Science.gov

Sample records for hanford groundwater remediation

  1. HANFORD GROUNDWATER REMEDIATION

    SciTech Connect

    CHARBONEAU, B; THOMPSON, M; WILDE, R.; FORD, B.; GERBER, M.S.

    2006-02-01

    united in its desire to protect the Columbia River and have a voice in Hanford's future. This paper presents the challenges, and then discusses the progress and efforts underway to reduce the risk posed by contaminated groundwater at Hanford. While Hanford groundwater is not a source of drinking water on or off the Site, there are possible near-shore impacts where it flows into the Columbia River. Therefore, this remediation is critical to the overall efforts to clean up the Site, as well as protect a natural resource.

  2. Hanford Groundwater Remediation

    SciTech Connect

    Charboneau, B.; Thompson, K. M.; Wilde, R.; Ford, B.; Gerber, M.

    2006-07-01

    united in its desire to protect the Columbia River and have a voice in Hanford's future. This paper presents the challenges, and then discusses the progress and efforts underway to reduce the risk posed by contaminated groundwater at Hanford. While Hanford groundwater is not a source of drinking water on or off the Site, there are possible near-shore impacts where it flows into the Columbia River. Therefore, this remediation is critical to the overall efforts to clean up the Site, as well as protect a natural resource. (authors)

  3. Supplemental Groundwater Remediation Technologies to Protect the Columbia River at the Hanford Site, Washington - An Update

    SciTech Connect

    Thompson, K. M.; Rowley, R. B.; Petersen, Scott W.; Fruchter, Jonathan S.

    2008-06-02

    This paper provides an update on supplemental groundwater remediation technologies to protect the Columbia River at the Hanford Site in Washington State. Major groundwater contaminants at the Hanford Site are described, along with the technologies and remedial activities that will address these environmental challenges.

  4. ALTERNATIVE REMEDIATION TECHNOLOGY STUDY FOR GROUNDWATER TREATMENT AT 200-PO-1 OPERABLE UNIT AT HANFORD SITE

    SciTech Connect

    DADO MA

    2008-07-31

    This study focuses on the remediation methods and technologies applicable for use at 200-PO-I Groundwater Operable Unit (OU) at the Hanford Site. The 200-PO-I Groundwater au requires groundwater remediation because of the existence of contaminants of potential concern (COPC). A screening was conducted on alternative technologies and methods of remediation to determine which show the most potential for remediation of groundwater contaminants. The possible technologies were screened to determine which would be suggested for further study and which were not applicable for groundwater remediation. COPCs determined by the Hanford Site groundwater monitoring were grouped into categories based on properties linking them by remediation methods applicable to each COPC group. The screening considered the following criteria. (1) Determine if the suggested method or technology can be used for the specific contaminants found in groundwater and if the technology can be applied at the 200-PO-I Groundwater au, based on physical characteristics such as geology and depth to groundwater. (2) Evaluate screened technologies based on testing and development stages, effectiveness, implementability, cost, and time. This report documents the results of an intern research project conducted by Mathew Dado for Central Plateau Remediation in the Soil and Groundwater Remediation Project. The study was conducted under the technical supervision of Gloria Cummins and management supervision of Theresa Bergman and Becky Austin.

  5. SAFETY IMPROVES DRAMATICALLY IN FLUOR HANFORD SOIL AND GROUNDWATER REMEDIATION PROJECT

    SciTech Connect

    GERBER MS

    2007-12-05

    This paper describes dramatic improvements in the safety record of the Soil and Groundwater Remediation Project (SGRP) at the Hanford Site in southeast Washington state over the past four years. During a period of enormous growth in project work and scope, contractor Fluor Hanford reduced injuries, accidents, and other safety-related incidents and enhanced a safety culture that earned the SGRP Star Status in the Department of Energy's (DOE's) Voluntary Protection Program (VPP) in 2007. This paper outlines the complex and multi-faceted work of Fluor Hanford's SGRP and details the steps taken by the project's Field Operations and Safety organizations to improve safety. Holding field safety meetings and walkdowns, broadening safety inspections, organizing employee safety councils, intensively flowing down safety requirements to subcontractors, and adopting other methods to achieve remarkable improvement in safety are discussed. The roles of management, labor and subcontractors are detailed. Finally, SGRP's safety improvements are discussed within the context of overall safety enhancements made by Fluor Hanford in the company's 11 years of managing nuclear waste cleanup at the Hanford Site.

  6. Safety Improves Dramatically In Fluor Hanford Soil and Groundwater Remediation Project

    SciTech Connect

    Foster, A.L.; Gerber, M.S.; VonBargen, B.H.

    2008-07-01

    This paper describes dramatic improvements in the safety record of the Soil and Groundwater Remediation Project (SGRP) at the Hanford Site in southeast Washington state over the past four years. During a period of enormous growth in project work and scope, contractor Fluor Hanford reduced injuries, accidents, and other safety-related incidents and enhanced a safety culture that earned the SGRP Star Status in the Department of Energy's (DOE's) Voluntary Protection Program (VPP) in 2007. This paper outlines the complex and multi-faceted work of Fluor Hanford's SGRP and details the steps taken by the project's Field Operations and Safety organizations to improve safety. Holding field safety meetings and walk-downs, broadening safety inspections, organizing employee safety councils, intensively flowing down safety requirements to subcontractors, and adopting other methods to achieve remarkable improvement in safety are discussed. The roles of management, labor and subcontractors are detailed. Finally, SGRP's safety improvements are discussed within the context of overall safety enhancements made by Fluor Hanford in the company's 11 years of managing nuclear waste cleanup at the Hanford Site. (authors)

  7. Remedial Investigation/Feasibility Study Work Plan for the 200-UP-1 Groundwater Operable Unit, Hanford Site, Richland, Washington. Revision

    SciTech Connect

    Not Available

    1994-01-01

    This work plan identifies the objectives, tasks, and schedule for conducting a Remedial Investigation/Feasibility Study for the 200-UP-1 Groundwater Operable Unit in the southern portion of the 200 West Groundwater Aggregate Area of the Hanford Site. The 200-UP-1 Groundwater Operable Unit addresses contamination identified in the aquifer soils and groundwater within its boundary, as determined in the 200 West Groundwater Aggregate Area Management Study Report (AAMSR) (DOE/RL 1992b). The objectives of this work plan are to develop a program to investigate groundwater contaminants in the southern portion of the 200 West Groundwater Aggregate Area that were designated for Limited Field Investigations (LFIs) and to implement Interim Remedial Measures (IRMs) recommended in the 200 West Groundwater AAMSR. The purpose of an LFI is to evaluate high priority groundwater contaminants where existing data are insufficient to determine whether an IRM is warranted and collect sufficient data to justify and implement an IRM, if needed. A Qualitative Risk Assessment (QRA) will be performed as part of the LFI. The purpose of an IRM is to develop and implement activities, such as contaminant source removal and groundwater treatment, that will ameliorate some of the more severe potential risks of groundwater contaminants prior to the RI and baseline Risk Assessment (RA) to be conducted under the Final Remedy Selection (FRS) at a later date. This work plan addresses needs of a Treatability Study to support the design and implementation of an interim remedial action for the Uranium-{sup 99}{Tc}-Nitrate multi-contaminant IRM plume identified beneath U Plant.

  8. Groundwater Data Package for Hanford Assessments

    SciTech Connect

    Thorne, Paul D.; Bergeron, Marcel P.; Williams, Mark D.; Freedman, Vicky L.

    2006-01-31

    This report presents data and interpreted information that supports the groundwater module of the System Assessment Capability (SAC) used in Hanford Assessments. The objective of the groundwater module is to predict movement of radioactive and chemical contaminants through the aquifer to the Columbia River or other potential discharge locations. This data package is being revised as part of the deliverables under the Characterization of Systems Project (#49139) aimed at providing documentation for assessments being conducted under the Hanford Assessments Project (#47042). Both of these projects are components of the Groundwater Remediation and Closure Assessments Projects, managed by the Management and Integration Project (#47043).

  9. AUTOMATING GROUNDWATER SAMPLING AT HANFORD

    SciTech Connect

    CONNELL CW; HILDEBRAND RD; CONLEY SF; CUNNINGHAM DE

    2009-01-16

    Until this past October, Fluor Hanford managed Hanford's integrated groundwater program for the U.S. Department of Energy (DOE). With the new contract awards at the Site, however, the CH2M HILL Plateau Remediation Company (CHPRC) has assumed responsibility for the groundwater-monitoring programs at the 586-square-mile reservation in southeastern Washington State. These programs are regulated by the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). The purpose of monitoring is to track existing groundwater contamination from past practices, as well as other potential contamination that might originate from RCRA treatment, storage, and disposal (TSD) facilities. An integral part of the groundwater-monitoring program involves taking samples of the groundwater and measuring the water levels in wells scattered across the site. More than 1,200 wells are sampled each year. Historically, field personnel or 'samplers' have been issued pre-printed forms that have information about the well(s) for a particular sampling evolution. This information is taken from the Hanford Well Information System (HWIS) and the Hanford Environmental Information System (HEIS)--official electronic databases. The samplers used these hardcopy forms to document the groundwater samples and well water-levels. After recording the entries in the field, the samplers turned the forms in at the end of the day and the collected information was posted onto a spreadsheet that was then printed and included in a log book. The log book was then used to make manual entries of the new information into the software application(s) for the HEIS and HWIS databases. This is a pilot project for automating this tedious process by providing an electronic tool for automating water-level measurements and groundwater field-sampling activities. The automation will eliminate the manual forms and associated data entry, improve the accuracy of the

  10. In situ bioremediation of Hanford groundwater

    SciTech Connect

    Skeen, R.S.; Roberson, K.R.; Workman, D.J. ); Petersen, J.N.; Shouche, M. . Dept. of Chemical Engineering)

    1992-04-01

    Liquid wastes containing radioactive, hazardous, and regulated chemicals have been generated throughout the 40+ years of operations at the US Department of Energy's (DOE) Hanford Site. Some of these wastes were discharged to the soil column and many of the waste components, including nitrate, carbon tetrachloride (CCl{sub 4}), and several radionuclides, have been detected in the Hanford groundwater. Current DOE policy prohibits the disposal of contaminated liquids directly to the environment, and remediation of existing contaminated groundwaters may be required. In situ bioremediation is one technology currently being developed at Hanford to meet the need for cost effective technologies to clean groundwater contaminated with CCl{sub 4}, nitrate, and other organic and inorganic contaminants. This paper focuses on the latest results of an on going effort to develop effective in situ remediation strategies through the use of predictive simulations.

  11. In situ bioremediation of Hanford groundwater

    SciTech Connect

    Skeen, R.S.; Roberson, K.R.; Workman, D.J.; Petersen, J.N.; Shouche, M.

    1992-04-01

    Liquid wastes containing radioactive, hazardous, and regulated chemicals have been generated throughout the 40+ years of operations at the US Department of Energy`s (DOE) Hanford Site. Some of these wastes were discharged to the soil column and many of the waste components, including nitrate, carbon tetrachloride (CCl{sub 4}), and several radionuclides, have been detected in the Hanford groundwater. Current DOE policy prohibits the disposal of contaminated liquids directly to the environment, and remediation of existing contaminated groundwaters may be required. In situ bioremediation is one technology currently being developed at Hanford to meet the need for cost effective technologies to clean groundwater contaminated with CCl{sub 4}, nitrate, and other organic and inorganic contaminants. This paper focuses on the latest results of an on going effort to develop effective in situ remediation strategies through the use of predictive simulations.

  12. Hanford Site Groundwater Monitoring for Fiscal Year 2006

    SciTech Connect

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2007-03-01

    This report presents the results of groundwater monitoring for FY 2006 on DOE's Hanford Site. Results of groundwater remediation, vadose zone monitoring, and characterization are summarized. DOE monitors groundwater at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act (AEA), the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), and Washington Administrative Code (WAC).

  13. Solutions Remediate Contaminated Groundwater

    NASA Technical Reports Server (NTRS)

    2010-01-01

    During the Apollo Program, NASA workers used chlorinated solvents to clean rocket engine components at launch sites. These solvents, known as dense non-aqueous phase liquids, had contaminated launch facilities to the point of near-irreparability. Dr. Jacqueline Quinn and Dr. Kathleen Brooks Loftin of Kennedy Space Center partnered with researchers from the University of Central Florida's chemistry and engineering programs to develop technology capable of remediating the area without great cost or further environmental damage. They called the new invention Emulsified Zero-Valent Iron (EZVI). The groundwater remediation compound is cleaning up polluted areas all around the world and is, to date, NASA's most licensed technology.

  14. Integrated monitoring plan for the Hanford groundwater monitoring project

    SciTech Connect

    Hartman, M.J.; Dresel, P.E.; McDonald, J.P.; Mercer, R.B.; Newcomer, D.R.; Thornton, E.C.

    1998-09-01

    Groundwater is monitored in hundreds of wells at the Hanford Site to fulfill a variety of requirements. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The US Department of Energy (DOE) manages these activities through the Hanford Groundwater Monitoring Project (groundwater project), which is the responsibility of Pacific Northwest National Laboratory. The groundwater project does not include all of the monitoring to assess performance of groundwater remediation or all monitoring associated with active facilities. This document is the first integrated monitoring plan for the groundwater project and contains: well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; other, established monitoring plans by reference; and a master well/constituent/frequency matrix for the entire Hanford Site.

  15. Groundwater maps of the Hanford Site, December 1995

    SciTech Connect

    Sweeney, M.D., Westinghouse Hanford

    1996-07-02

    This the latest in a series of reports that document the configuration of the water table aquifer beneath the Hanford Site. This series presents the results of the semiannual water level measurement program and the water table maps generated from these measurements. The reports document the changes in the groundwater level at the Hanford Site during the transition from nuclear material production to environmental restoration and remediation. In addition, these reports provide water level data to support the various site characterization and groundwater monitoring programs currently in progress on the Hanford Site.

  16. Field Summary Report for Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington

    SciTech Connect

    L.C. Hulstrom

    2010-08-11

    This report summarizes field sampling activities conducted in support of WCH’s Remedial Investigation of Hanford Site Releases to the Columbia River. This work was conducted form 2008 through 2010. The work included preliminary mapping and measurement of Hanford Site contaminants in sediment, pore water, and surface water located in areas where groundwater upwelling were found.

  17. Field Summary Report for Remedial Investigation of Hanford Site Releases to the Coumbia River, Hanford Site, Washington

    SciTech Connect

    L.C. Hulstrom

    2010-11-10

    This report summarizes field sampling activities conducted in support of WCH’s Remedial Investigation of Hanford Site Releases to the Columbia River. This work was conducted form 2008 through 2010. The work included preliminary mapping and measurement of Hanford Site contaminants in sediment, pore water, and surface water located in areas where groundwater upwelling were found.

  18. Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan

    SciTech Connect

    Fix, N. J.

    2008-02-20

    The scope of the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) is to provide technical and integration support to Fluor Hanford, Inc., including operable unit investigations at 300-FF-5 and other groundwater operable units, strategic integration, technical integration and assessments, remediation decision support, and science and technology. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project).

  19. Hanford Site Groundwater Protection Management Program: Revision 1

    SciTech Connect

    1993-11-01

    Groundwater protection is a national priority that is promulgated in a variety of environmental regulations at local, state, and federal levels. To effectively coordinate and ensure compliance with applicable regulations, the US Department of Energy has issued DOE Order 5400.1 (now under revision) that requires all US Department of Energy facilities to prepare separate groundwater protection program descriptions and plans. This document describes the Groundwater Protection Management Program for the Hanford Site located in the state of Washington. DOE Order 5400.1 specifies that the Groundwater Protection Management Program cover the following general topical areas: (1) documentation of the groundwater regime, (2) design and implementation of a groundwater monitoring program to support resource management and comply with applicable laws and regulations, (3) a management program for groundwater protection and remediation, (4) a summary and identification of areas that may be contaminated with hazardous waste, (5) strategies for controlling these sources, (6) a remedial action program, and (7) decontamination and decommissioning and related remedial action requirements. Many of the above elements are covered by existing programs at the Hanford Site; thus, one of the primary purposes of this document is to provide a framework for coordination of existing groundwater protection activities. Additionally, it describes how information needs are identified and can be incorporated into existing or proposed new programs. The Groundwater Protection Management Program provides the general scope, philosophy, and strategies for groundwater protection/management at the Hanford Site. Subtier documents provide the detailed plans for implementing groundwater-related activities and programs. Related schedule and budget information are provided in the 5-year plan for environmental restoration and waste management at the Hanford Site.

  20. Hanford Site Groundwater Monitoring for Fiscal Year 2002

    SciTech Connect

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2003-02-28

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2002 on the U.S. Department of Energy's Hanford Site in Washington State. This report is written to meet the requirements in CERCLA, RCRA, the Atomic Energy Act of 1954, and Washington State Administrative Code.

  1. Kinetics of in situ bioremediation of Hanford groundwater

    SciTech Connect

    Skeen, R.S.; Cote, S.M.; Truex, M.J.; Petersen, J.N.

    1992-04-01

    Liquid wastes containing radioactive, hazardous, and regulated chemicals have been generated throughout the 40+ years of operations at the US Department of Energy`s (DOE) Hanford Site. Some of these wastes were discharged to the soil column and many of the waste components, including nitrate, carbon tetrachloride (CCl{sub 4}), and several radionuclides, have been detected in the Hanford groundwater. Current DOE policy prohibits the disposal of contaminated liquids directly to the environment, and may require the remediation of existing contaminated groundwaters. In situ bioremediation is one technology currently being developed at Hanford to meet the need for cost effective technologies to clean groundwater contaminated with CCl{sub 4}, nitrate, and other organic and inorganic contaminants. This paper focuses on the latest results of an on-going effort to quantify the biological and chemical reactions that would occur during in situ bioremediation.

  2. Kinetics of in situ bioremediation of Hanford groundwater

    SciTech Connect

    Skeen, R.S.; Cote, S.M.; Truex, M.J. ); Petersen, J.N. . Dept. of Chemical Engineering)

    1992-04-01

    Liquid wastes containing radioactive, hazardous, and regulated chemicals have been generated throughout the 40+ years of operations at the US Department of Energy's (DOE) Hanford Site. Some of these wastes were discharged to the soil column and many of the waste components, including nitrate, carbon tetrachloride (CCl[sub 4]), and several radionuclides, have been detected in the Hanford groundwater. Current DOE policy prohibits the disposal of contaminated liquids directly to the environment, and may require the remediation of existing contaminated groundwaters. In situ bioremediation is one technology currently being developed at Hanford to meet the need for cost effective technologies to clean groundwater contaminated with CCl[sub 4], nitrate, and other organic and inorganic contaminants. This paper focuses on the latest results of an on-going effort to quantify the biological and chemical reactions that would occur during in situ bioremediation.

  3. Challenges for Deep Vadose Zone Remediation at the Hanford Site

    SciTech Connect

    Morse, John G.; Charboneau, Briant L.; Lober, Robert W.; Triplett, Mark B.

    2008-02-26

    The “deep vadose zone” is defined as the region below the practical depth of surface remedy influence (e.g., excavation or barrier). At the Hanford Site, this region of the Central Plateau poses unique challenges for characterization and remediation. The contaminants in this region also pose a potentially significant continuing or future threat to groundwater. Currently, deep vadose zone characterization efforts and remedy selection are spread over multiple waste site Operable Units and tank farm Waste Management Areas. A particular challenge for this effort is the situation in which past leaks from single-shell tanks have become commingled with discharges from nearby liquid disposal sites. The Hanford Site is working with all affected parties, including the Washington State Department of Ecology, the Environmental Protection Agency, DOE-RL, DOE-ORP, and multiple contractor organizations to develop a unified approach to conducting work and reaching remediation decisions. This effort addresses the complex and challenging technical and regulatory issues within this environment. A true inter-Agency effort is evaluating the best strategy or combination of strategies for focusing technical investigations, including treatability studies, and for attaining remedy decisions on the Hanford Site.

  4. Hanford Site Groundwater Monitoring for Fiscal Year 2000

    SciTech Connect

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2001-03-01

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2000 on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the central part of the Site. Hexavalent chromium is present in smaller plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath each of the reactor areas, and technetium-99 and uranium are present in the 200 Areas. RCRA groundwater monitoring continued during fiscal year 2000. Vadose zone monitoring, characterization, remediation, and several technical demonstrations were conducted in fiscal year 2000. Soil gas monitoring at the 618-11 burial ground provided a preliminary indication of the location of tritium in the vadose zone and in groundwater. Groundwater modeling efforts focused on 1) identifying and characterizing major uncertainties in the current conceptual model and 2) performing a transient inverse calibration of the existing site-wide model. Specific model applications were conducted in support of the Hanford Site carbon tetrachloride Innovative Treatment Remediation Technology; to support the performance assessment of the Immobilized Low-Activity Waste Disposal Facility; and in development of the System Assessment Capability, which is intended to predict cumulative site-wide effects from all significant Hanford Site contaminants.

  5. Hanford Site Groundwater Monitoring for Fiscal Year 2005

    SciTech Connect

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2006-02-28

    This report is one of the major products and deliverables of the Groundwater Remediation and Closure Assessment Projects detailed work plan for FY 2006, and reflects the requirements of The Groundwater Performance Assessment Project Quality Assurance Plan (PNNL-15014). This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2005 on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes in groundwater are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. The largest portions of these plumes are migrating from the central Hanford Site to the southeast, toward the Columbia River. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the west-central part of the Hanford Site. Hexavalent chromium is present in plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath all but one of the reactor areas. Technetium-99 and uranium plumes exceeding standards are present in the 200 Areas. A uranium plume underlies the 300 Area. Minor contaminant plumes with concentrations greater than standards include carbon-14, cesium-137, cis-1,2-dichloroethene, cyanide, fluoride, plutonium, and trichloroethene. Monitoring for the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 is conducted in 11 groundwater operable units. The purpose of this monitoring is to define and track plumes and to monitor the effectiveness of interim remedial actions. Interim groundwater remediation in the 100 Areas continued with the goal of reducing the amount of chromium (100-K, 100-D, and 100-H) and strontium-90 (100-N) reaching the Columbia River. The objective of two interim remediation systems in the 200 West Area is to prevent the spread of carbon tetrachloride and technetium-99/uranium plumes. Resource Conservation and

  6. Hanford Site ground-water monitoring for 1994

    SciTech Connect

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P.

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

  7. Characterization and remediation of highly radioactive contaminated soil at Hanford

    SciTech Connect

    Buckmaster, M.A.; Erickson, J.K.

    1993-09-01

    The Hanford Site, Richland, Washington, contains over 1,500 identified waste sites and numerous groundwater plumes that will be characterized and remediated over the next 30 years. As a result of the Hanford Federal Facility Agreement and Consent Order, the US Department of Energy (DOE) has initiated a remedial investigation/feasibility study (RI/FS) at the 200-BP-1 operable unit. The 200-BP-1 RI/FS is the first Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) investigation on the Hanford Site that involves highly radioactive and chemically contaminated soils. The initial phase of site characterization was designed to assess the nature and extent of contamination associated with the source waste sites within the 200-BP-1 operable unit. Characterization activities consisted of drilling and sampling, chemical and physical analysis of samples, and development of a conceptual vadose zone model. These data were then used. to develop remedial alternatives during the FS evaluation. The preferred alternative resulting from the RI/FS process for the 200-BP-1 operable unit is to construct a surface isolation barrier. The multi-layered earthen barrier will be designed to prevent migration of contaminants resulting from water infiltration, biointrusion, and wind and water erosion.

  8. Summary of Hanford Site Groundwater Monitoring for Fiscal Year 2005

    SciTech Connect

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2006-03-01

    This is a summary booklet of the main report: Hanford Site Groundwater Monitoring for Fiscal Year 2005. It is the summary section of the main report with a CD of the entire report included. The main report is one of the major products and deliverables of the Groundwater Remediation and Closure Assessment Projects detailed work plan for FY 2006, and reflects the requirements of The Groundwater Performance Assessment Project Quality Assurance Plan (PNNL-15014). This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2005 on the U.S. Department of Energy’s Hanford Site, Washington. The most extensive contaminant plumes in groundwater are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. The largest portions of these plumes are migrating from the central Hanford Site to the southeast, toward the Columbia River. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the west-central part of the Hanford Site. Hexavalent chromium is present in plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath all but one of the reactor areas. Technetium-99 and uranium plumes exceeding standards are present in the 200 Areas. A uranium plume underlies the 300 Area. Minor contaminant plumes with concentrations greater than standards include carbon-14, cesium-137, cis-1,2-dichloroethene, cyanide, fluoride, plutonium, and trichloroethene. Monitoring for the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 is conducted in 11 groundwater operable units. The purpose of this monitoring is to define and track plumes and to monitor the effectiveness of interim remedial actions. Interim groundwater remediation in the 100 Areas continued with the goal of reducing the amount of chromium (100-K, 100-D, and 100-H) and strontium-90 (100-N) reaching the

  9. Hanford Site Groundwater Monitoring for Fiscal Year 2003

    SciTech Connect

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2004-04-12

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2003 (October 2002 through September 2003) on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes in groundwater are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. The largest portions of these plumes are migrating from the central Hanford Site to the southeast, toward the Columbia River. Concentrations of tritium, nitrate, and some other contaminants continued to exceed drinking water standards in groundwater discharging to the river in some locations. However, contaminant concentrations in river water remained low and were far below standards. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the central part of the Hanford Site. Hexavalent chromium is present in smaller plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath all but one of the reactor areas, and technetium-99 and uranium are present in the 200 Areas. Uranium exceeds standards in the 300 Area in the south part of the Hanford Site. Minor contaminant plumes with concentrations greater than standards include carbon-14, cesium-137, cis-1,2-dichloroethene, cyanide, fluoride, plutonium, and trichloroethene. Monitoring for the ''Comprehensive Environmental Response, Compensation, and Liability Act'' is conducted in 11 groundwater operable units. The purpose of this monitoring is to define and track plumes and to monitor the effectiveness of interim remedial actions. Interim groundwater remediation in the 100 Areas continued with the goal of reducing the amount of chromium (100-K, 100-D, and 100-H) and strontium-90 (100-N) reaching the Columbia River. The objective of two interim remediation systems in the 200 West Area is to prevent the spread of carbon tetrachloride and technetium-99

  10. Hanford Site ground-water monitoring for 1993

    SciTech Connect

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C.

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

  11. Expediting Groundwater Sampling at Hanford and Making It Safer

    SciTech Connect

    Connell, Carl W. Jr.; Carr, Jennifer S.; Hildebrand, R. Douglas; Schatz, Aaron L.; Conley, S. F.; Brown, W. L.

    2013-01-22

    The CH2M HILL Plateau Remediation Company (CHPRC) manages the groundwatermonitoring programs at the Department of Energy's 586-square-mile Hanford site in southeastern Washington state. These programs are regulated by the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response Compensation and Liability Act (CERCLA), and the Atomic Energy Act (AEA). The purpose of monitoring is to track existing groundwater contamination from past practices, as well as other potential contamination that might originate from RCRA treatment, storage, and disposal (TSD) facilities. An integral part of the groundwater-monitoring program involves taking samples of the groundwater and measuring the water levels in wells scattered across the site. Each year, more than 1,500 wells are accessed for a variety of reasons.

  12. EVALUATION OF GROUNDWATER EXTRACTION REMEDIES - VOLUME III

    EPA Science Inventory

    This volume is the third of a three-volume report documenting the results of an evaluation of ground-water extraction remedies at hazardous waste sites. It consists of a collection of 112 data base reports presenting general information on sites where ground-water extraction sys...

  13. EVALUATION OF GROUNDWATER EXTRACTION REMEDIES - VOLUME II

    EPA Science Inventory

    This volume was prepared as part of an evaluation of groundwater extraction remedies completed under EPA Contract No. 68-W8-0098. It presents 19 case studies of individual sites where ground-water extraction systems have been implemented. These case studies present site characte...

  14. Hanford Site Groundwater Monitoring for Fiscal Year 1999

    SciTech Connect

    MJ Hartman; LF Morasch; WD Webber

    2000-05-10

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 1999 on the US. Department of Energy's Hanford Site, Washington. Water-level monitoring was performed to evaluate groundwater flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Measurements for site-wide maps were conducted in June in past years and are now measured in March to reflect conditions that are closer to average. Water levels over most of the Hanford Site continued to decline between June 1998 and March 1999. The most widespread radiological contaminant plumes in groundwater were tritium and iodine-129. Concentrations of carbon-14, strontium-90, technetium-99, and uranium also exceeded drinking water standards in smaller plumes. Cesium-137 and plutonium exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in US Department of Energy Order 5400.5 were exceeded for plutonium, strontium-90, tritium, and uranium in small plumes or single wells. Nitrate and carbon tetrachloride are the most extensive chemical contaminants. Chloroform, chromium, cis-1,2dichloroethylene, cyanide, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Metals such as aluminum, cadmium, iron, manganese, and nickel exceeded their maximum contaminant levels in filtered samples from numerous wells; however, in most cases, they are believed to represent natural components of groundwater. ''Resource Conservation and Recovery Act of 1976'' groundwater monitoring continued at 25 waste management areas during fiscal year 1999: 16 under detection programs and data indicate that they are not adversely affecting groundwater; 6 under interim status groundwater quality assessment programs to assess contamination; and 2 under final status corrective-action programs. Another site, the 120-D-1 ponds, was clean closed in

  15. Unit environmental transport assessment of contaminants from Hanford`s past-practice waste sites. Hanford Remedial Action Environmental Impact Statement

    SciTech Connect

    Whelan, G.; Buck, J.W.; Castleton, K.J.

    1995-06-01

    The US Department of Energy, Richland Operations Office (DOE-RL) contracted Pacific Northwest Laboratory (PNL) to provide support to Advanced Sciences, Incorporated (ASI) in implementing tile regional no-action risk assessment in the Hanford Remedial Action Environmental Impact Statement. Researchers at PNL were charged with developing unit concentrations for soil, groundwater, surface water, and air at multiple locations within an 80-km radius from the center of tile Hanford installation. Using the Multimedia Environmental Pollutant Assessment System (MEPAS), PNL simulated (1) a unit release of one ci for each radionuclide and one kg for each chemical from contaminated soils and ponded sites, (2) transport of the contaminants in and through various environmental media and (3) exposure/risk of four exposure scenarios, outlined by the Hanford Site Baseline Remedial Action Methodology. These four scenarios include residential, recreational, industrial, and agricultural exposures. Spacially and temporally distributed environmental concentrations based on unit releases of radionuclides and chemicals were supported to ASI in support of the HRA-EIS. Risk for the four exposure scenarios, based on unit environment concentrations in air, water, and soil. were also supplied to ASI. This report outlines the procedure that was used to implement the unit transport portion of the HRA-EIS baseline risk assessment. Deliverables include unit groundwater, surface water, air, and soil concentrations at multiple locations within an 80-km radius from the center of the Hanford installation.

  16. Remedial action selection using groundwater modeling

    SciTech Connect

    Haddad, B.I.; Parish, G.B.; Hauge, L.

    1996-12-31

    An environmental investigation uncovered petroleum contamination at a gasoline station in southern Wisconsin. The site was located in part of the ancestral Rock River valley in Rock County, Wisconsin where the valley is filled with sands and gravels. Groundwater pump tests were conducted for determination of aquifer properties needed to plan a remediation system; the results were indicative of a very high hydraulic conductivity. The site hydrogeology was modeled using the U.S. Geological Survey`s groundwater model, Modflow. The calibrated model was used to determine the number, pumping rate, and configuration of recovery wells to remediate the site. The most effective configuration was three wells pumping at 303 liters per minute (1/m) (80 gallons per minute (gpm)), producing a total pumping rate of 908 l/m (240 gpm). Treating 908 l/min (240 gpm) or 1,308,240 liters per day (345,600 gallons per day) constituted a significant volume to be treated and discharged. It was estimated that pumping for the two year remediation would cost $375,000 while the air sparging would cost $200,000. The recommended remedial system consisted of eight air sparging wells and four vapor recovery laterals. The Wisconsin Department of Natural Resources (WDNR) approved the remedial action plan in March, 1993. After 11 months of effective operation the concentrations of removed VOCs had decreased by 94 percent and groundwater sampling indicated no detectable concentrations of gasoline contaminants. Groundwater modeling was an effective technique to determine the economic feasibility of a groundwater remedial alternative.

  17. Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project

    SciTech Connect

    Hartman, Mary J.; Dresel, P Evan; Lindberg, Jonathan W.; Newcomer, Darrell R.; Thornton, Edward C.

