin-wave relaxation rate is linear in current density, reaching up to 14% for a current density of 2.3 × 1011 A/m2 in Pt. This change is attributed to the spin transfer torque induced by the spin Hall effect and corresponds to an effective spin Hall angle of 0.13, which is among the highest values reported so far. The spin Hall effect thus appears as an efficient way of amplifying/attenuating propagating spin waves.

  15. Plasma oscillation effects on nested Hall thruster operation and stability

    NASA Astrophysics Data System (ADS)

    McDonald, M. S.; Sekerak, M. J.; Gallimore, A. D.; Hofer, R. R.

    High-power Hall thrusters capable of throughput on the order of 100 kW are currently under development, driven by more demanding mission profiles and rapid growth in on-orbit solar power generation capability. At these power levels the nested Hall thruster (NHT), a new design that concentrically packs multiple thrusters into a single body with a shared magnetic circuit, offers performance and logistical advantages over conventional single-channel Hall thrusters. An important area for risk reduction in NHT development is quantifying inter-channel coupling between discharge channels. This work presents time- and frequency-domain discharge current and voltage measurements paired with high-speed video of the X2, a 10-kW class dual channel NHT. Two “ triads” of operating conditions at 150 V, 3.6 kW and 250 V, 8.6 kW were examined, including each channel in individual operation and both channels in joint operation. For both triads tested, dual-channel operation did not noticeably destabilize the discharge. Partial coupling of outer channel oscillations into the inner channel occurred at 150 V, though oscillation amplitudes did not change greatly. As a percentage of mean discharge current, RMS oscillations at 150 V increased from 8% to 13% on the inner channel and decreased from 10% to 8% on the outer channel from single- to dual-channel operation. At 250 V the RMS/mean level stayed steady at 13% on the inner channel and decreased from 7% to 6% on the outer channel. The only mean discharge parameter noticeably affected was the cathode floating potential, which decreased in magnitude below ground with increased absolute cathode flow rate in dual-channel mode. Rotating spokes were detected on high-speed video across all X2 operating cases with wavelength 12-18 cm, and spoke velocity generally increased from single- to dual-channel operation.

  16. Kinetic theory of spin-polarized systems in electric and magnetic fields with spin-orbit coupling. I. Kinetic equation and anomalous Hall and spin-Hall effects

    NASA Astrophysics Data System (ADS)

    Morawetz, K.

    2015-12-01

    The coupled kinetic equation for density and spin Wigner functions is derived including spin-orbit coupling, electric and magnetic fields, and self-consistent Hartree mean fields suited for SU(2) transport. The interactions are assumed to be with scalar and magnetic impurities as well as scalar and spin-flip potentials among the particles. The spin-orbit interaction is used in a form suitable for solid state physics with Rashba or Dresselhaus coupling, graphene, extrinsic spin-orbit coupling, and effective nuclear matter coupling. The deficiencies of the two-fluid model are worked out consisting of the appearance of an effective in-medium spin precession. The stationary solution of all these systems shows a band splitting controlled by an effective medium-dependent Zeeman field. The self-consistent precession direction is discussed and a cancellation of linear spin-orbit coupling at zero temperature is reported. The precession of spin around this effective direction caused by spin-orbit coupling leads to anomalous charge and spin currents in an electric field. Anomalous Hall conductivity is shown to consist of the known results obtained from the Kubo formula or Berry phases and a symmetric part interpreted as an inverse Hall effect. Analogously the spin-Hall and inverse spin-Hall effects of spin currents are discussed which are present even without magnetic fields showing a spin accumulation triggered by currents. The analytical dynamical expressions for zero temperature are derived and discussed in dependence on the magnetic field and effective magnetizations. The anomalous Hall and spin-Hall effect changes sign at higher than a critical frequency dependent on the relaxation time.

  17. Hall current effects in the Lewis magnetohydrodynamic generator

    NASA Technical Reports Server (NTRS)

    Nichols, L. D.; Sovie, R. J.

    1972-01-01

    Data obtained in a magnetohydrodynamic generator are compared with theoretical values calculated by using the Dzung theory. The generator was operated with cesium-seeded argon as the working fluid. The gas temperature varied from 1800 to 2100 K, the gas pressure from 19 to 22 N/sq cm, the Mach number from 0.3 to 0.5, and the magnetic field strength from 0.2 to 1.6 T. The analysis indicates that there is incomplete seed vaporization and that Hall current shorting paths (through the working fluid to ground at both the entrance and exit of the channel) limit generator performance.

  18. Modeling of graphene Hall effect sensors for microbead detection

    NASA Astrophysics Data System (ADS)

    Manzin, A.; Simonetto, E.; Amato, G.; Panchal, V.; Kazakova, O.

    2015-05-01

    This paper deals with the modeling of sensitivity of epitaxial graphene Hall bars, from sub-micrometer to micrometer size, to the stray field generated by a magnetic microbead. To demonstrate experiment feasibility, the model is first validated by comparison to measurement results, considering an ac-dc detection scheme. Then, a comprehensive numerical analysis is performed to investigate signal detriment caused by sensor material heterogeneities, saturation of bead magnetization at high fields, increment of bead distance from sensor surface, and device width increase.

  19. Anisotropic Composite Fermions and Fractional Quantum Hall Effect

    NASA Astrophysics Data System (ADS)

    Mueed, M. A.; Kamburov, Dobromir; Hasdemir, Sukret; Shayegan, Mansour; Pfeiffer, Loren; West, Ken; Baldwin, Kirk

    We study the role of Fermi sea anisotropy on the transport properties of composite Fermions near Landau level filling factor ν = 1 / 2 in two-dimensional hole systems confined to GaAs quantum wells. By applying a parallel magnetic field, we tune the Fermi sea anisotropy and monitor the relative change of the transport scattering time along its principal directions. Interpreted in a simple Drude model, our results suggest that the scattering time is longer along the longitudinal direction of the Fermi sea. Furthermore, we find that the measured energy gap for the fractional quantum Hall state at ν = 2 / 3 decreases when anisotropy becomes significant.

  20. Optimized atom injection in a Hall effect thruster

    SciTech Connect

    Garrigues, L.; Hagelaar, G.J.M.; Boniface, C.; Boeuf, J.P.

    2004-11-29

    An improvement of the neutral gas injection in order to increase the Hall thruster lifetime capabilities is demonstrated using a two-dimensional model. An additional atom injection through the channel ceramics in a region located between the ionization and the acceleration zones leads to an efficient ionization of the neutral flux, with a flattening of the plasma density and potential profiles in the radial direction. Thanks to this modified injection of the atom flow, a focusing electric field is produced, reducing the ion flux impacting on ceramic walls.

  1. Effect of a plume reduction in segmented electrode Hall thruster

    SciTech Connect

    Raitses, Y.; Dorf, L.A.; Livak, A.A.; Fisch, N.J.

    2000-01-27

    A segmented electrode, which is placed at the thruster exit, is shown to affect thruster operation in several ways, whether the electrode produce low emission current or no emission current, although there appear to be advantages to the more emissive segmented electrode. Measured by plume divergence, the performance of Hall thruster operation, even with only one power supply, can approach or surpass that of non segmented operation over a range of parameter regimes, including the low gas rate regime. This allows the flexibility in operation of segmented electrode thrusters in variable thrust regimes.

  2. Hall current effects in the Lewis magnetohydrodynamic generator.

    NASA Technical Reports Server (NTRS)

    Nichols, L. D.; Sovie, R. J.

    1972-01-01

    Data obtained in the Lewis MHD generator are compared with theoretical values calculated using the Dzung (1966) theory. The generator is operated with cesium seeded argon as the working fluid. The gas temperature varies from 1800 to 2100 K, the gas pressure from 19 to 22 N/sq cm, the Mach number from .3 to .5, and the magnetic field strength from .2 to 1.6 tesla. The analysis indicates that there is incomplete seed vaporization and that Hall current shorting paths (through the working fluid to ground at both the entrance and exit of the channel) are limiting generator performance.

  3. Studies of gas adsorption on ZnO using ESR, FTIR spectroscopy, and MHE (Microwave Hall Effect) measurements

    SciTech Connect

    Byungki Na; Vannice, M.A. ); Walters, A.B. )

    1993-04-01

    This paper describes the application of a new technique - Microwave Hall Effect (MHE) measurements - to measure electron mobilities and to determine the effect of adsorption on electron densities of powders. Conduction electron densities calculated from microwave measurements of both mobilities and conductivities, as well as ESR spectroscopy and chemisorption measurements, have been applied to characterize high-surface-area ZnO (up to 30 m[sup 2]/g) samples before and after exposure to O[sub 2], CO[sub 2], CO, and H[sub 2]. Evacuation at 673 K removed lattice oxygen to produce paramagnetic lattice vacancies, (V[sub 0][sup +])[sup [minus

  4. Enhanced inverse spin-Hall voltage in (001) oriented Fe4N/Pt polycrystalline films without contribution of planar-Hall effect

    NASA Astrophysics Data System (ADS)

    Isogami, Shinji; Tsunoda, Masakiyo

    2016-04-01

    In this study, the output DC electric voltage (V out) generated by a Pt-capped Fe4N bilayer film (Fe4N/Pt) under ferromagnetic resonance conditions at room temperature was assessed. The contributions from the inverse spin-Hall effect (ISHE), the planar-Hall effect (PHE) and the anomalous-Hall effect (AHE) were separated from the output voltage by analysis of V out values determined at varying external field polar angles. The results showed that the polarity of the ISHE (V ISHE) component of V out was opposite to that of the PHE (V PHE). As a result, the magnitude of the intrinsic V ISHE was beyond V out by as much as the magnitude of V PHE. The X-ray diffraction structural analysis revealed the polycrystal of the Fe4N/Pt with (001) orientation, which might be one of the possible mechanisms for enhanced intrinsic V ISHE.

  5. Spin Hall effect in iron-based superconductors: A Dirac-point effect

    NASA Astrophysics Data System (ADS)

    Pandey, Sudhakar; Kontani, Hiroshi; Hirashima, Dai S.; Arita, Ryotaro; Aoki, Hideo

    2012-08-01

    We have theoretically explored the intrinsic spin Hall effect (SHE) in the iron-based superconductor family with a variety of materials. The study is motivated by an observation that, in addition to an appreciable spin-orbit coupling in the Fe 3d states, a character of the band structure in which Dirac cones appear below the Fermi energy may play a crucial role in producing a large SHE. Our investigation does indeed predict a substantially large spin Hall conductivity in a heavily hole-doped regime, such as KFe2As2. The magnitude of the SHE has turned out to be comparable with that for Pt despite a relatively small spin-orbit coupling, which we identify as coming from a huge contribution from the gap opening induced by the spin-orbit coupling at the Dirac point, which can become close to the Fermi energy for the heavy hole doping.

  6. Giant Anomalous Hall Effect in the Chiral Antiferromagnet Mn3Ge

    NASA Astrophysics Data System (ADS)

    Kiyohara, Naoki; Tomita, Takahiro; Nakatsuji, Satoru

    2016-06-01

    The external field control of antiferromagnetism is a significant subject both for basic science and technological applications. As a useful macroscopic response to detect magnetic states, the anomalous Hall effect (AHE) is known for ferromagnets, but it has never been observed in antiferromagnets until the recent discovery in Mn3Sn . Here we report another example of the AHE in a related antiferromagnet, namely, in the hexagonal chiral antiferromagnet Mn3Ge . Our single-crystal study reveals that Mn3Ge exhibits a giant anomalous Hall conductivity |σx z|˜60 Ω-1 cm-1 at room temperature and approximately 380 Ω-1 cm-1 at 5 K in zero field, reaching nearly half of the value expected for the quantum Hall effect per atomic layer with Chern number of unity. Our detailed analyses on the anisotropic Hall conductivity indicate that in comparison with the in-plane-field components |σx z| and |σz y|, which are very large and nearly comparable in size, we find |σy x| obtained in the field along the c axis to be much smaller. The anomalous Hall effect shows a sign reversal with the rotation of a small magnetic field less than 0.1 T. The soft response of the AHE to magnetic field should be useful for applications, for example, to develop switching and memory devices based on antiferromagnets.

  7. Large anomalous Hall effect in a non-collinear antiferromagnet Mn3Sn at room temperature

    NASA Astrophysics Data System (ADS)

    Higo, Tomoya; Kiyohara, Naoki; Nakatsuji, Satoru

    Recent development in theoretical and experimental studies have provided a framework for understanding the anomalous Hall effect using Berry-phase concepts, and this perspective has led to predictions that, under certain conditions, a large anomalous Hall effect may appear in spin liquids and antiferromagnets. In this talk, we will present experimental results showing that the antiferromagnet Mn3Sn, which has a non-collinear 120-degree spin order, exhibits a large anomalous Hall effect. The magnitude of the Hall conductivity is ~ 20 Ω-1 cm-1 at room temperature and > 100 Ω-1 cm-1 at low temperatures. We found that a main component of the Hall signal, which is nearly independent of a magnetic field and magnetization, can change the sign with the reversal of a small applied field, corresponding to the rotation of the staggered moments of the non-collinear antiferromagnetic spin order which carries a very small net moment of a few of mμB. Supported by PRESTO, JST, and Grants-in-Aid for Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers (No. R2604) and Scientific Research on Innovative Areas (15H05882 and 15H05883) from JSPS.

  8. Split-quaternionic Hopf map, quantum Hall effect, and twistor theory

    SciTech Connect

    Hasebe, Kazuki

    2010-02-15

    Introducing a noncompact version of the Hopf map, we demonstrate remarkable close relations between quantum Hall effect and twistor theory. We first construct quantum Hall effect on a hyperboloid based on the noncompact 2nd Hopf map of split-quaternions. We analyze a hyperbolic one-particle mechanics, and explore many-body problem, where a many-body ground state wave function and membrane-like excitations are derived explicitly. In the lowest Landau level, the symmetry is enhanced from SO(3,2) to the SU(2,2) conformal symmetry. We point out that the quantum Hall effect naturally realizes the philosophy of twistor theory. In particular, emergence mechanism of fuzzy space-time is discussed somehow in detail.

  9. Parity effect of bipolar quantum Hall edge transport around graphene antidots

    NASA Astrophysics Data System (ADS)

    Matsuo, Sadashige; Nakaharai, Shu; Komatsu, Katsuyoshi; Tsukagoshi, Kazuhito; Moriyama, Takahiro; Ono, Teruo; Kobayashi, Kensuke

    2015-06-01

    Parity effect, which means that even-odd property of an integer physical parameter results in an essential difference, ubiquitously appears and enables us to grasp its physical essence as the microscopic mechanism is less significant in coarse graining. Here we report a new parity effect of quantum Hall edge transport in graphene antidot devices with pn junctions (PNJs). We found and experimentally verified that the bipolar quantum Hall edge transport is drastically affected by the parity of the number of PNJs. This parity effect is universal in bipolar quantum Hall edge transport of not only graphene but also massless Dirac electron systems. These results offer a promising way to design electron interferometers in graphene.

  10. Parity effect of bipolar quantum Hall edge transport around graphene antidots.

    PubMed

    Matsuo, Sadashige; Nakaharai, Shu; Komatsu, Katsuyoshi; Tsukagoshi, Kazuhito; Moriyama, Takahiro; Ono, Teruo; Kobayashi, Kensuke

    2015-01-01

    Parity effect, which means that even-odd property of an integer physical parameter results in an essential difference, ubiquitously appears and enables us to grasp its physical essence as the microscopic mechanism is less significant in coarse graining. Here we report a new parity effect of quantum Hall edge transport in graphene antidot devices with pn junctions (PNJs). We found and experimentally verified that the bipolar quantum Hall edge transport is drastically affected by the parity of the number of PNJs. This parity effect is universal in bipolar quantum Hall edge transport of not only graphene but also massless Dirac electron systems. These results offer a promising way to design electron interferometers in graphene. PMID:26122468

  11. Large inverse spin Hall effect in the antiferromagnetic metal Ir20Mn80

    NASA Astrophysics Data System (ADS)

    Mendes, J. B. S.; Cunha, R. O.; Alves Santos, O.; Ribeiro, P. R. T.; Machado, F. L. A.; Rodríguez-Suárez, R. L.; Azevedo, A.; Rezende, S. M.

    2014-04-01

    A spin current is usually detected by converting it into a charge current through the inverse spin Hall effect (ISHE) in thin layers of a nonmagnetic metal with large spin-orbit coupling, such as Pt, Pd, and Ta. Here we demonstrate that Ir20Mn80, a high-temperature antiferromagnetic metal that is commonly employed in spin-valve devices, exhibits a large inverse spin Hall effect, as recently predicted theoretically. We present results of experiments in which the spin currents are generated either by microwave spin pumping or by the spin Seebeck effect in bilayers of singe-crystal yttrium iron garnet (YIG)/Ir20Mn80 and compare them with measurements in YIG/Pt bilayers. The results of both measurements are consistent, showing that Ir20Mn80 has a spin Hall angle similar to Pt, and that it is an efficient spin-current detector.

