Science.gov

Sample records for halophyte plant species

  1. Plant salt tolerance: adaptations in halophytes

    PubMed Central

    Flowers, Timothy J.; Colmer, Timothy D.

    2015-01-01

    Background Most of the water on Earth is seawater, each kilogram of which contains about 35 g of salts, and yet most plants cannot grow in this solution; less than 0·2 % of species can develop and reproduce with repeated exposure to seawater. These ‘extremophiles’ are called halophytes. Scope Improved knowledge of halophytes is of importance to understanding our natural world and to enable the use of some of these fascinating plants in land re-vegetation, as forages for livestock, and to develop salt-tolerant crops. In this Preface to a Special Issue on halophytes and saline adaptations, the evolution of salt tolerance in halophytes, their life-history traits and progress in understanding the molecular, biochemical and physiological mechanisms contributing to salt tolerance are summarized. In particular, cellular processes that underpin the ability of halophytes to tolerate high tissue concentrations of Na+ and Cl−, including regulation of membrane transport, their ability to synthesize compatible solutes and to deal with reactive oxygen species, are highlighted. Interacting stress factors in addition to salinity, such as heavy metals and flooding, are also topics gaining increased attention in the search to understand the biology of halophytes. Conclusions Halophytes will play increasingly important roles as models for understanding plant salt tolerance, as genetic resources contributing towards the goal of improvement of salt tolerance in some crops, for re-vegetation of saline lands, and as ‘niche crops’ in their own right for landscapes with saline soils. PMID:25844430

  2. Radical scavenging, antioxidant and antimicrobial activities of halophytic species.

    PubMed

    Meot-Duros, Laetitia; Le Floch, Gatan; Magn, Christian

    2008-03-01

    For the first time, both antioxidant and antimicrobial activities are simultaneously reported in halophytic plants, particularly on polar fractions. Chloroformic and methanolic extracts of the halophytes Eryngium maritimum L., Crithmum maritimum L. and Cakile maritima Scop. were tested for their antimicrobial activities against 12 bacterial and yeast strains. In addition, radical scavenging and antioxidant activities were assessed, as well as total phenol contents. Only one bacterial strain (Listeria monocytogenes) was not inhibited by plants extracts, and apolar (chloroformic) fractions were generally more active than polar (methanolic) ones. Eryngium maritimum presented the weakest radical scavenging activity (ABTS IC(50)=0.28 mg ml(-1)), as well as the lowest total phenol content (16.4 mg GAE g(-1) DW). However, the three halophytic species had relatively strong total antioxidant activities (from 32.7 to 48.6 mg ascorbate equivalents g (-1) DW). Consequences on the potential use of these plants in food or cosmetic industry are discussed. PMID:18164885

  3. Ecophysiological constraints of two invasive plant species under a saline gradient: Halophytes versus glycophytes

    NASA Astrophysics Data System (ADS)

    Duarte, B.; Santos, D.; Marques, J. C.; Caçador, I.

    2015-12-01

    Salt marsh environments are harsh environments where salinity comprises one of the most important species distribution shaping factor, presenting sediment salinities from 0 to 855 mM (0-50 ppt). Invasive species have often a high colonizing potential, due to its high plasticity and adaptation ability. Spartina patens is an invasive species already spread along several Mediterranean countries, like France and Spain. Cyperus longus is typically a freshwater species that has been spreading across the Mediterranean. In order to evaluate the ecophysiological fitness of these species, mesocosmos trials were performed subjecting both species to increasing realistic salinity levels and their photochemical and biochemical feedback was evaluated. Both species presented very different behaviours. S. patens appears to be insensitive to salt stress, mostly due to elevated proline concentrations in its leaves allowing it to maintain its osmotic balance, and thus preventing the damaging of its photochemical mechanisms. C. longus, on the other hand, was highly affected by elevated salt levels mostly due to the lack of osmotic balance driven by an incapacity to counteract the elevated ionic strength of the external medium by osmocompatible solutes. S. patens is physiologically highly adapted to saline environments and thus is capable to colonize all the marsh saline environments, while C. longus appears to be an opportunistic invader colonizing the marsh during periods of lower salinities typical from rainy seasons.

  4. The Reference Genome of the Halophytic Plant Eutrema salsugineum

    PubMed Central

    Yang, Ruolin; Jarvis, David E.; Chen, Hao; Beilstein, Mark A.; Grimwood, Jane; Jenkins, Jerry; Shu, ShengQiang; Prochnik, Simon; Xin, Mingming; Ma, Chuang; Schmutz, Jeremy; Wing, Rod A.; Mitchell-Olds, Thomas; Schumaker, Karen S.; Wang, Xiangfeng

    2013-01-01

    Halophytes are plants that can naturally tolerate high concentrations of salt in the soil, and their tolerance to salt stress may occur through various evolutionary and molecular mechanisms. Eutrema salsugineum is a halophytic species in the Brassicaceae that can naturally tolerate multiple types of abiotic stresses that typically limit crop productivity, including extreme salinity and cold. It has been widely used as a laboratorial model for stress biology research in plants. Here, we present the reference genome sequence (241?Mb) of E. salsugineum at 8 coverage sequenced using the traditional Sanger sequencing-based approach with comparison to its close relative Arabidopsis thaliana. The E. salsugineum genome contains 26,531 protein-coding genes and 51.4% of its genome is composed of repetitive sequences that mostly reside in pericentromeric regions. Comparative analyses of the genome structures, protein-coding genes, microRNAs, stress-related pathways, and estimated translation efficiency of proteins between E. salsugineum and A. thaliana suggest that halophyte adaptation to environmental stresses may occur via a global network adjustment of multiple regulatory mechanisms. The E. salsugineum genome provides a resource to identify naturally occurring genetic alterations contributing to the adaptation of halophytic plants to salinity and that might be bioengineered in related crop species. PMID:23518688

  5. The effects of salinity, crassulacean acid metabolism and plant age on the carbon isotope composition of Mesembryanthemum crystallinum L., a halophytic C(3)-CAM species.

    PubMed

    Winter, Klaus; Holtum, Joseph A M

    2005-09-01

    The carbon isotope composition of the halophyte Mesembryanthemum crystallinum L. (Aizoaceae) changes when plants are exposed to environmental stress and when they shift from C(3) to crassulacean acid metabolism (CAM). We examined the coupling between carbon isotope composition and photosynthetic pathway by subjecting plants of different ages to salinity and humidity treatments. Whole shoot delta(13)C values became less negative in plants that were exposed to 400 mM NaCl in the hydroponic solution. The isotopic change had two components: a direct NaCl effect that was greatest in plants still operating in the C(3) mode and decreased proportionally with increasing levels of dark fixation, and a second component related to the degree of CAM expression. Ignoring the presumably diffusion-related NaCl effect on carbon isotope ratios results in an overestimation of nocturnal CO(2) gain in comparison to an isotope versus nocturnal CO(2) gain calibration established previously for C(3) and CAM species grown under well-watered conditions. It is widely taken for granted that the shift to CAM in M. crystallinum is partially under developmental control and that CAM is inevitably expressed in mature plants. Plants, cultivated under non-saline conditions and high relative humidity (RH) for up to 63 days, maintained diel CO(2) gas-exchange patterns and delta(13)C values typical of C(3) plants. However, a weak CAM gas-exchange pattern and an increase in delta(13)C value were observed in non-salt-treated plants grown at reduced RH. These observations are consistent with environmental control rather than developmental control of the induction of CAM in mature M. crystallinum under non-saline conditions. PMID:15968514

  6. Heavy metal accumulation by the halophyte species Mediterranean saltbush.

    PubMed

    Lutts, Stanley; Lefvre, Isabelle; Delpre, Christine; Kivits, Sandrine; Dechamps, Caroline; Robledo, Antonio; Correal, Enrique

    2004-01-01

    To identify Cd- and Zn-accumulating plants exhibiting a high growth rate, seeds from the halophyte species Mediterranean saltbush (Atriplex halimus L.) were collected on a heavy-metal-contaminated site in southeastern Spain (Llano del Beal, Cartagena). Seedlings from this ecotype were exposed for 3 wk to 0.1 mM Cd or Zn in a nutrient solution in a fully controlled environment. All plants remained alive and no significant growth inhibition was recorded until the end of the experiment. Mean Cd and Zn accumulation in aerial parts was 830 and 440 mg kg(-1), respectively, and the rate of metal translocation even increased with the duration of stress exposure. Resistance to heavy metals in this species may be partly linked to precipitation of Cd in oxalate crystals in the stems. A Cd-induced decrease in glutathione concentration also suggests that phytochelatins overproduction may occur in these conditions. We conclude that Mediterranean saltbush, which is able to produce up to 5 Mg dry matter ha(-1) yr(-1), may be an effective species for phytoextraction and should be tested for this purpose in field conditions. PMID:15254108

  7. eHALOPH a Database of Salt-Tolerant Plants: Helping put Halophytes to Work.

    PubMed

    Santos, Joaquim; Al-Azzawi, Mohammed; Aronson, James; Flowers, Timothy J

    2016-01-01

    eHALOPH (http://www.sussex.ac.uk/affiliates/halophytes/) is a database of salt-tolerant plants-halophytes. Records of plant species tolerant of salt concentrations of around 80 mM sodium chloride or more have been collected, along with data on plant type, life form, ecotypes, maximum salinity tolerated, the presence or absence of salt glands, photosynthetic pathway, antioxidants, secondary metabolites, compatible solutes, habitat, economic use and whether there are publications on germination, microbial interactions and mycorrhizal status, bioremediation and of molecular data. The database eHALOPH can be used in the analysis of traits associated with tolerance and for informing choice of species that might be used for saline agriculture, bioremediation or ecological restoration and rehabilitation of degraded wetlands or other areas. PMID:26519912

  8. The use of a halophytic plant species and organic amendments for the remediation of a trace elements-contaminated soil under semi-arid conditions.

    PubMed

    Clemente, Rafael; Walker, David J; Pardo, Tania; Martínez-Fernández, Domingo; Bernal, M Pilar

    2012-07-15

    The halophytic shrub Atriplex halimus L. was used in a field phytoremediation experiment in a semi-arid area highly contaminated by trace elements (As, Cd, Cu, Mn, Pb and Zn) within the Sierra Minera of La Unión-Cartagena (SE Spain). The effects of compost and pig slurry on soil conditions and plant growth were determined. The amendments (particularly compost) only slightly affected trace element concentrations in soil pore water or their availability to the plants, increased soil nutrient and organic matter levels and favoured the development of a sustainable soil microbial biomass (effects that were enhanced by the presence of A. halimus) as well as, especially for slurry, increasing A. halimus biomass and ground cover. With regard to the minimisation of trace elements concentrations in the above-ground plant parts, the effectiveness of both amendments was greatest 12-16 months after their incorporation. The findings demonstrate the potential of A. halimus, particularly in combination with an organic amendment, for the challenging task of the phytostabilisation of contaminated soils in (semi-)arid areas and suggest the need for an ecotoxicological evaluation of the remediated soils. However, the ability of A. halimus to accumulate Zn and Cd in the shoot may limit its use to moderately-contaminated sites. PMID:22595543

  9. Modeling Halophytic Plants in APEX for Sustainable Water and Agriculture

    NASA Astrophysics Data System (ADS)

    DeRuyter, T.; Saito, L.; Nowak, B.; Rossi, C.; Toderich, K.

    2013-12-01

    A major problem for irrigated agricultural production is soil salinization, which can occur naturally or can be human-induced. Human-induced, or secondary salinization, is particularly a problem in arid and semi-arid regions, especially in irrigated areas. Irrigated land has more than twice the production of rainfed land, and accounts for about one third of the world's food, but nearly 20% of irrigated lands are salt-affected. Many farmers worldwide currently seasonally leach their land to reduce the soil salt content. These practices, however, create further problems such as a raised groundwater table, and salt, fertilizer, and pesticide pollution of nearby lakes and groundwater. In Uzbekistan, a combination of these management practices and a propensity to cultivate 'thirsty' crops such as cotton has also contributed to the Aral Sea shrinking nearly 90% by volume since the 1950s. Most common agricultural crops are glycophytes that have reduced yields when subjected to salt-stress. Some plants, however, are known as halophytic or 'salt-loving' plants and are capable of completing their life-cycle in higher saline soil or water environments. Halophytes may be useful for human consumption, livestock fodder, or biofuel, and may also be able to reduce or maintain salt levels in soil and water. To assess the potential for these halophytes to assist with salinity management, we are developing a model that is capable of tracking salinity under different management practices in agricultural environments. This model is interdisciplinary as it combines fields such as plant ecology, hydrology, and soil science. The US Department of Agriculture (USDA) model, Agricultural Policy/Environmental Extender (APEX), is being augmented with a salinity module that tracks salinity as separate ions across the soil-plant-water interface. The halophytes Atriplex nitens, Climacoptera lanata, and Salicornia europaea are being parameterized and added into the APEX model database. Field sites in the Central Kyzylkum and Khorezm regions of Uzbekistan are being characterized in the model, where halophytes are being grown and plant, soil, and water data are being collected for model verification. This presentation will discuss the plant and site parameterizations as well as preliminary progress on developing and applying the APEX salinity module for modeling the salt cycle through soil, water, and halophytes under different management practices.

  10. A spatial pattern analysis of the halophytic species distribution in an arid coastal environment.

    PubMed

    Badreldin, Nasem; Uria-Diez, J; Mateu, J; Youssef, Ali; Stal, Cornelis; El-Bana, Magdy; Magdy, Ahmed; Goossens, Rudi

    2015-05-01

    Obtaining information about the spatial distribution of desert plants is considered as a serious challenge for ecologists and environmental modeling due to the required intensive field work and infrastructures in harsh and remote arid environments. A new method was applied for assessing the spatial distribution of the halophytic species (HS) in an arid coastal environment. This method was based on the object-based image analysis for a high-resolution Google Earth satellite image. The integration of the image processing techniques and field work provided accurate information about the spatial distribution of HS. The extracted objects were based on assumptions that explained the plant-pixel relationship. Three different types of digital image processing techniques were implemented and validated to obtain an accurate HS spatial distribution. A total of 2703 individuals of the HS community were found in the case study, and approximately 82% were located above an elevation of 2 m. The micro-topography exhibited a significant negative relationship with pH and EC (r?=?-0.79 and -0.81, respectively, p?

  11. Selection of a halophytic plant for assessing the phytotoxicity of dredged seaport sediment stored on land.

    PubMed

    Bedell, J-P; Ferro, Y; Bazin, C; Perrodin, Y

    2014-01-01

    The filling of dry quarries in coastal areas with sediments dredged in seaports represents a potentially interesting method of recycling of these materials. However, this recycling requires the prior carrying out of an Environmental Risk Assessment of the scenario concerned. For this, the question arose as to the type of plants capable of developing on the surface of such a deposit and the method to implement for assessing the possible phytotoxicity of dredged sediments. To answer this question, we chose to work with halophytic plants to be free from the salt-related effect and to assess only the effect related to the toxic compounds present. Based on the objectives set, these works led to the use of common plants of the French coast, with direct seeding, and with pollution-sensitive plants. Three species of angiosperms, Armeria maritima, Anthemis maritima and Plantago coronopus, were finally tested. As a result of this work, Armeria maritima was retained as the most suitable plant for testing the possible phytotoxic effect of dredged marine sediments stored on land. The results obtained with this plant are as follows: germination of 40 % of the seeds in 31 days, produced biomass of 493 mg FW in 6 months and a capacity to bioaccumulate metal pollutants in roots with 350 and 720 mg/kg DW for Zn and Cu, respectively. PMID:23955497

  12. Diversity and Plant Growth Promoting Capacity of Endophytic Fungi Associated with Halophytic Plants from the West Coast of Korea

    PubMed Central

    Khalmuratova, Irina; Kim, Hyun; Nam, Yoon-Jong; Oh, Yoosun; Jeong, Min-Ji; Choi, Hye-Rim; You, Young-Hyun; Choo, Yeon-Sik; Lee, In-Jung; Shin, Jae-Ho

    2015-01-01

    Five halophytic plant species, Suaeda maritima, Limonium tetragonum, Suaeda australis, Phragmites australis, and Suaeda glauca Bunge, which are native to the Muan salt marsh of South Korea, were examined for fungal endophytes by sequencing the internal transcribed spacer (ITS) region containing ITS1, 5.8S rRNA, and ITS2. In total, 160 endophytic fungal strains were isolated and identified from the roots of the 5 plant species. Taxonomically, all 160 strains belonged to the phyla Ascomycota, Basidiomycota, and Zygomycota. The most dominant genus was Fusarium, followed by the genera Penicillium and Alternaria. Subsequently, using 5 statistical methods, the diversity indices of the endophytes were determined at genus level. Among these halophytic plants, P. australis was found to host the greatest diversity of endophytic fungi. Culture filtrates of endophytic fungi were treated to Waito-C rice seedlings for plant growth-promoting effects. The fungal strain Su-3-4-3 isolated from S. glauca Bunge provide the maximum plant length (20.1 cm) in comparison with wild-type Gibberella fujikuroi (19.6 cm). Consequently, chromatographic analysis of the culture filtrate of Su-3-4-3 showed the presence of physiologically active gibberellins, GA1 (0.465 ng/mL), GA3 (1.808 ng/mL) along with other physiologically inactive GA9 (0.054 ng/mL) and GA24 (0.044 ng/mL). The fungal isolate Su-3-4-3 was identified as Talaromyces pinophilus. PMID:26839496

  13. Diversity and Plant Growth Promoting Capacity of Endophytic Fungi Associated with Halophytic Plants from the West Coast of Korea.

    PubMed

    Khalmuratova, Irina; Kim, Hyun; Nam, Yoon-Jong; Oh, Yoosun; Jeong, Min-Ji; Choi, Hye-Rim; You, Young-Hyun; Choo, Yeon-Sik; Lee, In-Jung; Shin, Jae-Ho; Yoon, Hyeokjun; Kim, Jong-Guk

    2015-12-01

    Five halophytic plant species, Suaeda maritima, Limonium tetragonum, Suaeda australis, Phragmites australis, and Suaeda glauca Bunge, which are native to the Muan salt marsh of South Korea, were examined for fungal endophytes by sequencing the internal transcribed spacer (ITS) region containing ITS1, 5.8S rRNA, and ITS2. In total, 160 endophytic fungal strains were isolated and identified from the roots of the 5 plant species. Taxonomically, all 160 strains belonged to the phyla Ascomycota, Basidiomycota, and Zygomycota. The most dominant genus was Fusarium, followed by the genera Penicillium and Alternaria. Subsequently, using 5 statistical methods, the diversity indices of the endophytes were determined at genus level. Among these halophytic plants, P. australis was found to host the greatest diversity of endophytic fungi. Culture filtrates of endophytic fungi were treated to Waito-C rice seedlings for plant growth-promoting effects. The fungal strain Su-3-4-3 isolated from S. glauca Bunge provide the maximum plant length (20.1 cm) in comparison with wild-type Gibberella fujikuroi (19.6 cm). Consequently, chromatographic analysis of the culture filtrate of Su-3-4-3 showed the presence of physiologically active gibberellins, GA1 (0.465 ng/mL), GA3 (1.808 ng/mL) along with other physiologically inactive GA9 (0.054 ng/mL) and GA24 (0.044 ng/mL). The fungal isolate Su-3-4-3 was identified as Talaromyces pinophilus. PMID:26839496

  14. The effects of heavy metals on germination and seedling characteristics in two halophyte species in Mediterranean marshes.

    PubMed

    Mrquez-Garca, B; Mrquez, C; Sanjos, I; Nieva, F J J; Rodrguez-Rubio, P; Muoz-Rodrguez, A F

    2013-05-15

    The influence of different concentrations (10-2000 ?M) of heavy metals (Cu, Mn, Ni, Zn) was analysed in Atriplex halimus and Salicornia ramosissima germination pattern and seedling size. They are two halophyte species that grow in the Estuary of Huelva (Southwest Iberian Peninsula, Spain), one of the most heavy metal-polluted environments in the world. All of the metals tested affected the final germination percentage in A. halimus and only Ni reduced germination in S. ramosissima. The germination rate was unaffected in both species. The study of seedling development shows that S. ramosissima, an intertidal annual species, has a higher tolerance of metals than A. halimus, a bush that inhabits the upper part of the marshes. Taking into account the metal concentrations in the estuary and the effects of these on the seedling development of the species analysed, we conclude that metals might limit plant colonisation in some parts of the marshes. PMID:23465623

  15. Potential of salt-accumulating and salt-secreting halophytic plants for recycling sodium chloride in human urine in bioregenerative life support systems

    NASA Astrophysics Data System (ADS)

    Tikhomirova, N. A.; Ushakova, S. A.; Kudenko, Yu. A.; Gribovskaya, I. V.; Shklavtsova, E. S.; Balnokin, Yu. V.; Popova, L. G.; Myasoedov, N. A.; Gros, J.-B.; Lasseur, Ch.

    2011-07-01

    This study addresses the possibility of growing different halophytic plants on mineralized human urine as a way to recycle NaCl from human wastes in a bioregenerative life support system (BLSS). Two halophytic plant species were studied: the salt-accumulating Salicornia europaea and the salt-secreting Limonium gmelinii. During the first two weeks, plants were grown on Knop's solution, then an average daily amount of urine produced by one human, which had been preliminarily mineralized, was gradually added to the experimental solutions. Nutrient solutions simulating urine mineral composition were gradually added to control solutions. NaCl concentrations in the stock solutions added to the experimental and control solutions were 9 g/L in the first treatment and 20 g/L in the second treatment. The mineralized human urine showed some inhibitory effects on S. europaea and L. gmelinii. The biomass yield of experimental plants was lower than that of control ones. If calculated for the same time period (120 d) and area (1 m 2), the amount of sodium chloride taken up by S. europaea plants would be 11.7 times larger than the amount taken up by L. gmelinii plants (486 g/m 2 vs. 41 g/m 2). Thus, S. europaea is the better choice of halophyte for recycling sodium chloride from human wastes in BLSS.

  16. Halophyte plant colonization as a driver of the composition of bacterial communities in salt marshes chronically exposed to oil hydrocarbons.

    PubMed

    Oliveira, Vanessa; Gomes, Newton C M; Cleary, Daniel F R; Almeida, Adelaide; Silva, Artur M S; Simes, Mrio M Q; Silva, Helena; Cunha, ngela

    2014-12-01

    In this study, two molecular techniques [denaturing gradient gel electrophoresis (DGGE) and barcoded pyrosequencing] were used to evaluate the composition of bacterial communities in salt marsh microhabitats [bulk sediment and sediment surrounding the roots (rhizosphere) of Halimione portulacoides and Sarcocornia perennis ssp. perennis] that have been differentially affected by oil hydrocarbon (OH) pollution. Both DGGE and pyrosequencing revealed that bacterial composition is structured by microhabitat. Rhizosphere sediment from both plant species revealed enrichment of operational taxonomic units closely related to Acidimicrobiales, Myxococcales and Sphingomonadales. The in silico metagenome analyses suggest that homologous genes related to OH degradation appeared to be more frequent in both plant rhizospheres than in bulk sediment. In summary, this study suggests that halophyte plant colonization is an important driver of hydrocarbonoclastic bacterial community composition in estuarine environments, which can be exploited for in situ phytoremediation of OH in salt marsh environments. PMID:25204351

  17. Influence of halophytic hosts on their parasites-the case of Plicosepalus acaciae.

    PubMed

    Veste, Maik; Todt, Henning; Breckle, Siegmar-W

    2014-01-01

    Halophytes develop various morphological and physiological traits that enable them to grow successfully on saline substrates. Parasitic plants on halophytic hosts may also encounter salt stress. We investigated the mistletoe Plicosepalus acaciae (syn: Loranthus acacia; Loranthaceae), which occurs on 5 halophytic and at least 10 non-halophytic hosts in the Southern Arava Valley (Israel). Plicosepalus acaciae is a common parasite north of Eilat to the Dead Sea area and in the Jordan Valley. Morphological and physiological responses of P. acaciae to salinity were investigated by comparison of plants on halophytic with those on non-halophytic hosts. Ion patterns of different host-parasite associations were determined as was the development of leaf succulence at different growth stages. The leaf water content of P. acaciae increased and leaves developed succulence when growing on halophytic hosts, especially on Tamarix species, where leaf water content was three times higher than that on non-halophytic hosts and the leaf volume increased four to five times. The reason for increased succulence was a higher ion concentration of, and osmotic adjustment with, Na(+) and Cl(-). Plicosepalus acaciae showed a high morphological and ecophysiological plasticity, enabling it to cope with salt stress, and can be classified as a facultative eu-halophyte, which increases its halo-succulence according to the host. Host-parasite associations are a model system for the investigation of halophytes under different salt stress conditions. PMID:25515726

  18. Influence of halophytic hosts on their parasitesthe case of Plicosepalus acaciae

    PubMed Central

    Veste, Maik; Todt, Henning; Breckle, Siegmar-W.

    2015-01-01

    Halophytes develop various morphological and physiological traits that enable them to grow successfully on saline substrates. Parasitic plants on halophytic hosts may also encounter salt stress. We investigated the mistletoe Plicosepalus acaciae (syn: Loranthus acacia; Loranthaceae), which occurs on 5 halophytic and at least 10 non-halophytic hosts in the Southern Arava Valley (Israel). Plicosepalus acaciae is a common parasite north of Eilat to the Dead Sea area and in the Jordan Valley. Morphological and physiological responses of P. acaciae to salinity were investigated by comparison of plants on halophytic with those on non-halophytic hosts. Ion patterns of different hostparasite associations were determined as was the development of leaf succulence at different growth stages. The leaf water content of P. acaciae increased and leaves developed succulence when growing on halophytic hosts, especially on Tamarix species, where leaf water content was three times higher than that on non-halophytic hosts and the leaf volume increased four to five times. The reason for increased succulence was a higher ion concentration of, and osmotic adjustment with, Na+ and Cl?. Plicosepalus acaciae showed a high morphological and ecophysiological plasticity, enabling it to cope with salt stress, and can be classified as a facultative eu-halophyte, which increases its halo-succulence according to the host. Hostparasite associations are a model system for the investigation of halophytes under different salt stress conditions. PMID:25515726

  19. Differential activity of plasma and vacuolar membrane transporters contributes to genotypic differences in salinity tolerance in a Halophyte Species, Chenopodium quinoa.

    PubMed

    Bonales-Alatorre, Edgar; Pottosin, Igor; Shabala, Lana; Chen, Zhong-Hua; Zeng, Fanrong; Jacobsen, Sven-Erik; Shabala, Sergey

    2013-01-01

    Halophytes species can be used as a highly convenient model system to reveal key ionic and molecular mechanisms that confer salinity tolerance in plants. Earlier, we reported that quinoa (Chenopodium quinoa Willd.), a facultative C3 halophyte species, can efficiently control the activity of slow (SV) and fast (FV) tonoplast channels to match specific growth conditions by ensuring that most of accumulated Na+ is safely locked in the vacuole (Bonales-Alatorre et al. (2013) Plant Physiology). This work extends these finding by comparing the properties of tonoplast FV and SV channels in two quinoa genotypes contrasting in their salinity tolerance. The work is complemented by studies of the kinetics of net ion fluxes across the plasma membrane of quinoa leaf mesophyll tissue. Our results suggest that multiple mechanisms contribute towards genotypic differences in salinity tolerance in quinoa. These include: (i) a higher rate of Na+ exclusion from leaf mesophyll; (ii) maintenance of low cytosolic Na+ levels; (iii) better K+ retention in the leaf mesophyll; (iv) a high rate of H+ pumping, which increases the ability of mesophyll cells to restore their membrane potential; and (v) the ability to reduce the activity of SV and FV channels under saline conditions. These mechanisms appear to be highly orchestrated, thus enabling the remarkable overall salinity tolerance of quinoa species. PMID:23629664

  20. Differential Activity of Plasma and Vacuolar Membrane Transporters Contributes to Genotypic Differences in Salinity Tolerance in a Halophyte Species, Chenopodium quinoa

    PubMed Central

    Bonales-Alatorre, Edgar; Pottosin, Igor; Shabala, Lana; Chen, Zhong-Hua; Zeng, Fanrong; Jacobsen, Sven-Erik; Shabala, Sergey

    2013-01-01

    Halophytes species can be used as a highly convenient model system to reveal key ionic and molecular mechanisms that confer salinity tolerance in plants. Earlier, we reported that quinoa (Chenopodium quinoa Willd.), a facultative C3 halophyte species, can efficiently control the activity of slow (SV) and fast (FV) tonoplast channels to match specific growth conditions by ensuring that most of accumulated Na+ is safely locked in the vacuole (Bonales-Alatorre et al. (2013) Plant Physiology). This work extends these finding by comparing the properties of tonoplast FV and SV channels in two quinoa genotypes contrasting in their salinity tolerance. The work is complemented by studies of the kinetics of net ion fluxes across the plasma membrane of quinoa leaf mesophyll tissue. Our results suggest that multiple mechanisms contribute towards genotypic differences in salinity tolerance in quinoa. These include: (i) a higher rate of Na+ exclusion from leaf mesophyll; (ii) maintenance of low cytosolic Na+ levels; (iii) better K+ retention in the leaf mesophyll; (iv) a high rate of H+ pumping, which increases the ability of mesophyll cells to restore their membrane potential; and (v) the ability to reduce the activity of SV and FV channels under saline conditions. These mechanisms appear to be highly orchestrated, thus enabling the remarkable overall salinity tolerance of quinoa species. PMID:23629664

  1. A review on Cressa cretica Linn.: A halophytic plant

    PubMed Central

    Priyashree, S.; Jha, S.; Pattanayak, S. P.

    2010-01-01

    Herbal medicine is used by up to 80% of the population in developing countries. Cressa cretica L. is a popular holophytic plant and is used in folklore medicine for ailments including diabetes, ulcers, asthma, anthelmintic, stomachic, tonic and aphrodisiac purposes, enriches the blood, and is useful in constipation, leprosy, and urinary discharges. The plant is traditionally used in Bahrain as expectorant and antibilious agent. Scientific evidence suggests its versatile biological functions such as its antibacterial, antifungal, antitussive, anticancer with some other plants, anti-inflammatory, and improving testicular function in rats. In this article, a comprehensive account of the morphology, phytochemical constituents, ethnobotany, and biological activities are included in view of the recent findings of importance on the plant, C. cretica. PMID:22228956

  2. Sap Concentrations in Halophytes and Some Other Plants

    PubMed Central

    Scholander, P. F.; Bradstreet, Edda D.; Hammel, H. T.; Hemmingsen, E. A.

    1966-01-01

    Freezing point depression in xylem sap of mangroves was found to range from 0.05 to 0.5, in desert plants from 0.01 to 0.16. In crush juices from leaves of Batis and Salicornia, 90% or more of the freezing point depression was made up of sodium and chlorine ions; in mangroves they constituted 50 to 70%, the rest probably being organic solutes. Plants growing in seawater have ?30 to ?60 atmospheres pressure in the xylem sap. As shown earlier, at zero turgor pressure the intracellular freezing point of the parenchyma cells matches closely the negative pressure in the xylem sap. This agrees with the present data, that the fluid which exudes from the xylem by applying gas pressure on the leaves is practically pure water; freezing point is rarely above 0.01 to 0.02. To perform this ultrafiltration, the plasma membrane is subjected to a hydrostatic pressure gradient which in some cases may exceed 100 atmospheres. Images PMID:5906381

  3. Contrasting submergence tolerance in two species of stem-succulent halophytes is not determined by differences in stem internal oxygen dynamics

    PubMed Central

    Konnerup, Dennis; Moir-Barnetson, Louis; Pedersen, Ole; Veneklaas, Erik J.; Colmer, Timothy D.

    2015-01-01

    Background and Aims Many stem-succulent halophytes experience regular or episodic flooding events, which may compromise gas exchange and reduce survival rates. This study assesses submergence tolerance, gas exchange and tissue oxygen (O2) status of two stem-succulent halophytes with different stem diameters and from different elevations of an inland marsh. Methods Responses to complete submergence in terms of stem internal O2 dynamics, photosynthesis and respiration were studied for the two halophytic stem-succulents Tecticornia auriculata and T. medusa. Plants were submerged in a glasshouse experiment for 3, 6 and 12 d and O2 levels within stems were measured with microelectrodes. Photosynthesis by stems in air after de-submergence was also measured. Key Results Tecticornia medusa showed 100 % survival in all submergence durations whereas T. auriculata did not survive longer than 6 d of submergence. O2 profiles and time traces showed that when submerged in water at air-equilibrium, the thicker stems of T. medusa were severely hypoxic (close to anoxic) when in darkness, whereas the smaller diameter stems of T. auriculata were moderately hypoxic. During light periods, underwater photosynthesis increased the internal O2 concentrations in the succulent stems of both species. Stems of T. auriculata temporally retained a gas film when first submerged, whereas T. medusa did not. The lower O2 in T. medusa than in T. auriculata when submerged in darkness was largely attributed to a less permeable epidermis. The submergence sensitivity of T. auriculata was associated with swelling and rupturing of the succulent stem tissues, which did not occur in T. medusa. Conclusions The higher submergence tolerance of T. medusa was not associated with better internal aeration of stems. Rather, this species has poor internal aeration of the succulent stems due to its less permeable epidermis; the low epidermal permeability might be related to resistance to swelling of succulent stem tissues when submerged. PMID:25471094

  4. Phytoremediation of cadmium by the facultative halophyte plant Bolboschoenus maritimus (L.) Palla, at different salinities.

    PubMed

    Santos, Mrcia S S; Pedro, Carmen A; Gonalves, Slvia C; Ferreira, Susana M F

    2015-10-01

    The cadmium phytoremediation capacity of the halophyte plant Bolboschoenus maritimus (L.) Palla and the influence of water salinity were assessed in a greenhouse experiment, in order to better understand the bioremediation capacity of this plant. Three concentrations of cadmium (0, 50 and 100?gl(-1)) and four salinity conditions (0, 5, 10 and 20) were chosen to evaluate the cadmium accumulation, in order to test these plants as a potential phytoremediation tool in brackish environments. The cadmium content in water and plants (underground organs, stems and leaves) was analysed with graphite furnace atomic absorption spectrometry. All the plants submitted to salinity 20 and in the three cadmium treatments died. The plants' survival was highest in the lowest salinities, where highest growth and biomasses were also obtained. The plants presented more cadmium content in the rhizomes, followed by stems and even less in leaves. The salt stress of the plants interfered with their cadmium accumulation capacity. The highest cadmium accumulation in the rhizomes occurred at salinity 0, while the salinities 0 and 5 were the most adequate for stems and leaves. The experiment pointed out that B. maritimus represents a good possible intervenient for cadmium bioremediation in freshwater and low salinity brackish water environments, but its use is limited in the habitats of higher salinity. PMID:26013743

  5. Rapid regulation of the plasma membrane H+-ATPase activity is essential to salinity tolerance in two halophyte species, Atriplex lentiformis and Chenopodium quinoa

    PubMed Central

    Bose, Jayakumar; Rodrigo-Moreno, Ana; Lai, Diwen; Xie, Yanjie; Shen, Wenbiao; Shabala, Sergey

    2015-01-01

    Background and Aims The activity of H+-ATPase is essential for energizing the plasma membrane. It provides the driving force for potassium retention and uptake through voltage-gated channels and for Na+ exclusion via Na+/H+ exchangers. Both of these traits are central to plant salinity tolerance; however, whether the increased activity of H+-ATPase is a constitutive trait in halophyte species and whether this activity is upregulated at either the transcriptional or post-translation level remain disputed. Methods The kinetics of salt-induced net H+, Na+ and K+ fluxes, membrane potential and AHA1/2/3 expression changes in the roots of two halophyte species, Atriplex lentiformis (saltbush) and Chenopodium quinoa (quinoa), were compared with data obtained from Arabidopsis thaliana roots. Key Results Intrinsic (steady-state) membrane potential values were more negative in A. lentiformis and C. quinoa compared with arabidopsis (?144??33, ?138??54 and ?128??33?mV, respectively). Treatment with 100?mm NaCl depolarized the root plasma membrane, an effect that was much stronger in arabidopsis. The extent of plasma membrane depolarization positively correlated with NaCl-induced stimulation of vanadate-sensitive H+ efflux, Na+ efflux and K+ retention in roots (quinoa?>?saltbush?>?arabidopsis). NaCl-induced stimulation of H+ efflux was most pronounced in the root elongation zone. In contrast, H+-ATPase AHA transcript levels were much higher in arabidopsis compared with quinoa plants, and 100?mm NaCl treatment led to a further 3-fold increase in AHA1 and AHA2 transcripts in arabidopsis but not in quinoa. Conclusions Enhanced salinity tolerance in the halophyte species studied here is not related to the constitutively higher AHA transcript levels in the root epidermis, but to the plants ability to rapidly upregulate plasma membrane H+-ATPase upon salinity treatment. This is necessary for assisting plants to maintain highly negative membrane potential values and to exclude Na+, or enable better K+ retention in the cytosol under saline conditions. PMID:25471095

  6. NaCl alleviates polyethylene glycol-induced water stress in the halophyte species Atriplex halimus L.

    PubMed

    Martnez, Juan-Pablo; Kinet, Jean-Marie; Bajji, Mohammed; Lutts, Stanley

    2005-09-01

    Atriplex halimus L. is a C4 xero-halophyte species well adapted to salt and drought conditions. To collect information on the physiological impact of low salt levels on their water-stress resistance, seedlings were exposed for 6 d to nutrient solution containing either 0% or 15% polyethylene glycol 10,000 (PEG), in the presence or in the absence of 50 mM NaCl. Similar experiments were performed with one PEG-resistant and one PEG-sensitive selected cell line exposed for 50 d to 0% or 15% PEG on standard Linsmaier and Skoog (LS) medium, on LS medium supplemented with 50 mM NaCl, or on Na+-free medium. NaCl mitigated the deleterious impact of PEG on growth of both whole plants and PEG-sensitive cell lines and improved the ability of stressed tissues to perform osmotic adjustment (OA). Water stress reduced CO2 net assimilation rates quantified in the presence of high CO2 and low O2 levels (A), stomatal conductance and transpiration, but NaCl improved water use efficiency of PEG-treated plants through its positive effect on A values, especially in young leaves. PEG increased the internal Na+ concentration. The resistant cell line accumulated higher concentration of Na+ than the PEG-sensitive one. The complete absence of Na+ in the medium endangered the survival of both cell lines exposed to PEG. Although Na+ by itself contributed only for a small part to OA, NaCl induced an increase in proline concentration and stimulated the synthesis of glycinebetaine in response to PEG in photosynthetic tissues. Soluble sugars were the main contributors to OA and increased when tissues were simultaneously exposed to PEG and NaCl compared with PEG alone, suggesting that Na+ may influence sugar synthesis and/or translocation. PMID:16043453

  7. Isolation of plant-growth-promoting rhizobacteria from rhizospheric soil of halophytes and their impact on maize (Zea mays L.) under induced soil salinity.

    PubMed

    Ullah, Sami; Bano, Asghari

    2015-04-01

    The present investigation was aimed to scrutinize the salt tolerance potential of plant-growth-promoting rhizobacteria (PGPR) isolated from rhizospheric soil of selected halophytes (Atriplex leucoclada, Haloxylon salicornicum, Lespedeza bicolor, Suaeda fruticosa, and Salicornica virginica) collected from high-saline fields (electrical conductivity 4.3-5.5) of District Mardan, Pakistan. Five PGPR strains were identified using 16S rRNA amplification and sequence analysis. Bacillus sp., isolated from rhizospheric soil of Atriplex leucoclada, and Arthrobacter pascens, isolated from rhizospheric soil of Suaeda fruticosa, are active phosphate solubilizers and bacteriocin and siderophore producers; hence, their inoculation and co-inoculation on maize ('Rakaposhi') under induced salinity stress enhanced shoot and root length and shoot and root fresh and dry mass. The accumulation of osmolytes, including sugar and proline, and the elevation of antioxidant enzymes activity, including superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase, were enhanced in the maize variety when inoculated and co-inoculated with Bacillus sp. and Arthrobacter pascens. The PGPR (Bacillus sp. and A. pascens) isolated from the rhizosphere of the mentioned halophytes species showed reliability in growth promotion of maize crop in all the physiological parameters; hence, they can be used as bio-inoculants for the plants growing under salt stress. PMID:25776270

  8. Potential Use of Halophytes to Remediate Saline Soils

    PubMed Central

    Hasanuzzaman, Mirza; Nahar, Kamrun; Alam, Md. Mahabub; Bhowmik, Prasanta C.; Hossain, Md. Amzad; Rahman, Motior M.; Prasad, Majeti Narasimha Vara; Ozturk, Munir; Fujita, Masayuki

    2014-01-01

    Salinity is one of the rising problems causing tremendous yield losses in many regions of the world especially in arid and semiarid regions. To maximize crop productivity, these areas should be brought under utilization where there are options for removing salinity or using the salt-tolerant crops. Use of salt-tolerant crops does not remove the salt and hence halophytes that have capacity to accumulate and exclude the salt can be an effective way. Methods for salt removal include agronomic practices or phytoremediation. The first is cost- and labor-intensive and needs some developmental strategies for implication; on the contrary, the phytoremediation by halophyte is more suitable as it can be executed very easily without those problems. Several halophyte species including grasses, shrubs, and trees can remove the salt from different kinds of salt-affected problematic soils through salt excluding, excreting, or accumulating by their morphological, anatomical, physiological adaptation in their organelle level and cellular level. Exploiting halophytes for reducing salinity can be good sources for meeting the basic needs of people in salt-affected areas as well. This review focuses on the special adaptive features of halophytic plants under saline condition and the possible ways to utilize these plants to remediate salinity. PMID:25110683

  9. On the halophytic nature of mangroves

    USGS Publications Warehouse

    Krauss, Ken W.; Ball, Marilyn C.

    2013-01-01

    Scientists have discussed the halophytic nature of intertidal plants for decades, and have generally suggested that inherent differentiation of an obligate halophyte from a facultative halophyte relates strongly to whether the plant can survive in fresh water, and not much else. In this mini-review, we provide additional insight to support the pervasive notion that mangroves as a group are truly facultative halophytes, and thus add discourse to the alternate view that mangroves have an obligate salinity requirement. Indeed, growth and physiological optima are realized at moderate salinity concentrations in mangroves, but we maintain the notion that current evidence suggests that survival is not dependent upon a physiological requirement for salt.

  10. Halophytic plants as a component of a bioregenerative life support system for recycling of NaCl contained in human liquid waste.

    NASA Astrophysics Data System (ADS)

    Balnokin, Yurii; Balnokin, Yurii; Myasoedov, Nikolay; Popova, Larissa; Tikhomirov, Alexander A.; Ushakova, Sofya; Tikhomirova, Natalia; Lasseur, Christophe; Gros, Jean-Bernard

    Currently, the closure of matter turnover is one of the urgent problems of bioregenerative life support system (BLSS) designing. The important aspect of the problem is involving of substances contained in liquid and solid exometabolites of humans inhabiting BLSS into intrasystem matter turnover. Recycling of Na+ and Cl- contained in human liquid exometabolites, i.e. urine is acknowledged to be among the main tasks of the matter turnover in BLSS. The ions excreted with urine may be returned to human organism with food. A way to allow this is including edible halophytic plants into the phototrophic compartment of BLSS. Halophytes are defined as plants which can grow on saline soils and produce high biomass under these conditions. Some halophytes can take up high quantities of Na+ and Cl- and accumulate the ions in the shoots or extrude them to leaf surface by means of salt glands. To allow Na+ and Cl- recycling through halophyte utilization, the following principal steps should be accomplished: (i) mineralization of the exometabolites by physicochemical methods; (ii) oxidation of ammonia formed during the exometabolite mineralization to nitrate by nitrifying bacteria, (iii) growing the halophyte on the nutrient solution prepared on the basis of the mineralized exometabolites, (iv) introducing the halophyte green biomass into human food. The present work is devoted to the following problems: (i) selection of a salt-accumulating/extruding halophytic plant suitable for Na+ and Cl- recycling in BLSS and (ii) parameter evaluation of a plant conveyor containing the halophytic plants at various ages. Halophytic plants selected for BLSS should meet the following criteria: (i) ability to grow under 24-hour-illumination, (ii) high productivity, (iii) ability to accumulate Na+ and Cl- in high quantities in shoots or to excrete salts to leaf surface, (iv) edibility, and (v) high nutritive value of the biomass. Relying on these criteria, salt-accumulating halophyte Salicornia europaea was selected from seven halophytic plant candidates, preliminary chosen from observations in their natural habitats, from our previous investigations and literature data. Characterization of the plant performance was obtained in the experiments on plants grown in water culture in a cultivation chamber under controlled conditions. A model nutrient solution simulating mineralized urine was used for halophyte growing. Under the experimental conditions, S.europaea exhibited high productivity and accumulated Na+ and Cl- in the shoots in high quantities. It has been shown that above-ground organs of S.europaea exhibit high nutritive value, the proteins are enriched with the essential amino acids and displayed high abundance of leucine, aspartic and glutamic acids. The results demonstrate that it is feasible to put into practice permanent Na+ and Cl- recycling in BLSS by a various-aged S.europaea conveyor. Relying on data on distribution of Na+ and Cl- between the plant and growth medium, parameters of the conveyor for permanent ion turnover in the system humans - exometabolites - nutrient solution - S.europaea - humans have been evaluated.

  11. Soil salinity affects arbuscular mycorrhizal colonization of halophytes.

    PubMed

    Asghari, H R; Amerian, M R; Gorbani, H

    2008-08-01

    In order to determine the effects of soil salinity on AM fungi colonization in halophytes, plants of semi-arid region of North-Eastern Iran were examined for their colonization in soils with different salinity levels. Roots of several halophytes were colonized and showed typical structure of AM fungi with different levels of colonization. Haloxylon aphyllum, Kochia stellaris, Halocnemum strobilaceum, Seidlitzia rosmarinus and Salsola sp. of the Chenopodiaceae and Zygophyllum eurypterum and Peganum harmala of the Zygophyllaceae were found to be colonized by AM fungi. In several species the mycorrhizal status is reported for the first time. The results of this study revealed that AM colonization in halophytes in soil with high salinity level (16 dS m(-1)), but colonization was inhibited by very high salinity (45 dS m(-1)). The AM fungi colonization was absent in halophytes in very high soil salinity conditions may was due to inability of AM fungi to survive such salinity conditions, which may limit the beneficial effects of AM fungi in halophytes. PMID:18983032

  12. RNA-Seq Analysis of the Response of the Halophyte, Mesembryanthemum crystallinum (Ice Plant) to High Salinity

    PubMed Central

    Tsukagoshi, Hironaka; Suzuki, Takamasa; Nishikawa, Kouki; Agarie, Sakae; Ishiguro, Sumie; Higashiyama, Tetsuya

    2015-01-01

    Understanding the molecular mechanisms that convey salt tolerance in plants is a crucial issue for increasing crop yield. The ice plant (Mesembryanthemum crystallinum) is a halophyte that is capable of growing under high salt conditions. For example, the roots of ice plant seedlings continue to grow in 140 mM NaCl, a salt concentration that completely inhibits Arabidopsis thaliana root growth. Identifying the molecular mechanisms responsible for this high level of salt tolerance in a halophyte has the potential of revealing tolerance mechanisms that have been evolutionarily successful. In the present study, deep sequencing (RNAseq) was used to examine gene expression in ice plant roots treated with various concentrations of NaCl. Sequencing resulted in the identification of 53,516 contigs, 10,818 of which were orthologs of Arabidopsis genes. In addition to the expression analysis, a web-based ice plant database was constructed that allows broad public access to the data. The results obtained from an analysis of the RNAseq data were confirmed by RT-qPCR. Novel patterns of gene expression in response to high salinity within 24 hours were identified in the ice plant when the RNAseq data from the ice plant was compared to gene expression data obtained from Arabidopsis plants exposed to high salt. Although ABA responsive genes and a sodium transporter protein (HKT1), are up-regulated and down-regulated respectively in both Arabidopsis and the ice plant; peroxidase genes exhibit opposite responses. The results of this study provide an important first step towards analyzing environmental tolerance mechanisms in a non-model organism and provide a useful dataset for predicting novel gene functions. PMID:25706745

  13. RNA-seq analysis of the response of the halophyte, Mesembryanthemum crystallinum (ice plant) to high salinity.

    PubMed

    Tsukagoshi, Hironaka; Suzuki, Takamasa; Nishikawa, Kouki; Agarie, Sakae; Ishiguro, Sumie; Higashiyama, Tetsuya

    2015-01-01

    Understanding the molecular mechanisms that convey salt tolerance in plants is a crucial issue for increasing crop yield. The ice plant (Mesembryanthemum crystallinum) is a halophyte that is capable of growing under high salt conditions. For example, the roots of ice plant seedlings continue to grow in 140 mM NaCl, a salt concentration that completely inhibits Arabidopsis thaliana root growth. Identifying the molecular mechanisms responsible for this high level of salt tolerance in a halophyte has the potential of revealing tolerance mechanisms that have been evolutionarily successful. In the present study, deep sequencing (RNAseq) was used to examine gene expression in ice plant roots treated with various concentrations of NaCl. Sequencing resulted in the identification of 53,516 contigs, 10,818 of which were orthologs of Arabidopsis genes. In addition to the expression analysis, a web-based ice plant database was constructed that allows broad public access to the data. The results obtained from an analysis of the RNAseq data were confirmed by RT-qPCR. Novel patterns of gene expression in response to high salinity within 24 hours were identified in the ice plant when the RNAseq data from the ice plant was compared to gene expression data obtained from Arabidopsis plants exposed to high salt. Although ABA responsive genes and a sodium transporter protein (HKT1), are up-regulated and down-regulated respectively in both Arabidopsis and the ice plant; peroxidase genes exhibit opposite responses. The results of this study provide an important first step towards analyzing environmental tolerance mechanisms in a non-model organism and provide a useful dataset for predicting novel gene functions. PMID:25706745

  14. Introduction to the Special Issue: Halophytes in a changing world.

    PubMed

    Flowers, Timothy J; Muscolo, Adele

    2015-01-01

    Climate change will bring about rising sea levels and increasing drought, both of which will contribute to increasing salinization in many regions of the world. There will be consequent effects on our crops, which cannot withstand significant salinization. This Special Issue looks at the roles that can be played by halophytes, extremophiles that do tolerate salinities toxic to most plants. In an ecological context, papers deal with the conservation of a rare species, the effects of rising concentrations of CO2 and flooding on coastal vegetation, and the consequences of tree planting in inland plains for salinization. Physiological studies deal with the different effects of chlorides and sulfates on the growth of halophytes, the ability of some parasitic plants to develop succulence when growing on halophytic hosts and the interesting finding that halophytes growing in their natural habitat do not show signs of oxidative stress. Nevertheless, spraying with ascorbic acid can enhance ascorbic acid-dependent antioxidant enzymes and growth in a species of Limonium. Enzymes preventing oxidative stress are expressed constitutively as is the case with the vacuolar H-ATPase, a key enzyme in ion compartmentation. A comparison of salt-excreting and non-excreting grasses showed the former to have higher shoot to root Na(+) ratios than the latter. A particularly tolerant turf grass is described, as is the significance of its ability to secrete ions. A study of 38 species showed the importance of the interaction of a low osmotic potential and cell wall properties in maintaining growth. From an applied point of view, the importance of identifying genotypes and selecting those best suited for the product required, optimizing the conditions necessary for germination and maximizing yield are described. The consequence of selection for agronomic traits on salt tolerance is evaluated, as is the use of halophytes as green manures. Halophytes are remarkable plants: they are rare in relation to the total number of flowering plants and they tolerate salinities that most species cannot. It is clear from the papers published in this Special Issue that research into halophytes has a distinct place in aiding our understanding of salt tolerance in plants, an understanding that is likely to be of importance as climate change and population growth combine to challenge our ability to feed the human population of the world. PMID:25757984

  15. Introduction to the Special Issue: Halophytes in a changing world

    PubMed Central

    Flowers, Timothy J.; Muscolo, Adele

    2015-01-01

    Climate change will bring about rising sea levels and increasing drought, both of which will contribute to increasing salinization in many regions of the world. There will be consequent effects on our crops, which cannot withstand significant salinization. This Special Issue looks at the roles that can be played by halophytes, extremophiles that do tolerate salinities toxic to most plants. In an ecological context, papers deal with the conservation of a rare species, the effects of rising concentrations of CO2 and flooding on coastal vegetation, and the consequences of tree planting in inland plains for salinization. Physiological studies deal with the different effects of chlorides and sulfates on the growth of halophytes, the ability of some parasitic plants to develop succulence when growing on halophytic hosts and the interesting finding that halophytes growing in their natural habitat do not show signs of oxidative stress. Nevertheless, spraying with ascorbic acid can enhance ascorbic acid-dependent antioxidant enzymes and growth in a species of Limonium. Enzymes preventing oxidative stress are expressed constitutively as is the case with the vacuolar H-ATPase, a key enzyme in ion compartmentation. A comparison of salt-excreting and non-excreting grasses showed the former to have higher shoot to root Na+ ratios than the latter. A particularly tolerant turf grass is described, as is the significance of its ability to secrete ions. A study of 38 species showed the importance of the interaction of a low osmotic potential and cell wall properties in maintaining growth. From an applied point of view, the importance of identifying genotypes and selecting those best suited for the product required, optimizing the conditions necessary for germination and maximizing yield are described. The consequence of selection for agronomic traits on salt tolerance is evaluated, as is the use of halophytes as green manures. Halophytes are remarkable plants: they are rare in relation to the total number of flowering plants and they tolerate salinities that most species cannot. It is clear from the papers published in this Special Issue that research into halophytes has a distinct place in aiding our understanding of salt tolerance in plants, an understanding that is likely to be of importance as climate change and population growth combine to challenge our ability to feed the human population of the world. PMID:25757984

  16. Influence of biological, environmental and technical factors on phenolic content and antioxidant activities of Tunisian halophytes.

    PubMed

    Ksouri, Riadh; Megdiche, Wided; Falleh, Hanen; Trabelsi, Nejla; Boulaaba, Mondher; Smaoui, Abderrazak; Abdelly, Chedly

    2008-11-01

    Halophyte ability to withstand salt-triggered oxidative stress is governed by multiple biochemical mechanisms that facilitate retention and/or acquisition of water, protect chloroplast functioning, and maintain ion homeostasis. Most essential traits include the synthesis of osmolytes, specific proteins, and antioxidant molecules. This might explain the utilization of some halophytes as traditional medicinal and dietary plants. The present study aimed at assessing the phenolic content and antioxidant activities of some Tunisian halophytes (Cakile maritima, Limoniastrum monopetalum, Mesembryanthemum crystallinum, M. edule, Salsola kali, and Tamarix gallica), depending on biological (species, organ and developmental stage), environmental, and technical (extraction solvent) factors. The total polyphenol contents and antioxidant activities (DPPH and superoxide radicals scavenging activities, and iron chelating and reducing powers) were strongly affected by the above-cited factors. Such variability might be of great importance in terms of valorising these halophytes as a source of naturally secondary metabolites, and the methods for phenolic and antioxidant production. PMID:18940702

  17. Maritime Halophyte Species from Southern Portugal as Sources of Bioactive Molecules

    PubMed Central

    Rodrigues, Maria João; Gangadhar, Katkam N.; Vizetto-Duarte, Catarina; Wubshet, Sileshi G.; Nyberg, Nils T.; Barreira, Luísa; Varela, João; Custódio, Luísa

    2014-01-01

    Extracts of five halophytes from southern Portugal (Arthrocnemum macrostachyum, Mesembryanthemum edule, Juncus acutus, Plantago coronopus and Halimione portulacoides), were studied for antioxidant, anti-inflammatory and in vitro antitumor properties. The most active extracts towards the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical were the methanol extracts of M. edule (IC50 = 0.1 mg/mL) and J. acutus (IC50 = 0.4 mg/mL), and the ether extracts of J. acutus (IC50 = 0.2 mg/mL) and A. macrostachyum (IC50 = 0.3 mg/mL). The highest radical scavenging activity (RSA) against the 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical was obtained in the ether extract of J. acutus (IC50 = 0.4 mg/mL) and H. portulacoides (IC50 = 0.9 mg/mL). The maximum total phenolic content (TPC) was found in the methanol extract of M. edule (147 mg gallic acid equivalents (GAE)/g) and in the ether extract of J. acutus (94 mg GAE/g). Significant decreases in nitric oxide (NO) production were observed after incubation of macrophages with lipopolysaccharide (LPS) and the chloroform extract of H. portulacoides (IC50 = 109 µg/mL) and the hexane extract of P. coronopus (IC50 = 98.0 µg/mL). High in vitro cytotoxic activity and selectivity was obtained with the ether extract of J. acutus. Juncunol was identified as the active compound and for the first time was shown to display selective in vitro cytotoxicity towards various human cancer cells. PMID:24727393

  18. The development of halophyte-based agriculture: past and present

    PubMed Central

    Ventura, Yvonne; Eshel, Amram; Pasternak, Dov; Sagi, Moshe

    2015-01-01

    Background Freshwater comprises about a mere 2·5 % of total global water, of which approximately two-thirds is locked into glaciers at the polar ice caps and on mountains. In conjunction with this, in many instances irrigation with freshwater causes an increase in soil salinity due to overirrigation of agricultural land, inefficient water use and poor drainage of unsuitable soils. The problem of salinity was recognized a long time ago and, due to the importance of irrigated agriculture, numerous efforts have been devoted towards improving crop species for better utilization of saline soils and water. Irrigating plants with saline water is a challenge for practitioners and researchers throughout the world. Scope Recruiting wild halophytes with economic potential was suggested several decades ago as a way to reduce the damage caused by salinization of soil and water. A range of cultivation systems for the utilization of halophytes have been developed, for the production of biofuel, purification of saline effluent in constructed wetlands, landscaping, cultivation of gourmet vegetables, and more. This review critically analyses past and present halophyte-based production systems in the context of genetics, physiology, agrotechnical issues and product value. There are still difficulties that need to be overcome, such as direct germination in saline conditions or genotype selection. However, more and more research is being directed not only towards determining salt tolerance of halophytes, but also to the improvement of agricultural traits for long-term progress. PMID:25122652

  19. Effects of Two Halophytic Plants (Kochia and Atriplex) on Digestibility, Fermentation and Protein Synthesis by Ruminal Microbes Maintained in Continuous Culture

    PubMed Central

    Riasi, A.; Mesgaran, M. Danesh; Stern, M. D.; Ruiz Moreno, M. J.

    2012-01-01

    Eight continuous culture fermenters were used in a completely randomized design to evaluate various nutritional values of Kochia (Kochia scoparia) compared with Atriplex (Atriplex dimorphostegia). Dried and pelleted samples (leaves and stems) provided substrate for metabolism by ruminal microbes maintained in a continuous culture fermentation system. Results indicated that there were no differences (p>0.05) in dry matter (DM) and crude protein (CP) digestibility between the two halophytic plants. Atriplex had higher (p<0.05) organic matter (OM) digestibility compared with Kochia. Neutral detergent fiber (aNDF) digestibility of Atriplex (411 g/kg) was higher (p<0.05) than that of Kochia (348 g/kg), however acid detergent fiber (ADF) digestibility was higher (p<0.05) in Kochia compared with Atriplex (406 vs. 234 g/kg). There were no differences (p>0.05) between the two halophytic plants in molar proportion of acetate and propionate, but the concentration of butyrate and valerate in Kochia were about two fold of Atriplex (p<0.05). When Kochia provided substrate to the microbes, protein synthesis was higher (p<0.05) compared with feeding Atriplex (5.96 vs. 4.85 g N/kg of OM truly digested). It was concluded that Kochia scoparia and Atriplex dimorphostegia had similar digestibility of DM and CP. It appears that these halophytic plants may not have enough digestible energy for high producing ruminants. PMID:25049608

  20. Biosynthesis and accumulation of osmoprotective compounds by halophytic plants of the genus Limonium

    SciTech Connect

    Hanson, A.D.; Rathinasabapathi, B. ); Gage, D.A. )

    1991-05-01

    Analyses of quaternary ammonium compounds in leaf and root tissues of halophytic Limonium spp. using fast atom bombardment mass spectrometry revealed that only 3 out of 21 spp. accumulated glycine betaine, the common angiosperm osmolyte. The 18 other spp. accumulated {beta}-alanine betaine instead. However, all the Limonium spp. studied accumulated choline-O-sulfate and their leaf disks metabolized ({sup 14}C) choline to choline-O-sulfate. Only the glycine betaine accumulators oxidized ({sup 14}C) choline to glycine betaine and only {beta}-alanine betaine accumulators converted {beta}-({sup 14}C)alanine to {beta}-alanine betaine. When {beta}-alanine betaine and glycine betaine accumulators were salinized with NaCl, the levels of their respective betaines and of choline sulfate were closely correlated with solute potential. Glycine betaine accumulators had less choline-O-sulfate than {beta}-alanine betaine accumulators and increasing the SO{sub 4}{sup 2}/Cl ratio in the medium increased choline-O-sulfate and caused a matching decrease in glycine betaine. Thus, it appears that {beta}-alanine betaine has replaced glycine betaine in most members of this genus, eliminating a possible competition between glycine betaine and choline-O-sulfate for choline.

  1. Illumina-based analysis of bacterial diversity related to halophytes Salicornia europaea and Sueada aralocaspica.

    PubMed

    Shi, Ying-wu; Lou, Kai; Li, Chun; Wang, Lei; Zhao, Zhen-yong; Zhao, Shuai; Tian, Chang-yan

    2015-10-01

    We used Illumina-based 16S rRNA V3 amplicon pyrosequencing to investigate the community structure of soil bacteria from the rhizosphere surrounding Salicornia europaea, and endophytic bacteria living in Salicornia europaea plants and Sueada aralocaspica seeds growing at the Fukang Desert Ecosystem Observation and Experimental Station (FDEOES) in Xinjiang Province, China, using an Illumina genome analyzer. A total of 89.23 M effective sequences of the 16S rRNA gene V3 region were obtained from the two halophyte species. These sequences revealed a number of operational taxonomic units (OTUs) in the halophytes. There were between 22-2,206 OTUs in the halophyte plant sample, at the 3% cutoff level, and a sequencing depth of 30,000 sequences. We identified 25 different phyla, 39 classes and 141 genera from the resulting 134,435 sequences. The most dominant phylum in all the samples was Proteobacteria (41.61%-99.26%; average, 43.30%). The other large phyla were Firmicutes (0%- 7.19%; average, 1.15%), Bacteroidetes (0%-1.64%; average, 0.44%) and Actinobacteria (0%-0.46%; average, 0.24%). This result suggested that the diversity of bacteria is abundant in the rhizosphere soil, while the diversity of bacteria was poor within Salicornia europaea plant samples. To the extent of our knowledge, this study is the first to characterize and compare the endophytic bacteria found within different halophytic plant species roots using PCR-based Illumina pyrosequencing method. PMID:26428918

  2. ROS homeostasis in halophytes in the context of salinity stress tolerance.

    PubMed

    Bose, Jayakumar; Rodrigo-Moreno, Ana; Shabala, Sergey

    2014-03-01

    Halophytes are defined as plants that are adapted to live in soils containing high concentrations of salt and benefiting from it, and thus represent an ideal model to understand complex physiological and genetic mechanisms of salinity stress tolerance. It is also known that oxidative stress signalling and reactive oxygen species (ROS) detoxification are both essential components of salinity stress tolerance mechanisms. This paper comprehensively reviews the differences in ROS homeostasis between halophytes and glycophytes in an attempt to answer the questions of whether stress-induced ROS production is similar between halophytes and glycophytes; is the superior salinity tolerance in halophytes attributed to higher antioxidant activity; and is there something special about the specific 'pool' of enzymatic and non-enzymatic antioxidants in halophytes. We argue that truly salt-tolerant species possessing efficient mechanisms for Na(+) exclusion from the cytosol may not require a high level of antioxidant activity, as they simply do not allow excessive ROS production in the first instance. We also suggest that H2O2 'signatures' may operate in plant signalling networks, in addition to well-known cytosolic calcium 'signatures'. According to the suggested concept, the intrinsically higher superoxide dismutase (SOD) levels in halophytes are required for rapid induction of the H2O2 'signature', and to trigger a cascade of adaptive responses (both genetic and physiological), while the role of other enzymatic antioxidants may be in decreasing the basal levels of H2O2, once the signalling has been processed. Finally, we emphasize the importance of non-enzymatic antioxidants as the only effective means to prevent detrimental effects of hydroxyl radicals on cellular structures. PMID:24368505

  3. Enhanced salt stress tolerance of rice plants expressing a vacuolar H+-ATPase subunit c1 (SaVHAc1) gene from the halophyte grass Spartina alterniflora Löisel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The physiological role of a vacuolar ATPase subunit c1 (SaVHAc1) from a halophyte grass Spartina alterniflora was studied through its expression in rice. The SaVHAc1– expressing plants showed enhanced tolerance to salt stress than the wild-type plants, mainly through adjustments in early stage and p...

  4. An inland and a coastal population of the Mediterranean xero-halophyte species Atriplex halimus L. differ in their ability to accumulate proline and glycinebetaine in response to salinity and water stress.

    PubMed

    Ben Hassine, Abir; Ghanem, Michel Edmond; Bouzid, Sadok; Lutts, Stanley

    2008-01-01

    Soil salinity and drought compromise water uptake and lead to osmotic adjustment in xero-halophyte plant species. These important environmental constraints may also have specific effects on plant physiology. Stress-induced accumulation of osmocompatible solutes was analysed in two Tunisian populations of the Mediteranean shrub Atriplex halimus L.-plants originating from a salt-affected coastal site (Monastir) or from a non-saline semi-arid area (Sbikha)-were exposed to nutrient solution containing either low (40 mM) or high (160 mM) doses of NaCl or 15% polyethylene glycol. The low NaCl dose stimulated plant growth in both populations. Plants from Monastir were more resistant to high salinity and exhibited a greater ability to produce glycinebetaine in response to salt stress. Conversely, plants from Sbikha were more resistant to water stress and displayed a higher rate of proline accumulation. Proline accumulated as early as 24 h after stress imposition and such accumulation was reversible. By contrast, glycinebetaine concentration culminated after 10 d of stress and did not decrease after the stress relief. The highest salt resistance of Monastir plants was not due to a lower rate of Na(+) absorption; plants from this population exhibited a higher stomatal conductance and a prodigal water-use strategy leading to lower water-use efficiency than plants from Sbikha. Exogenous application of proline (1 mM) improved the level of drought resistance in Monastir plants through a decrease in oxidative stress quantified by the malondialdehyde concentration, while the exogenous application of glycinebetaine improved the salinity resistance of Sbikha plants through a positive effect on photosystem II efficiency. PMID:18385490

  5. Screening, isolation, and characterization of glycosyl-hydrolase-producing fungi from desert halophyte plants.

    PubMed

    Luziatelli, Francesca; Crognale, Silvia; D'Annibale, Alessandro; Moresi, Mauro; Petruccioli, Maurizio; Ruzzi, Maurizio

    2014-03-01

    Fungal strains naturally occurring on the wood and leaves of the salt-excreting desert tree Tamarix were isolated and characterized for their ability to produce cellulose- and starch-degrading enzymes. Of the 100 isolates, six fungal species were identified by ITS1 sequence analysis. No significant differences were observed among taxa isolated from wood samples of different Tamarix species, while highly salt-tolerant forms related to the genus Scopulariopsis (an anamorphic ascomycete) occurred only on the phylloplane of T. aphylla. All strains had cellulase and amylase activities, but the production of these enzymes was highest in strain D, a Schizophyllum-commune-related form. This strain, when grown on pretreated Tamarix biomass, produced an enzymatic complex containing levels of filter paperase (414 +/- 16 IU/ml) that were higher than those of other S. commune strains. The enzyme complex was used to hydrolyze different lignocellulosic substrates, resulting in a saccharification rate ofpretreated milk thistle (73.5 +/- 1.2%) that was only 10% lower than that obtained with commercial cellulases. Our results support the use of Tamarix biomass as a useful source of cellulolytic and amylolytic fungi and as a good feedstock for the economical production of commercially relevant cellulases and amylases. PMID:25296445

  6. Halophytes Energy Feedstocks: Back to Our Roots

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Bushnell, Dennis M.

    2007-01-01

    Of the Earth s landmass, approx.43% is arid or semi-arid, and 97% of the Earth s water is seawater. Halophytes are salt-tolerant plants (micro and macro) that can prosper in seawater or brackish waters and are common feedstocks for fuel and food (fuel-food feedstocks) in depressed countries. Two types, broadly classed as coastal and desert, can be found in marshes, coastal planes, inland lakes, and deserts. Major arid or semi-arid halophyte agriculture problems include pumping and draining the required high volumes of irrigation water from sea or ocean sources. Also, not all arid or semi-arid lands are suitable for crops. Benefits of halophyte agriculture include freeing up arable land and freshwater resources, cleansing the environment, decontaminating soils, desalinating brackish waters, and carbon sequestration. Sea and ocean halophyte agriculture problems include storms, transport, and diffuse harvesting. Benefits include available nutrients, ample water, and Sun. Careful attention to details and use of saline agriculture fuel feedstocks are required to prevent anthropogenic disasters. It is shown that the potential for fuel-food feedstock halophyte production is high; based on test plot data, it could supply 421.4 Quad, or 94% of the 2004 world energy consumption and sequester carbon, with major impact on the Triangle of Conflicts.

  7. Comparative proteomics of Thellungiella halophila leaves from plants subjected to salinity reveals the importance of chloroplastic starch and soluble sugars in halophyte salt tolerance.