    2000-10-18

    Groundwater is monitored at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act of 1954; the Resource Conservation and Recovery Act of 1976; the Comprehensive Environmental Response, Compensation, and Liability Act of 1980; and Washington Administrative Code. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The U.S. Department of Energy manages these activities through the Hanford Groundwater Monitoring Project. This document is an integrated monitoring plan for the groundwater project. It documents well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; includes other, established monitoring plans by reference; and appends a master well/constituent/ frequency matrix for the entire site. The objectives of monitoring fall into three general categories: plume and trend tracking, treatment/ storage/disposal unit monitoring, and remediation performance monitoring. Criteria for selecting Atomic Energy Act of 1954 monitoring networks include locations of wells in relation to known plumes or contaminant sources, well depth and construction, historical data, proximity to the Columbia River, water supplies, or other areas of special interest, and well use for other programs. Constituent lists were chosen based on known plumes and waste histories, historical groundwater data, and, in some cases, statistical modeling. Sampling frequencies were based on regulatory requirements, variability of historical data, and proximity to key areas. For sitewide plumes, most wells are sampled every 3 years. Wells monitoring specific waste sites or in areas of high variability will be sampled more frequently.

  18. Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project

    SciTech Connect

    Newcomer, D.R.; Thornton, E.C.; Hartman, M.J.; Dresel, P.E.

    1999-10-06

    Groundwater is monitored at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act of 1954 the Resource Conservation and Recovery Act of 1976 the Comprehensive Environmental Response, Compensation, and Liability Act of 1980; and Washington Administrative Code. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The US Department of Energy manages these activities through the Hanford Groundwater Monitoring Project. This document is an integrated monitoring plan for the groundwater project. It documents well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; includes other, established monitoring plans by reference; and appends a master well/constituent/frequency matrix for the entire site. The objectives of monitoring fall into three general categories plume and trend tracking, treatment/storage/disposal unit monitoring, and remediation performance monitoring. Criteria for selecting Atomic Energy Act of 1954 monitoring networks include locations of wells in relation to known plumes or contaminant sources, well depth and construction, historical data, proximity to the Columbia River, water supplies, or other areas of special interest, and well use for other programs. Constituent lists were chosen based on known plumes and waste histories, historical groundwater data, and, in some cases, statistical modeling. Sampling frequencies were based on regulatory requirements, variability of historical data, and proximity to key areas. For sitewide plumes, most wells are sampled every 3 years. Wells monitoring specific waste sites or in areas of high variability will be sampled more frequently.

  19. Remedial Investigation of Hanford Site Releases to the Columbia River - 13603

    SciTech Connect

    Lerch, J.A.; Hulstrom, L.C.; Sands, J.P.

    2013-07-01

    In south-central Washington State, the Columbia River flows through the U.S. Department of Energy Hanford Site. A primary objective of the Hanford Site cleanup mission is protection of the Columbia River, through remediation of contaminated soil and groundwater that resulted from its weapons production mission. Within the Columbia River system, surface water, sediment, and biota samples related to potential Hanford Site hazardous substance releases have been collected since the start of Hanford operations. The impacts from release of Hanford Site radioactive substances to the Columbia River in areas upstream, within, and downstream of the Hanford Site boundary have been previously investigated as mandated by the U.S. Department of Energy requirements under the Atomic Energy Act. The Remedial Investigation Work Plan for Hanford Site Releases to the Columbia River [1] was issued in 2008 to initiate assessment of the impacts under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 [2]. The work plan established a phased approach to characterize contaminants, assess current risks, and determine whether or not there is a need for any cleanup actions. Field investigation activities over a 120-mile stretch of the Columbia River began in October 2008 and were completed in 2010. Sampled media included surface water, pore water, surface and core sediment, island soil, and fish (carp, walleye, whitefish, sucker, small-mouth bass, and sturgeon). Information and sample results from the field investigation were used to characterize current conditions within the Columbia River and assess whether current conditions posed a risk to ecological or human receptors that would merit additional study or response actions under CERCLA. The human health and ecological risk assessments are documented in reports that were published in 2012 [3, 4]. Conclusions from the risk assessment reports are being summarized and integrated with remedial investigation

  20. Remediation Technology for Contaminated Groundwater

    EPA Science Inventory

    Bioremediation is the most commonly selected technology for remediation of ground water at Superfund sites in the USA. The next most common technology is Chemical treatment, followed by Air Sparging, and followed by Permeable Reactive Barriers. This presentation reviews the the...

  1. In situ remediation of uranium contaminated groundwater

    SciTech Connect

    Dwyer, B.P.; Marozas, D.C.

    1997-12-31

    In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment - various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ to acceptable regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field preliminary results are discussed with regard to other potential contaminated groundwater treatment applications.

  2. In situ remediation of uranium contaminated groundwater

    SciTech Connect

    Dwyer, B.P.; Marozas, D.C.

    1997-02-01

    In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ to acceptable regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field results are discussed with regard to other potential contaminated groundwater treatment applications.

  3. Hanford Site Groundwater Monitoring for Fiscal Year 1998

    SciTech Connect

    Hartman, M.J.

    1999-03-24

    This report presents the results of groundwater and vadose-zone monitoring and remediation for fiscal year (FY) 1998 on the Word Site, Washington. Soil-vapor extraction in the 200-West Area removed 777 kg of carbon tetrachloride in FY 1998, for a total of 75,490 kg removed since remediation began in 1992. Spectral gamma logging and evaluation of historical gross gamma logs near tank farms and liquid-disposal sites in the 200 Areas provided information on movement of contaminants in the vadose zone. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1997 and June 1998. The most widespread radiological contaminant plumes in groundwater were tritium and iodine-129. Concentrations of technetium-99, uranium, strontium-90, and carbon-14 also exceeded drinking water standards in smaller plumes. Plutonium and cesium-137 exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in U.S. Department of Energy Order 5400.5 were exceeded for tritium, uranium, strontium-90, and plutonium in small plumes or single wells. One well completed in the basalt-confined aquifer beneath the 200-East Area exceeded the drinking water standard for technetium-99. Nitrate is the most extensive chemical contaminant. Carbon tetrachloride, chloroform, chromium, cis-l, Z-dichloroethylene, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Cyanide concentrations were elevated in one area but were below the maximum contaminant level. Tetrachloroethylene exceeded its maximum contaminant level in several wells in the 300 Area for the first time since the 1980s. Metals such as aluminum, cadmium, iron, manganese, and nickel exceeded their maximum contaminant levels in filtered samples from numerous

  4. Screening of Potential Remediation Methods for the 200-BP-5 Operable Unit at the Hanford Site

    SciTech Connect

    Truex, Michael J.; Dresel, P. EVAN; Nimmons, Michael J.; Johnson, Christian D.

    2006-09-21

    A screening-level evaluation of potential remediation methods for application to the contaminants of concern (COC) in the 200-BP-5 Operable Unit at the Hanford Site was conducted based on the methods outlined in the Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA Interim Final (EPA 1988). The scope of this screening was to identify the most promising remediation methods for use in the more detailed analysis of remediation alternatives that will be conducted as part of the full feasibility study. The screening evaluation was conducted for the primary COC (potential major risk drivers) identified in the groundwater sampling and analysis plan for the operable unit (DOE/RL-2001-49, Rev. 1) with additions.

  5. Remediation of Groundwater Contaminated by Nuclear Waste

    NASA Astrophysics Data System (ADS)

    Parker, Jack; Palumbo, Anthony

    2008-07-01

    A Workshop on Accelerating Development of Practical Field-Scale Bioremediation Models; An Online Meeting, 23 January to 20 February 2008; A Web-based workshop sponsored by the U.S. Department of Energy Environmental Remediation Sciences Program (DOE/ERSP) was organized in early 2008 to assess the state of the science and knowledge gaps associated with the use of computer models to facilitate remediation of groundwater contaminated by wastes from Cold War era nuclear weapons development and production. Microbially mediated biological reactions offer a potentially efficient means to treat these sites, but considerable uncertainty exists in the coupled biological, chemical, and physical processes and their mathematical representation.

  6. Monitoring groundwater and river interaction along the Hanford reach of the Columbia River

    SciTech Connect

    Campbell, M.D.

    1994-04-01

    As an adjunct to efficient Hanford Site characterization and remediation of groundwater contamination, an automatic monitor network has been used to measure Columbia River and adjacent groundwater levels in several areas of the Hanford Site since 1991. Water levels, temperatures, and electrical conductivity measured by the automatic monitor network provided an initial database with which to calibrate models and from which to infer ground and river water interactions for site characterization and remediation activities. Measurements of the dynamic river/aquifer system have been simultaneous at 1-hr intervals, with a quality suitable for hydrologic modeling and for computer model calibration and testing. This report describes the equipment, procedures, and results from measurements done in 1993.

  7. Hanford Site Groundwater Monitoring for Fiscal Year 2004

    SciTech Connect

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2005-03-01

    This document presents the results of groundwater and vadose zone monitoring for fiscal year 2004 (October 2003 through September 2004)on the U.S. Department of Energy's Hanford Site in southeast Washington State.

  8. GROUDWATER REMEDIATION AT THE 100-HR-3 OPERABLE UNIT HANFORD SITE WASHINGTON USA - 11507

    SciTech Connect

    SMOOT JL; BIEBESHEIMER FH; ELUSKIE JA; SPILIOTOPOULOS A; TONKIN MJ; SIMPKIN T

    2011-01-12

    The 100-HR-3 Groundwater Operable Unit (OU) at the Hanford Site underlies three former plutonium production reactors and the associated infrastructure at the 100-D and 100-H Areas. The primary contaminant of concern at the site is hexavalent chromium; the secondary contaminants are strontium-90, technetium-99, tritium, uranium, and nitrate. The hexavalent chromium plume is the largest plume of its type in the state of Washington, covering an area of approximately 7 km{sup 2} (2.7 mi{sup 2}) with concentrations greater than 20 {micro}g/L. Concentrations range from 60,000 {micro}g/L near the former dichromate transfer station in the 100-D Area to large areas of 20 to 100 {micro}g/L across much of the plume area. Pump-and-treat operations began in 1997 and continued into 2010 at a limited scale of approximately 200 gal/min. Remediation of groundwater has been fairly successful in reaching remedial action objectives (RAOs) of 20 {micro}g/L over a limited region at the 100-H, but less effective at 100-D. In 2000, an in situ, permeable reactive barrier was installed downgradient of the hotspot in 100-D as a second remedy. The RAOs are still being exceeded over a large portion of the area. The CH2M HILL Plateau Remediation Company was awarded the remediation contract for groundwater in 2008 and initiated a remedial process optimization study consisting of modeling and technical studies intended to enhance the remediation. As a result of the study, 1,400 gal/min of expanded treatment capacity are being implemented. These new systems are designed to meet 2012 and 2020 target milestones for protection of the Columbia River and cleanup of the groundwater plumes.

  9. Remediation Technologies Screening Report for the Deep Vadose Zone, Hanford's Central Plateau - 12414

    SciTech Connect

    Doornbos, Martin; Morse, John

    2012-07-01

    Deep Vadose Zone contamination is a significant issue because it represents a potential source for continued release of contamination to the groundwater and associated receptors. This contamination, which is the result of past waste disposal practices on the Hanford Site Central Plateau, occurs deep in the subsurface and is not easily remediated by typical surface remedies. The Deep Vadose Zone is defined as the sediment below the limit of typical surface-based remedies (such as, excavation or caps), but above the water table. The Central Plateau Deep Vadose Zone begins at a depth of approximately 15 m (50 ft) below ground surface and extends to a depth of approximately 76 m (250 ft) below ground surface. Cleanup of the Deep Vadose Zone is challenging because contamination is difficult to access and expensive to characterize; contaminants occur at different depths and soil types; conventional, surface-based remedies have limited effectiveness; and remedy performance is difficult to predict, test, and monitor. Typically, remedial technologies for Deep Vadose Zone contamination are less developed than for the shallow soil contamination or saturated groundwater contaminants. In addition, few remediation technologies have been tested in the field, and fewer still have been successfully implemented as full remedial actions. These challenges, along with the limited number of potentially applicable remediation technologies, complicate the decision-making process for evaluating and selecting Deep Vadose Zone remedial alternatives. The Deep Vadose Zone remediation technologies pre-screening involved a comprehensive review of potentially applicable technologies for remediating Deep Vadose Zone contamination in the Hanford Site's Central Plateau. The list of remediation technologies was developed from previous Hanford Site studies, science and technology databases, as well as other cleanup projects across the country that have similar conditions. The list of remediation

  10. Challenges for Deep Vadose Zone Remediation at the Hanford Site

    SciTech Connect

    Morse, J.G.; Charboneau, B.L.; Lober, R.W.; Triplett, M.B.

    2008-07-01

    The 'deep vadose zone' is defined as the region below the practical depth of surface remedy influence (e.g., excavation or barrier). At the Hanford Site, this region of the Central Plateau poses unique challenges for characterization and remediation. Currently, deep vadose zone characterization efforts and remedy selection are spread over multiple waste site Operable Units and tank farm Waste Management Areas. A particular challenge for this effort is the situation in which past leaks from single-shell tanks have become commingled with discharges from nearby liquid disposal sites. In addition, tests of potentially viable remediation technologies will be initiated in the next few years. The Hanford Site is working with all affected parties, including the Washington State Department of Ecology, the Environmental Protection Agency, DOE-RL, DOE-ORP, and multiple contractor organizations to develop remediation approaches. This effort addresses the complex and challenging technical and is evaluating the best strategy or combination of strategies for focusing technical investigations, including treatability studies to facilitate deep vadose zone remediation at the Hanford Site. In summary: Hanford's two DOE offices, Richland Operations and the Office of River Protection, are engaging the Site's regulators, EPA and the Washington State Department of Ecology, in a collaborative process to resolve one of Hanford's most challenging technical issues - investigation and remedy selection for the deep vadose zone. While this process has not reached its conclusion, several important findings are apparent. All parties agree that the current approach of addressing this problem is not likely to be successful and an alternative is needed. An essential initial step is to develop and then implement a deep vadose zone treatability test plan that logically organizes the testing of candidate technologies for application to the variety of Hanford's deep vadose zone problems. This plan is

  11. Groundwater remediation optimization using artificial neural networks

    SciTech Connect

    Rogers, L. L., LLNL

    1998-05-01

    One continuing point of research in optimizing groundwater quality management is reduction of computational burden which is particularly limiting in field-scale applications. Often evaluation of a single pumping strategy, i.e. one call to the groundwater flow and transport model (GFTM) may take several hours on a reasonably fast workstation. For computational flexibility and efficiency, optimal groundwater remediation design at Lawrence Livermore National Laboratory (LLNL) has relied on artificial neural networks (ANNS) trained to approximate the outcome of 2-D field-scale, finite difference/finite element GFTMs. The search itself has been directed primarily by the genetic algorithm (GA) or the simulated annealing (SA) algorithm. This approach has advantages of (1) up to a million fold increase in speed of remediation pattern assessment during the searches and sensitivity analyses for the 2-D LLNL work, (2) freedom from sequential runs of the GFTM (enables workstation farming), and (3) recycling of the knowledge base (i.e. runs of the GFTM necessary to train the ANNS). Reviewed here are the background and motivation for such work, recent applications, and continuing issues of research.

  12. Summary of Hanford Site Groundwater Monitoring for Fiscal Year 2004

    SciTech Connect

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2005-04-05

    This booklet is the summary chapter of the large groundwater report printed in booklet form with a CD of the complete report inside the back cover. It contains information on the current status of groundwater beneath the Hanford Site, highlights of FY 2004 monitoring, and emerging issues.

  13. TREATABILITY TEST PLAN FOR DEEP VADOSE ZONE REMEDIATION AT THE HANFORD SITE CENTRAL PLATEAU

    SciTech Connect

    PETERSEN SW; MORSE JG; TRUEX MJ; LAST GV

    2007-11-29

    A treatability test plan has been prepared to address options for remediating portions of the deep vadose zone beneath a portion of the U.S. Department of Energy's (DOE's) Hanford Site. The vadose zone is the region of the subsurface that extends from the ground surface to the water table. The overriding objective of the treatability test plan is to recommend specific remediation technologies and laboratory and field tests to support the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 and Resource Conservation and Recovery Act of 1976 remedial decision-making process in the Central Plateau of the Hanford Site. Most of the technologies considered involve removing water from the vadose zone or immobilizing the contaminants to reduce the risk of contaminating groundwater. A multi-element approach to initial treatability testing is recommended, with the goal of providing the information needed to evaluate candidate technologies. The proposed tests focus on mitigating two contaminants--uranium and technetium. Specific technologies are recommended for testing at areas that may affect groundwater in the future, but a strategy to test other technologies is also presented.

  14. Treatability Test Plan for Deep Vadose Zone Remediation at the Hanford Site's Central Plateau

    SciTech Connect

    Petersen, S.W.; Morse, J.G.; Truex, M.J.; Last, G.V.

    2008-07-01

    A treatability test plan has been prepared to address options for remediating portions of the deep vadose zone beneath the U.S. Department of Energy's (DOE's) Hanford Site. The vadose zone is the region of the subsurface that extends from the ground surface to the water table. The overriding objective of the treatability test plan is to recommend specific remediation technologies and laboratory and field tests to support the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 and Resource Conservation and Recovery Act of 1976 remedial decision-making process in the Central Plateau of the Hanford Site. Most of the technologies considered involve removing water from the vadose zone or immobilizing the contaminants to reduce the risk of contaminating groundwater. A multi-element approach to initial treatability testing is recommended, with the goal of providing the information needed to evaluate candidate technologies. The proposed tests focus on mitigating two contaminants - uranium and technetium. Specific technologies are recommended for testing at areas that may affect groundwater in the future, but a strategy to test other technologies is also presented. (authors)

  15. Microbial Community Dynamics of Lactate Enriched Hanford Groundwaters

    SciTech Connect

    Mosher, Jennifer J.; Drake, Meghan M.; Carroll, Susan L.; Yang, Zamin K.; Schadt, Christopher W.; Brown, Stephen D.; Podar, Mircea; Hazen, Terry C.; Arkin, Adam P.; Phelps, Tommy J.; Palumbo, Anthony V.; Faybishenko, Boris A.; Elias, Dwayne A.

    2010-05-01

    The Department of Energy site at Hanford, WA, has been historically impacted by U and Cr from the nuclear weapons industry. In an attempt to stimulate microbial remediation of these metals, in-situ lactate enrichment experiments are ongoing. In order to bridge the gap from the laboratory to the field, we inoculated triplicate anaerobic, continuous-flow glass reactors with groundwater collected from well Hanford 100-H in order to obtain a stable, enriched community while selecting for metal-reducing bacteria. Each reactor was fed from a single carboy containing defined media with 30 mM lactate at a rate of 0.223 ml/min under continuous nitrogen flow at 9 ml/min. Cell counts, organic acids, gDNA (for qPCR and pyrosequencing) and gases were sampled during the experiment. Cell counts remained low (less than 1x107 cells/ml) during the first two weeks of the experiment, but by day 20, had reached a density greater than 1x108 cells/ml. Metabolite analysis showed a decrease in the lactate concentrations over time. Pyruvate concentrations ranged from 20-40 uM the first week of the experiment then was undetectable after day 10. Likewise, formate appeared in the reactors during the first week with concentrations of 1.48-1.65 mM at day 7 then the concentrations decreased to 0.69-0.95 on day 10 and were undetectable on day 15. Acetate was present in low amounts on day 3 (0.15-0.33 mM) and steadily increased to 3.35-5.22 mM over time. Similarly, carbon dioxide was present in low concentrations early on and increased to 0.28-0.35 mM as the experiment progressed. We also were able to detect low amounts of methane (10-20 uM) during the first week of the experiment, but by day 10 the methane was undetectable. From these results and pyrosequencing analysis, we conclude that a shift in the microbial community dynamics occurred over time to eventually form a stable and enriched microbial community. Comprehensive investigations such as these allow for the examination of not only which

  16. Development of a Groundwater Transport Simulation Tool for Remedial Process Optimization

    SciTech Connect

    Ivarson, Kristine A.; Hanson, James P.; Tonkin, M.; Miller, Charles W.; Baker, S.

    2015-01-14

    The groundwater remedy for hexavalent chromium at the Hanford Site includes operation of five large pump-and-treat systems along the Columbia River. The systems at the 100-HR-3 and 100-KR-4 groundwater operable units treat a total of about 9,840 liters per minute (2,600 gallons per minute) of groundwater to remove hexavalent chromium, and cover an area of nearly 26 square kilometers (10 square miles). The pump-and-treat systems result in large scale manipulation of groundwater flow direction, velocities, and most importantly, the contaminant plumes. Tracking of the plumes and predicting needed system modifications is part of the remedial process optimization, and is a continual process with the goal of reducing costs and shortening the timeframe to achieve the cleanup goals. While most of the initial system evaluations are conducted by assessing performance (e.g., reduction in contaminant concentration in groundwater and changes in inferred plume size), changes to the well field are often recommended. To determine the placement for new wells, well realignments, and modifications to pumping rates, it is important to be able to predict resultant plume changes. In smaller systems, it may be effective to make small scale changes periodically and adjust modifications based on groundwater monitoring results. Due to the expansive nature of the remediation systems at Hanford, however, additional tools were needed to predict the plume reactions to system changes. A computer simulation tool was developed to support pumping rate recommendations for optimization of large pump-and-treat groundwater remedy systems. This tool, called the Pumping Optimization Model, or POM, is based on a 1-layer derivation of a multi-layer contaminant transport model using MODFLOW and MT3D.

  17. GROUNDWATER RADIOIODINE: PREVALENCE, BIOGEOCHEMISTRY, AND POTENTIAL REMEDIAL APPROACHES

    SciTech Connect

    Denham, M.; Kaplan, D.; Yeager, C.

    2009-09-23

    Iodine-129 ({sup 129}I) has not received as much attention in basic and applied research as other contaminants associated with DOE plumes. These other contaminants, such as uranium, plutonium, strontium, and technetium are more widespread and exist at more DOE facilities. Yet, at the Hanford Site and the Savannah River Site {sup 129}I occurs in groundwater at concentrations significantly above the primary drinking water standard and there is no accepted method for treating it, other than pump-and-treat systems. With the potential arrival of a 'Nuclear Renaissance', new nuclear power facilities will be creating additional {sup 129}I waste at a rate of 1 Ci/gigawatts energy produced. If all 22 proposed nuclear power facilities in the U.S. get approved, they will produce more {sup 129}I waste in seven years than presently exists at the two facilities containing the largest {sup 129}I inventories, ({approx}146 Ci {sup 129}I at the Hanford Site and the Savannah River Site). Hence, there is an important need to fully understand {sup 129}I behavior in the environment to clean up existing plumes and to support the expected future expansion of nuclear power production. {sup 129}I is among the key risk drivers at all DOE nuclear disposal facilities where {sup 129}I is buried, because of its long half-life (16 million years), high toxicity (90% of the body's iodine accumulates in the thyroid), high inventory, and perceived high mobility in the subsurface environment. Another important reason that {sup 129}I is a key risk driver is that there is the uncertainty regarding its biogeochemical fate and transport in the environment. We typically can define {sup 129}I mass balance and flux at sites, but can not accurately predict its response to changes in the environment. This uncertainty is in part responsible for the low drinking water standard, 1 pCi/L {sup 129}I, and the low permissible inventory limits (Ci) at the Savannah River Site, Hanford Site, and the former Yucca

  18. Optimized remedial groundwater extraction using linear programming

    SciTech Connect

    Quinn, J.J.

    1995-12-31

    Groundwater extraction systems are typically installed to remediate contaminant plumes or prevent further spread of contamination. These systems are expensive to install and maintain. A traditional approach to designing such a wellfield uses a series of trial-and-error simulations to test the effects of various well locations and pump rates. However, the optimal locations and pump rates of extraction wells are difficult to determine when objectives related to the site hydrogeology and potential pumping scheme are considered. This paper describes a case study of an application of linear programming theory to determine optimal well placement and pump rates. The objectives of the pumping scheme were to contain contaminant migration and reduce contaminant concentrations while minimizing the total amount of water pumped and treated. Past site activities at the area under study included disposal of contaminants in pits. Several groundwater plumes have been identified, and others may be present. The area of concern is bordered on three sides by a wetland, which receives a portion of its input budget as groundwater discharge from the pits. Optimization of the containment pumping scheme was intended to meet three goals: (1) prevent discharge of contaminated groundwater to the wetland, (2) minimize the total water pumped and treated (cost benefit), and (3) avoid dewatering of the wetland (cost and ecological benefits). Possible well locations were placed at known source areas. To constrain the problem, the optimization program was instructed to prevent any flow toward the wetland along a user-specified border. In this manner, the optimization routine selects well locations and pump rates so that a groundwater divide is produced along this boundary.

  19. Fluoride in groundwater: toxicological exposure and remedies.

    PubMed

    Jha, S K; Singh, R K; Damodaran, T; Mishra, V K; Sharma, D K; Rai, Deepak

    2013-01-01

    Fluoride is a chemical element that is found most frequently in groundwater and has become one of the most important toxicological environmental hazards globally. The occurrence of fluoride in groundwater is due to weathering and leaching of fluoride-bearing minerals from rocks and sediments. Fluoride when ingested in small quantities (<0.5 mg/L) is beneficial in promoting dental health by reducing dental caries, whereas higher concentrations (>1.5 mg/L) may cause fluorosis. It is estimated that about 200 million people, from among 25 nations the world over, may suffer from fluorosis and the causes have been ascribed to fluoride contamination in groundwater including India. High fluoride occurrence in groundwaters is expected from sodium bicarbonate-type water, which is calcium deficient. The alkalinity of water also helps in mobilizing fluoride from fluorite (CaF2). Fluoride exposure in humans is related to (1) fluoride concentration in drinking water, (2) duration of consumption, and (3) climate of the area. In hotter climates where water consumption is greater, exposure doses of fluoride need to be modified based on mean fluoride intake. Various cost-effective and simple procedures for water defluoridation techniques are already known, but the benefits of such techniques have not reached the rural affected population due to limitations. Therefore, there is a need to develop workable strategies to provide fluoride-safe drinking water to rural communities. The study investigated the geochemistry and occurrence of fluoride and its contamination in groundwater, human exposure, various adverse health effects, and possible remedial measures from fluoride toxicity effects. PMID:23573940

  20. Environmental and ground-water surveillance at Hanford

    SciTech Connect

    Dirkes, R.L.; Luttrell, S.P.

    1995-06-01

    Environmental and ground-water surveillance of the Hanford Site and surrounding region is conducted to demonstrate compliance with environmental regulations, confirm adherence to DOE environmental protection policies, support DOE environmental management decisions, and provide information to the public. Environmental surveillance encompasses sampling and analyzing for potential radiological and nonradiological chemical contaminants on and off the Hanford Site. Emphasis is placed on surveillance of exposure pathways and chemical constituents that pose the greatest risk to human health and the environment.

  1. Expediting Groundwater Sampling at Hanford and Making It Safer - 13158

    SciTech Connect

    Connell, Carl W. Jr.; Conley, S.F.; Carr, Jennifer S.; Schatz, Aaron L.; Brown, W.L.; Hildebrand, R. Douglas

    2013-07-01

    The CH2M HILL Plateau Remediation Company (CHPRC) manages the groundwater monitoring programs at the Department of Energy's 586-square-mile Hanford site in southeastern Washington state. These programs are regulated by the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response Compensation and Liability Act (CERCLA), and the Atomic Energy Act (AEA). The purpose of monitoring is to track existing groundwater contamination from past practices, as well as other potential contamination that might originate from RCRA treatment, storage, and disposal (TSD) facilities. An integral part of the groundwater-monitoring program involves taking samples of the groundwater and measuring the water levels in wells scattered across the site. Each year, more than 1,500 wells are accessed for a variety of reasons. Historically, the monitoring activities have been very 'people intensive'. Field personnel or 'samplers' have been issued pre-printed forms showing information about the well(s) for a particular sampling evolution. This information is taken from two official electronic databases: the Hanford Well Information System (HWIS) and the Hanford Environmental Information System (HEIS). The samplers traditionally used these hardcopy forms to document the groundwater samples and well water-levels. After recording the entries in the field, the samplers turned the forms in at the end of the day and other personnel posted the collected information. In Automating Groundwater Sampling at Hanford (HNF-38542-FP Revision 0, Presented at Waste Management 2009 Conference, March 1 - March 5, 2009, Phoenix, AZ), we described the methods, tools, and techniques that would be used in automating the activities associated with measuring water levels. The Field Logging and Electronic Data Gathering (FLEDG) application/database that automates collecting the water-level measurement data has now been implemented at Hanford. In addition to eliminating the need to print out

  2. Hanford Site ground-water monitoring for 1990

    SciTech Connect

    Evans, J.C.; Bryce, R.W.; Bates, D.J.

    1992-06-01

    The Pacific Northwest Laboratory monitors ground-water quality across the Hanford Site for the US Department of Energy (DOE) to assess the impact of Site operations on the environment. Monitoring activities were conducted to determine the distribution of mobile radionuclides and identify chemicals present in ground water as a result of Site operations and whenever possible, relate the distribution of these constituents to Site operations. To comply with the Resource Conservation and Recovery Act, additional monitoring was conducted at individual waste sites by the Site Operating Contractor, Westinghouse Hanford Company (WHC), to assess the impact that specific facilities have had on ground-water quality. Six hundred and twenty-nine wells were sampled during 1990 by all Hanford ground-water monitoring activities.

  3. Ground-water contribution to dose from past Hanford Operations

    SciTech Connect

    Freshley, M.D.; Thorne, P.D.

    1992-08-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides migrating in ground water on the Hanford Site could have reached the public have been identified: (1) through contaminated ground water migrating to the Columbia River; (2) through wells on or adjacent to the Hanford Site; (3) through wells next to the Columbia River downstream of Hanford that draw some or all of their water from the river (riparian wells); and (4) through atmospheric deposition resulting in contamination of a small watershed that, in turn, results in contamination of a shallow well or spring by transport in the ground water. These four pathways make up the ground-water pathway,'' which is the subject of this study. Assessment of the ground-water pathway was performed by (1) reviewing the existing extensive literature on ground water and ground-water monitoring at Hanford and (2) performing calculations to estimate radionuclide concentrations where no monitoring data were collected. Radiation doses that would result from exposure to these radionuclides were calculated.

  4. Ground-water contribution to dose from past Hanford operations

    SciTech Connect

    Freshley, M. D.; Thorne, P. D.

    1992-01-01

    The Hanford Environmental Dose Reconstruction (HEOR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides originating in ground water on the Hanford Site could have reached the public have been identified: 1) through contaminated ground water migrating to the Columbia River; 2) through wells on or adjacent to the Hanford Site; 3) through wells that draw some or all of their water from the Columbia River (riparian wells); and 4) through atmospheric deposition resulting in the contamination of a small watershed that, in turn, results in contamination of a shallow well or spring. These four pathways make up the "ground-water pathway ," which is the subject of this study. The objective of the study was to assess the extent to which the groundwater pathway contributed to radiation doses that populations or individuals may have received from past operations at Hanford. The assessment presented in this report was performed by 1) reviewing the extensive literature on ground water and ground-water monitoring at Hanford and 2) performing simple calculations to estimate radionuclide concentrations in ground water and the Columbia River resulting from ground-water discharge. Radiation doses that would result from exposure to this ground water and surface water were calculated. The study conclusion is that the ground-water pathways did not contribute significantly to dose. Compared with background radiation in the TriCities {300 mrem/yr), estimated doses are small: 0.02 mrem/yr effective dose equivalent from discharge of contaminated ground water to the Columbia River; 1 mrem/yr effective dose equivalent from Hanford Site wells; 11 mrem/yr effective dose equivalent from riparian wells; and 1 mrem/yr effective dose equivalent from the watershed. Because the estimated doses are so small, the recommendation is that further work

  5. Hanford Site groundwater monitoring for fiscal year 1996

    SciTech Connect

    Hartman, M.J.; Dresel, P.E.; Borghese, J.V.

    1997-02-01

    This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1996 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that affected groundwater quality on the site. Characterization and monitoring of the vadose zone during FY 1996 comprised primarily spectral gamma logging, soil-gas monitoring, and electrical resistivity tomography. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1995 and June 1996. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Smaller plumes of strontium-90, technetium-99, and plutonium also were present at levels above the U.S. Environmental Protection Agency or State of Washington interim drinking water standards. Uranium concentrations greater than the proposed drinking water standard were also observed. Nitrate, fluoride, chromium, carbon tetrachloride, chloroform, trichloroethylene, and cis-1,2-dichlomethylene were present in groundwater samples at levels above their U.S. Environmental Protection Agency or State of Washington maximum contaminant levels. The nitrate plume is the most extensive. Three-dimensional, numerical, groundwater models were applied to the Hanford Site to predict contaminant-flow paths and the impact of operational changes on site groundwater conditions. Other models were applied to assess the performance of three separate pump-and-treat systems.