  12. Reciprocal spin Hall effects in conductors with strong spin-orbit coupling: a review.

    PubMed

    Niimi, Yasuhiro; Otani, YoshiChika

    2015-12-01

    Spin Hall effect and its inverse provide essential means to convert charge to spin currents and vice versa, which serve as a primary function for spintronic phenomena such as the spin-torque ferromagnetic resonance and the spin Seebeck effect. These effects can oscillate magnetization or detect a thermally generated spin splitting in the chemical potential. Importantly this conversion process occurs via the spin-orbit interaction, and requires neither magnetic materials nor external magnetic fields. However, the spin Hall angle, i.e. the conversion yield between the charge and spin currents, depends severely on the experimental methods. Here we discuss the spin Hall angle and the spin diffusion length for a variety of materials including pure metals such as Pt and Ta, alloys and oxides determined by the spin absorption method in a lateral spin valve structure. PMID:26513299

  13. Reciprocal spin Hall effects in conductors with strong spin-orbit coupling: a review

    NASA Astrophysics Data System (ADS)

    Niimi, Yasuhiro; Otani, YoshiChika

    2015-12-01

    Spin Hall effect and its inverse provide essential means to convert charge to spin currents and vice versa, which serve as a primary function for spintronic phenomena such as the spin-torque ferromagnetic resonance and the spin Seebeck effect. These effects can oscillate magnetization or detect a thermally generated spin splitting in the chemical potential. Importantly this conversion process occurs via the spin-orbit interaction, and requires neither magnetic materials nor external magnetic fields. However, the spin Hall angle, i.e. the conversion yield between the charge and spin currents, depends severely on the experimental methods. Here we discuss the spin Hall angle and the spin diffusion length for a variety of materials including pure metals such as Pt and Ta, alloys and oxides determined by the spin absorption method in a lateral spin valve structure.

  14. Quantum Hall effect in semiconductor systems with quantum dots and antidots

    SciTech Connect

    Beltukov, Ya. M.; Greshnov, A. A.

    2015-04-15

    The integer quantum Hall effect in systems of semiconductor quantum dots and antidots is studied theoretically as a factor of temperature. It is established that the conditions for carrier localization in quantum-dot systems favor the observation of the quantum Hall effect at higher temperatures than in quantum-well systems. The obtained numerical results show that the fundamental plateau corresponding to the transition between the ground and first excited Landau levels can be retained up to a temperature of T ∼ 50 K, which is an order of magnitude higher than in the case of quantum wells. Implementation of the quantum Hall effect at such temperatures requires quantum-dot systems with controllable characteristics, including the optimal size and concentration and moderate geometrical and composition fluctuations. In addition, ordered arrangement is desirable, hence quantum antidots are preferable.

  15. The effect of electron inertia in Hall-driven magnetic field penetration in electron-magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Richardson, A. S.; Angus, J. R.; Swanekamp, S. B.; Rittersdorf, I. M.; Ottinger, P. F.; Schumer, J. W.

    2016-05-01

    Magnetic field penetration in electron-magnetohydrodynamics (EMHD) can be driven by density gradients through the Hall term [Kingsep et al., Sov. J. Plasma Phys. 10, 495 (1984)]. Particle-in-cell simulations have shown that a magnetic front can go unstable and break into vortices in the Hall-driven EMHD regime. In order to understand these results, a new fluid model had been derived from the Ly/Ln≪1 limit of EMHD, where Ly is the length scale along the front and Ln is the density gradient length scale. This model is periodic in the direction along the magnetic front, which allows the dynamics of the front to be studied independently of electrode boundary effects that could otherwise dominate the dynamics. Numerical solutions of this fluid model are presented that show for the first time the relation between Hall-driven EMHD, electron inertia, the Kelvin-Helmholtz (KH) instability, and the formation of magnetic vortices. These solutions show that a propagating magnetic front is unstable to the same KH mode predicted for a uniform plasma. This instability causes the electron flow to break up into vortices that are then driven into the plasma with a speed that is proportional to the Hall speed. This demonstrates that, in two-dimensional geometry with sufficiently low collisionality [collision rate ν ≲ vHall/(4 δe) ], Hall-driven magnetic penetration occurs not as a uniform shock front but rather as vortex-dominated penetration. Once the vortices form, the penetration speed is found to be nearly a factor of two larger than the redicted speed ( vHall/2 ) obtained from Burgers' equation in the one-dimensional limit.

  16. Valley Hall effect in disordered monolayer MoS2 from first principles

    NASA Astrophysics Data System (ADS)

    Olsen, Thomas; Souza, Ivo

    2015-09-01

    Electrons in certain two-dimensional crystals possess a pseudospin degree of freedom associated with the existence of two inequivalent valleys in the Brillouin zone. If, as in monolayer MoS2, inversion symmetry is broken and time-reversal symmetry is present, equal and opposite amounts of k -space Berry curvature accumulate in each of the two valleys. This is conveniently quantified by the integral of the Berry curvature over a single valley—the valley Hall conductivity. We generalize this definition to include contributions from disorder described with the supercell approach, by mapping ("unfolding") the Berry curvature from the folded Brillouin zone of the disordered supercell onto the normal Brillouin zone of the pristine crystal, and then averaging over several realizations of disorder. We use this scheme to study from first principles the effect of sulfur vacancies on the valley Hall conductivity of monolayer MoS2. In dirty samples the intrinsic valley Hall conductivity receives gating-dependent corrections that are only weakly dependent on the impurity concentration, consistent with side-jump scattering and the unfolded Berry curvature can be interpreted as a k -space resolved side jump. At low impurity concentrations skew scattering dominates, leading to a divergent valley Hall conductivity in the clean limit. The implications for the recently observed photoinduced anomalous Hall effect are discussed.

  17. Can fractional quantum Hall effect be due to the formation of coherent wave structures in a 2D electron gas?

    NASA Astrophysics Data System (ADS)

    Mirza, Babur M.

    2016-05-01

    A microscopic theory of integer and fractional quantum Hall effects is presented here. In quantum density wave representation of charged particles, it is shown that, in a two-dimensional electron gas coherent structures form under the low temperature and high density conditions. With a sufficiently high applied magnetic field, the combined N particle quantum density wave exhibits collective periodic oscillations. As a result the corresponding quantum Hall voltage function shows a step-wise change in multiples of the ratio h/e2. At lower temperatures further subdivisions emerge in the Hall resistance, exhibiting the fractional quantum Hall effect.

  18. A free-trailing vane flow direction indicator employing a linear output Hall effect transducer

    NASA Technical Reports Server (NTRS)

    Zell, Peter T.; Mcmahon, Robert D.

    1988-01-01

    The Hall effect vane (HEV) was developed to measure flow angularity in the NASA 40-by-80-foot and 80-by-120-foot wind tunnels. This indicator is capable of sensing flow direction at air speeds from 5 to 300 knots and over a + or - 40 deg angle range with a resolution of 0.1 deg. A free-trailing vane configuration employing a linear output Hall effect transducer as a shaft angle resolver was used. The current configuration of the HEV is designed primarily for wind tunnel calibration testing; however, other potential applications include atmospheric, flight or ground research testing. The HEV met initial design requirements.

  19. Extrinsic spin Hall effect from anisotropic Rashba spin-orbit coupling in graphene

    NASA Astrophysics Data System (ADS)

    Yang, H.-Y.; Huang, Chunli; Ochoa, H.; Cazalilla, M. A.

    2016-02-01

    We study the effect of anisotropy of the Rashba coupling on the extrinsic spin Hall effect due to spin-orbit active adatoms on graphene. In addition to the intrinsic spin-orbit coupling, a generalized anisotropic Rashba coupling arising from the breakdown of both mirror and hexagonal symmetries of pristine graphene is considered. We find that Rashba anisotropy can strongly modify the dependence of the spin Hall angle on carrier concentration. Our model provides a simple and general description of the skew scattering mechanism due to the spin-orbit coupling that is induced by proximity to large adatom clusters.

  20. Amplification of spin waves in yttrium iron garnet films through the spin Hall effect

    NASA Astrophysics Data System (ADS)

    Padrón-Hernández, E.; Azevedo, A.; Rezende, S. M.

    2011-11-01

    We demonstrate that spin waves propagating in a film of yttrium iron garnet (YIG) can be amplified by a dc current in an adjacent Pt layer by means of the spin Hall effect. The experiments are done at room temperature using pulsed currents to avoid sample heating. Amplification occurs only for surface like modes propagating in a direction perpendicular to the applied in-plane field. The results are interpreted with a model for spin-wave propagation in a YIG film with magnetic losses and subject to a spin-transfer torque due to spin currents created by the spin Hall effect in the Pt layer.

  1. Quantum Hall effect in black phosphorus two-dimensional electron system

    NASA Astrophysics Data System (ADS)

    Li, Likai; Yang, Fangyuan; Ye, Guo Jun; Zhang, Zuocheng; Zhu, Zengwei; Lou, Wenkai; Zhou, Xiaoying; Li, Liang; Watanabe, Kenji; Taniguchi, Takashi; Chang, Kai; Wang, Yayu; Chen, Xian Hui; Zhang, Yuanbo

    2016-07-01

    The development of new, high-quality functional materials has been at the forefront of condensed-matter research. The recent advent of two-dimensional black phosphorus has greatly enriched the materials base of two-dimensional electron systems (2DESs). Here, we report the observation of the integer quantum Hall effect in a high-quality black phosphorus 2DES. The high quality is achieved by embedding the black phosphorus 2DES in a van der Waals heterostructure close to a graphite back gate; the graphite gate screens the impurity potential in the 2DES and brings the carrier Hall mobility up to 6,000 cm2 V‑1 s‑1. The exceptional mobility enabled us to observe the quantum Hall effect and to gain important information on the energetics of the spin-split Landau levels in black phosphorus. Our results set the stage for further study on quantum transport and device application in the ultrahigh mobility regime.

  2. Experimental Observation of the Inverse Spin Hall Effect at Room Temperature

    SciTech Connect

    Liu, Baoli; Shi, Junren; Wang, Wenxin; Zhao, Hongming; Li, Dafang; Zhang, Shoucheng; Xue, Qikun; Chen, Dongmin; /Beijing, Inst. Phys.

    2010-03-16

    We observe the inverse spin Hall effect in a two-dimensional electron gas confined in Al-GaAs/InGaAs quantum wells. Specifically, they find that an inhomogeneous spin density induced by the optical injection gives rise to an electric current transverse to both the spin polarization and its gradient. The spin Hall conductivity can be inferred from such a measurement through the Einstein relation and the onsager relation, and is found to have the order of magnitude of 0.5(e{sup 2}/h). The observation is made at the room temperature and in samples with macroscopic sizes, suggesting that the inverse spin Hall effects is a robust macroscopic transport phenomenon.

  3. Effects of magnetic field and Hall current to the blood velocity and LDL transfer

    NASA Astrophysics Data System (ADS)

    Abdullah, I.; Naser, N.; Talib, A. H.; Mahali, S.

    2015-09-01

    The magnetic field and Hall current effects have been considered on blood velocity and concentration of low-density lipoprotein (LDL). It is important to observe those effects to the flowing blood in a stenosed artery. The analysis from the obtained results may be useful to some clinical procedures, such as MRI, where the radiologists may have more information in the investigations before cardiac operations could be done. In this study, the uniform magnetic field and Hall current are applied to the Newtonian blood flow through an artery having a cosine-shaped stenosis. The governing equations are coupled with mass transfer and solved employing a finite difference Marker and Cell (MAC) method with an appropriate initial and boundary conditions. The graphical results of velocity profiles and LDL concentration are presented in this paper and the results show that the velocity increases and concentration decreases as Hall parameter increased.

  4. Driving and detecting ferromagnetic resonance in insulators with the spin Hall effect.

    SciTech Connect

    Sklenar, Joseph; Zhang, Wei; Jungfleisch, Matthias B.; Jiang, Wanjun; Chang, Houchen; Pearson, John E.; Wu, Mingzhong; Ketterson, John B.; Hoffmann, Axel

    2015-11-06

    We demonstrate the generation and detection of spin-torque ferromagnetic resonance in Pt/Y3Fe5O12 (YIG) bilayers. A unique attribute of this system is that the spin Hall effect lies at the heart of both the generation and detection processes and no charge current is passing through the insulating magnetic layer. When the YIG undergoes resonance, a dc voltage is detected longitudinally along the Pt that can be described by two components. One is the mixing of the spin Hall magnetoresistance with the microwave current. The other results from spin pumping into the Pt being converted to a dc current through the inverse spin Hall effect. The voltage is measured with applied magnetic field directions that range in-plane to nearly perpendicular. We find that for magnetic fields that are mostly out-of-plane, an imaginary component of the spin mixing conductance is required to model our data.

  5. Berry phases and the intrinsic thermal Hall effect in high-temperature cuprate superconductors.

    PubMed

    Cvetkovic, Vladimir; Vafek, Oskar

    2015-01-01

    Bogolyubov quasiparticles move in a practically uniform magnetic field in the vortex state of high-temperature cuprate superconductors. When set in motion by an externally applied heat current, the quasiparticles' trajectories may bend, causing a temperature gradient perpendicular to the heat current and the applied magnetic field, resulting in the thermal Hall effect. Here we relate this effect to the Berry curvature of quasiparticle magnetic sub-bands, and calculate the dependence of the intrinsic thermal Hall conductivity on superconductor's temperature, magnetic field and the amplitude of the d-wave pairing. The intrinsic contribution to thermal Hall conductivity displays a rapid onset with increasing temperature, which compares favourably with existing experiments at high magnetic field on the highest purity samples. Because such temperature onset is related to the pairing amplitude, our finding may help to settle a much-debated question of the bulk value of the pairing strength in cuprate superconductors in magnetic field. PMID:25758469

  6. Spontaneous magnetization and anomalous Hall effect in an emergent Dice lattice.

    PubMed

    Dutta, Omjyoti; Przysiężna, Anna; Zakrzewski, Jakub

    2015-01-01

    Ultracold atoms in optical lattices serve as a tool to model different physical phenomena appearing originally in condensed matter. To study magnetic phenomena one needs to engineer synthetic fields as atoms are neutral. Appropriately shaped optical potentials force atoms to mimic charged particles moving in a given field. We present the realization of artificial gauge fields for the observation of anomalous Hall effect. Two species of attractively interacting ultracold fermions are considered to be trapped in a shaken two dimensional triangular lattice. A combination of interaction induced tunneling and shaking can result in an emergent Dice lattice. In such a lattice the staggered synthetic magnetic flux appears and it can be controlled with external parameters. The obtained synthetic fields are non-Abelian. Depending on the tuning of the staggered flux we can obtain either anomalous Hall effect or its quantized version. Our results are reminiscent of Anomalous Hall conductivity in spin-orbit coupled ferromagnets. PMID:26057635

  7. Strong Suppression of the Spin Hall Effect in the Spin Glass State

    NASA Astrophysics Data System (ADS)

    Niimi, Y.; Kimata, M.; Omori, Y.; Gu, B.; Ziman, T.; Maekawa, S.; Fert, A.; Otani, Y.

    2015-11-01

    We have measured spin Hall effects in spin glass metals, CuMnBi alloys, with the spin absorption method in the lateral spin valve structure. Far above the spin glass temperature Tg where the magnetic moments of Mn impurities are randomly frozen, the spin Hall angle of a CuMnBi ternary alloy is as large as that of a CuBi binary alloy. Surprisingly, however, it starts to decrease at about 4 Tg and becomes as little as 7 times smaller at 0.5 Tg. A similar tendency was also observed in anomalous Hall effects in the ternary alloys. We propose an explanation in terms of a simple model considering the relative dynamics between the localized moment and the conduction electron spin.

  8. Second Landau level fractional quantum Hall effects in the Corbino geometry

    NASA Astrophysics Data System (ADS)

    Schmidt, B. A.; Bennaceur, K.; Bilodeau, S.; Gervais, G.; Pfeiffer, L. N.; West, K. W.

    2015-09-01

    For certain measurements, the Corbino geometry has a distinct advantage over the Hall and van der Pauw geometries, in that it provides a direct probe of the bulk 2DEG without complications due to edge effects. This may be important in enabling detection of the non-Abelian entropy of the 5/2 fractional quantum Hall state via bulk thermodynamic measurements. We report the successful fabrication and measurement of a Corbino-geometry sample in an ultra-high mobility GaAs heterostructure, with a focus on transport in the second and higher Landau levels. In particular, we report activation energy gaps of fractional quantum Hall states, with all edge effects ruled out, and extrapolate σ0 from the Arrhenius fits. Our results show that activated transport in the second Landau level remains poorly understood. The development of this Corbino device opens the possibility to study the bulk of the 5/2 state using techniques not possible in other geometries.

  9. Metallic phase of the quantum Hall effect in four-dimensional space

    NASA Astrophysics Data System (ADS)

    Edge, Jonathan; Tworzydlo, Jakub; Beenakker, Carlo

    2013-03-01

    We study the phase diagram of the quantum Hall effect in four-dimensional (4D) space. Unlike in 2D, in 4D there exists a metallic as well as an insulating phase, depending on the disorder strength. The critical exponent ν ~ 1 . 2 of the diverging localization length at the quantum Hall insulator-to-metal transition differs from the semiclassical value ν = 1 of 4D Anderson transitions in the presence of time-reversal symmetry. Our numerical analysis is based on a mapping of the 4D Hamiltonian onto a 1D dynamical system, providing a route towards the experimental realization of the 4D quantum Hall effect. NanoCTM, FOM/NWO, ERC

  10. Spontaneous magnetization and anomalous Hall effect in an emergent Dice lattice

    NASA Astrophysics Data System (ADS)

    Dutta, Omjyoti; Przysiężna, Anna; Zakrzewski, Jakub

    2015-06-01

    Ultracold atoms in optical lattices serve as a tool to model different physical phenomena appearing originally in condensed matter. To study magnetic phenomena one needs to engineer synthetic fields as atoms are neutral. Appropriately shaped optical potentials force atoms to mimic charged particles moving in a given field. We present the realization of artificial gauge fields for the observation of anomalous Hall effect. Two species of attractively interacting ultracold fermions are considered to be trapped in a shaken two dimensional triangular lattice. A combination of interaction induced tunneling and shaking can result in an emergent Dice lattice. In such a lattice the staggered synthetic magnetic flux appears and it can be controlled with external parameters. The obtained synthetic fields are non-Abelian. Depending on the tuning of the staggered flux we can obtain either anomalous Hall effect or its quantized version. Our results are reminiscent of Anomalous Hall conductivity in spin-orbit coupled ferromagnets.