    PubMed

    Wang, Xuchu; Chang, Lili; Wang, Baichen; Wang, Dan; Li, Pinghua; Wang, Limin; Yi, Xiaoping; Huang, Qixing; Peng, Ming; Guo, Anping

    2013-08-01

    Thellungiella halophila, a close relative of Arabidopsis, is a model halophyte used to study plant salt tolerance. The proteomic/physiological/transcriptomic analyses of Thellungiella plant leaves subjected to different salinity levels, reported herein, indicate an extraordinary ability of Thellungiella to adapt to large concentrations of exogenous saline by compartmentalizing Na(+) into cell vacuoles and accumulating proline and soluble sugars as organic osmolytes. Salinity stress stimulated the accumulation of starch in chloroplasts, which resulted in a greatly increased content of starch and total sugars in leaves. Comparative proteomics of Thellungiella leaves identified 209 salt-responsive proteins. Among these, the sequences of 108 proteins were strongly homologous to Arabidopsis protein sequences, and 30 had previously been identified as Thellungiella proteins. Functional classification of these proteins into 16 categories indicated that the majority are involved in carbohydrate metabolism, followed by those involved in energy production and conversion, and then those involved in the transport of inorganic ions. Pathway analysis revealed that most of the proteins are involved in starch and sucrose metabolism, carbon fixation, photosynthesis, and glycolysis. Of these processes, the most affected were starch and sucrose metabolism, which might be pivotal for salt tolerance. The gene expression patterns of the 209 salt-responsive proteins revealed through hierarchical clustering of microarray data and the expression patterns of 29 Thellungiella genes evaluated via quantitative RT-PCR were similar to those deduced via proteomic analysis, which underscored the possibility that starch and sucrose metabolism might play pivotal roles in determining the salt tolerance ability of Thellungiella. Our observations enabled us to propose a schematic representation of the systematic salt-tolerance phenotype in Thellungiella and suggested that the increased accumulation of starch, soluble sugars, and proline, as well as subcellular compartmentalization of sodium, might collectively denote important mechanisms for halophyte salt tolerance. PMID:23660471

  8. Comparative Proteomics of Thellungiella halophila Leaves from Plants Subjected to Salinity Reveals the Importance of Chloroplastic Starch and Soluble Sugars in Halophyte Salt Tolerance*

    PubMed Central

    Wang, Xuchu; Chang, Lili; Wang, Baichen; Wang, Dan; Li, Pinghua; Wang, Limin; Yi, Xiaoping; Huang, Qixing; Peng, Ming; Guo, Anping

    2013-01-01

    Thellungiella halophila, a close relative of Arabidopsis, is a model halophyte used to study plant salt tolerance. The proteomic/physiological/transcriptomic analyses of Thellungiella plant leaves subjected to different salinity levels, reported herein, indicate an extraordinary ability of Thellungiella to adapt to large concentrations of exogenous saline by compartmentalizing Na+ into cell vacuoles and accumulating proline and soluble sugars as organic osmolytes. Salinity stress stimulated the accumulation of starch in chloroplasts, which resulted in a greatly increased content of starch and total sugars in leaves. Comparative proteomics of Thellungiella leaves identified 209 salt-responsive proteins. Among these, the sequences of 108 proteins were strongly homologous to Arabidopsis protein sequences, and 30 had previously been identified as Thellungiella proteins. Functional classification of these proteins into 16 categories indicated that the majority are involved in carbohydrate metabolism, followed by those involved in energy production and conversion, and then those involved in the transport of inorganic ions. Pathway analysis revealed that most of the proteins are involved in starch and sucrose metabolism, carbon fixation, photosynthesis, and glycolysis. Of these processes, the most affected were starch and sucrose metabolism, which might be pivotal for salt tolerance. The gene expression patterns of the 209 salt-responsive proteins revealed through hierarchical clustering of microarray data and the expression patterns of 29 Thellungiella genes evaluated via quantitative RT-PCR were similar to those deduced via proteomic analysis, which underscored the possibility that starch and sucrose metabolism might play pivotal roles in determining the salt tolerance ability of Thellungiella. Our observations enabled us to propose a schematic representation of the systematic salt-tolerance phenotype in Thellungiella and suggested that the increased accumulation of starch, soluble sugars, and proline, as well as subcellular compartmentalization of sodium, might collectively denote important mechanisms for halophyte salt tolerance. PMID:23660471

  9. Habitat specificity of a threatened and endemic, cliff-dwelling halophyte.

    PubMed

    Caperta, Ana D; Esprito-Santo, M Dalila; Silva, Vasco; Ferreira, Ana; Paes, Ana P; Ris, Ana S; Costa, Jos C; Arsnio, Pedro

    2014-01-01

    Coastal areas and other saline environments are major contributors to regional and global biodiversity patterns. In these environments, rapidly changing gradients require highly specialized plants like halophytes. In European coastal cliff-tops, rocky and sandy seashores, and saltmarshes, typical halophytes from the genus Limonium are commonly found. Among them, the aneuploid tetraploid (2n = 4x = 35, 36, 37) Limonium multiflorum, endemic to the west coast of Portugal, is an interesting case study for investigating the ecology and conservation of a halophyte agamospermic species. Although it is listed in the IUCN red list of threatened species, information on its population size or rarity, as well as its ecology, in some respects is still unknown. Field surveys in the largest known population were performed (Raso cape, Portugal) in order to determine habitat requirements and conservation status. A total of 88 quadrats were monitored, 43 of which contained at least one L. multiflorum individual. For each sampled quadrat, four abiotic and four biotic variables as well as two spatially derived variables were recorded. Principal component analysis and cluster analysis showed narrow habitat specificity for this species which appeared to be intolerant to competition with invasive alien plants. We conclude that in situ conservation in a local 'hotspot' of this rare and vulnerable species emerges as a priority in order to ensure that biodiversity is not lost. PMID:24942513

  10. Habitat specificity of a threatened and endemic, cliff-dwelling halophyte

    PubMed Central

    Caperta, Ana D.; Espírito-Santo, M. Dalila; Silva, Vasco; Ferreira, Ana; Paes, Ana P.; Róis, Ana S.; Costa, José C.; Arsénio, Pedro

    2014-01-01

    Coastal areas and other saline environments are major contributors to regional and global biodiversity patterns. In these environments, rapidly changing gradients require highly specialized plants like halophytes. In European coastal cliff-tops, rocky and sandy seashores, and saltmarshes, typical halophytes from the genus Limonium are commonly found. Among them, the aneuploid tetraploid (2n = 4x = 35, 36, 37) Limonium multiflorum, endemic to the west coast of Portugal, is an interesting case study for investigating the ecology and conservation of a halophyte agamospermic species. Although it is listed in the IUCN red list of threatened species, information on its population size or rarity, as well as its ecology, in some respects is still unknown. Field surveys in the largest known population were performed (Raso cape, Portugal) in order to determine habitat requirements and conservation status. A total of 88 quadrats were monitored, 43 of which contained at least one L. multiflorum individual. For each sampled quadrat, four abiotic and four biotic variables as well as two spatially derived variables were recorded. Principal component analysis and cluster analysis showed narrow habitat specificity for this species which appeared to be intolerant to competition with invasive alien plants. We conclude that in situ conservation in a local ‘hotspot’ of this rare and vulnerable species emerges as a priority in order to ensure that biodiversity is not lost. PMID:24942513

  11. Conveyor Cultivation of the Halophytic Plant Salicornia europaea for the Recycling of NaCl from Human Liquid Waste in a Biological Life Support System.

    NASA Astrophysics Data System (ADS)

    Balnokin, Yurii; Myasoedov, Nikolay; Popova, Larissa; Tikhomirov, Alexander A.; Ushakova, Sofya; Tikhomirova, Natalia; Lasseur, Christophe; Gros, Jean-Bernard

    One problem in designing bioregenerative life support systems (BLSS) is developing technolo-gies to include human liquid and solid waste in intrasystem recycling. A specific task is recycling of NaCl excreted in urine by humans. We showed recently that this could be achieved through inclusion of the salt accumulating halophyte Salicornia europaea in the autotrophic compart-ment of the BLSS (Balnokin et al., ASR, 2010, in press). A model of NaCl circulation in BLSS with inclusion of S. europaea was based on the NaCl turnover in the human -urine -nutrient solution -S. europaea -human cycle. Mineralized urine was used as a basis for preparation of a nutrient solution for the halophyte cultivation. The shoots of the halophyte cultivated in the mineralized urine and containing NaCl could to be used by the BLSS inhabitants in their diets. In this report we describe cultivation of S. europaea which allows turnover of NaCl and produces daily shoot biomass containing Na+ and Cl- in quantities approximately equal to those excreted in daily human urine. The plants were grown in water culture in a climatic chamber under controlled conditions. A solution simulating mineralized urine (SSMU) was used as a basis for preparation of a nutri-ent solution for S. europaea cultivation. For continuous biomass production, seedlings of S. europaea, germinated preliminary in moist sand, were being transferred to the nutrient solu-tion at regular intervals (every two days). Duration of the conveyor operation was 112 days. During the first 56 days, the seedlings were being planted in SSMU diluted by a factor of 1.5 (2/3 SSMU). The same solution was introduced into the growth vessels as volumes of growth medium decreased due to plant transpiration. Starting from the 56th day as conveyor operation was initiated, the plants were being harvested every two days; the solutions from the discharged vessels were mixed with the fresh SSMU and the mixture was introduced into all other growth vessels of the conveyor. Thus, during the first 56-d period, the plants grew only in the fresh nutrient solution, whereas during the second 56-d period, the worked out nutrient solutions were being returned into the cycle having been added to the growth vessels along with the fresh SSMU. Growth characteristics, water and ionic relations of S. europaea plants, balance of nutrients between organs and growth media for the first and second 56-d periods of the conveyor operation are presented. There was no significant difference in the rates of shoot biomass production during the first and the second periods. The plants were producing shoot biomass with the rates close to those observed under optimal conditions. However, substantial increase in root biomass production (by 50% on the dry mass basis) was observed in the second period as compared with the first one. Decrease in organ water contents on the dry mass basis (by 13% and 30% for shoots and roots, respectively) and transpiration rates (by 25%) occurred also in the second period as compared with the first one. Measurements of Na+ , Cl- and nutrient contents in the growth media and plant organs and calculation of their balances showed that the plants did not suffer from a deficiency of nutrients during the 112 days of the conveyor operation while accumulating required NaCl amounts. Observed root proliferation and deterioration of water relations in the second 56-d period of the conveyor operation may be caused by toxic plant metabolites exuded by roots into the growth medium.

  12. Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes

    PubMed Central

    Kumari, Asha; Das, Paromita; Parida, Asish Kumar; Agarwal, Pradeep K.

    2015-01-01

    Halophytes are plants which naturally survive in saline environment. They account for ∼1% of the total flora of the world. They include both dicots and monocots and are distributed mainly in arid, semi-arid inlands and saline wet lands along the tropical and sub-tropical coasts. Salinity tolerance in halophytes depends on a set of ecological and physiological characteristics that allow them to grow and flourish in high saline conditions. The ability of halophytes to tolerate high salt is determined by the effective coordination between various physiological processes, metabolic pathways and protein or gene networks responsible for delivering salinity tolerance. The salinity responsive proteins belong to diverse functional classes such as photosynthesis, redox homeostasis; stress/defense, carbohydrate and energy metabolism, protein metabolism, signal transduction and membrane transport. The important metabolites which are involved in salt tolerance of halophytes are proline and proline analog (4-hydroxy-N-methyl proline), glycine betaine, pinitol, myo-inositol, mannitol, sorbitol, O-methylmucoinositol, and polyamines. In halophytes, the synthesis of specific proteins and osmotically active metabolites control ion and water flux and support scavenging of oxygen radicals under salt stress condition. The present review summarizes the salt tolerance mechanisms of halophytes by elucidating the recent studies that have focused on proteomic, metabolomic, and ionomic aspects of various halophytes in response to salinity. By integrating the information from halophytes and its comparison with glycophytes could give an overview of salt tolerance mechanisms in halophytes, thus laying down the pavement for development of salt tolerant crop plants through genetic modification and effective breeding strategies. PMID:26284080

  13. On the distribution and evaluation of Na, Mg and Cl in leaves of selected halophytes

    NASA Astrophysics Data System (ADS)

    Pongrac, Paula; Vogel-Mikuš, Katarina; Regvar, Marjana; Kaligarič, Mitja; Vavpetič, Primož; Kelemen, Mitja; Grlj, Nataša; Shelef, Oren; Golan-Goldhirsh, Avi; Rachmilevitch, Shimon; Pelicon, Primož

    2013-07-01

    Diverse physiological, biochemical and morphological adaptations enable plants to survive in extreme saline environments where osmotic and ionic stresses limit growth and development. Halophytes are salt-tolerant plants that can withstand extraordinarily high levels of Na and Cl in their leaves. The tissue and cellular distribution patterns of salt ions can be linked to the underlying mechanisms of salt tolerance. Application of fast, reliable, multi-elemental and quantitative techniques such as micro-proton-induced X-ray emission (micro-PIXE) will significantly contribute to and accelerate studies of plant salt tolerance, especially as micro-PIXE also provides spatially resolved quantitative data for light elements, such as Na and Mg. The spatial concentration distributions of Na, Mg, Cl, K, P and S in leaves of four halophytes (Bassia indica, Atriplex prostrata, Spartina maritima and Limonium angustifolium) were determined using micro-PIXE, to study the salt-tolerance strategies of the selected halophytes. Different distribution patterns of the studied elements were seen in the leaves; however, in all four of these plant species, Na was excluded from photosynthetically active chlorophyl tissues. With the exception of L. angustifolium, Cl, P and S contents (representing chloride, phosphate and sulphate ionic forms, respectively) did not ensure charge balance in the leaves, which suggests other anionic compounds, such as nitrate and organic anions, have crucial roles in maintaining electroneutrality in these halophytes. By increasing soil salinisation worldwide, the possibility to reliably complement spatial distributions of Na, Mg, Cl, K, P and S with plant structural morphology will contribute significantly to our understanding of plant tolerance mechanisms at the tissue and cell levels. In addition, these kinds of studies are of particular value for designing crop plants with high salt tolerance and for the development of phytoremediation technologies.

  14. Plant responses to heterogeneous salinity: growth of the halophyte Atriplex nummularia is determined by the root-weighted mean salinity of the root zone

    PubMed Central

    Bazihizina, Nadia

    2012-01-01

    Soil salinity is generally spatially heterogeneous, but our understanding of halophyte physiology under such conditions is limited. The growth and physiology of the dicotyledonous halophyte Atriplex nummularia was evaluated in split-root experiments to test whether growth is determined by: (i) the lowest; (ii) the highest; or (iii) the mean salinity of the root zone. In two experiments, plants were grown with uniform salinities or horizontally heterogeneous salinities (10450mM NaCl in the low-salt side and 670mM in the high-salt side, or 10mM NaCl in the low-salt side and 5001500mM in the high-salt side). The combined data showed that growth and gas exchange parameters responded most closely to the root-weighted mean salinity rather than to the lowest, mean, or highest salinity in the root zone. In contrast, midday shoot water potentials were determined by the lowest salinity in the root zone, consistent with most water being taken from the least negative water potential source. With uniform salinity, maximum shoot growth was at 120230mM NaCl; ~90% of maximum growth occurred at 10mM and 450mM NaCl. Exposure of part of the roots to 1500mM NaCl resulted in an enhanced (+40%) root growth on the low-salt side, which lowered root-weighted mean salinity and enabled the maintenance of shoot growth. Atriplex nummularia grew even with extreme salinity in part of the roots, as long as the root-weighted mean salinity of the root zone was within the 10450mM range. PMID:23125356

  15. Genetically Altered Plant Species

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Researchers in Robert Ferl's lab at the University of Florida in Gainesville, genetically altered this Arabdopsis Thaliana (a brassica species) plant to learn how extreme environments, such as the low atmospheric pressure on Mars, affect plant genes. They inserted green fluorescent protein (GFP) near the on/off switches for anoxia and drought genes. When those genes were turned on after exposure to reduced atmospheric pressure, GFP was turned on as well, causing cells expressing those genes to glow green under a blue light. The natural fluorescence of chlorophyll accounts for the red glow.

  16. Manipulating the antioxidant capacity of halophytes to increase their cultural and economic value through saline cultivation.

    PubMed

    Boestfleisch, Christian; Wagenseil, Niko B; Buhmann, Anne K; Seal, Charlotte E; Wade, Ellie Merrett; Muscolo, Adele; Papenbrock, Jutta

    2014-01-01

    Halophytes, salt-tolerant plants, are a source of valuable secondary metabolites with potential economic value. The steady-state pools of many stress-related metabolites are already enhanced in halophytes when compared with glycophytes, but growth under conditions away from the optimum can induce stress and consequently result in changes to secondary metabolites such as antioxidants. However, direct evidence for increasing the concentration of valuable secondary metabolites as a consequence of altering the salinity of the growing environment still remains equivocal. To address this, we analysed a range of metabolites with antioxidant capacity (including total phenols, flavonoids, ascorbate, reduced/oxidized glutathione and reactive oxygen species scavenging enzymes) in seedlings and plants from different families (Amaranthaceae, Brassicaceae, Plantaginaceae and Rhizophoraceae) and habitats grown under different salt concentrations. We show that it is possible to manipulate the antioxidant capacity of plants and seedlings by altering the saline growing environment, the length of time under saline cultivation and the developmental stage. Among the species studied, the halophytes Tripolium pannonicum, Plantago coronopus, Lepidium latifolium and Salicornia europaea demonstrated the most potential as functional foods or nutraceuticals. PMID:25125698

  17. Manipulating the antioxidant capacity of halophytes to increase their cultural and economic value through saline cultivation

    PubMed Central

    Boestfleisch, Christian; Wagenseil, Niko B.; Buhmann, Anne K.; Seal, Charlotte E.; Wade, Ellie Merrett; Muscolo, Adele; Papenbrock, Jutta

    2014-01-01

    Halophytes, salt-tolerant plants, are a source of valuable secondary metabolites with potential economic value. The steady-state pools of many stress-related metabolites are already enhanced in halophytes when compared with glycophytes, but growth under conditions away from the optimum can induce stress and consequently result in changes to secondary metabolites such as antioxidants. However, direct evidence for increasing the concentration of valuable secondary metabolites as a consequence of altering the salinity of the growing environment still remains equivocal. To address this, we analysed a range of metabolites with antioxidant capacity (including total phenols, flavonoids, ascorbate, reduced/oxidized glutathione and reactive oxygen species scavenging enzymes) in seedlings and plants from different families (Amaranthaceae, Brassicaceae, Plantaginaceae and Rhizophoraceae) and habitats grown under different salt concentrations. We show that it is possible to manipulate the antioxidant capacity of plants and seedlings by altering the saline growing environment, the length of time under saline cultivation and the developmental stage. Among the species studied, the halophytes Tripolium pannonicum, Plantago coronopus, Lepidium latifolium and Salicornia europaea demonstrated the most potential as functional foods or nutraceuticals. PMID:25125698

  18. Growth and physiological adaptation of whole plants and cultured cells from a halophyte turf grass under salt stress

    PubMed Central

    Tada, Yuichi; Komatsubara, Shiho; Kurusu, Takamitsu

    2014-01-01

    Understanding the mechanisms used by halophytic members of the Poaceae to cope with salt stress will contribute to the knowledge necessary to genetically engineer salt-tolerant crops. In this study, we identified a genotype of Sporobolus virginicus, a halophytic turf grass collected in Japan, and investigated its growth rate, ion concentration and secretion, and proline concentration in comparison with the reported properties of genotypes collected from the USA, South Africa and Egypt. Surprisingly, the Japanese genotype showed a salinity tolerance up to 1.5 M NaCl, a 3-fold higher concentration than seawater salinity. Shoot growth was stimulated by 100 mM NaCl and root growth was stimulated at salinities of up to 1 M NaCl. Accumulation of Na+ and CI? in shoots and roots was rapidly elevated by salinity stress but did not exceed the levels required for osmotic adjustment, due in part to ion secretion by salt glands, which are present in genotypes of S. virginicus. However, the Japanese genotypes accumulated K+ to a higher level than other genotypes, resulting in a relatively high K+/Na+ ratio even under salinity stress. An increase in proline concentration was observed that was proportional to the NaCl concentration in the culture solution and might partially account for osmotic adjustment in the shoots. We also generated and characterized cultured cells of S. virginicus. In 500 mM NaCl, the cultured cells showed an enhanced growth compared with cultured cells of rice. The concentration of Na+ and CI? in the cultured cells in 300500 mM NaCl was lower than in 100 mM NaCl. Cultured cells of S. virginicus accumulated proline to higher levels than rice cells cultured under salinity stress. The active regulation of Na+, Cl? and K+ influx/efflux and proline accumulation might be involved in salt tolerance mechanisms at the cellular level as well as in planta. PMID:25024277

  19. Medicinal halophytes: potent source of health promoting biomolecules with medical, nutraceutical and food applications.

    PubMed

    Ksouri, Riadh; Ksouri, Wided Megdiche; Jallali, Ins; Debez, Ahmed; Magn, Christian; Hiroko, Isoda; Abdelly, Chedly

    2012-12-01

    Salt-tolerant plants grow in a wide variety of saline habitats, from coastal regions, salt marshes and mudflats to inland deserts, salt flats and steppes. Halophytes living in these extreme environments have to deal with frequent changes in salinity level. This can be done by developing adaptive responses including the synthesis of several bioactive molecules. Consequently, several salt marsh plants have traditionally been used for medical, nutritional, and even artisanal purposes. Currently, an increasing interest is granted to these species because of their high content in bioactive compounds (primary and secondary metabolites) such as polyunsaturated fatty acids, carotenoids, vitamins, sterols, essential oils (terpenes), polysaccharides, glycosides, and phenolic compounds. These bioactive substances display potent antioxidant, antimicrobial, anti-inflammatory, and anti-tumoral activities, and therefore represent key-compounds in preventing various diseases (e.g. cancer, chronic inflammation, atherosclerosis and cardiovascular disorder) and ageing processes. The ongoing research will lead to the utilisation of halophytes as a new source of healthy products as functional foods, nutraceuticals or active principles in several industries. This contribution focuses on the ethnopharmacological uses of halophytes in traditional medicine and reviews recent investigations on their biological activities and nutraceuticals. The work is distributed according to the different families of nutraceuticals (lipids, vitamins, proteins, glycosides, phenolic compounds, etc.) discussing the analytical techniques employed for their determination. Information about the claimed health promoting effects of the different families of nutraceuticals is also provided together with data on their application. PMID:22129270

  20. A comparative study of the early osmotic, ionic, redox and hormonal signaling response in leaves and roots of two halophytes and a glycophyte to salinity.

    PubMed

    Ellouzi, Hasna; Ben Hamed, Karim; Hernández, Iker; Cela, Jana; Müller, Maren; Magné, Christian; Abdelly, Chedly; Munné-Bosch, Sergi

    2014-12-01

    Salt stress is one of the most important abiotic stress factors affecting plant growth and productivity in natural ecosystems. In this study, we aimed at determining possible differences between salt tolerant and salt sensitive species in early (within 72 h) salt stress response in leaves and roots. To this purpose, we subjected three Brassicaceae species, namely two halophytes-Cakile maritima and Thellungiella salsuginea--and a glycophyte--Arabidopsis thaliana- to short-term salt stress (400 mM NaCl). The results indicate that the halophytes showed a differential osmotic and ionic response together with an early and transient oxidative burst, which was characterized by enhanced hydrogen peroxide levels and subsequent activation of antioxidant defenses in both leaves and roots. In addition, the halophytes displayed enhanced accumulation of abscisic acid, jasmonic acid (JA) and ACC (aminocyclopropane-1-carboxylic acid, the precursor of ethylene) in leaves and roots, as compared to A. thaliana under salt stress. Moreover, the halophytes showed enhanced expression of ethylene response factor1 (ERF1), the convergence node of the JA and ethylene signaling pathways in both leaves and roots upon exposure to salt stress. In conclusion, we show that the halophytes C. maritima and T. salsuginea experience an early oxidative burst, improved antioxidant defenses and hormonal response not only in leaves but also in roots, in comparison to the glycophyte A. thaliana. This differential signaling response converging, at least in part, into increased ERF1 expression in both above- and underground tissues seems to underlay, at least in part, the enhanced tolerance of the two studied halophytes to salt stress. PMID:25156490

  1. How can we take advantage of halophyte properties to cope with heavy metal toxicity in salt-affected areas?

    PubMed Central

    Lutts, Stanley; Lefèvre, Isabelle

    2015-01-01

    Background Many areas throughout the world are simultaneously contaminated by high concentrations of soluble salts and by high concentrations of heavy metals that constitute a serious threat to human health. The use of plants to extract or stabilize pollutants is an interesting alternative to classical expensive decontamination procedures. However, suitable plant species still need to be identified for reclamation of substrates presenting a high electrical conductivity. Scope Halophytic plant species are able to cope with several abiotic constraints occurring simultaneously in their natural environment. This review considers their putative interest for remediation of polluted soil in relation to their ability to sequester absorbed toxic ions in trichomes or vacuoles, to perform efficient osmotic adjustment and to limit the deleterious impact of oxidative stress. These physiological adaptations are considered in relation to the impact of salt on heavy metal bioavailabilty in two types of ecosystem: (1) salt marshes and mangroves, and (2) mine tailings in semi-arid areas. Conclusions Numerous halophytes exhibit a high level of heavy metal accumulation and external NaCl may directly influence heavy metal speciation and absorption rate. Maintenance of biomass production and plant water status makes some halophytes promising candidates for further management of heavy-metal-polluted areas in both saline and non-saline environments. PMID:25672360

  2. Investigations of adaptation mechanisms of different halophytes types in different soil salinity conditions (Southern Central Siberia, Russia)

    NASA Astrophysics Data System (ADS)

    Slyusar, Natalia; Pechurkin, Nickolay

    High salt concentration in the soil is one of the limiting factors affecting plant growth and development. However, there are plants that are physiologically adapted to high salts concen-trations -halophytes. Studies of halophytes reveals mechanisms of adaptation to this factor. Investigations were conducted in the steppe zone of Southern Central Siberia (Russia, Khaka-sia), nearest coastal zone of the Lake Kurinka. The work was carried on route and stationary methods. As a results was conducted about 100 geobotanical descriptions, was defined species composition, covering, vertical and horizontal structure of plant communities, the productivity of above ground dry phytomass. As a result of field work was identified various types of plant communities, that are located on soils with a salinity degree are 0,2 -7,16 g / l. Type of saline -sulfate-sodium. Suaeda plant communities was located in the meadow-saline soil (soil salinity degree 5 -7 g / l). The dominant is euhalophyte Suaeda linifolia Pall. and subdominant is glycohalophyte Puccinellia tenuissima. A plant community has two layers. Total covering is 50 -55During the study period (2004 -2009), the change was observed in the soil salinity degree in the range of 2.27 -7.16 g / l. The plan community productivity varied from 99 to 201 g/m2 by years of research. Also was noted that the salt amount in the plants biomass varies depending on the type of halophyte. In the cells of euhalophyte Suaeda linifolia the salt amount was 10-35The investigation noted that relations between the main photosynthetic pigments (chlorophylls and carotenoids) have changes depending on the type of halophyte. Thus, in typical glycohalophyte Puccinellia tenuissima, Elytrigia repens and Phragmites australis chlorophyll content remained relatively high during the summer period and were 0,74, 0,61 and 0,53

  3. Effect of saline irrigation on growth characteristics and mineral composition of two local halophytes under Saudi environmental conditions.

    PubMed

    Alshammary, Saad F

    2008-09-01

    A field experiment was carried out to determine the growth characteristics and mineral composition of two local halophytes (Atriplex halimus and Salvadora persica) under saline irrigation at Kind Abdulaziz City for Science and Technology (KACST), Research Station Al-Muzahmyia, Riyadh. The experiment treatments were one soil (sandy), four irrigation waters of different salinities (2000, 8000, 12000 and 16000 mg L(-1) TDS), two halophytes (Salvadora persica and Atriplex halimus) and one irrigation level (irrigation at 50% depletion of moisture at field capacity). Mean fresh biomass yield and fresh plant root weight of A. halimus increased while that of S. persica decreased significantly with increasing irrigation water salinity in all the treatments. Soil salinity increased significantly with increasing water salinity. A positive correlation (r = 0.987) existed between the irrigation water salinity and the soil salinity resulting from saline irrigation. The plant tissue protein contents increased in A. halimus, but decreased in S. persica with increasing irrigation water salinity. The Na ion uptake by plant roots was significantly less than K in A. halimus compared to S. persica which indicated adjustment of plants to high soil salinity and high Na ion concentration for better growth. The order of increasing salt tolerance was A. halimus > S. persica under the existing plant growing conditions. Among the two halophytes, A. halimus showed great potential for establishing gene banks of local species, because it has more forage value due to high protein contents than S. persica for range animals. PMID:19266925

  4. Comparative Physiological Evidence that ?-Alanine Betaine and Choline-O-Sulfate Act as Compatible Osmolytes in Halophytic Limonium Species 1

    PubMed Central

    Hanson, Andrew D.; Rathinasabapathi, Bala; Chamberlin, Beverly; Gage, Douglas A.

    1991-01-01

    The quaternary ammonium compounds accumulated in saline conditions by five salt-tolerant species of Limonium (Plumbaginaceae) were analyzed by fast atom bombardment mass spectrometry. Three species accumulated ?-alanine betaine and choline-O-sulfate; the others accumulated glycine betaine and choline-O-sulfate. Three lines of evidence indicated that ?-alanine betaine and choline-O-sulfate replace glycine betaine as osmo-regulatory solutes. First, tests with bacteria showed that ?-alanine betaine and choline-O-sulfate have osmoprotective properties comparable to glycine betaine. Second, when ?-alanine betaine and glycine betaine accumulators were salinized, the levels of their respective betaines, plus that of choline-O-sulfate, were closely correlated with leaf solute potential. Third, substitution of sulfate for chloride salinity caused an increase in the level of choline-O-sulfate and a matching decrease in glycine betaine level. Experiments with 14C-labeled precursors established that ?-alanine betaine accumulators did not synthesize glycine betaine and vice versa. These experiments also showed that ?-alanine betaine synthesis occurs in roots as well as leaves of ?-alanine betaine accumulators and that choline-O-sulfate and glycine betaine share choline as a precursor. Unlike glycine betaine, ?-alanine betaine synthesis cannot interfere with conjugation of sulfate to choline by competing for choline and does not require oxygen. These features of ?-alanine betaine may be advantageous in sulfate-rich salt marsh environments. PMID:16668509

  5. Enhanced salt stress tolerance of rice plants expressing a vacuolar H+ -ATPase subunit c1 (SaVHAc1) gene from the halophyte grass Spartina alterniflora Löisel.

    PubMed

    Baisakh, Niranjan; RamanaRao, Mangu V; Rajasekaran, Kanniah; Subudhi, Prasanta; Janda, Jaroslav; Galbraith, David; Vanier, Cheryl; Pereira, Andy

    2012-05-01

    The physiological role of a vacuolar ATPase subunit c1 (SaVHAc1) from a halophyte grass Spartina alterniflora was studied through its expression in rice. The SaVHAc1-expressing plants showed enhanced tolerance to salt stress than the wild-type plants, mainly through adjustments in early stage and preparatory physiological responses. In addition to the increased accumulation of its own transcript, SaVHAc1 expression led to increased accumulation of messages of other native genes in rice, especially those involved in cation transport and ABA signalling. The SaVHAc1-expressing plants maintained higher relative water content under salt stress through early stage closure of the leaf stoma and reduced stomata density. The increased K(+) /Na(+) ratio and other cations established an ion homoeostasis in SaVHAc1-expressing plants to protect the cytosol from toxic Na(+) and thereby maintained higher chlorophyll retention than the WT plants under salt stress. Besides, the role of SaVHAc1 in cell wall expansion and maintenance of net photosynthesis was implicated by comparatively higher root and leaf growth and yield of rice expressing SaVHAc1 over WT under salt stress. The study indicated that the genes contributing toward natural variation in grass halophytes could be effectively manipulated for improving salt tolerance of field crops within related taxa. PMID:22284568

  6. C:N:P stoichiometry and leaf traits of halophytes in an arid saline environment, northwest China.

    PubMed

    Wang, Lilong; Zhao, Guanxiang; Li, Meng; Zhang, Mingting; Zhang, Lifang; Zhang, Xinfang; An, Lizhe; Xu, Shijian

    2015-01-01

    Salinization is an important and increasingly prevalent issue which has broad and profound effects on plant survival and distribution pattern. To understand the patterns and potential drivers of leaf traits in saline environments, we determined the soil properties, leaf morphological traits (specific leaf area, SLA, and leaf dry matter content, LDMC), leaf chemical traits (leaf carbon, C, nitrogen, N, and phosphorus, P, stoichiometry) based on 142 observations collected from 23 sites in an arid saline environment, which is a vulnerable ecosystem in northwest China. We also explored the relationships among leaf traits, the responses of leaf traits, and plant functional groups (herb, woody, and succulent woody) to various saline environments. The arid desert halophytes were characterized by lower leaf C and SLA levels, higher N, but stable P and N:P. The leaf morphological traits were correlated significantly with the C, N, and P contents across all observations, but they differed within each functional group. Succulent woody plants had the lowest leaf C and highest leaf N levels among the three functional groups. The growth of halophytes might be more limited by N rather than P in the study area. GLM analysis demonstrated that the soil available nutrients and plant functional groups, but not salinity, were potential drivers of leaf C:N:P stoichiometry in halophytes, whereas species differences accounted for the largest contributions to leaf morphological variations. Our study provides baseline information to facilitate the management and restoration of arid saline desert ecosystem. PMID:25798853

  7. C:N:P Stoichiometry and Leaf Traits of Halophytes in an Arid Saline Environment, Northwest China

    PubMed Central

    Wang, Lilong; Zhao, Guanxiang; Li, Meng; Zhang, Mingting; Zhang, Lifang; Zhang, Xinfang; An, Lizhe; Xu, Shijian

    2015-01-01

    Salinization is an important and increasingly prevalent issue which has broad and profound effects on plant survival and distribution pattern. To understand the patterns and potential drivers of leaf traits in saline environments, we determined the soil properties, leaf morphological traits (specific leaf area, SLA, and leaf dry matter content, LDMC), leaf chemical traits (leaf carbon, C, nitrogen, N, and phosphorus, P, stoichiometry) based on 142 observations collected from 23 sites in an arid saline environment, which is a vulnerable ecosystem in northwest China. We also explored the relationships among leaf traits, the responses of leaf traits, and plant functional groups (herb, woody, and succulent woody) to various saline environments. The arid desert halophytes were characterized by lower leaf C and SLA levels, higher N, but stable P and N:P. The leaf morphological traits were correlated significantly with the C, N, and P contents across all observations, but they differed within each functional group. Succulent woody plants had the lowest leaf C and highest leaf N levels among the three functional groups. The growth of halophytes might be more limited by N rather than P in the study area. GLM analysis demonstrated that the soil available nutrients and plant functional groups, but not salinity, were potential drivers of leaf C:N:P stoichiometry in halophytes, whereas species differences accounted for the largest contributions to leaf morphological variations. Our study provides baseline information to facilitate the management and restoration of arid saline desert ecosystem. PMID:25798853

  8. Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes.

    PubMed

    Volkov, Vadim

    2015-01-01

    Ion transport is the fundamental factor determining salinity tolerance in plants. The Review starts from differences in ion transport between salt tolerant halophytes and salt-sensitive plants with an emphasis on transport of potassium and sodium via plasma membranes. The comparison provides introductory information for increasing salinity tolerance. Effects of salt stress on ion transport properties of membranes show huge opportunities for manipulating ion fluxes. Further steps require knowledge about mechanisms of ion transport and individual genes of ion transport proteins. Initially, the Review describes methods to measure ion fluxes, the independent set of techniques ensures robust and reliable basement for quantitative approach. The Review briefly summarizes current data concerning Na(+) and K(+) concentrations in cells, refers to primary thermodynamics of ion transport and gives special attention to individual ion channels and transporters. Simplified scheme of a plant cell with known transport systems at the plasma membrane and tonoplast helps to imagine the complexity of ion transport and allows choosing specific transporters for modulating ion transport. The complexity is enhanced by the influence of cell size and cell wall on ion transport. Special attention is given to ion transporters and to potassium and sodium transport by HKT, HAK, NHX, and SOS1 proteins. Comparison between non-selective cation channels and ion transporters reveals potential importance of ion transporters and the balance between the two pathways of ion transport. Further on the Review describes in detail several successful attempts to overexpress or knockout ion transporters for changing salinity tolerance. Future perspectives are questioned with more attention given to promising candidate ion channels and transporters for altered expression. Potential direction of increasing salinity tolerance by modifying ion channels and transporters using single point mutations is discussed and questioned. An alternative approach from synthetic biology is to create new regulation networks using novel transport proteins with desired properties for transforming agricultural crops. The approach had not been widely used earlier; it leads also to theoretical and pure scientific aspects of protein chemistry, structure-function relations of membrane proteins, systems biology and physiology of stress and ion homeostasis. Summarizing, several potential ways are aimed at required increase in salinity tolerance of plants of interest. PMID:26579140

  9. Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes

    PubMed Central

    Volkov, Vadim

    2015-01-01

    Ion transport is the fundamental factor determining salinity tolerance in plants. The Review starts from differences in ion transport between salt tolerant halophytes and salt-sensitive plants with an emphasis on transport of potassium and sodium via plasma membranes. The comparison provides introductory information for increasing salinity tolerance. Effects of salt stress on ion transport properties of membranes show huge opportunities for manipulating ion fluxes. Further steps require knowledge about mechanisms of ion transport and individual genes of ion transport proteins. Initially, the Review describes methods to measure ion fluxes, the independent set of techniques ensures robust and reliable basement for quantitative approach. The Review briefly summarizes current data concerning Na+ and K+ concentrations in cells, refers to primary thermodynamics of ion transport and gives special attention to individual ion channels and transporters. Simplified scheme of a plant cell with known transport systems at the plasma membrane and tonoplast helps to imagine the complexity of ion transport and allows choosing specific transporters for modulating ion transport. The complexity is enhanced by the influence of cell size and cell wall on ion transport. Special attention is given to ion transporters and to potassium and sodium transport by HKT, HAK, NHX, and SOS1 proteins. Comparison between non-selective cation channels and ion transporters reveals potential importance of ion transporters and the balance between the two pathways of ion transport. Further on the Review describes in detail several successful attempts to overexpress or knockout ion transporters for changing salinity tolerance. Future perspectives are questioned with more attention given to promising candidate ion channels and transporters for altered expression. Potential direction of increasing salinity tolerance by modifying ion channels and transporters using single point mutations is discussed and questioned. An alternative approach from synthetic biology is to create new regulation networks using novel transport proteins with desired properties for transforming agricultural crops. The approach had not been widely used earlier; it leads also to theoretical and pure scientific aspects of protein chemistry, structure-function relations of membrane proteins, systems biology and physiology of stress and ion homeostasis. Summarizing, several potential ways are aimed at required increase in salinity tolerance of plants of interest. PMID:26579140

  10. Physiological and proteomic analyses of leaves from the halophyte Tangut Nitraria reveals diverse response pathways critical for high salinity tolerance

    PubMed Central

    Cheng, Tielong; Chen, Jinhui; Zhang, Jingbo; Shi, Shengqing; Zhou, Yanwei; Lu, Lu; Wang, Pengkai; Jiang, Zeping; Yang, Jinchang; Zhang, Shougong; Shi, Jisen

    2015-01-01

    Soil salinization poses a serious threat to the environment and agricultural productivity worldwide. Studies on the physiological and molecular mechanisms of salinity tolerance in halophytic plants provide valuable information to enhance their salt tolerance. Tangut Nitraria is a widely distributed halophyte in saline–alkali soil in the northern areas of China. In this study, we used a proteomic approach to investigate the molecular pathways of the high salt tolerance of T. Nitraria. We analyzed the changes in biomass, photosynthesis, and redox-related enzyme activities in T. Nitraria leaves from plant seedlings treated with high salt concentration. Comparative proteomic analysis of the leaves revealed that the expression of 71 proteins was significantly altered after salinity treatments of T. Nitraria. These salinity-responsive proteins were mainly involved in photosynthesis, redox homeostasis, stress/defense, carbohydrate and energy metabolism, protein metabolism, signal transduction, and membrane transport. Results showed that the reduction of photosynthesis under salt stress was attributed to the down-regulation of the enzymes and proteins involved in the light reaction and Calvin cycle. Protein–protein interaction analysis revealed that the proteins involved in redox homeostasis, photosynthesis, and energy metabolism constructed two types of response networks to high salt stress. T. Nitraria plants developed diverse mechanisms for scavenging reactive oxygen species (ROS) in their leaves to cope with stress induced by high salinity. This study provides important information regarding the salt tolerance of the halophyte T. Nitraria. PMID:25713577

  11. Physiological and proteomic analyses of leaves from the halophyte Tangut Nitraria reveals diverse response pathways critical for high salinity tolerance.

    PubMed

    Cheng, Tielong; Chen, Jinhui; Zhang, Jingbo; Shi, Shengqing; Zhou, Yanwei; Lu, Lu; Wang, Pengkai; Jiang, Zeping; Yang, Jinchang; Zhang, Shougong; Shi, Jisen

    2015-01-01

    Soil salinization poses a serious threat to the environment and agricultural productivity worldwide. Studies on the physiological and molecular mechanisms of salinity tolerance in halophytic plants provide valuable information to enhance their salt tolerance. Tangut Nitraria is a widely distributed halophyte in saline-alkali soil in the northern areas of China. In this study, we used a proteomic approach to investigate the molecular pathways of the high salt tolerance of T. Nitraria. We analyzed the changes in biomass, photosynthesis, and redox-related enzyme activities in T. Nitraria leaves from plant seedlings treated with high salt concentration. Comparative proteomic analysis of the leaves revealed that the expression of 71 proteins was significantly altered after salinity treatments of T. Nitraria. These salinity-responsive proteins were mainly involved in photosynthesis, redox homeostasis, stress/defense, carbohydrate and energy metabolism, protein metabolism, signal transduction, and membrane transport. Results showed that the reduction of photosynthesis under salt stress was attributed to the down-regulation of the enzymes and proteins involved in the light reaction and Calvin cycle. Protein-protein interaction analysis revealed that the proteins involved in redox homeostasis, photosynthesis, and energy metabolism constructed two types of response networks to high salt stress. T. Nitraria plants developed diverse mechanisms for scavenging reactive oxygen species (ROS) in their leaves to cope with stress induced by high salinity. This study provides important information regarding the salt tolerance of the halophyte T. Nitraria. PMID:25713577

  12. Seaweeds and halophytes to remove carbon from the atmosphere

    SciTech Connect

    Glenn, E.P.; Kent, K.J.; Thompson, T.L.; Frye, R.J. . Environmental Research Lab.)

    1991-02-01

    The utility industry and other interested parties have investigated strategies to mitigate the buildup of atmospheric CO{sub 2}. One option that has been considered is the planting of trees on a massive scale to absorb carbon through photosynthesis. A dilemma of using tree plantations, however, is that they might occupy land that will be needed for food production or other needs for an expected doubling of human population in the tropical regions. We evaluated seaweeds and salt-tolerant terrestrial plants (halophytes) to be grown on the coastal shelves and salt deserts of the world as possible alternatives to tree plantations. An estimated 1.3 {times} 10{sup 6} km{sup 2} of continental shelf and 1.3 {times} 10{sup 6} km{sup 2} of salt desert may be usable for seaweed and halophyte plantations. The production rates of managed seaweed and halophyte plantings are similar to managed tree plantations. Seaweeds and halophytes could conceivably absorb 10--20% of annual fossil fuel carbon emissions through biomass production, similar to estimates made for tree plantations. Present costs of halophyte biomass production are similar to costs of tree biomass production, whereas seaweed biomass is much more expensive to produce using existing technologies. Storage of seaweed carbon might be accomplished by allowing it to enter the sediment detritus chain whereas halophyte carbon might be sequestered in the soil, or used as biomass fuel. As has been concluded for reforestation, these saline biomass crops could at best help delay rather than solve the carbon dioxide build-up problem. 1 fig., 13 tabs.

  13. Conservation of tropical plant species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book is designed to provide a review of the methods and current status of conservation of many tropical plant species. Future perspectives of conservation of tropical species will also be discussed. The section on methods covers the range of conservation techniques, in situ, seed banking, in vi...

  14. Evidence for bioaccumulation of PAHs within internal shoot tissues by a halophytic plant artificially exposed to petroleum-polluted sediments.

    PubMed

    Meudec, A; Dussauze, J; Deslandes, E; Poupart, N

    2006-10-01

    Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental pollutants of natural and anthropic origins. Despite their poor water solubility, they can be taken up and bioaccumulated by plants. This study was aimed at determining whether the PAHs present in sediments artificially polluted by heavy fuel oil are transferred to shoots of a coastal and edible plant, Salicornia fragilis Ball et Tutin. Bioaccumulation was quantified after a one-week exposure to sediments polluted with 0.2%, 2% and 20% fuel oil (w/w) and over a six-week monitoring at 0.2%. Quantification by GC-MS of PAH amounts in plants and sediments evidenced a bioaccumulation in the shoots by a soil-to-plant transfer through the root system. This bioaccumulation depended on the duration of exposure and on the substratum contamination. PAHs distributions in plants and sediments looked alike with a predominance of low- and medium-weight hydrocarbons. Moreover, high-weight PAHs were also detected in the upper part of plants. PMID:16527326

  15. Role of model plant species.

    PubMed

    Flavell, Richard

    2009-01-01

    The use of model or reference species has played a major role in furthering detailed understanding of mechanisms and processes in the plant kingdom over the past 25 years. Species which have been adopted as models for dicotyledons and monocotyledons include arabidopsis and rice and more recently brachy-podium,Such models are diploids, have few and small chromosomes, well developed genetics, rapid life cycles, are easily transformed and have extensive sets of technical resources and databases curated by international resource centres. The study of crop genomics today is deeply rooted in earlier studies on model species. Genomes of model species share reasonable genetic synteny with key crop plants which facilitates the discovery of genes and association of genes with phenotypes. While some mechanisms and processes are conserved across the plant kingdom and so can be revealed by studies on any model species,others have diverged during evolution and so are revealed by studying only a closely related model species.Examples of processes that are conserved across the plant kingdom and others that have diverged and therefore need to be understood by studying a more closely related model species are described. PMID:19347660

  16. Responses of five Mediterranean halophytes to seasonal changes in environmental conditions

    PubMed Central

    Gil, Ricardo; Bautista, Inmaculada; Boscaiu, Monica; Lidn, Antonio; Wankhade, Shantanu; Snchez, Hctor; Llinares, Josep; Vicente, Oscar

    2014-01-01

    In their natural habitats, different mechanisms may contribute to the tolerance of halophytes to high soil salinity and other abiotic stresses, but their relative contribution and ecological relevance, for a given species, remain largely unknown. We studied the responses to changing environmental conditions of five halophytes (Sarcocornia fruticosa, Inula crithmoides, Plantago crassifolia, Juncus maritimus and J. acutus) in a Mediterranean salt marsh, from summer 2009 to autumn 2010. A principal component analysis was used to correlate soil and climatic data with changes in the plants' contents of chemical markers associated with stress responses: ions, osmolytes, malondialdehyde (MDA, a marker of oxidative stress) and antioxidant systems. Stress tolerance in S. fruticosa, I. crithmoides and P. crassifolia (all succulent dicots) seemed to depend mostly on the transport of ions to aerial parts and the biosynthesis of specific osmolytes, whereas both Juncus species (monocots) were able to avoid accumulation of toxic ions, maintaining relatively high K+/Na+ ratios. For the most salt-tolerant taxa (S. fruticosa and I. crithmoides), seasonal variations of Na+, Cl?, K+ and glycine betaine, their major osmolyte, did not correlate with environmental parameters associated with salt or water stress, suggesting that their tolerance mechanisms are constitutive and relatively independent of external conditions, although they could be mediated by changes in the subcellular compartmentalization of ions and compatible osmolytes. Proline levels were too low in all the species to possibly have any effect on osmotic adjustment. Howeverexcept for P. crassifoliaproline may play a role in stress tolerance based on its osmoprotectant functions. No correlation was observed between the degree of environmental stress and the levels of MDA or enzymatic and non-enzymatic antioxidants, indicating that the investigated halophytes are not subjected to oxidative stress under natural conditions and do not, therefore, need to activate antioxidant defence mechanisms. PMID:25139768

  17. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress

    PubMed Central

    Slama, Inès; Abdelly, Chedly; Bouchereau, Alain; Flowers, Tim; Savouré, Arnould

    2015-01-01

    Background and Aims Osmolytes are low-molecular-weight organic solutes, a broad group that encompasses a variety of compounds such as amino acids, tertiary sulphonium and quaternary ammonium compounds, sugars and polyhydric alcohols. Osmolytes are accumulated in the cytoplasm of halophytic species in order to balance the osmotic potential of the Na+ and Cl− accumulated in the vacuole. The advantages of the accumulation of osmolytes are that they keep the main physiological functions of the cell active, the induction of their biosynthesis is controlled by environmental cues, and they can be synthesized at all developmental stages. In addition to their role in osmoregulation, osmolytes have crucial functions in protecting subcellular structures and in scavenging reactive oxygen species. Scope This review discusses the diversity of osmolytes among halophytes and their distribution within taxonomic groups, the intrinsic and extrinsic factors that influence their accumulation, and their role in osmoregulation and osmoprotection. Increasing the osmolyte content in plants is an interesting strategy to improve the growth and yield of crops upon exposure to salinity. Examples of transgenic plants as well as exogenous applications of some osmolytes are also discussed. Finally, the potential use of osmolytes in protein stabilization and solvation in biotechnology, including the pharmaceutical industry and medicine, are considered. PMID:25564467

  18. Effect of saline water on seed germination and early seedling growth of the halophyte quinoa

    PubMed Central

    Panuccio, M. R.; Jacobsen, S. E.; Akhtar, S. S.; Muscolo, A.

    2014-01-01

    Salinization is increasing on a global scale, decreasing average yields for most major crop plants. Investigations into salt resistance have, unfortunately, mainly been focused on conventional crops, with few studies screening the potential of available halophytes as new crops. This study has been carried out to investigate the mechanisms used by quinoa, a facultative halophytic species, in order to cope with high salt levels at various stages of its development. Quinoa is regarded as one of the crops that might sustain food security in this century, grown primarily for its edible seeds with their high protein content and unique amino acid composition. Although the species has been described as a facultative halophyte, and its tolerance to salt stress has been investigated, its physiological and molecular responses to seawater (SW) and other salts have not been studied. We evaluated the effects of SW and different salts on seed germination, seedling emergence and the antioxidative pathway of quinoa. Seeds were germinated in Petri dishes and seedlings grown in pots with SW solutions (25, 50, 75 and 100 %) and NaCl, CaCl2, KCl and MgCl2 individually, at the concentrations in which they are present in SW. Our results demonstrated that all salts, at lower concentrations, increased the germination rate but not the germination percentages, compared with control (pure water). Conversely, seedlings were differently affected by treatments in respect to salt type and concentration. Growth parameters affected were root and shoot length, root morphology, fresh and dry weight, and water content. An efficient antioxidant mechanism was present in quinoa, activated by salts during germination and early seedling growth, as shown by the activities of antioxidant enzymes. Total antioxidant capacity was always higher under salt stress than in water. Moreover, osmotic and ionic stress factors had different degrees of influence on germination and development. PMID:25139769

  19. Effect of saline water on seed germination and early seedling growth of the halophyte quinoa.

    PubMed

    Panuccio, M R; Jacobsen, S E; Akhtar, S S; Muscolo, A

    2014-01-01

    Salinization is increasing on a global scale, decreasing average yields for most major crop plants. Investigations into salt resistance have, unfortunately, mainly been focused on conventional crops, with few studies screening the potential of available halophytes as new crops. This study has been carried out to investigate the mechanisms used by quinoa, a facultative halophytic species, in order to cope with high salt levels at various stages of its development. Quinoa is regarded as one of the crops that might sustain food security in this century, grown primarily for its edible seeds with their high protein content and unique amino acid composition. Although the species has been described as a facultative halophyte, and its tolerance to salt stress has been investigated, its physiological and molecular responses to seawater (SW) and other salts have not been studied. We evaluated the effects of SW and different salts on seed germination, seedling emergence and the antioxidative pathway of quinoa. Seeds were germinated in Petri dishes and seedlings grown in pots with SW solutions (25, 50, 75 and 100 %) and NaCl, CaCl2, KCl and MgCl2 individually, at the concentrations in which they are present in SW. Our results demonstrated that all salts, at lower concentrations, increased the germination rate but not the germination percentages, compared with control (pure water). Conversely, seedlings were differently affected by treatments in respect to salt type and concentration. Growth parameters affected were root and shoot length, root morphology, fresh and dry weight, and water content. An efficient antioxidant mechanism was present in quinoa, activated by salts during germination and early seedling growth, as shown by the activities of antioxidant enzymes. Total antioxidant capacity was always higher under salt stress than in water. Moreover, osmotic and ionic stress factors had different degrees of influence on germination and development. PMID:25139769

  20. Effectiveness of the aquatic halophyte Sarcocornia perennis spp. perennis as a biotool for ecological restoration of metal-contaminated salt marshes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ecological restoration and creation of salt marshes is needed to compensate for their degradation and loss, but little is known about halophytes as plant biotools in restoration projects. Restoration plantings of halophytes have been established following eradication of invasive populations of the e...

  1. Growth responses and ion accumulation in the halophytic legume Prosopis strombulifera are determined by Na2SO4 and NaCl.

    PubMed

    Reginato, M; Sosa, L; Llanes, A; Hampp, E; Vettorazzi, N; Reinoso, H; Luna, V

    2014-01-01

    Halophytes are potential gene sources for genetic manipulation of economically important crop species. This study addresses the physiological responses of a widespread halophyte, Prosopis strombulifera (Lam.) Benth to salinity. We hypothesised that increasing concentrations of the two major salts present in soils of central Argentina (Na2SO4, NaCl, or their iso-osmotic mixture) would produce distinct physiological responses. We used hydroponically grown P. strombulifera to test this hypothesis, analysing growth parameters, water relations, photosynthetic pigments, cations and anions. These plants showed a halophytic response to NaCl, but strong general inhibition of growth in response to iso-osmotic solutions containing Na2SO4. The explanation for the adaptive success of P. strombulifera in high NaCl conditions seems to be related to a delicate balance between Na(+) accumulation (and its use for osmotic adjustment) and efficient compartmentalisation in vacuoles, the ability of the whole plant to ensure sufficient K(+) supply by maintaining high K(+)/Na(+) discrimination, and maintenance of normal Ca(2+) levels in leaves. The three salt treatments had different effects on the accumulation of ions. Findings in bi-saline-treated plants were of particular interest, where most of the physiological parameters studied showed partial alleviation of SO4(2-)-induced toxicity by Cl(-). Thus, discussions on physiological responses to salinity could be further expanded in a way that more closely mimics natural salt environments. PMID:23869994

  2. Overexpression of EsMcsu1 from the halophytic plant Eutrema salsugineum promotes abscisic acid biosynthesis and increases drought resistance in alfalfa (Medicago sativa L.).

    PubMed

    Zhou, C; Ma, Z Y; Zhu, L; Guo, J S; Zhu, J; Wang, J F

    2015-01-01

    The stress phytohormone abscisic acid (ABA) plays pivotal roles in plants' adaptive responses to adverse environments. Molybdenum cofactor sulfurases influence aldehyde oxidase activity and ABA biosynthesis. In this study, we isolated a novel EsMcsu1 gene encoding a molybdenum cofactor sulfurase from Eutrema salsugineum. EsMcus1 transcriptional patterns varied between organs, and its expression was significantly upregulated by abiotic stress or ABA treatment. Alfalfa plants that overexpressed EsMcsu1 had a higher ABA content than wild-type (WT) plants under drought stress conditions. Furthermore, levels of reactive oxygen species (ROS), ion leakage, and malondialdehyde were lower in the transgenic plants than in the WT plants after drought treatment, suggesting that the transgenic plants experienced less ROS-mediated damage. However, the expression of several stress-responsive genes, antioxidant enzyme activity, and osmolyte (proline and total soluble sugar) levels in the transgenic plants were higher than those in the WT plants after drought treatment. Therefore, EsMcsu1 overexpression improved drought tolerance in alfalfa plants by activating a series of ABA-mediated stress responses. PMID:26681214

  3. Abscisic acid has contrasting effects on salt excretion and polyamine concentrations of an inland and a coastal population of the Mediterranean xero-halophyte species Atriplex halimus

    PubMed Central

    Ben Hassine, A.; Ghanem, M. E.; Bouzid, S.; Lutts, S.

    2009-01-01

    Background and Aims Different populations of the Mediterranean xerohalophyte species Atriplex halimus exhibit different levels of resistance to salt and osmotic stress depending on the nature of the osmocompatible solute they accumulate. There is, however, no conclusive description of the involvement of abscisic acid (ABA) in the plant response to NaCl or osmotic stress in this species. Methods Seedlings issued from an inland water-stress-resistant population (Sbikha) and from a coastal salt-resistant one (Monastir) were exposed in nutrient solutions to NaCl (40 or 160 mm) or to 15 % PEG for 1 d and 10 d in the presence or absence of 50 m ABA. Key Results Plants from Sbikha accumulated higher amounts of ABA in response to osmotic stress than those of Monastir, while an opposite trend was recorded for NaCl exposure. Exogenous ABA improved osmotic stress resistance in Monastir through an improvement in the efficiency of stomatal conductance regulation. It also improved NaCl resistance in Sbikha through an increase in sodium excretion through the external bladders. It is suggested that polyamines (spermidine and spermine) are involved in the salt excretion process and that ABA contributes to polyamine synthesis as well as to the conversion from the bound and conjugated to the free soluble forms of polyamine. Proline accumulated in response to osmotic stress and slightly increased in response to ABA treatment while glycinebetaine accumulated in response to salinity and was not influenced by ABA. Conclusions It is concluded that ABA is involved in both salt and osmotic stress resistance in the xerohalophyte species Atriplex halimus but that it acts on different physiological cues in response to those distinct environmental constraints. PMID:19666900

  4. SELECTING PLANT SPECIES FOR PESTICIDE REGISTRATION TESTS

    EPA Science Inventory

    Current test protocols used by the US EPA for the registration of pesticides examines plant responses of 10 crop species but may not examine regionally important native plants or crops. In order to test the efficiency of current test protocols we selected six native plant species...

  5. Halophytes, Algae, and Bacteria Food and Fuel Feedstocks

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Bushnell, D. M.

    2009-01-01

    The constant, increasing demand for energy, freshwater, and food stresses our ability to meet these demands within reasonable cost and impact on climate while sustaining quality of life. This environmental Triangle of Conflicts between energy, food, and water--while provoked by anthropogenic monetary and power struggles--can be resolved through an anthropogenic paradigm shift in how we produce and use energy, water, and food. With world population (6.6 billion) projected to increase 40 percent in 40 to 60 yr, proper development of saline agriculture and aquaculture is required, as 43 percent of the Earth's landmass is arid or semi-arid and 97 percent of the Earth's water is seawater. In light of this, we seek fuel alternatives in plants that thrive in brackish and saltwater with the ability to survive in arid lands. The development and application of these plants (halophytes) become the primary focus. Herein we introduce some not-so-familiar halophytes and present a few of their benefits, cite a few research projects (including some on the alternatives algae and bacteria), and then set theoretical limits on biomass production followed by projections in terms of world energy demands. Based on diverse arid lands with a total size equivalent to the Sahara Desert (8.6(exp 8) ha, or 2.1(exp 9) acres), these projections show that halophyte agriculture and algae systems can provide for the projected world energy demand.

  6. Evidence for a Large and Sustained Glycolytic Flux to Lactate in Anoxic Roots of Some Members of the Halophytic Genus Limonium.

    PubMed Central

    Rivoal, J.; Hanson, A. D.

    1993-01-01

    Soil salinity and anaerobiosis often occur together. This led us to investigate the fermentative metabolism in roots of species from the halophytic genus Limonium (Plumbaginaceae). Root segments from hypoxically induced plants were incubated for 8 h under strict anoxia in the presence of [U-14C]glucose. In three species (Limonium latifolium, L. nashii, and L. humile), the pattern of 14C-labeled end products was typical of higher plants, with a 14C flux to ethanol higher than that to lactate. However, in four species (L. ramosissimum, L. gougetianum, L perezii, and L. sinuatum), the rate of lactate fermentation was exceptionally high, and in the latter two species the 14C flux to lactate exceeded that to ethanol. These two species secreted most of the lactate produced into the medium. Calculations indicated that the cytoplasm would have been lethally acidified had this secretion not occurred. The effects of factors that might control lactate fermentation or secretion (O2 partial pressure, pH, salt concentration) were studied in two contrasting species: L. sinuatum and L. latifolium. In both species, the lactate:ethanol ratio was higher under hypoxia (0.1-3 kPa O2 partial pressure) than under strict anoxia. In L. sinuatum, this ratio was slightly increased by increasing the pH of the medium from 5.5 to 7.5, but salinity treatment had no effect. The potential contribution of lactate fermentation to the overall carbon and energy metabolism of halophytes is discussed. PMID:12231709

  7. Genome Structures and Halophyte-Specific Gene Expression of the Extremophile Thellungiella parvula in Comparison with Thellungiella salsuginea (Thellungiella halophila) and Arabidopsis1[W

    PubMed Central

    Oh, Dong-Ha; Dassanayake, Maheshi; Haas, Jeffrey S.; Kropornika, Anna; Wright, Chris; d’Urzo, Matilde Paino; Hong, Hyewon; Ali, Shahjahan; Hernandez, Alvaro; Lambert, Georgina M.; Inan, Gunsu; Galbraith, David W.; Bressan, Ray A.; Yun, Dae-Jin; Zhu, Jian-Kang; Cheeseman, John M.; Bohnert, Hans J.

    2010-01-01

    The genome of Thellungiella parvula, a halophytic relative of Arabidopsis (Arabidopsis thaliana), is being assembled using Roche-454 sequencing. Analyses of a 10-Mb scaffold revealed synteny with Arabidopsis, with recombination and inversion and an uneven distribution of repeat sequences. T. parvula genome structure and DNA sequences were compared with orthologous regions from Arabidopsis and publicly available bacterial artificial chromosome sequences from Thellungiella salsuginea (previously Thellungiella halophila). The three-way comparison of sequences, from one abiotic stress-sensitive species and two tolerant species, revealed extensive sequence conservation and microcolinearity, but grouping Thellungiella species separately from Arabidopsis. However, the T. parvula segments are distinguished from their T. salsuginea counterparts by a pronounced paucity of repeat sequences, resulting in a 30% shorter DNA segment with essentially the same gene content in T. parvula. Among the genes is SALT OVERLY SENSITIVE1 (SOS1), a sodium/proton antiporter, which represents an essential component of plant salinity stress tolerance. Although the SOS1 coding region is highly conserved among all three species, the promoter regions show conservation only between the two Thellungiella species. Comparative transcript analyses revealed higher levels of basal as well as salt-induced SOS1 expression in both Thellungiella species as compared with Arabidopsis. The Thellungiella species and other halophytes share conserved pyrimidine-rich 5′ untranslated region proximal regions of SOS1 that are missing in Arabidopsis. Completion of the genome structure of T. parvula is expected to highlight distinctive genetic elements underlying the extremophile lifestyle of this species. PMID:20833729

  8. Salt tolerance is related to a specific antioxidant response in the halophyte cordgrass, Spartina densiflora

    NASA Astrophysics Data System (ADS)

    Canalejo, Antonio; Martínez-Domínguez, David; Córdoba, Francisco; Torronteras, Rafael

    2014-06-01

    Halophytes usually have a robust antioxidative defense system to alleviate oxidative damage during salt stress. Spartina densiflora is a colonizing halophyte cordgrass, native of South America, which has become a common species in salt marshes of northern hemisphere, where it is ousting indigenous species. This study addressed salinity stress in S. densiflora; the occurrence of oxidative stress and the possible involvement of the antioxidative system in its high salt tolerance were studied. Plants were evaluated at in situ conditions, in the laboratory during a 28 day-acclimation period (AP) in clean substrate irrigated with a control salt content of 4 g L-1 (68 mM) and during a subsequent 28 day-treatment period (TP) exposed to different NaCl concentrations: control (68 mM), 428 mM or 680 mM. In the in situ setting, the high leave Na+ content was accompanied by high levels of hydroperoxides and reduced levels of total chlorophyll and carotenes, which correlated with enhanced activation of antioxidant defense biomarkers as total ascorbic acid (AA) content and guaiacol peroxidase (POD: EC 1.11.1.7)), catalase (CAT: EC 1.11.1.6) and ascorbate peroxidase (APX: EC 1.11.1.11) activities. Throughout the AP, leave Na+ and oxidative stress markers decreased concomitantly and reached stable low levels. During the TP, dose and time-dependent accumulation of Na+ in high NaCl-treated plants was concurrent with a decrease in content of total chlorophyll and carotenes and with an increase in the levels of total AA and CAT and APX activities. In conclusion, as hypothesized, high salinity induces conditions of oxidative stress in S. densiflora, so that its salt tolerance appears to be related to the implementation of a specific antioxidant response. This may account for Spartina densiflora's successful adaptation to habitats with fluctuating salinity and favour its phytoremediation potential.

  9. Plant-plant interactions vary with different mycorrhizal fungus species.

    PubMed

    Hoeksema, Jason D

    2005-12-22

    Because different species of mycorrhizal fungi have different effects on the growth of particular plant species, variation in mycorrhizal fungus species composition could cause changes in the strength of plant-plant interactions. Results are presented from a growth chamber experiment that compared the strength of interactions among seedlings of ponderosa pine (Pinus ponderosa) when the pines were colonized by two different groups of ectomycorrhizal fungi in the genus Rhizopogon. Plant density effects differed between the two groups of mycorrhizal fungi: plant growth was low regardless of density when plants were colonized with pine-specific Rhizopogon species, while plant growth declined with plant density when plants were colonized by Rhizopogon species having a broader host range. This result parallels results from previous studies showing that plant interactions are more antagonistic with mycorrhizal fungi than without, implying that plant responsiveness to beneficial mycorrhizal fungi declines with increasing plant density. If such effects are prevalent in plant communities, then variation in mycorrhizal fungus community composition is predicted to have a density-dependent effect on plants. PMID:17148227

  10. Plantplant interactions vary with different mycorrhizal fungus species

    PubMed Central

    Hoeksema, Jason D

    2005-01-01

    Because different species of mycorrhizal fungi have different effects on the growth of particular plant species, variation in mycorrhizal fungus species composition could cause changes in the strength of plantplant interactions. Results are presented from a growth chamber experiment that compared the strength of interactions among seedlings of ponderosa pine (Pinus ponderosa) when the pines were colonized by two different groups of ectomycorrhizal fungi in the genus Rhizopogon. Plant density effects differed between the two groups of mycorrhizal fungi: plant growth was low regardless of density when plants were colonized with pine-specific Rhizopogon species, while plant growth declined with plant density when plants were colonized by Rhizopogon species having a broader host range. This result parallels results from previous studies showing that plant interactions are more antagonistic with mycorrhizal fungi than without, implying that plant responsiveness to beneficial mycorrhizal fungi declines with increasing plant density. If such effects are prevalent in plant communities, then variation in mycorrhizal fungus community composition is predicted to have a density-dependent effect on plants. PMID:17148227

  11. The Invasive Plant Species Education Guide

    ERIC Educational Resources Information Center

    Mason, Kevin; James, Krista; Carlson, Kitrina; D'Angelo, Jean

    2010-01-01

    To help high school students gain a solid understanding of invasive plant species, university faculty and students from the University of Wisconsin-Stout (UW-Stout) and a local high school teacher worked together to develop the Invasive Plant Species (IPS) Education Guide. The IPS Education Guide includes nine lessons that give students an…

  12. Endangered Species (Plants). LC Science Tracer Bullet.

    ERIC Educational Resources Information Center

    Niskern, Diana, Comp.

    This guide is intended for those who wish to study the literature dealing with various aspects of endangered plant species. This document includes the following sections, some of which are bibliographies: (1) "Introductions to the Topic"; (2) "Subject Headings" (for endangered species of plants used by the Library of Congress); (3) "General…

  13. The Invasive Plant Species Education Guide

    ERIC Educational Resources Information Center

    Mason, Kevin; James, Krista; Carlson, Kitrina; D'Angelo, Jean

    2010-01-01

    To help high school students gain a solid understanding of invasive plant species, university faculty and students from the University of Wisconsin-Stout (UW-Stout) and a local high school teacher worked together to develop the Invasive Plant Species (IPS) Education Guide. The IPS Education Guide includes nine lessons that give students an

  14. Why some plant species are rare.

    PubMed

    Wieger Wamelink, G W; Wamelink, G W Weiger; Goedhart, Paul W; Frissel, Joep; Frissel, Josep Y

    2014-01-01

    Biodiversity, including plant species diversity, is threatened worldwide as a result of anthropogenic pressures such as an increase of pollutants and climate change. Rare species in particular are on the verge of becoming extinct. It is still unclear as to why some plant species are rare and others are not. Are they rare due to: intrinsic reasons, dispersal capacity, the effects of management or abiotic circumstances? Habitat preference of rare plant species may play an important role in determining why some species are rare. Based on an extensive data set of soil parameters we investigated if rarity is due to a narrow habitat preference for abiotic soil parameters. For 23 different abiotic soil parameters, of which the most influential were groundwater-table, soil-pH and nutrient-contents, we estimated species responses for common and rare species. Based on the responses per species we calculated the range of occurrence, the range between the 5 and 95 percentile of the response curve giving the habitat preference. Subsequently, we calculated the average response range for common and rare species. In addition, we designed a new graphic in order to provide a better means for presentation of the results. The habitat preferences of rare species for abiotic soil conditions are significantly narrower than for common species. Twenty of the twenty-three abiotic parameters showed on average significantly narrower habitat preferences for rare species than for common species; none of the abiotic parameters showed on average a narrower habitat preference for common species. The results have major implications for the conservation of rare plant species; accordingly management and nature development should be focussed on the maintenance and creation of a broad range of environmental conditions, so that the requirements of rare species are met. The conservation of (abiotic) gradients within ecosystems is particularly important for preserving rare species. PMID:25054424

  15. Exotic plant species invade hot spots of native plant diversity

    USGS Publications Warehouse

    Stohlgren, T.J.; Binkley, D.; Chong, G.W.; Kalkhan, M.A.; Schell, L.D.; Bull, K.A.; Otsuki, Y.; Newman, G.; Bashkin, M.; Yowhan, S.

    1999-01-01

    Some theories and experimental studies suggest that areas of low plant species richness may be invaded more easily than areas of high plant species richness. We gathered nested-scale vegetation data on plant species richness, foliar cover, and frequency from 200 1-m2 subplots (20 1000-m2 modified-Whittaker plots) in the Colorado Rockies (USA), and 160 1-m2 subplots (16 1000-m2 plots) in the Central Grasslands in Colorado, Wyoming, South Dakota, and Minnesota (USA) to test the generality of this paradigm. At the 1-m2 scale, the paradigm was supported in four prairie types in the Central Grasslands, where exotic species richness declined with increasing plant species richness and cover. At the 1-m2 scale, five forest and meadow vegetation types in the Colorado Rockies contradicted the paradigm; exotic species richness increased with native-plant species richness and foliar cover. At the 1000-m2 plot scale (among vegetation types), 83% of the variance in exotic species richness in the Central Grasslands was explained by the total percentage of nitrogen in the soil and the cover of native plant species. In the Colorado Rockies, 69% of the variance in exotic species richness in 1000-m2 plots was explained by the number of native plant species and the total percentage of soil carbon. At landscape and biome scales, exotic species primarily invaded areas of high species richness in the four Central Grasslands sites and in the five Colorado Rockies vegetation types. For the nine vegetation types in both biomes, exotic species cover was positively correlated with mean foliar cover, mean soil percentage N, and the total number of exotic species. These patterns of invasibility depend on spatial scale, biome and vegetation type, spatial autocorrelation effects, availability of resources, and species-specific responses to grazing and other disturbances. We conclude that: (1) sites high in herbaceous foliar cover and soil fertility, and hot spots of plant diversity (and biodiversity), are invasible in many landscapes; and (2) this pattern may be more closely related to the degree resources are available in native plant communities, independent of species richness. Exotic plant invasions in rare habitats and distinctive plant communities pose a significant challenge to land managers and conservation biologists.

  16. Functional Identification and Characterization of Genes Cloned from Halophyte Seashore Paspalum Conferring Salinity and Cadmium Tolerance

    PubMed Central

    Chen, Yu; Chen, Chuanming; Tan, Zhiqun; Liu, Jun; Zhuang, Lili; Yang, Zhimin; Huang, Bingru

    2016-01-01

    Salinity-affected and heavy metal-contaminated soils limit the growth of glycophytic plants. Identifying genes responsible for superior tolerance to salinity and heavy metals in halophytes has great potential for use in developing salinity- and Cd-tolerant glycophytes. The objective of this study was to identify salinity- and Cd-tolerance related genes in seashore paspalum (Paspalum vaginatum), a halophytic perennial grass species, using yeast cDNA expression library screening method. Based on the Gateway-compatible vector system, a high-quality entry library was constructed, which contained 9.9 × 106 clones with an average inserted fragment length of 1.48 kb representing a 100% full-length rate. The yeast expression libraries were screened in a salinity-sensitive and a Cd-sensitive yeast mutant. The screening yielded 32 salinity-tolerant clones harboring 18 salinity-tolerance genes and 20 Cd-tolerant clones, including five Cd-tolerance genes. qPCR analysis confirmed that most of the 18 salinity-tolerance and five Cd-tolerance genes were up-regulated at the transcript level in response to salinity or Cd stress in seashore paspalum. Functional analysis indicated that salinity-tolerance genes from seashore paspalum could be involved mainly in photosynthetic metabolism, antioxidant systems, protein modification, iron transport, vesicle traffic, and phospholipid biosynthesis. Cd-tolerance genes could be associated with regulating pathways that are involved in phytochelatin synthesis, HSFA4-related stress protection, CYP450 complex, and sugar metabolism. The 18 salinity-tolerance genes and five Cd-tolerance genes could be potentially used as candidate genes for genetic modification of glycophytic grass species to improve salinity and Cd tolerance and for further analysis of molecular mechanisms regulating salinity and Cd tolerance. PMID:26904068

  17. Functional Identification and Characterization of Genes Cloned from Halophyte Seashore Paspalum Conferring Salinity and Cadmium Tolerance.

    PubMed

    Chen, Yu; Chen, Chuanming; Tan, Zhiqun; Liu, Jun; Zhuang, Lili; Yang, Zhimin; Huang, Bingru

    2016-01-01

    Salinity-affected and heavy metal-contaminated soils limit the growth of glycophytic plants. Identifying genes responsible for superior tolerance to salinity and heavy metals in halophytes has great potential for use in developing salinity- and Cd-tolerant glycophytes. The objective of this study was to identify salinity- and Cd-tolerance related genes in seashore paspalum (Paspalum vaginatum), a halophytic perennial grass species, using yeast cDNA expression library screening method. Based on the Gateway-compatible vector system, a high-quality entry library was constructed, which contained 9.9 × 10(6) clones with an average inserted fragment length of 1.48 kb representing a 100% full-length rate. The yeast expression libraries were screened in a salinity-sensitive and a Cd-sensitive yeast mutant. The screening yielded 32 salinity-tolerant clones harboring 18 salinity-tolerance genes and 20 Cd-tolerant clones, including five Cd-tolerance genes. qPCR analysis confirmed that most of the 18 salinity-tolerance and five Cd-tolerance genes were up-regulated at the transcript level in response to salinity or Cd stress in seashore paspalum. Functional analysis indicated that salinity-tolerance genes from seashore paspalum could be involved mainly in photosynthetic metabolism, antioxidant systems, protein modification, iron transport, vesicle traffic, and phospholipid biosynthesis. Cd-tolerance genes could be associated with regulating pathways that are involved in phytochelatin synthesis, HSFA4-related stress protection, CYP450 complex, and sugar metabolism. The 18 salinity-tolerance genes and five Cd-tolerance genes could be potentially used as candidate genes for genetic modification of glycophytic grass species to improve salinity and Cd tolerance and for further analysis of molecular mechanisms regulating salinity and Cd tolerance. PMID:26904068

  18. Two Cladonia Lichen Species Among Blueberry Plants

    USGS Multimedia Gallery

    Two Cladonia lichen species, C. stellaris and C. rangiferina are pictured here among some blueberry plants in Newfoundland.  Lichens -- which are often mistaken for moss -- are unusual plant-like organisms that are actually symbioses of fungi, algae and bacteria living together. They usually li...