  6. Ground-water contribution to dose from past Hanford Operations. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Freshley, M.D.; Thorne, P.D.

    1992-08-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides migrating in ground water on the Hanford Site could have reached the public have been identified: (1) through contaminated ground water migrating to the Columbia River; (2) through wells on or adjacent to the Hanford Site; (3) through wells next to the Columbia River downstream of Hanford that draw some or all of their water from the river (riparian wells); and (4) through atmospheric deposition resulting in contamination of a small watershed that, in turn, results in contamination of a shallow well or spring by transport in the ground water. These four pathways make up the ``ground-water pathway,`` which is the subject of this study. Assessment of the ground-water pathway was performed by (1) reviewing the existing extensive literature on ground water and ground-water monitoring at Hanford and (2) performing calculations to estimate radionuclide concentrations where no monitoring data were collected. Radiation doses that would result from exposure to these radionuclides were calculated.

  7. Groundwater maps of the Hanford Site Separations Area, January 1989

    SciTech Connect

    Kasza, G.L.; Schatz, A.L.

    1989-03-01

    The groundwater maps of the Hanford Site Separations Area, dated January 1989, are prepared by the Environmental Engineering and Technology Function, Environmental Division, Westinghouse Hanford Company. The groundwater maps are updated on a semiannual basis and are complementary to the Hanford Site water table map prepared by Pacific Northwest Laboratory. The Separations Area consists of the 200 East and 200 West areas and the surrounding vicinity on the Hanford Site. Chemical processing operations are carried out in the Separations Area by Westinghouse Hanford for the US Department of Energy - Richland Operations Office. This set of groundwater maps consists of: (1) Separations Area depth-to-water map, (2) Separations Area water table map, and (3) a map comparing the potentiometric surface of the Rattlesnake Ridge confined aquifer with the water table of the unconfined aquifer. The field measurements for these maps were collected during the period January 19 to February 8, 1989, and are listed in Table 1. For clarity, the locating prefixes have been omitted from all well numbers shown on the maps. Wells in the 200 Areas have the prefix 299, and the wells outside of these areas have the prefix 699.

  8. Evaluating Contaminant Flux from the Vadose Zone to the Groundwater in the Hanford Central Plateau. SX Tank Farms Case Study

    SciTech Connect

    Truex, Michael J.; Oostrom, Martinus; Last, George V.; Strickland, Christopher E.; Tartakovsky, Guzel D.

    2015-09-01

    At the DOE Hanford Site, contaminants were discharged to the subsurface through engineered waste sites in the Hanford Central Plateau. Additional waste was released through waste storage tank leaks. Much of the contaminant inventory is still present within the unsaturated vadose zone sediments. The nature and extent of future groundwater contaminant plumes and the growth or decline of current groundwater plumes beneath the Hanford Central Plateau are a function of the contaminant flux from the vadose zone to the groundwater. In general, contaminant transport is slow through the vadose zone and it is difficult to directly measure contaminant flux in the vadose zone. Predictive analysis, supported by site characterization and monitoring data, was applied using a structured, systems-based approach to estimate the future contaminant flux to groundwater in support of remediation decisions for the vadose zone and groundwater (Truex and Carroll 2013). The SX Tank Farm was used as a case study because of the existing contaminant inventory in the vadose zone, observations of elevated moisture content in portions of the vadose zone, presence of a limited-extent groundwater plume, and the relatively large amount and wide variety of data available for the site. Although the SX Tank Farm case study is most representative of conditions at tank farm sites, the study has elements that are also relevant to other types of disposal sites in the Hanford Central Plateau.

  9. Overview of Phosphate-Based Remediation Technologies At The Hanford Site, Richland Washington

    NASA Astrophysics Data System (ADS)

    Thompson, K. M.; Fruchter, J. S.

    2009-12-01

    Phosphate-based technologies have been tested to sequester strontium-90 and uranium at the Hanford Site, part of the U.S. Department of Energy's (DOE)nuclear weapons complex that encompasses approximately 586 square miles in southeast Washington State. The Columbia River flows through the site (Hanford Reach) where localized groundwater plumes upwell into the river. Efforts to reduce the flux of Sr-90 to the Columbia River from Hanford Site 100-N Area past practice liquid waste disposal sites have been underway since the early 1990s. Termination of all liquid discharges to the ground in 1993 was a major step toward meeting this goal. However, Sr 90 adsorbed onto sediment beneath liquid waste disposal sites, and onto sediment that extends beneath the near-shore riverbed, remains a continuing contaminant source for impacting groundwater and the Columbia River. Initial remediation efforts using a pump-and treat system proved to be ineffective as a long-term solution because of the geochemical characteristics of Sr-90. Following an evaluation of potential Sr-90 treatment technologies and their applicability under 100-N Area hydrogeologic conditions, the U.S. Department of Energy and the Washington State Department of Ecology agreed to evaluate apatite sequestration as the primary remedial technology, combined with a secondary polishing step utilizing phytoextraction if necessary. DOE is also evaluating the efficacy of using polyphosphate to reduce uranium concentrations in the groundwater with the goal of meeting drinking water standards (30 μg/L). This technology works by forming phosphate minerals (autunite and apatite) in the aquifer that directly sequester the existing aqueous uranium in autunite minerals and precipitates apatite minerals for sorption and long-term treatment of uranium migrating into the treatment zone, thus reducing current and future aqueous uranium concentrations. These remedial technologies are being developed by Pacific Northwest National

  10. Sulfate Reduction in Groundwater: Characterization and Applications for Remediation

    SciTech Connect

    Miao, Z.; Brusseau, M. L.; Carroll, Kenneth C.; Carreon-Diazconti, C.; Johnson, B.

    2012-06-01

    Sulfate is ubiquitous in groundwater, with both natural and anthropogenic sources. Sulfate reduction reactions play a significant role in mediating redox conditions and biogeochemical processes for subsurface systems. They also serve as the basis for innovative in-situ methods for groundwater remediation. An overview of sulfate reduction in subsurface environments is provided, with a specific focus on implications for groundwater remediation. A case study presenting the results of a pilot-scale ethanol injection test illustrates the advantages and difficulties associated with the use of electron-donor amendments for sulfate remediation.

  11. Tackling the Challenge of Deep Vadose Zone Remediation at the Hanford Site

    NASA Astrophysics Data System (ADS)

    Morse, J. G.; Wellman, D. M.; Gephart, R.

    2010-12-01

    The Central Plateau of the Hanford Site in Washington State contains some 800 waste disposal sites where 1.7 trillion liters of contaminated water was once discharged into the subsurface. Most of these sites received liquids from the chemical reprocessing of spent uranium fuel to recover plutonium. In addition, 67 single shell tanks have leaked or are suspected to have leaked 3.8 million liters of high alkali and aluminate rich cesium-contaminated liquids into the sediment. Today, this inventory of subsurface contamination contains an estimated 550,000 curies of radioactivity and 150 million kg (165,000 tons) of metals and hazardous chemicals. Radionuclides range from mobile 99Tc to more immobilized 137Cs, 241Am, uranium, and plutonium. A significant fraction of these contaminants likely remain within the deep vadose zone. Plumes of groundwater containing tritium, nitrate, 129I and other contaminants have migrated through the vadose zone and now extend outward from the Central Plateau to the Columbia River. During most of Hanford Site history, subsurface studies focused on groundwater monitoring and characterization to support waste management decisions. Deep vadose zone studies were not a priority because waste practices relied upon that zone to buffer contaminant releases into the underlying aquifer. Remediation of the deep vadose zone is now central to Hanford Site cleanup because these sediments can provide an ongoing source of contamination to the aquifer and therefore to the Columbia River. However, characterization and remediation of the deep vadose zone pose some unique challenges. These include sediment thickness; contaminant depth; coupled geohydrologic, geochemical, and microbial processes controlling contaminant spread; limited availability and effectiveness of traditional characterization tools and cleanup remedies; and predicting contaminant behavior and remediation performance over long time periods and across molecular to field scales. The U

  12. EFFECT OF GROUND-WATER REMEDIATION ACTIVITIES ON INDIGENOUS MICROFLORA

    EPA Science Inventory

    The United States Environmental Protection Agency (EPA), working with the Interagency DNAPL Consortium, completed an independent evaluation of microbial responses to ground-water remediation technology demonstrations at Launch Pad 34 at Cape Canaveral Air Station in Brevard Count...

  13. Hanford Site groundwater monitoring: Setting, sources and methods

    SciTech Connect

    M.J. Hartman

    2000-04-11

    Groundwater monitoring is conducted on the Hanford Site to meet the requirements of the Resource Conservation and Recovery Act of 1976 (RCRA); Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA); U.S. Department of Energy (DOE) orders; and the Washington Administrative Code. Results of monitoring are published annually (e.g., PNNL-11989). To reduce the redundancy of these annual reports, background information that does not change significantly from year to year has been extracted from the annual report and published in this companion volume. This report includes a description of groundwater monitoring requirements, site hydrogeology, and waste sites that have affected groundwater quality or that require groundwater monitoring. Monitoring networks and methods for sampling, analysis, and interpretation are summarized. Vadose zone monitoring methods and statistical methods also are described. Whenever necessary, updates to information contained in this document will be published in future groundwater annual reports.

  14. Integrated technologies for expedited soil and groundwater remediation

    SciTech Connect

    Lewis, R.; Wellman, D.

    1996-12-01

    A fast-track and economic approach was necessary to meet the needs of a property transfer agreement and to minimize impact to future usage of a site in the Los Angeles Basin. Woodward-Clyde responded by implementing site investigation, remedial action plan preparation for soil and groundwater, and selection and installation of remedial alternatives in an aggressive schedule of overlapped tasks. Assessment of soil and groundwater was conducted at the site, followed by design and construction of remediation systems. This phase of activity was completed within 2 years. Soil and groundwater were found to be impacted by chlorinated solvents and petroleum hydrocarbons. A vapor extraction system (2,000 scfm capacity) was installed for soil remediation, and an innovative air sparging system was installed for cost effective groundwater cleanup. A bioventing system was also applied in selected areas. The vapor extraction wellfield consists of 26 extraction and monitoring well points, with multiple screened casings. The air sparging wellfield consists of 32 sparging wells with a designed maximum flow of 400 scfm. The systems began operation in 1993, and have resulted in the estimated removal of approximately 30,000 pounds of contaminants, or about 90% of the estimated mass in place. The combined vapor extraction/air sparging system is expected to reduce the time for on-site groundwater remediation from 1/3 to 1/6 the time when compared to the conventional pump and treat method for groundwater remediation.

  15. Hanford Site ground-water monitoring for 1992

    SciTech Connect

    Dresel, P.E.; Newcomer, D.R.; Evans, J.C.; Webber, W.D.; Spane, F.A. Jr.; Raymond, R.G.; Opitz, B.E.

    1993-06-01

    Monitoring activities were conducted to determine the distribution of radionuclides and hazardous chemicals present in ground water as a result of Hanford Site operations and, whenever possible, relate the distribution of these constituents to Site operations. A total of 720 wells were sampled during 1992 by all Hanford ground-water monitoring activities. The Ground-Water Surveillance Project prepared water-table maps of DOE`s Hanford Site for June 1992 from water-level elevations measured in 287 wells across the Hanford Site and outlying areas. These maps are used to infer ground-water flow directions and gradients for the interpretation of contaminant transport. Water levels beneath the 200 Areas decreased as much as 0.75 m (2.5 ft) between December 1991 and December 1992. Water levels in the Cold Creek Valley decreased approximately 0.5 m in that same period. The water table adjacent to the Columbia River along the Hanford Reach continues to respond significantly to fluctuations in river stage. These responses were observed in the 100 and 300 areas. The elevation of the ground-water mound beneath B Pond did not change significantly between December 1991 and December 1992. However, water levels from one well located at the center of the mound indicate a water-level rise of approximately 0.3 m (1 ft) during the last quarter of 1992. Water levels measured from unconfined aquifer wells north and east of the Columbia River in 1992 indicate that the primary source of recharge is from irrigation practices.

  16. Remediation of Hanford's N-Reactor Liquid Waste Disposal Sites.

    PubMed

    Sitsler, Robert B.; DeMers, Steven K.

    2003-02-01

    Hanford's N-Reactor operated from 1963 to 1987 generating approximately 9 x 10 m of radioactive and hazardous liquid effluent as a result of reactor operations. Two liquid waste disposal sites, essentially large trenches designed to filter contaminants from the water as it percolates through the soil column, were established to dispose of the effluent. The discharges to the sites included cooling water from the reactor primary, spent fuel storage, and periphery systems, along with miscellaneous drainage from reactor support facilities. Today, both sites are classified as Treatment Storage and Disposal Facilities under the Resource Conservation and Recovery Act of 1976, which makes them priority sites for remediation. The two sites cover approximately 4,100 m and 9,300 m, respectively. Remediation of the sites requires removing a combined total of approximately 2.6 x 10 kg of contaminated soil and debris. Principal radionuclides contained in the soil/debris are Co, Cs, Pu, and Sr. Remediation of these waste sites requires demolishing concrete structures and excavating, hauling, and disposing of contaminated soils in work areas containing high levels of contamination and whole body dose rates in excess of 1 mSv h. The work presents unique radiological control challenges, such as minimizing external dose to workers in a constantly changing outdoor work environment, maintaining contamination control during removal of a water distribution trough filled with highly contaminated sludge, and minimizing outdoor airborne contamination during size reduction of highly contaminated pipelines. Through innovative approaches to dose reduction and contamination control, Hanford's Environmental Restoration Contractor has met the challenge, completing the first phase on schedule and with a total project exposure below the goal of 0.1 person-Sv. PMID:12555036

  17. Remediation of Hanford's N-reactor liquid waste disposal sites.

    PubMed

    Sitsler, Robert B; DeMers, Steven K

    2003-02-01

    Hanford's N-Reactor operated from 1963 to 1987 generating approximately 9 x 10(7) m3 of radioactive and hazardous liquid effluent as a result of reactor operations. Two liquid waste disposal sites, essentially large trenches designed to filter contaminants from the water as it percolates through the soil column, were established to dispose of the effluent. The discharges to the sites included cooling water from the reactor primary, spent fuel storage, and periphery systems, along with miscellaneous drainage from reactor support facilities. Today, both sites are classified as Treatment Storage and Disposal Facilities under the Resource Conservation and Recovery Act of 1976, which makes them priority sites for remediation. The two sites cover approximately 4,100 m2 and 9,300 m2, respectively. Remediation of the sites requires removing a combined total of approximately 2.6 x 10(8) kg of contaminated soil and debris. Principal radionuclides contained in the soil/debris are 60Co, 137Cs, 239Pu, and 90Sr. Remediation of these waste sites requires demolishing concrete structures and excavating, hauling, and disposing of contaminated soils in work areas containing high levels of contamination and whole body dose rates in excess of 1 mSv h-1. The work presents unique radiological control challenges, such as minimizing external dose to workers in a constantly changing outdoor work environment, maintaining contamination control during removal of a water distribution trough filled with highly contaminated sludge, and minimizing outdoor airborne contamination during size reduction of highly contaminated pipelines. Through innovative approaches to dose reduction and contamination control, Hanford's Environmental Restoration Contractor has met the challenge, completing the first phase on schedule and with a total project exposure below the goal of 0.1 person-Sv. PMID:12564346

  18. In-situ remediation system for groundwater and soils

    DOEpatents

    Corey, J.C.; Kaback, D.S.; Looney, B.B.

    1991-01-01

    The present invention relates to a system for in-situ remediation of contaminated groundwater and soil. In particular the present invention relates to stabilizing toxic metals in groundwater and soil. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  19. Technical Basis for Gas-Phase Vadose Zone Remediation Technologies at Hanford: A Review - 12186

    SciTech Connect

    Truex, M.J.; Oostrom, M.; Szecsody, J.E.; Strickland, C.E.; Chronister, G.B.; Benecke, M.W.

    2012-07-01

    In situ vadose zone remediation approaches are being evaluated as potential options to mitigate the transport of inorganic and radionuclide contaminants from the vadose zone to the groundwater. Some of the candidate approaches are based on changing the contaminant or subsurface conditions in a way that slows downward migration of the contaminants through the vadose zone using amendments delivered in the gas-phase. Two promising approaches that have undergone testing at Hanford include soil desiccation to address technetium-99 contamination and ammonia-induced sequestration of uranium. For soil desiccation, a dry gas is injected to desiccate a targeted portion of the subsurface and thereby decrease contaminant movement by removing moisture and decreasing the hydraulic conductivity of the desiccated zone. Ammonia-induced sequestration of uranium relies on changing the pore water chemistry, primarily through pH changes, to induce dissolution and precipitation processes that decrease the amount of mobile uranium in the vadose zone. (authors)

  20. PROTECTING GROUNDWATER & THE COLUMBIA RIVER AT THE HANFORD SITE

    SciTech Connect

    GERBER, M.S.

    2006-06-29

    Along the remote shores of the Columbia River in southeast Washington state, a race is on. Fluor Hanford, a prime cleanup contractor to the U.S. Department of Energy (DOE) at the Hanford Site, is managing a massive, multi-faceted project to remove contaminants from the groundwater before they can reach the Columbia. Despite the daunting nature and size of the problem--about 80 square miles of aquifer under the site contains long-lived radionuclides and hazardous chemicals--significant progress is being made. Many groups are watching, speaking out, and helping. A large. passionate, diverse, and geographically dispersed community is united in its desire to protect the Columbia River--the eighth largest in the world--and have a voice in Hanford's future. Fluor Hanford and the DOE, along with the US. Environmental Protection Agency (EPA) and the Washington Department of Ecology (Ecology) interact with all the stakeholders to make the best decisions. Together, they have made some remarkable strides in the battle against groundwater contamination under the site.

  1. Nodal failure index approach to groundwater remediation design

    USGS Publications Warehouse

    Lee, J.; Reeves, H.W.; Dowding, C.H.

    2008-01-01

    Computer simulations often are used to design and to optimize groundwater remediation systems. We present a new computationally efficient approach that calculates the reliability of remedial design at every location in a model domain with a single simulation. The estimated reliability and other model information are used to select a best remedial option for given site conditions, conceptual model, and available data. To evaluate design performance, we introduce the nodal failure index (NFI) to determine the number of nodal locations at which the probability of success is below the design requirement. The strength of the NFI approach is that selected areas of interest can be specified for analysis and the best remedial design determined for this target region. An example application of the NFI approach using a hypothetical model shows how the spatial distribution of reliability can be used for a decision support system in groundwater remediation design. ?? 2008 ASCE.

  2. Three-Dimensional Groundwater Models of the 300 Area at the Hanford Site, Washington State

    SciTech Connect

    Williams, Mark D.; Rockhold, Mark L.; Thorne, Paul D.; Chen, Yousu

    2008-09-01

    Researchers at Pacific Northwest National Laboratory developed field-scale groundwater flow and transport simulations of the 300 Area to support the 300-FF-5 Operable Unit Phase III Feasibility Study. The 300 Area is located in the southeast portion of the U.S. Department of Energy’s Hanford Site in Washington State. Historical operations involving uranium fuel fabrication and research activities at the 300 Area have contaminated engineered liquid-waste disposal facilities, the underlying vadose zone, and the uppermost aquifer with uranium. The main objectives of this research were to develop numerical groundwater flow and transport models to help refine the site conceptual model, and to assist assessment of proposed alternative remediation technologies focused on the 300 Area uranium plume.

  3. Phyto remediation groundwater trends at the DOE portsmouth gaseous

    SciTech Connect

    Lewis, A.C.; Baird, D.R.

    2007-07-01

    This paper describes the progress of a phyto-remediation action being performed at the Department of Energy (DOE) Portsmouth Gaseous Diffusion Plant (PORTS) X-740 Waste Oil Handling Facility to remediate contaminated groundwater under a Resource Conservation and Recovery Act (RCRA) closure action. This action was effected by an Ohio Environmental Protection Agency (OEPA) decision to use phyto-remediation as the preferred remedy for the X-740 groundwater contamination. This remedy was recognized as a cost-effective, low-maintenance, and promising method to remediate groundwater contaminated with volatile organic compounds (VOCs), primarily trichloroethylene (TCE). During 1999, prior to the tree installation at the X-740 Phyto-remediation Area, water level measurements in the area were collected from 10 monitoring wells completed in the Gallia Formation. The Gallia is the uppermost water-bearing zone and contains most of the groundwater contamination at PORTS. During the tree installation which took place during the summer of 1999, four new Gallia monitoring wells were installed at the X-740 Area in addition to the 10 Gallia wells which had been installed in the same area during the early 1990's. Manual water level measurements were collected quarterly from these 14 Gallia monitoring wells between 1998 and 2001. These manual water level measurements were collected to monitor the combined impact of the trees on the groundwater prior to root development. Beginning in 2001, water level measurements were collected monthly during the growing season (April-September) and quarterly during the dormant season (October-March). A total of eight water level measurements were collected annually to monitor the phyto-remediation system's effect on the groundwater in the X- 740 Area. The primary function of the X-740 Phyto-remediation Area is to hydraulically prevent further spreading of the TCE plume. This process utilizes deep-rooted plants, such as poplar trees, to extract large

  4. Investigation of Isotopic Signatures for Sources of Groundwater Contamination at the Hanford Site

    SciTech Connect

    Dresel, P Evan; Evans, John C.; Farmer, Orville T.

    2002-01-25

    The Hanford Site Groundwater Monitoring Project at Pacific Northwest National Laboratory (PNNL) investigated selected isotopic signature techniques to aid interpretation of contaminant plumes in Hanford Site groundwater. The main approach was to select groundwater samples expected to exhibit a variety of contaminant characteristics and then develop inductively coupled plasma mass spectrometry (ICP-MS) analytical methods for the groundwater matrix. Initial broad scans were used to identify interferences and to focus the method development on isotopes showing the greatest promise of practical application. In addition, earlier work characterizing chlorine-36 in Hanford Site groundwater by accelerator mass spectrometry (AMS) will be discussed.

  5. Efficiencies and Optimization of Weak Base Anion Ion-Exchange Resin for Groundwater Hexavalent Chromium Removal at Hanford

    SciTech Connect

    Nesham, Dean O.; Ivarson, Kristine A.; Hanson, James P.; Miller, Charles W.; Meyers, P.; Jaschke, Naomi M.

    2014-02-03

    The U.S. Department of Energy’s (DOE’s) contractor, CH2M HILL Plateau Remediation Company, has successfully converted a series of groundwater treatment facilities to use a new treatment resin that is delivering more than $3 million in annual cost savings and efficiency in treating groundwater contamination at the DOE Hanford Site in southeastern Washington State. During the production era, the nuclear reactors at the Hanford Site required a continuous supply of high-quality cooling water during operations. Cooling water consumption ranged from about 151,417 to 378,541 L/min (40,000 to 100,000 gal/min) per reactor, depending on specific operating conditions. Water from the Columbia River was filtered and treated chemically prior to use as cooling water, including the addition of sodium dichromate as a corrosion inhibitor. Hexavalent chromium was the primary component of the sodium dichromate and was introduced into the groundwater at the Hanford Site as a result of planned and unplanned discharges from the reactors starting in 1944. Groundwater contamination by hexavalent chromium and other contaminants related to nuclear reactor operations resulted in the need for groundwater remedial actions within the Hanford Site reactor areas. Beginning in 1995, groundwater treatment methods were evaluated, leading to the use of pump-and-treat facilities with ion exchange using Dowex™ 21K, a regenerable, strong-base anion exchange resin. This required regeneration of the resin, which was performed offsite. In 2008, DOE recognized that regulatory agreements would require significant expansion for the groundwater chromium treatment capacity. As a result, CH2M HILL performed testing at the Hanford Site in 2009 and 2010 to demonstrate resin performance in the specific groundwater chemistry at different waste sites. The testing demonstrated that a weak-base anion, single-use resin, specifically ResinTech SIR-700 ®, was effective at removing chromium, had a significantly

  6. Hanford Site groundwater monitoring for Fiscal Year 1997

    SciTech Connect

    Hartman, M.J.; Dresel, P.E.

    1998-02-01

    This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1997 on the Hanford Site, Washington. Soil-vapor extraction continued in the 200-West Area to remove carbon tetrachloride from the vadose zone. Characterization and monitoring of the vadose zone comprised primarily spectral gamma logging, soil-vapor monitoring, and analysis and characterization of sediments sampled below a vadose-zone monitoring well. Source-term analyses for strontium-90 in 100-N Area vadose-zone sediments were performed using recent groundwater-monitoring data and knowledge of strontium`s ion-exchange properties. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1996 and June 1997. Water levels near the Columbia River increased during this period because the river stage was unusually high. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Concentrations of technetium-99, uranium, strontium-90, and carbon-14 also exceeded drinking water standards in smaller plumes. Plutonium and cesium-137 exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in U.S. Department of Energy Order 5400.5 were exceeded for tritium, uranium, strontium-90, and plutonium in small plumes or single wells. Nitrate is the most extensive chemical contaminant. Carbon tetrachloride, chloroform, chromium, cis-1,2-dichloroethylene, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Cyanide concentrations were elevated in one area but were below the maximum contaminant level.

  7. Using trees to remediate groundwaters contaminated with chlorinated hydrocarbons. 1998 annual progress report

    SciTech Connect

    Strand, S.E.; Gordon, M.P.

    1998-06-01

    'Industrial practices in the past have resulted in contamination of groundwater with chlorinated hydrocarbons (CHCs) at many DOE sites, such as Hanford and Savannah River. Such contamination is a major problem because existing groundwater remediation technologies are expensive and difficult. An inexpensive method for groundwater remediation is greatly needed. Trees could be used to remediate CHC polluted groundwater at minimal cost (phytoremediation). Before phytoremediation can be extensively applied, the authors must determine the range of compounds that are attacked, the effects of metabolic products on the plants and the environment, and the effect of transpiration and concentration of CHC on uptake and metabolism. They will test the ability of hybrid poplar to take up and transform the chlorinated methanes, ethanes and ethylenes. The rate of uptake and transformation by poplar of TCE as a function of concentration in the soil, transpiration rate and illumination level will be determined. Methods will be developed to permit rapid testing of plants from contaminated sites for species able to oxidize and sequester chlorinated compounds. They will identify the nature of the bound residues of TCE metabolism in poplar. They will identify the mechanisms involved in CHC oxidation in poplar and use genetic manipulations to enhance that activity. They will introduce the genes for mammalian cytochrome P-450-IIE1, known to oxidize light CHCs such as TCE to attempt to increase the CHC metabolism capacity of poplar. The results of this research will place phytoremediation of CHCs on a firm scientific footing, allowing a rational assessment of its application to groundwater contamination. This report summarizes the results of the first 1.5 years of work on a three-year project.'

  8. AUTOMATING GROUNDWATER SAMPLING AT HANFORD THE NEXT STEP

    SciTech Connect

    CONNELL CW; CONLEY SF; HILDEBRAND RD; CUNNINGHAM DE; R_D_Doug_Hildebrand@rl.gov; DeVon_E_Cunningham@rl.gov

    2010-01-21

    Historically, the groundwater monitoring activities at the Department of Energy's Hanford Site in southeastern Washington State have been very "people intensive." Approximately 1500 wells are sampled each year by field personnel or "samplers." These individuals have been issued pre-printed forms showing information about the well(s) for a particular sampling evolution. This information is taken from 2 official electronic databases: the Hanford Well information System (HWIS) and the Hanford Environmental Information System (HEIS). The samplers used these hardcopy forms to document the groundwater samples and well water-levels. After recording the entries in the field, the samplers turned the forms in at the end of the day and other personnel posted the collected information onto a spreadsheet that was then printed and included in a log book. The log book was then used to make manual entries of the new information into the software application(s) for the HEIS and HWIS databases. A pilot project for automating this extremely tedious process was lauched in 2008. Initially, the automation was focused on water-level measurements. Now, the effort is being extended to automate the meta-data associated with collecting groundwater samples. The project allowed electronic forms produced in the field by samplers to be used in a work flow process where the data is transferred to the database and electronic form is filed in managed records - thus eliminating manually completed forms. Elimating the manual forms and streamlining the data entry not only improved the accuracy of the information recorded, but also enhanced the efficiency and sampling capacity of field office personnel.

  9. Control of Groundwater Remediation Process as Distributed Parameter System

    NASA Astrophysics Data System (ADS)

    Mendel, M.; Kovács, T.; Hulkó, G.

    2014-12-01

    Pollution of groundwater requires the implementation of appropriate solutions which can be deployed for several years. The case of local groundwater contamination and its subsequent spread may result in contamination of drinking water sources or other disasters. This publication aims to design and demonstrate control of pumping wells for a model task of groundwater remediation. The task consists of appropriately spaced soil with input parameters, pumping wells and control system. Model of controlled system is made in the program MODFLOW using the finitedifference method as distributed parameter system. Control problem is solved by DPS Blockset for MATLAB & Simulink.

  10. MANAGING ENGINEERING ACTIVITIES FOR THE PLATEAU REMEDIATION CONTRACT - HANFORD

    SciTech Connect

    KRONVALL CM

    2011-01-14

    In 2008, the primary Hanford clean-up contract transitioned to the CH2MHill Plateau Remediation Company (CHPRC). Prior to transition, Engineering resources assigned to remediation/Decontamination and Decommissioning (D&D) activities were a part of a centralized engineering organization and matrixed to the performing projects. Following transition, these resources were reassigned directly to the performing project, with a loose matrix through a smaller Central Engineering (CE) organization. The smaller (10 FTE) central organization has retained responsibility for the overall technical quality of engineering for the CHPRC, but no longer performs staffing and personnel functions. As the organization has matured, there are lessons learned that can be shared with other organizations going through or contemplating performing a similar change. Benefits that have been seen from the CHPRC CE organization structure include the following: (1) Staff are closely aligned with the 'Project/facility' that they are assigned to support; (2) Engineering priorities are managed to be consistent with the 'Project/facility' priorities; (3) Individual Engineering managers are accountable for identifying staffing needs and the filling of staffing positions; (4) Budget priorities are managed within the local organization structure; (5) Rather than being considered a 'functional' organization, engineering is considered a part of a line, direct funded organization; (6) The central engineering organization is able to provide 'overview' activities and maintain independence from the engineering organizations in the field; and (7) The central engineering organization is able to maintain a stable of specialized experts that are able to provide independent reviews of field projects and day-to-day activities.

  11. Remediation alternatives for low-level herbicide contaminated groundwater

    SciTech Connect

    Conger, R.M.

    1995-10-01

    In early 1995, an evaluation of alternatives for remediation of a shallow groundwater plume containing low-levels of an organic herbicide was conducted at BASF Corporation, a petrochemical facility located in Ascension Parish, Louisiana. The contaminated site is located on an undeveloped portion of property within 1/4 mile of the east bank of the Mississippi River near the community of Geismar. Environmental assessment data indicated that about two acres of the thirty acre site had been contaminated from past waste management practices with the herbicide bentazon. Shallow soils and groundwater between 5 to 15 feet in depth were affected. Maximum concentrations of bentazon in groundwater were less than seven parts per million. To identify potentially feasible remediation alternatives, the environmental assessment data, available research, and cost effectiveness were reviewed. After consideration of a preliminary list of alternatives, only two potentially feasible alternatives could be identified. Groundwater pumping, the most commonly used remediation alternative, followed by carbon adsorption treatment was identified as was a new innovative alternative known as vegetative transpiration. This alternative relies on the natural transpiration processes of vegetation to bioremediate organic contaminants. Advantages identified during screening suggest that the transpiration method could be the best remediation alternative to address both economic and environmental factors. An experiment to test critical factors of the vegetatived transpiration alternative with bentazon was recommended before a final decision on feasibility can be made.

  12. The Hanford Site Tank Waste Remediation System: An update

    SciTech Connect

    Alumkal, W.T.; Babad, H.; Harmon, H.D.; Wodrich, D.D.

