Sample records for hand-held semiconductor cdznte-based

  1. Progress in the Development of CdTe and CdZnTe Semiconductor Radiation Detectors for Astrophysical and Medical Applications

    PubMed Central

    Sordo, Stefano Del; Abbene, Leonardo; Caroli, Ezio; Mancini, Anna Maria; Zappettini, Andrea; Ubertini, Pietro

    2009-01-01

    Over the last decade, cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) wide band gap semiconductors have attracted increasing interest as X-ray and gamma ray detectors. Among the traditional high performance spectrometers based on silicon (Si) and germanium (Ge), CdTe and CdZnTe detectors show high detection efficiency and good room temperature performance and are well suited for the development of compact and reliable detection systems. In this paper, we review the current status of research in the development of CdTe and CdZnTe detectors by a comprehensive survey on the material properties, the device characteristics, the different techniques for improving the overall detector performance and some major applications. Astrophysical and medical applications are discussed, pointing out the ongoing Italian research activities on the development of these detectors. PMID:22412323

  2. Optimal configuration of a low-dose breast-specific gamma camera based on semiconductor CdZnTe pixelated detectors

    NASA Astrophysics Data System (ADS)

    Genocchi, B.; Pickford Scienti, O.; Darambara, DG

    2017-05-01

    Breast cancer is one of the most frequent tumours in women. During the ‘90s, the introduction of screening programmes allowed the detection of cancer before the palpable stage, reducing its mortality up to 50%. About 50% of the women aged between 30 and 50 years present dense breast parenchyma. This percentage decreases to 30% for women between 50 to 80 years. In these women, mammography has a sensitivity of around 30%, and small tumours are covered by the dense parenchyma and missed in the mammogram. Interestingly, breast-specific gamma-cameras based on semiconductor CdZnTe detectors have shown to be of great interest to early diagnosis. Infact, due to the high energy, spatial resolution, and high sensitivity of CdZnTe, molecular breast imaging has been shown to have a sensitivity of about 90% independently of the breast parenchyma. The aim of this work is to determine the optimal combination of the detector pixel size, hole shape, and collimator material in a low dose dual head breast specific gamma camera based on a CdZnTe pixelated detector at 140 keV, in order to achieve high count rate, and the best possible image spatial resolution. The optimal combination has been studied by modeling the system using the Monte Carlo code GATE. Six different pixel sizes from 0.85 mm to 1.6 mm, two hole shapes, hexagonal and square, and two different collimator materials, lead and tungsten were considered. It was demonstrated that the camera achieved higher count rates, and better signal-to-noise ratio when equipped with square hole, and large pixels (> 1.3 mm). In these configurations, the spatial resolution was worse than using small pixel sizes (< 1.3 mm), but remained under 3.6 mm in all cases.

  3. Mini Compton Camera Based on an Array of Virtual Frisch-Grid CdZnTe Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Wonho; Bolotnikov, Aleksey; Lee, Taewoong

    In this study, we constructed a mini Compton camera based on an array of CdZnTe detectors and assessed its spectral and imaging properties. The entire array consisted of 6×6 Frisch-grid CdZnTe detectors, each with a size of 6×6 ×15 mm 3. Since it is easier and more practical to grow small CdZnTe crystals rather than large monolithic ones, constructing a mosaic array of parallelepiped crystals can be an effective way to build a more efficient, large-volume detector. With the fully operational CdZnTe array, we measured the energy spectra for 133Ba -, 137Cs -, 60Co-radiation sources; we also located these sourcesmore » using a Compton imaging approach. Although the Compton camera was small enough to hand-carry, its intrinsic efficiency was several orders higher than those generated in previous researches using spatially separated arrays, because our camera measured the interactions inside the CZT detector array, wherein the detector elements were positioned very close to each other. Lastly, the performance of our camera was compared with that based on a pixelated detector.« less

  4. Mini Compton Camera Based on an Array of Virtual Frisch-Grid CdZnTe Detectors

    DOE PAGES

    Lee, Wonho; Bolotnikov, Aleksey; Lee, Taewoong; ...

    2016-02-15

    In this study, we constructed a mini Compton camera based on an array of CdZnTe detectors and assessed its spectral and imaging properties. The entire array consisted of 6×6 Frisch-grid CdZnTe detectors, each with a size of 6×6 ×15 mm 3. Since it is easier and more practical to grow small CdZnTe crystals rather than large monolithic ones, constructing a mosaic array of parallelepiped crystals can be an effective way to build a more efficient, large-volume detector. With the fully operational CdZnTe array, we measured the energy spectra for 133Ba -, 137Cs -, 60Co-radiation sources; we also located these sourcesmore » using a Compton imaging approach. Although the Compton camera was small enough to hand-carry, its intrinsic efficiency was several orders higher than those generated in previous researches using spatially separated arrays, because our camera measured the interactions inside the CZT detector array, wherein the detector elements were positioned very close to each other. Lastly, the performance of our camera was compared with that based on a pixelated detector.« less

  5. Hand-held internet tablets for school-based data collection.

    PubMed

    Denny, Simon J; Milfont, Taciano L; Utter, Jennifer; Robinson, Elizabeth M; Ameratunga, Shanthi N; Merry, Sally N; Fleming, Theresa M; Watson, Peter D

    2008-07-26

    In the last 20 years, researchers have been using computer self-administered questionnaires to gather data on a wide range of adolescent health related behaviours. More recently, researchers collecting data in schools have started to use smaller hand-held computers for their ease of use and portability. The aim of this study is to describe a new technology with wi-fi enabled hand-held internet tablets and to compare adolescent preferences of laptop computers or hand-held internet tablets in administering a youth health and well-being questionnaire in a school setting. A total of 177 students took part in a pilot study of a national youth health and wellbeing survey. Students were randomly assigned to internet tablets or laptops at the start of the survey and were changed to the alternate mode of administration about half-way through the questionnaire. Students at the end of the questionnaire were asked which of the two modes of administration (1) they preferred, (2) was easier to use, (3) was more private and confidential, and (4) was easier to answer truthfully. Many students expressed no preference between laptop computers or internet tablets. However, among the students who expressed a preference between laptop computers or internet tablets, the majority of students found the internet tablets more private and confidential (p < 0.001) and easier to answer questions truthfully (p < 0.001) compared to laptop computers. This study demonstrates that using wi-fi enabled hand-held internet tablets is a feasible methodology for school-based surveys especially when asking about sensitive information.

  6. Hand-held internet tablets for school-based data collection

    PubMed Central

    Denny, Simon J; Milfont, Taciano L; Utter, Jennifer; Robinson, Elizabeth M; Ameratunga, Shanthi N; Merry, Sally N; Fleming, Theresa M; Watson, Peter D

    2008-01-01

    Background In the last 20 years, researchers have been using computer self-administered questionnaires to gather data on a wide range of adolescent health related behaviours. More recently, researchers collecting data in schools have started to use smaller hand-held computers for their ease of use and portability. The aim of this study is to describe a new technology with wi-fi enabled hand-held internet tablets and to compare adolescent preferences of laptop computers or hand-held internet tablets in administering a youth health and well-being questionnaire in a school setting. Methods A total of 177 students took part in a pilot study of a national youth health and wellbeing survey. Students were randomly assigned to internet tablets or laptops at the start of the survey and were changed to the alternate mode of administration about half-way through the questionnaire. Students at the end of the questionnaire were asked which of the two modes of administration (1) they preferred, (2) was easier to use, (3) was more private and confidential, and (4) was easier to answer truthfully. Results Many students expressed no preference between laptop computers or internet tablets. However, among the students who expressed a preference between laptop computers or internet tablets, the majority of students found the internet tablets more private and confidential (p < 0.001) and easier to answer questions truthfully (p < 0.001) compared to laptop computers. Conclusion This study demonstrates that using wi-fi enabled hand-held internet tablets is a feasible methodology for school-based surveys especially when asking about sensitive information. PMID:18710505

  7. Low Temperature Photoluminescence Characterization of Orbitally Grown CdZnTe

    NASA Technical Reports Server (NTRS)

    Ritter, Timothy M.; Larson, D. J.

    1998-01-01

    The II-VI ternary alloy CdZnTe is a technologically important material because of its use as a lattice matched substrate for HgCdTe based devices. The increasingly stringent requirements on performance that must be met by such large area infrared detectors also necessitates a higher quality substrate. Such substrate material is typically grown using the Bridgman technique. Due to the nature of bulk semiconductor growth, gravitationally dependent phenomena can adversely affect crystalline quality. The most direct way to alleviate this problem is by crystal growth in a reduced gravity environment. Since it requires hours, even days, to grow a high quality crystal, an orbiting space shuttle or space station provides a superb platform on which to conduct such research. For well over ten years NASA has been studying the effects of microgravity semiconductor crystal growth. This paper reports the results of photoluminescence characterization performed on an arbitrary grown CdZnTe bulk crystal.

  8. Pulse shaping system research of CdZnTe radiation detector for high energy x-ray diagnostic

    NASA Astrophysics Data System (ADS)

    Li, Miao; Zhao, Mingkun; Ding, Keyu; Zhou, Shousen; Zhou, Benjie

    2018-02-01

    As one of the typical wide band-gap semiconductor materials, the CdZnTe material has high detection efficiency and excellent energy resolution for the hard X-ray and the Gamma ray. The generated signal of the CdZnTe detector needs to be transformed to the pseudo-Gaussian pulse with a small impulse-width to remove noise and improve the energy resolution by the following nuclear spectrometry data acquisition system. In this paper, the multi-stage pseudo-Gaussian shaping-filter has been investigated based on the nuclear electronic principle. The optimized circuit parameters were also obtained based on the analysis of the characteristics of the pseudo-Gaussian shaping-filter in our following simulations. Based on the simulation results, the falling-time of the output pulse was decreased and faster response time can be obtained with decreasing shaping-time τs-k. And the undershoot was also removed when the ratio of input resistors was set to 1 to 2.5. Moreover, a two stage sallen-key Gaussian shaping-filter was designed and fabricated by using a low-noise voltage feedback operation amplifier LMH6628. A detection experiment platform had been built by using the precise pulse generator CAKE831 as the imitated radiation pulse which was equivalent signal of the semiconductor CdZnTe detector. Experiment results show that the output pulse of the two stage pseudo-Gaussian shaping filter has minimum 200ns pulse width (FWHM), and the output pulse of each stage was well consistent with the simulation results. Based on the performance in our experiment, this multi-stage pseudo-Gaussian shaping-filter can reduce the event-lost caused by pile-up in the CdZnTe semiconductor detector and improve the energy resolution effectively.

  9. Hand-held medical robots.

    PubMed

    Payne, Christopher J; Yang, Guang-Zhong

    2014-08-01

    Medical robots have evolved from autonomous systems to tele-operated platforms and mechanically-grounded, cooperatively-controlled robots. Whilst these approaches have seen both commercial and clinical success, uptake of these robots remains moderate because of their high cost, large physical footprint and long setup times. More recently, researchers have moved toward developing hand-held robots that are completely ungrounded and manipulated by surgeons in free space, in a similar manner to how conventional instruments are handled. These devices provide specific functions that assist the surgeon in accomplishing tasks that are otherwise challenging with manual manipulation. Hand-held robots have the advantages of being compact and easily integrated into the normal surgical workflow since there is typically little or no setup time. Hand-held devices can also have a significantly reduced cost to healthcare providers as they do not necessitate the complex, multi degree-of-freedom linkages that grounded robots require. However, the development of such devices is faced with many technical challenges, including miniaturization, cost and sterility, control stability, inertial and gravity compensation and robust instrument tracking. This review presents the emerging technical trends in hand-held medical robots and future development opportunities for promoting their wider clinical uptake.

  10. Three-dimensional fluorescence-enhanced optical tomography using a hand-held probe based imaging system.

    PubMed

    Ge, Jiajia; Zhu, Banghe; Regalado, Steven; Godavarty, Anuradha

    2008-07-01

    Hand-held based optical imaging systems are a recent development towards diagnostic imaging of breast cancer. To date, all the hand-held based optical imagers are used to perform only surface mapping and target localization, but are not capable of demonstrating tomographic imaging. Herein, a novel hand-held probe based optical imager is developed towards three-dimensional (3-D) optical tomography studies. The unique features of this optical imager, which primarily consists of a hand-held probe and an intensified charge coupled device detector, are its ability to; (i) image large tissue areas (5 x 10 sq. cm) in a single scan, (ii) perform simultaneous multiple point illumination and collection, thus reducing the overall imaging time; and (iii) adapt to varying tissue curvatures, from a flexible probe head design. Experimental studies are performed in the frequency domain on large slab phantoms (approximately 650 ml) using fluorescence target(s) under perfect uptake (1:0) contrast ratios, and varying target depths (1-2 cm) and X-Y locations. The effect of implementing simultaneous over sequential multiple point illumination towards 3-D tomography is experimentally demonstrated. The feasibility of 3-D optical tomography studies has been demonstrated for the first time using a hand-held based optical imager. Preliminary fluorescence-enhanced optical tomography studies are able to reconstruct 0.45 ml target(s) located at different target depths (1-2 cm). However, the depth recovery was limited as the actual target depth increased, since only reflectance measurements were acquired. Extensive tomography studies are currently carried out to determine the resolution and performance limits of the imager on flat and curved phantoms.

  11. Three-dimensional fluorescence-enhanced optical tomography using a hand-held probe based imaging system

    PubMed Central

    Ge, Jiajia; Zhu, Banghe; Regalado, Steven; Godavarty, Anuradha

    2008-01-01

    Hand-held based optical imaging systems are a recent development towards diagnostic imaging of breast cancer. To date, all the hand-held based optical imagers are used to perform only surface mapping and target localization, but are not capable of demonstrating tomographic imaging. Herein, a novel hand-held probe based optical imager is developed towards three-dimensional (3-D) optical tomography studies. The unique features of this optical imager, which primarily consists of a hand-held probe and an intensified charge coupled device detector, are its ability to; (i) image large tissue areas (5×10 sq. cm) in a single scan, (ii) perform simultaneous multiple point illumination and collection, thus reducing the overall imaging time; and (iii) adapt to varying tissue curvatures, from a flexible probe head design. Experimental studies are performed in the frequency domain on large slab phantoms (∼650 ml) using fluorescence target(s) under perfect uptake (1:0) contrast ratios, and varying target depths (1–2 cm) and X-Y locations. The effect of implementing simultaneous over sequential multiple point illumination towards 3-D tomography is experimentally demonstrated. The feasibility of 3-D optical tomography studies has been demonstrated for the first time using a hand-held based optical imager. Preliminary fluorescence-enhanced optical tomography studies are able to reconstruct 0.45 ml target(s) located at different target depths (1–2 cm). However, the depth recovery was limited as the actual target depth increased, since only reflectance measurements were acquired. Extensive tomography studies are currently carried out to determine the resolution and performance limits of the imager on flat and curved phantoms. PMID:18697559

  12. Hand-Held Devices Detect Explosives and Chemical Agents

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Ion Applications Inc., of West Palm Beach, Florida, partnered with Ames Research Center through Small Business Innovation Research (SBIR) agreements to develop a miniature version ion mobility spectrometer (IMS). While NASA was interested in the instrument for detecting chemicals during exploration of distant planets, moons, and comets, the company has incorporated the technology into a commercial hand-held IMS device for use by the military and other public safety organizations. Capable of detecting and identifying molecules with part-per-billion sensitivity, the technology now provides soldiers with portable explosives and chemical warfare agent detection. The device is also being adapted for detecting drugs and is employed in industrial processes such as semiconductor manufacturing.

  13. 30 CFR 57.7053 - Moving hand-held drills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Moving hand-held drills. 57.7053 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface and Underground § 57.7053 Moving hand-held drills. Before hand-held...

  14. 30 CFR 57.7053 - Moving hand-held drills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Moving hand-held drills. 57.7053 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface and Underground § 57.7053 Moving hand-held drills. Before hand-held...

  15. 30 CFR 57.7053 - Moving hand-held drills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Moving hand-held drills. 57.7053 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface and Underground § 57.7053 Moving hand-held drills. Before hand-held...

  16. 30 CFR 57.7053 - Moving hand-held drills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Moving hand-held drills. 57.7053 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface and Underground § 57.7053 Moving hand-held drills. Before hand-held...

  17. 30 CFR 57.7053 - Moving hand-held drills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Moving hand-held drills. 57.7053 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface and Underground § 57.7053 Moving hand-held drills. Before hand-held...

  18. 30 CFR 57.12033 - Hand-held electric tools.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Hand-held electric tools. 57.12033 Section 57.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Surface and Underground § 57.12033 Hand-held electric tools. Hand-held electric tools shall not be...

  19. 30 CFR 57.12033 - Hand-held electric tools.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Hand-held electric tools. 57.12033 Section 57.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Surface and Underground § 57.12033 Hand-held electric tools. Hand-held electric tools shall not be...

  20. 30 CFR 57.12033 - Hand-held electric tools.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Hand-held electric tools. 57.12033 Section 57.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Surface and Underground § 57.12033 Hand-held electric tools. Hand-held electric tools shall not be...

  1. 30 CFR 57.12033 - Hand-held electric tools.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Hand-held electric tools. 57.12033 Section 57.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Surface and Underground § 57.12033 Hand-held electric tools. Hand-held electric tools shall not be...

  2. 30 CFR 57.12033 - Hand-held electric tools.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Hand-held electric tools. 57.12033 Section 57.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Surface and Underground § 57.12033 Hand-held electric tools. Hand-held electric tools shall not be...

  3. 30 CFR 56.7053 - Moving hand-held drills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Moving hand-held drills. 56.7053 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7053 Moving hand-held drills. Before hand-held drills are moved from one...

  4. 30 CFR 56.7053 - Moving hand-held drills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Moving hand-held drills. 56.7053 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7053 Moving hand-held drills. Before hand-held drills are moved from one...

  5. 30 CFR 56.7053 - Moving hand-held drills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Moving hand-held drills. 56.7053 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7053 Moving hand-held drills. Before hand-held drills are moved from one...

  6. 30 CFR 56.7053 - Moving hand-held drills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Moving hand-held drills. 56.7053 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7053 Moving hand-held drills. Before hand-held drills are moved from one...

  7. 30 CFR 56.7053 - Moving hand-held drills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Moving hand-held drills. 56.7053 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7053 Moving hand-held drills. Before hand-held drills are moved from one...

  8. Hand-held radiometry: A set of notes developed for use at the Workshop of Hand-held radiometry

    NASA Technical Reports Server (NTRS)

    Jackson, R. D.; Pinter, P. J., Jr.; Reginato, R. J.; Idso, S. B. (Principal Investigator)

    1980-01-01

    A set of notes was developed to aid the beginner in hand-held radiometry. The electromagnetic spectrum is reviewed, and pertinent terms are defined. View areas of multiband radiometers are developed to show the areas of coincidence of adjacent bands. The amounts of plant cover seen by radiometers having different fields of view are described. Vegetation indices are derived and discussed. Response functions of several radiometers are shown and applied to spectrometer data taken over 12 wheat plots, to provide a comparison of instruments and bands within and among instruments. The calculation of solar time is reviewed and applied to the calculation of the local time of LANDSAT satellite overpasses for any particular location in the Northern Hemisphere. The use and misuse of hand-held infrared thermometers are discussed, and a procedure for photographic determination of plant cover is described. Some suggestions are offered concerning procedures to be followed when collecting hand-held spectral and thermal data. A list of references pertinent to hand-held radiometry is included.

  9. Choosing a Hand-Held Inventory Device

    ERIC Educational Resources Information Center

    Green, Lois; Hughes, Janet; Neff, Verne; Notartomas, Trish

    2008-01-01

    In spring of 2006, a task force was charged to look at the feasibility of acquiring hand-held inventory devices for the Pennsylvania State University Libraries (PSUL). The task force's charge was not to look at the whole concept of doing an inventory, but rather to focus on the feasibility of acquiring hand-held devices to use in an inventory.…

  10. Comparison of the surfaces and interfaces formed for sputter and electroless deposited gold contacts on CdZnTe

    NASA Astrophysics Data System (ADS)

    Bell, Steven J.; Baker, Mark A.; Duarte, Diana D.; Schneider, Andreas; Seller, Paul; Sellin, Paul J.; Veale, Matthew C.; Wilson, Matthew D.

    2018-01-01

    Cadmium zinc telluride (CdZnTe) is a leading sensor material for spectroscopic X/γ-ray imaging in the fields of homeland security, medical imaging, industrial analysis and astrophysics. The metal-semiconductor interface formed during contact deposition is of fundamental importance to the spectroscopic performance of the detector and is primarily determined by the deposition method. A multi-technique analysis of the metal-semiconductor interface formed by sputter and electroless deposition of gold onto (111) aligned CdZnTe is presented. Focused ion beam (FIB) cross section imaging, X-ray photoelectron spectroscopy (XPS) depth profiling and current-voltage (IV) analysis have been applied to determine the structural, chemical and electronic properties of the gold contacts. In a novel approach, principal component analysis has been employed on the XPS depth profiles to extract detailed chemical state information from different depths within the profile. It was found that electroless deposition forms a complicated, graded interface comprised of tellurium oxide, gold/gold telluride particulates, and cadmium chloride. This compared with a sharp transition from surface gold to bulk CdZnTe observed for the interface formed by sputter deposition. The electronic (IV) response for the detector with electroless deposited contacts was symmetric, but was asymmetric for the detector with sputtered gold contacts. This is due to the electroless deposition degrading the difference between the Cd- and Te-faces of the CdZnTe (111) crystal, whilst these differences are maintained for the sputter deposited gold contacts. This work represents an important step in the optimisation of the metal-semiconductor interface which currently is a limiting factor in the development of high resolution CdZnTe detectors.

  11. Practical applications of hand-held computers in dermatology.

    PubMed

    Goldblum, Orin M

    2002-09-01

    For physicians, hand-held computers are gaining popularity as point of care reference tools. The convergence of hand-held computers, the Internet, and wireless networks will enable these devices to assume more essential roles as mobile transmitters and receivers of digital medical Information. In addition to serving as portable medical reference sources, these devices can be Internet-enabled, allowing them to communicate over wireless wide and local area networks. With enhanced wireless connectivity, hand-held computers can be used at the point of patient care for charge capture, electronic prescribing, laboratory test ordering, laboratory result retrieval, web access, e-mail communication, and other clinical and administrative tasks. Physicians In virtually every medical specialty have begun using these devices in various ways. This review of hand-held computer use in dermatology illustrates practical examples of the many different ways hand-held computers can be effectively used by the practicing dermatologist.

  12. Intrinsic fluorescence based in-vivo detection of cervical precancer with hand held prototype device

    NASA Astrophysics Data System (ADS)

    Meena, Bharat Lal; Raikwar, Akanksha; Pandey, Kiran; Agarwal, Asha; Pantola, Chayanika; Pradhan, Asima

    2018-02-01

    A prototype device (hand held probe) designed and fabricated in the lab has been tested for cervical precancer detection using intrinsic fluorescence. The intrinsic fluorescence gets strongly modulated by the interplay of scattering and absorption. This masks valuable biochemical information which is present in the intrinsic fluorescence. These distortion effects can be minimized by normalizing the polarized fluorescence spectra by the polarized elastic scattering spectra. The measurements have been made with a in-house fabricated device using a 405 nm diode laser and white light source respectively. 166 sites of different grades of cervical pre-cancer biopsy samples (CIN I and CIN II) (CIN: cervical intraepithelial neoplastic) have been discriminated from 29 sites of normal biopsy samples using principal component analysis (PCA) based linear discriminant analysis (LDA). The sensitivity and specificity for discrimination of normal samples from CIN I are found to be 99% and 96% respectively. Further the normal samples can be discriminated from CIN II samples with 96% sensitivity and 96% specificity. Based on these promising ex-vivo results an in-vivo study on patients has been initiated in the hospital. The hand held device built in-house shows promise as a useful tool for in vivo cervical precancer detection by polarized fluorescence. Preliminary in-vivo results on 10 patients indicate the efficacy of the hand held device for screening cervical precancers using intrinsic fluorescence.

  13. An efficient solid modeling system based on a hand-held 3D laser scan device

    NASA Astrophysics Data System (ADS)

    Xiong, Hanwei; Xu, Jun; Xu, Chenxi; Pan, Ming

    2014-12-01

    The hand-held 3D laser scanner sold in the market is appealing for its port and convenient to use, but price is expensive. To develop such a system based cheap devices using the same principles as the commercial systems is impossible. In this paper, a simple hand-held 3D laser scanner is developed based on a volume reconstruction method using cheap devices. Unlike convenient laser scanner to collect point cloud of an object surface, the proposed method only scan few key profile curves on the surface. Planar section curve network can be generated from these profile curves to construct a volume model of the object. The details of design are presented, and illustrated by the example of a complex shaped object.

  14. Digital hand-held temperature monitor

    NASA Astrophysics Data System (ADS)

    Allin, L. V.; Ferrari, I.

    1980-09-01

    A hand-held non-invasive monitoring instrument has been designed, constructed and tested to allow core temperature measurements to be obtained from human subjects who have swallowed a temperature-sensing radio transmitter (radio pill). This instrument uses a simple AM radio for a receiver, digital circuitry to decode the received signal and a four-digit LED module to display the temperature. The unit, which is battery-powered, can be held in one hand while an antenna probe is swept over the abdomen of the subject until a continuously audible signal is generated by a piezoelectric sound source, indicating reception. The digital display then presents the body core temperature in tenths of a degree Celsius.

  15. Smartphone based hand-held quantitative phase microscope using the transport of intensity equation method.

    PubMed

    Meng, Xin; Huang, Huachuan; Yan, Keding; Tian, Xiaolin; Yu, Wei; Cui, Haoyang; Kong, Yan; Xue, Liang; Liu, Cheng; Wang, Shouyu

    2016-12-20

    In order to realize high contrast imaging with portable devices for potential mobile healthcare, we demonstrate a hand-held smartphone based quantitative phase microscope using the transport of intensity equation method. With a cost-effective illumination source and compact microscope system, multi-focal images of samples can be captured by the smartphone's camera via manual focusing. Phase retrieval is performed using a self-developed Android application, which calculates sample phases from multi-plane intensities via solving the Poisson equation. We test the portable microscope using a random phase plate with known phases, and to further demonstrate its performance, a red blood cell smear, a Pap smear and monocot root and broad bean epidermis sections are also successfully imaged. Considering its advantages as an accurate, high-contrast, cost-effective and field-portable device, the smartphone based hand-held quantitative phase microscope is a promising tool which can be adopted in the future in remote healthcare and medical diagnosis.

  16. A hand-held electronic tongue based on fluorometry for taste assessment of tea.

    PubMed

    Chang, Kuang-Hua; Chen, Richie L C; Hsieh, Bo-Chuan; Chen, Po-Chung; Hsiao, Hsien-Yi; Nieh, Chi-Hua; Cheng, Tzong-Jih

    2010-12-15

    A hand-held electronic tongue was developed for determining taste levels of astringency and umami in tea infusions. The sensing principles are based on quenching the fluorescence of 3-aminophthalate by tannin, and the fluorogenic reaction of o-phthalaldehyde (OPA) with amino acids to determine astringency and umami levels, respectively. Both reactions were measured by a single fluorescence sensing system with same excitation and emission wavelengths (340/425 nm). This work describes in detail the design, fabrication, and performance evaluation of a hand-held fluorometer with an ultra-violet light emitted diode (UVLED) and a photo-detector with a filter built-in. The dimension and the weight of proposed electronic tongue prototype are only 120×60×65 mm(3) and 150 g, respectively. The detection limits of this prototype for theanine and tannic acid were 0.2 μg/ml and 1 μg/ml, respectively. Correlation coefficients of this prototype compared with a commercial fluorescence instrument are both higher than 0.995 in determinations of tannin acid and theanine. Linear detection ranges of the hand-held fluorometer for tannic acid and theanine are 1-20 μg/ml and 0.2-10 μg/ml (CV<5%, n=3), respectively. A specified taste indicator for tea, defined as ratio of umami to astringency, was adopted here to effectively distinguish flavour quality of partially fermented Oolong teas. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Surface Passivation of CdZnTe Detector by Hydrogen Peroxide Solution Etching

    NASA Technical Reports Server (NTRS)

    Hayes, M.; Chen, H.; Chattopadhyay, K.; Burger, A.; James, R. B.

    1998-01-01

    The spectral resolution of room temperature nuclear radiation detectors such as CdZnTe is usually limited by the presence of conducting surface species that increase the surface leakage current. Studies have shown that the leakage current can be reduced by proper surface preparation. In this study, we try to optimize the performance of CdZnTe detector by etching the detector with hydrogen peroxide solution as function of concentration and etching time. The passivation effect that hydrogen peroxide introduces have been investigated by current-voltage (I-V) measurement on both parallel strips and metal-semiconductor-metal configurations. The improvements on the spectral response of Fe-55 and 241Am due to hydrogen peroxide treatment are presented and discussed.

  18. 30 CFR 56.14116 - Hand-held power tools.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Hand-held power tools. 56.14116 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 56.14116 Hand-held power tools. (a) Power drills...

  19. 30 CFR 56.14116 - Hand-held power tools.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Hand-held power tools. 56.14116 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 56.14116 Hand-held power tools. (a) Power drills...

  20. 30 CFR 56.14116 - Hand-held power tools.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Hand-held power tools. 56.14116 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 56.14116 Hand-held power tools. (a) Power drills...

  1. 30 CFR 57.14116 - Hand-held power tools.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Hand-held power tools. 57.14116 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 57.14116 Hand-held power tools. (a) Power drills...

  2. 30 CFR 56.14116 - Hand-held power tools.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Hand-held power tools. 56.14116 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 56.14116 Hand-held power tools. (a) Power drills...

  3. 30 CFR 57.14116 - Hand-held power tools.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Hand-held power tools. 57.14116 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 57.14116 Hand-held power tools. (a) Power drills...

  4. 30 CFR 57.14116 - Hand-held power tools.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Hand-held power tools. 57.14116 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 57.14116 Hand-held power tools. (a) Power drills...

  5. 30 CFR 56.14116 - Hand-held power tools.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Hand-held power tools. 56.14116 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 56.14116 Hand-held power tools. (a) Power drills...

  6. 30 CFR 57.14116 - Hand-held power tools.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Hand-held power tools. 57.14116 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 57.14116 Hand-held power tools. (a) Power drills...

  7. 30 CFR 57.14116 - Hand-held power tools.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Hand-held power tools. 57.14116 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 57.14116 Hand-held power tools. (a) Power drills...

  8. Growth of CdZnTe Crystals for Radiation Detector Applications by Directional Solidification

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua

    2014-01-01

    Advances in Cadmium Zinc Telluride (Cd(sub 1-x)Zn(sub x)Te) growth techniques are needed for the production of large-scale arrays of gamma and x-ray astronomy. The research objective is to develop crystal growth recipes and techniques to obtain large, high quality CdZnTe single crystal with reduced defects, such as charge trapping, twinning, and tellurium precipitates, which degrade the performance of CdZnTe and, at the same time, to increase the yield of usable material from the CdZnTe ingot. A low gravity material experiment, "Crystal Growth of Ternary Compound Semiconductors in Low Gravity Environment", will be performed in the Material Science Research Rack (MSRR) on International Space Station (ISS). One section of the flight experiment is the melt growth of CdZnTe ternary compounds. This talk will focus on the ground-based studies on the growth of Cd(sub 0.80)Zn(sub 0.20)Te crystals for radiation detector applications by directional solidification. In this investigation, we have improved the properties that are most critical for the detector applications (electrical properties and crystalline quality): a) Electrical resistivity: use high purity starting materials (with reproducible impurity levels) and controlled Cd over pressure during growth to reproducibly balance the impurity levels and Cd vacancy concentration b) Crystalline quality: use ultra-clean growth ampoule (no wetting after growth), optimized thermal profile and ampoule design, as well as a technique for supercool reduction to growth large single crystal with high crystalline quality

  9. Hand-held computer operating system program for collection of resident experience data.

    PubMed

    Malan, T K; Haffner, W H; Armstrong, A Y; Satin, A J

    2000-11-01

    To describe a system for recording resident experience involving hand-held computers with the Palm Operating System (3 Com, Inc., Santa Clara, CA). Hand-held personal computers (PCs) are popular, easy to use, inexpensive, portable, and can share data among other operating systems. Residents in our program carry individual hand-held database computers to record Residency Review Committee (RRC) reportable patient encounters. Each resident's data is transferred to a single central relational database compatible with Microsoft Access (Microsoft Corporation, Redmond, WA). Patient data entry and subsequent transfer to a central database is accomplished with commercially available software that requires minimal computer expertise to implement and maintain. The central database can then be used for statistical analysis or to create required RRC resident experience reports. As a result, the data collection and transfer process takes less time for residents and program director alike, than paper-based or central computer-based systems. The system of collecting resident encounter data using hand-held computers with the Palm Operating System is easy to use, relatively inexpensive, accurate, and secure. The user-friendly system provides prompt, complete, and accurate data, enhancing the education of residents while facilitating the job of the program director.

  10. Bone age maturity assessment using hand-held device

    NASA Astrophysics Data System (ADS)

    Ratib, Osman M.; Gilsanz, Vicente; Liu, Xiaodong; Boechat, M. I.

    2004-04-01

    Purpose: Assessment of bone maturity is traditionally performed through visual comparison of hand and wrist radiograph with existing reference images in textbooks. Our goal was to develop a digital index based on idealized hand Xray images that can be incorporated in a hand held computer and used for visual assessment of bone age for patients. Material and methods: Due to the large variability in bone maturation in normals, we generated a set of "ideal" images obtained by computer combinations of images from our normal reference data sets. Software for hand-held PDA devices was developed for easy navigation through the set of images and visual selection of matching images. A formula based on our statistical analysis provides the standard deviation from normal based on the chronological age of the patient. The accuracy of the program was compared to traditional interpretation by two radiologists in a double blind reading of 200 normal Caucasian children (100 boys, 100 girls). Results: Strong correlations were present between chronological age and bone age (r > 0.9) with no statistical difference between the digital and traditional assessment methods. Determinations of carpal bone maturity in adolescents was slightly more accurate using the digital system. The users did praise the convenience and effectiveness of the digital Palm Index in clinical practice. Conclusion: An idealized digital Palm Bone Age Index provides a convenient and effective alternative to conventional atlases for the assessment of skeletal maturity.

  11. Hand-held radiometer red and photographic infrared spectral measurements of agricultural crops

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.; Fan, C. J.; Elgin, J. H., Jr.; Mcmurtrey, J. E., III

    1978-01-01

    Red and photographic infrared radiance data, collected under a variety of conditions at weekly intervals throughout the growing season using a hand-held radiometer, were used to monitor crop growth and development. The vegetation index transformation was used to effectively compensate for the different irradiational conditions encountered during the study period. These data, plotted against time, compared the different crops measured by comparing their green leaf biomass dynamics. This approach, based entirely upon spectral inputs, closely monitors crop growth and development and indicates the promise of ground-based hand-held radiometer measurements of crops.

  12. Hand held data collection and monitoring system for nuclear facilities

    DOEpatents

    Brayton, D.D.; Scharold, P.G.; Thornton, M.W.; Marquez, D.L.

    1999-01-26

    Apparatus and method is disclosed for a data collection and monitoring system that utilizes a pen based hand held computer unit which has contained therein interaction software that allows the user to review maintenance procedures, collect data, compare data with historical trends and safety limits, and input new information at various collection sites. The system has a means to allow automatic transfer of the collected data to a main computer data base for further review, reporting, and distribution purposes and uploading updated collection and maintenance procedures. The hand held computer has a running to-do list so sample collection and other general tasks, such as housekeeping are automatically scheduled for timely completion. A done list helps users to keep track of all completed tasks. The built-in check list assures that work process will meet the applicable processes and procedures. Users can hand write comments or drawings with an electronic pen that allows the users to directly interface information on the screen. 15 figs.

  13. Hand held data collection and monitoring system for nuclear facilities

    DOEpatents

    Brayton, Darryl D.; Scharold, Paul G.; Thornton, Michael W.; Marquez, Diana L.

    1999-01-01

    Apparatus and method is disclosed for a data collection and monitoring system that utilizes a pen based hand held computer unit which has contained therein interaction software that allows the user to review maintenance procedures, collect data, compare data with historical trends and safety limits, and input new information at various collection sites. The system has a means to allow automatic transfer of the collected data to a main computer data base for further review, reporting, and distribution purposes and uploading updated collection and maintenance procedures. The hand held computer has a running to-do list so sample collection and other general tasks, such as housekeeping are automatically scheduled for timely completion. A done list helps users to keep track of all completed tasks. The built-in check list assures that work process will meet the applicable processes and procedures. Users can hand write comments or drawings with an electronic pen that allows the users to directly interface information on the screen.

  14. System design of a hand-held mobile robot for craniotomy.

    PubMed

    Kane, Gavin; Eggers, Georg; Boesecke, Robert; Raczkowsky, Jörg; Wörn, Heinz; Marmulla, Rüdiger; Mühling, Joachim

    2009-01-01

    This contribution reports the development and initial testing of a Mobile Robot System for Surgical Craniotomy, the Craniostar. A kinematic system based on a unicycle robot is analysed to provide local positioning through two spiked wheels gripping directly onto a patients skull. A control system based on a shared control system between both the Surgeon and Robot is employed in a hand-held design that is tested initially on plastic phantom and swine skulls. Results indicate that the system has substantially lower risk than present robotically assisted craniotomies, and despite being a hand-held mobile robot, the Craniostar is still capable of sub-millimetre accuracy in tracking along a trajectory and thus achieving an accurate transfer of pre-surgical plan to the operating room procedure, without the large impact of current medical robots based on modified industrial robots.

  15. Analysis of Deep and Shallow Traps in Semi-Insulating CdZnTe

    DOE PAGES

    Kim, Kihyun; Yoon, Yongsu; James, Ralph B.

    2018-03-13

    Trap levels which are deep or shallow play an important role in the electrical and the optical properties of a semiconductor; thus, a trap level analysis is very important in most semiconductor devices. Deep-level defects in CdZnTe are essential in Fermi level pinning at the middle of the bandgap and are responsible for incomplete charge collection and polarization effects. However, a deep level analysis in semi-insulating CdZnTe (CZT) is very difficult. Theoretical capacitance calculation for a metal/insulator/CZT (MIS) device with deep-level defects exhibits inflection points when the donor/acceptor level crosses the Fermi level in the surface-charge layer (SCL). Three CZTmore » samples with different resistivities, 2 × 10 4 (n-type), 2 × 10 6 (p-type), and 2 × 10 10 (p-type) Ω·cm, were used in fabricating the MIS devices. These devices showed several peaks in their capacitance measurements due to upward/downward band bending that depend on the surface potential. In conclusion, theoretical and experimental capacitance measurements were in agreement, except in the fully compensated case.« less

  16. Analysis of Deep and Shallow Traps in Semi-Insulating CdZnTe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kihyun; Yoon, Yongsu; James, Ralph B.

    Trap levels which are deep or shallow play an important role in the electrical and the optical properties of a semiconductor; thus, a trap level analysis is very important in most semiconductor devices. Deep-level defects in CdZnTe are essential in Fermi level pinning at the middle of the bandgap and are responsible for incomplete charge collection and polarization effects. However, a deep level analysis in semi-insulating CdZnTe (CZT) is very difficult. Theoretical capacitance calculation for a metal/insulator/CZT (MIS) device with deep-level defects exhibits inflection points when the donor/acceptor level crosses the Fermi level in the surface-charge layer (SCL). Three CZTmore » samples with different resistivities, 2 × 10 4 (n-type), 2 × 10 6 (p-type), and 2 × 10 10 (p-type) Ω·cm, were used in fabricating the MIS devices. These devices showed several peaks in their capacitance measurements due to upward/downward band bending that depend on the surface potential. In conclusion, theoretical and experimental capacitance measurements were in agreement, except in the fully compensated case.« less

  17. Automated Hand-Held UXO Detection, Classification & Discrimination Sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, Thomas H.

    2000-06-12

    The research focused on procedures for target discrimination and classification using hand-held EMI sensors. The idea is to have a small, portable sensor that can be operated in a sweep or similar pattern in front of the operator, and that is capable of distinguishing between buried UXO and clutter on the spot. Curing Phase 1, we developed the processing techniques for distinguishing between buried UXO and clutter using the EM61-HH hand-held metal detector.

  18. Hand held phase-shifting diffraction Moire interferometer

    DOEpatents

    Deason, V.A.; Ward, M.B.

    1994-09-20

    An interferometer is described in which a coherent beam of light is generated within a remote case and transmitted to a hand held unit tethered to said remote case, said hand held unit having optical elements for directing a pair of mutually coherent collimated laser beams at a diffraction grating. Data from the secondary or diffracted beams are then transmitted to a separate video and data acquisition system for recording and analysis for load induced deformation or for identification purposes. Means are also provided for shifting the phase of one incident beam relative to the other incident beam and being controlled from within said remote case. 4 figs.

  19. Hand held phase-shifting diffraction moire interferometer

    DOEpatents

    Deason, Vance A.; Ward, Michael B.

    1994-01-01

    An interferometer in which a coherent beam of light is generated within a remote case and transmitted to a hand held unit tethered to said remote case, said hand held unit having optical elements for directing a pair of mutually coherent collimated laser beams at a diffraction grating. Data from the secondary or diffracted beams are then transmitted to a separate video and data acquisition system for recording and analysis for load induced deformation or for identification purposes. Means are also provided for shifting the phase of one incident beam relative to the other incident beam and being controlled from within said remote case.

  20. Hand Held Device for Wireless Powering and Interrogation of Biomems Sensors and Actuators

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N (Inventor); Miranda, Felix Antonio (Inventor)

    2007-01-01

    A compact, hand-held device for wireless powering, interrogation and data retrieval from at least one implanted sensor. The hand-held device includes an antenna for powering an implanted sensor and for receiving data from the implanted sensor to the hand-held device for at least one of storage, display or analysis. The hand-held device establishes electromagnetic coupling with a low radiating radio frequency power inductor in the implanted sensor at a predefined separation and the antenna geometry allows for the antenna to power, interrogate and retrieve data from the implanted sensor without strapping the hand-held device to a human body housing the implanted sensor The hand-held device optionally allows for activation of the implanted sensor only during interrogation and data retrieval.

  1. Progress in the Development of CdZnTe Unipolar Detectors for Different Anode Geometries and Data Corrections

    PubMed Central

    Zhang, Qiushi; Zhang, Congzhe; Lu, Yanye; Yang, Kun; Ren, Qiushi

    2013-01-01

    CdZnTe detectors have been under development for the past two decades, providing good stopping power for gamma rays, lightweight camera heads and improved energy resolution. However, the performance of this type of detector is limited primarily by incomplete charge collection problems resulting from charge carriers trapping. This paper is a review of the progress in the development of CdZnTe unipolar detectors with some data correction techniques for improving performance of the detectors. We will first briefly review the relevant theories. Thereafter, two aspects of the techniques for overcoming the hole trapping issue are summarized, including irradiation direction configuration and pulse shape correction methods. CdZnTe detectors of different geometries are discussed in detail, covering the principal of the electrode geometry design, the design and performance characteristics, some detector prototypes development and special correction techniques to improve the energy resolution. Finally, the state of art development of 3-D position sensing and Compton imaging technique are also discussed. Spectroscopic performance of CdZnTe semiconductor detector will be greatly improved even to approach the statistical limit on energy resolution with the combination of some of these techniques. PMID:23429509

  2. Driver hand-held cellular phone use: a four-year analysis.

    PubMed

    Eby, David W; Vivoda, Jonathon M; St Louis, Renée M

    2006-01-01

    The use of hand-held cellular (mobile) phones while driving has stirred more debate, passion, and research than perhaps any other traffic safety issue in the past several years. There is ample research showing that the use of either hand-held or hands-free cellular phones can lead to unsafe driving patterns. Whether or not these performance deficits increase the risk of crash is difficult to establish, but recent studies are beginning to suggest that cellular phone use elevates crash risk. The purpose of this study was to assess changes in the rate of hand-held cellular phone use by motor-vehicle drivers on a statewide level in Michigan. This study presents the results of 13 statewide surveys of cellular phone use over a 4-year period. Hand-held cellular phone use data were collected through direct observation while vehicles were stopped at intersections and freeway exit ramps. Data were weighted to be representative of all drivers traveling during daylight hours in Michigan. The study found that driver hand-held cellular phone use has more than doubled between 2001 and 2005, from 2.7% to 5.8%. This change represents an average increase of 0.78 percentage points per year. The 5.8% use rate observed in 2005 means that at any given daylight hour, around 36,550 drivers were conversing on cellular phones while driving on Michigan roadways. The trend line fitted to these data predicts that by the year 2010, driver hand-held cellular phone use will be around 8.6%, or 55,000 drivers at any given daylight hour. These results make it clear that cellular phone use while driving will continue to be an important traffic safety issue, and highlight the importance of continued attempts to generate new ways of alleviating this potential hazard.

  3. Nonvolatile gate effect in a ferroelectric-semiconductor quantum well.

    PubMed

    Stolichnov, Igor; Colla, Enrico; Setter, Nava; Wojciechowski, Tomasz; Janik, Elzbieta; Karczewski, Grzegorz

    2006-12-15

    Field effect transistors with ferroelectric gates would make ideal rewritable nonvolatile memories were it not for the severe problems in integrating the ferroelectric oxide directly on the semiconductor channel. We propose a powerful way to avoid these problems using a gate material that is ferroelectric and semiconducting simultaneously. First, ferroelectricity in semiconductor (Cd,Zn)Te films is proven and studied using modified piezoforce scanning probe microscopy. Then, a rewritable field effect device is demonstrated by local poling of the (Cd,Zn)Te layer of a (Cd,Zn)Te/CdTe quantum well, provoking a reversible, nonvolatile change in the resistance of the 2D electron gas. The results point to a potential new family of nanoscale one-transistor memories.

  4. Promoting Physical Activity through Hand-Held Computer Technology

    PubMed Central

    King, Abby C.; Ahn, David K.; Oliveira, Brian M.; Atienza, Audie A.; Castro, Cynthia M.; Gardner, Christopher D.

    2009-01-01

    Background Efforts to achieve population-wide increases in walking and similar moderate-intensity physical activities potentially can be enhanced through relevant applications of state-of-the-art interactive communication technologies. Yet few systematic efforts to evaluate the efficacy of hand-held computers and similar devices for enhancing physical activity levels have occurred. The purpose of this first-generation study was to evaluate the efficacy of a hand-held computer (i.e., personal digital assistant [PDA]) for increasing moderate intensity or more vigorous (MOD+) physical activity levels over 8 weeks in mid-life and older adults relative to a standard information control arm. Design Randomized, controlled 8-week experiment. Data were collected in 2005 and analyzed in 2006-2007. Setting/Participants Community-based study of 37 healthy, initially underactive adults aged 50 years and older who were randomized and completed the 8-week study (intervention=19, control=18). Intervention Participants received an instructional session and a PDA programmed to monitor their physical activity levels twice per day and provide daily and weekly individualized feedback, goal setting, and support. Controls received standard, age-appropriate written physical activity educational materials. Main Outcome Measure Physical activity was assessed via the Community Healthy Activities Model Program for Seniors (CHAMPS) questionnaire at baseline and 8 weeks. Results Relative to controls, intervention participants reported significantly greater 8-week mean estimated caloric expenditure levels and minutes per week in MOD+ activity (p<0.04). Satisfaction with the PDA was reasonably high in this largely PDA-naive sample. Conclusions Results from this first-generation study indicate that hand-held computers may be effective tools for increasing initial physical activity levels among underactive adults. PMID:18201644

  5. Vibration and impulsivity analysis of hand held olive beaters.

    PubMed

    Deboli, Roberto; Calvo, Angela; Preti, Christian

    2016-07-01

    To provide more effective evaluations of hand arm vibration syndromes caused by hand held olive beaters, this study focused on two aspects: the acceleration measured at the tool pole and the analysis of the impulsivity, using the crest factor. The signals were frequency weighted using the weighting curve Wh as described in the ISO 5349-1 standard. The same source signals were also filtered by the Wh-bl filter (ISO/TS 15694), because the weighting filter Wh (unlike the Wh-bl filter) could underestimate the effect of high frequency vibration on vibration-induced finger disorders. Ten (experienced) male operators used three beater models (battery powered) in the real olive harvesting condition. High vibration total values were obtained with values never lower than 20 m(-2). Concerning the crest factor, the values ranged from 5 to more than 22. This work demonstrated that the hand held olive beaters produced high impulsive loads comparable to the industry hand held tools. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  6. CdZnTe Image Detectors for Hard-X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    Chen, C. M. Hubert; Cook, Walter R.; Harrison, Fiona A.; Lin, Jiao Y. Y.; Mao, Peter H.; Schindler, Stephen M.

    2005-01-01

    Arrays of CdZnTe photodetectors and associated electronic circuitry have been built and tested in a continuing effort to develop focal-plane image sensor systems for hard-x-ray telescopes. Each array contains 24 by 44 pixels at a pitch of 498 m. The detector designs are optimized to obtain low power demand with high spectral resolution in the photon- energy range of 5 to 100 keV. More precisely, each detector array is a hybrid of a CdZnTe photodetector array and an application-specific integrated circuit (ASIC) containing an array of amplifiers in the same pixel pattern as that of the detectors. The array is fabricated on a single crystal of CdZnTe having dimensions of 23.6 by 12.9 by 2 mm. The detector-array cathode is a monolithic platinum contact. On the anode plane, the contact metal is patterned into the aforementioned pixel array, surrounded by a guard ring that is 1 mm wide on three sides and is 0.1 mm wide on the fourth side so that two such detector arrays can be placed side-by-side to form a roughly square sensor area with minimal dead area between them. Figure 1 shows two anode patterns. One pattern features larger pixel anode contacts, with a 30-m gap between them. The other pattern features smaller pixel anode contacts plus a contact for a shaping electrode in the form of a grid that separates all the pixels. In operation, the grid is held at a potential intermediate between the cathode and anode potentials to steer electric charges toward the anode in order to reduce the loss of charges in the inter-anode gaps. The CdZnTe photodetector array is mechanically and electrically connected to the ASIC (see Figure 2), either by use of indium bump bonds or by use of conductive epoxy bumps on the CdZnTe array joined to gold bumps on the ASIC. Hence, the output of each pixel detector is fed to its own amplifier chain.

  7. Distributing Data from Desktop to Hand-Held Computers

    NASA Technical Reports Server (NTRS)

    Elmore, Jason L.

    2005-01-01

    A system of server and client software formats and redistributes data from commercially available desktop to commercially available hand-held computers via both wired and wireless networks. This software is an inexpensive means of enabling engineers and technicians to gain access to current sensor data while working in locations in which such data would otherwise be inaccessible. The sensor data are first gathered by a data-acquisition server computer, then transmitted via a wired network to a data-distribution computer that executes the server portion of the present software. Data in all sensor channels -- both raw sensor outputs in millivolt units and results of conversion to engineering units -- are made available for distribution. Selected subsets of the data are transmitted to each hand-held computer via the wired and then a wireless network. The selection of the subsets and the choice of the sequences and formats for displaying the data is made by means of a user interface generated by the client portion of the software. The data displayed on the screens of hand-held units can be updated at rates from 1 to

  8. Analysis of Etched CdZnTe Substrates

    NASA Astrophysics Data System (ADS)

    Benson, J. D.; Bubulac, L. O.; Jaime-Vasquez, M.; Lennon, C. M.; Arias, J. M.; Smith, P. J.; Jacobs, R. N.; Markunas, J. K.; Almeida, L. A.; Stoltz, A.; Wijewarnasuriya, P. S.; Peterson, J.; Reddy, M.; Jones, K.; Johnson, S. M.; Lofgreen, D. D.

    2016-09-01

    State-of-the-art as-received (112)B CdZnTe substrates have been examined for surface impurity contamination and polishing residue. Two 4 cm × 4 cm and one 6 cm × 6 cm (112)B state-of-the-art as-received CdZnTe wafers were analyzed. A maximum surface impurity concentration of Al = 1.7 × 1015 atoms cm-2, Si = 3.7 × 1013 atoms cm-2, Cl = 3.12 × 1015 atoms cm-2, S = 1.7 × 1014 atoms cm-2, P = 1.1 × 1014 atoms cm-2, Fe = 1.0 × 1013 atoms cm-2, Br = 1.2 × 1014 atoms cm-2, and Cu = 4 × 1012 atoms cm-2 was observed on the as-received CdZnTe wafers. CdZnTe particulates and residual SiO2 polishing grit were observed on the surface of the as-received (112)B CdZnTe substrates. The polishing grit/CdZnTe particulate density on CdZnTe wafers was observed to vary across a 6 cm × 6 cm wafer from ˜4 × 107 cm-2 to 2.5 × 108 cm-2. The surface impurity and damage layer of the (112)B CdZnTe wafers dictate that a molecular beam epitaxy (MBE) preparation etch is required. The contamination for one 4 cm × 4 cm and one 6 cm × 6 cm CdZnTe wafer after a standard MBE Br:methanol preparation etch procedure was also analyzed. A maximum surface impurity concentration of Al = 2.4 × 1015 atoms cm-2, Si = 4.0 × 1013 atoms cm-2, Cl = 7.5 × 1013 atoms cm-2, S = 4.4 × 1013 atoms cm-2, P = 9.8 × 1013 atoms cm-2, Fe = 1.0 × 1013 atoms cm-2, Br = 2.9 × 1014 atoms cm-2, and Cu = 5.2 × 1012 atoms cm-2 was observed on the MBE preparation-etched CdZnTe wafers. The MBE preparation-etched surface contamination consists of Cd(Zn)Te particles/flakes. No residual SiO2 polishing grit was observed on the (112)B surface.

  9. Development of Hand-Held Thermographic Inspection Technologies

    DOT National Transportation Integrated Search

    2009-09-01

    This study explored the application of hand-held thermographic cameras for the detection of subsurface delaminations in concrete bridges. The goal of the research was to provide maintenance and inspection personnel with an effective tool for detectin...

  10. Development of hand-held thermographic inspection technologies.

    DOT National Transportation Integrated Search

    2009-09-01

    This study explored the application of hand-held thermographic cameras for the detection of subsurface delaminations in concrete : bridges. The goal of the research was to provide maintenance and inspection personnel with an effective tool for detect...

  11. Attentionally splitting the mass distribution of hand-held rods.

    PubMed

    Burton, G; Turvey, M T

    1991-08-01

    Two experiments on the length-perception capabilities of effortful or dynamic touch differed only in terms of what the subject intended to perceive, while experimental conditions and apparatus were held constant. In each trial, a visually occluded rod was held as still as possible by the subject at an intermediate position. For two thirds of the trials, a weight was attached to the rod above or below the hand. In Experiment 1, in which the subject's task was to perceive the distance reachable with the portion of the rod forward of the hand, perceived extent was a function of the first moment of the mass distribution associated with the forward portion of the rod, and indifferent to the first moment of the entire rod. In Experiment 2, in which the task was to perceive the distance reachable with the entire rod if it was held at an end, the pattern of results was reversed. These results indicate the capability of selective sensitivity to different aspects of a hand-held object's mass distribution, without the possibility of differential exploration specific to these two tasks. Results are discussed in relation to possible roles of differential information, intention, and self-organization in the explanations of selective perceptual abilities.

  12. Implications of Hand Held Electronic Games and Microcomputers for Informal Learning.

    ERIC Educational Resources Information Center

    Kee, Daniel W.

    The use of hand-held electronic devices and microcomputers in places of public access and in the home are discussed. First, the different activities supported by this technology are described, with emphasis on the commonality of game playing to both hand-held devices and microcomputers. The need for research to investigate the motivational…

  13. Hand-held optical imager (Gen-2): improved instrumentation and target detectability

    PubMed Central

    Gonzalez, Jean; DeCerce, Joseph; Erickson, Sarah J.; Martinez, Sergio L.; Nunez, Annie; Roman, Manuela; Traub, Barbara; Flores, Cecilia A.; Roberts, Seigbeh M.; Hernandez, Estrella; Aguirre, Wenceslao; Kiszonas, Richard

    2012-01-01

    Abstract. Hand-held optical imagers are developed by various researchers towards reflectance-based spectroscopic imaging of breast cancer. Recently, a Gen-1 handheld optical imager was developed with capabilities to perform two-dimensional (2-D) spectroscopic as well as three-dimensional (3-D) tomographic imaging studies. However, the imager was bulky with poor surface contact (∼30%) along curved tissues, and limited sensitivity to detect targets consistently. Herein, a Gen-2 hand-held optical imager that overcame the above limitations of the Gen-1 imager has been developed and the instrumentation described. The Gen-2 hand-held imager is less bulky, portable, and has improved surface contact (∼86%) on curved tissues. Additionally, the forked probe head design is capable of simultaneous bilateral reflectance imaging of both breast tissues, and also transillumination imaging of a single breast tissue. Experimental studies were performed on tissue phantoms to demonstrate the improved sensitivity in detecting targets using the Gen-2 imager. The improved instrumentation of the Gen-2 imager allowed detection of targets independent of their location with respect to the illumination points, unlike in Gen-1 imager. The developed imager has potential for future clinical breast imaging with enhanced sensitivity, via both reflectance and transillumination imaging. PMID:23224163

  14. Application of CdZnTe Gamma-Ray Detector for Imaging Corrosion under Insulation

    NASA Astrophysics Data System (ADS)

    Abdullah, J.; Yahya, R.

    2007-05-01

    Corrosion under insulation (CUI) on the external wall of steel pipes is a common problem in many types of industrial plants. This is mainly due to the presence of moisture or water in the insulation materials. This type of corrosion can cause failures in areas that are not normally of a primary concern to an inspection program. The failures are often the result of localised corrosion and not general wasting over a large area. These failures can tee catastrophic in nature or at least have an adverse economic effect in terms of downtime and repairs. There are a number of techniques used today for CUI investigations. The main ones are profile radiography, pulse eddy current, ultrasonic spot readings and insulation removal. A new system now available is portable Pipe-CUI-Profiler. The nucleonic system is based on dual-beam gamma-ray absorption technique using Cadmium Zinc Telluride (CdZnTe) semiconductor detectors. The Pipe-CUI-Profiler is designed to inspect pipes of internal diameter 50, 65, 80, 90, 100, 125 and 150 mm. Pipeline of these sizes with aluminium or thin steel sheathing, containing fibreglass or calcium silicate insulation to thickness of 25, 40 and 50 mm can be inspected. The system has proven to be a safe, fast and effective method of inspecting pipe in industrial plant operations. This paper describes the application of gamma-ray techniques and CdZnTe semiconductor detectors in the development of Pipe-CUI-Profiler for non-destructive imaging of corrosion under insulation of steel pipes. Some results of actual pipe testing in large-scale industrial plant will be presented.

  15. Computer implemented method, and apparatus for controlling a hand-held tool

    NASA Technical Reports Server (NTRS)

    Wagner, Kenneth William (Inventor); Taylor, James Clayton (Inventor)

    1999-01-01

    The invention described here in is a computer-implemented method and apparatus for controlling a hand-held tool. In particular, the control of a hand held tool is for the purpose of controlling the speed of a fastener interface mechanism and the torque applied to fasteners by the fastener interface mechanism of the hand-held tool and monitoring the operating parameters of the tool. The control is embodied in intool software embedded on a processor within the tool which also communicates with remote software. An operator can run the tool, or through the interaction of both software, operate the tool from a remote location, analyze data from a performance history recorded by the tool, and select various torque and speed parameters for each fastener.

  16. Engineering issues for hand-held sensing devices, with examples

    NASA Astrophysics Data System (ADS)

    Freiwald, David A.; Freiwald, Joyce

    1994-03-01

    It is now U.S. defense policy that there will be no new platform starts. The emphasis for platforms will be on O&M cost reduction, life-extension improvements, and force-multiplier- device upgrades. There is also an increasing emphasis on hand-held force-multiplier devices for individuals, which is the focus of this paper. Engineering issues include operations analysis, weight, cube, cost, prime power, ease of use, data storage, reliability, fault tolerance, data communications and human factors. Two examples of hand-held devices are given. Applications include USMC, Army, SOCOM, DEA, FBI, SS, Border Patrol and others. Barriers to adoption of such technology are also discussed.

  17. Use of a hand-held meter for detecting subclinical ketosis in dairy cows.

    PubMed

    Voyvoda, Huseyin; Erdogan, Hasan

    2010-12-01

    The Optium Xceed is a new hand-held meter for determining blood β-hydroxybutyrate (BHBA) and glucose in human medicine. The objective of this study was to compare BHBA and glucose results obtained using the hand-held meter with those results made with a laboratory method and to evaluate its usefulness as a cowside test in the diagnosis of subclinical ketosis (SCK) in dairy cows. Seventy-eight blood samples from clinically healthy Holstein cows between 5 and 60 days post-calving were analysed. BHBA and glucose values were significantly higher with the hand-held meter versus laboratory methods. Correlation coefficients (r) for BHBA and glucose with the Optium Xceed versus laboratory methods were 0.97 and 0.63, respectively. Based on Bland-Altman plot and Passing-Bablok regression, agreement between two methods was good for BHBA but the agreement for glucose was only fair. When SCK was defined as plasma BHBA levels ≥ 1200 μmol/L, the sensitivity and specificity of the hand-held meter ketone testing in determining SCK were 85% and 94%, respectively. Raising the threshold of the laboratory method to ≥ 1400 μmol/L, the sensitivity and specificity incremented to 0.90 and 0.98, respectively. In conclusion, the blood ketone-monitoring device can be used as a rapid and reliable diagnostic test to detect SCK under field conditions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Epilepsy Forewarning Using A Hand-Held Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hively, LM

    2005-02-21

    Over the last decade, ORNL has developed and patented a novel approach for forewarning of a large variety of machine and biomedical events. The present implementation uses desktop computers to analyze archival data. This report describes the next logical step in this effort, namely use of a hand-held device for the analysis.

  19. Hand-held Calculators: Past, Present, and Future

    ERIC Educational Resources Information Center

    Bell, Max; And Others

    1977-01-01

    Recommendations of several publications with regard to the use of hand-held calculators in the mathematics curriculum are presented. Relevant portions of the NACOME and Euclid Conference reports are cited as well as a report to NSF and recommendations from an NIE/NSF conference. Recommendations support expanded use of, and research concerning,…

  20. Hand-held photomicroscope

    NASA Technical Reports Server (NTRS)

    Zabower, H. R. (Inventor)

    1973-01-01

    A small, lightweight, compact, hand-held photomicroscope provides simultaneous viewing and photographing, with adjustable specimen illumination and exchangeable camera format. The novel photomicroscope comprises a main housing having a top plate, bottom plate, and side walls. The objective lens is mounted on the top plate in an inverted manner relative to the normal type of mounting. The specimen holder has an adjusting mechanism for adjustably moving the specimen vertically along an axis extending through the objective lens as well as transverse of the axis. The lens system serves to split the beam of light into two paths, one to the eyepiece and the other to a camera mounting. A light source is mounted on the top plate and directs light onto the specimen. A rheostat device is mounted on the top plate and coupled to the power supply for the light source so that the intensity of the light may be varied.

  1. Hand-Held Volatilome Analyzer Based on Elastically Deformable Nanofibers.

    PubMed

    Yucel, Muge; Akin, Osman; Cayoren, Mehmet; Akduman, Ibrahim; Palaniappan, Alagappan; Liedberg, Bo; Hizal, Gurkan; Inci, Fatih; Yildiz, Umit Hakan

    2018-04-17

    This study reports on a hand-held volatilome analyzer for selective determination of clinically relevant biomarkers in exhaled breath. The sensing platform is based on electrospun polymer nanofiber-multiwalled carbon nanotube (MWCNT) sensing microchannels. Polymer nanofibers of poly(vinylidene fluoride) (PVDF), polystyrene (PS), and poly(methyl methacrylate) (PMMA) incorporated with MWCNT exhibits a stable response to interferences of humidity and CO 2 and provides selective deformations upon exposure of exhaled breath target volatilomes acetone and toluene, exhibiting correlation to diabetes and lung cancer, respectively. The sensing microchannels "P1" (PVDF-MWCNT), "P2" (PS-MWCNT), and "P3" (PMMA-MWCNT) are integrated with a microfluidic cartridge (μ-card) that facilitates collection and concentration of exhaled breath. The volatilome analyzer consists of a conductivity monitoring unit, signal conditioning circuitries and a low energy display module. A combinatorial operation algorithm was developed for analyzing normalized resistivity changes of the sensing microchannels upon exposure to breath in the concentration ranges between 35 ppb and 3.0 ppm for acetone and 1 ppb and 10 ppm for toluene. Subsequently, responses of volatilomes from individuals in the different risk groups of diabetes were evaluated for validation of the proposed methodology. We foresee that proposed methodology provides an avenue for rapid detection of volatilomes thereby enabling point of care diagnosis in high-risk group individuals.