  19. Cadmium has contrasting effects on polyethylene glycol-sensitive and resistant cell lines in the Mediterranean halophyte species Atriplex halimus L.

    PubMed

    Lefvre, Isabelle; Marchal, Geoffrey; Edmond Ghanem, Michel; Correal, Enrique; Lutts, Stanley

    2010-03-15

    Beside a direct toxicity, cadmium impact on plants involves both a secondary-induced water stress and an oxidative stress. Proliferating cell lines of Atriplex halimus were selected for their sensitivity or resistance to polyethylene glycol (PEG 10,000, 20%) and then exposed to 100 microM CdCl2 in the simultaneous presence or absence of PEG 20% or 150 mM NaCl. The PEG resistant cell line exhibited a higher growth in the presence of Cd than the sensitive line, although Cd acccumulation was higher in the former than in the latter. Exogenous PEG induced an increase in Cd concentration in the sensitive but not in the resistant cell line while NaCl induced a decrease in Cd accumulation in both cell lines. In the presence of Cd alone, the water content (WC) was higher and the osmotic potential was lower in PEG-sensitive than in PEG resistant line. The presence of PEG in the Cd-containing medium increased the WC and decreased the osmotic potential in PEG-resistant line comparatively to Cd stress alone, while an inverse trend was observed for the sensitive line. The PEG-resistant cell line displayed a higher ability to cope with oxidative stress in relation to an increase of endogenous antioxidants (glutathione and ascorbic acid), a high constitutive superoxide dismutase (EC 1.15.1.1) activity and an efficient Cd-induced increase in glutathione reductase (GR) (EC 1.6.4.1) and ascorbate peroxidase (APX) (EC 1.11.1.11). Cadmium tolerance in PEG-resistant line is thus not related to any strategy of Cd exclusion or osmotic adjustment but to tolerance mechanisms allowing the tissue to restrict the deleterious impact of accumulated Cd. PMID:20031255

  20. Extinction risks of Amazonian plant species.

    PubMed

    Feeley, Kenneth J; Silman, Miles R

    2009-07-28

    Estimates of the number, and preferably the identity, of species that will be threatened by land-use change and habitat loss are an invaluable tool for setting conservation priorities. Here, we use collections data and ecoregion maps to generate spatially explicit distributions for more than 40,000 vascular plant species from the Amazon basin (representing more than 80% of the estimated Amazonian plant diversity). Using the distribution maps, we then estimate the rates of habitat loss and associated extinction probabilities due to land-use changes as modeled under 2 disturbance scenarios. We predict that by 2050, human land-use practices will have reduced the habitat available to Amazonian plant species by approximately 12-24%, resulting in 5-9% of species becoming "committed to extinction," significantly fewer than other recent estimates. Contrary to previous studies, we find that the primary determinant of habitat loss and extinction risk is not the size of a species' range, but rather its location. The resulting extinction risk estimates are a valuable conservation tool because they indicate not only the total percentage of Amazonian plant species threatened with extinction but also the degree to which individual species and habitats will be affected by current and future land-use changes. PMID:19617552

  1. Species interaction mechanisms maintain grassland plant species diversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Theory has outpaced empirical research in pursuit of identifying mechanisms maintaining species diversity. Here we demonstrate how data from diversity-ecosystem functioning experiments can be used to test maintenance of diversity theory. We predict that grassland plant diversity can be maintained by...

  2. Competition with wind-pollinated plant species alters floral traits of insect-pollinated plant species

    PubMed Central

    Flacher, Floriane; Raynaud, Xavier; Hansart, Amandine; Motard, Eric; Dajoz, Isabelle

    2015-01-01

    Plant traits related to attractiveness to pollinators (e.g. flowers and nectar) can be sensitive to abiotic or biotic conditions. Soil nutrient availability, as well as interactions among insect-pollinated plants species, can induce changes in flower and nectar production. However, further investigations are needed to determine the impact of interactions between insect-pollinated species and abiotically pollinated species on such floral traits, especially floral rewards. We carried out a pot experiment in which three insect-pollinated plant species were grown in binary mixtures with four wind-pollinated plant species, differing in their competitive ability. Along the flowering period, we measured floral traits of the insect-pollinated species involved in attractiveness to pollinators (i.e. floral display size, flower size, daily and total 1) flower production, 2) nectar volume, 3) amount of sucrose allocated to nectar). Final plant biomass was measured to quantify competitive interactions. For two out of three insect-pollinated species, we found that the presence of a wind-pollinated species can negatively impact floral traits involved in attractiveness to pollinators. This effect was stronger with wind-pollinated species that induced stronger competitive interactions. These results stress the importance of studying the whole plant community (and not just the insect-pollinated plant community) when working on plant-pollinator interactions. PMID:26335409

  3. Atmospheric and Soil Carbon and Halophytes

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Bushnell, Dennis M.

    2011-01-01

    World population is anticipated to grow 40% within 40-50 years (2008 baseline) with unprecedented demands for energy, food, freshwater, and clean environments. At 43% of the total landmass, exploiting the Earth's arid and semi-arid lands becomes a matter of necessity. Compared with glycophyte agriculture, we view seawater and brackish water halophyte saline agriculture in its nascent stage and see the need to explore and farm on a massive scale. Halophyte farming costs should be the same as glycophyte cellulosic biomass farming; processing for cellulosic matter should also be applicable. Halophyte life cycle analyses (LCA) within the fueling debate are incomplete, yet glycophyte LCA favors biomass fueling. The Biomass Revolution is in progress. The capacity, cost, and logistics required for biomass replacement of petroleum-based fuels, however, will require all feedstock sources and regional cooperative productivity, technical investments, and both the participation and cooperation of the American farmer and global farm community.

  4. Atmospheric and Soil Carbon and Halophytes

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Bushnell, Dennis M.

    2010-01-01

    World population is anticipated to grow 40% within 40-50 years with unprecedented demands for energy, food, freshwater, and clean environments. At 43% of the total landmass, exploiting the Earth s arid and semi-arid lands becomes a matter of necessity. Compared with glycophyte agriculture, we view seawater and brackish water halophyte saline agriculture in its nascent stage and see the need to explore and farm on a massive scale. Halophyte farming costs should be the same as glycophyte cellulosic biomass farming; processing for cellulosic matter should also be applicable. Halophyte life cycle analyses (LCA) within the fueling debate are incomplete, yet glycophyte LCA favors biomass fueling. The Biomass Revolution is in progress. The capacity, cost, and logistics required for biomass replacement of petroleum-based fuels, however, will require all feedstock sources and regional cooperative productivity, technical investments, and both the participation and cooperation of the American farmer and global farm community

  5. Comparative study of the aldehyde dehydrogenase (ALDH) gene superfamily in the glycophyte Arabidopsis thaliana and Eutrema halophytes

    PubMed Central

    Hou, Quancan; Bartels, Dorothea

    2015-01-01

    Background and Aims Stresses such as drought or salinity induce the generation of reactive oxygen species, which subsequently cause excessive accumulation of aldehydes in plant cells. Aldehyde dehydrogenases (ALDHs) are considered as ‘aldehyde scavengers’ to eliminate toxic aldehydes caused by oxidative stress. The completion of the genome sequencing projects of the halophytes Eutrema parvulum and E. salsugineum has paved the way to explore the relationships and the roles of ALDH genes in the glycophyte Arabidopsis thaliana and halophyte model plants. Methods Protein sequences of all plant ALDH families were used as queries to search E. parvulum and E. salsugineum genome databases. Evolutionary analyses compared the phylogenetic relationships of ALDHs from A. thaliana and Eutrema. Expression patterns of several stress-associated ALDH genes were investigated under different salt conditions using reverse transcription–PCR. Putative cis-elements in the promoters of ALDH10A8 from A. thaliana and E. salsugineum were compared in silico. Key Results Sixteen and 17 members of ten ALDH families were identified from E. parvulum and E. salsugineum genomes, respectively. Phylogenetic analysis of ALDH protein sequences indicated that Eutrema ALDHs are closely related to those of Arabidopsis, and members within these species possess nearly identical exon–intron structures. Gene expression analysis under different salt conditions showed that most of the ALDH genes have similar expression profiles in Arabidopsis and E. salsugineum, except for ALDH7B4 and ALDH10A8. In silico analysis of promoter regions of ALDH10A8 revealed different distributions of cis-elements in E. salsugineum and Arabidopsis. Conclusions Genomic organization, copy number, sub-cellular localization and expression profiles of ALDH genes are conserved in Arabidopsis, E. parvulum and E. salsugineum. The different expression patterns of ALDH7B4 and ALDH10A8 in Arabidopsis and E. salsugineum suggest that E. salsugineum uses modified regulatory pathways, which may contribute to salinity tolerance. PMID:25085467

  6. Ensemble habitat mapping of invasive plant species.

    PubMed

    Stohlgren, Thomas J; Ma, Peter; Kumar, Sunil; Rocca, Monique; Morisette, Jeffrey T; Jarnevich, Catherine S; Benson, Nate

    2010-02-01

    Ensemble species distribution models combine the strengths of several species environmental matching models, while minimizing the weakness of any one model. Ensemble models may be particularly useful in risk analysis of recently arrived, harmful invasive species because species may not yet have spread to all suitable habitats, leaving species-environment relationships difficult to determine. We tested five individual models (logistic regression, boosted regression trees, random forest, multivariate adaptive regression splines (MARS), and maximum entropy model or Maxent) and ensemble modeling for selected nonnative plant species in Yellowstone and Grand Teton National Parks, Wyoming; Sequoia and Kings Canyon National Parks, California, and areas of interior Alaska. The models are based on field data provided by the park staffs, combined with topographic, climatic, and vegetation predictors derived from satellite data. For the four invasive plant species tested, ensemble models were the only models that ranked in the top three models for both field validation and test data. Ensemble models may be more robust than individual species-environment matching models for risk analysis. PMID:20136746

  7. Ensemble habitat mapping of invasive plant species

    USGS Publications Warehouse

    Stohlgren, T.J.; Ma, P.; Kumar, S.; Rocca, M.; Morisette, J.T.; Jarnevich, C.S.; Benson, N.

    2010-01-01

    Ensemble species distribution models combine the strengths of several species environmental matching models, while minimizing the weakness of any one model. Ensemble models may be particularly useful in risk analysis of recently arrived, harmful invasive species because species may not yet have spread to all suitable habitats, leaving species-environment relationships difficult to determine. We tested five individual models (logistic regression, boosted regression trees, random forest, multivariate adaptive regression splines (MARS), and maximum entropy model or Maxent) and ensemble modeling for selected nonnative plant species in Yellowstone and Grand Teton National Parks, Wyoming; Sequoia and Kings Canyon National Parks, California, and areas of interior Alaska. The models are based on field data provided by the park staffs, combined with topographic, climatic, and vegetation predictors derived from satellite data. For the four invasive plant species tested, ensemble models were the only models that ranked in the top three models for both field validation and test data. Ensemble models may be more robust than individual species-environment matching models for risk analysis. ?? 2010 Society for Risk Analysis.

  8. Evidence for electrotropism in some plant species.

    PubMed

    Gorgolewski, S; Rozej, B

    2001-01-01

    The ever-present global Atmospheric Electrical Field (AEF) is used by many plant species. There are many natural habitats with electrotropic plants and habitats with no AEF. The plants growing there are not electrotropic, like the plants growing under the canopies of the trees or the Arecibo radio telescope. Examples are given of different plants which belong to one or the other class, and the criteria how to distinguish them. In addition to natural habitat observations, laboratory experiments were run in search of the sensitivity of electrotropic effect to different electric field intensities. During a few years, it was established that in very strong fields (of the order of 1 MV/m) all plants respond immediately to the field. This type of reaction is due to the Coulomb forces, but electrotropism depends on electric field interaction with ions. The "reference field" (130 V/m) was always used with stronger fields in the several kV/m range which enhance plant growth rate and size similar to plant growth hormones. Surprising effects were also observed with reversed and horizontal field polarity. In conclusion electrotropic plants deprived of the electrical field do not develop as expected, as can be seen in Biosphere 2. This is an instructive example of what happens when we forget to provide the plants with this vital natural environmental factor. Electrical fields of different intensity, directions and configurations are cheap and easy to generate. PMID:11803965

  9. Evidence for electrotropism in some plant species

    NASA Astrophysics Data System (ADS)

    Gorgolewski, S.; Rożej, B.

    2001-01-01

    The ever-present global Atmospheric Electrical Field (AEF) is used by many plant species. There are many natural habitats with electrotropic plants and habitats with no AEF. The plants growing there are not electrotropic, like the plants growing under the canopies of the trees or the Arecibo radio telescope. Examples are given of different plants which belong to one or the other class, and the criteria how to distinguish them. In addition to natural habitat observations, laboratory experiments were run in search of the sensitivity of electrotropic effect to different electric field intensities. During a few years, it was established that in very strong fields (of the order of 1 MV/m) all plants respond immediately to the field. This type of reaction is due to the Coulomb forces, but electrotropism depends on electric field interaction with ions. The "reference field" (130 V/m) was always used with stronger fields in the several kV/m range which enhance plant growth rate and size similar to plant growth hormones. Surprising effects were also observed with reversed and horizontal field polarity. In conclusion electrotropic plants deprived of the electrical field do not develop as expected, as can be seen in Biosphere 2. This is an instructive example of what happens when we forget to provide the plants with this vital natural environmental factor. Electrical fields of different intensity, directions and configurations are cheap and easy to generate.

  10. Cryobanking of plant species, promise and status

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Currently, the PAGRP has over 4,000 unique samples of clonally propagated species and about 49,000 seed samples in long-term liquid nitrogen storage. Cryopreservation of plant genetic resources has several advantages over germplasm maintenance in field or in vitro; the main of the advantages are pro...

  11. Moderate halophilic bacteria colonizing the phylloplane of halophytes of the subfamily Salicornioideae (Amaranthaceae).

    PubMed

    Mora-Ruiz, Merit del Rocío; Font-Verdera, Francisca; Díaz-Gil, Carlos; Urdiain, Mercedes; Rodríguez-Valdecantos, Gustavo; González, Bernardo; Orfila, Alejandro; Rosselló-Móra, Ramon

    2015-09-01

    Halophytes accumulate large amounts of salt in their tissues, and thus are susceptible to colonization by halotolerant and halophilic microorganisms that might be relevant for the growth and development of the plant. Here, the study of 814 cultured strains and 14,189 sequences obtained by 454 pyrosequencing were combined in order to evaluate the presence, abundance and diversity of halophilic, endophytic and epiphytic microorganisms in the phytosphere of leaves of members of the subfamily Salicornioideae from five locations in Spain and Chile. Cultures were screened by the tandem approach of MALDI-TOF/MS and 16S rRNA gene sequencing. In addition, differential centrifugation was used to enrich endophytes for further DNA isolation, 16S rRNA gene amplification and 454 pyrosequencing. Culturable and non-culturable data showed strong agreement with a predominance of Proteobacteria, Firmicutes and Actinobacteria. The most abundant isolates corresponded to close relatives of the species Chromohalobacter canadensis and Salinicola halophilus that comprised nearly 60% of all isolates and were present in all plants. Up to 66% of the diversity retrieved by pyrosequencing could be brought into pure cultures and the community structures were highly dependent on the compartment where the microorganisms thrived (plant surface or internal tissues). PMID:26164126

  12. Plant species evaluated for new crop potential

    SciTech Connect

    Carr, M.E.

    1985-01-01

    Ninety-two plant species from various regions of the USA were screened for their energy-producing potential. Samples were analysed for oil, polyphenol, hydrocarbon and protein. Oil fractions of some species were analysed for classes of lipid constituents and yields of unsaponifiable matter and fatty acids were determined. Hydrocarbon fractions of some species were analysed for rubber, gutta and waxes. Average MW and MW distribution of rubber and gutta were determined. Complete analytical data for 16 species is presented. Large quantities of oil were obtained from Philadelphus coronarius, Cacalia muhlenbergii, Lindera benzoin and Koelreuteria paniculata. High yields of polyphenols came from Acer ginnala, Cornus obliqua and Salix caprea and maximum yields of hydrocarbon and protein were from Elymus virginicus and Lindera benzoin, respectively.

  13. Screening of 18 species for digestate phytodepuration.

    PubMed

    Pavan, Francesca; Breschigliaro, Simone; Borin, Maurizio

    2015-02-01

    This experiment assesses the aptitude of 18 species in treating the digestate liquid fraction (DLF) in a floating wetland treatment system. The pilot system was created in NE Italy in 2010 and consists of a surface-flow system with 180 floating elements (Tech-IA) vegetated with ten halophytes and eight other wetland species. The species were transplanted in July 2011 in basins filled with different proportions of DLF/water (DLF/w); periodic increasing of the DLF/w ratio was imposed after transplanting, reaching the worst conditions for plants in summer 2012 (highest EC value 7.3 mS cm/L and NH4-N content 225 mg/L). It emerged that only Cynodon dactylon, Typha latifolia, Elytrigia atherica, Halimione portulacoides, Salicornia fruticosa, Artemisia caerulescens, Spartina maritima and Puccinellia palustris were able to survive under the system conditions. Halophytes showed higher dry matter production than other plants. The best root development (up to 40-cm depth) was recorded for Calamagrostis epigejos, Phragmites australis, T. latifolia and Juncus maritimus. The highest nitrogen (10-15 g/m(2)) and phosphorus (1-4 g/m(2)) uptakes were obtained with P. palustris, Iris pseudacorus and Aster tripolium. In conclusion, two halophytes, P. palustris and E. atherica, present the highest potential to be used to treat DLF in floating wetlands. PMID:25005162

  14. Compound leaf development in model plant species.

    PubMed

    Bar, Maya; Ori, Naomi

    2015-02-01

    Plant leaves develop in accordance with a common basic program, which is flexibly adjusted to the species, developmental stage and environment. Two key stages of leaf development are morphogenesis and differentiation. In the case of compound leaves, the morphogenesis stage is prolonged as compared to simple leaves, allowing for the initiation of leaflets. Here, we review recent advances in the understanding of how plant hormones and transcriptional regulators modulate compound leaf development, yielding a substantial diversity of leaf forms, focusing on four model compound leaf organisms: cardamine (Cardamine hirsuta), tomato (Solanum lycopersicum), medicago (Medicago truncatula) and pea (Pisum sativum). PMID:25449728

  15. Effects of crab halophytic plant interactions on creek growth in a S.W. Atlantic salt marsh: A Cellular Automata model

    NASA Astrophysics Data System (ADS)

    Minkoff, Darío R.; Escapa, Mauricio; Ferramola, Félix E.; Maraschín, Silvio D.; Pierini, Jorge O.; Perillo, Gerardo M. E.; Delrieux, Claudio

    2006-09-01

    The Bahía Blanca Estuary (38° 50' S, and 62° 30' W) presents salt marshes where interactions between the local flora ( Sarcocornia perennis) and fauna ( Chasmagnathus granulatus) generate some kind of salt pans that alter the normal water circulation and condition its flow and course towards tidal creeks. The crab-vegetation dynamics in the salt marsh presents variations that cannot be quantified in a reasonable period of time. The interaction between S. perennis plant and C. granulatus crab is based on simple laws, but its result is a complex biological mechanism that causes an erosive process on the salt marsh and favors the formation of tidal creeks. To study it, a Cellular Automata model is proposed, based on the laws deduced from the observation of these phenomena in the field, and then verified with measurable data within macroscale time units. Therefore, the objective of this article is to model how the interaction between C. granulatus and S. perennis modifies the landscape of the salt marsh and influences the path of tidal creeks. The model copies the basic laws that rule the problem based on purely biological factors. The Cellular Automata model proved capable of reproducing the effects of the interaction between plants and crabs in the salt marsh. A study of the water drainage of the basins showed that this interaction does indeed modify the development of tidal creeks. Model dynamics would likewise follow different laws, which would provide a different formula for the probability of patch dilation. The patch shape can be obtained changing the pattern that dilates.

  16. Effects of salinity and ascorbic acid on growth, water status and antioxidant system in a perennial halophyte

    PubMed Central

    Hameed, Abdul; Gulzar, Salman; Aziz, Irfan; Hussain, Tabassum; Gul, Bilquees; Khan, M. Ajmal

    2015-01-01

    Salinity causes oxidative stress in plants by enhancing production of reactive oxygen species, so that an efficient antioxidant system, of which ascorbic acid (AsA) is a key component, is an essential requirement of tolerance. However, antioxidant responses of plants to salinity vary considerably among species. Limonium stocksii is a sub-tropical halophyte found in the coastal marshes from Gujarat (India) to Karachi (Pakistan) but little information exists on its salt resistance. In order to investigate the role of AsA in tolerance, 2-month-old plants were treated with 0 (control), 300 (moderate) and 600 (high) mM NaCl for 30 days with or without exogenous application of AsA (20 mM) or distilled water. Shoot growth of unsprayed plants at moderate salinity was similar to that of controls while at high salinity growth was inhibited substantially. Sap osmolality, AsA concentrations and activities of AsA-dependant antioxidant enzymes increased with increasing salinity. Water spray resulted in some improvement in growth, indicating that the growth promotion by exogenous treatments could partly be attributed to water. However, exogenous application of AsA on plants grown under saline conditions improved growth and AsA dependent antioxidant enzymes more than the water control treatment. Our data show that AsA-dependent antioxidant enzymes play an important role in salinity tolerance of L. stocksii. PMID:25603966

  17. Effects of salinity and ascorbic acid on growth, water status and antioxidant system in a perennial halophyte.

    PubMed

    Hameed, Abdul; Gulzar, Salman; Aziz, Irfan; Hussain, Tabassum; Gul, Bilquees; Khan, M Ajmal

    2015-01-01

    Salinity causes oxidative stress in plants by enhancing production of reactive oxygen species, so that an efficient antioxidant system, of which ascorbic acid (AsA) is a key component, is an essential requirement of tolerance. However, antioxidant responses of plants to salinity vary considerably among species. Limonium stocksii is a sub-tropical halophyte found in the coastal marshes from Gujarat (India) to Karachi (Pakistan) but little information exists on its salt resistance. In order to investigate the role of AsA in tolerance, 2-month-old plants were treated with 0 (control), 300 (moderate) and 600 (high) mM NaCl for 30 days with or without exogenous application of AsA (20 mM) or distilled water. Shoot growth of unsprayed plants at moderate salinity was similar to that of controls while at high salinity growth was inhibited substantially. Sap osmolality, AsA concentrations and activities of AsA-dependant antioxidant enzymes increased with increasing salinity. Water spray resulted in some improvement in growth, indicating that the growth promotion by exogenous treatments could partly be attributed to water. However, exogenous application of AsA on plants grown under saline conditions improved growth and AsA dependent antioxidant enzymes more than the water control treatment. Our data show that AsA-dependent antioxidant enzymes play an important role in salinity tolerance of L. stocksii. PMID:25603966

  18. Egyptian plant species as new ozone indicators.

    PubMed

    Madkour, Samia A; Laurence, J A

    2002-01-01

    The aim of this study was to test and select one or more highly sensitive, specific and environmentally successful Egyptian bioindicator plants for ozone (O3). For that purpose more than 30 Egyptian species and cultivars were subjected to extensive screening studies under controlled environmental and pollutant exposure conditions to mimic the Egyptian environmental conditions and O3 levels in urban and rural sites. Four plant species were found to be more sensitive to O3 than the universally used O3-bioindicator, tobacco Bel W3, under the Egyptian environmental conditions used. These plant species, jute (Corchorus olitorius c.v. local), clover (Trifolium alexandrinum L. c.v. Masry), garden rocket (Eruca sativa c.v. local) and alfalfa (Medicago sativa L. c.v. local), ranked in order of decreasing sensitivity, exhibited typical O3 injury symptoms faster and at lower 03 concentrations than Bel W3. Three variables were tested in search of a reliable tool for the diagnosis and prediction of O3 response prior to the appearance of visible foliar symptoms: pigment degradation, stomatal conductance (g(s)) and net photosynthetic CO2 assimilation (Pnet). Pigment degradation was found to be unreliable in predicting species sensitivity to O3. Evidence supporting stomatal conductance involvement in 03 tolerance was found only in tolerant species. A good correlation was found between g(s), restriction of O3 and CO2 influx into the mesophyll tissues, and Pnet. Changes in Pnet seemed to depend largely on fluctuations in g(s). PMID:12395848

  19. Effects of salinity on the growth, physiology and relevant gene expression of an annual halophyte grown from heteromorphic seeds

    PubMed Central

    Cao, Jing; Lv, Xiu Yun; Chen, Ling; Xing, Jia Jia; Lan, Hai Yan

    2015-01-01

    Seed heteromorphism provides plants with alternative strategies for survival in unfavourable environments. However, the response of descendants from heteromorphic seeds to stress has not been well documented. Suaeda aralocaspica is a typical annual halophyte, which produces heteromorphic seeds with disparate forms and different germination characteristics. To gain an understanding of the salt tolerance of descendants and the impact of seed heteromorphism on progeny of this species, we performed a series of experiments to investigate the plant growth and physiological parameters (e.g. osmolytes, oxidative/antioxidative agents and enzymes), as well as expression patterns of corresponding genes. Results showed that osmolytes (proline and glycinebetaine) were significantly increased and that excess reactive oxygen species (O2?, H2O2) produced under high salinity were scavenged by increased levels of antioxidant enzymes (superoxide dismutase, ascorbate peroxidase and glutathione reductase) and corresponding antioxidants (ascorbic acid and glutathione). Moreover, enhancement of phosphoenolpyruvate carboxylase activity at high salt intensity had a positive effect on photosynthesis. The descendants from heteromorphic seeds presented no significant difference in performance with or without salinity. In conclusion, we found that high salinity induced the same active physiological responses in plants from heteromorphic seeds of S. aralocaspica, there was no carry-over of seed heteromorphism to plants: all the descendants required salinity for optimal growth and adaptation to their natural habitat. PMID:26386128

  20. Effects of salinity on the growth, physiology and relevant gene expression of an annual halophyte grown from heteromorphic seeds.

    PubMed

    Cao, Jing; Lv, Xiu Yun; Chen, Ling; Xing, Jia Jia; Lan, Hai Yan

    2015-01-01

    Seed heteromorphism provides plants with alternative strategies for survival in unfavourable environments. However, the response of descendants from heteromorphic seeds to stress has not been well documented. Suaeda aralocaspica is a typical annual halophyte, which produces heteromorphic seeds with disparate forms and different germination characteristics. To gain an understanding of the salt tolerance of descendants and the impact of seed heteromorphism on progeny of this species, we performed a series of experiments to investigate the plant growth and physiological parameters (e.g. osmolytes, oxidative/antioxidative agents and enzymes), as well as expression patterns of corresponding genes. Results showed that osmolytes (proline and glycinebetaine) were significantly increased and that excess reactive oxygen species ([Formula: see text] H2O2) produced under high salinity were scavenged by increased levels of antioxidant enzymes (superoxide dismutase, ascorbate peroxidase and glutathione reductase) and corresponding antioxidants (ascorbic acid and glutathione). Moreover, enhancement of phosphoenolpyruvate carboxylase activity at high salt intensity had a positive effect on photosynthesis. The descendants from heteromorphic seeds presented no significant difference in performance with or without salinity. In conclusion, we found that high salinity induced the same active physiological responses in plants from heteromorphic seeds of S. aralocaspica, there was no carry-over of seed heteromorphism to plants: all the descendants required salinity for optimal growth and adaptation to their natural habitat. PMID:26386128

  1. RESPONSE OF WETLAND PLANT SPECIES TO HYDROLOGIC CONDITIONS

    EPA Science Inventory

    Understanding hydrologic requirements of native and introduced species is critical to sustaining native plant communities in wetlands of disturbed landscapes. We examined plant assemblages and 31 species from emergent wetlands in an urbanizing area of the Pacific Northwest, USA,...

  2. RESPONSE OF WETLAND PLANT SPECIES TO HYDROLOGIC CONDITIONS

    EPA Science Inventory

    Understanding hydrologic requirements of native and introduced species is critical to sustaining native plant communities in wetlands of disturbed landscapes. We examined plant assemblages and 31 species from emergent wetlands in an urbanizing area of the Pacific Northwest, USA, ...

  3. Biophysical and biochemical constraints imposed by salt stress: learning from halophytes

    PubMed Central

    Duarte, Bernardo; Sleimi, Noomene; Caador, Isabel

    2014-01-01

    Soil salinization is one of the most important factors impacting plant productivity. About 3.6 billion of the worlds 5.2 billion ha of agricultural dry land, have already suffered erosion, degradation, and salinization. Halophytes are typically considered as plants able to complete their life cycle in environments where the salt concentration is above 200 mM NaCl. Salinity adjustment is a complex phenomenon but essential mechanism to overcome salt stress, with both biophysical and biochemical implications. At this level, halophytes evolved in several directions, adopting different strategies. Otherwise, the lack of adaptation to a salt environment would negatively affect their electron transduction pathways and the entire energetic metabolism, the foundation of every plant photosynthesis and biomass production. The maintenance of ionic homeostasis is in the basis of all cellular counteractive measures, in particular in terms of redox potential and energy transduction. In the present work the biophysical mechanisms underlying energy capture and transduction in halophytes are discussed alongside with their relation with biochemical counteractive mechanisms, integrating data from photosynthetic light harvesting complexes, electron transport chains to the quinone pools, carbon fixation, and energy dissipation metabolism. PMID:25566311

  4. Biophysical and biochemical constraints imposed by salt stress: learning from halophytes.

    PubMed

    Duarte, Bernardo; Sleimi, Noomene; Caador, Isabel

    2014-01-01

    Soil salinization is one of the most important factors impacting plant productivity. About 3.6 billion of the world's 5.2 billion ha of agricultural dry land, have already suffered erosion, degradation, and salinization. Halophytes are typically considered as plants able to complete their life cycle in environments where the salt concentration is above 200 mM NaCl. Salinity adjustment is a complex phenomenon but essential mechanism to overcome salt stress, with both biophysical and biochemical implications. At this level, halophytes evolved in several directions, adopting different strategies. Otherwise, the lack of adaptation to a salt environment would negatively affect their electron transduction pathways and the entire energetic metabolism, the foundation of every plant photosynthesis and biomass production. The maintenance of ionic homeostasis is in the basis of all cellular counteractive measures, in particular in terms of redox potential and energy transduction. In the present work the biophysical mechanisms underlying energy capture and transduction in halophytes are discussed alongside with their relation with biochemical counteractive mechanisms, integrating data from photosynthetic light harvesting complexes, electron transport chains to the quinone pools, carbon fixation, and energy dissipation metabolism. PMID:25566311

  5. Metal speciation in salt marsh sediments: Influence of halophyte vegetation in salt marshes with different morphology

    NASA Astrophysics Data System (ADS)

    Pedro, Slvia; Duarte, Bernardo; Raposo de Almeida, Pedro; Caador, Isabel

    2015-12-01

    Salt marshes provide environmental conditions that are known to affect metal speciation in sediments. The elevational gradient along the marsh and consequent differential flooding are some of the major factors influencing halophytic species distribution and coverage due to their differential tolerance to salinity and submersion. Different species, in turn, also have distinct influences on the sediment's metal speciation, and its metal accumulation abilities. The present work aimed to evaluate how different halophyte species in two different salt marshes could influence metal partitioning in the sediment at root depth and how that could differ from bare sediments. Metal speciation in sediments around the roots (rhizosediments) of Halimione portulacoides, Sarcocornia fruticosa and Spartina maritima was determined by sequentially extracting operationally defined fractions with solutions of increasing strength and acidity. Rosrio salt marsh generally showed higher concentrations of all metals in the rhizosediments. Metal partitioning was primarily related to the type of metal, with the elements' chemistry overriding the environment's influence on fractionation schemes. The most mobile elements were Cd and Zn, with greater availability being found in non-vegetated sediments. Immobilization in rhizosediments was predominantly influenced by the presence of Fe and Mn oxides, as well as organic complexes. In the more mature of both salt marshes, the differences between vegetated and non-vegetated sediments were more evident regarding S.fruticosa, while in the younger system all halophytes presented significantly different metal partitioning when compared to that of mudflats.

  6. Genomic Basis of Plant Pathogen Suppression by Biocontrol Pseudomonas Species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Various plant commensal bacterial species, which naturally colonize the plant rhizosphere, are able to suppress fungal, bacterial, viral and even insect plant pathogens. These biocontrol activities are elicited primarily through the production of secreted exoenzymes and secondary metabolites that ma...

  7. Cd and Ni transport and accumulation in the halophyte Sesuvium portulacastrum: implication of organic acids in these processes

    PubMed Central

    Mnasri, Mejda; Ghabriche, Rim; Fourati, Emna; Zaier, Hanen; Sabally, Kebba; Barrington, Suzelle; Lutts, Stanley; Abdelly, Chedly; Ghnaya, Tahar

    2015-01-01

    The implication of organic acids in Cd and Ni translocation was studied in the halophyte species Sesuvium portulacastrum. Citric, fumaric, malic, and ascorbic acids were separated and quantified by HPLC technique in shoots, roots and xylem saps of plants grown on nutrient solutions added with 50 ?M Cd, 100 ?M Ni and the combination of 50 ?M Cd + 100 ?M Ni. Results showed that Cd had no significant impact on biomass production while Ni and the combination of both metals drastically affected plant development. Cadmium and Ni concentrations in tissues and xylem sap were higher in plants subjected to individual metal application than those subjected to the combined effect of Cd and Ni suggesting a possible competition between these metals for absorption. Both metals applied separately or in combination induced an increase in citrate concentration in shoots and xylem sap but a decrease of this concentration in the roots. However, a minor relationship was observed between metal application and fumaric, malic, and ascorbic acids. Both observations suggest the implication of citric acid in Cd, Ni translocation and shoot accumulation in S. portulacastrum. The relatively high accumulation of citric acid in xylem sap and shoot of S. portulacastrum could be involved in metal chelation and thus contributes to heavy metal tolerance in this species. PMID:25821455

  8. Cd and Ni transport and accumulation in the halophyte Sesuvium portulacastrum: implication of organic acids in these processes.

    PubMed

    Mnasri, Mejda; Ghabriche, Rim; Fourati, Emna; Zaier, Hanen; Sabally, Kebba; Barrington, Suzelle; Lutts, Stanley; Abdelly, Chedly; Ghnaya, Tahar

    2015-01-01

    The implication of organic acids in Cd and Ni translocation was studied in the halophyte species Sesuvium portulacastrum. Citric, fumaric, malic, and ascorbic acids were separated and quantified by HPLC technique in shoots, roots and xylem saps of plants grown on nutrient solutions added with 50 ?M Cd, 100 ?M Ni and the combination of 50 ?M Cd + 100 ?M Ni. Results showed that Cd had no significant impact on biomass production while Ni and the combination of both metals drastically affected plant development. Cadmium and Ni concentrations in tissues and xylem sap were higher in plants subjected to individual metal application than those subjected to the combined effect of Cd and Ni suggesting a possible competition between these metals for absorption. Both metals applied separately or in combination induced an increase in citrate concentration in shoots and xylem sap but a decrease of this concentration in the roots. However, a minor relationship was observed between metal application and fumaric, malic, and ascorbic acids. Both observations suggest the implication of citric acid in Cd, Ni translocation and shoot accumulation in S. portulacastrum. The relatively high accumulation of citric acid in xylem sap and shoot of S. portulacastrum could be involved in metal chelation and thus contributes to heavy metal tolerance in this species. PMID:25821455

  9. Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes

    PubMed Central

    Flowers, Timothy J.; Munns, Rana; Colmer, Timothy D.

    2015-01-01

    Background Halophytes are the flora of saline soils. They adjust osmotically to soil salinity by accumulating ions and sequestering the vast majority of these (generally Na+ and Cl−) in vacuoles, while in the cytoplasm organic solutes are accumulated to prevent adverse effects on metabolism. At high salinities, however, growth is inhibited. Possible causes are: toxicity to metabolism of Na+ and/or Cl− in the cytoplasm; insufficient osmotic adjustment resulting in reduced net photosynthesis because of stomatal closure; reduced turgor for expansion growth; adverse cellular water relations if ions build up in the apoplast (cell walls) of leaves; diversion of energy needed to maintain solute homeostasis; sub-optimal levels of K+ (or other mineral nutrients) required for maintaining enzyme activities; possible damage from reactive oxygen species; or changes in hormonal concentrations. Scope This review discusses the evidence for Na+ and Cl− toxicity and the concept of tissue tolerance in relation to halophytes. Conclusions The data reviewed here suggest that halophytes tolerate cytoplasmic Na+ and Cl− concentrations of 100–200 mm, but whether these ions ever reach toxic concentrations that inhibit metabolism in the cytoplasm or cause death is unknown. Measurements of ion concentrations in the cytosol of various cell types for contrasting species and growth conditions are needed. Future work should also focus on the properties of the tonoplast that enable ion accumulation and prevent ion leakage, such as the special properties of ion transporters and of the lipids that determine membrane permeability. PMID:25466549

  10. Effects of salinity on flowering, morphology, biomass accumulation and leaf metabolites in an edible halophyte

    PubMed Central

    Ventura, Yvonne; Myrzabayeva, Malika; Alikulov, Zerekbay; Omarov, Rustem; Khozin-Goldberg, Inna; Sagi, Moshe

    2014-01-01

    The fresh water shortage in agriculture is an increasing problem worldwide, therefore the possibility of cultivating crops under saline conditions is of high importance. Crithmum maritimum, a halophytic plant naturally found on the rocky coastlines of the Atlantic Ocean and the Mediterranean Sea, has a long history of human consumption and was recently suggested as a cash crop for biosaline agriculture. In the present study, we compared the responses of different genotypes originating from France, Portugal and Israel to moderate saline irrigation (up to 100 mM NaCl). The genotypes varied greatly in the onset of flowering, their leaf appearance, growth habits and leaf metabolite content. Both Atlantic genotypes (from France and Portugal) flowered earlier than those from the Mediterranean, but the number of inflorescences decreased with salinity. Irrigation with 50 and 100 mM NaCl led to a reduction in biomass production in both the Israeli and the Portuguese genotypes, while the French genotype was found to produce maximum leaf yield at 50 mM NaCl. With increasing salinity, salt was accumulated by the plants, as indicated by increasing electrical conductivities of the leaf extracts. Concomitantly, antioxidant compounds (such as ascorbic acid), total polyphenols and ureides responded to salinity in a genotype-dependent manner; either they increased, decreased or were unaffected. Notably, the total fatty acid concentration increased with salinity in both Mediterranean genotypes, reaching 2.7 and 2.4 % total fatty acids (on a dry weight basis) at 100 mM NaCl. Moreover, the proportion assigned to omega-3 fatty acids in these genotypes was higher than in their Atlantic counterparts at the highest salinity tested. Our results highlight the variations existing among C. maritimum genotypes from different origins regarding salt-induced changes in plant growth, flowering behaviour and leaf metabolites with nutritional value. Thus, genotypic characteristics should be taken into account when evaluating a wild plant species for future crop cultivation. PMID:25178274

  11. Effects of salinity on flowering, morphology, biomass accumulation and leaf metabolites in an edible halophyte.

    PubMed

    Ventura, Yvonne; Myrzabayeva, Malika; Alikulov, Zerekbay; Omarov, Rustem; Khozin-Goldberg, Inna; Sagi, Moshe

    2014-01-01

    The fresh water shortage in agriculture is an increasing problem worldwide, therefore the possibility of cultivating crops under saline conditions is of high importance. Crithmum maritimum, a halophytic plant naturally found on the rocky coastlines of the Atlantic Ocean and the Mediterranean Sea, has a long history of human consumption and was recently suggested as a cash crop for biosaline agriculture. In the present study, we compared the responses of different genotypes originating from France, Portugal and Israel to moderate saline irrigation (up to 100 mM NaCl). The genotypes varied greatly in the onset of flowering, their leaf appearance, growth habits and leaf metabolite content. Both Atlantic genotypes (from France and Portugal) flowered earlier than those from the Mediterranean, but the number of inflorescences decreased with salinity. Irrigation with 50 and 100 mM NaCl led to a reduction in biomass production in both the Israeli and the Portuguese genotypes, while the French genotype was found to produce maximum leaf yield at 50 mM NaCl. With increasing salinity, salt was accumulated by the plants, as indicated by increasing electrical conductivities of the leaf extracts. Concomitantly, antioxidant compounds (such as ascorbic acid), total polyphenols and ureides responded to salinity in a genotype-dependent manner; either they increased, decreased or were unaffected. Notably, the total fatty acid concentration increased with salinity in both Mediterranean genotypes, reaching 2.7 and 2.4 % total fatty acids (on a dry weight basis) at 100 mM NaCl. Moreover, the proportion assigned to omega-3 fatty acids in these genotypes was higher than in their Atlantic counterparts at the highest salinity tested. Our results highlight the variations existing among C. maritimum genotypes from different origins regarding salt-induced changes in plant growth, flowering behaviour and leaf metabolites with nutritional value. Thus, genotypic characteristics should be taken into account when evaluating a wild plant species for future crop cultivation. PMID:25178274

  12. Radionuclides transfer into halophytes growing in tidal salt marshes from the Southwest of Spain.

    PubMed

    Luque, Carlos J; Vaca, Federico; Garca-Trapote, Ana; Hierro, Almudena; Bolvar, Juan P; Castellanos, Eloy M

    2015-12-01

    Estuaries are sinks of materials and substances which are released directly into them or transported from rivers that drain the basin. It is usual to find high organic matter loads and fine particles in the sediments. We analyzed radionuclide concentrations ((210)Po, (230)Th, (232)Th, (234)U, (238)U, (226)Ra, (228)Th, (228)Ra, (40)K) in sediments and three different organs (roots, stems and leaves) of three species of halophytes plants (Spartina maritima, Spartina densiflora and Sarcocornia perennis). The study was carried out in two tidal salt marshes, one polluted by U-series radionuclides and another nearby that was unpolluted and was used as a control (or reference) area. The Tinto River salt marsh shows high levels of U-series radionuclides coming from mining and industrial discharges. On the contrary, the unperturbed Piedras River salt marsh is located about 25km from the Tinto marsh, and shows little presence of contaminants and radionuclides. The results of this work have shown that natural radionuclide concentrations (specially the U-isotopes) in the Tinto salt marsh sediments are one order of magnitude higher than those in the Piedras marsh. These radionuclide enhancements are reflected in the different organs of the plants, which have similar concentration increases as the sediments where they have grown. Finally, the transfer factor (TF) of the most polluted radionuclides (U-isotopes and (210)Po) in the Tinto area are one order of magnitude higher than in the Piedras area, indicating that the fraction of each radionuclide in the sediment originating from the pollution is more available for the plants than the indigenous fraction. This means that the plants of the salt marshes are unhelpful as bioindicators or for the phytoremediation of radionuclides. PMID:26334596

  13. Physiological responses of a halophytic shrub to salt stress by Na2SO4 and NaCl: oxidative damage and the role of polyphenols in antioxidant protection

    PubMed Central

    Reginato, Mariana A.; Castagna, Antonella; Furlán, Ana; Castro, Stella; Ranieri, Annamaria; Luna, Virginia

    2014-01-01

    Salt stress conditions lead to increased production of reactive oxygen species (ROS) in plant cells. Halophytes have the ability to reduce these toxic ROS by means of a powerful antioxidant system that includes enzymatic and non-enzymatic components. In this research, we used the halophytic shrub Prosopis strombulifera to investigate whether the ability of this species to grow under increasing salt concentrations and mixtures was related to the synthesis of polyphenolic compounds and to the maintenance of leaf pigment contents for an adequate photosynthetic activity. Seedlings of P. strombulifera were grown hydroponically in Hoagland's solution, gradually adding Na2SO4 and NaCl separately or in mixtures until reaching final osmotic potentials of −1, −1.9 and −2.6 MPa. Control plants were allowed to develop in Hoagland's solution without salt. Oxidative damage in tissues was determined by H2O2 and malondialdehyde content. Leaf pigment analysis was performed by high-performance liquid chromatography with ultraviolet, and total phenols, total flavonoids, total flavan-3-ols, condensed tannins, tartaric acid esters and flavonols were spectrophotometrically assayed. Treatment with Na2SO4 increased H2O2 production and lipid peroxidation in tissues and induced a sharp increase in flavonoid compounds (mainly flavan-3-ols) and consequently in the antioxidant activity. Also, Na2SO4 treatment induced an increased carotenoid/chlorophyll ratio, which may represent a strategy to protect photosystems against photooxidation. NaCl treatment, however, did not affect H2O2 content, lipid peroxidation, pigments or polyphenols synthesis. The significant accumulation of flavonoids in tissues under Na2SO4 treatment and their powerful antioxidant activity indicates a role for these compounds in counteracting the oxidative damage induced by severe salt stress, particularly, ionic stress. We demonstrate that ionic interactions between different salts in salinized soils modify the biochemical and morpho-physiological responses of P. strombulifera plants to salinity. PMID:25063834

  14. Reduced Tonoplast Fast-Activating and Slow-Activating Channel Activity Is Essential for Conferring Salinity Tolerance in a Facultative Halophyte, Quinoa1[C][W][OA

    PubMed Central

    Bonales-Alatorre, Edgar; Shabala, Sergey; Chen, Zhong-Hua; Pottosin, Igor

    2013-01-01

    Halophyte species implement a salt-including strategy, sequestering significant amounts of Na+ to cell vacuoles. This requires a reduction of passive Na+ leak from the vacuole. In this work, we used quinoa (Chenopodium quinoa) to investigate the ability of halophytes to regulate Na+-permeable slow-activating (SV) and fast-activating (FV) tonoplast channels, linking it with Na+ accumulation in mesophyll cells and salt bladders as well as leaf photosynthetic efficiency under salt stress. Our data indicate that young leaves rely on Na+ exclusion to salt bladders, whereas old ones, possessing far fewer salt bladders, depend almost exclusively on Na+ sequestration to mesophyll vacuoles. Moreover, although old leaves accumulate more Na+, this does not compromise their leaf photochemistry. FV and SV channels are slightly more permeable for K+ than for Na+, and vacuoles in young leaves express less FV current and with a density unchanged in plants subjected to high (400 mm NaCl) salinity. In old leaves, with an intrinsically lower density of the FV current, FV channel density decreases about 2-fold in plants grown under high salinity. In contrast, intrinsic activity of SV channels in vacuoles from young leaves is unchanged under salt stress. In vacuoles of old leaves, however, it is 2- and 7-fold lower in older compared with young leaves in control- and salt-grown plants, respectively. We conclude that the negative control of SV and FV tonoplast channel activity in old leaves reduces Na+ leak, thus enabling efficient sequestration of Na+ to their vacuoles. This enables optimal photosynthetic performance, conferring salinity tolerance in quinoa species. PMID:23624857

  15. Reduced tonoplast fast-activating and slow-activating channel activity is essential for conferring salinity tolerance in a facultative halophyte, quinoa.

    PubMed

    Bonales-Alatorre, Edgar; Shabala, Sergey; Chen, Zhong-Hua; Pottosin, Igor

    2013-06-01

    Halophyte species implement a "salt-including" strategy, sequestering significant amounts of Na(+) to cell vacuoles. This requires a reduction of passive Na(+) leak from the vacuole. In this work, we used quinoa (Chenopodium quinoa) to investigate the ability of halophytes to regulate Na(+)-permeable slow-activating (SV) and fast-activating (FV) tonoplast channels, linking it with Na(+) accumulation in mesophyll cells and salt bladders as well as leaf photosynthetic efficiency under salt stress. Our data indicate that young leaves rely on Na(+) exclusion to salt bladders, whereas old ones, possessing far fewer salt bladders, depend almost exclusively on Na(+) sequestration to mesophyll vacuoles. Moreover, although old leaves accumulate more Na(+), this does not compromise their leaf photochemistry. FV and SV channels are slightly more permeable for K(+) than for Na(+), and vacuoles in young leaves express less FV current and with a density unchanged in plants subjected to high (400 mm NaCl) salinity. In old leaves, with an intrinsically lower density of the FV current, FV channel density decreases about 2-fold in plants grown under high salinity. In contrast, intrinsic activity of SV channels in vacuoles from young leaves is unchanged under salt stress. In vacuoles of old leaves, however, it is 2- and 7-fold lower in older compared with young leaves in control- and salt-grown plants, respectively. We conclude that the negative control of SV and FV tonoplast channel activity in old leaves reduces Na(+) leak, thus enabling efficient sequestration of Na(+) to their vacuoles. This enables optimal photosynthetic performance, conferring salinity tolerance in quinoa species. PMID:23624857

  16. Physiological responses of a halophytic shrub to salt stress by Na2SO4 and NaCl: oxidative damage and the role of polyphenols in antioxidant protection.

    PubMed

    Reginato, Mariana A; Castagna, Antonella; Furln, Ana; Castro, Stella; Ranieri, Annamaria; Luna, Virginia

    2014-01-01

    Salt stress conditions lead to increased production of reactive oxygen species (ROS) in plant cells. Halophytes have the ability to reduce these toxic ROS by means of a powerful antioxidant system that includes enzymatic and non-enzymatic components. In this research, we used the halophytic shrub Prosopis strombulifera to investigate whether the ability of this species to grow under increasing salt concentrations and mixtures was related to the synthesis of polyphenolic compounds and to the maintenance of leaf pigment contents for an adequate photosynthetic activity. Seedlings of P. strombulifera were grown hydroponically in Hoagland's solution, gradually adding Na2SO4 and NaCl separately or in mixtures until reaching final osmotic potentials of -1, -1.9 and -2.6 MPa. Control plants were allowed to develop in Hoagland's solution without salt. Oxidative damage in tissues was determined by H2O2 and malondialdehyde content. Leaf pigment analysis was performed by high-performance liquid chromatography with ultraviolet, and total phenols, total flavonoids, total flavan-3-ols, condensed tannins, tartaric acid esters and flavonols were spectrophotometrically assayed. Treatment with Na2SO4 increased H2O2 production and lipid peroxidation in tissues and induced a sharp increase in flavonoid compounds (mainly flavan-3-ols) and consequently in the antioxidant activity. Also, Na2SO4 treatment induced an increased carotenoid/chlorophyll ratio, which may represent a strategy to protect photosystems against photooxidation. NaCl treatment, however, did not affect H2O2 content, lipid peroxidation, pigments or polyphenols synthesis. The significant accumulation of flavonoids in tissues under Na2SO4 treatment and their powerful antioxidant activity indicates a role for these compounds in counteracting the oxidative damage induced by severe salt stress, particularly, ionic stress. We demonstrate that ionic interactions between different salts in salinized soils modify the biochemical and morpho-physiological responses of P. strombulifera plants to salinity. PMID:25063834

  17. Effects of Cd2+ on K+, Ca2+ and N uptake in two halophytes Sesuvium portulacastrum and Mesembryanthemum crystallinum: consequences on growth.

    PubMed

    Ghnaya, Tahar; Slama, Inès; Messedi, Dorsaf; Grignon, Claude; Ghorbel, Mohamed Habib; Abdelly, Chedly

    2007-02-01

    One of the limits of Cd2+-phytoextraction is the high toxicity of this metal to plants. Growth restriction, chlorosis and necrosis are usually accompanied with a large disturbance of the uptake of essential elements. This work aims to study the effects of cadmium (Cd2+) on potassium (K+), calcium (Ca2+) and nitrogen (N) acquisition, and their consequences on growth in two halophytes species: Sesuvium portulacastrum and Mesembryanthemum crystallinum. Seedlings were grown for 30 days in split-root conditions. One half of the root system was immersed in complete nutrient solution (Basal medium (B)) supplemented with 100 microM Cd2+, and the other half was immersed in a Cd2+-free medium, containing all nutrients (B/Cd plants) or deprived of potassium ((B-K)/Cd) or calcium ((B-Ca)/Cd) or nitrogen ((B-N)/Cd). Using this approach, we demonstrated that K+ and Ca2+ uptake was impaired in roots exposed to Cd2+. Concerning N, we noticed no indication of uptake inhibition by Cd2+. However, restriction of K+ uptake by roots was compensated by an increase in the K+-use efficiency, so that growth was not inhibited. Calcium uptake was strongly limited by Cd2. This inhibition was accompanied by a reduction in growth of ((B-Ca)/Cd) plants. Thus, we conclude that Cd2+ limits growth of both halophytes through restriction imposed on Ca2+ uptake. We suggest that the increase of Ca2+ availability in soils could improve the growth of both species in the presence of Cd2+. This would be essential for improving their utility for extraction of this metal by from salty contaminated soils. PMID:17126878

  18. Isolation, identification and expression analysis of salt-induced genes in Suaeda maritima, a natural halophyte, using PCR-based suppression subtractive hybridization

    PubMed Central

    Sahu, Binod B; Shaw, Birendra P

    2009-01-01

    Background Despite wealth of information generated on salt tolerance mechanism, its basics still remain elusive. Thus, there is a need of continued effort to understand the salt tolerance mechanism using suitable biotechnological techniques and test plants (species) to enable development of salt tolerant cultivars of interest. Therefore, the present study was undertaken to generate information on salt stress responsive genes in a natural halophyte, Suaeda maritima, using PCR-based suppression subtractive hybridization (PCR-SSH) technique. Results Forward and reverse SSH cDNA libraries were constructed after exposing the young plants to 425 mM NaCl for 24 h. From the forward SSH cDNA library, 429 high quality ESTs were obtained. BLASTX search and TIGR assembler programme revealed overexpression of 167 unigenes comprising 89 singletons and 78 contigs with ESTs redundancy of 81.8%. Among the unigenes, 32.5% were found to be of special interest, indicating novel function of these genes with regard to salt tolerance. Literature search for the known unigenes revealed that only 17 of them were salt-inducible. A comparative analysis of the existing SSH cDNA libraries for NaCl stress in plants showed that only a few overexpressing unigenes were common in them. Moreover, the present study also showed increased expression of phosphoethanolamine N-methyltransferase gene, indicating the possible accumulation of a much studied osmoticum, glycinebetaine, in halophyte under salt stress. Functional categorization of the proteins as per the Munich database in general revealed that salt tolerance could be largely determined by the proteins involved in transcription, signal transduction, protein activity regulation and cell differentiation and organogenesis. Conclusion The study provided a clear indication of possible vital role of glycinebetaine in the salt tolerance process in S. maritima. However, the salt-induced expression of a large number of genes involved in a wide range of cellular functions was indicative of highly complex nature of the process as such. Most of the salt inducible genes, nonetheless, appeared to be species-specific. In light of the observations made, it is reasonable to emphasize that a comparative analysis of ESTs from SSH cDNA libraries generated systematically for a few halophytes with varying salt exposure time may clearly identify the key salt tolerance determinant genes to a minimum number, highly desirable for any genetic manipulation adventure. PMID:19497134

  19. New pasture plants intensify invasive species risk.

    PubMed

    Driscoll, Don A; Catford, Jane A; Barney, Jacob N; Hulme, Philip E; Inderjit; Martin, Tara G; Pauchard, Aníbal; Pyšek, Petr; Richardson, David M; Riley, Sophie; Visser, Vernon

    2014-11-18

    Agricultural intensification is critical to meet global food demand, but intensification threatens native species and degrades ecosystems. Sustainable intensification (SI) is heralded as a new approach for enabling growth in agriculture while minimizing environmental impacts. However, the SI literature has overlooked a major environmental risk. Using data from eight countries on six continents, we show that few governments regulate conventionally bred pasture taxa to limit threats to natural areas, even though most agribusinesses promote taxa with substantial weed risk. New pasture taxa (including species, subspecies, varieties, cultivars, and plant-endophyte combinations) are bred with characteristics typical of invasive species and environmental weeds. By introducing novel genetic and endophyte variation, pasture taxa are imbued with additional capacity for invasion and environmental impact. New strategies to prevent future problems are urgently needed. We highlight opportunities for researchers, agribusiness, and consumers to reduce environmental risks associated with new pasture taxa. We also emphasize four main approaches that governments could consider as they build new policies to limit weed risks, including (i) national lists of taxa that are prohibited based on environmental risk; (ii) a weed risk assessment for all new taxa; (iii) a program to rapidly detect and control new taxa that invade natural areas; and (iv) the polluter-pays principle, so that if a taxon becomes an environmental weed, industry pays for its management. There is mounting pressure to increase livestock production. With foresight and planning, growth in agriculture can be achieved sustainably provided that the scope of SI expands to encompass environmental weed risks. PMID:25368175

  20. New pasture plants intensify invasive species risk

    PubMed Central

    Driscoll, Don A.; Catford, Jane A.; Barney, Jacob N.; Hulme, Philip E.; Inderjit; Martin, Tara G.; Pauchard, Aníbal; Pyšek, Petr; Richardson, David M.; Riley, Sophie; Visser, Vernon

    2014-01-01

    Agricultural intensification is critical to meet global food demand, but intensification threatens native species and degrades ecosystems. Sustainable intensification (SI) is heralded as a new approach for enabling growth in agriculture while minimizing environmental impacts. However, the SI literature has overlooked a major environmental risk. Using data from eight countries on six continents, we show that few governments regulate conventionally bred pasture taxa to limit threats to natural areas, even though most agribusinesses promote taxa with substantial weed risk. New pasture taxa (including species, subspecies, varieties, cultivars, and plant-endophyte combinations) are bred with characteristics typical of invasive species and environmental weeds. By introducing novel genetic and endophyte variation, pasture taxa are imbued with additional capacity for invasion and environmental impact. New strategies to prevent future problems are urgently needed. We highlight opportunities for researchers, agribusiness, and consumers to reduce environmental risks associated with new pasture taxa. We also emphasize four main approaches that governments could consider as they build new policies to limit weed risks, including (i) national lists of taxa that are prohibited based on environmental risk; (ii) a weed risk assessment for all new taxa; (iii) a program to rapidly detect and control new taxa that invade natural areas; and (iv) the polluter-pays principle, so that if a taxon becomes an environmental weed, industry pays for its management. There is mounting pressure to increase livestock production. With foresight and planning, growth in agriculture can be achieved sustainably provided that the scope of SI expands to encompass environmental weed risks. PMID:25368175

  1. Teaching the Species Concept Using Hybrid Plants and Habitats.

    ERIC Educational Resources Information Center

    Wilson, C. M.; Oldham, J. H.

    1984-01-01

    Describes a field exercise which links ecology and taxonomy in the teaching of the species concept. Two common hedgerow plants (red and white campions) are used as a pair of "species" that are normally distinct. Plants of intermediate character can be encountered, and the status of these plants is investigated. (Author/JN)

  2. Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops

    PubMed Central

    Shabala, Sergey

    2013-01-01

    Background Global annual losses in agricultural production from salt-affected land are in excess of US$12 billion and rising. At the same time, a significant amount of arable land is becoming lost to urban sprawl, forcing agricultural production into marginal areas. Consequently, there is a need for a major breakthrough in crop breeding for salinity tolerance. Given the limited range of genetic diversity in this trait within traditional crops, stress tolerance genes and mechanisms must be identified in extremophiles and then introduced into traditional crops. Scope and Conclusions This review argues that learning from halophytes may be a promising way of achieving this goal. The paper is focused around two central questions: what are the key physiological mechanisms conferring salinity tolerance in halophytes that can be introduced into non-halophyte crop species to improve their performance under saline conditions and what specific genes need to be targeted to achieve this goal? The specific traits that are discussed and advocated include: manipulation of trichome shape, size and density to enable their use for external Na+ sequestration; increasing the efficiency of internal Na+ sequestration in vacuoles by the orchestrated regulation of tonoplast NHX exchangers and slow and fast vacuolar channels, combined with greater cytosolic K+ retention; controlling stomata aperture and optimizing water use efficiency by reducing stomatal density; and efficient control of xylem ion loading, enabling rapid shoot osmotic adjustment while preventing prolonged Na+ transport to the shoot. PMID:24085482

  3. Plant Species Recovery on a Compacted Skid Road

    PubMed Central

    Demir, Murat; Makineci, Ender; Gungor, Beyza Sat

    2008-01-01

    This study was executed to determine the plant species of herbaceous cover in a skid road subjected to soil compaction due to timber skidding in a beech (Fagus orientalis Lipsky.) stand. Our previous studies have shown that ground based timber skidding destroys the soils extremely, and degradations on ecosystem because of the timber skidding limit recovery and growth of plant cover on skid roads. However, some plant species show healthy habitat, recovery and they can survive after the extreme degradation in study area. We evaluated composition of these plant species and their cover-abundance scales in 100 m x 3 m transect. 15 plant species were determined belongs to 12 plant families and Liliaceae was the highest representative plant family. Smilax aspera L., Epimedium pubigerum (DC.) Moren et Decaisne, Carex distachya Desf. var. distachya Desf., Pteridium aquilinum (L.) Kuhn., Trachystemon orientalis (L.) G. Don, Hedera helix L. have the highest cover-abundance scale overall of determined species on compacted skid road.

  4. Phytophthora Species, New Threats to the Plant Health in Korea

    PubMed Central

    Hyun, Ik-Hwa; Choi, Woobong

    2014-01-01

    Given the lack of a resistant genetic pool in host plants, the introduction of exotic invasive pathogens can result in epidemics that affect a specific ecosystem and economy. Plant quarantine, which is designed to protect endemic plant resources, is a highly invaluable safeguard that should keep biosecurity with increasing international trade and global transportation. A total of 34 species of plant pathogens including Phytophthora infestans were documented as introduced from other countries into Korea from 1900 to 2010. The genus Phytophthora, classified in oomycetes, includes more than 120 species that are mostly recognized worldwide as highly invasive plant pathogens. After 2000, over 50 new species of Phytophthora were identified internationally as plant pathogens occurring in crops and forest trees. In Korea, Phytophthora is also one of the most serious plant pathogens. To date, 22 species (about one-fifth of known species) of the genus have been identified and reported as plant pathogens in the country. The likelihood of new exotic Phytophthora species being introduced into Korea continues to increase, thus necessitating intensive plant quarantine inspections. As new potential threats to plant health in Korea, six Phytophthora species, namely, P. alni, P. inundata, P. kernoviae, P. pinifolia, P. quercina, and P. ramorum, are discussed in this review with focus on history, disease, biology, management, and plant quarantine issues. PMID:25506298

  5. Phytophthora species, new threats to the plant health in Korea.

    PubMed

    Hyun, Ik-Hwa; Choi, Woobong

    2014-12-01

    Given the lack of a resistant genetic pool in host plants, the introduction of exotic invasive pathogens can result in epidemics that affect a specific ecosystem and economy. Plant quarantine, which is designed to protect endemic plant resources, is a highly invaluable safeguard that should keep biosecurity with increasing international trade and global transportation. A total of 34 species of plant pathogens including Phytophthora infestans were documented as introduced from other countries into Korea from 1900 to 2010. The genus Phytophthora, classified in oomycetes, includes more than 120 species that are mostly recognized worldwide as highly invasive plant pathogens. After 2000, over 50 new species of Phytophthora were identified internationally as plant pathogens occurring in crops and forest trees. In Korea, Phytophthora is also one of the most serious plant pathogens. To date, 22 species (about one-fifth of known species) of the genus have been identified and reported as plant pathogens in the country. The likelihood of new exotic Phytophthora species being introduced into Korea continues to increase, thus necessitating intensive plant quarantine inspections. As new potential threats to plant health in Korea, six Phytophthora species, namely, P. alni, P. inundata, P. kernoviae, P. pinifolia, P. quercina, and P. ramorum, are discussed in this review with focus on history, disease, biology, management, and plant quarantine issues. PMID:25506298

  6. Functional identity versus species richness: herbivory resistance in plant communities

    PubMed Central

    Heimann, Juliane; Khler, Gnter; Mitschunas, Nadine; Weisser, Wolfgang W.

    2010-01-01

    The resistance of a plant community against herbivore attack may depend on plant species richness, with monocultures often much more severely affected than mixtures of plant species. Here, we used a plantherbivore system to study the effects of selective herbivory on consumption resistance and recovery after herbivory in 81 experimental grassland plots. Communities were established from seed in 2002 and contained 1, 2, 4, 8, 16 or 60 plant species of 1, 2, 3 or 4 functional groups. In 2004, pairs of enclosure cages (1m tall, 0.5m diameter) were set up on all 81 plots. One randomly selected cage of each pair was stocked with 10 male and 10 female nymphs of the meadow grasshopper, Chorthippus parallelus. The grasshoppers fed for 2months, and the vegetation was monitored over 1year. Consumption resistance and recovery of vegetation were calculated as proportional changes in vegetation biomass. Overall, grasshopper herbivory averaged 6.8%. Herbivory resistance and recovery were influenced by plant functional group identity, but independent of plant species richness and number of functional groups. However, herbivory induced shifts in vegetation composition that depended on plant species richness. Grasshopper herbivory led to increases in herb cover at the expense of grasses. Herb cover increased more strongly in species-rich mixtures. We conclude that selective herbivory changes the functional composition of plant communities and that compositional changes due to selective herbivory depend on plant species richness. PMID:20429014

  7. Comparative Proteomic Analysis of Cultured Suspension Cells of the Halophyte Halogeton glomeratus by iTRAQ Provides Insights into Response Mechanisms to Salt Stress.

    PubMed

    Wang, Juncheng; Yao, Lirong; Li, Baochun; Meng, Yaxiong; Ma, Xiaole; Lai, Yong; Si, Erjing; Ren, Panrong; Yang, Ke; Shang, Xunwu; Wang, Huajun

    2016-01-01

    Soil salinity severely threatens land use capability and crop yields worldwide. An analysis of the molecular mechanisms of salt tolerance in halophytes will contribute to the development of salt-tolerant crops. In this study, a combination of physiological characteristics and iTRAQ-based proteomic approaches was conducted to investigate the molecular mechanisms underlying the salt response of suspension cell cultures of halophytic Halogeton glomeratus. These cells showed halophytic growth responses comparable to those of the whole plant. In total, 97 up-regulated proteins and 192 down-regulated proteins were identified as common to both 200 and 400 mM NaCl concentration treatments. Such salinity responsive proteins were mainly involved in energy, carbohydrate metabolism, stress defense, protein metabolism, signal transduction, cell growth, and cytoskeleton metabolism. Effective regulatory protein expression related to energy, stress defense, and carbohydrate metabolism play important roles in the salt-tolerance of H. glomeratus suspension cell cultures. However, known proteins regulating Na(+) efflux from the cytoplasm and its compartmentalization into the vacuole did not change significantly under salinity stress suggesting our existing knowledge concerning Na(+) extrusion and compartmentalization in halophytes needs to be evaluated further. Such data are discussed in the context of our current understandings of the mechanisms involved in the salinity response of the halophyte, H. glomeratus. PMID:26904073

  8. Comparative Proteomic Analysis of Cultured Suspension Cells of the Halophyte Halogeton glomeratus by iTRAQ Provides Insights into Response Mechanisms to Salt Stress

    PubMed Central

    Wang, Juncheng; Yao, Lirong; Li, Baochun; Meng, Yaxiong; Ma, Xiaole; Lai, Yong; Si, Erjing; Ren, Panrong; Yang, Ke; Shang, Xunwu; Wang, Huajun

    2016-01-01

    Soil salinity severely threatens land use capability and crop yields worldwide. An analysis of the molecular mechanisms of salt tolerance in halophytes will contribute to the development of salt-tolerant crops. In this study, a combination of physiological characteristics and iTRAQ-based proteomic approaches was conducted to investigate the molecular mechanisms underlying the salt response of suspension cell cultures of halophytic Halogeton glomeratus. These cells showed halophytic growth responses comparable to those of the whole plant. In total, 97 up-regulated proteins and 192 down-regulated proteins were identified as common to both 200 and 400 mM NaCl concentration treatments. Such salinity responsive proteins were mainly involved in energy, carbohydrate metabolism, stress defense, protein metabolism, signal transduction, cell growth, and cytoskeleton metabolism. Effective regulatory protein expression related to energy, stress defense, and carbohydrate metabolism play important roles in the salt-tolerance of H. glomeratus suspension cell cultures. However, known proteins regulating Na+ efflux from the cytoplasm and its compartmentalization into the vacuole did not change significantly under salinity stress suggesting our existing knowledge concerning Na+ extrusion and compartmentalization in halophytes needs to be evaluated further. Such data are discussed in the context of our current understandings of the mechanisms involved in the salinity response of the halophyte, H. glomeratus. PMID:26904073

  9. DO SPECIES EVENNESS AND PLANT DENSITY INFLUENCE THE MAGNITUDE OF SELECTION AND COMPLEMENTARITY EFFECTS IN ANNUAL PLANT SPECIES MIXTURES?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diversity is a function of species richness and of species evenness. Plant species richness is thought to influence primary productivity and other ecosystem processes via mechanisms that (1) favor species with particular traits (non-complementarity) and (2) promote niche differentiation or facilita...

  10. Binucleation to breed new plant species adaptable to their environments

    PubMed Central

    Moustafa, Khaled

    2015-01-01

    Classical plant breeding approaches may fall short to breed new plant species of high environmental and ecological interests. Biotechnological and genetic manipulations, on the other hand, may hold more effective capabilities to circumvent the limitations of sexual incompatibility and conventional breeding programs. Given that plant cells encompass multiple copies of organellar genomes (mitochondrial and plastidial genomes), an important question could be raised about whether an artificial attempt to duplicate the nuclear genome might also be conceivable through a binucleation approach (generating plant cells with 2 nuclei from 2 different plant species) for potential production of new polyploidies that would characterize new plant species. Since the complexities of plant genomes are the result of multiple genome duplications, an artificial binucleation approach would thus be of some interest to eventually varying plant genomes and producing new polyploidy from related or distal plant species. Here, I discuss the potentiality of such an approach to engineer binucleated plant cells as a germ of new plant species to fulfill some environmental applications such as increasing the biodiversity and breeding new species adaptable to harsh environmental stresses and increasing green surfaces to reduce atmospheric pollutions in arid lands with poor vegetation. PMID:26322577

  11. Soil organisms shape the competition between grassland plant species.

    PubMed

    Sabais, Alexander C W; Eisenhauer, Nico; König, Stephan; Renker, Carsten; Buscot, François; Scheu, Stefan

    2012-12-01

    Decomposers and arbuscular mycorrhizal fungi (AMF) both determine plant nutrition; however, little is known about their interactive effects on plant communities. We set up a greenhouse experiment to study effects of plant competition (one- and two-species treatments), Collembola (Heteromurus nitidus and Protaphorura armata), and AMF (Glomus intraradices) on the performance (above- and belowground productivity and nutrient uptake) of three grassland plant species (Lolium perenne, Trifolium pratense, and Plantago lanceolata) belonging to three dominant plant functional groups (grasses, legumes, and herbs). Generally, L. perenne benefited from being released from intraspecific competition in the presence of T. pratense and P. lanceolata. However, the presence of AMF increased the competitive strength of P. lanceolata and T. pratense against L. perenne and also modified the effects of Collembola on plant productivity. The colonization of roots by AMF was reduced in treatments with two plant species suggesting that plant infection by AMF was modified by interspecific plant interactions. Collembola did not affect total colonization of roots by AMF, but increased the number of mycorrhizal vesicles in P. lanceolata. AMF and Collembola both enhanced the amount of N and P in plant shoot tissue, but impacts of Collembola were less pronounced in the presence of AMF. Overall, the results suggest that, by differentially affecting the nutrient acquisition and performance of plant species, AMF and Collembola interactively modify plant competition and shape the composition of grassland plant communities. The results suggest that mechanisms shaping plant community composition can only be understood when complex belowground interactions are considered. PMID:22678109

  12. Nurse plant effects on plant species richness in drylands: the role of grazing, rainfall and species specificity

    PubMed Central

    Soliveres, Santiago; Eldridge, David J.; Hemmings, Frank; Maestre, Fernando T.

    2015-01-01

    The outcome of plant-plant interactions depends on environmental (e.g. grazing, climatic conditions) and species-specific attributes (e.g. life strategy and dispersal mode of the species involved). However, the joint effects of such factors on pairwise plant-plant interactions, and how they modulate the role of these interactions at the community level, have not been addressed before. We assessed how these species-specific (life strategy and dispersal) and environmental (grazing and rainfall) factors affected the co-occurrence of 681 plant species pairs on open woodlands in south-eastern Australia. Species-specific attributes affected the co-occurrence of most species pairs, with higher co-occurrence levels dominating for drought-intolerant species. The dispersal mechanism only affected drought-tolerant beneficiaries, with more positive co-occurrences for vertebrate-dispersed species. Conversely, the percentage of facilitated species at the community scale declined under higher rainfall availabilities. A significant grazing × rainfall interaction on the percentage of facilitated species suggests that grazing-mediated protection was important under low to moderate, but not high, rainfall availabilities. This study improves our ability to predict changes in plant-plant interactions along environmental gradients, and their effect on community species richness, by highlighting that: 1) species-specific factors were more important than environmental conditions as drivers of a large amount (~30%) of the pairwise co-occurrences evaluated; 2) grazing and rainfall interaction drive the co-occurrence among different species in the studied communities, and 3) the effect of nurse plants on plant species richness will depend on the relative dominance of particular dispersal mechanisms or life strategies prone to be facilitated. PMID:25914602

  13. CHALLENGES IN DEVELOPING NEW PLANTS SPECIES FOR INDUSTRIAL USES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are new markets for many new plant species in the areas of bioproducts, biofuels, and bioenergy. The species that are suitable for these markets all have unique properties in their seed oil or other plant part, making them environmentally friendly as replacements for petroleum products, and ...