    1994-01-27

    The U.S. Department of Energy`s Hanford Site, located in southeastern Washington State, has the most diverse and largest amount of highly radioactive waste in the United States. High-level radioactive waste has been stored in large underground tanks since 1944. Approximately 230,000 m{sup 3} (61 Mgal) of caustic liquids, slurries, saltcakes, and sludges have {sup 137}Cs accumulated in 177 tanks. In addition, significant amounts of {sup 90}Sr and were removed from the tank waste, converted to salts, doubly encapsulated in metal containers., and stored in water basins. A Tank Waste Remediation System Program was established by the U.S. Department of Energy in 1991 to safely manage and immobilize these wastes in anticipation of permanent disposal of the high-level waste fraction in a geologic repository. Since 1991, progress has been made resolving waste tank safety issues, upgrading Tank Farm facilities and operations, and developing a new strategy for retrieving, treating, and immobilizing the waste for disposal.

  13. Dynamic simulation of the Hanford tank waste remediation system

    SciTech Connect

    Harmsen, R.W., Westinghouse Hanford

    1996-05-03

    Cleaning up and disposing of approximately 50 years of nuclear waste is the main mission at the U.S. Department of Energy`s Hanford Nuclear Reservation, located in the southeastern part of the state of Washington. A major element of the total cleanup effort involves retrieving, processing, and disposing of radioactive and hazardous waste stored in 177 underground storage tanks. This effort, referred to as the Tank Waste Remediation System (TWRS), is expected to cost billions of dollars and take approximately 25 years to complete. Several computer simulations of this project are being created, focusing on both programmatic and detailed engineering issues. This paper describes one such simulation activity, using the ithink(TM)computer simulation software. The ithink(TM) simulation includes a representation of the complete TWRS cleanup system, from retrieval of waste through intermediate processing and final vitrification of waste for disposal. Major issues addressed to date by the simulation effort include the need for new underground storage tanks to support TWRS activities, and the estimated design capacities for various processing facilities that are required to support legally mandated program commitment dates. This paper discusses how the simulation was used to investigate these questions.

  14. Groundwater modeling and remedial optimization design using graphical user interfaces

    SciTech Connect

    Deschaine, L.M.

    1997-05-01

    The ability to accurately predict the behavior of chemicals in groundwater systems under natural flow circumstances or remedial screening and design conditions is the cornerstone to the environmental industry. The ability to do this efficiently and effectively communicate the information to the client and regulators is what differentiates effective consultants from ineffective consultants. Recent advances in groundwater modeling graphical user interfaces (GUIs) are doing for numerical modeling what Windows{trademark} did for DOS{trademark}. GUI facilitates both the modeling process and the information exchange. This Test Drive evaluates the performance of two GUIs--Groundwater Vistas and ModIME--on an actual groundwater model calibration and remedial design optimization project. In the early days of numerical modeling, data input consisted of large arrays of numbers that required intensive labor to input and troubleshoot. Model calibration was also manual, as was interpreting the reams of computer output for each of the tens or hundreds of simulations required to calibrate and perform optimal groundwater remedial design. During this period, the majority of the modelers effort (and budget) was spent just getting the model running, as opposed to solving the environmental challenge at hand. GUIs take the majority of the grunt work out of the modeling process, thereby allowing the modeler to focus on designing optimal solutions.

  15. SULFATE REDUCTION IN GROUNDWATER: CHARACTERIZATION AND APPLICATIONS FOR REMEDIATION

    PubMed Central

    Miao, Z.; Brusseau, M. L.; Carroll, K. C.; Carreón-Diazconti, C.; Johnson, B.

    2013-01-01

    Sulfate is ubiquitous in groundwater, with both natural and anthropogenic sources. Sulfate reduction reactions play a significant role in mediating redox conditions and biogeochemical processes for subsurface systems. They also serve as the basis for innovative in-situ methods for groundwater remediation. An overview of sulfate reduction in subsurface environments is provided, along with a brief discussion of characterization methods and applications for addressing acid mine drainage. We then focus on two innovative, in-situ methods for remediating sulfate-contaminated groundwater, the use of zero-valent iron (ZVI) and the addition of electron-donor substrates. The advantages and limitations associated with the methods are discussed, with examples of prior applications. PMID:21947714

  16. Progress in remediation of groundwater at petroleum sites in California.

    PubMed

    McHugh, Thomas E; Kulkarni, Poonam R; Newell, Charles J; Connor, John A; Garg, Sanjay

    2014-01-01

    Quantifying the overall progress in remediation of contaminated groundwater has been a significant challenge. We utilized the GeoTracker database to evaluate the progress in groundwater remediation from 2001 to 2011 at over 12,000 sites in California with contaminated groundwater. This paper presents an analysis of analytical results from over 2.1 million groundwater samples representing at least $100 million in laboratory analytical costs. Overall, the evaluation of monitoring data shows a large decrease in groundwater concentrations of gasoline constituents. For benzene, half of the sites showed a decrease in concentration of 85% or more. For methyl tert-butyl ether (MTBE), this decrease was 96% and for TBE, 87%. At remediation sites in California, the median source attenuation rate was 0.18/year for benzene and 0.36/year for MTBE, corresponding to half-lives of 3.9 and 1.9 years, respectively. Attenuation rates were positive (i.e., decreasing concentration) for benzene at 76% of sites and for MTBE at 85% of sites. An evaluation of sites with active remediation technologies suggests differences in technology effectiveness. The median attenuation rates for benzene and MTBE are higher at sites with soil vapor extraction or air sparging compared with sites without these technologies. In contrast, there was little difference in attenuation rates at sites with or without soil excavation, dual phase extraction, or in situ enhanced biodegradation. The evaluation of remediation technologies, however, did not evaluate whether specific systems were well designed or implemented and did not control for potential differences in other site factors, such as soil type. PMID:24224563

  17. Remediation of groundwater contaminated with radioactive compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Both naturally radioactive isotopes and isotopes from man-made sources may appear in groundwater. Depending on the physical and chemical characteristics of the contaminant, different types of treatment methods must be applied to reduce the concentration. The following chapter discusses treatment opt...

  18. Iodine-129 and Iodine-127 speciation in groundwater at the Hanford Site, U.S.: iodate incorporation into calcite

    SciTech Connect

    Zhang, Saijin; Xu, Chen; Creeley, Danielle; Ho, Yi-Fang; Li, Hsiu-Ping; Grandbois, Russell; Schwehr, Kathy; Kaplan, Daniel I.; Yeager, Chris; Wellman, Dawn M.; Santschi, Peter H.

    2013-09-03

    The Hanford Site, the most contaminated nuclear site in the United States, has large radioactive waste plumes containing high 129I levels. The geochemical transport and fate of radioiodine depends largely on its chemical speciation that is greatly affected by environmental factors. This study reports, for the first time, the speciation of stable and radioactive iodine in the groundwater from the Hanford Site. Iodate was the dominant species and accounts for up to 84%, followed by organo-iodine and minimal levels of iodide. The relatively high pH and oxidizing environment may have prevented iodate reduction. Our results identified that calcite precipitation caused by degassing of CO2 during deep groundwater sampling incorporated between 7 to 40% of dissolved iodine (including 127I and 129I) that was originally in the groundwater, transforming dissolved to particulate iodate during sampling. In order to understand the mechanisms underlying iodine incorporation by calcite, laboratory experiments were carried out to replicate this iodine sequestering processes. Two methods were utilized in this study, 1) addition of sodium carbonate; 2) addition of calcium chloride followed by sodium carbonate where the pH was well controlled at ~8.2, which is close to the average pH of Hanford Site groundwater. It was demonstrated that iodate was the main species incorporated into calcite and this incorporation process could be impeded by elevated pH and decreasing ionic strength in groundwater. This study provides critical information for predicting the long-term fate and transport of 129I at the Hanford Site and reveals a potential means for improved remediation strategies of 129I.

  19. Carbon Nanotube Based Groundwater Remediation: The Case of Trichloroethylene.

    PubMed

    Jha, Kshitij C; Liu, Zhuonan; Vijwani, Hema; Nadagouda, Mallikarjuna; Mukhopadhyay, Sharmila M; Tsige, Mesfin

    2016-01-01

    Adsorption of chlorinated organic contaminants (COCs) on carbon nanotubes (CNTs) has been gaining ground as a remedial platform for groundwater treatment. Applications depend on our mechanistic understanding of COC adsorption on CNTs. This paper lays out the nature of competing interactions at play in hybrid, membrane, and pure CNT based systems and presents results with the perspective of existing gaps in design strategies. First, current remediation approaches to trichloroethylene (TCE), the most ubiquitous of the COCs, is presented along with examination of forces contributing to adsorption of analogous contaminants at the molecular level. Second, we present results on TCE adsorption and remediation on pure and hybrid CNT systems with a stress on the specific nature of substrate and molecular architecture that would contribute to competitive adsorption. The delineation of intermolecular interactions that contribute to efficient remediation is needed for custom, scalable field design of purification systems for a wide range of contaminants. PMID:27455218

  20. Assessment of Carbon Tetrachloride Groundwater Transport in Support of the Hanford Carbon Tetrachloride Innovative Technology Demonstration Program

    SciTech Connect

    Truex, Michael J.; Murray, Christopher J.; Cole, Charles R.; Cameron, Richard J.; Johnson, Michael D.; Skeen, Rodney S.; Johnson, Christian D.

    2001-07-13

    Groundwater modeling was performed in support of the Hanford Carbon Tetrachloride Innovative Treatment Remediation Demonstration (ITRD) Program. The ITRD program is facilitated by Sandia National Laboratory for the Department of Energy Office of Science and Technology. This report was prepared to document the results of the modeling effort and facilitate discussion of characterization and remediation options for the carbon tetrachloride plume among the ITRD participants. As a first step toward implementation of innovative technologies for remediation of the carbon tetrachloride (CT) plume underlying the 200-West Area, this modeling was performed to provide an indication of the potential impact of the CT source on the compliance boundary approximately 5000 m distant. The primary results of the modeling bracket the amount of CT source that will most likely result in compliance/non-compliance at the boundary and the relative influence of the various modeling parameters.

  1. Hanford Site Tank Waste Remediation System. Waste management 1993 symposium papers and viewgraphs

    SciTech Connect

    Not Available

    1993-05-01

    The US Department of Energy`s (DOE) Hanford Site in southeastern Washington State has the most diverse and largest amount of highly radioactive waste of any site in the US. High-level radioactive waste has been stored in large underground tanks since 1944. A Tank Waste Remediation System Program has been established within the DOE to safely manage and immobilize these wastes in anticipation of permanent disposal in a geologic repository. The Hanford Site Tank Waste Remediation System Waste Management 1993 Symposium Papers and Viewgraphs covered the following topics: Hanford Site Tank Waste Remediation System Overview; Tank Waste Retrieval Issues and Options for their Resolution; Tank Waste Pretreatment - Issues, Alternatives and Strategies for Resolution; Low-Level Waste Disposal - Grout Issue and Alternative Waste Form Technology; A Strategy for Resolving High-Priority Hanford Site Radioactive Waste Storage Tank Safety Issues; Tank Waste Chemistry - A New Understanding of Waste Aging; Recent Results from Characterization of Ferrocyanide Wastes at the Hanford Site; Resolving the Safety Issue for Radioactive Waste Tanks with High Organic Content; Technology to Support Hanford Site Tank Waste Remediation System Objectives.

  2. Investigation of groundwater seepage from the Hanford shoreline of the Columbia River

    SciTech Connect

    McCormack, W.D.; Carlile, J.M.V.

    1984-11-01

    Groundwater discharges to the Columbia River are evaluated by the Hanford Environmental Surveillance and Groundwater Surveillance Programs via monitoring of the Columbia River and Hanford groundwater. Both programs concluded that Hanford groundwater has not adversely affected Columbia River water quality. This report supplements the above programs by investigating the general characteristics of groundwater entering the Columbia River from the Hanford Site. Specific objectives of the investigation were to identify general shoreline areas where Hanford-related materials were entering the river, and to evaluate qualitatively the physical characteristics and relative magnitudes of those discharges. The study was conducted in two phases. Phase 1 involved visual inspection of Columbia River shoreline, within the Hanford Site, for indications of groundwater seepage. As a result of that inspection, 115 springs suspected of discharging groundwater were recorded. During Phase 2, water samples were collected from these springs and analyzed for Hanford-related materials known to be present in the groundwater. The specific materials used as indicators for the majority of samples were tritium or uranium and nitrate. The magnitude and distribution of concentrations measured in the spring samples were consistent with concentrations of these materials measured in groundwater near the sampled spring locations. Water samples were also collected from the Columbia River to investigate the localized effects of groundwater discharges occurring above and below river level. These samples were collected within 2 to 4 m of the Hanford shoreline and analyzed for tritium, nitrate, and uranium. Elevated concentrations were measured in river samples collected near areas where groundwater and spring concentrations were elevated. All concentrations were below applicable DOE Concentration Guides. 8 references, 6 figures, 7 tables.

  3. Potential for Ureolytically Driven Calcite Precipitation to Remediate Strontium-90 at the Hanford 100-N Area

    NASA Astrophysics Data System (ADS)

    Fujita, Y.; Taylor, J. L.; Wendt, L.; Reed, D.; Smith, R. W.

    2009-12-01

    A groundwater plume of Strontium-90 at the 100-N Springs Area of the U. S. Department of Energy’s Hanford Reservation in Washington is discharging into the Columbia River. Previous pump and treat activities to remove the 90Sr were ineffective and consequently discontinued; immobilization of the contaminant in situ is preferable, but no proven methods to accomplish this objective currently exist. This study was a preliminary assessment of the feasibility at the 100-N Area of a novel in situ remediation approach for 90Sr, where microbial urea hydrolysis is used to drive the precipitation of calcite and the co-precipitation of strontium in the calcite. Water quality data from the 100-N site indicated that geochemical conditions at the site were conducive to stable calcite precipitation, and groundwater and sediment samples from the site were examined to assess the urea hydrolyzing capabilities of the native microbial populations. Estimated average numbers of ureolytic organisms in the groundwater, determined using cultivation-based tests (Most Probable Number) for urease activity, ranged from 72 to 1,100 cells mL-1. Estimated numbers of ureC gene targets in the water samples, as determined by quantitative polymerase chain reaction (qPCR) assays, ranged from 850 to 17,600 copies mL-1; the ureC gene codes for the catalytic subunit of urease. In the sediment samples, ureC gene targets ranged from non-detectable to 925,000 copies g-1 of sediment. For both water and sediment, the number of ureolytic cells (estimated by qPCR) generally amounted to < 5% of the total microbial cell numbers. Nevertheless, estimates of in situ ureolysis rates using trace levels of 14C-labeled urea added to the groundwater and sediment samples in the laboratory indicate that significant urea hydrolyzing activity exists in the 100-N subsurface. Normalizing the measured urea hydrolysis rates to 1 L of in situ pore space resulted in hydrolysis rates on the order of 9.5 nmol L-1 hr-1 and 170 to 2

  4. Feasibility of supercritical CO{sub 2} extraction as a remediation technology for Hanford contaminated soils

    SciTech Connect

    Moody, T.E.; Krukonis, V.J.

    1994-12-31

    A technology used by the petroleum industry for separation and purification and the coffee industry for caffeine removal is being used by a Hanford scientist with the prospect of remediating organic contaminated Hanford soil. The process is known as Supercritical Fluid Extraction or SFE. Dr. Timothy Moody of the Westinghouse Hanford Company and the Phasex Corporation of Lawrence, Mass., have conducted successful bench-scale experiments at the 50g, 500g, and 5kg levels showing that SFE can remove various chemicals from large volumes of contaminated soil. The results indicate that organic contaminant removal from soil is much more efficient than the current industrial uses of SFE.

  5. Transient Inverse Calibration of Hanford Site-Wide Groundwater Model to Hanford Operational Impacts - 1943 to 1996

    SciTech Connect

    Cole, Charles R.; Bergeron, Marcel P.; Wurstner, Signe K.; Thorne, Paul D.; Orr, Samuel; Mckinley, Mathew I.

    2001-05-31

    This report describes a new initiative to strengthen the technical defensibility of predictions made with the Hanford site-wide groundwater flow and transport model. The focus is on characterizing major uncertainties in the current model. PNNL will develop and implement a calibration approach and methodology that can be used to evaluate alternative conceptual models of the Hanford aquifer system. The calibration process will involve a three-dimensional transient inverse calibration of each numerical model to historical observations of hydraulic and water quality impacts to the unconfined aquifer system from Hanford operations since the mid-1940s.

  6. Sustainable Remediation for Enhanced NAPL Recovery from Groundwater

    NASA Astrophysics Data System (ADS)

    Javaher, M.

    2012-12-01

    Sustainable remediation relates to the achievement of balance between environmental, social, and economic elements throughout the remedial lifecycle. A significant contributor to this balance is the use of green and sustainable technologies which minimize environmental impacts, while maximizing social and economic benefits of remedial implementation. To this end, a patented mobile vapor energy generation (VEG) technology has been developed targeting variable applications, including onsite soil remediation for unrestricted reuse and enhanced non-aqueous phase liquid (NAPL) recover at the water table. At the core of the mobile VEG technology is a compact, high efficiency vapor generator, which utilizes recycled water and propane within an entirely enclosed system to generate steam as high as 1100°F. Operating within a fully enclosed system and capturing all heat that is generated within this portable system, the VEG technology eliminates all emissions to the atmosphere and yields an undetected carbon footprint with resulting carbon dioxide concentrations that are below ambient levels. Introduction of the steam to the subsurface via existing wells results in a desired change in the NAPL viscosity and the interfacial tension at the soil, water, NAPL interface; in turn, this results in mobilization and capture of the otherwise trapped, weathered NAPL. Approved by the California Air Resources Control Board (and underlying Air Quality Management Districts) and applied in California's San Joaquin Valley, in-well heating of NAPLs trapped at the water table using the VEG technology has proven as effective as electrical resistivity heating (ERH) in changing the viscosity of and mobilizing NAPLs in groundwater in support of recovery, but has achieved these results while minimizing the remedial carbon footprint by 90%, reducing energy use by 99%, and reducing remedial costs by more than 95%. NAPL recovery using VEG has also allowed for completion of source removal historically

  7. Overview of Green and Sustainable Remediation for Soil and Groundwater Remediation - 12545

    SciTech Connect

    Simpkin, Thomas J.; Favara, Paul

    2012-07-01

    Making remediation efforts more 'sustainable' or 'green' is a topic of great interest in the remediation community. It has been spurred on by Executive Orders from the White House, as well as Department of Energy (DOE) sustainability plans. In private industry, it is motivated by corporate sustainability goals and corporate social responsibility. It has spawned new organizations, areas of discussion, tools and practices, and guidance documents around sustainable remediation or green remediation. Green remediation can be thought of as a subset of sustainable remediation and is mostly focused on reducing the environmental footprint of cleanup efforts. Sustainable remediation includes both social and economic considerations, in addition to environmental. Application of both green and sustainable remediation (GSR) may involve two primary activities. The first is to develop technologies and alternatives that are greener or more sustainable. This can also include making existing remediation approaches greener or more sustainable. The second is to include GSR criteria in the evaluation of remediation alternatives and strategies. In other words, to include these GSR criteria in the evaluation of alternatives in a feasibility study. In some cases, regulatory frameworks allow the flexibility to include GSR criteria into the evaluation process (e.g., state cleanup programs). In other cases, regulations allow less flexibility to include the evaluation of GSR criteria (e.g., Comprehensive Environmental Response Compensation, and Liability Act (CERCLA)). New regulatory guidance and tools will be required to include these criteria in typical feasibility studies. GSR provides a number of challenges for remediation professionals performing soil and groundwater remediation projects. Probably the most significant is just trying to stay on top of the ever changing landscape of products, tools, and guidance documents coming out of various groups, the US EPA, and states. However, this

  8. Data Summary Report for teh Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington

    SciTech Connect

    Hulstrom, L.

    2011-02-07

    This data summary report summarizes the investigation results to evaluate the nature and distribution of Hanford Site-related contaminants present in the Columbia River. As detailed in DOE/RL-2008-11, more than 2,000 environmental samples were collected from the Columbia River between 2008 and 2010. These samples consisted of island soil, sediment, surface water, groundwater upwelling (pore water, surface water, and sediment), and fish tissue.

  9. PROGRESS REPORT. REACTIVITY OF PEROXYNITRITE: IMPLICATIONS FOR HANFORD WASTE MANAGEMENT AND REMEDIATION

    EPA Science Inventory

    This project provides information relevant to: (i) the extent of radiation-induced accumulation of peroxynitrite in the Hanford waste and its roles in waste degradation and (ii) the potential applications of peroxynitrite in remediation technologies. These studies include: (1) De...

  10. ANNUAL REPORT. REACTIVITY OF PEROXYNITRITE: IMPLICATIONS FOR HANFORD WASTE MANAGEMENT AND REMEDIATION

    EPA Science Inventory

    This project provides information relevant to: (i) the extent of radiation-induced accumulation of peroxynitrite in the Hanford waste and its roles in waste chemistry and ii) the potential applications of peroxynitrite in remediation technologies. These studies include: (1) Det...

  11. Audit of groundwater remediation plans at the Savannah River Site

    SciTech Connect

    1996-06-11

    The Department of Energy was required to reduce groundwater contamination that represented a risk to human health or the environment. To achieve this goal, the Savannah River Operations Office (Savannah River) entered into several formal agreements with Federal and State regulators. The agreements described how Savannah River would reduce the level of contamination until the risks to human health and the environment were lowered to an acceptable level. The agreements called for decreasing groundwater contamination to levels that would comply with South Carolina groundwater regulations, which would allow a hypothetical future resident to someday live above the F and H Areas and drink the groundwater. We believe basing the agreements on drinking water standards was unreasonable because no one will likely live above these areas or drink the groundwater. The more stringent drinking water standards were included in the planning process because Savannah River had not developed a Land Use Plan that would permit rational decision making for the entire site. Lacking a Land Use Plan, the environmental regulators assumed, and Savannah River acceded to, the most stringent usage scenario, that the groundwater under the F and H Areas might one day be used as a source of drinking water. It will take more than one hundred years for the subterranean groundwater to become safe enough for drinking water purposes. Consequently, Savannah River may continue to pursue expensive remediation projects for longer than would be necessary to protect human health and the environment. However, the cost impact of unnecessary clean-up activities is indeterminable because acceptable contamination limits would still have to be negotiated with the South Carolina Department of Health and Environmental Control.

  12. Modeling Fe0 permeable reactive barriers for groundwater remediation

    NASA Astrophysics Data System (ADS)

    Carniato, Luca; Schoups, Gerrit; Seuntjens, Piet; Bastiaens, Leen

    2010-05-01

    Remediation of groundwater pollution has traditionally been achieved by energy-intensive and drastic methods such as pump and treat (P&T) systems. Recently, more economically viable and less invasive methods such as permeable reactive barriers have been used to clean up a wide variety of groundwater pollutants (volatile organic compounds, VOCl). Permeable reactive barriers are installed in the subsurface and the naturally present hydraulic gradient makes the groundwater flow through the barrier where the contaminants are removed by different removal processes (biodegradation, sorption, precipitation, chemical destruction). Effective application of these techniques requires a solid understanding of the site-specific hydrogeological and biochemical conditions, as well as a predictive assessment of long-term remediation efficiency. For example, secondary mineral precipitation has been shown to reduce reactivity and efficiency of permeable reactive barriers and the interactions between biological and chemical processes may also influence the long-term efficiency of such systems. In this study a multi-component transport model based on PHAST USGS has been developed to simulate the removal processes in the barrier and to make quantitative predictions about the long-term efficiency of the system. In particular the modelling approach will be presented together with the model application in lab-scale experiments and in field.

  13. Field Summary Report for Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington, Collection of Surface Water, River Sediments, and Island Soils

    SciTech Connect

    L. C. Hulstrom

    2009-09-28

    This report has been prepared in support of the remedial investigation of Hanford Site Releases to the Columbia River and describes the 2008/2009 data collection efforts. This report documents field activities associated with collection of sediment, river water, and soil in and adjacent to the Columbia River near the Hanford Site and in nearby tributaries.

  14. Remedial investigation/feasibility study work plan for the 100-KR-4 operable unit, Hanford Site, Richland, Washington

    SciTech Connect

    Not Available

    1992-09-01

    Four areas of the Hanford Site (the 100, 200, 300, and 1100 Areas) have been included on the US Environmental Protection Agency`s (EPA`s) National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). This work plan and the attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the CERCLA remedial investigation/feasibility study (RI/FS) for the 100-KR-4 operable unit. The 100-K Area consists of the 100-KR-4 groundwater operable unit and three source operable units. The 100-KR-4 operable unit includes all contamination found in the aquifer soils and water beneath the 100-K Area. Source operable units include facilities and unplanned release sites that are potential sources of contamination.

  15. In-situ groundwater remediation by selective colloid mobilization

    DOEpatents

    Seaman, J.C.; Bertch, P.M.

    1998-12-08

    An in-situ groundwater remediation pump and treat technique is described which is effective for reclamation of aquifers that have been contaminated with a mixed, metal-containing waste, and which promotes selective mobilization of metal oxide colloids with a cationic surfactant, preferably a quaternary alkylammonium surfactant, without significantly reducing formation permeability that often accompanies large-scale colloid dispersion, thus increasing the efficiency of the remediation effort by enhancing the capture of strongly sorbing contaminants associated with the oxide phases. The resulting suspension can be separated from the bulk solution with controlled pH adjustments to destabilize the oxide colloids, and a clear supernatant which results that can be recycled through the injection well without further waste treatment. 3 figs.

  16. In-situ groundwater remediation by selective colloid mobilization

    DOEpatents

    Seaman, John C.; Bertch, Paul M.

    1998-01-01

    An in-situ groundwater remediation pump and treat technique effective for reclamation of aquifers that have been contaminated with a mixed, metal-containing waste, which promotes selective mobilization of metal oxide colloids with a cationic surfactant, preferably a quaternary alkylammonium surfactant, without significantly reducing formation permeability that often accompanies large-scale colloid dispersion, thus increasing the efficiency of the remediation effort by enhancing the capture of strongly sorbing contaminants associated with the oxide phases. The resulting suspension can be separated from the bulk solution with controlled pH adjustments to destabilize the oxide colloids, and a clear supernatant which results that can be recycled through the injection well without further waste treatment.

  17. Zone of Interaction Between Hanford Site Groundwater and Adjacent Columbia River

    SciTech Connect

    Peterson, Robert E.; Connelly, Michael P.

    2001-10-23

    This report describes the FY 2000 results of a Science and Technology investigation of the groundwater/river interface at the Hanford Site. The investigation focused on (1) a 2-D simulation of water flowpaths beneath the shoreline region under the influence of a transient river stage, and (2) mixing between groundwater and river water.

  18. An innovative funnel and gate approach to groundwater remediation

    SciTech Connect

    Johnson, D.O.; Wilkey, M.L.; Willis, J.M.; Breaux, L.; McKinsey, T.

    1996-12-01

    The US Department of Energy, office of Science and Technology (EM-50) sponsored a demonstration project of the Barrier Member Containment Corporation`s patented EnviroWall{trademark} system at the Savannah River site. With this system, contaminated groundwater can be funneled into a treatment system without pumping the contaminated water to the surface. The EnviroWall{trademark} barrier and pass-through system, an innovative product of sic years of research and development, provides a means to enhance groundwater flow on the upgradient side of an impermeable wall and direct it to an in situ treatment system. The EnviroWall{trademark} system is adaptable to most site conditions. Remedial applications range form plume containment to more robust designs that incorporate groundwater manipulation coupled with in situ treatment. Several key innovations of the EnviroWall{trademark} system include the following: a method for guide box installation; a means for using interlocking seals at vertical seams; a down-hole video camera for inspecting seams and panels, installation of horizontal- and vertical-collection systems; installation of vertical monitoring wells and instrumentation on each side of the barrier; site-specific backfill design; and a pass-through system for funneling groundwater into a treatment system.

  19. TECHNICAL EVALUATION OF THE INTERACTION OF GROUNDWATER WITH THE COLUMBIA RIVER AT THE DEPARTMENT OF ENERGY HANFORD SITE 100-D AREA

    SciTech Connect

    PETERSEN SW

    2008-11-05

    Groundwater beneath much of Hanford's 100 Areas is contaminated with hexavalent chromium (Cr{sup +6}) as a consequence of treating reactor cooling water to prevent corrosion. Several treatment systems are in place to remove Cr{sup +6} from the groundwater; however, these systems currently do not reduce Cr{sup +6} to concentrations below aquatic standards. Of concern is the transport of Cr{sup +6} to areas within the channel of the river, as sensitive species inhabit the river and its associated transition zone. The aquatic standard for Cr{sup +6} is currently 11 ug/l under the Record of Decision (ROD) for Interim Action and Department of Energy (DOE) currently plans to pursue remediation of the groundwater to achieve the 11 ug/l standard. Because the compliance wells used to monitor the current remediation systems are located some distance from the river, they may not provide an accurate indication of Cr{sup +6} concentrations in the water that reaches the riverbed. In addition, because salmon spawning areas are considered a high priority for protection from Hanford contaminants, it would be advantageous to understand (1) to what extent Cr{sup +6} discharged to the near-shore or river ecosystems is diluted or attenuated and (2) mechanisms that could mitigate the exposure of the river ecosystems to the discharging Cr{sup +6}. The current concentration target for Cr{sup +6} at near-river groundwater monitoring locations is 20 {micro}g/L; it is assumed that this groundwater mixes with river water that contains virtually no chromium to meet Washington Department of Ecology's (Ecology) water quality standard of 10 {micro}g/L in the river environment. This dynamic mixing process is believed to be driven by daily and seasonal changes in river stage and groundwater remediation system operations, and has been validated using analytical data from numerous groundwater samples obtained adjacent to and within the banks of the river. Although the mean mixing factor of river

  20. Biological remediation of groundwater containing both nitrate and atrazine.

    PubMed

    Hunter, William J; Shaner, Dale L

    2010-01-01

    Due to its high usage, mobility, and recalcitrant nature, atrazine is a common groundwater contaminant. Moreover, groundwaters that are contaminated with atrazine often contain nitrate as well. Nitrate interferes with the biological degradation of atrazine and makes it more difficult to use in situ biological methods to remediate atrazine contaminated groundwater. To solve this problem we used two reactors in sequence as models of in situ biobarriers; the first was a vegetable-oil-based denitrifying biobarrier and the second an aerobic reactor that oxygenated the denitrifying reactor's effluent. The reactors were inoculated with an atrazine-degrading microbial consortium and supplied with water containing 5 mg l(-1) nitrate-N and 3 mg l(-1) atrazine. Our hypothesis was that the denitrifying barrier would remove nitrate from the flowing water and that the downstream reaction would remove atrazine. Our hypothesis proved correct; the two reactor system removed 99.9% of the atrazine during the final 30 weeks of the study. The denitrifying barrier removed approximately 98% of the nitrate and approximately 30% of the atrazine while the aerobic reactor removed approximately 70% of the initial atrazine. The system continued to work when the amount of nitrate-N in the influent water was increased to 50 mg l(-1). A mercury poisoning study blocked the degradation of atrazine indicating that biological processes were involved. An in situ denitrifying barrier coupled with an air injection system or other oxygenation process might be used to remove both nitrate and atrazine from contaminated groundwater or to protect groundwater from an atrazine spill. PMID:19756863

  1. SOURCE TERM REMEDIATION & DEMOLITION STRATEGY FOR THE HANFORD K-AREA SPENT FUEL BASINS

    SciTech Connect

    CHRONISTER, G.B.

    2006-03-23

    This paper discusses the technologies applied at Hanford's K-Basins to mitigate risk and reduce the source term in preparing the basins for deactivation and demolition. These project technologies/strategies (in various stages of implementation) are sequential in nature and are the basis for preparing to dispose of the K Basins--two highly contaminated concrete basins at the Hanford Site in southeastern Washington State. A large collection of spent nuclear fuel stored for many years underwater at the K Basins has been removed to stable, dry, safe storage. Remediation activities are underway to prepare the basin structures for de-inventory, decontamination, and disposal.

  2. Fiscal Year 2010 Program of the U.S. DOE Office of Groundwater and Soil Remediation

    SciTech Connect

    Chamberlain, G. M.; Skubal, Karen L.; Wellman, Dawn M.

    2011-03-07

    The mission of the Office of Groundwater and Soil Remediation (EM-32) is to perform assessments, establish technical criteria and promote cross-site integration. The Office provides guidance for the development and implementation of plans for remediation of groundwater and is responsible for development of technologies needed to reduce risk from groundwater contamination. It is also responsible for providing technical direction and/or assistance to sites in resolving difficult technical groundwater and soil remediation problems. This paper discusses the activities funded by EM-32 for FY-2010.