  2. Detector optimization for hand-held CsI(Tl)/HgI{sub 2} gamma-ray scintillation spectrometer applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y.J.; Patt, B.E.; Iwanczyk, J.S.

    Gamma-ray spectrometers using mercuric iodide (HgI{sub 2}) photodetectors (PDs) coupled with CsI(Tl) scintillators have shown excellent energy resolutions and high detection efficiency at room temperature. Additionally HgI{sub 2} semiconductor PDs allow for extreme miniaturization of the detector packaging compared with photomultiplier tube (PMT) based detectors. These advantages make possible the construction of a new generation of hand-held gamma-ray spectrometers. Studies of detector optimization for this application have been undertaken. Several contact materials including hydrogen and semi-transparent metal films have been evaluated and compared for their performances and long term stability. In order to provide higher gamma-ray detection efficiency (i.e., largermore » scintillator volume), but without causing significant degradation of the excellent response achieved with the matched scintillator/PD interface, the scintillator/PD configuration has been studied. A Monte Carlo simulation model has been developed so that the spectral shape can be predicted for various scintillator shapes and surface treatments.« less

  3. Development and characterization of a round hand-held silicon photomultiplier based gamma camera for intraoperative imaging

    PubMed Central

    Popovic, Kosta; McKisson, Jack E.; Kross, Brian; Lee, Seungjoon; McKisson, John; Weisenberger, Andrew G.; Proffitt, James; Stolin, Alexander; Majewski, Stan; Williams, Mark B.

    2017-01-01

    This paper describes the development of a hand-held gamma camera for intraoperative surgical guidance that is based on silicon photomultiplier (SiPM) technology. The camera incorporates a cerium doped lanthanum bromide (LaBr3:Ce) plate scintillator, an array of 80 SiPM photodetectors and a two-layer parallel-hole collimator. The field of view is circular with a 60 mm diameter. The disk-shaped camera housing is 75 mm in diameter, approximately 40.5 mm thick and has a mass of only 1.4 kg, permitting either hand-held or arm-mounted use. All camera components are integrated on a mobile cart that allows easy transport. The camera was developed for use in surgical procedures including determination of the location and extent of primary carcinomas, detection of secondary lesions and sentinel lymph node biopsy (SLNB). Here we describe the camera design and its principal operating characteristics, including spatial resolution, energy resolution, sensitivity uniformity, and geometric linearity. The gamma camera has an intrinsic spatial resolution of 4.2 mm FWHM, an energy resolution of 21.1 % FWHM at 140 keV, and a sensitivity of 481 and 73 cps/MBq when using the single- and double-layer collimators, respectively. PMID:28286345

  4. 78 FR 27441 - NIJ Evaluation of Hand-Held Cell Phone Detector Devices

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-10

    ... Hand-Held Cell Phone Detector Devices AGENCY: National Institute of Justice, Department of Justice...-held cell phone detector devices for participation in an evaluation by the NIJ Corrections Technology...-held cell phone detector devices for participation in an evaluation by the NIJ Corrections Technology...

  5. A Cheap, Semiquantitative Hand-Held Conductivity Tester.

    ERIC Educational Resources Information Center

    Zawacky, Susan K. S.

    1995-01-01

    Describes a design for a hand-held conductivity tester powered by a 9V battery that gives semi-quantitative results for aqueous electrolyte solutions of concentrations ranging from 0.001 M to 0.1 M. The tester uses a bar-graph LED driven by an LM3914 integrated circuit to indicate the level of conductivity. A list of parts, procedures, and results…

  6. 30 CFR 56.12033 - Hand-held electric tools.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Hand-held electric tools. 56.12033 Section 56.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...

  7. 30 CFR 56.12033 - Hand-held electric tools.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Hand-held electric tools. 56.12033 Section 56.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...

  8. 30 CFR 56.12033 - Hand-held electric tools.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Hand-held electric tools. 56.12033 Section 56.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...

  9. 30 CFR 56.12033 - Hand-held electric tools.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Hand-held electric tools. 56.12033 Section 56.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...

  10. 30 CFR 56.12033 - Hand-held electric tools.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Hand-held electric tools. 56.12033 Section 56.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...

  11. Performance of a new hand-held device for exhaled nitric oxide measurement in adults and children

    PubMed Central

    Alving, K; Janson, C; Nordvall, L

    2006-01-01

    Background Exhaled nitric oxide (NO) measurement has been shown to be a valuable tool in the management of patients with asthma. Up to now, most measurements have been done with stationary, chemiluminescence-based NO analysers, which are not suitable for the primary health care setting. A hand-held NO analyser which simplifies the measurement would be of value both in specialized and primary health care. In this study, the performance of a new electrochemical hand-held device for exhaled NO measurements (NIOX MINO) was compared with a standard stationary chemiluminescence unit (NIOX). Methods A total of 71 subjects (6–60 years; 36 males), both healthy controls and atopic patients with and without asthma were included. The mean of three approved exhalations (50 ml/s) in each device, and the first approved measurement in the hand-held device, were compared with regard to NO readings (Bland-Altman plots), measurement feasibility (success rate with 6 attempts) and repeatability (intrasubject SD). Results Success rate was high (≥ 84%) in both devices for both adults and children. The subjects represented a FENO range of 8–147 parts per billion (ppb). When comparing the mean of three measurements (n = 61), the median of the intrasubject difference in exhaled NO for the two devices was -1.2 ppb; thus generally the hand-held device gave slightly higher readings. The Bland-Altman plot shows that the 95% limits of agreement were -9.8 and 8.0 ppb. The intrasubject median difference between the NIOX and the first approved measurement in the NIOX MINO was -2.0 ppb, and limits of agreement were -13.2 and 10.2 ppb. The median repeatability for NIOX and NIOX MINO were 1.1 and 1.2 ppb, respectively. Conclusion The hand-held device (NIOX MINO) and the stationary system (NIOX) are in clinically acceptable agreement both when the mean of three measurements and the first approved measurement (NIOX MINO) is used. The hand-held device shows good repeatability, and it can be used

  12. Performance of a new hand-held device for exhaled nitric oxide measurement in adults and children.

    PubMed

    Alving, K; Janson, C; Nordvall, L

    2006-04-20

    Exhaled nitric oxide (NO) measurement has been shown to be a valuable tool in the management of patients with asthma. Up to now, most measurements have been done with stationary, chemiluminescence-based NO analysers, which are not suitable for the primary health care setting. A hand-held NO analyser which simplifies the measurement would be of value both in specialized and primary health care. In this study, the performance of a new electrochemical hand-held device for exhaled NO measurements (NIOX MINO) was compared with a standard stationary chemiluminescence unit (NIOX). A total of 71 subjects (6-60 years; 36 males), both healthy controls and atopic patients with and without asthma were included. The mean of three approved exhalations (50 ml/s) in each device, and the first approved measurement in the hand-held device, were compared with regard to NO readings (Bland-Altman plots), measurement feasibility (success rate with 6 attempts) and repeatability (intrasubject SD). Success rate was high (> or = 84%) in both devices for both adults and children. The subjects represented a FENO range of 8-147 parts per billion (ppb). When comparing the mean of three measurements (n = 61), the median of the intrasubject difference in exhaled NO for the two devices was -1.2 ppb; thus generally the hand-held device gave slightly higher readings. The Bland-Altman plot shows that the 95% limits of agreement were -9.8 and 8.0 ppb. The intrasubject median difference between the NIOX and the first approved measurement in the NIOX MINO was -2.0 ppb, and limits of agreement were -13.2 and 10.2 ppb. The median repeatability for NIOX and NIOX MINO were 1.1 and 1.2 ppb, respectively. The hand-held device (NIOX MINO) and the stationary system (NIOX) are in clinically acceptable agreement both when the mean of three measurements and the first approved measurement (NIOX MINO) is used. The hand-held device shows good repeatability, and it can be used successfully on adults and most children

  13. Surgical guidance system using hand-held probe with accompanying positron coincidence detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majewski, Stanislaw; Weisenberger, Andrew G.

    A surgical guidance system offering different levels of imaging capability while maintaining the same hand-held convenient small size of light-weight intra-operative probes. The surgical guidance system includes a second detector, typically an imager, located behind the area of surgical interest to form a coincidence guidance system with the hand-held probe. This approach is focused on the detection of positron emitting biomarkers with gamma rays accompanying positron emissions from the radiolabeled nuclei.

  14. Library service delivery via hand-held computers--the right information at the point of care.

    PubMed

    Peterson, Mary

    2004-03-01

    Today's health and medical librarians are well aware of the move towards evidence-based clinical practice which has emerged during the past decade. Hand-in-hand with this trend is the need for health practitioners to have access to the best possible evidence to help them in their clinical decision making. Libraries have a key role in the provision of information to their clients, and this means keeping abreast, not only of the various information sources available, but also the means by which those sources may be used. This paper will examine the effects that the hand-held computer is having on the work practices of our clients-library users. It is hoped that the paper will give an insight into the various types of library material which are suitable for use with hand-held devices, and an understanding of their advantages and limitations.

  15. The accuracy of a hand-held navigation system in total knee arthroplasty.

    PubMed

    Loh, Bryan; Chen, Jerry Yongqiang; Yew, Andy Khye Soon; Pang, Hee Nee; Tay, Darren Keng Jin; Chia, Shi-Lu; Lo, Ngai Nung; Yeo, Seng Jin

    2017-03-01

    This study aims to evaluate the effectiveness of a new hand-held navigation system. The authors of this study hypothesize that this navigation system will improve overall lower limb alignment and implant placement without causing a delay in surgery. Two hundred consecutive patients diagnosed with tricompartmental osteoarthritis and underwent total knee arthroplasty by a senior surgeon were included in this study. One hundred patients underwent TKA using the hand-held navigation system, while the other 100 patients underwent TKA using the conventional technique. The primary outcomes of this study were the overall alignment of the lower limb and the position of the components. This was determined radiologically using the: (1) Hip-Knee-Ankle angle (HKA) for lower limb alignment; (2) Coronal Femoral-Component angle (CFA); and (3) Coronal Tibia-Component angle (CTA) for component position. Normal alignment was taken as 180° ± 3° for the HKA and 90° ± 3° for both the CFA and CTA. For the CFA, the proportion of outliers was 7 and 17% in the hand-held navigation and conventional group, respectively (p = 0.030). For the HKA and CTA, there was no difference in the proportion of outliers between the two groups. The duration of surgery was 73 ± 9 min and 87 ± 15 min in the hand-held navigation and conventional group, respectively (p < 0.001). This hand-held navigation system is an effective intraoperative tool for reducing the proportion of outliers for femoral implant placement as well as the duration of surgery. The authors conclude that it can be considered for use to check femoral implant placement intra-operatively. III.

  16. Analysis of Te and TeO 2 on CdZnTe Nuclear Detectors Treated with Hydrogen Bromide and Ammonium-Based Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drabo, Mebougna L.; Egarievwe, Stephen U.; Okwechime, Ifechukwude O.

    Surface defects caused during cutting and polishing in the fabrication of cadmium zinc telluride (CdZnTe) nuclear detectors limit their spectral performance. Chemical treatments are often used to remove surface damages and defects. In this paper, we present the analysis of Te and TeO 2 species on the surfaces of CdZnTe nuclear detectors treated with hydrogen bromide and ammonium-based solutions. The CdZnTe wafers were chemo-mechanically polished in a mixture of hydrogen bromide in hydrogen peroxide and ethylene glycol, followed by a chemical passivation in a mixture of ammonium fluoride and hydrogen peroxide solution. X-ray photoelectron spectroscopy showed significant conversion of Temore » to TeO 2, thus producing a more chemically stable surface. The resistivity of the CdZnTe samples is in the order of 1010 ohms-cm. The current for a given applied voltage increased following the passivation and decreased after a 3-hour period. Results from spectral response measurements showed that the 59.5-keV gamma-peak of Am-241 was stable under the same channel for the surface treatment processes.« less

  17. Analysis of Te and TeO 2 on CdZnTe Nuclear Detectors Treated with Hydrogen Bromide and Ammonium-Based Solutions

    DOE PAGES

    Drabo, Mebougna L.; Egarievwe, Stephen U.; Okwechime, Ifechukwude O.; ...

    2017-04-30

    Surface defects caused during cutting and polishing in the fabrication of cadmium zinc telluride (CdZnTe) nuclear detectors limit their spectral performance. Chemical treatments are often used to remove surface damages and defects. In this paper, we present the analysis of Te and TeO 2 species on the surfaces of CdZnTe nuclear detectors treated with hydrogen bromide and ammonium-based solutions. The CdZnTe wafers were chemo-mechanically polished in a mixture of hydrogen bromide in hydrogen peroxide and ethylene glycol, followed by a chemical passivation in a mixture of ammonium fluoride and hydrogen peroxide solution. X-ray photoelectron spectroscopy showed significant conversion of Temore » to TeO 2, thus producing a more chemically stable surface. The resistivity of the CdZnTe samples is in the order of 1010 ohms-cm. The current for a given applied voltage increased following the passivation and decreased after a 3-hour period. Results from spectral response measurements showed that the 59.5-keV gamma-peak of Am-241 was stable under the same channel for the surface treatment processes.« less

  18. Ultratrace detector for hand-held gas chromatography

    DOEpatents

    Andresen, Brian D.; Miller, Fred S.

    1999-01-01

    An ultratrace detector system for hand-held gas chromatography having high sensitivity, for example, to emissions generated during production of weapons, biological compounds, drugs, etc. The detector system is insensitive to water, air, helium, argon, oxygen, and C0.sub.2. The detector system is basically composed of a hand-held capillary gas chromatography (GC), an insulated heated redox-chamber, a detection chamber, and a vapor trap. For example, the detector system may use gas phase redox reactions and spectral absorption of mercury vapor. The gas chromatograph initially separates compounds that percolate through a bed of heated mercuric oxide (HgO) in a silica--or other metal--aerogel material which acts as an insulator. Compounds easily oxidized by HgO liberate atomic mercury that subsequently pass through a detection chamber which includes a detector cell, such as quartz, that is illuminated with a 254 nm ultra-violet (UV) mercury discharge lamp which generates the exact mercury absorption bands that are used to detect the liberated mercury atoms. Atomic mercury strongly absorbs 254 nm energy is therefore a specific signal for reducing compounds eluting from the capillary GC, whereafter the atomic mercury is trapped for example, in a silicon-aerogel trap.

  19. Prediction of essential oil content of oregano by hand-held and Fourier transform NIR spectroscopy.

    PubMed

    Camps, Cédric; Gérard, Marianne; Quennoz, Mélanie; Brabant, Cécile; Oberson, Carine; Simonnet, Xavier

    2014-05-01

    In the framework of a breeding programme, the analysis of hundreds of oregano samples to determine their essential oil content (EOC) is time-consuming and expensive in terms of labour. Therefore developing a new method that is rapid, accurate and less expensive to use would be an asset to breeders. The aim of the present study was to develop a method based on near-inrared (NIR) spectroscopy to determine the EOC of oregano dried powder. Two spectroscopic approaches were compared, the first using a hand-held NIR device and the second a Fourier transform (FT) NIR spectrometer. Hand-held NIR (1000-1800 nm) measurements and partial least squares regression allowed the determination of EOC with R² and SEP values of 0.58 and 0.81 mL per 100 g dry matter (DM) respectively. Measurements with FT-NIR (1000-2500 nm) allowed the determination of EOC with R² and SEP values of 0.91 and 0.68 mL per 100 g DM respectively. RPD, RER and RPIQ values for the model implemented with FT-NIR data were satisfactory for screening application, while those obtained with hand-held NIR data were below the level required to consider the model as enough accurate for screening application. The FT-NIR approach allowed the development of an accurate model for EOC prediction. Although the hand-held NIR approach is promising, it needs additional development before it can be used in practice. © 2013 Society of Chemical Industry.

  20. Survey reveals public open to ban on hand-held cell phone use and texting.

    DOT National Transportation Integrated Search

    2013-01-01

    A study performed by the Bureau of Transportation Statistics : (BTS) reveals that the public is open to a ban on : hand-held cell phone use while driving. The study is based : on data from 2009s Omnibus Household Survey (OHS), : which is administe...

  1. DataPlus™ - a revolutionary applications generator for DOS hand-held computers

    Treesearch

    David Dean; Linda Dean

    2000-01-01

    DataPlus allows the user to easily design data collection templates for DOS-based hand-held computers that mimic clipboard data sheets. The user designs and tests the application on the desktop PC and then transfers it to a DOS field computer. Other features include: error checking, missing data checks, and sensor input from RS-232 devices such as bar code wands,...

  2. Hand-Held Ultrasonic Instrument for Reading Matrix Symbols

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F.; Kula, John P.; Gurney, John W.; Lior, Ephraim D.

    2008-01-01

    A hand-held instrument that would include an ultrasonic camera has been proposed as an efficient means of reading matrix symbols. The proposed instrument could be operated without mechanical raster scanning. All electronic functions from excitation of ultrasonic pulses through final digital processing for decoding matrix symbols would be performed by dedicated circuitry within the single, compact instrument housing.

  3. Abdominal aortic aneurysm screening program using hand-held ultrasound in primary healthcare

    PubMed Central

    Kostov, Belchin; Navarro González, Marta; Cararach Salami, Daniel; Pérez Jiménez, Alfonso; Gilabert Solé, Rosa; Bru Saumell, Concepció; Donoso Bach, Lluís; Villalta Martí, Mireia; González-de Paz, Luis; Ruiz Riera, Rafael; Riambau Alonso, Vicenç; Acar-Denizli, Nihan; Farré Almacellas, Marta; Ramos-Casals, Manuel; Benavent Àreu, Jaume

    2017-01-01

    We determined the feasibility of abdominal aortic aneurysm (AAA) screening program led by family physicians in public primary healthcare setting using hand-held ultrasound device. The potential study population was 11,214 men aged ≥ 60 years attended by three urban, public primary healthcare centers. Participants were recruited by randomly-selected telephone calls. Ultrasound examinations were performed by four trained family physicians with a hand-held ultrasound device (Vscan®). AAA observed were verified by confirmatory imaging using standard ultrasound or computed tomography. Cardiovascular risk factors were determined. The prevalence of AAA was computed as the sum of previously-known aneurysms, aneurysms detected by the screening program and model-based estimated undiagnosed aneurysms. We screened 1,010 men, with mean age of 71.3 (SD 6.9) years; 995 (98.5%) men had normal aortas and 15 (1.5%) had AAA on Vscan®. Eleven out of 14 AAA-cases (78.6%) had AAA on confirmatory imaging (one patient died). The total prevalence of AAA was 2.49% (95%CI 2.20 to 2.78). The median aortic diameter at diagnosis was 3.5 cm in screened patients and 4.7 cm (p<0.001) in patients in whom AAA was diagnosed incidentally. Multivariate logistic regression analysis identified coronary heart disease (OR = 4.6, 95%CI 1.3 to 15.9) as the independent factor with the highest odds ratio. A screening program led by trained family physicians using hand-held ultrasound was a feasible, safe and reliable tool for the early detection of AAA. PMID:28453577

  4. Validity of maximal isometric knee extension strength measurements obtained via belt-stabilized hand-held dynamometry in healthy adults.

    PubMed

    Ushiyama, Naoko; Kurobe, Yasushi; Momose, Kimito

    2017-11-01

    [Purpose] To determine the validity of knee extension muscle strength measurements using belt-stabilized hand-held dynamometry with and without body stabilization compared with the gold standard isokinetic dynamometry in healthy adults. [Subjects and Methods] Twenty-nine healthy adults (mean age, 21.3 years) were included. Study parameters involved right side measurements of maximal isometric knee extension strength obtained using belt-stabilized hand-held dynamometry with and without body stabilization and the gold standard. Measurements were performed in all subjects. [Results] A moderate correlation and fixed bias were found between measurements obtained using belt-stabilized hand-held dynamometry with body stabilization and the gold standard. No significant correlation and proportional bias were found between measurements obtained using belt-stabilized hand-held dynamometry without body stabilization and the gold standard. The strength identified using belt-stabilized hand-held dynamometry with body stabilization may not be commensurate with the maximum strength individuals can generate; however, it reflects such strength. In contrast, the strength identified using belt-stabilized hand-held dynamometry without body stabilization does not reflect the maximum strength. Therefore, a chair should be used to stabilize the body when performing measurements of maximal isometric knee extension strength using belt-stabilized hand-held dynamometry in healthy adults. [Conclusion] Belt-stabilized hand-held dynamometry with body stabilization is more convenient than the gold standard in clinical settings.

  5. The effects of deep level traps on the electrical properties of semi-insulating CdZnTe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zha, Gangqiang; Yang, Jian; Xu, Lingyan

    2014-01-28

    Deep level traps have considerable effects on the electrical properties and radiation detection performance of high resistivity CdZnTe. A deep-trap model for high resistivity CdZnTe was proposed in this paper. The high resistivity mechanism and the electrical properties were analyzed based on this model. High resistivity CdZnTe with high trap ionization energy E{sub t} can withstand high bias voltages. The leakage current is dependent on both the deep traps and the shallow impurities. The performance of a CdZnTe radiation detector will deteriorate at low temperatures, and the way in which sub-bandgap light excitation could improve the low temperature performance canmore » be explained using the deep trap model.« less

  6. Performance comparison of small-pixel CdZnTe radiation detectors with gold contacts formed by sputter and electroless deposition

    NASA Astrophysics Data System (ADS)

    Bell, S. J.; Baker, M. A.; Duarte, D. D.; Schneider, A.; Seller, P.; Sellin, P. J.; Veale, M. C.; Wilson, M. D.

    2017-06-01

    Recent improvements in the growth of wide-bandgap semiconductors, such as cadmium zinc telluride (CdZnTe or CZT), has enabled spectroscopic X/γ-ray imaging detectors to be developed. These detectors have applications covering homeland security, industrial analysis, space science and medical imaging. At the Rutherford Appleton Laboratory (RAL) a promising range of spectroscopic, position sensitive, small-pixel Cd(Zn)Te detectors have been developed. The challenge now is to improve the quality of metal contacts on CdZnTe in order to meet the demanding energy and spatial resolution requirements of these applications. The choice of metal deposition method and fabrication process are of fundamental importance. Presented is a comparison of two CdZnTe detectors with contacts formed by sputter and electroless deposition. The detectors were fabricated with a 74 × 74 array of 200 μm pixels on a 250 μm pitch and bump-bonded to the HEXITEC ASIC. The X/γ-ray emissions from an 241Am source were measured to form energy spectra for comparison. It was found that the detector with contacts formed by electroless deposition produced the best uniformity and energy resolution; the best pixel produced a FWHM of 560 eV at 59.54 keV and 50% of pixels produced a FWHM better than 1.7 keV . This compared with a FWHM of 1.5 keV for the best pixel and 50% of pixels better than 4.4 keV for the detector with sputtered contacts.

  7. Utility of hand-held devices in diagnosis and triage of cardiovascular emergencies. Observations during implementation of a PACS-based system in an acute aortic syndrome (AAS) network.

    PubMed

    Matar, Ralph; Renapurkar, Rahul; Obuchowski, Nancy; Menon, Venu; Piraino, David; Schoenhagen, Paul

    2015-01-01

    Prompt diagnosis and early referral to specialized centers is critical for patients presenting with cardiovascular emergencies, including acute aortic syndromes (AAS). Prior data has suggested that mobile access to imaging studies with hand-held devices can accelerate diagnosis and management. We conducted a study to determine the diagnostic accuracy of a hand-held device compared to conventional dedicated work-stations for diagnosing a spectrum of cardiovascular emergencies, predominantly acute aortic pathology. This study included 104 cases who underwent computed tomography (CT)-scan during "on-call'' hours between January, 2013 and August, 2014 for suspected AAS. Assessment was performed on a hand-held device independently by two readers using an iPhone5 connected via secure connection to web-based PACS servers. The subsequent interpretation from a dedicated workstation coupled with the diagnosis at the time of discharge was used as the reference standard for determining the presence or absence of an acute abnormality. Sensitivity and Specificity were calculated on a per patient basis. Readers' sensitivity and specificity using the hand-held device to diagnose acute chest pathology were calculated. Hand-held device evaluation was determined to have a sensitivity of 85.2% and a specificity of 98.6% by reader A and a sensitivity of 96.3% and specificity of 100% by reader B. Of 103 cases interpreted by both readers, the readers agreed about the diagnosis in 98 cases (95.1%). This study demonstrates that hand-held devices can be a potential useful tool to assist in diagnosis and triage of patients presenting with cardiovascular emergencies. Further studies are needed to assess the impact of screen size and resolution. Copyright © 2015 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.

  8. Hand-Held Color Meters Based on Interference Filters

    NASA Technical Reports Server (NTRS)

    Snyder, G. Jeffrey; Fleurial, Jean-Pierre; Caillat, Thierry; Chen, Gang; Yang, Rong Gui

    2004-01-01

    Small, inexpensive, hand-held optoelectronic color-measuring devices based on metal-film/dielectric-film interference filters are undergoing development. These color meters could be suitable for use in a variety of applications in which there are requirements to quantify or match colors for aesthetic purposes but there is no need for the high spectral resolution of scientific-grade spectrometers. Such applications typically occur in the paint, printing, and cosmetic industries, for example. The figure schematically depicts a color meter of this type being used to measure the color of a sample in terms of the spectrum of light reflected from the sample. Light from a white source (for example, a white light-emitting diode) passes through a collimating lens to the sample. Another lens collects some of the light reflected from the sample and focuses the light onto the input end of optical fiber. Light emerging from the output end of the optical fiber illuminates an array of photodetectors covered with metal/dielectric-film interference filters like those described in Metal/Dielectric-film Interference Color Filters (NPO-20217), NASA Tech Briefs, Vol. 23, No. 2 (February 1999), page 70. Typically, these are wide-band-pass filters, as shown at the bottom of the figure. The photodetector array need not be of any particular design: it could be something as simple as an assembly containing several photodiodes or something as elaborate as an active-pixel sensor or other imaging device. What is essential is that each of the photodetectors or each of several groups of photodetectors is covered with a metal/dielectric-film filter of a different color. In most applications, it would be desirable to have at least three different filters, each for a spectral band that contains one of the three primary additive red, green, and blue colors. In some applications, it may be necessary to have more than three different color filters in order to characterize subtle differences in color

  9. Cellphone-Based Hand-Held Microplate Reader for Point-of-Care Testing of Enzyme-Linked Immunosorbent Assays.

    PubMed

    Berg, Brandon; Cortazar, Bingen; Tseng, Derek; Ozkan, Haydar; Feng, Steve; Wei, Qingshan; Chan, Raymond Yan-Lok; Burbano, Jordi; Farooqui, Qamar; Lewinski, Michael; Di Carlo, Dino; Garner, Omai B; Ozcan, Aydogan

    2015-08-25

    Standard microplate based enzyme-linked immunosorbent assays (ELISA) are widely utilized for various nanomedicine, molecular sensing, and disease screening applications, and this multiwell plate batched analysis dramatically reduces diagnosis costs per patient compared to nonbatched or nonstandard tests. However, their use in resource-limited and field-settings is inhibited by the necessity for relatively large and expensive readout instruments. To mitigate this problem, we created a hand-held and cost-effective cellphone-based colorimetric microplate reader, which uses a 3D-printed opto-mechanical attachment to hold and illuminate a 96-well plate using a light-emitting-diode (LED) array. This LED light is transmitted through each well, and is then collected via 96 individual optical fibers. Captured images of this fiber-bundle are transmitted to our servers through a custom-designed app for processing using a machine learning algorithm, yielding diagnostic results, which are delivered to the user within ∼1 min per 96-well plate, and are visualized using the same app. We successfully tested this mobile platform in a clinical microbiology laboratory using FDA-approved mumps IgG, measles IgG, and herpes simplex virus IgG (HSV-1 and HSV-2) ELISA tests using a total of 567 and 571 patient samples for training and blind testing, respectively, and achieved an accuracy of 99.6%, 98.6%, 99.4%, and 99.4% for mumps, measles, HSV-1, and HSV-2 tests, respectively. This cost-effective and hand-held platform could assist health-care professionals to perform high-throughput disease screening or tracking of vaccination campaigns at the point-of-care, even in resource-poor and field-settings. Also, its intrinsic wireless connectivity can serve epidemiological studies, generating spatiotemporal maps of disease prevalence and immunity.

  10. Characterisation of Redlen high-flux CdZnTe

    NASA Astrophysics Data System (ADS)

    Thomas, B.; Veale, M. C.; Wilson, M. D.; Seller, P.; Schneider, A.; Iniewski, K.

    2017-12-01

    CdZnTe is a promising material for the current generation of free electron laser light sources and future laser-driven γ-ray sources which require detectors capable of high flux imaging at X-ray and γ-ray energies (> 10 keV) . However, at high fluxes CdZnTe has been shown to polarise due to hole trapping, leading to poor performance. Novel Redlen CdZnTe material with improved hole transport properties has been designed for high flux applications. Small pixel CdZnTe detectors were fabricated by Redlen Technologies and flip-chip bonded to PIXIE ASICs. An XIA Digital Gamma Finder PIXIE-16 system was used to digitise each of the nine analogue signals with a timing resolution of 10 ns. Pulse shape analysis was used to extract the rise times and amplitude of signals. These were measured as a function of applied bias voltage and used to calculate the mobility (μ) and mobility-lifetime (μτ) of electrons and holes in the material for three identical detectors. The measured values of the transport properties of electrons in the high-flux-capable material was lower than previously reported for Redlen CdZnTe material (μeτe ~ 1 × 10-3 cm2V-1 and μe ~ 1000 cm2V-1s-1) while the hole transport properties were found to have improved (μhτh ~ 3 × 10-4 cm2V-1 and μh ~ 100 cm2V-1s-1).

  11. Hand-held cell phone use while driving legislation and observed driver behavior among population sub-groups in the United States.

    PubMed

    Rudisill, Toni M; Zhu, Motao

    2017-05-12

    Cell phone use behaviors are known to vary across demographic sub-groups and geographic locations. This study examined whether universal hand-held calling while driving bans were associated with lower road-side observed hand-held cell phone conversations across drivers of different ages (16-24, 25-59, ≥60 years), sexes, races (White, African American, or other), ruralities (suburban, rural, or urban), and regions (Northeast, Midwest, South, and West). Data from the 2008-2013 National Occupant Protection Use Survey were merged with states' cell phone use while driving legislation. The exposure was presence of a universal hand-held cell phone ban at time of observation. Logistic regression was used to assess the odds of drivers having a hand-held cell phone conversation. Sub-groups differences were assessed using models with interaction terms. When universal hand-held cell phone bans were effective, hand-held cell phone conversations were lower across all driver demographic sub-groups and regions. Sub-group differences existed among the sexes (p-value, <0.0001) and regions (p-value, 0.0003). Compared to states without universal hand-held cell phone bans, the adjusted odds ratio (aOR) of a driver hand-held phone conversation was 0.34 [95% confidence interval (CI): 0.28, 0.41] for females versus 0.47 (CI 0.40, 0.55) for males and 0.31 (CI 0.25, 0.38) for drivers in Western states compared to 0.47 (CI 0.30, 0.72) in the Northeast and 0.50 (CI 0.38, 0.66) in the South. The presence of universal hand-held cell phone bans were associated lower hand-held cell phone conversations across all driver sub-groups and regions. Hand-held phone conversations were particularly lower among female drivers and those from Western states when these bans were in effect. Public health interventions concerning hand-held cell phone use while driving could reasonably target all drivers.

  12. Development of a Spectral Model Based on Charge Transport for the Swift/BAT 32K CdZnTe Detector Array

    NASA Technical Reports Server (NTRS)

    Sato, Goro; Parsons, Ann; Hillinger, Derek; Suzuki, Masaya; Takahashi, Tadayuki; Tashiro, Makoto; Nakazawa, Kazuhiro; Okada, Yuu; Takahashi, Hiromitsu; Watanabe, Shin

    2005-01-01

    The properties of 32K CdZnTe (4 x 4 sq mm large, 2 mm thick) detectors have been studied in the pre-flight calibration of the Burst Alert Telescope (BAT) on-board the Swift Gamma-ray Burst Explorer (scheduled for launch in November 2004). In order to understand the energy response of the BAT CdZnTe array, we first quantify the mobility-lifetime (mu tau) products of carriers in individual CdZnTe detectors, which produce a position dependency in the charge induction efficiency and results in a low energy tail in the energy spectrum. Based on a new method utilizing (57)Co spectra obtained at different bias voltages, the mu tau for electrons ranges from 5.0 x 10(exp -4) to 1.0 x 10(exp -2) sq cm/V while the mu tau for holes ranges from 1.3 x 10(exp -5 to 1.8 x 10(exp -4) sq cm/V. We find that this wide distribution of mu tau products explains the large diversity in spectral shapes between CdZnTe detectors well. We also find that the variation of mu tau products can be attributed to the difference of crystal ingots or manufacturing harness. We utilize the 32K sets of extracted mu tau products to develop a spectral model of the detector. In combination with Monte Carlo simulations, we can construct a spectral model for any photon energy or any incident angle.

  13. A Novel Hand-Held Optical Imager with Real-Time Coregistration Facilities Toward Diagnostic Mammography

    DTIC Science & Technology

    2011-01-01

    Journal Publications (1) S.J. Erickson, S.L. Martinez, J. Gonzalez, L. Caldera , and A. Godavarty. “Improved detection limits using a hand-held...Erickson, S. Martinez, J. Gonzalez, L. Caldera , and A. Godavarty. “Non- invasive Diagnostic Breast Imaging using a Hand-held Optical Imager...Proceedings of the 14th World Multi-Conference on Systems, Cybernetics and Informatics, 2010. (4) S.J. Erickson, S. Martinez, L. Caldera , and A

  14. Spring wheat-leaf phytomass and yield estimates from airborne scanner and hand-held radiometer measurements

    NASA Technical Reports Server (NTRS)

    Aase, J. K.; Siddoway, F. H.; Millard, J. P.

    1984-01-01

    An attempt has been made to relate hand-held radiometer measurements, and airborne multispectral scanner readings, with both different wheat stand densities and grain yield. Aircraft overflights were conducted during the tillering, stem extension and heading period stages of growth, while hand-held radiometer readings were taken throughout the growing season. The near-IR/red ratio was used in the analysis, which indicated that both the aircraft and the ground measurements made possible a differentiation and evaluation of wheat stand densities at an early enough growth stage to serve as the basis of management decisions. The aircraft data also corroborated the hand-held radiometer measurements with respect to yield prediction. Winterkill was readily evaluated.

  15. CdZnTe Background Measurements at Balloon Altitudes with PoRTIA

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Barthelmy, S.; Bartlett, L.; Gehrels, N.; Naya, J.; Stahle, C. M.; Tueller, J.; Teegarden, B.

    2003-01-01

    Measurements of the CdZnTe internal background at balloon altitudes are essential to determine which physical processes make the most important background contributions. We present results from CdZnTe background measurements made by PoRTIA, a small CdZnTe balloon instrument that was flown three times in three different shielding configurations. PoRTIA was passively shielded during its first flight from Palestine, Texas and actively shielded as a piggyback instrument on the GRIS balloon experiment during its second and third flights from Alice Springs, Australia, using the thick GRIS Nal anticoincidence shield. A significant CdZnTe background reduction was achieved during the third flight with PoRTIA placed completely inside the GRIS shield and blocking crystal, and thus completely surrounded by 15 cm of Nal. A unique balloon altitude background data set is provided by CdZnTe and Ge detectors simultaneously surrounded by the same thick anticoincidence shield; the presence of a single coxial Ge detector inside the shield next to PoRTIA allowed a measurement of the ambient neutron flux inside the shield throughout the flight. These neutrons interact with the detector material to produce isomeric states of the Cd, Zn and Te nuclei that radiatively decay; calculations are presented that indicate that these decays may explain most of the fully shielded CdZnTe background.

  16. Combining heterogenous features for 3D hand-held object recognition

    NASA Astrophysics Data System (ADS)

    Lv, Xiong; Wang, Shuang; Li, Xiangyang; Jiang, Shuqiang

    2014-10-01

    Object recognition has wide applications in the area of human-machine interaction and multimedia retrieval. However, due to the problem of visual polysemous and concept polymorphism, it is still a great challenge to obtain reliable recognition result for the 2D images. Recently, with the emergence and easy availability of RGB-D equipment such as Kinect, this challenge could be relieved because the depth channel could bring more information. A very special and important case of object recognition is hand-held object recognition, as hand is a straight and natural way for both human-human interaction and human-machine interaction. In this paper, we study the problem of 3D object recognition by combining heterogenous features with different modalities and extraction techniques. For hand-craft feature, although it reserves the low-level information such as shape and color, it has shown weakness in representing hiconvolutionalgh-level semantic information compared with the automatic learned feature, especially deep feature. Deep feature has shown its great advantages in large scale dataset recognition but is not always robust to rotation or scale variance compared with hand-craft feature. In this paper, we propose a method to combine hand-craft point cloud features and deep learned features in RGB and depth channle. First, hand-held object segmentation is implemented by using depth cues and human skeleton information. Second, we combine the extracted hetegerogenous 3D features in different stages using linear concatenation and multiple kernel learning (MKL). Then a training model is used to recognize 3D handheld objects. Experimental results validate the effectiveness and gerneralization ability of the proposed method.

  17. Mechanisms of the passage of dark currents through Cd(Zn)Te semi-insulating crystals

    NASA Astrophysics Data System (ADS)

    Sklyarchuk, V.; Fochuk, P.; Rarenko, I.; Zakharuk, Z.; Sklyarchuk, O.; Nykoniuk, Ye.; Rybka, A.; Kutny, V.; Bolotnikov, A. E.; James, R. B.

    2014-09-01

    We investigated the passage of dark currents through semi-insulating crystals of Cd(Zn)Te with weak n-type conductivity that are used widely as detectors of ionizing radiation. The crystals were grown from a tellurium solution melt at 800 оС by the zone-melting method, in which a polycrystalline rod in a quartz ampoule was moved through a zone heater at a rate of 2 mm per day. The synthesis of the rod was carried out at ~1150 оС. We determined the important electro-physical parameters of this semiconductor, using techniques based on a parallel study of the temperature dependence of current-voltage characteristics in both the ohmic and the space-charge-limited current regions. We established in these crystals the relationship between the energy levels and the concentrations of deep-level impurity states, responsible for dark conductivity and their usefulness as detectors.

  18. Rapid and automatic chemical identification of the medicinal flower buds of Lonicera plants by the benchtop and hand-held Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Jianbo; Guo, Baolin; Yan, Rui; Sun, Suqin; Zhou, Qun

    2017-07-01

    With the utilization of the hand-held equipment, Fourier transform infrared (FT-IR) spectroscopy is a promising analytical technique to minimize the time cost for the chemical identification of herbal materials. This research examines the feasibility of the hand-held FT-IR spectrometer for the on-site testing of herbal materials, using Lonicerae Japonicae Flos (LJF) and Lonicerae Flos (LF) as examples. Correlation-based linear discriminant models for LJF and LF are established based on the benchtop and hand-held FT-IR instruments. The benchtop FT-IR models can exactly recognize all articles of LJF and LF. Although a few LF articles are misjudged at the sub-class level, the hand-held FT-IR models are able to exactly discriminate LJF and LF. As a direct and label-free analytical technique, FT-IR spectroscopy has great potential in the rapid and automatic chemical identification of herbal materials either in laboratories or in fields. This is helpful to prevent the spread and use of adulterated herbal materials in time.

  19. Neurosurgical hand-held optical coherence tomography (OCT) forward-viewing probe

    NASA Astrophysics Data System (ADS)

    Sun, Cuiru; Lee, Kenneth K. C.; Vuong, Barry; Cusimano, Michael; Brukson, Alexander; Mariampillai, Adrian; Standish, Beau A.; Yang, Victor X. D.

    2012-02-01

    A prototype neurosurgical hand-held optical coherence tomography (OCT) imaging probe has been developed to provide micron resolution cross-sectional images of subsurface tissue during open surgery. This new ergonomic hand-held probe has been designed based on our group's previous work on electrostatically driven optical fibers. It has been packaged into a catheter probe in the familiar form factor of the clinically accepted Bayonet shaped neurosurgical non-imaging Doppler ultrasound probes. The optical design was optimized using ZEMAX simulation. Optical properties of the probe were tested to yield an ~20 um spot size, 5 mm working distance and a 3.5 mm field of view. The scan frequency can be increased or decreased by changing the applied voltage. Typically a scan frequency of less than 60Hz is chosen to keep the applied voltage to less than 2000V. The axial resolution of the probe was ~15 um (in air) as determined by the OCT system. A custom-triggering methodology has been developed to provide continuous stable imaging, which is crucial for clinical utility. Feasibility of this probe, in combination with a 1310 nm swept source OCT system was tested and images are presented to highlight the usefulness of such a forward viewing handheld OCT imaging probe. Knowledge gained from this research will lay the foundation for developing new OCT technologies for endovascular management of cerebral aneurysms and transsphenoidal neuroendoscopic treatment of pituitary tumors.

  20. Hand-held digital books in radiology: convenient access to information.

    PubMed

    D'Alessandro, M P; Galvin, J R; Santer, D M; Erkonen, W E

    1995-02-01

    Radiologists need constant, convenient access to current information throughout the course of their daily work. Today most learning in radiology is obtained from the printed word in books, journals, and teaching files, supplemented by the spoken word in lectures and conferences. Although learning from printed material and lectures has been proved efficacious over time, these media share the disadvantage of not being conveniently available for reference during the course of daily work at the alternator or in the examination room when accurate and up-to-date information is needed the most. As a result, many important questions about patient care go unanswered. We have developed a technique--hand-held digital books--to lower this barrier to searching and retrieval. When radiologists have a digital library that can be carried with them, they will be able to incorporate current radiology information into their daily decision making. We describe a technique for creating hand-held digital books and their future use in radiology.

  1. Development of dual sensor hand-held detector

    NASA Astrophysics Data System (ADS)

    Sezgin, Mehmet

    2010-04-01

    In this paper hand-held dual sensor detector development requirements are considered dedicated to buried object detection. Design characteristics of such a system are categorized and listed. Hardware and software structures, ergonomics, user interface, environmental and EMC/EMI tests to be applied and performance test issues are studied. Main properties of the developed system (SEZER) are presented, which contains Metal Detector (MD) and Ground Penetrating Radar (GPR). The realized system has ergonomic structure and can detect both metallic and non-metallic buried objects. Moreover classification of target is possible if it was defined to the signal processing software in learning phase.

  2. 49 CFR 392.82 - Using a hand-held mobile telephone.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Definitions. For the purpose of this section only, driving means operating a commercial motor vehicle on a... SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS DRIVING OF.... (a)(1) No driver shall use a hand-held mobile telephone while driving a CMV. (2) No motor carrier...

  3. 49 CFR 392.82 - Using a hand-held mobile telephone.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Definitions. For the purpose of this section only, driving means operating a commercial motor vehicle on a... SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS DRIVING OF.... (a)(1) No driver shall use a hand-held mobile telephone while driving a CMV. (2) No motor carrier...

  4. 49 CFR 392.82 - Using a hand-held mobile telephone.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Definitions. For the purpose of this section only, driving means operating a commercial motor vehicle on a... SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS DRIVING OF.... (a)(1) No driver shall use a hand-held mobile telephone while driving a CMV. (2) No motor carrier...

  5. A hand-held EPR scanner for transcutaneous oximetry

    NASA Astrophysics Data System (ADS)

    Wolfson, Helen; Ahmad, Rizwan; Twig, Ygal; Blank, Aharon; Kuppusamy, Periannan

    2015-03-01

    Cutaneous (skin) oxygenation is an important prognostic factor for the treatment of chronic wounds, skin cancer, diabetes side effects, and limb amputation. Currently, there are no reliable methods for measuring this parameter. Oximetry, using electron paramagnetic resonance (EPR) spectroscopy, is emerging as a potential tool for clinical oximetry, including cutaneous applications. The problem with EPR oximetry, however, is that the conventional EPR design requires the use of a large magnet that can generate homogeneous field across the sample, making it unattractive for clinical practice. We present a novel approach that makes use of a miniature permanent magnet, combined with a small microwave resonator, to enable the acquisition of EPR signals from paramagnetic species placed on the skin. The instrumentation consists of a hand-held, modular, cylindrical probehead with overall dimensions of 36-mm diameter and 24-mm height, with 150-g weight. The probehead includes a Halbach array of 16 pieces (4×4×8 mm3) of Sm-Co permanent magnet and a loop-gap resonator (2.24 GHz). Preliminary measurements using a Hahn-echo pulse sequence (800 echos in 20 ms) showed a signalto- noise ratio of ~70 compared to ~435 in a homogenous magnet under identical settings. Further work is in progress to improve the performance of the probehead and to optimize the hand-held system for clinical use

  6. Online Responses towards Parental Rearing Styles Regarding Hand-Held Devices

    ERIC Educational Resources Information Center

    Geng, Gretchen; Disney, Leigh

    2014-01-01

    This article reviewed the literature on parental rearing styles and used responses from an online discussion forum to investigate people's opinions towards parental rearing styles and strategies when children use hand-held devices. Critical discourse analysis (CDA) was used as an analysis method via micro, meso and macro multi-level…

  7. Energy dispersive CdTe and CdZnTe detectors for spectral clinical CT and NDT applications

    NASA Astrophysics Data System (ADS)

    Barber, W. C.; Wessel, J. C.; Nygard, E.; Iwanczyk, J. S.

    2015-06-01

    We are developing room temperature compound semiconductor detectors for applications in energy-resolved high-flux single x-ray photon-counting spectral computed tomography (CT), including functional imaging with nanoparticle contrast agents for medical applications and non-destructive testing (NDT) for security applications. Energy-resolved photon-counting can provide reduced patient dose through optimal energy weighting for a particular imaging task in CT, functional contrast enhancement through spectroscopic imaging of metal nanoparticles in CT, and compositional analysis through multiple basis function material decomposition in CT and NDT. These applications produce high input count rates from an x-ray generator delivered to the detector. Therefore, in order to achieve energy-resolved single photon counting in these applications, a high output count rate (OCR) for an energy-dispersive detector must be achieved at the required spatial resolution and across the required dynamic range for the application. The required performance in terms of the OCR, spatial resolution, and dynamic range must be obtained with sufficient field of view (FOV) for the application thus requiring the tiling of pixel arrays and scanning techniques. Room temperature cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) compound semiconductors, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel provided the sensors are designed for rapid signal formation across the x-ray energy ranges of the application at the required energy and spatial resolutions, and at a sufficiently high detective quantum efficiency (DQE). We have developed high-flux energy-resolved photon-counting x-ray imaging array sensors using pixellated CdTe and CdZnTe semiconductors optimized for clinical CT and security NDT. We have also fabricated high

  8. Energy dispersive CdTe and CdZnTe detectors for spectral clinical CT and NDT applications

    PubMed Central

    Barber, W. C.; Wessel, J. C.; Nygard, E.; Iwanczyk, J. S.

    2014-01-01

    We are developing room temperature compound semiconductor detectors for applications in energy-resolved high-flux single x-ray photon-counting spectral computed tomography (CT), including functional imaging with nanoparticle contrast agents for medical applications and non destructive testing (NDT) for security applications. Energy-resolved photon-counting can provide reduced patient dose through optimal energy weighting for a particular imaging task in CT, functional contrast enhancement through spectroscopic imaging of metal nanoparticles in CT, and compositional analysis through multiple basis function material decomposition in CT and NDT. These applications produce high input count rates from an x-ray generator delivered to the detector. Therefore, in order to achieve energy-resolved single photon counting in these applications, a high output count rate (OCR) for an energy-dispersive detector must be achieved at the required spatial resolution and across the required dynamic range for the application. The required performance in terms of the OCR, spatial resolution, and dynamic range must be obtained with sufficient field of view (FOV) for the application thus requiring the tiling of pixel arrays and scanning techniques. Room temperature cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) compound semiconductors, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel provided the sensors are designed for rapid signal formation across the x-ray energy ranges of the application at the required energy and spatial resolutions, and at a sufficiently high detective quantum efficiency (DQE). We have developed high-flux energy-resolved photon-counting x-ray imaging array sensors using pixellated CdTe and CdZnTe semiconductors optimized for clinical CT and security NDT. We have also fabricated high

  9. Energy dispersive CdTe and CdZnTe detectors for spectral clinical CT and NDT applications.

    PubMed

    Barber, W C; Wessel, J C; Nygard, E; Iwanczyk, J S

    2015-06-01

    We are developing room temperature compound semiconductor detectors for applications in energy-resolved high-flux single x-ray photon-counting spectral computed tomography (CT), including functional imaging with nanoparticle contrast agents for medical applications and non destructive testing (NDT) for security applications. Energy-resolved photon-counting can provide reduced patient dose through optimal energy weighting for a particular imaging task in CT, functional contrast enhancement through spectroscopic imaging of metal nanoparticles in CT, and compositional analysis through multiple basis function material decomposition in CT and NDT. These applications produce high input count rates from an x-ray generator delivered to the detector. Therefore, in order to achieve energy-resolved single photon counting in these applications, a high output count rate (OCR) for an energy-dispersive detector must be achieved at the required spatial resolution and across the required dynamic range for the application. The required performance in terms of the OCR, spatial resolution, and dynamic range must be obtained with sufficient field of view (FOV) for the application thus requiring the tiling of pixel arrays and scanning techniques. Room temperature cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) compound semiconductors, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel provided the sensors are designed for rapid signal formation across the x-ray energy ranges of the application at the required energy and spatial resolutions, and at a sufficiently high detective quantum efficiency (DQE). We have developed high-flux energy-resolved photon-counting x-ray imaging array sensors using pixellated CdTe and CdZnTe semiconductors optimized for clinical CT and security NDT. We have also fabricated high

  10. Hand-held analyser based on microchip electrophoresis with contactless conductivity detection for measurement of chemical warfare agent degradation products

    NASA Astrophysics Data System (ADS)

    Duran, Karolina-Petkovic; Zhu, Yonggang; Chen, Chuanpin; Swallow, Anthony; Stewart, Robert; Hoobin, Pam; Leech, Patrick; Ovenden, Simon

    2008-12-01

    This paper reports on the development of a hand-held device for on-site detection of organophosphonate nerve agent degradation products. This field-deployable analyzer relies on efficient microchip electrophoresis separation of alkyl methylphosphonic acids and their sensitive contactless conductivity detection. Miniaturized, low-powered design is coupled with promising analytical performance for separating the breakdown products of chemical warfare agents such as Soman, Sarin and VX . The detector has a detection limit of about 10 μg/mL and has a good linear response in the range 10-300 μg/mL concentration range. Applicability to environmental samples is demonstrated .The new hand-held analyzer offers great promise for converting conventional ion chromatography or capillary electrophoresis sophisticated systems into a portable forensic laboratory for faster, simpler and more reliable on-site screening.

  11. How to use hand-held computers to evaluate wood drying.

    Treesearch

    Howard N. Rosen; Darrell S. Martin

    1985-01-01

    Techniques have been developed to evaluate end generate wood drying curves with hand-held computers (3-5K memory). Predictions of time to dry to a specific moisture content, drying rates, and other characteristics of wood drying curves can be made. The paper describes the development of programs and illustrates their use.

  12. Semiconductor P-I-N detector

    DOEpatents

    Sudharsanan, Rengarajan; Karam, Nasser H.

    2001-01-01

    A semiconductor P-I-N detector including an intrinsic wafer, a P-doped layer, an N-doped layer, and a boundary layer for reducing the diffusion of dopants into the intrinsic wafer. The boundary layer is positioned between one of the doped regions and the intrinsic wafer. The intrinsic wafer can be composed of CdZnTe or CdTe, the P-doped layer can be composed of ZnTe doped with copper, and the N-doped layer can be composed of CdS doped with indium. The boundary layers is formed of an undoped semiconductor material. The boundary layer can be deposited onto the underlying intrinsic wafer. The doped regions are then typically formed by a deposition process or by doping a section of the deposited boundary layer.

  13. Motion-compensated hand-held common-path Fourier-domain optical coherence tomography probe for image-guided intervention

    NASA Astrophysics Data System (ADS)

    Huang, Yong; Song, Cheol; Liu, Xuan; Kang, Jin U.

    2013-03-01

    A motion-compensated hand-held common-path Fourier-domain optical coherence tomography imaging probe has been developed for image guided intervention during microsurgery. A hand-held prototype instrument was designed and fabricated by integrating an imaging fiber probe inside a stainless steel needle which is attached to the ceramic shaft of a piezoelectric motor housed in an aluminum handle. The fiber probe obtains A-scan images. The distance information was extracted from the A-scans to track the sample surface distance and a fixed distance was maintained by a feedback motor control which effectively compensated hand tremor and target movements in the axial direction. Graphical user interface, real-time data processing, and visualization based on a CPU-GPU hybrid programming architecture were developed and used in the implantation of this system. To validate the system, free-hand optical coherence tomography images using various samples were obtained. The system can be easily integrated into microsurgical tools and robotics for a wide range of clinical applications. Such tools could offer physicians the freedom to easily image sites of interest with reduced risk and higher image quality.

  14. HRTEM Analysis of Crystallographic Defects in CdZnTe Single Crystal

    NASA Astrophysics Data System (ADS)

    Yasar, Bengisu; Ergunt, Yasin; Kabukcuoglu, Merve Pinar; Parlak, Mehmet; Turan, Rasit; Kalay, Yunus Eren

    2018-01-01

    In recent years, CdZnTe has attracted much attention due to its superior electrical and structural properties for room-temperature operable gamma and x-ray detectors. However, CdZnTe (CZT) material has often suffered from crystallographic defects encountered during the growth and post-growth processes. The identification and structural characterization of these defects is crucial to synthesize defect-free CdZnTe single crystals. In this study, Cd0.95 Zn0.05 Te single crystals were grown using a three-zone vertical Bridgman system. The single crystallinity of the material was ensured by using x-ray diffraction measurements. High-resolution electron microscopy (HRTEM) was used to characterize the nano-scale defects on the CdZnTe matrix. The linear defects oriented along the ⟨211⟩ direction were examined by transmission electron microscopy (TEM) and the corresponding HRTEM image simulations were performed by using a quantitative scanning TEM simulation package.

  15. The Weak Link HP-41C hand-held calculator program

    Treesearch

    Ross A. Phillips; Penn A. Peters; Gary D. Falk

    1982-01-01

    The Weak Link hand-held calculator program (HP-41C) quickly analyzes a system for logging production and costs. The production equations model conventional chain saw, skidder, loader, and tandemaxle truck operations in eastern mountain areas. Production of each function of the logging system may be determined so that the system may be balanced for minimum cost. The...

  16. Hand-Held Sunphotometers for High School Student Construction and Measuring Aerosol Optical Thickness

    NASA Technical Reports Server (NTRS)

    Almonor, Linda; Baldwin, C.; Craig, R.; Johnson, L. P.

    2000-01-01

    Science education is taking the teaching of science from a traditional (lecture) approach to a multidimensional sense-making approach which allows teachers to support students by providing exploratory experiences. Using projects is one way of providing students with opportunities to observe and participate in sense-making activity. We created a learning environment that fostered inquiry-based learning. Students were engaged in a variety of Inquiry activities that enabled them to work in cooperative planning teams where respect for each other was encouraged and their ability to grasp, transform and transfer information was enhanced. Summer, 1998: An air pollution workshop was conducted for high school students in the Medgar Evers College/Middle College High School Liberty Partnership Summer Program. Students learned the basics of meteorology: structure and composition of the atmosphere and the processes that cause weather. The highlight of this workshop was the building of hand-held sunphotometers, which measure the intensity of the sunlight striking the Earth. Summer, 1999: high school students conducted a research project which measured the mass and size of ambient particulates and enhanced our ability to observe through land based measurements changes in the optical depth of ambient aerosols over Brooklyn. Students used hand held Sunphotometers to collect data over a two week period and entered it into the NASA GISS database by way of the internet.

  17. Compound semiconductor detectors for X-ray astronomy: Spectroscopic measurements and material characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bavdaz, M.; Kraft, S.; Peacock, A.

    1998-12-31

    The use of some specific compound semiconductors in the fabrication of high energy X-ray detectors shows significant potential for X-ray astrophysics space missions. The authors are currently investigating three high purity crystals--CdZnTe, GaAs and TlBr--as the basis for future hard X-ray detectors (above 10 keV). In this paper the authors present the first results on CdZnTe and GaAs based detectors and evaluate the factors currently still constraining the performance. Energy resolutions (FWHM) of 0.9 keV and 1.1 keV at 14 keV and 60 keV, respectively, have been obtained with an epitaxial GaAs detector, while 0.7 keV and 1.5 keV FWHMmore » were measured at the same energies with a CdZnTe detector. Based on these results it is clear, that the next generation of X-ray astrophysics missions now in the planning phase may well consider extending the photon energy range up to {approximately} 100 keV by use of efficient detectors with reasonable spectroscopic capabilities.« less

  18. Evaluation of U.S. Commercial-Off-the-Shelf Hand-Held Assays to Detect Opiate Pain Reliever Compounds in Multiple Biofluids

    DTIC Science & Technology

    2016-09-01

    EVALUATION OF U.S. COMMERCIAL-OFF-THE-SHELF HAND-HELD ASSAYS TO DETECT OPIATE PAIN RELIEVER COMPOUNDS IN...Commercial-Off-the-Shelf Hand-Held Assays to Detect Opiate Pain Reliever Compounds in Multiple Biofluids 5a. CONTRACT NUMBER 5b. GRANT NUMBER R...study, we evaluated the potential for several U.S. commercial-off-the-shelf (COTS) hand-held assays (HHAs) to detect members of the opiate pain reliever

  19. Instrumentation effects on U and Pu CBNM standards spectra quality measured on a 500 mm3 CdZnTe and a 2×2 inch LaBr3 detectors

    NASA Astrophysics Data System (ADS)

    Meleshenkovskii, I.; Borella, A.; Van der Meer, K.; Bruggeman, M.; Pauly, N.; Labeau, P. E.; Schillebeeckx, P.

    2018-01-01

    Nowadays, there is interest in developing gamma-ray measuring devices based on the room temperature operated medium resolution detectors such as semiconductor detectors of the CdZnTe type and scintillators of the LaBr3 type. This is true also for safeguards applications and the International Atomic Energy Agency (IAEA) has launched a project devoted to the assessment of medium resolution gamma-ray spectroscopy for the verification of the isotopic composition of U and Pu bearing samples. This project is carried out within the Non-Destructive Assay Working Group of the European Safeguards Research and Development Association (ESARDA). In this study we analyze medium resolution spectra of U and Pu standards with the aim to develop an isotopic composition determination algorithm, particularly suited for these types of detectors. We show how the peak shape of a CdZnTe detector is influenced by the instrumentation parameters. The experimental setup consisted of a 500 mm3 CdZnTe detector, a 2×2 inch LaBr3 detector, two types of measurement instrumentation - an analogue one and a digital one, and a set of certified samples - a 207Bi point source and U and Pu CBNM standards. The results of our measurements indicate that the lowest contribution to the peak asymmetry and thus the smallest impact on the resolution of the 500 mm3 CdZnTe detector was achieved with the digital MCA. Analysis of acquired spectra allowed to reject poor quality measurement runs and produce summed spectra files with the least impact of instrumentation instabilities. This work is preliminary to further studies concerning the development of an isotopic composition determination algorithm particularly suited for CZT and LaBr3 detectors for safeguards applications.

  20. Cordless hand-held optical 3D sensor

    NASA Astrophysics Data System (ADS)

    Munkelt, Christoph; Bräuer-Burchardt, Christian; Kühmstedt, Peter; Schmidt, Ingo; Notni, Gunther

    2007-07-01

    A new mobile optical 3D measurement system using phase correlation based fringe projection technique will be presented. The sensor consist of a digital projection unit and two cameras in a stereo arrangement, whereby both are battery powered. The data transfer to a base station will be done via WLAN. This gives the possibility to use the system in complicate, remote measurement situations, which are typical in archaeology and architecture. In the measurement procedure the sensor will be hand-held by the user, illuminating the object with a sequence of less than 10 fringe patterns, within a time below 200 ms. This short sequence duration was achieved by a new approach, which combines the epipolar constraint with robust phase correlation utilizing a pre-calibrated sensor head, containing two cameras and a digital fringe projector. Furthermore, the system can be utilized to acquire the all around shape of objects by using the phasogrammetric approach with virtual land marks introduced by the authors 1, 2. This way no matching procedures or markers are necessary for the registration of multiple views, which makes the system very flexible in accomplishing different measurement tasks. The realized measurement field is approx. 100 mm up to 400 mm in diameter. The mobile character makes the measurement system useful for a wide range of applications in arts, architecture, archaeology and criminology, which will be shown in the paper.

  1. Cost effective spectral sensor solutions for hand held and field applications

    NASA Astrophysics Data System (ADS)

    Reetz, Edgar; Correns, Martin; Notni, Gunther

    2015-05-01

    Optical spectroscopy is without doubt one of the most important non-contact measurement principles. It is used in a wide range of applications from bio-medical to industrial fields. One recent trend is to miniaturize spectral sensors to address new areas of application. The most common spectral sensor type is based on diffraction gratings, while other types are based on micro mechanical systems (MEMS) or filter technologies. The authors represent the opinion that there is a potentially wide spread field of applications for spectrometers, but the market limits the range of applications since they cannot keep up with targeted cost requirements for consumer products. The present article explains an alternative approach for miniature multichannel spectrometer to enhance robustness for hand held field applications at a cost efficient price point.

  2. Gen-2 hand-held optical imager towards cancer imaging: reflectance and transillumination phantom studies.

    PubMed

    Gonzalez, Jean; Roman, Manuela; Hall, Michael; Godavarty, Anuradha

    2012-01-01

    Hand-held near-infrared (NIR) optical imagers are developed by various researchers towards non-invasive clinical breast imaging. Unlike these existing imagers that can perform only reflectance imaging, a generation-2 (Gen-2) hand-held optical imager has been recently developed to perform both reflectance and transillumination imaging. The unique forked design of the hand-held probe head(s) allows for reflectance imaging (as in ultrasound) and transillumination or compressed imaging (as in X-ray mammography). Phantom studies were performed to demonstrate two-dimensional (2D) target detection via reflectance and transillumination imaging at various target depths (1-5 cm deep) and using simultaneous multiple point illumination approach. It was observed that 0.45 cc targets were detected up to 5 cm deep during transillumination, but limited to 2.5 cm deep during reflectance imaging. Additionally, implementing appropriate data post-processing techniques along with a polynomial fitting approach, to plot 2D surface contours of the detected signal, yields distinct target detectability and localization. The ability of the gen-2 imager to perform both reflectance and transillumination imaging allows its direct comparison to ultrasound and X-ray mammography results, respectively, in future clinical breast imaging studies.

  3. Noise reduction techniques in the design of a pneumatic-driven hand held power tool

    NASA Astrophysics Data System (ADS)

    Skinner, Christian M.

    2005-09-01

    Pneumatic-driven hand-held power tools generate noise in the workplace. Current legislation in Europe and the USA aims at protecting workers against noise exposure. In the United States, the Occupational Safety and Health Administration (OSHA) requires that employers create a hearing conservation program if the noise exposure exceeds 85 dB(A). In the European Community under the Directive 2003/10/EC, employers are required to provide hearing protection if the noise exposure within the working environment exceeds 80 dB(A) and must require hearing protection to be worn if the noise exposure exceeds 85 dB(A). This paper examines the sources of noise which contribute to the overall noise from a hand-held power tool. A test plan was developed to identify these individual sources of noise and to determine if structure-borne noise or airborne noise is the dominant source relative to the overall noise level. The measurements were performed per International Standards Organization (ISO) 15744. This paper will describe the methodology used to identify the noise sources and reduce the overall noise of a hand-held power tool.