  11. Spontaneous magnetization and anomalous Hall effect in an emergent Dice lattice

    PubMed Central

    Dutta, Omjyoti; Przysiężna, Anna; Zakrzewski, Jakub

    2015-01-01

    Ultracold atoms in optical lattices serve as a tool to model different physical phenomena appearing originally in condensed matter. To study magnetic phenomena one needs to engineer synthetic fields as atoms are neutral. Appropriately shaped optical potentials force atoms to mimic charged particles moving in a given field. We present the realization of artificial gauge fields for the observation of anomalous Hall effect. Two species of attractively interacting ultracold fermions are considered to be trapped in a shaken two dimensional triangular lattice. A combination of interaction induced tunneling and shaking can result in an emergent Dice lattice. In such a lattice the staggered synthetic magnetic flux appears and it can be controlled with external parameters. The obtained synthetic fields are non-Abelian. Depending on the tuning of the staggered flux we can obtain either anomalous Hall effect or its quantized version. Our results are reminiscent of Anomalous Hall conductivity in spin-orbit coupled ferromagnets. PMID:26057635

  12. Effects of Hall Current and Mass Transfer on the Unsteady Magnetohydrodynamic Flow in a Porous Channel

    NASA Astrophysics Data System (ADS)

    Khan, Ilyas; Ali, Farhad; Shafie, Sharidan; Mustapha, Norzieha

    2011-06-01

    The combined effects of Hall current and mass transfer on the unsteady magnetohydrodynamic (MHD) flow of a viscous fluid passing through a porous channel have been investigated. The flow in the fluid has been induced due to external pressure gradient. The closed form analytical solutions have been obtained for the velocity, temperature and concentration fields. The analytical expressions for non-dimensional Skin-friction, Nusselt number and Sherwood number have been computed. The influence of various embedded flow parameters have been analyzed through graphs. The solutions obtained show that the influence of Hall parameter and mass transfer phenomenon give some interesting results. It is found that the Hall parameter have an increasing effect on the fluid velocity and approaches to the steady state as the time parameter is increased. The fluid concentration is increased for larger values of Peclet and Schmidt numbers whereas decreased with increase in Soret number and time parameter.

  13. The Anomalous Hall effect in MnSi and FexTaS2

    NASA Astrophysics Data System (ADS)

    Lee, Minhyea

    2007-03-01

    In a high-purity ferromagnet with long carrier lifetime τ, e.g. MnSi, the ordinary Hall conductivity σH^N can dominate the intrinsic Anomalous Hall effect (AHE) conductivity σH^A. We show that the large magnetoresistance provides a way to separate accurately the two Hall currents. Below TC, we find that the AHE conductivity is strictly proportional to the magnetization M, viz. σH^A = SHM with a parameter SH that is independent of both temperature T and field H. This implies that σH^A is strictly independent of τ. In the layered, hard ferromagnet FexTaS2, the large coercivity leads to abrupt reversals of M when it switches. We show that this provides an accurate way to separate σH^A from σH^N. Again, σH^A is independent of T from 5 to 50 K. We compare the observed constancy at low T with theories for the AHE. We also describe a Hall anomaly recently observed in MnSi under pressure. This anomaly appears to arise from strong sensitivity of the Hall current to the spin texture, possibly reflecting its finite chirality. The dependence of the anomaly to T and H will be reported. **This work is done in collaboration with Y. Onose, J. G. Checkelsky, E. Morosan, R. J. Cava, Y. Tokura and N. P. Ong.

  14. Anisotropic composite fermions and fractional quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Mueed, M. A.; Kamburov, D.; Hasdemir, S.; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.; Shayegan, M.

    2016-05-01

    We study the role of anisotropy on the transport properties of composite fermions near Landau level filling factor ν =1 /2 in two-dimensional holes confined to a GaAs quantum well. By applying a parallel magnetic field, we tune the composite fermion Fermi sea anisotropy and monitor the relative change of the transport scattering time at ν =1 /2 along the principal directions. Interpreted in a simple Drude model, our results suggest that the scattering time is longer along the longitudinal direction of the composite fermion Fermi sea. Furthermore, the measured energy gap for the fractional quantum Hall state at ν =2 /3 decreases when anisotropy becomes significant. The decrease, however, might partly stem from the charge distribution becoming bilayerlike at very large parallel magnetic fields.

  15. Hall Effect Thruster with an AlN Chamber

    SciTech Connect

    Barral, S.; Jayet, Y.; Mazouffre, S.; Dudeck, M.; Veron, E.; Echegut, P.

    2006-01-15

    The potential of AlN as a material for Hall thruster channels is assessed on the basis of actual thruster performances, computer simulations of the discharge and microscopy studies of an eroded channel. Comparison of experimental and numerical data provides further evidence that secondary electron emission (SEE) is the main phenomena responsible for wall-induced currents. The high discharge currents observed are characteristic for high SEE materials and result in a much lower thruster efficiency than with a conventional BN-SiO2 channel. The delivered thrust is also affected in the medium voltage range. With respect to erosion, scanning electron images performed after 14 hours of operation already reveal precursors of anomalous erosion patterns on the channel front side.

  16. Anomalous Hall Effect on the surface of topological Kondo insulators

    NASA Astrophysics Data System (ADS)

    König, Elio; Ostrovsky, Pavel; Dzero, Maxim; Levchenko, Alex

    We calculate the anomalous Hall conductivity σxy of surface states on three dimensional topological Kondo insulators with cubic symmetry and multiple Dirac cones. We treat a generic model in which the Fermi velocity, the Fermi momentum and the Zeeman energy in different pockets may be unequal and in which the microscopic impurity potential is short ranged on the scale of the smallest Fermi wavelength. Our calculation of σxy to the zeroth (i.e. leading) order in impurity concentration is based on the Kubo-Smrcka-Streda diagrammatic approach. It also includes certain extrinsic contributions with a single cross of impurity lines, which are of the same order in impurity concentration and were, to the best of our knowledge, scrutinized in a single band model, only. We discuss various special cases of our result and the experimental relevance of our study in the context of recent hysteretic magnetotransport data in SmB6 samples.

  17. Quantum Hall Effect Breakdown Steps due to an Instability of Laminar Flow against Electron-Hole Pair Formation

    NASA Astrophysics Data System (ADS)

    Eaves, L.

    The breakdown of the dissipationless state of the quantum Hall effect at high currents sometimes occurs as a series of regular steps in the dissipative voltage drop measured along the Hall bar. The steps were first seen clearly in two of the Hall bars used to maintain the US Resistance Standard, but have also been reported in other devices. This paper describes a model to account for the origin of the steps. It is proposed that the dissipationless flow of the quantum Hall fluid is unstable at high flow rates due to inter-Landau level tunnelling processes in local microscopic regions of the Hall bar. Electron-hole pairs are generated in the quantum Hall fluid in these regions and the electronic motion can be envisaged as a quantum analogue of the von Karman vortex street which forms when a classical fluid flows past an obstacle.

  18. Quantum Hall effect on top and bottom surface states of topological insulator (Bi1-xSbx)2Te3 films.

    PubMed

    Yoshimi, R; Tsukazaki, A; Kozuka, Y; Falson, J; Takahashi, K S; Checkelsky, J G; Nagaosa, N; Kawasaki, M; Tokura, Y

    2015-01-01

    The three-dimensional topological insulator is a novel state of matter characterized by two-dimensional metallic Dirac states on its surface. To verify the topological nature of the surface states, Bi-based chalcogenides such as Bi2Se3, Bi2Te3, Sb2Te3 and their combined/mixed compounds have been intensively studied. Here, we report the realization of the quantum Hall effect on the surface Dirac states in (Bi1-xSbx)2Te3 films. With electrostatic gate-tuning of the Fermi level in the bulk band gap under magnetic fields, the quantum Hall states with filling factor ±1 are resolved. Furthermore, the appearance of a quantum Hall plateau at filling factor zero reflects a pseudo-spin Hall insulator state when the Fermi level is tuned in between the energy levels of the non-degenerate top and bottom surface Dirac points. The observation of the quantum Hall effect in three-dimensional topological insulator films may pave a way toward topological insulator-based electronics. PMID:25868494

  19. High performance electronic device for the measurement of the inverse spin Hall effect

    NASA Astrophysics Data System (ADS)

    Gómez, Javier E.; Guillén, Matías; Butera, Alejandro; Albaugh, Neil P.

    2016-02-01

    We have developed a high performance analog electronic device that can be used for the measurement of the inverse spin Hall effect (ISHE) as a function of the applied magnetic field. The electronic circuit is based on the synchronous detection technique with a careful selection of the active components in order to optimize the response in this application. The electronic accessory was adapted for the simultaneous measurement of the ISHE signal and the microwave absorption in an electron spin resonance spectrometer and tested with a bilayer sample of 5 nm of permalloy (Ni80Fe20) and 5 nm of tantalum. The response of the electronic device was characterized as a function of the microwave power, the amplitude and frequency of the modulation signal, and the relative phase between signal and reference. This last characterization reveals a simple method to put in phase the signal with the reference. The maximum signal to noise ratio was achieved for a modulation frequency between 6 and 12 kHz, for the largest possible values of field modulation amplitude and microwave power.

  20. Quantum spin Hall effect in α -Sn /CdTe(001 ) quantum-well structures

    NASA Astrophysics Data System (ADS)

    Küfner, Sebastian; Matthes, Lars; Bechstedt, Friedhelm

    2016-01-01

    The electronic and topological properties of heterovalent and heterocrystalline α -Sn/CdTe(001) quantum wells (QWs) are studied in dependence on the thickness of α -Sn by means of ab initio calculations. We calculate the topological Z2 invariants of the respective bulk crystals, which identify α -Sn as strong three-dimensional (3D) topological insulators (TIs), whereas CdTe is a trivial insulator. We predict the existence of two-dimensional (2D) topological interface states between both materials and show that a topological phase transition from a trivial insulating phase into the quantum spin Hall (QSH) phase in the QW structures occurs at much higher thicknesses than in the HgTe case. The QSH effect is characterized by the localization, dispersion, and spin polarization of the topological interface states. We address the distinction of the 3D and 2D TI characters of the studied QW structures, which is inevitable for an understanding of the underlying quantum state of matter. The 3D TI nature is characterized by two-dimensional topological interface states, while the 2D phase exhibits one-dimensional edge states. The two different state characteristics are often intermixed in the discussion of the topology of 2D QW structures, especially, the comparison of ab initio calculations and experimental transport studies.

  1. Emergent Chiral Spin Liquid: Fractional Quantum Hall Effect in a Kagome Heisenberg Model

    PubMed Central

    Gong, Shou-Shu; Zhu, Wei; Sheng, D. N.

    2014-01-01

    The fractional quantum Hall effect (FQHE) realized in two-dimensional electron systems under a magnetic field is one of the most remarkable discoveries in condensed matter physics. Interestingly, it has been proposed that FQHE can also emerge in time-reversal invariant spin systems, known as the chiral spin liquid (CSL) characterized by the topological order and the emerging of the fractionalized quasiparticles. A CSL can naturally lead to the exotic superconductivity originating from the condense of anyonic quasiparticles. Although CSL was highly sought after for more than twenty years, it had never been found in a spin isotropic Heisenberg model or related materials. By developing a density-matrix renormalization group based method for adiabatically inserting flux, we discover a FQHE in a isotropic kagome Heisenberg model. We identify this FQHE state as the long-sought CSL with a uniform chiral order spontaneously breaking time reversal symmetry, which is uniquely characterized by the half-integer quantized topological Chern number protected by a robust excitation gap. The CSL is found to be at the neighbor of the previously identified Z2 spin liquid, which may lead to an exotic quantum phase transition between two gapped topological spin liquids. PMID:25204626

  2. High performance electronic device for the measurement of the inverse spin Hall effect.

    PubMed

    Gómez, Javier E; Guillén, Matías; Butera, Alejandro; Albaugh, Neil P

    2016-02-01

    We have developed a high performance analog electronic device that can be used for the measurement of the inverse spin Hall effect (ISHE) as a function of the applied magnetic field. The electronic circuit is based on the synchronous detection technique with a careful selection of the active components in order to optimize the response in this application. The electronic accessory was adapted for the simultaneous measurement of the ISHE signal and the microwave absorption in an electron spin resonance spectrometer and tested with a bilayer sample of 5 nm of permalloy (Ni80Fe20) and 5 nm of tantalum. The response of the electronic device was characterized as a function of the microwave power, the amplitude and frequency of the modulation signal, and the relative phase between signal and reference. This last characterization reveals a simple method to put in phase the signal with the reference. The maximum signal to noise ratio was achieved for a modulation frequency between 6 and 12 kHz, for the largest possible values of field modulation amplitude and microwave power. PMID:26931877

  3. Emergent Chiral Spin Liquid: Fractional Quantum Hall Effect in a Kagome Heisenberg Model

    NASA Astrophysics Data System (ADS)

    Gong, Shou-Shu; Zhu, Wei; Sheng, D. N.

    2014-09-01

    The fractional quantum Hall effect (FQHE) realized in two-dimensional electron systems under a magnetic field is one of the most remarkable discoveries in condensed matter physics. Interestingly, it has been proposed that FQHE can also emerge in time-reversal invariant spin systems, known as the chiral spin liquid (CSL) characterized by the topological order and the emerging of the fractionalized quasiparticles. A CSL can naturally lead to the exotic superconductivity originating from the condense of anyonic quasiparticles. Although CSL was highly sought after for more than twenty years, it had never been found in a spin isotropic Heisenberg model or related materials. By developing a density-matrix renormalization group based method for adiabatically inserting flux, we discover a FQHE in a isotropic kagome Heisenberg model. We identify this FQHE state as the long-sought CSL with a uniform chiral order spontaneously breaking time reversal symmetry, which is uniquely characterized by the half-integer quantized topological Chern number protected by a robust excitation gap. The CSL is found to be at the neighbor of the previously identified Z2 spin liquid, which may lead to an exotic quantum phase transition between two gapped topological spin liquids.

  4. Hall viscosity

    NASA Astrophysics Data System (ADS)

    Read, Nicholas

    2015-03-01

    theoretical calculations of other properties, and can be used as a diagnostic tool to distinguish phases. The talk will review these results, describing different microscopic approaches to calculating Hall viscosity, robustness, and the relation with effective field theories. Research supported by NSF DMR.

  5. Tunable Valley Polarization and Valley Orbital Magnetic Moment Hall Effect in Honeycomb Systems with Broken Inversion Symmetry

    PubMed Central

    Song, Zhigang; Quhe, Ruge; Liu, Shunquan; Li, Yan; Feng, Ji; Yang, Yingchang; Lu, Jing; Yang, Jinbo

    2015-01-01

    In this Letter, a tunable valley polarization is investigated for honeycomb systems with broken inversion symmetry such as transition-metal dichalcogenide MX2 (M = Mo, W; X = S, Se) monolayers through elliptical pumping. Compared to circular pumping, elliptical pumping is a more universal and effective method to create coherent valley polarization. When two valleys of MX2 monolayers are doped or polarized, a novel anomalous Hall effect (called valley orbital magnetic moment Hall effect) is predicted. Valley orbital magnetic moment Hall effect can generate an orbital magnetic moment current without the accompaniment of a charge current, which opens a new avenue for exploration of valleytronics and orbitronics. Valley orbital magnetic moment Hall effect is expected to overshadow spin Hall effect and is tunable under elliptical pumping. PMID:26358835

  6. Devil's Staircase Phase Diagram of the Fractional Quantum Hall Effect in the Thin-Torus Limit.

    PubMed

    Rotondo, Pietro; Molinari, Luca Guido; Ratti, Piergiorgio; Gherardi, Marco

    2016-06-24

    After more than three decades, the fractional quantum Hall effect still poses challenges to contemporary physics. Recent experiments point toward a fractal scenario for the Hall resistivity as a function of the magnetic field. Here, we consider the so-called thin-torus limit of the Hamiltonian describing interacting electrons in a strong magnetic field, restricted to the lowest Landau level, and we show that it can be mapped onto a one-dimensional lattice gas with repulsive interactions, with the magnetic field playing the role of the chemical potential. The statistical mechanics of such models leads us to interpret the sequence of Hall plateaux as a fractal phase diagram whose landscape shows a qualitative agreement with experiments. PMID:27391740

  7. Fractional quantum Hall effect at Landau level filling ν = 4/11

    DOE PAGESBeta

    Pan, W.; Baldwin, K. W.; West, K. W.; Pfeiffer, L. N.; Tsui, D. C.

    2015-01-09

    In this study, we report low temperature electronic transport results on the fractional quantum Hall effect of composite fermions at Landau level filling ν = 4/11 in a very high mobility and low density sample. Measurements were carried out at temperatures down to 15mK, where an activated magnetoresistance Rxx and a quantized Hall resistance Rxy, within 1% of the expected value of h/(4/11)e2, were observed. The temperature dependence of the Rxx minimum at 4/11 yields an activation energy gap of ~ 7 mK. Developing Hall plateaus were also observed at the neighboring states at ν = 3/8 and 5/13.

  8. 3d Transition Metal Adsorption Induced the valley-polarized Anomalous Hall Effect in Germanene

    PubMed Central

    Zhou, P.; Sun, L. Z.

    2016-01-01

    Based on DFT + U and Berry curvature calculations, we study the electronic structures and topological properties of 3d transition metal (TM) atom (from Ti to Co) adsorbed germanene (TM-germanene). We find that valley-polarized anomalous Hall effect (VAHE) can be realized in germanene by adsorbing Cr, Mn, or Co atoms on its surface. A finite valley Hall voltage can be easily detected in their nanoribbon, which is important for valleytronics devices. Moreover, different valley-polarized current and even reversible valley Hall voltage can be archived by shifting the Fermi energy of the systems. Such versatile features of the systems show potential in next generation electronics devices. PMID:27312176

  9. Fractional quantum Hall effect at Landau level filling ν = 4/11

    SciTech Connect

    Pan, W.; Baldwin, K. W.; West, K. W.; Pfeiffer, L. N.; Tsui, D. C.