  14. USING REMOTE SENSING TO DETECT AND MAP INVASIVE PLANT SPECIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Invasive exotic plant species present a serious problem to natural resource managers in the United States. This paper presents an overview on the application of aerial photography and airborne videography for detecting invasive plant species in terrestrial and aquatic environments in the United Sta...

  15. PARASITISM OF BEMISIA TABACI ON NUMEROUS SPECIES OF HOST PLANTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of numerous vegetable and other agronomic plant species on incidence of parasitism of the B-biotype sweetpotato whitefly, Bemisia tabaci (Gennadius), by augmentation with parasitoids was determined in field plots. Tests were conducted on 16 taxonomically diversified plant species (Bet...

  16. Host plant species affects virulence in monarch butterfly parasites.

    PubMed

    de Roode, Jacobus C; Pedersen, Amy B; Hunter, Mark D; Altizer, Sonia

    2008-01-01

    1. Studies have considered how intrinsic host and parasite properties determine parasite virulence, but have largely ignored the role of extrinsic ecological factors in its expression. 2. We studied how parasite genotype and host plant species interact to determine virulence of the protozoan parasite Ophryocystis elektroscirrha (McLaughlin & Myers 1970) in the monarch butterfly Danaus plexippus L. We infected monarch larvae with one of four parasite genotypes and reared them on two milkweed species that differed in their levels of cardenolides: toxic chemicals involved in predator defence. 3. Parasite infection, replication and virulence were affected strongly by host plant species. While uninfected monarchs lived equally long on both plant species, infected monarchs suffered a greater reduction in their life spans (55% vs. 30%) on the low-cardenolide vs. the high-cardenolide host plant. These life span differences resulted from different levels of parasite replication in monarchs reared on the two plant species. 4. The virulence rank order of parasite genotypes was unaffected by host plant species, suggesting that host plant species affected parasite genotypes similarly, rather than through complex plant species-parasite genotype interactions. 5. Our results demonstrate that host ecology importantly affects parasite virulence, with implications for host-parasite dynamics in natural populations. PMID:18177332

  17. A parasitic plant increases native and exotic plant species richness in vernal pools

    PubMed Central

    Graffis, Andrea M.; Kneitel, Jamie M.

    2015-01-01

    Species interactions are well known to affect species diversity in communities, but the effects of parasites have been less studied. Previous studies on parasitic plants have found both positive and negative effects on plant community diversity. Cuscuta howelliana is an abundant endemic parasitic plant that inhabits California vernal pools. We tested the hypothesis that C. howelliana acts as a keystone species to increase plant species richness in vernal pools through a C. howelliana removal experiment at Beale Air Force Base in north-central California. Vernal pool endemic plants were parasitized more frequently, and Eryngium castrense and Navarretia leucocephala were the most frequently parasitized host plant species of C. howelliana. Cuscuta howelliana caused higher plant species richness, both natives and exotics, compared with removal plots. However, there was no single plant species that significantly increased with C. howelliana removal. Decreases in Eryngium castrense percent cover plots with C. howelliana is a plausible explanation for differences in species richness. In conclusion, C. howelliana led to changes in species composition and increases in plant species richness, consistent with what is expected from the effects of a keystone species. This research provides support for a shift in management strategies that focus on species-specific targets to strategies that target maintenance of complex species interactions and therefore maximize biodiversity and resilience of ecosystems. PMID:26307042

  18. Assessment of the potential of halophytes as energy crops for the electric utility industry. Final report

    SciTech Connect

    Goodin, J.R.

    1984-09-01

    This technical report assesses and estimates the potential of selected halophytes as future renewable energy resources, especially by US electric utilities, and familiarizes nonspecialists with research and development problems that must be resolved before these energy sources can become dependable supplies of energy. A literature search related to both indigenous and exotic species of halophytes has been done and appropriate terrestrial species have been selected. Selection criteria include: total biomass potential, genetic constraints, establishment and cultivation requirements, regions of suitability, secondary credits, and a number of other factors. Based on these selection criteria, for the arid western states with high levels of salinity in water and/or soils, there is little potential for energy feedstocks derived from grasses and herbaceous forbs. Likewise, coastal marshes, estuaries, and mangrove swamps, although excellent biomass producers, are too limited by region and have too many ecological and environmental problems for consideration. The deep-rooted, perennial woody shrubs indigenous to many saline regions of the west provide the best potential. The number of species in this group is limited, and Atriplex canescens, Sarcobatus vermiculatus, and Chrysothamnus nauseosus are the three species with the greatest biological potential. These shrubs would receive minimal energy inputs in cultivation, would not compete with agricultural land, and would restore productivity to severely disturbed sites. One might logically expect to achieve biomass feedstock yields of three to five tons/acre/yr on a long-term sustainable basis. The possibility also exists that exotic species might be introduced. 67 references, 1 figure, 5 tables.

  19. Gas chromatographic-mass spectrometric method for polycyclic aromatic hydrocarbon analysis in plant biota.

    PubMed

    Meudec, A; Dussauze, J; Jourdin, M; Deslandes, E; Poupart, N

    2006-03-10

    Using gas chromatography-mass spectrometry, a new method was developed for the identification and the quantification of polycyclic aromatic hydrocarbons (PAHs) in plants. This method was particularly optimised for PAH analyses in marine plants such as the halophytic species, Salicornia fragilis Ball et Tutin. The saponification of samples and their clean up by Florisil solid-phase extraction succeeded in eliminating pigments and natural compounds, which may interfere with GC-MS analysis. Moreover, a good recovery of the PAHs studied was obtained with percentages ranging from 88 to 116%. Application to the determination of PAH in a wide range of coastal halophytic plants is presented and validated the efficiency, the accuracy and the reproducibility of this method. PMID:16442550

  20. Ion homeostasis in a salt-secreting halophytic grass

    PubMed Central

    Sanadhya, Payal; Agarwal, Parinita; Agarwal, Pradeep K.

    2015-01-01

    Salinity adversely affects plant growth and development, and disturbs intracellular ion homeostasis, resulting in cellular toxicity. Plants that tolerate salinity, halophytes, do so by manifesting numerous physiological and biochemical processes in coordination to alleviate cellular ionic imbalance. The present study was undertaken to analyse the salt tolerance mechanism in Aeluropus lagopoides (L.) trin. Ex Thw. (Poaceae) at both physiological and molecular levels. Plants secreted salt from glands, which eventually produced pristine salt crystals on leaves and leaf sheaths. The rate of salt secretion increased with increasing salt concentration in the growth medium. Osmotic adjustment was mainly achieved by inorganic osmolytes (Na+) and at 100 mM NaCl no change was observed in organic osmolytes in comparison to control plants. At 300 mM NaCl and with 150 mM NaCl + 150 mM KCl, the concentration of proline, soluble sugars and amino acids was significantly increased. Transcript profiling of transporter genes revealed differential spatial and temporal expressions in both shoot and root tissues in a manner synchronized towards maintaining ion homeostasis. In shoots, AlHKT2;1 transcript up-regulation was observed at 12 and 24 h in all the treatments, whereas in roots, maximum induction was observed at 48 h with K+ starvation. The HAK transcript was relatively abundant in shoot tissue with all the treatments. The plasma membrane Na+/H+ antiporter, SOS1, and tonoplast Na+/H+ antiporter, NHX1, were found to be significantly up-regulated in shoot tissue. Our data demonstrate that AlHKT2;1, HAK, SOS1, NHX1 and V-ATPase genes play a pivotal role in regulating the ion homeostasis in A. lagopoides. PMID:25990364

  1. Ion homeostasis in a salt-secreting halophytic grass.

    PubMed

    Sanadhya, Payal; Agarwal, Parinita; Agarwal, Pradeep K

    2015-01-01

    Salinity adversely affects plant growth and development, and disturbs intracellular ion homeostasis, resulting in cellular toxicity. Plants that tolerate salinity, halophytes, do so by manifesting numerous physiological and biochemical processes in coordination to alleviate cellular ionic imbalance. The present study was undertaken to analyse the salt tolerance mechanism in Aeluropus lagopoides (L.) trin. Ex Thw. (Poaceae) at both physiological and molecular levels. Plants secreted salt from glands, which eventually produced pristine salt crystals on leaves and leaf sheaths. The rate of salt secretion increased with increasing salt concentration in the growth medium. Osmotic adjustment was mainly achieved by inorganic osmolytes (Na(+)) and at 100 mM NaCl no change was observed in organic osmolytes in comparison to control plants. At 300 mM NaCl and with 150 mM NaCl + 150 mM KCl, the concentration of proline, soluble sugars and amino acids was significantly increased. Transcript profiling of transporter genes revealed differential spatial and temporal expressions in both shoot and root tissues in a manner synchronized towards maintaining ion homeostasis. In shoots, AlHKT2;1 transcript up-regulation was observed at 12 and 24 h in all the treatments, whereas in roots, maximum induction was observed at 48 h with K(+) starvation. The HAK transcript was relatively abundant in shoot tissue with all the treatments. The plasma membrane Na(+)/H(+) antiporter, SOS1, and tonoplast Na(+)/H(+) antiporter, NHX1, were found to be significantly up-regulated in shoot tissue. Our data demonstrate that AlHKT2;1, HAK, SOS1, NHX1 and V-ATPase genes play a pivotal role in regulating the ion homeostasis in A. lagopoides. PMID:25990364

  2. Plant Species Diversity and Pasture Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Farmers face many challenges in pasture management, such as evolving agri-environmental schemes to protect natural resources, and need new management techniques to remain sustainable. Ecological research indicates that increased plant biodiversity benefits ecosystem functions such as primary product...

  3. Insights into the physiological responses of the facultative halophyte Aeluropus littoralis to the combined effects of salinity and phosphorus availability.

    PubMed

    Talbi Zribi, Ons; Barhoumi, Zouhaier; Kouas, Saber; Ghandour, Mohamed; Slama, Ines; Abdelly, Chedly

    2015-09-15

    In this work, we investigate the physiological responses to P deficiency (5μM KH2PO4=D), salt stress (400mM NaCl=C+S), and their combination (D+S) on the facultative halophyte Aeluropus littoralis to understand how plants adapt to these combined stresses. When individually applied, both P deficiency and salinity significantly restricted whole plant growth, with a more marked effect of the latter stress. However, the effects of the two stresses were not additive in plant biomass production since the response of plants to combined salinity and P deficiency was similar to that of plants grown under salt stress alone. In addition the observed features under salinity alone are kept when plants are simultaneously subjected to the combined effects of salinity and P deficiency such as biomass partitioning; the synthesis of proline and the K(+)/Na(+) selectivity ratio. Thus, increasing P availability under saline conditions has no significant effect on salt tolerance in this species. Plants cultivated under the combined effects of salinity and P deficiency exhibited the lowest leaf water potential. This trend was associated with a high accumulation of Na(+), Cl(-) and proline in shoots of salt treated plants suggesting the involvement of these solutes in osmotic adjustment. Proline could be involved in other physiological processes such as free radical scavenging. Furthermore, salinity has no significant effect on phosphorus acquisition when combined with a low P supply and it significantly decreased this parameter when combined with a sufficient P supply. This fact was probably due to salt's effect on P transporters. In addition, shoot soluble sugars accumulation under both P deficiency treatments with and without salt likely play an important role in the adaptation of A. littoralis plants to P shortage applied alone or combined with salinity. Moreover, there was a strong correlation between shoot and root intracellular acid phosphatase activity and phosphorus use efficiency which strengthens the assumption that intracellular acid phosphatase enzymes are involved in P remobilization in this species. Finally, our results showed that P availability has no significant effect on salt excretion in A. littorlais which suggests that independently of the P status in the plant, excretion remains priority over other functions requiring energy such as growth. This result could also indicate that salt excretion is not energy-dependent in this species. PMID:26476701

  4. A stress inducible SUMO conjugating enzyme gene (SaSce9) from a grass halophyte Spartina alterniflora enhances salinity and drought stress tolerance in Arabidopsis

    PubMed Central

    2012-01-01

    Background SUMO (Small Ubiquitin related Modifier) conjugation is a post translational regulatory process found in all eukaryotes, mediated by SUMO activating enzyme, SUMO conjugating enzyme, and SUMO ligase for the attachment of SUMO to its target protein. Although the mechanism for regulation of SUMO conjugation pathway genes under abiotic stress has been studied to certain extent, the role of SUMO conjugating enzyme in improving abiotic stress tolerance to plant is largely unexplored. Here, we have characterized a SUMO conjugating enzyme gene ‘SaSce9’ from a halophytic grass Spartina alterniflora and investigated its role in imparting abiotic stress tolerance. Results SaSce9 gene encodes for a polypeptide of 162 amino acids with a molecular weight of ~18 kD and isoelectric point 8.43. Amino acid sequence comparisons of SaSce9 with its orthologs from other plant species showed high degree (~85-93%) of structural conservation among each other. Complementation analysis using yeast SCE mutant, Ubc9, revealed functional conservation of SaSce9 between yeast and S. alterniflora. SaSce9 transcript was inducible by salinity, drought, cold, and exogenously supplied ABA both in leaves and roots of S. alterniflora. Constitutive overexpression of SaSce9 in Arabidopsis through Agrobacterium mediated transformation improved salinity and drought tolerance of Arabidopsis. SaSce9 overexpressing Arabidopsis plants retained more chlorophyll and proline both under salinity and drought stress. SaSce9 transgenic plants accumulated lower levels of reactive oxygen under salinity stress. Expression analysis of stress responsive genes in SaSce9 Arabidopsis plants revealed the increased expression of antioxidant genes, AtSOD and AtCAT, ion antiporter genes, AtNHX1 and AtSOS1, a gene involved in proline biosynthesis, AtP5CS, and a gene involved in ABA dependent signaling pathway, AtRD22. Conclusions These results highlight the prospect of improving abiotic stress tolerance in plants through genetic engineering of the sumoylation pathway. The study provides evidence that the overexpression of SaSce9 in plant can improve salinity and drought stress tolerance by protecting the plant through scavenging of ROS, accumulation of an osmolyte, proline, and expression of stress responsive genes. In addition, this study demonstrates the potential of the halophyte grass S. alterniflora as a reservoir of abiotic stress related genes for crop improvement. PMID:23051937

  5. Phytotoxins produced by plant pathogenic Streptomyces species.

    PubMed

    Bignell, D R D; Fyans, J K; Cheng, Z

    2014-02-01

    Streptomyces is a large genus consisting of soil-dwelling, filamentous bacteria that are best known for their capability of producing a vast array of medically and agriculturally useful secondary metabolites. In addition, a small number of Streptomyces spp. are capable of colonizing and infecting the underground portions of living plants and causing economically important crop diseases such as potato common scab (CS). Research into the mechanisms of Streptomyces plant pathogenicity has led to the identification and characterization of several phytotoxic secondary metabolites that are known or suspected of contributing to diseases in various plants. The best characterized are the thaxtomin phytotoxins, which play a critical role in the development of CS, acid scab and soil rot of sweet potato. In addition, the best-characterized CS-causing pathogen, Streptomyces scabies, produces a molecule that is predicted to resemble the Pseudomonas syringae coronatine phytotoxin and which contributes to seedling disease symptom development. Other Streptomyces phytotoxic secondary metabolites that have been identified include concanamycins, FD-891 and borrelidin. Furthermore, there is evidence that additional, unknown metabolites may participate in Streptomyces plant pathogenicity. Such revelations have implications for the rational development of better management procedures for controlling CS and other Streptomyces plant diseases. PMID:24131731

  6. Evaluating plant invasions from both habitat and species perspectives

    USGS Publications Warehouse

    Chong, G.W.; Otsuki, Y.; Stohlgren, T.J.; Guenther, D.; Evangelista, P.; Villa, C.; Waters, A.

    2006-01-01

    We present an approach to quantitatively assess nonnative plant invasions at landscape scales from both habitat and species perspectives. Our case study included 34 nonnative species found in 142 plots (0.1 ha) in 14 vegetation types within the Grand Staircase-Escalante National Monument, Utah. A plot invasion index, based on nonnative species richness and cover, showed that only 16 of 142 plots were heavily invaded. A species invasive index, based on frequency, cover, and number of vegetation types invaded, showed that only 7 of 34 plant species were highly invasive. Multiple regressions using habitat characteristics (moisture index, elevation, soil P, native species richness, maximum crust development class, bare ground, and rock) explained 60% of variation in nonnative species richness and 46% of variation in nonnative species cover. Three mesic habitats (aspen, wet meadow, and perennial riparian types) were particularly invaded (31 of 34 nonnative species studied were found in these types). Species-specific logistic regression models for the 7 most invasive species correctly predicted occurrence 89% of the time on average (from 80% for Bromus tectorum, a habitat generalist, to 93% for Tamarix spp., a habitat specialist). Even with such a modest sampling intensity (<0.1% of the landscape), this multiscale sampling scheme was effective at evaluating habitat vulnerability to invasion and the occurrence of the 7 most invasive nonnative species. This approach could be applied in other natural areas to develop strategies to document invasive species and invaded habitats.

  7. Human population, grasshopper and plant species richness in European countries

    NASA Astrophysics Data System (ADS)

    Steck, Claude E.; Pautasso, Marco

    2008-11-01

    Surprisingly, several studies over large scales have reported a positive spatial correlation of people and biodiversity. This pattern has important implications for conservation and has been documented for well studied taxa such as plants, amphibians, reptiles, birds and mammals. However, it is unknown whether the pattern applies also to invertebrates other than butterflies and more work is needed to establish whether the species-people relationship is explained by both variables correlating with other environmental factors. We studied whether grasshopper species richness (Orthoptera, suborder Caelifera) is related to human population size in European countries. As expected, the number of Caelifera species increases significantly with increasing human population size. But this is not the case when controlling for country area, latitude and number of plant species. Variations in Caelifera species richness are primarily associated with variations in plant species richness. Caelifera species richness also increases with decreasing mean annual precipitation, Gross Domestic Product per capita (used as an indicator for economic development) and net fertility rate of the human population. Our analysis confirms the hypothesis that the broad-scale human population-biodiversity correlations can be explained by concurrent variations in factors other than human population size such as plant species richness, environmental productivity, or habitat heterogeneity. Nonetheless, more populated countries in Europe still have more Caelifera species than less populated countries and this poses a particular challenge for conservation.

  8. Widespread plant species: Natives versus aliens in our changing world

    USGS Publications Warehouse

    Stohlgren, T.J.; Pysek, P.; Kartesz, J.; Nishino, M.; Pauchard, A.; Winter, M.; Pino, J.; Richardson, D.M.; Wilson, J.R.U.; Murray, B.R.; Phillips, M.L.; Ming-yang, L.; Celesti-Grapow, L.; Font, X.

    2011-01-01

    Estimates of the level of invasion for a region are traditionally based on relative numbers of native and alien species. However, alien species differ dramatically in the size of their invasive ranges. Here we present the first study to quantify the level of invasion for several regions of the world in terms of the most widely distributed plant species (natives vs. aliens). Aliens accounted for 51.3% of the 120 most widely distributed plant species in North America, 43.3% in New South Wales (Australia), 34.2% in Chile, 29.7% in Argentina, and 22.5% in the Republic of South Africa. However, Europe had only 1% of alien species among the most widespread species of the flora. Across regions, alien species relative to native species were either as well-distributed (10 comparisons) or more widely distributed (5 comparisons). These striking patterns highlight the profound contribution that widespread invasive alien plants make to floristic dominance patterns across different regions. Many of the most widespread species are alien plants, and, in particular, Europe and Asia appear as major contributors to the homogenization of the floras in the Americas. We recommend that spatial extent of invasion should be explicitly incorporated in assessments of invasibility, globalization, and risk assessments. ?? 2011 Springer Science+Business Media B.V.

  9. Widespread plant species: natives vs. aliens in our changing world

    USGS Publications Warehouse

    Stohlgren, Thomas J.; Pyšek, Petr; Kartesz, John; Nishino, Misako; Pauchard, Aníbal; Winter, Marten; Pino, Joan; Richardson, David M.; Wilson, John R.U.; Murray, Brad R.; Phillips, Megan L.; Ming-yang, Li; Celesti-Grapow, Laura; Font, Xavier

    2011-01-01

    Estimates of the level of invasion for a region are traditionally based on relative numbers of native and alien species. However, alien species differ dramatically in the size of their invasive ranges. Here we present the first study to quantify the level of invasion for several regions of the world in terms of the most widely distributed plant species (natives vs. aliens). Aliens accounted for 51.3% of the 120 most widely distributed plant species in North America, 43.3% in New South Wales (Australia), 34.2% in Chile, 29.7% in Argentina, and 22.5% in the Republic of South Africa. However, Europe had only 1% of alien species among the most widespread species of the flora. Across regions, alien species relative to native species were either as well-distributed (10 comparisons) or more widely distributed (5 comparisons). These striking patterns highlight the profound contribution that widespread invasive alien plants make to floristic dominance patterns across different regions. Many of the most widespread species are alien plants, and, in particular, Europe and Asia appear as major contributors to the homogenization of the floras in the Americas. We recommend that spatial extent of invasion should be explicitly incorporated in assessments of invasibility, globalization, and risk assessments.

  10. Thermal Hyperspectral Remote Sensing for Plant Species and Stress Detection

    NASA Astrophysics Data System (ADS)

    Schlerf, M.; Rock, G.; Ullah, S.; Gerhards, M.; Udelhoven, T.; Skidmore, A. K.

    2014-12-01

    Thermal infrared (TIR) spectroscopy offers a novel opportunity for measuring emissivity spectra of natural surfaces. Emissivity spectra are not directly measured, they first have to be retrieved from the raw measurements. Once retrieved, the spectra can be used, for example, to discriminate plant species or to detect plant stress. Knowledge of plant species distribution is essential for the sustainable management of ecosystems. Remote sensing of plant species has so far mostly been limited to data in the visible and near-infrared where, however, different species often reveal similar reflectance curves. Da Luz and Crowley showed in a recent paper that in the TIR plants indeed have distinct spectral features. Also with a certain species, subtle changes of emissivity in certain wavebands may occur, when biochemical compounds change due to osmotic adjustment induced by water stress. Here we show, that i) emissive imaging spectroscopy allows for reliable and accurate retrieval of plant emissivity spectra, ii) emissivity spectra are well suited to discriminate plant species, iii) a reduction in stomatal conductance (caused by stress) changes the thermal infrared signal. For 13 plant species in the laboratory and for 8 plant species in a field setup emissivity spectra were retrieved. A comparison shows, that for most species the shapes of the emissivity curves agree quite well, but that clear offsets between the two types of spectra exist. Discrimination analysis revealed that based on the lab spectra, 13 species could be distinguished with an average overall classification accuracy of 92% using the 6 best spectral bands. For the field spectra (8 species), a similar high OAA of 89% was achieved. Species discrimination is likely to be possible due to variations in the composition of the superficial epidermal layer of plant leaves and in internal chemical concentrations producing unique emissivity features. However, to date, which spectral feature is responsible for which chemical compound remains unclear. This new technique of TIR spectroscopy bears great potential for floristic mapping and vegetation stress monitoring, besides other applications. Future airborne and spaceborne studies, however, will have to overcome a number of challenges, for instance the cavity effect, atmospheric influences, and signal-to-noise.

  11. Genetic diversity within a dominant plant outweighs plant species diversity in structuring an arthropod community.

    PubMed

    Crawford, Kerri M; Rudgers, Jennifer A

    2013-05-01

    Plant biodiversity is being lost at a rapid rate. This has spurred much interest in elucidating the consequences of this loss for higher trophic levels. Experimental tests have shown that both plant species diversity and genetic diversity within a plant species can influence arthropod community structure. However, the majority of these studies have been conducted in separate systems, so their relative importance is currently unresolved. Furthermore, potential interactions between the two levels of diversity, which likely occur in natural systems, have not been investigated. To clarify these issues, we conducted three experiments in a freshwater sand dune ecosystem. We (1) independently manipulated plant species diversity, (2) independently manipulated genetic diversity within the dominant plant species, Ammophila breviligulata, and (3) jointly manipulated genetic diversity within the dominant plant and species diversity. We found that genetic diversity within the dominant plant species, Ammophila breviligulata, more strongly influenced arthropod communities than plant species diversity, but this effect was dependent on the presence of other species. In species mixtures, A. breviligulata genetic diversity altered overall arthropod community composition, and arthropod richness and abundance peaked at the highest level of genetic diversity. Positive nonadditive effects of diversity were detected, suggesting that arthropods respond to emergent properties of diverse plant communities. However, in the independent manipulations where A. breviligulata was alone, effects of genetic diversity were weaker, with only arthropod richness responding. In contrast, plant species diversity only influenced arthropods when A. breviligulata was absent, and then only influenced herbivore abundance. In addition to showing that genetic diversity within a dominant plant species can have large effects on arthropod community composition, these results suggest that understanding how species diversity and genetic diversity interact to influence community structure may be critically important for predicting the consequences of biodiversity loss. PMID:23858643

  12. Does plant species co-occurrence influence soil mite diversity?

    PubMed

    St John, Mark G; Wall, Diana H; Behan-Pelletier, Valerie M

    2006-03-01

    Few studies have considered whether plant taxa can be used as predictors of belowground faunal diversity in natural ecosystems. We examined soil mite (Acari) diversity beneath six grass species at the Konza Prairie Biological Station, Kansas, USA. We tested the hypotheses that soil mite species richness, abundance, and taxonomic diversity are greater (1) beneath grasses in dicultures (different species) compared to monocultures (same species), (2) beneath grasses of higher resource quality (lower C:N) compared to lower resource quality, and (3) beneath heterogeneous mixes of grasses (C3 and C4 grasses growing together) compared to homogeneous mixes (C3 or C4 grasses) using natural occurrences of plant species as treatments. This study is the first to examine the interaction between above- and belowground diversity in a natural setting with species-level resolution of a hyper-diverse taxon. Our results indicate that grasses in diculture supported a more species and phylogenetically rich soil mite fauna than was observed for monocultures and that this relationship was significant at depth but not in the upper soil horizon. We noted that mite species richness was not linearly related to grass species richness, which suggests that simple extrapolations of soil faunal diversity based on plant species inventories may underestimate the richness of associated soil mite communities. The distribution of mite size classes in dicultures was considerably different than those for monocultures. There was no difference in soil mite richness between grass combinations of differing resource quality, or resource heterogeneity. PMID:16602292

  13. Nitric oxide and reactive oxygen species in plant biotic interactions.

    PubMed

    Scheler, Claudia; Durner, Jrg; Astier, Jeremy

    2013-08-01

    Nitric oxide (NO) and reactive oxygen species (ROS) are important signaling molecules in plants. Recent progress has been made in defining their role during plant biotic interactions. Over the last decade, their function in disease resistance has been highlighted and focused a lot of investigations. Moreover, NO and ROS have recently emerged as important players of defense responses after herbivore attacks. Besides their role in plant adaptive response development, NO and ROS have been demonstrated to be involved in symbiotic interactions between plants and microorganisms. Here we review recent data concerning these three sides of NO and ROS functions in plant biotic interactions. PMID:23880111

  14. Spatial heterogeneity influences native and nonnative plant species richness.

    PubMed

    Kumar, Sunil; Stohlgren, Thomas J; Chong, Geneva W

    2006-12-01

    Spatial heterogeneity may have differential effects on the distribution of native and nonnative plant species richness. We examined the effects of spatial heterogeneity on native and nonnative plant species richness distributions in the central part of Rocky Mountain National Park, Colorado, USA. Spatial heterogeneity around vegetation plots was characterized using landscape metrics, environmental/topographic variables (slope, aspect, elevation, and distance from stream or river), and soil variables (nitrogen, clay, and sand). The landscape metrics represented five components of landscape heterogeneity and were measured at four spatial extents (within varying radii of 120, 240, 480, and 960 m) using the FRAGSTATS landscape pattern analysis program. Akaike's Information Criterion adjusted for small sample size (AICc) was used to select the best models from a set of multiple linear regression models developed for native and nonnative plant species richness at four spatial extents and three levels of ecological hierarchy (i.e., landscape, land cover, and community). Both native and nonnative plant species richness were positively correlated with edge density, Simpson's diversity index and interspersion/juxtaposition index, and were negatively correlated with mean patch size. The amount of variation explained at four spatial extents and three hierarchical levels ranged from 30% to 70%. At the landscape level, the best models explained 43% of the variation in native plant species richness and 70% of the variation in nonnative plant species richness (240-m extent). In general, the amount of variation explained was always higher for nonnative plant species richness, and the inclusion of landscape metrics always significantly improved the models. The best models explained 66% of the variation in nonnative plant species richness for both the conifer land cover type and lodgepole pine community. The relative influence of the components of spatial heterogeneity differed for native and nonnative plant species richness and varied with the spatial extent of analysis and levels of ecological hierarchy. The study offers an approach to quantify spatial heterogeneity to improve models of plant biodiversity. The results demonstrate that ecologists must recognize the importance of spatial heterogeneity in managing native and nonnative plant species. PMID:17249242

  15. Transmission specificities of plant viruses with the newly identified species of the Bemisia tabaci species complex.

    PubMed

    Polston, Jane E; De Barro, Paul; Boykin, Laura M

    2014-10-01

    Bemisia tabaci has had a colorful nomenclatural past and is now recognized as a species complex. This new species framework has added many new areas of research including adding new insight into the virus transmission specificity of the species in the B. tabaci species complex. There is a wide disparity in what is known about the transmission of plant viruses by different members of the B. tabaci species complex. In this paper, we have synthesized the transmission specificities of the plant viruses transmitted by species belonging to the complex. There are five genera of plant viruses with members that are transmitted by species of the B. tabaci species complex. The transmission of viruses belonging to two of these, Begomovirus and Crinivirus, are well studied and much is known in regards to the relationship between species and transmission and etiology. This is in contrast to viruses of the genera, Torradovirus and Carlavirus, for which very little is known inregards to their transmission. This is the first attempt to integrate viral data within the new B. tabaci species complex framework. It is clear that matching historical transmission data with the current species framework is difficult due to the lack of awareness of the underlying genetic diversity within B. tabaci. We encourage all researchers to determine which species of B. tabaci they are using to facilitate association of phenotypic traits with particular members of the complex. PMID:24464790

  16. Nutritive value in relation to plant species diversity of pastures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Planting forage mixtures may benefit pasture herbage production; however, changes in botanical composition could cause unstable nutritive value. Data from two grazing studies and a farm survey were used to examine how plant species diversity influenced herbage nutritive value. In one grazing study,...

  17. Stability of production and plant species diversity in managed grasslands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant biodiversity theory suggests that increased plant species diversity contributes to the stability of ecosystems. In managed grasslands, such as pastures, greater stability of herbage production would be beneficial. In this retrospective study, I used data from three reports from the 1930s, 1940...

  18. Suppressor of K+ transport growth defect 1 (SKD1) interacts with RING-type ubiquitin ligase and sucrose non-fermenting 1-related protein kinase (SnRK1) in the halophyte ice plant

    PubMed Central

    Chiang, Chih-Pin; Li, Chang-Hua; Jou, Yingtzy; Chen, Yu-Chan; Lin, Ya-Chung; Yang, Fang-Yu; Huang, Nu-Chuan; Yen, Hungchen Emilie

    2013-01-01

    SKD1 (suppressor of K+ transport growth defect 1) is an AAA-type ATPase that functions as a molecular motor. It was previously shown that SKD1 accumulates in epidermal bladder cells of the halophyte Mesembryanthemum crystallinum. SKD1 knock-down Arabidopsis mutants showed an imbalanced Na+/K+ ratio under salt stress. Two enzymes involved in protein post-translational modifications that physically interacted with McSKD1 were identified. McCPN1 (copine 1), a RING-type ubiquitin ligase, has an N-terminal myristoylation site that links to the plasma membrane, a central copine domain that interacts with McSKD1, and a C-terminal RING domain that catalyses protein ubiquitination. In vitro ubiquitination assay demonstrated that McCPN1 was capable of mediating ubiquitination of McSKD1. McSnRK1 (sucrose non-fermenting 1-related protein kinase) is a Ser/Thr protein kinase that contains an N-terminal STKc catalytic domain to phosphorylate McSKD1, and C-terminal UBA and KA1 domains to interact with McSKD1. The transcript and protein levels of McSnRK1 increased as NaCl concentrations increased. The formation of an SKD1SnRK1CPN1 ternary complex was demonstrated by yeast three-hybrid and bimolecular fluorescence complementation. It was found that McSKD1 preferentially interacts with McSnRK1 in the cytosol, and salt induced the re-distribution of McSKD1 and McSnRK1 towards the plasma membrane via the microtubule cytoskeleton and subsequently interacted with RING-type E3 McCPN1. The potential effects of ubiquitination and phosphorylation on McSKD1, such as changes in the ATPase activity and cellular localization, and how they relate to the functions of SKD1 in the maintenance of Na+/K+ homeostasis under salt stress, are discussed. PMID:23580756

  19. When Are Native Species Inappropriate for Conservation Plantings

    EPA Science Inventory

    Conservation agencies and organizations are generally reluctant to encourage the use of invasive plant species in conservation programs. Harsh lessons learned in the past have resulted in tougher screening protocols for non-indigenous species introductions and removal of many no...

  20. Increasing enemy biodiversity strengthens herbivore suppression on two plant species.

    PubMed

    Straub, Cory S; Snyder, William E

    2008-06-01

    Concern over biodiversity loss, especially at higher trophic levels, has led to a surge in studies investigating how changes in natural enemy diversity affect community and ecosystem functioning. These studies have found that increasing enemy diversity can strengthen, weaken, and not affect prey suppression, demonstrating that multi-enemy effects on prey are context-dependent. Here we ask how one factor, plant species identity, influences multi-enemy effects on prey. We focused on two plant species of agricultural importance, potato (Solanum tuberosum), and collards (Brassica oleracea L.). These species share a common herbivorous pest, the green peach aphid (Myzus persicae), but vary in structural and chemical traits that affect aphid reproductive rates and which may also influence inter-enemy interactions. In a large-scale field experiment, overall prey exploitation varied dramatically among the plant species, with enemies reducing aphid populations by approximately 94% on potatoes and approximately 62% on collards. Increasing enemy diversity similarly strengthened aphid suppression on both plants, however, and there was no evidence that plant species identity significantly altered the relationship between enemy diversity and prey suppression. Microcosm experiments suggested that, on both collards and potatoes, intraspecific competition among natural enemies exceeded interspecific competition. Enemy species showed consistent and significant differences in where they foraged on the plants, and enemies in the low-diversity treatment tended to spend less time foraging than enemies in the high-diversity treatment. These data suggest that increasing enemy diversity may strengthen aphid suppression because interspecific differences in where enemies forage on the plant allow for greater resource partitioning. Further, these functional benefits of diversity appear to be robust to changes in plant species identity. PMID:18589525

  1. Intraspecific genetic variation and species coexistence in plant communities.

    PubMed

    Ehlers, Bodil K; Damgaard, Christian F; Laroche, Fabien

    2016-01-01

    Many studies report that intraspecific genetic variation in plants can affect community composition and coexistence. However, less is known about which traits are responsible and the mechanisms by which variation in these traits affect the associated community. Focusing on plant-plant interactions, we review empirical studies exemplifying how intraspecific genetic variation in functional traits impacts plant coexistence. Intraspecific variation in chemical and architectural traits promotes species coexistence, by both increasing habitat heterogeneity and altering competitive hierarchies. Decomposing species interactions into interactions between genotypes shows that genotype × genotype interactions are often intransitive. The outcome of plant-plant interactions varies with local adaptation to the environment and with dominant neighbour genotypes, and some plants can recognize the genetic identity of neighbour plants if they have a common history of coexistence. Taken together, this reveals a very dynamic nature of coexistence. We outline how more traits mediating plant-plant interactions may be identified, and how future studies could use population genetic surveys of genotype distribution in nature and methods from trait-based ecology to better quantify the impact of intraspecific genetic variation on plant coexistence. PMID:26790707

  2. COMPETITION INTENSITY AND SPECIES EVENNESS: EFFECTS ON EXPRESSION OF NON-COMPLEMENTARY INTERACTIONS IN PLANT SPECIES MIXTURES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diversity is a function of species richness and evenness. Plant species richness influences primary productivity via mechanisms that (1) favor species with particular traits (non-complementarily) and (2) promote niche differentiation or facilitation between species (complementarily). Influences of ...

  3. Gene transfer to plants by diverse species of bacteria.

    PubMed

    Broothaerts, Wim; Mitchell, Heidi J; Weir, Brian; Kaines, Sarah; Smith, Leon M A; Yang, Wei; Mayer, Jorge E; Roa-Rodrguez, Carolina; Jefferson, Richard A

    2005-02-10

    Agrobacterium is widely considered to be the only bacterial genus capable of transferring genes to plants. When suitably modified, Agrobacterium has become the most effective vector for gene transfer in plant biotechnology. However, the complexity of the patent landscape has created both real and perceived obstacles to the effective use of this technology for agricultural improvements by many public and private organizations worldwide. Here we show that several species of bacteria outside the Agrobacterium genus can be modified to mediate gene transfer to a number of diverse plants. These plant-associated symbiotic bacteria were made competent for gene transfer by acquisition of both a disarmed Ti plasmid and a suitable binary vector. This alternative to Agrobacterium-mediated technology for crop improvement, in addition to affording a versatile 'open source' platform for plant biotechnology, may lead to new uses of natural bacteria-plant interactions to achieve plant transformation. PMID:15703747

  4. Herbivore effects on plant species density at varying productivity levels

    USGS Publications Warehouse

    Gough, L.; Grace, J.B.

    1998-01-01

    Artificially increasing primary productivity decreases plant species richness in many habitats; herbivory may affect this outcome, but it has rarely been directly addressed in fertilization studies. This experiment was conducted in two Louisiana coastal marshes to examine the effects of nutrient enrichment and sediment addition on herbaceous plant communities with and without vertebrate herbivory. After three growing seasons, fertilization increased community biomass in all plots, but decreased species density (the number of species per unit area) only in plots protected from herbivory. Herbivory alone did not alter species density at either site. At the brackish marsh, herbivory caused a shift in dominance in the fertilized plots from a species that is considered the competitive dominant, but is selectively eaten, to another less palatable species. At the fresh marsh, increased dead biomass in the absence of herbivory and in the fertilized plots probably contributed to the decrease in species density, perhaps by limiting germination of annuals. Our results support those of other fertilization studies in which plant species density decreases with increased biomass, but only in those plots protected from herbivory.

  5. Floristic summary of plant species in the air pollution literature

    USGS Publications Warehouse

    Bennett, J.P.

    1996-01-01

    A floristic summary and analysis was performed on a list of the plant species that have been studied for the effects of gaseous and chemical air pollutants on vegetation in order to compare the species with the flora of North America north of Mexico. The scientific names of 2081 vascular plant species were extracted from almost 4000 journal articles stored in two large literature databases on the effects of air pollutants on plants. Three quarters of the plant species studied occur in North America, but this was only 7% of the total North American flora. Sixteen percent and 56% of all North American genera and families have been studied. The most studied genus is Pinus with 70% of the North American species studied, and the most studied family is the grass family, with 12% of the species studied. Although Pinus is ranked 86th in the North American flora, the grass family is ranked third, indicating that representation at the family level is better than at the genus level. All of the top ten families in North America are represented in the top 20 families in the air pollution effects literature, but only one genus (Lupinus) in the top ten genera in North America is represented in the top thirteen genera in the air pollution literature.

  6. Identification of salt-induced genes from Salicornia brachiata, an extreme halophyte through expressed sequence tags analysis.

    PubMed

    Jha, Bhavanath; Agarwal, Pradeep K; Reddy, Palakolanu Sudhakar; Lal, Sanjay; Sopory, Sudhir K; Reddy, Malireddy K

    2009-04-01

    Salinity severely affects plant growth and development causing crop loss worldwide. We have isolated a large number of salt-induced genes as well as unknown and hypothetical genes from Salicornia brachiata Roxb. (Amaranthaceae). This is the first description of identification of genes in response to salinity stress in this extreme halophyte plant. Salicornia accumulates salt in its pith and survives even at 2 M NaCl under field conditions. For isolating salt responsive genes, cDNA subtractive hybridization was performed between control and 500 mM NaCl treated plants. Out of the 1200 recombinant clones, 930 sequences were submitted to the NCBI database (GenBank accession: EB484528 to EB485289 and EC906125 to EC906292). 789 ESTs showed matching with different genes in NCBI database. 4.8% ESTs belonged to stress-tolerant gene category and approximately 29% ESTs showed no homology with known functional gene sequences, thus classified as unknown or hypothetical. The detection of a large number of ESTs with unknown putative function in this species makes it an interesting contribution. The 90 unknown and hypothetical genes were selected to study their differential regulation by reverse Northern analysis for identifying their role in salinity tolerance. Interestingly, both up and down regulation at 500 mM NaCl were observed (21 and 10 genes, respectively). Northern analysis of two important salt tolerant genes, ASR1 (Abscisic acid stress ripening gene) and plasma membrane H+ATPase, showed the basal level of transcripts in control condition and an increase with NaCl treatment. ASR1 gene is made full length using 5' RACE and its potential role in imparting salt tolerance is being studied. PMID:19556705

  7. Comparative cross-species alternative splicing in plants.

    PubMed

    Ner-Gaon, Hadas; Leviatan, Noam; Rubin, Eitan; Fluhr, Robert

    2007-07-01

    Alternative splicing (AS) can add significantly to genome complexity. Plants are thought to exhibit less AS than animals. An algorithm, based on expressed sequence tag (EST) pairs gapped alignment, was developed that takes advantage of the relatively small intron and exon size in plants and directly compares pairs of ESTs to search for AS. EST pairs gapped alignment was first evaluated in Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and tomato (Solanum lycopersicum) for which annotated genome sequence is available and was shown to accurately predict splicing events. The method was then applied to 11 plant species that include 17 cultivars for which enough ESTs are available. The results show a large, 3.7-fold difference in AS rates between plant species with Arabidopsis and rice in the lower range and lettuce (Lactuca sativa) and sorghum (Sorghum bicolor) in the upper range. Hence, compared to higher animals, plants show a much greater degree of variety in their AS rates and in some plant species the rates of animal and plant AS are comparable although the distribution of AS types may differ. In eudicots but not monocots, a correlation between genome size and AS rates was detected, implying that in eudicots the mechanisms that lead to larger genomes are a driving force for the evolution of AS. PMID:17496110

  8. Sequencing and expression analysis of salt-responsive miRNAs and target genes in the halophyte smooth cordgrass (Spartina alternifolia Loisel).

    PubMed

    Zandkarimi, Hana; Bedre, Renesh; Solis, Julio; Mangu, Venkata; Baisakh, Niranjan

    2015-08-01

    MicroRNAs have been shown to be involved in regulating plant's response to environmental stresses, including salinity. There is no report yet on the miRNA-mediated posttranscriptional regulation of salt stress response of a grass halophyte by miRNAs. Here we report on the deep-sequencing followed by expression validation through (s)qRT-PCR of a selected set of salt-responsive miRNAs and their targets of the salt marsh monocot halophyte smooth cordgrass (Spartina alterniflora Loisel). Expression kinetics study of 12 miRNAs showed differential up/down-regulation in leaf and root tissues under salinity. Induction of expression of six putative novel microRNAs with high read counts in the sequence library suggested that the halophyte grass may possess different/novel gene posttranscriptional regulation of its salinity adaptation. Similarly, expression analysis of target genes of four selected miRNAs showed temporal and spatial variation in the up/down-regulation of their transcript accumulation under salt stress. The expression levels of miRNAs and their respective targets were coherent, non-coherent, or semi-coherent type. Understanding the gene regulation mechanism(s) at the miRNA level will broaden our fundamental understanding of the biology of the salt stress tolerance of the halophyte and provide novel positive regulators of salt stress tolerance for downstream research. PMID:25976974

  9. Which ornamental plant species effectively remove benzene from indoor air?

    NASA Astrophysics Data System (ADS)

    Liu, Yan-Ju; Mu, Yu-Jing; Zhu, Yong-Guan; Ding, Hui; Crystal Arens, Nan

    Phytoremediationusing plants to remove toxinsis an attractive and cost effective way to improve indoor air quality. This study screened ornamental plants for their ability to remove volatile organic compounds from air by fumigating 73 plant species with 150 ppb benzene, an important indoor air pollutant that poses a risk to human health. The 10 species found to be most effective at removing benzene from air were fumigated for two more days (8 h per day) to quantify their benzene removal capacity. Crassula portulacea, Hydrangea macrophylla, Cymbidium Golden Elf., Ficus microcarpa var. fuyuensis, Dendranthema morifolium, Citrus medica var. sarcodactylis, Dieffenbachia amoena cv. Tropic Snow; Spathiphyllum Supreme; Nephrolepis exaltata cv. Bostoniensis; Dracaena deremensis cv. Variegata emerged as the species with the greatest capacity to remove benzene from indoor air.

  10. Plant-soil feedback of native and range-expanding plant species is insensitive to temperature.

    PubMed

    van Grunsven, Roy Hendrikus Antonius; van der Putten, Wim H; Bezemer, T Martijn; Veenendaal, Elmar M

    2010-04-01

    Temperature change affects many aboveground and belowground ecosystem processes. Here we investigate the effect of a 5 degrees C temperature increase on plant-soil feedback. We compare plant species from a temperate climate region with immigrant plants that originate from warmer regions and have recently shifted their range polewards. We tested whether the magnitude of plant-soil feedback is affected by ambient temperature and whether the effect of temperature differs between these groups of plant species. Six European/Eurasian plant species that recently colonized the Netherlands (non-natives), and six related species (natives) from the Netherlands were selected. Plant-soil feedback of these species was determined by comparing performance in conspecific and heterospecific soils. In order to test the effect of temperature on these plant-soil feedback interactions, the experiments were performed at two greenhouse temperatures of 20/15 degrees C and 25/20 degrees C, respectively. Inoculation with unconditioned soil had the same effect on natives and non-natives. However, the effect of conspecific conditioned soil was negative compared to heterospecific soil for natives, but was positive for non-natives. In both cases, plant-soil interactions were not affected by temperature. Therefore, we conclude that the temperature component of climate change does not affect the direction, or strength of plant-soil feedback, neither for native nor for non-native plant species. However, as the non-natives have a more positive soil feedback than natives, climate warming may introduce new plant species in temperate regions that have less soil-borne control of abundance. PMID:20012099

  11. Genetic variation within a dominant shrub species determines plant species colonization in a coastal dune ecosystem.

    PubMed

    Crutsinger, Gregory M; Strauss, Sharon Y; Rudgers, Jennifer A

    2010-04-01

    The diversity and structure of plant communities is often determined by the presence and identity of competitively dominant species. Recent studies suggest that intraspecific variation within dominants may also have important community-level consequences. In a coastal dunes ecosystem of northern California, we use a decade-old common garden experiment to test the effects of a genetically based architectural dimorphism within a dominant native shrub, Baccharis pilularis, on plant colonization success and understory plant diversity. We found that erect Baccharis morphs had higher richness and cover of colonizing plant species (both native and exotic species) compared to prostrate morphs, as well as higher biomass of a dominant exotic dune grass (Ammophila arenaria). Trait differences between architectural morphs influenced the abiotic understory environment (light availability, soil surface temperature, and litter depth) and were associated with species colonization success. Taken together, our results demonstrate that incorporating within-species variation, particularly within dominant species, into community ecological research can increase the ability to predict patterns of species diversity and assembly within communities. PMID:20462137

  12. Oligosaccharide mass profiling of nutritionally important Salicornia brachiata, an extreme halophyte.

    PubMed

    Mishra, Avinash; Joshi, Mukul; Jha, Bhavanath

    2013-02-15

    Salicornia brachiata is an extreme halophyte, growing opulently in salt marshes and considered as potential alternative crop for seawater agriculture. Salicornia seeds are rich in protein and tender-shoots are eaten as salad greens. Total cell wall carbohydrate was isolated from seedlings, digested with β-glucanase enzyme cocktail and oligosaccharide mass profiling (OLIMP) was performed by using MALDI TOF-TOF mass spectroscopy. Salicornia OLIMP is represented by characteristic mass peaks m/z 477.3297-2094.4363. MS spectra exhibit xyloglucan oligosaccharide building blocks, dominated by XXXG (1084.9927 m/z). Characteristic mass peaks (m/z) of xyloglucan oligomers (XXG, XXFG, XLXG and XLFG) were also detected, which showed resemblance to the mass profile of highly nutritious plant soybean. The present study is the first report on OLIMP for any edible halophyte, so far. OLIMP supports use of Salicornia as a potential source of dietary supplementation. Further linkage-analysis is required to get the structural information of oligosaccharides. PMID:23399241

  13. Halophyte die-off in response to anthropogenic impacts on tidal flats

    NASA Astrophysics Data System (ADS)

    Lee, Yoon-Kyung; Park, Wook; Choi, Jong-Kuk; Ryu, Joo-Hyung; Won, Joong-Sun

    2014-12-01

    This study analyzed an abrupt change in halophyte populations, especially the annual plant Suaeda japonica. The boundaries and distributions of S. japonica and Phragmites australis were determined based on the decision tree classifier of TerraSAR-X, SAVI of Landsat ETM+, and density slicing of aerial photography. A large patch of S. japonica in the eastern parts of Donggum-do, South Korea, disappeared in 2007, while populations have been stable in the western parts of the island. To understand the reason behind the sudden die-off, mean sea level was analyzed based on gaged tidal data. Sedimentation rate was measured using Vernier caliper and RTK leveling data. Sedimentation rate between 2006 and 2007 was above the threshold at which S. japonica can germinate. After the loss of an 11-ha S. japonica patch from the eastern part of Donggum-do, sedimentation was accelerated because of a decrease in tidal current caused by a series of land reclamation projects. The increased monthly exposure duration due to continuous sediment accretion altered the type of salt marsh. Our results imply that accumulated effects from a series of coastal construction projects around Ganghwa-do can change not only tide and current hydrodynamics, but also sedimentation and erosion rates, which can cause large halophyte patches to disappear.

  14. MPIC: a mitochondrial protein import components database for plant and non-plant species.

    PubMed

    Murcha, Monika W; Narsai, Reena; Devenish, James; Kubiszewski-Jakubiak, Szymon; Whelan, James

    2015-01-01

    In the 2 billion years since the endosymbiotic event that gave rise to mitochondria, variations in mitochondrial protein import have evolved across different species. With the genomes of an increasing number of plant species sequenced, it is possible to gain novel insights into mitochondrial protein import pathways. We have generated the Mitochondrial Protein Import Components (MPIC) Database (DB; http://www.plantenergy.uwa.edu.au/applications/mpic) providing searchable information on the protein import apparatus of plant and non-plant mitochondria. An in silico analysis was carried out, comparing the mitochondrial protein import apparatus from 24 species representing various lineages from Saccharomyces cerevisiae (yeast) and algae to Homo sapiens (human) and higher plants, including Arabidopsis thaliana (Arabidopsis), Oryza sativa (rice) and other more recently sequenced plant species. Each of these species was extensively searched and manually assembled for analysis in the MPIC DB. The database presents an interactive diagram in a user-friendly manner, allowing users to select their import component of interest. The MPIC DB presents an extensive resource facilitating detailed investigation of the mitochondrial protein import machinery and allowing patterns of conservation and divergence to be recognized that would otherwise have been missed. To demonstrate the usefulness of the MPIC DB, we present a comparative analysis of the mitochondrial protein import machinery in plants and non-plant species, revealing plant-specific features that have evolved. PMID:25435547

  15. Genomic approaches for interrogating the biochemistry of medicinal plant species

    PubMed Central

    Góngora-Castillo, Elsa; Fedewa, Greg; Yeo, Yunsoo; Chappell, Joe; DellaPenna, Dean; Buell, C. Robin

    2013-01-01

    Development of next-generation sequencing, coupled with the advancement of computational methods, has allowed researchers to access the transcriptomes of recalcitrant genomes such as those of medicinal plant species. Through the sequencing of even a few cDNA libraries, a broad representation of the transcriptome of any medicinal plant species can be obtained, providing a robust resource for gene discovery and downstream biochemical pathway discovery. When coupled to estimation of expression abundances in specific tissues from a developmental series, biotic stress, abiotic stress, or elicitor challenge, informative coexpression and differential expression estimates on a whole transcriptome level can be obtained to identify candidates for function discovery. PMID:23084937

  16. Invasive vascular plant species of limnocrenic karst springs in Poland

    NASA Astrophysics Data System (ADS)

    Spałek, Krzysztof

    2015-04-01

    Natural water reservoirs are very valuable floristic sites in Poland. Among them, the most important for preservation of biodiversity of flora are limnocrenic karst springs. The long-term process of human pressure on habitats of this type caused disturbance of their biological balance. Changes in the water regime, industrial development and chemisation of agriculture, especially in the period of last two hundred years, led to systematic disappearance of localities of many plant species connected with rare habitats and also to appear numerous invasive plant species. They are: Acorus calamus, Echinocystis lobata, Elodea canadensis, Erechtites hieraciifolia, Impatiens glandulifera, Solidago canadensis, S. gigantea and S. graminifolia. Fielworks were conducted in 2010-2014.

  17. Acclimation of plant species to elevated CO{sub 2}

    SciTech Connect

    Olavi, K.; Ball, J.T.; Seemann, J.

    1995-06-01

    Plant species differ in assimilated carbon partitioning between starch, sucrose and hexose sugars. Soluble sugars have been implicated to play a role in downregulating rubisco and other photosynthesis enzymes on the level of transcription. In this study we compared high CO{sub 2} response of plants with different physiology. Cucumber, tobacco and sunflower were chosen as relatively good starch accumulators, spinach and sugar-beet as species with high leaf soluble sugar levels. In addition woody species cottonwood and salt cedar and one C{sub 4} species (corn) were studied. Plants were grown from seed at three CO{sub 2} levels: 330 {mu}bar, 660 {mu}bar and 1500 {mu}bar. Two soil nitrogen levels were used: one that allowed normal growth and the other that caused about 5 times growth suppression. All species except corn (C{sub 4}) showed downregulation of leaf rubisco activity. This downregulation was due to decrease of rubisco content, activation state remaining unchanged. Initial slope of AC{sub i} curve and rubisco activity were in good correlation. Low and high nitrogen plants had similar relative changes in photosynthetic activity. Final harvest onground weight correlated with CO{sub 2} uptake at growth conditions. We concluded that soluble sugars per se do not cause downregulation of leaf photosynthetic activity at high CO{sub 2}.

  18. Deficit irrigation of a landscape halophyte for reuse of saline waste water in a desert city

    USGS Publications Warehouse

    Glenn, E.P.; Mckeon, C.; Gerhart, V.; Nagler, P.L.; Jordan, F.; Artiola, J.

    2009-01-01

    Saline waste waters from industrial and water treatment processes are an under-utilized resource in desert urban environments. Management practices to safely use these water sources are still in development. We used a deeprooted native halophyte, Atriplex lentiformis (quailbush), to absorb mildly saline effluent (1800 mg l-1 total dissolved solids, mainly sodium sulfate) from a water treatment plant in the desert community of Twentynine Palms, California. We developed a deficit irrigation strategy to avoid discharging water past the root zone to the aquifer. The plants were irrigated at about one-third the rate of reference evapotranspiration (ETo) calculated from meteorological data over five years and soil moisture levels were monitored to a soil depth of 4.7 m at monthly intervals with a neutron hydroprobe. The deficit irrigation schedule maintained the soil below field capacity throughout the study. Water was presented on a more or less constant schedule, so that the application rates were less than ETo in summer and equal to or slightly greater than ETo in winter, but the plants were able to consume water stored in the profile in winter to support summer ET. Sodium salts gradually increased in the soil profile over the study but sulfate levels remained low, due to formation of gypsum in the calcic soil. The high salt tolerance, deep roots, and drought tolerance of desert halophytes such as A. lentiformis lend these plants to use as deficit-irrigated landscape plants for disposal of effluents in urban setting when protection of the aquifer is important. ?? 2008 Elsevier B.V.

  19. The SbASR-1 gene cloned from an extreme halophyte Salicornia brachiata enhances salt tolerance in transgenic tobacco.

    PubMed

    Jha, Bhavanath; Lal, Sanjay; Tiwari, Vivekanand; Yadav, Sweta Kumari; Agarwal, Pradeep K

    2012-12-01

    Salinity severely affects plant growth and development. Plants evolved various mechanisms to cope up stress both at molecular and cellular levels. Halophytes have developed better mechanism to alleviate the salt stress than glycophytes, and therefore, it is advantageous to study the role of different genes from halophytes. Salicornia brachiata is an extreme halophyte, which grows luxuriantly in the salty marshes in the coastal areas. Earlier, we have isolated SbASR-1 (abscisic acid stress ripening-1) gene from S. brachiata using cDNA subtractive hybridisation library. ASR-1 genes are abscisic acid (ABA) responsive, whose expression level increases under abiotic stresses, injury, during fruit ripening and in pollen grains. The SbASR-1 transcript showed up-regulation under salt stress conditions. The SbASR-1 protein contains 202 amino acids of 21.01-kDa molecular mass and has 79 amino acid long signatures of ABA/WDS gene family. It has a maximum identity (73 %) with Solanum chilense ASR-1 protein. The SbASR-1 has a large number of disorder-promoting amino acids, which make it an intrinsically disordered protein. The SbASR-1 gene was over-expressed under CaMV 35S promoter in tobacco plant to study its physiological functions under salt stress. T(0) transgenic tobacco seeds showed better germination and seedling growth as compared to wild type (Wt) in a salt stress condition. In the leaf tissues of transgenic lines, Na(+) and proline contents were significantly lower, as compared to Wt plant, under salt treatment, suggesting that transgenic plants are better adapted to salt stress. PMID:22639284

  20. Metal species involved in long distance metal transport in plants

    PubMed Central

    Álvarez-Fernández, Ana; Díaz-Benito, Pablo; Abadía, Anunciación; López-Millán, Ana-Flor; Abadía, Javier

    2014-01-01

    The mechanisms plants use to transport metals from roots to shoots are not completely understood. It has long been proposed that organic molecules participate in metal translocation within the plant. However, until recently the identity of the complexes involved in the long-distance transport of metals could only be inferred by using indirect methods, such as analyzing separately the concentrations of metals and putative ligands and then using in silico chemical speciation software to predict metal species. Molecular biology approaches also have provided a breadth of information about putative metal ligands and metal complexes occurring in plant fluids. The new advances in analytical techniques based on mass spectrometry and the increased use of synchrotron X-ray spectroscopy have allowed for the identification of some metal-ligand species in plant fluids such as the xylem and phloem saps. Also, some proteins present in plant fluids can bind metals and a few studies have explored this possibility. This study reviews the analytical challenges researchers have to face to understand long-distance metal transport in plants as well as the recent advances in the identification of the ligand and metal-ligand complexes in plant fluids. PMID:24723928

  1. Reactive oxygen species and plant resistance to fungal pathogens.

    PubMed

    Lehmann, Silke; Serrano, Mario; L'Haridon, Floriane; Tjamos, Sotirios E; Metraux, Jean-Pierre

    2015-04-01

    Reactive oxygen species (ROS) have been studied for their role in plant development as well as in plant immunity. ROS were consistently observed to accumulate in the plant after the perception of pathogens and microbes and over the years, ROS were postulated to be an integral part of the defence response of the plant. In this article we will focus on recent findings about ROS involved in the interaction of plants with pathogenic fungi. We will describe the ways to detect ROS, their modes of action and their importance in relation to resistance to fungal pathogens. In addition we include some results from works focussing on the fungal interactor and from studies investigating roots during pathogen attack. PMID:25264341

  2. Efficient distinction of invasive aquatic plant species from non-invasive related species using DNA barcoding.

    PubMed

    Ghahramanzadeh, R; Esselink, G; Kodde, L P; Duistermaat, H; van Valkenburg, J L C H; Marashi, S H; Smulders, M J M; van de Wiel, C C M

    2013-01-01

    Biological invasions are regarded as threats to global biodiversity. Among invasive aliens, a number of plant species belonging to the genera Myriophyllum, Ludwigia and Cabomba, and to the Hydrocharitaceae family pose a particular ecological threat to water bodies. Therefore, one would try to prevent them from entering a country. However, many related species are commercially traded, and distinguishing invasive from non-invasive species based on morphology alone is often difficult for plants in a vegetative stage. In this regard, DNA barcoding could become a good alternative. In this study, 242 samples belonging to 26 species from 10 genera of aquatic plants were assessed using the chloroplast loci trnH-psbA, matK and rbcL. Despite testing a large number of primer sets and several PCR protocols, the matK locus could not be amplified or sequenced reliably and therefore was left out of the analysis. Using the other two loci, eight invasive species could be distinguished from their respective related species, a ninth one failed to produce sequences of sufficient quality. Based on the criteria of universal application, high sequence divergence and level of species discrimination, the trnH-psbA noncoding spacer was the best performing barcode in the aquatic plant species studied. Thus, DNA barcoding may be helpful with enforcing a ban on trade of such invasive species, such as is already in place in the Netherlands. This will become even more so once DNA barcoding would be turned into machinery routinely operable by a nonspecialist in botany and molecular genetics. PMID:23039943

  3. Differences in proton pumping and Na/H exchange at the leaf cell tonoplast between a halophyte and a glycophyte

    PubMed Central

    Katschnig, Diana; Jaarsma, Rinse; Almeida, Pedro; Rozema, Jelte; Schat, Henk

    2014-01-01

    The tonoplast Na+/H+ antiporter and tonoplast H+ pumps are essential components of salt tolerance in plants. The objective of this study was to investigate the transport activity of the tonoplast Na+/H+ antiporter and the tonoplast V-H+-ATPase and V-H+-PPase in a highly tolerant salt-accumulating halophyte, Salicornia dolichostachya, and to compare these transport activities with activities in the related glycophyte Spinacia oleracea. Vacuolar membrane vesicles were isolated by density gradient centrifugation, and the proton transport and hydrolytic activity of both H+ pumps were studied. Furthermore, the Na+/H+-exchange capacity of the vesicles was investigated by 9-amino-6-chloro-2-methoxyacridine fluorescence. Salt treatment induced V-H+-ATPase and V-H+-PPase activity in vesicles derived from S. oleracea, whereas V-H+-ATPase and V-H+-PPase activity in S. dolichostachya was not affected by salt treatment. Na+/H+-exchange capacity followed the same pattern, i.e. induced in response to salt treatment (0 and 200 mM NaCl) in S. oleracea and not influenced by salt treatment (10 and 200 mM NaCl) in S. dolichostachya. Our results suggest that S. dolichostachya already generates a high tonoplast H+ gradient at low external salinities, which is likely to contribute to the high cellular salt accumulation of this species at low external salinities. At high external salinities, S. dolichostachya showed improved growth compared with S. oleracea, but V-H+-ATPase, V-H+-PPase and Na+/H+-exchange activities were comparable between the species, which might imply that S. dolichostachya more efficiently retains Na+ in the vacuole. PMID:24887002

  4. Plant species composition and biofuel yields of conservation grasslands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marginal croplands, such as those in the Conservation Reserve Program (CRP), have been suggested as a source of biomass for biofuel production. However, little is known about the composition of plant species on these conservation grasslands or their potential for ethanol production. Our objective w...

  5. AIRBORNE HYPERSPECTRAL IDENTIFICATION OF INVASIVE AND OPPORTUNISTIC WETLANDS PLANT SPECIES

    EPA Science Inventory

    Coastal wetlands are among the most fragmented and disturbed ecosystems and the Great Lakes are no exception. One possible result is the observed increase in the presence and dominance of invasive and other opportunistic plant species, such as the common reed (Phragmites australi...

  6. Comparative functional genomics of plant pathogenic Fusarium species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium species are among the most economically important group of plant pathogenic fungi. Comparison of the four currently available Fusarium genome sequences allows an unsurpassed and unprecedented ability to predict genes, determine synteny and define regulatory sequences for genes in phytopatho...

  7. The importance of education in managing invasive plant species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Invasive plant species can establish in diverse environments and with the increase in human mobility, they are no longer restricted to isolated pockets in remote parts of the world. Cheat grass (Bromus tectorum L.) in rangelands, purple loosestrife (Lythrum salicaria L.) in wet lands and Canada this...

  8. Stimulated rhizodegradation of atrazaine by selected plant species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The efficacy of vegetative buffer strips (VBS) in removing herbicides deposited from surface runoff is related to the ability of plant species to promote rapid herbicide degradation. A growth chamber study was conducted to investigate the rhizodegradation of 14C-atrazine and the relationship of degr...

  9. Gloger's rule in plants: The species and ecosystem levels.

    PubMed

    Lev-Yadun, Simcha

    2015-12-01

    Gloger's rule posits that darker birds are found more often in humid environments than in arid ones, especially in the tropics. Accordingly, desert-inhabiting animals tend to be light-colored. This rule is also true for certain mammalian groups, including humans. Gloger's rule is manifested at 2 levels: (1) at the species level (different populations of the same species have different pigmentation at different latitudes), and (2) at the species assembly level (different taxa at a certain geography have different pigmentation than other taxa found at different habitats or latitudes). Concerning plants, Gloger's rule was first proposed to operate in many plant species growing in sand dunes, sandy shores and in deserts, because of being white, whitish, or silver colored, based on white trichomes, because of sand grains and clay particles glued to sticky glandular trichomes, or because of light-colored waxes. Recently, Gloger's rule was shown to also be true at the intraspecific level in relation to protection of anthers from UV irradiation. While Gloger's rule is true in certain plant taxa and ecologies, there are others where "anti-Gloger" coloration patterns exist. In some of these the selective agents are known and in others they are not. I present both Gloger and "anti-Gloger" cases and argue that this largely neglected aspect of plant biology deserves much more research attention. PMID:26786012

  10. ORGANIC PESTICIDE MODIFICATION OF SPECIES INTERACTIONS USING ANNUAL PLANT COMMUNITIES

    EPA Science Inventory

    A method is proposed and tested for assessing multispecies responses to three pesticides (atrazine, 2,4,D and malathion). Pesticides were applied at two concentrations, mon model plant communities grown in raised beds using soil containing a natural weed bank. over by species was...

  11. Plant roots and spectroscopic methods analyzing species, biomass and vitality

    PubMed Central

    Rewald, Boris; Meinen, Catharina

    2013-01-01

    In order to understand plant functioning, plant community composition, and terrestrial biogeochemistry, it is decisive to study standing root biomass, (fine) root dynamics, and interactions belowground. While most plant taxa can be identified by visual criteria aboveground, roots show less distinctive features. Furthermore, root systems of neighboring plants are rarely spatially segregated; thus, most soil horizons and samples hold roots of more than one species necessitating root sorting according to taxa. In the last decades, various approaches, ranging from anatomical and morphological analyses to differences in chemical composition and DNA sequencing were applied to discern species identity and biomass belowground. Among those methods, a variety of spectroscopic methods was used to detect differences in the chemical composition of roots. In this review, spectroscopic methods used to study root systems of herbaceous and woody species in excised samples or in situ will be discussed. In detail, techniques will be reviewed according to their usability to discern root taxa, to determine root vitality, and to quantify root biomass non-destructively or in soil cores holding mixtures of plant roots. In addition, spectroscopic methods which may be able to play an increasing role in future studies on root biomass and related traits are highlighted. PMID:24130565

  12. Accumulation of K+ and Cs+ in Tropical Plant Species

    NASA Astrophysics Data System (ADS)

    Velasco, H.; Anjos, R. M.; Zamboni, C. B.; Macario, K. D.; Rizzotto, M.; Cid, A. S.; Medeiros, I. M. A.; Fernández, J.; Rubio, L.; Audicio, P.; Lacerda, T.

    2010-08-01

    Concentrations of K+ and 137Cs+ in tissues of the Citrus aurantifolia were measured both by gamma spectrometry and neutron activation analysis, aiming to understand the behavior of monovalent inorganic cations in plants as well as its capability to store these elements. In contrast to K+, Cs+ ions are not essential elements to plants, what might explain the difference in bioavailability. However, our results have shown that 137Cs+ is positively correlated to 40K+ concentration within tropical plant species, suggesting that these elements might be assimilated in a similar way, and that they pass through the biological cycle together. A simple mathematical model was also proposed to describe the temporal evolution of 40K activity concentration in such tropical woody fruit species. This model exhibited close agreement with the 40K experimental results in the fruit ripening processes of lemon trees.

  13. Population Genomics for Understanding Adaptation in Wild Plant Species.

    PubMed

    Weigel, Detlef; Nordborg, Magnus

    2015-11-23

    Darwin's theory of evolution by natural selection is the foundation of modern biology. However, it has proven remarkably difficult to demonstrate at the genetic, genomic, and population level exactly how wild species adapt to their natural environments. We discuss how one can use large sets of multiple genome sequences from wild populations to understand adaptation, with an emphasis on the small herbaceous plant Arabidopsis thaliana. We present motivation for such studies; summarize progress in describing whole-genome, species-wide sequence variation; and then discuss what insights have emerged from these resources, either based on sequence information alone or in combination with phenotypic data. We conclude with thoughts on opportunities with other plant species and the impact of expected progress in sequencing technology and genome engineering for studying adaptation in nature. PMID:26436459

  14. Plant species richness and ecosystem multifunctionality in global drylands.

    PubMed

    Maestre, Fernando T; Quero, Jos L; Gotelli, Nicholas J; Escudero, Adrin; Ochoa, Victoria; Delgado-Baquerizo, Manuel; Garca-Gmez, Miguel; Bowker, Matthew A; Soliveres, Santiago; Escolar, Cristina; Garca-Palacios, Pablo; Berdugo, Miguel; Valencia, Enrique; Gozalo, Beatriz; Gallardo, Antonio; Aguilera, Lorgio; Arredondo, Tulio; Blones, Julio; Boeken, Bertrand; Bran, Donaldo; Conceio, Abel A; Cabrera, Omar; Chaieb, Mohamed; Derak, McHich; Eldridge, David J; Espinosa, Carlos I; Florentino, Adriana; Gaitn, Juan; Gatica, M Gabriel; Ghiloufi, Wahida; Gmez-Gonzlez, Susana; Gutirrez, Julio R; Hernndez, Rosa M; Huang, Xuewen; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Miriti, Maria; Monerris, Jorge; Mau, Rebecca L; Morici, Ernesto; Naseri, Kamal; Ospina, Abelardo; Polo, Vicente; Prina, Anbal; Pucheta, Eduardo; Ramrez-Collantes, David A; Romo, Roberto; Tighe, Matthew; Torres-Daz, Cristian; Val, James; Veiga, Jos P; Wang, Deli; Zaady, Eli

    2012-01-13

    Experiments suggest that biodiversity enhances the ability of ecosystems to maintain multiple functions, such as carbon storage, productivity, and the buildup of nutrient pools (multifunctionality). However, the relationship between biodiversity and multifunctionality has never been assessed globally in natural ecosystems. We report here on a global empirical study relating plant species richness and abiotic factors to multifunctionality in drylands, which collectively cover 41% of Earth's land surface and support over 38% of the human population. Multifunctionality was positively and significantly related to species richness. The best-fitting models accounted for over 55% of the variation in multifunctionality and always included species richness as a predictor variable. Our results suggest that the preservation of plant biodiversity is crucial to buffer negative effects of climate change and desertification in drylands. PMID:22246775

  15. Plant species richness and ecosystem multifunctionality in global drylands

    PubMed Central

    Maestre, Fernando T.; Quero, Jos L.; Gotelli, Nicholas J.; Escudero, Adri; Ochoa, Victoria; Delgado-Baquerizo, Manuel; Garca-Gmez, Miguel; Bowker, Matthew A.; Soliveres, Santiago; Escolar, Cristina; Garca-Palacios, Pablo; Berdugo, Miguel; Valencia, Enrique; Gozalo, Beatriz; Gallardo, Antonio; Aguilera, Lorgio; Arredondo, Tulio; Blones, Julio; Boeken, Bertrand; Bran, Donaldo; Conceio, Abel A.; Cabrera, Omar; Chaieb, Mohamed; Derak, Mchich; Eldridge, David J.; Espinosa, Carlos I.; Florentino, Adriana; Gaitn, Juan; Gatica, M. Gabriel; Ghiloufi, Wahida; Gmez-Gonzlez, Susana; Gutirrez, Julio R.; Hernndez, Rosa M.; Huang, Xuewen; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Miriti, Maria; Monerris, Jorge; Mau, Rebecca L.; Morici, Ernesto; Naseri, Kamal; Ospina, Abelardo; Polo, Vicente; Prina, Anbal; Pucheta, Eduardo; Ramrez-Collantes, David A.; Romo, Roberto; Tighe, Matthew; Torres-Daz, Cristian; Val, James; Veiga, Jos P.; Wang, Deli; Zaady, Eli

    2013-01-01

    Experiments suggest that biodiversity enhances the ability of ecosystems to maintain multiple functions, such as carbon storage, productivity, and buildup of nutrient pools (multifunctionality). However, the relationship between biodiversity and multifunctionality has never been assessed globally in natural ecosystems. We report on the first global empirical study relating plant species richness and abiotic factors to multifunctionality in drylands, which collectively cover 41% of Earths land surface and support over 38% of the human population. Multifunctionality was positively and significantly related to species richness. The best-fitting models accounted for over 55% of the variation in multifunctionality, and always included species richness as a predictor variable. Our results suggest that preservation of plant biodiversity is crucial to buffer negative effects of climate change and desertification in drylands. PMID:22246775

  16. Plant species richness and ecosystem multifunctionality in global drylands

    USGS Publications Warehouse

    Maestre, Fernando T.; Quero, Jose L.; Gotelli, Nicholas J.; Escudero, Adrian; Ochoa, Victoria; Delgado-Baquerizo, Manuel; Garcia-Gomez, Miguel; Bowker, Matthew A.; Soliveres, Santiago; Escolar, Cristina; Garcia-Palacios, Pablo; Berdugo, Miguel; Valencia, Enrique; Gozalo, Beatriz; Gallardo, Antonio; Aguilera, Lorgio; Arredondo, Tulio; Blones, Julio; Boeken, Bertrand; Bran, Donaldo; Conceicao, Abel A.; Cabrera, Omar; Chaieb, Mohamed; Derak, Mchich; Eldridge, David J.; Espinosa, Carlos I.; Florentino, Adriana; Gaitan, Juan; Gatica, M. Gabriel; Ghiloufi, Wahida; Gomez-Gonzalez, Susana; Gutie, Julio R.; Hernandez, Rosa M.; Huang, Xuewen; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Miriti, Maria; Monerris, Jorge; Mau, Rebecca L.; Morici, Ernesto; Naseri, Kamal; Ospina, Abelardo; Polo, Vicente; Prina, Anibal; Pucheta, Eduardo; Ramirez-Collantes, David A.; Romao, Roberto; Tighe, Matthew; Torres-Diaz, Cristian; Val, James; Veiga, Jose P.; Wang, Deli; Zaady, Eli

    2012-01-01

    Experiments suggest that biodiversity enhances the ability of ecosystems to maintain multiple functions, such as carbon storage, productivity, and the buildup of nutrient pools (multifunctionality). However, the relationship between biodiversity and multifunctionality has never been assessed globally in natural ecosystems. We report here on a global empirical study relating plant species richness and abiotic factors to multifunctionality in drylands, which collectively cover 41% of Earth's land surface and support over 38% of the human population. Multifunctionality was positively and significantly related to species richness. The best-fitting models accounted for over 55% of the variation in multifunctionality and always included species richness as a predictor variable. Our results suggest that the preservation of plant biodiversity is crucial to buffer negative effects of climate change and desertification in drylands.