  4. Hand-Held Calculators in the Classroom: A Review of the Research.

    ERIC Educational Resources Information Center

    Parkhurst, Scott

    This report surveys many of the recent investigations on calculators and their use in mathematics education. The review notes that the widespread availability of hand-held calculators and their affordability has led to their consideration as a viable tool to aid in mathematics instruction. The studies reviewed suggest that many questions are still…

  5. Automatic detection of a hand-held needle in ultrasound via phased-based analysis of the tremor motion

    NASA Astrophysics Data System (ADS)

    Beigi, Parmida; Salcudean, Septimiu E.; Rohling, Robert; Ng, Gary C.

    2016-03-01

    This paper presents an automatic localization method for a standard hand-held needle in ultrasound based on temporal motion analysis of spatially decomposed data. Subtle displacement arising from tremor motion has a periodic pattern which is usually imperceptible in the intensity image but may convey information in the phase image. Our method aims to detect such periodic motion of a hand-held needle and distinguish it from intrinsic tissue motion, using a technique inspired by video magnification. Complex steerable pyramids allow specific design of the wavelets' orientations according to the insertion angle as well as the measurement of the local phase. We therefore use steerable pairs of even and odd Gabor wavelets to decompose the ultrasound B-mode sequence into various spatial frequency bands. Variations of the local phase measurements in the spatially decomposed input data is then temporally analyzed using a finite impulse response bandpass filter to detect regions with a tremor motion pattern. Results obtained from different pyramid levels are then combined and thresholded to generate the binary mask input for the Hough transform, which determines an estimate of the direction angle and discards some of the outliers. Polynomial fitting is used at the final stage to remove any remaining outliers and improve the trajectory detection. The detected needle is finally added back to the input sequence as an overlay of a cloud of points. We demonstrate the efficiency of our approach to detect the needle using subtle tremor motion in an agar phantom and in-vivo porcine cases where intrinsic motion is also present. The localization accuracy was calculated by comparing to expert manual segmentation, and presented in (mean, standard deviation and root-mean-square error) of (0.93°, 1.26° and 0.87°) and (1.53 mm, 1.02 mm and 1.82 mm) for the trajectory and the tip, respectively.

  6. Hand held lasers, a hazard to aircraft: How do we address this?

    NASA Astrophysics Data System (ADS)

    Barat, K.

    2015-10-01

    The availability of hand held lasers, commonly termed "laser pointers" is easy and wide spread, through commercial web sites and brick & mortar stores. The output of these hand held devices ranges from 1-5 milliWatts (mW) the legal laser pointer output limit, to 5000mW (5Watts). This is thousand times the maximum limit for pointers. Sadly the abuse of these devices is also wide spread. Over the last few years over 3000 aircraft are exposed to laser hits per year. While these aircraft exposures are of no danger to the aircraft frame but they can cause pilot distractions with the potential to cause a serve accident. The presentation will discuss the problem review visual effects, the regulatory response and how educators need to be aware of the problem and can take steps to educate students in the hope of having an effect.

  7. Issues Arising on the Use of Hand-Held Calculators in Schools.

    ERIC Educational Resources Information Center

    D'Ambrosio, Ubiratan

    This paper notes three objections to the use of hand-held calculators in schools: they would (1) block reasoning, (2) make individuals machine-dependent, and (3) broaden the gap between developed and underdeveloped nations. Each is addressed, with specific examples used to refute them. The belief is strongly expressed that calculators can aid in…

  8. Study on the effect of Cd-diffusion annealing on the electrical properties of CdZnTe

    NASA Astrophysics Data System (ADS)

    Wanwan, Li; Zechun, Cao; Bin, Zhang; Feng, Zhan; Hongtao, Liu; Wenbin, Sang; Jiahua, Min; Kang, Sun

    2006-06-01

    In order to meet the requirements for the device design of radiation detectors, CdZnTe (or Cd 1-xZn xTe) crystals grown by Vertical Bridgman Method often need subsequent annealing to increase their resistivity. The nature of this treatment is a diffusion process. Thus, it is meaningful to relate the change of resistivity to the diffusion parameters. A model correlating resistivity and conduction type of CdZnTe with the main diffusion parameter—diffusion coefficient—is put forward in this paper. Combining the model with the analysis of our experimental data, DCd=1.464×10 -10, 1.085×10 -11 and 4.167×10 -13 cm 2/s are the values of Cd self-diffusion coefficient in Cd 0.9Zn 0.1Te at 1073, 973 and 873 K, respectively. The data coincide closely with the Cd self-diffusion coefficient in CdTe provided by different authors [E.D. Jones, N.M. Stewart, Self-diffusion of cadmium in cadmium telluride, J. Crystal Growth 84 (1987) 289-294; P.M. Borsenberger, D.A. Stevenson, J. Phys. Chem. Solids 29 (1968) 1277; R.C. Whelan, D. Shaw, in: D.G. Thomas (Ed.), II -VI Semiconductor Compounds, Benjamin, New York, 1967, p. 451]. With the data, the effects of annealing time on the change of resistivity and conduction type for Cd 0.9Zn 0.1Te wafers, which are annealed in saturated Cd vapor at 1073, 973 and 873 K, were simulated, and good consistency was found. This work suggests an alternative way to obtain the diffusion coefficient in semiconductor materials and also enables ones to analyze the diffusion process quantitatively and predict the annealing results.

  9. Evaluation of a focussed protocol for hand-held echocardiography and computer-assisted auscultation in detecting latent rheumatic heart disease in scholars.

    PubMed

    Zühlke, Liesl J; Engel, Mark E; Nkepu, Simpiwe; Mayosi, Bongani M

    2016-08-01

    Introduction Echocardiography is the diagnostic test of choice for latent rheumatic heart disease. The utility of echocardiography for large-scale screening is limited by high cost, complex diagnostic protocols, and time to acquire multiple images. We evaluated the performance of a brief hand-held echocardiography protocol and computer-assisted auscultation in detecting latent rheumatic heart disease with or without pathological murmur. A total of 27 asymptomatic patients with latent rheumatic heart disease based on the World Heart Federation criteria and 66 healthy controls were examined by standard cardiac auscultation to detect pathological murmur. Hand-held echocardiography using a focussed protocol that utilises one view - that is, the parasternal long-axis view - and one measurement - that is, mitral regurgitant jet - and a computer-assisted auscultation utilising an automated decision tool were performed on all patients. The sensitivity and specificity of computer-assisted auscultation in latent rheumatic heart disease were 4% (95% CI 1.0-20.4%) and 93.7% (95% CI 84.5-98.3%), respectively. The sensitivity and specificity of the focussed hand-held echocardiography protocol for definite rheumatic heart disease were 92.3% (95% CI 63.9-99.8%) and 100%, respectively. The test reliability of hand-held echocardiography was 98.7% for definite and 94.7% for borderline disease, and the adjusted diagnostic odds ratios were 1041 and 263.9 for definite and borderline disease, respectively. Computer-assisted auscultation has extremely low sensitivity but high specificity for pathological murmur in latent rheumatic heart disease. Focussed hand-held echocardiography has fair sensitivity but high specificity and diagnostic utility for definite or borderline rheumatic heart disease in asymptomatic patients.

  10. Hand-held spectrophotometer design for textile fabrics

    NASA Astrophysics Data System (ADS)

    Böcekçi, Veysel Gökhan; Yıldız, Kazım

    2017-09-01

    In this study, a hand-held spectrophotometer was designed by taking advantage of the developments in modern optoelectronic technology. Spectrophotometer devices are used to determine the color information from the optic properties of the materials. As an alternative to a desktop spectrophotometer device we have implemented, it is the first prototype, low cost and portable. The prototype model designed for the textile industry can detect the color tone of any fabric. The prototype model consists of optic sensor, processor, display floors. According to the color applied on the optic sensor, it produces special frequency information on its output at that color value. In Arduino type processor, the frequency information is evaluated by the program we have written and the color tone information between 0-255 ton is decided and displayed on the screen.

  11. Finger tracking for hand-held device interface using profile-matching stereo vision

    NASA Astrophysics Data System (ADS)

    Chang, Yung-Ping; Lee, Dah-Jye; Moore, Jason; Desai, Alok; Tippetts, Beau

    2013-01-01

    Hundreds of millions of people use hand-held devices frequently and control them by touching the screen with their fingers. If this method of operation is being used by people who are driving, the probability of deaths and accidents occurring substantially increases. With a non-contact control interface, people do not need to touch the screen. As a result, people will not need to pay as much attention to their phones and thus drive more safely than they would otherwise. This interface can be achieved with real-time stereovision. A novel Intensity Profile Shape-Matching Algorithm is able to obtain 3-D information from a pair of stereo images in real time. While this algorithm does have a trade-off between accuracy and processing speed, the result of this algorithm proves the accuracy is sufficient for the practical use of recognizing human poses and finger movement tracking. By choosing an interval of disparity, an object at a certain distance range can be segmented. In other words, we detect the object by its distance to the cameras. The advantage of this profile shape-matching algorithm is that detection of correspondences relies on the shape of profile and not on intensity values, which are subjected to lighting variations. Based on the resulting 3-D information, the movement of fingers in space from a specific distance can be determined. Finger location and movement can then be analyzed for non-contact control of hand-held devices.

  12. Balancing fast-rotating parts of hand-held machine drive

    NASA Astrophysics Data System (ADS)

    Korotkov, V. S.; Sicora, E. A.; Nadeina, L. V.; Yongzheng, Wang

    2018-03-01

    The article considers the issues related to the balancing of fast rotating parts of the hand-held machine drive including a wave transmission with intermediate rolling elements, which is constructed on the basis of the single-phase collector motor with a useful power of 1 kW and a nominal rotation frequency of 15000 rpm. The forms of balancers and their location are chosen. The method of balancing is described. The scheme for determining of residual unbalance in two correction planes is presented. Measurement results are given in tables.

  13. Layered semiconductor neutron detectors

    DOEpatents

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  14. Comparative Geometrical Accuracy Investigations of Hand-Held 3d Scanning Systems - AN Update

    NASA Astrophysics Data System (ADS)

    Kersten, T. P.; Lindstaedt, M.; Starosta, D.

    2018-05-01

    Hand-held 3D scanning systems are increasingly available on the market from several system manufacturers. These systems are deployed for 3D recording of objects with different size in diverse applications, such as industrial reverse engineering, and documentation of museum exhibits etc. Typical measurement distances range from 0.5 m to 4.5 m. Although they are often easy-to-use, the geometric performance of these systems, especially the precision and accuracy, are not well known to many users. First geometrical investigations of a variety of diverse hand-held 3D scanning systems were already carried out by the Photogrammetry & Laser Scanning Lab of the HafenCity University Hamburg (HCU Hamburg) in cooperation with two other universities in 2016. To obtain more information about the accuracy behaviour of the latest generation of hand-held 3D scanning systems, HCU Hamburg conducted further comparative geometrical investigations using structured light systems with speckle pattern (Artec Spider, Mantis Vision PocketScan 3D, Mantis Vision F5-SR, Mantis Vision F5-B, and Mantis Vision F6), and photogrammetric systems (Creaform HandySCAN 700 and Shining FreeScan X7). In the framework of these comparative investigations geometrically stable reference bodies were used. The appropriate reference data was acquired by measurements with two structured light projection systems (AICON smartSCAN and GOM ATOS I 2M). The comprehensive test results of the different test scenarios are presented and critically discussed in this contribution.

  15. Hand-held monitor of sympathetic nervous system using salivary amylase activity and its validation by driver fatigue assessment.

    PubMed

    Yamaguchi, Masaki; Deguchi, Mitsuo; Wakasugi, Junichi; Ono, Shin; Takai, Noriyasu; Higashi, Tomoyuki; Mizuno, Yasufumi

    2006-01-15

    In order to realize a hand-held monitor of the sympathetic nervous system, we fabricated a completely automated analytical system for salivary amylase activity using a dry-chemistry system. This was made possible by the fabrication of a disposable test-strip equipped with built-in collecting and reagent papers and an automatic saliva transfer device. In order to cancel out the effects of variations in environmental temperature and pH of saliva, temperature- and pH-adjusted equations were experimentally determined, and each theoretical value was input into the memory of the hand-held monitor. Within a range of salivary amylase activity between 10 and 140 kU/l, the calibration curve for the hand-held monitor showed a coefficient with R(2)=0.97. Accordingly, it was demonstrated that the hand-held monitor enabled a user to automatically measure the salivary amylase activity with high accuracy with only 30 microl sample of saliva within a minute from collection to completion of the measurement. In order to make individual variations of salivary amylase activity negligible during driver fatigue assessment, a normalized equation was proposed. The normalized salivary amylase activity correlated with the mental and physical fatigue states. Thus, this study demonstrated that an excellent hand-held monitor with an algorithm for normalization of individuals' differences in salivary amylase activity, which could be easily and quickly used for evaluating the activity of the sympathetic nervous system at any time. Furthermore, it is suggested that the salivary amylase activity might be used as a better index for psychological research.

  16. Integrating a Hand Held computer and Stethoscope into a Fetal Monitor

    PubMed Central

    Ahmad Soltani, Mitra

    2009-01-01

    This article presents procedures for modifying a hand held computer or personal digital assistant (PDA) into a versatile device functioning as an electronic stethoscope for fetal monitoring. Along with functioning as an electronic stethoscope, a PDA can provide a useful information source for a medical trainee. Feedback from medical students, residents and interns suggests the device is well accepted by medical trainees. PMID:20165517

  17. Do hand-held calorimeters provide reliable and accurate estimates of resting metabolic rate?

    PubMed

    Van Loan, Marta D

    2007-12-01

    This paper provides an overview of a new technique for indirect calorimetry and the assessment of resting metabolic rate. Information from the research literature includes findings on the reliability and validity of a new hand-held indirect calorimeter as well as use in clinical and field settings. Research findings to date are of mixed results. The MedGem instrument has provided more consistent results when compared to the Douglas bag method of measuring metabolic rate. The BodyGem instrument has been shown to be less accurate when compared to standard metabolic carts. Furthermore, when the Body Gem has been used with clinical patients or with under nourished individuals the results have not been acceptable. Overall, there is not a large enough body of evidence to definitively support the use of these hand-held devices for assessment of metabolic rate in a wide variety of clinical or research environments.

  18. Simultaneous hand-held contact color fundus and SD-OCT imaging for pediatric retinal diseases (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ruggeri, Marco; Hernandez, Victor; De Freitas, Carolina; Relhan, Nidhi; Silgado, Juan; Manns, Fabrice; Parel, Jean-Marie

    2016-03-01

    Hand-held wide-field contact color fundus photography is currently the standard method to acquire diagnostic images of children during examination under anesthesia and in the neonatal intensive care unit. The recent development of portable non-contact hand-held OCT retinal imaging systems has proved that OCT is of tremendous help to complement fundus photography in the management of pediatric patients. Currently, there is no commercial or research system that combines color wide-field digital fundus and OCT imaging in a contact-fashion. The contact of the probe with the cornea has the advantages of reducing motion experienced by the photographer during the imaging and providing fundus and OCT images with wider field of view that includes the periphery of the retina. In this study we produce proof of concept for a contact-type hand-held unit for simultaneous color fundus and OCT live view of the retina of pediatric patients. The front piece of the hand-held unit consists of a contact ophthalmoscopy lens integrating a circular light guide that was recovered from a digital fundus camera for pediatric imaging. The custom-made rear piece consists of the optics to: 1) fold the visible aerial image of the fundus generated by the ophthalmoscopy lens on a miniaturized level board digital color camera; 2) conjugate the eye pupil to the galvanometric scanning mirrors of an OCT delivery system. Wide-field color fundus and OCT images were simultaneously obtained in an eye model and sequentially obtained on the eye of a conscious 25 year-old human subject with healthy retina.

  19. Method and apparatus for electron-only radiation detectors from semiconductor materials

    DOEpatents

    Lund, James C.

    2000-01-01

    A system for obtaining improved resolution in room temperature semiconductor radiation detectors such as CdZnTe and Hgl.sub.2, which exhibit significant hole-trapping. A electrical reference plane is established about the perimeter of a semiconductor crystal and disposed intermediately between two oppositely biased end electrodes. The intermediate reference plane comprises a narrow strip of wire in electrical contact with the surface of the crystal, biased at a potential between the end electrode potentials and serving as an auxiliary electrical reference for a chosen electrode--typically the collector electrode for the more mobile charge carrier. This arrangement eliminates the interfering effects of the less mobile carriers as these are gathered by their electrode collector.

  20. FOREWORD: Focus on Superconductivity in Semiconductors Focus on Superconductivity in Semiconductors

    NASA Astrophysics Data System (ADS)

    Takano, Yoshihiko

    2008-12-01

    Since the discovery of superconductivity in diamond, much attention has been given to the issue of superconductivity in semiconductors. Because diamond has a large band gap of 5.5 eV, it is called a wide-gap semiconductor. Upon heavy boron doping over 3×1020 cm-3, diamond becomes metallic and demonstrates superconductivity at temperatures below 11.4 K. This discovery implies that a semiconductor can become a superconductor upon carrier doping. Recently, superconductivity was also discovered in boron-doped silicon and SiC semiconductors. The number of superconducting semiconductors has increased. In 2008 an Fe-based superconductor was discovered in a research project on carrier doping in a LaCuSeO wide-gap semiconductor. This discovery enhanced research activities in the field of superconductivity, where many scientists place particular importance on superconductivity in semiconductors. This focus issue features a variety of topics on superconductivity in semiconductors selected from the 2nd International Workshop on Superconductivity in Diamond and Related Materials (IWSDRM2008), which was held at the National Institute for Materials Science (NIMS), Tsukuba, Japan in July 2008. The 1st workshop was held in 2005 and was published as a special issue in Science and Technology of Advanced Materials (STAM) in 2006 (Takano 2006 Sci. Technol. Adv. Mater. 7 S1). The selection of papers describe many important experimental and theoretical studies on superconductivity in semiconductors. Topics on boron-doped diamond include isotope effects (Ekimov et al) and the detailed structure of boron sites, and the relation between superconductivity and disorder induced by boron doping. Regarding other semiconductors, the superconducting properties of silicon and SiC (Kriener et al, Muranaka et al and Yanase et al) are discussed, and In2O3 (Makise et al) is presented as a new superconducting semiconductor. Iron-based superconductors are presented as a new series of high

  1. Key techniques for space-based solar pumped semiconductor lasers

    NASA Astrophysics Data System (ADS)

    He, Yang; Xiong, Sheng-jun; Liu, Xiao-long; Han, Wei-hua

    2014-12-01

    In space, the absence of atmospheric turbulence, absorption, dispersion and aerosol factors on laser transmission. Therefore, space-based laser has important values in satellite communication, satellite attitude controlling, space debris clearing, and long distance energy transmission, etc. On the other hand, solar energy is a kind of clean and renewable resources, the average intensity of solar irradiation on the earth is 1353W/m2, and it is even higher in space. Therefore, the space-based solar pumped lasers has attracted much research in recent years, most research focuses on solar pumped solid state lasers and solar pumped fiber lasers. The two lasing principle is based on stimulated emission of the rare earth ions such as Nd, Yb, Cr. The rare earth ions absorb light only in narrow bands. This leads to inefficient absorption of the broad-band solar spectrum, and increases the system heating load, which make the system solar to laser power conversion efficiency very low. As a solar pumped semiconductor lasers could absorb all photons with energy greater than the bandgap. Thus, solar pumped semiconductor lasers could have considerably higher efficiencies than other solar pumped lasers. Besides, solar pumped semiconductor lasers has smaller volume chip, simpler structure and better heat dissipation, it can be mounted on a small satellite platform, can compose satellite array, which can greatly improve the output power of the system, and have flexible character. This paper summarizes the research progress of space-based solar pumped semiconductor lasers, analyses of the key technologies based on several application areas, including the processing of semiconductor chip, the design of small and efficient solar condenser, and the cooling system of lasers, etc. We conclude that the solar pumped vertical cavity surface-emitting semiconductor lasers will have a wide application prospects in the space.

  2. Hand-Held Self-Maneuvering Unit to be used during EVA on Gemini 4

    NASA Image and Video Library

    1965-06-02

    Hand-Held Self-Maneuvering Unit to be used during extravehicular activity (EVA) on Gemini 4 flight. It is an integral unit that contains its own high pressure metering valves and nozzles required to produce controlled thrust. A camera is mounted on the front of the unit.

  3. Design and Performance Testing of a Linear Array of Position-Sensitive Virtual Frisch-Grid CdZnTe Detectors for Uranium Enrichment Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ocampo, Luis

    Abstract— Arrays of position-sensitive virtual Frisch-grid CdZnTe (CZT) detectors with enhanced energy resolution have been proposed for spectroscopy and imaging of gamma-ray sources in different applications. The flexibility of the array design, which can employ CZT crystals with thicknesses up to several centimeters in the direction of electron drift, allows for integration into different kinds of field-portable instruments. These can include small hand-held devices, compact gamma cameras and large field-of-view imaging systems. In this work, we present results for a small linear array of such detectors optimized for the low-energy region, 50-400 keV gamma-rays, which is principally intended for incorporationmore » into hand-held instruments. There are many potential application areas for such instruments, including uranium enrichment measurements, storage monitoring, dosimetry and other safeguards-related tasks that can benefit from compactness and isotope-identification capability. The array described here provides a relatively large area with a minimum number of readout channels, which potentially allows the developers to avoid using an ASIC-based electronic readout by substituting it with hybrid preamplifiers followed by digitizers. The array prototype consists of six (5x5.7x25 mm3) CZT detectors positioned in a line facing the source to achieve a maximum exposure area (~10 cm2). Each detector is furnished with 5 mm-wide charge-sensing pads placed near the anode. The pad signals are converted into X-Y coordinates for each interaction event, which are combined with the cathode signals (for determining the Z coordinates) to give 3D positional information for all interaction points. This information is used to correct the response non-uniformity caused by material inhomogeneity, which therefore allows the usage of standard-grade (unselected) CZT crystals, while achieving high-resolution spectroscopic performance for the instrument. In this presentation we

  4. Maintaining radiation exposures as low as reasonably achievable (ALARA) for dental personnel operating portable hand-held x-ray equipment.

    PubMed

    McGiff, Thomas J; Danforth, Robert A; Herschaft, Edward E

    2012-08-01

    Clinical experience indicates that newly available portable hand-held x-ray units provide advantages compared to traditional fixed properly installed and operated x-ray units in dental radiography. However, concern that hand-held x-ray units produce higher operator doses than fixed x-ray units has caused regulatory agencies to mandate requirements for use of hand-held units that go beyond those recommended by the manufacturer and can discourage the use of this technology. To assess the need for additional requirements, a hand-held x-ray unit and a pair of manikins were used to measure the dose to a simulated operator under two conditions: exposures made according to the manufacturer's recommendations and exposures made according to manufacturer's recommendation except for the removal of the x-ray unit's protective backscatter shield. Dose to the simulated operator was determined using an array of personal dosimeters and a pair of pressurized ion chambers. The results indicate that the dose to an operator of this equipment will be less than 0.6 mSv y⁻¹ if the device is used according to the manufacturer's recommendations. This suggests that doses to properly trained operators of well-designed, hand-held dental x-ray units will be below 1.0 mSv y⁻¹ (2% of the annual occupational dose limit) even if additional no additional operational requirements are established by regulatory agencies. This level of annual dose is similar to those reported as typical dental personnel using fixed x-ray units and appears to satisfy the ALARA principal for this class of occupational exposures.

  5. The GSFC Mark-2 three band hand-held radiometer. [thematic mapper for ground truth data collection

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.; Jones, W. H.; Kley, W. A.; Sundstrom, G. J.

    1980-01-01

    A self-contained, portable, hand-radiometer designed for field usage was constructed and tested. The device, consisting of a hand-held probe containing three sensors and a strap supported electronic module, weighs 4 1/2 kilograms. It is powered by flashlight and transistor radio batteries, utilizes two silicon and one lead sulfide detectors, has three liquid crystal displays, sample and hold radiometric sampling, and its spectral configuration corresponds to LANDSAT-D's thematic mapper bands. The device was designed to support thematic mapper ground-truth data collection efforts and to facilitate 'in situ' ground-based remote sensing studies of natural materials. Prototype instruments were extensively tested under laboratory and field conditions with excellent results.

  6. 75 FR 27504 - Substantial Product Hazard List: Hand-Held Hair Dryers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    ...The Consumer Product Safety Improvement Act of 2008 (``CPSIA''), authorizes the United States Consumer Product Safety Commission (``Commission'') to specify, by rule, for any consumer product or class of consumer products, characteristics whose existence or absence shall be deemed a substantial product hazard under certain circumstances. In this document, the Commission is proposing a rule to determine that any hand-held hair dryer without integral immersion protection presents a substantial product hazard.

  7. Noise in CdZnTe detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luke, P. N.; Amman, M.; Lee J. S.

    2000-10-10

    Noise in CdZnTe devices with different electrode configurations was investigated. Measurements on devices with guard-ring electrode structures showed that surface leakage current does not produce any significant noise. The parallel white noise component of the devices appeared to be generated by the bulk current alone, even though the surface current was substantially higher. This implies that reducing the surface leakage current of a CdZnTe detector may not necessarily result in a significant improvement in noise performance. The noise generated by the bulk current is also observed to be below full shot noise. This partial suppression of shot noise may bemore » the result of Coulomb interaction between carriers or carrier trapping. Devices with coplanar strip electrodes were observed to produce a 1/f noise term at the preamplifier output. Higher levels of this 1/f noise were observed with decreasing gap widths between electrodes. The level of this 1/f noise appeared to be independent of bias voltage and leakage current but was substantially reduced after certain surface treatments.« less

  8. Driver hand-held mobile phone use and safety belt use.

    PubMed

    Eby, David W; Vivoda, Jonathon M

    2003-11-01

    The purposes of the study were to identify hand-held mobile phone use trends for Michigan and to compare safety belt use between users and nonusers. Mobile phone and safety belt use was investigated by a direct observation survey of drivers at intersections in Michigan. Data were weighted to calculate mobile phone use and safety belt use rates statewide. The study showed 2.7% of Michigan drivers were using a mobile phone at any given daylight time. Safety belt use of current mobile phone users was significantly lower than those not using mobile phones.

  9. Application of computer image enhancement techniques to shuttle hand-held photography

    NASA Technical Reports Server (NTRS)

    David, B. E.

    1986-01-01

    With the advent of frequent Space Transportation System Shuttle missions, photography from hyperaltitudes stands to become an accessible and convenient resource for scientists and environmental managers. As satellite products (such as LANDSAT) continue to spiral in costs, all but the most affluent consumer is finding Earth imagery from space to be more and more unavailable. Therefore, the potential for Shuttle photography to serve a wide variety of users is increasing. However, despite the popularity of photos from space as public relations tools and report illustrations, little work has been performed to prove their scientific worth beyond that as basic mapping bases. It is the hypothesis of this project that hand-held Earth photography from the Space Shuttle has potentially high scientific merit and that primary data can be extracted. In effect, Shuttle photography should be considered a major remote sensing information resource.

  10. CdCl2 passivation of polycrystalline CdMgTe and CdZnTe absorbers for tandem photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Swanson, Drew E.; Reich, Carey; Abbas, Ali; Shimpi, Tushar; Liu, Hanxiao; Ponce, Fernando A.; Walls, John M.; Zhang, Yong-Hang; Metzger, Wyatt K.; Sampath, W. S.; Holman, Zachary C.

    2018-05-01

    As single-junction silicon solar cells approach their theoretical limits, tandems provide the primary path to higher efficiencies. CdTe alloys can be tuned with magnesium (CdMgTe) or zinc (CdZnTe) for ideal tandem pairing with silicon. A II-VI/Si tandem holds the greatest promise for inexpensive, high-efficiency top cells that can be quickly deployed in the market using existing polycrystalline CdTe manufacturing lines combined with mature silicon production lines. Currently, all high efficiency polycrystalline CdTe cells require a chloride-based passivation process to passivate grain boundaries and bulk defects. This research examines the rich chemistry and physics that has historically limited performance when extending Cl treatments to polycrystalline 1.7-eV CdMgTe and CdZnTe absorbers. A combination of transmittance, quantum efficiency, photoluminescence, transmission electron microscopy, and energy-dispersive X-ray spectroscopy clearly reveals that during passivation, Mg segregates and out-diffuses, initially at the grain boundaries but eventually throughout the bulk. CdZnTe exhibits similar Zn segregation behavior; however, the onset and progression is localized to the back of the device. After passivation, CdMgTe and CdZnTe can render a layer that is reduced to predominantly CdTe electro-optical behavior. Contact instabilities caused by inter-diffusion between the layers create additional complications. The results outline critical issues and paths for these materials to be successfully implemented in Si-based tandems and other applications.

  11. CdCl2 Passivation of Polycrystalline CdMgTe and CdZnTe Absorbers for Tandem Photovoltaic Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metzger, Wyatt K; Swanson, Drew; Reich, Carey

    As single-junction silicon solar cells approach their theoretical limits, tandems provide the primary path to higher efficiencies. CdTe alloys can be tuned with magnesium (CdMgTe) or zinc (CdZnTe) for ideal tandem pairing with silicon. A II-VI/Si tandem holds the greatest promise for inexpensive, high-efficiency top cells that can be quickly deployed in the market using existing polycrystalline CdTe manufacturing lines combined with mature silicon production lines. Currently, all high efficiency polycrystalline CdTe cells require a chloride-based passivation process to passivate grain boundaries and bulk defects. This research examines the rich chemistry and physics that has historically limited performance when extendingmore » Cl treatments to polycrystalline 1.7-eV CdMgTe and CdZnTe absorbers. A combination of transmittance, quantum efficiency, photoluminescence, transmission electron microscopy, and energy-dispersive X-ray spectroscopy clearly reveals that during passivation, Mg segregates and out-diffuses, initially at the grain boundaries but eventually throughout the bulk. CdZnTe exhibits similar Zn segregation behavior; however, the onset and progression is localized to the back of the device. After passivation, CdMgTe and CdZnTe can render a layer that is reduced to predominantly CdTe electro-optical behavior. Contact instabilities caused by inter-diffusion between the layers create additional complications. The results outline critical issues and paths for these materials to be successfully implemented in Si-based tandems and other applications.« less

  12. Strong mechanical adhesion of gold electroless contacts on CdZnTe deposited by alcoholic solutions

    NASA Astrophysics Data System (ADS)

    Benassi, G.; Nasi, L.; Bettelli, M.; Zambelli, N.; Calestani, D.; Zappettini, A.

    2017-02-01

    CdZnTe crystals are nowadays employed as X-ray detectors for a number of applications, such as medical imaging, security, and environmental monitoring. One of the main difficulties connected with CdZnTe-based detector processing is the poor contact adhesion that affect bonding procedures and device long term stability. We have shown that it is possible to obtain mechanically stable contacts by common electroless deposition using alcoholic solutions instead of water solutions. The contacts show blocking current-voltage characteristic that is required for obtaining spectroscopic detectors. Nanoscale-resolved chemical analysis indicated that the improved mechanical adhesion is due to a better control of the stoichiometry of the CdZnTe layer below the contact.

  13. 3-D Spatial Resolution of 350 μm Pitch Pixelated CdZnTe Detectors for Imaging Applications.

    PubMed

    Yin, Yongzhi; Chen, Ximeng; Wu, Heyu; Komarov, Sergey; Garson, Alfred; Li, Qiang; Guo, Qingzhen; Krawczynski, Henric; Meng, Ling-Jian; Tai, Yuan-Chuan

    2013-02-01

    We are currently investigating the feasibility of using highly pixelated Cadmium Zinc Telluride (CdZnTe) detectors for sub-500 μ m resolution PET imaging applications. A 20 mm × 20 mm × 5 mm CdZnTe substrate was fabricated with 350 μ m pitch pixels (250 μ m anode pixels with 100 μ m gap) and coplanar cathode. Charge sharing among the pixels of a 350 μ m pitch detector was studied using collimated 122 keV and 511 keV gamma ray sources. For a 350 μ m pitch CdZnTe detector, scatter plots of the charge signal of two neighboring pixels clearly show more charge sharing when the collimated beam hits the gap between adjacent pixels. Using collimated Co-57 and Ge-68 sources, we measured the count profiles and estimated the intrinsic spatial resolution of 350 μ m pitch detector biased at -1000 V. Depth of interaction was analyzed based on two methods, i.e., cathode/anode ratio and electron drift time, in both 122 keV and 511 keV measurements. For single-pixel photopeak events, a linear correlation between cathode/anode ratio and electron drift time was shown, which would be useful for estimating the DOI information and preserving image resolution in CdZnTe PET imaging applications.

  14. 3-D Spatial Resolution of 350 μm Pitch Pixelated CdZnTe Detectors for Imaging Applications

    PubMed Central

    Yin, Yongzhi; Chen, Ximeng; Wu, Heyu; Komarov, Sergey; Garson, Alfred; Li, Qiang; Guo, Qingzhen; Krawczynski, Henric; Meng, Ling-Jian; Tai, Yuan-Chuan

    2016-01-01

    We are currently investigating the feasibility of using highly pixelated Cadmium Zinc Telluride (CdZnTe) detectors for sub-500 μm resolution PET imaging applications. A 20 mm × 20 mm × 5 mm CdZnTe substrate was fabricated with 350 μm pitch pixels (250 μm anode pixels with 100 μm gap) and coplanar cathode. Charge sharing among the pixels of a 350 μm pitch detector was studied using collimated 122 keV and 511 keV gamma ray sources. For a 350 μm pitch CdZnTe detector, scatter plots of the charge signal of two neighboring pixels clearly show more charge sharing when the collimated beam hits the gap between adjacent pixels. Using collimated Co-57 and Ge-68 sources, we measured the count profiles and estimated the intrinsic spatial resolution of 350 μm pitch detector biased at −1000 V. Depth of interaction was analyzed based on two methods, i.e., cathode/anode ratio and electron drift time, in both 122 keV and 511 keV measurements. For single-pixel photopeak events, a linear correlation between cathode/anode ratio and electron drift time was shown, which would be useful for estimating the DOI information and preserving image resolution in CdZnTe PET imaging applications. PMID:28250476

  15. Purification of CdZnTe by electromigration

    NASA Astrophysics Data System (ADS)

    Kim, K.; Kim, Sangsu; Hong, Jinki; Lee, Jinseo; Hong, Taekwon; Bolotnikov, A. E.; Camarda, G. S.; James, R. B.

    2015-04-01

    Electro-migration of ionized/electrically active impurities in CdZnTe (CZT) was successfully demonstrated at elevated temperature with an electric field of 20 V/mm. Copper, which exists in positively charged states, electro-migrated at a speed of 15 μm/h in an electric field of 20 V/mm. A notable variation in impurity concentration along the growth direction with the segregation tendency of the impurities was observed in an electro-migrated CZT boule. Notably, both Ga and Fe, which exist in positively charged states, exhibited the opposite distribution to that of their segregation tendency in Cd(Zn)Te. A CZT detector fabricated from the middle portion of the electro-migrated CZT boule showed an improved mobility-lifetime product of 0.91 × 10-2 cm2/V, compared with that of 1.4 × 10-3 cm2/V, observed in an as-grown (non-electro-migrated) CZT detector. The optimum radiation detector material would have minimum concentration of deep traps required for compensation.

  16. Diolistic labeling of neuronal cultures and intact tissue using a hand-held gene gun

    PubMed Central

    O'Brien, John A; Lummis, Sarah CR

    2009-01-01

    Diolistic labeling is a highly efficient method for introducing dyes into cells using biolistic techniques. The use of lipophilic carbocyanine dyes, combined with particle-mediated biolistic delivery using a hand-held gene gun, allows non-toxic labeling of multiple cells in both living and fixed tissue. The technique is rapid (labeled cells can be visualized in minutes) and technically undemanding. Here, we provide a detailed protocol for diolistic labeling of cultured human embryonic kidney 293 cells and whole brain using a hand-held gene gun. There are four major steps: (i) coating gold microcarriers with one or more dyes; (ii) transferring the microcarriers into a cartridge to make a bullet; (iii) preparation of cells or intact tissue; and (iv) firing the microcarriers into cells or tissue. The method can be readily adapted to other cell types and tissues. This protocol can be completed in less than 1 h. PMID:17406443

  17. Applying Hand-Held 3D Printing Technology to the Teaching of VSEPR Theory

    ERIC Educational Resources Information Center

    Dean, Natalie L.; Ewan, Corrina; McIndoe, J. Scott

    2016-01-01

    The use of hand-held 3D printing technology provides a unique and engaging approach to learning VSEPR theory by enabling students to draw three-dimensional depictions of different molecular geometries, giving them an appreciation of the shapes of the building blocks of complex molecular structures. Students are provided with 3D printing pens and…

  18. An Examination of Hand-Held Computer-Assisted Instruction on Subtraction Skills for Second Grade Students with Learning and Behavioral Disabilities

    ERIC Educational Resources Information Center

    Nordness, Philip D.; Haverkost, Ann; Volberding, Annette

    2011-01-01

    The effect of a mathematic flashcard application on a hand-held computing device was examined across three individual second grade students with learning and behavioral disabilities. All of the students improved their subtraction scores by an average of 17% as measured by the district-created, curriculum-based assessment. The results of this study…

  19. Spray distribution evaluation of different settings of a hand-held-trolley sprayer used in greenhouse tomato crops.

    PubMed

    Llop, Jordi; Gil, Emilio; Gallart, Montserrat; Contador, Felipe; Ercilla, Mireia

    2016-03-01

    Hand-held-trolley sprayers have recently been promoted to improve spray application techniques in greenhouses in south-eastern Spain. However, certain aspects remain to be improved. A modified hand-held-trolley sprayer was evaluated under two different canopy conditions (high and low canopy density) and with several sprayer settings (nozzle type, air assistance and spray volume). In this study, the deposition, coverage and uniformity of distribution of the spray on the canopy have been assessed. The deposition on leaves was significantly higher when flat-fan nozzles and air assistance were used at both high and low spray volumes. No differences were detected between the reference system at a high spray volume and the modified trolley at a low spray volume. Flat-fan nozzles with air assistance increased penetrability into the canopy. Air assistance and flat-fan nozzles allow volume rates to be reduced while maintaining or improving spray quality distribution. The working parameters of hand-held sprayers must be considered to reduce environmental risk and increase the efficacy of the spraying process. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  20. Infrared LED Enhanced Spectroscopic CdZnTe Detector Working under High Fluxes of X-rays

    PubMed Central

    Pekárek, Jakub; Dědič, Václav; Franc, Jan; Belas, Eduard; Rejhon, Martin; Moravec, Pavel; Touš, Jan; Voltr, Josef

    2016-01-01

    This paper describes an application of infrared light-induced de-polarization applied on a polarized CdZnTe detector working under high radiation fluxes. We newly demonstrate the influence of a high flux of X-rays and simultaneous 1200-nm LED illumination on the spectroscopic properties of a CdZnTe detector. CdZnTe detectors operating under high radiation fluxes usually suffer from the polarization effect, which occurs due to a screening of the internal electric field by a positive space charge caused by photogenerated holes trapped at a deep level. Polarization results in the degradation of detector charge collection efficiency. We studied the spectroscopic behavior of CdZnTe under various X-ray fluxes ranging between 5×105 and 8×106 photons per mm2 per second. It was observed that polarization occurs at an X-ray flux higher than 3×106 mm−2·s−1. Using simultaneous illumination of the detector by a de-polarizing LED at 1200 nm, it was possible to recover X-ray spectra originally deformed by the polarization effect. PMID:27690024

  1. Background adaptive division filtering for hand-held ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Lee, Matthew A.; Anderson, Derek T.; Ball, John E.; White, Julie L.

    2016-05-01

    The challenge in detecting explosive hazards is that there are multiple types of targets buried at different depths in a highlycluttered environment. A wide array of target and clutter signatures exist, which makes detection algorithm design difficult. Such explosive hazards are typically deployed in past and present war zones and they pose a grave threat to the safety of civilians and soldiers alike. This paper focuses on a new image enhancement technique for hand-held ground penetrating radar (GPR). Advantages of the proposed technique is it runs in real-time and it does not require the radar to remain at a constant distance from the ground. Herein, we evaluate the performance of the proposed technique using data collected from a U.S. Army test site, which includes targets with varying amounts of metal content, placement depths, clutter and times of day. Receiver operating characteristic (ROC) curve-based results are presented for the detection of shallow, medium and deeply buried targets. Preliminary results are very encouraging and they demonstrate the usefulness of the proposed filtering technique.

  2. The reliability and validity of hand-held refractometry water content measures of hydrogel lenses.

    PubMed

    Nichols, Jason J; Mitchell, G Lynn; Good, Gregory W

    2003-06-01

    To investigate within- and between-examiner reliability and validity of hand-held refractometry water content measures of hydrogel lenses. Nineteen lenses of various nominal water contents were examined by two examiners on two occasions separated by 1 hour. An Atago N2 hand-held refractometer was used for all water content measures. Lenses were presented in a random order to each examiner by a third party, and examiners were masked to any potential lens identifiers. Intraclass correlation coefficients (ICC), 95% limits of agreement, and Wilcoxon signed rank test were used to characterize the within- and between-examiner reliability and validity of lens water content measures. Within-examiner reliability was excellent (ICC, 0.97; 95% limits of agreement, -3.6% to +5.7%), and the inter-visit mean difference of 1.1 +/- 2.4% was not biased (p = 0.08). Between-examiner reliability was also excellent (ICC, 0.98; 95% limits of agreement, -4.1% to +3.9%). The mean difference between examiners was -0.1 +/- 2.1% (p = 0.83). The mean difference between the nominally reported water content and our water content measures was -2.1 +/- 1.7% (p < 0.001); the 95% limits of agreement for this difference were -5.4% to +1.1%. There is good reliability within and between examiners in measuring water content of hydrogel lenses. However, with our sample of lenses, examiners tended to overestimate the nominal water content of hydrogel lenses. As discussed, this bias may be associated with the Brix scale used in refractometry and is material dependent. Therefore, investigators may need to account for bias when measuring hydrogel lens water content via hand-held refractometry.

  3. Comparative Geometrical Investigations of Hand-Held Scanning Systems

    NASA Astrophysics Data System (ADS)

    Kersten, T. P.; Przybilla, H.-J.; Lindstaedt, M.; Tschirschwitz, F.; Misgaiski-Hass, M.

    2016-06-01

    An increasing number of hand-held scanning systems by different manufacturers are becoming available on the market. However, their geometrical performance is little-known to many users. Therefore the Laboratory for Photogrammetry & Laser Scanning of the HafenCity University Hamburg has carried out geometrical accuracy tests with the following systems in co-operation with the Bochum University of Applied Sciences (Laboratory for Photogrammetry) as well as the Humboldt University in Berlin (Institute for Computer Science): DOTProduct DPI-7, Artec Spider, Mantis Vision F5 SR, Kinect v1 + v2, Structure Sensor and Google's Project Tango. In the framework of these comparative investigations geometrically stable reference bodies were used. The appropriate reference data were acquired by measurement with two structured light projection systems (AICON smartSCAN and GOM ATOS I 2M). The comprehensive test results of the different test scenarios are presented and critically discussed in this contribution.

  4. Purification of CdZnTe by Electromigration

    DOE PAGES

    Kim, K.; Kim, Sangsu; Hong, Jinki; ...

    2015-04-14

    Electro-migration of ionized/electrically active impurities in CdZnTe (CZT) was successfully demonstrated at elevated temperature with an electric field of 20 V/mm. Copper, which exists in positively charged states, electro-migrated at a speed of 15 lm/h in an electric field of 20 V/mm. A notable variation in impurity concentration along the growth direction with the segregation tendency of the impurities was observed in an electro-migrated CZT boule. Notably, both Ga and Fe, which exist in positively charged states, exhibited the opposite distribution to that of their segregation tendency in Cd(Zn)Te. Furthermore, a CZT detector fabricated from the middle portion of themore » electromigrated CZT boule showed an improved mobility-lifetime product of 0.91 10 -2 cm 2 /V, compared to that of 1.4 10 -3 cm 2 /V, observed in an as-grown (non-electro-migrated) CZT detector. The optimum radiation detector material would have minimum concentration of deep traps required for compensation.« less

  5. Hand-held optoacoustic probe for three-dimensional imaging of human morphology and function

    NASA Astrophysics Data System (ADS)

    Deán-Ben, X. Luís.; Razansky, Daniel

    2014-03-01

    We report on a hand-held imaging probe for real-time optoacoustic visualization of deep tissues in three dimensions. The proposed solution incorporates a two-dimensional array of ultrasonic sensors densely distributed on a spherical surface, whereas illumination is performed coaxially through a cylindrical cavity in the array. Visualization of three-dimensional tomographic data at a frame rate of 10 images per second is enabled by parallel recording of 256 time-resolved signals for each individual laser pulse along with a highly efficient GPUbased real-time reconstruction. A liquid coupling medium (water), enclosed in a transparent membrane, is used to guarantee transmission of the optoacoustically generated waves to the ultrasonic detectors. Excitation at multiple wavelengths further allows imaging spectrally distinctive tissue chromophores such as oxygenated and deoxygenated haemoglobin. The performance is showcased by video-rate tracking of deep tissue vasculature and three-dimensional measurements of blood oxygenenation in a healthy human volunteer. The flexibility provided by the hand-held hardware design, combined with the real-time operation, makes the developed platform highly usable for both small animal research and clinical imaging in multiple indications, including cancer, inflammation, skin and cardiovascular diseases, diagnostics of lymphatic system and breast

  6. CdZnTe substrate impurities and their effects on liquid phase epitaxy HgCdTe

    NASA Astrophysics Data System (ADS)

    Tower, J. P.; Tobin, S. P.; Kestigian, M.; Norton, P. W.; Bollong, A. B.; Schaake, H. F.; Ard, C. K.

    1995-05-01

    Impurity levels were tracked through the stages of substrate and liquid phase epitaxy (LPE) layer processing to identify sources of elements which degrade infrared photodetector performance. Chemical analysis by glow discharge mass spectrometry and Zeeman corrected graphite furnace atomic absorption effectively showed the levels of impurities introduced into CdZnTe substrate material from the raw materials and the crystal growth processes. A new purification process (in situ distillation zone refining) for raw materials was developed, resulting in improved CdZnTe substrate purity. Substrate copper contamination was found to degrade the LPE layer and device electrical properties, in the case of lightly doped HgCdTe. Anomalous HgCdTe carrier type conversion was correlated to certain CdZnTe and CdTe substrate ingots.

  7. 78 FR 20695 - Walk-Through Metal Detectors and Hand-Held Metal Detectors Test Method Validation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-05

    ... Detectors and Hand-Held Metal Detectors Test Method Validation AGENCY: National Institute of Justice, DOJ... ensure that the test methods in the standards are properly documented, NIJ is requesting proposals (including price quotes) for test method validation efforts from testing laboratories. NIJ is also seeking...

  8. Thiophene-Based Organic Semiconductors.

    PubMed

    Turkoglu, Gulsen; Cinar, M Emin; Ozturk, Turan

    2017-10-24

    Thiophene-based π-conjugated organic small molecules and polymers are the research subject of significant current interest owing to their potential use as organic semiconductors in material chemistry. Despite simple and similar molecular structures, the hitherto reported properties of thiophene-based organic semiconductors are rather diverse. Design of high performance organic semiconducting materials requires a thorough understanding of inter- and intra-molecular interactions, solid-state packing, and the influence of both factors on the charge carrier transport. In this chapter, thiophene-based organic semiconductors, which are classified in terms of their chemical structures and their structure-property relationships, are addressed for the potential applications as organic photovoltaics (OPVs), organic field-effect transistors (OFETs) and organic light emitting diodes (OLEDs).

  9. Study on the mechanism of using IR illumination to improve the carrier transport performance of CdZnTe detector

    NASA Astrophysics Data System (ADS)

    Mao, Yifei; Zhang, Jijun; Lin, Liwen; Lai, Jianming; Min, Jiahua; Liang, Xiaoyan; Huang, Jian; Tang, Ke; Wang, Linjun

    2018-04-01

    Different wavelength IR light (770-1150 nm) was used to evaluate the effect of IR light on the carrier transport performance of CdZnTe detector. The effective mobility-lifetime product (μτ*) of CdZnTe achieved 10-2 cm2 V-1 when the IR wavelength was in the range of 820-920 nm, but decreased to 1 × 10-4 cm2 V-1 when the wavelength was longer than 920 nm. The mechanism about how IR light affecting the carrier transport property of CdZnTe detector was analyzed with Shockley-Read-Hall model. The defect of doubly ionized Cd vacancy ([VCd]2-) was found to be the main factor that assist IR light affecting the μτ of CdZnTe detector. The photoconductive experiment under 770-1150 nm IR illumination was carried out, and three kinds of photocurrent curve were detected and analyzed by solving the Hecht equation. The experiments demonstrated the effect of [VCd]2- defect on the carrier transport property of CdZnTe detector under IR illumination.

  10. 77 FR 40637 - Honeywell International, Scanning and Mobility Division, Formerly Known as Hand Held Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ..., Scanning and Mobility Division, Formerly Known as Hand Held Products, Inc., Including On-Site Leased Workers From Manpower, Skaneatelles Falls, NY; Amended Certification Regarding Eligibility To Apply for...''), 19 U.S.C. 2273, the Department of Labor issued a Certification of Eligibility to Apply for Worker...

  11. Applications of a hand-held GPS receiver in South American rain forests

    NASA Technical Reports Server (NTRS)

    Baksh, Michael

    1991-01-01

    A hand-held Global Positioning System receiver was used to determine the precise locations of villages, houses, gardens, and other cultural and environmental features in poorly mapped South American rain forests. The Magellan NAV 1000 unit profides extremely accurate latitude and longitude information, but determination of altitude is problematical. Overall, the receiver effectively allows anthropologists to obtain essential locational data useful for categorizing land uses, mapping tribal boundaries, and other applications in regions where environmental conditions are harsh and/or accessibility is difficult.

  12. Rapid Diagnosis of an Ulnar Fracture with Portable Hand-Held Ultrasound

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, Andrew W.; Brown, Ross; Diebel, Lawrence N.; Nicolaou, Savvas; Marshburn, Tom; Dulchavsky, Scott A.

    2002-01-01

    Orthopedic fractures are a common injury in operational activities, injuries that often occur in isolated or hostile environments. Clinical ultrasound devices have become more user friendly and lighter allowing them to be easily transported with forward medical teams. The bone-soft tissue interface has a very large acoustic impedance, with a high reflectance that can be used to visualize breaks in contour including fractures. Herein reported is a case of an ulnar fracture that was quickly visualized in the early phase of a multi-system trauma resuscitation with a hand-held ultrasound device. The implications for operational medicine are discussed.

  13. Hand-Held Instrument Fights Acne, Tops Over-the-Counter Market

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Tyrell Inc., a Houston-based medical technologies company, was able to access engineering support in redesigning a heating element for a hand-held acne-fighting device through SATOP, NASA's Space Alliance Technology Outreach Program. SATOP put Tyrell in contact with The Boeing Company, which assessed the design and made several major contributions. The product, named Zeno, is now the highest selling over-the-counter medical device for the treatment of acne, and in 2006, Zeno was named the "SATOP Texas, Success Story of the Year." Zeno employs proprietary ClearPoint technology to provide relief of mild to moderate inflammatory acne by delivering a precisely controlled low-level dosage of heat to the blemish, causing the bacteria at the root of more than 90 percent of acne to self-destruct. Within its first year on the market, Zeno was cited by various publications for several awards, including Allure's 2005 "Best of Beauty," Marie Claire's "10 Best Gadgets for Girls," and Popular Science's 2005 "Best of What's New." A variation of the Zeno for use in treating herpetic lesions such as cold sores, by killing the virus that causes them, is currently undergoing FDA trials.

  14. Evaluation of ZnO:Al as a contact material to CdZnTe for radiation detector applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Roy, Utpal N.; Camarda, Giuseppe S.; Cui, Yonggang; Gul, Rubi; Hossain, Anwar; Yang, Ge; James, Ralph B.; Pradhan, Aswini K.; Mundle, Rajeh

    2016-09-01

    Aluminum (Al) doped ZnO with very high Al concentration acts as metal regarding its electrical conductivity. ZnO offers many advantages over the commonly-known metals being used today as electrode materials for nuclear detector fabrication. Often, the common metals show poor adhesion to CdZnTe or CdTe surfaces and have a tendency to peel off. In addition, there is a large mismatch of the coefficients of thermal expansion (CTE) between the metals and underlying CdZnTe, which is one of the reasons for mechanical degradation of the contact. In contrast ZnO has a close match of the CTE with CdZnTe and possesses 8-20 times higher hardness than the commonly-used metals. In this presentation, we will explore and discuss the properties of CdZnTe detectors with ZnO:Al contacts.

  15. Demonstration of the B4C/NaIO4/PTFE Delay in the U.S. Army Hand-Held Signal

    DTIC Science & Technology

    2015-05-20

    Figure 1. Partial cross section diagram of a hand-held signal showing the rocket motor , delay element, expelling charge, and pyrotechnic payload as...The black powder-based rocket motor , consisting of propellant pellets (G) encased in a cardboard tube, contains an axial core hole to accommodate the...that ignites the rocket motor . Simultaneously, the delay element is ignited and burns for an interval (preferably 5−6 s) before it ignites the black

  16. Hand-held indirect calorimeter offers advantages compared with prediction equations, in a group of overweight women, to determine resting energy expenditures and estimated total energy expenditures during research screening.

    PubMed

    Spears, Karen E; Kim, Hyunsook; Behall, Kay M; Conway, Joan M

    2009-05-01

    To compare standardized prediction equations to a hand-held indirect calorimeter in estimating resting energy and total energy requirements in overweight women. Resting energy expenditure (REE) was measured by hand-held indirect calorimeter and calculated by prediction equations Harris-Benedict, Mifflin-St Jeor, World Health Organization/Food and Agriculture Organization/United Nations University (WHO), and Dietary Reference Intakes (DRI). Physical activity level, assessed by questionnaire, was used to estimate total energy expenditure (TEE). Subjects (n=39) were female nonsmokers older than 25 years of age with body mass index more than 25. Repeated measures analysis of variance, Bland-Altman plot, and fitted regression line of difference. A difference within +/-10% of two methods indicated agreement. Significant proportional bias was present between hand-held indirect calorimeter and prediction equations for REE and TEE (P<0.01); prediction equations overestimated at lower values and underestimated at higher values. Mean differences (+/-standard error) for REE and TEE between hand-held indirect calorimeter and Harris-Benedict were -5.98+/-46.7 kcal/day (P=0.90) and 21.40+/-75.7 kcal/day (P=0.78); between hand-held indirect calorimeter and Mifflin-St Jeor were 69.93+/-46.7 kcal/day (P=0.14) and 116.44+/-75.9 kcal/day (P=0.13); between hand-held indirect calorimeter and WHO were -22.03+/-48.4 kcal/day (P=0.65) and -15.8+/-77.9 kcal/day (P=0.84); and between hand-held indirect calorimeter and DRI were 39.65+/-47.4 kcal/day (P=0.41) and 56.36+/-85.5 kcal/day (P=0.51). Less than 50% of predictive equation values were within +/-10% of hand-held indirect calorimeter values, indicating poor agreement. A significant discrepancy between predicted and measured energy expenditure was observed. Further evaluation of hand-held indirect calorimeter research screening is needed.

  17. Arrays of Position-Sensitive Virtual Frisch-Grid CdZnTe Detectors: Results From a $$4\\times 4$$ Array Prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ocampo Giraldo, L. A.; Bolotnikov, A. E.; Camarda, G. S.

    Position-sensitive virtual Frisch-grid (VFG) CdZnTe (CZT) detectors offer a unique capability for correcting the response nonuniformities caused by crystal defects. This allowed us to achieve high energy resolution, while using typical-grade commercial CZT crystals with relaxed requirements to their quality, thus reducing the overall cost of detectors. Another advantage of the VFG detectors is that they can be integrated into arrays and used in small compact hand-held instruments or large-area gamma cameras that will enhance detection capability for many practical applications, including nonproliferation, medical imaging, and gamma-ray astronomy. Here in this paper, we present the results from testing small arraymore » prototypes coupled with front-end application-specified integrated circuit. Each detector in the array is furnished with 5-mm-wide charge-sensing pads placed near the anode. The pads signals are converted into XY coordinates, which combined with the cathode signals (for Z coordinates) provide 3-D position information of all interaction points. The basic array consists of a number of detectors grouped into 2×2 subarrays, each having a common cathode made by connecting together the cathodes of the individual detectors. Lastly, these features can significantly improve the performance of detectors while using typical-grade low-cost CZT crystals to reduce the overall cost of the proposed instrument.« less

  18. Arrays of Position-Sensitive Virtual Frisch-Grid CdZnTe Detectors: Results From a $$4\\times 4$$ Array Prototype

    DOE PAGES

    Ocampo Giraldo, L. A.; Bolotnikov, A. E.; Camarda, G. S.; ...

    2017-08-22

    Position-sensitive virtual Frisch-grid (VFG) CdZnTe (CZT) detectors offer a unique capability for correcting the response nonuniformities caused by crystal defects. This allowed us to achieve high energy resolution, while using typical-grade commercial CZT crystals with relaxed requirements to their quality, thus reducing the overall cost of detectors. Another advantage of the VFG detectors is that they can be integrated into arrays and used in small compact hand-held instruments or large-area gamma cameras that will enhance detection capability for many practical applications, including nonproliferation, medical imaging, and gamma-ray astronomy. Here in this paper, we present the results from testing small arraymore » prototypes coupled with front-end application-specified integrated circuit. Each detector in the array is furnished with 5-mm-wide charge-sensing pads placed near the anode. The pads signals are converted into XY coordinates, which combined with the cathode signals (for Z coordinates) provide 3-D position information of all interaction points. The basic array consists of a number of detectors grouped into 2×2 subarrays, each having a common cathode made by connecting together the cathodes of the individual detectors. Lastly, these features can significantly improve the performance of detectors while using typical-grade low-cost CZT crystals to reduce the overall cost of the proposed instrument.« less

  19. Reliability of the hand held dynamometer in measuring muscle strength in people with interstitial lung disease.

    PubMed

    Dowman, Leona; McDonald, Christine F; Hill, Catherine J; Lee, Annemarie; Barker, Kathryn; Boote, Claire; Glaspole, Ian; Goh, Nicole; Southcott, Annemarie; Burge, Angela; Ndongo, Rebecca; Martin, Alicia; Holland, Anne E

    2016-09-01

    To evaluate the inter-rater and intra-rater reliability of the hand held dynamometer in measuring muscle strength in people with interstitial lung disease (ILD). Test retest reliability of hand-held dynamometry for elbow flexor and knee extensor strength between two independent raters and two testing sessions. Physiotherapy department within a tertiary hospital. Thirty participants with ILD of varying aetiology were included. Twenty participants completed the inter-rater reliability protocol (10 idiopathic pulmonary fibrosis, mean (SD) age 73 (10) years, 11 male) and 21 participants completed the intra-rater reliability protocol (10 idiopathic pulmonary fibrosis, mean age 71 (10) years, 11 male). Mean muscle strength (kg). Agreement between the two raters and testing sessions was analyzed using Bland-Altman plots and reliability was estimated using intraclass correlation coefficients (ICC). For elbow flexor strength there was a mean difference between raters of -0.6kg (limits of agreement (LOA) -5.6 to 4.4kg) and within raters of -0.3kg (LOA -2.8 to 2.3kg). The ICCs were 0.95 and 0.98, respectively. For knee extensor strength there was a mean difference between raters of -1.5kg (LOA -6.9 to 3.9kg) and within raters of -0.7kg (LOA -3.9 to 2.4kg). The ICCs were 0.95 and 0.97, respectively. Hand-held dynamometry is reliable in measuring elbow flexor and knee extensor strength in people with ILD. Copyright © 2015 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  20. Using Polymer Semiconductors and a 3-in-1 Plastic Electronics STEM Education Kit to Engage Students in Hands-On Polymer Inquiry Activities

    ERIC Educational Resources Information Center

    Enlow, Jessica L.; Marin, Dawn M.; Walter, Michael G.

    2017-01-01

    To improve polymer education for 9-12 and undergraduate students, a plastic electronics laboratory kit using polymer semiconductors has been developed. The three-module kit and curriculum use polymer semiconductors to provide hands-on inquiry activities with overlapping themes of electrical conductivity, light emission, and light-harvesting solar…

  1. Multi-Sensor Systems Development for UXO Detection and Discrimination: Hand-Held Dual Magnetic/Electromagnetic Induction Sensor

    DTIC Science & Technology

    2008-04-01

    5 Fluxgate magnetometer ... magnetometer into digital format, and transmitted as a single serial data string to log the Cs and fluxgate magnetometer data. After procurement...Hardware The system hardware comprises an EMI sensor, Cs vapor magnetometer , fluxgate magnetometer , hand-held data acquisition computer, integrated

  2. Occupational risk identification using hand-held or laptop computers.

    PubMed

    Naumanen, Paula; Savolainen, Heikki; Liesivuori, Jyrki

    2008-01-01

    This paper describes the Work Environment Profile (WEP) program and its use in risk identification by computer. It is installed into a hand-held computer or a laptop to be used in risk identification during work site visits. A 5-category system is used to describe the identified risks in 7 groups, i.e., accidents, biological and physical hazards, ergonomic and psychosocial load, chemicals, and information technology hazards. Each group contains several qualifying factors. These 5 categories are colour-coded at this stage to aid with visualization. Risk identification produces visual summary images the interpretation of which is facilitated by colours. The WEP program is a tool for risk assessment which is easy to learn and to use both by experts and nonprofessionals. It is especially well adapted to be used both in small and in larger enterprises. Considerable time is saved as no paper notes are needed.

  3. Hand-Held Model of a Sarcomere to Illustrate the Sliding Filament Mechanism in Muscle Contraction

    ERIC Educational Resources Information Center

    Jittivadhna, Karnyupha; Ruenwongsa, Pintip; Panijpan, Bhinyo

    2009-01-01

    From our teaching of the contractile unit of the striated muscle, we have found limitations in using textbook illustrations of sarcomere structure and its related dynamic molecular physiological details. A hand-held model of a striated muscle sarcomere made from common items has thus been made by us to enhance students' understanding of the…

  4. Characteristics of depth-sensing coplanar grid CdZnTe detectors

    NASA Astrophysics Data System (ADS)

    He, Zhong; Sturm, Ben W.

    2005-12-01

    The latest depth-sensing coplanar grid CdZnTe detectors have been tested. Two of these have dimensions 1.5×1.5×1.0 cm 3 and one is a cylindrical detector with 1.5 cm diameter and 1.0 cm length, all of them using the third-generation coplanar anode design. Energy resolutions of 2.0% and 2.4% FWHM at 662 keV γ-ray energies were obtained. Detector performance has been observed experimentally as a function of depth of the γ-ray interaction, and as a function of radial position near the anode surface. The measured results show the improvement of the third-generation anode design. Material uniformity of CdZnTe crystals manufactured by eV Products have been directly observed and compared on two 1.5×1.5×1.0 cm 3 detectors.

  5. Advances in Nuclear Monitoring Technologies

    NASA Astrophysics Data System (ADS)

    Park, Brent

    2006-03-01

    Homeland security requires low-cost, large-area detectors for locating and identifying weapons-usable nuclear materials and monitors for radiological isotopes that are more robust than current systems. Recent advances in electronics materials and nanotechnology, specifically organic semiconductors and inorganic quantum dots, offer potential improvements. We provide an overview of the physical processes involved in radiation detection using these new materials in the design of new device structures. Examples include recent efforts on quantum dots, as well as more traditional radiation-detecting materials such as CdZnTe and high-pressure xenon. Detector improvements demand not only new materials but also enhanced data-analysis tools that reduce false alarms and thus increase the quality of decisions. Additional computing power on hand-held platforms should enable the application of advanced algorithms to radiation-detection problems in the field, reducing the need to transmit data and thus delay analysis.