    2015-01-09

    In this study, we report low temperature electronic transport results on the fractional quantum Hall effect of composite fermions at Landau level filling ν = 4/11 in a very high mobility and low density sample. Measurements were carried out at temperatures down to 15mK, where an activated magnetoresistance Rxx and a quantized Hall resistance Rxy, within 1% of the expected value of h/(4/11)e2, were observed. The temperature dependence of the Rxx minimum at 4/11 yields an activation energy gap of ~ 7 mK. Developing Hall plateaus were also observed at the neighboring states at ν = 3/8 and 5/13.

  10. Engineering the quantum anomalous Hall effect in graphene with uniaxial strains

    SciTech Connect

    Diniz, G. S. Guassi, M. R.; Qu, F.

    2013-12-28

    We theoretically investigate the manipulation of the quantum anomalous Hall effect (QAHE) in graphene by means of the uniaxial strain. The values of Chern number and Hall conductance demonstrate that the strained graphene in presence of Rashba spin-orbit coupling and exchange field, for vanishing intrinsic spin-orbit coupling, possesses non-trivial topological phase, which is robust against the direction and modulus of the strain. Besides, we also find that the interplay between Rashba and intrinsic spin-orbit couplings results in a topological phase transition in the strained graphene. Remarkably, as the strain strength is increased beyond approximately 7%, the critical parameters of the exchange field for triggering the quantum anomalous Hall phase transition show distinct behaviors—decrease (increase) for strains along zigzag (armchair) direction. Our findings open up a new platform for manipulation of the QAHE by an experimentally accessible strain deformation of the graphene structure, with promising application on novel quantum electronic devices with high efficiency.

  11. 3d Transition Metal Adsorption Induced the valley-polarized Anomalous Hall Effect in Germanene.

    PubMed

    Zhou, P; Sun, L Z

    2016-01-01

    Based on DFT + U and Berry curvature calculations, we study the electronic structures and topological properties of 3d transition metal (TM) atom (from Ti to Co) adsorbed germanene (TM-germanene). We find that valley-polarized anomalous Hall effect (VAHE) can be realized in germanene by adsorbing Cr, Mn, or Co atoms on its surface. A finite valley Hall voltage can be easily detected in their nanoribbon, which is important for valleytronics devices. Moreover, different valley-polarized current and even reversible valley Hall voltage can be archived by shifting the Fermi energy of the systems. Such versatile features of the systems show potential in next generation electronics devices. PMID:27312176

  12. Devil's Staircase Phase Diagram of the Fractional Quantum Hall Effect in the Thin-Torus Limit

    NASA Astrophysics Data System (ADS)

    Rotondo, Pietro; Molinari, Luca Guido; Ratti, Piergiorgio; Gherardi, Marco

    2016-06-01

    After more than three decades, the fractional quantum Hall effect still poses challenges to contemporary physics. Recent experiments point toward a fractal scenario for the Hall resistivity as a function of the magnetic field. Here, we consider the so-called thin-torus limit of the Hamiltonian describing interacting electrons in a strong magnetic field, restricted to the lowest Landau level, and we show that it can be mapped onto a one-dimensional lattice gas with repulsive interactions, with the magnetic field playing the role of the chemical potential. The statistical mechanics of such models leads us to interpret the sequence of Hall plateaux as a fractal phase diagram whose landscape shows a qualitative agreement with experiments.

  13. Electrical detection of coherent spin precession using the ballistic intrinsic spin Hall effect.

    PubMed

    Choi, Won Young; Kim, Hyung-jun; Chang, Joonyeon; Han, Suk Hee; Koo, Hyun Cheol; Johnson, Mark

    2015-08-01

    The spin-orbit interaction in two-dimensional electron systems provides an exceptionally rich area of research. Coherent spin precession in a Rashba effective magnetic field in the channel of a spin field-effect transistor and the spin Hall effect are the two most compelling topics in this area. Here, we combine these effects to provide a direct demonstration of the ballistic intrinsic spin Hall effect and to demonstrate a technique for an all-electric measurement of the Datta-Das conductance oscillation, that is, the oscillation in the source-drain conductance due to spin precession. Our hybrid device has a ferromagnet electrode as a spin injector and a spin Hall detector. Results from multiple devices with different channel lengths map out two full wavelengths of the Datta-Das oscillation. We also use the original Datta-Das technique with a single device of fixed length and measure the channel conductance as the gate voltage is varied. Our experiments show that the ballistic spin Hall effect can be used for efficient injection or detection of spin polarized electrons, thereby enabling the development of an integrated spin transistor. PMID:26005997

  14. Disorder effects in the quantum Hall effect of graphene p-n junctions

    NASA Astrophysics Data System (ADS)

    Li, Jian; Shen, Shun-Qing

    2008-11-01

    The quantum Hall effect in graphene p-n junctions is studied numerically with emphasis on the effect of disorder at the interface of two adjacent regions. Conductance plateaus are found to be attached to the intensity of the disorder and are accompanied by universal conductance fluctuations in the bipolar regime, which is in good agreement with theoretical predictions of the random matrix theory on quantum chaotic cavities. The calculated Fano factors can be used in an experimental identification of the underlying transport character.

  15. Spin-torque switching of a nano-magnet using giant spin hall effect

    SciTech Connect

    Penumatcha, Ashish V. Das, Suprem R.; Chen, Zhihong; Appenzeller, Joerg

    2015-10-15

    The Giant Spin Hall Effect(GSHE) in metals with high spin-orbit coupling is an efficient way to convert charge currents to spin currents, making it well-suited for writing information into magnets in non-volatile magnetic memory as well as spin-logic devices. We demonstrate the switching of an in-plane CoFeB magnet using a combination of GSHE and an external magnetic field. The magnetic field dependence of the critical current is used to estimate the spin hall angle with the help of a thermal activation model for spin-transfer torque switching of a nanomagnet.

  16. Experimental evidences of a large extrinsic spin Hall effect in AuW alloy

    SciTech Connect

    Laczkowski, P.; Rojas-Sánchez, J.-C.

    2014-04-07

    We report an experimental study of a gold-tungsten alloy (7 at. % W concentration in Au host) displaying remarkable properties for spintronics applications using both magneto-transport in lateral spin valve devices and spin-pumping with inverse spin Hall effect experiments. A very large spin Hall angle of about 10% is consistently found using both techniques with the reliable spin diffusion length of 2 nm estimated by the spin sink experiments in the lateral spin valves. With its chemical stability, high resistivity, and small induced damping, this AuW alloy may find applications in the nearest future.

  17. A programmable quantum current standard from the Josephson and the quantum Hall effects

    SciTech Connect

    Poirier, W. Lafont, F.; Djordjevic, S.; Schopfer, F.; Devoille, L.

    2014-01-28

    We propose a way to realize a programmable quantum current standard (PQCS) from the Josephson voltage standard and the quantum Hall resistance standard (QHR) exploiting the multiple connection technique provided by the quantum Hall effect (QHE) and the exactness of the cryogenic current comparator. The PQCS could lead to breakthroughs in electrical metrology like the realization of a programmable quantum current source, a quantum ampere-meter, and a simplified closure of the quantum metrological triangle. Moreover, very accurate universality tests of the QHE could be performed by comparing PQCS based on different QHRs.

  18. Large-Chern-number quantum anomalous Hall effect in thin-film topological crystalline insulators.

    PubMed

    Fang, Chen; Gilbert, Matthew J; Bernevig, B Andrei

    2014-01-31

    We theoretically predict that thin-film topological crystalline insulators can host various quantum anomalous Hall phases when doped by ferromagnetically ordered dopants. Any Chern number between ±4 can, in principle, be reached as a result of the interplay between (a) the induced Zeeman field, depending on the magnetic doping concentration, (b) the structural distortion, either intrinsic or induced by a piezoelectric material through the proximity effect, and (c) the thickness of the thin film. We propose a heterostructure to realize quantum anomalous Hall phases with Chern numbers that can be tuned by electric fields. PMID:24580476

  19. Spin-orbit coupling and quantum spin Hall effect for neutral atoms without spin flips.

    PubMed

    Kennedy, Colin J; Siviloglou, Georgios A; Miyake, Hirokazu; Burton, William Cody; Ketterle, Wolfgang

    2013-11-27

    We propose a scheme which realizes spin-orbit coupling and the quantum spin Hall effect for neutral atoms in optical lattices without relying on near resonant laser light to couple different spin states. The spin-orbit coupling is created by modifying the motion of atoms in a spin-dependent way by laser recoil. The spin selectivity is provided by Zeeman shifts created with a magnetic field gradient. Alternatively, a quantum spin Hall Hamiltonian can be created by all-optical means using a period-tripling, spin-dependent superlattice. PMID:24329453

  20. Proximity-Induced Ferromagnetism in Graphene Revealed by the Anomalous Hall Effect

    NASA Astrophysics Data System (ADS)

    Wang, Zhiyong; Tang, Chi; Sachs, Raymond; Barlas, Yafis; Shi, Jing

    2015-01-01

    We demonstrate the anomalous Hall effect (AHE) in single-layer graphene exchange coupled to an atomically flat yttrium iron garnet (YIG) ferromagnetic thin film. The anomalous Hall conductance has magnitude of ˜0.09 (2 e2/h ) at low temperatures and is measurable up to ˜300 K . Our observations indicate not only proximity-induced ferromagnetism in graphene/YIG with a large exchange interaction, but also enhanced spin-orbit coupling that is believed to be inherently weak in ideal graphene. The proximity-induced ferromagnetic order in graphene can lead to novel transport phenomena such as the quantized AHE which are potentially useful for spintronics.

  1. Effects of ionization distribution on plasma beam focusing characteristics in Hall thrusters

    SciTech Connect

    Ning Zhongxi; Liu Hui; Yu Daren; Zhou Zhongxiang

    2011-11-28

    The relationship between ionization distribution and divergence of plasma beam in a Hall thruster is investigated using spectrum and probe methods. Experimental results indicate that the shift of ionization region towards the exit of channel causes the reduction of accelerating field and the enhancement of electron thermal pressure effect, which result in further deviation of equipotential lines to magnetic field lines and further increase in divergence of plasma beam. It is, therefore, suggested that to put the ionization region deep inside the channel and separate it from the acceleration region at the design, and development stage is helpful to improve the plasma beam focusing characteristics of a Hall thruster.

  2. Radial scale effect on the performance of low-power cylindrical Hall plasma thrusters

    SciTech Connect

    Seo, Mihui; Lee, Jongsub; Choe, Wonho; Seon, Jongho; June Lee, Hae

    2013-09-23

    Investigation of the radial scale effect on low-power cylindrical Hall thrusters has been undertaken by comparing the thrusters with three different channel diameters of 28, 40, and 50 mm. The investigation found that both the anode efficiency and the thrust of the larger thruster are higher as the anode power is raised. On the other hand, higher current and propellant utilizations are achieved for the smaller thruster, which is due to higher neutral density and better electron confinement. The large plume angle of the small cylindrical Hall thruster causes thrust loss, resulting in the reduction of anode efficiency.

  3. Spin Hall effect-controlled magnetization dynamics in NiMnSb

    SciTech Connect

    Dürrenfeld, P. Ranjbar, M.; Gerhard, F.; Gould, C.; Molenkamp, L. W.; Åkerman, J.

    2015-05-07

    We investigate the influence of a spin current generated from a platinum layer on the ferromagnetic resonance (FMR) properties of an adjacent ferromagnetic layer composed of the halfmetallic half-Heusler material NiMnSb. Spin Hall nano-oscillator devices are fabricated, and the technique of spin torque FMR is used to locally study the magnetic properties as in-plane anisotropies and resonance fields. A change in the FMR linewidth, in accordance with the additional spin torque produced by the spin Hall effect, is present for an applied dc current. For sufficiently large currents, this should yield auto-oscillations, which however are not achievable in the present device geometry.

  4. Galilean invariance and linear response theory for Fractional Quantum Hall Effect

    NASA Astrophysics Data System (ADS)

    Gromov, Andrey; Abanov, Alexandre

    2013-03-01

    We study a general effective field theory of Galilean invariant two-dimensional charged fluid in external electro-magnetic and gravitational fields. We find that combination of the generalized Galilean and gauge invariance implies nontrivial Ward identities between gravitational and electro-magnetic linear responses in the system. This identity appears to hold in all orders of gradient expansion and it generalizes the relation between Hall viscosity and Hall conductivity recently found by Hoyos and Son. We also check the relation in the case of free electrons with integer filling of Landau levels where corresponding linear responses can be calculated directly. Was supported by the NSF under Grant No. DMR-1206790.

  5. Hysteretic magnetoresistance and unconventional anomalous Hall effect in the frustrated magnet TmB4

    NASA Astrophysics Data System (ADS)

    Sunku, Sai Swaroop; Kong, Tai; Ito, Toshimitsu; Canfield, Paul C.; Shastry, B. Sriram; Sengupta, Pinaki; Panagopoulos, Christos

    2016-05-01

    We study TmB4, a frustrated magnet on the Archimedean Shastry-Sutherland lattice, through magnetization and transport experiments. The lack of anisotropy in resistivity shows that TmB4 is an electronically three-dimensional system. The magnetoresistance (MR) is hysteretic at low temperature even though a corresponding hysteresis in magnetization is absent. The Hall resistivity shows unconventional anomalous Hall effect (AHE) and is linear above saturation despite a large MR. We propose that complex structures at magnetic domain walls may be responsible for the hysteretic MR and may also lead to the AHE.

  6. Hysteretic magnetoresistance and unconventional anomalous Hall effect in the frustrated magnet TmB4

    NASA Astrophysics Data System (ADS)

    Sunku, Sai Swaroop; Kong, Tai; Ito, Toshimitsu; Canfield, Paul C.; Shastry, B. Sriram; Sengupta, Pinaki; Panagopoulos, Christos

    We study TmB4, a frustrated magnet on the Archimedean Shastry-Sutherland lattice, through magnetization and transport experiments. The lack of anisotropy in resistivity shows that TmB4 is an electronically three-dimensional system. The magnetoresistance (MR) is hysteretic at low-temperature even though a corresponding hysteresis in magnetization is absent. The Hall resistivity shows unconventional anomalous Hall effect (AHE) and is linear above saturation despite a large MR. We suggest that both hysteretic MR and AHE arise from the formation of complex non-coplanar structures at magnetic domain walls. Current address: Department of Applied Physics and Applied Mathematics, Columbia University.

  7. Hysteretic magnetoresistance and unconventional anomalous Hall effect in the frustrated magnet TmB4

    DOE PAGESBeta

    Sunku, Sai Swaroop; Kong, Tai; Ito, Toshimitsu; Canfield, Paul C.; Shastry, B. Sriram; Sengupta, Pinaki; Panagopoulos, Christos

    2016-05-11

    We study TmB4, a frustrated magnet on the Archimedean Shastry-Sutherland lattice, through magnetization and transport experiments. The lack of anisotropy in resistivity shows that TmB4 is an electronically three-dimensional system. The magnetoresistance (MR) is hysteretic at low temperature even though a corresponding hysteresis in magnetization is absent. The Hall resistivity shows unconventional anomalous Hall effect (AHE) and is linear above saturation despite a large MR. In conclusion, we propose that complex structures at magnetic domain walls may be responsible for the hysteretic MR and may also lead to the AHE.

  8. MegaOhm extraordinary Hall effect in oxidized CoFeB

    NASA Astrophysics Data System (ADS)

    Kopnov, G.; Gerber, A.

    2016-07-01

    We report on the development of controllably oxidized CoFeB ferromagnetic films demonstrating the extraordinary Hall effect (EHE) resistivity exceeding 1 Ω cm and magnetic field sensitivity up to 106 Ω/T. Such EHE resistivity is four orders of magnitude higher than that previously observed in ferromagnetic materials, while sensitivity is two orders larger than the best of semiconductors.

  9. Power Reduction of the Air-Breathing Hall-Effect Thruster

    NASA Astrophysics Data System (ADS)

    Kim, Sungrae

    Electric propulsion system is spotlighted as the next generation space propulsion system due to its benefits; one of them is specific impulse. While there are a lot of types in electric propulsion system, Hall-Effect Thruster, one of electric propulsion system, has higher thrust-to-power ratio and requires fewer power supplies for operation in comparison to other electric propulsion systems, which means it is optimal for long space voyage. The usual propellant for Hall-Effect Thruster is Xenon and it is used to be stored in the tank, which may increase the weight of the thruster. Therefore, one theory that uses the ambient air as a propellant has been proposed and it is introduced as Air-Breathing Hall-Effect Thruster. Referring to the analysis on Air-Breathing Hall-Effect Thruster, the goal of this paper is to reduce the power of the thruster so that it can be applied to real mission such as satellite orbit adjustment. To reduce the power of the thruster, two assumptions are considered. First one is changing the altitude for the operation, while another one is assuming the alpha value that is electron density to ambient air density. With assumptions above, the analysis was done and the results are represented. The power could be decreased to 10s˜1000s with the assumptions. However, some parameters that do not satisfy the expectation, which would be the question for future work, and it will be introduced at the end of the thesis.

  10. Hamiltonians for the Quantum Hall Effect on Spaces with Non-Constant Metrics

    NASA Astrophysics Data System (ADS)

    Bracken, Paul Francis

    2007-01-01

    The problem of studying the quantum Hall effect on manifolds with non constant metric is addressed. The Hamiltonian on a space with hyperbolic metric is determined, and the spectrum and eigenfunctions are calculated in closed form. The hyperbolic disk is also considered and some other applications of this approach are discussed as well.