  17. Ecological Effects of Roads on the Plant Diversity of Coastal Wetland in the Yellow River Delta

    PubMed Central

    Li, Yunzhao; Du, Siyao; Han, Guangxuan; Qu, Fanzhu; Wang, Guangmei; Fu, Yuqin; Zhan, Chao

    2014-01-01

    The 26 sample sites in 7 study plots adjacent to asphalt road and earth road in coastal wetland in the Yellow River Delta were selected to quantify plant diversity using quadrat sampling method in plant bloom phase of July and August 2012. The indice of βT and Jaccard's coefficient were applied to evaluate the species diversity. The results showed that the plant diversities and alien plants were high in the range of 0–20 m to the road verge. There were more exotics and halophytes in plots of asphalt roadside than that of earth roadside. However, proportion of halophytes in habitats of asphalt roadsides was lower than that of earth roadside. By comparing β-diversity, there were more common species in the asphalt roadsides than that in the earth roadsides. The similarity of plant communities in studied plots of asphalt roadsides and earth roadsides increased with increasing the distance to road verge. The effect range of roads for plant diversity in study region was about 20 m to road verge. Our results indicate that the construction and maintenance of roads in wetland could increase the plant species diversities of communities and risk of alien species invasion. PMID:25147872

  18. Plant responses to climatic extremes: within-species variation equals among-species variation.

    PubMed

    Malyshev, Andrey V; Arfin Khan, Mohammed A S; Beierkuhnlein, Carl; Steinbauer, Manuel J; Henry, Hugh A L; Jentsch, Anke; Dengler, Jürgen; Willner, Evelin; Kreyling, Juergen

    2016-01-01

    Within-species and among-species differences in growth responses to a changing climate have been well documented, yet the relative magnitude of within-species vs. among-species variation has remained largely unexplored. This missing comparison impedes our ability to make general predictions of biodiversity change and to project future species distributions using models. We present a direct comparison of among- versus within-species variation in response to three of the main stresses anticipated with climate change: drought, warming, and frost. Two earlier experiments had experimentally induced (i) summer drought and (ii) spring frost for four common European grass species and their ecotypes from across Europe. To supplement existing data, a third experiment was carried out, to compare variation among species from different functional groups to within-species variation. Here, we simulated (iii) winter warming plus frost for four grasses, two nonleguminous, and two leguminous forbs, in addition to eleven European ecotypes of the widespread grass Arrhenatherum elatius. For each experiment, we measured: (i) C/N ratio and biomass, (ii) chlorophyll content and biomass, and (iii) plant greenness, root (15) N uptake, and live and dead tissue mass. Using coefficients of variation (CVs) for each experiment and response parameter, a total of 156 within- vs. among-species comparisons were conducted, comparing within-species variation in each of four species with among-species variation for each seed origin (five countries). Of the six significant differences, within-species CVs were higher than among-species CVs in four cases. Partitioning of variance within each treatment in two of the three experiments showed that within-species variability (ecotypes) could explain an additional 9% of response variation after accounting for the among-species variation. Our observation that within-species variation was generally as high as among-species variation emphasizes the importance of including both within- and among-species variability in ecological theory (e.g., the insurance hypothesis) and for practical applications (e.g., biodiversity conservation). PMID:26426898

  19. Feeding damage to plants increases with plant size across 21 Brassicaceae species.

    PubMed

    Schlinkert, Hella; Westphal, Catrin; Clough, Yann; Ludwig, Martin; Kabouw, Patrick; Tscharntke, Teja

    2015-10-01

    Plant size is a major predictor of ecological functioning. We tested the hypothesis that feeding damage to plants increases with plant size, as the conspicuousness of large plants makes resource finding and colonisation easier. Further, large plants can be attractive to herbivores, as they offer greater amounts and ranges of resources and niches, but direct evidence from experiments testing size effects on feeding damage and consequently on plant fitness is so far missing. We established a common garden experiment with a plant size gradient (10-130 cm height) using 21 annual Brassicaceae species, and quantified plant size, biomass and number of all aboveground components (flowers, fruits, leaves, stems) and their proportional feeding damage. Plant reproductive fitness was measured using seed number, 1000 seed weight and total seed weight. Feeding damage to the different plant components increased with plant size or component biomass, with mean damage levels being approximately 30 % for flowers, 5 % for fruits and 1 % for leaves and stems. Feeding damage affected plant reproductive fitness depending on feeding damage type, with flower damage having the strongest effect, shown by greatly reduced seed number, 1000 seed weight and total seed weight. Finally, we found an overall negative effect of plant size on 1000 seed weight, but not on seed number and total seed weight. In conclusion, being conspicuous and attractive to herbivores causes greater flower damage leading to higher fitness costs for large plants, which might be partly counterbalanced by benefits such as enhanced competitive/compensatory abilities or more mutualistic pollinator visits. PMID:26025575

  20. Plant species richness increases phosphatase activities in an experimental grassland

    NASA Astrophysics Data System (ADS)

    Hacker, Nina; Wilcke, Wolfgang; Oelmann, Yvonne

    2014-05-01

    Plant species richness has been shown to increase aboveground nutrient uptake requiring the mobilization of soil nutrient pools. For phosphorus (P) the underlying mechanisms for increased P release in soil under highly diverse grassland mixtures remain obscure because aboveground P storage and concentrations of inorganic and organic P in soil solution and differently reactive soil P pools are unrelated (Oelmann et al. 2011). The need of plants and soil microorganisms for P can increase the exudation of enzymes hydrolyzing organically bound P (phosphatases) which might represent an important release mechanism of inorganic P in a competitive environment such as highly diverse grassland mixtures. Our objectives were to test the effects of i) plant functional groups (legumes, grasses, non-leguminous tall and small herbs), and of (ii) plant species richness on microbial P (Pmic) and phosphatase activities in soil. In autumn 2013, we measured Pmic and alkaline phosphomonoesterase and phosphodiesterase activities in soil of 80 grassland mixtures comprising different community compositions and species richness (1, 2, 4, 8, 16, 60) in the Jena Experiment. In general, Pmic and enzyme activities were correlated (r = 0.59 and 0.46 for phosphomonoesterase and phosphodiesterase activities, respectively; p

  1. Light dependency of VOC emissions from selected Mediterranean plant species

    NASA Astrophysics Data System (ADS)

    Owen, S. M.; Harley, P.; Guenther, A.; Hewitt, C. N.

    The light, temperature and stomatal conductance dependencies of volatile organic compound (VOC) emissions from ten plant species commonly found in the Mediterranean region were studied using a fully controlled leaf cuvette in the laboratory. At standard conditions of temperature and light (30°C and 1000 μmol m -2 s -1 PAR), low emitting species ( Arbutus unedo, Pinus halepensis, Cistus incanus, Cistus salvifolius, Rosmarinus officinalis and Thymus vulgaris) emitted between 0.1 and 5.0 μg (C) (total VOCs) g -1 dw h -1, a medium emitter ( Pinus pinea) emitted between 5 and 10 μg (C) g -1 dw h -1 and high emitters ( Cistus monspeliensis, Lavendula stoechas and Quercus sp.) emitted more than 10 μg (C) g -1 dw h -1. VOC emissions from all of the plant species investigated showed some degree of light dependency, which was distinguishable from temperature dependency. Emissions of all compounds from Quercus sp. were light dependent. Ocimene was one of several monoterpene compounds emitted by P. pinea and was strongly correlated to light. Only a fraction of monoterpene emissions from C. incanus exhibited apparent weak light dependency but emissions from this plant species were strongly correlated to temperature. Data presented here are consistent with past studies, which show that emissions are independent of stomatal conductance. These results may allow more accurate predictions of monoterpene emission fluxes from the Mediterranean region to be made.

  2. Species sorting dominates plant metacommunity structure in coastal dunes

    NASA Astrophysics Data System (ADS)

    Brunbjerg, Ane Kirstine; Ejrns, Rasmus; Svenning, Jens-Christian

    2012-02-01

    It has long been thought that environmental factors determine plant community assembly, but it is now increasingly argued that geographic spatial processes such as dispersal may also matter. Notably, the metacommunity framework considers local communities to be linked by dispersal and different theories hereunder assign varying importance to dispersal limitation and local environmental species sorting. At present the relative importance of these factors across habitats, geographic regions, and spatial scales remains unclear. The present study assessed the relative importance of species sorting by the local environment and broader-scale geographic spatial processes for local plant species composition using a data set of 3924 plots from coastal dunes across a large region (Denmark). We used ordination to identify the main gradients in species composition, and Linear Mixed-Effects modelling (LME) to estimate the relative importance of local environment and multi-scale random geographic factors as determinants of floristic gradients. In addition, we assessed the dependence of species composition on local environment and geographic distance using Mantel tests. The LME analyses found local species sorting to be the dominant determinant in this metacommunity system, with soil moisture, pH, and fertility requirement patterns explaining ?77% of the compositional gradients, while geographic factors accounted for ?2%. Partial Mantel tests confirmed this finding, with 31.6% of the variation in species dissimilarity explained by environmental species sorting and just 1.6% by geographical distance. The apparently limited impact of dispersal limitation or other geographic spatial processes may reflect high habitat continuity and efficient dispersal by strong winds and ocean currents in the Danish coastal-dune metacommunity system.

  3. Behavioral responses to plant toxins by two omnivorous lizard species.

    PubMed

    Cooper, William E; Prez-Mellado, Valentn; Vitt, L J; Budzinsky, Brandy

    2002-06-01

    An ability to detect plant toxins and thereby avoid eating chemically defended plants would be very beneficial for omnivorous and herbivorous lizards. We studied the ability of the omnivorous Podarcis lilfordi to detect compounds belonging to three classes of common plant toxins, as well as responses indicating aversion. Solutions of the alkaloid quinine, saponin, and the phenolic coumarin, as well as distilled water (odorless control), were presented to lizards on cotton swabs. The lizards detected all three toxins as indicated by significantly decreased tongue-flick rates and tongue-flick attack scores in comparison with distilled water. Several other variables revealed aversion to saponin, including a low number of individuals that bit swabs, avoidance of swabs after tongue-flicking, performance after tongue-flicking the swab of repeated short-excursion tongue-flicks that were directed away from the swab and did not contact any substrate, failure to respond at all in the next trial, and wiping the snout on the floor of the terrarium. Reasons for apparent differences in tongue-flicking behavior between P. lilfordi and two other omnivorous lizard species are discussed. We also showed experimentally that saponin depresses the tongue-flick rate in the omnivorous Bonaire whiptail lizard, Cnemidophorus murinus. Tongue-flicking enables at least one lizard species to detect specific chemicals representing three major classes of plant toxins. It is hypothesized that this ability is a widespread adaptation to reduce ingestion of plant toxins. PMID:12044603

  4. Species differences in whole plant carbon balance following winter dormancy in Alaskan tundra plants

    SciTech Connect

    Bret-Harte, M.S.; Chapin, F.S. III

    1995-09-01

    We froze ramets of seven vascular plant species and a mixed community of mosses common to upland tussock tundra for several months, then measured whole-plant photosynthesis and respiration in a growth chamber under simulated spring conditions, to examine whole plant carbon metabolism following winter dormancy. In addition, respiration and photosynthesis of aboveground stems and leaves were measured in the field in a spatial gradient away from a melting snowbank, at comparable developmental stages. Species differences in early respiration were not pronounced, but large differences were seen once development of leaves began. Root development in deciduous shrubs delayed their attainment of a positive whole plant carbon balance compared to that seen in aboveground stems and leaves alone, and partially compensated for differences in photosynthetic rates between shrubs and other species. Temporal patterns of carbon metabolism during spring growth may affect competitive balance in tussock tundra and vegetation response to global change.

  5. Plant functional traits and the multidimensional nature of species coexistence

    PubMed Central

    Kraft, Nathan J. B.; Godoy, Oscar; Levine, Jonathan M.

    2015-01-01

    Understanding the processes maintaining species diversity is a central problem in ecology, with implications for the conservation and management of ecosystems. Although biologists often assume that trait differences between competitors promote diversity, empirical evidence connecting functional traits to the niche differences that stabilize species coexistence is rare. Obtaining such evidence is critical because traits also underlie the average fitness differences driving competitive exclusion, and this complicates efforts to infer community dynamics from phenotypic patterns. We coupled field-parameterized mathematical models of competition between 102 pairs of annual plants with detailed sampling of leaf, seed, root, and whole-plant functional traits to relate phenotypic differences to stabilizing niche and average fitness differences. Single functional traits were often well correlated with average fitness differences between species, indicating that competitive dominance was associated with late phenology, deep rooting, and several other traits. In contrast, single functional traits were poorly correlated with the stabilizing niche differences that promote coexistence. Niche differences could only be described by combinations of traits, corresponding to differentiation between species in multiple ecological dimensions. In addition, several traits were associated with both fitness differences and stabilizing niche differences. These complex relationships between phenotypic differences and the dynamics of competing species argue against the simple use of single functional traits to infer community assembly processes but lay the groundwork for a theoretically justified trait-based community ecology. PMID:25561561

  6. Plant functional traits and the multidimensional nature of species coexistence.

    PubMed

    Kraft, Nathan J B; Godoy, Oscar; Levine, Jonathan M

    2015-01-20

    Understanding the processes maintaining species diversity is a central problem in ecology, with implications for the conservation and management of ecosystems. Although biologists often assume that trait differences between competitors promote diversity, empirical evidence connecting functional traits to the niche differences that stabilize species coexistence is rare. Obtaining such evidence is critical because traits also underlie the average fitness differences driving competitive exclusion, and this complicates efforts to infer community dynamics from phenotypic patterns. We coupled field-parameterized mathematical models of competition between 102 pairs of annual plants with detailed sampling of leaf, seed, root, and whole-plant functional traits to relate phenotypic differences to stabilizing niche and average fitness differences. Single functional traits were often well correlated with average fitness differences between species, indicating that competitive dominance was associated with late phenology, deep rooting, and several other traits. In contrast, single functional traits were poorly correlated with the stabilizing niche differences that promote coexistence. Niche differences could only be described by combinations of traits, corresponding to differentiation between species in multiple ecological dimensions. In addition, several traits were associated with both fitness differences and stabilizing niche differences. These complex relationships between phenotypic differences and the dynamics of competing species argue against the simple use of single functional traits to infer community assembly processes but lay the groundwork for a theoretically justified trait-based community ecology. PMID:25561561

  7. NaCl alleviates Cd toxicity by changing its chemical forms of accumulation in the halophyte Sesuvium portulacastrum.

    PubMed

    Wali, Mariem; Fourati, Emna; Hmaeid, Nizar; Ghabriche, Rim; Poschenrieder, Charlotte; Abdelly, Chedly; Ghnaya, Tahar

    2015-07-01

    It has previously been shown that certain halophytes can grow and produce biomass despite of the contamination of their saline biotopes with toxic metals. This suggests that these plants are able to cope with both salinity and heavy metal constraints. NaCl is well tolerated by halophytes and apparently can modulate their responses to Cd. However, the underlying mechanisms remain unclear. This study explores the impact of NaCl on growth, Cd accumulation, and Cd speciation in tissues of the halophyte Sesuvium portulacastrum. Seedlings of S. portulacastrum were exposed during 1 month to 0, 25, and 50 μM Cd combined with low salinity (LS, 0.09 mM NaCl) or high salinity (HS, 200 mM NaCl) levels. Growth parameters and total tissue Cd concentrations were determined, in leaves, stems, and root. Moreover, Cd speciation in these organs was assessed by specific extraction procedures. Results showed that, at LS, Cd induced chlorosis and necrosis and drastically reduced plant growth. However, addition of 200 mM NaCl to Cd containing medium alleviated significantly Cd toxicity symptoms and restored plant growth. NaCl reduced the concentration of Cd in the shoots; nevertheless, due to maintenance of higher biomass under HS, the quantity of accumulated Cd was not modified. NaCl modified the chemical form of Cd in the tissues by increasing the proportion of Cd bound to pectates, proteins, and chloride suggesting that this change in speciation is involved in the positive impact of NaCl on Cd tolerance. We concluded that the tolerance of S. portulacastrum to Cd was enhanced by NaCl. This effect is rather governed by the modification of the speciation of the accumulated Cd than by the reduction of Cd absorption and translocation. PMID:25758421

  8. Cupriavidus plantarum sp. nov., a plant-associated species.

    PubMed

    Estrada-de Los Santos, Paulina; Solano-Rodrguez, Roosivelt; Matsumura-Paz, Luca Tomiko; Vsquez-Murrieta, Mara Soledad; Martnez-Aguilar, Lourdes

    2014-11-01

    During a survey of plant-associated bacteria in northeast Mexico, a group of 13 bacteria was isolated from agave, maize and sorghum plants rhizosphere. This group of strains was related to Cupriavidus respiraculi (99.4%), but a polyphasic investigation based on DNA-DNA hybridization analysis, other genotypic studies and phenotypic features showed that this group of strains actually belongs to a new Cupriavidus species. Consequently, taking all the results together, the description of Cupriavidus plantarum sp. nov. is proposed. PMID:25098225

  9. Corridors Increase Plant Species Richness at Large Scales

    SciTech Connect

    Damschen, Ellen I.; Haddad, Nick M.; Orrock,John L.; Tewksbury, Joshua J.; Levey, Douglas J.

    2006-09-01

    Habitat fragmentation is one of the largest threats to biodiversity. Landscape corridors, which are hypothesized to reduce the negative consequences of fragmentation, have become common features of ecological management plans worldwide. Despite their popularity, there is little evidence documenting the effectiveness of corridors in preserving biodiversity at large scales. Using a large-scale replicated experiment, we showed that habitat patches connected by corridors retain more native plant species than do isolated patches, that this difference increases over time, and that corridors do not promote invasion by exotic species. Our results support the use of corridors in biodiversity conservation.

  10. Antimicrobial potential of some plant extracts against Candida species.

    PubMed

    Hfling, J F; Anibal, P C; Obando-Pereda, G A; Peixoto, I A T; Furletti, V F; Foglio, M A; Gonalves, R B

    2010-11-01

    The increase in the resistance to antimicrobial drugs in use has attracted the attention of the scientific community, and medicinal plants have been extensively studied as alternative agents for the prevention of infections. The Candida genus yeast can become an opportunistic pathogen causing disease in immunosuppressive hosts. The purpose of this study was to evaluate dichloromethane and methanol extracts from Mentha piperita, Rosmarinus officinalis, Arrabidaea chica, Tabebuia avellanedae, Punica granatum and Syzygium cumini against Candida species through the analysis of Minimum Inhibitory Concentration (MIC). Results presented activity of these extracts against Candida species, especially the methanol extract. PMID:21180915

  11. Corridors increase plant species richness at large scales.

    PubMed

    Damschen, Ellen I; Haddad, Nick M; Orrock, John L; Tewksbury, Joshua J; Levey, Douglas J

    2006-09-01

    Habitat fragmentation is one of the largest threats to biodiversity. Landscape corridors, which are hypothesized to reduce the negative consequences of fragmentation, have become common features of ecological management plans worldwide. Despite their popularity, there is little evidence documenting the effectiveness of corridors in preserving biodiversity at large scales. Using a large-scale replicated experiment, we showed that habitat patches connected by corridors retain more native plant species than do isolated patches, that this difference increases over time, and that corridors do not promote invasion by exotic species. Our results support the use of corridors in biodiversity conservation. PMID:16946070

  12. Impact of heat and cold events on the energetic metabolism of the C3 halophyte Halimione portulacoides

    NASA Astrophysics Data System (ADS)

    Duarte, B.; Santos, D.; Marques, J. C.; Caçador, I.

    2015-12-01

    According to the newest predictions, it is expected that the Mediterranean systems experience more frequent and longer heat and cold treatments events. Salt marshes will be no exception. Halimione portulacoides is a widely distributed halophyte highly adapted to harsh environments. Plants exposed to heat stress showed a reduction in the maximum electron transport rates and increase in the rate of RC closure, as indicated by the increase in M0. Alongside there was also a reduction in the quinone pool size while compared to the plants maintained in the control condition. In contrast plants exposed to low temperatures didn't show any signs of damage on the ETC. Heat-exposed individuals experienced a reduction of connectivity between the PS II antennae with simultaneous inhibition of the electron transport. This was more evident in the donor side of the PS II, Being this a consequence of the damages in the oxygen-evolving complex. Also if both PS I and PS II energy fluxes are observed, there are evident differences in the thermal tolerance of both photosystems. While compared to the control group, cold exposed plants showed an increased PS I efficiency (δR0) indicating a tolerance of this photosystem to low temperatures. Nevertheless, the excessive redox potential generated by light harvesting and inefficient processing was not dissipated correctly and consequently causing a oxidative stress situation. In the present study only heat exposed plants showed a significant activation of the xanthophyll cycle. Alongside with this mechanism and similarly to what was observed for cold treated plants, it could be observed an increase in auroxanthin content, an efficient energy quencher under stress conditions. The coupled activation of the xanthophyll cycle along with a higher auroxanthin synthesis suggests that heat-treated individuals had higher needs to dissipate excessive energy than the cells exposed to cold treatment. In both cases appears to exist an efficient ROS scavenging mechanism. According to our data, heat and cold treatment events can have serious impacts on H. portulacoides photobiology reducing its primary productivity. At the ecosystem level, these climatic events could pose a serious threat to the survival of this species in the new climatic reality that our planet is facing.

  13. New evidence for electrotropism in some plant species

    NASA Astrophysics Data System (ADS)

    Gorgolewski, S.; Rozej, B.

    The ever-present global Atmospheric Electrical F ield (AEF) is used by many plant species. There are many natural habitats with electrotropic plants and habitats with no AEF. The plants growing there are not electrotropic, like the plants growing under the canopies of the trees or the Arecibo radio telescope. Examples are given of different plants which belong to one or the other class, and the criteria how to distinguish them. In addition to natural habitat observations, laboratory experiments were run in search of the sensitivity to electrotropic effect in different electric field intensities and directions. It was established that in very strong fields (of the order of 1 MV/m) all plants respond immediately to the field. This type of reaction is due to the Coulomb forces, but electrotropism depends on electric field interaction with ions in plant tissues. We use a "reference field" (130 V/m) and stronger fields in the several kV/m range which enhance plant growth rate and size similar to plant growth hormones. Surprising effects were also observed with reversed field polarity. In conclusion electrotropic pl nts deprived of the electrical field do not develop asa expected, as can be seen in BIOSPHERE 2. It was a sad example of what happens when one forgets to provide the plants with this vital natural environmental factor. Electrical fields of different intensity and direction are cheap and easy to generate. More plants were investigated in order to verify their response to electrical fields. Effect of several kV/m horizontal fields, was compared with the vertical 130 V/m field (ued as a reference) and it was shown that electrotropic sensitivity can be found easily. Surprisingly even the nonelectrotropic plants, whose initial growth rate does not depend on the field strength, when they develop leaves begin to lean towards the positive electrode, and become elect rotropic. Ground based fitotron experiments enable us to select cheaply plants which shall be suitable for food production in space using electical fields to restore to plants the sense of direction of growth.

  14. Alternate-Fueled Flight: Halophytes, Algae, Bio-, and Synthetic Fuels

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.

    2012-01-01

    Synthetic and biomass fueling are now considered to be near-term aviation alternate fueling. The major impediment is a secure sustainable supply of these fuels at reasonable cost. However, biomass fueling raises major concerns related to uses of common food crops and grasses (some also called "weeds") for processing into aviation fuels. These issues are addressed, and then halophytes and algae are shown to be better suited as sources of aerospace fuels and transportation fueling in general. Some of the history related to alternate fuels use is provided as a guideline for current and planned alternate fuels testing (ground and flight) with emphasis on biofuel blends. It is also noted that lessons learned from terrestrial fueling are applicable to space missions. These materials represent an update (to 2009) and additions to the Workshop on Alternate Fueling Sustainable Supply and Halophyte Summit at Twinsburg, Ohio, October 17 to 18, 2007.

  15. Alternate-Fueled Flight: Halophytes, Algae, Bio-, and Synthetic Fuels

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.

    2007-01-01

    Synthetic and biomass fueling are now considered to be near-term aviation alternate fueling. The major impediment is a secure sustainable supply of these fuels at reasonable cost. However, biomass fueling raises major concerns related to uses of common food crops and grasses (some also called "weeds") for processing into aviation fuels. These issues are addressed, and then halophytes and algae are shown to be better suited as sources of aerospace fuels and transportation fueling in general. Some of the history related to alternate fuels use is provided as a guideline for current and planned alternate fuels testing (ground and flight) with emphasis on biofuel blends. It is also noted that lessons learned from terrestrial fueling are applicable to space missions. These materials represent an update and additions to the Workshop on Alternate Fueling Sustainable Supply and Halophyte Summit at Twinsburg, OH, Oct. 17 to 18, 2007 (ref. 1).

  16. [Reactive oxygen species, stress and cell death in plants].

    PubMed

    Parent, Claire; Capelli, Nicolas; Dat, James

    2008-04-01

    Plants are constantly exposed to changes in environmental conditions. During periods of stress, the cellular redox homeostasis is altered as a result of reactive oxygen species accumulation. The change in redox is responsible for the symptoms commonly observed during periods of stress and reflects the phytotoxic nature of oxygen radical accumulation. However, oxygen radicals have recently been identified as key actors in the response to stress and their role as secondary messengers is now clearly established. The identification of their role in gene regulation has allowed one to identify them as key regulators in the induction and execution of programmed cell death typically observed during developmental processes as well as during stress responses. This review presents recent advances in the characterisation of the role of reactive oxygen species in plants. PMID:18355747

  17. Hybrid Viability and Fertility in Co-occuring Plant Species

    NASA Astrophysics Data System (ADS)

    Hernandez, E.; Garcia, C.; Yost, J.

    2012-12-01

    Similar species of plants can co-exist due to reproductive barriers that keep them from hybridizing. In the case of Lasthenia gracilis and L. californica, certain reproductive barriers allow them to co-exist at Jasper Ridge without hybridization. The two species are locally adapted to different regions of the same hillside, and have slight differences in flowering time but hybrids can be created at low rate in the green house. We tested the viability and fertility of green house produced hybrids to quantify post-zygotic reproductive isolation at Jasper Ridge. We planted 10 hybrid seeds and 10 control seeds from 11 different families. We measured the percent germination, survival to flowering and pollen fertility of the seeds. We expect lower germination, lower survival to flowering, and lower pollen viability of hybrid seeds as compared to control seeds.

  18. Choline but not its derivative betaine blocks slow vacuolar channels in the halophyte Chenopodium quinoa: implications for salinity stress responses.

    PubMed

    Pottosin, Igor; Bonales-Alatorre, Edgar; Shabala, Sergey

    2014-11-01

    Activity of tonoplast slow vacuolar (SV, or TPC1) channels has to be under a tight control, to avoid undesirable leak of cations stored in the vacuole. This is particularly important for salt-grown plants, to ensure efficient vacuolar Na(+) sequestration. In this study we show that choline, a cationic precursor of glycine betaine, efficiently blocks SV channels in leaf and root vacuoles of the two chenopods, Chenopodium quinoa (halophyte) and Beta vulgaris (glycophyte). At the same time, betaine and proline, two major cytosolic organic osmolytes, have no significant effect on SV channel activity. Physiological implications of these findings are discussed. PMID:25240200

  19. Biodegradation of 2,4-dinitrotoluene by different plant species.

    PubMed

    Podlipn, Radka; Pospilov, Blanka; Van?k, Tom

    2015-02-01

    Over the past century, rapid growth of population, mining and industrialization significantly contributed to extensive soil, air and water contamination. The 2,4-dinitrotoluene (2,4-DNT), used mostly as explosive, belongs to the hazardous xenobiotics. Soils and waters contaminated with 2,4-DNT may be cleaned by phytoremediation using suitable plant species. The ability of crop plants (hemp, flax, sunflower and mustard) to germinate and grow on soils contaminated with 2,4-DNT was compared. Stimulation of their growth was found at 0.252 mg/g 2,4-DNT. The lethal concentration for the growth for these species was around 1 mg/g. In hydropony, the above mentioned species were able to survive 200 mg/l 2,4-DNT, the concentration close to maximal solubility of 2,4-DNT in water. Metabolism of 2,4-DNT was tested using suspension culture of soapwort and reed. The degradation products 2-aminonitrotoluene and 4-aminonitrotoluene were found both in the medium and in the acetone extract of plant cells. The test showed that the toxicity of these metabolites was higher than the toxicity of the parent compound, but 2,4-diaminotoluene, the product of next reduction step, was less toxic in the concentration range tested (0-200 mg/l). PMID:25463853

  20. Arsenic species: effects on and accumulation by tomato plants.

    PubMed

    Burl, F; Guijarro, I; Carbonell-Barrachina, A A; Valero, D; Martnez-Snchez, F

    1999-03-01

    The uptake of arsenic (As) species by Lycopersicum esculentum, growing under soilless culture conditions, was studied. A 4 x 3 x 2 factorial experiment was conducted with four As species (arsenite, arsenate, methylarsonate, and dimethylarsinate), three As concentrations (1, 2, and 5 mg L(-)(1)) and two tomato cultivars (Marmande and Muchamiel). The phytoavailability and phytotoxicity were primarily determined by the As species. The concentrations of As in plant increased significantly with increasing As concentration in solution. Both MA and DMA showed a higher upward translocation than arsenite and arsenate, and treatments with MA and DMA clearly reduced plant growth and fruit yield. The As concentration in tomatoes treated with arsenite or arsenate were within the range considered normal in food crops; however, the As concentration in tomatoes treated with MA and DMA were close to or even above the maximum limit. When tomato plants are exposed to high concentrations of As in nutrient solutions, they may uptake As to concentrations unacceptable for human food. PMID:10552445

  1. Constrained preferences in nitrogen uptake across plant species and environments.

    PubMed

    Wang, Lixin; Macko, Stephen A

    2011-03-01

    Knowledge of determining factors for nitrogen uptake preferences and how they are modified in changing environments are critical to understand ecosystem nitrogen cycling and to predict plant responses to future environmental changes. Two ?N tracer experiments utilizing a unique differential labelled nitrogen source were employed in both African savannas and greenhouse settings. The results demonstrated that nitrogen uptake preferences were constrained by the climatic conditions. As mainly indicated by root ??N signatures at 1:1 ammonium/nitrate ratio, in the drier environments, plants preferred nitrate and in the wetter environments they preferred ammonium. Nitrogen uptake preferences were different across different ecosystems (e.g. from drier to wetter environments) even for the same species. More significantly, our experiments showed that the plant progeny continued to exhibit the same nitrogen preference as the parent plants in the field, even when removed from their native environment and the nitrogen source was changed dramatically. The climatic constraint of nitrogen uptake preference is likely influenced by ammonium/nitrate ratios in the native habitats of the plants. The constancy in nitrogen preference has important implications in predicting the success of plant communities in their response to climate change, to seed bank use and to reforestation efforts. PMID:21118424

  2. Reactive oxygen species during plant-microorganism early interactions.

    PubMed

    Nanda, Amrit K; Andrio, Emilie; Marino, Daniel; Pauly, Nicolas; Dunand, Christophe

    2010-02-01

    Reactive Oxygen Species (ROS) are continuously produced as a result of aerobic metabolism or in response to biotic and abiotic stresses. ROS are not only toxic by-products of aerobic metabolism, but are also signalling molecules involved in several developmental processes in all organisms. Previous studies have clearly shown that an oxidative burst often takes place at the site of attempted invasion during the early stages of most plant-pathogen interactions. Moreover, a second ROS production can be observed during certain types of plant-pathogen interactions, which triggers hypersensitive cell death (HR). This second ROS wave seems absent during symbiotic interactions. This difference between these two responses is thought to play an important signalling role leading to the establishment of plant defense. In order to cope with the deleterious effects of ROS, plants are fitted with a large panel of enzymatic and non-enzymatic antioxidant mechanisms. Thus, increasing numbers of publications report the characterisation of ROS producing and scavenging systems from plants and from microorganisms during interactions. In this review, we present the current knowledge on the ROS signals and their role during plant-microorganism interactions. PMID:20377681

  3. Plant coexistence alters terpene emission and content of Mediterranean species.

    PubMed

    Ormeo, Elena; Fernandez, Catherine; Mvy, Jean-Philippe

    2007-03-01

    There is evidence that secondary metabolism may modulate plant interactions and is modified by different biotic stress agents, such as herbivores or pathogens. However, it is poorly understood whether secondary metabolism is altered during competition among plants. The intraspecific and interspecific coexistence of some Mediterranean potted seedlings, namely Rosmarinus officinalis, Pinus halepensis, Cistus albidus and Quercus coccifera was investigated through their terpene accumulation within leaves (except for Q. coccifera, a non-storing species) and terpene emissions (for all species). Competition had both positive and negative effects for both terpene emissions and content, depending on the species a seedling coexisted with. For R. officinalis, terpene concentrations (1.8-cineole and camphor) and terpene emissions (camphene, camphor and overall monoterpenes) were lower when the neighbour species was P. halepensis. For C. albidus, no changes were observed in its content, while the overall sesquiterpene emissions (70% of total emissions) were reduced in all competition conditions, except in intraspecific competition. In the case of P. halepensis, the highest terpene content occurred when it grew with C. albidus, and in intraspecific competition, while its emissions were reduced under these conditions. Only emissions of Q. coccifera showed no significant changes in the different competition treatments. PMID:17258247

  4. Unmanned Aerial Vehicles for Alien Plant Species Detection and Monitoring

    NASA Astrophysics Data System (ADS)

    Dvořák, P.; Müllerová, J.; Bartaloš, T.; Brůna, J.

    2015-08-01

    Invasive species spread rapidly and their eradication is difficult. New methods enabling fast and efficient monitoring are urgently needed for their successful control. Remote sensing can improve early detection of invading plants and make their management more efficient and less expensive. In an ongoing project in the Czech Republic, we aim at developing innovative methods of mapping invasive plant species (semi-automatic detection algorithms) by using purposely designed unmanned aircraft (UAV). We examine possibilities for detection of two tree and two herb invasive species. Our aim is to establish fast, repeatable and efficient computer-assisted method of timely monitoring, reducing the costs of extensive field campaigns. For finding the best detection algorithm we test various classification approaches (object-, pixel-based and hybrid). Thanks to its flexibility and low cost, UAV enables assessing the effect of phenological stage and spatial resolution, and is most suitable for monitoring the efficiency of eradication efforts. However, several challenges exist in UAV application, such as geometrical and radiometric distortions, high amount of data to be processed and legal constrains for the UAV flight missions over urban areas (often highly invaded). The newly proposed UAV approach shall serve invasive species researchers, management practitioners and policy makers.

  5. ANTIFUNGAL POTENTIAL OF PLANT SPECIES FROM BRAZILIAN CAATINGA AGAINST DERMATOPHYTES.

    PubMed

    Biasi-Garbin, Renata Perugini; Demitto, Fernanda de Oliveira; Amaral, Renata Claro Ribeiro do; Ferreira, Magda Rhayanny Assunção; Soares, Luiz Alberto Lira; Svidzinski, Terezinha Inez Estivalet; Baeza, Lilian Cristiane; Yamada-Ogatta, Sueli Fumie

    2016-01-01

    Trichophyton rubrum and Trichophyton mentagrophytes complex, or Trichophyton spp. are the main etiologic agents of dermatophytosis, whose treatment is limited by the high cost of antifungal treatments, their various side effects, and the emergence of resistance amongst these species. This study evaluated the in vitro antidermatophytic activity of 23 crude extracts from nine plant species of semiarid vegetation (caatinga) found in Brazil. The extracts were tested at concentrations ranging from 1.95 to 1,000.0 mg/mL by broth microdilution assay against the reference strains T. rubrum ATCC 28189 and T. mentagrophytesATCC 11481, and 33 clinical isolates of dermatophytes. All plants showed a fungicidal effect against both fungal species, with MIC/MFC values of the active extracts ranging from 15.6 to 250.0 µg/mL. Selected extracts of Eugenia uniflora (AcE), Libidibia ferrea (AE), and Persea americana (AcE) also exhibited a fungicidal effect against all clinical isolates of T. rubrum and T. mentagrophytes complex. This is the first report of the antifungal activity of Schinus terebinthifolius, Piptadenia colubrina, Parapiptadenia rigida, Mimosa ophthalmocentra, and Persea americana against both dermatophyte species. PMID:27007561

  6. Invasive Plant Species: Inventory, Mapping, and Monitoring - A National Strategy

    USGS Publications Warehouse

    Ludke, J. Larry; D'Erchia, Frank; Coffelt, Jan; Hanson, Leanne

    2002-01-01

    America is under siege by invasive species of plants and animals, and by diseases. The current environmental, economic, and health-related costs of invasive species could exceed $138 billion per year-more than all other natural disasters combined. Notorious examples include West Nile virus, Dutch elm disease, chestnut blight, and purple loose- strife in the Northeast; kudzu, Brazilian peppertree, water hyacinth, nutria, and fire ants in the Southeast; zebra mussels, leafy spurge, and Asian long-horn beetles in the Midwest; salt cedar, Russian olive, and Africanized bees in the Southwest; yellow star thistle, European wild oats, oak wilt disease, Asian clams, and white pine blister rust in California; cheatgrass, various knapweeds, and thistles in the Great Basin; whirling disease of salmonids in the Northwest; hundreds of invasive species from microbes to mammals in Hawaii; and the brown tree snake in Guam. Thousands of species from other countries are introduced intentionally or accidentally into the United States each year. Based on past experience, 10-15 percent can be expected to establish free-living populations and about 1 percent can be expected to cause significant impacts to ecosystems, native species, economic productivity, and (or) human health.

  7. Metabolic potential and community structure of endophytic and rhizosphere bacteria associated with the roots of the halophyte Aster tripolium L.

    PubMed

    Szymańska, Sonia; Płociniczak, Tomasz; Piotrowska-Seget, Zofia; Złoch, Michał; Ruppel, Silke; Hrynkiewicz, Katarzyna

    2016-01-01

    The submitted work assumes that the abundance and diversity of endophytic and rhizosphere microorganisms co-existing with the halophytic plant Aster tripolium L. growing in a salty meadow in the vicinity of a soda factory (central Poland) represent unique populations of cultivable bacterial strains. Endophytic and rhizosphere bacteria were (i) isolated and identified based on 16S rDNA sequences; (ii) screened for nifH and acdS genes; and (iii) analyzed based on selected metabolic properties. Moreover, total microbial biomass and community structures of the roots (endophytes), rhizosphere and soil were evaluated using a cultivation-independent technique (PLFA) to characterize plant-microbial interactions under natural salt conditions. The identification of the isolated strains showed domination by Gram-positive bacteria (mostly Bacillus spp.) both in the rhizosphere (90.9%) and roots (72.7%) of A. tripolium. Rhizosphere bacterial strains exhibited broader metabolic capacities, while endophytes exhibited higher specificities for metabolic activity. The PLFA analysis showed that the total bacterial biomass decreased in the following order (rhizospherehalophyte. The described strain collection provides a valuable basis for a subsequent applications of bacteria in improvement of site adaptation of plants in saline soils. PMID:26686615

  8. Effects of Target Plant Species Body Size on Neighbourhood Species Richness and Composition in Old-Field Vegetation

    PubMed Central

    Schamp, Brandon S.; Aarssen, Lonnie W.; Wight, Stephanie

    2013-01-01

    Competition is generally regarded as an important force in organizing the structure of vegetation, and evidence from several experimental studies of species mixtures suggests that larger mature plant size elicits a competitive advantage. However, these findings are at odds with the fact that large and small plant species generally coexist, and relatively smaller species are more common in virtually all plant communities. Here, we use replicates of ten relatively large old-field plant species to explore the competitive impact of target individual size on their surrounding neighbourhoods compared to nearby neighbourhoods of the same size that are not centred by a large target individual. While target individuals of the largest of our test species, Centaurea jacea L., had a strong impact on neighbouring species, in general, target species size was a weak predictor of the number of other resident species growing within its immediate neighbourhood, as well as the number of resident species that were reproductive. Thus, the presence of a large competitor did not restrict the ability of neighbouring species to reproduce. Lastly, target species size did not have any impact on the species size structure of neighbouring species; i.e. they did not restrict smaller, supposedly poorer competitors, from growing and reproducing close by. Taken together, these results provide no support for a size-advantage in competition restricting local species richness or the ability of small species to coexist and successfully reproduce in the immediate neighbourhood of a large species. PMID:24349177

  9. Plant Size as Determinant of Species Richness of Herbivores, Natural Enemies and Pollinators across 21 Brassicaceae Species

    PubMed Central

    Schlinkert, Hella; Westphal, Catrin; Clough, Yann; László, Zoltán; Ludwig, Martin; Tscharntke, Teja

    2015-01-01

    Large plants are often more conspicuous and more attractive for associated animals than small plants, e.g. due to their wider range of resources. Therefore, plant size can positively affect species richness of associated animals, as shown for single groups of herbivores, but studies usually consider intraspecific size differences of plants in unstandardised environments. As comprehensive tests of interspecific plant size differences under standardised conditions are missing so far, we investigated effects of plant size on species richness of all associated arthropods using a common garden experiment with 21 Brassicaceae species covering a broad interspecific plant size gradient from 10 to 130 cm height. We recorded plant associated ecto- and endophagous herbivores, their natural enemies and pollinators on and in each aboveground plant organ, i.e. flowers, fruits, leaves and stems. Plant size (measured as height from the ground), the number of different plant organ entities and their biomass were assessed. Increasing plant size led to increased species richness of associated herbivores, natural enemies and pollinating insects. This pattern was found for ectophagous and endophagous herbivores, their natural enemies, as well as for herbivores associated with leaves and fruits and their natural enemies, independently of the additional positive effects of resource availability (i.e. organ biomass or number of entities and, regarding natural enemies, herbivore species richness). We found a lower R2 for pollinators compared to herbivores and natural enemies, probably caused by the high importance of flower characteristics for pollinator species richness besides plant size. Overall, the increase in plant height from 10 to 130 cm led to a 2.7-fold increase in predicted total arthropod species richness. In conclusion, plant size is a comprehensive driver of species richness of the plant associated arthropods, including pollinators, herbivores and their natural enemies, whether they are endophagous or ectophagous or associated with leaves or fruits. PMID:26291614

  10. Plant Size as Determinant of Species Richness of Herbivores, Natural Enemies and Pollinators across 21 Brassicaceae Species.

    PubMed

    Schlinkert, Hella; Westphal, Catrin; Clough, Yann; Lszl, Zoltn; Ludwig, Martin; Tscharntke, Teja

    2015-01-01

    Large plants are often more conspicuous and more attractive for associated animals than small plants, e.g. due to their wider range of resources. Therefore, plant size can positively affect species richness of associated animals, as shown for single groups of herbivores, but studies usually consider intraspecific size differences of plants in unstandardised environments. As comprehensive tests of interspecific plant size differences under standardised conditions are missing so far, we investigated effects of plant size on species richness of all associated arthropods using a common garden experiment with 21 Brassicaceae species covering a broad interspecific plant size gradient from 10 to 130 cm height. We recorded plant associated ecto- and endophagous herbivores, their natural enemies and pollinators on and in each aboveground plant organ, i.e. flowers, fruits, leaves and stems. Plant size (measured as height from the ground), the number of different plant organ entities and their biomass were assessed. Increasing plant size led to increased species richness of associated herbivores, natural enemies and pollinating insects. This pattern was found for ectophagous and endophagous herbivores, their natural enemies, as well as for herbivores associated with leaves and fruits and their natural enemies, independently of the additional positive effects of resource availability (i.e. organ biomass or number of entities and, regarding natural enemies, herbivore species richness). We found a lower R2 for pollinators compared to herbivores and natural enemies, probably caused by the high importance of flower characteristics for pollinator species richness besides plant size. Overall, the increase in plant height from 10 to 130 cm led to a 2.7-fold increase in predicted total arthropod species richness. In conclusion, plant size is a comprehensive driver of species richness of the plant associated arthropods, including pollinators, herbivores and their natural enemies, whether they are endophagous or ectophagous or associated with leaves or fruits. PMID:26291614

  11. Constitutive high-level SOS1 expression and absence of HKT1;1 expression in the salt-accumulating halophyte Salicornia dolichostachya.

    PubMed

    Katschnig, D; Bliek, T; Rozema, J; Schat, H

    2015-05-01

    We investigated the effects of salinity on ion accumulation and expression of candidate salt tolerance genes in the highly tolerant salt accumulating halophyte Salicornia dolichostachya and the taxonomically related glycophytic Spinacia oleracea. S. dolichostachya, in comparison with S. oleracea, constitutively expressed SOS1 at a high level, but did not detectably express HKT1;1. These findings suggest that the constitutive high level of shoot salt accumulation in S. dolichostachya is accomplished through enhancement of SOS1-mediated Na(+) xylem loading, in combination with complete suppression of HKT1;1-mediated Na(+) retrieval from the xylem. Our findings demonstrate the importance of gene expression comparisons between highly tolerant halophytes and taxonomically related glycophytes to improve the understanding of mechanisms of Na(+) movement and salt tolerance in plants. PMID:25804817

  12. Evaluating responses of four wetland plant species to different hydroperiods.

    PubMed

    Slusher, C E; Vepraskas, M J; Broome, S W

    2014-03-01

    Previous work has estimated the hydroperiod requirements (saturation duration and frequency) of wetland plant communities by modeling their hydrologic regimes in natural (never drained) wetlands for a 40-yr period. This study tested the modeled predictions in a controlled greenhouse study using tree species representing three of the plant communities plus an additional species from another community. Bald cypress ( L. Rich.), sweet bay ( L.), pond pine ( Michx.), and swamp chestnut oak ( Nutt.) were grown under three hydroperiods (continuously ponded for 100 d, intermittently ponded for 14 d, and unsaturated) in loamy sand and sapric (organic) materials. Bald cypress (representing a Nonriverine Swamp Forest community) adapted well to 100 d of ponding by producing lateral roots near the soil surface and aerenchyma tissue in roots and stem. Sweet bay (Bay Forest community) also adapted well to 100 d of ponding by producing adventitious roots on the submerged portion of the stem. Pond pine (Pond Pine Woodland) and swamp chestnut oak (Nonriverine Wet Hardwood Forest) were intolerant of 100 d of ponded conditions. Seventy-five percent of the pond pine seedlings and 87% of the swamp chestnut oak seedlings died in the continuously ponded treatment level, whereas 100% of the bald cypress and 88% of the sweet bay seedlings survived. Results from this study suggest that modeled long-term hydroperiods of natural wetland plant communities can be used for restoration of these communities. PMID:25602673

  13. Hydroperiod regime controls the organization of plant species in wetlands

    PubMed Central

    Foti, Romano; del Jesus, Manuel; Rinaldo, Andrea; Rodriguez-Iturbe, Ignacio

    2012-01-01

    With urban, agricultural, and industrial needs growing throughout the past decades, wetland ecosystems have experienced profound changes. Most critically, the biodiversity of wetlands is intimately linked to its hydrologic dynamics, which in turn are being drastically altered by ongoing climate changes. Hydroperiod regimes, e.g., percentage of time a site is inundated, exert critical control in the creation of niches for different plant species in wetlands. However, the spatial signatures of the organization of plant species in wetlands and how the different drivers interact to yield such signatures are unknown. Focusing on Everglades National Park (ENP) in Florida, we show here that cluster sizes of each species follow a power law probability distribution and that such clusters have well-defined fractal characteristics. Moreover, we individuate and model those signatures via the interplay between global forcings arising from the hydroperiod regime and local controls exerted by neighboring vegetation. With power law clustering often associated with systems near critical transitions, our findings are highly relevant for the management of wetland ecosystems. In addition, our results show that changes in climate and land management have a quantifiable predictable impact on the type of vegetation and its spatial organization in wetlands. PMID:23150589

  14. Plot shape effects on plant species diversity measurements

    USGS Publications Warehouse

    Keeley, J.E.; Fotheringham, C.J.

    2005-01-01

    Question: Do rectangular sample plots record more plant species than square plots as suggested by both empirical and theoretical studies? Location: Grasslands, shrublands and forests in the Mediterranean-climate region of California, USA. Methods: We compared three 0.1-ha sampling designs that differed in the shape and dispersion of 1-m2 and 100-m2 nested subplots. We duplicated an earlier study that compared the Whittaker sample design, which had square clustered subplots, with the modified Whittaker design, which had dispersed rectangular subplots. To sort out effects of dispersion from shape we used a third design that overlaid square subplots on the modified Whittaker design. Also, using data from published studies we extracted species richness values for 400-m2 subplots that were either square or 1:4 rectangles partially overlaid on each other from desert scrub in high and low rainfall years, chaparral, sage scrub, oak savanna and coniferous forests with and without fire. Results: We found that earlier empirical reports of more than 30% greater richness with rectangles were due to the confusion of shape effects with spatial effects, coupled with the use of cumulative number of species as the metric for comparison. Average species richness was not significantly different between square and 1:4 rectangular sample plots at either 1-or 100-m2. Pairwise comparisons showed no significant difference between square and rectangular samples in all but one vegetation type, and that one exhibited significantly greater richness with squares. Our three intensive study sites appear to exhibit some level of self-similarity at the scale of 400 m2, but, contrary to theoretical expectations, we could not detect plot shape effects on species richness at this scale. Conclusions: At the 0.1-ha scale or lower there is no evidence that plot shape has predictable effects on number of species recorded from sample plots. We hypothesize that for the mediterranean-climate vegetation types studied here, the primary reason that 1:4 rectangles do not sample greater species richness than squares is because species turnover varies along complex environmental gradients that are both parallel and perpendicular to the long axis of rectangular plots. Reports in the literature of much greater species richness recorded for highly elongated rectangular strips than for squares of the same area are not likely to be fair comparisons because of the dramatically different periphery/area ratio, which includes a much greater proportion of species that are using both above and below-ground niche space outside the sample area. ?? IAVS; Opulus Press Uppsala.

  15. REMOTE DETECTION OF INVASSIVE AND OPPORTUNISTIC PLANT SPECIES IN GREAT LAKES COASTAL WETLANDS

    EPA Science Inventory

    Invasive and opportunistic plant species have been associated with wetland disturbance. Increases in the abundance of plant species such as common reed (Phragmites australis) in coastal Great Lakes wetlands are hypothesized to occur with shifts toward drier hydrologic regimes, fr...

  16. REMOTE DETENTION OF INVASIVE AND OPPORTUNISTIC PLANT SPECIES IN GREAT LAKES COASTAL WETLANDS

    EPA Science Inventory

    Invasive and opportunistic plant species have been associated with wetland disturbance. Increases in the abundance of plant species such as common reed (Phragmites australis) in coastal Great Lakes wetlands are hypothesized to occur with shifts toward drier hydrologic regimes, fr...

  17. Soil vs. canopy seed storage and plant species coexistence in species-rich Australian shrublands.

    PubMed

    Enright, N J; Mosner, E; Miller, B P; Johnson, N; Lamont, Byron B

    2007-09-01

    The fire-prone shrublands of southwestern Australia are renowned for their high plant species diversity and prominence of canopy seed storage (serotiny). We compared species richness, abundance, and life history attributes for soil and canopy seed banks in relation to extant vegetation among four sites with different substrate conditions and high species turnover (50-80%) to identify whether this unusual community-level organization of seed storage might contribute to maintenance of high species richness. Soil seed bank (SSB) densities were low to moderate (233-1435 seeds/m2) compared with densities for other Mediterranean-type vegetation and were lowest for sites with highest canopy seed bank (CSB) species richness and lowest nutrient availability, but not richness or abundance of resprouters. Annuals were infrequent in the lowest nutrient sites, but there was no evidence that small SSB size was due to low seed inputs or a trade-off between seed production/storage and seed size in response to low nutrient availability. Sorensen's similarity between SSB and extant vegetation was 26-43% but increased to 54-57% when the CSB was included, representing levels higher than reported for most other ecosystems. Resprouting species were well represented in both the SSB and CSB, and there was no evidence for lower seed production in resprouters than in non-sprouters overall. The SSB and CSB held no species in common and were characterized by markedly different seed dispersal attributes, with winged or small seeds in the CSB and seeds dispersed by ants, birds, and wind (though none with wings) in the SSB. There was no evidence of spatial differentiation in the distribution of seeds of SSB species between vegetated and open microsites that might facilitate species coexistence, but most woody non-sprouters showed aggregation at scales of 1-2 m, implying limited seed dispersal. High similarity between overall seed bank (SSB + CSB) and extant species composition, high number of resprouting species, and seed dispersal processes before (SSB) and after fire (CSB) leading to differential spatial aggregation of post-fire recruits from the two seed bank types may buffer species composition against rapid change and provide a mechanism for maintaining species coexistence at the local scale. PMID:17918407

  18. Plant inter-species effects on rhizosphere priming effect and nitrogen acquisition by plants

    NASA Astrophysics Data System (ADS)

    Sun, Yue; Xu, Xingliang; Yang, Baijie; Kuzyakov, Yakov

    2015-04-01

    Rhizosphere interactions play a central role linking roots-soil system and regulate various aspects of nutrient cycling. Rhizodeposition inputs are known to change soil organic matter (SOM) decomposition via rhizosphere priming effects (RPEs) through enhancing soil biological activity and altering microbial community structure. The magnitude of RPEs varies widely among plant-species and root biomass possibly due to different quality and quantity of rhizodeposits. However, it is virtually unknown whether the RPEs are influenced by plant inter-species interactions and how these processes affect N mineralization and available N for plants. Monocultures of maize (M) and soybean (S), and mixed cultures of maize/maize (MM), soybean/soybean (SS), maize/soybean (MS) were grown over a 45-day greenhouse experiment. We labeled them with plant litter that was enriched in13C and 15N. The 15N distributions in plants and microbial biomass were measured at 14, 35, and 45days after labeling. The RPEs were positive under all plants, ranging from 11.7% to 138.3% and gradually decreased with plant growth. The RPE in the SS was significantly higher than these in others treatments at 14 days, while at 45 days it was higher in the MS than these from their monocultures, suggesting that the RPE was enhanced by the inter-species effects of maize and soybean. The litter decomposition ratio and 15N recovery of plants and microorganism increased with the root growth across all plants. The 15N recovery of plants in the MS (14.2%) was higher than these in the MM (12.3%) and SS(9.7%) at 45 days. Similarly, the 15N recovery of microorganism in the corresponding treatments was 6.7%, 2.2%, and 6.8%, respectively. The MS showed higher soil organic N mineralization amount than that from all soybean and maize monocultures at 45 days. We conclude that plant inter-species interactions may have significant effect on rhizosphere priming and modify the plant N uptake from litter resource and SOM.

  19. The role of antioxidant responses on the tolerance range of extreme halophyte Salsola crassa grown under toxic salt concentrations.

    PubMed

    Yildiztugay, Evren; Ozfidan-Konakci, Ceyda; Kucukoduk, Mustafa

    2014-12-01

    Salsola crassa (Amaranthaceae) is an annual halophytic species and naturally grows in arid soils that are toxic to most plants. In order to study the effects of salinity on their antioxidant system and to determine the tolerance range against salt stress, S. crassa seeds were grown with different concentrations of NaCl (0, 250, 500, 750, 1000, 1250 and 1500mM) for short (15d) and long-term (30d). Results showed that growth (RGR), water content (RWC) and osmotic potential (??) decreased and, proline content (Pro) increased at prolonged salt treatment. Unlike K(+) and Ca(2+) contents, S. crassa highly accumulated Na(+) and Cl(-) contents. Chlorophyll fluorescence (Fv/Fm) only decreased in response to 1500mM NaCl at 30d. No salt stimulation of superoxide anion radical (O2(-)) content was observed in plants treated with the range of 0-500mM NaCl during the experimental period. NaCl increased superoxide dismutase (SOD) activity depending on intensities of Mn-SOD and Fe-SOD isozymes except in 1500mM NaCl-treated plants at 30d. In contrast to catalase (CAT), peroxidase (POX) activity increased throughout the experiment. Also, salinity caused an increase in glutathione reductase (GR) and glutathione peroxidase (GPX) and decreased in ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR) at 15d. Both total ascorbate (tAsA) and glutathione (tGlut) contents significantly increased in treated plants with 1000-1500mM NaCl at 15d. After 0-1000mM NaCl stress, H2O2 and TBARS contents were similar to control groups at 15d, which were consistent with the increased antioxidant activity (POX, GR and GPX). However, H2O2 content was more pronounced at 30d. Therefore, S. crassa exhibited inductions in lipid peroxidation (TBARS content) in response to extreme salt concentrations. These results suggest that S. crassa is tolerant to salt-induced damage at short-term treatments as well as extreme salt concentrations. PMID:25193881

  20. Plant-associated bacterial populations on native and invasive plant species: comparisons between 2 freshwater environments.

    PubMed

    Olapade, Ola A; Pung, Kayleigh

    2012-06-01

    Plant-microbial interactions have been well studied because of the ecological importance of such relationships in aquatic systems. However, general knowledge regarding the composition of these biofilm communities is still evolving, partly as a result of several confounding factors that are attributable to plant host properties and to hydrodynamic conditions in aquatic environments. In this study, the occurrences of various bacterial phylogenetic taxa on 2 native plants, i.e., mayapple (Podophyllum peltatum L.) and cow parsnip (Heracleum maximum Bartram), and on an invasive species, i.e., garlic mustard (Alliaria petiolata (M. Bieb.) Cavara & Grande), were quantitatively examined using nucleic acid staining and fluorescence in situ hybridization. The plants were incubated in triplicates for about a week within the Kalamazoo River and Pierce Cedar Creek as well as in microcosms. The bacterial groups targeted for enumeration are known to globally occur in relatively high abundance and are also ubiquitously distributed in freshwater environments. Fluorescence in situ hybridization analyses of the bacterioplankton assemblages revealed that the majority of bacterial cells that hybridized with the different probes were similar between the 2 sites. In contrast, the plant-associated populations while similar on the 3 plants incubated in Kalamazoo River, their representations were highest on the 2 native plants relative to the invasive species in Pierce Cedar Creek. Overall, our results further suggested that epiphytic bacterial assemblages are probably under the influences of and probably subsequently respond to multiple variables and conditions in aquatic milieus. PMID:22625420

  1. Short communication: occurrence of Arcobacter species in industrial dairy plants.

    PubMed

    Serraino, A; Giacometti, F

    2014-01-01

    The present study investigated the presence of Arcobacter spp. in industrial dairy plants. Between February and September 2013, pasteurized milk used for cheesemaking, processing and cleaning water, cheese, and environmental samples from different plant sites, including surfaces in contact or not in contact with food, were sampled. A total of 126 samples were analyzed by the cultural method and isolates were identified by multiplex PCR. Arcobacter spp. were isolated from 22 of 75 environmental samples (29.3%): of them, 22.7% were surfaces in contact with food and 38.7% surfaces not in contact with food. A total of 135 Arcobacter spp. isolates were obtained; of these, 129 and 6 were identified as Arcobacter butzleri and Arcobacter cryaerophilus, respectively. All food processing water and pasteurized milk samples were negative for Arcobacter species. We were not able to determine the primary source of contamination, but the isolation of both A. butzleri and A. cryaerophilus in surfaces in contact with food before and during manufacturing suggests that Arcobacter spp. are not or are only partially affected by routine sanitizing procedures in the industrial dairy plants studied. The efficacy of sanitizing procedures should be evaluated and further studies are needed to determine whether certain Arcobacter strains persist for long periods of time in industrial dairy plants and whether they can survive in different types of cheese in cases of postprocessing contamination. PMID:24534515

  2. Reactive oxygen species generation and signaling in plants

    PubMed Central

    Tripathy, Baishnab Charan; Oelmüller, Ralf

    2012-01-01

    The introduction of molecular oxygen into the atmosphere was accompanied by the generation of reactive oxygen species (ROS) as side products of many biochemical reactions. ROS are permanently generated in plastids, peroxisomes, mitochiondria, the cytosol and the apoplast. Imbalance between ROS generation and safe detoxification generates oxidative stress and the accumulating ROS are harmful for the plants. On the other hand, specific ROS function as signaling molecules and activate signal transduction processes in response to various stresses. Here, we summarize the generation of ROS in the different cellular compartments and the signaling processes which are induced by ROS. PMID:23072988

  3. Copper phytotoxicity in native and agronomical plant species.

    PubMed

    Lamb, Dane T; Naidu, Ravi; Ming, Hui; Megharaj, Mallavarapu

    2012-11-01

    Copper (Cu) is a widespread soil contaminant that is known to be highly toxic to soil biota. Limited information is available on the response of wild endemic species to Cu in the literature, which hinders ecological risk assessments and revegetation. In the present study, the phytotoxicity of Cu in nutrient solution was studied in five Australian endemic plant species (Acacia decurrens, Austrodanthonia richardsonii (Wallaby Grass), Bothriochloa macra (Redgrass), Eucalyptus camaldulensis var. camaldulensis (River Red-Gum) and Dichanthium sericeum (Bluegrass) and two vegetable plants species (Lactuca sativa L. 'Great lakes' and Raphanus sativa L.). Vegetable species were grown in a more concentrated nutrient solution. The response of B. macra was also compared between the two nutrient solutions (dilute and concentrated nutrient solution). In the first experiment, D. sericeum and E. camaldulensis were found to be highly sensitive to Cu exposure in nutrient culture. Critical exogenous Cu concentrations (50 percent reduction in roots) for E. camaldulensis, D. sericeum, A. richardsonii, B. macra (dilute), L. sativa, B. macra (concentrated), R. sativa and A. decurrens were, respectively, (?g/L) 16, 35, 83, 88, 97, 105, 128 and 186. Copper tolerance in B. macra was observed to be higher in the more concentrated nutrient solution despite the estimated Cu(2+) concentration being very similar in treatment solutions. Additional short-term rhizo-accumulation studies showed that neither Ca(2+) not K(+) was responsible for reduced uptake at the roots. However, the estimated maximum shoot Cu was reduced from 41 to 24mg/kg in the more concentrated solution. PMID:22995781

  4. ELEVATED CO2 AND PLANT PLANT SPECIES RICHNESS IMPACT ARBUSCULAR MYCORRHIZAL FUNGAL SPORE COMMUNITIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We enumerated arbuscular mycorrhizal fungal spore communities for three years as part of a long-term Free-Air CO2 Enrichment experiment (BioCON) at Cedar Creek, Minnesota, USA. Complete factorial combinations of two levels of CO2 and N, and sixteen perennial plant species grown in monoculture and si...

  5. Proteomic and physiological responses of the halophyte Cakile maritima to moderate salinity at the germinative and vegetative stages.

    PubMed

    Debez, Ahmed; Braun, Hans-Peter; Pich, Andreas; Taamalli, Wael; Koyro, Hans-Werner; Abdelly, Chedly; Huchzermeyer, Bernhard

    2012-10-22

    Responses of the halophyte Cakile maritima to moderate salinity were addressed at germination and vegetative stages by bringing together proteomics and eco-physiological approaches. 75 mM NaCl-salinity delayed significantly the germination process and decreased slightly the seed germination percentage compared to salt-free conditions. Monitoring the proteome profile between 0 h and 120 h after seed sowing revealed a delay in the degradation of seed storage proteins when germination took place under salinity, which may explain the slower germination rate observed. Of the sixty-seven proteins identified by mass spectrometry, several proteins involved in glycolysis, amino acid metabolism, photosynthesis, and protein folding showed significantly increased abundance during germination. This pattern was less pronounced under salinity. At the vegetative stage, 100mM NaCl-salinity stimulated significantly the plant growth, which was sustained by enhanced leaf expansion, water content, and photosynthetic activity. Comparative proteome analyses of leaf tissue revealed 44 proteins with different abundance changes, most of which being involved in energy metabolism. A specific set of proteins predominantly involved in photosynthesis and respiration showed significantly higher abundance in salt-treated plants. Altogether, combining proteomics with eco-physiological tools provides valuable information, which contributes to improve our understanding in the salt-response of this halophyte during its life cycle. PMID:22940175

  6. Duck Productivity in Restored Species-Rich Native and Species-Poor Non-Native Plantings

    PubMed Central

    Haffele, Ryan D.; Eichholz, Michael W.; Dixon, Cami S.