  6. Linearity enhancement design of a 16-channel low-noise front-end readout ASIC for CdZnTe detectors

    NASA Astrophysics Data System (ADS)

    Zeng, Huiming; Wei, Tingcun; Wang, Jia

    2017-03-01

    A 16-channel front-end readout application-specific integrated circuit (ASIC) with linearity enhancement design for cadmium zinc telluride (CdZnTe) detectors is presented in this paper. The resistors in the slow shaper are realized using a high-Z circuit to obtain constant resistance value instead of using only a metal-oxide-semiconductor (MOS) transistor, thus the shaping time of the slow shaper can be kept constant for different amounts of input energies. As a result, the linearity of conversion gain is improved significantly. The ASIC was designed and fabricated in a 0.35 μm CMOS process with a die size of 2.60 mm×3.53 mm. The tested results show that a typical channel provides an equivalent noise charge (ENC) of 109.7e-+16.3e-/pF with a power consumption of 4 mW and achieves a conversion gain of 87 mV/fC with a nonlinearity of <0.4%. The linearity of conversion gain is improved by at least 86.6% as compared with the traditional approaches using the same front-end readout architecture and manufacture process. Moreover, the inconsistency among channels is <0.3%. An energy resolution of 2.975 keV (FWHM) for gamma rays of 59.5 keV was measured by connecting the ASIC to a 5 mm×5 mm ×2 mm CdZnTe detector at room temperature. The front-end readout ASIC presented in this paper achieves an outstanding linearity performance without compromising the noise, power consumption, and chip size performances.

  7. Hand-Held Units for Short-Range Wireless Biotelemetry

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; Simons, Rainee N.

    2008-01-01

    Special-purpose hand-held radiotransceiver units have been proposed as means of short-range radio powering and interrogation of surgically implanted microelectromechanical sensors and actuators. These units are based partly on the same principles as those of the units described in "Printed Multi- Turn Loop Antennas for RF Biotelemetry" (LEW-17879-1), NASA Tech Briefs, Vol. 31, No. 6 (June 2007), page 48. Like the previously reported units, these units would make it unnecessary to have wire connections between the implanted devices and the external equipment used to activate and interrogate them. Like a unit of the previously reported type, a unit of the type now proposed would include a printed-circuit antenna on a dielectric substrate. The antenna circuitry would include integrated surface-mount inductors for impedance tuning. Circuits for processing the signals transmitted and received by the antenna would be included on the substrate. During operation, the unit would be positioned near (but not in electrical contact with) a human subject, in proximity to a microelectromechanical sensor or actuator that has been surgically implanted in the subject. It has been demonstrated that significant electromagnetic coupling with an implanted device could be established at a distance of as much as 4 in. (.10 cm). During operation in the interrogation mode, the antenna of the unit would receive a radio telemetry signal transmitted by the surgically implanted device. The antenna substrate would have dimensions of approximately 3.25 by 3.75 inches (approximately 8.3 by 9.5 cm). The substrate would have a thickness of the order of 30 mils (of the order of a somewhat less than a millimeter). The substrate would be made of low-radiofrequency- loss dielectric material that could be, for example, fused quartz, alumina, or any of a number of commercially available radio-frequency dielectric composite materials. The antenna conductors would typically be made of copper or a

  8. Hand-held portable desorption atmospheric pressure chemical ionization ion source for in situ analysis of nitroaromatic explosives.

    PubMed

    Jjunju, Fred P M; Maher, Simon; Li, Anyin; Syed, Sarfaraz U; Smith, Barry; Heeren, Ron M A; Taylor, Stephen; Cooks, R Graham

    2015-10-06

    A novel, lightweight (0.6 kg), solvent- and gas-cylinder-free, hand-held ion source based on desorption atmospheric pressure chemical ionization has been developed and deployed for the analysis of nitroaromatic explosives on surfaces in open air, offering portability for in-field analysis. A small, inexpensive, rechargeable lithium polymer battery was used to power the custom-designed circuitry within the device, which generates up to ±5 kV dc voltage to ignite a corona discharge plasma in air for up to 12 h of continuous operation, and allowing positive- and negative-ion mass spectrometry. The generated plasma is pneumatically transported to the surface to be interrogated by ambient air at a rate of 1-3.5 L/min, compressed using a small on-board diaphragm pump. The plasma source allows liquid or solid samples to be examined almost instantaneously without any sample preparation in the open environment. The advantages of low carrier gas and low power consumption (<6 W), as well as zero solvent usage, have aided in developing the field-ready, hand-held device for trigger-based, "near-real-time" sampling/ionization. Individual nitroaromatic explosives (such as 2,4,6-trinitrotoluene) can be easily detected in amounts as low as 5.8 pg with a linear dynamic range of at least 10 (10-100 pg), a relative standard deviation of ca. 7%, and an R(2) value of 0.9986. Direct detection of several nitroaromatic compounds in a complex mixture without prior sample preparation is demonstrated, and their identities are confirmed by tandem mass spectrometry fragmentation patterns.

  9. Investigation of the limitations of the highly pixilated CdZnTe detector for PET applications

    PubMed Central

    Komarov, Sergey; Yin, Yongzhi; Wu, Heyu; Wen, Jie; Krawczynski, Henric; Meng, Ling-Jian; Tai, Yuan-Chuan

    2016-01-01

    We are investigating the feasibility of a high resolution positron emission tomography (PET) insert device based on the CdZnTe detector with 350 μm anode pixel pitch to be integrated into a conventional animal PET scanner to improve its image resolution. In this paper, we have used a simplified version of the multi pixel CdZnTe planar detector, 5 mm thick with 9 anode pixels only. This simplified 9 anode pixel structure makes it possible to carry out experiments without a complete application-specific integrated circuits readout system that is still under development. Special attention was paid to the double pixel (or charge sharing) detections. The following characteristics were obtained in experiment: energy resolution full-width-at-half-maximum (FWHM) is 7% for single pixel and 9% for double pixel photoelectric detections of 511 keV gammas; timing resolution (FWHM) from the anode signals is 30 ns for single pixel and 35 ns for double pixel detections (for photoelectric interactions only the corresponding values are 20 and 25 ns); position resolution is 350 μm in x,y-plane and ~0.4 mm in depth-of-interaction. The experimental measurements were accompanied by Monte Carlo (MC) simulations to find a limitation imposed by spatial charge distribution. Results from MC simulations suggest the limitation of the intrinsic spatial resolution of the CdZnTe detector for 511 keV photoelectric interactions is 170 μm. The interpixel interpolation cannot recover the resolution beyond the limit mentioned above for photoelectric interactions. However, it is possible to achieve higher spatial resolution using interpolation for Compton scattered events. Energy and timing resolution of the proposed 350 μm anode pixel pitch detector is no better than 0.6% FWHM at 511 keV, and 2 ns FWHM, respectively. These MC results should be used as a guide to understand the performance limits of the pixelated CdZnTe detector due to the underlying detection processes, with the understanding of

  10. Investigation of the limitations of the highly pixilated CdZnTe detector for PET applications.

    PubMed

    Komarov, Sergey; Yin, Yongzhi; Wu, Heyu; Wen, Jie; Krawczynski, Henric; Meng, Ling-Jian; Tai, Yuan-Chuan

    2012-11-21

    We are investigating the feasibility of a high resolution positron emission tomography (PET) insert device based on the CdZnTe detector with 350 µm anode pixel pitch to be integrated into a conventional animal PET scanner to improve its image resolution. In this paper, we have used a simplified version of the multi pixel CdZnTe planar detector, 5 mm thick with 9 anode pixels only. This simplified 9 anode pixel structure makes it possible to carry out experiments without a complete application-specific integrated circuits readout system that is still under development. Special attention was paid to the double pixel (or charge sharing) detections. The following characteristics were obtained in experiment: energy resolution full-width-at-half-maximum (FWHM) is 7% for single pixel and 9% for double pixel photoelectric detections of 511 keV gammas; timing resolution (FWHM) from the anode signals is 30 ns for single pixel and 35 ns for double pixel detections (for photoelectric interactions only the corresponding values are 20 and 25 ns); position resolution is 350 µm in x,y-plane and ∼0.4 mm in depth-of-interaction. The experimental measurements were accompanied by Monte Carlo (MC) simulations to find a limitation imposed by spatial charge distribution. Results from MC simulations suggest the limitation of the intrinsic spatial resolution of the CdZnTe detector for 511 keV photoelectric interactions is 170 µm. The interpixel interpolation cannot recover the resolution beyond the limit mentioned above for photoelectric interactions. However, it is possible to achieve higher spatial resolution using interpolation for Compton scattered events. Energy and timing resolution of the proposed 350 µm anode pixel pitch detector is no better than 0.6% FWHM at 511 keV, and 2 ns FWHM, respectively. These MC results should be used as a guide to understand the performance limits of the pixelated CdZnTe detector due to the underlying detection processes, with the understanding of

  11. Fast Neutron Detection using Pixelated CdZnTe Spectrometers

    DOE PAGES

    Streicher, Michael; Goodman, David; Zhu, Yuefeng; ...

    2017-05-29

    One important important signature of special nuclear materials (SNM) are fast neutrons. Fast neutrons have a low natural background rate and readily penetrate high atomic number materials which easily shield gamma-ray signatures. Thus, fast neutrons provide a complementary signal to gamma rays for detecting shielded SNM. Scattering kinematics dictate that a large nucleus (such as Cd or Te) will recoil with small kinetic energy after an elastic collision with a fast neutron. Charge carrier recombination and quenching further reduce the recorded energy deposited. Thus, the energy threshold of CdZnTe detectors must be very low in order to sense the smallmore » signals from these recoils. Here, the threshold was reduced to less than 5 keVee to demonstrate that the 5.9 keV x-ray line from 55Fe could be separated from electronic noise. Elastic scattering neutron interactions were observed as small energy depositions (less than 20 keVee) using digitally-sampled pulse waveforms from pixelated CdZnTe detectors. Characteristic gamma-ray lines from inelastic neutron scattering were also observed.« less

  12. Fast Neutron Detection Using Pixelated CdZnTe Spectrometers

    NASA Astrophysics Data System (ADS)

    Streicher, Michael; Goodman, David; Zhu, Yuefeng; Brown, Steven; Kiff, Scott; He, Zhong

    2017-07-01

    Fast neutrons are an important signature of special nuclear materials (SNMs). They have a low natural background rate and readily penetrate high atomic number materials that easily shield gamma-ray signatures. Therefore, they provide a complementary signal to gamma rays for detecting shielded SNM. Scattering kinematics dictate that a large nucleus (such as Cd or Te) will recoil with small kinetic energy after an elastic collision with a fast neutron. Charge carrier recombination and quenching further reduce the recorded energy deposited. Thus, the energy threshold of CdZnTe detectors must be very low in order to sense the small signals from these recoils. In this paper, the threshold was reduced to less than 5 keVee to demonstrate that the 5.9-keV X-ray line from 55Fe could be separated from electronic noise. Elastic scattering neutron interactions were observed as small energy depositions (less than 20 keVee) using digitally sampled pulse waveforms from pixelated CdZnTe detectors. Characteristic gamma-ray lines from inelastic neutron scattering were also observed.

  13. Three-dimensional multispectral hand-held optoacoustic imaging with microsecond-level delayed laser pulses

    NASA Astrophysics Data System (ADS)

    Deán-Ben, X. L.; Bay, Erwin; Razansky, Daniel

    2015-03-01

    Three-dimensional hand-held optoacoustic imaging comes with important advantages that prompt the clinical translation of this modality, with applications envisioned in cardiovascular and peripheral vascular disease, disorders of the lymphatic system, breast cancer, arthritis or inflammation. Of particular importance is the multispectral acquisition of data by exciting the tissue at several wavelengths, which enables functional imaging applications. However, multispectral imaging of entire three-dimensional regions is significantly challenged by motion artefacts in concurrent acquisitions at different wavelengths. A method based on acquisition of volumetric datasets having a microsecond-level delay between pulses at different wavelengths is described in this work. This method can avoid image artefacts imposed by a scanning velocity greater than 2 m/s, thus, does not only facilitate imaging influenced by respiratory, cardiac or other intrinsic fast movements in living tissues, but can achieve artifact-free imaging in the presence of more significant motion, e.g., abrupt displacements during handheld-mode operation in a clinical environment.

  14. Suppression of alpha-induced lateral surface events in the COBRA experiment using CdZnTe detectors with an instrumented guard-ring electrode

    NASA Astrophysics Data System (ADS)

    Arling, J.-H.; Gerhardt, M.; Gößling, C.; Gehre, D.; Klingenberg, R.; Kröninger, K.; Nitsch, C.; Quante, T.; Rohatsch, K.; Tebrügge, J.; Temminghoff, R.; Theinert, R.; Zatschler, S.; Zuber, K.

    2017-11-01

    The COBRA collaboration searches for neutrinoless double beta-decay (0νββ-decay) using CdZnTe semiconductor detectors with a coplanar-grid readout and a surrounding guard-ring structure. The operation of the COBRA demonstrator at the Gran Sasso underground laboratory (LNGS) indicates that alpha-induced lateral surface events are the dominant source of background events. By instrumenting the guard-ring electrode it is possible to suppress this type of background. In laboratory measurements this method achieved a suppression factor of alpha-induced lateral surface events of 5300+2660-1380, while retaining (85.3 ±0.1%) of gamma events occurring in the entire detector volume. This suppression is superior to the pulse-shape analysis methods used so far in COBRA by three orders of magnitude.

  15. Thienoacene-based organic semiconductors.

    PubMed

    Takimiya, Kazuo; Shinamura, Shoji; Osaka, Itaru; Miyazaki, Eigo

    2011-10-11

    Thienoacenes consist of fused thiophene rings in a ladder-type molecular structure and have been intensively studied as potential organic semiconductors for organic field-effect transistors (OFETs) in the last decade. They are reviewed here. Despite their simple and similar molecular structures, the hitherto reported properties of thienoacene-based OFETs are rather diverse. This Review focuses on four classes of thienoacenes, which are classified in terms of their chemical structures, and elucidates the molecular electronic structure of each class. The packing structures of thienoacenes and the thus-estimated solid-state electronic structures are correlated to their carrier transport properties in OFET devices. With this perspective of the molecular structures of thienoacenes and their carrier transport properties in OFET devices, the structure-property relationships in thienoacene-based organic semiconductors are discussed. The discussion provides insight into new molecular design strategies for the development of superior organic semiconductors. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A new approach for the screening of carotid lesions: a 'fast-track' method with the use of new generation hand-held ultrasound devices.

    PubMed

    Aboyans, V; Lacroix, P; Jeannicot, A; Guilloux, J; Bertin, F; Laskar, M

    2004-09-01

    We assessed the usefulness of fast-track neck sonography with a new-generation hand-held ultrasound scanner in the detection of > or =60% carotid stenosis. Patients with a past history of atherosclerotic disease or presence of risk factors were enrolled. All had fast-track carotid screening with a hand-held ultrasound scanner. Initial assessment was performed with our quick imaging protocol. A second examiner performed a conventional complete carotid duplex as gold-standard. We enrolled 197 consecutive patients with a mean age of 67 years (range 35-94). A carotid stenosis >60% was detected in 13 cases (6%). The sensitivity, specificity, positive and negative predictive value of fast-track sonography was 100%, 64%, 17% and 100%, respectively. Concomitant power Doppler imaging during the fast-track method did not improve accuracy. The use of a fast-track method with a hand-held ultrasound device can reduce the number of unnecessary carotid Duplex and enhance the screening efficiency without missing significant carotid stenoses.

  17. [Intraoperative Measurement of Refraction with a Hand-Held Autorefractometer].

    PubMed

    Gesser, C; Küper, T; Richard, G; Hassenstein, A

    2015-07-01

    The aim of this study was to evaluate an intraoperative measurement of objective refraction with a hand-held retinomax instrument. At the end of cataract surgery objective refraction in a lying position was measured with a retinomax instrument. On the first postoperative day the same measurement was performed with a retinomax and a standard autorefractometer. To evaluate the differences between measurements, the spherical equivalent (SE) and Jackson's cross cylinder at 0° (J0) and 45° (J45) was used. 103 eyes were included. 95 of them had normal cataract surgery. Differences between retinomax at the operative day and the standard autorefractometer were 0.68 ± 2.58 D in SE, 0.05 ± 1.4D in J0 and 0.05 ± 1.4D in J45. There were no statistically significant differences between the groups. Intraoperative measurement of the refraction with a retinomax can predict the postoperative refraction. Nevertheless, in a few patients great differences may occur. Georg Thieme Verlag KG Stuttgart · New York.

  18. International Conference on Narrow Gap Semiconductors Held in Southampton, England on 19-23 July 1992. Abstracts Booklet

    DTIC Science & Technology

    1992-07-01

    materials. The calculatedelectronic band structure of Ga,.,lnSb/lnAs superlattices is qualitatively distinct from that of conventional LWIR materials...have grown MCT layers on (I I I)B CdTe and CdZnTe for LWIR applications with uniformity in thickness within 1.5% (largest difference from the mean...at 300K over the same area. For undoped n-type LWIR layers mobilities in the range of 7-10xI04 cm 2/volt.sec and carrier concentrations of 5-10x10 14

  19. Detection of Francisella tularensis within infected mouse tissues by using a hand-held PCR thermocycler.

    PubMed

    Emanuel, Peter A; Bell, Ryan; Dang, Jessica L; McClanahan, Rebecca; David, John C; Burgess, Robert J; Thompson, Joseph; Collins, Lisa; Hadfield, Ted

    2003-02-01

    The diagnosis of human cases of tularemia often relies upon the demonstration of an antibody response to Francisella tularensis or the direct culturing of the bacteria from the patient. Antibody response is not detectable until 2 weeks or more after infection, and culturing requires special media and suspicion of tularemia. In addition, handling live Francisella poses a risk to laboratory personnel due to the highly infectious nature of this pathogen. In an effort to develop a rapid diagnostic assay for tularemia, we investigated the use of TaqMan 5' hydrolysis fluorogenic PCR to detect the organism in tissues of infected mice. Mice were infected to produce respiratory tularemia. The fopA and tul4 genes of F. tularensis were amplified from infected spleen, lung, liver, and kidney tissues sampled over a 5-day period. The samples were analyzed using the laboratory-based Applied Biosystems International 7900 and the Smiths Detection-Edgewood BioSeeq, a hand-held portable fluorescence thermocycler designed for use in the field. A comparison of culturing and PCR for detection of bacteria in infected tissues shows that culturing was more sensitive than PCR. However, the results for culture take 72 h, whereas PCR results were available within 4 h. PCR was able to detect infection in all the tissues tested. Lung tissue showed the earliest response at 2 days when tested with the ABI 7900 and in 3 days when tested with the BioSeeq. The results were in agreement between the ABI 7900 and the BioSeeq when presented with the same sample. Template preparation may account for the loss of sensitivity compared to culturing techniques. The hand-held BioSeeq thermocycler shows promise as an expedient means of forward diagnosis of infection in the field.

  20. Detection of Francisella tularensis within Infected Mouse Tissues by Using a Hand-Held PCR Thermocycler

    PubMed Central

    Emanuel, Peter A.; Bell, Ryan; Dang, Jessica L.; McClanahan, Rebecca; David, John C.; Burgess, Robert J.; Thompson, Joseph; Collins, Lisa; Hadfield, Ted

    2003-01-01

    The diagnosis of human cases of tularemia often relies upon the demonstration of an antibody response to Francisella tularensis or the direct culturing of the bacteria from the patient. Antibody response is not detectable until 2 weeks or more after infection, and culturing requires special media and suspicion of tularemia. In addition, handling live Francisella poses a risk to laboratory personnel due to the highly infectious nature of this pathogen. In an effort to develop a rapid diagnostic assay for tularemia, we investigated the use of TaqMan 5′ hydrolysis fluorogenic PCR to detect the organism in tissues of infected mice. Mice were infected to produce respiratory tularemia. The fopA and tul4 genes of F. tularensis were amplified from infected spleen, lung, liver, and kidney tissues sampled over a 5-day period. The samples were analyzed using the laboratory-based Applied Biosystems International 7900 and the Smiths Detection-Edgewood BioSeeq, a hand-held portable fluorescence thermocycler designed for use in the field. A comparison of culturing and PCR for detection of bacteria in infected tissues shows that culturing was more sensitive than PCR. However, the results for culture take 72 h, whereas PCR results were available within 4 h. PCR was able to detect infection in all the tissues tested. Lung tissue showed the earliest response at 2 days when tested with the ABI 7900 and in 3 days when tested with the BioSeeq. The results were in agreement between the ABI 7900 and the BioSeeq when presented with the same sample. Template preparation may account for the loss of sensitivity compared to culturing techniques. The hand-held BioSeeq thermocycler shows promise as an expedient means of forward diagnosis of infection in the field. PMID:12574268

  1. InfraCAM (trade mark): A Hand-Held Commercial Infrared Camera Modified for Spaceborne Applications

    NASA Technical Reports Server (NTRS)

    Manitakos, Daniel; Jones, Jeffrey; Melikian, Simon

    1996-01-01

    In 1994, Inframetrics introduced the InfraCAM(TM), a high resolution hand-held thermal imager. As the world's smallest, lightest and lowest power PtSi based infrared camera, the InfraCAM is ideal for a wise range of industrial, non destructive testing, surveillance and scientific applications. In addition to numerous commercial applications, the light weight and low power consumption of the InfraCAM make it extremely valuable for adaptation to space borne applications. Consequently, the InfraCAM has been selected by NASA Lewis Research Center (LeRC) in Cleveland, Ohio, for use as part of the DARTFire (Diffusive and Radiative Transport in Fires) space borne experiment. In this experiment, a solid fuel is ignited in a low gravity environment. The combustion period is recorded by both visible and infrared cameras. The infrared camera measures the emission from polymethyl methacrylate, (PMMA) and combustion products in six distinct narrow spectral bands. Four cameras successfully completed all qualification tests at Inframetrics and at NASA Lewis. They are presently being used for ground based testing in preparation for space flight in the fall of 1995.

  2. Effects of chemo-mechanical polishing on CdZnTe X-ray and gamma-ray detectors

    DOE PAGES

    Egarievwe, Stephen E.; Hossain, Anwar; Okwechime, Ifechukwude O.; ...

    2015-06-23

    Here, mechanically polishing cadmium zinc telluride (CdZnTe) wafers for x-ray and gamma-ray detectors often is inadequate in removing surface defects caused by cutting them from the ingots. Fabrication-induced defects, such as surface roughness, dangling bonds, and nonstoichiometric surfaces, often are reduced through polishing and etching the surface. In our earlier studies of mechanical polishing with alumina powder, etching with hydrogen bromide in hydrogen peroxide solution, and chemomechanical polishing with bromine–methanol–ethylene glycol solution, we found that the chemomechanical polishing process produced the least surface leakage current. In this research, we focused on using two chemicals to chemomechanically polish CdZnTe wafers aftermore » mechanical polishing, viz. bromine–methanol–ethylene glycol (BME) solution, and hydrogen bromide (HBr) in a hydrogen peroxide and ethylene–glycol solution. We used x-ray photoelectron spectroscopy (XPS), current–voltage (I–V) measurements, and Am-241 spectral response measurements to characterize and compare the effects of each solution. The results show that the HBr-based solution produced lower leakage current than the BME solution. Results from using the same chemomechanical polishing solution on two samples confirmed that the surface treatment affects the measured bulk current (a combination of bulk and surface currents). XPS results indicate that the tellurium oxide to tellurium peak ratios for the mechanical polishing process were reduced significantly by chemomechanical polishing using the BME solution (78.9% for Te 3d 5/2O 2 and 76.7% for Te 3d 3/2O 2) compared with the HBr-based solution (27.6% for Te 3d 5/2O 2 and 35.8% for Te 3d 3/2O 2). Spectral response measurements showed that the 59.5-keV peak of Am-241 remained under the same channel number for all three CdZnTe samples. While the BME-based solution gave a better performance of 7.15% full-width at half-maximum (FWHM) compared with 7

  3. Effect of thickness on physical properties of electron beam vacuum evaporated CdZnTe thin films for tandem solar cells

    NASA Astrophysics Data System (ADS)

    Chander, Subhash; Dhaka, M. S.

    2016-10-01

    The thickness and physical properties of electron beam vacuum evaporated CdZnTe thin films have been optimized in the present work. The films of thickness 300 nm and 400 nm were deposited on ITO coated glass substrates and subjected to different characterization tools like X-ray diffraction (XRD), UV-Vis spectrophotometer, source meter and scanning electron microscopy (SEM) to investigate the structural, optical, electrical and surface morphological properties respectively. The XRD results show that the as-deposited CdZnTe thin films have zinc blende cubic structure and polycrystalline in nature with preferred orientation (111). Different structural parameters are also evaluated and discussed. The optical study reveals that the optical transition is found to be direct and energy band gap is decreased for higher thickness. The transmittance is found to increase with thickness and red shift observed which is suitable for CdZnTe films as an absorber layer in tandem solar cells. The current-voltage characteristics of deposited films show linear behavior in both forward and reverse directions as well as the conductivity is increased for higher film thickness. The SEM studies show that the as-deposited CdZnTe thin films are found to be homogeneous, uniform, small circle-shaped grains and free from crystal defects. The experimental results confirm that the film thickness plays an important role to optimize the physical properties of CdZnTe thin films for tandem solar cell applications as an absorber layer.

  4. Utility of hand-held echocardiography in outpatient pediatric cardiology management.

    PubMed

    Riley, Alan; Sable, Craig; Prasad, Aparna; Spurney, Christopher; Harahsheh, Ashraf; Clauss, Sarah; Colyer, Jessica; Gierdalski, Marcin; Johnson, Ashley; Pearson, Gail D; Rosenthal, Joanna

    2014-12-01

    Adult patient series have shown hand-held echocardiography (echo) units (HHE) to be accurate for rapid diagnosis and triage. This is the first study to evaluate the ability of HHE to inform decision making in outpatient pediatric cardiology. New pediatric cardiology patients in outpatient clinics staffed by six pediatric cardiologists (experience 1-17 years) were prospectively enrolled if an echocardiogram (echo) was ordered during their initial visit. After history and physical examination and before a standard echo, the cardiologists performed a bedside HHE examination (GE Vscan 1.7-3.8 MHz), documented findings, and made a clinical decision. Diagnoses and decisions based on HHE were compared with final management after the standard echo. The study enrolled 101 subjects (ages 9 days to 19 years). The cardiologists considered HHE imaging adequate for decision making for 80 of the 101 subjects. For 77 of the 80 subjects with acceptable HHE imaging (68/68 normal and 9/12 abnormal standard echoes), the HHE-based primary diagnoses and decisions agreed with the final management. The sensitivity of HHE was 75 % (95 % confidence interval [CI] 43-94 %) and the positive predictive value 100 % (95 % CI 66-100 %) for pediatric heart disease. The agreement between standard echocardiography and HHE imaging was substantial (κ = 0.82). Excluding one of the least experienced cardiologists, HHE provided the basis for correct cardiac diagnoses and management for all the subjects with acceptable HHE imaging (58/58 normal and 9/9 abnormal echoes). In outpatient pediatric cardiology, HHE has potential as a tool to complement physical examination. Further investigation is needed to evaluate how value improves with clinical experience.

  5. Effect of Te inclusions in CdZnTe crystals at different temperatures

    NASA Astrophysics Data System (ADS)

    Hossain, A.; Bolotnikov, A. E.; Camarda, G. S.; Gul, R.; Kim, K.-H.; Cui, Y.; Yang, G.; Xu, L.; James, R. B.

    2011-02-01

    CdZnTe crystals often exhibit nonuniformities due to the presence of Te inclusions and dislocations. High concentrations of such defects in these crystals generally entail severe charge-trapping, a major problem in ensuring the device's satisfactory performance. In this study, we employed a high-intensity, high-spatial-resolution synchrotron x-ray beam as the ideal tool to generate charges by focusing it over the large Te inclusions, and then observing the carrier's response at room- and at low-temperatures. A high spatial 5-μm resolution raster scan revealed the fine details of the presence of extended defects, like Te inclusions and dislocations in the CdZnTe crystals. A noticeable change was observed in the efficiency of electron charge collection at low temperature (1 °C), but it was hardly altered at room-temperature.

  6. Tomographic Small-Animal Imaging Using a High-Resolution Semiconductor Camera

    PubMed Central

    Kastis, GA; Wu, MC; Balzer, SJ; Wilson, DW; Furenlid, LR; Stevenson, G; Barber, HB; Barrett, HH; Woolfenden, JM; Kelly, P; Appleby, M

    2015-01-01

    We have developed a high-resolution, compact semiconductor camera for nuclear medicine applications. The modular unit has been used to obtain tomographic images of phantoms and mice. The system consists of a 64 x 64 CdZnTe detector array and a parallel-hole tungsten collimator mounted inside a 17 cm x 5.3 cm x 3.7 cm tungsten-aluminum housing. The detector is a 2.5 cm x 2.5 cm x 0.15 cm slab of CdZnTe connected to a 64 x 64 multiplexer readout via indium-bump bonding. The collimator is 7 mm thick, with a 0.38 mm pitch that matches the detector pixel pitch. We obtained a series of projections by rotating the object in front of the camera. The axis of rotation was vertical and about 1.5 cm away from the collimator face. Mouse holders were made out of acrylic plastic tubing to facilitate rotation and the administration of gas anesthetic. Acquisition times were varied from 60 sec to 90 sec per image for a total of 60 projections at an equal spacing of 6 degrees between projections. We present tomographic images of a line phantom and mouse bone scan and assess the properties of the system. The reconstructed images demonstrate spatial resolution on the order of 1–2 mm. PMID:26568676

  7. Hand-held Raman sensor head for in-situ characterization of meat quality applying a microsystem 671 nm diode laser

    NASA Astrophysics Data System (ADS)

    Schmidt, Heinar; Sowoidnich, Kay; Maiwald, Martin; Sumpf, Bernd; Kronfeldt, Heinz-Detlef

    2009-05-01

    A hand-held Raman sensor head was developed for the in-situ characterization of meat quality. As light source, a microsystem based external cavity diode laser module (ECDL) emitting at 671 nm was integrated in the sensor head and attached to a miniaturized optical bench which contains lens optics for excitation and signal collection as well as a Raman filter stage for Rayleigh rejection. The signal is transported with an optical fiber to the detection unit which was in the initial phase a laboratory spectrometer with CCD detector. All elements of the ECDL are aligned on a micro optical bench with 13 x 4 mm2 footprint. The wavelength stability is provided by a reflection Bragg grating and the laser has an optical power of up to 200 mW. However, for the Raman measurements of meat only 35 mW are needed to obtain Raman spectra within 1 - 5 seconds. Short measuring times are essential for the hand-held device. The laser and the sensor head are characterized in terms of stability and performance for in-situ Raman investigations. The function is demonstrated in a series of measurements with raw and packaged pork meat as samples. The suitability of the Raman sensor head for the quality control of meat and other products will be discussed.

  8. A new hand-held microfluidic cytometer for evaluating irradiation damage by analysis of the damaged cells distribution.

    PubMed

    Wang, Junsheng; Fan, Zhiqiang; Zhao, Yile; Song, Younan; Chu, Hui; Song, Wendong; Song, Yongxin; Pan, Xinxiang; Sun, Yeqing; Li, Dongqing

    2016-03-17

    Space radiation brings uneven damages to cells. The detection of the distribution of cell damage plays a very important role in radiation medicine and the related research. In this paper, a new hand-held microfluidic flow cytometer was developed to evaluate the degree of radiation damage of cells. The device we propose overcomes the shortcomings (e.g., large volume and high cost) of commercial flow cytometers and can evaluate the radiation damage of cells accurately and quickly with potential for onsite applications. The distribution of radiation-damaged cells is analyzed by a simultaneous detection of immunofluorescence intensity of γ-H2AX and resistance pulse sensor (RPS) signal. The γ-H2AX fluorescence intensity provides information of the degree of radiation damage in cells. The ratio of the number of cells with γ-H2AX fluorescence signals to the total numbers of cells detected by RPS indicates the percentage of the cells that are damaged by radiation. The comparison experiment between the developed hand-held microfluidic flow cytometer and a commercial confocal microscope indicates a consistent and comparable detection performance.

  9. A new hand-held microfluidic cytometer for evaluating irradiation damage by analysis of the damaged cells distribution

    NASA Astrophysics Data System (ADS)

    Wang, Junsheng; Fan, Zhiqiang; Zhao, Yile; Song, Younan; Chu, Hui; Song, Wendong; Song, Yongxin; Pan, Xinxiang; Sun, Yeqing; Li, Dongqing

    2016-03-01

    Space radiation brings uneven damages to cells. The detection of the distribution of cell damage plays a very important role in radiation medicine and the related research. In this paper, a new hand-held microfluidic flow cytometer was developed to evaluate the degree of radiation damage of cells. The device we propose overcomes the shortcomings (e.g., large volume and high cost) of commercial flow cytometers and can evaluate the radiation damage of cells accurately and quickly with potential for onsite applications. The distribution of radiation-damaged cells is analyzed by a simultaneous detection of immunofluorescence intensity of γ-H2AX and resistance pulse sensor (RPS) signal. The γ-H2AX fluorescence intensity provides information of the degree of radiation damage in cells. The ratio of the number of cells with γ-H2AX fluorescence signals to the total numbers of cells detected by RPS indicates the percentage of the cells that are damaged by radiation. The comparison experiment between the developed hand-held microfluidic flow cytometer and a commercial confocal microscope indicates a consistent and comparable detection performance.

  10. Direction-Sensitive Hand-Held Gamma-Ray Spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhopadhyay, S.

    2012-10-04

    A novel, light-weight, hand-held gamma-ray detector with directional sensitivity is being designed. The detector uses a set of multiple rings around two cylindrical surfaces, which provides precise location of two interaction points on two concentric cylindrical planes, wherefrom the source location can be traced back by back projection and/or Compton imaging technique. The detectors are 2.0 × 2.0 mm europium-doped strontium iodide (SrI2:Eu2+) crystals, whose light output has been measured to exceed 120,000 photons/MeV, making it one of the brightest scintillators in existence. The crystal’s energy resolution, less than 3% at 662 keV, is also excellent, and the response ismore » highly linear over a wide range of gamma-ray energies. The emission of SrI2:Eu2+ is well matched to both photo-multiplier tubes and blue-enhanced silicon photodiodes. The solid-state photomultipliers used in this design (each 2.0 × 2.0 mm) are arrays of active pixel sensors (avalanche photodiodes driven beyond their breakdown voltage in reverse bias); each pixel acts as a binary photon detector, and their summed output is an analog representation of the total photon energy, while the individual pixel accurately defines the point of interaction. A simple back-projection algorithm involving cone-surface mapping is being modeled. The back projection for an event cone is a conical surface defining the possible location of the source. The cone axis is the straight line passing through the first and second interaction points.« less

  11. Producibility improvements suggested by a validated process model of seeded CdZnTe vertical Bridgman growth

    NASA Astrophysics Data System (ADS)

    Larson, David J., Jr.; Casagrande, Louis G.; Di Marzio, Don; Levy, Alan; Carlson, Frederick M.; Lee, Taipao; Black, David R.; Wu, Jun; Dudley, Michael

    1994-07-01

    We have successfully validated theoretical models of seeded vertical Bridgman-Stockbarger CdZnTe crystal growth and post-solidification processing, using in-situ thermal monitoring and innovative material characterization techniques. The models predict the thermal gradients, interface shape, fluid flow and solute redistribution during solidification, as well as the distributions of accumulated excess stress that causes defect generation and redistribution. Data from the furnace and ampoule wall have validated predictions from the thermal model. Results are compared to predictions of the thermal and thermo-solutal models. We explain the measured initial, change-of-rate, and terminal compositional transients as well as the macrosegregation. Macro and micro-defect distributions have been imaged on CdZnTe wafers from 40 mm diameter boules. Superposition of topographic defect images and predicted excess stress patterns suggests the origin of some frequently encountered defects, particularly on a macro scale, to result from the applied and accumulated stress fields and the anisotropic nature of the CdZnTe crystal. Implications of these findings with respect to producibility are discussed.

  12. System stability and calibrations for hand-held electromagnetic frequency domain instruments

    NASA Astrophysics Data System (ADS)

    Saksa, Pauli J.; Sorsa, Joona

    2017-05-01

    There are a few multiple-frequency domain electromagnetic induction (EMI) hand-held rigid boom systems available for shallow geophysical resistivity investigations. They basically measure secondary field real and imaginary components after the system calibrations. One multiple-frequency system, the EMP-400 Profiler from Geophysical Survey Systems Inc., was tested for system calibrations, stability and various effects present in normal measurements like height variation, tilting, signal stacking and time stability. Results indicated that in test conditions, repeatable high-accuracy imaginary component values can be recorded for near-surface frequency soundings. In test conditions, real components are also stable but vary strongly in normal surveying measurements. However, certain calibration issues related to the combination of user influence and measurement system height were recognised as an important factor in reducing for data errors and for further processing like static offset corrections.

  13. Biolistic transfection of neuronal cultures using a hand-held gene gun

    PubMed Central

    O'Brien, John A; Lummis, Sarah C R

    2009-01-01

    Biolistic transfection is a technique in which subcellular-sized particles coated with DNA are accelerated to high velocity to propel them into cells. This method is applicable to tissues, cells and organelles, and can be used for both in vitro and in vivo transformations; with the right equipment, it is simple, rapid and efficient. Here we provide a detailed protocol for biolistic transfection of plasmids into cultured human embryonic kidney (HEK) 293 cells and organotypic brain slices using a hand-held gene gun. There are three major steps: (i) coating microcarriers with DNA, (ii) transferring the microcarriers into a cartridge to make a ‘bullet’, and (iii) firing the DNA-coated microcarriers into cells using a pulse of helium gas. The method can be readily adapted to other cell types and tissues. The protocol can be completed in 1–2 h. PMID:17406333

  14. CO2 laser myringotomy with a hand-held otoscope and fiber optic delivery system: animal experimentation and preclinical trials

    NASA Astrophysics Data System (ADS)

    DeRowe, Ari; Ophir, Dov; Finkelstein, Y.; Katzir, Abraham

    1993-07-01

    CO2 laser myringotomy has previously been proven effective in patients with serous otitis media for short term aeration of the middle ear. However, the system based on a microscope and a coaxially aligned laser is cumbersome and expensive. Also, conventional optical fibers do not transmit CO2 laser energy ((lambda) equals 10.6 micrometers ). We have developed a silver halide optical fiber of diameter 0.9 mm and lengths of several meters, with high transmission at 10.6 micrometers . Using a hand held otoscope coupled to a fiberoptic delivery system CO2 laser myringotomies were performed first in guinea pigs and then in humans. In the animal model the feasibility of the procedure was proven. Different irradiation parameters were studied and a `dose dependent' relationship was found between the total energy used and the duration of a patent myringotomy. This system was used to perform CO2 laser myringotomies under local anesthesia in five patients with serous otitis media and conductive hearing loss. None of the patients complained of discomfort and no scarring was noted. All patients had subjective and audiometric documentation of hearing improvement. The average duration of a patent myringotomy was 21 days. In two patients the effusion recurred. CO2 laser myringotomy utilizing a hand held otoscope coupled to an optical fiber capable of transmitting CO2 laser energy may prove simple and effective in the treatment of serous otitis media.

  15. Thiazole-based organic semiconductors for organic electronics.

    PubMed

    Lin, Yuze; Fan, Haijun; Li, Yongfang; Zhan, Xiaowei

    2012-06-19

    Over the past two decades, organic semiconductors have been the subject of intensive academic and commercial interests. Thiazole is a common electron-accepting heterocycle due to electron-withdrawing nitrogen of imine (C=N), several moieties based on thiazole have been widely introduced into organic semiconductors, and yielded high performance in organic electronic devices. This article reviews recent developments in the area of thiazole-based organic semiconductors, particularly thiazole, bithiazole, thiazolothiazole and benzobisthiazole-based small molecules and polymers, for applications in organic field-effect transistors, solar cells and light-emitting diodes. The remaining problems and challenges, and the key research direction in near future are discussed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Graphene-based hybrid structures combined with functional materials of ferroelectrics and semiconductors.

    PubMed

    Jie, Wenjing; Hao, Jianhua

    2014-06-21

    Fundamental studies and applications of 2-dimensional (2D) graphene may be deepened and broadened via combining graphene sheets with various functional materials, which have been extended from the traditional insulator of SiO2 to a versatile range of dielectrics, semiconductors and metals, as well as organic compounds. Among them, ferroelectric materials have received much attention due to their unique ferroelectric polarization. As a result, many attractive characteristics can be shown in graphene/ferroelectric hybrid systems. On the other hand, graphene can be integrated with conventional semiconductors and some newly-discovered 2D layered materials to form distinct Schottky junctions, yielding fascinating behaviours and exhibiting the potential for various applications in future functional devices. This review article is an attempt to illustrate the most recent progress in the fabrication, operation principle, characterization, and promising applications of graphene-based hybrid structures combined with various functional materials, ranging from ferroelectrics to semiconductors. We focus on mechanically exfoliated and chemical-vapor-deposited graphene sheets integrated in numerous advanced devices. Some typical hybrid structures have been highlighted, aiming at potential applications in non-volatile memories, transparent flexible electrodes, solar cells, photodetectors, and so on.

  17. Graphene-based hybrid structures combined with functional materials of ferroelectrics and semiconductors

    NASA Astrophysics Data System (ADS)

    Jie, Wenjing; Hao, Jianhua

    2014-05-01

    Fundamental studies and applications of 2-dimensional (2D) graphene may be deepened and broadened via combining graphene sheets with various functional materials, which have been extended from the traditional insulator of SiO2 to a versatile range of dielectrics, semiconductors and metals, as well as organic compounds. Among them, ferroelectric materials have received much attention due to their unique ferroelectric polarization. As a result, many attractive characteristics can be shown in graphene/ferroelectric hybrid systems. On the other hand, graphene can be integrated with conventional semiconductors and some newly-discovered 2D layered materials to form distinct Schottky junctions, yielding fascinating behaviours and exhibiting the potential for various applications in future functional devices. This review article is an attempt to illustrate the most recent progress in the fabrication, operation principle, characterization, and promising applications of graphene-based hybrid structures combined with various functional materials, ranging from ferroelectrics to semiconductors. We focus on mechanically exfoliated and chemical-vapor-deposited graphene sheets integrated in numerous advanced devices. Some typical hybrid structures have been highlighted, aiming at potential applications in non-volatile memories, transparent flexible electrodes, solar cells, photodetectors, and so on.

  18. Drift from the Use of Hand-Held Knapsack Pesticide Sprayers in Boyacá (Colombian Andes).

    PubMed

    García-Santos, Glenda; Feola, Giuseppe; Nuyttens, David; Diaz, Jaime

    2016-05-25

    Offsite pesticide losses in tropical mountainous regions have been little studied. One example is measuring pesticide drift soil deposition, which can support pesticide risk assessment for surface water, soil, bystanders, and off-target plants and fauna. This is considered a serious gap, given the evidence of pesticide-related poisoning in those regions. Empirical data of drift deposition of a pesticide surrogate, Uranine tracer, within one of the highest potato-producing regions in Colombia, characterized by small plots and mountain orography, is presented. High drift values encountered in this study reflect the actual spray conditions using hand-held knapsack sprayers. Comparison between measured and predicted drift values using three existing empirical equations showed important underestimation. However, after their optimization based on measured drift information, the equations showed a strong predictive power for this study area and the study conditions. The most suitable curve to assess mean relative drift was the IMAG calculator after optimization.

  19. Novel hand-held device for exhaled nitric oxide-analysis in research and clinical applications.

    PubMed

    Hemmingsson, Tryggve; Linnarsson, Dag; Gambert, Rudolf

    2004-12-01

    Changes in expired nitric oxide (NO) occur in airway inflammation and have proved to be important in the monitoring of inflammatory disease processes such as asthma. We set out to develop a novel hand-held NO-analyzer with a performance comparable to the present more costly and complex chemiluminescence instruments. The new device is based on a specially designed electrochemical sensor, where we have developed a novel sampling and analysis technology, compensating for the relatively slow response properties of the electrochemical sensor technique. A Lowest Detection Limit in NO-analysis from reference gas tests of less than 3 ppb and a response time of 15 seconds together with an average precision in human breath measurements of 1.4 ppb were obtained. We also show an agreement with the existing 'gold standard' FENO measurement technique, within 0.5 ppb in a group of 19 subjects together with a high linearity and accuracy compared to reference gases. The new analyzer enables affordable monitoring of inflammatory airway diseases in research and routine clinical practice.

  20. Hand-Held EMI Sensor Combined with Inertial Positioning for Cued UXO Discrimination - APG Standardized UXO Test Site

    DTIC Science & Technology

    2013-04-01

    Measurement Tracking System (SAINT) with an advanced hand-held, time-domain electromagnetic sensor (TEM-HH) and document classification performance at...rejecting 77% of the clutter. 15. SUBJECT TERMS EMI, electromagnetic induction, UXO classification, UXO, IMU, inertial measurement unit, 16. SECURITY...U c. THIS PAGE U UU 19b. TELEPHONE NUMBER (include area code) 919-677-1560 Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18

  1. Influence of infrared stimulation on spectroscopy characteristics of co-planar grid CdZnTe detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fjodorov, V.; Ivanov, V.; Loutchanski, A.

    It was previously found that illumination with monochromatic infrared (IR) light with wavelengths close to the absorption edge of the CdZnTe exert significant positive influence on the spectrometric characteristics of quasi-hemispherical CdZnTe detectors at room temperature. In this paper, preliminary results of IR stimulation on the spectrometric characteristics of coplanar-grid CdZnTe detectors as well as results of further studies of planar and quasi-hemispherical detectors are presented. Coplanar-grid detectors of 10 mm x 10 mm x 10 mm from Redlen Technologies and commercial available IR LEDs with different wavelengths of 800-1000 nm were used in the experiments. Influence of intensity andmore » direction of IR illumination on the detector's characteristics was studied. Analysis of signals shapes from the preamplifiers outputs at registration of alpha particles showed that IR illumination leads to a change in the shapes of these signals. This may indicate changes in electric fields distributions. An improvement in energy resolution at gamma-energy of 662 keV was observed with quasi-hemispherical and co-planar detectors at the certain levels of IR illumination intensity. The most noticeable effect of IR stimulation was observed with quasi-hemispherical detectors. It is due with optimization of charge collection conditions in the quasi-hemispherical detectors under IT stimulation. (authors)« less

  2. Reliability of measuring hip abductor strength following total knee arthroplasty using a hand-held dynamometer.

    PubMed

    Schache, Margaret B; McClelland, Jodie A; Webster, Kate E

    2016-01-01

    To investigate the test-retest reliability of measuring hip abductor strength in patients with total knee arthroplasty (TKA) using a hand-held dynamometer (HHD) with two different types of resistance: belt and manual resistance. Test-retest reliability of 30 subjects (17 female, 13 male, 71.9 ± 7.4 years old), 9.2 ± 2.7 days post TKA was measured using belt and therapist resistance. Retest reliability was calculated with intra-class coefficients (ICC3,1) and 95% confidence intervals (CI) for both the group average and the individual scores. A paired t-test assessed whether a difference existed between the belt and therapist methods of resistance. ICCs were 0.82 and 0.80 for the belt and therapist resisted methods, respectively. Hip abductor strength increases of 8 N (14%) for belt resisted and 14 N (17%) for therapist resisted measurements of the group average exceeded the 95% CI and may represent real change. For individuals, hip abductor strength increases of 33 N (72%) (belt resisted) and 57 N (79%) (therapist resisted) could be interpreted as real change. Hip abductor strength can be reliably measured using HHD in the clinical setting with the described protocol. Belt resistance demonstrated slightly higher test-retest reliability. Reliable measurement of hip abductor muscle strength in patients with TKA is important to ensure deficiencies are addressed in rehabilitation programs and function is maximized. Hip abductor strength can be reliably measured with a hand-held dynamometer in the clinical setting using manual or belt resistance.

  3. Highly Sensitive Flexible Pressure Sensors Based on Printed Organic Transistors with Centro-Apically Self-Organized Organic Semiconductor Microstructures.

    PubMed

    Yeo, So Young; Park, Sangsik; Yi, Yeon Jin; Kim, Do Hwan; Lim, Jung Ah

    2017-12-13

    A highly sensitive pressure sensor based on printed organic transistors with three-dimensionally self-organized organic semiconductor microstructures (3D OSCs) was demonstrated. A unique organic transistor with semiconductor channels positioned at the highest summit of printed cylindrical microstructures was achieved simply by printing an organic semiconductor and polymer blend on the plastic substrate without the use of additional etching or replication processes. A combination of the printed organic semiconductor microstructure and an elastomeric top-gate dielectric resulted in a highly sensitive organic field-effect transistor (FET) pressure sensor with a high pressure sensitivity of 1.07 kPa -1 and a rapid response time of <20 ms with a high reliability over 1000 cycles. The flexibility and high performance of the 3D OSC FET pressure sensor were exploited in the successful application of our sensors to real-time monitoring of the radial artery pulse, which is useful for healthcare monitoring, and to touch sensing in the e-skin of a realistic prosthetic hand.

  4. Hand-held synchronous scan spectrometer for in situ and immediate detection of live/dead bacteria ratio

    NASA Astrophysics Data System (ADS)

    Li, Runze; Goswami, Umang; Walck, Matthew; Khan, Kasfia; Chen, Jie; Cesario, Thomas C.; Rentzepis, Peter M.

    2017-11-01

    The design, construction, and operation of a hand-held synchronously scanned, excitation-emission, double monochromator spectrometer is described. Data show that it is possible to record and display within minutes the fluorescence spectra and ratio of live/dead bacteria in situ. Excitation emission matrix contour plots display clearly bacteria fluorescence spectra before and after UV inactivation, respectively. The separation of the fluorescence band maxima of molecular components, such as tryptophan, tyrosine, and DNA, may be distinguished in the diffused fluorescence spectra of bacteria and mixtures.

  5. Hand-held synchronous scan spectrometer for in situ and immediate detection of live/dead bacteria ratio.

    PubMed

    Li, Runze; Goswami, Umang; Walck, Matthew; Khan, Kasfia; Chen, Jie; Cesario, Thomas C; Rentzepis, Peter M

    2017-11-01

    The design, construction, and operation of a hand-held synchronously scanned, excitation-emission, double monochromator spectrometer is described. Data show that it is possible to record and display within minutes the fluorescence spectra and ratio of live/dead bacteria in situ. Excitation emission matrix contour plots display clearly bacteria fluorescence spectra before and after UV inactivation, respectively. The separation of the fluorescence band maxima of molecular components, such as tryptophan, tyrosine, and DNA, may be distinguished in the diffused fluorescence spectra of bacteria and mixtures.

  6. EDITORIAL The 23rd Nordic Semiconductor Meeting The 23rd Nordic Semiconductor Meeting

    NASA Astrophysics Data System (ADS)

    Ólafsson, Sveinn; Sveinbjörnsson, Einar

    2010-12-01

    A Nordic Semiconductor Meeting is held every other year with the venue rotating amongst the Nordic countries of Denmark, Finland, Iceland, Norway and Sweden. The focus of these meetings remains 'original research and science being carried out on semiconductor materials, devices and systems'. Reports on industrial activity have usually featured. The topics have ranged from fundamental research on point defects in a semiconductor to system architecture of semiconductor electronic devices. Proceedings from these events are regularly published as a topical issue of Physica Scripta. All of the papers in this topical issue have undergone critical peer review and we wish to thank the reviewers and the authors for their cooperation, which has been instrumental in meeting the high scientific standards and quality of the series. This meeting of the 23rd Nordic Semiconductor community, NSM 2009, was held at Háskólatorg at the campus of the University of Iceland, Reykjavik, Iceland, 14-17 June 2009. Support was provided by the University of Iceland. Almost 50 participants presented a broad range of topics covering semiconductor materials and devices as well as related material science interests. The conference provided a forum for Nordic and international scientists to present and discuss new results and ideas concerning the fundamentals and applications of semiconductor materials. The meeting aim was to advance the progress of Nordic science and thus aid in future worldwide technological advances concerning technology, education, energy and the environment. Topics Theory and fundamental physics of semiconductors Emerging semiconductor technologies (for example III-V integration on Si, novel Si devices, graphene) Energy and semiconductors Optical phenomena and optical devices MEMS and sensors Program 14 June Registration 13:00-17:00 15 June Meeting program 09:30-17:00 and Poster Session I 16 June Meeting program 09:30-17:00 and Poster Session II 17 June Excursion and dinner

  7. Numerical methods for industrial vertical Bridgman growth of (Cd,Zn)Te

    NASA Astrophysics Data System (ADS)

    Lin, K.; Boschert, S.; Dold, P.; Benz, K. W.; Kriessl, O.; Schmidt, A.; Siebert, K. G.; Dziuk, G.

    2002-04-01

    This paper presents efficient numerical methods—the "inverse modeling" method and the adaptive finite element method—for optimizing the heat transport as well as for investigating the heat and mass transport under the influence of convection during crystal growth, especially near the liquid/solid interface. These methods have been applied to industrial Bridgman-furnaces for the growth of 65-75 mm diameter (Cd,Zn)Te crystals.

  8. MBE Growth of HgCdTe on Large-Area Si and CdZnTe Wafers for SWIR, MWIR and LWIR Detection

    NASA Astrophysics Data System (ADS)

    Reddy, M.; Peterson, J. M.; Lofgreen, D. D.; Franklin, J. A.; Vang, T.; Smith, E. P. G.; Wehner, J. G. A.; Kasai, I.; Bangs, J. W.; Johnson, S. M.

    2008-09-01

    Molecular beam epitaxy (MBE) growth of HgCdTe on large-size Si (211) and CdZnTe (211)B substrates is critical to meet the demands of extremely uniform and highly functional third-generation infrared (IR) focal-panel arrays (FPAs). We have described here the importance of wafer maps of HgCdTe thickness, composition, and the macrodefects across the wafer not only to qualify material properties against design specifications but also to diagnose and classify the MBE-growth-related issues on large-area wafers. The paper presents HgCdTe growth with exceptionally uniform composition and thickness and record low macrodefect density on large Si wafers up to 6-in in diameter for the detection of short-wave (SW), mid-wave (MW), and long-wave (LW) IR radiation. We have also proposed a cost-effective approach to use the growth of HgCdTe on low-cost Si substrates to isolate the growth- and substrate-related problems that one occasionally comes across with the CdZnTe substrates and tune the growth parameters such as growth rate, cutoff wavelength ( λ cutoff) and doping parameters before proceeding with the growth on costly large-area CdZnTe substrates. In this way, we demonstrated HgCdTe growth on large CdZnTe substrates of size 7 cm × 7 cm with excellent uniformity and low macrodefect density.

  9. Light sources based on semiconductor current filaments

    DOEpatents

    Zutavern, Fred J.; Loubriel, Guillermo M.; Buttram, Malcolm T.; Mar, Alan; Helgeson, Wesley D.; O'Malley, Martin W.; Hjalmarson, Harold P.; Baca, Albert G.; Chow, Weng W.; Vawter, G. Allen

    2003-01-01

    The present invention provides a new type of semiconductor light source that can produce a high peak power output and is not injection, e-beam, or optically pumped. The present invention is capable of producing high quality coherent or incoherent optical emission. The present invention is based on current filaments, unlike conventional semiconductor lasers that are based on p-n junctions. The present invention provides a light source formed by an electron-hole plasma inside a current filament. The electron-hole plasma can be several hundred microns in diameter and several centimeters long. A current filament can be initiated optically or with an e-beam, but can be pumped electrically across a large insulating region. A current filament can be produced in high gain photoconductive semiconductor switches. The light source provided by the present invention has a potentially large volume and therefore a potentially large energy per pulse or peak power available from a single (coherent) semiconductor laser. Like other semiconductor lasers, these light sources will emit radiation at the wavelength near the bandgap energy (for GaAs 875 nm or near infra red). Immediate potential applications of the present invention include high energy, short pulse, compact, low cost lasers and other incoherent light sources.

  10. Catalog of Space Shuttle Earth Observations Hand-Held Photography: Space Transportation System (STS) 41-6 Mission

    NASA Technical Reports Server (NTRS)

    Nowakowski, Barbara S.; Palmer, Wesley F.

    1985-01-01

    This document catalogs Space Shuttle hand-held Earth observations photography which was collected on the Space Transportation System (STS) 41-G mission of October 1984. The catalog includes the following data for each of 2480 frames: geographical name, feature description, latitude and longitude, percentage of cloud cover, look direction and tilt, lens focal length, exposure evaluation, stereopairs, and orbit number. The catalog is a product of the Space Shuttle Earth Observations Project, Solar System Exploration Division, Space and Life Sciences Directorate, of the National Aeronautics and Space Administration, Lyndon B. Johnson Space Center.

  11. Hand-transmitted vibration and biodynamic response of the human hand-arm: a critical review.

    PubMed

    Dong, R G; Rakheja, S; Schopper, A W; Han, B; Smutz, W P

    2001-01-01

    Hand-arm vibration syndrome (HAVS) has been associated with prolonged exposure to vibration transmitted to the human hand-arm system from hand-held power tools, vibrating machines, or hand-held vibrating workpieces. The biodynamic response of the human hand and arm to hand transmitted vibration (HTV) forms an essential basis for effective evaluations of exposures, vibration-attenuation mechanisms, and potential injury mechanisms. The biodynamic response to HTV and its relationship to HAVS are critically reviewed and discussed to highlight the advances and the need for further research. In view of its strong dependence on the nature of HTV and the lack of general agreement on the characteristics of HTV, the reported studies are first reviewed to enhance an understanding of HTV and related issues. The characteristics of HTV and relevant unresolved issues are discussed on the basis of measured data, proposed standards, and measurement methods, while the need for further developments in measurement systems is emphasized. The studies on biodynamic response and their findings are grouped into four categories based on the methodology used and the objective. These include studies on (1) through-the-hand-arm response, expressed in terms of vibration transmissibility; (2) to-the-hand response, expressed in terms of the force-motion relationship of the hand-arm system; (3) to-the-hand biodynamic response function, expressed in terms of vibration energy absorption; and (4) computer modeling of the biodynamic response characteristics.

  12. Potential air contamination during CO2 angiography using a hand-held syringe: theoretical considerations and gas chromatography.

    PubMed

    Cho, David R; Cho, Kyung J; Hawkins, Irvin F

    2006-01-01

    To assess air contamination in the hand-held syringes currently used for CO2 delivery and to determine whether there is an association between their position and the rate of air contamination. Assessment of air contamination in the syringe (20 ml) included theoretical modeling, mathematical calculation, and gas chromatography (GC). The model was used with Fick's first law to calculate the diffusion of CO2 and the amount of air contamination. For GC studies, the syringes were placed in the upright, horizontal, and inverted positions and gas samples were obtained after 5, 10, 20, 30, and 60 min. All trials with each position for each sampling time were performed five times. The amounts of air contamination with time calculated mathematically were 5-10% less than those of GC. With the diffusivity of air-CO2 at 0.1599 cm2/sec (9.594 cm2/min), air contamination was calculated to be 60% at 60 min. With GC air contamination was 13% at 5 min, 31% at 20 min, 43% at 30 min, and 68% at 60 min. There was no difference in air contamination between the different syringe positions. Air contamination occurs in hand-held syringes filled with CO2 when they are open to the ambient air. The amounts of air contamination over time are similar among syringes placed in the upright, horizontal, and inverted positions.

  13. Tantalum-based semiconductors for solar water splitting.

    PubMed

    Zhang, Peng; Zhang, Jijie; Gong, Jinlong

    2014-07-07

    Solar energy utilization is one of the most promising solutions for the energy crises. Among all the possible means to make use of solar energy, solar water splitting is remarkable since it can accomplish the conversion of solar energy into chemical energy. The produced hydrogen is clean and sustainable which could be used in various areas. For the past decades, numerous efforts have been put into this research area with many important achievements. Improving the overall efficiency and stability of semiconductor photocatalysts are the research focuses for the solar water splitting. Tantalum-based semiconductors, including tantalum oxide, tantalate and tantalum (oxy)nitride, are among the most important photocatalysts. Tantalum oxide has the band gap energy that is suitable for the overall solar water splitting. The more negative conduction band minimum of tantalum oxide provides photogenerated electrons with higher potential for the hydrogen generation reaction. Tantalates, with tunable compositions, show high activities owning to their layered perovskite structure. (Oxy)nitrides, especially TaON and Ta3N5, have small band gaps to respond to visible-light, whereas they can still realize overall solar water splitting with the proper positions of conduction band minimum and valence band maximum. This review describes recent progress regarding the improvement of photocatalytic activities of tantalum-based semiconductors. Basic concepts and principles of solar water splitting will be discussed in the introduction section, followed by the three main categories regarding to the different types of tantalum-based semiconductors. In each category, synthetic methodologies, influencing factors on the photocatalytic activities, strategies to enhance the efficiencies of photocatalysts and morphology control of tantalum-based materials will be discussed in detail. Future directions to further explore the research area of tantalum-based semiconductors for solar water splitting

  14. Hand-held hyperspectral imager for chemical/biological and environmental applications

    NASA Astrophysics Data System (ADS)

    Hinnrichs, Michele; Piatek, Bob

    2004-03-01

    A small, hand held, battery operated imaging infrared spectrometer, Sherlock, has been developed by Pacific Advanced Technology and was field tested in early 2003. The Sherlock spectral imaging camera has been designed for remote gas leak detection, however, the architecture of the camera is versatile enough that it can be applied to numerous other applications such as homeland security, chemical/biological agent detection, medical and pharmaceutical applications as well as standard research and development. This paper describes the Sherlock camera, theory of operations, shows current applications and touches on potential future applications for the camera. The Sherlock has an embedded Power PC and performs real-time-image processing function in an embedded FPGA. The camera has a built in LCD display as well as output to a standard monitor, or NTSC display. It has several I/O ports, ethernet, firewire, RS232 and thus can be easily controlled from a remote location. In addition, software upgrades can be performed over the ethernet eliminating the need to send the camera back to the factory for a retrofit. Using the USB port a mouse and key board can be connected and the camera can be used in a laboratory environment as a stand alone imaging spectrometer.

  15. The Effect of Twin Boundaries on the Spectroscopic Performance of CdZnTe Detectors

    NASA Technical Reports Server (NTRS)

    Parker, Bradford H.; Stahle, C. M.; Roth, D.; Babu, S.; Tueller, Jack; Powers, Edward I. (Technical Monitor)

    2001-01-01

    Most single grains in cadmium zinc telluride (CdZnTe) grown by the high-pressure Bridgman (HPB) technique contain multiple twin boundaries. As a consequence, twin boundaries are one of the most common macroscopic material defects found in large area (400 to 700 sq mm) CdZnTe specimens obtained from HPB ingots. Due to the prevalence of twin boundaries, understanding their effect on detector performance is key to the material selection process. Twin boundaries in several 2 mm thick large area specimens were first, documented using infrared transmission imaging. These specimens were then fabricated into either 2 mm pixel or planar detectors in order to examine the effect of the twin boundaries on detector performance. Preliminary results show that twin boundaries, which are decorated with tellurium inclusions, produce a reduction in detector efficiency and a degradation in resolution. The extent of the degradation appears to be a function of the density of tellurium inclusions.

  16. Development of a minimum performance standard for hand-held fire extinguishers as a replacement for Halon 1211 on civilian transport category aircraft

    DOT National Transportation Integrated Search

    2002-08-01

    One or more Halon 1211 hand-held fire extinguishers are specified in Federal Aviation Regulation (FAR) Part 25.851 as a requirement on transport category aircraft with 31 or more seats. Halon 1211 has been linked to the destruction of the ozone layer...