  11. Perceptions about Residence Hall Wingmates and Alcohol-Related Secondhand Effects among College Freshmen

    ERIC Educational Resources Information Center

    Boekeloo, Bradley O.; Bush, Elizabeth N.; Novik, Melinda G.

    2009-01-01

    Objective: The authors examined the secondhand effects among college freshmen of others' alcohol use and related student characteristics, and perceptions about residence hallmates. Participants: The authors surveyed 509 incoming freshmen residing in predominantly freshman residence halls. Methods: The authors administered a Web-based survey 2…

  12. The effects of stage configurations in a recital hall

    NASA Astrophysics Data System (ADS)

    Yang, Wonyoung; Hodgdon, Kathleen K.; Tichy, Jiry

    2003-04-01

    The room acoustical parameters, the reverberation time (RT), the early decay time (EDT), the bass ratio (BR), the clarity factor (C80), the initial time delay gap (ITDG), and the interaural cross-correlation coefficient (IACC) were measured for acoustical evaluation both in the audience seats and on the stage, using six different stage configurations in a 450-seat unoccupied hall. The stage configurations consisted of combinations of varying the position of the drapes with and without the reflector at the back of the stage. The listening test was conducted in a laboratory using high fidelity headphones to verify the subjective preference for the seats and the presence of the reflector. Analysis showed that the draped area of the stage was related to the RT, EDT, C80, BR, while the ITDG was strongly dependent on the presence of the reflector. There was not a strong impact observed in the IACC for the varying configurations. In general, the reflectors improved most of the acoustical parameters. The loudness of the musical sound was the primary parameter used to decide the subjective preference, which correlated with the C80 and the ITDG with the reflector.

  13. Magnetoresistance, electrical conductivity, and Hall effect of glassy carbon

    SciTech Connect

    Baker, D.F.

    1983-02-01

    These properties of glassy carbon heat treated for three hours between 1200 and 2700/sup 0/C were measured from 3 to 300/sup 0/K in magnetic fields up to 5 tesla. The magnetoresistance was generally negative and saturated with reciprocal temperature, but still increased as a function of magnetic field. The maximum negative magnetoresistance measured was 2.2% for 2700/sup 0/C material. Several models based on the negative magnetoresistance being proportional to the square of the magnetic moment were attempted; the best fit was obtained for the simplest model combining Curie and Pauli paramagnetism for heat treatments above 1600/sup 0/C. Positive magnetoresistance was found only in less than 1600/sup 0/C treated glassy carbon. The electrical conductivity, of the order of 200 (ohm-cm)/sup -1/ at room temperature, can be empirically written as sigma = A + Bexp(-CT/sup -1/4) - DT/sup -1/2. The Hall coefficient was independent of magnetic field, insensitive to temperature, but was a strong function of heat treatment temperature, crossing over from negative to positive at about 1700/sup 0/C and ranging from -0.048 to 0.126 cm/sup 3//coul. The idea of one-dimensional filaments in glassy carbon suggested by the electrical conductivity is compatible with the present consensus view of the microstructure.

  14. Quantum Hall effect in an InAs /AlSb double quantum well

    NASA Astrophysics Data System (ADS)

    Yakunin, M. V.; Podgornykh, S. M.; Sadofyev, Yu. G.

    2009-01-01

    Double quantum wells (DQWs) were first implemented in the InAs /AlSb heterosystem, which is characterized by a large Landé g factor ∣g∣=15 of the InAs layers forming the well, much larger than the bulk g factor ∣g∣=0.4 of the GaAs in conventional GaAs /AlGaAs DQWs. The quality of the samples is good enough to permit observation of a clear picture of the quantum Hall effect (QHE). Despite the small tunneling gap, which is due to the large barrier height (1.4eV), features with odd filling factors ν =3,5,7,… are present in the QHE, due to collectivized interlayer states of the DQW. When the field is rotated relative to the normal to the layers, the ν =3 state is suppressed, confirming the collectivized nature of that state and denying that it could owe its existence to a strong asymmetry of the DQW. Previously the destruction of the collectivized QHE states by a parallel field had been observed only for the ν =1 state. The observation of a similar effect for ν =3 in an InAs /AlSb DQW may be due to the large bulk g factor of InAs.

  15. Geometry of the quantum Hall effect: An effective action for all dimensions

    NASA Astrophysics Data System (ADS)

    Karabali, Dimitra; Nair, V. P.

    2016-07-01

    We present a general formula for the topological part of the effective action for integer quantum Hall systems in higher dimensions, including fluctuations of the gauge field and metric around background fields of a specified topological class. The result is based on a procedure of integrating up from the Dolbeault index density which applies for the degeneracies of Landau levels, combined with some input from the standard descent procedure for anomalies. Features of the topological action in (2 +1 ), (4 +1 ), (6 +1 ) dimensions, including the contribution due to gravitational anomalies, are discussed in some detail.

  16. Quantum anomalous Hall effect in time-reversal-symmetry breaking topological insulators.

    PubMed

    Chang, Cui-Zu; Li, Mingda

    2016-03-31

    The quantum anomalous Hall effect (QAHE), the last member of Hall family, was predicted to exhibit quantized Hall conductivity σ(yx) = e2/h without any external magnetic field. The QAHE shares a similar physical phenomenon with the integer quantum Hall effect (QHE), whereas its physical origin relies on the intrinsic topological inverted band structure and ferromagnetism. Since the QAHE does not require external energy input in the form of magnetic field, it is believed that this effect has unique potential for applications in future electronic devices with low-power consumption. More recently, the QAHE has been experimentally observed in thin films of the time-reversal symmetry breaking ferromagnetic (FM) topological insulators (TI), Cr- and V- doped (Bi,Sb)2Te3. In this topical review, we review the history of TI based QAHE, the route to the experimental observation of the QAHE in the above two systems, the current status of the research of the QAHE, and finally the prospects for future studies. PMID:26934535

  17. Controlling spin Hall effect by using a band anticrossing and nonmagnetic impurity scattering

    NASA Astrophysics Data System (ADS)

    Mizoguchi, T.; Arakawa, N.

    2016-01-01

    The spin Hall effect (SHE) is one of the promising phenomena to utilize a spin current as spintronics devices, and the theoretical understanding of its microscopic mechanism is essential to know how to control its response. Although the SHE in multiorbital systems without inversion symmetry (IS) is expected to show several characteristic properties due to the cooperative roles of orbital degrees of freedom and a lack of IS, a theoretical understanding of the cooperative roles has been lacking. To clarify the cooperative roles, we study the spin Hall conductivity (SHC) derived by the linear-response theory for a t2 g-orbital tight-binding model of the [001 ] surface or interface of Sr2RuO4 in the presence of dilute nonmagnetic impurities. We find that the band anticrossing, arising from a combination of orbital degrees of freedom and a lack of IS, causes an increase of magnitude and a sign change of the SHC at some nonmagnetic impurity concentrations. Since a similar mechanism for controlling the magnitude and sign of the response of Hall effects works in other multiorbital systems without IS, our mechanism provides an ubiquitous method to control the magnitude and sign of the response of Hall effects in some multiorbital systems by introducing IS breaking and tuning of the nonmagnetic impurity concentration.

  18. Anomalous Hall effects in pseudo-single-crystal γ'-Fe4N thin films

    NASA Astrophysics Data System (ADS)

    Kabara, Kazuki; Tsunoda, Masakiyo; Kokado, Satoshi

    2016-05-01

    The anomalous Hall effects (AHE) were investigated at various temperatures for the pseudo-single-crystal Fe4N films, deposited on MgO substrates with changing the degree of order (S) of the nitrogen site. Both the anomalous Hall resistivity and the longitudinal resistivity simply decrease with lowering temperature for all the specimens. The AHE of the Fe4N films is presumed to arise from an intrinsic mechanism because of the relationship between the anomalous Hall resistivity and longitudinal resistivity. The anomalous Hall conductivity, σAH, exhibits a specific behavior at low temperature. In the case of the film with S = 0.93, the σAH drastically drops below 50 K, while it simply increases with lowering temperature in the range of 50-300 K. This low-temperature anomaly decays with decreasing S of the film and nearly vanishes in the films with low S. The threshold temperature and the dependence on S of the low-temperature anomaly of the σAH well correspond to those of the anisotropic magnetoresistance effects in the Fe4N films, reported in the literatures. From these results, it is suggested that the low-temperature anomaly of the σAH originates from the crystal field effect which reflects the structural transformation from a cubic to a tetragonal symmetry below 50 K and provides a modulation of the orbital angular momentum of the 3d orbitals at the Fermi level.

  19. Quantum anomalous Hall effect in time-reversal-symmetry breaking topological insulators

    NASA Astrophysics Data System (ADS)

    Chang, Cui-Zu; Li, Mingda

    2016-03-01

    The quantum anomalous Hall effect (QAHE), the last member of Hall family, was predicted to exhibit quantized Hall conductivity {σyx}=\\frac{{{e}2}}{h} without any external magnetic field. The QAHE shares a similar physical phenomenon with the integer quantum Hall effect (QHE), whereas its physical origin relies on the intrinsic topological inverted band structure and ferromagnetism. Since the QAHE does not require external energy input in the form of magnetic field, it is believed that this effect has unique potential for applications in future electronic devices with low-power consumption. More recently, the QAHE has been experimentally observed in thin films of the time-reversal symmetry breaking ferromagnetic (FM) topological insulators (TI), Cr- and V- doped (Bi,Sb)2Te3. In this topical review, we review the history of TI based QAHE, the route to the experimental observation of the QAHE in the above two systems, the current status of the research of the QAHE, and finally the prospects for future studies.

  20. Characteristics of electron near-wall transport under two-dimensional dynamic sheath in a Hall effect thruster

    SciTech Connect

    Li Hong; Liu Hui; Yu Daren; Zhang Fengkui

    2010-07-15

    It is demonstrated that the features of measured electron current profile in the near-wall region of a Hall effect thruster are mainly due to the substantive breakdown of electron Hall drifts caused by the azimuthal field of the two-dimensional dynamic sheath. This kind of cross-field diffusion shows its close connection with the anomalous electron transport.

  1. Interplay of Rashba effect and spin Hall effect in perpendicular Pt/Co/MgO magnetic multilayers

    NASA Astrophysics Data System (ADS)

    Yun-Chi, Zhao; Guang, Yang; Bo-Wen, Dong; Shou-Guo, Wang; Chao, Wang; Young, Sun; Jing-Yan, Zhang; Guang-Hua, Yu

    2016-07-01

    The interplay of the Rashba effect and the spin Hall effect originating from current induced spin–orbit coupling was investigated in the as-deposited and annealed Pt/Co/MgO stacks with perpendicular magnetic anisotropy. The above two effects were analyzed based on Hall measurements under external magnetic fields longitudinal and vertical to dc current, respectively. The coercive field as a function of dc current in vertical mode with only the Rashba effect involved decreases due to thermal annealing. Meanwhile, spin orbit torques calculated from Hall resistance with only the spin Hall effect involved in the longitudinal mode decrease in the annealed sample. The experimental results prove that the bottom Pt/Co interface rather than the Co/MgO top one plays a more critical role in both Rashba effect and spin Hall effect. Project supported by the National Basic Research Program of China (Grant No. 2015CB921401), the National Natural Science Foundation of China (Grant Nos. 51331002, 51371027, 51431009, 51471183, and 11274371), the National Instrumentation Program of China (Grant No. 2012YQ120048), and the Instrument Development Program of Chinese Academy of Sciences (Grant No. YZ201345).

  2. Prediction of Near-Room-Temperature Quantum Anomalous Hall Effect on Honeycomb Materials

    NASA Astrophysics Data System (ADS)

    Yan, Binghai; Wu, Shu-Chun; Shan, Guangcun

    2015-03-01

    Recently, this long-sought quantum anomalous Hall effect was realized in the magnetic topological insulator. However, the requirement of an extremely low temperature (~ 30 mK) hinders realistic applications. Based on honeycomb lattices comprised of Sn and Ge, which are found to be 2D topological insulators, we propose a quantum anomalous Hall platform with large energy gap of 0.34 and 0.06 eV, respectively. The ferromagnetic order forms in one sublattice of the honeycomb structure by controlling the surface functionalization rather than dilute magnetic doping, which is expected to be visualized by spin polarized STM in experiment. Strong coupling between the inherent quantum spin Hall state and ferromagnetism results in considerable exchange splitting and consequently an ferromagnetic insulator with large energy gap. The estimated mean-field Curie temperature is 243 and 509 K for Sn and Ge lattices, respectively. The large energy gap and high Curie temperature indicate the feasibility of the quantum anomalous Hall effect in the near-room-temperature and even room-temperature regions. We thank the helpful discussions with C. Felser, S. Kanugo, C.-X. Liu, Z. Wang, Y. Xu, K. Wu, and Y. Zhou.

  3. Hall effects and sub-grid-scale modeling in magnetohydrodynamic turbulence simulations

    NASA Astrophysics Data System (ADS)

    Miura, Hideaki; Araki, Keisuke; Hamba, Fujihiro

    2016-07-01

    Effects of the Hall term on short-wave components of magnetohydrodynamic turbulence and sub-grid-scale modeling of the effects are studied. Direct numerical simulations of homogeneous magnetohydrodynamic turbulence with and without the Hall term are carried out. The Hall term excites short-wave components in the magnetic field, demanding a high numerical resolution to resolve the scales smaller than the ion skin depth. A k 7 / 3-like scaling-law in the magnetic energy spectrum associated with the excitation of the short-wave components is clearly shown by the use of both an isotropic spectrum and a one-dimensional spectrum. It is also shown that the introduction of the Hall term can cause a structural transition in the vorticity field from tubes to sheets. In order to overcome a strong demand on high-resolution in space and time and to enable quicker computations, large eddy simulations with a Smagorinsky-type sub-grid-scale model are carried out. It is shown that our large eddy simulations successfully reproduce not only the energy spectrum but also tubular vortex structures, reducing the computational cost considerably.

  4. Electrical control of the valley Hall effect in bilayer MoS2 transistors

    NASA Astrophysics Data System (ADS)

    Lee, Jieun; Mak, Kin Fai; Shan, Jie

    2016-05-01

    The valley degree of freedom of electrons in solids has been proposed as a new type of information carrier, beyond the electron charge and spin. The potential of two-dimensional semiconductor transition metal dichalcogenides in valley-based electronic and optoelectronic applications has recently been illustrated through experimental demonstrations of the optical orientation of the valley polarization and of the valley Hall effect in monolayer MoS2. However, the valley Hall conductivity in monolayer MoS2, a non-centrosymmetric crystal, cannot be easily tuned, which presents a challenge for the development of valley-based applications. Here, we show that the valley Hall effect in bilayer MoS2 transistors can be controlled with a gate voltage. The gate applies an electric field perpendicular to the plane of the material, breaking the inversion symmetry present in bilayer MoS2. The valley polarization induced by the longitudinal electrical current was imaged with Kerr rotation microscopy. The polarization was found to be present only near the edges of the device channel with opposite sign for the two edges, and was out-of-plane and strongly dependent on the gate voltage. Our observations are consistent with symmetry-dependent Berry curvature and valley Hall conductivity in bilayer MoS2.

  5. Electrical control of the valley Hall effect in bilayer MoS2 transistors.

    PubMed

    Lee, Jieun; Mak, Kin Fai; Shan, Jie

    2016-05-01

    The valley degree of freedom of electrons in solids has been proposed as a new type of information carrier, beyond the electron charge and spin. The potential of two-dimensional semiconductor transition metal dichalcogenides in valley-based electronic and optoelectronic applications has recently been illustrated through experimental demonstrations of the optical orientation of the valley polarization and of the valley Hall effect in monolayer MoS2. However, the valley Hall conductivity in monolayer MoS2, a non-centrosymmetric crystal, cannot be easily tuned, which presents a challenge for the development of valley-based applications. Here, we show that the valley Hall effect in bilayer MoS2 transistors can be controlled with a gate voltage. The gate applies an electric field perpendicular to the plane of the material, breaking the inversion symmetry present in bilayer MoS2. The valley polarization induced by the longitudinal electrical current was imaged with Kerr rotation microscopy. The polarization was found to be present only near the edges of the device channel with opposite sign for the two edges, and was out-of-plane and strongly dependent on the gate voltage. Our observations are consistent with symmetry-dependent Berry curvature and valley Hall conductivity in bilayer MoS2. PMID:26809056

  6. Spin Hall effect in a spinor dipolar Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Oshima, T.; Kawaguchi, Y.

    2016-05-01

    We theoretically show that the spin Hall effect arises in a Bose-Einstein condensate (BEC) of neutral atoms interacting via the magnetic dipole-dipole interactions (MDDIs). Since the MDDI couples the total spin angular momentum and the relative orbital angular momentum of two colliding atoms, it works as a spin-orbit coupling. Thus, when we prepare a BEC in a magnetic sublevel m =0 , thermally and quantum-mechanically excited atoms in the m =1 and -1 states feel the Lorentz-like forces in the opposite directions. This is the origin for the emergence of the spin Hall effect. We define the mass-current and spin-current operators from the equations of continuity and calculate the spin Hall conductivity from the off-diagonal current-current correlation function within the Bogoliubov approximation. We find that the correction of the current operators due to the MDDI significantly contributes to the spin Hall conductivity. A possible experimental situation is also discussed.

  7. Quantum Interference, Geometric-phase Effects, and Semiclassical Transport in Quantum Hall Systems at Low Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Huang, Chun-Feng; Tsai, I.-H.