    2013-01-01

    Conservation efforts to increase duck production have led the United States Fish and Wildlife Service to restore grasslands with multi-species (3-5) mixtures of introduced cool season vegetation often termed dense nesting cover (DNC). The effectiveness of DNC to increase duck production has been variable, and maintenance of the cover type is expensive. In an effort to decrease the financial and ecological costs (increased carbon emissions from plowing and reseeding) of maintaining DNC and provide a long-term, resilient cover that will support a diversity of grassland fauna, restoration of multi-species (16-32) plantings of native plants has been explored. We investigated the vegetation characteristics, nesting density and nest survival between the 2 aforementioned cover types in the Prairie Pothole Region of North Dakota, USA from 2010–2011 to see if restored-native plantings provide similar benefits to nesting hens as DNC. We searched 14 fields (7 DNC, 271 ha; and 7 restored native, 230 ha) locating 3384 nests (1215 in restored-native vegetation and 2169 in DNC) in 2010-2011. Nest survival was similar between cover types in 2010, while DNC had greater survival than native plantings in 2011. Densities of nests adjusted for detection probability were not different between cover types in either year. We found no structural difference in vegetation between cover types in 2010; however, a difference was detected during the late sampling period in 2011 with DNC having deeper litter and taller vegetation. Our results indicate restored-native plantings are able to support similar nesting density as DNC; however, nest survival is more stable between years in DNC. It appears the annual variation in security between cover types goes undetected by hens as hens selected cover types at similar levels both years. PMID:23840898

  7. Effect of plant species on nitrogen recovery in aquaponics.

    PubMed

    Hu, Zhen; Lee, Jae Woo; Chandran, Kartik; Kim, Sungpyo; Brotto, Ariane Coelho; Khanal, Samir Kumar

    2015-01-01

    Nitrogen transformations in aquaponics with different edible plant species, i.e., tomato (Lycopersicon esculentum) and pak choi (Brassica campestris L. subsp. chinensis) were systematically examined and compared. Results showed that nitrogen utilization efficiencies (NUE) of tomato- and pak choi-based aquaponic systems were 41.3% and 34.4%, respectively. The abundance of nitrifying bacteria in tomato-based aquaponics was 4.2-folds higher than that in pak choi-based aquaponics, primarily due to its higher root surface area. In addition, tomato-based aquaponics had better water quality than that of pak choi-based aquaponics. About 1.5-1.9% of nitrogen input were emitted to atmosphere as nitrous oxide (N2O) in tomato- and pak choi-based aquaponic systems, respectively, suggesting that aquaponics is a potential anthropogenic source of N2O emission. Overall, this is the first intensive study that examined the role plant species played in aquaponics, which could provide new strategy in designing and operating an aquaponic system. PMID:25650140

  8. Plant Functional Diversity and Species Diversity in the Mongolian Steppe

    PubMed Central

    Liu, Guofang; Xie, Xiufang; Ye, Duo; Ye, Xuehua; Tuvshintogtokh, Indree; Mandakh, Bayart; Huang, Zhenying; Dong, Ming

    2013-01-01

    Background The Mongolian steppe is one of the most important grasslands in the world but suffers from aridization and damage from anthropogenic activities. Understanding structure and function of this community is important for the ecological conservation, but has seldom been investigated. Methodology/Principal Findings In this study, a total of 324 quadrats located on the three main types of Mongolian steppes were surveyed. Early-season perennial forbs (37% of total importance value), late-season annual forbs (33%) and late-season perennial forbs (44%) were dominant in meadow, typical and desert steppes, respectively. Species richness, diversity and plant functional type (PFT) richness decreased from the meadow, via typical to desert steppes, but evenness increased; PFT diversity in the desert and meadow steppes was higher than that in typical steppe. However, above-ground net primary productivity (ANPP) was far lower in desert steppe than in the other two steppes. In addition, the slope of the relationship between species richness and PFT richness increased from the meadow, via typical to desert steppes. Similarly, with an increase in species diversity, PFT diversity increased more quickly in both the desert and typical steppes than that in meadow steppe. Random resampling suggested that this coordination was partly due to a sampling effect of diversity. Conclusions/Significance These results indicate that desert steppe should be strictly protected because of its limited functional redundancy, which its ecological functioning is sensitive to species loss. In contrast, despite high potential forage production shared by the meadow and typical steppes, management of these two types of steppes should be different: meadow steppe should be preserved due to its higher conservation value characterized by more species redundancy and higher spatial heterogeneity, while typical steppe could be utilized moderately because its dominant grass genus Stipa is resistant to herbivory and drought. PMID:24116233

  9. Imperfect replacement of native species by non-native species as pollinators of endemic Hawaiian plants.

    PubMed

    Aslan, Clare E; Zavaleta, Erika S; Tershy, Bernie; Croll, Don; Robichaux, Robert H

    2014-04-01

    Native plant species that have lost their mutualist partners may require non-native pollinators or seed dispersers to maintain reproduction. When natives are highly specialized, however, it appears doubtful that introduced generalists will partner effectively with them. We used visitation observations and pollination treatments (experimental manipulations of pollen transfer) to examine relationships between the introduced, generalist Japanese White-eye (Zosterops japonicus) and 3 endemic Hawaiian plant species (Clermontia parviflora, C. montis-loa, and C. hawaiiensis). These plants are characterized by curved, tubular flowers, apparently adapted for pollination by curve-billed Hawaiian honeycreepers. Z. japonicus were responsible for over 80% of visits to flowers of the small-flowered C. parviflora and the midsize-flowered C. montis-loa. Z. japonicus-visited flowers set significantly more seed than did bagged flowers. Z. japonicus also demonstrated the potential to act as an occasional Clermontia seed disperser, although ground-based frugivory by non-native mammals likely dominates seed dispersal. The large-flowered C. hawaiiensis received no visitation by any birds during observations. Unmanipulated and bagged C. hawaiiensis flowers set similar numbers of seeds. Direct examination of Z. japonicus and Clermontia morphologies suggests a mismatch between Z. japonicus bill morphology and C. hawaiiensis flower morphology. In combination, our results suggest that Z. japonicus has established an effective pollination relationship with C. parviflora and C. montis-loa and that the large flowers of C. hawaiiensis preclude effective visitation by Z. japonicus. PMID:24372761

  10. Historic land use influences contemporary establishment of invasive plant species.

    PubMed

    Mattingly, W Brett; Orrock, John L

    2013-08-01

    The legacy of agricultural land use can have widespread and persistent effects on contemporary landscapes. Although agriculture can lead to persistent changes in soil characteristics and plant communities, it remains unclear whether historic agricultural land use can alter the likelihood of contemporary biological invasions. To understand how agricultural land-use history might interact with well-known drivers of invasion, we conducted factorial manipulations of soil disturbance and resource additions within non-agricultural remnant sites and post-agricultural sites invaded by two non-native Lespedeza species. Our results reveal that variation in invader success can depend on the interplay of historic land use and contemporary processes: for both Lespedeza species, establishment was greater in remnant sites, but soil disturbance enhanced establishment irrespective of land-use history, demonstrating that contemporary processes can help to overcome legacy constraints on invader success. In contrast, additions of resources known to facilitate seedling recruitment (N and water) reduced invader establishment in post-agricultural but not in remnant sites, providing evidence that interactions between historic and contemporary processes can also limit invader success. Our findings thus illustrate that a consideration of historic land use may help to clarify the often contingent responses of invasive plants to known determinants of invasibility. Moreover, in finding significantly greater soil compaction at post-agricultural sites, our study provides a putative mechanism for historic land-use effects on contemporary invasive plant establishment. Our work suggests that an understanding of invasion dynamics requires knowledge of anthropogenic events that often occur decades before the introduction of invasive propagules. PMID:23277213

  11. Antifungal Effect of Plant Essential Oils on Controlling Phytophthora Species.

    PubMed

    Amini, Jahanshir; Farhang, Vahid; Javadi, Taimoor; Nazemi, Javad

    2016-02-01

    In this study, antifungal activity of essential oils of Cymbopogon citratus and Ocimum basilicum and two fungicides Mancozeb and Metalaxyl-Mancozeb in six different concentrations were investigated for controlling three species of Phytophthora, including P. capsici, P. drechsleri and P. melonis on pepper, cucumber and melon under in vitro and greenhouse conditions, respectively. Under the in vitro condition, the median effective concen- tration (EC50) values (ppm) of plant essential oils and fungicides were measured. In greenhouse, soil infested with Phytophthora species was treated by adding 50 ml of essential oils and fungicides (100 ppm). Disease severity was determined after 28 days. Among two tested plant essential oils, C. citratus had the lowest EC50 values for inhibition of the mycelial growth of P. capsici (31.473), P. melonis (33.097) and P. drechsleri (69.112), respectively. The mean EC50 values for Metalaxyl-Mancozeb on these pathogens were 20.87, 20.06 and 17.70, respectively. Chemical analysis of plant essential oils by GC-MS showed that, among 42 compounds identified from C. citratus, two compounds β-geranial (α-citral) (39.16%) and z-citral (30.95%) were the most abundant. Under the greenhouse condition, Metalaxyl-Mancozeb caused the greatest reduction in disease severity, 84.2%, 86.8% and 92.1% on melon, cucumber, and pepper, respectively. The C. citratus essential oil reduced disease severity from 47.4% to 60.5% compared to the untreated control (p≤0.05). Essential oils of O. basilicum had the lowest effects on the pathogens under in vitro and greenhouse conditions. These results show that essential oils may contribute to the development of new antifungal agents to protect the crops from Phytophthora diseases. PMID:26889111

  12. Antifungal Effect of Plant Essential Oils on Controlling Phytophthora Species

    PubMed Central

    Amini, Jahanshir; Farhang, Vahid; Javadi, Taimoor; Nazemi, Javad

    2016-01-01

    In this study, antifungal activity of essential oils of Cymbopogon citratus and Ocimum basilicum and two fungicides Mancozeb and Metalaxyl-Mancozeb in six different concentrations were investigated for controlling three species of Phytophthora, including P. capsici, P. drechsleri and P. melonis on pepper, cucumber and melon under in vitro and greenhouse conditions, respectively. Under the in vitro condition, the median effective concen- tration (EC50) values (ppm) of plant essential oils and fungicides were measured. In greenhouse, soil infested with Phytophthora species was treated by adding 50 ml of essential oils and fungicides (100 ppm). Disease severity was determined after 28 days. Among two tested plant essential oils, C. citratus had the lowest EC50 values for inhibition of the mycelial growth of P. capsici (31.473), P. melonis (33.097) and P. drechsleri (69.112), respectively. The mean EC50 values for Metalaxyl-Mancozeb on these pathogens were 20.87, 20.06 and 17.70, respectively. Chemical analysis of plant essential oils by GC-MS showed that, among 42 compounds identified from C. citratus, two compounds β-geranial (α-citral) (39.16%) and z-citral (30.95%) were the most abundant. Under the greenhouse condition, Metalaxyl-Mancozeb caused the greatest reduction in disease severity, 84.2%, 86.8% and 92.1% on melon, cucumber, and pepper, respectively. The C. citratus essential oil reduced disease severity from 47.4% to 60.5% compared to the untreated control (p≤0.05). Essential oils of O. basilicum had the lowest effects on the pathogens under in vitro and greenhouse conditions. These results show that essential oils may contribute to the development of new antifungal agents to protect the crops from Phytophthora diseases. PMID:26889111

  13. Analysis of the Prefoldin Gene Family in 14 Plant Species

    PubMed Central

    Cao, Jun

    2016-01-01

    Prefoldin is a hexameric molecular chaperone complex present in all eukaryotes and archaea. The evolution of this gene family in plants is unknown. Here, I identified 140 prefoldin genes in 14 plant species. These prefoldin proteins were divided into nine groups through phylogenetic analysis. Highly conserved gene organization and motif distribution exist in each prefoldin group, implying their functional conservation. I also observed the segmental duplication of maize prefoldin gene family. Moreover, a few functional divergence sites were identified within each group pairs. Functional network analyses identified 78 co-expressed genes, and most of them were involved in carrying, binding and kinase activity. Divergent expression profiles of the maize prefoldin genes were further investigated in different tissues and development periods and under auxin and some abiotic stresses. I also found a few cis-elements responding to abiotic stress and phytohormone in the upstream sequences of the maize prefoldin genes. The results provided a foundation for exploring the characterization of the prefoldin genes in plants and will offer insights for additional functional studies. PMID:27014333

  14. Regional assessment of ozone sensitive tree species using bioindicator plants.

    PubMed

    Coulston, John W; Smith, Gretchen C; Smith, William D

    2003-04-01

    Tropospheric ozone occurs at phytotoxic levels in the northeastern and mid-Atlantic regions of the United States. Quantifying possible regional-scale impacts of ambient ozone on forest tree species is difficult and is confounded by other factors, such as moisture and light, which influence the uptake of ozone by plants. Biomonitoring provides an approach to document direct foliar injury irrespective of direct measure of ozone uptake. We used bioindicator and field plot data from the USDA Forest Service to identify tree species likely to exhibit regional-scale ozone impacts. Approximately 24% of sampled sweetgum (Liquidambar styraciflua), 15% of sampled loblolly pine (Pinus taeda), and 12% of sampled black cherry (Prunus serotina) trees were in the highest risk category. Sweetgum and loblolly pine trees were at risk on the coastal plain of Maryland, Virginia and Delaware. Black cherry trees were at risk on the Allegheny Plateau (Pennsylvania), in the Allegheny Mountains (Pennsylvania, West Virginia, and Maryland) as well as coastal plain areas of Maryland and Virginia. Our findings indicate a need for more in-depth study of actual impacts on growth and reproduction of these three species. PMID:12691526

  15. Plant species used in traditional smallholder dairy processing in East Shoa, Ethiopia.

    PubMed

    Mekonnen, Hailemariam; Lemma, A

    2011-04-01

    Plant species used in traditional dairy processing were studied in three districts (Bosset, Ada, and Gimbichu) in Eastern Shoa, Ethiopia, from October 2007 to March 2008. A total of 300 smallholders were interviewed using semi-structured questionnaires, and three focus group discussions were conducted, followed by plants specimen collection and identification. A total of 36 plant species, falling under 24 plant families, were identified. Nearly half of the identified plant species had more than one use types. Eleven plant species were/are used for washing (scrubbing) dairy utensils, ten plant species for smoking dairy utensils, 12 plant species in butter making, 15 plant species in ghee making, and five plant species for packaging (wrapping) butter and cheese. The plant species that had the highest overall citations from each use category were Ocimum hardiense, Olea europaea subspecies africana, Trachyspermum copticum, Curcuma longa, and Croton macrostachyus. The plant species used in the three study districts, representing different agro ecologies, showed some similarities, but levels of uses differed significantly (P?

  16. Validation of reference genes for quantitative RT-PCR normalization in Suaeda aralocaspica, an annual halophyte with heteromorphism and C4 pathway without Kranz anatomy.

    PubMed

    Cao, Jing; Wang, Lu; Lan, Haiyan

    2016-01-01

    Reverse transcription quantitative real-time polymerase chain reaction (qRT-PCR) is a powerful analytical technique for the measurement of gene expression, which depends on the stability of the reference gene used for data normalization. Suaeda aralocaspica, an annual halophyte with heteromorphic seeds and possessing C4 photosynthesis pathway without Kranz anatomy, is an ideal plant species to identify stress tolerance-related genes and compare relative expression at transcriptional level. So far, no molecular information is available for this species. In the present study, six traditionally used reference genes were selected and their expression stability in two types of seeds of S. aralocaspica under different experimental conditions was evaluated. Three analytical programs, geNorm, NormFinder and BestKeeper, were used to assess and rank the stability of reference gene expression. Results revealed that although some reference genes may display different transcriptional profiles between the two types of seeds, β-TUB and GAPDH appeared to be the most suitable references under different developmental stages and tissues. GAPDH was the appropriate reference gene under different germination time points and salt stress conditions, and ACTIN was suitable for various abiotic stress treatments for the two types of seeds. For all the sample pools, β-TUB served as the most stable reference gene, whereas 18S rRNA and 28S rRNA performed poorly and presented as the least stable genes in our study. UBQ seemed to be unsuitable as internal control under different salt treatments. In addition, the expression of a photosynthesis-related gene (PPDK) of C4 pathway and a salt tolerance-related gene (SAT) of S. aralocaspica were used to validate the best performance reference genes. This is the first systematic comparison of reference gene selection for qRT-PCR work in S. aralocaspica and these data will facilitate further studies on gene expression in this species and other euhalophytes. PMID:26893974

  17. Validation of reference genes for quantitative RT-PCR normalization in Suaeda aralocaspica, an annual halophyte with heteromorphism and C4 pathway without Kranz anatomy

    PubMed Central

    Cao, Jing; Wang, Lu

    2016-01-01

    Reverse transcription quantitative real-time polymerase chain reaction (qRT-PCR) is a powerful analytical technique for the measurement of gene expression, which depends on the stability of the reference gene used for data normalization. Suaeda aralocaspica, an annual halophyte with heteromorphic seeds and possessing C4 photosynthesis pathway without Kranz anatomy, is an ideal plant species to identify stress tolerance-related genes and compare relative expression at transcriptional level. So far, no molecular information is available for this species. In the present study, six traditionally used reference genes were selected and their expression stability in two types of seeds of S. aralocaspica under different experimental conditions was evaluated. Three analytical programs, geNorm, NormFinder and BestKeeper, were used to assess and rank the stability of reference gene expression. Results revealed that although some reference genes may display different transcriptional profiles between the two types of seeds, β-TUB and GAPDH appeared to be the most suitable references under different developmental stages and tissues. GAPDH was the appropriate reference gene under different germination time points and salt stress conditions, and ACTIN was suitable for various abiotic stress treatments for the two types of seeds. For all the sample pools, β-TUB served as the most stable reference gene, whereas 18S rRNA and 28S rRNA performed poorly and presented as the least stable genes in our study. UBQ seemed to be unsuitable as internal control under different salt treatments. In addition, the expression of a photosynthesis-related gene (PPDK) of C4 pathway and a salt tolerance-related gene (SAT) of S. aralocaspica were used to validate the best performance reference genes. This is the first systematic comparison of reference gene selection for qRT-PCR work in S. aralocaspica and these data will facilitate further studies on gene expression in this species and other euhalophytes. PMID:26893974

  18. The predominance of inorganic arsenic species in plants from Yellowknife, Northwest Territories, Canada

    SciTech Connect

    Koch, I.; Wang, L.; Ollson, C.A.; Cullen, W.R.; Reimer, K.J.

    2000-01-01

    Elevated levels of arsenic in Yellowknife, NWT, Canada, from historic and recent gold mine operations, are of increasing concern to Yellowknife residents. The study of arsenic in Yellowknife plants is a part of ongoing bioavailability and food chain research. A variety of plants from Yellowknife were analyzed for total arsenic and water soluble arsenic species. The plants included vascular plants and bryophytes (mosses). Total amounts of arsenic were greatest in mosses and varied greatly within specimens of the same plant species from different locations. Mostly inorganic arsenic species were extracted from plants using methanol/water (1:1). This result is very important from a toxicological point of view, since inorganic species are relatively toxic arsenic species. Small amounts of methylated arsenic species, as well as arsenosugars, were present in some plants. On average, greater than 50% of arsenic in these plants was not extracted; the chemical and toxicological characteristics of this fraction remain a topic for further study.

  19. Novel chemistry of invasive plants: exotic species have more unique metabolomic profiles than native congeners

    PubMed Central

    Macel, Mirka; de Vos, Ric C H; Jansen, Jeroen J; van der Putten, Wim H; van Dam, Nicole M

    2014-01-01

    It is often assumed that exotic plants can become invasive when they possess novel secondary chemistry compared with native plants in the introduced range. Using untargeted metabolomic fingerprinting, we compared a broad range of metabolites of six successful exotic plant species and their native congeners of the family Asteraceae. Our results showed that plant chemistry is highly species-specific and diverse among both exotic and native species. Nonetheless, the exotic species had on average a higher total number of metabolites and more species-unique metabolites compared with their native congeners. Herbivory led to an overall increase in metabolites in all plant species. Generalist herbivore performance was lower on most of the exotic species compared with the native species. We conclude that high chemical diversity and large phytochemical uniqueness of the exotic species could be indicative of biological invasion potential. PMID:25077026

  20. Novel chemistry of invasive plants: exotic species have more unique metabolomic profiles than native congeners.

    PubMed

    Macel, Mirka; de Vos, Ric C H; Jansen, Jeroen J; van der Putten, Wim H; van Dam, Nicole M

    2014-07-01

    It is often assumed that exotic plants can become invasive when they possess novel secondary chemistry compared with native plants in the introduced range. Using untargeted metabolomic fingerprinting, we compared a broad range of metabolites of six successful exotic plant species and their native congeners of the family Asteraceae. Our results showed that plant chemistry is highly species-specific and diverse among both exotic and native species. Nonetheless, the exotic species had on average a higher total number of metabolites and more species-unique metabolites compared with their native congeners. Herbivory led to an overall increase in metabolites in all plant species. Generalist herbivore performance was lower on most of the exotic species compared with the native species. We conclude that high chemical diversity and large phytochemical uniqueness of the exotic species could be indicative of biological invasion potential. PMID:25077026

  1. Cloning and characterization of Na+/H+ antiporter (LfNHX1) gene from a halophyte grass Leptochloa fusca for drought and salt tolerance.

    PubMed

    Rauf, Muhammad; Shahzad, Khurram; Ali, Rashid; Ahmad, Moddassir; Habib, Imran; Mansoor, Shahid; Berkowitz, Gerald A; Saeed, Nasir A

    2014-03-01

    Abiotic stresses such as salinity and drought have adverse effects on plants. In the present study, a Na(+)/H(+) antiporter gene homologue (LfNHX1) has been cloned from a local halophyte grass (Leptochloa fusca). The LfNHX1 cDNA contains an open reading frame of 1,623bp that encodes a polypeptide chain of 540 amino acid residues. LfNHX1 protein sequence showed high similarity with NHX1 homologs reported from other halophyte plants. Amino acid and nucleotide sequence similarity, protein topology modeling and the presence of conserved functional domains in the LfNHX1 protein sequence classified it as a vacuolar NHX1 homolog. The overexpression of LfNHX1 gene under CaMV35S promoter conferred salt and drought tolerance in tobacco plants. Under drought stress, transgenic plants showed higher relative water contents, photosynthetic rate, stomatal conductance and membrane stability index as compared to wild type plants. More negative value of leaf osmotic potential was also observed in transgenic plants when compared with wild type control plants. Transgenic plants showed better germination and root growth at 2mg L(-1) Basta herbicide and three levels (100, 200 and 250mM) of sodium chloride. These results showed that LfNHX1 is a potential candidate gene for enhancing drought and salt tolerance in crops. PMID:24420850

  2. Productivity Is a Poor Predictor of Plant Species Richness.

    SciTech Connect

    Peter B. Adler; et al.

    2011-09-22

    For more than 30 years, the relationship between net primary productivity and species richness has generated intense debate in ecology about the processes regulating local diversity. The original view, which is still widely accepted, holds that the relationship is hump-shaped, with richness first rising and then declining with increasing productivity. Although recent meta-analyses questioned the generality of hump-shaped patterns, these syntheses have been criticized for failing to account for methodological differences among studies. We addressed such concerns by conducting standardized sampling in 48 herbaceous-dominated plant communities on five continents. We found no clear relationship between productivity and fine-scale (meters-2) richness within sites, within regions, or across the globe. Ecologists should focus on fresh, mechanistic approaches to understanding the multivariate links between productivity and richness.

  3. Productivity is a poor predictor of plant species richness

    USGS Publications Warehouse

    Adler, Peter B.; Seabloom, Eric W.; Borer, Elizabeth T.; Hillebrand, Helmut; Hautier, Yann; Hector, Andy; Harpole, W. Stanley; O'Halloran, Lydia R.; Grace, James B.; Anderson, T. Michael; Bakker, Jonathan D.; Biederman, Lori A.; Brown, Cynthia S.; Buckley, Yvonne M.; Calabrese, Laura B.; Chu, Cheng-Jin; Cleland, Elsa E.; Collins, Scott L.; Cottingham, Kathryn L.; Crawley, Michael J.; Damschen, Ellen Ingman; Davies, Kendi F.; DeCrappeo, Nicole M.; Fay, Philip A.; Firn, Jennifer; Frater, Paul; Gasarch, Eve I.; Gruner, Daneil S.; Hagenah, Nicole; Lambers, Janneke Hille Ris; Humphries, Hope; Jin, Virginia L.; Kay, Adam D.; Kirkman, Kevin P.; Klein, Julia A.; Knops, Johannes M.H.; La Pierre, Kimberly J.; Lambrinos, John G.; Li, Wei; MacDougall, Andrew S.; McCulley, Rebecca L.; Melbourne, Brett A.; Mitchell, Charles E.; Moore, Joslin L.; Morgan, John W.; Mortensen, Brent; Orrock, John L.; Prober, Suzanne M.; Pyke, David A.; Risch, Anita C.; Schuetz, Martin; Smith, Melinda D.; Stevens, Carly J.; Sullivan, Lauren L.; Wang, Gang; Wragg, Peter D.; Wright, Justin P.; Yang, Louie H.

    2011-01-01

    For more than 30 years, the relationship between net primary productivity and species richness has generated intense debate in ecology about the processes regulating local diversity. The original view, which is still widely accepted, holds that the relationship is hump-shaped, with richness first rising and then declining with increasing productivity. Although recent meta-analyses questioned the generality of hump-shaped patterns, these syntheses have been criticized for failing to account for methodological differences among studies. We addressed such concerns by conducting standardized sampling in 48 herbaceous-dominated plant communities on five continents. We found no clear relationship between productivity and fine-scale (meters-2) richness within sites, within regions, or across the globe. Ecologists should focus on fresh, mechanistic approaches to understanding the multivariate links between productivity an

  4. Ecophysiological studies of Mediterranean plant species at the Castelporziano estate

    NASA Astrophysics Data System (ADS)

    Manes, Fausto; Seufert, Gnther; Vitale, Marcello

    The aim of this work was to characterize the eco-physiological performance of the main plant species of the Castelporziano site by single leaf investigations. We measured the leaf gas exchange of Quercus ilex L., Pinus pinea L., Pistacia lentiscus L. and Asphodelus microcarpus L. for several days. Additionally, the xylem water potential of Quercus ilex, Pinus pinea and Pistacia lentiscus was recorded in order to obtain more physiological background information for the discussion of the trace gas emissions. This study indicates significantly different physiological responses to the different environmental conditions. In particular, summer conditions (high values of light, air temperature and low xylem water potentials) caused the depression of photosynthesis in Quercus ilex and Pinus pinea but did not affect photosynthesis of Pistacia lentiscus and Asphodelus microcarpus. This should be taken into account when discussing VOC emission rates and fluxes.

  5. Effects of vehicle exhaust emissions on urban wild plant species.

    PubMed

    Bell, J N B; Honour, S L; Power, S A

    2011-01-01

    Very few investigations have examined the direct impacts of vehicle exhausts on plants and attempted to separate out the key pollutants responsible for observed effects. This paper describes a multi-phase investigation into this topic, using 12 herbaceous species typical of urban areas and representing different functional groups. Fumigations were conducted in solardomes with diesel exhaust pollutants at concentrations designed to simulate those close to a major highway in inner London. A wide range of effects were detected, including growth stimulation and inhibition, changes in gas exchange and premature leaf senescence. This was complemented by controlled fumigations with NO, NO(2) and their mixture, as well as a transect study away from a busy inner London road. All evidence suggested that NO(x) was the key phytotoxic component of exhaust emissions, and highlights the potential for detrimental effects of vehicle emissions on urban ecosystems. PMID:21458124

  6. Effects of vehicle exhaust emissions on urban wild plant species.

    TOXLINE Toxicology Bibliographic Information

    Bell JN; Honour SL; Power SA

    2011-08-01

    Very few investigations have examined the direct impacts of vehicle exhausts on plants and attempted to separate out the key pollutants responsible for observed effects. This paper describes a multi-phase investigation into this topic, using 12 herbaceous species typical of urban areas and representing different functional groups. Fumigations were conducted in solardomes with diesel exhaust pollutants at concentrations designed to simulate those close to a major highway in inner London. A wide range of effects were detected, including growth stimulation and inhibition, changes in gas exchange and premature leaf senescence. This was complemented by controlled fumigations with NO, NO(2) and their mixture, as well as a transect study away from a busy inner London road. All evidence suggested that NO(x) was the key phytotoxic component of exhaust emissions, and highlights the potential for detrimental effects of vehicle emissions on urban ecosystems.

  7. Positive effects of plant genotypic and species diversity on anti-herbivore defenses in a tropical tree species.

    PubMed

    Moreira, Xoaquín; Abdala-Roberts, Luis; Parra-Tabla, Víctor; Mooney, Kailen A

    2014-01-01

    Despite increasing evidence that plant intra- and inter-specific diversity increases primary productivity, and that such effect may in turn cascade up to influence herbivores, there is little information about plant diversity effects on plant anti-herbivore defenses, the relative importance of different sources of plant diversity, and the mechanisms for such effects. For example, increased plant growth at high diversity may lead to reduced investment in defenses via growth-defense trade-offs. Alternatively, positive effects of plant diversity on plant growth may lead to increased herbivore abundance which in turn leads to a greater investment in plant defenses. The magnitude of trait variation underlying diversity effects is usually greater among species than among genotypes within a given species, so plant species diversity effects on resource use by producers as well as on higher trophic levels should be stronger than genotypic diversity effects. Here we compared the relative importance of plant genotypic and species diversity on anti-herbivore defenses and whether such effects are mediated indirectly via diversity effects on plant growth and/or herbivore damage. To this end, we performed a large-scale field experiment where we manipulated genotypic diversity of big-leaf mahogany (Swietenia macrophylla) and tree species diversity, and measured effects on mahogany growth, damage by the stem-boring specialist caterpillar Hypsipyla grandella, and defensive traits (polyphenolics and condensed tannins in stem and leaves). We found that both forms of plant diversity had positive effects on stem (but not leaf) defenses. However, neither source of diversity influenced mahogany growth, and diversity effects on defenses were not mediated by either growth-defense trade-offs or changes in stem-borer damage. Although the mechanism(s) of diversity effects on plant defenses are yet to be determined, our study is one of the few to test for and show producer diversity effects on plant chemical defenses. PMID:25141305

  8. Positive Effects of Plant Genotypic and Species Diversity on Anti-Herbivore Defenses in a Tropical Tree Species

    PubMed Central

    Moreira, Xoaqun; Abdala-Roberts, Luis; Parra-Tabla, Vctor; Mooney, Kailen A.

    2014-01-01

    Despite increasing evidence that plant intra- and inter-specific diversity increases primary productivity, and that such effect may in turn cascade up to influence herbivores, there is little information about plant diversity effects on plant anti-herbivore defenses, the relative importance of different sources of plant diversity, and the mechanisms for such effects. For example, increased plant growth at high diversity may lead to reduced investment in defenses via growth-defense trade-offs. Alternatively, positive effects of plant diversity on plant growth may lead to increased herbivore abundance which in turn leads to a greater investment in plant defenses. The magnitude of trait variation underlying diversity effects is usually greater among species than among genotypes within a given species, so plant species diversity effects on resource use by producers as well as on higher trophic levels should be stronger than genotypic diversity effects. Here we compared the relative importance of plant genotypic and species diversity on anti-herbivore defenses and whether such effects are mediated indirectly via diversity effects on plant growth and/or herbivore damage. To this end, we performed a large-scale field experiment where we manipulated genotypic diversity of big-leaf mahogany (Swietenia macrophylla) and tree species diversity, and measured effects on mahogany growth, damage by the stem-boring specialist caterpillar Hypsipyla grandella, and defensive traits (polyphenolics and condensed tannins in stem and leaves). We found that both forms of plant diversity had positive effects on stem (but not leaf) defenses. However, neither source of diversity influenced mahogany growth, and diversity effects on defenses were not mediated by either growth-defense trade-offs or changes in stem-borer damage. Although the mechanism(s) of diversity effects on plant defenses are yet to be determined, our study is one of the few to test for and show producer diversity effects on plant chemical defenses. PMID:25141305

  9. Phytoextraction of heavy metals by Sesuvium portulacastrum l. a salt marsh halophyte from tannery effluent.

    PubMed

    Ayyappan, Durai; Sathiyaraj, Ganesan; Ravindran, Konganapuram Chellappan

    2016-05-01

    The present study investigated the sources for remediation of heavy metals and salts from tannery effluent using salt marsh halophyte Sesuvium portulacastrum. From the results observed, in tannery effluent treated soil from 1 kg dry weight of plant sample, Sesuvium portulacastrum accumulated 49.82 mg Cr, 22.10 mg Cd, 35.10 mg Cu and 70.10 mg Zn and from 1 g dry weight of the plant sample, 246.21 mg Na Cl. Cultivation of Sesuvium portulacastrum significantly reduced the EC, pH and SAR levels in tannery effluent and salt treated soil and correspondingly increased in plant sample after 125 days of cultivation. In conclusion, Sesuvium portulacastrum was an efficient in accumulating heavy metals such as Chromium, Cadmium, Copper and Zinc, sodium and chloride maximum through its leaves when compared to stem and root. The finding of these bioacccumulation studies indicates that Sesuvium portulacastrum could be used for phytoremediation of tannery effluent contaminated field. PMID:26552858

  10. Plant responses to water stress: role of reactive oxygen species.

    PubMed

    Kar, Rup Kumar

    2011-11-01

    Responses of plants to water stress may be assigned as either injurious change or tolerance index. One of the primary and cardinal changes in response to drought stress is the generation of reactive oxygen species (ROS), which is being considered as the cause of cellular damage. However, recently a signaling role of such ROS in triggering the ROS scavenging system that may confer protection or tolerance against stress is emerging. Such scavenging system consists of antioxidant enzymes like SOD, catalase and peroxidases, and antioxidant compounds like ascorbate, reduced glutathione; a balance between ROS generation and scavenging ultimately determines the oxidative load. As revealed in case of defence against pathogen, signaling via ROS is initiated by NADPH oxidase-catalyzed superoxide generation in the apoplastic space (cell wall) followed by conversion to hydrogen peroxide by the activity of cell wall-localized SOD. Wall peroxidase may also play role in ROS generation for signaling. Hydrogen peroxide may use Ca2+ and MAPK pathway as downstream signaling cascade. Plant hormones associated with stress responses like ABA and ethylene play their role possibly via a cross talk with ROS towards stress tolerance, thus projecting a dual role of ROS under drought stress. PMID:22057331

  11. Evaluation of the halophyte Salsola soda as an alternative crop for saline soils high in selenium and boron.

    PubMed

    Centofanti, Tiziana; Bañuelos, Gary

    2015-07-01

    Urbanization, industrial development, and intensive agriculture have caused soil contamination and land degradation in many areas of the world. Salinization is one important factor contributing to land degradation and it affects agricultural production and environmental quality. When salinization is combined with soil pollution by trace elements, as it occurs in many arid and semi-arid regions around the world, strategies to phyto-manage pollutants and sustain crop production need to be implemented. In this study, we present the case of saline soils in the West side of Central California which contain naturally-occurring selenium (Se), boron (B), and other salts, such as NaCl, CaCl2, Na2SO4, and Na2SeO4. To sustain crop production on Se- and B-laden arid saline soils, we investigated the potential of the halophyte "agretti" (Salsola soda L.) as an alternative crop. The aim of our greenhouse study was to examine adaptability, B tolerance, and Se accumulation by S. soda grown on soils collected from a typical saline-laden field site located on the West side of the San Joaquin Valley (SJV). Our results showed that S. soda tolerates the saline (EC ∼ 10 dS m(-1)) and B-laden soils (10 mg B L(-1)) of the SJV even with the additional irrigation of saline and B rich water (EC ∼ 3 dS m(-1) and 4 mg B L(-1)). Under these growing conditions, the plant can accumulate high concentrations of Na (80 g Na kg(-1) DW), B (100 mg B kg(-1) DW), and Se (3-4 mg Se kg(-1) DW) without showing toxicity symptoms. Hence, S. soda showed promising potential as a plant species that can be grown in B-laden saline soils and accumulate and potentially manage excessive soluble Se and B in soil. PMID:25897503

  12. Plant ecology. Worldwide evidence of a unimodal relationship between productivity and plant species richness.

    PubMed

    Fraser, Lauchlan H; Pither, Jason; Jentsch, Anke; Sternberg, Marcelo; Zobel, Martin; Askarizadeh, Diana; Bartha, Sandor; Beierkuhnlein, Carl; Bennett, Jonathan A; Bittel, Alex; Boldgiv, Bazartseren; Boldrini, Ilsi I; Bork, Edward; Brown, Leslie; Cabido, Marcelo; Cahill, James; Carlyle, Cameron N; Campetella, Giandiego; Chelli, Stefano; Cohen, Ofer; Csergo, Anna-Maria; Díaz, Sandra; Enrico, Lucas; Ensing, David; Fidelis, Alessandra; Fridley, Jason D; Foster, Bryan; Garris, Heath; Goheen, Jacob R; Henry, Hugh A L; Hohn, Maria; Jouri, Mohammad Hassan; Klironomos, John; Koorem, Kadri; Lawrence-Lodge, Rachael; Long, Ruijun; Manning, Pete; Mitchell, Randall; Moora, Mari; Müller, Sandra C; Nabinger, Carlos; Naseri, Kamal; Overbeck, Gerhard E; Palmer, Todd M; Parsons, Sheena; Pesek, Mari; Pillar, Valério D; Pringle, Robert M; Roccaforte, Kathy; Schmidt, Amanda; Shang, Zhanhuan; Stahlmann, Reinhold; Stotz, Gisela C; Sugiyama, Shu-ichi; Szentes, Szilárd; Thompson, Don; Tungalag, Radnaakhand; Undrakhbold, Sainbileg; van Rooyen, Margaretha; Wellstein, Camilla; Wilson, J Bastow; Zupo, Talita

    2015-07-17

    The search for predictions of species diversity across environmental gradients has challenged ecologists for decades. The humped-back model (HBM) suggests that plant diversity peaks at intermediate productivity; at low productivity few species can tolerate the environmental stresses, and at high productivity a few highly competitive species dominate. Over time the HBM has become increasingly controversial, and recent studies claim to have refuted it. Here, by using data from coordinated surveys conducted throughout grasslands worldwide and comprising a wide range of site productivities, we provide evidence in support of the HBM pattern at both global and regional extents. The relationships described here provide a foundation for further research into the local, landscape, and historical factors that maintain biodiversity. PMID:26185249

  13. Predicting species tolerance to salinity and alkalinity using distribution data and geochemical modelling: a case study using Australian grasses

    PubMed Central

    Saslis-Lagoudakis, C. Haris; Hua, Xia; Bui, Elisabeth; Moray, Camile; Bromham, Lindell

    2015-01-01

    Background and Aims Salt tolerance has evolved many times independently in different plant groups. One possible explanation for this pattern is that it builds upon a general suite of stress-tolerance traits. If this is the case, then we might expect a correlation between salt tolerance and other tolerances to different environmental stresses. This association has been hypothesized for salt and alkalinity tolerance. However, a major limitation in investigating large-scale patterns of these tolerances is that lists of known tolerant species are incomplete. This study explores whether species salt and alkalinity tolerance can be predicted using geochemical modelling for Australian grasses. The correlation between taxa found in conditions of high predicted salinity and alkalinity is then assessed. Methods Extensive occurrence data for Australian grasses is used together with geochemical modelling to predict values of pH and electrical conductivity to which species are exposed in their natural distributions. Using parametric and phylogeny-corrected tests, the geochemical predictions are evaluated using a list of known halophytes as a control, and it is determined whether taxa that occur in conditions of high predicted salinity are also found in conditions of high predicted alkalinity. Key Results It is shown that genera containing known halophytes have higher predicted salinity conditions than those not containing known halophytes. Additionally, taxa occurring in high predicted salinity tend to also occur in high predicted alkalinity. Conclusions Geochemical modelling using species occurrence data is a potentially useful approach to predict species relative natural tolerance to challenging environmental conditions. The findings also demonstrate a correlation between salinity tolerance and alkalinity tolerance. Further investigations can consider the phylogenetic distribution of specific traits involved in these ecophysiological strategies, ideally by incorporating more complete, finer-scale geochemical information, as well as laboratory experiments. PMID:25538113

  14. Plant species invasions along the latitudinal gradient in the United States

    USGS Publications Warehouse

    Stohlgren, T.J.; Barnett, D.; Flather, C.; Kartesz, J.; Peterjohn, B.

    2005-01-01

    It has been long established that the richness of vascular plant species and many animal taxa decreases with increasing latitude, a pattern that very generally follows declines in actual and potential evapotranspiration, solar radiation, temperature, and thus, total productivity. Using county-level data on vascular plants from the United States (3000 counties in the conterminous 48 states), we used the Akaike Information Criterion (AIC) to evaluate competing models predicting native and nonnative plant species density (number of species per square kilometer in a county) from various combinations of biotic variables (e.g., native bird species density, vegetation carbon, normalized difference vegetation index), environmental/topographic variables (elevation, variation in elevation, the number of land cover classes in the county; radiation, mean precipitation, actual evapotranspiration, and potential evapotranspiration), and human variables (human population density, crop-land, and percentage of disturbed lands in a county). We found no evidence of a latitudinal gradient for the density of native plant species and a significant, slightly positive latitudinal gradient for the density of nonnative plant species. We found stronger evidence of a significant, positive productivity gradient (vegetation carbon) for the density of native plant species and nonnative plant species. We found much stronger significant relationships when biotic, environmental/topographic, and human variables were used to predict native plant species density and nonnative plant species density. Biotic variables generally had far greater influence in multivariate models than human or environmental/topographic variables. Later, we found that the best, single, positive predictor of the density of nonnative plant species in a county was the density of native plant species in a county. While further study is needed, it may be that, while humans facilitate the initial establishment invasions of nonnative plant species, the spread and subsequent distributions of nonnative species are controlled largely by biotic and environmental factors.

  15. RESTORING SPECIES RICHNESS AND DIVERSITY IN A RUSSIAN KNAPWEED-INFESTED RIPARIAN PLANT COMMUNITY USING HERBICIDES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Species richness and diversity are important indicators of ecosystem function and may be related to plant community resistance to invasion by non-indigenous species. Knowledge about the influence of various strategies on species richness and diversity is central to making wise the invasive plant ma...

  16. 7 CFR 650.22 - Rare, threatened, and endangered species of plants and animals.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Rare, threatened, and endangered species of plants and... Related Environmental Concerns § 650.22 Rare, threatened, and endangered species of plants and animals. (a... endangered species is the destruction or deterioration of their habitats by human activities such...

  17. 7 CFR 650.22 - Rare, threatened, and endangered species of plants and animals.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Rare, threatened, and endangered species of plants and... Related Environmental Concerns § 650.22 Rare, threatened, and endangered species of plants and animals. (a... endangered species is the destruction or deterioration of their habitats by human activities such...

  18. 7 CFR 650.22 - Rare, threatened, and endangered species of plants and animals.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Rare, threatened, and endangered species of plants and... Related Environmental Concerns § 650.22 Rare, threatened, and endangered species of plants and animals. (a... endangered species is the destruction or deterioration of their habitats by human activities such...

  19. 7 CFR 650.22 - Rare, threatened, and endangered species of plants and animals.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Rare, threatened, and endangered species of plants and... Related Environmental Concerns § 650.22 Rare, threatened, and endangered species of plants and animals. (a... endangered species is the destruction or deterioration of their habitats by human activities such...

  20. Species-driven changes in nitrogen cycling can provide a mechanism for plant invasions

    PubMed Central

    Laungani, Ramesh; Knops, Johannes M. H.

    2009-01-01

    Traits that permit successful invasions have often seemed idiosyncratic, and the key biological traits identified vary widely among species. This fundamentally limits our ability to determine the invasion potential of a species. However, ultimately, successful invaders must have positive growth rates that longer term result in higher biomass accumulation than competing established species. In many terrestrial ecosystems nitrogen limits plant growth, and is a key factor determining productivity and the outcome of competition among species. Plant nitrogen use may provide a powerful framework to evaluate the invasive potential of a species in nitrogen-limiting ecosystems. Six mechanisms influence plant nitrogen use or acquisition: photosynthetic tissue allocation, photosynthetic nitrogen use efficiency, nitrogen fixation, nitrogen-leaching losses, gross nitrogen mineralization, and plant nitrogen residence time. Here we show that among these alternatives, the key mechanism allowing invasion for Pinus strobus into nitrogen limited grasslands was its higher nitrogen residence time. This higher nitrogen residence time created a positive feedback that redistributed nitrogen from the soil into the plant. This positive feedback allowed P. strobus to accumulate twice as much nitrogen in its tissues and four times as much nitrogen to photosynthetic tissues, as compared with other plant species. In turn, this larger leaf nitrogen pool increased total plant carbon gain of P. strobus two- to sevenfold as compared with other plant species. Thus our data illustrate that plant species can change internal ecosystem nitrogen cycling feedbacks and this mechanism can allow them to gain a competitive advantage over other plant species. PMID:19592506

  1. Changes in Semi-Arid Plant Species Associations along a Livestock Grazing Gradient

    PubMed Central

    Saiz, Hugo; Alados, Concepción L.

    2012-01-01

    In semi-arid ecosystems, vegetation is heterogeneously distributed, with plant species often associating in patches. These associations between species are not constant, but depend on the particular response of each species to environmental factors. Here, we investigated how plant species associations change in response to livestock grazing in a semi-arid ecosystem, Cabo de Gata-Níjar Natural Park in South East Spain. We established linear point-intercept transects at four sites with different grazing intensity, and recorded all species at each point. We investigated plant associations by comparing the number of times that each pair of species occurred at the same spatial point (co-occurrences), with the expected number of times based on species abundances. We also assessed associations for each shrub and grass species by considering all their pairs of associations and for the whole plant community by considering all pairs of associations on each site. At all sites, the plant community had a negative pattern of association, with fewer co-occurrences than expected. Negative association in the plant community increased at maximum grazing intensity. Most species associated as expected, particularly grass species, and positive associations were most important at intermediate grazing intensities. No species changed its type of association along the grazing gradient. We conclude that in the present plant community, grazing-resistant species compete among themselves and segregate in space. Some shrub species act as refuges for grazing-sensitive species that benefit from being spatially associated with shrub species, particularly at intermediate grazing intensities where positive associations were highest. At high grazing intensity, these shrubs can no longer persist and positive associations decrease due to the disappearance of refuges. Spatial associations between plant species and their response to grazing help identify the factors that organize plant communities, and may contribute to improving management of semi-arid ecosystems. PMID:22792367

  2. 'Halophyte filters': the potential of constructed wetlands for application in saline aquaculture.

    PubMed

    De Lange, H J; Paulissen, M P C P; Slim, P A

    2013-01-01

    World consumption of seafood continues to rise, but the seas and oceans are already over-exploited. Land-based (saline) aquaculture may offer a sustainable way to meet the growing demand for fish and shellfish. A major problem of aquaculture is nutrient waste, as most of the nutrients added through feed are released into the environment in dissolved form. Wetlands are nature's water purifiers. Constructed wetlands are commonly used to treat contaminated freshwater effluent. Experience with saline systems is more limited. This paper explores the potential of constructed saline wetlands for treating the nutrient-rich discharge from land-based saline aquaculture systems. The primary function of constructed wetlands is water purification, but other ancillary benefits can also be incorporated into treatment wetland designs. Marsh vegetation enhances landscape beauty and plant diversity, and wetlands may offer habitat for fauna and recreational areas. Various approaches can be taken in utilizing plants (halophytes, macro-algae, micro-algae) in the treatment of saline aquaculture effluent. Their strengths and weaknesses are reviewed here, and a conceptual framework is presented that takes into account economic and ecological benefits as well as spatial constraints. Use of the framework is demonstrated for assessing various saline aquaculture systems in the southwestern delta region of the Netherlands. PMID:23488001

  3. Expression analysis of proline metabolism-related genes from halophyte Arabis stelleri under osmotic stress conditions.

    PubMed

    Jung, Yuchul; Park, Jungan; Choi, Yunjung; Yang, Jin-Gweon; Kim, Donggiun; Kim, Beom-Gi; Roh, Kyunghee; Lee, Dong-Hee; Auh, Chung-Kyoon; Lee, Sukchan

    2010-10-01

    Arabis stelleri var. japonica evidenced stronger osmotic stress tolerance than Arabidopsis thaliana. Using an A. thaliana microarray chip, we determined changes in the expression of approximately 2 800 genes between A. stelleri plants treated with 0.2 M mannitol versus mock-treated plants. The most significant changes in the gene expression patterns were in genes defining cellular components or in genes associated with the endomembrane system, stimulus response, stress response, chemical stimulus response, and defense response. The expression patterns of three de novo proline biosynthesis enzymes were evaluated in A. stelleri var. japonica seedlings treated with 0.2 M mannitol, 0.2 M sorbitol, and 0.2 M NaCl. The expression of Δ¹ -pyrroline-5-carboxylate synthetase was not affected by NaCl stress but was similarly induced by mannitol and sorbitol. The proline dehydrogenase gene, which is known to be repressed by dehydration stress and induced by free L-proline, was induced at an early stage by mannitol treatment, but the level of proline dehydrogenase was increased later by treatment with both mannitol and NaCl. The level of free L-proline accumulation increased progressively in response to treatments with mannitol, sorbitol, and NaCl. Mannitol induced L-proline accumulation more rapidly than NaCl or sorbitol. These findings demonstrate that the osmotic tolerance of the novel halophyte, Arabis stelleri, is associated with the accumulation of L-proline. PMID:20883441

  4. Plant species distributions along environmental gradients: do belowground interactions with fungi matter?

    PubMed

    Pellissier, Loc; Pinto-Figueroa, Eric; Niculita-Hirzel, Hlne; Moora, Mari; Villard, Lucas; Goudet, Jrome; Guex, Nicolas; Pagni, Marco; Xenarios, Ioannis; Sanders, Ian; Guisan, Antoine

    2013-01-01

    The distribution of plants along environmental gradients is constrained by abiotic and biotic factors. Cumulative evidence attests of the impact of biotic factors on plant distributions, but only few studies discuss the role of belowground communities. Soil fungi, in particular, are thought to play an important role in how plant species assemble locally into communities. We first review existing evidence, and then test the effect of the number of soil fungal operational taxonomic units (OTUs) on plant species distributions using a recently collected dataset of plant and metagenomic information on soil fungi in the Western Swiss Alps. Using species distribution models (SDMs), we investigated whether the distribution of individual plant species is correlated to the number of OTUs of two important soil fungal classes known to interact with plants: the Glomeromycetes, that are obligatory symbionts of plants, and the Agaricomycetes, that may be facultative plant symbionts, pathogens, or wood decayers. We show that including the fungal richness information in the models of plant species distributions improves predictive accuracy. Number of fungal OTUs is especially correlated to the distribution of high elevation plant species. We suggest that high elevation soil show greater variation in fungal assemblages that may in turn impact plant turnover among communities. We finally discuss how to move beyond correlative analyses, through the design of field experiments manipulating plant and fungal communities along environmental gradients. PMID:24339830

  5. Toward breeding new land-sea plant hybrid species irrigable with seawater for dry regions

    PubMed Central

    Moustafa, Khaled

    2015-01-01

    A plant species growing in sea or coastal saltmarsh is greatly tolerant to high concentrations of salts, and a plant species growing in desert or dry regions is highly tolerant to drought. Breeding a new plant hybrid species from both species by means of cellular grafting, genome fusion or nuclear transfer would generate, at least in theory, a hybrid plant species that should be strongly tolerant to harsh aridity and salinity and would be potentially irrigable with seawater. Such prospective species can be used for example as a fodder, biofuel crop or stabilizer species to protect soil from wind erosion and sandy storms in dry regions. Breeding such species would change the surface of the world and help to solve major challenges of starvation, malnutrition and poverty. Here, I propose potential approaches that would be worthy of investigation toward this purpose. PMID:25806436

  6. Toward breeding new land-sea plant hybrid species irrigable with seawater for dry regions.

    PubMed

    Moustafa, Khaled

    2015-01-01

    A plant species growing in sea or coastal saltmarsh is greatly tolerant to high concentrations of salts, and a plant species growing in desert or dry regions is highly tolerant to drought. Breeding a new plant hybrid species from both species by means of cellular grafting, genome fusion or nuclear transfer would generate, at least in theory, a hybrid plant species that should be strongly tolerant to harsh aridity and salinity and would be potentially irrigable with seawater. Such prospective species can be used for example as a fodder, biofuel crop or stabilizer species to protect soil from wind erosion and sandy storms in dry regions. Breeding such species would change the surface of the world and help to solve major challenges of starvation, malnutrition and poverty. Here, I propose potential approaches that would be worthy of investigation toward this purpose. PMID:25806436

  7. Performance of dryland and wetland plant species on extensive green roofs

    PubMed Central

    MacIvor, J. Scott; Ranalli, Melissa A.; Lundholm, Jeremy T.

    2011-01-01

    Background and Aims Green roofs are constructed ecosystems where plants perform valuable services, ameliorating the urban environment through roof temperature reductions and stormwater interception. Plant species differ in functional characteristics that alter ecosystem properties. Plant performance research on extensive green roofs has so far indicated that species adapted to dry conditions perform optimally. However, in moist, humid climates, species typical of wetter soils might have advantages over dryland species. In this study, survival, growth and the performance of thermal and stormwater capture functions of three pairs of dryland and wetland plant species were quantified using an extensive modular green roof system. Methods Seedlings of all six species were germinated in a greenhouse and planted into green roof modules with 6 cm of growing medium. There were 34 treatments consisting of each species in monoculture and all combinations of wet- and dryland species in a randomized block design. Performance measures were survival, vegetation cover and roof surface temperature recorded for each module over two growing seasons, water loss (an estimate of evapotranspiration) in 2007, and albedo and water capture in 2008. Key Results Over two seasons, dryland plants performed better than wetland plants, and increasing the number of dryland species in mixtures tended to improve functioning, although there was no clear effect of species or habitat group diversity. All species had survival rates >75 % after the first winter; however, dryland species had much greater cover, an important indicator of green roof performance. Sibbaldiopsis tridentata was the top performing species in monoculture, and was included in the best treatments. Conclusions Although dryland species outperformed wetland species, planting extensive green roofs with both groups decreased performance only slightly, while increasing diversity and possibly habitat value. This study provides further evidence that plant composition and diversity can influence green roof functions. PMID:21292676

  8. Reciprocal Effects of Litter from Exotic and Congeneric Native Plant Species via Soil Nutrients

    PubMed Central

    Meisner, Annelein; de Boer, Wietse; Cornelissen, Johannes H. C.; van der Putten, Wim H.

    2012-01-01

    Invasive exotic plant species are often expected to benefit exclusively from legacy effects of their litter inputs on soil processes and nutrient availability. However, there are relatively few experimental tests determining how litter of exotic plants affects their own growth conditions compared to congeneric native plant species. Here, we test how the legacy of litter from three exotic plant species affects their own performance in comparison to their congeneric natives that co-occur in the invaded habitat. We also analyzed litter effects on soil processes. In all three comparisons, soil with litter from exotic plant species had the highest respiration rates. In two out of the three exotic-native species comparisons, soil with litter from exotic plant species had higher inorganic nitrogen concentrations than their native congener, which was likely due to higher initial litter quality of the exotics. When litter from an exotic plant species had a positive effect on itself, it also had a positive effect on its native congener. We conclude that exotic plant species develop a legacy effect in soil from the invaded range through their litter inputs. This litter legacy effect results in altered soil processes that can promote both the exotic plant species and their native congener. PMID:22359604

  9. Vascular plant and vertebrate species richness in national parks of the eastern United States

    USGS Publications Warehouse

    Hatfield, Jeffrey S.; Myrick, Kaci E.; Huston, Michael A.; Weckerly, Floyd W.; Green, M. Clay

    2013-01-01

    Given the estimates that species diversity is diminishing at 50-100 times the normal rate, it is critical that we be able to evaluate changes in species richness in order to make informed decisions for conserving species diversity. In this study, we examined the potential of vascular plant species richness to be used as a surrogate for vertebrate species richness in the classes of amphibians, reptiles, birds, and mammals. Vascular plants, as primary producers, represent the biotic starting point for ecological community structure and are the logical place to start for understanding vertebrate species associations. We used data collected by the United States (US) National Park Service (NPS) on species presence within parks in the eastern US to estimate simple linear regressions between plant species richness and vertebrate richness. Because environmental factors may also influence species diversity, we performed simple linear regressions of species richness versus natural logarithm of park area, park latitude, mean annual precipitation, mean annual temperature, and human population density surrounding the parks. We then combined plant species richness and environmental variables in multiple regressions to determine the variables that remained as significant predictors of vertebrate species richness. As expected, we detected significant relationships between plant species richness and amphibian, bird, and mammal species richness. In some cases, plant species richness was predicted by park area alone. Species richness of mammals was only related to plant species richness. Reptile species richness, on the other hand, was related to plant species richness, park latitude and annual precipitation, while amphibian species richness was related to park latitude, park area, and plant species richness. Thus, plant species richness predicted species richness of different vertebrate groups to varying degrees and should not be used exclusively as a surrogate for vertebrate species richness. Plant species richness should be included with other variables such as area and climate when considering strategies to manage and conserve species in US National Parks. It is not always appropriate to draw conclusions about analyses of taxonomic surrogates from one area to another. Two patterns evident from the linear regressions were the increase in species richness with the increase of park area and with increase of vascular plant species richness. To test whether there were differences in these patterns among networks, we used analysis of covariance (ANCOVA). Differences among networks were detected only in bird species richness versus plant species richness and for all taxa except mammals for vertebrate species richness versus park area. Some of these results may be due to small sample size among networks, and therefore, low statistical power. Other factors that could have contributed to these results were differences in average park area and habitat heterogeneity among networks, latitudinal gradients, low variation in mean annual precipitation, and different use of vegetation by migratory species. Based on these results we recommend that management of biodiversity be approached from local and site specific criteria rather than applying management directives derived from other regions of the US. It is also recommended that analyses similar to those presented here be conducted for all national parks, once data become available for all networks in the US, to gain a better understanding of how vascular plant species richness, area, and vertebrate species richness are related in the US.

  10. Reactive oxygen species mediate growth and death in submerged plants

    PubMed Central

    Steffens, Bianka; Steffen-Heins, Anja; Sauter, Margret

    2013-01-01

    Aquatic and semi-aquatic plants are well adapted to survive partial or complete submergence which is commonly accompanied by oxygen deprivation. The gaseous hormone ethylene controls a number of adaptive responses to submergence including adventitious root growth and aerenchyma formation. Reactive oxygen species (ROS) act as signaling intermediates in ethylene-controlled submergence adaptation and possibly also independent of ethylene. ROS levels are controlled by synthesis, enzymatic metabolism, and non-enzymatic scavenging. While the actors are by and large known, we still have to learn about altered ROS at the subcellular level and how they are brought about, and the signaling cascades that trigger a specific response. This review briefly summarizes our knowledge on the contribution of ROS to submergence adaptation and describes spectrophotometrical, histochemical, and live cell imaging detection methods that have been used to study changes in ROS abundance. Electron paramagnetic resonance (EPR) spectroscopy is introduced as a method that allows identification and quantification of specific ROS in cell compartments. The use of advanced technologies such as EPR spectroscopy will be necessary to untangle the intricate and partially interwoven signaling networks of ethylene and ROS. PMID:23761805

  11. Invasive plant species as potential bioenergy producers and carbon contributors.

    SciTech Connect

    Young, S.; Gopalakrishnan, G.; Keshwani, D.

    2011-03-01

    Current cellulosic bioenergy sources in the United States are being investigated in an effort to reduce dependence on foreign oil and the associated risks to national security and climate change (Koh and Ghazoul 2008; Demirbas 2007; Berndes et al. 2003). Multiple sources of renewable plant-based material have been identified and include agricultural and forestry residues, municipal solid waste, industrial waste, and specifically grown bioenergy crops (Demirbas et al. 2009; Gronowska et al. 2009). These sources are most commonly converted to energy through direct burning, conversion to gas, or conversion to ethanol. Annual crops, such as corn (Zea Mays L.) and sorghum grain, can be converted to ethanol through fermentation, while soybean and canola are transformed into fatty acid methyl esters (biodiesel) by reaction with an alcohol (Demirbas 2007). Perennial grasses are one of the more viable sources for bioenergy due to their continuous growth habit, noncrop status, and multiple use products (Lewandowski el al. 2003). In addition, a few perennial grass species have very high water and nutrient use efficiencies producing large quantities of biomass on an annual basis (Dohleman et al. 2009; Grantz and Vu 2009).

  12. Interactions of plant zinc and plant species on the bioavailability of plant cadmium to Japanese quail fed lettuce and spinach

    SciTech Connect

    McKenna, I.M.; Keach, R.M. Jr; Williams, F.M. ); Chaney, R.L. Dept. of Agriculture, Beltsville, MD ); Tao, Shyy-Hwa )

    1992-02-01

    Many cadmium-contaminated environments contain high levels of zinc. The effects of plant Zn and plant species on plant Cd bioavailability were tested in Japanese quail fed lettuce and spinach. Four groups of birds received 10% of their diets as lettuce or spinach leaves intrinsically labeled with {sup 109}Cd and containing low or high intrinsic Zn. Two other groups were fed control diets containing {sup 109}Cd as CdSO{sub 4} and low or high Zn as ZnCO{sub 3}. Cadmium concentrations in diets ranged from 0.857 to 1.05 {mu}g/g dry wt. Zinc concentrations in low-Zn diets ranged from 21.2 to 22.8, and in high-Zn diets from 56.0 to 63.3 {mu}g/g dry wt. Increased lettuce and spinach Zn decreased plant Cd retention in kidney, liver, and jejunum-ileum of Japanese quail. Spinach Cd was less absorbed than lettuce Cd at both Zn levels. Inorganic Zn produced a lesser decrease in Cd retention in kidney, liver, and jejunum-ileum than did plant Zn. The authors conclude that (1) crops that transport Zn and Cd readily into edible tissues show lower Cd bioavailability when grown in Zn-Cd contaminated environments than in Cd-only polluted sites, (2) plant species differ in Cd bioavailability for identical concentrations of Zn and Cd in edible tissues, and (3) toxicological studies with animals exposed to Cd salts and Zn supplements do not assess Cd bioavailability of Zn-Cd contaminated crops.

  13. Two new withanolides from the halophyte Datura stramonium L.

    PubMed

    Fang, Sheng-Tao; Liu, Xia; Kong, Na-Na; Liu, Su-Jing; Xia, Chuan-Hai

    2013-01-01

    Eight steroids, including five withanolides (1-5) and three other ergostane-type steroids (6-8), were isolated from the aerial parts of the halophyte Datura stramonium L., which were collected from the Yellow River Delta in China. Their structures were elucidated on the basis of extensive spectroscopic methods, especially 1D and 2D NMR techniques. Compounds 1 and 2 were new compounds and characterised as (22R)-27-hydroxy-7α-methoxy-1-oxowitha-3,5,24-trienolide and its 27-O-β-d-glucopyranoside. Compound 3 was a new natural product and identified as (22R)-27-hydroxy-1-oxowitha-2,5,24-trienolide and isolated from nature for the first time. PMID:23706100

  14. Is the use-impact on native caatinga species in Brazil reduced by the high species richness of medicinal plants?

    PubMed

    de Albuquerque, Ulysses Paulino; de Oliveira, Rosilane Ferreira

    2007-08-15

    A study of the diversity of uses of medicinal plants and the traditional knowledge associated with the caatinga vegetation was undertaken in the semi-arid region of Pernambuco State, NE Brazil. We tested the utilitarian redundancy model (as an analogy to the ecological redundancy hypothesis) in evaluating the implications of the use of medicinal plants by rural communities to examine whether the presence of numerous species with analogous functions (identical therapeutic applications, for example) would reduce the use-impact on native species in the neighboring caatinga vegetation. Various techniques were used to collect information concerning medicinal plants and their applications from 19 residents considered "local specialists". The vegetation was sampled to determine the abundance of woody plants. Approximately 106 plants that fall into 67 local therapeutic categories were identified. Despite the fact that exotic species compose a significant fraction of the local medicinal flora, the native species represented the greatest percentage of local uses and indications. Amburana cearensis, Myracrodruon urundeuva, Anadenanthera colubrina, Sideroxylon obtusifolium, and Ziziphus joazeiro, for example, are highly sought after plants, and represent key species in terms of conservation and sustainable management. Our model of utilitarian redundancy has important consequences for testing ethnobotanical hypotheses, as well as for indicating strategies for biodiversity conservation. PMID:17616289

  15. The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco

    PubMed Central

    2012-01-01

    Background Soil salinity adversely affects plant growth and development and disturbs intracellular ion homeostasis resulting cellular toxicity. The Salt Overly Sensitive 1 (SOS1) gene encodes a plasma membrane Na+/H+ antiporter that plays an important role in imparting salt stress tolerance to plants. Here, we report the cloning and characterisation of the SbSOS1 gene from Salicornia brachiata, an extreme halophyte. Results The SbSOS1 gene is 3774 bp long and encodes a protein of 1159 amino acids. SbSOS1 exhibited a greater level of constitutive expression in roots than in shoots and was further increased by salt stress. Overexpressing the S. brachiata SbSOS1 gene in tobacco conferred high salt tolerance, promoted seed germination and increased root length, shoot length, leaf area, fresh weight, dry weight, relative water content (RWC), chlorophyll, K+/Na+ ratio, membrane stability index, soluble sugar, proline and amino acid content relative to wild type (WT) plants. Transgenic plants exhibited reductions in electrolyte leakage, reactive oxygen species (ROS) and MDA content in response to salt stress, which probably occurred because of reduced cytosolic Na+ content and oxidative damage. At higher salt stress, transgenic tobacco plants exhibited reduced Na+ content in root and leaf and higher concentrations in stem and xylem sap relative to WT, which suggests a role of SbSOS1 in Na+ loading to xylem from root and leaf tissues. Transgenic lines also showed increased K+ and Ca2+ content in root tissue compared to WT, which reflect that SbSOS1 indirectly affects the other transporters activity. Conclusions Overexpression of SbSOS1 in tobacco conferred a high degree of salt tolerance, enhanced plant growth and altered physiological and biochemical parameters in response to salt stress. In addition to Na+ efflux outside the plasma membrane, SbSOS1 also helps to maintain variable Na+ content in different organs and also affect the other transporters activity indirectly. These results broaden the role of SbSOS1 in planta and suggest that this gene could be used to develop salt-tolerant transgenic crops. PMID:23057782

  16. Mapping National Plant Biodiversity Patterns in South Korea with the MARS Species Distribution Model.

    PubMed

    Choe, Hyeyeong; Thorne, James H; Seo, Changwan

    2016-01-01

    Accurate information on the distribution of existing species is crucial to assess regional biodiversity. However, data inventories are insufficient in many areas. We examine the ability of Multivariate Adaptive Regression Splines (MARS) multi-response species distribution model to overcome species' data limitations and portray plant species distribution patterns for 199 South Korean plant species. The study models species with two or more observations, examines their contribution to national patterns of species richness, provides a sensitivity analysis of different range threshold cutoff approaches for modeling species' ranges, and presents considerations for species modeling at fine spatial resolution. We ran MARS models for each species and tested four threshold methods to transform occurrence probabilities into presence or absence range maps. Modeled occurrence probabilities were extracted at each species' presence points, and the mean, median, and one standard deviation (SD) calculated to define data-driven thresholds. A maximum sum of sensitivity and specificity threshold was also calculated, and the range maps from the four cutoffs were tested using independent plant survey data. The single SD values were the best threshold tested for minimizing omission errors and limiting species ranges to areas where the associated occurrence data were correctly classed. Eight individual species range maps for rare plant species were identified that are potentially affected by resampling predictor variables to fine spatial scales. We portray spatial patterns of high species richness by assessing the combined range maps from three classes of species: all species, endangered and endemic species, and range-size rarity of all species, which could be used in conservation planning for South Korea. The MARS model is promising for addressing the common problem of few species occurrence records. However, projected species ranges are highly dependent on the threshold and scale criteria, which should be assessed on a per-project basis. PMID:26930289

  17. Xylem sap protein composition is conserved among different plant species.

    PubMed

    Buhtz, Anja; Kolasa, Anna; Arlt, Kathleen; Walz, Christina; Kehr, Julia

    2004-08-01

    Xylem sap from broccoli (Brassica oleracea L. cv. Calabrais), rape (Brassica napus L. cv. Drakkar), pumpkin (Cucurbita maxima Duch. cv. gelber Zentner) and cucumber (Cucumis sativus L. cv. Hoffmanns Giganta) was collected by root pressure exudation from the surface of cut stems of healthy, adult plants. Total protein concentrations were in the range of 100 microg ml(-1). One-dimensional gel electrophoresis (SDS-PAGE) resulted in 10-20 visible protein bands in a molecular mass range from 10 to 100 kDa. The main bands were cut out, digested with trypsin, and analysed using tandem mass spectrometry. Fifty bands resulted in amino acid sequence information that was used to perform database similarity searches. Sequences from 30 bands showed high homology to proteins present in databases. Among them, we found mostly peroxidases, but could also identify the lectin-like xylem protein XSP30, a glycine-rich protein, serine proteases, an aspartyl protease family protein, chitinases, and a lipid transfer protein-like polypeptide. Sequence analysis predicted apoplastic secretion signals for all database entries similar to the partial xylem protein sequences. This and the lack of cross-reactivity with phloem protein-specific antibodies suggest that the proteins really originate from the xylem and do not result from phloem contamination. Most of the highly similar proteins probably function in repair and defence reactions. Some of the most abundant proteins (peroxidases, chitinases, serine proteases) were present in xylem exudate of all species analysed, often in more than one band. This indicates an important basic role of these proteins in maintaining xylem function. PMID:15064951

  18. Investigating Effects of Invasive Species on Plant Community Structure

    ERIC Educational Resources Information Center

    Franklin, Wilfred

    2008-01-01

    In this article, the author presents a field study project that explores factors influencing forest community structure and lifts the veil off of "plant blindness." This ecological study consists of three laboratories: (1) preliminary field trip to the study site; (2) plant survey; and (3) analyzing plant community structure with descriptive

  19. Investigating Effects of Invasive Species on Plant Community Structure

    ERIC Educational Resources Information Center

    Franklin, Wilfred

    2008-01-01

    In this article, the author presents a field study project that explores factors influencing forest community structure and lifts the veil off of "plant blindness." This ecological study consists of three laboratories: (1) preliminary field trip to the study site; (2) plant survey; and (3) analyzing plant community structure with descriptive…

  20. Molecular Cloning and Bioinformatics Analysis of a New Plasma Membrane Na+/H+ Antiporter Gene from the Halophyte Kosteletzkya virginica

    PubMed Central

    Wang, Hongyan; Tang, Xiaoli; Shao, Chuyang; Shao, Hongbo; Wang, Honglei

    2014-01-01

    A new plasma membrane Na+/H+ antiporter gene (named as KvSOS1) was cloned from the halophyte Kosteletzkya virginica by reverse-transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) technology, which is a homologue of SOS1 (salt overly sensitive 1). The full-length cDNA is 3850 bp and contains an open reading frame (ORF) encoding a protein of 1147 amino acids with a molecular weight of 127.56 kDa and a theoretical pI of 6.18. Bioinformatics analysis indicated that the deduced protein appears to be a transmembrane protein with 12 transmembrane domains at the N-terminal region and a long hydrophilic tail in cytoplasm at its C-terminal region and shares 72–82% identity at the peptide level with other plant plasma membrane Na+/H+ antiporters. PMID:25093196

  1. Nutritional and cultural aspects of plant species selection for a controlled ecological life support system

    NASA Technical Reports Server (NTRS)

    Hoff, J. E.; Howe, J. M.; Mitchell, C. A.

    1982-01-01

    The feasibility of using higher plants in a controlled ecological life support system is discussed. Aspects of this system considered important in the use of higher plants include: limited energy, space, and mass, and problems relating to cultivation and management of plants, food processing, the psychological impact of vegetarian diets, and plant propagation. A total of 115 higher plant species are compared based on 21 selection criteria.

  2. Effects of invasive plant species on pollinator service and reproduction in native plants at Acadia National Park

    USGS Publications Warehouse

    Stubbs, C.J.; Drummond, F.; Ginsberg, H.

    2007-01-01

    Invasive plant species can have profound negative effects on natural communities by competively excluding native species. Berberis thunbergii (Japanese barberry), Frangula alnus (glossy or alder buckthorn) and Lythrum salicaria (purple loosestrife) are invasive species known to reduce native plant diversity and are thus of great concern to Acadia National Park. Pollinators visit them for nectar and pollen. The effects of invasive plant species on pollinator behavior were investigated by comparing pollinator visitation to co-flowering native and invasive species with visitation to native species growing alone. The effect of invasives on pollination of native plants was studied by comparing fruit set in patches of the native species growing near invasives with patches far from invasive species in Acadia National Park. The coflowering pairs were as follows: in the spring native Vaccinium angustifolium (lowbush blueberry) was paired with B. thunbergii; in early summer native Viburnum nudum (wild raisin) was paired with F. alnus ; in late summer native Spiraea alba (meadowsweet) was paired with L. salicaria. We investigated whether these invasives competed with native plants for pollinators in Acadia and thus negatively affected native plant reproduction. Our objectives were to determine: 1) the influence, if any, of each invasive on pollinator visitation to a co-flowering native species, 2) factors that might affect visitation, 3) invasive pollen transfer to native plants, and 4) whether invasives influence native plant reproduction (fruit set). Our findings indicate that at times the number of flower visitors to natives was lower or the species composition of visitors different when invasives were present, that invasives sometimes attracted more pollinators, that generally the invasives were more rewarding as far as nectar and pollen availability for pollinators, and that generally native plant fruit set and seed set was not significantly lowered in the presence of the invasive. In fact, in one year fruit set of S. alba was significantly greater in the presence of L. salicaria. The number of invasive pollen grains on native stigmas was extremely low; on average less than one grain per stigma. These fruit set and pollen deposition findings indicate that native plant reproduction was not adversely affected in the short term by these invasive species and that therefore competition between the native and invasive species for pollinators did not occur. Native bee populations monitored in 2004-2005 at sites with and without B. thunbergii and/or F. alnus indicated a greater abundance of native bees at sites with these invasives present. Native bees collected from the native and invasive plants were compared with historical records to assess whether invasive plants favor different bee species than those that formerly predominated on Mount Desert Island. This does not appear to be the case. Several species of bumble bees (Bombus spp.) as well as nine solitary bee species were found that were not documented by the Procter surveys of 1917-1940. Collecting of native bees was limited to the study plants, which may, in part, explain why some bee species documented in the Procter Surveys were not found in the present research. A field guide for identification of native bumble bees has been produced to help Park Natural Resource personnel monitor the status of native bee populations in Acadia. Other educational materials were also developed, aimed at educating Park visitors by exposing them to: 1) the role of native plants and their bee pollinators in terrestrial ecosystems; 2) the effects of invasive plants on native plant-pollinator mutualisms; 3) the need for conserving native bees and other pollinators; and 4) conservation strategies for protecting and enhancing native plant-pollinator mutualisms in the Park. Based on the present findings, Acadia Park Resource Management personnel should continue to closely

  3. Molecular characterization of an MYB transcription factor from a succulent halophyte involved in stress tolerance.

    PubMed

    Shukla, Pushp Sheel; Agarwal, Parinita; Gupta, Kapil; Agarwal, Pradeep K

    2015-01-01

    Abiotic stresses like drought, salinity and extreme temperature significantly affect crop productivity. Plants respond at molecular, cellular and physiological levels for management of stress tolerance. Functional and regulatory genes play a major role in controlling these abiotic stresses through an intricate network of transcriptional machinery. Transcription factors are potential tools for manipulating stress tolerance since they control a large number of downstream genes. In the present study, we have isolated SbMYB44 from a succulent halophyte, Salicornia brachiata Roxb. SbMYB44 with an open-reading frame of 810 bp encodes a protein of 269 amino acids, with an estimated molecular mass of 30.31 kDa and an isoelectric point of 6.29. The in silico analysis revealed that the SbMYB44 protein contains the conserved R2R3 imperfect repeats, two SANT domains and post-translational modification sites. The SbMYB44 transcript showed up-regulation in response to salinity, desiccation, high temperature, and abscisic acid and salicylic acid treatments. The SbMYB44 recombinant protein showed binding to dehydration-responsive cis-elements (RD22 and MBS-1), suggesting its possible role in stress signalling. Overexpression of SbMYB44 enhanced the growth of yeast cells under both ionic and osmotic stresses. PMID:25986050

  4. Molecular characterization of an MYB transcription factor from a succulent halophyte involved in stress tolerance

    PubMed Central

    Shukla, Pushp Sheel; Agarwal, Parinita; Gupta, Kapil; Agarwal, Pradeep K.

    2015-01-01

    Abiotic stresses like drought, salinity and extreme temperature significantly affect crop productivity. Plants respond at molecular, cellular and physiological levels for management of stress tolerance. Functional and regulatory genes play a major role in controlling these abiotic stresses through an intricate network of transcriptional machinery. Transcription factors are potential tools for manipulating stress tolerance since they control a large number of downstream genes. In the present study, we have isolated SbMYB44 from a succulent halophyte, Salicornia brachiata Roxb. SbMYB44 with an open-reading frame of 810 bp encodes a protein of 269 amino acids, with an estimated molecular mass of 30.31 kDa and an isoelectric point of 6.29. The in silico analysis revealed that the SbMYB44 protein contains the conserved R2R3 imperfect repeats, two SANT domains and post-translational modification sites. The SbMYB44 transcript showed up-regulation in response to salinity, desiccation, high temperature, and abscisic acid and salicylic acid treatments. The SbMYB44 recombinant protein showed binding to dehydration-responsive cis-elements (RD22 and MBS-1), suggesting its possible role in stress signalling. Overexpression of SbMYB44 enhanced the growth of yeast cells under both ionic and osmotic stresses. PMID:25986050

  5. Cooccurring plants forming distinct arbuscular mycorrhizal morphologies harbor similar AM fungal species.

    PubMed

    Matekwor Ahulu, Evelyn; Gollotte, Armelle; Gianinazzi-Pearson, Vivienne; Nonaka, Masanori

    2006-12-01

    Arbuscular mycorrhizal (AM) fungal spores were isolated from field transplants and rhizosphere soil of Hedera rhombea (Miq) Bean and Rubus parvifolius L., which form Paris-type and Arum-type AM, respectively. DNA from the spore isolates was used to generate molecular markers based on partial large subunit (LSU) ribosomal RNA (rDNA) sequences to determine AM fungi colonizing field-collected roots of the two plant species. Species that were isolated as spores and identified morphologically and molecularly were Gigaspora rosea and Scutellospora erythropa from H. rhombea, Acaulospora longula and Glomus etunicatum from R. parvifolius, and Glomus claroideum from both plants. The composition of the AM fungal communities with respect to plant trap cultures was highly divergent between plant species. Analysis of partial LSU rDNA sequences amplified from field-collected roots of the two plant species with PCR primers designed for the AM fungi indicated that both plants were colonized by G. claroideum, G. etunicatum, A. longula, and S. erythropa. G. rosea was not detected in the field-collected roots of either plant species. Four other AM fungal genotypes, which were not isolated as spores in trap cultures from the two plant species, were also found in the roots of both plant species; two were closely related to Glomus intraradices and Glomus clarum. One genotype, which was most closely related to Glomus microaggregatum, was confined to R. parvifolius, whereas an uncultured Glomeromycotan fungus occurred only in roots of H. rhombea. S. erythropa was the most dominant fungus found in the roots of H. rhombea. The detection of the same AM fungal species in field-collected roots of H. rhombea and R. parvifolius, which form Paris- and Arum-type AM, respectively, shows that AM morphology in these plants is strongly influenced by the host plant genotypes as appears to be the case in many plant species in natural ecosystems, although there are preferential associations between the hosts and colonizing AM fungi in this study. PMID:17106725

  6. Effects of three species of Chihuahuan Desert ants on annual plants and soil properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We tested the hypothesis that ant species, which occupy the same nest for a decade or longer, would modify nest soils by increasing soil nutrients and microorganisms resulting in increased biomass, density, cover and species richness of annual plants. We measured soil properties and annual plants on...