  17. Intra- and Inter-Rater Reliability of the Rate of Force Development of Hip Abductor Muscles Measured by Hand-Held Dynamometer

    ERIC Educational Resources Information Center

    Takeda, Kazuya; Tanabe, Shigeo; Koyama, Soichiro; Nagai, Tomoko; Sakurai, Hiroaki; Kanada, Yoshikiyo; Shomoto, Koji

    2018-01-01

    The aim of this study was to clarify the intra- and inter-rater reliability of the rate of force development in hip abductor muscle force measurements using a hand-held dynamometer. Thirty healthy adults were separately assessed by two independent raters on two separate days. Rate of force development was calculated from the slope of the…

  18. Hard x-ray response of a CdZnTe ring-drift detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owens, A.; Hartog, R. den; Quarati, F.

    We present the results of an experimental study of a special type of CdZnTe detector of hard x and {gamma} rays--A-drift detector. The device consists of a double ring electrode structure surrounding a central point anode with a guard plane surrounding the outer anode ring. The detector can be operated in two distinctively different modes of charge collection--pseudohemispherical and pseudodrift. We study the detector response profiles obtained by scanning the focused x-ray beam over the whole detector area, specifically the variations in count rate, peak position, and energy resolution for x rays from 10 to 100 keV. In addition, atmore » 662 keV the energy resolution was shown to be 4.8 keV, more than a factor of 2 better than for CdZnTe coplanar grid detectors. To interpret the experimental data, we derive an analytical expression for the spatial distribution of the electric field inside the detector and neglecting carrier diffusion, and identify carrier collection patterns for both modes of operation within the drift model approximation. We show that this model provides a good understanding of measured profiles.« less

  19. Initial Usability Testing of a Hand-Held Electronic Logbook Prototype for the Human Research Facility

    NASA Technical Reports Server (NTRS)

    Berman, Andrea H.; Whitmore, Mihriban

    1996-01-01

    The Apple(R) Newton(TM) MessagePad 110 was flown aboard the KC-135 reduced gravity aircraft for microgravity usability testing. The Newton served as the initial hand-held electronic logbook prototype for the International Space Station (ISS) Human Research Facility (HRF). Subjects performed three different tasks with the Newton: (1) using the stylus to tap on different sections of the screen in order to launch an application and to select options within it; (2) using the stylus to write, and; (3) correcting handwriting recognition errors in a handwriting-intensive application. Subjects rated handwriting in microgravity 'Borderline' and had great difficulties finding a way in which to adequately restrain themselves at the lower body in order to have their hands free for the Newton. Handwriting recognition was rated 'Unacceptable,' but this issue is hardware-related and not unique to the microgravity environment. It is suggested that the restraint and handwriting issues are related and require further joint research with the current Handheld Electronic Logbook prototype: the Norand Pen*key Model #6300.

  20. Anisotropy-based crystalline oxide-on-semiconductor material

    DOEpatents

    McKee, Rodney Allen; Walker, Frederick Joseph

    2000-01-01

    A semiconductor structure and device for use in a semiconductor application utilizes a substrate of semiconductor-based material, such as silicon, and a thin film of a crystalline oxide whose unit cells are capable of exhibiting anisotropic behavior overlying the substrate surface. Within the structure, the unit cells of the crystalline oxide are exposed to an in-plane stain which influences the geometric shape of the unit cells and thereby arranges a directional-dependent quality of the unit cells in a predisposed orientation relative to the substrate. This predisposition of the directional-dependent quality of the unit cells enables the device to take beneficial advantage of characteristics of the structure during operation. For example, in the instance in which the crystalline oxide of the structure is a perovskite, a spinel or an oxide of similarly-related cubic structure, the structure can, within an appropriate semiconductor device, exhibit ferroelectric, piezoelectric, pyroelectric, electro-optic, ferromagnetic, antiferromagnetic, magneto-optic or large dielectric properties that synergistically couple to the underlying semiconductor substrate.

  1. A high resolution hand-held focused beam profiler

    NASA Astrophysics Data System (ADS)

    Zapata-Farfan, J.; Garduño-Mejía, J.; Rosete-Aguilar, M.; Ascanio, G.; Román-Moreno, C. J.

    2017-05-01

    The shape of a beam is important in any laser application and depending on the final implementation, there exists a preferred one which is defined by the irradiance distribution.1 The energy distribution (or laser beam profile) is an important parameter in a focused beam, for instance, in laser cut industry, where the beam shape determines the quality of the cut. In terms of alignment and focusing, the energy distribution also plays an important role since the system must be configured in order to reduce the aberration effects and achieve the highest intensity. Nowadays a beam profiler is used in both industry and research laboratories with the aim to characterize laser beams used in free-space communications, focusing and welding, among other systems. The purpose of the profile analyzers is to know the main parameters of the beam, to control its characteristics as uniformity, shape and beam size as a guide to align the focusing system. In this work is presented a high resolution hand-held and compact design of a beam profiler capable to measure at the focal plane, with covered range from 400 nm to 1000 nm. The detection is reached with a CMOS sensor sized in 3673.6 μm x 2738.4 μm which acquire a snap shot of the previously attenuated focused beam to avoid the sensor damage, the result is an image of beam intensity distribution, which is digitally processed with a RaspberryTMmodule gathering significant parameters such as beam waist, centroid, uniformity and also some aberrations. The profiler resolution is 1.4 μm and was probed and validated in three different focusing systems. The spot sizes measurements were compared with the Foucault knife-edge test.

  2. SEMICONDUCTOR TECHNOLOGY Supercritical carbon dioxide process for releasing stuck cantilever beams

    NASA Astrophysics Data System (ADS)

    Yu, Hui; Chaoqun, Gao; Lei, Wang; Yupeng, Jing

    2010-10-01

    The multi-SCCO2 (supercritical carbon dioxide) release and dry process based on our specialized SCCO2 semiconductor process equipment is investigated and the releasing mechanism is discussed. The experiment results show that stuck cantilever beams were held up again under SCCO2 high pressure treatment and the repeatability of this process is nearly 100%.

  3. Development of a high-speed VCSEL OCT system for real-time imaging of conscious patients larynx using a hand-held probe (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Rangarajan, Swathi; Chou, Li-Dek; Coughlan, Carolyn; Sharma, Giriraj; Wong, Brian J. F.; Ramalingam, Tirunelveli S.

    2016-02-01

    Fourier domain optical coherence tomography (FD-OCT) is a noninvasive imaging modality that has previously been used to image the human larynx. However, differences in anatomical geometry and short imaging range of conventional OCT limits its application in a clinical setting. In order to address this issue, we have developed a gradient-index (GRIN) lens rod-based hand-held probe in conjunction with a long imaging range 200 kHz Vertical-Cavity Surface Emitting Lasers (VCSEL) swept-source optical coherence tomography (SS-OCT) system for high speed real-time imaging of the human larynx in an office setting. This hand-held probe is designed to have a long and dynamically tunable working distance to accommodate the differences in anatomical geometry of human test subjects. A nominal working distance (~6 cm) of the probe is selected to have a lateral resolution <100 um within a depth of focus of 6.4 mm, which covers more than half of the 12 mm imaging range of the VCSEL laser. The maximum lateral scanning range of the probe at 6 cm working distance is approximately 8.4 mm, and imaging an area of 8.5 mm by 8.5 mm is accomplished within a second. Using the above system, we will demonstrate real-time cross-sectional OCT imaging of larynx during phonation in vivo in human and ex-vivo in pig vocal folds.

  4. Flexible CMOS low-noise amplifiers for beyond-3G wireless hand-held devices

    NASA Astrophysics Data System (ADS)

    Becerra-Alvarez, Edwin C.; Sandoval-Ibarra, Federico; de la Rosa, José M.

    2009-05-01

    This paper explores the use of reconfigurable Low-Noise Amplifiers (LNAs) for the implementation of CMOS Radio Frequency (RF) front-ends in the next generation of multi-standard wireless transceivers. Main circuit strategies reported so far for multi-standard LNAs are reviewed and a novel flexible LNA intended for Beyond-3G RF hand-held terminals is presented. The proposed LNA circuit consists of a two-stage topology that combines inductive-source degeneration with PMOS-varactor based tuning network and a programmable load to adapt its performance to different standard specifications without penalizing the circuit noise and with a reduced number of inductors as compared to previous reported reconfigurable LNAs. The circuit has been designed in a 90-nm CMOS technology to cope with the requirements of the GSM, WCDMA, Bluetooth and WLAN (IEEE 802.11b-g) standards. Simulation results, including technology and packaging parasitics, demonstrate correct operation of the circuit for all the standards under study, featuring NF<2.8dB, S21>13.3dB and IIP3>10.9dBm, over a 1.85GHz-2.4GHz band, with an adaptive power consumption between 17mW and 22mW from a 1-V supply voltage. Preliminary experimental measurements are included, showing a correct reconfiguration operation within the operation band.

  5. Assessment of foot and ankle muscle strength using hand held dynamometry in patients with established rheumatoid arthritis.

    PubMed

    Carroll, Matthew; Joyce, William; Brenton-Rule, Angela; Dalbeth, Nicola; Rome, Keith

    2013-03-22

    The foot and ankle are frequently affected in patients with rheumatoid arthritis (RA). One of the negative consequences of RA on the physical function of patients is a decrease in muscle strength. However, little is known about foot and muscle strength in this population. The aim of the study was to evaluate significant differences in foot and ankle muscle strength between patients with established RA against age and sex-matched controls using hand-held dynamometry. The maximal muscle strength of ankle plantarflexion, dorsiflexion, eversion and inversion was assessed in 14 patients with RA, mean (SD) disease duration of 22 (14.1) years, and 20 age and sex-matched control participants using hand-held dynamometry. Significant differences were observed in muscle strength between the two groups in plantarflexion (p = 0.00), eversion (p = 0.04) and inversion (p = 0.01). No significant difference was found in dorsiflexion (p > 0.05). The patients with RA displayed a significantly lower plantarflexion-dorsiflexion ratio than the control participants (p = 0.03). The results from this study showed that the RA patients displayed a significant decrease in ankle dorsiflexion, eversion and inversion when compared to the non-RA control group suggesting that foot and ankle muscle strength may be affected by the pathological processes in RA. This study is a preliminary step for the measurement of muscle impairments within the RA population.

  6. Assessment of foot and ankle muscle strength using hand held dynamometry in patients with established rheumatoid arthritis

    PubMed Central

    2013-01-01

    Background The foot and ankle are frequently affected in patients with rheumatoid arthritis (RA). One of the negative consequences of RA on the physical function of patients is a decrease in muscle strength. However, little is known about foot and muscle strength in this population. The aim of the study was to evaluate significant differences in foot and ankle muscle strength between patients with established RA against age and sex-matched controls using hand-held dynamometry. Methods The maximal muscle strength of ankle plantarflexion, dorsiflexion, eversion and inversion was assessed in 14 patients with RA, mean (SD) disease duration of 22 (14.1) years, and 20 age and sex-matched control participants using hand-held dynamometry. Results Significant differences were observed in muscle strength between the two groups in plantarflexion (p = 0.00), eversion (p = 0.04) and inversion (p = 0.01). No significant difference was found in dorsiflexion (p > 0.05). The patients with RA displayed a significantly lower plantarflexion-dorsiflexion ratio than the control participants (p = 0.03). Conclusions The results from this study showed that the RA patients displayed a significant decrease in ankle dorsiflexion, eversion and inversion when compared to the non-RA control group suggesting that foot and ankle muscle strength may be affected by the pathological processes in RA. This study is a preliminary step for the measurement of muscle impairments within the RA population. PMID:23522448

  7. A new miniature hand-held solar-blind reagentless standoff chemical, biological, and explosives (CBE) sensor

    NASA Astrophysics Data System (ADS)

    Hug, W. F.; Reid, R. D.; Bhartia, R.; Lane, A. L.

    2008-04-01

    Improvised explosive devices (IEDs), vehicle-borne improvised explosive devices (VBIEDs), and suicide bombers are a major threat to many countries and their citizenry. The ability to detect trace levels of these threats with a miniature, hand-held, reagentless, standoff sensor represents a major improvement in the state of the art of CBE surface sensors. Photon Systems, Inc., in collaboration with Jet Propulsion Laboratory, recently demonstrated a new technology hand-held sensor for reagentless, close-range, standoff detection and identification of trace levels CBE materials on surfaces. This targeted ultraviolet CBE (TUCBE) sensor is the result of an Army Phase I STTR program. The resulting 5lb, 5W, flashlight-sized sensor can discriminate CBE from background materials using a combination of deep UV excited resonance Raman (RR) and laser induced native fluorescence (LINF) emissions resulting from excitation by a new technology deep UV laser. Detection and identification is accomplished in less than 1ms. Standoff excitation of suspicious packages, vehicles, persons, and other objects that may contain hazardous materials is accomplished using wavelengths below 250nm where Raman and native fluorescence emissions occupy distinctly different wavelength regions. This enables simultaneous detection of RR and LINF emissions with no interferences. The sensor employs fused RR/LINF chemometric methods to extract the identity of targeted materials from background clutter. Photon Systems has demonstrated detection and identification of 100ng/cm2 of explosives materials at a distance of 1 meter using a sensor with 3.8 cm optical aperture. Expansion of the optical aperture to 38 cm in a lantern-sized sensor will enable similar detection and identification of CBE materials at standoff distances of 10 meters. As a result of excitation and detection in the deep UV and the use of a gated detection system, the sensor is solar blind and can operate in full daylight conditions.

  8. ZnSe based semiconductor core-shell structures: From preparation to application

    NASA Astrophysics Data System (ADS)

    Sun, Chengcheng; Gu, Yarong; Wen, Weijia; Zhao, Lijuan

    2018-07-01

    Inorganic core-shell semiconductor materials have attracted increasing interest in recent years because of the unique structure, stable chemical properties and high performance in devices. With special properties such as a direct band-gap and excellent photoelectrical characteristics, ZnSe based semiconductor core-shell structures are promising materials for applications in such fields as photocatalysts, light-emitting diodes, solar cells, photodetectors, biomedical science and so on. However, few reviews on ZnSe based semiconductor core-shell structures have been reported so far. Therefore this manuscript mainly focuses on the research activities on ZnSe based semiconductor core-shell composites including various preparation methods and the applications of these core-shell structures, especially in photocatalysts, light emitting, solar cells and photodetectors. The possibilities and limitations of studies on ZnSe based semiconductor core-shell composites are also highlighted.

  9. Optical Biosensors Based on Semiconductor Nanostructures

    PubMed Central

    Martín-Palma, Raúl J.; Manso, Miguel; Torres-Costa, Vicente

    2009-01-01

    The increasing availability of semiconductor-based nanostructures with novel and unique properties has sparked widespread interest in their use in the field of biosensing. The precise control over the size, shape and composition of these nanostructures leads to the accurate control of their physico-chemical properties and overall behavior. Furthermore, modifications can be made to the nanostructures to better suit their integration with biological systems, leading to such interesting properties as enhanced aqueous solubility, biocompatibility or bio-recognition. In the present work, the most significant applications of semiconductor nanostructures in the field of optical biosensing will be reviewed. In particular, the use of quantum dots as fluorescent bioprobes, which is the most widely used application, will be discussed. In addition, the use of some other nanometric structures in the field of biosensing, including porous semiconductors and photonic crystals, will be presented. PMID:22346691

  10. Next Generation Semiconductor-Based Radiation Detectors Using Cadmium Magnesium Telluride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trivedi, Sudhir B; Kutcher, Susan W; Palsoz, Witold

    2014-11-17

    The primary objective of Phase I was to perform extensive studies on the purification, crystal growth and annealing procedures of CdMgTe to gain a clear understanding of the basic material properties to enable production of detector material with performance comparable to that of CdZnTe. Brimrose utilized prior experience in the growth and processing of II-VI crystals and produced high purity material and good quality single crystals of CdMgTe. Processing techniques for these crystals including annealing, mechanical and chemical polishing, surface passivation and electrode fabrication were developed. Techniques to characterize pertinent electronic characteristics were developed and gamma ray detectors were fabricated.more » Feasibility of the development of comprehensive defect modeling in this new class of material was demonstrated by our partner research institute SRI International, to compliment the experimental work. We successfully produced a CdMgTe detector that showed 662 keV gamma response with energy resolution of 3.4% (FWHM) at room temperature, without any additional signal correction. These results are comparable to existing CdZnTe (CZT) technology using the same detector size and testing conditions. We have successfully demonstrated detection of gamma-radiation from various isotopes/sources, using CdMgTe thus clearly proving the feasibility that CdMgTe is an excellent, low-cost alternative to CdZnTe.« less

  11. Applications of Digitized 3-D Position-Sensitive CdZnTe Spectrometers for National Security and Nuclear Nonproliferation

    NASA Astrophysics Data System (ADS)

    Streicher, Michael W.

    A nuclear weapon detonation remains one of the gravest threats to the global community. Although the likelihood of a nuclear event remains small, the economic and political ramifications of an event are vast. The surest way to reduce the probability of an incident is to account for the special nuclear materials (SNM) which can be used to produce a nuclear weapon. Materials which can be used to manufacture a radiological dispersion device ("dirty bomb") must also be monitored. Rapidly-deployable, commercially-available, room-temperature imaging gamma-ray spectrometers are improving the ability of authorities to intelligently and quickly respond to threats. New electronics which digitally-sample the radiation-induced signals in CdZnTe detectors have expanded the capabilities of these sensors. This thesis explores national security applications where digital readout of CdZnTe detectors significantly enhances capabilities. Radioactive sources can be detected more quickly using digitally-sampled CdZnTe detector due to the improved energy resolution. The excellent energy resolution also improves the accuracy of measurements of uranium enrichment and allows users to measure plutonium grade. Small differences in the recorded gamma-ray energy spectrum can be used to estimate the effective atomic number and mass thickness of materials shielding SNM sources. Improved position resolution of gamma-ray interactions through digital readout allows high resolution gamma-ray images of SNM revealing information about the source configuration. CdZnTe sensors can detect the presence of neutrons, indirectly, through measurement of gamma rays released during capture of thermal neutrons by Cd-113 or inelastic scattering with any constituent nuclei. Fast neutrons, such as those released following fission, can be directly detected through elastic scattering interactions in the detector. Neutrons are a strong indicator of fissile material, and the background neutron rate is much lower than

  12. Molecular Beam Epitaxial Regrowth of Antimonide-Based Semiconductors

    DTIC Science & Technology

    2011-01-01

    Molecular Beam Epitaxial Regrowth of Antimonide-Based Semiconductors MATTHEW REASON,1 BRIAN R. BENNETT,1,2 RICHARD MAGNO,1 and J. BRAD BOOS1 1...2010 to 00-00-2010 4. TITLE AND SUBTITLE Molecular Beam Epitaxial Regrowth of Antimonide-Based Semiconductors 5a. CONTRACT NUMBER 5b. GRANT...Prescribed by ANSI Std Z39-18 EXPERIMENTAL PROCEDURES The samples reported in this work were grown by solid-source molecular - beam epitaxy (MBE) with

  13. 3D indoor modeling using a hand-held embedded system with multiple laser range scanners

    NASA Astrophysics Data System (ADS)

    Hu, Shaoxing; Wang, Duhu; Xu, Shike

    2016-10-01

    Accurate three-dimensional perception is a key technology for many engineering applications, including mobile mapping, obstacle detection and virtual reality. In this article, we present a hand-held embedded system designed for constructing 3D representation of structured indoor environments. Different from traditional vehicle-borne mobile mapping methods, the system presented here is capable of efficiently acquiring 3D data while an operator carrying the device traverses through the site. It consists of a simultaneous localization and mapping(SLAM) module, a 3D attitude estimate module and a point cloud processing module. The SLAM is based on a scan matching approach using a modern LIDAR system, and the 3D attitude estimate is generated by a navigation filter using inertial sensors. The hardware comprises three 2D time-flight laser range finders and an inertial measurement unit(IMU). All the sensors are rigidly mounted on a body frame. The algorithms are developed on the frame of robot operating system(ROS). The 3D model is constructed using the point cloud library(PCL). Multiple datasets have shown robust performance of the presented system in indoor scenarios.

  14. Semiconductor nanocrystal-based phagokinetic tracking

    DOEpatents

    Alivisatos, A Paul; Larabell, Carolyn A; Parak, Wolfgang J; Le Gros, Mark; Boudreau, Rosanne

    2014-11-18

    Methods for determining metabolic properties of living cells through the uptake of semiconductor nanocrystals by cells. Generally the methods require a layer of neutral or hydrophilic semiconductor nanocrystals and a layer of cells seeded onto a culture surface and changes in the layer of semiconductor nanocrystals are detected. The observed changes made to the layer of semiconductor nanocrystals can be correlated to such metabolic properties as metastatic potential, cell motility or migration.

  15. Suitability of capillary blood obtained by a minimally invasive lancet technique to detect subclinical ketosis in dairy cows by using 3 different electronic hand-held devices.

    PubMed

    Kanz, P; Drillich, M; Klein-Jöbstl, D; Mair, B; Borchardt, S; Meyer, L; Schwendenwein, I; Iwersen, M

    2015-09-01

    The objective of this study was to evaluate the suitability of capillary blood obtained by a minimally invasive lancet technique to detect subclinical ketosis in 49 prepartum and 191 postpartum Holstein-Friesian cows using 3 different electronic hand-held devices [FreeStyle Precision (FSP, Abbott), GlucoMen LX Plus (GLX, A. Menarini), NovaVet (NOV, Nova Biomedical)]. The β-hydroxybutyrate (BHBA) concentration in serum harvested from coccygeal blood samples was analyzed in a laboratory and used as a reference value. Capillary samples were obtained from the skin of the exterior vulva by using 1 of 3 different lancets. In all samples, the concentration of BHBA was immediately analyzed with all 3 hand-held devices used in random order. All lancets used in the study were eligible for capillary blood collection but differed in the total number of incisions needed. Spearman correlation coefficients between the BHBA concentrations in capillary blood and the reference test were highly significant with 83% for the FSP, 73% for the NOV, and 63% for the GLX. Using capillary blood, the FSP overestimated the mean BHBA concentration compared with the reference test (+0.08 mmol/L), whereas the GLX and NOV underestimated the mean concentration (-0.07 and -0.01 mmol/L). When a BHBA concentration of 1.2 mmol/L in serum was used to define subclinical ketosis, the corresponding analyses of receiver operating characteristics resulted in optimized thresholds for capillary blood of 1.1 mmol/L for the NOV and GLX devices, and of 1.0 mmol/L for the FSP. Based on these thresholds, sensitivities (Se) and specificities (Sp) were 89 and 84% for the NOV, 80 and 89% for the GLX, and 100 and 76% for the FSP. Based on a serum BHBA concentration of 1.4 mmol/L, analyses of receiver operating characteristics resulted in optimized cut-offs of 1.4 mmol/L for the FSP (Se 100%, Sp 92%), 1.3 mmol/L for the NOV (Se 80%, Sp 95%), and 1.1 mmol/L (Se 90%, Sp 85%) for the GLX. Using these optimized thresholds

  16. Hydrogen Sensors Using Nitride-Based Semiconductor Diodes: The Role of Metal/Semiconductor Interfaces

    PubMed Central

    Irokawa, Yoshihiro

    2011-01-01

    In this paper, I review my recent results in investigating hydrogen sensors using nitride-based semiconductor diodes, focusing on the interaction mechanism of hydrogen with the devices. Firstly, effects of interfacial modification in the devices on hydrogen detection sensitivity are discussed. Surface defects of GaN under Schottky electrodes do not play a critical role in hydrogen sensing characteristics. However, dielectric layers inserted in metal/semiconductor interfaces are found to cause dramatic changes in hydrogen sensing performance, implying that chemical selectivity to hydrogen could be realized. The capacitance-voltage (C–V) characteristics reveal that the work function change in the Schottky metal is not responsible mechanism for hydrogen sensitivity. The interface between the metal and the semiconductor plays a critical role in the interaction of hydrogen with semiconductor devises. Secondly, low-frequency C–V characterization is employed to investigate the interaction mechanism of hydrogen with diodes. As a result, it is suggested that the formation of a metal/semiconductor interfacial polarization could be attributed to hydrogen-related dipoles. In addition, using low-frequency C–V characterization leads to clear detection of 100 ppm hydrogen even at room temperature where it is hard to detect hydrogen by using conventional current-voltage (I–V) characterization, suggesting that low-frequency C–V method would be effective in detecting very low hydrogen concentrations. PMID:22346597

  17. Is it Time to Replace Physical Examination with a Hand-Held Ultrasound Device?

    PubMed Central

    Kaul, Sanjiv

    2014-01-01

    Attempts at using physical examination (PE) go back centuries, with inspection, palpation, and percussion being the mainstay of this approach until 2 centuries ago when the stethoscope was invented and auscultation became probably the most important element of PE for patients with known or suspected cardiovascular disease (CVD). Despite its several limitations, PE is still used, sometimes as the only means, of evaluating and following patients with CVD. In this paper I shall argue for the substitution of this inaccurate and archaic approach by direct visualization of the heart using a hand-held ultrasound (HHU) device. I am not in any way suggesting the substitution of a comprehensive echocardiographic examination by an expert sonographer/echocardiographer by HHU in patients with significant CVD. Instead, I am arguing for the replacement of PE for evaluation of the heart at the point of care as well as at the bedside, simply because HHU is more accurate and provides more meaningful information. PMID:28465916

  18. Is it Time to Replace Physical Examination with a Hand-Held Ultrasound Device?

    PubMed

    Kaul, Sanjiv

    2014-01-01

    Attempts at using physical examination (PE) go back centuries, with inspection, palpation, and percussion being the mainstay of this approach until 2 centuries ago when the stethoscope was invented and auscultation became probably the most important element of PE for patients with known or suspected cardiovascular disease (CVD). Despite its several limitations, PE is still used, sometimes as the only means, of evaluating and following patients with CVD. In this paper I shall argue for the substitution of this inaccurate and archaic approach by direct visualization of the heart using a hand-held ultrasound (HHU) device. I am not in any way suggesting the substitution of a comprehensive echocardiographic examination by an expert sonographer/echocardiographer by HHU in patients with significant CVD. Instead, I am arguing for the replacement of PE for evaluation of the heart at the point of care as well as at the bedside, simply because HHU is more accurate and provides more meaningful information.

  19. Rapid, chemical-free breaking of microfluidic emulsions with a hand-held antistatic gun

    PubMed Central

    Shahi, Payam; Abate, Adam R.

    2017-01-01

    Droplet microfluidics can form and process millions of picoliter droplets with speed and ease, allowing the execution of huge numbers of biological reactions for high-throughput studies. However, at the conclusion of most experiments, the emulsions must be broken to recover and analyze their contents. This is usually achieved with demulsifiers, like perfluorooctanol and chloroform, which can interfere with downstream reactions and harm cells. Here, we describe a simple approach to rapidly and efficiently break microfluidic emulsions, which requires no chemicals. Our method allows one-pot multi-step reactions, making it useful for large scale automated processing of reactions requiring demulsification. Using a hand-held antistatic gun, we pulse emulsions with the electric field, coalescing ∼100 μl of droplets in ∼10 s. We show that while emulsions broken with chemical demulsifiers exhibit potent PCR inhibition, the antistatic-broken emulsions amplify efficiently. The ability to break emulsions quickly without chemicals should make our approach valuable for most demulsification needs in microfluidics. PMID:28794817

  20. So the Kids Are Busy, What Now? Teacher Perceptions of the Use of Hand-Held Game Consoles in West Australian Primary Classrooms

    ERIC Educational Resources Information Center

    O'Rourke, John; Main, Susan; Ellis, Michelle

    2013-01-01

    Games technology in the form of hand-held game consoles (HGCs) when focussed on specific academic skill development has the capacity to engage students in learning and in turn produce positive academic results. This current research explores teacher perceptions of the implementation of HGCs to enhance the development of mental maths skills (namely…

  1. Hand-held dynamic visual noise reduces naturally occurring food cravings and craving-related consumption.

    PubMed

    Kemps, Eva; Tiggemann, Marika

    2013-09-01

    This study demonstrated the applicability of the well-established laboratory task, dynamic visual noise, as a technique for reducing naturally occurring food cravings and subsequent food intake. Dynamic visual noise was delivered on a hand-held computer device. Its effects were assessed within the context of a diary study. Over a 4-week period, 48 undergraduate women recorded their food cravings and consumption. Following a 2-week baseline, half the participants watched the dynamic visual noise display whenever they experienced a food craving. Compared to a control group, these participants reported less intense cravings. They were also less likely to eat following a craving and consequently consumed fewer total calories following craving. These findings hold promise for curbing unwanted food cravings and craving-driven consumption in real-world settings. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. The Complimentary Role of Methoxy-Isobutyl-Isonitrile and Hand-Held Gamma Probe in Adamantinoma

    PubMed Central

    Maharaj, Masha; Korowlay, Nisaar; Ellmann, Prof

    2016-01-01

    Adamantinoma is a rare locally aggressive osteolytic tumor that is found 90% of the time in the diaphysis of the tibia with the remaining lesions found in the fibula and long tubular bones. A case of adamantinoma of the tibia is presented. The added value of nuclear medicine investigations in the workup of this patient is described. A three-phase whole body 99mTc-methylene diphosphonate bone and a whole body 99mTc-methoxy-isobutyl-isonitrile scans were complimentary in the demarcation of viable bone tumor and the assessment of the remainder of the bone and soft tissue to exclude other sites. Intra-operative assistance with a hand-held gamma probe, guided the biopsy of the most metabolically active tumor tissue. Histology revealed a biphasic tumor composed of epithelial and fibrous components, in keeping with an adamantinoma. PMID:26912979

  3. Polarimetric performance of a Laue lens gamma-ray CdZnTe focal plane prototype

    NASA Astrophysics Data System (ADS)

    Curado da Silva, R. M.; Caroli, E.; Stephen, J. B.; Pisa, A.; Auricchio, N.; Del Sordo, S.; Frontera, F.; Honkimäki, V.; Schiavone, F.; Donati, A.; Trindade, A. M. F.; Ventura, G.

    2008-10-01

    A gamma-ray telescope mission concept [gamma ray imager (GRI)] based on Laue focusing techniques has been proposed in reply to the European Space Agency call for mission ideas within the framework of the next decade planning (Cosmic Vision 2015-2025). In order to optimize the design of a focal plane for this satellite mission, a CdZnTe detector prototype has been tested at the European Synchrotron Radiation Facility under an ~100% polarized gamma-ray beam. The spectroscopic, imaging, and timing performances were studied and in particular its potential as a polarimeter was evaluated. Polarization has been recognized as being a very important observational parameter in high energy astrophysics (>100 keV) and therefore this capability has been specifically included as part of the GRI mission proposal. The prototype detector tested was a 5 mm thick CdZnTe array with an 11×11 active pixel matrix (pixel area of 2.5×2.5 mm2). The detector was irradiated by a monochromatic linearly polarized beam with a spot diameter of about 0.5 mm over the energy range between 150 and 750 keV. Polarimetric Q factors of 0.35 and double event relative detection efficiency of 20% were obtained. Further measurements were performed with a copper Laue monochromator crystal placed between the beam and the detector prototype. In this configuration we have demonstrated that a polarized beam does not change its polarization level and direction after undergoing a small angle (<1°) Laue diffraction inside a crystal.

  4. Segregation formation, thermal and electronic properties of ternary cubic CdZnTe clusters: MD simulations and DFT calculations

    NASA Astrophysics Data System (ADS)

    Kurban, Mustafa; Erkoç, Şakir

    2017-04-01

    Surface and core formation, thermal and electronic properties of ternary cubic CdZnTe clusters are investigated by using classical molecular dynamics (MD) simulations and density functional theory (DFT) calculations. In this work, MD simulations of the CdZnTe clusters are performed by means of LAMMPS by using bond order potential (BOP). MD simulations are carried out at different temperatures to study the segregation phenomena of Cd, Zn and Te atoms, and deviation of clusters and heat capacity. After that, using optimized geometries obtained, excess charge on atoms, dipole moments, highest occupied molecular orbitals, lowest unoccupied molecular orbitals, HOMO-LUMO gaps (Eg) , total energies, spin density and the density of states (DOS) have been calculated with DFT. Simulation results such as heat capacity and segregation formation are compared with experimental bulk and theoretical results.

  5. Exploration of oxide-based diluted magnetic semiconductors toward transparent spintronics

    NASA Astrophysics Data System (ADS)

    Fukumura, T.; Yamada, Y.; Toyosaki, H.; Hasegawa, T.; Koinuma, H.; Kawasaki, M.

    2004-02-01

    A review is given for the recent progress of research in the field of oxide-based diluted magnetic semiconductor (DMS), which was triggered by combinatorial discovery of transparent ferromagnet. The possible advantages of oxide semiconductor as a host of DMS are described in comparison with conventional compound semiconductors. Limits and problems for identifying novel ferromagnetic DMS are described in view of recent reports in this field. Several characterization techniques are proposed in order to eliminate unidentified ferromagnetism of oxide-based DMS unidentified ferromagnetic oxide (UFO). Perspectives and possible devices are also given.

  6. Hand-held microwave search detector

    NASA Astrophysics Data System (ADS)

    Daniels, David J.; Philippakis, Mike

    2005-05-01

    This paper describes the further development of a patented, novel, low cost, microwave search detector using noise radar technology operating in the 27-40GHz range of frequencies, initially reported in SPIE 2004. Initial experiments have shown that plastic explosives, ceramics and plastic material hidden on the body can be detected with the system. This paper considers the basic physics of the technique and reports on the development of a initial prototype system for hand search of suspects and addresses the work carried out on optimisation of PD and FAR. The radar uses a novel lens system and the design and modelling of this for optimum depth of field of focus will be reported.

  7. Hand-held dynamometer testing of the internal and external rotator musculature based on selected positions to establish normative data and unilateral ratios.

    PubMed

    Riemann, Bryan L; Davies, George J; Ludwig, Lauren; Gardenhour, Helen

    2010-12-01

    Objective documentation is needed of shoulder internal and external rotator strength using hand-held dynamometry in selected positions commonly used in a clinic. We compared strength measures and unilateral ratios between gender, limbs (dominant, nondominant), and 3 testing positions. We hypothesized that men would be stronger than women, the dominant shoulder would be stronger than the nondominant shoulder, and the seated neutral (0° adduction) and seated 30° abduction, 30° scaption, 30° diagonal (30°-30°-30°) positions would be stronger than the prone at 90°-90° position. Three positions (prone at 90°, seated at neutral, and seated at 30°-30°-30°) were evaluated in 181 individuals using hand-held dynamometry. Three separate 3-factor (limb by position by gender) analyses of variance were conducted on internal rotation, external rotation, and unilateral ratios. Although the dominant limb was significantly stronger (P < .001) than the nondominant for internal rotation, there was no difference for external rotation. The external rotators demonstrated significantly greater strength in the prone at 90° position compared with the seated at neutral (P = .001) and seated at 30°-30°-30° (P = .002) positions. The internal rotators demonstrated significantly greater (P = .036) strength in the neutral position than in the prone at 90° position for the women. The unilateral ratio of external rotators/internal rotators ranged from 86% to 99%. For the women, the prone at 90° ratio was significantly greater than seated at neutral (P = .001) and seated at 30°-30°-30° (P = .001) positions. Moderate strength relationships (r = 0.506 to 0.572) were revealed between body mass and all strength measures. The results of this study provide evidence to interpret normative data, bilateral comparisons and unilateral ratios of the internal/external rotators in the 3 selected positions. Because there are no differences between the seated at neutral and 30°-30°-30

  8. An embedded system developed for hand held assay used in water monitoring

    NASA Astrophysics Data System (ADS)

    Wu, Lin; Wang, Jianwei; Ramakrishna, Bharath; Hsueh, Mingkai; Liu, Jonathan; Wu, Qufei; Wu, Chao-Cheng; Cao, Mang; Chang, Chein-I.; Jensen, Janet L.; Jensen, James O.; Knapp, Harlan; Daniel, Robert; Yin, Ray

    2005-11-01

    The US Army Joint Service Agent Water Monitor (JSAWM) program is currently interested in an approach that can implement a hardware- designed device in ticket-based hand-held assay (currently being developed) used for chemical/biological agent detection. This paper presents a preliminary investigation of the proof of concept. Three components are envisioned to accomplish the task. One is the ticket development which has been undertaken by the ANP, Inc. Another component is the software development which has been carried out by the Remote Sensing Signal and Image Processing Laboratory (RSSIPL) at the University of Maryland, Baltimore County (UMBC). A third component is an embedded system development which can be used to drive the UMBC-developed software to analyze the ANP-developed HHA tickets on a small pocket-size device like a PDA. The main focus of this paper is to investigate the third component that is viable and is yet to be explored. In order to facilitate to prove the concept, a flatbed scanner is used to replace a ticket reader to serve as an input device. The Stargate processor board is used as the embedded System with Embedded Linux installed. It is connected to an input device such as scanner as well as output devices such as LCD display or laptop etc. It executes the C-Coded processing program developed for this embedded system and outputs its findings on a display device. The embedded system to be developed and investigated in this paper is the core of a future hardware device. Several issues arising in such an embedded system will be addressed. Finally, the proof-of-concept pilot embedded system will be demonstrated.

  9. Inter-Tester Reliability and Precision of Manual Muscle Testing and Hand-Held Dynamometry in Lower Limb Muscles of Children with Spina Bifida

    ERIC Educational Resources Information Center

    Mahony, Kate; Hunt, Adrienne; Daley, Deborah; Sims, Susan; Adams, Roger

    2009-01-01

    Reliability and measurement precision of manual muscle testing (MMT) and hand-held dynamometry (HHD) were compared for children with spina bifida. Strength measures were obtained of the hip flexors, hip abductors, and knee extensors of 20 children (10 males, 10 females; mean age 9 years 10 months; range: 5 to 15 years) by two experienced physical…

  10. Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fehm, Thomas Felix; Razansky, Daniel, E-mail: dr@tum.de; Faculty of Medicine, Technische Universität München, Munich

    2014-10-27

    Ultrasonography and optoacoustic imaging share powerful advantages related to the natural aptitude for real-time image rendering with high resolution, the hand-held operation, and lack of ionizing radiation. The two methods also possess very different yet highly complementary advantages of the mechanical and optical contrast in living tissues. Nonetheless, efficient integration of these modalities remains challenging owing to the fundamental differences in the underlying physical contrast, optimal signal acquisition, and image reconstruction approaches. We report on a method for hybrid acquisition and reconstruction of three-dimensional pulse-echo ultrasound and optoacoustic images in real time based on passive ultrasound generation with an opticalmore » absorber, thus avoiding the hardware complexity of active ultrasound generation. In this way, complete hybrid datasets are generated with a single laser interrogation pulse, resulting in simultaneous rendering of ultrasound and optoacoustic images at an unprecedented rate of 10 volumetric frames per second. Performance is subsequently showcased in phantom experiments and in-vivo measurements from a healthy human volunteer, confirming general clinical applicability of the method.« less

  11. Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe

    NASA Astrophysics Data System (ADS)

    Fehm, Thomas Felix; Deán-Ben, Xosé Luís; Razansky, Daniel

    2014-10-01

    Ultrasonography and optoacoustic imaging share powerful advantages related to the natural aptitude for real-time image rendering with high resolution, the hand-held operation, and lack of ionizing radiation. The two methods also possess very different yet highly complementary advantages of the mechanical and optical contrast in living tissues. Nonetheless, efficient integration of these modalities remains challenging owing to the fundamental differences in the underlying physical contrast, optimal signal acquisition, and image reconstruction approaches. We report on a method for hybrid acquisition and reconstruction of three-dimensional pulse-echo ultrasound and optoacoustic images in real time based on passive ultrasound generation with an optical absorber, thus avoiding the hardware complexity of active ultrasound generation. In this way, complete hybrid datasets are generated with a single laser interrogation pulse, resulting in simultaneous rendering of ultrasound and optoacoustic images at an unprecedented rate of 10 volumetric frames per second. Performance is subsequently showcased in phantom experiments and in-vivo measurements from a healthy human volunteer, confirming general clinical applicability of the method.

  12. US-ROK Action Sheet 34: Safeguards Application of a Hand-held Mechanically Cooled Germanium Spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dreyer, J.; Burks, M.; Ham, Y.

    2015-10-20

    This report summarizes results of Action Sheet 34 - for the cooperative efforts on the field testing and evaluation of a high-resolution, hand-held, gamma-ray spectrometer, known as SPG (Spectroscopic Planar Germanium), for safeguards application such as short notice inspections, UF6 analysis, enrichment determination, and other potential applications. The Spectroscopic Planar Germanium (SPG) has been demonstrated IAEA Physical Inventory Verification (PIV) in South Korea. This field test was a success and the feedback provided by KINAC, IAEA, and national laboratory staff was used to direct efforts to improve the instrument this year. Key points in this report include measurement results frommore » PIV, analysis of spectra with commercially available Ortec U235 and PC-FRAM, and completion of tripod and tungsten collimator and integration of user feedback.« less

  13. Hand biometric recognition based on fused hand geometry and vascular patterns.

    PubMed

    Park, GiTae; Kim, Soowon

    2013-02-28

    A hand biometric authentication method based on measurements of the user's hand geometry and vascular pattern is proposed. To acquire the hand geometry, the thickness of the side view of the hand, the K-curvature with a hand-shaped chain code, the lengths and angles of the finger valleys, and the lengths and profiles of the fingers were used, and for the vascular pattern, the direction-based vascular-pattern extraction method was used, and thus, a new multimodal biometric approach is proposed. The proposed multimodal biometric system uses only one image to extract the feature points. This system can be configured for low-cost devices. Our multimodal biometric-approach hand-geometry (the side view of the hand and the back of hand) and vascular-pattern recognition method performs at the score level. The results of our study showed that the equal error rate of the proposed system was 0.06%.

  14. Resistivity dependence on Zn concentration in semi-insulating (Cd,Zn)Te

    NASA Astrophysics Data System (ADS)

    Fiederle, Michael; Fauler, Alex; Babentsov, Vladimir N.; Franc, Jan; Benz, Klaus Werner

    2003-01-01

    The resistivity dependence on Zn concentration had been investigated in semi-insulating (Cd,Zn)Te crystals grown by the vertical Bridgman method. A coorelation between the zinc concentration and the resistivity distribution could be found. The obtained resistivity was in the interval of 2 ×109-1010 Ω cm as expected from the model of compensation. The main deep compensating levels detected by Photo Induced Current Transient Spectroscopy (PICTS) were at 0.64 +/- 0.02 eV and close the middle of the band gap at 0.80 +/- 0.02 eV.

  15. Results from a Prototype Multi-Element CdZnTe Gamma-Ray Detector for Planetary Missions

    NASA Technical Reports Server (NTRS)

    Moss, C. E.; Browne, M. C.; Ianakiev, K. D.; Prettyman, T. H.; Reedy, R. C.

    2001-01-01

    We present high energy results for a 2 x 2 x 2 array of eight 10 mm x 10 mm x 5 mm coplanar grid CdZnTe detectors. We conclude that such an array can provide a room-temperature detector with good resolution and efficiency for planetary missions. Additional information is contained in the original extended abstract.

  16. Characterization of Etch Pit Formation via the Everson-Etching Method on CdZnTe Crystal Surfaces from the Bulk to the Nano-Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teague, L.; Duff, M.; Cadieux, J.

    2010-09-24

    A combination of atomic force microscopy, optical microscopy, and mass spectrometry was employed to study CdZnTe crystal surface and used etchant solution following exposure of the CdZnTe crystal to the Everson etch solution. We discuss the results of these studies in relationship to the initial surface preparation methods, the performance of the crystals as radiation spectrometers, the observed etch pit densities, and the chemical mechanism of surface etching. Our results show that the surface features that are exposed to etchants result from interactions with the chemical components of the etchants as well as pre-existing mechanical polishing.

  17. Lewis Acid-Base Chemistry of 7-Azaisoindigo-Based Organic Semiconductors.

    PubMed

    Randell, Nicholas M; Fransishyn, Kyle M; Kelly, Timothy L

    2017-07-26

    Low-band-gap organic semiconductors are important in a variety of organic electronics applications, such as organic photovoltaic devices, photodetectors, and field effect transistors. Building on our previous work, which introduced 7-azaisoindigo as an electron-deficient building block for the synthesis of donor-acceptor organic semiconductors, we demonstrate how Lewis acids can be used to further tune the energies of the frontier molecular orbitals. Coordination of a Lewis acid to the pyridinic nitrogen of 7-azaisoindigo greatly diminishes the electron density in the azaisoindigo π-system, resulting in a substantial reduction in the lowest unoccupied molecular orbital (LUMO) energy. This results in a smaller highest occupied molecular orbital-LUMO gap and shifts the lowest-energy electronic transition well into the near-infrared region. Both H + and BF 3 are shown to coordinate to azaisoindigo and affect the energy of the S 0 → S 1 transition. A combination of time-dependent density functional theory and UV/vis and 1 H NMR spectroscopic titrations reveal that when two azaisoindigo groups are present and high concentrations of acid are used, both pyridinic nitrogens bind Lewis acids. Importantly, we demonstrate that this acid-base chemistry can be carried out at the solid-vapor interface by exposing thin films of aza-substituted organic semiconductors to vapor-phase BF 3 ·Et 2 O. This suggests the possibility of using the BF 3 -bound 7-azaisoindigo-based semiconductors as n-type materials in various organic electronic applications.

  18. Hand Biometric Recognition Based on Fused Hand Geometry and Vascular Patterns

    PubMed Central

    Park, GiTae; Kim, Soowon

    2013-01-01

    A hand biometric authentication method based on measurements of the user's hand geometry and vascular pattern is proposed. To acquire the hand geometry, the thickness of the side view of the hand, the K-curvature with a hand-shaped chain code, the lengths and angles of the finger valleys, and the lengths and profiles of the fingers were used, and for the vascular pattern, the direction-based vascular-pattern extraction method was used, and thus, a new multimodal biometric approach is proposed. The proposed multimodal biometric system uses only one image to extract the feature points. This system can be configured for low-cost devices. Our multimodal biometric-approach hand-geometry (the side view of the hand and the back of hand) and vascular-pattern recognition method performs at the score level. The results of our study showed that the equal error rate of the proposed system was 0.06%. PMID:23449119

  19. Assessment of isometric muscle strength and rate of torque development with hand-held dynamometry: Test-retest reliability and relationship with gait velocity after stroke.

    PubMed

    Mentiplay, Benjamin F; Tan, Dawn; Williams, Gavin; Adair, Brooke; Pua, Yong-Hao; Bower, Kelly J; Clark, Ross A

    2018-04-27

    Isometric rate of torque development examines how quickly force can be exerted and may resemble everyday task demands more closely than isometric strength. Rate of torque development may provide further insight into the relationship between muscle function and gait following stroke. Aims of this study were to examine the test-retest reliability of hand-held dynamometry to measure isometric rate of torque development following stroke, to examine associations between strength and rate of torque development, and to compare the relationships of strength and rate of torque development to gait velocity. Sixty-three post-stroke adults participated (60 years, 34 male). Gait velocity was assessed using the fast-paced 10 m walk test. Isometric strength and rate of torque development of seven lower-limb muscle groups were assessed with hand-held dynamometry. Intraclass correlation coefficients were calculated for reliability and Spearman's rho correlations were calculated for associations. Regression analyses using partial F-tests were used to compare strength and rate of torque development in their relationship with gait velocity. Good to excellent reliability was shown for strength and rate of torque development (0.82-0.97). Strong associations were found between strength and rate of torque development (0.71-0.94). Despite high correlations between strength and rate of torque development, rate of torque development failed to provide significant value to regression models that already contained strength. Assessment of isometric rate of torque development with hand-held dynamometry is reliable following stroke, however isometric strength demonstrated greater relationships with gait velocity. Further research should examine the relationship between dynamic measures of muscle strength/torque and gait after stroke. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Beyond Textbook Illustrations: Hand-Held Models of Ordered DNA and Protein Structures as 3D Supplements to Enhance Student Learning of Helical Biopolymers

    ERIC Educational Resources Information Center

    Jittivadhna, Karnyupha; Ruenwongsa, Pintip; Panijpan, Bhinyo

    2010-01-01

    Textbook illustrations of 3D biopolymers on printed paper, regardless of how detailed and colorful, suffer from its two-dimensionality. For beginners, computer screen display of skeletal models of biopolymers and their animation usually does not provide the at-a-glance 3D perception and details, which can be done by good hand-held models. Here, we…

  1. Ring resonator based narrow-linewidth semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Ksendzov, Alexander (Inventor)

    2005-01-01

    The present invention is a method and apparatus for using ring resonators to produce narrow linewidth hybrid semiconductor lasers. According to one embodiment of the present invention, the narrow linewidths are produced by combining the semiconductor gain chip with a narrow pass band external feedback element. The semi conductor laser is produced using a ring resonator which, combined with a Bragg grating, acts as the external feedback element. According to another embodiment of the present invention, the proposed integrated optics ring resonator is based on plasma enhanced chemical vapor deposition (PECVD) SiO.sub.2 /SiON/SiO.sub.2 waveguide technology.

  2. STM experiment and atomistic modelling hand in hand: individual molecules on semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Briggs, G. A. D.; Fisher, A. J.

    When the scanning tunnelling microscope was invented, the world was amazed at the atomic resolution images of surfaces which could be obtained. It soon became apparent that it was one thing to obtain an image, and quite another to understand the structure that was seen. Happily the developments in real space experimental techniques for studying surfaces have been accompanied by developments in real space theoretical techniques for modelling electronic structure and bonding at surfaces. The aim of this review is to describe how and why STM experiments and atomistic modelling should be combined and what they can then be expected to tell us. A summary is given of the experimental methods for theorists and vice versa, and their relationship is illustrated using a number of case studies where they have been used together. To give the review a coherent focus the examples are confined to studies of adsorbed molecules on semiconductor surfaces, in particular Si(001) and GaAs(001). Questions thus addressed include: How are experimental images and structural modelling linked by tunnelling theory? What can they tell us together that we could not learn from experiment or theory alone? What can we learn about atomic positions and bonding at semiconductor surfaces with and without adsorbed molecules? How many different ways are there to relate images to calculations?

  3. Pulse-height loss in the signal readout circuit of compound semiconductor detectors

    NASA Astrophysics Data System (ADS)

    Nakhostin, M.; Hitomi, K.

    2018-06-01

    Compound semiconductor detectors such as CdTe, CdZnTe, HgI2 and TlBr are known to exhibit large variations in their charge collection times. This paper considers the effect of such variations on the measurement of induced charge pulses by using resistive feedback charge-sensitive preamplifiers. It is shown that, due to the finite decay-time constant of the preamplifiers, the capacitive decay during the signal readout leads to a variable deficit in the measurement of ballistic signals and a digital pulse processing method is employed to correct for it. The method is experimentally examined by using sampled pulses from a TlBr detector coupled to a charge-sensitive preamplifier with 150 μs of decay-time constant and 20 % improvement in the energy resolution of the detector at 662 keV is achieved. The implications of the capacitive decay on the correction of charge-trapping effect by using depth-sensing technique are also considered.

  4. A new approach to hand-based authentication

    NASA Astrophysics Data System (ADS)

    Amayeh, G.; Bebis, G.; Erol, A.; Nicolescu, M.

    2007-04-01

    Hand-based authentication is a key biometric technology with a wide range of potential applications both in industry and government. Traditionally, hand-based authentication is performed by extracting information from the whole hand. To account for hand and finger motion, guidance pegs are employed to fix the position and orientation of the hand. In this paper, we consider a component-based approach to hand-based verification. Our objective is to investigate the discrimination power of different parts of the hand in order to develop a simpler, faster, and possibly more accurate and robust verification system. Specifically, we propose a new approach which decomposes the hand in different regions, corresponding to the fingers and the back of the palm, and performs verification using information from certain parts of the hand only. Our approach operates on 2D images acquired by placing the hand on a flat lighting table. Using a part-based representation of the hand allows the system to compensate for hand and finger motion without using any guidance pegs. To decompose the hand in different regions, we use a robust methodology based on morphological operators which does not require detecting any landmark points on the hand. To capture the geometry of the back of the palm and the fingers in suffcient detail, we employ high-order Zernike moments which are computed using an effcient methodology. The proposed approach has been evaluated on a database of 100 subjects with 10 images per subject, illustrating promising performance. Comparisons with related approaches using the whole hand for verification illustrate the superiority of the proposed approach. Moreover, qualitative comparisons with state-of-the-art approaches indicate that the proposed approach has comparable or better performance.

  5. 32nd International Conference on the Physics of Semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chelikowsky, James

    The International Conference on the Physics of Semiconductors (ICPS) continues a series of biennial conferences that began in the 1950's. ICPS is the premier meeting for reporting all aspects of semiconductor physics including electronic, structural, optical, magnetic and transport properties with an emphasis on new materials and their applications. The meeting will reflect the state of art in the semiconductor physics field and will serve as a forum where scholars, researchers, and specialists can interact to discuss future research directions and technological advancements. The conference typically draws 1,000 international physicists, scientists, and students. This is one of the largest sciencemore » meetings on semiconductors and related materials to be held in the United States.« less

  6. Tunnel based spin injection devices for semiconductor spintronics

    NASA Astrophysics Data System (ADS)

    Jiang, Xin

    This dissertation summarizes the work on spin-dependent electron transport and spin injection in tunnel based spintronic devices. In particular, it focuses on a novel three terminal hot electron device combining ferromagnetic metals and semiconductors---the magnetic tunnel transistor (MTT). The MTT has extremely high magnetic field sensitivity and is a useful tool to explore spin-dependent electron transport in metals, semiconductors, and at their interfaces over a wide energy range. In Chap. 1, the basic concept and fabrication of the MTT are discussed. Two types of MTTs, with ferromagnetic single and spin-valve base layers, respectively, are introduced and compared. In the following chapters, the transport properties of the MTT are discussed in detail, including the spin-dependent hot electron attenuation lengths in CoFe and NiFe thin films on GaAs (Chap. 2), the bias voltage dependence of the magneto-current (Chap. 3), the giant magneto-current effect in MTTs with a spin-valve base (Chap. 4), and the influence of non-magnetic seed layers on magneto-electronic properties of MTTs with a Si collector (Chap. 5). Chap. 6 concentrates on electrical injection of spin-polarized electrons into semiconductors, which is an essential ingredient in semiconductor spintronics. Two types of spin injectors are discussed: an MTT injector and a CoFe/MgO tunnel injector. The spin polarization of the injected electron current is detected optically by measuring the circular polarization of electroluminescence from a quantum well light emitting diode. Using an MTT injector a spin polarization of ˜10% is found for injection electron energy of ˜2 eV at 1.4K. This moderate spin polarization is most likely limited by significant electron spin relaxation at high energy. Much higher spin injection efficiency is obtained by using a CoFe/MgO tunnel injector with spin polarization values of ˜50% at 100K. The temperature and bias dependence of the electroluminescence polarization provides

  7. A mechanism for dynamic lateral polarization in CdZnTe under high flux x-ray irradiation

    NASA Astrophysics Data System (ADS)

    Bale, Derek S.; Soldner, Stephen A.; Szeles, Csaba

    2008-02-01

    It has been observed that pixillated CdZnTe detectors fabricated from crystals with low hole transport properties (μhτh<10-5cm2V-1) experience a dynamic lateral polarization when exposed to a high flux of x-rays. In this effect, counts are transferred from pixels near the edge of the irradiated region to pixels in the interior. In this letter, we propose a mechanism capable of explaining the observed dynamical effect. The mechanism is based on a transverse electric field that is generated due to space charge that builds within the material. This transverse field, in turn, is responsible for the altered carrier trajectories toward the center of the irradiated region.

  8. Perceiving the vertical distances of surfaces by means of a hand-held probe.

    PubMed

    Chan, T C; Turvey, M T

    1991-05-01

    Nine experiments were conducted on the haptic capacity of people to perceive the distances of horizontal surfaces solely on the basis of mechanical stimulation resulting from contacting the surfaces with a vertically held rod. Participants touched target surfaces with rods inside a wooden cabinet and reported the perceived surface location with an indicator outside the cabinet. The target surface, rod, and the participant's hand were occluded, and the sound produced in exploration was muffled. Properties of the probe (length, mass, moment of inertia, center of mass, and shape) were manipulated, along with surface distance and the method and angle of probing. Results suggest that for the most common method of probing, namely, tapping, perceived vertical distance is specific to a particular relation among the rotational inertia of the probe, the distance of the point of contact with the surface from the probe's center of percussion, and the inclination at contact of the probe to the surface. They also suggest that the probe length and the distance probed are independently perceivable. The results were discussed in terms of information specificity versus percept-percept coupling and parallels between selective attention in haptic and visual perception.

  9. Antimicrobial efficacy of soap and water hand washing versus an alcohol-based hand cleanser.

    PubMed

    Holton, Ronald H; Huber, Michaell A; Terezhalmy, Geza T

    2009-12-01

    The emergence of alcohol-based hand cleansers may represent an alternative to soap and water in the clinical dental setting. In this study, the antimicrobial efficacy of traditional hand washing vs. a unique alcohol-based hand cleanser with persistence was evaluated. Two experienced dentists participated over a 10-day period. On days 1-5, each clinician used an antibacterial liquid soap (Dial, Dial Corporation, Scottsdale, AZ). Days 6-10, an alcohol-based hand cleanser (Triseptin Water Optional, Healthpoint Surgical, Fort Worth, TX) was used. Sampling was by modified glove juice technique. The results indicate that the alcohol-based hand cleanser dramatically outperforms the traditional hand washing agent in the general dental setting.

  10. Into the Wild: Neuroergonomic Differentiation of Hand-Held and Augmented Reality Wearable Displays during Outdoor Navigation with Functional Near Infrared Spectroscopy.

    PubMed

    McKendrick, Ryan; Parasuraman, Raja; Murtza, Rabia; Formwalt, Alice; Baccus, Wendy; Paczynski, Martin; Ayaz, Hasan

    2016-01-01

    Highly mobile computing devices promise to improve quality of life, productivity, and performance. Increased situation awareness and reduced mental workload are two potential means by which this can be accomplished. However, it is difficult to measure these concepts in the "wild". We employed ultra-portable battery operated and wireless functional near infrared spectroscopy (fNIRS) to non-invasively measure hemodynamic changes in the brain's Prefrontal cortex (PFC). Measurements were taken during navigation of a college campus with either a hand-held display, or an Augmented reality wearable display (ARWD). Hemodynamic measures were also paired with secondary tasks of visual perception and auditory working memory to provide behavioral assessment of situation awareness and mental workload. Navigating with an augmented reality wearable display produced the least workload during the auditory working memory task, and a trend for improved situation awareness in our measures of prefrontal hemodynamics. The hemodynamics associated with errors were also different between the two devices. Errors with an augmented reality wearable display were associated with increased prefrontal activity and the opposite was observed for the hand-held display. This suggests that the cognitive mechanisms underlying errors between the two devices differ. These findings show fNIRS is a valuable tool for assessing new technology in ecologically valid settings and that ARWDs offer benefits with regards to mental workload while navigating, and potentially superior situation awareness with improved display design.

  11. Hand-Based Biometric Analysis

    NASA Technical Reports Server (NTRS)

    Bebis, George

    2013-01-01

    Hand-based biometric analysis systems and techniques provide robust hand-based identification and verification. An image of a hand is obtained, which is then segmented into a palm region and separate finger regions. Acquisition of the image is performed without requiring particular orientation or placement restrictions. Segmentation is performed without the use of reference points on the images. Each segment is analyzed by calculating a set of Zernike moment descriptors for the segment. The feature parameters thus obtained are then fused and compared to stored sets of descriptors in enrollment templates to arrive at an identity decision. By using Zernike moments, and through additional manipulation, the biometric analysis is invariant to rotation, scale, or translation or an input image. Additionally, the analysis uses re-use of commonly seen terms in Zernike calculations to achieve additional efficiencies over traditional Zernike moment calculation.

  12. SHIELDING AND DETECTOR RESPONSE CALCULATIONS PERTAINING TO CATEGORY 1 QUANTITIES OF PLUTONIUM AND HAND-HELD PLASTIC SCINTILLATORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couture, A.

    2013-06-07

    Nuclear facilities sometimes use hand-held plastic scintillator detectors to detect attempts to divert special nuclear material in situations where portal monitors are impractical. MCNP calculations have been performed to determine the neutron and gamma radiation field arising from a Category I quantity of weapons-grade plutonium in various shielding configurations. The shields considered were composed of combinations of lead and high-density polyethylene such that the mass of the plutonium plus shield was 22.7 kilograms. Monte-Carlo techniques were also used to determine the detector response to each of the shielding configurations. The detector response calculations were verified using field measurements of high-,more » medium-, and low- energy gamma-ray sources as well as a Cf-252 neutron source.« less

  13. High-mobility pyrene-based semiconductor for organic thin-film transistors.

    PubMed

    Cho, Hyunduck; Lee, Sunyoung; Cho, Nam Sung; Jabbour, Ghassan E; Kwak, Jeonghun; Hwang, Do-Hoon; Lee, Changhee

    2013-05-01

    Numerous conjugated oligoacenes and polythiophenes are being heavily studied in the search for high-mobility organic semiconductors. Although many researchers have designed fused aromatic compounds as organic semiconductors for organic thin-film transistors (OTFTs), pyrene-based organic semiconductors with high mobilities and on-off current ratios have not yet been reported. Here, we introduce a new pyrene-based p-type organic semiconductor showing liquid crystal behavior. The thin film characteristics of this material are investigated by varying the substrate temperature during the deposition and the gate dielectric condition using the surface modification with a self-assembled monolayer, and systematically studied in correlation with the performances of transistor devices with this compound. OTFT fabricated under the optimum deposition conditions of this compound, namely, 1,6-bis(5'-octyl-2,2'-bithiophen-5-yl)pyrene (BOBTP) shows a high-performance transistor behavior with a field-effect mobility of 2.1 cm(2) V(-1) s(-1) and an on-off current ratio of 7.6 × 10(6) and enhanced long-term stability compared to the pentacene thin-film transistor.

  14. Geometrical Characteristics of Cd-Rich Inclusion Defects in CdZnTe Materials

    NASA Astrophysics Data System (ADS)

    Xu, Chao; Sheng, Fengfeng; Yang, Jianrong

    2017-08-01

    The geometrical characteristics of Cd-rich inclusion defects in CdZnTe crystals have been investigated by infrared transmission (IRT) microscopy and chemical etching methods, revealing that they are composed of a Cd-rich inclusion core zone with high dislocation density and defect extension belts. Based on the experimental results, the orientation and shape of these belts were determined, showing that their extension directions in three-dimensional (3-D) space are along <211> crystal orientation. To explain the observed IRT images of Cd-rich inclusion defects, a 3-D model with plate-shaped structure for dislocation extension belts is proposed. Greyscale IRT images of dislocation extension belts thus depend on their absorption layer thickness. Assuming that defects can be discerned by IRT microscopy only when their absorption layer thickness is greater than twice that of the plate-shaped dislocation extension belts, this 3-D defect model can rationalize the IRT images of Cd-rich inclusion defects.

  15. Recent Advances in Inorganic Nanoparticle-Based NIR Luminescence Imaging: Semiconductor Nanoparticles and Lanthanide Nanoparticles.

    PubMed

    Kim, Dokyoon; Lee, Nohyun; Park, Yong Il; Hyeon, Taeghwan

    2017-01-18

    Several types of nanoparticle-based imaging probes have been developed to replace conventional luminescent probes. For luminescence imaging, near-infrared (NIR) probes are useful in that they allow deep tissue penetration and high spatial resolution as a result of reduced light absorption/scattering and negligible autofluorescence in biological media. They rely on either an anti-Stokes or a Stokes shift process to generate luminescence. For example, transition metal-doped semiconductor nanoparticles and lanthanide-doped inorganic nanoparticles have been demonstrated as anti-Stokes shift-based agents that absorb NIR light through two- or three-photon absorption process and upconversion process, respectively. On the other hand, quantum dots (QDs) and lanthanide-doped nanoparticles that emit in NIR-II range (∼1000 to ∼1350 nm) were suggested as promising Stokes shift-based imaging agents. In this topical review, we summarize and discuss the recent progress in the development of inorganic nanoparticle-based luminescence imaging probes working in NIR range.