  3. Groundwater Chemistry and Hydrogeology of the Upper Saddle Mountains Basalt-Confined Aquifer South and Southeast of the Hanford Site

    SciTech Connect

    Newcomer, Darrell R. ); Thornton, Edward C. ); Liikala, Terry L. )

    2002-11-20

    This report describes groundwater monitoring within the upper basalt-confined aquifer in areas bordering the Hanford Site to the south and southeast. The purpose of the sample was to demonstrate that constituents analyzed were within the range of background concentrations and to evaluate any potential connection between groundwater on and off the Hanford Site.

  4. REMEDIATION OF NITRATE-CONTAMINATED GROUNDWATER USING A BIOBARRIER

    SciTech Connect

    B. STRIETELMEIR; ET AL

    2000-12-01

    A biobarrier system has been developed for use in remediating shallow alluvial groundwater. This barrier is made from highly porous materials that are relatively long-lasting, carbon-based (to supply a limiting nutrient in nitrate destruction, in most cases), and extremely inexpensive and easy to emplace. In a series of laboratory studies, we have determined the effectiveness of this barrier at destroying nitrate and perchlorate in groundwater from Mortandad Canyon at Los Alamos National Laboratory (LANL). This groundwater was obtained from a monitoring well, MCO-5, which is located in the flowpath of the discharge waters from the LANL Radioactive Liquid Waste Treatment Facility (RLWTF). Water with elevated nitrate levels has been discharged from this plant for many years, until recently when the nitrate levels have been brought under the discharge limits. However, the historical discharge has resulted in a nitrate plume in the alluvial groundwater in this canyon. The LANL Multi-Barrier project was initiated this past year to develop a system of barriers that would prevent the transport of radionuclides, metals, colloids and other contaminants, including nitrate and perchlorate, further down the canyon in order to protect populations down-gradient. The biobarrier. will be part of this Multi-Barrier system. We have demonstrated the destruction of nitrate at levels up to 6.5-9.7 mhl nitrate (400-600 mg/L), and that of perchlorate at levels of about 4.3 {micro}M perchlorate (350 ppb). We have quantified the populations of microorganisms present in the biofilm that develops on the biobarrier. The results of this research will be discussed along with other potential applications of this system.

  5. REMEDIATION OF NITRATE-CONTAMINATED GROUNDWATER USING A BIOBARRIER

    SciTech Connect

    B. STRIETELMEIER; M. ESPINOSA

    2001-01-01

    A biobarrier system has been developed for use in remediating shallow alluvial groundwater. This barrier is made from highly porous materials that are relatively long-lasting, carbon-based (to supply a limiting nutrient in nitrate destruction, in most cases), extremely inexpensive, and easy to replace. In a series of laboratory studies, we have determined the effectiveness of this barrier at destroying nitrate and perchlorate in groundwater from Mortandad Canyon at Los Alamos National Laboratory (LANL). This groundwater was obtained from a monitoring well, MCO-5, which is located in the flowpath of the discharge waters from the LANL Radioactive Liquid Waste Treatment Facility (RLWTF). Water with elevated nitrate levels was discharged from this plant for many years. Recently, the nitrate levels have been brought under the discharge limits. However, the historical discharge has resulted in a nitrate plume in the alluvial groundwater in this canyon. The LANL Multi-Barrier project was initiated in 1999 to develop a system of barriers that would prevent the transport of radionuclides, metals, colloids and other contaminants, including nitrate and perchlorate, further down the canyon in order to protect populations down-gradient. The biobarrier will be part of this Multi-Barrier system. We have demonstrated the destruction of nitrate at levels up to 6.5-9.7 mM nitrate (400-600 mg/L), and that of perchlorate at levels of about 4.3 {micro}M perchlorate (350 ppb). We have quantified the populations of microorganisms present in the biofilm that develops on the biobarrier. The results of this research will be discussed along with other potential applications of this system.

  6. Reactivity of Peroxynitrite: Implications for Hanford Waste Management and Remediation

    SciTech Connect

    James K. Hurst

    2003-11-06

    The purpose of this grant has been to provide basic chemical research in support of a major project undertaken at Brookhaven National Laboratory (BNL) whose purpose was to provide better understanding of the complex chemical processes occurring an nuclear storage tanks on the Hanford reservation. More specifically, the BNL grant was directed at evaluating the extend of radiation-induced formation of peroxynitrite anion (ONOO) in the tanks and its possible use in was incorporated as a subcontract EMSP 73824, but was later changed to an independent grant to avoid unnecessary duplication of administrative support at both WSU and BNL.

  7. Construction of the Largest Radionuclide Commingled Plume Groundwater Treatment Facility for the Department of Energy at the Hanford Site - 12411

    SciTech Connect

    Pargmann, Delise

    2012-07-01

    CH2M Hill Plateau Remediation Company (CHPRC) has constructed the largest groundwater treatment systems of its kind throughout the DOE Complex at the Hanford Site in an accelerated manner with American Recovery and Reinvestment Act (ARRA) funds. This complex, one of a kind groundwater treatment facility in Washington State has also attained Leadership in Energy and Environmental Design (LEED) Gold certification. The original concept for the 200 West Area groundwater treatment facility was a 6100 liter per minute (1,600 gallon per minute) facility. With additional ARRA funding, the plant design was improved to construct a 9500 liter per minute (2,500 gallon per minute) facility with expansion areas up to 14,000 liter per minute (3,750 gallon per minute). The current design will remove 53 percent more mass per year for faster clean-up. It is also expected to treat extracted groundwater to 25 percent or less than the Record of Decision-specified limit which improves Monitored Natural Attenuation (MNA) effectiveness. (author)

  8. Scientific Opportunity to Reduce Risk in Groundwater and Soil Remediation

    SciTech Connect

    Pierce, Eric M.; Freshley, Mark D.; Hubbard, Susan S.; Looney, Brian B.; Zachara, John M.; Liang, Liyuan; Lesmes, D.; Chamberlain, G. M.; Skubal, Karen L.; Adams, V.; Denham, Miles E.; Wellman, Dawn M.

    2009-08-25

    In this report, we start by examining previous efforts at linking science and DOE EM research with cleanup activities. Many of these efforts were initiated by creating science and technology roadmaps. A recurring feature of successfully implementing these roadmaps into EM applied research efforts and successful cleanup is the focus on integration. Such integration takes many forms, ranging from combining information generated by various scientific disciplines, to providing technical expertise to facilitate successful application of novel technology, to bringing the resources and creativity of many to address the common goal of moving EM cleanup forward. Successful projects identify and focus research efforts on addressing the problems and challenges that are causing “failure” in actual cleanup activities. In this way, basic and applied science resources are used strategically to address the particular unknowns that are barriers to cleanup. The brief descriptions of the Office of Science basic (Environmental Remediation Science Program [ERSP]) and EM’s applied (Groundwater and Soil Remediation Program) research programs in subsurface science provide context to the five “crosscutting” themes that have been developed in this strategic planning effort. To address these challenges and opportunities, a tiered systematic approach is proposed that leverages basic science investments with new applied research investments from the DOE Office of Engineering and Technology within the framework of the identified basic science and applied research crosscutting themes. These themes are evident in the initial portfolio of initiatives in the EM groundwater and soil cleanup multi-year program plan. As stated in a companion document for tank waste processing (Bredt et al. 2008), in addition to achieving its mission, DOE EM is experiencing a fundamental shift in philosophy from driving to closure to enabling the long-term needs of DOE and the nation.

  9. Hanford site tank waste remediation system programmatic environmental review report

    SciTech Connect

    Haass, C.C.

    1998-09-03

    The US Department of Energy (DOE) committed in the Tank Waste Remediation System (TWRS) Environmental Impact Statement (EIS) Record of Decision (ROD) to perform future National Environmental Policy Act (NEPA) analysis at key points in the Program. Each review will address the potential impacts that new information may have on the environmental impacts presented in the TWRS EIS and support an assessment of whether DOE`s plans for remediating the tank waste are still pursuing the appropriate plan for remediation or whether adjustments to the program are needed. In response to this commitment, DOE prepared a Supplement Analysis (SA) to support the first of these reevaluations. Subsequent to the completion of the SA, the Phase IB negotiations process with private contractors resulted in several changes to the planned approach. These changes along with other new information regarding the TWRS Program have potential implications for Phase 1 and Phase 2 of tank waste retrieval and waste storage and/or disposal that may influence the environmental impacts of the Phased Implementation alternative. This report focuses on identifying those potential environmental impacts that may require NEPA analysis prior to authorization to begin facility construction and operations.

  10. An initial inverse calibration of the ground-water flow model for the Hanford unconfined aquifer

    SciTech Connect

    Jacobson, E.A. . Desert Research Inst.); Freshly, M.D. )

    1990-03-01

    Large volumes of process cooling water are discharged to the ground form U.S. Department of Energy (DOE) nuclear fuel processing operations in the central portion of the Hanford Site in southeastern Washington. Over the years, these large volumes of waste water have recharged the unconfined aquifer at the Site. This artificial recharge has affected ground-water levels and contaminant movement in the unconfined aquifer. Ground-water flow and contaminant transport models have been applied to assess the impacts of site operations on the rate and direction of ground-water flow and contaminant transport in unconfined aquifer at the Hanford Site. The inverse calibration method developed by Neuman and modified by Jacobson was applied to improve calibration of a ground-water flow model of the unconfined aquifer at the Hanford Site. All information about estimates of hydraulic properties of the aquifer, hydraulic heads, boundary conditions, and discharges to and withdrawals form the aquifer is included in the inverse method to obtain an initial calibration of the ground-water flow model. The purpose of this report is to provide a description of the inverse method, its initial application to the unconfined aquifer at Hanford, and to present results of the initial inverse calibration. 28 refs., 19 figs., 1 tab.

  11. LABORATORY REPORT ON IODINE ({sup 129}I AND {sup 127}I) SPECIATION, TRANSFORMATION AND MOBILITY IN HANFORD GROUNDWATER, SUSPENDED PARTICLES AND SEDIMENTS

    SciTech Connect

    Kaplan, D.; Santschi, P.; Xu, C.; Zhang, S.; Ho, Y.; Li, H.; Schwehr, K.

    2012-09-30

    than iodide K{sub d} values, and the K{sub d} values for both species tended to increase with the amount of organic carbon (OC) present in the sediment. It is especially noteworthy that this trend existed at the very low OC concentrations that naturally exist in the Hanford sediments. Iodine and OC can form essentially irreversible covalent bonds, thereby providing a yet unstudied {sup 129}I retardation reaction at the Hanford Site. In addition to the transformation of iodine species, the sediment collected from the vadose zone also released stable iodide into the aqueous phase. It was found that the three sediments all took up the ambient iodate from the groundwater and slowly transformed it into iodide under the laboratory conditions, likely dependent on the abundance of reducing agents such as organic matter and Fe{sup 2+}. Therefore two competitive iodine processes were identified, the tendency for the sediment to reduce iodate to iodide, and the groundwater chemistry to maintain the iodine as iodate, presumably it is largely the result of natural pH and dissolved O{sub 2}/Eh levels. Suspended carbonate (and silica) particles collected from Hanford groundwater contained elevated amounts of iodine (142 ± 8 μg/g iodine), consisting mainly of iodate (>99%). Iodate was likely incorporated into the carbonate structure during calcite precipitation upon degasing of CO{sub 2} as the groundwater samples were removed from the subsurface. This concentration of groundwater iodate in precipitated carbonate has implication to long-term fate and transport of 129I and on active in-situ {sup 129}I groundwater remediation. This study provides some of the first groundwater radioiodine speciation studies conducted in arid environments and provides much needed mechanistic descriptions to permit making informed decisions about low-cost/high intellectual input remediation options, such as monitored natural attenuation, or long-term stewardship of nuclear waste disposal sites.

  12. Reclamation and groundwater remediation at a hydrocarbon site in Alaska

    SciTech Connect

    Ririe, G.T.; Drake, L.D.; Olson, S.S.

    1997-12-31

    As part of a joint hydrocarbon cleanup project between Unocal and Marathon, we have initiated the use of constructed wetlands for restoration of the 40-acre Poppy Lane gravel pit located near Kenai, Alaska. Gravel excavated from this site was used to construct roads and drilling pads in the 1960`-70`s. During this period it was also used as a refuse dump for waste from the Kenai gas field and from local residents. The bulk wastes were removed and pockets of oily sand were removed, treated and returned to a stockpile on the site. This left the site with residual pockets of hydrocarbon-impacted sand (<1000 TPH) plus traces of hydrocarbon contamination in the uppermost shallow groundwater flowing through the outwash gravels. The final part of the cleanup will be land restoration and bioremediation of the final traces of hydrocarbons, which are predominantly diesel-range. High resolution gas chromatography analysis indicated that common plants already growing on the site (willow, cottonwood, and alder) did not concentrate diesel-range petroleum hydrocarbons in their foliage when growing in soils containing these contaminants. As part of the planned restoration and shallow groundwater remediation, two 1/3 acre test plots were constructed to promote in-situ biodegradation processes. In spring 1995, the first test, a tree root-barrier plot, was planted with dormant cuttings of four native wetland tree and shrub species, which were planted to depths up to five feet. Alder and elderberry did not succeed under any conditions, nor did any species planted in standing water. For cottonwood and willow species, approximately one half of each rooted and survived. When the water table dropped the second year, the willow cuttings rooted deeper in the vadose zone, while cottonwood did not. As a result of these findings, a tree root-barrier wetland is not considered to be a viable option for groundwater treatment at Poppy Lane.

  13. A quantitative method for groundwater surveillance monitoring network design at the Hanford Site

    SciTech Connect

    Meyer, P.D.

    1993-12-01

    As part of the Environmental Surveillance Program at the Hanford Site, mandated by the US Department of Energy, hundreds of groundwater wells are sampled each year, with each sample typically analyzed for a variety of constituents. The groundwater sampling program must satisfy several broad objectives. These objectives include an integrated assessment of the condition of groundwater and the identification and quantification of existing, emerging, or potential groundwater problems. Several quantitative network desip objectives are proposed and a mathematical optimization model is developed from these objectives. The model attempts to find minimum cost network alternatives that maximize the amount of information generated by the network. Information is measured both by the rats of change with respect to time of the contaminant concentration and the uncertainty in contaminant concentration. In an application to tritium monitoring at the Hanford Site, both information measures were derived from historical data using time series analysis.

  14. Ground-water monitoring compliance plan for the Hanford Site Solid Waste Landfill

    SciTech Connect

    Fruland, R.M.

    1986-10-01

    Washington state regulations required that solid waste landfill facilities have ground-water monitoring programs in place by May 27, 1987. This document describes the well locations, installation, characterization studies and sampling and analysis plan to be followed in implementing the ground-water monitoring program at the Hanford Site Solid Waste Landfill (SWL). It is based on Washington Administrative Code WAC 173-304-490. 11 refs., 19 figs., 4 tabs.

  15. Groundwater Monitoring Plan for the 216-B-63 Trench on the Hanford Site

    SciTech Connect

    Sweeney, Mark D. )

    2002-11-14

    This document presents a groundwater monitoring plan for the 216-B-63 trench in the 200 East Area of the Hanford Site. The monitoring will be conducted in accordance with regulatory requirements specified in the Resource Conservation and Recovery Act (RCRA) of 1976. The objective of the monitoring is to determine whether any hazardous constituents are detectable in the groundwater beneath the trench. This monitoring plan will serve as the basis for demonstrating monitoring compliance at the B-63 trench under the RCRA.

  16. Technical framework for groundwater restoration. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect

    Not Available

    1991-04-01

    This document provides the technical framework for groundwater restoration under Phase II of the Uranium Mill Tailings Remedial Action (UMTRA) Project. A preliminary management plan for Phase II has been set forth in a companion document titled Preplanning Guidance Document for Groundwater Restoration''. General principles of site characterization for groundwater restoration, restoration methods, and treatment are discussed in this document to provide an overview of standard technical approaches to groundwater restoration.

  17. Response of winter birds to soil remediation along the Columbia River at the Hanford Site

    SciTech Connect

    Becker, James M.; McKinstry, Craig A.

    2004-04-01

    The Columbia River at the Hanford Site, located in south-central Washington State, USA, is a regionally important refugium for overwintering birds. Some of the river shoreline has been designated by the U.S. Department of Energy for environmental clean-up following past production of materials for nuclear weapons. We evaluated the effects of soil remediation on winter birds at six inactive nuclear reactor areas. Remediation activities consisted of daily excavation and removal of approximately 1,035 t of contaminated soil from previously herbicided and denuded areas located between 30 m and 400 m and mostly in line-of-sight of the river shoreline. Remediation activities had no apparent effect on numbers of riverine or terrestrial birds using adjacent undisturbed shoreline and riparian habitat.

  18. Response of winter birds to soil remediation along the Columbia River at the Hanford Site.

    PubMed

    Becker, J M; McKinstry, C A

    2004-01-01

    The Columbia River at the Hanford Site, located in south-central Washington State, U.S.A., is a regionally important refugium for overwintering birds. Some of the river shoreline has been designated by the U.S. Department of Energy for environmental clean-up following past production of materials for nuclear weapons. We evaluated the effects of soil remediation on winter birds at six inactive nuclear reactor areas. Remediation activities consisted of daily excavation and removal of approximately 1035 t of contaminated soil from previously herbicided and denuded areas located between 30 and 400 m and mostly in line-of-sight of the river shoreline. Remediation activities had no apparent effect on numbers of riverine or terrestrial birds using adjacent undisturbed shoreline and riparian habitat. PMID:15074620

  19. Screening of Potential Remediation Methods for the 200-ZP-1 Operable Unit at the Hanford Site

    SciTech Connect

    Truex, Michael J.; Nimmons, Michael J.; Johnson, Christian D.; Dresel, P EVAN.; Murray, Christopher J.

    2006-08-07

    A screening-level evaluation of potential remediation methods for application to the contaminants of concern (COC) in the 200-ZP-1 Operable Unit at the Hanford Site was conducted based on the methods outlined in the Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA Interim Final. The scope of this screening was to identify the most promising remediation methods for use in the more detailed analysis of remediation alternatives that will be conducted as part of the full feasibility study. The screening evaluation was conducted for the primary COC (potential major risk drivers). COC with similar properties were grouped for the screening evaluation. The screening evaluation was conducted in two primary steps. The initial screening step evaluated potential remediation methods based on whether they can be effectively applied within the environmental setting of the 200-ZP-1 Operable Unit for the specified contaminants. In the second step, potential remediation methods were screened using scoping calculations to estimate the scale of infrastructure, overall quantities of reagents, and conceptual approach for applying the method for each defined grouping of COC. Based on these estimates, each method was screened with respect to effectiveness, implementability, and relative cost categories of the CERCLA feasibility study screening process defined in EPA guidance.

  20. Bench-scale electrokinetic remediation for cesium-contaminated sediment at the Hanford Site, USA

    SciTech Connect

    Jung, Hun Bok; Yang, Jungseok; Um, Wooyong

    2015-05-01

    Electrokinetic (EK) remediation has been applied to extract various contaminants such as radionuclides, heavy metals, and organic compounds from contaminated sediment and soil using electric currents. We conducted a laboratory experiment to investigate the efficiency of EK remediation method for Hanford sediment (76% sand and 24% silt-clay) after artificial contamination with nonradioactive 133Cs (0.01 M CsNO3) as a surrogate for radioactive 137Cs. The initial 133Cs concentration in the bulk sediment was 668 mg kg-1, with a higher 133Cs concentration for the silt-clay fraction (867 mg kg-1) than for the sand fraction (83 mg kg-1). A significant removal of cationic 133Cs from the sediment occurred from the cathode side (-), whereas the removal was negligible from the anode side (+) during the EK remediation process for 68 days. Based on microwave-assisted total digestion, 312 mg kg-1 of 133Cs was removed from the bulk sediment, which corresponds to the removal efficiency of 47%. The EK method was significantly more efficient for the silt-clay fraction than for the sand fraction. X-ray diffraction (XRD) and scanning electron microscopy-electron dispersive spectroscopy (SEM-EDS) analyses indicate that change in major crystalline mineral phases was insignificant during the EK remediation and the removal of 133Cs from the Hanford sediment by the EK method is attributed mainly to cation exchange with K in clay minerals. The experimental results suggest that the EK method can effectively remove radioactive Cs from the surface or subsurface sediment contaminated by radioactive materials in the Hanford Site, Washington, USA.

  1. Technology needs for remediation: Hanford and other DOE sites

    SciTech Connect

    Stapp, D.C.

    1993-01-01

    Technologies are being developed under the Buried Waste Integrated Demonstration (BWID) program to facilitate remediation of the US Department of Energy's (DOE) buried and stored low-level radioactive, transuranic (TRU), and mixed radioactive and hazardous buried wastes. The BWID program is being coordinated by the Idaho National Engineering Laboratory (INEL) in southeastern Idaho, a DOE site that has large volumes of buried radioactive wastes. The program is currently focusing its efforts on the problems at INEL's Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC). As specific technologies are successfully demonstrated, they will be available for transfer to applications at other DOE buried waste sites. The purpose of this study is to present buried waste technology needs that have been identified for DOE sites other than INEL.

  2. FY 2002 Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project

    SciTech Connect

    Hartman, Mary J.; Dresel, P Evan; Lindberg, Jonathan W.; Newcomer, Darrell R.; Thornton, Edward C.

    2001-10-31

    This document is an integrated monitoring plan for the groundwater project and contains: well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders ("surveillance monitoring"); other, established monitoring plans by reference; and a master well/ constituent/frequency matrix for the entire Hanford Site.

  3. ANNUAL PROGRESS REPORT. SPECIATION, MOBILITY AND FATE OF ACTINIDES IN THE GROUNDWATER AT THE HANFORD SITE

    EPA Science Inventory

    The objectives of this project are: (1) the determination of the speciation of plutonium and other actinides (Np, U) in groundwater at the 100 and 200 areas at the Hanford Site. This includes the separation of Pu into particulate, colloidal and <1 kilo-Dalton dissolved phases and...

  4. Automated Groundwater Monitoring of Uranium at the Hanford Site, Washington - 13116

    SciTech Connect

    Burge, Scott R.; O'Hara, Matthew J.

    2013-07-01

    An automated groundwater monitoring system for the detection of uranyl ion in groundwater was deployed at the 300 Area Industrial Complex, Hanford Site, Washington. The research was conducted to determine if at-site, automated monitoring of contaminant movement in the subsurface is a viable alternative to the baseline manual sampling and analytical laboratory assay methods currently employed. The monitoring system used Arsenazo III, a colorimetric chelating compound, for the detection of the uranyl ion. The analytical system had a limit of quantification of approximately 10 parts per billion (ppb, μg/L). The EPA's drinking water maximum contaminant level (MCL) is 30 ppb [1]. In addition to the uranyl ion assay, the system was capable of acquiring temperature, conductivity, and river level data. The system was fully automated and could be operated remotely. The system was capable of collecting water samples from four sampling sources, quantifying the uranyl ion, and periodically performing a calibration of the analytical cell. The system communications were accomplished by way of cellular data link with the information transmitted through the internet. Four water sample sources were selected for the investigation: one location provided samples of Columbia River water, and the remaining three sources provided groundwater from aquifer sampling tubes positioned in a vertical array at the Columbia River shoreline. The typical sampling schedule was to sample the four locations twice per day with one calibration check per day. This paper outlines the instrumentation employed, the operation of the instrumentation, and analytical results for a period of time between July and August, 2012. The presentation includes the uranyl ion concentration and conductivity results from the automated sampling/analysis system, along with a comparison between the automated monitor's analytical performance and an independent laboratory analysis. Benefits of using the automated system as an

  5. PERMEABLE REACTIVE BARRIER STRATEGIES FOR REMEDIATION OF ARSENIC-CONTAMINATED GROUNDWATER: ABSTRACT

    EPA Science Inventory

    NRMRL-ADA-01152 Wilkin*, R.T., and Paul*, C.J. "Permeable Reactive Barrier Strategies for Remediation of Arsenic- Contaminated Groundwater." In: Geological Society of America, Abstracts with programs., Geological Society of America Annua...

  6. Treatment of Bottled Liquid Waste During Remediation of the Hanford 618-10 Burial Ground - 13001

    SciTech Connect

    Faulk, Darrin E.; Pearson, Chris M.; Vedder, Barry L.; Martin, David W.

    2013-07-01

    A problematic waste form encountered during remediation of the Hanford Site 618-10 burial ground consists of bottled aqueous waste potentially contaminated with regulated metals. The liquid waste requires stabilization prior to landfill disposal. Prior remediation activities at other Hanford burial grounds resulted in a standard process for sampling and analyzing liquid waste using manual methods. Due to the highly dispersible characteristics of alpha contamination, and the potential for shock sensitive chemicals, a different method for bottle processing was needed for the 618-10 burial ground. Discussions with the United States Department of Energy (DOE) and United States Environmental Protection Agency (EPA) led to development of a modified approach. The modified approach involves treatment of liquid waste in bottles, up to one gallon per bottle, in a tray or box within the excavation of the remediation site. Bottles are placed in the box, covered with soil and fixative, crushed, and mixed with a Portland cement grout. The potential hazards of the liquid waste preclude sampling prior to treatment. Post treatment verification sampling is performed to demonstrate compliance with land disposal restrictions and disposal facility acceptance criteria. (authors)

  7. Alternative Endpoints and Approaches Selected for the Remediation of Contaminated Groundwater at Complex Sites

    NASA Astrophysics Data System (ADS)

    Deeb, R. A.; Hawley, E.

    2011-12-01

    This presentation will focus on findings, statistics, and case studies from a recently-completed report for the Department of Defense's Environmental Security Technology Certification Program (ESTCP) (Project ER-0832) on alternative endpoints and alternative remedial strategies for groundwater remediation under a variety of Federal and state cleanup programs, including technical impracticability (TI) and other Applicable or Relevant and Appropriate Requirement (ARAR) waivers, state and local designations such as groundwater management zones, Alternate Concentration Limits (ACLs), use of monitored natural attenuation (MNA) over long timeframes, and more. The primary objective of the project was to provide environmental managers and regulators with tools, metrics, and information needed to evaluate alternative endpoints for groundwater remediation at complex sites. A statistical analysis of Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) sites receiving TI waivers will be presented as well as case studies of other types of alternative endpoints and alternative remedial strategies to illustrate the variety of approaches used at complex sites and the technical analyses used to predict and document cost, timeframe, and potential remedial effectiveness. Case studies provide examples of the flexible, site-specific, application of alternative endpoints and alternative remedial strategies that have been used in the past to manage and remediate groundwater contamination at complex sites. For example, at least 13 states consider some designation for groundwater containment in their corrective action policies, such as groundwater management zones, containment zones, and groundwater classification exemption areas. These designations typically indicate that groundwater contamination is present above permissible levels. Soil and groundwater within these zones are managed to protect human health and the environment. Lesson learned for the analyses

  8. Annual report for RCRA groundwater monitoring projects at Hanford Site facilities for 1993

    SciTech Connect

    Not Available

    1994-02-01

    This report presents the annual hydrogeologic evaluation of 20 Resource Conservation and Recovery Act of 1976 groundwater monitoring projects and 1 nonhazardous waste facility at the US Department of Energy`s Hanford Site. Most of the projects no longer receive dangerous waste; a few projects continue to receive dangerous waste constituents for treatment, storage, or disposal. The 20 RCRA projects comprise 30 waste management units. Ten of the units are monitored under groundwater quality assessment status because of elevated levels of indicator parameters. The impact of those units on groundwater quality, if any, is being investigated. If dangerous waste or waste constituents have entered groundwater, their concentration, distribution, and rate of migration are evaluated. Groundwater is monitored at the other 20 units to detect contamination, should it occur. This report provides an interpretation of groundwater data collected at the waste management units between October 1992 and September 1993. Recent groundwater quality is also described for the 100, 200, 300, and 600 Areas and for the entire Hanford Site. Widespread contaminants include nitrate, chromium, carbon tetrachloride, tritium, and other radionuclides.

  9. In-situ remediation system for groundwater and soils

    DOEpatents

    Corey, J.C.; Kaback, D.S.; Looney, B.B.

    1993-11-23

    A method and system are presented for in-situ remediation of contaminated groundwater and soil where the contaminants, such as toxic metals, are carried in a subsurface plume. The method comprises selection and injection into the soil of a fluid that will cause the contaminants to form stable, non-toxic compounds either directly by combining with the contaminants or indirectly by creating conditions in the soil or changing the conditions of the soil so that the formation of stable, non-toxic compounds between the contaminants and existing substances in the soil are more favorable. In the case of non-toxic metal contaminants, sulfides or sulfates are injected so that metal sulfides or sulfates are formed. Alternatively, an inert gas may be injected to stimulate microorganisms in the soil to produce sulfides which, in turn, react with the metal contaminants. Preferably, two wells are used, one to inject the fluid and one to extract the unused portion of the fluid. The two wells work in combination to create a flow of the fluid across the plume to achieve better, more rapid mixing of the fluid and the contaminants. 4 figures.

  10. In-situ remediation system for groundwater and soils

    DOEpatents

    Corey, John C.; Kaback, Dawn S.; Looney, Brian B.

    1993-01-01

    A method and system for in-situ remediation of contaminated groundwater and soil where the contaminants, such as toxic metals, are carried in a subsurface plume. The method comprises selection and injection into the soil of a fluid that will cause the contaminants to form stable, non-toxic compounds either directly by combining with the contaminants or indirectly by creating conditions in the soil or changing the conditions of the soil so that the formation of stable, non-toxic compounds between the contaminants and existing substances in the soil are more favorable. In the case of non-toxic metal contaminants, sulfides or sulfates are injected so that metal sulfides or sulfates are formed. Alternatively, an inert gas may be injected to stimulate microorganisms in the soil to produce sulfides which, in turn, react with the metal contaminants. Preferably, two wells are used, one to inject the fluid and one to extract the unused portion of the fluid. The two wells work in combination to create a flow of the fluid across the plume to achieve better, more rapid mixing of the fluid and the contaminants.

  11. Compatibility of polymers and chemical oxidants for enhanced groundwater remediation.

    PubMed

    Smith, Megan M; Silva, Jeff A K; Munakata-Marr, Junko; McCray, John E

    2008-12-15

    Polymer floods provide a promising method to more effectively deliver conventional groundwater treatment agents to organic contaminants distributed within heterogeneous aquifer systems. Combinations of nontoxic polymers (xanthan and hydrolyzed polyacrylamide) and common chemical oxidants (potassium permanganate and sodium persulfate) were investigated to determine the suitability of these mixtures for polymer-enhanced in situ chemical oxidation applications. Oxidant demand and solution viscosity were utilized as initial measures of chemical compatibility. After 72 h of reaction with both test oxidants, solution viscosities in mixtures containing hydrolyzed polyacrylamide were decreased by more than 90% (final viscosities approximately 2 cP), similar to the 95% viscosity loss (final viscosities approximately 1 cP, near that of water) observed in xanthan/persulfate experiments. In contrast, xanthan solutions exposed to potassium permanganate preserved 60-95% of initial viscosity after 72 h. Permanganate depletion in xanthan-containing experiments ranged from 2% to 24% over the same test period. Although oxidant consumption in xanthan/permanganate solutions appeared to be correlated with increasing xanthan concentrations, solutions of up to 2000 mg/L xanthan did not inhibit permanganate from oxidizing a dissolved-phase test contaminant (tetrachloroethene, PCE) in xanthan solution. These advantageous characteristics (high viscosity retention, moderate oxidant demand, and lack of competitive effects on PCE oxidation rate) render xanthan/permanganate the most compatible polymer/oxidant combination of those tested for remediation by polymer-enhanced chemical oxidation. PMID:19174907

  12. PUMP-AND-TREAT GROUND-WATER REMEDIATION: A GUIDE FOR DECISION MAKERS AND PRACTITIONERS

    EPA Science Inventory

    This guide presents decision makers with a foundation for evaluating the appropriateness of conventional or innovative approaches. An introduction to pump-and-treat ground-water remediation, the guide addresses the following questions: When is pump-and-treat an appropriate remedi...

  13. STRATEGIES FOR IMMOBILIZATION OF DEEP VADOSE ZONE CONTAMINANTS AT THE HANFORD CENTRAL PLATEAU

    SciTech Connect

    CHRONISTER GB

    2011-01-14

    Deep vadose zone contamination poses some of the most difficult remediation challenges for the protection of groundwater at the Hanford Site in Richland, Washington. This paper describes processes and technologies being developed to use in the ongoing effort to remediate the contamination in the deep vadose zone at the Hanford Site.

  14. Development and applications of groundwater remediation technologies in the USA

    NASA Astrophysics Data System (ADS)

    Barcelona, Michael J.