  7. Plant Species Diversity and Distribution in Pastures of the Northeastern USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grazed pastures in the northeastern United contain far more than planted forage species. These species may contribute to forage production, but they may also detract from forage production or palatability. As the first step toward identifying the role of plant diversity in forage systems, we collect...

  8. 45 CFR 670.25 - Designation of specially protected species of native mammals, birds, and plants.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 3 2013-10-01 2013-10-01 false Designation of specially protected species of native mammals, birds, and plants. 670.25 Section 670.25 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION CONSERVATION OF ANTARCTIC ANIMALS AND PLANTS Specially Protected Species of Mammals, Birds, and...

  9. Draft Genome Sequence of Bacillus Species from the Rhizosphere of the Desert Plant Rhazya stricta

    PubMed Central

    Abo-Aba, S. E. M.; Sabir, Jamal S. M.; Baeshen, Mohammed N.; Sabir, Meshaal J.; Mutwakil, Mohammed H. Z.; Baeshen, Nabih A.; D’Amore, Rosalinda

    2015-01-01

    In order to better understand the ecology and diversity of microbes in the rhizosphere of desert plants, we undertook a survey of Bacillus species isolated from soil around Rhazya stricta plants from the area around Jeddah, in The Kingdom, Saudi Arabia. We have sequenced the genomes of 8 Bacillus isolates representing four different species. PMID:26543104

  10. Changes in the alternative electron sinks and antioxidant defence in chloroplasts of the extreme halophyte Eutrema parvulum (Thellungiella parvula) under salinity

    PubMed Central

    Uzilday, Baris; Ozgur, Rengin; Sekmen, A. Hediye; Yildiztugay, Evren; Turkan, Ismail

    2015-01-01

    Background and Aims Eutrema parvulum (synonym, Thellungiella parvula) is an extreme halophyte that thrives in high salt concentrations (100–150 mm) and is closely related to Arabidopsis thaliana. The main aim of this study was to determine how E. parvulum uses reactive oxygen species (ROS) production, antioxidant systems and redox regulation of the electron transport system in chloroplasts to tolerate salinity. Methods Plants of E. parvulum were grown for 30 d and then treated with either 50, 200 or 300 mm NaCl. Physiological parameters including growth and water relationships were measured. Activities of antioxidant enzymes were determined in whole leaves and chloroplasts. In addition, expressions of chloroplastic redox components such as ferrodoxin thioredoxin reductases (FTR), NADPH thioredoxin reductases (NTRC), thioredoxins (TRXs) and peroxiredoxins (PRXs), as well as genes encoding enzymes of the water–water cycle and proline biosynthesis were measured. Key Results Salt treatment affected water relationships negatively and the accumulation of proline was increased by salinity. E. parvulum was able to tolerate 300 mm NaCl over long periods, as evidenced by H2O2 content and lipid peroxidation. While Ca2+ and K+ concentrations were decreased by salinity, Na+ and Cl– concentrations increased. Efficient induction of activities and expressions of water–water cycle enzymes might prevent accumulation of excess ROS in chloroplasts and therefore protect the photosynthetic machinery in E. parvulum. The redox homeostasis in chloroplasts might be achieved by efficient induction of expressions of redox regulatory enzymes such as FTR, NTRC, TRXs and PRXs under salinity. Conclusions E. parvulum was able to adapt to osmotic stress by an efficient osmotic adjustment mechanism involving proline and was able to regulate its ion homeostasis. In addition, efficient induction of water–water cycle enzymes and other redox regulatory components such as TRXs and PRXs in chloroplasts were able to protect the chloroplasts from salinity-induced oxidative stress. PMID:25231894

  11. Comparing salt tolerance of beet cultivars and their halophytic ancestor: consequences of domestication and breeding programmes

    PubMed Central

    Rozema, Jelte; Cornelisse, Danny; Zhang, Yuancheng; Li, Hongxiu; Bruning, Bas; Katschnig, Diana; Broekman, Rob; Ji, Bin; van Bodegom, Peter

    2015-01-01

    Salt tolerance of higher plants is determined by a complex set of traits, the timing and rate of evolution of which are largely unknown. We compared the salt tolerance of cultivars of sugar beet and their ancestor, sea beet, in hydroponic studies and evaluated whether traditional domestication and more recent breeding have changed salt tolerance of the cultivars relative to their ancestor. Our comparison of salt tolerance of crop cultivars is based on values of the relative growth rate (RGR) of the entire plant at various salinity levels. We found considerable salt tolerance of the sea beet and slightly, but significantly, reduced salt tolerance of the sugar beet cultivars. This indicates that traditional domestication by selection for morphological traits such as leaf size, beet shape and size, enhanced productivity, sugar content and palatability slightly affected salt tolerance of sugar beet cultivars. Salt tolerance among four sugar beet cultivars, three of which have been claimed to be salt tolerant, did not differ. We analysed the components of RGR to understand the mechanism of salt tolerance at the whole-plant level. The growth rate reduction at higher salinity was linked with reduced leaf area at the whole-plant level (leaf area ratio) and at the individual leaf level (specific leaf area). The leaf weight fraction was not affected by increased salinity. On the other hand, succulence and leaf thickness and the net assimilation per unit of leaf area (unit leaf rate) increased in response to salt treatment, thus partially counteracting reduced capture of light by lower leaf area. This compensatory mechanism may form part of the salt tolerance mechanism of sea beet and the four studied sugar beet cultivars. Together, our results indicate that domestication of the halophytic ancestor sea beet slightly reduced salt tolerance and that breeding for improved salt tolerance of sugar beet cultivars has not been effective. PMID:25492122

  12. Comparing salt tolerance of beet cultivars and their halophytic ancestor: consequences of domestication and breeding programmes.

    PubMed

    Rozema, Jelte; Cornelisse, Danny; Zhang, Yuancheng; Li, Hongxiu; Bruning, Bas; Katschnig, Diana; Broekman, Rob; Ji, Bin; van Bodegom, Peter

    2014-01-01

    Salt tolerance of higher plants is determined by a complex set of traits, the timing and rate of evolution of which are largely unknown. We compared the salt tolerance of cultivars of sugar beet and their ancestor, sea beet, in hydroponic studies and evaluated whether traditional domestication and more recent breeding have changed salt tolerance of the cultivars relative to their ancestor. Our comparison of salt tolerance of crop cultivars is based on values of the relative growth rate (RGR) of the entire plant at various salinity levels. We found considerable salt tolerance of the sea beet and slightly, but significantly, reduced salt tolerance of the sugar beet cultivars. This indicates that traditional domestication by selection for morphological traits such as leaf size, beet shape and size, enhanced productivity, sugar content and palatability slightly affected salt tolerance of sugar beet cultivars. Salt tolerance among four sugar beet cultivars, three of which have been claimed to be salt tolerant, did not differ. We analysed the components of RGR to understand the mechanism of salt tolerance at the whole-plant level. The growth rate reduction at higher salinity was linked with reduced leaf area at the whole-plant level (leaf area ratio) and at the individual leaf level (specific leaf area). The leaf weight fraction was not affected by increased salinity. On the other hand, succulence and leaf thickness and the net assimilation per unit of leaf area (unit leaf rate) increased in response to salt treatment, thus partially counteracting reduced capture of light by lower leaf area. This compensatory mechanism may form part of the salt tolerance mechanism of sea beet and the four studied sugar beet cultivars. Together, our results indicate that domestication of the halophytic ancestor sea beet slightly reduced salt tolerance and that breeding for improved salt tolerance of sugar beet cultivars has not been effective. PMID:25492122

  13. How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents.

    PubMed

    Poorter, Hendrik; Jagodzinski, Andrzej M; Ruiz-Peinado, Ricardo; Kuyah, Shem; Luo, Yunjian; Oleksyn, Jacek; Usoltsev, Vladimir A; Buckley, Thomas N; Reich, Peter B; Sack, Lawren

    2015-11-01

    We compiled a global database for leaf, stem and root biomass representing c. 11 000 records for c. 1200 herbaceous and woody species grown under either controlled or field conditions. We used this data set to analyse allometric relationships and fractional biomass distribution to leaves, stems and roots. We tested whether allometric scaling exponents are generally constant across plant sizes as predicted by metabolic scaling theory, or whether instead they change dynamically with plant size. We also quantified interspecific variation in biomass distribution among plant families and functional groups. Across all species combined, leaf vs stem and leaf vs root scaling exponents decreased from c. 1.00 for small plants to c. 0.60 for the largest trees considered. Evergreens had substantially higher leaf mass fractions (LMFs) than deciduous species, whereas graminoids maintained higher root mass fractions (RMFs) than eudicotyledonous herbs. These patterns do not support the hypothesis of fixed allometric exponents. Rather, continuous shifts in allometric exponents with plant size during ontogeny and evolution are the norm. Across seed plants, variation in biomass distribution among species is related more to function than phylogeny. We propose that the higher LMF of evergreens at least partly compensates for their relatively low leaf area : leaf mass ratio. PMID:26197869

  14. Contrasting effects of plant species traits and moisture on the decomposition of multiple litter fractions.

    PubMed

    Riggs, Charlotte E; Hobbie, Sarah E; Cavender-Bares, Jeannine; Savage, Jessica A; Wei, Xiaojing

    2015-10-01

    Environmental variation in moisture directly influences plant litter decomposition through effects on microbial activity, and indirectly via plant species traits. Whether the effects of moisture and plant species traits are mutually reinforcing or counteracting during decomposition are unknown. To disentangle the effects of moisture from the effects of species traits that vary with moisture, we decomposed leaf litter from 12 plant species in the willow family (Salicaceae) with different native habitat moisture preferences in paired mesic and wetland plots. We fit litter mass loss data to an exponential decomposition model and estimated the decay rate of the rapidly cycling litter fraction and size of the remaining fraction that decays at a rate approaching zero. Litter traits that covaried with moisture in the species' native habitat significantly influenced the decomposition rate of the rapidly cycling litter fraction, but moisture in the decomposition environment did not. In contrast, for the slowly cycling litter fraction, litter traits that did not covary with moisture in the species' native habitat and moisture in the decomposition environment were significant. Overall, the effects of moisture and plant species traits on litter decomposition were somewhat reinforcing along a hydrologic gradient that spanned mesic upland to wetland (but not permanently surface-saturated) plots. In this system, plant trait and moisture effects may lead to greater in situ decomposition rates of wetland species compared to upland species; however, plant traits that do not covary with moisture will also influence decomposition of the slowest cycling litter fraction. PMID:26009245

  15. Are Non-Native Plants Perceived to Be More Risky? Factors Influencing Horticulturists' Risk Perceptions of Ornamental Plant Species

    PubMed Central

    Humair, Franziska; Kueffer, Christoph; Siegrist, Michael

    2014-01-01

    Horticultural trade is recognized as an important vector in promoting the introduction and dispersal of harmful non-native plant species. Understanding horticulturists' perceptions of biotic invasions is therefore important for effective species risk management. We conducted a large-scale survey among horticulturists in Switzerland (N = 625) to reveal horticulturists' risk and benefit perceptions from ornamental plant species, their attitudes towards the regulation of non-native species, as well as the factors decisive for environmental risk perceptions and horticulturists' willingness to engage in risk mitigation behavior. Our results suggest that perceived familiarity with a plant species had a mitigating effect on risk perceptions, while perceptions of risk increased if a species was perceived to be non-native. However, perceptions of the non-native origin of ornamental plant species were often not congruent with scientific classifications. Horticulturists displayed positive attitudes towards mandatory trade regulations, particularly towards those targeted against known invasive species. Participants also expressed their willingness to engage in risk mitigation behavior. Yet, positive effects of risk perceptions on the willingness to engage in risk mitigation behavior were counteracted by perceptions of benefits from selling non-native ornamental species. Our results indicate that the prevalent practice in risk communication to emphasize the non-native origin of invasive species can be ineffective, especially in the case of species of high importance to local industries and people. This is because familiarity with these plants can reduce risk perceptions and be in conflict with scientific concepts of non-nativeness. In these cases, it might be more effective to focus communication on well-documented environmental impacts of harmful species. PMID:25003195

  16. The effect of AMF suppression on plant species composition in a nutrient-poor dry grassland.

    PubMed

    Dostlek, Tom; Pnkov, Hana; Mnzbergov, Zuzana; Rydlov, Jana

    2013-01-01

    Arbuscular mycorrhizal fungi (AMF) are expected to be one of the key drivers determining the diversity of natural plant communities, especially in nutrient-poor and dry habitats. Several previous studies have explored the importance of AMF for the composition of plant communities in various types of habitats. Surprisingly, studies of the role of AMF in nutrient-poor dry grassland communities dominated by less mycotrophic plant species are still relatively rare. We present the results of a 3-year study in which a plant community in a species-rich dry grassland was subjected to the fungicide carbendazim to suppress AMF colonization. We tested the effect of the fungicide on the following parameters: the plant species composition; the number of plant species; the cover of the rare, highly mycorrhiza-dependent species Aster amellus; the cover of the dominant, less mycorrhiza-dependent species Brachypodium pinnatum; and the cover of graminoids and perennial forbs. In addition, we examined the mycorrhizal inoculation potential of the soil. We found that the suppression of AMF with fungicide resulted in substantial changes in plant species composition and significant decrease in species richness, the cover of A. amellus and the cover of perennial forbs. In contrast the species increasing their cover after fungicide application were graminoids--the C3 grasses B. pinnatum and Bromus erectus and the sedge Carex flacca. These species appear to be less mycorrhiza dependent. Moreover, due to their clonal growth and efficient nutrient usage, they are, most likely, better competitors than perennial forbs under fungicide application. Our results thus suggest that AMF are an essential part of the soil communities supporting a high diversity of plant species in species-rich dry grasslands in nutrient-poor habitats. The AMF are especially important for the maintenance of the populations of perennial forbs, many of which are rare and endangered in the area. PMID:24265829

  17. The Effect of AMF Suppression on Plant Species Composition in a Nutrient-Poor Dry Grassland

    PubMed Central

    Dostlek, Tom; Pnkov, Hana; Mnzbergov, Zuzana; Rydlov, Jana

    2013-01-01

    Arbuscular mycorrhizal fungi (AMF) are expected to be one of the key drivers determining the diversity of natural plant communities, especially in nutrient-poor and dry habitats. Several previous studies have explored the importance of AMF for the composition of plant communities in various types of habitats. Surprisingly, studies of the role of AMF in nutrient-poor dry grassland communities dominated by less mycotrophic plant species are still relatively rare. We present the results of a 3-year study in which a plant community in a species-rich dry grassland was subjected to the fungicide carbendazim to suppress AMF colonization. We tested the effect of the fungicide on the following parameters: the plant species composition; the number of plant species; the cover of the rare, highly mycorrhiza-dependent species Aster amellus; the cover of the dominant, less mycorrhiza-dependent species Brachypodium pinnatum; and the cover of graminoids and perennial forbs. In addition, we examined the mycorrhizal inoculation potential of the soil. We found that the suppression of AMF with fungicide resulted in substantial changes in plant species composition and significant decrease in species richness, the cover of A. amellus and the cover of perennial forbs. In contrast the species increasing their cover after fungicide application were graminoidsthe C3 grasses B. pinnatum and Bromus erectus and the sedge Carex flacca. These species appear to be less mycorrhiza dependent. Moreover, due to their clonal growth and efficient nutrient usage, they are, most likely, better competitors than perennial forbs under fungicide application. Our results thus suggest that AMF are an essential part of the soil communities supporting a high diversity of plant species in species-rich dry grasslands in nutrient-poor habitats. The AMF are especially important for the maintenance of the populations of perennial forbs, many of which are rare and endangered in the area. PMID:24265829

  18. Use of plant woody species electrical potential for irrigation scheduling

    PubMed Central

    Ríos-Rojas, Liliana; Morales-Moraga, David; Alcalde, José A; Gurovich, Luis A

    2015-01-01

    The electrical response of plants to environmental stimuli can be measured and quantitatively related to the intensity of several stimulating sources, like temperature, solar radiation, soil water content, evapotranspiration rates, sap flow and dendrometric cycles. These relations can be used to assess the influence of different environmental situations on soil water availability to plants, defined as a steady state condition between leaf transpirative flow and soil water flow to plant roots. A restricted soil water flow due to soil dryness can trigger water stress in plants, if the atmospheric evaporative demand is high, causing partial stomata closure as a physiological response to avoid plant dehydration; water stressed and unstressed plants manifest a differential electrical response. Real time plant electrical response measurements can anticipate actions that prevent the plant reaching actual stress conditions, optimizing stomata gas exchange and photosynthetic rates. An electrophysiological sensor developed in this work, allows remote real-time recording information on plant electrical potential (EP) in the field, which is highly related to EP measurements obtained with a laboratory Keithley voltmeter sensor used in an highly controlled experimental setup. Our electrophysiological sensor is a wireless, autonomous devise, which transmits EP information via Internet to a data server. Using both types of sensors (EP electrodes with a Keithley voltmeter and the electrophysiological sensor), we measured in real time the electrical responses of Persea americana and Prunus domestica plants, to induced water deficits. The differential response for 2 scenarios: irrigation and water restriction is identified by a progressive change in slope on the daily maximal and minimal electric signal values in stressed plants, and a zero-slope for similar signals for well-watered plants. Results show a correspondence between measured signals obtained by our electrophysiological sensor and the EP electrodes connected to the Keithley voltmeter in each irrigation stage. Also, both sensors show a daily cyclical signal (circadian cycle). PMID:25826257

  19. Use of plant woody species electrical potential for irrigation scheduling.

    PubMed

    Ríos-Rojas, Liliana; Morales-Moraga, David; Alcalde, José A; Gurovich, Luis A

    2015-01-01

    The electrical response of plants to environmental stimuli can be measured and quantitatively related to the intensity of several stimulating sources, like temperature, solar radiation, soil water content, evapotranspiration rates, sap flow and dendrometric cycles. These relations can be used to assess the influence of different environmental situations on soil water availability to plants, defined as a steady state condition between leaf transpirative flow and soil water flow to plant roots. A restricted soil water flow due to soil dryness can trigger water stress in plants, if the atmospheric evaporative demand is high, causing partial stomata closure as a physiological response to avoid plant dehydration; water stressed and unstressed plants manifest a differential electrical response. Real time plant electrical response measurements can anticipate actions that prevent the plant reaching actual stress conditions, optimizing stomata gas exchange and photosynthetic rates. An electrophysiological sensor developed in this work, allows remote real-time recording information on plant electrical potential (EP) in the field, which is highly related to EP measurements obtained with a laboratory Keithley voltmeter sensor used in an highly controlled experimental setup. Our electrophysiological sensor is a wireless, autonomous devise, which transmits EP information via Internet to a data server. Using both types of sensors (EP electrodes with a Keithley voltmeter and the electrophysiological sensor), we measured in real time the electrical responses of Persea americana and Prunus domestica plants, to induced water deficits. The differential response for 2 scenarios: irrigation and water restriction is identified by a progressive change in slope on the daily maximal and minimal electric signal values in stressed plants, and a zero-slope for similar signals for well-watered plants. Results show a correspondence between measured signals obtained by our electrophysiological sensor and the EP electrodes connected to the Keithley voltmeter in each irrigation stage. Also, both sensors show a daily cyclical signal (circadian cycle). PMID:25826257

  20. The factors controlling species density in herbaceous plant communities: An assessment

    USGS Publications Warehouse

    Grace, J.B.

    1999-01-01

    This paper evaluates both the ideas and empirical evidence pertaining to the control of species density in herbaceous plant communities. While most theoretical discussions of species density have emphasized the importance of habitat productivity and disturbance regimes, many other factors (e.g. species pools, plant litter accumulation, plant morphology) have been proposed to be important. A review of literature presenting observations on the density of species in small plots (in the vicinity of a few square meters or less), as well as experimental studies, suggests several generalizations: (1) Available data are consistent with an underlying unimodal relationship between species density and total community biomass. While variance in species density is often poorly explained by predictor variables, there is strong evidence that high levels of community biomass are antagonistic to high species density. (2) Community biomass is just one of several factors affecting variations in species density. Multivariate analyses typically explain more than twice as much variance in species density as can be explained by community biomass alone. (3) Disturbance has important and sometimes complex effects on species density. In general, the evidence is consistent with the intermediate disturbance hypothesis but exceptions exist and effects can be complex. (4) Gradients in the species pool can have important influences on patterns of species density. Evidence is mounting that a considerable amount of the observed variability in species density within a landscape or region may result from environmental effects on the species pool. (5) Several additional factors deserve greater consideration, including time lags, species composition, plant morphology, plant density and soil microbial effects. Based on the available evidence, a conceptual model of the primary factors controlling species density is presented here. This model suggests that species density is controlled by the effects of disturbance, total community biomass, colonization, the species pool and spatial heterogeneity. The structure of the model leads to two main expectations: (1) while community biomass is important, multivariate approaches will be required to understand patterns of variation in species density, and (2) species density will be more highly correlated with light penetration to the soil surface, than with above-ground biomass, and even less well correlated with plant growth rates (productivity) or habitat fertility. At present, data are insufficient to evaluate the relative importance of the processes controlling species density. Much more work is needed if we are to adequately predict the effects of environmental changes on plant communities and species diversity.

  1. Beyond Arabidopsis: the circadian clock in non-model plant species.

    PubMed

    McClung, C Robertson

    2013-05-01

    Circadian clocks allow plants to temporally coordinate many aspects of their biology with the diurnal cycle derived from the rotation of Earth on its axis. Although there is a rich history of the study of clocks in many plant species, in recent years much progress in elucidating the architecture and function of the plant clock has emerged from studies of the model plant, Arabidopsis thaliana. There is considerable interest in extending this knowledge of the circadian clock into diverse plant species in order to address its role in topics as varied as agricultural productivity and the responses of individual species and plant communities to global climate change and environmental degradation. The analysis of circadian clocks in the green lineage provides insight into evolutionary processes in plants and throughout the eukaryotes. PMID:23466287

  2. Moose as a vector for non-indigenous plant species in Alaska

    Technology Transfer Automated Retrieval System (TEKTRAN)

    White sweetclover and narrowleaf hawksbeard are non-indigenous invasive plant species in Alaska that are rapidly spreading, including into areas that are otherwise free of non-indigenous plants. There has been concern that native moose could be dispersing viable seed from these plants after ingestio...

  3. On the importance of edaphic variables to predict plant species distributions limits and prospects

    PubMed Central

    Thuiller, Wilfried

    2016-01-01

    Although the importance of edaphic parameters on plant growth and survival is known, they are rarely incorporated as predictors in plant species distribution models (SDM). Dubuis et al., in this issue, show they may improve the performance of plant SDMs in Alpine ecosystems. It paves the way for more comprehensive assessments of the values of including edaphic variables into SDMs.

  4. Collection and Domestication of Rangeland Plant Species with Emphasis on Mongolia and China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Changing economic and social conditions are threatening plant diversity on rangelands in Mongolia and China. Teams of collaborating scientists from the U.S.A., Mongolia, and China collected seed of rangeland plant species in Mongolia and Inner Mongolia, China, to preserve plant biodiversity from th...

  5. Alien Roadside Species More Easily Invade Alpine than Lowland Plant Communities in a Subarctic Mountain Ecosystem

    PubMed Central

    Lembrechts, Jonas J.; Milbau, Ann; Nijs, Ivan

    2014-01-01

    Effects of roads on plant communities are not well known in cold-climate mountain ecosystems, where road building and development are expected to increase in future decades. Knowledge of the sensitivity of mountain plant communities to disturbance by roads is however important for future conservation purposes. We investigate the effects of roads on species richness and composition, including the plant strategies that are most affected, along three elevational gradients in a subarctic mountain ecosystem. We also examine whether mountain roads promote the introduction and invasion of alien plant species from the lowlands to the alpine zone. Observations of plant community composition were made together with abiotic, biotic and anthropogenic factors in 60 T-shaped transects. Alpine plant communities reacted differently to road disturbances than their lowland counterparts. On high elevations, the roadside species composition was more similar to that of the local natural communities. Less competitive and ruderal species were present at high compared with lower elevation roadsides. While the effects of roads thus seem to be mitigated in the alpine environment for plant species in general, mountain plant communities are more invasible than lowland communities. More precisely, relatively more alien species present in the roadside were found to invade into the surrounding natural community at high compared to low elevations. We conclude that effects of roads and introduction of alien species in lowlands cannot simply be extrapolated to the alpine and subarctic environment. PMID:24586947

  6. Genetic variation for sensitivity to a thyme monoterpene in associated plant species.

    PubMed

    Jensen, Catrine Grnberg; Ehlers, Bodil Kirstine

    2010-04-01

    Recent studies have shown that plant allelochemicals can have profound effects on the performance of associated species, such that plants with a history of co-existence with "chemical neighbour" plants perform better in their presence compared to nave plants. This has cast new light on the complexity of plant-plant interactions and plant communities and has led to debates on whether plant communities are more co-evolved than traditionally thought. In order to determine whether plants may indeed evolve in response to other plants' allelochemicals it is crucial to determine the presence of genetic variation for performance under the influence of specific allelochemicals and show that natural selection indeed operates on this variation. We studied the effect of the monoterpene carvacrol-a dominant compound in the essential oil of Thymus pulegioides-on three associated plant species originating from sites where thyme is either present or absent. We found the presence of genetic variation in both nave and experienced populations for performance under the influence of the allelochemical but the response varied among nave and experienced plant. Plants from experienced populations performed better than nave plants on carvacrol soil and contained significantly more seed families with an adaptive response to carvacrol than nave populations. This suggests that the presence of T. pulegioides can act as a selective agent on associated species, by favouring genotypes which perform best in the presence of its allelochemicals. The response to the thyme allelochemical varied from negative to neutral to positive among the species. The different responses within a species suggest that plant-plant interactions can evolve; this has implications for community dynamics and stability. PMID:19921272

  7. Species richness of vascular plants, bryophytes, and lichens along an altitudinal gradient in western Norway

    NASA Astrophysics Data System (ADS)

    Grytnes, John Arvid; Heegaard, Einar; Ihlen, Per G.

    2006-05-01

    Species richness patterns of ground-dwelling vascular plants, bryophytes, and lichens were compared along an altitudinal gradient (310-1135 m a.s.l.), in western Norway. Total species richness peaked at intermediate altitudes, vascular plant species richness peaked immediately above the forest limit (at 600-700 m a.s.l.), bryophyte species richness had no statistically significant trend, whereas lichen richness increased from the lowest point and up to the forest limit, with no trend above. It is proposed that the pattern in vascular plant species richness is enhanced by an ecotone effect. Bryophyte species richness responds to local scale factors whereas the lichen species richness may be responding to the shading from the forest trees.

  8. Classification and identification of metal-accumulating plant species by cluster analysis.

    PubMed

    Yang, Wenhao; Li, He; Zhang, Taoxiang; Sen, Lin; Ni, Wuzhong

    2014-09-01

    Identification and classification of metal-accumulating plant species is essential for phytoextraction. Cluster analysis is used for classifying individuals based on measured characteristics. In this study, classification of plant species for metal accumulation was conducted using cluster analysis based on a practical survey. Forty plant samples belonging to 21 species were collected from an ancient silver-mining site. Five groups such as hyperaccumulator, potential hyperaccumulator, accumulator, potential accumulator, and normal accumulating plant were graded. For Cd accumulation, the ancient silver-mining ecotype of Sedum alfredii was treated as a Cd hyperaccumulator, and the others were normal Cd-accumulating plants. For Zn accumulation, S. alfredii was considered as a potential Zn hyperaccumulator, Conyza canadensis and Artemisia lavandulaefolia were Zn accumulators, and the others were normal Zn-accumulating plants. For Pb accumulation, S. alfredii and Elatostema lineolatum were potential Pb hyperaccumulators, Rubus hunanensis, Ajuga decumbens, and Erigeron annuus were Pb accumulators, C. canadensis and A. lavandulaefolia were potential Pb accumulators, and the others were normal Pb-accumulating plants. Plant species with the potential for phytoextraction were identified such as S. alfredii for Cd and Zn, C. canadensis and A. lavandulaefolia for Zn and Pb, and E. lineolatum, R. hunanensis, A. decumbens, and E. annuus for Pb. Cluster analysis is effective in the classification of plant species for metal accumulation and identification of potential species for phytoextraction. PMID:24888623

  9. Race to Displace: A Game to Model the Effects of Invasive Species on Plant Communities

    ERIC Educational Resources Information Center

    Hopwood, Jennifer L.; Flowers, Susan K.; Seidler, Katie J.; Hopwood, Erica L.

    2013-01-01

    Invasive species are a substantial threat to biodiversity. Educating students about invasive species introduces fundamental concepts in biology, ecology, and environmental science. In the Race to Displace game, students assume the characteristics of select native or introduced plants and experience first hand the influences of species interactions…

  10. Race to Displace: A Game to Model the Effects of Invasive Species on Plant Communities

    ERIC Educational Resources Information Center

    Hopwood, Jennifer L.; Flowers, Susan K.; Seidler, Katie J.; Hopwood, Erica L.

    2013-01-01

    Invasive species are a substantial threat to biodiversity. Educating students about invasive species introduces fundamental concepts in biology, ecology, and environmental science. In the Race to Displace game, students assume the characteristics of select native or introduced plants and experience first hand the influences of species interactions

  11. Mapping National Plant Biodiversity Patterns in South Korea with the MARS Species Distribution Model

    PubMed Central

    Choe, Hyeyeong; Thorne, James H.; Seo, Changwan

    2016-01-01

    Accurate information on the distribution of existing species is crucial to assess regional biodiversity. However, data inventories are insufficient in many areas. We examine the ability of Multivariate Adaptive Regression Splines (MARS) multi-response species distribution model to overcome species’ data limitations and portray plant species distribution patterns for 199 South Korean plant species. The study models species with two or more observations, examines their contribution to national patterns of species richness, provides a sensitivity analysis of different range threshold cutoff approaches for modeling species’ ranges, and presents considerations for species modeling at fine spatial resolution. We ran MARS models for each species and tested four threshold methods to transform occurrence probabilities into presence or absence range maps. Modeled occurrence probabilities were extracted at each species’ presence points, and the mean, median, and one standard deviation (SD) calculated to define data-driven thresholds. A maximum sum of sensitivity and specificity threshold was also calculated, and the range maps from the four cutoffs were tested using independent plant survey data. The single SD values were the best threshold tested for minimizing omission errors and limiting species ranges to areas where the associated occurrence data were correctly classed. Eight individual species range maps for rare plant species were identified that are potentially affected by resampling predictor variables to fine spatial scales. We portray spatial patterns of high species richness by assessing the combined range maps from three classes of species: all species, endangered and endemic species, and range-size rarity of all species, which could be used in conservation planning for South Korea. The MARS model is promising for addressing the common problem of few species occurrence records. However, projected species ranges are highly dependent on the threshold and scale criteria, which should be assessed on a per-project basis. PMID:26930289

  12. Biology and occurrence of Inga Busk species (Lepidoptera: Oecophoridae) on Cerrado host plants.

    PubMed

    Diniz, Ivone R; Bernardes, Carolina; Rodovalho, Sheila; Morais, Helena C

    2007-01-01

    We sampled Inga Busk species caterpillars weekly in the cerrado on 15 plants of Diospyros burchellii Hern. (Ebenaceae) from January 2002 to December 2003, on 30 plants of Caryocar brasiliense (Caryocaraceae) from July 2003 to June 2004, and since 1991 on several other plant species. In total we found 15 species of Inga on cerrado host plants. Nine species were very rare, with only one to five adults reared. The other six species occurred throughout the year, with higher abundance during the dry season, from May to July, coinciding with overall peaks of caterpillar abundance in the cerrado. Caterpillars of the genus Inga build shelters by tying and lining two mature or old leaves with silk and frass, where they rest and develop (a common habit found in Oecophorinae). The final instar builds a special envelope inside the leaf shelter, where it will complete the larval stage and pupate. The species are very difficult to distinguish in the immature stages. External features were useful in identifying only four species: I. haemataula (Meyrick), I. phaecrossa (Meyrick), I. ancorata (Walsingham), and I. corystes (Meyrick). These four species are polyphagous and have wide geographical distributions. In this paper we provide information on the natural history and host plants of six Inga species common on cerrado host plants, for which there are no reports in the literature. PMID:17934609

  13. Regional climate model downscaling may improve the prediction of alien plant species distributions

    NASA Astrophysics Data System (ADS)

    Liu, Shuyan; Liang, Xin-Zhong; Gao, Wei; Stohlgren, Thomas J.

    2014-12-01

    Distributions of invasive species are commonly predicted with species distribution models that build upon the statistical relationships between observed species presence data and climate data. We used field observations, climate station data, and Maximum Entropy species distribution models for 13 invasive plant species in the United States, and then compared the models with inputs from a General Circulation Model (hereafter GCM-based models) and a downscaled Regional Climate Model (hereafter, RCM-based models).We also compared species distributions based on either GCM-based or RCM-based models for the present (1990-1999) to the future (2046-2055). RCM-based species distribution models replicated observed distributions remarkably better than GCM-based models for all invasive species under the current climate. This was shown for the presence locations of the species, and by using four common statistical metrics to compare modeled distributions. For two widespread invasive taxa ( Bromus tectorum or cheatgrass, and Tamarix spp. or tamarisk), GCM-based models failed miserably to reproduce observed species distributions. In contrast, RCM-based species distribution models closely matched observations. Future species distributions may be significantly affected by using GCM-based inputs. Because invasive plants species often show high resilience and low rates of local extinction, RCM-based species distribution models may perform better than GCM-based species distribution models for planning containment programs for invasive species.

  14. Plant Growth and Phosphorus Uptake of Three Riparian Grass Species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Riparian buffers can significantly reduce sediment-bound phosphorus (P) entering surface water, but control of dissolved P inputs is more challenging. Because plant roots remove P from soil solution, it follows that plant uptake will reduce dissolved P losses. We evaluated P uptake of smooth bromegr...

  15. Aminomethylphosphonic acid accumulation in plant species treated with glyphosate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aminomethylphosphonic acid (AMPA) is the most frequently detected metabolite of glyphosate in plants. Greenhouse studies were conducted to determine the glyphosate I50 values (rate required to cause a 50% reduction in plant growth) and to quantify AMPA and shikimate concentrations in selected legum...

  16. Arbuscular mycorrhizal fungi reduce the differences in competitiveness between dominant and subordinate plant species.

    PubMed

    Mariotte, Pierre; Meugnier, Claire; Johnson, David; Thbault, Aurlie; Spiegelberger, Thomas; Buttler, Alexandre

    2013-05-01

    In grassland communities, plants can be classified as dominants or subordinates according to their relative abundances, but the factors controlling such distributions remain unclear. Here, we test whether the presence of the arbuscular mycorrhizal (AM) fungus Glomus intraradices affects the competitiveness of two dominant (Taraxacum officinale and Agrostis capillaris) and two subordinate species (Prunella vulgaris and Achillea millefolium). Plants were grown in pots in the presence or absence of the fungus, in monoculture and in mixtures of both species groups with two and four species. In the absence of G. intraradices, dominants were clearly more competitive than subordinates. In inoculated pots, the fungus acted towards the parasitic end of the mutualism-parasitism continuum and had an overall negative effect on the growth of the plant species. However, the negative effects of the AM fungus were more pronounced on dominant species reducing the differences in competitiveness between dominant and subordinate species. The effects of G. intraradices varied with species composition highlighting the importance of plant community to mediate the effects of AM fungi. Dominant species were negatively affected from the AM fungus in mixtures, while subordinates grew identically with and without the fungus. Therefore, our findings predict that the plant dominance hierarchy may flatten out when dominant species are more reduced than subordinate species in an unfavourable AM fungal relationship (parasitism). PMID:23064770

  17. Productivity is a poor predictor of plant species richness

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For 30 years, the relationship between net primary productivity and species richness has generated intense debate in ecology about the processes regulating fine-scale species richness. The true relationship was thought to be hump-shaped, with richness peaking at intermediate levels of productivity, ...

  18. Herbaceous plant species invading natural areas tend to have stronger adaptive root foraging than other naturalized species

    PubMed Central

    Keser, Lidewij H.; Visser, Eric J. W.; Dawson, Wayne; Song, Yao-Bin; Yu, Fei-Hai; Fischer, Markus; Dong, Ming; van Kleunen, Mark

    2015-01-01

    Although plastic root-foraging responses are thought to be adaptive, as they may optimize nutrient capture of plants, this has rarely been tested. We investigated whether nutrient-foraging responses are adaptive, and whether they pre-adapt alien species to become natural-area invaders. We grew 12 pairs of congeneric species (i.e., 24 species) native to Europe in heterogeneous and homogeneous nutrient environments, and compared their foraging responses and performance. One species in each pair is a USA natural-area invader, and the other one is not. Within species, individuals with strong foraging responses, measured as plasticity in root diameter and specific root length, had a higher biomass. Among species, the ones with strong foraging responses, measured as plasticity in root length and root biomass, had a higher biomass. Our results therefore suggest that root foraging is an adaptive trait. Invasive species showed significantly stronger root-foraging responses than non-invasive species when measured as root diameter. Biomass accumulation was decreased in the heterogeneous vs. the homogeneous environment. In aboveground, but not belowground and total biomass, this decrease was smaller in invasive than in non-invasive species. Our results show that strong plastic root-foraging responses are adaptive, and suggest that it might aid in pre-adapting species to becoming natural-area invaders. PMID:25964790

  19. Herbaceous plant species invading natural areas tend to have stronger adaptive root foraging than other naturalized species.

    PubMed

    Keser, Lidewij H; Visser, Eric J W; Dawson, Wayne; Song, Yao-Bin; Yu, Fei-Hai; Fischer, Markus; Dong, Ming; van Kleunen, Mark

    2015-01-01

    Although plastic root-foraging responses are thought to be adaptive, as they may optimize nutrient capture of plants, this has rarely been tested. We investigated whether nutrient-foraging responses are adaptive, and whether they pre-adapt alien species to become natural-area invaders. We grew 12 pairs of congeneric species (i.e., 24 species) native to Europe in heterogeneous and homogeneous nutrient environments, and compared their foraging responses and performance. One species in each pair is a USA natural-area invader, and the other one is not. Within species, individuals with strong foraging responses, measured as plasticity in root diameter and specific root length, had a higher biomass. Among species, the ones with strong foraging responses, measured as plasticity in root length and root biomass, had a higher biomass. Our results therefore suggest that root foraging is an adaptive trait. Invasive species showed significantly stronger root-foraging responses than non-invasive species when measured as root diameter. Biomass accumulation was decreased in the heterogeneous vs. the homogeneous environment. In aboveground, but not belowground and total biomass, this decrease was smaller in invasive than in non-invasive species. Our results show that strong plastic root-foraging responses are adaptive, and suggest that it might aid in pre-adapting species to becoming natural-area invaders. PMID:25964790

  20. Postglacial migration supplements climate in determining plant species ranges in Europe

    PubMed Central

    Normand, Signe; Ricklefs, Robert E.; Skov, Flemming; Bladt, Jesper; Tackenberg, Oliver; Svenning, Jens-Christian

    2011-01-01

    The influence of dispersal limitation on species ranges remains controversial. Considering the dramatic impacts of the last glaciation in Europe, species might not have tracked climate changes through time and, as a consequence, their present-day ranges might be in disequilibrium with current climate. For 1016 European plant species, we assessed the relative importance of current climate and limited postglacial migration in determining species ranges using regression modelling and explanatory variables representing climate, and a novel species-specific hind-casting-based measure of accessibility to postglacial colonization. Climate was important for all species, while postglacial colonization also constrained the ranges of more than 50 per cent of the species. On average, climate explained five times more variation in species ranges than accessibility, but accessibility was the strongest determinant for one-sixth of the species. Accessibility was particularly important for species with limited long-distance dispersal ability, with southern glacial ranges, seed plants compared with ferns, and small-range species in southern Europe. In addition, accessibility explained one-third of the variation in species' disequilibrium with climate as measured by the realized/potential range size ratio computed with niche modelling. In conclusion, we show that although climate is the dominant broad-scale determinant of European plant species ranges, constrained dispersal plays an important supplementary role. PMID:21543356

  1. Individual Species-Area Relationship of Woody Plant Communities in a Heterogeneous Subtropical Monsoon Rainforest

    PubMed Central

    Tsai, Cheng-Han; Lin, Yi-Ching; Wiegand, Thorsten; Nakazawa, Takefumi; Su, Sheng-Hsin

    2015-01-01

    The spatial structure of species richness is often characterized by the species-area relationship (SAR). However, the SAR approach rarely considers the spatial variability of individual plants that arises from species interactions and species habitat associations. Here, we explored how the interactions of individual plants of target species influence SAR patterns at a range of neighborhood distances. We analyzed the data of 113,988 woody plants of 110 species from the Fushan Forest Dynamics Plot (25 ha), northern Taiwan, which is a subtropical rainforest heavily influenced by typhoons. We classified 34 dominant species into 3 species types (i.e., accumulator, repeller, or no effect) by testing how the individual species-area relationship (i.e., statistics describing how neighborhood species richness changes around individuals) of target species departs (i.e., positively, negatively, or with no obvious trend) from a null model that accounts for habitat association. Deviation from the null model suggests that the net effect of species interactions increases (accumulate) or decreases (repel) neighborhood species richness. We found that (i) accumulators were dominant at small interaction distances (<1030 m); (ii) the detection of accumulator species was lower at large interaction distances (>30 m); (iii) repellers were rarely detected; and (iv) large-sized and abundant species tended to be accumulators. The findings suggest that positive species interactions have the potential to accumulate neighborhood species richness, particularly through size- and density-dependent mechanisms. We hypothesized that the frequently disturbed environment of this subtropical rainforest (e.g., typhoon-driven natural disturbances such as landslides, soil erosion, flooding, and windthrow) might create the spatial heterogeneity of species richness and promote positive species interactions. PMID:25884405

  2. Individual species-area relationship of woody plant communities in a heterogeneous subtropical monsoon rainforest.

    PubMed

    Tsai, Cheng-Han; Lin, Yi-Ching; Wiegand, Thorsten; Nakazawa, Takefumi; Su, Sheng-Hsin; Hsieh, Chih-Hao; Ding, Tzung-Su

    2015-01-01

    The spatial structure of species richness is often characterized by the species-area relationship (SAR). However, the SAR approach rarely considers the spatial variability of individual plants that arises from species interactions and species' habitat associations. Here, we explored how the interactions of individual plants of target species influence SAR patterns at a range of neighborhood distances. We analyzed the data of 113,988 woody plants of 110 species from the Fushan Forest Dynamics Plot (25 ha), northern Taiwan, which is a subtropical rainforest heavily influenced by typhoons. We classified 34 dominant species into 3 species types (i.e., accumulator, repeller, or no effect) by testing how the individual species-area relationship (i.e., statistics describing how neighborhood species richness changes around individuals) of target species departs (i.e., positively, negatively, or with no obvious trend) from a null model that accounts for habitat association. Deviation from the null model suggests that the net effect of species' interactions increases (accumulate) or decreases (repel) neighborhood species richness. We found that (i) accumulators were dominant at small interaction distances (<10-30 m); (ii) the detection of accumulator species was lower at large interaction distances (>30 m); (iii) repellers were rarely detected; and (iv) large-sized and abundant species tended to be accumulators. The findings suggest that positive species interactions have the potential to accumulate neighborhood species richness, particularly through size- and density-dependent mechanisms. We hypothesized that the frequently disturbed environment of this subtropical rainforest (e.g., typhoon-driven natural disturbances such as landslides, soil erosion, flooding, and windthrow) might create the spatial heterogeneity of species richness and promote positive species interactions. PMID:25884405

  3. A comparative study of AMF diversity in annual and perennial plant species from semiarid gypsum soils.

    NASA Astrophysics Data System (ADS)

    Alguacil, M. M.; Torrecillas, E.; Roldn, A.; Daz, G.; Torres, P.

    2012-04-01

    The arbuscular mycorrhizal fungi (AMF) communities composition regulate plant interactions and determine the structure of plant communities. In this study we analysed the diversity of AMF in the roots of two perennial gypsophyte plant species, Herniaria fruticosa and Senecio auricula, and an annual herbaceous species, Bromus rubens, growing in a gypsum soil from a semiarid area. The objective was to determine whether perennial and annual host plants support different AMF communities in their roots and whether there are AMF species that might be indicators of specific functional plant roles in these ecosystems. The roots were analysed by nested PCR, cloning, sequencing of the ribosomal DNA small subunit region and phylogenetic analysis. Twenty AMF sequence types, belonging to the Glomus group A, Glomus group B, Diversisporaceae, Acaulosporaceae, Archaeosporaceae and Paraglomeraceae, were identified. Both gypsophyte perennial species had differing compositions of the AMF community and higher diversity when compared with the annual species, showing preferential selection by specific AMF sequences types. B. rubens did not show host specificity, sharing the full composition of its AMF community with both perennial plant species. Seasonal variations in the competitiveness of AM fungi could explain the observed differences in AMF community composition, but this is still a working hypothesis that requires the analysis of further data obtained from a higher number of both annual and perennial plant species in order to be fully tested.

  4. Soil microbial community variation correlates most strongly with plant species identity, followed by soil chemistry, spatial location and plant genus.

    PubMed

    Burns, Jean H; Anacker, Brian L; Strauss, Sharon Y; Burke, David J

    2015-01-01

    Soil ecologists have debated the relative importance of dispersal limitation and ecological factors in determining the structure of soil microbial communities. Recent evidence suggests that 'everything is not everywhere', and that microbial communities are influenced by both dispersal limitation and ecological factors. However, we still do not understand the relative explanatory power of spatial and ecological factors, including plant species identity and even plant relatedness, for different fractions of the soil microbial community (i.e. bacterial and fungal communities). To ask whether factors such as plant species, soil chemistry, spatial location and plant relatedness influence rhizosphere community composition, we examined field-collected rhizosphere soil of seven congener pairs that occur at Bodega Bay Marine Reserve, CA, USA. We characterized differences in bacterial and fungal communities using terminal-restriction fragment length polymorphism. Plant species identity was the single best statistical predictor of both bacterial and fungal community composition in the root zone. Soil microbial community structure was also correlated with soil chemistry. The third best predictor of bacterial and fungal communities was spatial location, confirming that everything is not everywhere. Variation in microbial community composition was also related to combinations of spatial location, soil chemistry and plant relatedness, suggesting that these factors do not act independently. Plant relatedness explained less of the variation than plant species, soil chemistry, or spatial location. Despite some congeners occupying different habitats and being spatially distant, rhizosphere fungal communities of plant congeners were more similar than expected by chance. Bacterial communities from the same samples were only weakly similar between plant congeners. Thus, plant relatedness might influence soil fungal, more than soil bacterial, community composition. PMID:25818073

  5. Soil microbial community variation correlates most strongly with plant species identity, followed by soil chemistry, spatial location and plant genus

    PubMed Central

    Burns, Jean H.; Anacker, Brian L.; Strauss, Sharon Y.; Burke, David J.

    2015-01-01

    Soil ecologists have debated the relative importance of dispersal limitation and ecological factors in determining the structure of soil microbial communities. Recent evidence suggests that everything is not everywhere, and that microbial communities are influenced by both dispersal limitation and ecological factors. However, we still do not understand the relative explanatory power of spatial and ecological factors, including plant species identity and even plant relatedness, for different fractions of the soil microbial community (i.e. bacterial and fungal communities). To ask whether factors such as plant species, soil chemistry, spatial location and plant relatedness influence rhizosphere community composition, we examined field-collected rhizosphere soil of seven congener pairs that occur at Bodega Bay Marine Reserve, CA, USA. We characterized differences in bacterial and fungal communities using terminal-restriction fragment length polymorphism. Plant species identity was the single best statistical predictor of both bacterial and fungal community composition in the root zone. Soil microbial community structure was also correlated with soil chemistry. The third best predictor of bacterial and fungal communities was spatial location, confirming that everything is not everywhere. Variation in microbial community composition was also related to combinations of spatial location, soil chemistry and plant relatedness, suggesting that these factors do not act independently. Plant relatedness explained less of the variation than plant species, soil chemistry, or spatial location. Despite some congeners occupying different habitats and being spatially distant, rhizosphere fungal communities of plant congeners were more similar than expected by chance. Bacterial communities from the same samples were only weakly similar between plant congeners. Thus, plant relatedness might influence soil fungal, more than soil bacterial, community composition. PMID:25818073

  6. Species-Specific Responses to Community Density in an Unproductive Perennial Plant Community

    PubMed Central

    Treberg, Michael A.; Turkington, Roy

    2014-01-01

    Most studies of density dependent regulation in plants consider a single target species, but regulation may also occur at the level of the entire community. Knowing whether a community is at carrying capacity is essential for understanding its behaviour because low density plant communities may behave quite differently than their high density counterparts. Also, because the intensity of density dependence may differ considerably between species and physical environments, generalizations about its effects on community structure requires comparisons under a range of conditions. We tested if: (1) density dependent regulation occurs at the level of an entire plant community as well as within individual species; (2) the intensity (effect of increasing community density on mean plant mass) and importance (the effect of increasing density, relative to other factors, on mean plant mass) of competition increases, decreases or remains unchanged with increasing fertilization; (3) there are species-specific responses to changes in community density and productivity. In 63 1 m2 plots, we manipulated the abundance of the nine most common species by transplanting or removing them to create a series of Initial Community Densities above and below the average natural field density, such that the relative proportion of species was consistent for all densities. Plots were randomly assigned to one of three fertilizer levels. At the community level, negative density dependence of mean plant size was observed for each of the 4 years of the study and both the intensity and importance of competition increased each year. At the species level, most species' mean plant mass were negatively density dependent. Fertilizer had a significant effect only in the final year when it had a negative effect on mean plant mass. Our data demonstrate a yield-density response at the entire community-level using perennial plant species in a multi-year experiment. PMID:25050710

  7. Response to Comment on "Worldwide evidence of a unimodal relationship between productivity and plant species richness".

    PubMed

    Fraser, Lauchlan H; Prtel, Meelis; Pither, Jason; Jentsch, Anke; Sternberg, Marcelo; Zobel, Martin

    2015-12-01

    Laanisto and Hutchings claim that the local species pool is a more important predictor of local plant species richness than biomass and that when the species pool is considered, there is no hump-backed relationship between biomass and richness. However, we show that by calculating a more appropriate measure of species pool, community completeness, both regional and local processes shape local richness. PMID:26785471

  8. Individual-Based Ant-Plant Networks: Diurnal-Nocturnal Structure and Species-Area Relationship

    PubMed Central

    Dáttilo, Wesley; Fagundes, Roberth; Gurka, Carlos A. Q.; Silva, Mara S. A.; Vieira, Marisa C. L.; Izzo, Thiago J.; Díaz-Castelazo, Cecília; Del-Claro, Kleber; Rico-Gray, Victor

    2014-01-01

    Despite the importance and increasing knowledge of ecological networks, sampling effort and intrapopulation variation has been widely overlooked. Using continuous daily sampling of ants visiting three plant species in the Brazilian Neotropical savanna, we evaluated for the first time the topological structure over 24 h and species-area relationships (based on the number of extrafloral nectaries available) in individual-based ant-plant networks. We observed that diurnal and nocturnal ant-plant networks exhibited the same pattern of interactions: a nested and non-modular pattern and an average level of network specialization. Despite the high similarity in the ants’ composition between the two collection periods, ant species found in the central core of highly interacting species totally changed between diurnal and nocturnal sampling for all plant species. In other words, this “night-turnover” suggests that the ecological dynamics of these ant-plant interactions can be temporally partitioned (day and night) at a small spatial scale. Thus, it is possible that in some cases processes shaping mutualistic networks formed by protective ants and plants may be underestimated by diurnal sampling alone. Moreover, we did not observe any effect of the number of extrafloral nectaries on ant richness and their foraging on such plants in any of the studied ant-plant networks. We hypothesize that competitively superior ants could monopolize individual plants and allow the coexistence of only a few other ant species, however, other alternative hypotheses are also discussed. Thus, sampling period and species-area relationship produces basic information that increases our confidence in how individual-based ant-plant networks are structured, and the need to consider nocturnal records in ant-plant network sampling design so as to decrease inappropriate inferences. PMID:24918750

  9. Native and Non-Native Supergeneralist Bee Species Have Different Effects on Plant-Bee Networks

    PubMed Central

    Giannini, Tereza C.; Garibaldi, Lucas A.; Acosta, Andre L.; Silva, Juliana S.; Maia, Kate P.; Saraiva, Antonio M.; Guimarães, Paulo R.; Kleinert, Astrid M. P.

    2015-01-01

    Supergeneralists, defined as species that interact with multiple groups of species in ecological networks, can act as important connectors of otherwise disconnected species subsets. In Brazil, there are two supergeneralist bees: the honeybee Apis mellifera, a non-native species, and Trigona spinipes, a native stingless bee. We compared the role of both species and the effect of geographic and local factors on networks by addressing three questions: 1) Do both species have similar abundance and interaction patterns (degree and strength) in plant-bee networks? 2) Are both species equally influential to the network structure (nestedness, connectance, and plant and bee niche overlap)? 3) How are these species affected by geographic (altitude, temperature, precipitation) and local (natural vs. disturbed habitat) factors? We analyzed 21 plant-bee weighted interaction networks, encompassing most of the main biomes in Brazil. We found no significant difference between both species in abundance, in the number of plant species with which each bee species interacts (degree), and in the sum of their dependencies (strength). Structural equation models revealed the effect of A. mellifera and T. spinipes, respectively, on the interaction network pattern (nestedness) and in the similarity in bee’s interactive partners (bee niche overlap). It is most likely that the recent invasion of A. mellifera resulted in its rapid settlement inside the core of species that retain the largest number of interactions, resulting in a strong influence on nestedness. However, the long-term interaction between native T. spinipes and other bees most likely has a more direct effect on their interactive behavior. Moreover, temperature negatively affected A. mellifera bees, whereas disturbed habitats positively affected T. spinipes. Conversely, precipitation showed no effect. Being positively (T. spinipes) or indifferently (A. mellifera) affected by disturbed habitats makes these species prone to pollinate plant species in these areas, which are potentially poor in pollinators. PMID:26356234

  10. Differential effects of abiotic factors and host plant traits on diversity and community composition of root-colonizing arbuscular mycorrhizal fungi in a salt-stressed ecosystem.

    PubMed

    Guo, Xiaohong; Gong, Jun

    2014-02-01

    Arbuscular mycorrhizal fungi (AMF) were investigated in roots of 18 host plant species in a salinized south coastal plain of Laizhou Bay, China. From 18 clone libraries of 18S rRNA genes, all of the 22 AMF phylotypes were identified into Glomus, of which 18 and 4 were classified in group A and B in the phylogenetic tree, respectively. The phylotypes related to morphologically defined Glomus species occurred generally in soil with higher salinity. AMF phylotype richness, Shannon index, and evenness were not significantly different between root samples from halophytes vs. non-halophytes, invades vs. natives, or annuals vs. perennials. However, AMF diversity estimates frequently differed along the saline gradient or among locations, but not among pH gradients. Moreover, UniFrac tests showed that both plant traits (salt tolerance, life style or origin) and abiotic factors (salinity, pH, or location) significantly affected the community composition of AMF colonizers. Redundancy and variation partitioning analyses revealed that soil salinity and pH, which respectively explained 6.9 and 4.2 % of the variation, were the most influential abiotic variables in shaping the AMF community structure. The presented data indicate that salt tolerance, life style, and origin traits of host species may not significantly affect the AMF diversity in roots, but do influence the community composition in this salinized ecosystem. The findings also highlight the importance of soil salinity and pH in driving the distribution of AMF in plant and soil systems. PMID:23900649

  11. Plant species' origin predicts dominance and response to nutrient enrichment and herbivores in global grasslands

    PubMed Central

    Seabloom, Eric W.; Borer, Elizabeth T.; Buckley, Yvonne M.; Cleland, Elsa E.; Davies, Kendi F.; Firn, Jennifer; Harpole, W. Stanley; Hautier, Yann; Lind, Eric M.; MacDougall, Andrew S.; Orrock, John L.; Prober, Suzanne M.; Adler, Peter B.; Anderson, T. Michael; Bakker, Jonathan D.; Biederman, Lori A.; Blumenthal, Dana M.; Brown, Cynthia S.; Brudvig, Lars A.; Cadotte, Marc; Chu, Chengjin; Cottingham, Kathryn L.; Crawley, Michael J.; Damschen, Ellen I.; Dantonio, Carla M.; DeCrappeo, Nicole M.; Du, Guozhen; Fay, Philip A.; Frater, Paul; Gruner, Daniel S.; Hagenah, Nicole; Hector, Andy; Hillebrand, Helmut; Hofmockel, Kirsten S.; Humphries, Hope C.; Jin, Virginia L.; Kay, Adam; Kirkman, Kevin P.; Klein, Julia A.; Knops, Johannes M. H.; La Pierre, Kimberly J.; Ladwig, Laura; Lambrinos, John G.; Li, Qi; Li, Wei; Marushia, Robin; McCulley, Rebecca L.; Melbourne, Brett A.; Mitchell, Charles E.; Moore, Joslin L.; Morgan, John; Mortensen, Brent; O'Halloran, Lydia R.; Pyke, David A.; Risch, Anita C.; Sankaran, Mahesh; Schuetz, Martin; Simonsen, Anna; Smith, Melinda D.; Stevens, Carly J.; Sullivan, Lauren; Wolkovich, Elizabeth; Wragg, Peter D.; Wright, Justin; Yang, Louie

    2015-01-01

    Exotic species dominate many communities; however the functional significance of species' biogeographic origin remains highly contentious. This debate is fuelled in part by the lack of globally replicated, systematic data assessing the relationship between species provenance, function and response to perturbations. We examined the abundance of native and exotic plant species at 64 grasslands in 13 countries, and at a subset of the sites we experimentally tested native and exotic species responses to two fundamental drivers of invasion, mineral nutrient supplies and vertebrate herbivory. Exotic species are six times more likely to dominate communities than native species. Furthermore, while experimental nutrient addition increases the cover and richness of exotic species, nutrients decrease native diversity and cover. Native and exotic species also differ in their response to vertebrate consumer exclusion. These results suggest that species origin has functional significance, and that eutrophication will lead to increased exotic dominance in grasslands. PMID:26173623

  12. Plant species' origin predicts dominance and response to nutrient enrichment and herbivores in global grasslands.

    PubMed

    Seabloom, Eric W; Borer, Elizabeth T; Buckley, Yvonne M; Cleland, Elsa E; Davies, Kendi F; Firn, Jennifer; Harpole, W Stanley; Hautier, Yann; Lind, Eric M; MacDougall, Andrew S; Orrock, John L; Prober, Suzanne M; Adler, Peter B; Anderson, T Michael; Bakker, Jonathan D; Biederman, Lori A; Blumenthal, Dana M; Brown, Cynthia S; Brudvig, Lars A; Cadotte, Marc; Chu, Chengjin; Cottingham, Kathryn L; Crawley, Michael J; Damschen, Ellen I; Dantonio, Carla M; DeCrappeo, Nicole M; Du, Guozhen; Fay, Philip A; Frater, Paul; Gruner, Daniel S; Hagenah, Nicole; Hector, Andy; Hillebrand, Helmut; Hofmockel, Kirsten S; Humphries, Hope C; Jin, Virginia L; Kay, Adam; Kirkman, Kevin P; Klein, Julia A; Knops, Johannes M H; La Pierre, Kimberly J; Ladwig, Laura; Lambrinos, John G; Li, Qi; Li, Wei; Marushia, Robin; McCulley, Rebecca L; Melbourne, Brett A; Mitchell, Charles E; Moore, Joslin L; Morgan, John; Mortensen, Brent; O'Halloran, Lydia R; Pyke, David A; Risch, Anita C; Sankaran, Mahesh; Schuetz, Martin; Simonsen, Anna; Smith, Melinda D; Stevens, Carly J; Sullivan, Lauren; Wolkovich, Elizabeth; Wragg, Peter D; Wright, Justin; Yang, Louie

    2015-01-01

    Exotic species dominate many communities; however the functional significance of species' biogeographic origin remains highly contentious. This debate is fuelled in part by the lack of globally replicated, systematic data assessing the relationship between species provenance, function and response to perturbations. We examined the abundance of native and exotic plant species at 64 grasslands in 13 countries, and at a subset of the sites we experimentally tested native and exotic species responses to two fundamental drivers of invasion, mineral nutrient supplies and vertebrate herbivory. Exotic species are six times more likely to dominate communities than native species. Furthermore, while experimental nutrient addition increases the cover and richness of exotic species, nutrients decrease native diversity and cover. Native and exotic species also differ in their response to vertebrate consumer exclusion. These results suggest that species origin has functional significance, and that eutrophication will lead to increased exotic dominance in grasslands. PMID:26173623

  13. Soil Disturbance as a Grassland Restoration MeasureEffects on Plant Species Composition and Plant Functional Traits

    PubMed Central

    Schnoor, Tim; Bruun, Hans Henrik; Olsson, Pl Axel

    2015-01-01

    Soil disturbance is recognized as an important driver of biodiversity in dry grasslands, and can therefore be implemented as a restoration measure. However, because community re-assembly following disturbance includes stochastic processes, a focus only on species richness or establishment success of particular species will not inform on how plant communities respond ecologically to disturbance. We therefore evaluated vegetation development following disturbance by quantifying species richness, species composition and functional trait composition. Degraded calcareous sandy grassland was subjected to experimental disturbance treatments (ploughing or rotavation), and the vegetation was surveyed during four subsequent years of succession. Treated plots were compared with control plots representing untreated grassland, as well as nearby plots characterized by plant communities representing the restoration target. Species richness and functional diversity both increased in response to soil disturbance, and rotavation, but not ploughing, had a persistent positive effect on the occurrence of specialist species of calcareous sandy grassland. However, no type of soil disturbance caused the plant species composition to develop towards the target vegetation. The disturbance had an immediate and large impact on the vegetation, but the vegetation developed rapidly back towards the control sites. Plant functional composition analysis indicated that the treatments created habitats different both from control sites and target sites. Community-weighted mean Ellenberg indicator values suggested that the observed plant community response was at least partially due to an increase in nitrogen and water availability following disturbance. This study shows that a mild type of disturbance, such as rotavation, may be most successful in promoting specialist species in calcareous sandy grassland, but that further treatments are needed to reduce nutrient availability. We conclude that a functional trait based analysis provides additional information of the vegetation response and the abiotic conditions created, complementing the information from the species composition. PMID:25875745

  14. Comparative pharmacognostic evaluation of some species of the genera Suaeda and Salsola leaf (Chenopodiaceae).

    PubMed

    Munir, Uzma; Perveen, Anjum; Qamarunnisa, Syeda

    2014-09-01

    The genera Suaeda and Salsola are halophytic plants belong to the family Chenopodiaceae. Species of these genera have been extensively used in traditional medicines against many diseases due to their various bioactive compounds such as carotenoids, vitamins, sterol, phenolic compounds etc. The present research was carried out to establish detailed pharmacognosy of Suaeda fruticosa, Suaeda monoica, Salsola imbricata and Salsola tragus, which included macroscopy, microscopy, physico-chemical parameters and qualitative phytochemical screening of leaf samples extracted with methanol and chloroform. It was observed that macroscopic and microscopic characteristics were diagnostic features and can be used for distinction and identification of these closely related plant species. Phytochemically, these plant species are rich in constituents like anthraquinones, alkaloids, carbohydrates, cardiac glycosides, flavonoids, saponins, phenolic compounds and terpenoids. Physico-chemical parameters revealed that in all investigated plant species; methanol extractive values were higher than that of chloroform. Moreover, total ash values were found to be higher than other acid insoluble and water-soluble ash values, while a considerable amount of moisture was present in the species of both genera. On the basis of pharmacognosy, species of Suaeda were found to be more promising than Salsola. Present investigation will contribute towards establishment of pharmacognostic profile of these medicinally effective plants species. PMID:25176385

  15. Species richness and patterns of invasion in plants, birds, and fishes in the United States

    USGS Publications Warehouse

    Stohlgren, T.J.; Barnett, D.; Flather, C.; Fuller, P.; Peterjohn, B.; Kartesz, J.; Master, L.L.

    2006-01-01

    We quantified broad-scale patterns of species richness and species density (mean # species/km2) for native and non-indigenous plants, birds, and fishes in the continental USA and Hawaii. We hypothesized that the species density of native and non-indigenous taxa would generally decrease in northern latitudes and higher elevations following declines in potential evapotranspiration, mean temperature, and precipitation. County data on plants (n = 3004 counties) and birds (n=3074 counties), and drainage (6 HUC) data on fishes (n = 328 drainages) showed that the densities of native and non-indigenous species were strongly positively correlated for plant species (r = 0.86, P < 0.0001), bird species (r = 0.93, P<0.0001), and fish species (r = 0.41, P<0.0001). Multiple regression models showed that the densities of native plant and bird species could be strongly predicted (adj. R2 = 0.66 in both models) at county levels, but fish species densities were less predictable at drainage levels (adj. R2 = 0.31, P<0.0001). Similarly, non-indigenous plant and bird species densities were strongly predictable (adj. R2 = 0.84 and 0.91 respectively), but non-indigenous fish species density was less predictable (adj. R2 = 0.38). County level hotspots of native and non-indigenous plants, birds, and fishes were located in low elevation areas close to the coast with high precipitation and productivity (vegetation carbon). We show that (1) native species richness can be moderately well predicted with abiotic factors; (2) human populations have tended to settle in areas rich in native species; and (3) the richness and density of non-indigenous plant, bird, and fish species can be accurately predicted from biotic and abiotic factors largely because they are positively correlated to native species densities. We conclude that while humans facilitate the initial establishment, invasions of non-indigenous species, the spread and subsequent distributions of non-indigenous species may be controlled largely by environmental factors.

  16. Plant species, atmospheric CO2 and soil N interactively or additively control C allocation within plant-soil systems.

    PubMed

    F U, Shenglei; Ferris, Howard

    2006-12-01

    Two plant species, Medicago truncatula (legume) and Avena sativa (non-legume), were grown in low- or high-N soils under two CO2 concentrations to test the hypothesis whether C allocation within plant-soil system is interactively or additively controlled by soil N and atmospheric CO2 is dependent upon plant species. The results showed the interaction between plant species and soil N had a significant impact on microbial activity and plant growth. The interaction between CO2 and soil N had a significant impact on soil soluble C and soil microbial biomass C under Madicago but not under Avena. Although both CO2 and soil N affected plant growth significantly, there was no interaction between CO2 and soil N on plant growth. In other words, the effects of CO2 and soil N on plant growth were additive. We considered that the interaction between N2 fixation trait of legume plant and elevated CO2 might have obscured the interaction between soil N and elevated CO2 on the growth of legume plant. In low-N soil, the shoot-to-root ratio of Avena dropped from 2.63 +/- 0.20 in the early growth stage to 1.47 +/- 0.03 in the late growth stage, indicating that Avena plant allocated more energy to roots to optimize nutrient uptake (i.e. N) when soil N was limiting. In high-N soil, the shoot-to-root ratio of Medicago increased significantly over time (from 2.45 +/- 0.30 to 5.43 +/- 0.10), suggesting that Medicago plants allocated more energy to shoots to optimize photosynthesis when N was not limiting. The shoot-to-root ratios were not significantly different between two CO2 levels. PMID:17313000

  17. Loss of Halophytism by Interference with SOS1 Expression1[W][OA

    PubMed Central

    Oh, Dong-Ha; Leidi, Eduardo; Zhang, Quan; Hwang, Sung-Min; Li, Youzhi; Quintero, Francisco J.; Jiang, Xingyu; D'Urzo, Matilde Paino; Lee, Sang Yeol; Zhao, Yanxiu; Bahk, Jeong Dong; Bressan, Ray A.; Yun, Dae-Jin; Pardo, Jos M.; Bohnert, Hans J.

    2009-01-01

    The contribution of SOS1 (for Salt Overly Sensitive 1), encoding a sodium/proton antiporter, to plant salinity tolerance was analyzed in wild-type and RNA interference (RNAi) lines of the halophytic Arabidopsis (Arabidopsis thaliana)-relative Thellungiella salsuginea. Under all conditions, SOS1 mRNA abundance was higher in Thellungiella than in Arabidopsis. Ectopic expression of the Thellungiella homolog ThSOS1 suppressed the salt-sensitive phenotype of a Saccharomyces cerevisiae strain lacking sodium ion (Na+) efflux transporters and increased salt tolerance of wild-type Arabidopsis. thsos1-RNAi lines of Thellungiella were highly salt sensitive. A representative line, thsos1-4, showed faster Na+ accumulation, more severe water loss in shoots under salt stress, and slower removal of Na+ from the root after removal of stress compared with the wild type. thsos1-4 showed drastically higher sodium-specific fluorescence visualized by CoroNa-Green, a sodium-specific fluorophore, than the wild type, inhibition of endocytosis in root tip cells, and cell death in the adjacent elongation zone. After prolonged stress, Na+ accumulated inside the pericycle in thsos1-4, while sodium was confined in vacuoles of epidermis and cortex cells in the wild type. RNAi-based interference of SOS1 caused cell death in the root elongation zone, accompanied by fragmentation of vacuoles, inhibition of endocytosis, and apoplastic sodium influx into the stele and hence the shoot. Reduction in SOS1 expression changed Thellungiella that normally can grow in seawater-strength sodium chloride solutions into a plant as sensitive to Na+ as Arabidopsis. PMID:19571313

  18. Single cell-type comparative metabolomics of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum

    PubMed Central

    Barkla, Bronwyn J.; Vera-Estrella, Rosario

    2015-01-01

    One of the remarkable adaptive features of the halophyte Mesembryanthemum crystallinum are the specialized modified trichomes called epidermal bladder cells (EBC) which cover the leaves, stems, and peduncle of the plant. They are present from an early developmental stage but upon salt stress rapidly expand due to the accumulation of water and sodium. This particular plant feature makes it an attractive system for single cell type studies, with recent proteomics and transcriptomics studies of the EBC establishing that these cells are metabolically active and have roles other than sodium sequestration. To continue our investigation into the function of these unusual cells we carried out a comprehensive global analysis of the metabolites present in the EBC extract by gas chromatography Time-of-Flight mass spectrometry (GC-TOF) and identified 194 known and 722 total molecular features. Statistical analysis of the metabolic changes between control and salt-treated samples identified 352 significantly differing metabolites (268 after correction for FDR). Principal components analysis provided an unbiased evaluation of the data variance structure. Biochemical pathway enrichment analysis suggested significant perturbations in 13 biochemical pathways as defined in KEGG. More than 50% of the metabolites that show significant changes in the EBC, can be classified as compatible solutes and include sugars, sugar alcohols, protein and non-protein amino acids, and organic acids, highlighting the need to maintain osmotic homeostasis to balance the accumulation of Na+ and Cl− ions. Overall, the comparison of metabolic changes in salt treated relative to control samples suggests large alterations in M. crystallinum epidermal bladder cells. PMID:26113856

  19. Developing transgenic Jatropha using the SbNHX1 gene from an extreme halophyte for cultivation in saline wasteland.

    PubMed

    Joshi, Mukul; Jha, Anupama; Mishra, Avinash; Jha, Bhavanath

    2013-01-01

    Jatropha is an important second-generation biofuel plant. Salinity is a major factor adversely impacting the growth and yield of several plants including Jatropha. SbNHX1 is a vacuolar Na⁺/H⁺ antiporter gene that compartmentalises excess Na⁺ ions into the vacuole and maintains ion homeostasis. We have previously cloned and characterised the SbNHX1 gene from an extreme halophyte, Salicornia brachiata. Transgenic plants of Jatropha curcas with the SbNHX1 gene were developed using microprojectile bombardment mediated transformation. Integration of the transgene was confirmed by PCR and Rt-PCR and the copy number was determined by real time qPCR. The present study of engineering salt tolerance in Jatropha is the first report to date. Salt tolerance of the transgenic lines JL2, JL8 and JL19 was confirmed by leaf senescence assay, chlorophyll estimation, plant growth, ion content, electrolyte leakage and malondialdehyde (MDA) content analysis. Transgenic lines showed better salt tolerance than WT up to 200 mM NaCl. Imparting salt tolerance to Jatropha using the SbNHX1 gene may open up the possibility of cultivating it in marginal salty land, releasing arable land presently under Jatropha cultivation for agriculture purposes. Apart from this, transgenic Jatropha can be cultivated with brackish water, opening up the possibility of sustainable cultivation of this biofuel plant in salty coastal areas. PMID:23940703

  20. Developing Transgenic Jatropha Using the SbNHX1 Gene from an Extreme Halophyte for Cultivation in Saline Wasteland

    PubMed Central

    Jha, Bhavanath; Mishra, Avinash; Jha, Anupama; Joshi, Mukul

    2013-01-01

    Jatropha is an important second-generation biofuel plant. Salinity is a major factor adversely impacting the growth and yield of several plants including Jatropha. SbNHX1 is a vacuolar Na+/H+ antiporter gene that compartmentalises excess Na+ ions into the vacuole and maintains ion homeostasis. We have previously cloned and characterised the SbNHX1 gene from an extreme halophyte, Salicornia brachiata. Transgenic plants of Jatropha curcas with the SbNHX1 gene were developed using microprojectile bombardment mediated transformation. Integration of the transgene was confirmed by PCR and Rt-PCR and the copy number was determined by real time qPCR. The present study of engineering salt tolerance in Jatropha is the first report to date. Salt tolerance of the transgenic lines JL2, JL8 and JL19 was confirmed by leaf senescence assay, chlorophyll estimation, plant growth, ion content, electrolyte leakage and malondialdehyde (MDA) content analysis. Transgenic lines showed better salt tolerance than WT up to 200 mM NaCl. Imparting salt tolerance to Jatropha using the SbNHX1 gene may open up the possibility of cultivating it in marginal salty land, releasing arable land presently under Jatropha cultivation for agriculture purposes. Apart from this, transgenic Jatropha can be cultivated with brackish water, opening up the possibility of sustainable cultivation of this biofuel plant in salty coastal areas. PMID:23940703

  1. Habitat types on the Hanford Site: Wildlife and plant species of concern

    SciTech Connect

    Downs, J.L.; Rickard, W.H.; Brandt, C.A.