  16. Design and Measurement of a Low-Noise 64-Channels Front-End Readout ASIC for CdZnTe Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, Bo; Wei, Tingcun; Gao, Wu

    Cadmium zinc telluride (CdZnTe) detectors, as one of the principal detectors for the next-generation X-ray and γ-ray imagers, have high energy resolution and supporting electrode patterning in the radiation environment at room-temperature. In the present, a number of internationally renowned research institutions and universities are actively using these detector systems to carry out researches of energy spectrum analysis, medical imaging, materials characterization, high-energy physics, nuclear plant monitoring, and astrophysics. As the most important part of the readout system for the CdZnTe detector, the front-end readout application specific integrated circuit (ASIC) would have an important impact on the performances of themore » whole detector system. In order to ensure the small signal to noise ratio (SNR) and sufficient range of the output signal, it is necessary to design a front-end readout ASIC with very low noise and very high dynamic range. In addition, radiation hardness should be considered when the detectors are utilized in the space applications and high energy physics experiments. In this paper, we present measurements and performances of a novel multi-channel radiation-hardness low-noise front-end readout ASIC for CdZnTe detectors. The readout circuits in each channel consist of charge sensitive amplifier, leakage current compensation circuit (LCC), CR-RC shaper, S-K filter, inverse proportional amplifier, peak detect and hold circuit (PDH), discriminator and trigger logic, time sequence control circuit and driving buffer. All of 64 readout channels' outputs enter corresponding inputs of a 64 channel multiplexer. The output of the mux goes directly out of the chip via the output buffer. The 64-channel readout ASIC is implemented using the TSMC 0.35 μm mixed-signal CMOS technology. The die size of the prototype chip is 2.7 mm x 8 mm. At room temperature, the equivalent noise level of a typical channel reaches 66 e{sup -} (rms) at zero farad for

  17. Hand-Based Biometric Analysis

    NASA Technical Reports Server (NTRS)

    Bebis, George (Inventor); Amayeh, Gholamreza (Inventor)

    2015-01-01

    Hand-based biometric analysis systems and techniques are described which provide robust hand-based identification and verification. An image of a hand is obtained, which is then segmented into a palm region and separate finger regions. Acquisition of the image is performed without requiring particular orientation or placement restrictions. Segmentation is performed without the use of reference points on the images. Each segment is analyzed by calculating a set of Zernike moment descriptors for the segment. The feature parameters thus obtained are then fused and compared to stored sets of descriptors in enrollment templates to arrive at an identity decision. By using Zernike moments, and through additional manipulation, the biometric analysis is invariant to rotation, scale, or translation or an in put image. Additionally, the analysis utilizes re-use of commonly-seen terms in Zernike calculations to achieve additional efficiencies over traditional Zernike moment calculation.

  18. EDITORIAL: The 24th Nordic Semiconductor Meeting The 24th Nordic Semiconductor Meeting

    NASA Astrophysics Data System (ADS)

    Páll Gunnlaugsson, Haraldur; Nylandsted Larsen, Arne; Uhrenfeldt, Christian

    2012-03-01

    A Nordic Semiconductor Meeting is held every other year with the venue rotating amongst the Nordic countries of Denmark, Finland, Iceland, Norway and Sweden. The focus of these meetings remains 'original research and science being carried out on semiconductor materials, devices and systems'. Reports on industrial activity have usually featured. The topics have ranged from fundamental research on point defects in a semiconductor to system architecture of semiconductor electronic devices. Proceedings from these events are regularly published as a Topical Issue of Physica Scripta. All of the papers in this Topical Issue have undergone critical peer review and we wish to thank the reviewers and the authors for their cooperation, which has been instrumental in meeting the high scientific standards and quality of the series. This 24th meeting of the Nordic Semiconductor community, NSM 2011, was held at Fuglsøcentret, close to Aarhus, Denmark, 19-22 June 2011. Support was provided by the Carlsberg Foundation, Danfysik and the semiconductor group at Aarhus University. Over 30 participants presented a broad range of topics covering semiconductor materials and devices as well as related material science interests. The conference provided a forum for Nordic and international scientists to present and discuss new results and ideas concerning the fundamentals and applications of semiconductor materials. The aim of the meeting was to advance the progress of Nordic science and thus aid in future worldwide technological advances concerning technology, education, energy and the environment. The 25th Nordic Semiconductor Meeting will be organized in June 2013 in Finland, chaired by Dr Filip Tuomisto, Aalto University. A Nordic Summer School on Semiconductor Science will be organized in connection with the conference (just before), chaired by Dr Jonatan Slotte, Aalto University. Information on these events can be found at physics.aalto.fi/nsm2013. List of participants Søren Vejling

  19. Hands beat machines for collecting native seed

    Treesearch

    Mary Ann Davies; Scott Jensen

    2008-01-01

    A hedge trimmer (Garden Groom Pro) and a hand-held vacuum (Euro-Pro Shark) were tested to determine whether they might be more effective for collecting the seed of native plants than common hand methods. The common hand methods worked best.

  20. Hands-on Science. Exploring Magnification.

    ERIC Educational Resources Information Center

    Kepler, Lynne

    1993-01-01

    Presents hands-on science activities using inexpensive, hand-held microscopes and slides made from simple, readily available materials. The article describes how to introduce students to microscopes and presents directions for using the microscopes and making slides. A student page investigates fingerprints with microscopes. (SM)

  1. Semiconductor-based, large-area, flexible, electronic devices

    DOEpatents

    Goyal, Amit [Knoxville, TN

    2011-03-15

    Novel articles and methods to fabricate the same resulting in flexible, large-area, triaxially textured, single-crystal or single-crystal-like, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  2. Hand-Held Femtogram Detection of Hazardous Picric Acid with Hydrophobic Ag Nanopillar SERS Substrates and Mechanism of Elasto-Capillarity.

    PubMed

    Hakonen, Aron; Wang, FengChao; Andersson, Per Ola; Wingfors, Håkan; Rindzevicius, Tomas; Schmidt, Michael Stenbæk; Soma, Venugopal Rao; Xu, Shicai; Li, YingQi; Boisen, Anja; Wu, HengAn

    2017-02-24

    Picric acid (PA) is a severe environmental and security risk due to its unstable, toxic, and explosive properties. It is also challenging to detect in trace amounts and in situ because of its highly acidic and anionic character. Here, we assess sensing of PA under nonlaboratory conditions using surface-enhanced Raman scattering (SERS) silver nanopillar substrates and hand-held Raman spectroscopy equipment. The advancing elasto-capillarity effects are explained by molecular dynamics simulations. We obtain a SERS PA detection limit on the order of 20 ppt, corresponding attomole amounts, which together with the simple analysis methodology demonstrates that the presented approach is highly competitive for ultrasensitive analysis in the field.

  3. Properties of nanocones formed on a surface of semiconductors by laser radiation: quantum confinement effect of electrons, phonons, and excitons

    PubMed Central

    2011-01-01

    On the basis of the analysis of experimental results, a two-stage mechanism of nanocones formation on the irradiated surface of semiconductors by Nd:YAG laser is proposed for elementary semiconductors and solid solutions, such as Si, Ge, SiGe, and CdZnTe. Properties observed are explained in the frame of quantum confinement effect. The first stage of the mechanism is characterized by the formation of a thin strained top layer, due to redistribution of point defects in temperature-gradient field induced by laser radiation. The second stage is characterized by mechanical plastic deformation of the stained top layer leading to arising of nanocones, due to selective laser absorption of the top layer. The nanocones formed on the irradiated surface of semiconductors by Nd:YAG laser possessing the properties of 1D graded bandgap have been found for Si, Ge, and SiGe as well, however QD structure in CdTe was observed. The model is confirmed by "blue shift" of bands in photoluminescence spectrum, "red shift" of longitudinal optical line in Raman back scattering spectrum of Ge crystal, appearance of Ge phase in SiGe solid solution after irradiation by the laser at intensity 20 MW/cm2, and non-monotonous dependence of Si crystal micro-hardness as function of the laser intensity. PMID:22060172

  4. Characterization of detector-systems based on CeBr3, LaBr3, SrI2 and CdZnTe for the use as dosemeters

    NASA Astrophysics Data System (ADS)

    Kessler, P.; Behnke, B.; Dombrowski, H.; Neumaier, S.

    2017-11-01

    For the upgrade of existing dosimetric early warning networks in Europe spectrometric detectors based on CeBr3, LaBr3, SrI2, and CdZnTe are investigated as possible substitutes for the current detector generation which is mainly based on gas filled detectors. The additional information on the nuclide vector which can be derived from the spectra of γ-radiation is highly useful for an appropriate response in case of a nuclear or radiological accident. The measured γ-spectra will be converted into ambient dose equivalent H* (10) using a method where the spectrum is subdivided into multiple energy bands. For each band the conversion coefficients from count rate to dose rate is determined. The derivation of these conversion coefficients is explained in this work. Both experimental and simulative approaches are investigated using quasi-mono-energetic γ-sources and synthetic spectra from Monte-Carlo simulations to determine the conversion coefficients for each detector type. Finally, precision of the obtained characterization is checked by irradiation of the detectors in different well-known photon fields with traceable dose rates.

  5. Into the Wild: Neuroergonomic Differentiation of Hand-Held and Augmented Reality Wearable Displays during Outdoor Navigation with Functional Near Infrared Spectroscopy

    PubMed Central

    McKendrick, Ryan; Parasuraman, Raja; Murtza, Rabia; Formwalt, Alice; Baccus, Wendy; Paczynski, Martin; Ayaz, Hasan

    2016-01-01

    Highly mobile computing devices promise to improve quality of life, productivity, and performance. Increased situation awareness and reduced mental workload are two potential means by which this can be accomplished. However, it is difficult to measure these concepts in the “wild”. We employed ultra-portable battery operated and wireless functional near infrared spectroscopy (fNIRS) to non-invasively measure hemodynamic changes in the brain’s Prefrontal cortex (PFC). Measurements were taken during navigation of a college campus with either a hand-held display, or an Augmented reality wearable display (ARWD). Hemodynamic measures were also paired with secondary tasks of visual perception and auditory working memory to provide behavioral assessment of situation awareness and mental workload. Navigating with an augmented reality wearable display produced the least workload during the auditory working memory task, and a trend for improved situation awareness in our measures of prefrontal hemodynamics. The hemodynamics associated with errors were also different between the two devices. Errors with an augmented reality wearable display were associated with increased prefrontal activity and the opposite was observed for the hand-held display. This suggests that the cognitive mechanisms underlying errors between the two devices differ. These findings show fNIRS is a valuable tool for assessing new technology in ecologically valid settings and that ARWDs offer benefits with regards to mental workload while navigating, and potentially superior situation awareness with improved display design. PMID:27242480

  6. Organic semiconductors based on [1]benzothieno[3,2-b][1]benzothiophene substructure.

    PubMed

    Takimiya, Kazuo; Osaka, Itaru; Mori, Takamichi; Nakano, Masahiro

    2014-05-20

    The design, synthesis, and characterization of organic semiconductors applicable to organic electronic devices, such as organic field-effect transistors (OFETs) and organic photovoltaics (OPVs), had been one of the most important topics in materials chemistry in the past decade. Among the vast number of materials developed, much expectation had been placed on thienoacenes, which are rigid and planar structures formed by fusing thiophenes and other aromatic rings, as a promising candidate for organic semiconductors for high-performance OFETs. However, the thienoacenes examined as an active material in OFETs in the 1990s afforded OFETs with only moderate hole mobilities (approximately 0.1 cm(2) V(-1) s(-1)). We speculated that this was due to the sulfur atoms in the thienoacenes, which hardly contributed to the intermolecular orbital overlap in the solid state. On the other hand, we have focused on other types of thienoacenes, such as [1]benzothieno[3,2-b][1]benzothiophene (BTBT), which seem to have appropriate HOMO spatial distribution for effective intermolecular orbital overlap. In fact, BTBT derivatives and their related materials, including dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT), have turned out to be superior organic semiconductors, affording OFETs with very high mobilities. To illustrate some examples, we have developed 2,7-diphenyl BTBT (DPh-BTBT) that yields vapor-deposited OFETs having mobilities of up to 2.0 cm(2) V(-1) s(-1) under ambient conditions, highly soluble dialkyl-BTBTs (Cn-BTBTs) that afford solution-processed OFETs with mobilities higher than 1.0 cm(2) V(-1) s(-1), and DNTT and its derivatives that yield OFETs with even higher mobilities (>3.0 cm(2) V(-1) s(-1)) and stability under ambient conditions. Such high performances are rationalized by their solid-state electronic structures that are calculated based on their packing structures: the large intermolecular orbital overlap and the isotropic two-dimensional electronic

  7. 21 CFR 872.4565 - Dental hand instrument.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Dental hand instrument. 872.4565 Section 872.4565...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4565 Dental hand instrument. (a) Identification. A dental hand instrument is a hand-held device intended to perform various tasks in general dentistry and...

  8. 21 CFR 872.4565 - Dental hand instrument.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Dental hand instrument. 872.4565 Section 872.4565...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4565 Dental hand instrument. (a) Identification. A dental hand instrument is a hand-held device intended to perform various tasks in general dentistry and...

  9. 21 CFR 872.4565 - Dental hand instrument.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Dental hand instrument. 872.4565 Section 872.4565...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4565 Dental hand instrument. (a) Identification. A dental hand instrument is a hand-held device intended to perform various tasks in general dentistry and...

  10. 21 CFR 872.4565 - Dental hand instrument.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Dental hand instrument. 872.4565 Section 872.4565...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4565 Dental hand instrument. (a) Identification. A dental hand instrument is a hand-held device intended to perform various tasks in general dentistry and...

  11. 21 CFR 872.4565 - Dental hand instrument.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Dental hand instrument. 872.4565 Section 872.4565...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4565 Dental hand instrument. (a) Identification. A dental hand instrument is a hand-held device intended to perform various tasks in general dentistry and...

  12. Thresholds of whole-blood β-hydroxybutyrate and glucose concentrations measured with an electronic hand-held device to identify ovine hyperketonemia.

    PubMed

    Pichler, M; Damberger, A; Schwendenwein, I; Gasteiner, J; Drillich, M; Iwersen, M

    2014-03-01

    Metabolic disorders, especially hyperketonemia, are very common in dairy sheep. The whole-blood concentrations of β-hydroxybutyrate (BHBA) and glucose can be determined by commercially available electronic hand-held devices, which are used in human medicine and for the detection of ketosis in dairy cows. The aim of this study was to evaluate the suitability of the hand-held device Precision Xceed (PX; Abbott Diabetes Care Inc., Abbott Park, IL) to detect hyperketonemia in ewes. An additional objective of this study was to evaluate the agreement between samples obtained by minimal invasive venipuncture of an ear vein and measurements of whole-blood samples from the jugular vein (vena jugularis, v. jug.). Blood samples taken from the v. jug. were collected from 358 ewes on 4 different farms. These samples and a blood drop obtained from an ear vein were analyzed simultaneously on farm with the PX. For method comparison, the samples obtained from the v. jug. were also analyzed by standard methods, which served as the gold standard at the Central Laboratory of the University of Veterinary Medicine Vienna, Austria. The correlation coefficients between the serum BHBA concentration and the concentrations measured with the hand-held meter in the whole blood from an ear vein and the v. jug. were 0.94 and 0.96, respectively. The correlation coefficients of plasma and whole-blood glucose concentration were 0.68 for the v. jug. and 0.47 for the ear vein. The mean glucose concentration was significantly lower in animals classified as hyperketonemic (BHBA ≥ 1.6 mmol/L) compared with healthy ewes. Whole-blood concentrations of BHBA and glucose measured with the PX from v. jug. showed a constant negative bias of 0.15 mmol/L and 8.4 mg/dL, respectively. Hence, a receiver operating characteristic analysis was performed to determine thresholds for the PX to detect hyperketonemia in ewes. This resulted in thresholds for moderate ketosis of BHBA concentrations of 0.7 mmol/L in blood

  13. Progress in ion torrent semiconductor chip based sequencing.

    PubMed

    Merriman, Barry; Rothberg, Jonathan M

    2012-12-01

    In order for next-generation sequencing to become widely used as a diagnostic in the healthcare industry, sequencing instrumentation will need to be mass produced with a high degree of quality and economy. One way to achieve this is to recast DNA sequencing in a format that fully leverages the manufacturing base created for computer chips, complementary metal-oxide semiconductor chip fabrication, which is the current pinnacle of large scale, high quality, low-cost manufacturing of high technology. To achieve this, ideally the entire sensory apparatus of the sequencer would be embodied in a standard semiconductor chip, manufactured in the same fab facilities used for logic and memory chips. Recently, such a sequencing chip, and the associated sequencing platform, has been developed and commercialized by Ion Torrent, a division of Life Technologies, Inc. Here we provide an overview of this semiconductor chip based sequencing technology, and summarize the progress made since its commercial introduction. We described in detail the progress in chip scaling, sequencing throughput, read length, and accuracy. We also summarize the enhancements in the associated platform, including sample preparation, data processing, and engagement of the broader development community through open source and crowdsourcing initiatives. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. iHand: an interactive bare-hand-based augmented reality interface on commercial mobile phones

    NASA Astrophysics Data System (ADS)

    Choi, Junyeong; Park, Jungsik; Park, Hanhoon; Park, Jong-Il

    2013-02-01

    The performance of mobile phones has rapidly improved, and they are emerging as a powerful platform. In many vision-based applications, human hands play a key role in natural interaction. However, relatively little attention has been paid to the interaction between human hands and the mobile phone. Thus, we propose a vision- and hand gesture-based interface in which the user holds a mobile phone in one hand but sees the other hand's palm through a built-in camera. The virtual contents are faithfully rendered on the user's palm through palm pose estimation, and reaction with hand and finger movements is achieved that is recognized by hand shape recognition. Since the proposed interface is based on hand gestures familiar to humans and does not require any additional sensors or markers, the user can freely interact with virtual contents anytime and anywhere without any training. We demonstrate that the proposed interface works at over 15 fps on a commercial mobile phone with a 1.2-GHz dual core processor and 1 GB RAM.

  15. Two-Dimensional Semiconductor Optoelectronics Based on van der Waals Heterostructures.

    PubMed

    Lee, Jae Yoon; Shin, Jun-Hwan; Lee, Gwan-Hyoung; Lee, Chul-Ho

    2016-10-27

    Two-dimensional (2D) semiconductors such as transition metal dichalcogenides (TMDCs) and black phosphorous have drawn tremendous attention as an emerging optical material due to their unique and remarkable optical properties. In addition, the ability to create the atomically-controlled van der Waals (vdW) heterostructures enables realizing novel optoelectronic devices that are distinct from conventional bulk counterparts. In this short review, we first present the atomic and electronic structures of 2D semiconducting TMDCs and their exceptional optical properties, and further discuss the fabrication and distinctive features of vdW heterostructures assembled from different kinds of 2D materials with various physical properties. We then focus on reviewing the recent progress on the fabrication of 2D semiconductor optoelectronic devices based on vdW heterostructures including photodetectors, solar cells, and light-emitting devices. Finally, we highlight the perspectives and challenges of optoelectronics based on 2D semiconductor heterostructures.

  16. Two-Dimensional Semiconductor Optoelectronics Based on van der Waals Heterostructures

    PubMed Central

    Lee, Jae Yoon; Shin, Jun-Hwan; Lee, Gwan-Hyoung; Lee, Chul-Ho

    2016-01-01

    Two-dimensional (2D) semiconductors such as transition metal dichalcogenides (TMDCs) and black phosphorous have drawn tremendous attention as an emerging optical material due to their unique and remarkable optical properties. In addition, the ability to create the atomically-controlled van der Waals (vdW) heterostructures enables realizing novel optoelectronic devices that are distinct from conventional bulk counterparts. In this short review, we first present the atomic and electronic structures of 2D semiconducting TMDCs and their exceptional optical properties, and further discuss the fabrication and distinctive features of vdW heterostructures assembled from different kinds of 2D materials with various physical properties. We then focus on reviewing the recent progress on the fabrication of 2D semiconductor optoelectronic devices based on vdW heterostructures including photodetectors, solar cells, and light-emitting devices. Finally, we highlight the perspectives and challenges of optoelectronics based on 2D semiconductor heterostructures. PMID:28335321

  17. Inkjet-Printed Organic Transistors Based on Organic Semiconductor/Insulating Polymer Blends.

    PubMed

    Kwon, Yoon-Jung; Park, Yeong Don; Lee, Wi Hyoung

    2016-08-02

    Recent advances in inkjet-printed organic field-effect transistors (OFETs) based on organic semiconductor/insulating polymer blends are reviewed in this article. Organic semiconductor/insulating polymer blends are attractive ink candidates for enhancing the jetting properties, inducing uniform film morphologies, and/or controlling crystallization behaviors of organic semiconductors. Representative studies using soluble acene/insulating polymer blends as an inkjet-printed active layer in OFETs are introduced with special attention paid to the phase separation characteristics of such blended films. In addition, inkjet-printed semiconducting/insulating polymer blends for fabricating high performance printed OFETs are reviewed.

  18. Method of plasma etching Ga-based compound semiconductors

    DOEpatents

    Qiu, Weibin; Goddard, Lynford L.

    2012-12-25

    A method of plasma etching Ga-based compound semiconductors includes providing a process chamber and a source electrode adjacent to the process chamber. The process chamber contains a sample comprising a Ga-based compound semiconductor. The sample is in contact with a platen which is electrically connected to a first power supply, and the source electrode is electrically connected to a second power supply. The method includes flowing SiCl.sub.4 gas into the chamber, flowing Ar gas into the chamber, and flowing H.sub.2 gas into the chamber. RF power is supplied independently to the source electrode and the platen. A plasma is generated based on the gases in the process chamber, and regions of a surface of the sample adjacent to one or more masked portions of the surface are etched to create a substantially smooth etched surface including features having substantially vertical walls beneath the masked portions.

  19. Limitations of Condensed Teaching Strategies to Develop Hand-Held Cardiac Ultrasonography Skills in Internal Medicine Residents.

    PubMed

    Wilkinson, Jeffrey S; Barake, Walid; Smith, Chris; Thakrar, Amar; Johri, Amer M

    2016-08-01

    Advances in ultrasonographic technology have allowed for hand-held cardiac ultrasonography (HHCU) units that fit into a physician's laboratory coat. Recently, studies to educate internal medicine residents have shown promise. The optimal duration and methodology for teaching HHCU skills has not been established. Over a 1-year period, internal medicine residents were recruited during their cardiology ward rotation into a single-centre nonblinded randomized trial. The 2 condensed teaching strategies were (1) a conventional ward-based program and (2) a technology-driven simulation-based strategy. Outcomes were evaluated by (1) an objective structured clinical examination (OSCE) to evaluate interpretation ability (assessing both type I and type II error rates) and (2) demonstration of HHCU skills graded by 2 level III echocardiographers. Twenty-four internal medicine residents were randomized. After teaching, the conventional teaching group had a significant absolute increase in the ability to make a singular correct diagnosis (20%; P < 0.001). In the technology arm, making a singular correct diagnosis increased 24% from baseline (P = 0.001). Interpretation skill was not significantly different between groups. The false-positive rate increased by an absolute 14% and 17% in the conventional and technology groups, respectively (P = 0.079 and P = 0.008). Our findings suggest that HHCU interpretation skills improve after either a conventional ward-based or a technology-driven approach. However, our study emphasizes the important limitations of both teaching programs, because we detected a trend toward an increase in the false-positive rate after both approaches. This suggests that a short duration of training may not be sufficient for HHCU to be performed in a safe manner. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  20. Ability of Hand Hygiene Interventions Using Alcohol-Based Hand Sanitizers and Soap To Reduce Microbial Load on Farmworker Hands Soiled during Harvest.

    PubMed

    de Aceituno, Anna Fabiszewski; Bartz, Faith E; Hodge, Domonique Watson; Shumaker, David J; Grubb, James E; Arbogast, James W; Dávila-Aviña, Jorgé; Venegas, Fabiola; Heredia, Norma; García, Santos; Leon, Juan S

    2015-11-01

    Effective hand hygiene is essential to prevent the spread of pathogens on produce farms and reduce foodborne illness. The U.S. Food and Drug Administration Food Safety Modernization Act Proposed Rule for Produce Safety recommends the use of soap and running water for hand hygiene of produce handlers. The use of alcohol-based hand sanitizer (ABHS) may be an effective alternative hygiene intervention where access to water is limited. There are no published data on the efficacy of either soap or ABHS-based interventions to reduce microbial contamination in agricultural settings. The goal of this study was to assess the ability of two soap-based (traditional or pumice) and two ABHS-based (label-use or two-step) hygiene interventions to reduce microbes (coliforms, Escherichia coli, and Enterococcus spp.) and soil (absorbance of hand rinsate at 600 nm [A600]) on farmworker hands after harvesting produce, compared with the results for a no-hand-hygiene control. With no hand hygiene, farmworker hands were soiled (median A600, 0.48) and had high concentrations of coliforms (geometric mean, 3.4 log CFU per hand) and Enterococcus spp. (geometric mean, 5.3 log CFU per hand) after 1 to 2 h of harvesting tomatoes. Differences in microbial loads in comparison to the loads in the control group varied by indicator organism and hygiene intervention (0 to 2.3 log CFU per hand). All interventions yielded lower concentrations of Enterococcus spp. and E. coli (P < 0.05), but not of coliforms, than were found in the control group. The two-step ABHS intervention led to significantly lower concentrations of coliforms and Enterococcus spp. than the pumice soap and label-use ABHS interventions (P < 0.05) and was the only intervention to yield significantly fewer samples with E. coli than were found in the control group (P < 0.05). All interventions removed soil from hands (P < 0.05), soap-based interventions more so than ABHS-based interventions (P < 0.05). ABHS-based interventions were

  1. Hand-held triangulation laser profilometer with audio output for blind people Profilométre laser à triangulation tenu en main avec sortie sonare pour non-voyants

    NASA Astrophysics Data System (ADS)

    Farcy, R.; Damaschini, R.

    1998-06-01

    We describe a device currently under industrial development which will give to the blind a means of three-dimensional space perception. It consists of a 350 g hand-held triangulating laser telemeter including electronic parts and batteries, with auditory feedback either inside the apparatus or close to the ear. The microprocessor unit converts in real time the distance measured by the telemeter into a musical note. Scanning the space with an adequate movement of the hand produces musical lines corresponding to the profiles of the environment. We discuss the optical configuration of the system relative to our first year of clinical experimentation.

  2. Hand-Held Keyboard

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Data Egg, a prototype chord key-based data entry device, can be used autonomously or as an auxiliary keyboard with a personal computer. Data is entered by pressing combinations of seven buttons positioned where the fingers naturally fall when clasping the device. An experienced user can enter text at 30 to 35 words per minute. No transcription is required. The input is downloaded into a computer and printed. The Data Egg can be used by an astronaut in space, a journalist, a bedridden person, etc. It was developed by a Jet Propulsion Laboratory engineer. Product is not currently manufactured.

  3. Characterization of CdTe and (CdZn)Te detectors with different metal contacts

    NASA Astrophysics Data System (ADS)

    Pekárek, J.; Belas, E.; Grill, R.; Uxa, Å.; James, R. B.

    2013-09-01

    In the present work we studied an influence of different types of surface etching and surface passivation of high resistivity CdZnTe-based semiconductor detector material. The aim was to find the optimal conditions to improve the properties of metal-semiconductor contact. The main effort was to reduce the leakage current and thus get better X-ray and gamma-ray spectrum, i.e. to create a detector operating at room temperature based on this semiconductor material with sufficient energy resolution and the maximum charge collection efficiency. Individual surface treatments were characterized by I-V characteristics, spectral analysis and by determination of the profile of the internal electric field.

  4. Uniform Doping in Quantum-Dots-Based Dilute Magnetic Semiconductor.

    PubMed

    Saha, Avijit; Shetty, Amitha; Pavan, A R; Chattopadhyay, Soma; Shibata, Tomohiro; Viswanatha, Ranjani

    2016-07-07

    Effective manipulation of magnetic spin within a semiconductor leading to a search for ferromagnets with semiconducting properties has evolved into an important field of dilute magnetic semiconductors (DMS). Although a lot of research is focused on understanding the still controversial origin of magnetism, efforts are also underway to develop new materials with higher magnetic temperatures for spintronics applications. However, so far, efforts toward quantum-dots(QDs)-based DMS materials are plagued with problems of phase separation, leading to nonuniform distribution of dopant ions. In this work, we have developed a strategy to synthesize highly crystalline, single-domain DMS system starting from a small magnetic core and allowing it to diffuse uniformly inside a thick CdS semiconductor matrix and achieve DMS QDs. X-ray absorption fine structure (XAFS) spectroscopy and energy-dispersive X-ray spectroscopy-scanning transmission electron microscopy (STEM-EDX) indicates the homogeneous distribution of magnetic impurities inside the semiconductor QDs leading to superior magnetic property. Further, the versatility of this technique was demonstrated by obtaining ultra large particles (∼60 nm) with uniform doping concentration as well as demonstrating the high quality magnetic response.

  5. Inkjet-Printed Organic Transistors Based on Organic Semiconductor/Insulating Polymer Blends

    PubMed Central

    Kwon, Yoon-Jung; Park, Yeong Don; Lee, Wi Hyoung

    2016-01-01

    Recent advances in inkjet-printed organic field-effect transistors (OFETs) based on organic semiconductor/insulating polymer blends are reviewed in this article. Organic semiconductor/insulating polymer blends are attractive ink candidates for enhancing the jetting properties, inducing uniform film morphologies, and/or controlling crystallization behaviors of organic semiconductors. Representative studies using soluble acene/insulating polymer blends as an inkjet-printed active layer in OFETs are introduced with special attention paid to the phase separation characteristics of such blended films. In addition, inkjet-printed semiconducting/insulating polymer blends for fabricating high performance printed OFETs are reviewed. PMID:28773772

  6. Semiconductor wire array structures, and solar cells and photodetectors based on such structures

    DOEpatents

    Kelzenberg, Michael D.; Atwater, Harry A.; Briggs, Ryan M.; Boettcher, Shannon W.; Lewis, Nathan S.; Petykiewicz, Jan A.

    2014-08-19

    A structure comprising an array of semiconductor structures, an infill material between the semiconductor materials, and one or more light-trapping elements is described. Photoconverters and photoelectrochemical devices based on such structure also described.

  7. Live-monitoring of Te inclusions laser-induced thermo-diffusion and annealing in CdZnTe crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zappettini, A.; Zambelli, N.; Benassi, G.

    2014-06-23

    The presence of Te inclusions is one of the main factors limiting performances of CdZnTe crystals as X-ray detectors. We show that by means of infrared laser radiation it is possible to move and anneal tellurium inclusions exploiting a thermo-diffusion mechanism. The process is studied live during irradiation by means of an optical microscope equipment. Experimental conditions, and, in particular, energy laser fluence, for annealing inclusions of different dimensions are determined.

  8. Intrarater reliability of hand held dynamometry in measuring lower extremity isometric strength using a portable stabilization device.

    PubMed

    Jackson, Steven M; Cheng, M Samuel; Smith, A Russell; Kolber, Morey J

    2017-02-01

    Hand held dynamometry (HHD) is a more objective way to quantify muscle force production (MP) compared to traditional manual muscle testing. HHD reliability can be negatively impacted by both the strength of the tester and the subject particularly in the lower extremities due to larger muscle groups. The primary aim of this investigation was to assess intrarater reliability of HHD with use of a portable stabilization device for lower extremity MP in an athletic population. Isometric lower extremity strength was measured for bilateral lower extremities including hip abductors, external rotators, adductors, knee extensors, and ankle plantar flexors was measured in a sample of healthy recreational runners (8 male, 7 females, = 30 limbs) training for a marathon. These measurements were assessed using an intrasession intrarater reliability design. Intraclass correlation coefficients (ICC) were calculated using 3,1 model based on the single rater design. The standard error of measurement (SEM) for each muscle group was also calculated. ICC were excellent ranging from ICC (3,1) = 0.93-0.98 with standard error of measurements ranging from 0.58 to 17.2 N. This study establishes the use of a HHD with a portable stabilization device as demonstrating good reliability within testers for measuring lower extremity muscle performance in an active healthy population. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Metrology-based control and profitability in the semiconductor industry

    NASA Astrophysics Data System (ADS)

    Weber, Charles

    2001-06-01

    This paper summarizes three studies of the semiconductor industry conducted at SEMATECH and MIT's Sloan School of Management. In conjunction they lead to the conclusion that rapid problem solving is an essential component of profitability in the semiconductor industry, and that metrology-based control is instrumental to rapid problem solving. The studies also identify the need for defect attribution. Once a source of a defect has been identified, the appropriate resources--human and technological--need to be brought into the physically optimal location for corrective action. The Internet is likely to enable effective defect attribution by inducing collaboration between different companies.

  10. Continuing Measurements of CO2 Crystals with a Hand-Held 35 GHz Radiometer

    NASA Technical Reports Server (NTRS)

    Foster, J.; Chang, A.; Hall, D.; Tait, A.; Wergin, W.; Erbe, E.

    2000-01-01

    In order to increase our knowledge of the Martian polar caps, an improved understanding of the behavior of both frozen H2O and CO2 in different parts of the electromagnetic spectrum is needed. The thermal microwave part of the spectrum has received relatively little attention compared to the visible and infrared wavelengths. A simple experiment to measure the brightness temperature of frozen CO2 was first performed in the winter of 1998 using a 35 GHz radiometer. in experiments performed during the winter of 1999 and 2000, passive microwave radiation emanating from within layers of manufactured CO2 (dry ice) crystals was again measured with a 35 GHz handheld radiometer. Both large (0.8 cm) and small (0.3 cm) cylindrical-shaped dry ice pellets, at a temperature of 197 K (-76 C), were measured. A 1 sq m plate of aluminum sheet metal was positioned beneath the dry ice so that microwave emissions from the underlying soil layers would be minimized. Non-absorbing foam was positioned around the sides of the plate in order to keep the dry ice in place and to assure that the incremental deposits were level. Thirty-five GHz measurements of this plate were made through the dry ice deposits in the following way. Layers of dry ice were built up and measurements were repeated for the increasing CO2 pack. First, 7 cm of large CO2 pellets were poured onto the sheet metal plate, then an additional 7 cm were added, and finally, 12 cm were added on top of the 14 cm base. Hand-held 35 GHz measurements were made each time the thickness of the deposit was increased. The same process was repeated for the smaller grain pellets. Furthermore, during the past winter, 35 GHz measurements were taken of a 25 kg (27 cm x 27 cm x 27 cm) solid cube Of CO2, which was cut in half and then re-measured. Additional information is contained in the original extended abstract.

  11. Antimicrobial efficacy of alcohol-based hand gels.

    PubMed

    Guilhermetti, M; Marques Wiirzler, L A; Castanheira Facio, B; da Silva Furlan, M; Campo Meschial, W; Bronharo Tognim, M C; Botelho Garcia, L; Luiz Cardoso, C

    2010-03-01

    In recent years, several commercial alcohol-based hand gels have appeared on the market to improve the hand-cleansing compliance of healthcare workers. Although the antimicrobial efficacy of these products has been reported in different countries, few studies have investigated this subject in Brazil. In this study, we assessed the antimicrobial efficacy of 12 alcohol-based hand gels produced in Brazil, containing 70% w/w or v/v ethyl alcohol as the active ingredient, according to the European Standard EN 1500 (EN 1500). The following alcohol gels were tested: Hand Gel, Voga Gel, Solumax Solugel, Doctor Clean, Rio Gel, Clear Gel, Sevengel, Hand CHC, Gel Bac, WBL-50 Gel, Sanigel and Soft Care Gel. In addition, 70% w/w ethyl alcohol and three alcohol-based hand rubs (Sterillium, Sterillium Gel, and Spitaderm), commonly used in Europe and effective according to EN 1500, were also tested. All the products tested, except for two, were approved by the EN 1500 test protocol with a 60s application. The results confirmed the antimicrobial efficacy of the majority of the alcohol gels produced in Brazil for hand hygiene of healthcare workers. Copyright 2009 The Hospital Infection Society. Published by Elsevier Ltd. All rights reserved.

  12. Automation Study for Longhorn Army Ammunition Plant Hand Held Signal Flight Assembly, Rocket Barrel Assembly, 40 MM Signal, Final Packaging/Pack-Out, and Star Finishing

    DTIC Science & Technology

    1990-03-01

    J.B. Webb Jonesboro , AR Farmington, MI Crimping Press Joraco Drake Corp. Smithfield, RI Phoenix, AZ Die Cutter Roll Cut Peerless Machinery Co. Harbour...be taken are detailed for each assembly procedure. The report provides overall system integration requirements. The layouts of the two manufacturing...buildings are detailed. Several component changes to the Hand Held Signals are proposed. None of these will affect the operation of the-final product

  13. Method of plasma etching GA-based compound semiconductors

    DOEpatents

    Qiu, Weibin; Goddard, Lynford L.

    2013-01-01

    A method of plasma etching Ga-based compound semiconductors includes providing a process chamber and a source electrode adjacent thereto. The chamber contains a Ga-based compound semiconductor sample in contact with a platen which is electrically connected to a first power supply, and the source electrode is electrically connected to a second power supply. SiCl.sub.4 and Ar gases are flowed into the chamber. RF power is supplied to the platen at a first power level, and RF power is supplied to the source electrode. A plasma is generated. Then, RF power is supplied to the platen at a second power level lower than the first power level and no greater than about 30 W. Regions of a surface of the sample adjacent to one or more masked portions of the surface are etched at a rate of no more than about 25 nm/min to create a substantially smooth etched surface.

  14. Web-based healthcare hand drawing management system.

    PubMed

    Hsieh, Sheau-Ling; Weng, Yung-Ching; Chen, Chi-Huang; Hsu, Kai-Ping; Lin, Jeng-Wei; Lai, Feipei

    2010-01-01

    The paper addresses Medical Hand Drawing Management System architecture and implementation. In the system, we developed four modules: hand drawing management module; patient medical records query module; hand drawing editing and upload module; hand drawing query module. The system adapts windows-based applications and encompasses web pages by ASP.NET hosting mechanism under web services platforms. The hand drawings implemented as files are stored in a FTP server. The file names with associated data, e.g. patient identification, drawing physician, access rights, etc. are reposited in a database. The modules can be conveniently embedded, integrated into any system. Therefore, the system possesses the hand drawing features to support daily medical operations, effectively improve healthcare qualities as well. Moreover, the system includes the printing capability to achieve a complete, computerized medical document process. In summary, the system allows web-based applications to facilitate the graphic processes for healthcare operations.

  15. Hand-Held Photometer for Instant On-Spot Quantification of Nucleic Acids, Proteins, and Cells.

    PubMed

    Li, Shi-Hao; Jain, Abhinav; Tscharntke, Timo; Arnold, Tobias; Trau, Dieter W

    2018-02-20

    This paper presents a novel hand-held photometer, termed "Photopette", for on-spot absorbance measurements of biochemical analytes. The Photopette is a multicomponent, highly portable device with an overall weight of 160 g, which fits within 202 mm × 47 mm × 42 mm. Designed in the form factor of a micropipette, Photopette integrates a photodiode detector with light emitting diodes (LEDs) to form a highly customizable photometer which supports a wide variety of applications within the wavelengths between 260 and 1050 nm. A dual-purpose disposable reflective tip was designed to act as a sample holder and a light-reflecting system, which is in stark contrast to the operation of mainstream spectrophotometers and photometers. Small volume analytes may be measured with low sample loss using this proprietary CuveTip. A user-friendly software application running on smart devices was developed to control and read the values from Photopette via a low-energy Bluetooth link. This one-step strategy allows measurements on-spot without sample transfer, minimizing cross-contamination and human error. The results reported in this paper demonstrate Photopette's great potential to quantify DNA, direct protein, and cell density directly within the laminar flow hood. Results are compared with a Nanodrop 2000c spectrophotometer, a mainstream spectrophotometer for small-volume measurements.

  16. The practice of problem-based investigative teaching reform in semiconductor physics course

    NASA Astrophysics Data System (ADS)

    Chen, Aiping; Wu, Gaojian; Gu, Dawei; Jiang, Hongying; Wang, Lei

    2017-08-01

    Semiconductor physics is an important basic course for the students of the majors of applied physics, optoelectronics, and microelectronics. The authors have been carrying out investigative-teaching reform in semiconductor physics teaching. Firstly, the teaching content was re-structured based on scientific problems. Secondly, the students were placed in groups to discuss different scientific problems and to present a few short science-reports. Thirdly, micro-lesson videos were produced for the students to study and analyze before or after class. With comparative analysis, we find out that the semiconductor-physics curriculum content was greatly enriched. In addition, the students' learning motivation and scientific thinking ability increased, and their innovation ability was improved. Overall, the teaching quality of the semiconductor physics course could be significantly improved.

  17. Semiconductor photoelectrochemistry

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.; Byvik, C. E.

    1983-01-01

    Semiconductor photoelectrochemical reactions are investigated. A model of the charge transport processes in the semiconductor, based on semiconductor device theory, is presented. It incorporates the nonlinear processes characterizing the diffusion and reaction of charge carriers in the semiconductor. The model is used to study conditions limiting useful energy conversion, specifically the saturation of current flow due to high light intensity. Numerical results describing charge distributions in the semiconductor and its effects on the electrolyte are obtained. Experimental results include: an estimate rate at which a semiconductor photoelectrode is capable of converting electromagnetic energy into chemical energy; the effect of cell temperature on the efficiency; a method for determining the point of zero zeta potential for macroscopic semiconductor samples; a technique using platinized titanium dioxide powders and ultraviolet radiation to produce chlorine, bromine, and iodine from solutions containing their respective ions; the photoelectrochemical properties of a class of layered compounds called transition metal thiophosphates; and a technique used to produce high conversion efficiency from laser radiation to chemical energy.

  18. Reliability and Validity of Isometric Knee Extensor Strength Test With Hand-Held Dynamometer Depending on Its Fixation: A Pilot Study

    PubMed Central

    Kim, Won Kuel; Seo, Kyung Mook; Kang, Si Hyun

    2014-01-01

    Objective To determine the reliability and validity of hand-held dynamometer (HHD) depending on its fixation in measuring isometric knee extensor strength by comparing the results with an isokinetic dynamometer. Methods Twenty-seven healthy female volunteers participated in this study. The subjects were tested in seated and supine position using three measurement methods: isometric knee extension by isokinetic dynamometer, non-fixed HHD, and fixed HHD. During the measurement, the knee joints of subjects were fixed at a 35° angle from the extended position. The fixed HHD measurement was conducted with the HHD fixed to distal tibia with a Velcro strap; non-fixed HHD was performed with a hand-held method without Velcro fixation. All the measurements were repeated three times and among them, the maximum values of peak torque were used for the analysis. Results The data from the fixed HHD method showed higher validity than the non-fixed method compared with the results of the isokinetic dynamometer. Pearson correlation coefficients (r) between fixed HHD and isokinetic dynamometer method were statistically significant (supine-right: r=0.806, p<0.05; seating-right: r=0.473, p<0.05; supine-left: r=0.524, p<0.05), whereas Pearson correlation coefficients between non-fixed dynamometer and isokinetic dynamometer methods were not statistically significant, except for the result of the supine position of the left leg (r=0.384, p<0.05). Both fixed and non-fixed HHD methods showed excellent inter-rater reliability. However, the fixed HHD method showed a higher reliability than the non-fixed HHD method by considering the intraclass correlation coefficient (fixed HHD, 0.952-0.984; non-fixed HHD, 0.940-0.963). Conclusion Fixation of HHD during measurement in the supine position increases the reliability and validity in measuring the quadriceps strength. PMID:24639931

  19. Shuttle Mission STS-50: Orbital Processing of High-Quality CdTe Compound Semiconductors Experiment: Final Flight Sample Characterization Report

    NASA Technical Reports Server (NTRS)

    Larson, David J.; Casagrande, Luis G.; DiMarzio, Don; Alexander, J. Iwan D.; Carlson, Fred; Lee, Taipo; Dudley, Michael; Raghathamachar, Balaji

    1998-01-01

    The Orbital Processing of High-Quality Doped and Alloyed CdTe Compound Semiconductors program was initiated to investigate, quantitatively, the influences of gravitationally dependent phenomena on the growth and quality of bulk compound semiconductors. The objective was to improve crystal quality (both structural and compositional) and to better understand and control the variables within the crystal growth production process. The empirical effort entailed the development of a terrestrial (one-g) experiment baseline for quantitative comparison with microgravity (mu-g) results. This effort was supported by the development of high-fidelity process models of heat transfer, fluid flow and solute redistribution, and thermo-mechanical stress occurring in the furnace, safety cartridge, ampoule, and crystal throughout the melting, seeding, crystal growth, and post-solidification processing. In addition, the sensitivity of the orbital experiments was analyzed with respect to the residual microgravity (mu-g) environment, both steady state and g-jitter. CdZnTe crystals were grown in one-g and in mu-g. Crystals processed terrestrially were grown at the NASA Ground Control Experiments Laboratory (GCEL) and at Grumman Aerospace Corporation (now Northrop Grumman Corporation). Two mu-g crystals were grown in the Crystal Growth Furnace (CGF) during the First United States Microgravity Laboratory Mission (USML-1), STS-50, June 24 - July 9, 1992.

  20. Extra-oral dental radiography for disaster victims using a flat panel X-ray detector and a hand-held X-ray generator.

    PubMed

    Ohtani, M; Oshima, T; Mimasaka, S

    2017-12-01

    Forensic odontologists commonly incise the skin for post-mortem dental examinations when it is difficult to open the victim's mouth. However, it is prohibited by law to incise dead bodies without permission in Japan. Therefore, we attempted using extra-oral dental radiography, using a digital X-ray equipment with rechargeable batteries, to overcome this restriction. A phantom was placed in the prone position on a table, and three plain dental radiographs were used per case: "lateral oblique radiographs" for left and right posterior teeth and a "contact radiograph" for anterior teeth were taken using a flat panel X-ray detector and a hand-held X-ray generator. The resolving power of the images was measured by a resolution test chart, and the scattered X-ray dose was measured using an ionization chamber-type survey meter. The resolving power of the flat panel X-ray detector was 3.0 lp/mm, which was less than that of intra-oral dental methods, but the three extra-oral plain dental radiographs provided the overall dental information from outside of the mouth, and this approach was less time-consuming. In addition, the higher dose of scattered X-rays was laterally distributed, but the dose per case was much less than that of intra-oral dental radiographs. Extra-oral plain dental radiography can be used for disaster victim identification by dental methods even when it is difficult to open the mouth. Portable and rechargeable devices, such as a flat panel X-ray detector and a hand-held X-ray generator, are convenient to bring and use anywhere, even at a disaster scene lacking electricity and water.

  1. Toward designing semiconductor-semiconductor heterojunctions for photocatalytic applications

    NASA Astrophysics Data System (ADS)

    Zhang, Liping; Jaroniec, Mietek

    2018-02-01

    Semiconductor photocatalysts show a great potential for environmental and energy-related applications, however one of the major disadvantages is their relatively low photocatalytic performance due to the recombination of electron-hole pairs. Therefore, intensive research is being conducted toward design of heterojunctions, which have been shown to be effective for improving the charge-transfer properties and efficiency of photocatalysts. According to the type of band alignment and direction of internal electric field, heterojunctions are categorized into five different types, each of which is associated with its own charge transfer characteristics. Since the design of heterojunctions requires the knowledge of band edge positions of component semiconductors, the commonly used techniques for the assessment of band edge positions are reviewed. Among them the electronegativity-based calculation method is applied for a large number of popular visible-light-active semiconductors, including some widely investigated bismuth-containing semiconductors. On basis of the calculated band edge positions and the type of component semiconductors reported, heterojunctions composed of the selected bismuth-containing semiconductors are proposed. Finally, the most popular synthetic techniques for the fabrication of heterojunctions are briefly discussed.

  2. Development of a Minimum Performance Standard for Hand-Held Fire Extinguishers as a Replacement for Halon 1211 on Civilian Transport Category Aircraft

    NASA Astrophysics Data System (ADS)

    Webster, Harry

    2002-08-01

    One or more Halon 1211 hand-held fire extinguishers are specified in Federal Aviation Regulation (FAR) Part 25.851 as a requirement on transport category aircraft with 31 or more seats. Halon 1211 has been linked to the destruction of the ozone layer and production of new Halon 1211 has been halted per the Montreal Protocol in 1993. The phase out of Halon 1211, as the hand-held firefighting agent of choice, for civilian transport category aircraft has necessitated the development of a Minimum Performance Standard (MPS) to evaluate replacement agents. The purpose of the MPS is to insure that there is no reduction in safety, both in terms of effectiveness in fighting onboard fires and toxicity to the passengers and crew. The MPS specifies two new tests that replacement agents must pass in addition to requiring national certifications such as provided by Underwriters Laboratories. The first test evaluates the "flooding" characteristics of the agent against a hidden in-flight fire. This test determines the ability of a streaming agent to function as a flooding agent. The second test evaluates the performance of the agent in fighting a terrorist fire scenario and the associated toxicity hazard. This test measures the agent's ability to extinguish a triple-seat fire in an aircraft cabin under in-flight conditions and the toxicity characteristics of both the neat agent and the products of decomposition. This MPS will insure that the replacement agents will meet or exceed the performance of Halon 1211 both in fighting fires and maintaining a safe breathing environment in aircraft cabins.

  3. Learning "Hands On."

    ERIC Educational Resources Information Center

    Ritter, Janice T.

    2001-01-01

    Discusses a computer teacher's incorporation of hand-held computer technology into her third- and fifth-grade students' study of acid rain. The project successfully brought two grade levels together for cross-grade research, provided an opportunity for classroom teachers and technology specialists to work collaboratively, and enhanced students'…

  4. Hand-arm vibration disorder among grass-cutter workers in Malaysia.

    PubMed

    Azmir, Nor Azali; Ghazali, Mohd Imran; Yahya, Musli Nizam; Ali, Mohamad Hanafi

    2016-09-01

    Prolonged exposure to hand-transmitted vibration from grass-cutting machines has been associated with increasing occurrences of symptoms and signs of occupational diseases related to hand-arm vibration syndrome (HAVS). A cross-sectional study was carried out using an adopted HAVS questionnaire on hand-arm vibration exposure and symptoms distributed to 168 male workers from the grass and turf maintenance industry who use hand-held grass-cutting machines as part of their work. The prevalence ratio and symptom correlation to HAVS between high and low-moderate exposure risk groups were evaluated. There were positive HAVS symptoms relationships between the low-moderate exposure group and the high exposure group among hand-held grass-cutting workers. The prevalence ratio was considered high because there were indicators that fingers turned white and felt numb, 3.63, 95% CI [1.41, 9.39] and 4.24, 95% CI [2.18, 8.27], respectively. Less than 14.3% of workers stated that they were aware of the occupational hand-arm vibration, and it seemed to be related to the finger blanching and numbness. The results suggest that HAVS is under-diagnosed in Malaysia, especially in the agricultural sectors. More information related to safety and health awareness programmes for HAVS exposure is required among hand-held grass-cutting workers.

  5. Development of biosensors based on the one-dimensional semiconductor nanomaterials.

    PubMed

    Yan, Shancheng; Shi, Yi; Xiao, Zhongdang; Zhou, Minmin; Yan, Wenfu; Shen, Haoliang; Hu, Dong

    2012-09-01

    Biosensors are becoming increasingly important due to their applications in biological and chemical analyses, food safety industry, biomedical diagnostics, clinical detection, and environmental monitoring. Recent years, nanostructured semiconductor materials have been used to fabricate biosensors owing to their biocompatibility, low toxicity, high electron mobility, and easy fabrication. In the present study, we focus on recent various biosensors based on the one-dimensional semiconductor nanomaterials such as electrochemical biosensor, field-effect transistors biosensor, and label-free optical biosensor. In particular, the development of the electrochemical biosensor is discussed detailedly.

  6. Assessment of Lower Limb Muscle Strength and Power Using Hand-Held and Fixed Dynamometry: A Reliability and Validity Study

    PubMed Central

    Perraton, Luke G.; Bower, Kelly J.; Adair, Brooke; Pua, Yong-Hao; Williams, Gavin P.; McGaw, Rebekah

    2015-01-01

    Introduction Hand-held dynamometry (HHD) has never previously been used to examine isometric muscle power. Rate of force development (RFD) is often used for muscle power assessment, however no consensus currently exists on the most appropriate method of calculation. The aim of this study was to examine the reliability of different algorithms for RFD calculation and to examine the intra-rater, inter-rater, and inter-device reliability of HHD as well as the concurrent validity of HHD for the assessment of isometric lower limb muscle strength and power. Methods 30 healthy young adults (age: 23±5yrs, male: 15) were assessed on two sessions. Isometric muscle strength and power were measured using peak force and RFD respectively using two HHDs (Lafayette Model-01165 and Hoggan microFET2) and a criterion-reference KinCom dynamometer. Statistical analysis of reliability and validity comprised intraclass correlation coefficients (ICC), Pearson correlations, concordance correlations, standard error of measurement, and minimal detectable change. Results Comparison of RFD methods revealed that a peak 200ms moving window algorithm provided optimal reliability results. Intra-rater, inter-rater, and inter-device reliability analysis of peak force and RFD revealed mostly good to excellent reliability (coefficients ≥ 0.70) for all muscle groups. Concurrent validity analysis showed moderate to excellent relationships between HHD and fixed dynamometry for the hip and knee (ICCs ≥ 0.70) for both peak force and RFD, with mostly poor to good results shown for the ankle muscles (ICCs = 0.31–0.79). Conclusions Hand-held dynamometry has good to excellent reliability and validity for most measures of isometric lower limb strength and power in a healthy population, particularly for proximal muscle groups. To aid implementation we have created freely available software to extract these variables from data stored on the Lafayette device. Future research should examine the reliability

  7. A splitting scheme based on the space-time CE/SE method for solving multi-dimensional hydrodynamical models of semiconductor devices

    NASA Astrophysics Data System (ADS)

    Nisar, Ubaid Ahmed; Ashraf, Waqas; Qamar, Shamsul

    2016-08-01

    Numerical solutions of the hydrodynamical model of semiconductor devices are presented in one and two-space dimension. The model describes the charge transport in semiconductor devices. Mathematically, the models can be written as a convection-diffusion type system with a right hand side describing the relaxation effects and interaction with a self consistent electric field. The proposed numerical scheme is a splitting scheme based on the conservation element and solution element (CE/SE) method for hyperbolic step, and a semi-implicit scheme for the relaxation step. The numerical results of the suggested scheme are compared with the splitting scheme based on Nessyahu-Tadmor (NT) central scheme for convection step and the same semi-implicit scheme for the relaxation step. The effects of various parameters such as low field mobility, device length, lattice temperature and voltages for one-space dimensional hydrodynamic model are explored to further validate the generic applicability of the CE/SE method for the current model equations. A two dimensional simulation is also performed by CE/SE method for a MESFET device, producing results in good agreement with those obtained by NT-central scheme.

  8. Hybrid Molecular and Spin-Semiconductor Based Research

    DTIC Science & Technology

    2005-02-02

    thick layers of low- temperature-grown (LTG) GaAs, i.e. GaAs grown at lower than normal substrate temperatures in a molecular beam epitaxy system...1999 – Oct.31, 2004 4. TITLE AND SUBTITLE Hybrid Molecular and Spin-Semiconductor Based research 5. FUNDING NUMBERS DAAD19-99-1-0198...spintronic devices. Thrust III is entitled “ Molecular Electronics” and its objective is to develop, characterize and model organic/inorganic

  9. Thermodynamic properties of semiconductor compounds studied based on Debye-Waller factors

    NASA Astrophysics Data System (ADS)

    Van Hung, Nguyen; Toan, Nguyen Cong; Ba Duc, Nguyen; Vuong, Dinh Quoc

    2015-08-01

    Thermodynamic properties of semiconductor compounds have been studied based on Debye-Waller factors (DWFs) described by the mean square displacement (MSD) which has close relation with the mean square relative displacement (MSRD). Their analytical expressions have been derived based on the statistical moment method (SMM) and the empirical many-body Stillinger-Weber potentials. Numerical results for the MSDs of GaAs, GaP, InP, InSb, which have zinc-blende structure, are found to be in reasonable agreement with experiment and other theories. This paper shows that an elements value for MSD is dependent on the binary semiconductor compound within which it resides.

  10. A natural approach to convey numerical digits using hand activity recognition based on hand shape features

    NASA Astrophysics Data System (ADS)

    Chidananda, H.; Reddy, T. Hanumantha

    2017-06-01

    This paper presents a natural representation of numerical digit(s) using hand activity analysis based on number of fingers out stretched for each numerical digit in sequence extracted from a video. The analysis is based on determining a set of six features from a hand image. The most important features used from each frame in a video are the first fingertip from top, palm-line, palm-center, valley points between the fingers exists above the palm-line. Using this work user can convey any number of numerical digits using right or left or both the hands naturally in a video. Each numerical digit ranges from 0 to9. Hands (right/left/both) used to convey digits can be recognized accurately using the valley points and with this recognition whether the user is a right / left handed person in practice can be analyzed. In this work, first the hand(s) and face parts are detected by using YCbCr color space and face part is removed by using ellipse based method. Then, the hand(s) are analyzed to recognize the activity that represents a series of numerical digits in a video. This work uses pixel continuity algorithm using 2D coordinate geometry system and does not use regular use of calculus, contours, convex hull and datasets.

  11. Mn-based ferromagnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Dietl, Tomasz; Sawicki, Maciej

    2003-07-01

    The present status of research and prospects for device applications of ferromagnetic (diluted magnetic) semiconductors (DMS) is presented. We review the nature of the electronic states and the mechanisms of the carrier-mediated exchange interactions (mean-field Zener model) in p-type Mn-based III-V and II-VI compounds, highlighting a good correspondence of experimental findings and theoretical predictions. An account of the latest progress on the road of increasing the Currie point to above the room temperature is given for both families of compounds. We comment on a possibility of obtaining ferromagnetism in n-type materials, taking (Zn,Mn)O:Al as the example. Concerning technologically important issue of easy axis and domain engineering, we present theoretical predictions and experimental results on the temperature and carrier concentration driven change of magnetic anisotropy in (Ga,Mn)As.

  12. Charge-sensitive front-end electronics with operational amplifiers for CdZnTe detectors

    NASA Astrophysics Data System (ADS)

    Födisch, P.; Berthel, M.; Lange, B.; Kirschke, T.; Enghardt, W.; Kaever, P.

    2016-09-01

    Cadmium zinc telluride (CdZnTe, CZT) radiation detectors are suitable for a variety of applications, due to their high spatial resolution and spectroscopic energy performance at room temperature. However, state-of-the-art detector systems require high-performance readout electronics. Though an application-specific integrated circuit (ASIC) is an adequate solution for the readout, requirements of high dynamic range and high throughput are not available in any commercial circuit. Consequently, the present study develops the analog front-end electronics with operational amplifiers for an 8×8 pixelated CZT detector. For this purpose, we modeled an electrical equivalent circuit of the CZT detector with the associated charge-sensitive amplifier (CSA). Based on a detailed network analysis, the circuit design is completed by numerical values for various features such as ballistic deficit, charge-to-voltage gain, rise time, and noise level. A verification of the performance is carried out by synthetic detector signals and a pixel detector. The experimental results with the pixel detector assembly and a 22Na radioactive source emphasize the depth dependence of the measured energy. After pulse processing with depth correction based on the fit of the weighting potential, the energy resolution is 2.2% (FWHM) for the 511 keV photopeak.

  13. Polarimetric analysis of a CdZnTe spectro-imager under multi-pixel irradiation conditions

    NASA Astrophysics Data System (ADS)

    Pinto, M.; da Silva, R. M. Curado; Maia, J. M.; Simões, N.; Marques, J.; Pereira, L.; Trindade, A. M. F.; Caroli, E.; Auricchio, N.; Stephen, J. B.; Gonçalves, P.

    2016-12-01

    So far, polarimetry in high-energy astrophysics has been insufficiently explored due to the complexity of the required detection, electronic and signal processing systems. However, its importance is today largely recognized by the astrophysical community, therefore the next generation of high-energy space instruments will certainly provide polarimetric observations, contemporaneously with spectroscopy and imaging. We have been participating in high-energy observatory proposals submitted to ESA Cosmic Vision calls, such as GRI (Gamma-Ray Imager), DUAL and ASTROGAM, where the main instrument was a spectro-imager with polarimetric capabilities. More recently, the H2020 AHEAD project was launched with the objective to promote more coherent and mature future high-energy space mission proposals. In this context of high-energy proposal development, we have tested a CdZnTe detection plane prototype polarimeter under a partially polarized gamma-ray beam generated from an aluminum target irradiated by a 22Na (511 keV) radioactive source. The polarized beam cross section was 1 cm2, allowing the irradiation of a wide multi-pixelated area where all the pixels operate simultaneously as a scatterer and as an absorber. The methods implemented to analyze such multi-pixel irradiation are similar to those required to analyze a spectro-imager polarimeter operating in space, since celestial source photons should irradiate its full pixilated area. Correction methods to mitigate systematic errors inherent to CdZnTe and to the experimental conditions were also implemented. The polarization level ( 40%) and the polarization angle (precision of ±5° up to ±9°) obtained under multi-pixel irradiation conditions are presented and compared with simulated data.

  14. Do WiFi-based hand hygiene dispenser systems increase hand hygiene compliance?

    PubMed

    Scheithauer, Simone; Bickenbach, Johannes; Heisel, Hans; Fehling, Patrick; Marx, Gernot; Lemmen, Sebastian

    2018-05-17

    Innovative methods to ensure better compliance in hand hygiene are urgently needed. The aim of this study was to determine if WiFi-based hand hygiene dispenser-driven self-assessment systems (Wireless Fidelity, WiFi-dispenser) can support the work of infection control teams. Our results suggest that the continuous monitoring of dispenser usage can be a valuable addition to infection prevention and control programs, when used in a bundle in combination with conventional hand hygiene training. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  15. Hand coverage by alcohol-based handrub varies: Volume and hand size matter.

    PubMed

    Zingg, Walter; Haidegger, Tamas; Pittet, Didier

    2016-12-01

    Visitors of an infection prevention and control conference performed hand hygiene with 1, 2, or 3 mL ultraviolet light-traced alcohol-based handrub. Coverage of palms, dorsums, and fingertips were measured by digital images. Palms of all hand sizes were sufficiently covered when 2 mL was applied, dorsums of medium and large hands were never sufficiently covered. Palmar fingertips were sufficiently covered when 2  or 3 mL was applied, and dorsal fingertips were never sufficiently covered. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  16. Efficacy of alcohol-based hand sanitizer on hands soiled with dirt and cooking oil.

    PubMed

    Pickering, Amy J; Davis, Jennifer; Boehm, Alexandria B

    2011-09-01

    Handwashing education and promotion are well established as effective strategies to reduce diarrhea and respiratory illness in countries around the world. However, access to reliable water supplies has been identified as an important barrier to regular handwashing in low-income countries. Alcohol-based hand sanitizer (ABHS) is an effective hand hygiene method that does not require water, but its use is not currently recommended when hands are visibly soiled. This study evaluated the efficacy of ABHS on volunteers' hands artificially contaminated with Escherichia coli in the presence of dirt (soil from Tanzania) and cooking oil. ABHS reduced levels of E. coli by a mean of 2.33 log colony forming units (CFU) per clean hand, 2.32 log CFU per dirt-covered hand, and 2.13 log CFU per oil-coated hand. No significant difference in efficacy was detected between hands that were clean versus dirty or oily. ABHS may be an appropriate hand hygiene method for hands that are moderately soiled, and an attractive option for field settings in which access to water and soap is limited.

  17. Fire Testing of Ethanol-Based Hand Cleaner

    DOT National Transportation Integrated Search

    1998-04-01

    A variety of laboratory and full-scale fire tests were conducted on an ethanol-based gel-type hand cleaner currently used in commercial aircraft lavatories. The waterless-type hand cleaner has a relatively low flash point, raising concern over its fi...