    2005-03-01

    The future of the development and application of groundwater remediation technologies will unfold in an atmosphere of heightened public concern and attention. Cleanup policy will undergo incremental change towards more comprehensive efforts which account for the impact of remediation on nearby resources. Newly discovered contaminants will cause the re-examination of "mature" technologies since they may be persistent, mobile and difficult to treat in-situ. Evaluations of the effectiveness of remedial technologies will eventually include by-product formation, geochemical consequences and sustainability. Long-term field trials of remedial technologies alone can provide the data necessary to support claims of effectiveness. Dans le futur, le développement et les applications des technologies de traitement des eaux souterraines seront déroulés en tenant compte de l'inquiétude et l'attention croissante de l'opinion publique. La politique de nettoyage va subir un changement vers des efforts plus compréhensifs qui prendront en compte l'impact du traitement sur les ressources voisines. Les nouveaux contaminants seront persistants, mobiles et difficile de traiter in situ; par conséquence ils vont provoquer la reexamination des technologies consacrées. L'évaluation de l'efficacité des technologies de traitement doit considérer l'apparition des produits secondaires ainsi que les conséquences géochimiques et le développement durable. Seulement les essais in situ, pendant des longues périodes sur les technologies peuvent fournir les éléments nécessaires pour démontrer leur efficacité. El futuro del desarrollo y de la aplicación de las tecnologías para la recuperación del agua subterránea, se revelará en una atmósfera de gran atención e interés público elevado. La política de limpieza sufrirá un cambio adicional hacia esfuerzos más tangibles, los cuales incluyan el impacto de la recuperación en los recursos circundantes. Los contaminantes

  15. RCRA Groundwater Monitoring Plan for Single-Shell Tank Waste Management Area C at the Hanford Site

    SciTech Connect

    Horton, Duane G.; Narbutovskih, Susan M.

    2001-01-01

    This document describes the groundwater monitoring plan for Waste Management Area C located in the 200 East Area of the DOE Hanford Site. This plan is required under Resource Conservation and Recovery Act of 1976 (RCRA).

  16. Remediation of Groundwater Contaminated with Organics and Radionuclides - An Innovative Approach Eases Traditional Hurdles

    SciTech Connect

    Scott, J.; Case, N.; Coltman, K.

    2003-02-25

    Traditional approaches to the remediation of contaminated groundwater, such as pump-and-treat, have been used for many years for the treatment of groundwater contaminated with various organics. However the treatment of groundwater contaminated with organics and radionuclides has been considerably more challenging. Safety and Ecology Corporation (SEC) was recently faced with these challenges while designing a remediation system for the remediation of TCE-contaminated groundwater and soil at the RMI Extrusion Plant in Ashtabula, OH. Under contract with RMI Environmental Services (RMIES), SEC teamed with Regenesis, Inc. to design, implement, and execute a bioremediation system to remove TCE and associated organics from groundwater and soil that was also contaminated with uranium and technetium. The SEC-Regenesis system involved the injection of Hydrogen Release Compound (HRC), a natural attenuation accelerant that has been patented, designed, and produced by Regenesis, to stimulate the reductive dechlorination and remediation of chlorinated organics in subsurface environments. The compound was injected using direct-push Geoprobe rods over a specially designed grid system through the zone of contaminated groundwater. The innovative approach eliminated the need to extract contaminated groundwater and bypassed the restrictive limitations listed above. The system has been in operation for roughly six months and has begun to show considerable success at dechlorinating and remediating the TCE plume and in reducing the radionuclides into insoluble precipitants. The paper will provide an overview of the design, installation, and initial operation phase of the project, focusing on how traditional design challenges of remediating radiologically contaminated groundwater were overcome. The following topics will be specifically covered: a description of the mechanics of the HRC technology; an assessment of the applicability of the HRC technology to contaminated groundwater plumes

  17. Biogeochemical dynamics of pollutants in Insitu groundwater remediation systems

    NASA Astrophysics Data System (ADS)

    Kumar, N.; Millot, R.; Rose, J.; Négrel, P.; Battaglia-Brunnet, F.; Diels, L.

    2010-12-01

    Insitu (bio) remediation of groundwater contaminants has been area of potential research interest in last few decades as the nature of contaminant encountered has also changed drastically. This gives tough challenge to researchers in finding a common solution for all contaminants together in one plume. Redox processes play significant role in pollutant dynamics and mobility in such systems. Arsenic particularly in reduced environments can get transformed into its reduced form (As3+), which is apparently more mobile and highly toxic. Also parallel sulfate reduction can lead to sulfide production and formation of thioarsenic species. On the other hand heavy metals (Zn, Fe, and Cd) in similar conditions will favour more stable metal sulfide precipitation. In the present work, we tested Zero Valent Iron (ZVI) in handling such issues and found promising results. Although it has been well known for contaminants like arsenic and chlorinated compounds but not much explored for heavy metals. Its high available surface area supports precipitation and co -precipitation of contaminants and its highly oxidizing nature and water born hydrogen production helps in stimulation of microbial activities in sediment and groundwater. These sulfate and Iron reducing bacteria can further fix heavy metals as stable metal sulfides by using hydrogen as potential electron donor. In the present study flow through columns (biotic and control) were set up in laboratory to understand the behaviour of contaminants in subsurface environments, also the impact of microbiology on performance of ZVI was studied. These glass columns (30 x 4cm) with intermediate sampling points were monitored over constant temperature (20°C) and continuous groundwater (up)flow at ~1ml/hr throughout the experiment. Simulated groundwater was prepared in laboratory containing sulfate, metals (Zn,Cd) and arsenic (AsV). While chemical and microbial parameters were followed regularly over time, solid phase has been

  18. Annual report for RCRA groundwater monitoring projects at Hanford Site facilities for 1995

    SciTech Connect

    Hartman, M.J.

    1996-02-01

    This report presents the annual hydrogeologic evaluation of 19 Resource Conservation and Recovery Act of 1976 facilities and 1 nonhazardous waste facility at the US Department of Energy`s Hanford Site. Although most of the facilities no longer receive dangerous waste, a few facilities continue to receive dangerous waste constituents for treatment, storage, or disposal. The 19 Resource Conservation and Recovery Act facilities comprise 29 waste management units. Nine of the units are monitored under groundwater quality assessment status because of elevated levels of contamination indicator parameters. The impact of those units on groundwater quality, if any, is being investigated. If dangerous waste or waste constituents have entered groundwater, their concentration profiles, rate, and extent of migration are evaluated. Groundwater is monitored at the other 20 units to detect leakage, should it occur. This report provides an interpretation of groundwater data collected at the waste management units between October 1994 and September 1995. Groundwater quality is described for the entire Hanford Site. Widespread contaminants include nitrate, chromium, carbon tetrachloride, tritium, and other radionuclides.

  19. Life cycle assessment of active and passive groundwater remediation technologies

    NASA Astrophysics Data System (ADS)

    Bayer, Peter; Finkel, Michael

    2006-02-01

    Groundwater remediation technologies, such as pump-and-treat (PTS) and funnel-and-gate systems (FGS), aim at reducing locally appearing contaminations. Therefore, these methodologies are basically evaluated with respect to their capability to yield local improvements of an environmental situation, commonly neglecting that their application is also associated with secondary impacts. Life cycle assessment (LCA) represents a widely accepted method of assessing the environmental aspects and potential impacts related to a product, process or service. This study presents the set-up of a LCA framework in order to compare the secondary impacts caused by two conceptually different technologies at the site of a former manufactured gas plant in the city of Karlsruhe, Germany. As a FGS is already operating at this site, a hypothetical PTS of the same functionality is adopted. During the LCA, the remediation systems are evaluated by focusing on the main technical elements and their significance with respect to resource depletion and potential adverse effects on ecological quality, as well as on human health. Seven impact categories are distinguished to address a broad spectrum of possible environmental loads. A main point of discussion is the reliability of technical assumptions and performance predictions for the future. It is obvious that a high uncertainty exists when estimating impact specific indicator values over operation times of decades. An uncertainty analysis is conducted to include the imprecision of the underlying emission and consumption data and a scenario analysis is utilised to contrast various possible technological variants. Though the results of the study are highly site-specific, a generalised relative evaluation of potential impacts and their main sources is the principle objective rather than a discussion of the calculated absolute impacts. A crucial finding that can be applied to any other site is the central role of steel, which particularly derogates

  20. Mechanisms of uranium interactions with hydroxyapatite: Implications for groundwater remediation

    USGS Publications Warehouse

    Fuller, C.C.; Bargar, J.R.; Davis, J.A.; Piana, M.J.

    2002-01-01

    The speciation of U(VI) sorbed to synthetic hydroxyapatite was investigated using a combination of U LIII-edge XAS, synchrotron XRD, batch uptake measurements, and SEM-EDS. The mechanisms of U(VI) removal by apatite were determined in order to evaluate the feasibility of apatitebased in-situ permeable reactive barriers (PRBs). In batch U(VI) uptake experiments with synthetic hydroxyapatite (HA), near complete removal of dissolved uranium (>99.5%) to <0.05 ??M was observed over a range of total U(VI) concentrations up to equimolar of the total P in the suspension. XRD and XAS analyses of U(VI)-reacted HA at sorbed concentrations ???4700 ppm U(VI) suggested that uranium(VI) phosphate, hydroxide, and carbonate solids were not present at these concentrations. Fits to EXAFS spectra indicate the presence of Ca neighbors at 3.81 A??. U-Ca separation, suggesting that U(VI) adsorbs to the HA surfaces as an inner-sphere complex. Uranium(VI) phosphate solid phases were not detected in HA with 4700 ppm sorbed U(VI) by backscatter SEM or EDS, in agreement with the surface complexation process. In contrast, U(VI) speciation in samples that exceeded 7000 ppm sorbed U(VI) included a crystalline uranium(VI) phosphate solid phase, identified as chernikovite by XRD. At these higher concentrations, a secondary, uranium(VI) phosphate solid was detected by SEM-EDS, consistent with chernikovite precipitation. Autunite formation occurred at total U:P molar ratios ???0.2. Our findings provide a basis for evaluating U(VI) sorption mechanisms by commercially available natural apatites for use in development of PRBs for groundwater U(VI) remediation.

  1. The Office of Groundwater & Soil Remediation Fiscal Year 2011 Research & Development Program

    SciTech Connect

    Gerdes, Kurt D.; Chamberlain, Grover S.; Aylward, R. S.; Cercy, Mike; Seitz, Roger; Ramirez, Rosa; Skubal, Karen L.; Marble, Justin; Wellman, Dawn M.; Bunn, Amoret L.; Liang, Liyuan; Pierce, Eric M.

    2011-12-02

    The U.S. Department of Energy’s (DOE) Office of Groundwater and Soil Remediation supports applied research and technology development (AR&TD) for remediation of environments contaminated by legacy nuclear waste. The program centers on delivering advanced scientific approaches and technologies from highly-leveraged, strategic investments that maximize impact to reduce risk and life-cycle cleanup costs. The current groundwater and soil remediation program consists of four applied programmatic areas: • Deep Vadose Zone – Applied Field Research Initiative • Attenuation Based Remedies – Applied Field Research Initiative • Remediation of Mercury and Industrial Contaminants – Applied Field Research Initiative • Advanced Simulation Capability for Environmental Management. This paper provides an overview of the applied programmatic areas, fiscal year 11 accomplishments, and their near-term technical direction.

  2. Hanford Site ground-water monitoring for April through June 1987

    SciTech Connect

    Evans, J.C.; Mitchell, P.J.; Dennison, D.I.

    1988-01-01

    Pacific Northwest Laboratory (PNL) is conducting ground-water monitoring at the Hanford Site. Results for monitoring by PNL and Westinghouse Hanford Company (WHC) during April-June 1987 show that certain regulated hazardous materials and radionuclides exist in Hanford Site ground waters. The presence of regulated constituents in the ground water derives both from site operations and from natural sources. The major contamination problems defined by recent monitoring activities are carbon tetrachloride in the 200 West Area; cyanide in and north of the 200 East Area; hexavalent chromium contamination in the 100B, 100D, 100K, and 100H areas; chlorinated hydrocarbons in the vicinity of the Central Landfill; uranium at the 216-U-1 and 216-U-2 cribs in the 200 West Area; tritium across the site; and nitrate across the site. The distribution of hazardous materials related to site operations is more limited than the distribution of tritium and nitrate. 8 refs., 22 figs., 5 tabs.

  3. Groundwater monitoring plan for the Hanford Site 200 Area Treated Effluent Disposal Facility

    SciTech Connect

    DB Barnett

    2000-05-17

    Seven years of groundwater monitoring at the 200 Area Treated Effluent Disposal Facility (TEDF) have shown that the uppermost aquifer beneath the facility is unaffected by TEDF effluent. Effluent discharges have been well below permitted and expected volumes. Groundwater mounding from TEDF operations predicted by various models has not been observed, and waterlevels in TEDF wells have continued declining with the dissipation of the nearby B Pond System groundwater mound. Analytical results for constituents with enforcement limits indicate that concentrations of all these are below Practical Quantitation Limits, and some have produced no detections. Likewise, other constituents on the permit-required list have produced results that are mostly below sitewide background. Comprehensive geochemical analyses of groundwater from TEDF wells has shown that most constituents are below background levels as calculated by two Hanford Site-wide studies. Additionally, major ion proportions and anomalously low tritium activities suggest that groundwater in the aquifer beneath the TEDF has been sequestered from influences of adjoining portions of the aquifer and any discharge activities. This inference is supported by recent hydrogeologic investigations which indicate an extremely slow rate of groundwater movement beneath the TEDF. Detailed evaluation of TEDF-area hydrogeology and groundwater geochemistry indicate that additional points of compliance for groundwater monitoring would be ineffective for this facility, and would produce ambiguous results. Therefore, the current groundwater monitoring well network is retained for continued monitoring. A quarterly frequency of sampling and analysis is continued for all three TEDF wells. The constituents list is refined to include only those parameters key to discerning subtle changes in groundwater chemistry, those useful in detecting general groundwater quality changes from upgradient sources, or those retained for comparison with end

  4. A permeable reactive wall composed of clinoptilolite for containment of Sr-90 in Hanford groundwater

    SciTech Connect

    Cantrell, K.J.

    1996-12-31

    Large volumes of water containing strontium-90 ({sup 90}Sr) and other radionuclides were disposed of in the past in two liquid waste disposal facilities (trenches) at the Hanford 100N Area. As a result of these past disposal practices, {sup 90}Sr has migrated in the groundwater towards the Columbia River. One potential alternative for treatment of this groundwater is the use of a permeable treatment wall containing an adsorbent. Because of their high adsorption affinity for strontium, zeolites appear to be promising candidates for use as a material to construct an in situ permeable treatment zone. Supporting bench scale work included batch adsorption experiments conducted with three zeolites (clinoptilolite, chabazite and A-51) to determine their potential applicability as materials for an in situ permeable barrier to strontium migration in groundwater. Each of the zeolites tested were found to be effective adsorbents for strontium, even in competition with calcium at concentrations typical of Hanford groundwater. It was determined that clinoptilolite would be the most cost-effective zeolite for a barrier at the Hanford site. Adsorption kinetics of Sr onto clinoptilolite were also determined. These data were used to develop a kinetic model. The kinetic model parameters were incorporated into a transport modeling code. This model was used to design an effective barrier and to assess its performance. Modeling results indicated that a barrier 1.0 m thick would effectively reduce Sr-90 migration to the Columbia River at the 100-N Area of the Hanford Site. With this design, it was determined that a maximum of 0.10% of the Sr-90 would pass through the barrier at 235 years. To be effective the permeable reactive wall must be more permeable than the surrounding aquifer material. Hydraulic conductivity measurements were performed on three commercially available particle size ranges and a custom particle size range which could also be produced by the supplier at low cost.

  5. Engineered Injection and Extraction for Enhanced In-situ Remediation of Sorbing Solutes in Groundwater

    NASA Astrophysics Data System (ADS)

    Webber, B. D.; Neupauer, R. M.; Piscopo, A. N.; Mays, D. C.

    2012-12-01

    Groundwater remediation is becoming increasingly more important as the world's population grows and the necessity of access to clean drinking water persists. The majority of current groundwater treatment methods involve pumping the contaminated groundwater out of the soil and treating it above ground. Sorbed contaminants are difficult to remediate using this conventional pump-and-treat method, and often produce poor treatment results because sorbed contaminants are difficult to extract from the aquifer; therefore in-situ remediation research is of particular importance. One type of in-situ groundwater remediation involves a treatment solution of varying composition being injected into the polluted aquifer to react with the contaminant and degrade it to an acceptable byproduct. Increasing the amount of spreading between the contaminant and the treatment solution promotes an increase in contact area and more desired reactions. It has been previously determined that sequential injection and extraction using four wells for in-situ remediation can enhance the spreading of an aqueous contaminant and treatment solution and increase degradation through more reactions. In this work, we focus on sorbing contaminants and investigate the effectiveness of the injection and extraction methods on varying degrees of contaminant sorption. Tests were conducted in homogeneous and heterogeneous soil media, and with instantaneous and kinetic reaction. It was determined that engineered injection and extraction methods previously developed for aqueous contaminants also enhance in-situ remediation of sorbing solutes.

  6. A niched Pareto tabu search for multi-objective optimal design of groundwater remediation systems

    NASA Astrophysics Data System (ADS)

    Yang, Yun; Wu, Jianfeng; Sun, Xiaomin; Wu, Jichun; Zheng, Chunmiao

    2013-05-01

    This study presents a new multi-objective optimization method, the niched Pareto tabu search (NPTS), for optimal design of groundwater remediation systems. The proposed NPTS is then coupled with the commonly used flow and transport code, MODFLOW and MT3DMS, to search for the near Pareto-optimal tradeoffs of groundwater remediation strategies. The difference between the proposed NPTS and the existing multiple objective tabu search (MOTS) lies in the use of the niche selection strategy and fitness archiving to maintain the diversity of the optimal solutions along the Pareto front and avoid repetitive calculations of the objective functions associated with the flow and transport model. Sensitivity analysis of the NPTS parameters is evaluated through a synthetic pump-and-treat remediation application involving two conflicting objectives, minimizations of both remediation cost and contaminant mass remaining in the aquifer. Moreover, the proposed NPTS is applied to a large-scale pump-and-treat groundwater remediation system of the field site at the Massachusetts Military Reservation (MMR) in Cape Cod, Massachusetts, involving minimizations of both total pumping rates and contaminant mass remaining in the aquifer. Additional comparison of the results based on the NPTS with those obtained from other two methods, namely the single objective tabu search (SOTS) and the nondominated sorting genetic algorithm II (NSGA-II), further indicates that the proposed NPTS has desirable computation efficiency, stability, and robustness and is a promising tool for optimizing the multi-objective design of groundwater remediation systems.

  7. Evaluation of chemical sensors for in situ ground-water monitoring at the Hanford Site

    SciTech Connect

    Murphy, E.M.; Hostetler, D.D.

    1989-03-01

    This report documents a preliminary review and evaluation of instrument systems and sensors that may be used to detect ground-water contaminants in situ at the Hanford Site. Three topics are covered in this report: (1) identification of a group of priority contaminants at Hanford that could be monitored in situ, (2) a review of current instrument systems and sensors for environmental monitoring, and (3) an evaluation of instrument systems that could be used to monitor Hanford contaminants. Thirteen priority contaminants were identified in Hanford ground water, including carbon tetrachloride and six related chlorinated hydrocarbons, cyanide, methyl ethyl ketone, chromium (VI), fluoride, nitrate, and uranium. Based on transduction principles, chemical sensors were divided into four classes, ten specific types of instrument systems were considered: fluorescence spectroscopy, surface-enhanced Raman spectroscopy (SERS), spark excitation-fiber optic spectrochemical emission sensor (FOSES), chemical optrodes, stripping voltammetry, catalytic surface-modified ion electrode immunoassay sensors, resistance/capacitance, quartz piezobalance and surface acoustic wave devices. Because the flow of heat is difficult to control, there are currently no environmental chemical sensors based on thermal transduction. The ability of these ten instrument systems to detect the thirteen priority contaminants at the Hanford Site at the required sensitivity was evaluated. In addition, all ten instrument systems were qualitatively evaluated for general selectivity, response time, reliability, and field operability. 45 refs., 23 figs., 7 tabs.

  8. Evaluation of In Situ Grouting as a Potential Remediation Method for the Hanford Central Plateau Deep Vadose Zone

    SciTech Connect

    Truex, Michael J.; Pierce, Eric M.; Nimmons, Michael J.; Mattigod, Shas V.

    2011-01-11

    The Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau report identifies in situ grouting as a potential remediation technology for the deep vadose zone and includes a planned effort to evaluate in situ grouting to provide information for future feasibility studies. This report represents the first step in this evaluation effort.

  9. Dynamic Kinetics of Nitrogen Cycle in Groundwater-Surface Water Interaction Zone at Hanford Site

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Liu, C.; Liu, Y.; Xu, F.; Yan, A.; Shi, L.; Zachara, J. M.; Gao, Y.; Qian, W.; Nelson, W.; Fredrickson, J.; Zhong, L.; Thompson, C.

    2015-12-01

    Nitrogen cycle carried out by microbes is an important geobiological process that has global implications for carbon and nitrogen cycling and climate change. This presentation describes a study of nitrogen cycle in groundwater-surface water interaction zone (GSIZ) at the US Department of Energy's Hanford Site. Groundwater at Hanford sites has long been documented with nitrate contamination. Nearby Columbia River stage changes of up to 3 m every day because of daily discharge fluctuation from upstream Priest Rapids Dam; resulting an exchange of groundwater and surface water in a short time period. Yet, nitrogen cycle in the GSIZ at Hanford Site remains unclear. Column studies have been used to identify nitrogen metabolism pathways and investigate kinetics of nitrogen cycle in groundwater saturated zone, surface water saturated zone, and GSIZ. Functional gene and protein abundances were determined by qPCR and PRISM-SRM (high-pressure, high-resolution separations coupled with intelligent selection and multiplexing for sensitive selected reaction monitoring) to identify key enzymatic reactions and metabolic pathways of nitrogen cycle. The results showed that dissimilatory nitrate reduction to ammonium (DNRA) competed with denitrification under anaerobic conditions, reducing 30% of NO3- to NH4+, a cation strongly retained on the sediments. As dissolved oxygen intruded the anaerobic zone with river water, NH4+ was oxidized to NO3-, increasing the mobility of NO3-. Multiplicative Monod models were established to describe nitrogen cycle in columns fed with O2 depleted synthetic groundwater and O2 saturated synthetic river water, respectively. The two models were then coupled to predict the dynamic kinetics of nitrogen cycle in GSIZ.

  10. Tracking sources of unsaturated zone and groundwater nitrate contamination using nitrogen and oxygen stable isotopes at the Hanford Site, WA.

    SciTech Connect

    Singleton, Michael J.; Woods, Katharine N.; Conrad, Mark E.; DePaolo, Donald J.; Dresel, P Evan

    2005-04-15

    The nitrogen and oxygen isotopic compositions of nitrate in pore water extracts from unsaturated zone core samples and groundwater samples indicate at least four potential sources of nitrate plumes in groundwaters at the USDOE Hanford Site in south-central Washington.

  11. USING TREES TO REMEDIATE GROUNDWATERS CONTAMINATED WITH CHLORINATED HYDROCARBONS

    EPA Science Inventory

    Phytoremediation has emerged as a treatment alternative that combines the low cost of intrinsic remediation with the more active and adaptable characteristics of conventional remediation. Our lab has shown that fast-growing and deep-rooted hybrid poplar take up and transpire tric...

  12. In-situ groundwater aeration as an effective technique for remediation of petroleum-contaminated aquifers

    SciTech Connect

    Baker, B.W.; Hoffman, G.D. ); Gan, D.R. )

    1994-08-01

    Petroleum contamination of groundwater is a widespread occurrence and is traditionally remediated using groundwater extraction with surface treatment. This remediation scheme is ineffective due to irregular groundwater flow paths, and the low solubility and high soil sorption tendencies of petroleum products in the subsurface. In-situ groundwater aeration, sometimes referred to as air sparging, provides a more effective approach. In-situ groundwater aeration technology takes advantage of the high volatility and biodegradability of many health concerned petroleum constituents. By injecting air into the subsurface, volatile organic compounds readily partition into the vapor phase and are subsequently transported to the vadose zone for collection by a soil vapor extraction system. The system also provides sufficient amounts of oxygen to the groundwater to promote biodegradation of petroleum contaminants. Development of an in-situ groundwater aeration system for petroleum releases within a regulatory framework includes several steps. First, site specific fate and transport mechanisms relevant to petroleum releases must be evaluated. Next, key design parameters, such as injection well construction, well locations, and air injection rates are discussed. Approximate capital, operation, and maintenance costs are given along with typical system remedial time frames. A case history involving a gasoline release from an underground storage tank is presented to illustrate the development and success of an in-situ aeration system.

  13. Hydrogeologic controls on ground-water and contaminant discharge to the Columbia River near the Hanford Townsite

    SciTech Connect

    Luttrell, S.P.; Newcomer, D.R.; Teel, S.S.; Vermeul, V.R.

    1992-11-01

    The purpose of this study is to quantify ground-water and contaminant discharge to the Columbia River in the Hanford Townsite vicinity. The primary objectives of the work are to: describe the hydrogeologic setting and controls on ground-water movement and contaminant discharge to the Columbia River; understand the river/aquifer relationship and its effects on contaminant discharge to the Columbia River; quantify the ground-water and contaminant mass discharge to the Columbia River; and provide data that may be useful for a three-dimensional model of ground-water flow and contaminant transport in the Hanford Townsite study area. The majority of ground-water contamination occurs within the unconfined aquifer; therefore, ground-water and contaminant discharge from the unconfined aquifer is the emphasis of this study. The period of study is primarily from June 1990 through March 1992.

  14. GROUNDWATER MODELING LINKS (SUBSURFACE PROTECTION AND REMEDIATION DIVISION, NRMRL)

    EPA Science Inventory

    From this site, the viewer will be able to access Groundwater Modeling Software Links as well as Groundwater Professionals Links. For the viewer's benefit, the site includes both USEPA and non-EPA links.To view and link to these sites, visit the website at http://www.epa.gov/ad...

  15. Biological Remediation of Groundwater Containing both Nitrate and Atrazine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to its high usage, mobility and recalcitrant nature, atrazine is a common groundwater contaminant. Moreover, groundwaters that are contaminated with atrazine often contain nitrate as well. Nitrate interferes with the biological degradation of atrazine and makes it more difficult to use in-sit...

  16. Groundwater monitoring plan for the Hanford Site 216-B-3 pond RCRA facility

    SciTech Connect

    Barnett, D.B.; Chou, C.J.

    1998-06-01

    The 216-B-3 pond system was a series of ponds for disposal of liquid effluent from past Hanford production facilities. In operation since 1945, the B Pond system has been a RCRA facility since 1986, with Resource Conservation and Recovery Act (RCRA) interim-status groundwater monitoring in place since 1988. In 1994, discharges were diverted from the main pond, where the greatest potential for contamination was thought to reside, to the 3C expansion pond. In 1997, all discharges to the pond system were discontinued. In 1990, the B Pond system was elevated from detection groundwater monitoring to an assessment-level status because total organic halogens and total organic carbon were found to exceed critical means in two wells. Subsequent groundwater quality assessment failed to find any specific hazardous waste contaminant that could have accounted for the exceedances, which were largely isolated in occurrence. Thus, it was recommended that the facility be returned to detection-level monitoring.

  17. In Situ Sequestration of Arsenic in Groundwater: Manipulating Geochemical Conditions to Remediate Sites (Invited)

    NASA Astrophysics Data System (ADS)

    Deflaun, M. F.

    2010-12-01

    Dealing with arsenic in groundwater can be a challenge because of its geochemical nature as a metalloid and the fact that arsenic can be present in groundwater from natural sources (e.g., rocks and minerals) or from past or current uses of arsenic-containing compounds (e.g., pesticides, wood-treating compounds). Both recent publicity regarding naturally occurring arsenic in Asian groundwater and regulatory pressure have stimulated the development of cost-effective methods to mitigate arsenic in groundwater. Because of potentially lower capital and operating costs, in situ methods can be attractive alternatives to costly pump-and-treat systems for smaller-scale operations. Design of appropriate in situ remediation methods should consider the source of the arsenic. Releases of arsenic from arsenic minerals can result from changes in oxidation-reduction potential (ORP) or pH changes. Displacement of arsenic sorbed onto iron oxides can occur through either reductive dissolution of the oxide or through competitive sorption of another ionic species, such as phosphate or carbonate. In situ methods for remediation of arsenic in groundwater include natural attenuation, ORP adjustment, and pH adjustment. The appropriate in situ approach for a site can depend on the source of the arsenic, background groundwater chemistry, site mineralogy, and other factors. The behavior of arsenic in groundwater is described in terms of ORP, pH, and sorption to iron oxides. Data from several sites are used to illustrate the conditions discussed, and case studies showing the use of ORP adjustment, pH adjustment, and natural attenuation to remediate arsenic in groundwater are presented. These case studies include projects ranging from bench-scale testing, to pilot scale demonstrations and full-scale remedial operations.

  18. Groundwater protection management program plan. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect

    Not Available

    1992-06-01

    US Department of Energy (DOE) Order 5400.1 requires the establishment of a groundwater protection management program to ensure compliance with DOE requirements and applicable Federal, state, and local laws and regulations. The Uranium Mill Tailings Remedial Action (UMTRA) Project Office has prepared a Groundwater Protection Management Program Plan'' (groundwater protection plan) of sufficient scope and detail to reflect the program's significance and address the seven activities required in DOE Order 5400.1, Chapter 3, for special program planning. The groundwater protection plan highlights the methods designed to preserve, protect, and monitor groundwater resources at UMTRA Project processing and disposal sites. The plan includes an overview of the remedial action status at the 24 designated processing sites and identifies project technical guidance documents and site-specific documents for the UMTRA groundwater protection management program. In addition, the groundwater protection plan addresses the general information required to develop a water resources protection strategy at the permanent disposal sites. Finally, the plan describes ongoing activities that are in various stages of development at UMTRA sites (long-term care at disposal sites and groundwater restoration at processing sites). This plan will be reviewed annually and updated every 3 years in accordance with DOE Order 5400.1.

  19. The Use of Bacteria for Remediation of Mercury Contaminated Groundwater

    EPA Science Inventory

    Many processes of mercury transformation in the environment are bacteria mediated. Mercury properties cause some difficulties of remediation of mercury contaminated environment. Despite the significance of the problem of mercury pollution, methods of large scale bioremediation ...

  20. Hanford Site ground-water monitoring for July through December 1987

    SciTech Connect

    Evans, J.C.; Dennison, D.I.; Bryce, R.W.; Mitchell, P.J.; Sherwood, D.R.; Krupka, K.M.; Hinman, N.W.; Jacobson, E.A.; Freshley, M.D.

    1988-12-01

    The Pacific Northwest Laboratory monitors ground-water quality at the Hanford Site for the US Department of Energy to assess the impact of Site operations on the environment. Work undertaken between July and December 1987 included monitoring ground-water elevations across the Site, monitoring hazardous chemicals and radionuclides in ground water, geochemical evaluations of unconfined ground-water data, and calibration of ground-water flow and transport models. Water levels continued to rise in areas receiving increased recharge (e.g., beneath B Pond) and decline in areas where the release of water to disposal facilities has been terminated (e.g., U Pond). The major areas of ground-water contamination defined by monitoring activities are (1) carbon tetrachloride in the 200-West Area; (2) cyanide in and north of the 200-East and 200-West Areas; (3) hexavalent chromium contamination in the 100-B, 100-D, 100-F, 100-H, 100-K, and 200-West Areas; (4) chlorinated hydrocarbons in the vicinity of the Central Landfill and 300 Area; (5) uranium in the 100-F, 100-H, 200-West, and 300 Areas; and (6) tritium and nitrate across the Site. The MINTEQ geochemical code was used to identify chemical reactions that may be affecting the concentrations of dissolved hazardous chemicals in the unconfined ground water. Results indicate that many cations are present mainly as dissolved carbonate complexes and that a majority of the ground-water samples are in near equilibrium with carbonate minerals (e.g., calcite, dolomite, otavite).