    1993-12-01

    The objective of this report is to provide a comprehensive source of the best available information on Hanford Site sensitive and critical habitats and plants and animals of importance or special status. In this report, sensitive habitats include areas known to be used by threatened, endangered, or sensitive plant or animal species, wetlands, preserves and refuges, and other sensitive habitats outlined in the Hanford Site Baseline Risk Assessment Methodology. Potentially important species for risk assessment and species of special concern with regard to their status as threatened, endangered, or sensitive are described, and potential habitats for these species identified.

  2. Zhihengliuella somnathii sp. nov., a halotolerant actinobacterium from the rhizosphere of a halophyte Salicornia brachiata.

    PubMed

    Jha, Bhavanath; Kumar Singh, Vijay; Weiss, Angelo; Hartmann, Anton; Schmid, Michael

    2015-09-01

    Two novel, Gram-stain-positive, rod-shaped, halotolerent bacteria, strains JG 03(T) and JG 05 were isolated from the rhizosphere of Salicornia brachiata, an extreme halophyte. Comparative analyses of 16S rRNA gene sequences showed that they were closely related to members of the genus Zhihengliuella, with sequence similarities of 96.9-99.1%. The sequence similarity of strains JG 03(T )and JG 05 with each other was 99.4%. DNA-DNA hybridization of JG 03(T) and JG 05 with other species of the genus Zhihengliuella with validly published names showed reassociation values of 19.8%-53.4% and a value of 91.4% between each other. The peptidoglycan type of both strains was A4α and MK-9 and MK-10 were the predominant menaquinones. The predominant fatty acid in JG 03(T) was anteiso-C15 : 0 and anteiso-C17 : 0. However, iso-C15 : 0, anteiso-C15 : 0 and anteiso-C17 : 0 were the major fatty acids in strain JG 05. The DNA G+C content of strains JG 03(T) and JG 05 was 70.0 and 70.1 mol%, respectively. In nutrient broth medium both strains grew at NaCl concentrations of up to 15% (w/v). On the basis of chemotaxonomic characteristics and phylogenetic analyses, strains JG 03(T) and JG 05 should be affiliated to the genus Zhihengliuella. Strains JG 03(T) and JG 05 represent a novel species of the genus Zhihengliuella for which the name Zhihengliuella somnathii sp. nov. is proposed. The type strain is JG 03(T) ( = DSM 23187(T) = IMCC 253(T)). PMID:26297009

  3. Effects of earthworm invasion on plant species richness in northern hardwood forests.

    PubMed

    Holdsworth, Andrew R; Frelich, Lee E; Reich, Peter B

    2007-08-01

    The invasion of non-native earthworms (Lumbricus spp.) into a small number of intensively studied stands of northern hardwood forest has been linked to declines in plant diversity and the local extirpation of one threatened species. It is unknown, however, whether these changes have occurred across larger regions of hardwood forests, which plant species are most vulnerable, or with which earthworm species such changes are associated most closely. To address these issues we conducted a regional survey in the Chippewa and Chequamegon national forests in Minnesota and Wisconsin (U.S.A.), respectively. We sampled earthworms, soils, and vegetation, examined deer browse in 20 mature, sugar-maple-dominated forest stands in each national forest, and analyzed the relationship between invasive earthworms and vascular plant species richness and composition. Invasion by Lumbricus was a strong indicator of reduced plant richness in both national forests. The mass of Lumbricus juveniles was significantly and negatively related to plant-species richness in both forests. In addition, Lumbricus was a significant factor affecting plant richness in a full model that included multiple variables. In the Chequamegon National Forest earthworm mass was associated with higher sedge cover and lower cover of sugar maple seedlings and several forb species. The trends were similar but not as pronounced in Chippewa, perhaps due to lower deer densities and different earthworm species composition. Our results provide regional evidence that invasion by Lumbricus species may be an important mechanism in reduced plant-species richness and changes in plant communities in mature forests dominated by sugar maples. PMID:17650250

  4. From Spring to Fall: Life Cycle Responses of Plant Species and Communities to Climate Change

    NASA Astrophysics Data System (ADS)

    Steltzer, H.; Chong, G.; Weintraub, M. N.

    2013-12-01

    The shifting life cycles of plants in response to environmental changes are well-documented. However, our understanding of the reasons for the shifts remains insufficient for prediction. Complex data sets that include season-long responses of plant species and communities to climate, including extreme climate years and experimental manipulations, are needed to address the gaps in our understanding. Using near-surface sensing technologies and observations of individual species' and plant community responses, we identified season-long shifts of plant life cycles to observed and experimental climate variation. Changes to plant life cycles often included shifts in the timing of spring and fall events for individual species and plant communities, leading to a longer growing season. Community patterns were more predictable than species' responses, although non-native species' responses led to less predictable community patterns. Seasonal patterns of snow cover and water availability influenced the effect of temperature on species' and community life cycles. Multi-factor climate change experiments and data during extreme climate years are essential to determine thresholds by which snow cover and soil water content influence species and community responses to climate warming.

  5. Rapid plant evolution in the presence of an introduced species alters community composition.

    PubMed

    Smith, David Solance; Lau, Matthew K; Jacobs, Ryan; Monroy, Jenna A; Shuster, Stephen M; Whitham, Thomas G

    2015-10-01

    Because introduced species may strongly interact with native species and thus affect their fitness, it is important to examine how these interactions can cascade to have ecological and evolutionary consequences for whole communities. Here, we examine the interactions among introduced Rocky Mountain elk, Cervus canadensis nelsoni, a common native plant, Solidago velutina, and the diverse plant-associated community of arthropods. While introduced species are recognized as one of the biggest threats to native ecosystems, relatively few studies have investigated an evolutionary mechanism by which introduced species alter native communities. Here, we use a common garden design that addresses and supports two hypotheses. First, native S. velutina has rapidly evolved in the presence of introduced elk. We found that plants originating from sites with introduced elk flowered nearly 3 weeks before plants originating from sites without elk. Second, evolution of S. velutina results in a change to the plant-associated arthropod community. We found that plants originating from sites with introduced elk supported an arthropod community that had ~35 % fewer total individuals and a different species composition. Our results show that the impacts of introduced species can have both ecological and evolutionary consequences for strongly interacting species that subsequently cascade to affect a much larger community. Such evolutionary consequences are likely to be long-term and difficult to remediate. PMID:26062439

  6. Comparative analysis of diosgenin in Dioscorea species and related medicinal plants by UPLC-DAD-MS

    PubMed Central

    2014-01-01

    Background Dioscorea is a genus of flowering plants, and some Dioscorea species are known and used as a source for the steroidal sapogenin diosgenin. To screen potential resource from Dioscorea species and related medicinal plants for diosgenin extraction, a rapid method to compare the contents of diosgenin in various plants is crucial. Results An ultra-performance liquid chromatography (UPLC) coupled with diode array detection (DAD) and electrospray ionization mass spectrometry (ESI-MS) method was developed for identification and determination of diosgenin in various plants. A comprehensive validation of the developed method was conducted. Twenty-four batches of plant samples from four Dioscorea species, one Smilax species and two Heterosmilax species were analyzed by using the developed method. The present method presented good sensitivity, precision and accuracy. Diosgenin was found in three Dioscorea species and one Heterosmilax species, namely D. zingiberensis, D. septemloba, D. collettii and H. yunnanensis. Conclusion The method is suitable for the screening of diosgenin resources from plants. D. zingiberensis is an important resource for diosgenin harvesting. PMID:25107333

  7. Quantitative resistance traits and suitability of woody plant species for a polyphagous scarab, Popillia japonica Newman.

    PubMed

    Keathley, Craig P; Potter, Daniel A

    2008-12-01

    The Japanese beetle, Popillia japonica Newman, has an unusually broad host range among deciduous woody plants, yet it feeds only sparingly, or not at all, on certain species in the field. We evaluated beetles' preference, survival over time and fecundity on eight woody plant species historically rated as susceptible or resistant and, after verifying those ratings, tested whether resistance is correlated with so-called quantitative defense traits including leaf toughness, low nutrient content (water, nitrogen, and sugars), and relatively high amounts of tannins or saponins, traditionally associated with such plants. We further tested whether species unsuitable for Japanese beetles are also rejected by fall webworms, Hyphantria cunea (Drury) (Lepidoptera: Arctiidae), the expected outcome if the aforementioned traits serve as broad-based defenses against generalists. Choice tests supported historical resistance ratings for the selected species: tuliptree, lilac, dogwood, and Bradford callery pear were rejected by Japanese beetles, whereas sassafras, cherry plum, Virginia creeper, and littleleaf linden were readily eaten. Rejected species also were unsuitable for survival over time, or egg-laying, indicating beetles' inability to overcome the resistance factors through habituation, compensatory feeding, or detoxification. None of the aforementioned leaf traits was consistently higher or lower in the resistant or susceptible plants, and plant species rejected by Japanese beetles often were not rejected by fall webworms. Specialized secondary chemistry, not quantitative defenses, likely determines the Japanese beetle's dietary range among deciduous woody plant species it may encounter. PMID:19161699

  8. Are trade-offs among species' ecological interactions scale dependent? A test using pitcher-plant inquiline species.

    PubMed

    Kneitel, Jamie M

    2012-01-01

    Trade-offs among species' ecological interactions is a pervasive explanation for species coexistence. The traits associated with trade-offs are typically measured to mechanistically explain species coexistence at a single spatial scale. However, species potentially interact at multiple scales and this may be reflected in the traits among coexisting species. I quantified species' ecological traits associated with the trade-offs expected at both local (competitive ability and predator tolerance) and regional (competitive ability and colonization rate) community scales. The most common species (four protozoa and a rotifer) from the middle trophic level of a pitcher plant (Sarracenia purpurea) inquiline community were used to link species traits to previously observed patterns of species diversity and abundance. Traits associated with trade-offs (competitive ability, predator tolerance, and colonization rate) and other ecological traits (size, growth rate, and carrying capacity) were measured for each of the focal species. Traits were correlated with one another with a negative relationship indicative of a trade-off. Protozoan and rotifer species exhibited a negative relationship between competitive ability and predator tolerance, indicative of coexistence at the local community scale. There was no relationship between competitive ability and colonization rate. Size, growth rate, and carrying capacity were correlated with each other and the trade-off traits: Size was related to both competitive ability and predator tolerance, but growth rate and carrying capacity were correlated with predator tolerance. When partial correlations were conducted controlling for size, growth rate and carrying capacity, the trade-offs largely disappeared. These results imply that body size is the trait that provides the basis for ecological interactions and trade-offs. Altogether, this study showed that the examination of species' traits in the context of coexistence at different scales can contribute to our understanding of the mechanisms underlying community structure. PMID:22844526

  9. Are Trade-Offs Among Species Ecological Interactions Scale Dependent? A Test Using Pitcher-Plant Inquiline Species

    PubMed Central

    Kneitel, Jamie M.

    2012-01-01

    Trade-offs among species ecological interactions is a pervasive explanation for species coexistence. The traits associated with trade-offs are typically measured to mechanistically explain species coexistence at a single spatial scale. However, species potentially interact at multiple scales and this may be reflected in the traits among coexisting species. I quantified species ecological traits associated with the trade-offs expected at both local (competitive ability and predator tolerance) and regional (competitive ability and colonization rate) community scales. The most common species (four protozoa and a rotifer) from the middle trophic level of a pitcher plant (Sarracenia purpurea) inquiline community were used to link species traits to previously observed patterns of species diversity and abundance. Traits associated with trade-offs (competitive ability, predator tolerance, and colonization rate) and other ecological traits (size, growth rate, and carrying capacity) were measured for each of the focal species. Traits were correlated with one another with a negative relationship indicative of a trade-off. Protozoan and rotifer species exhibited a negative relationship between competitive ability and predator tolerance, indicative of coexistence at the local community scale. There was no relationship between competitive ability and colonization rate. Size, growth rate, and carrying capacity were correlated with each other and the trade-off traits: Size was related to both competitive ability and predator tolerance, but growth rate and carrying capacity were correlated with predator tolerance. When partial correlations were conducted controlling for size, growth rate and carrying capacity, the trade-offs largely disappeared. These results imply that body size is the trait that provides the basis for ecological interactions and trade-offs. Altogether, this study showed that the examination of species traits in the context of coexistence at different scales can contribute to our understanding of the mechanisms underlying community structure. PMID:22844526

  10. Species richness and selenium accumulation of plants in soils with elevated concentration of selenium and salinity

    SciTech Connect

    Huang, Z.Z.; Wu, L. )

    1991-12-01

    Field studies were conducted in soils with elevated concentrations of Se and salinity at Kesterson, California. Biomass distribution, species richness, and selenium accumulation of plants were examined for two sites where 15 cm of surface soil was removed and replaced with fill dirt in the fall of 1989, and two sites were native soil cover. The Se concentrations in the top 15 cm of fill dirt ranged from undetectable to 36 ng g-1. For the native soil sites, Se levels ranged from 75 to 550 ng g-1. Soil Se concentrations below 15 cm ranged from 300 to 700 ng g-1 and were comparable between the fill dirt and the native soil sites. At least 20 different plant species were brought into the two fill dirt sites with the top soil. Avena fatua L., Bassia hyssopifolia Kuntze Rev. Gen. Pl., Centaurea solstitialis L., Erysimum officianale L., Franseria acanthicarpa Cav. Icon., and Melilotus indica (L.) All. contributed over 60% of the total biomass. Only 5 species were found in the native soil sites, and salt grass (Distichlis spicata L.) was the predominant species and accounted for over 80% of the total biomass. Between 1989 and 1990, two years after the surface soil replacement, the two fill dirt sites had a 70% reduction in species richness. Plant tissue selenium concentrations were found to be quite variable between plant species and between sites of sampling. At the fill dirt sites, the plant species with deep root systems accumulated greater amounts of selenium than the shallow-rooted species. The soil selenium concentration of the field soil had no negative effect on pollen fertility, seed set, and seed germination for the plant species examined. However, seedling growth was impaired by the soil selenium concentrations. This suggests that a selection pressure of soil Se concentration may have been imposed on plant species such as M. indica in an early stage of its life cycle.

  11. Phytoremediation of soil co-contaminated with heavy metals and TNT using four plant species.

    PubMed

    Lee, Insook; Baek, Kyunghwa; Kim, Hyunhee; Kim, Sunghyun; Kim, Jaisoo; Kwon, Youngseok; Chang, Yoontoung; Bae, Bumhan

    2007-11-01

    We investigated the germination, growth rates and uptake of contaminants of four plant species, barnyard grass (Echinochloa crusgalli), sunflower (Helianthus annuus), Indian mallow (Abutilon avicennae) and Indian jointvetch (Aeschynomene indica), grown in soil contaminated with cadmium (Cd), lead (Pb) and 2,4,6-trinitrotoluene (TNT). These contaminants are typically found at shooting ranges. Experiments were carried out over 180 days using both single plant cultures and cultures containing an equal mix of the 4 plant species. Germination rates differed among the species in single culture (92% for H. annuus, 84% for E. crusgalli, 48% for A. avicennae and 38% Ae. indica). In the 4-plant mix culture, < 20% of seeds germinated for all 4 species. E. crusgalli and H. annuus grew slightly faster in the four-plant mix culture than in single culture, whereas A. avicennae and Ae. indica grew much slower in the 4-plant mix culture. In both single and 4-plant mix cultures, Cd concentrations in the roots of A. avicennae and E. crusgalliwere high, and Pb concentrations were high in A. avicennae and H. annuus. Cd and Pb concentrations in shoots were low to negligible in both treatment cultures for all species, except E. crusgalli in the 4-plant mix culture. The concentrations of TNT and its metabolites, 2-amino-4,6-dinitrotoluene (2ADNT) and 4-amino-2,6-dinitrotoluene (4ADNT) were high in H. annuus, Ae. indica and A. avicennae. Total Cd removal from soil differed among species, with E. crusgalliremoving the most (50.1%) followed by H. annuus(41.3%), Ae. indica(41.1%) and A. avicennae(33.3%). The four-plant mix removed more Cd (25.8%) than a no-plant control (12.9%). Pb removal was negligible for all plant species. All plant species rapidly removed TNT and its metabolites, regardless of whether the culture was single or mixed. From in these results, we conclude that a phytoremediation for the removal of heavy metals and TNT from contaminated soils should use a single plant species rather than a mixture of several plants. PMID:17990167

  12. Germination characteristics of six plant species growing on the Hanford Site. [Disturbed land revegetation feasibility studies

    SciTech Connect

    Cox, G.R.; Kirkham, R.R.; Cline, J.F.

    1980-03-01

    Six plant species (Siberian and thickspike wheatgrass, cheatgrass, sand dropseed, Indian ricegrass, and Russian thistle) found on the Hanford Site were studied as part of an investigation into the revegetation of disturbed areas. Germination response to three environmental parameters (soil moisture, soil temperature, and planting depth) were measured. Results indicated that when a polyethylene glycol solution was used to control the osmotic potential of the imbibition media, no significant decrease in germination rate occurred down to -3.0 bars. However, below -7.0 bars all species experienced a decrease in germination. When germinated in soil, all species except Russian thistle exhibited a significant decrease in germination rate at -0.3 bars. Russian thistle was the only species tested that exhibited germination at a soil temperature of 1/sup 0/C. All species gave optimum germination at temperatures between 10 and 15/sup 0/C. Thickspike wheatgrass was the only species tested which was able to germinate and emerge from a planting depth of greater than 2 inches. If supplemental moisture is provided, a shallow planting would be advisable for those species tested. If not overcome by pretreatment prior to planting, seed dormancy may be a significant factor which will reduce the germination potential of some species tested.

  13. Plant compositional constituents affecting between-plant and animal species prediction of forage intake.

    PubMed

    Meissner, H H; Paulsmeier, D V

    1995-08-01

    The purpose of the study was to identify plant compositional constituents that influence forage intake. Emphasis was put on the ratio in vitro digestibility of organic matter (IVDOM):NDF because preliminary work with cattle and a limited number of forages showed the ratio to account for more variation in intake than either IVDOM or NDF alone. The compositional constituents were tested in intake prediction models using local and published data (n = 302) on grass pastures, silages, hays, straws, legumes, grass-legume mixtures, and shrubs ingested by both browsing and grass-eating ruminants (goats, red deer, impala, blesbok, sheep, cattle, and blue wildebeest). In the local experiments, esophageally fistulated and fecal bag-harnessed animals were used to collect representative grazed forage samples from pastures and to determine OM excreted, respectively. Forage intake was calculated as OM excreted divided by (1-IVDOM). Intake of silages, hays, and straws was measured indoors in digestibility trials. Intakes among species were compared after scaling for size by BW raised to the power of .9. Major contributors to the variation in forage intake were ash, hemicellulose, IVDOM:NDF, ADL, and the interaction between DM content and, respectively, ash, N, and ADL. High tannin/phenol concentrations proved limiting to intake. The ratio of IVDOM:NDF accounted for 67% of the variation in forage intake if data for which the other constituents had an effect were omitted, and the equation, OMI, g.kg BW-.9.d-1 = 70-97e-.975(IVDOM:NDF), predicted intake across all forages and ruminant species with a Sy.x of 5.3 g.kg BW-.9.d-1 (CV = 15%). The ratio of IVDOM:NDF should be valuable as a relatively inexpensive and rapid method to screen forages and cultivars. PMID:8567482

  14. Photosynthetic and respiratory activity in germfree higher plant species

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Equipment developed for the study of gas exchange in germfree plants is described. The equipment includes a gas exchange chamber to house the plant under study, a gas feed assembly to introduce and remove gas from the chamber, and a clinostat to rotate the apparatus. Fluorescent and incandescent lights are used to illuminate the chamber and a sealed plastic barrier is used to isolate the potting soil from the chamber atmosphere. The gas outflow from the chamber can be diverted to an infrared CO2 analyzer. The performance of the system was evaluated.

  15. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants

    PubMed Central

    Ding, Tao; Melcher, Ulrich

    2016-01-01

    Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant’s growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species. PMID:26974817

  16. Using habitat suitability models to target invasive plant species surveys.

    PubMed

    Crall, Alycia W; Jarnevich, Catherine S; Panke, Brendon; Young, Nick; Renz, Mark; Morisette, Jeffrey

    2013-01-01

    Managers need new tools for detecting the movement and spread of nonnative, invasive species. Habitat suitability models are a popular tool for mapping the potential distribution of current invaders, but the ability of these models to prioritize monitoring efforts has not been tested in the field. We tested the utility of an iterative sampling design (i.e., models based on field observations used to guide subsequent field data collection to improve the model), hypothesizing that model performance would increase when new data were gathered from targeted sampling using criteria based on the initial model results. We also tested the ability of habitat suitability models to predict the spread of invasive species, hypothesizing that models would accurately predict occurrences in the field, and that the use of targeted sampling would detect more species with less sampling effort than a nontargeted approach. We tested these hypotheses on two species at the state scale (Centaurea stoebe and Pastinaca sativa) in Wisconsin (USA), and one genus at the regional scale (Tamarix) in the western United States. These initial data were merged with environmental data at 30-m2 resolution for Wisconsin and 1-km2 resolution for the western United States to produce our first iteration models. We stratified these initial models to target field sampling and compared our models and success at detecting our species of interest to other surveys being conducted during the same field season (i.e., nontargeted sampling). Although more data did not always improve our models based on correct classification rate (CCR), sensitivity, specificity, kappa, or area under the curve (AUC), our models generated from targeted sampling data always performed better than models generated from nontargeted data. For Wisconsin species, the model described actual locations in the field fairly well (kappa = 0.51, 0.19, P < 0.01), and targeted sampling did detect more species than nontargeted sampling with less sampling effort (chi2 = 47.42, P < 0.01). From these findings, we conclude that habitat suitability models can be highly useful tools for guiding invasive species monitoring, and we support the use of an iterative sampling design for guiding such efforts. PMID:23495636

  17. Cello-oligosaccharides released from host plants induce pathogenicity in scab-causing Streptomyces species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thaxtomin, a phytotoxic dipeptide that inhibits cellulose synthesis in expanding plant cells, is a pathogenicity determinant in scab-causing Streptomyces species. Cellobiose and cellotriose, the smallest subunits of cellulose, stimulated thaxtomin production in a defined medium, while other oligosa...

  18. AN ECOLOGICAL ASSESSMENT OF OPPORTUNISTIC PLANT SPECIES IN GREAT LAKES COASTAL WETLANDS USING AIRBORNE HYPERSPECTRAL DATE

    EPA Science Inventory

    Airbome hyperspectral data were used to detect dense patches of Phragmites australis, a native opportunist plant species, at the Pointe Mouillee coastal wetland complex (Wayne and Monroe Counties, Michigan). This study provides initial results from one of thirteen coastal wetland...

  19. ACCURACY ASSESSMENTS OF AIRBORNE HYSPERSPECTRAL DATA FOR MAPPING OPPORTUNISTIC PLANT SPECIES IN FRESHWATER COASTAL WETLANDS

    EPA Science Inventory

    Airbome hyperspectral data were used to detect dense patches of Phragmites australis, a native opportunist plant species, at the Pointe Mouillee coastal wetland complex (Wayne and Monroe Counties, Michigan). This study provides initial results from one of thirteen coastal wetland...

  20. Areas of Increasing Agricultural Abandonment Overlap the Distribution of Previously Common, Currently Threatened Plant Species

    PubMed Central

    Osawa, Takeshi; Kohyama, Kazunori; Mitsuhashi, Hiromune

    2013-01-01

    Human-driven land-use changes increasingly threaten biodiversity. In agricultural ecosystems, abandonment of former farmlands constitutes a major land-use shift. We examined the relationships between areas in which agriculture has been abandoned and the distribution records of threatened plant species across Japan. We selected 23 plant species that are currently identified as threatened but were previously common in the country as indicators of threatened plant species. The areas of abandoned farmlands within the distribution ranges of the indicator species were significantly larger than the proportion of abandoned farmland area across the whole country. Also, abandoned farmland areas were positively correlated with the occurrence of indicator species. Therefore, sections of agricultural landscape that are increasingly becoming abandoned and the distribution ranges of indicator species overlapped. These results suggest that abandoned farmland areas contain degraded or preferred habitats of threatened plant species. We propose that areas experiencing increased abandonment of farmland can be divided into at least two categories: those that threaten the existence of threatened species and those that provide habitats for these threatened species. PMID:24260328

  1. Mapping plant species ranges in the Hawaiian Islands: developing a methodology and associated GIS layers

    USGS Publications Warehouse

    Price, Jonathan P.; Jacobi, James D.; Gon, Samuel M., III; Matsuwaki, Dwight; Mehrhoff, Loyal; Wagner, Warren; Lucas, Matthew; Rowe, Barbara

    2012-01-01

    This report documents a methodology for projecting the geographic ranges of plant species in the Hawaiian Islands. The methodology consists primarily of the creation of several geographic information system (GIS) data layers depicting attributes related to the geographic ranges of plant species. The most important spatial-data layer generated here is an objectively defined classification of climate as it pertains to the distribution of plant species. By examining previous zonal-vegetation classifications in light of spatially detailed climate data, broad zones of climate relevant to contemporary concepts of vegetation in the Hawaiian Islands can be explicitly defined. Other spatial-data layers presented here include the following: substrate age, as large areas of the island of Hawai'i, in particular, are covered by very young lava flows inimical to the growth of many plant species; biogeographic regions of the larger islands that are composites of multiple volcanoes, as many of their species are restricted to a given topographically isolated mountain or a specified group of them; and human impact, which can reduce the range of many species relative to where they formerly were found. Other factors influencing the geographic ranges of species that are discussed here but not developed further, owing to limitations in rendering them spatially, include topography, soils, and disturbance. A method is described for analyzing these layers in a GIS, in conjunction with a database of species distributions, to project the ranges of plant species, which include both the potential range prior to human disturbance and the projected present range. Examples of range maps for several species are given as case studies that demonstrate different spatial characteristics of range. Several potential applications of species-range maps are discussed, including facilitating field surveys, informing restoration efforts, studying range size and rarity, studying biodiversity, managing invasive species, and planning of conservation efforts.

  2. Laser-induced fluorescence of green plants. I - A technique for the remote detection of plant stress and species differentiation

    NASA Technical Reports Server (NTRS)

    Chappelle, E. W.; Wood, F. M., Jr.; Mcmurtrey, J. E., III; Newcomb, W. W.

    1984-01-01

    The laser-induced fluorescence (LIF) of green plants was evaluated as a means of remotely detecting plant stress and determining plant type. Corn and soybeans were used as representatives of monocots and dicots, respectively, in these studies. The fluorescence spectra of several plant pigments was excited with a nitrogen laser emitting at 337 nm. Intact leaves from corn and soybeans also fluoresced using the nitrogen laser. The two plant species exhibited fluorescence spectra which had three maxima in common at 440, 690, and 740 nm. However, the relative intensities of these maxima were distinctly different for the two species. Soybeans had an additional slight maxima at 525 nm. Potassium deficiency in corn caused an increase in fluorescence at 690 and 740 nm. Simulated water stress in soybeans resulted in increased fluorescence at 440, 525, 690, and 740 nm. The inhibition of photosynthesis in soybeans by 3-(3-4-dichlorophenyl)-1-1-dimethyl urea (DCMU) gave incresed fluorescence primarily at 690 and 740 nm. Chlorosis as occurring in senescent soybean leaves caused a decrease in fluorescence at 690 and 740 nm. These studies indicate that LIF measurements of plants offer the potential for remotely detecting certain types of stress condition and also for differentiating plant species.

  3. Exposure of two upland plant species to acidic fogs.

    PubMed

    Ashenden, T W; Rafarel, C R; Bell, S A

    1991-01-01

    A system is described for exposing large numbers of plants to acidic fogs. The system allows low volumes of treatment solutions to be provided at particle sizes chiefly in the 5-30 microm range (equivalent to fog/cloud droplets). Plants of Poa alpina L. and Epilobium brunnescens were propagated from material collected in Snowdonia, North Wales and exposed to fog treatments at pH values of 2.5, 3.5, 4.5 and 5.6. There were 3 x 4 h exposures per week which provided a total of 6 mm deposition. Supplementary watering was with pH 4.5 simulated acid rain (24 mm per week). After 21 weeks, there was increased lowering and a greater dry weight for plants of E. brunnescens exposed to the pH 2.5 fog in comparison with other treatments. Also, the plants used assimilated material to form shoots rather than roots. A similar increase in dry weight accumulation in the pH 2.5 treatment was found in P. alpina after 63 weeks but this was not associated with changes in assimilate partitioning. PMID:15092062

  4. PLANT SPECIES DIVERSITY, ECOSYSTEM FUNCTION, AND PASTURE MANAGEMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grassland farmers face new challenges in pasture management including improving sustainability, reducing inputs of fertilizers and pesticides, and protecting soil resources. Managing plant diversity within and among pastures may be one tool to aid producers in meeting these new challenges. Pasture e...

  5. Phytopathogenicity of Serratia marcescens strains in different plant host species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Strains of Seriatia marcescens (Sm), cause of cucurbit yellow vine disease (CYVD), colonize many niches (water, soil, humans, animals, insects, plants). To assess whether phytopathogenicity is strain-specific, tobacco leaves were needle-inoculated with various Sm strains. A HR-like response was ob...

  6. Uptake Kinetics of Arsenic Species in Rice Plants

    PubMed Central

    Abedin, Mohammed Joinal; Feldmann, Jörg; Meharg, Andy A.

    2002-01-01

    Arsenic (As) finds its way into soils used for rice (Oryza sativa) cultivation through polluted irrigation water, and through historic contamination with As-based pesticides. As is known to be present as a number of chemical species in such soils, so we wished to investigate how these species were accumulated by rice. As species found in soil solution from a greenhouse experiment where rice was irrigated with arsenate contaminated water were arsenite, arsenate, dimethylarsinic acid, and monomethylarsonic acid. The short-term uptake kinetics for these four As species were determined in 7-d-old excised rice roots. High-affinity uptake (0–0.0532 mm) for arsenite and arsenate with eight rice varieties, covering two growing seasons, rice var. Boro (dry season) and rice var. Aman (wet season), showed that uptake of both arsenite and arsenate by Boro varieties was less than that of Aman varieties. Arsenite uptake was active, and was taken up at approximately the same rate as arsenate. Greater uptake of arsenite, compared with arsenate, was found at higher substrate concentration (low-affinity uptake system). Competitive inhibition of uptake with phosphate showed that arsenite and arsenate were taken up by different uptake systems because arsenate uptake was strongly suppressed in the presence of phosphate, whereas arsenite transport was not affected by phosphate. At a slow rate, there was a hyperbolic uptake of monomethylarsonic acid, and limited uptake of dimethylarsinic acid. PMID:11891266

  7. Integrative modeling reveals mechanisms linking productivity and plant species richness

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For 40 years ecologists have sought a canonical productivity-species richness relationship 48 (PRR) for ecosystems, despite continuing disagreements about expected form and 49 interpretation. Using a large global dataset of terrestrial grasslands, we consider how 50 productivity and richness relate ...

  8. Location of plant species in Norway gathered as a part of a survey vegetation mapping programme.

    PubMed

    Bryn, Anders; Kristoffersen, Hans-Petter; Angeloff, Michael; Nystuen, Ingvild; Aune-Lundberg, Linda; Endresen, Dag; Svindseth, Christian; Rekdal, Yngve

    2015-12-01

    Georeferenced species data have a wide range of applications and are increasingly used for e.g. distribution modelling and climate change studies. As an integrated part of an on-going survey programme for vegetation mapping, plant species have been recorded. The data described in this paper contains 18.521 registrations of plants from 1190 different circular plots throughout Norway. All species localities are georeferenced, the spatial uncertainty is provided, and additional ecological information is reported. The published data has been gathered from 1991 until 2015. The entries contain all higher vascular plants and pteridophytes, and some cryptogams. Other ecological information is also provided for the species locations, such as the vegetation type, the cover of the species and slope. The entire material is stored and available for download through the GBIF server. PMID:26958614

  9. Location of plant species in Norway gathered as a part of a survey vegetation mapping programme

    PubMed Central

    Bryn, Anders; Kristoffersen, Hans-Petter; Angeloff, Michael; Nystuen, Ingvild; Aune-Lundberg, Linda; Endresen, Dag; Svindseth, Christian; Rekdal, Yngve

    2015-01-01

    Georeferenced species data have a wide range of applications and are increasingly used for e.g. distribution modelling and climate change studies. As an integrated part of an on-going survey programme for vegetation mapping, plant species have been recorded. The data described in this paper contains 18.521 registrations of plants from 1190 different circular plots throughout Norway. All species localities are georeferenced, the spatial uncertainty is provided, and additional ecological information is reported. The published data has been gathered from 1991 until 2015. The entries contain all higher vascular plants and pteridophytes, and some cryptogams. Other ecological information is also provided for the species locations, such as the vegetation type, the cover of the species and slope. The entire material is stored and available for download through the GBIF server.

  10. Using habitat suitability models to target invasive plant species surveys

    USGS Publications Warehouse

    Crall, Alycia W.; Jarnevich, Catherine S.; Panke, Brendon; Young, Nick; Renz, Mark; Morisette, Jeffrey

    2013-01-01

    Managers need new tools for detecting the movement and spread of nonnative, invasive species. Habitat suitability models are a popular tool for mapping the potential distribution of current invaders, but the ability of these models to prioritize monitoring efforts has not been tested in the field. We tested the utility of an iterative sampling design (i.e., models based on field observations used to guide subsequent field data collection to improve the model), hypothesizing that model performance would increase when new data were gathered from targeted sampling using criteria based on the initial model results. We also tested the ability of habitat suitability models to predict the spread of invasive species, hypothesizing that models would accurately predict occurrences in the field, and that the use of targeted sampling would detect more species with less sampling effort than a nontargeted approach. We tested these hypotheses on two species at the state scale (Centaurea stoebe and Pastinaca sativa) in Wisconsin (USA), and one genus at the regional scale (Tamarix) in the western United States. These initial data were merged with environmental data at 30-m2 resolution for Wisconsin and 1-km2 resolution for the western United States to produce our first iteration models. We stratified these initial models to target field sampling and compared our models and success at detecting our species of interest to other surveys being conducted during the same field season (i.e., nontargeted sampling). Although more data did not always improve our models based on correct classification rate (CCR), sensitivity, specificity, kappa, or area under the curve (AUC), our models generated from targeted sampling data always performed better than models generated from nontargeted data. For Wisconsin species, the model described actual locations in the field fairly well (kappa = 0.51, 0.19, P 2) = 47.42, P < 0.01). From these findings, we conclude that habitat suitability models can be highly useful tools for guiding invasive species monitoring, and we support the use of an iterative sampling design for guiding such efforts.

  11. 78 FR 32013 - Endangered and Threatened Wildlife and Plants; Determination of Endangered Status for 38 Species...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-28

    ...We, the U.S. Fish and Wildlife Service (Service), determine endangered status under the Endangered Species Act of 1973 (Act), as amended, for 38 species on the Hawaiian Islands of Molokai, Lanai, and Maui, and reaffirm the listing of 2 endemic Hawaiian plants currently listed as endangered. In this final rule, we are also delisting the plant Gahnia lanaiensis, due to new information that this......

  12. Population dynamics of Scirtothrips dorsalis (Thysanoptera: Thripidae) and other thrips species on two ornamental host plant species in Southern Florida.

    PubMed

    Mannion, Catharine M; Derksen, Andrew I; Seal, Dakshina R; Osborne, Lance S; Martin, Cliff G

    2014-08-01

    Since its 2005 introduction into the United States, chilli thrips, Scirtothrips dorsalis Hood (Thysanoptera: Thripidae), has become a problematic pest of agronomic, vegetable, fruit, and ornamental plants. Knowledge of its population dynamics may help managers better monitor and control S. dorsalis. Population estimates were recorded for S. dorsalis and other thrips species on Knock-Out rose (Rosa 'Radrazz') and green buttonwood (Conocarpus erectus L.) from July 2007 to September 2008 in two field plots (one per plant species) in Homestead, FL. Yellow sticky card traps and samples of terminals, flowers, buds, and leaves were collected. S. dorsalis accounted for 95% of all thrips individuals collected from plants and 84% from traps with the remainder including at least 18 other thrips species. More thrips were caught on or flying near rose plants (47,438) than on or near buttonwoods (5,898), and on-plant densities of S. dorsalis appeared higher for rose than for buttonwood. Compared with rose leaves, rose buds, terminals, and flowers each had higher numbers of S. dorsalis, and buds and terminals had higher densities. On each host plant species, S. dorsalis density fluctuated over time with peaks in the late spring, summer, and fall, but populations were consistently low in the late winter and early spring. On roses, increased plant damage ratings correlated with reduced numbers of flowers and buds, reduced mean flower areas, and increased on-plant number and density of S. dorsalis. There were positive correlations over time between S. dorsalis density and plant damage rating for rose flowers (R = 0.78; P = 0.0003) and for buttonwood terminals (R = 0.90; P = 0.0001). Yellow sticky card traps were effective for monitoring S. dorsalis and may be especially useful and economically justified for the most susceptible hosts, but they also work well for less susceptible hosts. A good S. dorsalis scouting program should hence consider trap catches and symptoms such as leaf distortion, small flower area (size), and thrips population concentrations near buds and terminals. PMID:25182610

  13. Flowering phenology of invasive alien plant species compared with native species in three Mediterranean-type ecosystems

    PubMed Central

    Godoy, Oscar; Richardson, David M.; Valladares, Fernando; Castro-Díez, Pilar

    2009-01-01

    Background and Aims Flowering phenology is a potentially important component of success of alien species, since elevated fecundity may enhance invasiveness. The flowering patterns of invasive alien plant species and related natives were studied in three regions with Mediterranean-type climate: California, Spain and South Africa's Cape region. Methods A total of 227 invasive–native pairs were compared for seven character types across the regions, with each pair selected on the basis that they shared the same habitat type within a region, had a common growth form and pollination type, and belonged to the same family or genus. Key Results Invasive alien plant species have different patterns of flowering phenology from native species in the three regions. Whether the alien species flower earlier, later or at the same time as natives depends on the climatic regime in the native range of the aliens and the proportion of species in the invasive floras originating from different regions. Species invading at least two of the regions displayed the same flowering pattern, showing that flowering phenology is a conservative trait. Invasive species with native ranges in temperate climates flower earlier than natives, those from Mediterranean-type climates at the same time, and species from tropical climates flower later. In California, where the proportion of invaders from the Mediterranean Basin is high, the flowering pattern did not differ between invasive and native species, whereas in Spain the high proportion of tropical species results in a later flowering than natives, and in the Cape region early flowering than natives was the result of a high proportion of temperate invaders. Conclusions Observed patterns are due to the human-induced sympatry of species with different evolutionary histories whose flowering phenology evolved under different climatic regimes. The severity of the main abiotic filters imposed by the invaded regions (e.g. summer drought) has not been strong enough (yet) to shift the flowering pattern of invasive species to correspond with that of native relatives. It does, however, determine the length of the flowering season and the type of habitat invaded by summer-flowering aliens. Results suggest different implications for impacts at evolutionary time scales among the three regions. PMID:19033284

  14. Patch size and isolation predict plant species density in a naturally fragmented forest.

    PubMed

    Mungua-Rosas, Miguel A; Montiel, Salvador

    2014-01-01

    Studies of the effects of patch size and isolation on plant species density have yielded contrasting results. However, much of the available evidence comes from relatively recent anthropogenic forest fragments which have not reached equilibrium between extinction and immigration. This is a critical issue because the theory clearly states that only when equilibrium has been reached can the number of species be accurately predicted by habitat size and isolation. Therefore, species density could be better predicted by patch size and isolation in an ecosystem that has been fragmented for a very long time. We tested whether patch area, isolation and other spatial variables explain variation among forest patches in plant species density in an ecosystem where the forest has been naturally fragmented for long periods of time on a geological scale. Our main predictions were that plant species density will be positively correlated with patch size, and negatively correlated with isolation (distance to the nearest patch, connectivity, and distance to the continuous forest). We surveyed the vascular flora (except lianas and epiphytes) of 19 forest patches using five belt transects (504 m each) per patch (area sampled per patch?=?0.1 ha). As predicted, plant species density was positively associated (logarithmically) with patch size and negatively associated (linearly) with patch isolation (distance to the nearest patch). Other spatial variables such as patch elevation and perimeter, did not explain among-patch variability in plant species density. The power of patch area and isolation as predictors of plant species density was moderate (together they explain 43% of the variation), however, a larger sample size may improve the explanatory power of these variables. Patch size and isolation may be suitable predictors of long-term plant species density in terrestrial ecosystems that are naturally and anthropogenically fragmented. PMID:25347818

  15. Patch Size and Isolation Predict Plant Species Density in a Naturally Fragmented Forest

    PubMed Central

    Munguía-Rosas, Miguel A.; Montiel, Salvador

    2014-01-01

    Studies of the effects of patch size and isolation on plant species density have yielded contrasting results. However, much of the available evidence comes from relatively recent anthropogenic forest fragments which have not reached equilibrium between extinction and immigration. This is a critical issue because the theory clearly states that only when equilibrium has been reached can the number of species be accurately predicted by habitat size and isolation. Therefore, species density could be better predicted by patch size and isolation in an ecosystem that has been fragmented for a very long time. We tested whether patch area, isolation and other spatial variables explain variation among forest patches in plant species density in an ecosystem where the forest has been naturally fragmented for long periods of time on a geological scale. Our main predictions were that plant species density will be positively correlated with patch size, and negatively correlated with isolation (distance to the nearest patch, connectivity, and distance to the continuous forest). We surveyed the vascular flora (except lianas and epiphytes) of 19 forest patches using five belt transects (50×4 m each) per patch (area sampled per patch = 0.1 ha). As predicted, plant species density was positively associated (logarithmically) with patch size and negatively associated (linearly) with patch isolation (distance to the nearest patch). Other spatial variables such as patch elevation and perimeter, did not explain among-patch variability in plant species density. The power of patch area and isolation as predictors of plant species density was moderate (together they explain 43% of the variation), however, a larger sample size may improve the explanatory power of these variables. Patch size and isolation may be suitable predictors of long-term plant species density in terrestrial ecosystems that are naturally and anthropogenically fragmented. PMID:25347818

  16. Rapid plant identification using species- and group-specific primers targeting chloroplast DNA.

    PubMed

    Wallinger, Corinna; Juen, Anita; Staudacher, Karin; Schallhart, Nikolaus; Mitterrutzner, Evi; Steiner, Eva-Maria; Thalinger, Bettina; Traugott, Michael

    2012-01-01

    Plant identification is challenging when no morphologically assignable parts are available. There is a lack of broadly applicable methods for identifying plants in this situation, for example when roots grow in mixture and for decayed or semi-digested plant material. These difficulties have also impeded the progress made in ecological disciplines such as soil- and trophic ecology. Here, a PCR-based approach is presented which allows identifying a variety of plant taxa commonly occurring in Central European agricultural land. Based on the trnT-F cpDNA region, PCR assays were developed to identify two plant families (Poaceae and Apiaceae), the genera Trifolium and Plantago, and nine plant species: Achillea millefolium, Fagopyrum esculentum, Lolium perenne, Lupinus angustifolius, Phaseolus coccineus, Sinapis alba, Taraxacum officinale, Triticum aestivum, and Zea mays. These assays allowed identification of plants based on size-specific amplicons ranging from 116 bp to 381 bp. Their specificity and sensitivity was consistently high, enabling the detection of small amounts of plant DNA, for example, in decaying plant material and in the intestine or faeces of herbivores. To increase the efficacy of identifying plant species from large number of samples, specific primers were combined in multiplex PCRs, allowing screening for multiple species within a single reaction. The molecular assays outlined here will be applicable manifold, such as for root- and leaf litter identification, botanical trace evidence, and the analysis of herbivory. PMID:22253728

  17. Rapid Plant Identification Using Species- and Group-Specific Primers Targeting Chloroplast DNA

    PubMed Central

    Staudacher, Karin; Schallhart, Nikolaus; Mitterrutzner, Evi; Steiner, Eva-Maria; Thalinger, Bettina; Traugott, Michael

    2012-01-01

    Plant identification is challenging when no morphologically assignable parts are available. There is a lack of broadly applicable methods for identifying plants in this situation, for example when roots grow in mixture and for decayed or semi-digested plant material. These difficulties have also impeded the progress made in ecological disciplines such as soil- and trophic ecology. Here, a PCR-based approach is presented which allows identifying a variety of plant taxa commonly occurring in Central European agricultural land. Based on the trnT-F cpDNA region, PCR assays were developed to identify two plant families (Poaceae and Apiaceae), the genera Trifolium and Plantago, and nine plant species: Achillea millefolium, Fagopyrum esculentum, Lolium perenne, Lupinus angustifolius, Phaseolus coccineus, Sinapis alba, Taraxacum officinale, Triticum aestivum, and Zea mays. These assays allowed identification of plants based on size-specific amplicons ranging from 116 bp to 381 bp. Their specificity and sensitivity was consistently high, enabling the detection of small amounts of plant DNA, for example, in decaying plant material and in the intestine or faeces of herbivores. To increase the efficacy of identifying plant species from large number of samples, specific primers were combined in multiplex PCRs, allowing screening for multiple species within a single reaction. The molecular assays outlined here will be applicable manifold, such as for root- and leaf litter identification, botanical trace evidence, and the analysis of herbivory. PMID:22253728

  18. Soil biotic impact on plant species shoot chemistry and hyperspectral reflectance patterns.

    PubMed

    Carvalho, Sabrina; Macel, Mirka; Schlerf, Martin; Skidmore, Andrew K; van der Putten, Wim H

    2012-12-01

    Recent studies revealed that plant-soil biotic interactions may cause changes in above-ground plant chemistry. It would be a new step in below-ground-above-ground interaction research if such above-ground chemistry changes could be efficiently detected. Here we test how hyperspectral reflectance may be used to study such plant-soil biotic interactions in a nondestructive and rapid way. The native plant species Jacobaea vulgaris and Jacobaea erucifolius, and the exotic invader Senecio inaequidens were grown in different soil biotic conditions. Biomass, chemical content and shoot reflectance between 400 and 2500nm wavelengths were determined. The data were analysed with multivariate statistics. Exposing the plants to soil biota enhanced the content of defence compounds. The highest increase (400%) was observed for the exotic invader S.inaequidens. Chemical and spectral data enabled plant species to be classified with an accuracy >85%. Plants grown in different soil conditions were classified with 50-60% correctness. Our data suggest that soil microorganisms can affect plant chemistry and spectral reflectance. Further studies should test the potential to study plant-soil biotic interactions in the field. Such techniques could help to monitor, among other things, where invasive exotic plant species develop biotic resistance or the development of hotspots of crop soil diseases. PMID:23025430

  19. Validation of the ITS2 Region as a Novel DNA Barcode for Identifying Medicinal Plant Species

    PubMed Central

    Chen, Shilin; Yao, Hui; Han, Jianping; Liu, Chang; Song, Jingyuan; Shi, Linchun; Zhu, Yingjie; Ma, Xinye; Gao, Ting; Pang, Xiaohui; Luo, Kun; Li, Ying; Li, Xiwen; Jia, Xiaocheng; Lin, Yulin; Leon, Christine

    2010-01-01

    Background The plant working group of the Consortium for the Barcode of Life recommended the two-locus combination of rbcL + matK as the plant barcode, yet the combination was shown to successfully discriminate among 907 samples from 550 species at the species level with a probability of 72%. The group admits that the two-locus barcode is far from perfect due to the low identification rate, and the search is not over. Methodology/Principal Findings Here, we compared seven candidate DNA barcodes (psbA-trnH, matK, rbcL, rpoC1, ycf5, ITS2, and ITS) from medicinal plant species. Our ranking criteria included PCR amplification efficiency, differential intra- and inter-specific divergences, and the DNA barcoding gap. Our data suggest that the second internal transcribed spacer (ITS2) of nuclear ribosomal DNA represents the most suitable region for DNA barcoding applications. Furthermore, we tested the discrimination ability of ITS2 in more than 6600 plant samples belonging to 4800 species from 753 distinct genera and found that the rate of successful identification with the ITS2 was 92.7% at the species level. Conclusions The ITS2 region can be potentially used as a standard DNA barcode to identify medicinal plants and their closely related species. We also propose that ITS2 can serve as a novel universal barcode for the identification of a broader range of plant taxa. PMID:20062805

  20. Subtropical reservoir shorelines have reduced plant species and functional richness compared with adjacent riparian wetlands

    NASA Astrophysics Data System (ADS)

    Liu, Wenzhi; Liu, Guihua; Liu, Hui; Song, Yu; Zhang, Quanfa

    2013-12-01

    Dam construction has large negative effects on biodiversity in river and riparian ecosystems worldwide. This study aimed to determine whether reservoir shorelines had lower plant species diversity and functional diversity than unregulated or lightly regulated riparian wetlands and to examine the responses of plant diversity and functional traits to reservoir shoreline environmental gradients. We surveyed 146, 44, and 67 plots on reservoir shorelines and in mainstem and tributary riparian wetlands, respectively, in a subtropical river-reservoir system. Species richness, functional richness, evenness, and divergence were calculated to reflect the species and functional diversity of plant communities. Environmental factors including elevation above water level, slope, landform type, substrate, disturbance, and cover were measured. The results showed that both species and functional richness were significantly lower on reservoir shorelines than in riparian wetlands. The relative species number of clonal plants and relative cover of annual plants were both negatively related to slope and elevation. Structural equation modeling and other statistical analyses indicated that most environmental factors had significant effects on species and functional richness on reservoir shorelines but had no significant effect on functional evenness and divergence. Our findings suggest that reservoir shoreline wetlands formed by damming rivers and inundating pre-existing riparian wetlands can be a biodiversity coldspot in regulated rivers at the plot level. Topographic factors are important in determining the plant diversity and vegetation establishment on reservoir shorelines in the Yangtze River basin.

  1. Different spatial organisation strategies of woody plant species in a montane cloud forest

    NASA Astrophysics Data System (ADS)

    Ledo, Alicia; Montes, Fernando; Conds, Sonia

    2012-01-01

    The coexistence of a high number of species in the forest is a central issue in tropical ecology. In this paper, we aim to characterise the spatial pattern of woody species in an Andean montane cloud forest to determine whether differences exist among the species in terms of spatial organization and if so, whether these differences are related to the life-form, primary dispersal mode, shade tolerance or the diameter distribution of the species. For this purpose, we analysed the spatial pattern of each species as well as the spatial relationships between young and adult individuals. Almost all the analysed species showed a cluster pattern, followed by a random pattern at larger distances. The cluster size is more evident for the young trees whereas adult trees tended to be more randomly distributed. The shade-tolerant species showed greater distances of aggregation than gap or medium-shade-tolerant species. Species primarily dispersed by wind and small birds showed larger distances of aggregation than species dispersed by mammals or big birds. All the under-story woody plants showed a notable cluster pattern, whereas canopy trees showed a variety of spatial patterns, with clustering at small scales being the most frequent. In the case of emergent trees, association was found between young and adult individuals on a large scale. Positive associations between young and adult individuals predominate at small scales for medium and shade tolerant species and at larger scales for bird-dispersed species whereas negative spatial associations at smaller scales were found for shade tolerant species and wind dispersed species. Our study confirms that conspecific organization varies among the woody plants in the analysed forest, and that the spatial pattern of woody plants is partially linked to shade tolerance, primary dispersal mode and life form of the species.

  2. Evidence of qualitative differences between soil-occupancy effects of invasive vs. native grassland plant species

    USGS Publications Warehouse

    Jordan, N.R.; Larson, D.L.; Huerd, S.C.

    2011-01-01

    Diversified grasslands that contain native plant species are being recognized as important elements of agricultural landscapes and for production of biofuel feedstocks as well as a variety of other ecosystem services. Unfortunately, establishment of such grasslands is often difficult, unpredictable, and highly vulnerable to interference and invasion by weeds. Evidence suggests that soil-microbial "legacies" of invasive perennial species can inhibit growth of native grassland species. However, previous assessments of legacy effects of soil occupancy by invasive species that invade grasslands have focused on single invasive species and on responses to invasive soil occupancy in only a few species. In this study, we tested the hypothesis that legacy effects of invasive species differ qualitatively from those of native grassland species. In a glasshouse, three invasive and three native grassland perennials and a native perennial mixture were grown separately through three cycles of growth and soil conditioning in soils with and without arbuscular mycorrhizal fungi (AMF), after which we assessed seedling growth in these soils. Native species differed categorically from invasives in their response to soil conditioning by native or invasive species, but these differences depended on the presence of AMF. When AMF were present, native species largely had facilitative effects on invasive species, relative to effects of invasives on other invasives. Invasive species did not facilitate native growth; neutral effects were predominant, but strong soil-mediated inhibitory effects on certain native species occurred. Our results support the hypothesis that successful plant invaders create biological legacies in soil that inhibit native growth, but suggest also this mechanism of invasion will have nuanced effects on community dynamics, as some natives may be unaffected by such legacies. Such native species may be valuable as nurse plants that provide cost-effective restoration of soil conditions needed for efficient establishment of diversified grasslands. ?? Weed Science Society of America.

  3. Evidence of qualitative differences between soil-occupancy effects of invasive vs. native grassland plant species

    USGS Publications Warehouse

    Jordan, Nicholas R.; Larson, Diane L.; Huerd, Sheri C.

    2011-01-01

    Diversified grasslands that contain native plant species are being recognized as important elements of agricultural landscapes and for production of biofuel feedstocks as well as a variety of other ecosystem services. Unfortunately, establishment of such grasslands is often difficult, unpredictable, and highly vulnerable to interference and invasion by weeds. Evidence suggests that soil-microbial "legacies" of invasive perennial species can inhibit growth of native grassland species. However, previous assessments of legacy effects of soil occupancy by invasive species that invade grasslands have focused on single invasive species and on responses to invasive soil occupancy in only a few species. In this study, we tested the hypothesis that legacy effects of invasive species differ qualitatively from those of native grassland species. In a glasshouse, three invasive and three native grassland perennials and a native perennial mixture were grown separately through three cycles of growth and soil conditioning in soils with and without arbuscular mycorrhizal fungi (AMF), after which we assessed seedling growth in these soils. Native species differed categorically from invasives in their response to soil conditioning by native or invasive species, but these differences depended on the presence of AMF. When AMF were present, native species largely had facilitative effects on invasive species, relative to effects of invasives on other invasives. Invasive species did not facilitate native growth; neutral effects were predominant, but strong soil-mediated inhibitory effects on certain native species occurred. Our results support the hypothesis that successful plant invaders create biological legacies in soil that inhibit native growth, but suggest also this mechanism of invasion will have nuanced effects on community dynamics, as some natives may be unaffected by such legacies. Such native species may be valuable as nurse plants that provide cost-effective restoration of soil conditions needed for efficient establishment of diversified grasslands.

  4. Screening of radical scavenging activity and polyphenol content of Bulgarian plant species

    PubMed Central

    Nikolova, Milena

    2011-01-01

    Background: Discovery of new plant species with antioxidant properties is a priority of many research teams. Most of the species included in this study are unstudied for antioxidant properties, but they are taxonomically related to reference plants with well-documented antioxidant activity. Materials and Methods: Free radical scavenging activity of plant extracts was evaluated using a 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. An aluminum chloride colorimetric method was used for flavonoid determination. The amount of phenolic compounds in the extracts was estimated by using the FolinCiocalteu reagent. Results: As a result of screening, it was found that the significant antioxidant properties possess several unstudied until now plant species (Veronica bellidioides L., V. kellereri Deg. et Urm, V. vindobonensis (M. Fisher) M. Fisher, V. beccabunga L., V. rhodopaea L., V. austriaca (Velen.) Degen., Clinopodium vulgare L., Stachysrecta L., Clematis vitalba L., and Xeranthemum annum L.). The antioxidant potential of the new species is comparable to that of reference medicinal plants. Conclusions: The existing data presented here provide new information for antioxidant potential of plant species that have not been traditionally used as medicinal plants. PMID:22224049

  5. Disentangling the determinants of species richness of vascular plants and mammals from national to regional scales

    PubMed Central

    Xu, Haigen; Cao, Mingchang; Wu, Yi; Cai, Lei; Cao, Yun; Wu, Jun; Lei, Juncheng; Le, Zhifang; Ding, Hui; Cui, Peng

    2016-01-01

    Understanding the spatial patterns in species richness gets new implication for biodiversity conservation in the context of climate change and intensified human intervention. Here, we created a database of the geographical distribution of 30,519 vascular plant species and 565 mammal species from 2,376 counties across China and disentangled the determinants that explain species richness patterns both at national and regional scales using spatial linear models. We found that the determinants of species richness patterns varied among regions: elevational range was the most powerful predictor for the species richness of plants and mammals across China. However, species richness patterns in the Qinghai-Tibetan Plateau Region (QTR) are quite unique, where net primary productivity was the most important predictor. We also detected that elevational range was positively related to plant species richness when it is less than 1,900 m, whereas the relationship was not significant when elevational range is larger than 1,900 m. It indicated that elevational range often emerges as the predominant controlling factor within the regions where energy is sufficient. The effects of land use on mammal species richness should attract special attention. Our study suggests that region-specific conservation policies should be developed based on the regional features of species richness. PMID:26902418

  6. Disentangling the determinants of species richness of vascular plants and mammals from national to regional scales.

    PubMed

    Xu, Haigen; Cao, Mingchang; Wu, Yi; Cai, Lei; Cao, Yun; Wu, Jun; Lei, Juncheng; Le, Zhifang; Ding, Hui; Cui, Peng

    2016-01-01

    Understanding the spatial patterns in species richness gets new implication for biodiversity conservation in the context of climate change and intensified human intervention. Here, we created a database of the geographical distribution of 30,519 vascular plant species and 565 mammal species from 2,376 counties across China and disentangled the determinants that explain species richness patterns both at national and regional scales using spatial linear models. We found that the determinants of species richness patterns varied among regions: elevational range was the most powerful predictor for the species richness of plants and mammals across China. However, species richness patterns in the Qinghai-Tibetan Plateau Region (QTR) are quite unique, where net primary productivity was the most important predictor. We also detected that elevational range was positively related to plant species richness when it is less than 1,900 m, whereas the relationship was not significant when elevational range is larger than 1,900 m. It indicated that elevational range often emerges as the predominant controlling factor within the regions where energy is sufficient. The effects of land use on mammal species richness should attract special attention. Our study suggests that region-specific conservation policies should be developed based on the regional features of species richness. PMID:26902418

  7. A Range-Expanding Shrub Species Alters Plant Phenological Response to Experimental Warming.

    PubMed

    Kopp, Christopher W; Cleland, Elsa E

    2015-01-01

    Shifts in plant species phenology (the timing of life-history events such as flowering) have been observed worldwide in concert with rising global temperatures. While most species display earlier phenology with warming, there is large variation among, and even within, species in phenological sensitivity to rising temperatures. Other indirect effects of climate change, such as shifting species composition and altered species interactions, may also be contributing to shifting plant phenology. Here, we describe how experimental warming and the presence of a range-expanding species, sagebrush (Artemisia rothrockii), interact to influence the flowering phenology (day of first and peak flowering) and production (number of flowers) of an alpine cushion plant, Trifolium andersonii, in California's White Mountains. Both first flowering and peak flowering were strongly accelerated by warming, but not when sagebrush was present. Warming significantly increased flower production of T. andersonii, but less so in the presence of sagebrush. A shading treatment delayed phenology and lowered flower production, suggesting that shading may be the mechanism by which sagebrush presence delayed flowering of the understory species. This study demonstrates that species interactions can modify phenological responses to climate change, and suggests that indirect effects of rising temperatures arising from shifting species ranges and altered species interactions may even exceed the direct effects of rising temperatures on phenology. PMID:26402617

  8. A Range-Expanding Shrub Species Alters Plant Phenological Response to Experimental Warming

    PubMed Central

    Kopp, Christopher W.; Cleland, Elsa E.

    2015-01-01

    Shifts in plant species phenology (the timing of life-history events such as flowering) have been observed worldwide in concert with rising global temperatures. While most species display earlier phenology with warming, there is large variation among, and even within, species in phenological sensitivity to rising temperatures. Other indirect effects of climate change, such as shifting species composition and altered species interactions, may also be contributing to shifting plant phenology. Here, we describe how experimental warming and the presence of a range-expanding species, sagebrush (Artemisia rothrockii), interact to influence the flowering phenology (day of first and peak flowering) and production (number of flowers) of an alpine cushion plant, Trifolium andersonii, in California’s White Mountains. Both first flowering and peak flowering were strongly accelerated by warming, but not when sagebrush was present. Warming significantly increased flower production of T. andersonii, but less so in the presence of sagebrush. A shading treatment delayed phenology and lowered flower production, suggesting that shading may be the mechanism by which sagebrush presence delayed flowering of the understory species. This study demonstrates that species interactions can modify phenological responses to climate change, and suggests that indirect effects of rising temperatures arising from shifting species ranges and altered species interactions may even exceed the direct effects of rising temperatures on phenology. PMID:26402617

  9. Environmental Quality and Fertility: The Effects of Plant Density, Species Richness, and Plant Diversity on Fertility Limitation *

    PubMed Central

    Brauner-Otto, Sarah R.

    2013-01-01

    The relationship between the environment and population has been of concern for centuries and climate change is making this an even more pressing area of study. In poor rural areas declining environmental conditions may elicit changes in family related behaviors. This paper explores this relationship in rural Nepal looking specifically at how plant density, species richness, and plant diversity are related to women’s fertility limitation behavior. Taking advantage of a unique data set with detailed micro-level environmental measures and individual fertility behavior I link geographically weighted measures of flora at one point in time to women’s later contraceptive use as a way to examine this complex relationship. I find a significant, positive relationship between plant density, species richness, and plant diversity and the timing of contraceptive use. Women in poor environmental conditions are less likely to terminate childbearing, or do so later, and therefore more likely to have larger families. PMID:25593378

  10. 75 FR 18233 - Endangered and Threatened Wildlife and Plants; 5-Year Status Reviews of 10 Southeastern Species

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-09

    ...), pale lilliput (Toxolasma cylindrellus), pondberry (Lindera melissifolia), green pitcher-plant..., green pitcher- plant, Mohr's Barbara button, and Louisiana quillwort, contact Cary Norquist at the... lists of endangered and threatened wildlife and plant species in the Code of Federal Regulations...

  11. Morphology predicts species' functional roles and their degree of specialization in plant-frugivore interactions.

    PubMed

    Dehling, D Matthias; Jordano, Pedro; Schaefer, H Martin; Bhning-Gaese, Katrin; Schleuning, Matthias

    2016-01-27

    Species' functional roles in key ecosystem processes such as predation, pollination or seed dispersal are determined by the resource use of consumer species. An interaction between resource and consumer species usually requires trait matching (e.g. a congruence in the morphologies of interaction partners). Species' morphology should therefore determine species' functional roles in ecological processes mediated by mutualistic or antagonistic interactions. We tested this assumption for Neotropical plant-bird mutualisms. We used a new analytical framework that assesses a species's functional role based on the analysis of the traits of its interaction partners in a multidimensional trait space. We employed this framework to test (i) whether there is correspondence between the morphology of bird species and their functional roles and (ii) whether morphologically specialized birds fulfil specialized functional roles. We found that morphological differences between bird species reflected their functional differences: (i) bird species with different morphologies foraged on distinct sets of plant species and (ii) morphologically distinct bird species fulfilled specialized functional roles. These findings encourage further assessments of species' functional roles through the analysis of their interaction partners, and the proposed analytical framework facilitates a wide range of novel analyses for network and community ecology. PMID:26817779

  12. Shifts in species richness, herbivore specialization, and plant resistance along elevation gradients

    PubMed Central

    Pellissier, Loc; Fiedler, Konrad; Ndribe, Charlotte; Dubuis, Anne; Pradervand, Jean-Nicolas; Guisan, Antoine; Rasmann, Sergio

    2012-01-01

    Environmental gradients have been postulated to generate patterns of diversity and diet specialization, in which more stable environments, such as tropical regions, should promote higher diversity and specialization. Using field sampling and phylogenetic analyses of butterfly fauna over an entire alpine region, we show that butterfly specialization (measured as the mean phylogenetic distance between utilized host plants) decreases at higher elevations, alongside a decreasing gradient of plant diversity. Consistent with current hypotheses on the relationship between biodiversity and the strength of species interactions, we experimentally show that a higher level of generalization at high elevations is associated with lower levels of plant resistance: across 16 pairs of plant species, low-elevation plants were more resistant vis--vis their congeneric alpine relatives. Thus, the links between diversity, herbivore diet specialization, and plant resistance along an elevation gradient suggest a causal relationship analogous to that hypothesized along latitudinal gradients. PMID:22957184

  13. Potential for using native plant species in stormwater wetlands.

    PubMed

    Bonilla-Warford, Cristina M; Zedler, Joy B

    2002-03-01

    Spartina pectinata (prairie cordgrass) was grown under five hydroperiods (wet-dry cycles) to determine its potential for use in stormwater wetlands, particularly as an alternative to the highly invasive Phalaris arundinacea (an exotic grass). Rhizomes planted in outdoor microcosms grew vigorously in all treatments, namely, weekly flooding in early summer, weekly flooding in late summer, flooding every three weeks throughout the summer, weekly flooding throughout the summer, and no flooding. Neither the timing nor frequency of 24-hour floods (10-20 cm deep) affected total stem length (grand mean 1003 +/- 188.8 cm per pot, n = 140) or above-ground biomass (46.5 +/- 8.3 g per pot, equivalent to approximately 360 g/m2). However, by late summer, fewer new tillers were found in unflooded microcosms, indicating that vegetative expansion is drought-sensitive. The growth of Spartina plants was further assessed with and without Glyceria striata (a native grass) and Phalaris arundinacea. Glyceria growth was not affected by hydrologic treatment. Glyceria reduced Spartina growth by approximately 11%, suggesting potential as a cover crop that might reduce establishment and growth of Phalaris seedlings. Seeds of Phalaris did not germinate, but branch fragments established where soil was moist from flooding, regardless of the presence of Glyceria. The ability of Spartina to establish vegetatively and grow well under variable water levels leads us to recommend further testing in stormwater wetlands, along with early planting of Glyceria to reduce weed invasions. PMID:11830768

  14. Allelopathy and exotic plant invasion: from molecules and genes to species interactions.

    PubMed

    Bais, Harsh P; Vepachedu, Ramarao; Gilroy, Simon; Callaway, Ragan M; Vivanco, Jorge M

    2003-09-01

    Here we present evidence that Centaurea maculosa (spotted knapweed), an invasive species in the western United States, displaces native plant species by exuding the phytotoxin (-)-catechin from its roots. Our results show inhibition of native species' growth and germination in field soils at natural concentrations of (-)-catechin. In susceptible species such as Arabidopsis thaliana, the allelochemical triggers a wave of reactive oxygen species (ROS) initiated at the root meristem, which leads to a Ca2+ signaling cascade triggering genome-wide changes in gene expression and, ultimately, death of the root system. Our results support a "novel weapons hypothesis" for invasive success. PMID:12958360

  15. Are herbage yield and yield stability affected by plant species diversity in sown pasture mixtures?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A tenet of plant biodiversity theory in grasslands is that increased diversity contributes to the stability of ecosystems. In managed grasslands, such as pastures, greater stability of herbage production as a result of increased plant species diversity would be beneficial. In this study, I combined ...

  16. EFFECT OF PLANT SPECIES DIVERSITY ON INTAKE AND PRODUCTIVITY OF LIVESTOCK

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grassland ecology is concerned primarily with those factors influencing the composition of plant species under grazing conditions, particularly how they relate to sustaining productive plant communities. With the recent trend of livestock operations opting for less capital-intensive production syst...

  17. 45 CFR 670.25 - Designation of specially protected species of native mammals, birds, and plants.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 3 2012-10-01 2012-10-01 false Designation of specially protected species of native mammals, birds, and plants. 670.25 Section 670.25 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION CONSERVATION OF ANTARCTIC ANIMALS AND PLANTS...

  18. 45 CFR 670.25 - Designation of specially protected species of native mammals, birds, and plants.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 3 2011-10-01 2011-10-01 false Designation of specially protected species of native mammals, birds, and plants. 670.25 Section 670.25 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION CONSERVATION OF ANTARCTIC ANIMALS AND PLANTS...

  19. 45 CFR 670.25 - Designation of specially protected species of native mammals, birds, and plants.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 3 2014-10-01 2014-10-01 false Designation of specially protected species of native mammals, birds, and plants. 670.25 Section 670.25 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION CONSERVATION OF ANTARCTIC ANIMALS AND PLANTS...

  20. 45 CFR 670.25 - Designation of specially protected species of native mammals, birds, and plants.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 3 2010-10-01 2010-10-01 false Designation of specially protected species of native mammals, birds, and plants. 670.25 Section 670.25 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION CONSERVATION OF ANTARCTIC ANIMALS AND PLANTS...

  1. Revision of the plant bug genus Tytthus, with a key to species (Hemiptera: Heteroptera: Miridae: Phylinae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abstract.— The phyline plant bug genus Tytthus Fieber, previously containing 19 species, is revised. Isoproba Osborn and Drake, 1915, incorrectly placed in the subfamily Bryocorinae, tribe Dicyphini, is synonymized as a junior synonym of the Tytthus Fieber, new synonymy; the only included species,...

  2. Assessing the risk of Glyphosate to native plants and weedy Brassicaceae species of North Dakota

    EPA Science Inventory

    This study was conducted to determine the ecological risk to native plants and weedy Brassicaceae species which may be growing in areas affected by off target movement of glyphosate applied to glyphosate-resistant canola (Brassica napus). Ten native grass and forb species were ...

  3. Rare, threatened, and endangered plant species southwest Florida and potential OCS activity impacts

    SciTech Connect

    McCoy, E.D.

    1981-11-01

    This report on rare, threatened, and endangered plants of southwest Florida is a compilation of all species so designated or considered for listing by Federal, State, and private agencies or organizations. Of 274 species in Pinellas, Hillsborough, Manatee, Sarasota, Charlotte, Lee, Collier, and Monroe Counties, 43 occurring in coastal habitats will be most affected by Outer Continental Shelf development.

  4. PLANT SPECIES DIVERSITY IN NATIVE AND RESTORED TALLGRASS PRAIRIES: PATTERNS AND CONTROLS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One goal of ecological restoration is to restore diversity of native vegetation, but mechanisms responsible for diversity in targeted communities often are poorly understood. We measured diversity (Simpson's index, 1/D) of plant species and functional groups of species in replicated 0.5-m2 plots wi...

  5. Stoichiometric homeostasis predicts plant species dominance, temporal stability, and responses to global change.

    PubMed

    Yu, Qiang; Wilcox, Kevin; La Pierre, Kimberly; Knapp, Alan K; Han, Xingguo; Smith, Melinda D

    2015-09-01

    Why some species are consistently more abundant than others, and predicting how species will respond to global change, are fundamental questions in ecology. Long-term observations indicate that plant