  18. Hand-Held UXO Discriminator

    DTIC Science & Technology

    2010-04-01

    structure design showed that we could achieve both of these goals with a 14-in (0.35 m) sensor cube. To avoid the reliance on accurate multiple...differenced pair receiver. 4. Conclusions We have designed and built a sensor package of a 14-in (0.35 m) cube based on the...funding (UX-1225, MM-0437, and MM-0838), we have successfully designed and built a cart-mounted Berkeley UXO Discriminator (BUD) and demonstrated its

  19. Semiconductor-based optical refrigerator

    DOEpatents

    Epstein, Richard I.; Edwards, Bradley C.; Sheik-Bahae, Mansoor

    2002-01-01

    Optical refrigerators using semiconductor material as a cooling medium, with layers of material in close proximity to the cooling medium that carries away heat from the cooling material and preventing radiation trapping. In addition to the use of semiconducting material, the invention can be used with ytterbium-doped glass optical refrigerators.

  20. Web-based interactive drone control using hand gesture

    NASA Astrophysics Data System (ADS)

    Zhao, Zhenfei; Luo, Hao; Song, Guang-Hua; Chen, Zhou; Lu, Zhe-Ming; Wu, Xiaofeng

    2018-01-01

    This paper develops a drone control prototype based on web technology with the aid of hand gesture. The uplink control command and downlink data (e.g., video) are transmitted by WiFi communication, and all the information exchange is realized on web. The control command is translated from various predetermined hand gestures. Specifically, the hardware of this friendly interactive control system is composed by a quadrotor drone, a computer vision-based hand gesture sensor, and a cost-effective computer. The software is simplified as a web-based user interface program. Aided by natural hand gestures, this system significantly reduces the complexity of traditional human-computer interaction, making remote drone operation more intuitive. Meanwhile, a web-based automatic control mode is provided in addition to the hand gesture control mode. For both operation modes, no extra application program is needed to be installed on the computer. Experimental results demonstrate the effectiveness and efficiency of the proposed system, including control accuracy, operation latency, etc. This system can be used in many applications such as controlling a drone in global positioning system denied environment or by handlers without professional drone control knowledge since it is easy to get started.

  1. Web-based interactive drone control using hand gesture.

    PubMed

    Zhao, Zhenfei; Luo, Hao; Song, Guang-Hua; Chen, Zhou; Lu, Zhe-Ming; Wu, Xiaofeng

    2018-01-01

    This paper develops a drone control prototype based on web technology with the aid of hand gesture. The uplink control command and downlink data (e.g., video) are transmitted by WiFi communication, and all the information exchange is realized on web. The control command is translated from various predetermined hand gestures. Specifically, the hardware of this friendly interactive control system is composed by a quadrotor drone, a computer vision-based hand gesture sensor, and a cost-effective computer. The software is simplified as a web-based user interface program. Aided by natural hand gestures, this system significantly reduces the complexity of traditional human-computer interaction, making remote drone operation more intuitive. Meanwhile, a web-based automatic control mode is provided in addition to the hand gesture control mode. For both operation modes, no extra application program is needed to be installed on the computer. Experimental results demonstrate the effectiveness and efficiency of the proposed system, including control accuracy, operation latency, etc. This system can be used in many applications such as controlling a drone in global positioning system denied environment or by handlers without professional drone control knowledge since it is easy to get started.

  2. Hand function in workers with hand-arm vibration syndrome.

    PubMed

    Cederlund, R; Isacsson, A; Lundborg, G

    1999-01-01

    Hand-arm vibration syndrome has been specially addressed in the Scandinavian countries in recent years, but the syndrome is still not sufficiently recognized in many countries. The object of this preliminary study was to describe the nature and character of vibration-induced impairment in the hands of exposed workers. Twenty symptomatic male workers (aged 28 to 65 years) subjected to vibration by hand-held tools were interviewed about subjective symptoms and activities of daily living and were assessed with a battery of objective tests for sensibility, dexterity, grip function, and grip strength. The test results were compared with normative data. The majority of patients complained of cold intolerance, numbness, pain, sensory impairment, and difficulties in handling manual tools and in handwriting. The various objective tests showed considerable variation in indications of pathologic outcome, revealing differences in sensitivity to detect impaired hand function. Semmes-Weinstein monofilament testing for perception of light touch-deep pressure sensation, the small-object shape identification test, and moving two-point discrimination testing for functional sensibility provided the most indications of pathologic outcomes. The authors conclude that vibration-exposed patients present considerable impairment in hand function.

  3. Prosthetic Hand Lifts Heavy Loads

    NASA Technical Reports Server (NTRS)

    Carden, James R.; Norton, William; Belcher, Jewell G.; Vest, Thomas W.

    1991-01-01

    Prosthetic hand designed to enable amputee to lift diverse heavy objects like rocks and logs. Has simple serrated end effector with no moving parts. Prosthesis held on forearm by system of flexible straps. Features include ruggedness, simplicity, and relatively low cost.

  4. Hand-held optical sensor using denatured antibody coated electro-active polymer for ultra-trace detection of copper in blood serum and environmental samples.

    PubMed

    Chandra, Sutapa; Dhawangale, Arvind; Mukherji, Soumyo

    2018-07-01

    An optimum copper concentration in environment is highly desired for all forms of life. We have developed an ultrasensitive copper sensor which functions from femto to micro molar concentration accurately (R 2 = 0.98). The sensor is based on denatured antibody immunoglobulin G (IgG), immobilized on polyaniline (PAni) which in turn is the coating on the core of an optical fiber. The sensing relies on changes in evanescent wave absorbance in the presence of the analyte. The sensor showed excellent selectivity towards Cu (II) ions over all other metal ions. The sensor was tested with lake and marine water samples to determine unknown concentrations of copper ions and the recovery results were within 90-115%, indicating reasonable accuracy. We further integrated the fiber-optic sensor with a miniaturized hand-held instrumentation platform to develop an accurate and field deployable device which can broadly be applicable to determine Cu (II) concentration in a wide range of systems - natural water bodies, soil as well as blood serum. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Breast-density assessment with hand-held ultrasound: A novel biomarker to assess breast cancer risk and to tailor screening?

    PubMed

    Sanabria, Sergio J; Goksel, Orcun; Martini, Katharina; Forte, Serafino; Frauenfelder, Thomas; Kubik-Huch, Rahel A; Rominger, Marga B

    2018-03-19

    To assess feasibility and diagnostic accuracy of a novel hand-held ultrasound (US) method for breast density assessment that measures the speed of sound (SoS), in comparison to the ACR mammographic (MG) categories. ACR-MG density (a=fatty to d=extremely dense) and SoS-US were assessed in the retromamillary, inner and outer segments of 106 women by two radiographers. A conventional US system was used for SoS-US. A reflector served as timing reference for US signals transmitted through the breasts. Four blinded readers assessed average SoS (m/s), ΔSoS (segment-variation SoS; m/s) and the ACR-MG density. The highest SoS and ΔSoS values of the three segments were used for MG-ACR whole breast comparison. SoS-US breasts were examined in <2 min. Mean SoS values of densities a-d were 1,421 m/s (SD 14), 1,432 m/s (SD 17), 1,448 m/s (SD 20) and 1,500 m/s (SD 31), with significant differences between all groups (p<0.001). The SoS-US comfort scores and inter-reader agreement were significantly better than those for MG (1.05 vs. 2.05 and 0.982 vs. 0.774; respectively). A strong segment correlation between SoS and ACR-MG breast density was evident (r s =0.622, p=<0.001) and increased for full breast classification (r s =0.746, p=<0.001). SoS-US allowed diagnosis of dense breasts (ACR c and d) with sensitivity 86.2 %, specificity 85.2 % and AUC 0.887. Using hand-held SoS-US, radiographers measured breast density without discomfort, readers evaluated measurements with high inter-reader agreement, and SoS-US correlated significantly with ACR-MG breast-density categories. • The novel speed-of-sound ultrasound correlated significantly with mammographic ACR breast density categories. • Radiographers measured breast density without women discomfort or radiation. • SoS-US can be implemented on a standard US machine. • SoS-US shows potential for a quantifiable, cost-effective assessment of breast density.

  6. Gold-reflector-based semiconductor saturable absorber mirror for femtosecond mode-locked Cr4+:YAG lasers

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Nakagawa, T.; Torizuka, K.; Sugaya, T.; Kobayashi, K.

    We developed a gold reflector based semiconductor saturable absorber mirror that has a sufficiently high reflectivity and a broad bandwidth and has been used to initiate the mode locking in a Cr4+:YAG laser. The laser achieved a similar efficiency to the lasers with Bragg-reflector-based semiconductor saturable absorber mirrors, but delivered a much broader spectrum and a shorter pulse.

  7. Towards NIRS-based hand movement recognition.

    PubMed

    Paleari, Marco; Luciani, Riccardo; Ariano, Paolo

    2017-07-01

    This work reports on preliminary results about on hand movement recognition with Near InfraRed Spectroscopy (NIRS) and surface ElectroMyoGraphy (sEMG). Either basing on physical contact (touchscreens, data-gloves, etc.), vision techniques (Microsoft Kinect, Sony PlayStation Move, etc.), or other modalities, hand movement recognition is a pervasive function in today environment and it is at the base of many gaming, social, and medical applications. Albeit, in recent years, the use of muscle information extracted by sEMG has spread out from the medical applications to contaminate the consumer world, this technique still falls short when dealing with movements of the hand. We tested NIRS as a technique to get another point of view on the muscle phenomena and proved that, within a specific movements selection, NIRS can be used to recognize movements and return information regarding muscles at different depths. Furthermore, we propose here three different multimodal movement recognition approaches and compare their performances.

  8. A microprocessor based on a two-dimensional semiconductor

    NASA Astrophysics Data System (ADS)

    Wachter, Stefan; Polyushkin, Dmitry K.; Bethge, Ole; Mueller, Thomas

    2017-04-01

    The advent of microcomputers in the 1970s has dramatically changed our society. Since then, microprocessors have been made almost exclusively from silicon, but the ever-increasing demand for higher integration density and speed, lower power consumption and better integrability with everyday goods has prompted the search for alternatives. Germanium and III-V compound semiconductors are being considered promising candidates for future high-performance processor generations and chips based on thin-film plastic technology or carbon nanotubes could allow for embedding electronic intelligence into arbitrary objects for the Internet-of-Things. Here, we present a 1-bit implementation of a microprocessor using a two-dimensional semiconductor--molybdenum disulfide. The device can execute user-defined programs stored in an external memory, perform logical operations and communicate with its periphery. Our 1-bit design is readily scalable to multi-bit data. The device consists of 115 transistors and constitutes the most complex circuitry so far made from a two-dimensional material.

  9. A microprocessor based on a two-dimensional semiconductor.

    PubMed

    Wachter, Stefan; Polyushkin, Dmitry K; Bethge, Ole; Mueller, Thomas

    2017-04-11

    The advent of microcomputers in the 1970s has dramatically changed our society. Since then, microprocessors have been made almost exclusively from silicon, but the ever-increasing demand for higher integration density and speed, lower power consumption and better integrability with everyday goods has prompted the search for alternatives. Germanium and III-V compound semiconductors are being considered promising candidates for future high-performance processor generations and chips based on thin-film plastic technology or carbon nanotubes could allow for embedding electronic intelligence into arbitrary objects for the Internet-of-Things. Here, we present a 1-bit implementation of a microprocessor using a two-dimensional semiconductor-molybdenum disulfide. The device can execute user-defined programs stored in an external memory, perform logical operations and communicate with its periphery. Our 1-bit design is readily scalable to multi-bit data. The device consists of 115 transistors and constitutes the most complex circuitry so far made from a two-dimensional material.

  10. Microsensors based on GaN semiconductors covalently functionalized with luminescent Ru(II) complexes.

    PubMed

    López-Gejo, Juan; Arranz, Antonio; Navarro, Alvaro; Palacio, Carlos; Muñoz, Elías; Orellana, Guillermo

    2010-02-17

    Covalent tethering of a Ru(II) dye to gallium nitride surfaces has been accomplished as a key step in the development of innovative sensing devices in which the indicator support (semiconductor) plays the role of both support and excitation source. Luminescence emission decays and time-resolved emission spectra confirm the presence of the dye on the semiconductor surfaces, while X-ray photoelectron spectroscopy proves its covalent bonding. The O(2) sensitivity of the new device is comparable to those of other ruthenium-based sensor systems. This achievement paves the way to a new generation of integrable ultracompact microsensors that combine semiconductor emitter-probe assemblies.

  11. Neuropsychological Evidence for Visual- and Motor-Based Affordance: Effects of Reference Frame and Object-Hand Congruence

    ERIC Educational Resources Information Center

    Humphreys, Glyn W.; Wulff, Melanie; Yoon, Eun Young; Riddoch, M. Jane

    2010-01-01

    Two experiments are reported that use patients with visual extinction to examine how visual attention is influenced by action information in images. In Experiment 1 patients saw images of objects that were either correctly or incorrectly colocated for action, with the objects held by hands that were congruent or incongruent with those used…

  12. Reproducibility of corneal astigmatism measurements with a hand held keratometer in preschool children.

    PubMed Central

    Harvey, E M; Miller, J M; Dobson, V

    1995-01-01

    AIMS--To evaluate the overall accuracy and reproducibility of the Alcon portable autokeratometer (PAK) measurements in infants and young children. METHODS--The accuracy of the Alcon PAK in measuring toric reference surfaces (1, 3, 5, and 7 D) under various suboptimal measurement conditions was assessed, and the reproducibility of PAK measurements of corneal astigmatism in newborn infants (n = 5), children (n = 19, age 3-5 years), and adults (n = 14) was evaluated. RESULTS--Measurements of toric reference surfaces indicated (a) no significant effect of distance (17-30 mm) on accuracy of measurements, (b) no systematic relation between amount of toricity and accuracy of measurements, (c) no systematic relation between angle of measurement and accuracy, (d) no difference in accuracy of measurements when the PAK is hand held in comparison with when it is mounted, (e) no difference in accuracy of measurements when axis of toricity is oriented obliquely than when it is oriented horizontally, with respect to the PAK, and (f) a small positive bias (+0.16 D) in measurement of spherical equivalent. The PAK did not prove useful for screening newborns. However, measurements were successfully obtained from 18/19 children and 14/14 adults. There was no significant difference in median measurement deviation (deviation of a subject's five measurements from his/her mean) between children (0.21 D) and adults (0.13 D). CONCLUSIONS--The PAK produces accurate measurements of surface curvature under a variety of suboptimal conditions. Variability of PAK measurements in preschool children is small enough to suggest that it would be useful for screening for corneal astigmatism in young children. PMID:8534668

  13. Hand-held dynamometry in patients with haematological malignancies: Measurement error in the clinical assessment of knee extension strength

    PubMed Central

    Knols, Ruud H; Aufdemkampe, Geert; de Bruin, Eling D; Uebelhart, Daniel; Aaronson, Neil K

    2009-01-01

    Background Hand-held dynamometry is a portable and inexpensive method to quantify muscle strength. To determine if muscle strength has changed, an examiner must know what part of the difference between a patient's pre-treatment and post-treatment measurements is attributable to real change, and what part is due to measurement error. This study aimed to determine the relative and absolute reliability of intra and inter-observer strength measurements with a hand-held dynamometer (HHD). Methods Two observers performed maximum voluntary peak torque measurements (MVPT) for isometric knee extension in 24 patients with haematological malignancies. For each patient, the measurements were carried out on the same day. The main outcome measures were the intraclass correlation coefficient (ICC ± 95%CI), the standard error of measurement (SEM), the smallest detectable difference (SDD), the relative values as % of the grand mean of the SEM and SDD, and the limits of agreement for the intra- and inter-observer '3 repetition average' and the 'highest value of 3 MVPT' knee extension strength measures. Results The intra-observer ICCs were 0.94 for the average of 3 MVPT (95%CI: 0.86–0.97) and 0.86 for the highest value of 3 MVPT (95%CI: 0.71–0.94). The ICCs for the inter-observer measurements were 0.89 for the average of 3 MVPT (95%CI: 0.75–0.95) and 0.77 for the highest value of 3 MVPT (95%CI: 0.54–0.90). The SEMs for the intra-observer measurements were 6.22 Nm (3.98% of the grand mean (GM) and 9.83 Nm (5.88% of GM). For the inter-observer measurements, the SEMs were 9.65 Nm (6.65% of GM) and 11.41 Nm (6.73% of GM). The SDDs for the generated parameters varied from 17.23 Nm (11.04% of GM) to 27.26 Nm (17.09% of GM) for intra-observer measurements, and 26.76 Nm (16.77% of GM) to 31.62 Nm (18.66% of GM) for inter-observer measurements, with similar results for the limits of agreement. Conclusion The results indicate that there is acceptable relative reliability for

  14. Use of a hand-held bladder ultrasound scanner in the assessment of dehydration and monitoring response to treatment in a paediatric emergency department.

    PubMed

    Enright, Kevin; Beattie, Tom; Taheri, Sepideh

    2010-10-01

    Dehydration is a common concern in paediatric emergency care. Limited tools are available to assess reduced urine production, which is commonly cited as a reliable marker of dehydration. To evaluate the utility of a hand-held bladder ultrasound scanner in monitoring urine production in children attending the emergency department with suspected dehydration. A prospective pilot study was undertaken on a convenience sample of patients presenting with suspected dehydration. Serial bladder ultrasound scanning was performed to monitor urine output. Dehydration was assessed clinically using the WHO guide to dehydration assessment. Decisions about treatment and admission were made independently of the urine output measurements obtained using the bladder scanner. 45 children were studied. Using the WHO guide, 33 (73%) had mild dehydration, 8 (18%) had moderate dehydration and 4 (9%) had severe dehydration. There was a significant difference in estimated urine production between those admitted and those discharged (0.9±1.2 ml/kg/h vs 1.8±1.5 ml/kg/h, p=0.01) and between those with mild dehydration versus moderate/severe dehydration (2.3±1.5 ml/kg/h vs 0.6±0.7 ml/kg/h, p=0.0011). Urine output had been significantly reduced in those who had received an intravenous fluid bolus compared with those who had not (0.4±0.46 ml/kg/h vs 1.9±1.6 ml/kg/h, p=0.001). The hand-held bladder scanner is a convenient, non-invasive and objective adjunct in the assessment and management of children attending the emergency department with suspected dehydration.

  15. Graphene-based half-metal and spin-semiconductor for spintronic applications.

    PubMed

    Qi, Jingshan; Chen, Xiaofang; Hu, Kaige; Feng, Ji

    2016-03-31

    In this letter we propose a strategy to make graphene become a half-metal or spin-semiconductor by combining the magnetic proximity effects and sublattice symmetry breaking in graphone/graphene and graphone/graphene/BN heterostructures. Exchange interactions lift the spin degeneracy and sublattice symmetry breaking opens a band gap in graphene. More interestingly, the gap opening depends on the spin direction and the competition between the sublattice asymmetry and exchange field determines the system is a half-metal or a spin-semiconductor. By first-principles calculations and a low-energy effective model analysis, we elucidate the underlying physical mechanism of spin-dependent gap opening and spin degeneracy splitting. This offers an alternative practical platform for graphene-based spintronics.

  16. Integrated optical detection of autonomous capillary microfluidic immunoassays:a hand-held point-of-care prototype.

    PubMed

    Novo, P; Chu, V; Conde, J P

    2014-07-15

    The miniaturization of biosensors using microfluidics has potential in enabling the development of point-of-care devices, with the added advantages of reduced time and cost of analysis with limits-of-detection comparable to those obtained through traditional laboratory techniques. Interfacing microfluidic devices with the external world can be difficult especially in aspects involving fluid handling and the need for simple sample insertion that avoids special equipment or trained personnel. In this work we present a point-of-care prototype system by integrating capillary microfluidics with a microfabricated photodiode array and electronic instrumentation into a hand-held unit. The capillary microfluidic device is capable of autonomous and sequential fluid flow, including control of the average fluid velocity at any given point of the analysis. To demonstrate the functionality of the prototype, a model chemiluminescence ELISA was performed. The performance of the integrated optical detection in the point-of-care prototype is equal to that obtained with traditional bench-top instrumentation. The photodiode signals were acquired, displayed and processed by a simple graphical user interface using a computer connected to the microcontroller through USB. The prototype performed integrated chemiluminescence ELISA detection in about 15 min with a limit-of-detection of ≈2 nM with an antibody-antigen affinity constant of ≈2×10(7) M(-1). Copyright © 2014 Elsevier B.V. All rights reserved.

  17. [Does the hand solely belong in the hands of a qualified hand surgeon?

    PubMed

    Güven, Asim; Kols, Kerstin; Fischer, Klaus; Schönberger, Michael; Allert, Sixtus

    2017-09-01

    Background In Germany, Hand Surgery is an additional qualification that can only be obtained by a three-year training after a completed residency in General Surgery, Plastic Surgery or Trauma and Orthopaedic Surgery. Nevertheless, injuries and diseases of the hand are also treated by physicians without this particular qualification. It is questionable whether these treatments more often lead to medical malpractice. Material and Methods 376 charges of medical malpractice in surgical treatments of the hand and forearm that were closed in 2014 and 2015 were collected by the Arbitration Board for Medical Liability Issues of the Medical Association of North Germany.Cases with proven medical malpractice were classified by the qualification of the physician in charge and analysed. A statistical analysis was performed with the use of the program SPSS (IBM). Results Medical malpractice was proven in 42 of 113 cases with an attending physician who held the additional qualification for Hand Surgery (37.2 %). For physicians without this qualification, the figures were 79 out of 155 (51.0 %) in the group of trauma and orthopaedic surgeons and 54 out of 108 (50.0 %) in the group of general surgeons. The differences between the hand surgeons and the trauma and orthopaedic surgeons (p = 0.017) and between hand surgeons and general surgeons were significant (p = 0.037). Conclusions It was shown that physicians with an additional qualification in hand surgery had signifcantly fewer proven medical malpratice cases than physicians without this qualification. The following trends were observed in the cases of the physicians without the additional qualification in hand surgery: underestimation of the severity of trauma to soft tissues and infections of the hand, errors in the surgical examination of the hand, including functional tests of tendons and nerves, as well as in diagnostic findings after X-ray studies of the hand. Georg Thieme Verlag KG Stuttgart · New York.

  18. Pulse-shape discrimination of surface events in CdZnTe detectors for the COBRA experiment

    NASA Astrophysics Data System (ADS)

    Fritts, M.; Tebrügge, J.; Durst, J.; Ebert, J.; Gößling, C.; Göpfert, T.; Gehre, D.; Hagner, C.; Heidrich, N.; Homann, M.; Köttig, T.; Neddermann, T.; Oldorf, C.; Quante, T.; Rajek, S.; Reinecke, O.; Schulz, O.; Timm, J.; Wonsak, B.; Zuber, K.

    2014-06-01

    Events near the cathode and anode surfaces of a coplanar grid CdZnTe detector are identifiable by means of the interaction depth information encoded in the signal amplitudes. However, the amplitudes cannot be used to identify events near the lateral surfaces. In this paper a method is described to identify lateral surface events by means of their pulse shapes. Such identification allows for discrimination of surface alpha particle interactions from more penetrating forms of radiation, which is particularly important for rare event searches. The effectiveness of the presented technique in suppressing backgrounds due to alpha contamination in the search for neutrinoless double beta decay with the COBRA experiment is demonstrated.

  19. Spectrally selective solar absorber with sharp and temperature dependent cut-off based on semiconductor nanowire arrays

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Zhou, Lin; Zheng, Qinghui; Lu, Hong; Gan, Qiaoqiang; Yu, Zongfu; Zhu, Jia

    2017-05-01

    Spectrally selective absorbers (SSA) with high selectivity of absorption and sharp cut-off between high absorptivity and low emissivity are critical for efficient solar energy conversion. Here, we report the semiconductor nanowire enabled SSA with not only high absorption selectivity but also temperature dependent sharp absorption cut-off. By taking advantage of the temperature dependent bandgap of semiconductors, we systematically demonstrate that the absorption cut-off profile of the semiconductor-nanowire-based SSA can be flexibly tuned, which is quite different from most of the other SSA reported so far. As an example, silicon nanowire based selective absorbers are fabricated, with the measured absorption efficiency above (below) bandgap ˜97% (15%) combined with an extremely sharp absorption cut-off (transition region ˜200 nm), the sharpest SSA demonstrated so far. The demonstrated semiconductor-nanowire-based SSA can enable a high solar thermal efficiency of ≳86% under a wide range of operating conditions, which would be competitive candidates for the concentrated solar energy utilizations.

  20. Design and simulation of a semiconductor chip-based visible - NIR spectrometer for Earth observation

    NASA Astrophysics Data System (ADS)

    Coote, J.; Woolliams, E.; Fox, N.; Goodyer, I. D.; Sweeney, S. J.

    2014-03-01

    We present the development of a novel semiconductor chip-based spectrometer for calibration of Earth observation instruments. The chip follows the Solo spectroscopy approach utilising an array of microdisk resonators evanescently coupled to a central waveguide. Each resonator is tuned to select out a specific wavelength from the incoming spectrum, and forms a p-i-n junction in which current is generated when light of the correct wavelength is present. In this paper we discuss important design aspects including the choice of semiconductor material, design of semiconductor quantum well structures for optical absorption, and design and optimisation of the waveguide and resonators.

  1. Strain-based control of crystal anisotropy for perovskite oxides on semiconductor-based material

    DOEpatents

    McKee, Rodney Allen; Walker, Frederick Joseph

    2000-01-01

    A crystalline structure and a semiconductor device includes a substrate of a semiconductor-based material and a thin film of an anisotropic crystalline material epitaxially arranged upon the surface of the substrate so that the thin film couples to the underlying substrate and so that the geometries of substantially all of the unit cells of the thin film are arranged in a predisposed orientation relative to the substrate surface. The predisposition of the geometries of the unit cells of the thin film is responsible for a predisposed orientation of a directional-dependent quality, such as the dipole moment, of the unit cells. The predisposed orientation of the unit cell geometries are influenced by either a stressed or strained condition of the lattice at the interface between the thin film material and the substrate surface.

  2. Model-based segmentation of hand radiographs

    NASA Astrophysics Data System (ADS)

    Weiler, Frank; Vogelsang, Frank

    1998-06-01

    An important procedure in pediatrics is to determine the skeletal maturity of a patient from radiographs of the hand. There is great interest in the automation of this tedious and time-consuming task. We present a new method for the segmentation of the bones of the hand, which allows the assessment of the skeletal maturity with an appropriate database of reference bones, similar to the atlas based methods. The proposed algorithm uses an extended active contour model for the segmentation of the hand bones, which incorporates a-priori knowledge of shape and topology of the bones in an additional energy term. This `scene knowledge' is integrated in a complex hierarchical image model, that is used for the image analysis task.

  3. All-semiconductor metamaterial-based optical circuit board at the microscale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Min, Li; Huang, Lirong, E-mail: lrhuang@hust.edu.cn

    2015-07-07

    The newly introduced metamaterial-based optical circuit, an analogue of electronic circuit, is becoming a forefront topic in the fields of electronics, optics, plasmonics, and metamaterials. However, metals, as the commonly used plasmonic elements in an optical circuit, suffer from large losses at the visible and infrared wavelengths. We propose here a low-loss, all-semiconductor metamaterial-based optical circuit board at the microscale by using interleaved intrinsic GaAs and doped GaAs, and present the detailed design process for various lumped optical circuit elements, including lumped optical inductors, optical capacitors, optical conductors, and optical insulators. By properly combining these optical circuit elements and arrangingmore » anisotropic optical connectors, we obtain a subwavelength optical filter, which can always hold band-stop filtering function for various polarization states of the incident electromagnetic wave. All-semiconductor optical circuits may provide a new opportunity in developing low-power and ultrafast components and devices for optical information processing.« less

  4. Flat-lying semiconductor-insulator interfacial layer in DNTT thin films.

    PubMed

    Jung, Min-Cherl; Leyden, Matthew R; Nikiforov, Gueorgui O; Lee, Michael V; Lee, Han-Koo; Shin, Tae Joo; Takimiya, Kazuo; Qi, Yabing

    2015-01-28

    The molecular order of organic semiconductors at the gate dielectric is the most critical factor determining carrier mobility in thin film transistors since the conducting channel forms at the dielectric interface. Despite its fundamental importance, this semiconductor-insulator interface is not well understood, primarily because it is buried within the device. We fabricated dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) thin film transistors by thermal evaporation in vacuum onto substrates held at different temperatures and systematically correlated the extracted charge mobility to the crystal grain size and crystal orientation. As a result, we identify a molecular layer of flat-lying DNTT molecules at the semiconductor-insulator interface. It is likely that such a layer might form in other material systems as well, and could be one of the factors reducing charge transport. Controlling this interfacial flat-lying layer may raise the ultimate possible device performance for thin film devices.

  5. Point defects in Cd(Zn)Te and TlBr: Theory

    NASA Astrophysics Data System (ADS)

    Lordi, Vincenzo

    2013-09-01

    The effects of various crystal defects on the performances of CdTe, CdZnxTe (CZT), and TlBr for room-temperature high-energy radiation detection are examined using first-principles theoretical methods. The predictive, parameter-free, atomistic approaches used provide fundamental understanding of defect properties that are difficult to measure and also allow rapid screening of possibilities for material engineering, such as optimal doping and annealing conditions. Several recent examples from the author's work are reviewed, including: (i) accurate calculations of the thermodynamic and electronic properties of native point defects and point defect complexes in CdTe and CZT; (ii) the effects of Zn alloying on the native point defect properties in CZT; (iii) point defect diffusion and binding leading to Te clustering in Cd(Zn)Te; (iv) the profound effect of native point defects—principally vacancies—on the intrinsic material properties of TlBr, particularly its electronic and ionic conductivity; and (v) a study on doping TlBr to independently control the electronic and ionic conductivity.

  6. Eccentric and isometric shoulder rotator cuff strength testing using a hand-held dynamometer: reference values for overhead athletes.

    PubMed

    Cools, Ann M J; Vanderstukken, Fran; Vereecken, Frédéric; Duprez, Mattias; Heyman, Karel; Goethals, Nick; Johansson, Fredrik

    2016-12-01

    In order to provide science-based guidelines for injury prevention or return to play, regular measurement of isometric and eccentric internal (IR) and external (ER) rotator strength is warranted in overhead athletes. However, up to date, no normative database exists regarding these values, when measured with a hand-held dynamometer. Therefore, the purpose of the study was to provide a normative database on isometric and eccentric rotator cuff (RC) strength values in a sample of overhead athletes, and to discuss gender, age and sports differences. A HHD was used to measure RC strength in 201 overhead athletes between 18 and 50 years old from three different sports disciplines: tennis, volleyball and handball. Isometric as well as eccentric strength was measured in different shoulder positions. Outcome variables of interest were isometric ER and IR strength, eccentric ER strength, and intermuscular strength ratios ER/IR. Our results show significant side, gender and sports discipline differences in the isometric and eccentric RC strength. However, when normalized to body weight, gender differences often are absent. In general, strength differences are in favour of the dominant side, the male athletes and handball. Intermuscular ER/IR ratios showed gender, sports, and side differences. This normative database is necessary to help the clinician in the evaluation of RC strength in healthy and injured overhead athletes. In view of the preventive screening and return-to-play decisions in overhead athletes, normalization to body weight and calculating intermuscular ratios are key points in this evaluation. Diagnostic study, Level III.

  7. Photoacoustic Techniques for Trace Gas Sensing Based on Semiconductor Laser Sources

    PubMed Central

    Elia, Angela; Lugarà, Pietro Mario; Di Franco, Cinzia; Spagnolo, Vincenzo

    2009-01-01

    The paper provides an overview on the use of photoacoustic sensors based on semiconductor laser sources for the detection of trace gases. We review the results obtained using standard, differential and quartz enhanced photoacoustic techniques. PMID:22303143

  8. Chemical Modification of Semiconductor Surfaces for Molecular Electronics.

    PubMed

    Vilan, Ayelet; Cahen, David

    2017-03-08

    Inserting molecular monolayers within metal/semiconductor interfaces provides one of the most powerful expressions of how minute chemical modifications can affect electronic devices. This topic also has direct importance for technology as it can help improve the efficiency of a variety of electronic devices such as solar cells, LEDs, sensors, and possible future bioelectronic ones. The review covers the main aspects of using chemistry to control the various aspects of interface electrostatics, such as passivation of interface states and alignment of energy levels by intrinsic molecular polarization, as well as charge rearrangement with the adjacent metal and semiconducting contacts. One of the greatest merits of molecular monolayers is their capability to form excellent thin dielectrics, yielding rich and unique current-voltage characteristics for transport across metal/molecular monolayer/semiconductor interfaces. We explain the interplay between the monolayer as tunneling barrier on the one hand, and the electrostatic barrier within the semiconductor, due to its space-charge region, on the other hand, as well as how different monolayer chemistries control each of these barriers. Practical tools to experimentally identify these two barriers and distinguish between them are given, followed by a short look to the future. This review is accompanied by another one, concerning the formation of large-area molecular junctions and charge transport that is dominated solely by molecules.

  9. Determination of Insulator-to-Semiconductor Transition in Sol-Gel Oxide Semiconductors Using Derivative Spectroscopy.

    PubMed

    Lee, Woobin; Choi, Seungbeom; Kim, Kyung Tae; Kang, Jingu; Park, Sung Kyu; Kim, Yong-Hoon

    2015-12-23

    We report a derivative spectroscopic method for determining insulator-to-semiconductor transition during sol-gel metal-oxide semiconductor formation. When an as-spun sol-gel precursor film is photochemically activated and changes to semiconducting state, the light absorption characteristics of the metal-oxide film is considerable changed particularly in the ultraviolet region. As a result, a peak is generated in the first-order derivatives of light absorption ( A' ) vs. wavelength (λ) plots, and by tracing the peak center shift and peak intensity, transition from insulating-to-semiconducting state of the film can be monitored. The peak generation and peak center shift are described based on photon-energy-dependent absorption coefficient of metal-oxide films. We discuss detailed analysis method for metal-oxide semiconductor films and its application in thin-film transistor fabrication. We believe this derivative spectroscopy based determination can be beneficial for a non-destructive and a rapid monitoring of the insulator-to-semiconductor transition in sol-gel oxide semiconductor formation.

  10. Portable computing for taking part of the lab to the sample types of applications. From hand held personal digital assistants to smart phones for mobile spectrometry

    NASA Astrophysics Data System (ADS)

    Weagant, Scott; Karanassios, Vassili

    2015-06-01

    The use of portable hand held computing devices for the acquisition of spectrochemical data is briefly discussed using examples from the author's laboratory. Several network topologies are evaluated. At present, one topology that involves a portable computing device for data acquisition and spectrometer control and that has wireless access to the internet at one end and communicates with a smart phone at the other end appears to be better suited for "taking part of the lab to the sample" types of applications. Thus, spectrometric data can be accessed from anywhere in the world.

  11. Density functional theory calculations of III-N based semiconductors with mBJLDA

    NASA Astrophysics Data System (ADS)

    Gürel, Hikmet Hakan; Akıncı, Özden; Ünlü, Hilmi

    2017-02-01

    In this work, we present first principles calculations based on a full potential linear augmented plane-wave method (FP-LAPW) to calculate structural and electronic properties of III-V based nitrides such as GaN, AlN, InN in a zinc-blende cubic structure. First principles calculation using the local density approximation (LDA) and generalized gradient approximation (GGA) underestimate the band gap. We proposed a new potential called modified Becke-Johnson local density approximation (MBJLDA) that combines modified Becke-Johnson exchange potential and the LDA correlation potential to get better band gap results compared to experiment. We compared various exchange-correlation potentials (LSDA, GGA, HSE, and MBJLDA) to determine band gaps and structural properties of semiconductors. We show that using MBJLDA density potential gives a better agreement with experimental data for band gaps III-V nitrides based semiconductors.

  12. Test apparatus to monitor time-domain signals from semiconductor-detector pixel arrays

    NASA Astrophysics Data System (ADS)

    Haston, Kyle; Barber, H. Bradford; Furenlid, Lars R.; Salçin, Esen; Bora, Vaibhav

    2011-10-01

    Pixellated semiconductor detectors, such as CdZnTe, CdTe, or TlBr, are used for gamma-ray imaging in medicine and astronomy. Data analysis for these detectors typically estimates the position (x, y, z) and energy (E) of each interacting gamma ray from a set of detector signals {Si} corresponding to completed charge transport on the hit pixel and any of its neighbors that take part in charge sharing, plus the cathode. However, it is clear from an analysis of signal induction, that there are transient signal on all pixel electrodes during the charge transport and, when there is charge trapping, small negative residual signals on all electrodes. If we wish to optimally obtain the event parameters, we should take all these signals into account. We wish to estimate x,y,z and E from the set of all electrode signals, {Si(t)}, including time dependence, using maximum-likelihood techniques[1]. To do this, we need to determine the probability of the electrode signals, given the event parameters {x, y, z, E}, i.e. Pr( {Si(t)} | {x, y, z, E} ). Thus we need to map the detector response of all pixels, {Si(t)}, for a large number of events with known x,y,z and E.In this paper we demonstrate the existence of the transient signals and residual signals and determine their magnitudes. They are typically 50-100 times smaller than the hit-pixel signals. We then describe development of an apparatus to measure the response of a 16-pixel semiconductor detector and show some preliminary results. We also discuss techniques for measuring the event parameters for individual gamma-ray interactions, a requirement for determining Pr( {Si(t)} | {x, y, z, E}).

  13. Electrodes for Semiconductor Gas Sensors

    PubMed Central

    Lee, Sung Pil

    2017-01-01

    The electrodes of semiconductor gas sensors are important in characterizing sensors based on their sensitivity, selectivity, reversibility, response time, and long-term stability. The types and materials of electrodes used for semiconductor gas sensors are analyzed. In addition, the effect of interfacial zones and surface states of electrode–semiconductor interfaces on their characteristics is studied. This study describes that the gas interaction mechanism of the electrode–semiconductor interfaces should take into account the interfacial zone, surface states, image force, and tunneling effect. PMID:28346349

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalemci, Emrah

    This work summarizes the efforts in Turkey to build a laboratory capable of building and testing high energy astrophysics detectors that work in space. The EC FP6 ASTRONS project contributed strongly to these efforts, and as a result a fully operational laboratory at Sabanci University have been developed. In this laboratory we test and develop Si and CdZnTe based room temperature semiconductor strip detectors and develop detector and electronics system to be used as a payload on potential small Turkish satellites.

  15. Combination of hand-held probe and microscopy for fluorescence guided surgery in the brain tumor marginal zone.

    PubMed

    Richter, Johan C O; Haj-Hosseini, Neda; Hallbeck, Martin; Wårdell, Karin

    2017-06-01

    Visualization of the tumor is crucial for differentiating malignant tissue from healthy brain during surgery, especially in the tumor marginal zone. The aim of the study was to introduce a fluorescence spectroscopy-based hand-held probe (HHF-probe) for tumor identification in combination with the fluorescence guided resection surgical microscope (FGR-microscope), and evaluate them in terms of diagnostic performance and practical aspects of fluorescence detection. Eighteen operations were performed on 16 patients with suspected high-grade glioma. The HHF-probe and the FGR-microscope were used for detection of protoporphyrin (PpIX) fluorescence induced by 5-aminolevulinic acid (5-ALA) and evaluated against histopathological analysis and visual grading done through the FGR-microscope by the surgeon. A ratio of PpIX fluorescence intensity to the autofluorescence intensity (fluorescence ratio) was used to quantify the spectra detected by the probe. Fluorescence ratio medians (range 0 - 40) measured by the probe were related to the intensity of the fluorescence in the FGR-microscope, categorized as "none" (0.3, n=131), "weak" (1.6, n=34) and "strong" (5.4, n=28). Of 131 "none" points in the FGR-microscope, 88 (67%) exhibited fluorescence with the HHF-probe. For the tumor marginal zone, the area under the receiver operator characteristics (ROC) curve was 0.49 for the FGR-microscope and 0.65 for the HHF-probe. The probe was integrated in the established routine of tumor resection using the FGR-microscope. The HHF-probe was superior to the FGR-microscope in sensitivity; it detected tumor remnants after debulking under the FGR-microscope. The combination of the HHF-probe and the FGR-microscope was beneficial especially in the tumor marginal zone. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. [100] or [110] aligned, semiconductor-based, large-area, flexible, electronic devices

    DOEpatents

    Goyal, Amit

    2015-03-24

    Novel articles and methods to fabricate the same resulting in flexible, large-area, [100] or [110] textured, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  17. Low-voltage organic electronics based on a gate-tunable injection barrier in vertical graphene-organic semiconductor heterostructures.

    PubMed

    Hlaing, Htay; Kim, Chang-Hyun; Carta, Fabio; Nam, Chang-Yong; Barton, Rob A; Petrone, Nicholas; Hone, James; Kymissis, Ioannis

    2015-01-14

    The vertical integration of graphene with inorganic semiconductors, oxide semiconductors, and newly emerging layered materials has recently been demonstrated as a promising route toward novel electronic and optoelectronic devices. Here, we report organic thin film transistors based on vertical heterojunctions of graphene and organic semiconductors. In these thin heterostructure devices, current modulation is accomplished by tuning of the injection barriers at the semiconductor/graphene interface with the application of a gate voltage. N-channel devices fabricated with a thin layer of C60 show a room temperature on/off ratio >10(4) and current density of up to 44 mAcm(-2). Because of the ultrashort channel intrinsic to the vertical structure, the device is fully operational at a driving voltage of 200 mV. A complementary p-channel device is also investigated, and a logic inverter based on two complementary transistors is demonstrated. The vertical integration of graphene with organic semiconductors via simple, scalable, and low-temperature fabrication processes opens up new opportunities to realize flexible, transparent organic electronic, and optoelectronic devices.

  18. Comparison of experimental results of a Quad-CZT array detector, a NaI(Tl), a LaBr3(Ce), and a HPGe for safeguards applications

    NASA Astrophysics Data System (ADS)

    Kwak, S.-W.; Choi, J.; Park, S. S.; Ahn, S. H.; Park, J. S.; Chung, H.

    2017-11-01

    A compound semiconductor detector, CdTe (or CdZnTe), has been used in various areas including nuclear safeguards applications. To address its critical drawback, low detection efficiency, which leads to a long measurement time, a Quad-CZT array-based gamma-ray spectrometer in our previous study has been developed by combining four individual CZT detectors. We have re-designed the developed Quad-CZT array system to make it more simple and compact for a hand-held gamma-ray detector. The objective of this paper aims to compare the improved Quad-CZT array system with the traditional gamma-ray spectrometers (NaI(Tl), LaBr3(Ce), HPGe); these detectors currently have been the most commonly used for verification of nuclear materials. Nuclear materials in different physical forms in a nuclear facility of Korea were measured by the Quad-CZT array system and the existing gamma-ray detectors. For measurements of UO2 pellets and powders, and fresh fuel rods, the Quad-CZT array system turned out to be superior to the NaI(Tl) and LaBr3(Ce). For measurements of UF6 cylinders with a thick wall, the Quad-CZT array system and HPGe gave similar accuracy under the same measurement time. From the results of the field tests conducted, we can conclude that the improved Quad-CZT array system would be used as an alternative to HPGes and scintillation detectors for the purpose of increasing effectivenss and efficiency of safeguards applications. This is the first paper employing a multi-element CZT array detector for measurement of nuclear materials—particularly uranium in a UF6 cylinder—in a real nuclear facility. The present work also suggests that the multi-CZT array system described in this study would be one promising method to address a serious weakness of CZT-based radiation detection.

  19. Fast optical detecting media based on semiconductor nanostructures for recording images obtained using charges of free photocarriers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasherininov, P. G., E-mail: peter.kasherininov@mail.ioffe.ru; Tomasov, A. A.; Beregulin, E. V.

    2011-01-15

    Available published data on the properties of optical recording media based on semiconductor structures are reviewed. The principles of operation, structure, parameters, and the range of application for optical recording media based on MIS structures formed of photorefractive crystals with a thick layer of insulator and MIS structures with a liquid crystal as the insulator (the MIS LC modulators), as well as the effect of optical bistability in semiconductor structures (semiconductor MIS structures with nanodimensionally thin insulator (TI) layer, M(TI)S nanostructures). Special attention is paid to recording media based on the M(TI)S nanostructures promising for fast processing of highly informativemore » images and to fabrication of optoelectronic correlators of images for noncoherent light.« less

  20. Ergonomic risk factors of work processes in the semiconductor industry in Peninsular Malaysia.

    PubMed

    Chee, Heng-Leng; Rampal, Krishna Gopal; Chandrasakaran, Abherhame

    2004-07-01

    A cross-sectional survey of semiconductor factories was conducted to identify the ergonomic risk factors in the work processes, the prevalence of body pain among workers, and the relationship between body pain and work processes. A total of 906 women semiconductor workers took part in the study. In wafer preparation and polishing, a combination of lifting weights and prolonged standing might have led to high pain prevalences in the low back (35.0% wafer preparation, 41.7% wafer polishing) and lower limbs (90.0% wafer preparation, 66.7% wafer polishing). Semiconductor front of line workers, who mostly walked around to operate machines in clean rooms, had the lowest prevalences of body pain. Semiconductor assembly middle of line workers, especially the molding workers, who did frequent lifting, had high pain prevalences in the neck/shoulders (54.8%) and upper back (43.5 %). In the semiconductor assembly end of line work section, chip inspection workers who were exposed to prolonged sitting without back support had high prevalences of neck/shoulder (62.2%) and upper back pain (50.0%), while chip testing workers who had to climb steps to load units had a high prevalence of lower limb pain (68.0%). Workers in the assembly of electronic components, carrying out repetitive tasks with hands and fingers, and standing in awkward postures had high pain prevalences in the neck/shoulders (61.5%), arms (38.5%), and hands/wrists (30.8%).

  1. Evaluation of an automated breast 3D-ultrasound system by comparing it with hand-held ultrasound (HHUS) and mammography.

    PubMed

    Golatta, Michael; Baggs, Christina; Schweitzer-Martin, Mirjam; Domschke, Christoph; Schott, Sarah; Harcos, Aba; Scharf, Alexander; Junkermann, Hans; Rauch, Geraldine; Rom, Joachim; Sohn, Christof; Heil, Joerg

    2015-04-01

    Automated three-dimensional (3D) breast ultrasound (US) systems are meant to overcome the shortcomings of hand-held ultrasound (HHUS). The aim of this study is to analyze and compare clinical performance of an automated 3D-US system by comparing it with HHUS, mammography and the clinical gold standard (defined as the combination of HHUS, mammography and-if indicated-histology). Nine hundred and eighty three patients (=1,966 breasts) were enrolled in this monocentric, explorative and prospective cohort study. All examinations were analyzed blinded to the patients´ history and to the results of the routine imaging. The agreement of automated 3D-US with HHUS, mammography and the gold standard was assessed with kappa statistics. Sensitivity, specificity and positive and negative predictive value were calculated to assess the test performance. Blinded to the results of the gold standard the agreement between automated 3D-US and HHUS or mammography was fair, given by a Kappa coefficient of 0.31 (95% CI [0.26;0.36], p < 0.0001) and 0.25 (95% CI [0.2;0.3], p < 0.0001), respectively. Our results showed a high negative predictive value (NPV) of 98%, a high specificity of 85% and a sensitivity of 74% based on the cases with US-guided biopsy. Including the cases where the lesion was seen in a second-look automated 3D-US the sensitivity improved to 84% (NPV = 99%, specificity = 85%). The results of this study let us suggest, that automated 3D-US might be a helpful new tool in breast imaging, especially in screening.

  2. Rapid pulse annealing of CdZnTe detectors for reducing electronic noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voss, Lars; Conway, Adam; Nelson, Art

    A combination of doping, rapid pulsed optical and/or thermal annealing, and unique detector structure reduces or eliminates sources of electronic noise in a CdZnTe (CZT) detector. According to several embodiments, methods of forming a detector exhibiting minimal electronic noise include: pulse-annealing at least one surface of a detector comprising CZT for one or more pulses, each pulse having a duration of .about.0.1 seconds or less. The at least one surface may optionally be ion-implanted. In another embodiment, a CZT detector includes a detector surface with two or more electrodes operating at different electric potentials and coupled to the detector surface;more » and one or more ion-implanted CZT surfaces on or in the detector surface, each of the one or more ion-implanted CZT surfaces being independently connected to one of the two or more electrodes and the surface of the detector. At least two of the ion-implanted surfaces are in electrical contact.« less

  3. Maximal isometric muscle strength values obtained By hand-held dynamometry in children between 6 and 15 years of age.

    PubMed

    Escobar, Raul G; Munoz, Karin T; Dominguez, Angelica; Banados, Pamela; Bravo, Maria J

    2017-01-01

    In this study we aimed to determine the maximal isometric muscle strength of a healthy, normal-weight, pediatric population between 6 and 15 years of age using hand-held dynamometry to establish strength reference values. The secondary objective was determining the relationship between strength and anthropometric parameters. Four hundred normal-weight Chilean children, split into 10 age groups, separated by 1-year intervals, were evaluated. Each age group included between 35 and 55 children. The strength values increased with increasing age and weight, with a correlation of 0.83 for age and 0.82 for weight. The results were similar to those reported in previous studies regarding the relationships among strength, age, and anthropometric parameters, but the reported strength differed. These results provide normal strength parameters for healthy and normal-weight Chilean children between 6 and 15 years of age and highlight the relevance of ethnicity in defining reference values for muscle strength in a pediatric population. Muscle Nerve 55: 16-22, 2017. © 2016 Wiley Periodicals, Inc.

  4. Design and performances of a low-noise and radiation-hardened readout ASIC for CdZnTe detectors

    NASA Astrophysics Data System (ADS)

    Bo, Gan; Tingcun, Wei; Wu, Gao; Yongcai, Hu

    2016-06-01

    In this paper, we present the design and performances of a low-noise and radiation-hardened front-end readout application specific integrated circuit (ASIC) dedicated to CdZnTe detectors for a hard X-ray imager in space applications. The readout channel is comprised of a charge sensitive amplifier, a CR-RC shaping amplifier, an analog output buffer, a fast shaper, and a discriminator. An 8-channel prototype ASIC is designed and fabricated in TSMC 0.35-μm mixed-signal CMOS technology, the die size of the prototype chip is 2.2 × 2.2 mm2. The input energy range is from 5 to 350 keV. For this 8-channel prototype ASIC, the measured electrical characteristics are as follows: the overall gain of the readout channel is 210 V/pC, the linearity error is less than 2%, the crosstalk is less than 0.36%, The equivalent noise charge of a typical channel is 52.9 e- at zero farad plus 8.2 e- per picofarad, and the power consumption is less than 2.4 mW/channel. Through the measurement together with a CdZnTe detector, the energy resolution is 5.9% at the 59.5-keV line under the irradiation of the radioactive source 241Am. The radiation effect experiments show that the proposed ASIC can resist the total ionization dose (TID) irradiation of higher than 200 krad(Si). Project supported by the National Key Scientific Instrument and Equipment Development Project (No. 2011YQ040082), the National Natural Science Foundation of China (Nos. 11475136, 11575144, 61176094), and the Shaanxi Natural Science Foundation of China (No. 2015JM1016).

  5. Study of Hand-Held Fire Extinguishers Aboard Civil Aviation Aircraft.

    DTIC Science & Technology

    1982-06-01

    or combustion products of the polymers used in aircraft construction have been found to include carbon monoxide (CO), carbon dioxide (CO ), hydrogen...toxicity rating, and ease of cleanup. The extinguishing agents used in this country for hand portable fire extinguishers are Carbon Dioxide, water, Halon...point where combustion stops." " Carbon dioxide fire extinguishing systems are useful within the limits of this standard in extinguishing fires in

  6. TEMTADS Adjunct Sensor Systems Hand-Held EMI Sensor for Cued UXO Discrimination (ESTCP MR-200807) and Man-Portable EMI Array for UXO Detection and Discrimination (ESTCP MR-200909)

    DTIC Science & Technology

    2012-04-05

    C la ss ifi ca tio n TY PE D ep th (M ) A zi m ut h (D eg re es ) D ip (D eg re es ) 1 2 3...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/ 6110 --12-9401 TEMTADS Adjunct Sensor Systems Hand-held EMI Sensor for Cued UXO...NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 2 . REPORT TYPE1. REPORT DATE (DD-MM-YYYY) 4

  7. Semiconductor films on flexible iridium substrates

    DOEpatents

    Goyal, Amit

    2005-03-29

    A laminate semiconductor article includes a flexible substrate, an optional biaxially textured oxide buffer system on the flexible substrate, a biaxially textured Ir-based buffer layer on the substrate or the buffer system, and an epitaxial layer of a semiconductor. Ir can serve as a substrate with an epitaxial layer of a semiconductor thereon.

  8. 29 CFR 1910.242 - Hand and portable powered tools and equipment, general.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to less than 30 p.s.i. and then only with effective chip guarding and personal protective equipment. ... 29 Labor 5 2011-07-01 2011-07-01 false Hand and portable powered tools and equipment, general... Powered Tools and Other Hand-Held Equipment § 1910.242 Hand and portable powered tools and equipment...

  9. 29 CFR 1910.242 - Hand and portable powered tools and equipment, general.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to less than 30 p.s.i. and then only with effective chip guarding and personal protective equipment. ... 29 Labor 5 2010-07-01 2010-07-01 false Hand and portable powered tools and equipment, general... Powered Tools and Other Hand-Held Equipment § 1910.242 Hand and portable powered tools and equipment...

  10. Roadmap on semiconductor-cell biointerfaces

    NASA Astrophysics Data System (ADS)

    Tian, Bozhi; Xu, Shuai; Rogers, John A.; Cestellos-Blanco, Stefano; Yang, Peidong; Carvalho-de-Souza, João L.; Bezanilla, Francisco; Liu, Jia; Bao, Zhenan; Hjort, Martin; Cao, Yuhong; Melosh, Nicholas; Lanzani, Guglielmo; Benfenati, Fabio; Galli, Giulia; Gygi, Francois; Kautz, Rylan; Gorodetsky, Alon A.; Kim, Samuel S.; Lu, Timothy K.; Anikeeva, Polina; Cifra, Michal; Krivosudský, Ondrej; Havelka, Daniel; Jiang, Yuanwen

    2018-05-01

    This roadmap outlines the role semiconductor-based materials play in understanding the complex biophysical dynamics at multiple length scales, as well as the design and implementation of next-generation electronic, optoelectronic, and mechanical devices for biointerfaces. The roadmap emphasizes the advantages of semiconductor building blocks in interfacing, monitoring, and manipulating the activity of biological components, and discusses the possibility of using active semiconductor-cell interfaces for discovering new signaling processes in the biological world.

  11. THz semiconductor-based front-end receiver technology for space applications

    NASA Technical Reports Server (NTRS)

    Mehdi, Imran; Siegel, Peter

    2004-01-01

    Advances in the design and fabrication of very low capacitance planar Schottky diodes and millimeter-wave power amplifiers, more accurate device and circuit models for commercial 3-D electromagnetic simulators, and the availability of both MEMS and high precision metal machining, have enabled RF engineers to extend traditional waveguide-based sensor and source technologies well into the TI-Iz frequency regime. This short paper will highlight recent progress in realizing THz space-qualified receiver front-ends based on room temperature semiconductor devices.

  12. Effect of hydrogenation on the electrical and optical properties of CdZnTe substrates and HgCdTe epitaxial layers

    NASA Astrophysics Data System (ADS)

    Sitharaman, S.; Raman, R.; Durai, L.; Pal, Surendra; Gautam, Madhukar; Nagpal, Anjana; Kumar, Shiv; Chatterjee, S. N.; Gupta, S. C.

    2005-12-01

    In this paper, we report the experimental observations on the effect of plasma hydrogenation in passivating intrinsic point defects, shallow/deep levels and extended defects in low-resistivity undoped CdZnTe crystals. The optical absorption studies show transmittance improvement in the below gap absorption spectrum. Using variable temperature Hall measurement technique, the shallow defect level on which the penetrating hydrogen makes complex, has been identified. In 'compensated' n-type HgCdTe epitaxial layers, hydrogenation can improve the resistivity by two orders of magnitude.

  13. All-optical XNOR/NOT logic gates and LATCH based on a reflective vertical cavity semiconductor saturable absorber.

    PubMed

    Pradhan, Rajib

    2014-06-10

    This work proposes a scheme of all-optical XNOR/NOT logic gates based on a reflective vertical cavity semiconductor (quantum wells, QWs) saturable absorber (VCSSA). In a semiconductor Fabry-Perot cavity operated with a low-intensity resonance wavelength, both intensity-dependent saturating phase-shift and thermal phase-shift occur, which are considered in the proposed logic operations. The VCSSA-based logics are possible using the saturable behavior of reflectivity under the typical operating conditions. The low-intensity saturable reflectivity is reported for all-optical logic operations where all possible nonlinear phase-shifts are ignored. Here, saturable absorption (SA) and the nonlinear phase-shift-based all-optical XNOR/NOT gates and one-bit memory or LATCH are proposed under new operating conditions. All operations are demonstrated for a VCSSA based on InGaAs/InP QWs. These types of SA-based logic devices can be comfortably used for a signal bit rate of about 10 GHz corresponding to the carrier recovery time of the semiconductor material.

  14. Ion Torren Semiconductor Sequencing Allows Rapid, Low Cost Sequencing of the Human Exome (7th Annual SFAF Meeting, 2012)

    ScienceCinema

    Jenkins, David

    2018-01-10

    David Jenkins on "Ion Torrent semiconductor sequencing allows rapid, low-cost sequencing of the human exome" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  15. Ion Torren Semiconductor Sequencing Allows Rapid, Low Cost Sequencing of the Human Exome (7th Annual SFAF Meeting, 2012)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, David

    David Jenkins on "Ion Torrent semiconductor sequencing allows rapid, low-cost sequencing of the human exome" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  16. Advantages of semiconductor CZT for medical imaging

    NASA Astrophysics Data System (ADS)

    Wagenaar, Douglas J.; Parnham, Kevin; Sundal, Bjorn; Maehlum, Gunnar; Chowdhury, Samir; Meier, Dirk; Vandehei, Thor; Szawlowski, Marek; Patt, Bradley E.

    2007-09-01

    Cadmium zinc telluride (CdZnTe, or CZT) is a room-temperature semiconductor radiation detector that has been developed in recent years for a variety of applications. CZT has been investigated for many potential uses in medical imaging, especially in the field of single photon emission computed tomography (SPECT). CZT can also be used in positron emission tomography (PET) as well as photon-counting and integration-mode x-ray radiography and computed tomography (CT). The principal advantages of CZT are 1) direct conversion of x-ray or gamma-ray energy into electron-hole pairs; 2) energy resolution; 3) high spatial resolution and hence high space-bandwidth product; 4) room temperature operation, stable performance, high density, and small volume; 5) depth-of-interaction (DOI) available through signal processing. These advantages will be described in detail with examples from our own CZT systems. The ability to operate at room temperature, combined with DOI and very small pixels, make the use of multiple, stationary CZT "mini-gamma cameras" a realistic alternative to today's large Anger-type cameras that require motion to obtain tomographic sampling. The compatibility of CZT with Magnetic Resonance Imaging (MRI)-fields is demonstrated for a new type of multi-modality medical imaging, namely SPECT/MRI. For pre-clinical (i.e., laboratory animal) imaging, the advantages of CZT lie in spatial and energy resolution, small volume, automated quality control, and the potential for DOI for parallax removal in pinhole imaging. For clinical imaging, the imaging of radiographically dense breasts with CZT enables scatter rejection and hence improved contrast. Examples of clinical breast images with a dual-head CZT system are shown.

  17. Numerical investigation of metal-semiconductor-insulator-semiconductor passivated hole contacts based on atomic layer deposited AlO x

    NASA Astrophysics Data System (ADS)

    Ke, Cangming; Xin, Zheng; Ling, Zhi Peng; Aberle, Armin G.; Stangl, Rolf

    2017-08-01

    Excellent c-Si tunnel layer surface passivation has been obtained recently in our lab, using atomic layer deposited aluminium oxide (ALD AlO x ) in the tunnel layer regime of 0.9 to 1.5 nm, investigated to be applied for contact passivation. Using the correspondingly measured interface properties, this paper compares the theoretical collection efficiency of a conventional metal-semiconductor (MS) contact on diffused p+ Si to a metal-semiconductor-insulator-semiconductor (MSIS) contact on diffused p+ Si or on undoped n-type c-Si. The influences of (1) the tunnel layer passivation quality at the tunnel oxide interface (Q f and D it), (2) the tunnel layer thickness and the electron and hole tunnelling mass, (3) the tunnel oxide material, and (4) the semiconductor capping layer material properties are investigated numerically by evaluation of solar cell efficiency, open-circuit voltage, and fill factor.

  18. PREFACE: Semiconductor Nanostructures towards Electronic and Optoelectronic Device Applications II (Symposium K, E-MRS 2009 Spring Meeting)

    NASA Astrophysics Data System (ADS)

    Nötzel, Richard

    2009-07-01

    This volume of IOP Conference Series: Materials Science and Engineering contains papers that were presented at the special symposium K at the EMRS 2009 Spring Meeting held 8-12 June in Strasbourg, France, which was entitled 'Semiconductor Nanostructures towards Electronic and Optoelectronic Device Applications II'. Thanks to the broad interest a large variety of quantum dots and quantum wires and related nanostructures and their application in devices could be covered. There was significant progress in the epitaxial growth of semiconductor quantum dots seen in the operation of high-power, as well as mode locked laser diodes and the lateral positioning of quantum dots on patterned substrates or by selective area growth for future single quantum dot based optoelectronic and electronic devices. In the field of semiconductor nanowires high quality, almost twin free structures are now available together with a new degree of freedom for band structure engineering based on alternation of the crystal structure. In the search for Si based light emitting structures, nanocrystals and miniband-related near infrared luminescence of Si/Ge quantum dot superlattices with high quantum efficiency were reported. These highlights, among others, and the engaged discussions of the scientists, engineers and students brought together at the symposium emphasize how active the field of semiconductor nanostructures and their applications in devices is, so that we can look forward to the progress to come. Guest Editor Richard Nötzel COBRA Research Institute Department of Applied Physics Eindhoven University of Technology 5600 MB Eindhoven The Netherlands Tel.: +31 40 247 2047; fax: +31 40 246 1339 E-mail address: r.noetzel@tue.nl

  19. Surface Preparation and Deposited Gate Oxides for Gallium Nitride Based Metal Oxide Semiconductor Devices

    PubMed Central

    Long, Rathnait D.; McIntyre, Paul C.

    2012-01-01

    The literature on polar Gallium Nitride (GaN) surfaces, surface treatments and gate dielectrics relevant to metal oxide semiconductor devices is reviewed. The significance of the GaN growth technique and growth parameters on the properties of GaN epilayers, the ability to modify GaN surface properties using in situ and ex situ processes and progress on the understanding and performance of GaN metal oxide semiconductor (MOS) devices are presented and discussed. Although a reasonably consistent picture is emerging from focused studies on issues covered in each of these topics, future research can achieve a better understanding of the critical oxide-semiconductor interface by probing the connections between these topics. The challenges in analyzing defect concentrations and energies in GaN MOS gate stacks are discussed. Promising gate dielectric deposition techniques such as atomic layer deposition, which is already accepted by the semiconductor industry for silicon CMOS device fabrication, coupled with more advanced physical and electrical characterization methods will likely accelerate the pace of learning required to develop future GaN-based MOS technology.

  20. Beyond textbook illustrations: Hand-held models of ordered DNA and protein structures as 3D supplements to enhance student learning of helical biopolymers.

    PubMed

    Jittivadhna, Karnyupha; Ruenwongsa, Pintip; Panijpan, Bhinyo

    2010-11-01

    Textbook illustrations of 3D biopolymers on printed paper, regardless of how detailed and colorful, suffer from its two-dimensionality. For beginners, computer screen display of skeletal models of biopolymers and their animation usually does not provide the at-a-glance 3D perception and details, which can be done by good hand-held models. Here, we report a study on how our students learned more from using our ordered DNA and protein models assembled from colored computer-printouts on transparency film sheets that have useful structural details. Our models (reported in BAMBED 2009), having certain distinguished features, helped our students to grasp various aspects of these biopolymers that they usually find difficult. Quantitative and qualitative learning data from this study are reported. Copyright © 2010 International Union of Biochemistry and Molecular Biology, Inc.