    It is well-established how the quantum interference induces strong localization leading to quantum Hall effect at high enough magnetic fields. Decreasing the magnetic fields, however, the localization strength can be reduced and the semiclassical magneto-oscillations following Shubnikov-de Haas formula appear in most quantum Hall systems. To understand the transport properties as the localization strength becomes weak, our team has investigated the magneto-resistance in some quantum Hall systems at low magnetic fields. Under the semiclassical transport, the crossing points in Hall plateaus showed Landau-band quantization and microwave-induced heating demonstrated the band-edge equivalence important to Landau-level addition transformation. We note that such equivalence is consistent with the edge universality based on the random matrices of Wigner type, and the Landau-band quantization can be explained by considering geometric phase effects. From our study, some quantum Hall features can survive as the semiclassical transport reveals the insufficient localization.

  8. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge.

    PubMed

    Nayak, Ajaya K; Fischer, Julia Erika; Sun, Yan; Yan, Binghai; Karel, Julie; Komarek, Alexander C; Shekhar, Chandra; Kumar, Nitesh; Schnelle, Walter; Kübler, Jürgen; Felser, Claudia; Parkin, Stuart S P

    2016-04-01

    It is well established that the anomalous Hall effect displayed by a ferromagnet scales with its magnetization. Therefore, an antiferromagnet that has no net magnetization should exhibit no anomalous Hall effect. We show that the noncolinear triangular antiferromagnet Mn3Ge exhibits a large anomalous Hall effect comparable to that of ferromagnetic metals; the magnitude of the anomalous conductivity is ~500 (ohm·cm)(-1) at 2 K and ~50 (ohm·cm)(-1) at room temperature. The angular dependence of the anomalous Hall effect measurements confirms that the small residual in-plane magnetic moment has no role in the observed effect except to control the chirality of the spin triangular structure. Our theoretical calculations demonstrate that the large anomalous Hall effect in Mn3Ge originates from a nonvanishing Berry curvature that arises from the chiral spin structure, and that also results in a large spin Hall effect of 1100 (ħ/e) (ohm·cm)(-1), comparable to that of platinum. The present results pave the way toward the realization of room temperature antiferromagnetic spintronics and spin Hall effect-based data storage devices. PMID:27152355

  9. Quantum Anomalous Hall effect in a Topological Insulator coupled to a Skyrmion Lattice

    NASA Astrophysics Data System (ADS)

    Bhowmick, Tonmoy; Barlas, Yafis; Yin, Gen; Lake, Roger

    A Skyrmion is a topologically protected spin texture characterized by a topological charge that has been experimentally observed in both bulk B20 compounds and thin films. In a quantum anomalous Hall phase, a material develops a topologically nontrivial electronic structure giving rise to quantized hall conductivity without any external magnetic field. We predict that a conventional bulk topological insulating material (e.g. Bi2 Se3, Bi2 Te3 Sb2 Te3) in proximity with a Skyrmion crystal, with a weak exchange coupling, will be driven into an anomalous Hall insulating phase characterized by a nonzero integer chern number in the gap. We have calculated band structure, identified the gaps, and calculated the chern number at those gaps. The calculations show that the non trivial topological properties of the Skyrmion spin texture can be imprinted on the Dirac electrons of the topological insulator. Electronic structure calculations were supported by the NSF (ECCS-1408168). Micromagnetic simulations were supported by SHINES Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award #DE-SC0012670.

  10. Quantum Hall effect in multilayered massless Dirac fermion systems with tilted cones

    NASA Astrophysics Data System (ADS)

    Tajima, Naoya; Yamauchi, Takahiro; Yamaguchi, Tatsuya; Suda, Masayuki; Kawasugi, Yoshitaka; Yamamoto, Hiroshi M.; Kato, Reizo; Nishio, Yutaka; Kajita, Koji

    2013-08-01

    A massless Dirac fermion ststem was realized in α-(BEDT-TTF)2I3 [BEDT-TTF=bis(ethylenedithio)tetrathiafulvalene] under high pressure. In contrast to graphene, this is the first bulk (multilayered) massless Dirac fermion material. Another important difference from graphene is that this system has highly tilted Dirac cones. In this case, conventional chiral symmetry is broken under a magnetic field. Here we experimentally addressed the following question: Is the Landau level structure of the system with tilted Dirac cones the same as that of graphene [conventional two-dimensional (2D) Dirac fermion system] under a magnetic field? The answer is yes. We succeeded in injecting holes into α-(BEDT-TTF)2I3 under high pressure. The detection of Shubnikov-de Haas oscillations whose phase was modified by Berry's phase π is direct evidence that this system is truly a 2D Dirac fermion system. In addition, we revealed the energy diagram of this device and characterized the multilayered quantum Hall effect.

  11. Observation of the spin hall effect of light via weak measurements.

    PubMed

    Hosten, Onur; Kwiat, Paul

    2008-02-01

    We have detected a spin-dependent displacement perpendicular to the refractive index gradient for photons passing through an air-glass interface. The effect is the photonic version of the spin Hall effect in electronic systems, indicating the universality of the effect for particles of different nature. Treating the effect as a weak measurement of the spin projection of the photons, we used a preselection and postselection technique on the spin state to enhance the original displacement by nearly four orders of magnitude, attaining sensitivity to displacements of approximately 1 angstrom. The spin Hall effect can be used for manipulating photonic angular momentum states, and the measurement technique holds promise for precision metrology. PMID:18187623

  12. O the Generalized Hall Effect as a Modification of Ideal Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Goodman, Michael Lee

    The generalized Hall effect (GHE) in the generalized Hall model (GHM) is studied as a correction to ideal magnetohydrodynamics (MHD) in the context of how it affects the linear stability of cylindrically symmetric equilibria and how it changes helically symmetric equilibria. The GHM differs from what is usually called the Hall model by including the electron pressure in the electron momentum equation. This gives the GHM some aspects of a two fluid model whereas the Hall model is a one fluid model. In both cases of cyclindrical and helical symmetry the presence of the electron pressure gradient as part of the GHE gives rise to an electric field tangent to the boundary of the plasma. This introduces an additional boundary condition in the case of a perfectly conducting plasma boundary. In the case of helical symmetry the equilibrium equations are a generalization of the Grad-Schafranov equation to equilibria with flow and GHE. The classification of these partial differential equations is independent of the component of the ion fluid velocity parallel to the helical direction which may allow for transonic or supersonic flows which are governed by elliptic equations. In the case of cylindrical symmetry a class of Alfven wave solutions that do not exist in ideal MHD is obtained and the accumulation point, with respect to large radial wavenumber, of the slow magnetoacoustic wave is shown to be changed from a finite nonzero value in ideal MHD to infinity by the GHE.

  13. Interplay of flux guiding and Hall effect in Nb films with nanogrooves

    NASA Astrophysics Data System (ADS)

    Dobrovolskiy, O. V.; Hanefeld, M.; Zörb, M.; Huth, M.; Shklovskij, V. A.

    2016-06-01

    The interplay between vortex guiding and the Hall effect in superconducting Nb films with periodically arranged nanogrooves is studied via four-probe measurements in standard and Hall configurations and accompanying theoretical modeling. The nanogrooves are milled by focused ion beam and induce a symmetric pinning potential of the washboard type. The resistivity tensor of the films is determined in the limit of small current densities at temperatures close to the critical temperature for the fundamental matching configuration of the vortex lattice with respect to the pinning nanolandscape. The angle between the current direction with respect to the grooves is set at seven fixed values between 0° and 90°. A sign change is observed in the temperature dependence of the Hall resistivity {ρ }\\perp - of as-grown films in a narrow temperature range near T c . By contrast, for all nanopatterned films {ρ }\\perp - is non-zero in a broader temperature range below T c , allowing us to discriminate between two contributions in {ρ }\\perp -, namely one contribution originating from the guided vortex motion and the other one caused by the Hall anomaly just as in as-grown Nb films. All four measured resistivity components are successfully fitted to analytical expressions derived within the framework of a stochastic model of competing isotropic and anisotropic pinning. This provides evidence of the model validity for the description of the resistive response of superconductor thin films with washboard pinning nanolandscapes.

  14. Fractional Quantum Hall Effect of lossy Rydberg Dark-State Polaritons

    NASA Astrophysics Data System (ADS)

    Grusdt, Fabian; Fleischhauer, Michael; Höning, Michael; Otterbach, Johannes

    2012-06-01

    Dark-state-polaritons (DSP) are bosonic quasiparticles arising in the interaction of light with 3-level atoms under conditions of electromagnetically induced transparency (EIT). When exposed to a strong artificial magnetic field, they can enter the lowest Landau level regime. With additional long range interactions, as realized e.g. when the 3-level atom contains a Rydberg-excited state, DSPs are natural candidates for a realization of the bosonic fractional quantum Hall effect. Besides their high controllability, they offer the possibility to examine open quantum Hall systems. We show how highly-correlated quantum Hall states of DSPs can be prepared, making use of nonlinear polariton losses. The possibility of realizing these states as stationary states of open systems is investigated. We propose a realistic quantum-optical setup, and show that different fractional quantum Hall states can be prepared, manipulated and observed. Numerical and analytical results for the excitation gaps of the ν=1/2p Laughlin states are presented.

  15. HYBRID AND HALL-MHD SIMULATIONS OF COLLISIONLESS RECONNECTION: EFFECTS OF PLASMA PRESSURE TENSOR

    SciTech Connect

    L. YIN; D. WINSKE; ET AL

    2001-05-01

    In this study we performed two-dimensional hybrid (particle ions, massless fluid electrons) and Hall-MHD simulations of collisionless reconnection in a thin current sheet. Both calculations include the full electron pressure tensor (instead of a localized resistivity) in the generalized Ohm's law to initiate reconnection, and in both an initial perturbation to the Harris equilibrium is applied. First, electron dynamics from the two calculations are compared, and we find overall agreement between the two calculations in both the reconnection rate and the global configuration. To address the issue of how kinetic treatment for the ions affects the reconnection dynamics, we compared the fluid-ion dynamics from the Hall-MHD calculation to the particle-ion dynamics obtained from the hybrid simulation. The comparison demonstrates that off-diagonal elements of the ion pressure tensor are important in correctly modeling the ion out-of-plane momentum transport from the X point. It is that these effects can be modeled efficiently using a particle Hall-MHD simulation method in which particle ions used in a predictor/corrector to implement the ion gyro-radius corrections. We also investigate the micro- macro-scale coupling in the magnetotail dynamics by using a new integrated approach in which particle Hall-MHD calculations are embedded inside a MHD simulation. Initial results of the simulation concerning current sheet thinning and reconnection dynamics are discussed.

  16. Effects of an Internally-Mounted Cathode on Hall Thruster Plume Properties

    NASA Technical Reports Server (NTRS)

    Hofer, Richard R.; Johnson, Lee K.; Goebel, Dan M.; Fitzgerald, Dennis J.

    2006-01-01

    The effects of cathode position on the plume properties of an 8 kW BHT-8000 Busek Hall thruster are discussed. Experiments were conducted at the Jet Propulsion Laboratory (JPL) in a vacuum chamber suitable for the development and qualification of high-power Hall thrusters. Multi-mode Hall thruster operation was demonstrated at operating conditions ranging from 200-500 V discharge voltage, 10-40 A discharge current, and 2-8 kW discharge power. Reductions in plume divergence and increased near-field plume symmetries were found to result from the use of an internally-mounted cathode instead of the traditional externally-mounted configuration. High-current hollow cathodes developed at JPL utilizing lanthanum hexaboride (LaB6) emitters were also demonstrated. Discharge currents up to 100 A were achieved with the cathode operating alone and up to 40 A during operation with the Hall thruster. LaB6 cathodes were investigated because of their potential to reduce overall system cost and risk due to less stringent xenon purity and handling requirements.

  17. Scrutinizing Hall Effect in Mn1 -xFex Si : Fermi Surface Evolution and Hidden Quantum Criticality

    NASA Astrophysics Data System (ADS)

    Glushkov, V. V.; Lobanova, I. I.; Ivanov, V. Yu.; Voronov, V. V.; Dyadkin, V. A.; Chubova, N. M.; Grigoriev, S. V.; Demishev, S. V.

    2015-12-01

    Separating between the ordinary Hall effect and anomalous Hall effect in the paramagnetic phase of Mn1 -xFex Si reveals an ordinary Hall effect sign inversion associated with the hidden quantum critical (QC) point x*˜0.11 . The effective hole doping at intermediate Fe content leads to verifiable predictions in the field of fermiology, magnetic interactions, and QC phenomena in Mn1 -xFex Si . The change of electron and hole concentrations is considered as a "driving force" for tuning the QC regime in Mn1 -xFex Si via modifying the Ruderman-Kittel-Kasuya-Yosida exchange interaction within the Heisenberg model of magnetism.

  18. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge

    PubMed Central

    Nayak, Ajaya K.; Fischer, Julia Erika; Sun, Yan; Yan, Binghai; Karel, Julie; Komarek, Alexander C.; Shekhar, Chandra; Kumar, Nitesh; Schnelle, Walter; Kübler, Jürgen; Felser, Claudia; Parkin, Stuart S. P.

    2016-01-01

    It is well established that the anomalous Hall effect displayed by a ferromagnet scales with its magnetization. Therefore, an antiferromagnet that has no net magnetization should exhibit no anomalous Hall effect. We show that the noncolinear triangular antiferromagnet Mn3Ge exhibits a large anomalous Hall effect comparable to that of ferromagnetic metals; the magnitude of the anomalous conductivity is ~500 (ohm·cm)−1 at 2 K and ~50 (ohm·cm)−1 at room temperature. The angular dependence of the anomalous Hall effect measurements confirms that the small residual in-plane magnetic moment has no role in the observed effect except to control the chirality of the spin triangular structure. Our theoretical calculations demonstrate that the large anomalous Hall effect in Mn3Ge originates from a nonvanishing Berry curvature that arises from the chiral spin structure, and that also results in a large spin Hall effect of 1100 (ħ/e) (ohm·cm)−1, comparable to that of platinum. The present results pave the way toward the realization of room temperature antiferromagnetic spintronics and spin Hall effect–based data storage devices. PMID:27152355

  19. Observation of inverse spin Hall effect in ferromagnetic FePt alloys using spin Seebeck effect

    SciTech Connect

    Seki, Takeshi Takanashi, Koki; Uchida, Ken-ichi; Kikkawa, Takashi; Qiu, Zhiyong; Saitoh, Eiji

    2015-08-31

    We experimentally observed the inverse spin Hall effect (ISHE) of ferromagnetic FePt alloys. Spin Seebeck effect due to the temperature gradient generated the spin current (J{sub s}) in the FePt|Y{sub 3}Fe{sub 5}O{sub 12} (YIG) structure, and J{sub s} was injected from YIG to FePt and converted to the charge current through ISHE of FePt. The significant difference in magnetization switching fields for FePt and YIG led to the clear separation of the voltage of ISHE from that of anomalous Nernst effect in FePt. We also investigated the effect of ordering of FePt crystal structure on the magnitude of ISHE voltage in FePt.

  20. Determination of the Pt spin diffusion length by spin-pumping and spin Hall effect

    SciTech Connect

    Zhang, Wei; Pearson, John E.; Hoffmann, Axel; Vlaminck, Vincent; Colegio de Ciencias e Ingenería, Universidad San Fransciso de Quito, Quito ; Divan, Ralu; Bader, Samuel D.; Center for Nanoscale Materials, Argonne National Laboratory, Illinois 60439

    2013-12-09

    The spin diffusion length of Pt at room temperature and at 8 K is experimentally determined via spin pumping and spin Hall effect in permalloy/Pt bilayers. Voltages generated during excitation of ferromagnetic resonance from the inverse spin Hall effect and anisotropic magnetoresistance effect were investigated with a broadband approach. Varying the Pt layer thickness gives rise to an evolution of the voltage line shape due to the superposition of the above two effects. By studying the ratio of the two voltage components with the Pt layer thickness, the spin diffusion length of Pt can be directly extracted. We obtain a spin diffusion length of ∼1.2 nm at room temperature and ∼1.6 nm at 8 K.

  1. Self-induced inverse spin Hall effect in permalloy at room temperature

    NASA Astrophysics Data System (ADS)

    Tsukahara, Ayaka; Ando, Yuichiro; Kitamura, Yuta; Emoto, Hiroyuki; Shikoh, Eiji; Delmo, Michael P.; Shinjo, Teruya; Shiraishi, Masashi

    2014-06-01

    Inverse spin Hall effect (ISHE) allows the conversion of pure spin current into charge current in nonmagnetic materials due to spin-orbit interaction (SOI). In ferromagnetic materials (FMs), SOI is known to contribute to anomalous Hall effect, anisotropic magnetoresistance, and other spin-dependent transport phenomena. However, SOI in FM has been ignored in ISHE studies in spintronic devices, and the possibility of "self-induced ISHE" in FM has never been explored until now. In this paper, we demonstrate the experimental verification of ISHE in FM. We found that the spin-pumping-induced spin current in permalloy (Py) film generates a transverse electromotive force (EMF) in the film itself, which results from the coupling of spin current and SOI in Py. The control experiments ruled out spin rectification effect and anomalous Nernst effect as the origin of the EMF.

  2. Performance Characterization of the Air Force Transformational Satellite 12 kW Hall Thruster

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Haag, Thomas W.; Smith, Timothy; Herman, Daniel; Huang, Wensheng; Shastry, Rohit; Peterson, Peter; Mathers, Alex

    2013-01-01

    The STMD GCD ISP project is tasked with developing, maturing, and testing enabling human exploration propulsion requirements and potential designs for advanced high-energy, in-space propulsion systems to support deep-space human exploration and reduce travel time between Earth's orbit and future destinations for human activity. High-power Hall propulsion systems have been identified as enabling technologies and have been the focus of the activities at NASA Glenn-In-house effort to evaluate performance and interrogate operation of NASA designed and manufactured Hall thrusters. Evaluate existing high TRL EP devices that may be suitable for implementation in SEP TDM.