  1. New Pump and Treat Facility Remedial Action Work Plan for Test Area North (TAN) Final Groundwater Remediation, Operable Unit 1-07B

    SciTech Connect

    D. Vandel

    2003-09-01

    This remedial action work plan identifies the approach and requirements for implementing the medical zone remedial action for Test Area North, Operable Unit 1-07B, at the Idaho National Engineering and Environmental Laboratory (INEEL). This plan details management approach for the construction and operation of the New Pump and Treat Facility. As identified in the remedial design/remedial action scope of work, a separate remedial design/remedial action work plan will be prepared for each remedial component of the Operable Unit 1-07B remedial action. This work plan was originally prepared as an early implementation of the final Phase C remediation. At that time, The Phase C implementation strategy was to use this document as the overall Phase C Work Plan and was to be revised to include the remedial actions for the other remedial zones (hotspot and distal zones). After the completion of Record of Decision Amendment: Technical Support Facility Injection Well (TSF-05) and Surrounding Groundwater Contamination (TSF-23) and Miscellaneous No Action Sites, Final Remedial Action, it was determined that each remedial zone would have it own stand-alone remedial action work plan. Revision 1 of this document converts this document to a stand-alone remedial action plan specific to the implementation of the New Pump and Treat Facility used for plume remediation within the medical zone of the OU 1-07B contaminated plume.

  2. Design, installation and operational methods of implementing horizontal wells for in situ groundwater and soil remediation

    SciTech Connect

    Larson, R.B.

    1996-12-31

    The design and installation of horizontal wells is the primary factor in the efficiency of the remedial actions. Often, inadequacies in the design and installation of remediation systems are not identified until remedial actions have commenced, at which time, required modifications of operational methods can be costly. The parameters required for designing a horizontal well remediation system include spatial variations in contaminant concentrations and lithology, achievable injection and/or extraction rates, area of influence from injection and/or extraction processes, and limitations of installation methods. As with vertical wells, there are several different methods for the installation of horizontal wells. This paper will summarize four installation methods for horizontal wells, including four sites where horizontal wells have been utilized for in-situ groundwater and soil remediation.

  3. Groundwater arsenic remediation using zerovalent iron: Batch and column tests

    EPA Science Inventory

    Recently, increasing efforts have been made to explore the applicability and limitations of zerovalent iron (Fe0) for the treatment of arsenicbearing groundwater and wastewater. The experimental batch and column tests have demonstrated that arsenate and arsenite are removed effec...

  4. Experimental logistics plan in support of Extensive Separations for Hanford tank waste remediation systems

    SciTech Connect

    Enderlin, W.I.; Swanson, J.L.; Carlson, C.D.; Hirschi, E.J.

    1993-12-01

    All proposed methods for remediating the radioactive and chemical waste stored in single- and double-shell tanks (SSTs and DSTs) at the Hanford Site require the separation of the waste mixtures in the tank into high-level and low-level fractions, the safe transport of this separated waste to appropriate immobilization facilities, and the long-term disposal of the immobilized waste forms. Extensive experimentation, especially in waste separations, will be required to develop the technologies and to produce the data that support the most effective and safe cleanup processes. As part of this effort, Pacific Northwest Laboratory (PNL) is developing this detailed experimental logistics plan to determine the logistical/resource requirements, and ultimately the critical paths, necessary to effectively and safely conduct the multitude of experiments within the Extensive Separations Development Program, which addresses the experimental needs of a concept that provides a high degree of separation for the high-level and low-level waste fractions. The logistics issues developed for this program are expected to be similar to those for other programs aimed at remediating and disposing of the wastes.

  5. Biogeochemical Considerations Related To The Remediation Of I-129 Plumes

    SciTech Connect

    Kaplan, D. I.; Yeager, C.; Denham, M. E.; Zhang, S.; Xu, C.; Schwehr, K. A.; Li, H. P.; Brinkmeyer, R.; Santschi, P. H.

    2012-09-24

    The objectives of this report were to: provide a current state of the science of radioiodine biogeochemistry relevant to its fate and transport at the Hanford Site; conduct a review of Hanford Site data dealing with groundwater {sup 129}I; and identify critical knowledge gaps necessary for successful selection, implementation, and technical defensibility in support of remediation decisions.

  6. Consensus implementation of a groundwater remediation project at the Idaho National Engineering Laboratory

    SciTech Connect

    Hastings, K.R.; Carlson, D.S.

    1996-12-31

    Because of significant characterization uncertainties existing when the Record of Decision was signed and the unfavorable national reputation of groundwater pump and treat remediation projects, the Test Area North (TAN) groundwater ROD includes the evaluation of five emerging technologies that show potential for treating the organic contamination in situ or reducing the toxicity of contaminants above ground. Treatability studies will be conducted to ascertain whether any may be suitable for implementation at TAN to yield more timely or cost effective restoration of the aquifer. The implementation approach established for the TAN groundwater project is a consensus approach, maximizing a partnership relation with stakeholders in constant, iterative implementation decision making.

  7. Effect of heterogeneity on enhanced reductive dechlorination: Analysis of remediation efficiency and groundwater acidification

    NASA Astrophysics Data System (ADS)

    Brovelli, A.; Lacroix, E.; Robinson, C. E.; Gerhard, J.; Holliger, C.; Barry, D. A.

    2011-12-01

    Enhanced reductive dehalogenation is an attractive in situ treatment technology for chlorinated contaminants. The process includes two acid-forming microbial reactions: fermentation of an organic substrate resulting in short-chain fatty acids, and dehalogenation resulting in hydrochloric acid. The accumulation of acids and the resulting drop of groundwater pH are controlled by the mass and distribution of chlorinated solvents in the source zone, type of electron donor, alternative terminal electron acceptors available and presence of soil mineral phases able to buffer the pH (such as carbonates). Groundwater acidification may reduce or halt microbial activity, and thus dehalogenation, significantly increasing the time and costs required to remediate the aquifer. In previous work a detailed geochemical and groundwater flow simulator able to model the fermentation-dechlorination reactions and associated pH change was developed. The model accounts for the main processes influencing microbial activity and groundwater pH, including the groundwater composition, the electron donor used and soil mineral phase interactions. In this study, the model was applied to investigate how spatial variability occurring at the field scale affects dechlorination rates, groundwater pH and ultimately the remediation efficiency. Numerical simulations were conducted to examine the influence of heterogeneous hydraulic conductivity on the distribution of the injected, fermentable substrate and on the accumulation/dilution of the acidic products of reductive dehalogenation. The influence of the geometry of the DNAPL source zone was studied, as well as the spatial distribution of soil minerals. The results of this study showed that the heterogeneous distribution of the soil properties have a potentially large effect on the remediation efficiency. For examples, zones of high hydraulic conductivity can prevent the accumulation of acids and alleviate the problem of groundwater acidification. The

  8. Selection of Sampling Pumps Used for Groundwater Monitoring at the Hanford Site

    SciTech Connect

    Schalla, Ronald; Webber, William D.; Smith, Ronald M.

    2001-11-05

    The variable frequency drive centrifugal submersible pump, Redi-Flo2a made by Grundfosa, was selected for universal application for Hanford Site groundwater monitoring. Specifications for the selected pump and five other pumps were evaluated against current and future Hanford groundwater monitoring performance requirements, and the Redi-Flo2 was selected as the most versatile and applicable for the range of monitoring conditions. The Redi-Flo2 pump distinguished itself from the other pumps considered because of its wide range in output flow rate and its comparatively moderate maintenance and low capital costs. The Redi-Flo2 pump is able to purge a well at a high flow rate and then supply water for sampling at a low flow rate. Groundwater sampling using a low-volume-purging technique (e.g., low flow, minimal purge, no purge, or micropurgea) is planned in the future, eliminating the need for the pump to supply a high-output flow rate. Under those conditions, the Well Wizard bladder pump, manufactured by QED Environmental Systems, Inc., may be the preferred pump because of the lower capital cost.

  9. Selection of Sampling Pumps Used for Groundwater Monitoring at the Hanford Site

    SciTech Connect

    Schalla, Ronald; Webber, William D; Smith, Ronald M

    2001-11-05

    The variable frequency drive centrifugal submersible pump, Redi-Flo2a made by Grundfosa, was selected for universal application for Hanford Site groundwater monitoring. Specifications for the selected pump and five other pumps were evaluated against current and future Hanford groundwater monitoring performance requirements, and the Redi-Flo2 was selected as the most versatile and applicable for the range of monitoring conditions. The Redi-Flo2 pump distinguished itself from the other pumps considered because of its wide range in output flow rate and its comparatively moderate maintenance and low capital costs. The Redi-Flo2 pump is able to purge a well at a high flow rate and then supply water for sampling at a low flow rate. Groundwater sampling using a low-volume-purging technique (e.g., low flow, minimal purge, no purge, or micropurges) is planned in the future, eliminating the need for the pump to supply a high-output flow rate. Under those conditions, the Well Wizard bladder pump, manufactured by QED Environmental Systems, Inc., may be the preferred pump because of the lower capital cost.

  10. Groundwater Monitoring Plan for the Hanford Site 216-B-3 Pond RCRA Facility

    SciTech Connect

    Barnett, D. Brent; Smith, Ronald M.; Chou, Charissa J.

    2000-11-28

    The 216-B-3 Pond was a series of ponds for disposal of liquid effluent from past Hanford production facilities. In 1990, groundwater monitoring at B Pond was elevated from "detection" to assessment status because total organic halides and total organic carbon were found to exceed critical means in two wells. Groundwater quality assessment, which ended in 1996, failed to find any specific hazardous waste contaminant that could have accounted for the isolated occurrences of elevated total organic halides and total organic carbon. Hence, the facility was subsequently returned to detection-level monitoring in 1998. Exhaustive groundwater analyses during the assessment period indicated that only two contaminants, tritium and nitrate, could be positively attributed to the B Pond System, with two others (arsenic and I-129) possibly originating from B Pond. Chemical and radiological analyses of soil at the main pond and 216-B-3-3 ditch has not revealed significant contamination. Based on the observed, minor contamination in groundwater and in the soil column, three parameters were selected for site-specific, semiannual monitoring; gross alpha, gross beta, and specific conductance. Total organic halides and total organic carbon are included as constituents because of regulatory requirements. Nitrate, tritium, arsenic, and iodine-129 will be monitored under the aegis of Hanford site-wide monitoring. Although the B Pond System is not scheduled to advance from RCRA interim status to final status until the year 2003, a contingency plan for an improved monitoring strategy, which will partially emulate final status requirements, will be contemplated before the official change to final status. This modification will allow a more sensible and effective screening of groundwater for the facility.

  11. Grand challenge problems in environmental modeling and remediation: groundwater contaminant transport

    SciTech Connect

    Todd Arbogast; Steve Bryant; Clint N. Dawson; Mary F. Wheeler

    1998-08-31

    This report describes briefly the work of the Center for Subsurface Modeling (CSM) of the University of Texas at Austin (and Rice University prior to September 1995) on the Partnership in Computational Sciences Consortium (PICS) project entitled Grand Challenge Problems in Environmental Modeling and Remediation: Groundwater Contaminant Transport.

  12. CSMOS GROUNDWATER MODELING SOFTWARE (CENTER FOR SUBSURFACE MODELING SUPPORT, SUBSURFACE PROTECTION AND REMEDIATION DIVISION, NRMRL)

    EPA Science Inventory

    The Center for Subsurface Modeling Support (CSMoS), which is part of NRMRL's Subsurface Protection and Remediation Division, distributes various public domain groundwater and vadose zone models. A short decription of each model is available. You can obtain both models and manuals...

  13. RELIABILITY-BASED UNCERTAINTY ANALYSIS OF GROUNDWATER CONTAMINANT TRANSPORT AND REMEDIATION

    EPA Science Inventory

    This report presents a discussion of the application of the first- and second-order reliability methods (FORM and SORM, respectively) to ground-water transport and remediation, and to public health risk assessment. Using FORM and SORM allows the formal incorporation of parameter...

  14. Abiotic remediation of nitro-aromatic groundwater contaminants by zero-valent iron

    SciTech Connect

    Agrawal, A.; Tratnyek, P.G.

    1994-03-18

    Recent laboratory and field experiments have shown that some halogenated hydrocarbons undergo rapid reductive dehalogenation with zero-valent iron and the application of this process is being developed for in-situ remediation of contaminated groundwater. However, from can also reduce other organic substances and is commonly used to synthesize reduction products nitro compounds.

  15. Guidelines for active spreading during in situ chemical oxidation to remediate contaminated groundwater

    EPA Science Inventory

    The effectiveness of in situ chemical oxidation to remediate contaminated aquifers depends on the extent and duration of contact between the injected treatment chemical and the groundwater contaminant (the reactants). Techniques that inject and extract in the aquifer to ‘ac...

  16. New Pump and Treat Facility Remedial Action Work Plan for Test Area North (TAN) Final Groundwater Remediation, Operable Unit 1-07B

    SciTech Connect

    L. O. Nelson

    2003-09-01

    This operations and maintenance plan supports the New Pump and Treat Facility (NPTF) remedial action work plan and identifies the approach and requirements for the operations and maintenance activities specific to the final medical zone treatment remedy. The NPTF provides the treatment system necessary to remediate the medical zone portion of the OU 1-07B contaminated groundwater plume. Design and construction of the New Pump and Treat Facility is addressed in the NPTF remedial action work plan. The scope of this operation and maintenance plan includes facility operations and maintenance, remedy five-year reviews, and the final operations and maintenance report for the NPTF.

  17. Fatigue-crack propagation behavior of ASTM A27 cast steel in simulated Hanford groundwater

    SciTech Connect

    James, L.A.

    1986-09-01

    Fatigue-crack propagation (FCP) tests were conducted on specimens of cast ASTM A27 steel in simulated Hanford ground-water at 150/sup 0/C and 250C/sup 0/C. Fatigue loadings were employed as the most feasible means of accelerating the environmentally assisted cracking (EAC) process. A tentative threshold for EAC was established, and an example calculation was used to show how such a threshold can be related to allowable stress levels and flaw sizes to assure that EAC will not occur.

  18. Uncertainty Analysis Framework - Hanford Site-Wide Groundwater Flow and Transport Model

    SciTech Connect

    Cole, Charles R.; Bergeron, Marcel P.; Murray, Christopher J.; Thorne, Paul D.; Wurstner, Signe K.; Rogers, Phillip M.

    2001-11-09

    Pacific Northwest National Laboratory (PNNL) embarked on a new initiative to strengthen the technical defensibility of the predictions being made with a site-wide groundwater flow and transport model at the U.S. Department of Energy Hanford Site in southeastern Washington State. In FY 2000, the focus of the initiative was on the characterization of major uncertainties in the current conceptual model that would affect model predictions. The long-term goals of the initiative are the development and implementation of an uncertainty estimation methodology in future assessments and analyses using the site-wide model. This report focuses on the development and implementation of an uncertainty analysis framework.

  19. Ground-water contamination control: Detection and remedial planning

    SciTech Connect

    Woldt, W.E.

    1990-01-01

    The dissertation is divided into three main sections that correspond to a typical sequence of actions resulting in a final remedial action plan for handling contamination at a particular site. The first section develops a methodology for detecting and mapping suspected contamination using multiple sources of data. Different data types are combined by using a modified form of kriging with uncertain data, termed compound kriging. In addition, the use of fuzzy set theory merged with geostatistics is explored as a possible mapping technique when variogram parameters are difficult to quantify. A decision support system for observation network design is presented in the second section. Network design is approached from a multiple objective decision making perspective. The objective is to identify the most cost-effective network design while considering the trade-off between performance and cost. Geostatistical variance reduction analysis and prior knowledge related to the site are used as performance measures in the decision support system. A remedial action design support system is described in the third section. Three dimensional geostatistical simulation and analytical ground water modeling are used to assess the need for further remedial action planning. In addition, a methodology for measuring the performance of candidate remediation systems under conditions of uncertainty in aquifer parameters and plume location is presented. These performance measures, combined with cost factors, are used in a multiple-criteria decision making system to determine the preferred clean up system for a site being investigated.

  20. Remediation of arsenic-contaminated soils and groundwaters

    DOEpatents

    Peters, Robert W.; Frank, James R.; Feng, Xiandong

    1998-01-01

    An in situ method for extraction of arsenic contaminants from a soil medium and remediation of the medium including contacting the medium with an extractant solution, directing the solution within and through the medium, and collecting the solution and contaminants. The method can also be used for arsenate and/or arsenite removal.

  1. Remediation of arsenic-contaminated soils and groundwaters

    DOEpatents

    Peters, R.W.; Frank, J.R.; Feng, X.

    1998-06-23

    An in situ method is described for extraction of arsenic contaminants from a soil medium and remediation of the medium including contacting the medium with an extractant solution, directing the solution within and through the medium, and collecting the solution and contaminants. The method can also be used for arsenate and/or arsenite removal. 8 figs.

  2. Ultrasonic process for remediation of organics-contaminated groundwater/wastewater

    SciTech Connect

    Wu, J.M.; Peters, R.W.

    1995-07-01

    A technology is being developed that employs ultrasonic-wave energy for remediation of groundwater/wastewater contaminated with volatile organic compounds such as carbon tetrachloride (CCl{sub 4}) and trichloroethylene (TCE). This paper presents the updated results of a laboratory investigation of ultrasonic groundwater remediation using synthetic groundwaters prepared with laboratory deionized water. Key process parameters investigated included steady-state temperature, contaminant concentration, solution pH, sonication time, and intensity of the applied ultrasonics-wave energy. High destruction efficiencies of the target contaminants were achieved, and the sonication time required for a given degree of destruction decreased with increasing intensity of the applied ultrasonic energy. The sonication time can be further reduced by adding a chemical oxidant such as hydrogen peroxide.

  3. Optimization of remedial pumping schemes for a ground-water site with multiple contaminants

    SciTech Connect

    Xiang, Y.; Sykes, J.F.; Thomson, N.R.

    1996-01-01

    This paper presents an optimization analysis of the remedial pumping design for a contaminated aquifer located in Elmira, Ontario, Canada. The remediation task presented in the paper is to remove two ground-water contaminant species, NDMA (N-nitrosodimethylamine) and chlorobenzene, to such extent that the specified ground-water quality standards are met. The contaminants, NDMA and chlorobenzene, have different initial plume configurations and retardation characteristics. The required quality standard for NDMA is five orders of magnitude smaller than the initial peak concentration. The objective is to minimize total pumping, and the constraints incorporate ground-water quality requirements on the maximum and the spatially averaged residual concentrations, with contaminant source control being considered. On the combination of simulation and optimization, the results of this study indicate that the performance of an optimization algorithm based on gradient search is controlled by the specified cleanup levels, and that contaminant concentrations can be nonconvex and nonsmooth for some pumping schemes.

  4. Assessment of potential impacts of major groundwater contaminants to fall chinook salmon (Oncorhynchus tshawytscha) in the Hanford Reach, Columbia River

    SciTech Connect

    Geist, D.R.; Poston, T.M.; Dauble, D.D.

    1994-10-01

    Past operations of Hanford Site facilities have contaminated the groundwater adjacent to the Hanford Reach of the Columbia River, Washington, with various chemical and radiological constituents. The groundwater is hydraulically connected to the river and contains concentrations of contaminants that sometimes exceed federal and/or state drinking water standards or standards for the protection of aquatic life. For example, concentrations of chromium in shoreline seeps and springs at most 100 Area operable units exceed concentrations found to be toxic to fish. Nitrate and tritium concentrations in shoreline seeps are generally below drinking water standards and concentrations potentially toxic to aquatic life, but nitrate concentrations may be high enough to synergistically interact with and exacerbate chromium toxicity. The Hanford Reach also supports the largest run of fall chinook salmon (Oncorhynchus tshawytscha) in the Columbia River Basin. Numbers of fall chinook salmon returning to the Hanford Reach have increased relative to other mainstem populations during the last 30 years. Groundwater discharge appears to occur near some salmon spawning areas, but contaminants are generally not detectable in surface water samples. The concentration and potential toxicity of contaminants in the interstitial waters of the substrate where fall chinook salmon embryogenesis occurs are presently unknown. New tools are required to characterize the extent of groundwater contaminant discharge to the Hanford Reach and to resolve uncertainties associated with assessment of potential impacts to fall chinook salmon.

  5. Chromium Toxicity Test for Fall Chinook Salmon (Oncorhynchus tshawytscha) Using Hanford Site Groundwater: Onsite Early Life-Stage Toxicity Evaluation

    SciTech Connect

    Patton, Gregory W; Dauble, Dennis D; Chamness, Mickie A; Abernethy, Cary S; McKinstry, Craig A

    2001-07-10

    The objective of this study was to evaluate site-specific effects for early life-stage (eyed eggs to free swimming juveniles) fall chinook salmon that might be exposed to hexavalent chromium from Hanford groundwater sources. Our exposure conditions included hexavalent chromium obtained from Hanford groundwater wells near the Columbia River, Columbia River water as the diluent, and locally adapted populations of fall chinook salmon. This report describes both a 96-hr pretest using rainbow trout eggs and an early life-stage test beginning with chinook salmon eggs.

  6. Resource conservation and recovery act ground-water monitoring projects for Hanford facilities: Progress report, January 1--March 31, 1989

    SciTech Connect

    Smith, R.M.; Bates, D.J.; Lundgren, R.E.

    1989-06-01

    This document describes the progress of 13 Hanford Site ground-water monitoring projects for the period January 1 to March 31, 1989. The work described in this document is conducted by the Pacific Northwest Laboratory under the management of Westinghouse Hanford Company for the US Department of Energy. Concentrations of ground-water constituents are compared to federal drinking water standards throughout this document for reference purposes. All drinking water supplied from the sampled aquifer meets regulatory standards for drinking water quality. 32 refs., 30 figs., 103 tabs.

  7. INTERIM BARRIER AT HANFORDS TY FARM TO PROTECT GROUNDWATER AT THE HANFORD SITE WASHINGTON USA

    SciTech Connect

    PARKER DL; HOLM MJ; HENDERSON JC; LOBER RW

    2011-01-13

    An innovative interim surface barrier was constructed as a demonstration project at the Hanford Site's TY Tank Farm. The purpose of the demonstration barrier is to stop rainwater and snowmelt from entering the soils within the tank farm and driving contamination from past leaks and spills toward the ground water. The interim barrier was constructed using a modified asphalt material with very low permeability developed by MatCon{reg_sign}. Approximately 2,400 cubic yards of fill material were added to the tank farm to create a sloped surface that will gravity drain precipitation to collection points where it will be routed through buried drain lines to an evapotranspiration basin adjacent to the farm. The evapotranspiration basin is a lined basin with a network of perforated drain lines covered with soil and planted with native grasses. The evapotranspiration concept was selected because it prevents the runoff from percolating into the soil column and also avoids potential monitoring and maintenance issues associated with standing water in a traditional evaporation pond. Because of issues associated with using standard excavation and earth moving equipment in the farm a number of alternate construction approaches were utilized to perform excavations and prepare the site for the modified asphalt.

  8. Alternative Endpoints and Approaches for the Remediation of Contaminated Groundwater at Complex Sites - 13426

    SciTech Connect

    Deeb, Rula A.; Hawley, Elisabeth L.

    2013-07-01

    The goal of United States (U.S.) Department of Energy's (DOE)'s environmental remediation programs is to restore groundwater to beneficial use, similar to many other Federal and state environmental cleanup programs. Based on past experience, groundwater remediation to pre-contamination conditions (i.e., drinking water standards or non-detectable concentrations) can be successfully achieved at many sites. At a subset of the most complex sites, however, complete restoration is not likely achievable within the next 50 to 100 years using today's technology. This presentation describes several approaches used at complex sites in the face of these technical challenges. Many complex sites adopted a long-term management approach, whereby contamination was contained within a specified area using active or passive remediation techniques. Consistent with the requirements of their respective environmental cleanup programs, several complex sites selected land use restrictions and used risk management approaches to accordingly adopt alternative cleanup goals (alternative endpoints). Several sites used long-term management designations and approaches in conjunction with the alternative endpoints. Examples include various state designations for groundwater management zones, technical impracticability (TI) waivers or greater risk waivers at Superfund sites, and the use of Monitored Natural Attenuation (MNA) or other passive long-term management approaches over long time frames. This presentation will focus on findings, statistics, and case studies from a recently-completed report for the Department of Defense's Environmental Security Technology Certification Program (ESTCP) (Project ER-0832) on alternative endpoints and approaches for groundwater remediation at complex sites under a variety of Federal and state cleanup programs. The primary objective of the project was to provide environmental managers and regulators with tools, metrics, and information needed to evaluate

  9. Uranium Plume Treatability Demonstration at the Hanford Site 300 Area: Development of Polyphosphate Remediation Technology for In-Situ Stabilization of Uranium - 8070

    SciTech Connect

    Wellman, Dawn M.; Pierce, Eric M.; Richards, Emily L.; Fruchter, Jonathan S.; Vermeul, Vincent R.

    2008-06-02

    A groundwater plume containing uranium, originating from a combination of purposeful discharges of wastewater to cribs, trenches and ponds, along with some accidental leaks and spills during nuclear fuel fabrication activities, has persisted beneath the Hanford Site 300 Area for many years. Despite the cessation of uranium releases and the removal of shallow vadose zone source materials, the goal of less than 30 µg/L has not been achieved within the anticipated 10-year time period. Polyphosphate technology has been demonstrated to delay the precipitation of phosphate phases for controlled in situ precipitation of stable phosphate phases to control the long-term fate of uranium. Precipitation occurs when polyphosphate compounds hydrolyze to yield the orthophosphate molecule. Based on the hydrolysis kinetics of the polyphosphate polymer, the amendment can be tailored to act as a time-released source of phosphate for lateral plume treatment, immediate and sustained remediation of dissolved uranium, and to preclude rapid precipitation which could result in a drastic change in hydraulic conductivity of the target aquifer. Critical to successful implementation of polyphosphate remediation technology is a site specific evaluation and optimization of multi-length polyphosphate amendment formulations. A multi-faceted approach has been taken to provide key fundamental science knowledge regarding optimization of the polyphosphate remedy through: 1) phosphorus-31 nuclear magnetic resonance to quantify the effects of Hanford groundwater and sediment on the degradation of inorganic phosphates, 2) static tests to quantify the kinetics, loading, and stability of apatite as a long-term sorbent for uranium, and 3) single-pass flow through testing to quantify the stability of autunite and apatite under relevant site conditions. Dynamic column tests were utilized to 1) optimize the composition of the polyphosphate formulation for the formation and emplacement of apatite and autunite

  10. Uranium Plume Treatability Demonstration at the Hanford Site 300 Area: Development of Polyphosphate Remediation Technology for In Situ Stabilization of Uranium

    SciTech Connect

    Wellman, D.M.; Pierce, E.M.; Richards, E.L.; Fruchter, J.S.; Vermeul, V.R.

    2008-07-01

    A groundwater plume containing uranium, originating from a combination of purposeful discharges of wastewater to cribs, trenches, and ponds, along with some accidental leaks and spills during nuclear fuel-fabrication activities, has persisted beneath the Hanford Site 300 Area for many years. Despite the cessation of uranium releases and the removal of shallow vadose-zone source materials, the goal of less than 30 {mu}g/L has not been achieved within the anticipated 10-year time period. Polyphosphate technology, demonstrated to delay the precipitation of phosphate phases for directed in situ precipitation of stable phosphate phases, can be used to control the long-term fate of uranium. Precipitation occurs when polyphosphate compounds hydrolyze to yield the orthophosphate molecule. Based on the hydrolysis kinetics of the polyphosphate polymer, the amendment can be tailored to act as a time-released source of phosphate for lateral plume treatment, immediate and sustained remediation of dissolved uranium, and to preclude rapid precipitation which could result in a drastic change in hydraulic conductivity of the target aquifer. Critical to the successful implementation of polyphosphate remediation technology is a site-specific evaluation and optimization of multi-length polyphosphate amendment formulations. A multi-faceted approach has been taken to provide key fundamental science knowledge regarding optimization of the polyphosphate remedy through: 1) phosphorus-31 nuclear magnetic resonance to quantify the effects of Hanford groundwater and sediment on the degradation of inorganic phosphates; 2) static tests to quantify the kinetics, loading, and stability of apatite as a long-term sorbent for uranium; and 3) single-pass flow-through testing to quantify the stability of autunite and apatite under relevant site conditions. Dynamic column tests were utilized to 1) optimize the composition of the polyphosphate formulation for the formation and emplacement of apatite and

  11. Transuranic Contamination in Sediment and Groundwater at the U.S. DOE Hanford Site

    SciTech Connect

    Cantrell, Kirk J.

    2009-08-20

    A review of transuranic radionuclide contamination in sediments and groundwater at the DOE’s Hanford Site was conducted. The review focused primarily on plutonium-239/240 and americium-241; however, other transuranic nuclides were discussed as well, including neptunium-237, plutonium-238, and plutonium-241. The scope of the review included liquid process wastes intentionally disposed to constructed waste disposal facilities such as trenches and cribs, burial grounds, and unplanned releases to the ground surface. The review did not include liquid wastes disposed to tanks or solid wastes disposed to burial grounds. It is estimated that over 11,800 Ci of plutonium-239, 28,700 Ci of americium-241, and 55 Ci of neptunium-237 have been disposed as liquid waste to the near surface environment at the Hanford Site. Despite the very large quantities of transuranic contaminants disposed to the vadose zone at Hanford, only minuscule amounts have entered the groundwater. Currently, no wells onsite exceed the DOE derived concentration guide for plutonium-239/240 (30 pCi/L) or any other transuranic contaminant in filtered samples. The DOE derived concentration guide was exceeded by a small fraction in unfiltered samples from one well (299-E28-23) in recent years (35.4 and 40.4 pCi/L in FY 2006). The primary reason that disposal of these large quantities of transuranic radionuclides directly to the vadose zone at the Hanford Site has not resulted in widespread groundwater contamination is that under the typical oxidizing and neutral to slightly alkaline pH conditions of the Hanford vadose zone, transuranic radionuclides (plutonium and americium in particular) have a very low solubility and high affinity for surface adsorption to mineral surfaces common within the Hanford vadose zone. Other important factors are the fact that the vadose zone is typically very thick (hundreds of feet) and the net infiltration rate is very low due to the desert climate. In some cases where

  12. Methods for characterizing the fate and effects of nano zerovalent iron during groundwater remediation.

    PubMed

    Shi, Zhenqing; Fan, Dimin; Johnson, Richard L; Tratnyek, Paul G; Nurmi, James T; Wu, Yuxin; Williams, Kenneth H

    2015-10-01

    The emplacement of nano zerovalent iron (nZVI) for groundwater remediation is usually monitored by common measurements such as pH, total iron content, and oxidation-reduction potential (ORP) by potentiometry. However, the interpretation of such measurements can be misleading because of the complex interactions between the target materials (e.g., suspensions of highly reactive and variably aggregated nanoparticles) and aquifer materials (sediments and groundwater), and multiple complications related to sampling and detection methods. This paper reviews current practice for both direct and indirect characterizations of nZVI during groundwater remediation and explores prospects for improving these methods and/or refining the interpretation of these measurements. To support our recommendations, results are presented based on laboratory batch and column studies of nZVI detection using chemical, electrochemical, and geophysical methods. Chemical redox probes appear to be a promising new method for specifically detecting nZVI, based on laboratory tests. The potentiometric and voltammetric detections of iron nanoparticles, using traditional stationary disc electrodes, rotating disc electrodes, and flow-through cell disc electrodes, provide insight for interpreting ORP measurements, which are affected by solution chemistry conditions and the interactions between iron nanoparticles and the electrode surface. The geophysical methods used for characterizing ZVI during groundwater remediation are reviewed and its application for nZVI detection is assessed with results of laboratory column experiments. PMID:25841976

  13. Laboratory study on sequenced permeable reactive barrier remediation for landfill leachate-contaminated groundwater.

    PubMed

    Jun, Dong; Yongsheng, Zhao; Weihong, Zhang; Mei, Hong

    2009-01-15

    Permeable reactive barrier (PRB) was a promising technology for groundwater remediation. Landfill leachate-polluted groundwater riches in various hazardous contaminants. Two lab-scale reactors (reactors A and B) were designed for studying the feasibility of PRB to remedy the landfill leachate-polluted groundwater. Zero valent iron (ZVI) and the mixture of ZVI and zeolites constitute the first section of the reactors A and B, respectively; the second section of two reactors consists of oxygen releasing compounds (ORCs). Experimental results indicated that BOD5/COD increased from initial 0.32 up to average 0.61 and 0.6 through reactors A and B, respectively. Removal efficiency of mixed media for pollutants was higher than that of single media (ZVI only). Zeolites exhibited selective removal of Zn, Mn, Mg, Cd, Sr, and NH4+, and removal efficiency was 97.2%, 99.6%, 95.9%, 90.5% and 97.4%, respectively. The maximum DO concentration of reactors A and B were 7.64 and 6.78mg/L, respectively, while the water flowed through the ORC. Therefore, sequenced PRB system was effective and was proposed as an alternative method to remedy polluted groundwater by landfill leachate. PMID:18479811

  14. Optimal groundwater remediation using artificial neural networks and the genetic algorithm

    SciTech Connect

    Rogers, L.L.