  1. HgCdTe Growth on 6 cm × 6 cm CdZnTe Substrates for Large-Format Dual-Band Infrared Focal-Plane Arrays

    NASA Astrophysics Data System (ADS)

    Reddy, M.; Peterson, J. M.; Lofgreen, D. D.; Vang, T.; Patten, E. A.; Radford, W. A.; Johnson, S. M.

    2010-07-01

    This paper describes molecular-beam epitaxy growth of mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) dual-band device structures on large-area (6 cm × 6 cm) CdZnTe substrates. Wafer-level composition and defect mapping techniques were used to investigate the limiting mechanisms in improving the cutoff wavelength ( λ c) uniformity and reducing the defect density. Structural quality of epitaxial layers was monitored using etch pit density (EPD) measurements at various depths in the epitaxial layers. Finally, 640 × 480, 20- μm-pixel-pitch dual-band focal-plane arrays (FPAs) were fabricated to demonstrate the overall maturity of growth and fabrication processes of epitaxial layers. The MWIR/LWIR dual-band layers, at optimized growth conditions, show a λ c variation of ±0.15 μm across a 6 cm × 6 cm CdZnTe substrate, a uniform low macrodefect density with an average of 1000 cm-2, and an average EPD of 1.5 × 105 cm-2. FPAs fabricated using these layers show band 1 (MWIR) noise equivalent temperature difference (NETD) operability of 99.94% and band 2 (LWIR) NETD operability of 99.2%, which are among the highest reported to date.

  2. Death caused by ingestion of an ethanol-based hand sanitizer.

    PubMed

    Schneir, Aaron B; Clark, Richard F

    2013-09-01

    The use of hand sanitizer is effective in preventing the transmission of disease. Many hand sanitizers are alcohol-based, and significant intoxications have occurred, often in health care facilities, including the emergency department (ED). We present this case to highlight potential toxicity after the ingestion of an ethanol-based hand sanitizer. A 36-year-old man presented to the ED with ethanol intoxication. Ethanol breath analysis was measured at 278 mg/dL. After 4 h, the patient was less intoxicated and left the ED. Thirty minutes later, he was found apneic and pulseless in the ED waiting room bathroom after having ingested an ethanol-based hand sanitizer. Soon after a brief resuscitation, his serum ethanol was 526 mg/dL. He never regained consciousness and died 7 days later. No other cause of death was found. The case highlights the potential for significant toxicity after the ingestion of a product found throughout health care facilities. Balancing the benefit of hand sanitizers for preventing disease transmission and their potential misuse remains a challenge. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Computer vision-based classification of hand grip variations in neurorehabilitation.

    PubMed

    Zariffa, José; Steeves, John D

    2011-01-01

    The complexity of hand function is such that most existing upper limb rehabilitation robotic devices use only simplified hand interfaces. This is in contrast to the importance of the hand in regaining function after neurological injury. Computer vision technology has been used to identify hand posture in the field of Human Computer Interaction, but this approach has not been translated to the rehabilitation context. We describe a computer vision-based classifier that can be used to discriminate rehabilitation-relevant hand postures, and could be integrated into a virtual reality-based upper limb rehabilitation system. The proposed system was tested on a set of video recordings from able-bodied individuals performing cylindrical grasps, lateral key grips, and tip-to-tip pinches. The overall classification success rate was 91.2%, and was above 98% for 6 out of the 10 subjects. © 2011 IEEE

  4. Semiconductor devices having a recessed electrode structure

    DOEpatents

    Palacios, Tomas Apostol; Lu, Bin; Matioli, Elison de Nazareth

    2015-05-26

    An electrode structure is described in which conductive regions are recessed into a semiconductor region. Trenches may be formed in a semiconductor region, such that conductive regions can be formed in the trenches. The electrode structure may be used in semiconductor devices such as field effect transistors or diodes. Nitride-based power semiconductor devices are described including such an electrode structure, which can reduce leakage current and otherwise improve performance.

  5. Diode having trenches in a semiconductor region

    DOEpatents

    Palacios, Tomas Apostol; Lu, Bin; Matioli, Elison de Nazareth

    2016-03-22

    An electrode structure is described in which conductive regions are recessed into a semiconductor region. Trenches may be formed in a semiconductor region, such that conductive regions can be formed in the trenches. The electrode structure may be used in semiconductor devices such as field effect transistors or diodes. Nitride-based power semiconductor devices are described including such an electrode structure, which can reduce leakage current and otherwise improve performance.

  6. Semiconductor-based, large-area, flexible, electronic devices on {110}<100> oriented substrates

    DOEpatents

    Goyal, Amit

    2014-08-05

    Novel articles and methods to fabricate the same resulting in flexible, oriented, semiconductor-based, electronic devices on {110}<100> textured substrates are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  7. Codoped direct-gap semiconductor scintillators

    DOEpatents

    Derenzo, Stephen Edward [Pinole, CA; Bourret-Courchesne, Edith [Berkeley, CA; Weber, Marvin J [Danville, CA; Klintenberg, Mattias K [Berkeley, CA

    2008-07-29

    Fast, bright inorganic scintillators at room temperature are based on radiative electron-hole recombination in direct-gap semiconductors, e.g. CdS and ZnO. The direct-gap semiconductor is codoped with two different impurity atoms to convert the semiconductor to a fast, high luminosity scintillator. The codopant scheme is based on dopant band to dopant trap recombination. One dopant provides a significant concentration of carriers of one type (electrons or holes) and the other dopant traps carriers of the other type. Examples include CdS:In,Te; CdS:In,Ag; CdS:In,Na; ZnO:Ga,P; ZnO:Ga,N; ZnO:Ga,S; and GaN:Ge,Mg.

  8. Codoped direct-gap semiconductor scintillators

    DOEpatents

    Derenzo, Stephen E.; Bourret-Courchesne, Edith; Weber, Marvin J.; Klintenberg, Mattias K.

    2006-05-23

    Fast, bright inorganic scintillators at room temperature are based on radiative electron-hole recombination in direct-gap semiconductors, e.g. CdS and ZnO. The direct-gap semiconductor is codoped with two different impurity atoms to convert the semiconductor to a fast, high luminosity scintillator. The codopant scheme is based on dopant band to dopant trap recombination. One dopant provides a significant concentration of carriers of one type (electrons or holes) and the other dopant traps carriers of the other type. Examples include CdS:In,Te; CdS:In,Ag; CdS:In,Na; ZnO:Ga,P; ZnO:Ga,N; ZnO:Ga,S; and GaN:Ge,Mg.

  9. An Ultrasensitive Organic Semiconductor NO2 Sensor Based on Crystalline TIPS-Pentacene Films.

    PubMed

    Wang, Zi; Huang, Lizhen; Zhu, Xiaofei; Zhou, Xu; Chi, Lifeng

    2017-10-01

    Organic semiconductor gas sensor is one of the promising candidates of room temperature operated gas sensors with high selectivity. However, for a long time the performance of organic semiconductor sensors, especially for the detection of oxidizing gases, is far behind that of the traditional metal oxide gas sensors. Although intensive attempts have been made to address the problem, the performance and the understanding of the sensing mechanism are still far from sufficient. Herein, an ultrasensitive organic semiconductor NO 2 sensor based on 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-petacene) is reported. The device achieves a sensitivity over 1000%/ppm and fast response/recovery, together with a low limit of detection (LOD) of 20 ppb, all of which reach the level of metal oxide sensors. After a comprehensive analysis on the morphology and electrical properties of the organic films, it is revealed that the ultrahigh performance is largely related to the film charge transport ability, which was less concerned in the studies previously. And the combination of efficient charge transport and low original charge carrier concentration is demonstrated to be an effective access to obtain high performance organic semiconductor gas sensors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Towards the hand-held mass spectrometer: design considerations, simulation, and fabrication of micrometer-scaled cylindrical ion traps

    NASA Astrophysics Data System (ADS)

    Blain, Matthew G.; Riter, Leah S.; Cruz, Dolores; Austin, Daniel E.; Wu, Guangxiang; Plass, Wolfgang R.; Cooks, R. Graham

    2004-08-01

    Breakthrough improvements in simplicity and reductions in the size of mass spectrometers are needed for high-consequence fieldable applications, including error-free detection of chemical/biological warfare agents, medical diagnoses, and explosives and contraband discovery. These improvements are most likely to be realized with the reconceptualization of the mass spectrometer, rather than by incremental steps towards miniaturization. Microfabricated arrays of mass analyzers represent such a conceptual advance. A massively parallel array of micrometer-scaled mass analyzers on a chip has the potential to set the performance standard for hand-held sensors due to the inherit selectivity, sensitivity, and universal applicability of mass spectrometry as an analytical method. While the effort to develop a complete micro-MS system must include innovations in ultra-small-scale sample introduction, ion sources, mass analyzers, detectors, and vacuum and power subsystems, the first step towards radical miniaturization lies in the design, fabrication, and characterization of the mass analyzer itself. In this paper we discuss design considerations and results from simulations of ion trapping behavior for a micrometer scale cylindrical ion trap (CIT) mass analyzer (internal radius r0 = 1 [mu]m). We also present a description of the design and microfabrication of a 0.25 cm2 array of 106 one-micrometer CITs, including integrated ion detectors, constructed in tungsten on a silicon substrate.

  11. PREFACE: Theory, Modelling and Computational methods for Semiconductors

    NASA Astrophysics Data System (ADS)

    Migliorato, Max; Probert, Matt

    2010-04-01

    These conference proceedings contain the written papers of the contributions presented at the 2nd International Conference on: Theory, Modelling and Computational methods for Semiconductors. The conference was held at the St Williams College, York, UK on 13th-15th Jan 2010. The previous conference in this series took place in 2008 at the University of Manchester, UK. The scope of this conference embraces modelling, theory and the use of sophisticated computational tools in Semiconductor science and technology, where there is a substantial potential for time saving in R&D. The development of high speed computer architectures is finally allowing the routine use of accurate methods for calculating the structural, thermodynamic, vibrational and electronic properties of semiconductors and their heterostructures. This workshop ran for three days, with the objective of bringing together UK and international leading experts in the field of theory of group IV, III-V and II-VI semiconductors together with postdocs and students in the early stages of their careers. The first day focused on providing an introduction and overview of this vast field, aimed particularly at students at this influential point in their careers. We would like to thank all participants for their contribution to the conference programme and these proceedings. We would also like to acknowledge the financial support from the Institute of Physics (Computational Physics group and Semiconductor Physics group), the UK Car-Parrinello Consortium, Accelrys (distributors of Materials Studio) and Quantumwise (distributors of Atomistix). The Editors Acknowledgements Conference Organising Committee: Dr Matt Probert (University of York) and Dr Max Migliorato (University of Manchester) Programme Committee: Dr Marco Califano (University of Leeds), Dr Jacob Gavartin (Accelrys Ltd, Cambridge), Dr Stanko Tomic (STFC Daresbury Laboratory), Dr Gabi Slavcheva (Imperial College London) Proceedings edited and compiled by Dr

  12. Micro-fluidic (Lab-on the- Chip) PCR Array Cartridge for Biological Screening in a Hand Held Device: FInal Report for CRADA no 264. PNNL-T2-258-RU with CombiMatrix Corp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rainina, Evguenia I.

    2010-10-31

    The worldwide emergence of both new and old diseases resulting from human expansion and also human and materials mobility has and will continue to place stress on both medical and clinical diagnostics. The classical approach to bioagents detection involves the use of differential metabolic assays to determine species type in the case of most bacteria, or the use of cell culture and electron microscopy to diagnose viruses and some bacteria that are intracellular parasites. The long-term goal in bioagent detection is to develop a hand-held instrument featuring disposable cartridges which contain all the necessary reagents, reaction chambers, waste chambers, andmore » micro-fluidics to extract, concentrate, amplify, and analyze nucleic acids. This GIPP project began development of a sensory platform using nucleic-acid based probes. Although research was not completed, initial findings indicated that an advanced sensing device could theoretically be built on a DNA/RNA-based technology platform.« less

  13. Room-temperature ductile inorganic semiconductor.

    PubMed

    Shi, Xun; Chen, Hongyi; Hao, Feng; Liu, Ruiheng; Wang, Tuo; Qiu, Pengfei; Burkhardt, Ulrich; Grin, Yuri; Chen, Lidong

    2018-05-01

    Ductility is common in metals and metal-based alloys, but is rarely observed in inorganic semiconductors and ceramic insulators. In particular, room-temperature ductile inorganic semiconductors were not known until now. Here, we report an inorganic α-Ag 2 S semiconductor that exhibits extraordinary metal-like ductility with high plastic deformation strains at room temperature. Analysis of the chemical bonding reveals systems of planes with relatively weak atomic interactions in the crystal structure. In combination with irregularly distributed silver-silver and sulfur-silver bonds due to the silver diffusion, they suppress the cleavage of the material, and thus result in unprecedented ductility. This work opens up the possibility of searching for ductile inorganic semiconductors/ceramics for flexible electronic devices.

  14. Room-temperature ductile inorganic semiconductor

    NASA Astrophysics Data System (ADS)

    Shi, Xun; Chen, Hongyi; Hao, Feng; Liu, Ruiheng; Wang, Tuo; Qiu, Pengfei; Burkhardt, Ulrich; Grin, Yuri; Chen, Lidong

    2018-05-01

    Ductility is common in metals and metal-based alloys, but is rarely observed in inorganic semiconductors and ceramic insulators. In particular, room-temperature ductile inorganic semiconductors were not known until now. Here, we report an inorganic α-Ag2S semiconductor that exhibits extraordinary metal-like ductility with high plastic deformation strains at room temperature. Analysis of the chemical bonding reveals systems of planes with relatively weak atomic interactions in the crystal structure. In combination with irregularly distributed silver-silver and sulfur-silver bonds due to the silver diffusion, they suppress the cleavage of the material, and thus result in unprecedented ductility. This work opens up the possibility of searching for ductile inorganic semiconductors/ceramics for flexible electronic devices.

  15. Hand and Power Tools

    DTIC Science & Technology

    1998-01-01

    equipped with a constant- pressure switch or control: drills; tappers; fastener drivers; horizontal, vertical, and angle grinders with wheels more than...hand-held power tools must be equipped with either a positive “on-off” control switch, a constant pressure switch , or a “lock-on” control: disc sanders...percussion tools with no means of holding accessories securely, must be equipped with a constant- pressure switch that will shut off the power when the

  16. Diluted magnetic semiconductor nanowires exhibiting magnetoresistance

    DOEpatents

    Yang, Peidong [El Cerrito, CA; Choi, Heonjin [Seoul, KR; Lee, Sangkwon [Daejeon, KR; He, Rongrui [Albany, CA; Zhang, Yanfeng [El Cerrito, CA; Kuykendal, Tevye [Berkeley, CA; Pauzauskie, Peter [Berkeley, CA

    2011-08-23

    A method for is disclosed for fabricating diluted magnetic semiconductor (DMS) nanowires by providing a catalyst-coated substrate and subjecting at least a portion of the substrate to a semiconductor, and dopant via chloride-based vapor transport to synthesize the nanowires. Using this novel chloride-based chemical vapor transport process, single crystalline diluted magnetic semiconductor nanowires Ga.sub.1-xMn.sub.xN (x=0.07) were synthesized. The nanowires, which have diameters of .about.10 nm to 100 nm and lengths of up to tens of micrometers, show ferromagnetism with Curie temperature above room temperature, and magnetoresistance up to 250 Kelvin.

  17. Effects of a new mild shampoo for preventing hair loss in Asian by a simple hand-held phototrichogram technique.

    PubMed

    Baek, J H; Lee, S Y; Yoo, M; Park, W-S; Lee, S J; Boo, Y C; Koh, J-S

    2011-12-01

    This study was conducted to evaluate the effects of a commercially available shampoo in Korean subjects with alopecia using a simple hand-held phototrichogram technique. Forty-four subjects with alopecia were enrolled and forty subjects continued for 16 weeks. In the test group, total hair counts increased significantly at weeks 8 and 16, and the number of shedding hair significantly decreased at week 16. Terminal hair counts significantly increased at week 8. In the control group, hair thickness and the number of vellus hairs significantly decreased at week 16. The number of total hairs significantly increased in the test group than in the control group at weeks 8 and 16. The number of shedding hairs significantly decreased in the test group than in the control group at week 16. Visual assessment using clinical digital images showed that the number of total hairs appeared to increase although there was no statistical significance. In this study, it was found that the test shampoo could prevent hair loss. © 2011 DERMAPRO Co Ltd. ICS © 2011 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  18. Subjective scaling of hand-arm vibration.

    PubMed

    Maeda, Setsuo; Shibata, Nobuyuki

    2008-04-01

    The purpose of this research was to establish a scale for comfort with regard to hand-arm vibration using the category judgment method and to validate the frequency-weighting method of the ISO 5349-1 standard. Experiments were conducted using random signals as stimuli. These stimuli consisted of three types of signal, namely designated stimulus F, with flat power spectrum density (PSD) ranging from 1 to 1,000 Hz, stimulus H with PSD which became 20 dB higher at 1,000 Hz than at 1 Hz, and stimulus L that had a PSD 20 dB lower at 1,000 Hz. These stimuli were selected from the specific spectrum patterns of hand-held vibration tools. These signals were modified by the Wh frequency weighting in accordance with ISO 5349-1, and the R.M.S. values were adjusted to be equal. In addition, the signal levels were varied over a range of five steps to create 15 kinds of individual stimuli. The subjects sat in front of a vibrator and grasped the mounted handle which exposed them to vertical vibrations after which they were asked to choose a numerical category to best indicate their perceived level of comfort (or otherwise) during each stimulus. From the experimental results of the category judgment method, the relationship between the psychological values and the frequency-weighted R.M.S. acceleration according to the ISO 5349-1 standard was obtained. It was found that the subjective response scaling of hand-arm vibration can be used for design-objective values of hand-held tool vibration.

  19. 26 CFR 1.1223-1 - Determination of period for which capital assets are held.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Gains and Losses § 1.1223-1 Determination of period for which capital assets are held. (a) The holding... determining gain or loss in the hands of the taxpayer as the property exchanged. However, this rule shall... in part in the hands of the taxpayer for determining gain or loss from a sale or exchange as it would...

  20. 26 CFR 1.1223-1 - Determination of period for which capital assets are held.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Gains and Losses § 1.1223-1 Determination of period for which capital assets are held. (a) The holding... determining gain or loss in the hands of the taxpayer as the property exchanged. However, this rule shall... in part in the hands of the taxpayer for determining gain or loss from a sale or exchange as it would...

  1. 26 CFR 1.1223-1 - Determination of period for which capital assets are held.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Gains and Losses § 1.1223-1 Determination of period for which capital assets are held. (a) The holding... determining gain or loss in the hands of the taxpayer as the property exchanged. However, this rule shall... in part in the hands of the taxpayer for determining gain or loss from a sale or exchange as it would...

  2. 26 CFR 1.1223-1 - Determination of period for which capital assets are held.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Gains and Losses § 1.1223-1 Determination of period for which capital assets are held. (a) The holding... determining gain or loss in the hands of the taxpayer as the property exchanged. However, this rule shall... in part in the hands of the taxpayer for determining gain or loss from a sale or exchange as it would...

  3. High-efficiency, thin-film cadmium telluride photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Compaan, A. D.; Bohn, R. G.; Rajakarunanayake, Y.

    1995-08-01

    This report describes work performed to develop and optimize the process of radio frequency (RF) sputtering for the fabrication of thin-film solar cells on glass. The emphasis is on CdTe-related materials including CdTe, CdS, ZnTe, and ternary alloy semiconductors. Pulsed laser physical vapor deposition (LPVD) was used for exploratory work on these materials, especially where alloying or doping are involved, and for the deposition of cadmium chloride layers. For the sputtering work, a two-gun sputtering chamber was implemented, with optical access for monitoring temperature and growth rate. We studied the optical and electrical properties of the plasmas produced by two different kinds of planar magnetron sputter guns with different magnetic field configurations and strengths. Using LPVD, we studied alloy semiconductors such as CdZnTe and heavily doped semiconductors such as ZnTe:Cu for possible incorporation into graded band gap CdTe-based photovoltaic devices.

  4. Cascadable all-optical inverter based on a nonlinear vertical-cavity semiconductor optical amplifier.

    PubMed

    Zhang, Haijiang; Wen, Pengyue; Esener, Sadik

    2007-07-01

    We report, for the first time to our knowledge, the operation of a cascadable, low-optical-switching-power(~10 microW) small-area (~100 microm(2)) high-speed (80 ps fall time) all-optical inverter. This inverter employs cross-gain modulation, polarization gain anisotropy, and highly nonlinear gain characteristics of an electrically pumped vertical-cavity semiconductor optical amplifier (VCSOA). The measured transfer characteristics of such an optical inverter resemble those of standard electronic metal-oxide semiconductor field-effect transistor-based inverters exhibiting high noise margin and high extinction ratio (~9.3 dB), making VCSOAs an ideal building block for all-optical logic and memory.

  5. Monolithic in-based III-V compound semiconductor focal plane array cell with single stage CCD output

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Cunningham, Thomas J. (Inventor); Krabach, Timothy N. (Inventor); Staller, Craig O. (Inventor)

    1994-01-01

    A monolithic semiconductor imager includes an indium-based III-V compound semiconductor monolithic active layer of a first conductivity type, an array of plural focal plane cells on the active layer, each of the focal plane cells including a photogate over a top surface of the active layer, a readout circuit dedicated to the focal plane cell including plural transistors formed monolithically with the monolithic active layer and a single-stage charge coupled device formed monolithically with the active layer between the photogate and the readout circuit for transferring photo-generated charge accumulated beneath the photogate during an integration period to the readout circuit. The photogate includes thin epitaxial semiconductor layer of a second conductivity type overlying the active layer and an aperture electrode overlying a peripheral portion of the thin epitaxial semiconductor layer, the aperture electrode being connectable to a photogate bias voltage.

  6. Plasmonic doped semiconductor nanocrystals: Properties, fabrication, applications and perspectives

    NASA Astrophysics Data System (ADS)

    Kriegel, Ilka; Scotognella, Francesco; Manna, Liberato

    2017-02-01

    Degenerately doped semiconductor nanocrystals (NCs) are of recent interest to the NC community due to their tunable localized surface plasmon resonances (LSPRs) in the near infrared (NIR). The high level of doping in such materials with carrier densities in the range of 1021cm-3 leads to degeneracy of the doping levels and intense plasmonic absorption in the NIR. The lower carrier density in degenerately doped semiconductor NCs compared to noble metals enables LSPR tuning over a wide spectral range, since even a minor change of the carrier density strongly affects the spectral position of the LSPR. Two classes of degenerate semiconductors are most relevant in this respect: impurity doped semiconductors, such as metal oxides, and vacancy doped semiconductors, such as copper chalcogenides. In the latter it is the density of copper vacancies that controls the carrier concentration, while in the former the introduction of impurity atoms adds carriers to the system. LSPR tuning in vacancy doped semiconductor NCs such as copper chalcogenides occurs by chemically controlling the copper vacancy density. This goes in hand with complex structural modifications of the copper chalcogenide crystal lattice. In contrast the LSPR of degenerately doped metal oxide NCs is modified by varying the doping concentration or by the choice of host and dopant atoms, but also through the addition of capacitive charge carriers to the conduction band of the metal oxide upon post-synthetic treatments, such as by electrochemical- or photodoping. The NIR LSPRs and the option of their spectral fine-tuning make accessible important new features, such as the controlled coupling of the LSPR to other physical signatures or the enhancement of optical signals in the NIR, sensing application by LSPR tracking, energy production from the NIR plasmon resonance or bio-medical applications in the biological window. In this review we highlight the recent advances in the synthesis of various different plasmonic

  7. High-Energy 3D Calorimeter for Use in Gamma-Ray Astronomy Based on Position-Sensitive Virtual Frisch-Grid CdZnTe Detectors

    NASA Technical Reports Server (NTRS)

    Moiseev, A.; Bolotnikov, A.; DeGeronimo, G.; Hays, E.; James, R.; Thompson, D.; Vernon, E.

    2017-01-01

    We will present a concept for a calorimeter based on a novel approach of 3D position-sensitive virtual Frisch-grid CdZnTe (hereafter CZT) detectors. This calorimeter aims to measure photons with energies from approximately 100 keV to 20 - 50 MeV . The expected energy resolution at 662 keV is better than 1% FWHM, and the photon interaction position-measurement accuracy is better than 1 mm in all 3 dimensions. Each CZT bar is a rectangular prism with typical cross-section from 5 x 5 to 7 x 7 mm2 and length of 2 - 4 cm. The bars are arranged in modules of 4 x 4 bars, and the modules themselves can be assembled into a larger array. The 3D virtual voxel approach solves a long-standing problem with CZT detectors associated with material imperfections that limit the performance and usefulness of relatively thick detectors (i.e., greater than 1 cm). Also, it allows us to use the standard (unselected) grade crystals, while achieving the energy resolution of the premium detectors and thus substantially reducing the cost of the instrument. Such a calorimeter can be successfully used in space telescopes that use Compton scattering of gamma rays, such as AMEGO, serving as part of its calorimeter and providing the position and energy measurement for Compton-scattered photons (like a focal plane detector in a Compton camera). Also, it could provide suitable energy resolution to allow for spectroscopic measurements of gamma ray lines from nuclear decays.

  8. High-energy 3D calorimeter for use in gamma-ray astronomy based on position-sensitive virtual Frisch-grid CdZnTe detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moiseev, Alexander; Bolotnikov, A.; DeGeronimo, G.

    Here, we will present a concept for a calorimeter based on a novel approach of 3D position-sensitive virtual Frisch-grid CdZnTe (hereafter CZT) detectors. This calorimeter aims to measure photons with energies from ~100 keV to 20–50 MeV . The expected energy resolution at 662 keV is better than 1% FWHM, and the photon interaction position-measurement accuracy is better than 1 mm in all 3 dimensions. Each CZT bar is a rectangular prism with typical cross-section from 5×5 to 7×7 mm 2 and length of 2–4 cm. The bars are arranged in modules of 4×4 bars, and the modules themselves canmore » be assembled into a larger array. The 3D virtual voxel approach solves a long-standing problem with CZT detectors associated with material imperfections that limit the performance and usefulness of relatively thick detectors (i.e., >1 cm). Also, it allows us to use the standard (unselected) grade crystals, while achieving the energy resolution of the premium detectors and thus substantially reducing the cost of the instrument. Such a calorimeter can be successfully used in space telescopes that use Compton scattering of γ-rays, such as AMEGO, serving as part of its calorimeter and providing the position and energy measurement for Compton-scattered photons (like a focal plane detector in a Compton camera). Also, it could provide suitable energy resolution to allow for spectroscopic measurements of γ-ray lines from nuclear decays.« less

  9. High-energy 3D calorimeter for use in gamma-ray astronomy based on position-sensitive virtual Frisch-grid CdZnTe detectors

    DOE PAGES

    Moiseev, Alexander; Bolotnikov, A.; DeGeronimo, G.; ...

    2017-12-19

    Here, we will present a concept for a calorimeter based on a novel approach of 3D position-sensitive virtual Frisch-grid CdZnTe (hereafter CZT) detectors. This calorimeter aims to measure photons with energies from ~100 keV to 20–50 MeV . The expected energy resolution at 662 keV is better than 1% FWHM, and the photon interaction position-measurement accuracy is better than 1 mm in all 3 dimensions. Each CZT bar is a rectangular prism with typical cross-section from 5×5 to 7×7 mm 2 and length of 2–4 cm. The bars are arranged in modules of 4×4 bars, and the modules themselves canmore » be assembled into a larger array. The 3D virtual voxel approach solves a long-standing problem with CZT detectors associated with material imperfections that limit the performance and usefulness of relatively thick detectors (i.e., >1 cm). Also, it allows us to use the standard (unselected) grade crystals, while achieving the energy resolution of the premium detectors and thus substantially reducing the cost of the instrument. Such a calorimeter can be successfully used in space telescopes that use Compton scattering of γ-rays, such as AMEGO, serving as part of its calorimeter and providing the position and energy measurement for Compton-scattered photons (like a focal plane detector in a Compton camera). Also, it could provide suitable energy resolution to allow for spectroscopic measurements of γ-ray lines from nuclear decays.« less

  10. Prevalence of Hand-transmitted Vibration Exposure among Grass-cutting Workers using Objective and Subjective Measures

    NASA Astrophysics Data System (ADS)

    Azmir, N. A.; Yahya, M. N.

    2017-01-01

    Extended exposure to hand-transmitted vibration from vibrating machine is associated with an increased occurrence of symptoms of occupational disease related to hand disorder. The present case study is to determine the prevalence and correlation of significant subjective as well as objective variables that induce to hand arm vibration syndrome (HAVS) among hand-held grass-cutting workers in Malaysia. Thus, recommendations are made for grass-cutting workers and grass maintenance service management based on findings. A cross sectional study using adopted subjective Hand Arm Vibration Exposure Risk Assessment (HAVERA) questionnaire from Vibration Injury Network on hand disorder signs and symptoms was distributed to a sample of one hundred and sixty eight male workers from grass and turf maintenance industry that use vibrating machine as part of their work. For objective measure, hand-transmitted vibration measurement was collected on site during operation by the following ISO 5349-1, 2001. Two groups were identified in this research comprising of high exposure group and low-moderate exposure group. Workers also gave information about their personal identification, social history, workers’ health, occupational history and machine safety inspection. There was positive HAVS symptoms relationship between the low-moderate exposure group and high exposure group among hand-held grass-cutting workers. The prevalence ratio (PR) was considered high for experiencing white colour change at fingers and fingers go numb which are 3.63 (1.41 to 9.39) and 4.24 (2.18 to 8.27), respectively. The estimated daily vibration exposure, A(8) differs between 2.1 to 20.7 ms-2 for right hand while 2.7 to 29.1 ms-2 for left hand. The subjects claimed that the feel of numbness at left hand is much stronger compared to right hand. The results suggest that HAVS is diagnosed in Malaysia especially in agriculture sector. The A(8) indicates that the exposure value is more than exposure limit value

  11. Survey of attitudes and practices of Irish nursing students towards hand hygiene, including handrubbing with alcohol-based hand rub.

    PubMed

    Kingston, Liz M; O'Connell, Nuala H; Dunne, Colum P

    2017-05-01

    Hand hygiene is widely recognised as the most important measure a healthcare worker can take in preventing the spread of healthcare associated infections. As a member of the healthcare team, nursing students have direct patient contact during clinical practice; hence, good hand hygiene practice among nursing students is essential. Low to moderate levels of hand hygiene knowledge and poor attitudes and practices are reported among nursing students. However, less is known about their attitudes and practices of handrubbing with ABHR, even though handrubbing is the recommended optimum practice in most situations. The aim of this study was to explore attitudes and practices of hand hygiene, in particular handrubbing with alcohol-based hand rub, among nursing students in Ireland. This survey employed a descriptive, self-report design using a questionnaire to gather data. It was administered electronically to all undergraduate nursing students (n=342) in the Department of Nursing and Midwifery at the University of Limerick, Ireland in March and April 2015. Response rate was 66%. Attitudes towards hand hygiene were generally positive. Compliance with hand hygiene after contact with body fluid was high (99.5%) and before a clean or aseptic procedure (98.5%). However, suboptimal practices emerged, before touching a patient (85%), after touching a patient (87%) and after touching patients' surroundings (61%), with first year students more compliant than fourth year students. 16% of students were not aware of the clinical contraindications for using alcohol-based hand rub and 9% did not know when to use soap and water and when to use alcohol-based hand rub. Educators and practitioners play an important role in ensuring that nursing students develop appropriate attitudes towards hand hygiene and engage in optimal handrubbing practices. Raising awareness among nursing students of their responsibility in preventing the occurrence and reducing the transmission of HCAI as an on

  12. Healthcare personnel perceptions of hand hygiene monitoring technology.

    PubMed

    Ellingson, Katherine; Polgreen, Philip M; Schneider, Amy; Shinkunas, Laura; Kaldjian, Lauris C; Wright, Donald; Thomas, Geb W; Segre, Alberto M; Herman, Ted; McDonald, L Clifford; Sinkowitz-Cochran, Ronda

    2011-11-01

    To assess healthcare personnel (HCP) perceptions regarding implementation of sensor-based electronic systems for automated hand hygiene adherence monitoring. Using a mixed-methods approach, structured focus groups were designed to elicit quantitative and qualitative responses on familiarity, comfort level, and perceived impact of sensor-based hand hygiene adherence monitoring. A university hospital, a Veterans Affairs hospital, and a community hospital in the Midwest. Focus groups were homogenous by HCP type, with separate groups held for leadership, midlevel management, and frontline personnel at each hospital. Overall, 89 HCP participated in 10 focus groups. Levels of familiarity and comfort with electronic oversight technology varied by HCP type; when compared with frontline HCP, those in leadership positions were significantly more familiar with ([Formula: see text]) and more comfortable with ([Formula: see text]) the technology. The most common concerns cited by participants across groups included lack of accuracy in the data produced, such as the inability of the technology to assess the situational context of hand hygiene opportunities, and the potential punitive use of data produced. Across groups, HCP had decreased tolerance for electronic collection of spatial-temporal data, describing such oversight as Big Brother. While substantial concerns were expressed by all types of HCP, participants' recommendations for effective implementation of electronic oversight technologies for hand hygiene monitoring included addressing accuracy issues before implementation and transparent communication with frontline HCP about the intended use of the data.

  13. Surgical hand disinfection with a propanol-based hand rub: equivalence of shorter application times.

    PubMed

    Kampf, G; Ostermeyer, C; Heeg, P

    2005-04-01

    The aim of this study was to determine the efficacy of a propanol-based hand rub at application times shorter than 3 min. The bacterial pre-value was obtained from the finger tips (prEN 12791). Subjects treated their hands with the reference procedure (n-propanol, 60%) for 3 min or the product (crossover design). Sterillium was applied for 3, 2, 1.5 and 1 min. Four other preparations were tested for 1 min. Post-values (immediate effect) were taken from one hand, and the other hand was gloved for 3h. After the gloves were removed, the second post-value was taken (sustained effect). Sterillium was more effective than the reference procedure at 3, 2 and 1.5 min (immediate and sustained effect). The immediate effect after 1 min was significantly lower [mean log(10) reduction factor (RF): 1.91+/-0.90 vs. 2.52+/-0.95; P=0.001], whereas the sustained effect was not (mean RF: 1.81+/-1.06 vs. 2.05+/-1.14; P=0.204). All other preparations failed the efficacy requirement at 1 min for both the immediate and sustained effect. Using 2 x 3 mL Sterillium for a total of 1.5 min for surgical hand disinfection was at least as effective as the 3-min reference disinfection.

  14. [Design of hand-held heart rate variability acquisition and analysis system].

    PubMed

    Li, Kaiyuan; Wang, Buqing; Wang, Weidong

    2012-07-01

    A design of handheld heart rate variability acquisition and analysis system is proposed. The system collects and stores the patient's ECG every five minutes through both hands touching on the electrodes, and then -uploads data to a PC through USB port. The system uses software written in LabVIEW to analyze heart rate variability parameters, The parameters calculated function is programmed and generated to components in Matlab.

  15. Surface Stability and Growth Kinetics of Compound Semiconductors: An Ab Initio-Based Approach

    PubMed Central

    Kangawa, Yoshihiro; Akiyama, Toru; Ito, Tomonori; Shiraishi, Kenji; Nakayama, Takashi

    2013-01-01

    We review the surface stability and growth kinetics of III-V and III-nitride semiconductors. The theoretical approach used in these studies is based on ab initio calculations and includes gas-phase free energy. With this method, we can investigate the influence of growth conditions, such as partial pressure and temperature, on the surface stability and growth kinetics. First, we examine the feasibility of this approach by comparing calculated surface phase diagrams of GaAs(001) with experimental results. In addition, the Ga diffusion length on GaAs(001) during molecular beam epitaxy is discussed. Next, this approach is systematically applied to the reconstruction, adsorption and incorporation on various nitride semiconductor surfaces. The calculated results for nitride semiconductor surface reconstructions with polar, nonpolar, and semipolar orientations suggest that adlayer reconstructions generally appear on the polar and the semipolar surfaces. However, the stable ideal surface without adsorption is found on the nonpolar surfaces because the ideal surface satisfies the electron counting rule. Finally, the stability of hydrogen and the incorporation mechanisms of Mg and C during metalorganic vapor phase epitaxy are discussed. PMID:28811438

  16. Human-Computer Interaction Based on Hand Gestures Using RGB-D Sensors

    PubMed Central

    Palacios, José Manuel; Sagüés, Carlos; Montijano, Eduardo; Llorente, Sergio

    2013-01-01

    In this paper we present a new method for hand gesture recognition based on an RGB-D sensor. The proposed approach takes advantage of depth information to cope with the most common problems of traditional video-based hand segmentation methods: cluttered backgrounds and occlusions. The algorithm also uses colour and semantic information to accurately identify any number of hands present in the image. Ten different static hand gestures are recognised, including all different combinations of spread fingers. Additionally, movements of an open hand are followed and 6 dynamic gestures are identified. The main advantage of our approach is the freedom of the user's hands to be at any position of the image without the need of wearing any specific clothing or additional devices. Besides, the whole method can be executed without any initial training or calibration. Experiments carried out with different users and in different environments prove the accuracy and robustness of the method which, additionally, can be run in real-time. PMID:24018953

  17. The use of hand-held 35 mm color infrared imagery for estimates of suspended solids - A progress report. [in water pollution monitoring

    NASA Technical Reports Server (NTRS)

    Miller, W. F.; Whisler, F. D.; Robinette, H. R.; Finnie, D.; Cannon, T.

    1975-01-01

    A cost-effective aerial surveillance technique is proposed for detection and identification of suspended solids which would be operational for both governmental monitoring organizations and private individuals operating catfish farms. Sixteen catfish ponds were flown daily for seven days using two hand-held 35 mm cameras with both Kodachrome X and Ektachrome infrared film. Hue, value, and chroma designations were recorded for each pond on each date by three interpreters, and the accepted color was that recorded by at least two of the interpreters, or if there was a three hue range, the median was accepted. Relations between suspended solids and color designations were analyzed graphically, and chroma was discarded due to an apparent lack of correlation. The data obtained were then analyzed by multiple regression. Significant correlations were revealed between hue and value and total and inorganic suspended solids. If perfected, this technique could be developed to sufficent accuracy for large-scale reconnaissance surveys to monitor the quality of rivers and streams.

  18. Towards objective hand hygiene technique assessment: validation of the ultraviolet-dye-based hand-rubbing quality assessment procedure.

    PubMed

    Lehotsky, Á; Szilágyi, L; Bánsághi, S; Szerémy, P; Wéber, G; Haidegger, T

    2017-09-01

    Ultraviolet spectrum markers are widely used for hand hygiene quality assessment, although their microbiological validation has not been established. A microbiology-based assessment of the procedure was conducted. Twenty-five artificial hand models underwent initial full contamination, then disinfection with UV-dyed hand-rub solution, digital imaging under UV-light, microbiological sampling and cultivation, and digital imaging of the cultivated flora were performed. Paired images of each hand model were registered by a software tool, then the UV-marked regions were compared with the pathogen-free sites pixel by pixel. Statistical evaluation revealed that the method indicates correctly disinfected areas with 95.05% sensitivity and 98.01% specificity. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  19. Characterization of a high performance ultra-thin heat pipe cooling module for mobile hand held electronic devices

    NASA Astrophysics Data System (ADS)

    Ahamed, Mohammad Shahed; Saito, Yuji; Mashiko, Koichi; Mochizuki, Masataka

    2017-11-01

    In recent years, heat pipes have been widely used in various hand held mobile electronic devices such as smart phones, tablet PCs, digital cameras. With the development of technology these devices have different user friendly features and applications; which require very high clock speeds of the processor. In general, a high clock speed generates a lot of heat, which needs to be spreaded or removed to eliminate the hot spot on the processor surface. However, it is a challenging task to achieve proper cooling of such electronic devices mentioned above because of their confined spaces and concentrated heat sources. Regarding this challenge, we introduced an ultra-thin heat pipe; this heat pipe consists of a special fiber wick structure named as "Center Fiber Wick" which can provide sufficient vapor space on the both sides of the wick structure. We also developed a cooling module that uses this kind of ultra-thin heat pipe to eliminate the hot spot issue. This cooling module consists of an ultra-thin heat pipe and a metal plate. By changing the width, the flattened thickness and the effective length of the ultra-thin heat pipe, several experiments have been conducted to characterize the thermal properties of the developed cooling module. In addition, other experiments were also conducted to determine the effects of changes in the number of heat pipes in a single module. Characterization and comparison of the module have also been conducted both experimentally and theoretically.

  20. A Novel Defect Inspection Method for Semiconductor Wafer Based on Magneto-Optic Imaging

    NASA Astrophysics Data System (ADS)

    Pan, Z.; Chen, L.; Li, W.; Zhang, G.; Wu, P.

    2013-03-01

    The defects of semiconductor wafer may be generated from the manufacturing processes. A novel defect inspection method of semiconductor wafer is presented in this paper. The method is based on magneto-optic imaging, which involves inducing eddy current into the wafer under test, and detecting the magnetic flux associated with eddy current distribution in the wafer by exploiting the Faraday rotation effect. The magneto-optic image being generated may contain some noises that degrade the overall image quality, therefore, in this paper, in order to remove the unwanted noise present in the magneto-optic image, the image enhancement approach using multi-scale wavelet is presented, and the image segmentation approach based on the integration of watershed algorithm and clustering strategy is given. The experimental results show that many types of defects in wafer such as hole and scratch etc. can be detected by the method proposed in this paper.

  1. Glucose concentration in capillary blood of dairy cows obtained by a minimally invasive lancet technique and determined with three different hand-held devices.

    PubMed

    Mair, B; Drillich, M; Klein-Jöbstl, D; Kanz, P; Borchardt, S; Meyer, L; Schwendenwein, I; Iwersen, M

    2016-02-24

    Dairy cows have a massive demand for glucose at the onset of lactation. A poor adaption to this period leads to an excessive negative energy balance with an increased risk for ketosis and impaired animal health and production. Besides the measurement of ketones, analysing the glucose concentration in blood is reported as helpful instrument for diagnosis and differentiation of ketosis. Monitoring metabolic parameters requires multiple blood sampling. In other species, new blood sampling techniques have been introduced in which small amounts of blood are rapidly analysed using electronic hand-held devices. The objective of this study was to evaluate the suitability of capillary blood for blood glucose measurement in dairy cows using the hand-held devices FreeStyle Precision (FSP, Abbott), GlucoMen LX Plus (GLX, A. Menarini) and the WellionVet GLUCO CALEA, (WGC, MED TRUST). In total, 240 capillary blood samples were obtained from dry and fresh lactating Holstein-Friesian cows. Blood was collected from the skin of the exterior vulva by using a lancet. For method comparison, additional blood samples were taken from a coccygeal vessel and analyzed in a laboratory. Glucose concentrations measured by a standard laboratory method were defined as the criterion standard. The Pearson correlation coefficients between the glucose concentrations analyzed in capillary blood with the devices and the reference were 73% for the FSP, 81% for the GLX and 41% for the WGC. Bland-Altman plots showed biases of -18.8 mg/dL for the FSP, -11.2 mg/dL for the GLX and +20.82 mg/dL for the WGC. The optimized threshold determined by a Receiver Operating Characteristics analysis to detect hyperglycemia using the FSP was 43 mg/dL with a sensitivity (Se) and specificity (Sp) of 76 and 80%. Using the GLX and WGC optimized thresholds were 49 mg/dL (Se = 92%, Sp = 85%) and 95 mg/dL (Se = 39%, Sp = 92%). The results of this study demonstrate good performance characteristics for the GLX

  2. Induced radioactivity in the forward shielding and semiconductor tracker of the ATLAS detector.

    PubMed

    Bĕdajánek, I; Linhart, V; Stekl, I; Pospísil, S; Kolros, A; Kovalenko, V

    2005-01-01

    The radioactivity induced in the forward shielding, copper collimator and semiconductor tracker modules of the ATLAS detector has been studied. The ATLAS detector is a long-term experiment which, during operation, will require to have service and access to all of its parts and components. The radioactivity induced in the forward shielding was calculated by Monte Carlo methods based on GEANT3 software tool. The results show that the equivalent dose rates on the outer surface of the forward shielding are very low (at most 0.038 microSv h(-1)). On the other hand, the equivalent dose rates are significantly higher on the inner surface of the forward shielding (up to 661 microSv h(-1)) and, especially, at the copper collimator close to the beampipe (up to 60 mSv h(-1)). The radioactivity induced in the semiconductor tracker modules was studied experimentally. The module was activated by neutrons in a training nuclear reactor and the delayed gamma ray spectra were measured. From these measurements, the equivalent dose rate on the surface of the semiconductor tracker module was estimated to be < 100 microSv h(-1) after 100 d of Large Hadron Collider (LHC) operation and 10 d of cooling.

  3. Enhancing Hole Mobility in III-V Semiconductors

    DTIC Science & Technology

    2012-05-21

    acteristics of the digital superlattice (n¼1,0, andþ 1) that was used in the metamorphic buffer. The GaSb channel peak gets buried in the n¼ 0...materials have been used for a variety of analog and high frequency applications driven by the high electron mobilities in III-V materials. On the other...hand, the hole mobility in III-V materials has always lagged compared to group-IV semiconductors such as germanium. In this paper, we explore the use

  4. Semiconductor Laser Low Frequency Noise Characterization

    NASA Technical Reports Server (NTRS)

    Maleki, Lute; Logan, Ronald T.

    1996-01-01

    This work summarizes the efforts in identifying the fundamental noise limit in semiconductor optical sources (lasers) to determine the source of 1/F noise and it's associated behavior. In addition, the study also addresses the effects of this 1/F noise on RF phased arrays. The study showed that the 1/F noise in semiconductor lasers has an ultimate physical limit based upon similar factors to fundamental noise generated in other semiconductor and solid state devices. The study also showed that both additive and multiplicative noise can be a significant detriment to the performance of RF phased arrays especially in regard to very low sidelobe performance and ultimate beam steering accuracy. The final result is that a noise power related term must be included in a complete analysis of the noise spectrum of any semiconductor device including semiconductor lasers.

  5. Hand and goods judgment algorithm based on depth information

    NASA Astrophysics Data System (ADS)

    Li, Mingzhu; Zhang, Jinsong; Yan, Dan; Wang, Qin; Zhang, Ruiqi; Han, Jing

    2016-03-01

    A tablet computer with a depth camera and a color camera is loaded on a traditional shopping cart. The inside information of the shopping cart is obtained by two cameras. In the shopping cart monitoring field, it is very important for us to determine whether the customer with goods in or out of the shopping cart. This paper establishes a basic framework for judging empty hand, it includes the hand extraction process based on the depth information, process of skin color model building based on WPCA (Weighted Principal Component Analysis), an algorithm for judging handheld products based on motion and skin color information, statistical process. Through this framework, the first step can ensure the integrity of the hand information, and effectively avoids the influence of sleeve and other debris, the second step can accurately extract skin color and eliminate the similar color interference, light has little effect on its results, it has the advantages of fast computation speed and high efficiency, and the third step has the advantage of greatly reducing the noise interference and improving the accuracy.

  6. The CdZnTe Detector with Slit Collimator for Measure Distribution of the Specific Activity Radionuclide in the Ground

    NASA Astrophysics Data System (ADS)

    Stepanov, V. E.; Volkovich, A. G.; Potapov, V. N.; Semin, I. A.; Stepanov, A. V.; Simirskii, Iu. N.

    2018-01-01

    From 2011 in the NRC "Kurchatov Institute" carry out the dismantling of the MR multiloop research reactor. Now the reactor and all technological equipment in the premises of the reactor were dismantled. Now the measurements of radioactive contamination in the reactor premises are made. The most contaminated parts of premises - floor and the ground beneath it. To measure the distribution of specific activity in the ground the CdZnTe detector (volume 500MM3) was used. Detector placed in a lead shielding with a slit collimation hole. The upper part of shielding is made movable to close and open the slit of the collimator. At each point two measurements carried out: with open and closed collimator. The software for determination specific activity of radionuclides in ground was developed. The mathematical model of spectrometric system based on the Monte-Carlo method. Measurements of specific activity of ground were made. Using the results of measurements the thickness of the removed layer of ground and the amount of radioactive waste were calculated.

  7. The reliability and validity of measurements of human dental casts made by an intra-oral 3D scanner, with conventional hand-held digital callipers as the comparison measure.

    PubMed

    Rajshekar, Mithun; Julian, Roberta; Williams, Anne-Marie; Tennant, Marc; Forrest, Alex; Walsh, Laurence J; Wilson, Gary; Blizzard, Leigh

    2017-09-01

    Intra-oral 3D scanning of dentitions has the potential to provide a fast, accurate and non-invasive method of recording dental information. The aim of this study was to assess the reliability of measurements of human dental casts made using a portable intra-oral 3D scanner appropriate for field use. Two examiners each measured 84 tooth and 26 arch features of 50 sets of upper and lower human dental casts using digital hand-held callipers, and secondly using the measuring tool provided with the Zfx IntraScan intraoral 3D scanner applied to the virtual dental casts. The measurements were repeated at least one week later. Reliability and validity were quantified concurrently by calculation of intra-class correlation coefficients (ICC) and standard errors of measurement (SEM). The measurements of the 110 landmark features of human dental casts made using the intra-oral 3D scanner were virtually indistinguishable from measurements of the same features made using conventional hand-held callipers. The difference of means as a percentage of the average of the measurements by each method ranged between 0.030% and 1.134%. The intermethod SEMs ranged between 0.037% and 0.535%, and the inter-method ICCs ranged between 0.904 and 0.999, for both the upper and the lower arches. The inter-rater SEMs were one-half and the intra-method/rater SEMs were one-third of the inter-method values. This study demonstrates that the Zfx IntraScan intra-oral 3D scanner with its virtual on-screen measuring tool is a reliable and valid method for measuring the key features of dental casts. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. 2D Semiconductors for Valley-Polarized LEDs and Photodetectors

    NASA Astrophysics Data System (ADS)

    Yu, Ting

    The recently discovered two-dimensional (2D) semiconductors, such as transitional-metal-dichalcogenide monolayers, have aroused great interest due to the underlying quantum physics and the appealing optoelectronic applications like atomically thin light-emitting diodes (LEDs) and photodetectors. On the one hand, valley-polarized electroluminescence and photocurrent from such monolayers have not caused enough attention but highly demanded as building blocks for the new generation valleytronic applications. On the other hand, most reports on these devices are based on the mechanically exfoliated small samples. Considering real applications, a strategy which could offer mass-product and high compatibility to the current planar processes is greatly demanded. Large-area samples prepared by chemical vapour deposition (CVD) are perfect candidates towards such a goal. Here, we report electrically tunable valley-polarized electroluminescence and the selective spin-valley-coupled photocurrent in optoelectronic devices based on monolayer WS2 and MoS2 grown by CVD, exhibiting large electroluminescence and photocurrent dichroisms of 81% and 60%, respectively. The controllable valley polarization and emission components of the electroluminescence have been realized by varying electrical injection of carriers. For the observed helicity-dependent photocurrent, the circular photogalvanic effect at resonant excitations has been found to take the dominant responsibility.

  9. Comparison of a digital and an optical analogue hand-held refractometer for the measurement of canine urine specific gravity.

    PubMed

    Paris, J K; Bennett, A D; Dodkin, S J; Gunn-Moore, D A

    2012-05-05

    Urine specific gravity (USG) is used clinically as a measure of urine concentration, and is routinely assessed by refractometry. A comparison between optical analogue and digital refractometers for evaluation of canine urine has not been reported. The aim of this study was to compare a digital and an optical analogue hand-held refractometer for the measurement of canine USG, and to assess correlation with urine osmolality. Prospective study. Free-catch urine samples were collected from 285 hospitalised adult dogs, and paired USG readings were obtained with a digital and an optical analogue refractometer. In 50 dogs, urine osmolality was also measured using a freezing point depression osmometer. There was a small but statistically significant difference between the two refractometers (P<0.001), with the optical analogue refractometer reading higher than the digital refractometer (mean difference 0.0006, sd 0.0012). Paired refractometer measurements varied by <0.002 in 91.5 per cent of cases. The optical analogue and digital refractometer readings showed excellent correlation with osmolality (r=0.980 and r=0.977, respectively, P<0.001 in both cases). Despite statistical significance, the difference between the two refractometers is unlikely to be clinically significant. Both instruments provide an accurate assessment of USG in dogs.

  10. Comparison of CdZnTe neutron detector models using MCNP6 and Geant4

    NASA Astrophysics Data System (ADS)

    Wilson, Emma; Anderson, Mike; Prendergasty, David; Cheneler, David

    2018-01-01

    The production of accurate detector models is of high importance in the development and use of detectors. Initially, MCNP and Geant were developed to specialise in neutral particle models and accelerator models, respectively; there is now a greater overlap of the capabilities of both, and it is therefore useful to produce comparative models to evaluate detector characteristics. In a collaboration between Lancaster University, UK, and Innovative Physics Ltd., UK, models have been developed in both MCNP6 and Geant4 of Cadmium Zinc Telluride (CdZnTe) detectors developed by Innovative Physics Ltd. Herein, a comparison is made of the relative strengths of MCNP6 and Geant4 for modelling neutron flux and secondary γ-ray emission. Given the increasing overlap of the modelling capabilities of MCNP6 and Geant4, it is worthwhile to comment on differences in results for simulations which have similarities in terms of geometries and source configurations.

  11. GUARD RING SEMICONDUCTOR JUNCTION

    DOEpatents

    Goulding, F.S.; Hansen, W.L.

    1963-12-01

    A semiconductor diode having a very low noise characteristic when used under reverse bias is described. Surface leakage currents, which in conventional diodes greatly contribute to noise, are prevented from mixing with the desired signal currents. A p-n junction is formed with a thin layer of heavily doped semiconductor material disposed on a lightly doped, physically thick base material. An annular groove cuts through the thin layer and into the base for a short distance, dividing the thin layer into a peripheral guard ring that encircles the central region. Noise signal currents are shunted through the guard ring, leaving the central region free from such currents. (AEC)

  12. A simple hand-held magnet array for efficient and reproducible SABRE hyperpolarisation using manual sample shaking.

    PubMed

    Richardson, Peter M; Jackson, Scott; Parrott, Andrew J; Nordon, Alison; Duckett, Simon B; Halse, Meghan E

    2018-07-01

    Signal amplification by reversible exchange (SABRE) is a hyperpolarisation technique that catalytically transfers nuclear polarisation from parahydrogen, the singlet nuclear isomer of H 2 , to a substrate in solution. The SABRE exchange reaction is carried out in a polarisation transfer field (PTF) of tens of gauss before transfer to a stronger magnetic field for nuclear magnetic resonance (NMR) detection. In the simplest implementation, polarisation transfer is achieved by shaking the sample in the stray field of a superconducting NMR magnet. Although convenient, this method suffers from limited reproducibility and cannot be used with NMR spectrometers that do not have appreciable stray fields, such as benchtop instruments. Here, we use a simple hand-held permanent magnet array to provide the necessary PTF during sample shaking. We find that the use of this array provides a 25% increase in SABRE enhancement over the stray field approach, while also providing improved reproducibility. Arrays with a range of PTFs were tested, and the PTF-dependent SABRE enhancements were found to be in excellent agreement with comparable experiments carried out using an automated flow system where an electromagnet is used to generate the PTF. We anticipate that this approach will improve the efficiency and reproducibility of SABRE experiments carried out using manual shaking and will be particularly useful for benchtop NMR, where a suitable stray field is not readily accessible. The ability to construct arrays with a range of PTFs will also enable the rapid optimisation of SABRE enhancement as function of PTF for new substrate and catalyst systems. © 2017 The Authors Magnetic Resonance in Chemistry Published by John Wiley & Sons Ltd.

  13. Distributing Data to Hand-Held Devices in a Wireless Network

    NASA Technical Reports Server (NTRS)

    Hodges, Mark; Simmons, Layne

    2008-01-01

    ADROIT is a developmental computer program for real-time distribution of complex data streams for display on Web-enabled, portable terminals held by members of an operational team of a spacecraft-command-and-control center who may be located away from the center. Examples of such terminals include personal data assistants, laptop computers, and cellular telephones. ADROIT would make it unnecessary to equip each terminal with platform- specific software for access to the data streams or with software that implements the information-sharing protocol used to deliver telemetry data to clients in the center. ADROIT is a combination of middleware plus software specific to the center. (Middleware enables one application program to communicate with another by performing such functions as conversion, translation, consolidation, and/or integration.) ADROIT translates a data stream (voice, video, or alphanumerical data) from the center into Extensible Markup Language, effectuates a subscription process to determine who gets what data when, and presents the data to each user in real time. Thus, ADROIT is expected to enable distribution of operations and to reduce the cost of operations by reducing the number of persons required to be in the center.

  14. TEMTADS Adjunct Sensor Systems Hand-held EMI Sensor for Cued UXO Discrimination (ESTCP MR-200807) and Man-Portable EMI Array for UXO Detection and Discrimination (ESTCP MR-200909) Cost and Performance Report

    DTIC Science & Technology

    2012-06-27

    notes and team orienteering functions. Data collection with the MP system at the former Camp Beale, CA is shown in Figure 5- 2 (right). 5.3.3...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/ 6110 --12-9424 TEMTADS Adjunct Sensor Systems Hand-held EMI Sensor for Cued UXO...CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 2 . REPORT TYPE1. REPORT DATE (DD

  15. Performance evaluation of haptic hand-controllers in a robot-assisted surgical system.

    PubMed

    Zareinia, Kourosh; Maddahi, Yaser; Ng, Canaan; Sepehri, Nariman; Sutherland, Garnette R

    2015-12-01

    This paper presents the experimental evaluation of three commercially available haptic hand-controllers to evaluate which was more suitable to the participants. Two surgeons and seven engineers performed two peg-in-hole tasks with different levels of difficulty. Each operator guided the end-effector of a Kuka manipulator that held surgical forceps and was equipped with a surgical microscope. Sigma 7, HD(2) and PHANToM Premium 3.0 hand-controllers were compared. Ten measures were adopted to evaluate operators' performances with respect to effort, speed and accuracy in completing a task, operator improvement during the tests, and the force applied by each haptic device. The best performance was observed with the Premium 3.0; the hand-piece was able to be held in a similar way to that used by surgeons to hold conventional tools. Hand-controllers with a linkage structure similar to the human upper extremity take advantage of the inherent human brain connectome, resulting in improved surgeon performance during robotic-assisted surgery. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Semiconductor sensors

    NASA Technical Reports Server (NTRS)

    Gatos, Harry C. (Inventor); Lagowski, Jacek (Inventor)

    1977-01-01

    A semiconductor sensor adapted to detect with a high degree of sensitivity small magnitudes of a mechanical force, presence of traces of a gas or light. The sensor includes a high energy gap (i.e., .about. 1.0 electron volts) semiconductor wafer. Mechanical force is measured by employing a non-centrosymmetric material for the semiconductor. Distortion of the semiconductor by the force creates a contact potential difference (cpd) at the semiconductor surface, and this cpd is determined to give a measure of the force. When such a semiconductor is subjected to illumination with an energy less than the energy gap of the semiconductors, such illumination also creates a cpd at the surface. Detection of this cpd is employed to sense the illumination itself or, in a variation of the system, to detect a gas. When either a gas or light is to be detected and a crystal of a non-centrosymmetric material is employed, the presence of gas or light, in appropriate circumstances, results in a strain within the crystal which distorts the same and the distortion provides a mechanism for qualitative and quantitative evaluation of the gas or the light, as the case may be.

  17. The control of stoichiometry in Epitaxial semiconductor structures. Interfacial Chemistry: Property relations. A workshop review

    NASA Technical Reports Server (NTRS)

    Bachmann, Klaus J.

    1995-01-01

    A workshop on the control of stoichiometry in epitaxial semiconductor structures was held on August 21-26, 1995 in the hotel Stutenhaus at Vesser in Germany. The secluded location of the workshop in the forest of Thuringia and its informal style stimulated extensive private discussions among the participants and promoted new contacts between young scientists from Eastern and Western Europe and the USA. Topics addressed by the presentations were interactions of precursors to heteroepitaxy and doping with the substrate surface, the control of interfacial properties under the conditions of heteroepitaxy for selected materials systems, methods of characterization of interfaces and native point defects in semiconductor heterostructures and an in depth evaluation of the present status of the control and characterization of the point defect chemistry for one specific semiconductor (ZnGeP2), including studies of both heterostructures and bulk single crystals. The selected examples of presentations and comments given here represent individual choices - made by the author to highlight major points of the discussions.

  18. Back to basics: hand hygiene and surgical hand antisepsis.

    PubMed

    Spruce, Lisa

    2013-11-01

    Health care-associated infections (HAIs) are a significant issue in the United States and throughout the world, but following proper hand hygiene practices is the most effective and least expensive way to prevent HAIs. Hand hygiene is inexpensive and protects patients and health care personnel alike. The four general types of hand hygiene that should be performed in the perioperative environment are washing hands that are visibly soiled, hand hygiene using alcohol-based products, surgical hand scrubs, and surgical hand scrubs using an alcohol-based surgical hand rub product. Barriers to proper hand hygiene may include not thinking about it, forgetting, skin irritation, a lack of role models, or a lack of a safety culture. One strategy for improving hand hygiene practices is monitoring hand hygiene as part of a quality improvement project, but the most important aspect for perioperative team members is to set an example for other team members by following proper hand hygiene practices and reminding each other to perform hand hygiene. Copyright © 2013 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  19. A feasibility study to develop a diabetes prevention program for young adults with prediabetes using digital platforms and a hand held device

    PubMed Central

    Cha, EunSeok; Kim, Kevin H.; Umpierrez, Guillermo; Dawkins, Colleen R.; Bello, Morenike K.; Lerner, Hannah; Narayan, K.M. Venkat; Dunbar, Sandra B.

    2014-01-01

    Purpose The purpose of the pilot study was to examine the feasibility and preliminary efficacy of an age-specific diabetes prevention program in young adults with prediabetes. Methods One group pretest-posttest design was conducted. The inclusion criteria were young adults age 18–29 years with prediabetes [either Impaird fasting glucose [IFG] (100–125 mg/dL), or an A1C of 5.7%–6.4%]. Fifteen participants were enrolled in this study. A technology based lifestyle coaching program focused on diet and physical activity and incorporating a hand-held device and digital platforms was developed and tested. Psychosocial factors (health literacy, illness perception, self-efficacy, therapeutic efficacy) based on social cognitive theory, changes in diet and physical activity, and cardiometabolic risk factors were assessed at baseline and week 12 after intervention. A paired-samples t-test was performed to examine changes between baseline and post-intervention on each psychosocial and physical variable. Results Participants (n= 13 completers) were mean age 24.4 yrs [SD: 2.2], 23.1% male, and 53.8% were African American. Overall, the participants were satisfied with the intervention (M = 4.15 on a 5-point Likert scale). Between pre and post testing, BMI and A1C decreased from 41.0 ±7.3 to 40.1±7.0 and 6.0% ± .5 to 5.6% ± .5, respectively, while fasting glucose did not significantly change (92.6±11 mg/dl to 97.6 ±14.3 mg/dl). Conclusion The intervention resulted in reduced A1C and a trend for decreased BMI in obese sedentary young adults with prediabetes after 12 weeks of intervention. Further study through a randomized clinical trial with a longer intervention period is warranted. PMID:24950683

  20. Hierarchial Junction Solar Cells Based on Hyper-Branched Semiconductor Nanocrystals

    DTIC Science & Technology

    2009-06-30

    Hyper-Branched Semiconductor Nanocrystals 4 2. Cu2S- CdS all-inorganic nanocrystal solar cells. We demonstrated the rational synthesis of... Hydrothermal Synthesis of Single Phase Pyrite FeS2 Nanocrystals. We demonstrated a single-source molecular precursor that can be used for the synthesis ... CdS Semiconductor Nanostructures,” Advanced Materials, (2008), 20(22), 4306. Y. Wu, C. Wadia, W. Ma, B. Sadtler, A. P. Alivisatos, “ Synthesis of