  3. Influence of complex disorder on skew-scattering Hall effects in L 10 -ordered FePt alloy

    NASA Astrophysics Data System (ADS)

    Zimmermann, Bernd; Long, Nguyen H.; Mavropoulos, Phivos; Blügel, Stefan; Mokrousov, Yuriy

    2016-08-01

    We show by first-principles calculations that the skew-scattering anomalous Hall and spin Hall angles of L 10 -ordered FePt drastically depend on different types of disorder. A different sign of the anomalous Hall angle is obtained when slightly deviating from the stoichiometric ratio towards the Fe-rich side as compared to the Pt-rich side. For stoichiometric samples, short-range ordering of defects has a profound effect on the Hall angles and can change them by a factor of 2 as compared to the case of uncorrelated disorder. This might explain the vast range of anomalous Hall angles measured in experiments, which undergo different preparation procedures and thus might differ in their crystallographic quality.

  4. Effect of incoherent scattering on three-terminal quantum Hall thermoelectrics

    NASA Astrophysics Data System (ADS)

    Sánchez, Rafael; Sothmann, Björn; Jordan, Andrew N.

    2016-01-01

    A three-terminal conductor presents peculiar thermoelectric and thermal properties in the quantum Hall regime: it can behave as a symmetric rectifier and as an ideal thermal diode. These properties rely on the coherent propagation along chiral edge channels. We investigate the effect of breaking the coherent propagation by the introduction of a probe terminal. It is shown that chiral effects not only survive the presence of incoherence but they can even improve the thermoelectric performance in the totally incoherent regime.

  5. Avalanche electron bunching in a Corbino disk in the quantum Hall effect breakdown regime

    NASA Astrophysics Data System (ADS)

    Chida, Kensaku; Hata, Tokuro; Arakawa, Tomonori; Matsuo, Sadashige; Nishihara, Yoshitaka; Tanaka, Takahiro; Ono, Teruo; Kobayashi, Kensuke

    2014-06-01

    We have measured the current noise in a device with Corbino geometry to investigate the dynamics of electrons in the breakdown regime of the integer quantum Hall effect (QHE). In the breakdown regime, the Fano factor of the current noise exceeds 103, which indicates the presence of electron bunching. As super-Poissonian current noise is observed only in the breakdown regime, the bunching effect is related to the QHE breakdown. These observations support a QHE breakdown mechanism that involves an electron avalanche.

  6. Reprint of : Effect of incoherent scattering on three-terminal quantum Hall thermoelectrics

    NASA Astrophysics Data System (ADS)

    Sánchez, Rafael; Sothmann, Björn; Jordan, Andrew N.

    2016-08-01

    A three-terminal conductor presents peculiar thermoelectric and thermal properties in the quantum Hall regime: it can behave as a symmetric rectifier and as an ideal thermal diode. These properties rely on the coherent propagation along chiral edge channels. We investigate the effect of breaking the coherent propagation by the introduction of a probe terminal. It is shown that chiral effects not only survive the presence of incoherence but they can even improve the thermoelectric performance in the totally incoherent regime.

  7. Gravitational instability of a rotating partially-ionized plasma carrying a uniform magnetic field with Hall effect

    NASA Technical Reports Server (NTRS)

    Kumar, Vinod; Kumar, Nagendra; Srivastava, Krishna M.; Mittal, R. C.

    1993-01-01

    The problem of gravitational instability of an infinite homogeneous self-gravitating medium carrying a uniform magnetic field in the presence of Hall effect has been investigated to include the effect due to rotation. The dispersion relation has been obtained. It has been found that the Jeans's criterion for the instability remains unaffected even when the effect due to rotation is considered in the presence of Hall effect carrying a uniform magnetic.

  8. Sheath oscillation characteristics and effect on near-wall conduction in a krypton Hall thruster

    SciTech Connect

    Zhang, Fengkui Kong, Lingyi; Li, Chenliang; Yang, Haiwei; Li, Wei

    2014-11-15

    Despite its affordability, the krypton Hall-effect thruster in applications always had problems in regard to performance. The reason for this degradation is studied from the perspective of the near-wall conductivity of electrons. Using the particle-in-cell method, the sheath oscillation characteristics and its effect on near-wall conduction are compared in the krypton and xenon Hall-effect thrusters both with wall material composed of BNSiO{sub 2}. Comparing these two thrusters, the sheath in the krypton-plasma thruster will oscillate at low electron temperatures. The near-wall conduction current is only produced by collisions between electrons and wall, thereby causing a deficiency in the channel current. The sheath displays spatial oscillations only at high electron temperature; electrons are then reflected to produce the non-oscillation conduction current needed for the krypton-plasma thruster. However, it is accompanied with intensified oscillations.

  9. Electron Inertia Effects in Hall-Driven Magnetic Field Penetration in Electron-Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Richardson, Andrew; Angus, Justin; Swanekamp, Stephen; Schumer, Joseph; Ottinger, Paul

    2015-11-01

    Magnetic field penetration in electron-magnetohydrodynamics (EMHD) can be driven by density gradients through the Hall term. Here we describe the effect of electron inertia on simplified one- and two- dimensional models of a magnetic front. Nonlinear effects due to inertia cause the 1D model to develop peaked solitary waves, while in 2D a shear-driven Kelvin-Helholtz like instability causes the front to break into a series of vortices which propagate into the plasma. The combination of these two effects means that in 2D, Hall driven magnetic field penetration will typically happen in the form of complex vortex-dominated penetration, rather than as a transversely-smooth shock front. This work was supported by the Naval Research Laboratory Base Program.

  10. Geometrical Optics of Beams with Vortices: Berry Phase and Orbital Angular Momentum Hall Effect

    SciTech Connect

    Bliokh, Konstantin Yu.

    2006-07-28

    We consider propagation of a paraxial beam carrying the spin angular momentum (polarization) and intrinsic orbital angular momentum (IOAM) in a smoothly inhomogeneous isotropic medium. It is shown that the presence of IOAM can dramatically enhance and rearrange the topological phenomena that previously were considered solely in connection to the polarization of transverse waves. In particular, the appearance of a new type of Berry phase that describes the parallel transport of the beam structure along a curved ray is predicted. We derive the ray equations demonstrating the splitting of beams with different values of IOAM. This is the orbital angular momentum Hall effect, which resembles the Magnus effect for optical vortices. Unlike the spin Hall effect of photons, it can be much larger in magnitude and is inherent to waves of any nature. Experimental means to detect the phenomena are discussed.

  11. Sheath oscillation characteristics and effect on near-wall conduction in a krypton Hall thruster

    NASA Astrophysics Data System (ADS)

    Zhang, Fengkui; Kong, Lingyi; Li, Chenliang; Yang, Haiwei; Li, Wei

    2014-11-01

    Despite its affordability, the krypton Hall-effect thruster in applications always had problems in regard to performance. The reason for this degradation is studied from the perspective of the near-wall conductivity of electrons. Using the particle-in-cell method, the sheath oscillation characteristics and its effect on near-wall conduction are compared in the krypton and xenon Hall-effect thrusters both with wall material composed of BNSiO 2 . Comparing these two thrusters, the sheath in the krypton-plasma thruster will oscillate at low electron temperatures. The near-wall conduction current is only produced by collisions between electrons and wall, thereby causing a deficiency in the channel current. The sheath displays spatial oscillations only at high electron temperature; electrons are then reflected to produce the non-oscillation conduction current needed for the krypton-plasma thruster. However, it is accompanied with intensified oscillations.

  12. Magnetotransport in metal/insulating-ferromagnet heterostructures: Spin Hall magnetoresistance or magnetic proximity effect

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Ma, L.; Shi, Z.; Fan, W. J.; Zheng, Jian-Guo; Evans, R. F. L.; Zhou, S. M.

    2015-08-01

    We study the anomalous Hall-like effect (AHLE) and the effective anisotropic magnetoresistance (EAMR) in antiferromagnetic γ -IrMn3/Y3Fe5O12(YIG ) and Pt/YIG heterostructures. For γ -IrMn3/YIG , the EAMR and the AHLE resistivity change sign with temperature due to the competition between the spin Hall magnetoresistance (SMR) and the magnetic proximity effect (MPE) induced by the interfacial antiferromagnetic uncompensated magnetic moment. In contrast, for Pt/YIG, the AHLE resistivity changes sign with temperature whereas no sign change is observed in the EAMR. This is because the MPE and the SMR play a dominant role in the AHLE and the EAMR, respectively. As different types of galvanomagnetic properties, the AHLE and the EAMR have proved vital in disentangling the MPE and the SMR in metal/insulating-ferromagnet heterostructures.

  13. Quasiparticle-mediated spin Hall effect in a superconductor.

    PubMed

    Wakamura, T; Akaike, H; Omori, Y; Niimi, Y; Takahashi, S; Fujimaki, A; Maekawa, S; Otani, Y

    2015-07-01

    In some materials the competition between superconductivity and magnetism brings about a variety of unique phenomena such as the coexistence of superconductivity and magnetism in heavy-fermion superconductors or spin-triplet supercurrent in ferromagnetic Josephson junctions. Recent observations of spin-charge separation in a lateral spin valve with a superconductor evidence that these remarkable properties are applicable to spintronics, although there are still few works exploring this possibility. Here, we report the experimental observation of the quasiparticle-mediated spin Hall effect in a superconductor, NbN. This compound exhibits the inverse spin Hall (ISH) effect even below the superconducting transition temperature. Surprisingly, the ISH signal increases by more than 2,000 times compared with that in the normal state with a decrease of the injected spin current. The effect disappears when the distance between the voltage probes becomes larger than the charge imbalance length, corroborating that the huge ISH signals measured are mediated by quasiparticles. PMID:25985459

  14. Transport studies on Cr-doped (Bi,Sb)2Te3 thin films with nearly quantized anomalous Hall effect

    NASA Astrophysics Data System (ADS)

    Liu, Minhao; Richardella, Anthony; Kandala, Abhinav; Wang, Wudi; Yazdani, Ali; Samarth, Nitin; Ong, N. Phuan

    2015-03-01

    We describe measurements of the quantum anomalous Hall effect in ferromagnetic Cr-doped (Bi,Sb)2Te3 thin films (6-8 QL thickness) grown on (111) SrTiO3 (STO) substrates by molecular beam epitaxy. The Fermi level is tuned close to the neutral point by tuning the growth flux ratios of Cr, Bi and Sb. Transport measurements were carried out in a dilution fridge at a base temperature of 20 mK. By tuning the chemical potential with a back gate on the STO substrate, we observed an anomalous Hall effect as high as 0.95h/e2, with a coercive field ~ 0.15 T and a narrow transition between positive/negative Hall plateaus. Transport measurements in a non-local configuration showed a Hall-effect-like non-local resistance with a systematic dependence on the back gate voltage and with pronounced peaks which resembled the non-local resistance of the quantum Hall effect. The non-local signal has a maximum that coincides with the maximum in Hall conductivity, indicating the edge channel as its origin. Our results show that the edge channel manifests itself in various transport properties even though the Hall resistance is not perfectly quantized. Supported by DARPA SPAWAR Grant No. N66001-11-1-4110 and MURI grant on Topological Insulators (ARO W911NF-12-1-0461).

  15. Landau level quantization for massless Dirac fermions in the spherical geometry: Graphene fractional quantum Hall effect on the Haldane sphere

    NASA Astrophysics Data System (ADS)

    Arciniaga, Michael; Peterson, Michael R.

    2016-07-01

    We derive the single-particle eigenenergies and eigenfunctions for massless Dirac fermions confined to the surface of a sphere in the presence of a magnetic monopole, i.e., we solve the Landau level problem for electrons in graphene on the Haldane sphere. With the single-particle eigenfunctions and eigenenergies we calculate the Haldane pseudopotentials for the Coulomb interaction in the second Landau level and calculate the effective pseudopotentials characterizing an effective Landau level mixing Hamiltonian entirely in the spherical geometry to be used in theoretical studies of the fractional quantum Hall effect in graphene. Our treatment is analogous to the formalism in the planar geometry and reduces to the planar results in the thermodynamic limit.

  16. Realization of tunable spin-dependent splitting in intrinsic photonic spin Hall effect

    SciTech Connect

    Ling, Xiaohui; Yi, Xunong; Zhou, Xinxing; Liu, Yachao; Shu, Weixing; Wen, Shuangchun; Luo, Hailu

    2014-10-13

    We report the realization of tunable spin-dependent splitting in intrinsic photonic spin Hall effect. By breaking the rotational symmetry of a cylindrical vector beam, the intrinsic vortex phases that the two spin components of the vector beam carries, which is similar to the geometric Pancharatnam-Berry phase, are no longer continuous in the azimuthal direction, and leads to observation of spin accumulation at the opposite edge of the beam. Due to the inherent nature of the phase and independency of light-matter interaction, the observed photonic spin Hall effect is intrinsic. Modulating the topological charge of the vector beam, the spin-dependent splitting can be enhanced and the direction of spin accumulation is switchable. Our findings may provide a possible route for generation and manipulation of spin-polarized photons, and enables spin-based photonics applications.

  17. Precise Quantization of the Anomalous Hall Effect near Zero Magnetic Field.

    PubMed

    Bestwick, A J; Fox, E J; Kou, Xufeng; Pan, Lei; Wang, Kang L; Goldhaber-Gordon, D

    2015-05-01

    We report a nearly ideal quantum anomalous Hall effect in a three-dimensional topological insulator thin film with ferromagnetic doping. Near zero applied magnetic field we measure exact quantization in the Hall resistance to within a part per 10 000 and a longitudinal resistivity under 1  Ω per square, with chiral edge transport explicitly confirmed by nonlocal measurements. Deviations from this behavior are found to be caused by thermally activated carriers, as indicated by an Arrhenius law temperature dependence. Using the deviations as a thermometer, we demonstrate an unexpected magnetocaloric effect and use it to reach near-perfect quantization by cooling the sample below the dilution refrigerator base temperature in a process approximating adiabatic demagnetization refrigeration. PMID:26001016

  18. Bilayer graphene under pressure: Electron-hole symmetry breaking, valley Hall effect, and Landau levels

    NASA Astrophysics Data System (ADS)

    Munoz, F.; Collado, H. P. Ojeda; Usaj, Gonzalo; Sofo, Jorge O.; Balseiro, C. A.

    2016-06-01

    The electronic structure of bilayer graphene under pressure develops very interesting features with an enhancement of the trigonal warping and a splitting of the parabolic touching bands at the K point of the reciprocal space into four Dirac cones, one at K and three along the T symmetry lines. As pressure is increased, these cones separate in reciprocal space and in energy, breaking the electron-hole symmetry. Due to their energy separation, their opposite Berry curvature can be observed in valley Hall effect experiments and in the structure of the Landau levels. Based on the electronic structure obtained by density functional theory, we develop a low energy Hamiltonian that describes the effects of pressure on measurable quantities such as the Hall conductivity and the Landau levels of the system.

  19. Quantum Hall Effect in Black Phosphorus Two-dimensional Electron System

    NASA Astrophysics Data System (ADS)

    Li, Likai; Yang, Fangyuan; Ye, Guo Jun; Zhang, Zuocheng; Zhu, Zengwei; Lou, Wenkai; Zhou, Xiaoying; Li, Liang; Watanabe, Kenji; Taniguchi, Takashi; Chang, Kai; Wang, Yayu; Chen, Xian Hui; Zhang, Yuanbo

    The recent advent of black phosphorus has greatly enriched the material base of two-dimensional electron systems (2DES). In this work, we reached a milestone in black phosphorus research - the observation of integer quantum Hall (QH) effect in high quality black phosphorus 2DES. We achieved high carrier mobility by embedding the black phosphorus 2DES in a van der Waals heterostructure close to a graphite back gate; the graphite gate screens the impurity potential in the 2DES, and brings the Hall mobility up to 6000 cm2/Vs. The exceptional mobility enabled us, for the first time, to observe QH effect, and to gain important information on the energetics of the spin-split Landau levels in black phosphorus. Our results set the stage for further study on quantum transport and device application in the ultrahigh mobility regime.

  20. Enhanced spin Hall effect by electron correlations in CuBi alloys

    NASA Astrophysics Data System (ADS)

    Gu, Bo; Xu, Zhuo; Mori, Michiyasu; Ziman, Timothy; Maekawa, Sadamichi

    2015-05-01

    A recent experiment in CuBi alloys obtained a large spin Hall angle (SHA) of -0.24 (Niimi et al., Phys. Rev. Lett. 109, 156602 (2012)). We find that the SHA can be dramatically enhanced by Bi impurities close to the Cu surface. The mechanisms of this enhancement are two-fold. One is that the localized impurity state on surface has a decreased hybridization and combined with Coulomb correlation effect. The other comes from the low-dimensional state of conduction electrons on surface, which results in a further enhancement of skew scattering by impurities. Furthermore, we note that a discrepancy in sign of SHA between the experiment and previous theories is simply caused by different definitions of SHA. This re-establishes skew scattering as the essential mechanism underlying the spin Hall effect in CuBi alloys.

  1. Enhanced spin Hall effect by electron correlations in CuBi alloys

    SciTech Connect

    Gu, Bo Xu, Zhuo; Mori, Michiyasu; Maekawa, Sadamichi; Ziman, Timothy

    2015-05-07

    A recent experiment in CuBi alloys obtained a large spin Hall angle (SHA) of −0.24 (Niimi et al., Phys. Rev. Lett. 109, 156602 (2012)). We find that the SHA can be dramatically enhanced by Bi impurities close to the Cu surface. The mechanisms of this enhancement are two-fold. One is that the localized impurity state on surface has a decreased hybridization and combined with Coulomb correlation effect. The other comes from the low-dimensional state of conduction electrons on surface, which results in a further enhancement of skew scattering by impurities. Furthermore, we note that a discrepancy in sign of SHA between the experiment and previous theories is simply caused by different definitions of SHA. This re-establishes skew scattering as the essential mechanism underlying the spin Hall effect in CuBi alloys.

  2. Silicon Carbide (SiC) Power Processing Unit (PPU) for Hall Effect Thrusters

    NASA Technical Reports Server (NTRS)

    Reese, Bradley

    2015-01-01

    Arkansas Power Electronics International (APEI), Inc., is developing a high-efficiency, radiation-hardened 3.8-kW SiC power supply for the PPU of Hall effect thrusters. This project specifically targets the design of a PPU for the high-voltage Hall accelerator (HiVHAC) thruster, with target specifications of 80- to 160-V input, 200- to 700-V/5A output, efficiency greater than 96 percent, and peak power density in excess of 2.5 kW/kg. The PPU under development uses SiC junction field-effect transistor power switches, components that APEI, Inc., has irradiated under total ionizing dose conditions to greater than 3 MRad with little to no change in device performance.

  3. Spin Hall effect in two-dimensional systems within the relativistic phase shift model

    NASA Astrophysics Data System (ADS)

    Johansson, Annika; Herschbach, Christian; Fedorov, Dmitry V.; Henk, Jürgen; Mertig, Ingrid

    2015-11-01

    Recently, a relativistic phase shift model (RPSM) was introduced [D. V. Fedorov et al., Phys. Rev. B 88, 085116 (2013), 10.1103/PhysRevB.88.085116] to describe the skew-scattering mechanism of the spin Hall effect caused by impurities in bulk crystals. Here, we present its analog derived for two-dimensional (2D) systems. The proposed 2D-RPSM is applied to one-monolayer noble-metal films with various substitutional impurities and the obtained results are compared with those of corresponding first-principles calculations. We demonstrate that, in contrast to the three-dimensional RPSM, the considered model does not provide a sufficient qualitative description of the transport properties. Therefore, an ab initio treatment is necessary for the description of the spin Hall effect in two-dimensional crystals.

  4. Effect of electron temperature anisotropy on near-wall conductivity in Hall thrusters

    SciTech Connect

    Zhang, Fengkui E-mail: yudaren@hit.edu.cn; Kong, Lingyi; Zhang, Xueyi; Li, Wei; Yu, Daren E-mail: yudaren@hit.edu.cn

    2014-06-15

    The electron velocity distribution in Hall thrusters is anisotropic, which not only makes the sheath oscillate in time, but also causes the sheath to oscillate in space under the condition of low electron temperatures. The spatial oscillation sheath has a significant effect on near-wall transport current. In this Letter, the method of particle-in-cell (2D + 3 V) was adopted to simulate the effect of anisotropic electron temperatures on near-wall conductivity in a Hall thruster. Results show that the electron-wall collision frequency is within the same order in magnitude for both anisotropic and isotropic electron temperatures. The near-wall transport current produced by collisions between the electrons and the walls is much smaller than experimental measurements. However, under the condition of anisotropic electron temperatures, the non-collision transport current produced by slow electrons which reflected by the spatial oscillation sheath is much larger and closes to measurements.

  5. Spin Hall effect in spin-valley coupled monolayers of transition metal dichalcogenides

    SciTech Connect

    Shan, Wen-Yu; Lu, Hai-Zhou; Xiao, Di

    2013-01-01

    We study both the intrinsic and extrinsic spin Hall effect in spin-valley coupled monolayers of transition metal dichalcogenides. We find that whereas the skew-scattering contribution is suppressed by the large band gap, the side-jump contribution is comparable to the intrinsic one with opposite sign in the presence of scalar andmagnetic scattering. Intervalley scattering tends to suppress the side-jump contribution due to the loss of coherence. By tuning the ratio of intra- to intervalley scattering, the spin Hall conductivity shows a sign change in hole-doped samples. The multiband effect in other doping regimes is considered, and it is found that the sign change exists in the heavily hole-doped regime, but not in the electron-doped regime.

  6. High pressure Moissanite-anvil cells for the low temperature Hall effect measurements of oxide superconductors

    NASA Astrophysics Data System (ADS)

    Yomo, Shusuke; Tozer, Stanley

    2013-03-01

    The Hall effect was successfully measured for a single crystal of high temperature superconductor in a Moissanite-anvil clamp cell up to 5 GPa, with proper arrangement of lead wires and a sample. Zylon gasket, good in electrical insulation, worked well up to 5 GPa. The 30-40 % increase of the clamped pressure was observed during cooling to below 60 K. The appreciable pressure effect of the a-b plane Hall coefficient was observed and negative for La2 - x Srx CuO4 with x = 0.090. The result is discussed with those for sintered samples and those studied with a different pressurizing method. Thanks are due to Visiting Scientist Program, NHMFL, and NNSA grant DE-FG52-03NA00066.

  7. Magnetic field evolution in white dwarfs: The hall effect and complexity of the field

    NASA Technical Reports Server (NTRS)

    Muslimov, A. G.; Van Horn, H. M.; Wood, M. A.

    1995-01-01

    We calculate the evolution of the magnetic fields in white dwarfs, taking into account the Hall effect. Because this effect depends nonlinearly upon the magnetic field strength B, the time dependences of the various multipole field components are coupled. The evolution of the field is thus significantly more complicated than has been indicated by previous investigations. Our calculations employ recent white dwarf evolutionary sequences computed for stars with masses 0.4, 0.6, 0.8, and 1.0 solar mass. We show that in the presence of a strong (up to approximately 10(exp 9) G) internal toroidal magnetic field; the evolution of even the lowest order poloidal modes can be substantially changed by the Hall effect. As an example, we compute the evolution of an initially weak quadrupole component, which we take arbitrarily to be approximately 0.1%-1% of the strength of a dominant dipole field. We find that coupling provided by the Hall effect can produce growth of the ratio of the quadrupole to the dipole component of the surface value of the magnetic field strength by more than a factor of 10 over the 10(exp 9) to 10(exp 10) year cooling lifetime of the white dwarf. Some consequences of these results for the process of magnetic-field evolution in white dwarfs are briefly discussed.

  8. Observation of the quantum Hall effect in δ-doped SrTiO3

    PubMed Central

    Matsubara, Y.; Takahashi, K. S.; Bahramy, M. S.; Kozuka, Y.; Maryenko, D.; Falson, J.; Tsukazaki, A.; Tokura, Y.; Kawasaki, M.

    2016-01-01

    The quantum Hall effect is a macroscopic quantum phenomenon in a two-dimensional electron system. The two-dimensional electron system in SrTiO3 has sparked a great deal of interest, mainly because of the strong electron correlation effects expected from the 3d orbitals. Here we report the observation of the quantum Hall effect in a dilute La-doped SrTiO3-two-dimensional electron system, fabricated by metal organic molecular-beam epitaxy. The quantized Hall plateaus are found to be solely stemming from the low Landau levels with even integer-filling factors, ν=4 and 6 without any contribution from odd ν's. For ν=4, the corresponding plateau disappears on decreasing the carrier density. Such peculiar behaviours are proposed to be due to the crossing between the Landau levels originating from the two subbands composed of d orbitals with different effective masses. Our findings pave a way to explore unprecedented quantum phenomena in d-electron systems. PMID:27228903

  9. Observation of the quantum Hall effect in δ-doped SrTiO3

    NASA Astrophysics Data System (ADS)

    Matsubara, Y.; Takahashi, K. S.; Bahramy, M. S.; Kozuka, Y.; Maryenko, D.; Falson, J.; Tsukazaki, A.; Tokura, Y.; Kawasaki, M.

    2016-05-01

    The quantum Hall effect is a macroscopic quantum phenomenon in a two-dimensional electron system. The two-dimensional electron system in SrTiO3 has sparked a great deal of interest, mainly because of the strong electron correlation effects expected from the 3d orbitals. Here we report the observation of the quantum Hall effect in a dilute La-doped SrTiO3-two-dimensional electron system, fabricated by metal organic molecular-beam epitaxy. The quantized Hall plateaus are found to be solely stemming from the low Landau levels with even integer-filling factors, ν=4 and 6 without any contribution from odd ν's. For ν=4, the corresponding plateau disappears on decreasing the carrier density. Such peculiar behaviours are proposed to be due to the crossing between the Landau levels originating from the two subbands composed of d orbitals with different effective masses. Our findings pave a way to explore unprecedented quantum phenomena in d-electron systems.

  10. Observation of the quantum Hall effect in δ-doped SrTiO3.

    PubMed

    Matsubara, Y; Takahashi, K S; Bahramy, M S; Kozuka, Y; Maryenko, D; Falson, J; Tsukazaki, A; Tokura, Y; Kawasaki, M

    2016-01-01

    The quantum Hall effect is a macroscopic quantum phenomenon in a two-dimensional electron system. The two-dimensional electron system in SrTiO3 has sparked a great deal of interest, mainly because of the strong electron correlation effects expected from the 3d orbitals. Here we report the observation of the quantum Hall effect in a dilute La-doped SrTiO3-two-dimensional electron system, fabricated by metal organic molecular-beam epitaxy. The quantized Hall plateaus are found to be solely stemming from the low Landau levels with even integer-filling factors, ν=4 and 6 without any contribution from odd ν's. For ν=4, the corresponding plateau disappears on decreasing the carrier density. Such peculiar behaviours are proposed to be due to the crossing between the Landau levels originating from the two subbands composed of d orbitals with different effective masses. Our findings pave a way to explore unprecedented quantum phenomena in d-electron systems. PMID:27228903

  11. Phase diagram for bilayer quantum Hall effect at total filling νT=5

    NASA Astrophysics Data System (ADS)

    Shi, Chuntai; Jolad, Shivakumar; Regnault, Nicolas; Jain, Jainendra K.

    2008-04-01

    We evaluate the phase diagram of the bilayer quantum Hall effect at total filling νT=5 , which is a bilayer phase coherent state at small separations and two uncoupled 5/2 states at large separations. Based on a combination of variational and exact calculations, we estimate that the transition between these states occurs at a layer separation of approximately one magnetic length. The composite fermion Fermi sea is not found to be relevant for any parameters.

  12. Enhancing photonic spin Hall effect via long-range surface plasmon resonance.

    PubMed

    Tan, Xiao-Jie; Zhu, Xiao-Song

    2016-06-01

    We presented the significant enhancement of the photonic spin Hall effect by taking advantage of long-range surface plasmon resonance (LRSPR). The influence of the thicknesses of metal and dielectric layers in the insulator-metal-insulator structure which supports LRSPR was investigated. Under the optimal parameter setup, the largest transverse separation with a 632.8 nm incident Gaussian beam reaches 7.85 μm, which is much larger than previous reported values. PMID:27244393

  13. Reinforced Stimulus Preexposure Effects as a Function of US Intensity: Implications for Understanding the Hall-Pearce Effect

    ERIC Educational Resources Information Center

    Rodriguez, Gabriel; Alonso, Gumersinda

    2011-01-01

    Three conditioned suppression experiments examined the Hall-Pearce (1979) negative transfer effect in rats. Experiment 1 replicated the effect: CS-US[subscript weak] pairings retarded subsequent fear conditioning to the CS as a result of CS-US[subscript strong] pairings. The size of this retardation was less than that produced by non-reinforced CS…

  14. Spatially-Resolved Modeling of Spin and Valley Hall Effects in Two-Dimensional Semiconductors

    NASA Astrophysics Data System (ADS)

    Lenferink, E. J.; Jia, Y.; Stern, N. P.

    2015-03-01

    In monolayers of transition metal dichalcogenides (1L-TMDs), a valley degree of freedom emerges for charge carriers due to the absence of spatial inversion symmetry. Strong spin-orbit interaction couples spin and valley, resulting in correlated spin, valley, and charge transport such as transverse Hall effects. Spatially-resolved measurements of these Hall effects have recently been achieved in monolayer MoS2, necessitating a detailed picture for understanding transport and relaxation mechanisms in 1L-TMDs that considers carrier, valley, and spin motion and generation processes. Here, we study spin and valley Hall effects in 1L-TMD devices by simulating the transport of spin- and valley-polarized carriers with a generalized drift diffusion model incorporating circularly polarized optical excitation. Spin and valley accumulation and the transverse voltage are analyzed in different device geometries. We compare the electron and hole contributions to the transverse voltage and discuss the potential for a measurement of the valley relaxation times of free carriers in 1L-TMDs. This work was supported by the Institute for Sustainability and Energy at Northwestern and the U.S. Department of Energy (DE-SC0012130). N.P.S. acknowledges support as an Alfred P. Sloan Research Fellow.

  15. Anomalous Hall effect in Pt thin films induced by ionic gating

    NASA Astrophysics Data System (ADS)

    Shimizu, Sunao; Takahashi, Kei S.; Hatano, Takafumi; Kawasaki, Masashi; Tokura, Yoshinori; Iwasa, Yoshihiro

    2014-03-01

    Pt is an exchange-enhanced paramagnetic material, in which the Stoner criterion for ferromagnetism is nearly satisfied and thus external stimuli may induce unconventional magnetic characteristics. For example, nano-structure formation such as particles[2] or wires[3] provides Pt with ferromagnetic-like properties even at room temperature. In this presentation, we report that a nonmagnetic perturbation in the form of a gate voltage applied through an ionic liquid induces a nonlinear Hall effect in Pt thin films,[4] which resembles the anomalous Hall effect induced by the contact to yttrium iron garnet.[5] Analysis of detailed temperature and magnetic field experiments indicates that the evolution of the nonlinear Hall effect can be explained in terms of large local moments. The applied electric field triggers an electrochemical reaction at the solid/liquid interface and induces magnetic moments as large as ~10 μB that follow the Langevin function. This work was supported by the Japan Society for the Promotion of Science (JSAP) through its `Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program)'.

  16. Hidden-symmetry-protected quantum pseudo-spin Hall effect in optical lattices

    NASA Astrophysics Data System (ADS)

    Hou, Jing-Min; Chen, Wei

    2016-06-01

    We propose a scheme to realize a Z2 topological insulator in a square optical lattice. Different from the conventional topological insulator protected by the time-reversal symmetry, here the optical lattice possesses a hidden symmetry, which is responsible for the present Z2 topological order. With a properly defined pseudospin, such a topological insulator is characterized by the helical edge states that exhibits pseudo-spin-momentum locking, so it can be considered as a quantum pseudo-spin Hall insulator. The Z2 topological invariant is derived and its experimental detection is discussed as well.

  17. Strain-induced quantum spin Hall effect in methyl-substituted germanane GeCH3

    PubMed Central

    Ma, Yandong; Dai, Ying; Wei, Wei; Huang, Baibiao; Whangbo, Myung-Hwan

    2014-01-01

    Quantum spin Hall (QSH) insulators exhibit a bulk insulting gap and metallic edge states characterized by nontrivial topology. We investigated the electronic structure of an isolated layer of methyl substituted germanane GeCH3 by density functional calculations (DFT), and its dynamic stability by phonon dispersion calculations. Our results show that an isolated GeCH3 layer has no dynamic instability, and is a QSH insulator under reasonable strain. This QSH insulator has a large enough band gap (up to 108 meV) at 12% strain. The advantageous features of this QSH insulator for practical room-temperature applications are discussed. PMID:25465887

  18. Properties of crystalline bismuth selenide and its use as a Hall effect magnetometer

    NASA Technical Reports Server (NTRS)

    Wollam, J. A.; Beale, H. A.; Spain, I. L.

    1972-01-01

    Single crystals of n-type Bi2Se3 grown by the Bridgman technique are found to make excellent Hall effect magnetometers. Plots of Hall resistivity sub yx against magnetic field B to 10 tesla are linear to within 1 percent. Furthermore, the slope of the sub yx against B curve varies by about 1 percent in the region 1.1 to 35 K and by less than 20 percent in the region 1.1 to 300 K. Analysis of galvanomagnetic measurements indicate the samples have semimetallic densities of approximately 10 to the 25th power/cu cm, with two band conduction and near carrier compensation. Reflectivity measurements suggest a band gap of approximately 0.08 eV for the samples. The temperature dependence of mobility is also measured. A series of 50 direct immersions into liquid helium and liquid nitrogen demonstrate the reliability of Bi2Se3 magnetometers for cryogenic use.

  19. Design Considerations for CMOS-Integrated Hall-Effect Magnetic Bead Detectors for Biosensor Applications

    PubMed Central

    Skucha, K.; Gambini, S.; Liu, P.; Megens, M.; Kim, J.; Boser, BE

    2014-01-01

    We describe a design methodology for on-chip magnetic bead label detectors based on Hall-effect sensors. Signal errors caused by the label-binding process and other factors that limit the minimum detection area are quantified and adjusted to meet typical assay accuracy standards. The methodology is demonstrated by designing an 8192 element Hall sensor array, implemented in a commercial 0.18 μm CMOS process with single-mask postprocessing. The array can quantify a 1% surface coverage of 2.8 μm beads in 30 seconds with a coefficient of variation of 7.4%. This combination of accuracy and speed makes this technology a suitable detection platform for biological assays based on magnetic bead labels. PMID:25031503

  20. Light-Induced Exciton Spin Hall Effect in van der Waals Heterostructures.

    PubMed

    Li, Yun-Mei; Li, Jian; Shi, Li-Kun; Zhang, Dong; Yang, Wen; Chang, Kai

    2015-10-16

    We propose a light-induced spin Hall effect for interlayer exciton gas in monolayer MoSe2-WSe2 van der Waals heterostructure. By applying two infrared, spatially varying laser beams coupled to the exciton internal states, a spin-dependent gauge potential on the exciton center-of-mass motion is induced. This gauge potential deflects excitons in different spin states towards opposite directions, leading to a finite spin current but vanishing mass current. In the Hall bar geometry, the spin-dependent deflection gives rise to spin-dependent chiral edge states with spin-velocity locking. The spin current and chiral edge states of the excitons can be detected by spatially resolved photoluminescence spectroscopy. PMID:26550894