    1992-08-01

    An innovative computational approach for the optimization of groundwater remediation is presented which uses artificial neural networks (ANNs) and the genetic algorithm (GA). In this approach, the ANN is trained to predict an aspect of the outcome of a flow and transport simulation. Then the GA searches through realizations or patterns of pumping and uses the trained network to predict the outcome of the realizations. This approach has advantages of parallel processing of the groundwater simulations and the ability to ``recycle`` or reuse the base of knowledge formed by these simulations. These advantages offer reduction of computational burden of the groundwater simulations relative to a more conventional approach which uses nonlinear programming (NLP) with a quasi-newtonian search. Also the modular nature of this approach facilitates substitution of different groundwater simulation models.

  15. TREATMENT TESTS FOR EX SITU REMOVAL OF CHROMATE & NITRATE & URANIUM (VI) FROM HANFORD (100-HR-3) GROUNDWATER FINAL REPORT

    SciTech Connect

    BECK MA; DUNCAN JB

    1994-01-03

    This report describes batch and ion exchange column laboratory scale studies investigating ex situ methods to remove chromate (chromium [VI]), nitrate (NO{sub 3}{sup -}) and uranium (present as uranium [VI]) from contaminated Hanford site groundwaters. The technologies investigated include: chemical precipitation or coprecipitation to remove chromate and uranium; and anion exchange to remove chromate, uranium and nitrate. The technologies investigated were specified in the 100-HR-3 Groundwater Treatability Test Plan. The method suggested for future study is anion exchange.

  16. Optimal design of active spreading systems to remediate sorbing groundwater contaminants in situ

    NASA Astrophysics Data System (ADS)

    Piscopo, Amy N.; Neupauer, Roseanna M.; Kasprzyk, Joseph R.

    2016-07-01

    The effectiveness of in situ remediation to treat contaminated aquifers is limited by the degree of contact between the injected treatment chemical and the groundwater contaminant. In this study, candidate designs that actively spread the treatment chemical into the contaminant are generated using a multi-objective evolutionary algorithm. Design parameters pertaining to the amount of treatment chemical and the duration and rate of its injection are optimized according to objectives established for the remediation - maximizing contaminant degradation while minimizing energy and material requirements. Because groundwater contaminants have different reaction and sorption properties that influence their ability to be degraded with in situ remediation, optimization was conducted for six different combinations of reaction rate coefficients and sorption rates constants to represent remediation of the common groundwater contaminants, trichloroethene, tetrachloroethene, and toluene, using the treatment chemical, permanganate. Results indicate that active spreading for contaminants with low reaction rate coefficients should be conducted by using greater amounts of treatment chemical mass and longer injection durations relative to contaminants with high reaction rate coefficients. For contaminants with slow sorption or contaminants in heterogeneous aquifers, two different design strategies are acceptable - one that injects high concentrations of treatment chemical mass over a short duration or one that injects lower concentrations of treatment chemical mass over a long duration. Thus, decision-makers can select a strategy according to their preference for material or energy use. Finally, for scenarios with high ambient groundwater velocities, the injection rate used for active spreading should be high enough for the groundwater divide to encompass the entire contaminant plume.

  17. Optimal design of active spreading systems to remediate sorbing groundwater contaminants in situ.

    PubMed

    Piscopo, Amy N; Neupauer, Roseanna M; Kasprzyk, Joseph R

    2016-07-01

    The effectiveness of in situ remediation to treat contaminated aquifers is limited by the degree of contact between the injected treatment chemical and the groundwater contaminant. In this study, candidate designs that actively spread the treatment chemical into the contaminant are generated using a multi-objective evolutionary algorithm. Design parameters pertaining to the amount of treatment chemical and the duration and rate of its injection are optimized according to objectives established for the remediation - maximizing contaminant degradation while minimizing energy and material requirements. Because groundwater contaminants have different reaction and sorption properties that influence their ability to be degraded with in situ remediation, optimization was conducted for six different combinations of reaction rate coefficients and sorption rates constants to represent remediation of the common groundwater contaminants, trichloroethene, tetrachloroethene, and toluene, using the treatment chemical, permanganate. Results indicate that active spreading for contaminants with low reaction rate coefficients should be conducted by using greater amounts of treatment chemical mass and longer injection durations relative to contaminants with high reaction rate coefficients. For contaminants with slow sorption or contaminants in heterogeneous aquifers, two different design strategies are acceptable - one that injects high concentrations of treatment chemical mass over a short duration or one that injects lower concentrations of treatment chemical mass over a long duration. Thus, decision-makers can select a strategy according to their preference for material or energy use. Finally, for scenarios with high ambient groundwater velocities, the injection rate used for active spreading should be high enough for the groundwater divide to encompass the entire contaminant plume. PMID:27153361

  18. Locating Ground-Water Discharge in the Hanford Reach of the Columbia River

    SciTech Connect

    Lee, D.R.; Geist, D.R.; Saldi, K.; Hartwig, D.; Cooper, T.

    1997-03-01

    A bottom-contacting probe for measuring electrical conductivity at the sediment-water interface was used to scan the bed of the Columbia River adjacent to the Hanford Site in southeast Washington State during a 10-day investigation. Four river-sections, each about a kilometer in length, were scanned for variations in electrical conductivity. The probe was towed along the riverbed at a speed of 1 m/s and is position was recorded using a Global Positioning System. The bottom tows revealed several areas of elevated electrical conductivity. Where these anomalies were relatively easy to access, piezometers were driven into the riverbed and porewater electrical conductivity ranged from 111 to 150 uS/cm. The piezometers, placed in electrical conductivity “hotspots,” yielded chemical or isotopic data consistent with previous analyses of water taken from monitoring wells and visible shoreline seeps. Tritium, nitrate, and chromium exceeded water quality standards in some porewaters. The highest tritium and nitrate levels were found near the Old Hanford Townsite at 120,000 pCi/L (+ 5,880 pCi/L total propagated analytical uncertainty) and ug/L (+ 5,880 ug/L), respectively. The maximum chromium (total and hexavalent) levels were found near 100-H reactor area where unfiltered porewater total chromium was 1,900 ug/L (+ 798 ug/L) and hexavalent chromium was 20 ug/L. The electrical conductivity probe provided rapid, cost-effective reconnaissance for ground-water discharge areas when used in combination with conventional piezometers. It may be possible to obtain quantitative estimates of both natural and contaminated ground-water discharge in the Hanford Reach with more extensive surveys of river bottom.

  19. TREATABILITY TEST FOR REMOVING TECHNETIUM-99 FROM 200-ZP-1 GROUNDWATER HANFORD SITE

    SciTech Connect

    PETERSEN SW; TORTOSO AC; ELLIOTT WS; BYRNES ME

    2007-11-29

    The 200-ZP-1 Groundwater Operable Unit (OU) is one of two groundwater OUs located within the 200 West groundwater aggregate area of the Hanford Site. The primary risk-driving contaminants within the 200-ZP-1 OU include carbon tetrachloride and technetium-99 (Tc-99). A pump-and-treat system for this OU was initially installed in 1995 to control the 0.002 kg/m{sup 3} (2000 {micro}g/L) contour of the carbon tetrachloride plume. Carbon tetrachloride is removed from groundwater with the assistance of an air-stripping tower. Ten extraction wells and three injection wells operate at a combined rate of approximately 0.017m{sup 3}/s (17.03 L/s). In 2005, groundwater from two of the extraction wells (299-W15-765 and 299-W15-44) began to show concentrations greater than twice the maximum contaminant level (MCL) of Tc-99 (33,309 beq/m{sup 3} or 900 pCi/L). The Tc-99 groundwater concentrations from all ten of the extraction wells when mixed were more than one-half of the MCL and were slowly increasing. If concentrations continued to rise and the water remained untreated for Tc-99, there was concern that the water re-injected into the aquifer could exceed the MCL standard. Multiple treatment technologies were reviewed for selectively removing Tc-99 from the groundwater. Of the treatment technologies, only ion exchange was determined to be highly selective, commercially available, and relatively low in cost. Through research funded by the U.S. Department of Energy, the ion-exchange resin Purolite{reg_sign} A-530E was found to successfully remove Tc-99 from groundwater, even in the presence of competing anions. For this and other reasons, Purolite{reg_sign} A-530E ion exchange resin was selected for treatability testing. The treatability test required installing resin columns on the discharge lines from extraction wells 299-W15-765 and 299-W15-44. Preliminary test results have concluded that the Purolite{reg_sign} A-530E resin is effective at removing Tc-99 from groundwater to

  20. Design and Cost of Solar Photocatalytic Systems for Groundwater Remediation

    SciTech Connect

    Turchi, C. S.; Mehos, M. S.; Link, H. F.

    1992-05-01

    Laboratory and small-scale field experiments have shown that sunlight in conjunction with a simple catalyst can be used to detoxify water contaminated with a variety of hazardous chemicals. This study builds on previous analyses and recent field test data to predict the cost and performance of a representative commercial water detoxification system. Three different solar operating configurations are explored for the treatment of 100,000 gal/day of groundwater contaminated with trichloroethylene. Current costs for solar water detoxification systems are projected to be comparable to those for conventional treatment technologies such as carbon adsorption and electric lamp-powered, ultraviolet light/hydrogen peroxide systems.

  1. INDEPENDENT REVIEW OF THE X-701B GROUNDWATER REMEDY, PORTSMOUTH, OHIO: TECHNICAL EVALUATION AND RECOMMENDATIONS

    SciTech Connect

    Looney, B.; Eddy-Dilek, C.; Costanza, J.; Rossabi, J.; Early, T.; Skubal, K.; Magnuson, C.

    2008-12-15

    The Department of Energy Portsmouth Paducah Project Office requested assistance from Department of Energy Office of Environmental Management (EM-22) to provide independent technical experts to evaluate past and ongoing remedial activities at the Portsmouth facility that were completed to address TCE contamination associated with the X-701B groundwater plume and to make recommendations for future efforts. The Independent Technical Review team was provided with a detailed and specific charter. The charter requested that the technical team first review the past and current activities completed for the X-701B groundwater remedy for trichloroethene (TCE) in accordance with a Decision Document that was issued by Ohio EPA on December 8, 2003 and a Work Plan that was approved by Ohio EPA on September 22, 2006. The remedy for X-701B divides the activities into four phases: Phase I - Initial Source Area Treatment, Phase II - Expanded Source Area Treatment, Phase III - Evaluation and Reporting, and Phase IV - Downgradient Remediation and Confirmation of Source Area Treatment. Phase I of the remedy was completed during FY2006, and DOE has now completed six oxidant injection events within Phase II. The Independent Technical Review team was asked to evaluate Phase II activities, including soil and groundwater results, and to determine whether or not the criteria that were defined in the Work Plan for the Phase II end point had been met. The following criteria are defined in the Work Plan as an acceptable Phase II end point: (1) Groundwater samples from the identified source area monitoring wells have concentrations below the Preliminary Remediation Goal (PRG) for TCE in groundwater, or (2) The remedy is no longer effective in removing TCE mass from the source area. In addition, the charter specifies that if the Review Team determines that the Phase II endpoint has not been reached, then the team should address the following issues: (1) If additional injection events are

  2. RCRA (Resource Conservation and Recovery Act) ground-water monitoring projects for Hanford facilities: Annual Progress Report for 1989

    SciTech Connect

    Smith, R.M.; Gorst, W.R.

    1990-03-01

    This report describes the progress during 1989 of 16 Hanford Site ground-water monitoring projects covering 25 hazardous waste facilities and 1 nonhazardous waste facility. Each of the projects is being conducted according to federal regulations based on the Resource Conservation and Recovery Act of 1976 and the State of Washington Administrative Code. 40 refs., 75 figs., 6 tabs.

  3. MULTI-OBJECTIVE OPTIMAL DESIGN OF GROUNDWATER REMEDIATION SYSTEMS: APPLICATION OF THE NICHED PARETO GENETIC ALGORITHM (NPGA). (R826614)

    EPA Science Inventory

    A multiobjective optimization algorithm is applied to a groundwater quality management problem involving remediation by pump-and-treat (PAT). The multiobjective optimization framework uses the niched Pareto genetic algorithm (NPGA) and is applied to simultaneously minimize the...

  4. Interim action record of decision remedial alternative selection: TNX area groundwater operable unit

    SciTech Connect

    Palmer, E.R.

    1994-10-01

    This document presents the selected interim remedial action for the TNX Area Groundwater Operable Unit at the Savannah River Site (SRS), which was developed in accordance with CERCLA of 1980, as amended by the Superfund Amendments and Reauthorization Act (SARA) of 1986, and to the extent practicable, the National Oil and Hazardous Substances Pollution contingency Plan (NCP). This decision is based on the Administrative Record File for this specific CERCLA unit.

  5. Advanced fuel hydrocarbon remediation national test location - groundwater circulation well environmental cleanup systems

    SciTech Connect

    Heath, J.; Lory, E.

    1997-03-01

    When a contaminant is treated in place on the original site it is termed in situ remediation. Bioremediation refers to cleanup effected by living organisms such as bacteria and fungi. Certain species of bacteria are able to consume pollutants as a food source, thus detoxifying these compounds. In situ bioremediation is being considered as a viable and practical solution for reducing petroleum contamination levels in groundwater.

  6. Evaluation of the Effectiveness of Cr(VI) Biostimulation in Groundwater at Hanford 100H Site

    NASA Astrophysics Data System (ADS)

    Faybishenko, B.; Hazen, T. C.; Brodie, E.; Joyner, D.; Borglin, S.; Hanlon, J.; Conrad, M.; Tokunaga, T.; Wan, J.; Hubbard, S.; Williams, K. H.; Peterson, J. E.; Firestone, M.; Andersen, G.; Desantis, T.; Long, P. E.; Newcomer, D. R.; Resch, C. T.; Willett, A.; Koenigsberg, S.

    2006-05-01

    To demonstrate the feasibility of a cost-effective field-scale bioimmobilization of Cr(VI) in contaminated groundwater, using a slow release polylactate, Hydrogen Release Compound (HRCTM), we have conducted a pilot study at the Hanford 100H field site. To assess the pre- and post-injection test groundwater conditions, we used an integrated monitoring approach, involving hydraulic, geochemical, microbial, and geophysical techniques and analytical methods, as well as conducted five Br-tracer injection tests and four pumping tests (concurrently with the Br-tracer tests). Although the total microbial population in sediments is <105 cells g-1 under background conditions (which is likely insufficient for direct enzymatic Cr(VI) reduction), several types of bacteria, e.g., Bacillus/Arthrobacter and Geobacter, are present in the Hanford sediments, which are known to reduce or sorb hexavalent chromium. Groundwater biostimulation was conducted by injection of 18.2 kg of 13C-labeled HRC into the injection well (over the depth interval from 13.4-15.2 m) on 8/3/2004. Pumping from the downgradient monitoring well (located 5 m from the injection well) started immediately after the injection, and continued for 27 days. We determined that the HRC injection stimulated microbial cell counts to reach the maximum of 2×107cells g-1 13-17 days after the injection, and generated highly reducing conditions: DO dropped from 8.2 mg/l to non-detect, redox potential - from 240 to -130 mV, and pH - from 8.9 to 6.5. Monitoring of δ13C ratios in dissolved inorganic carbon confirmed microbial metabolism of HRC. The total Cr concentration in the monitoring well decreased by a factor of 4 compared to that under background conditions. The Cr(VI) concentration in the monitoring and pumping wells decreased below the drinking water maximum contaminant limit and remained below background concentrations even after 1.5 years, when redox conditions and microbial densities had returned to background levels

  7. Network dissection of neural networks used in optimal groundwater remediation

    SciTech Connect

    Rogers, L.L.; Johnson, V.M.; Dowla, F.U.

    1992-12-01

    We have been using an innovative computational approach for optimal groundwater management which involves use of artificial neural networks (ANNs) and the genetic algorithm (GA). In this approach, the ANN is trained to predict a particular aspect of the outcome of the flow and transport simulation. Then the.GA directs a search, based on the mechanics of genetics and natural selection, through possible management solutions, in this case patterns or realizations of pumping. These pumping realizations are presented to the trained ANN which predicts the outcome of the pumping realizations. The primary advantages of the ANN approach are parallel processing for the flow and transport simulations and the ability to ``recycle`` or reuse the base of knowledge formed by these flow and transport simulations.

  8. Network dissection of neural networks used in optimal groundwater remediation

    SciTech Connect

    Rogers, L.L.; Johnson, V.M.; Dowla, F.U.

    1992-12-01

    We have been using an innovative computational approach for optimal groundwater management which involves use of artificial neural networks (ANNs) and the genetic algorithm (GA). In this approach, the ANN is trained to predict a particular aspect of the outcome of the flow and transport simulation. Then the.GA directs a search, based on the mechanics of genetics and natural selection, through possible management solutions, in this case patterns or realizations of pumping. These pumping realizations are presented to the trained ANN which predicts the outcome of the pumping realizations. The primary advantages of the ANN approach are parallel processing for the flow and transport simulations and the ability to recycle'' or reuse the base of knowledge formed by these flow and transport simulations.

  9. Groundwater Remediation and Alternate Energy at White Sands Test Facility

    NASA Technical Reports Server (NTRS)

    Fischer, Holger

    2008-01-01

    White Sands Test Facility Core Capabilities: a) Remote Hazardous Testing of Reactive, Explosive, and Toxic Materials and Fluids; b) Hypergolic Fluids Materials and Systems Testing; c) Oxygen Materials and System Testing; d) Hypervelocity Impact Testing; e)Flight Hardware Processing; and e) Propulsion Testing. There is no impact to any drinking water well. Includes public wells and the NASA supply well. There is no public exposure. Groundwater is several hundred feet below ground. No air or surface water exposure. Plume is moving very slowly to the west. Plume Front Treatment system will stop this westward movement. NASA performs on-going monitoring. More than 200 wells and zones are routinely sampled. Approx. 850 samples are obtained monthly and analyzed for over 300 different hazardous chemicals.

  10. Hanford Site ground-water monitoring for January through June 1988

    SciTech Connect

    Evans, J.C.; Bryce, R.W.; Sherwood, D.R.

    1989-05-01

    The Pacific Northwest Laboratory monitors ground-water quality at the Hanford Site for the US Department of Energy to assess the impact of Site operations on the environment. Work undertaken between January and June 1988 included monitoring ground-water elevations across the Site, and monitoring hazardous chemicals and radionuclides in ground water. Water levels continued to rise in areas receiving increased recharge (e.g., beneath B Pond) and decline in areas where the release of water to disposal facilities has been terminated (e.g., U Pond). The major areas of ground-water contamination defined by monitoring activities are (1) carbon tetrachloride in the 200-West Area; (2) cyanide in and north of the 200-East and 200-West Areas; (3) hexavalent chromium contamination in the 100-B, 100-D, 100-F, 100-H, 100-K, and 200-West Areas; (4) chlorinated hydrocarbons in the vicinity of the Solid Waste Landfill and 300 Area; (5) uranium in the 100-F, 100-H, 200-West, and 300 Areas; and (6) tritium and nitrate across the Site. In addition, several new analytical initiatives were undertaken during this period. These include cyanide speciation in the BY Cribs plume, inductively coupled argon plasma/mass spectrometry (ICP/MS) measurements on a broad selection of samples from the 100, 200, 300, and 600 Areas, and high sensitivity gas chromatography measurements performed at the Solid Waste Landfill-Nonradioactive Dangerous Waste Landfill. 23 figs., 25 tabs.

  11. Groundwater model recalibration and remediation well network design at the F-Area Seepage Basins

    SciTech Connect

    Sadler, W.R.

    1995-04-01

    On September 30, 1992, the South Carolina Department of Health and Environmental Control (SCDHEC) issued a Resource Conservation and Recovery Act (RCRA) Hazardous Waste Part B Permit prescribing remediation of contaminated groundwater beneath and downgradient of the F- and H-Area Seepage Basins at the Savannah River Site. The remediation outlined in the Part B Permit calls for a three phase approach. For the F-Area Seepage Basins, the first phase requires the ``installation of an adequate number of pumping and injection wells or trenches, as appropriate, to capture and remediate those portions of-the contaminant plume delineated by the 10,000 pCi/ml tritium isoconcentration contour.`` Geochemical results from 1992 groundwater monitoring were used to delineate this isoconcentration contour in the Corrective Action Program (CAP) (WSRC, 1992a). The 1992 results were used based on SCDHEC written requirement to use the most recent data available at the time the CAP was formulated. The rationale used by SCDHEC in selecting the 10,000 pCi/ml tritium isoconcentration contour was that it also encompassed most of the other contaminants listed in the Groundwater Protection Standards. After extraction and treatment, the water is required to be reinjected into the aquifer due to the high levels of tritium still present in the treated water. The conceptual plan is to have recirculation of the tritium (as much as can practically be accomplished) to allow more time for radioactive decay before natural discharge to surface water.

  12. Water-Level Monitoring Plan for the Hanford Groundwater Monitoring Project

    SciTech Connect

    D.R. Newcomer; J.P. McDonald; M.A. Chamness

    1999-09-30

    This document presents the water-level monitoring plan for the Hanford Groundwater Monitoring Project, conducted by the Pacific Northwest National Laboratory (PNNL). Water-level monitoring of the groundwater system beneath the Hanford Site is performed to fulfill the requirements of various state and federal regulations, orders, and agreements. The primary objective of this monitoring is to determine groundwater flow rates and directions. To meet this and other objectives, water-levels are measured annually in monitoring wells completed within the unconfined aquifer system, the upper basalt-confined aquifer system, and in the lower basalt-confined aquifers for surveillance monitoring. At regulated waste units, water levels are taken monthly, quarterly, semi-annually, or annually, depending on the hydrogeologic conditions and regulatory status of a given site. The techniques used to collect water-level data are described in this document along with the factors that affect the quality of the data and the strategies employed by the project to minimize error in the measurement and interpretation of water levels. Well networks are presented for monitoring the unconfined aquifer system, the upper basalt-confined aquifer system, and the lower basalt-confined aquifers, all at a regional scale (surveillance monitoring), as well as the local-scale well networks for each of the regulated waste units studied by this project (regulated-unit monitoring). The criteria used to select wells for water-table monitoring are discussed. It is observed that poor well coverage for surveillance water-table monitoring exists south and west of the 200-West Area, south of the 100-F Area, and east of B Pond and the Treated Effluent Disposal Facility (TEDF). This poor coverage results from a lack of wells suitable for water-table monitoring, and causes uncertainty in representation of the regional water-table in these areas. These deficiencies are regional in scale and apply to regions outside

  13. The Office of Groundwater & Soil Remediation Fiscal Year 2011 Research & Development Program

    SciTech Connect

    Gerdes, Kurt D.; Chamberlain, Skip; Aylward, R. S.; Cercy, Mike; Seitz, Roger; Ramirez, Rosa; Skubal, Karen L.; Marble, Justin; Wellman, Dawn M.; Bunn, Amoret L.; Liang, Liyuan; Pierce, Eric M.

    2011-03-02

    The U.S. Department of Energy's (DOE) Office of Groundwater and Soil Remediation supports technology development and technical assistance for the remediation of environments contaminated by legacy nuclear waste. The core of the program is centered on delivering proactive, responsive expertise and technologies with highly-leveraged, carefully selected investments that maximum impact on life-cycle cleanup costs and risks across the DOE complex. The program currently focuses on four main priorities: improved sampling and characterization strategies, advanced predictive capabilities, enhanced remediation methods, and improved long-term performance evaluation and monitoring. In FY 2010, the program developed a detailed research and development (R and D) plan in support of a larger initiative to integrate R and D efforts across EM. This paper provides an overview of the priority action areas and the program's near-term technical direction.

  14. The Office of Groundwater & Soil Remediation Fiscal Year 2011 Research & Development Program

    SciTech Connect

    Pierce, Eric M

    2011-01-01

    The U.S. Department of Energy s (DOE) Office of Groundwater and Soil Remediation supports technology development and technical assistance for the remediation of environments contaminated by legacy nuclear waste. The core of the program is centered on delivering proactive, responsive expertise and technologies with highly-leveraged, carefully selected investments that maximize impact on life-cycle cleanup costs and risks across the DOE complex. The program currently focuses on four main priorities: improved sampling and characterization strategies, advanced predictive capabilities, enhanced remediation methods, and improved long-term performance evaluation and monitoring. In FY 2010, the program developed a detailed research and development (R&D) plan in support of a larger initiative to integrate R&D efforts across EM. This paper provides an overview of the high priority action areas and the program s near-term technical direction.

  15. Determination of ecologically vital groundwaters at selected sites in the Formerly Utilized Sites Remedial Action Program

    SciTech Connect

    Vinikour, W.S.; Yin, S.C.L.

    1989-08-01

    The US Department of Energy is classifying groundwaters at sites in its Formerly Utilized Sites Remedial Action Program (FUSRAP). Of particular concern is the potential presence of groundwaters that are highly vulnerable to contamination and that are either (1) irreplaceable sources of drinking water or (2) ecologically vital. Conditions at nine FUSRAP sites were evaluated to determine if ecologically vital groundwaters are present. The sites evaluated were Wayne Interim Storage Site, Maywood Interim Storage Site, and Middlesex Sampling Plant in New Jersey; Ashland 2 Site, Seaway Industrial Park, Colonie Interim storage Site, and Niagara Falls Storage Site in New York; and the St. Louis Airport Site and Hazelwood Interim Storage Site in Missouri. The analyses indicated that groundwaters are vulnerable to contamination at all but two of the sites -- the Ashland 2 and Seaway Industrial Park sites in New York. Groundwater discharge points were identified within a 2-mile radius (i.e., the classification review area) of all of the sites. No ecologically vital groundwater areas exist in the vicinities of any of the nine FUSRAP sites evaluated. 35 refs., 17 figs.

  16. Sustainable in-well vapor stripping: A design, analytical model, and pilot study for groundwater remediation.

    PubMed

    Sutton, Patrick T; Ginn, Timothy R

    2014-12-15

    A sustainable in-well vapor stripping system is designed as a cost-effective alternative for remediation of shallow chlorinated solvent groundwater plumes. A solar-powered air compressor is used to inject air bubbles into a monitoring well to strip volatile organic compounds from a liquid to vapor phase while simultaneously inducing groundwater circulation around the well screen. An analytical model of the remediation process is developed to estimate contaminant mass flow and removal rates. The model was calibrated based on a one-day pilot study conducted in an existing monitoring well at a former dry cleaning site. According to the model, induced groundwater circulation at the study site increased the contaminant mass flow rate into the well by approximately two orders of magnitude relative to ambient conditions. Modeled estimates for 5h of pulsed air injection per day at the pilot study site indicated that the average effluent concentrations of dissolved tetrachloroethylene and trichloroethylene can be reduced by over 90% relative to the ambient concentrations. The results indicate that the system could be used cost-effectively as either a single- or multi-well point technology to substantially reduce the mass of dissolved chlorinated solvents in groundwater. PMID:25461885

  17. Sustainable in-well vapor stripping: A design, analytical model, and pilot study for groundwater remediation

    NASA Astrophysics Data System (ADS)

    Sutton, Patrick T.; Ginn, Timothy R.

    2014-12-01

    A sustainable in-well vapor stripping system is designed as a cost-effective alternative for remediation of shallow chlorinated solvent groundwater plumes. A solar-powered air compressor is used to inject air bubbles into a monitoring well to strip volatile organic compounds from a liquid to vapor phase while simultaneously inducing groundwater circulation around the well screen. An analytical model of the remediation process is developed to estimate contaminant mass flow and removal rates. The model was calibrated based on a one-day pilot study conducted in an existing monitoring well at a former dry cleaning site. According to the model, induced groundwater circulation at the study site increased the contaminant mass flow rate into the well by approximately two orders of magnitude relative to ambient conditions. Modeled estimates for 5 h of pulsed air injection per day at the pilot study site indicated that the average effluent concentrations of dissolved tetrachloroethylene and trichloroethylene can be reduced by over 90% relative to the ambient concentrations. The results indicate that the system could be used cost-effectively as either a single- or multi-well point technology to substantially reduce the mass of dissolved chlorinated solvents in groundwater.

  18. Preliminary remedial action objectives for the Tank 16 groundwater operable unit

    SciTech Connect

    Miles, W.C. Jr.

    1992-10-28

    Tank 16 is a High Level Radioactive Waste tank in the H-Area Tank Farm on the Savannah River Site that was placed into service in May 1959. A leak was detected in one of the construction weld joints while the tank was being filled. Before jet evacuation of the tank waste was completed, the leak overflowed the annulus pan and an estimated 16 to 700 gallons of waste escaped to the environment (soil and groundwater) over a six hour period contaminating approximately 1,600--70,000 cubic feet of soil with up to 5000 curies of activity (principally Cs{sup 137}). The Tank 16 bottom is constructed below the groundwater table which resulted in almost immediate contamination of that medium. Low groundwater flow rates, the ion exchange property of adjacent soils, and the distance to the nearest surface water bodies (1,500 to 8,000 feet) indicates that surface water and sediment outcrop of contaminates may be expected between 44 and 530 years (Poe et al., 1974). Remedial action objectives consist of medium-specific and operable unit specific goals for protecting human health and the environment. These objectives are specific and do not limit the range of alternatives that may be developed.A range of remedial technologies, which provides for treatment, containment, and removal requirements of contaminated media remaining at the Tank 16 groundwater operable unit, is identified and developed for each general response action.

  19. Preliminary remedial action objectives for the Tank 16 groundwater operable unit

    SciTech Connect

    Miles, W.C. Jr.

    1992-10-28

    Tank 16 is a High Level Radioactive Waste tank in the H-Area Tank Farm on the Savannah River Site that was placed into service in May 1959. A leak was detected in one of the construction weld joints while the tank was being filled. Before jet evacuation of the tank waste was completed, the leak overflowed the annulus pan and an estimated 16 to 700 gallons of waste escaped to the environment (soil and groundwater) over a six hour period contaminating approximately 1,600--70,000 cubic feet of soil with up to 5000 curies of activity (principally Cs[sup 137]). The Tank 16 bottom is constructed below the groundwater table which resulted in almost immediate contamination of that medium. Low groundwater flow rates, the ion exchange property of adjacent soils, and the distance to the nearest surface water bodies (1,500 to 8,000 feet) indicates that surface water and sediment outcrop of contaminates may be expected between 44 and 530 years (Poe et al., 1974). Remedial action objectives consist of medium-specific and operable unit specific goals for protecting human health and the environment. These objectives are specific and do not limit the range of alternatives that may be developed.A range of remedial technologies, which provides for treatment, containment, and removal requirements of contaminated media remaining at the Tank 16 groundwater operable unit, is identified and developed for each general response action.

  20. Developing injection / extraction schemes to enhance mixing in groundwater for improved in-situ remediation

    NASA Astrophysics Data System (ADS)

    Piscopo, A. N.; Mays, D. C.; Neupauer, R. M.

    2011-12-01

    Creating favorable mixing conditions in aquifers has the potential to improve the efficiency of in-situ remediation of groundwater. In current practice of in-situ remediation, the treatment solution, containing chemical or biological amendments, is either drawn through the aquifer using a downgradient extraction well or left to travel with ambient groundwater flow. Neither of these scenarios provides opportunity to enlarge the interfacial area between the treatment solution and the contaminated groundwater where degradation reactions occur. We hypothesize that by sequentially injecting or extracting clean water at multiple wells in the aquifer, the interface between the treatment solution and the contaminated groundwater can be stretched and folded to create unique geometries that provide additional surface area for reaction, thereby accelerating the treatment process. This strategy of injection and extraction is expected to be feasible for practical application since pumping rates and duration are limited as compared to other injection / extraction approaches, for example the pulsed dipole approach investigated by others. Dispersion during the sequential injection / extraction is examined using random-walk numerical simulations to compare the degree of spreading caused by this transient injection / extraction with the degree of spreading caused by the dispersion alone. Finally, the simulations are evaluated to quantify the degree to which reaction rates are enhanced through the injection / extraction scheme.

  1. Groundwater Remediation Design Using a Three-Dimensional Simulation Model and Mixed-Integer Programming

    NASA Astrophysics Data System (ADS)

    Sawyer, Charles S.; Ahlfeld, David P.; King, Alan J.

    1995-05-01

    A three-dimensional groundwater flow management model for making decisions on the design of hydrodynamic control of a groundwater flow system using a combination of extraction and/or injection wells is developed. The model takes into account constraints imposed on the system to stop the horizontal spread of contaminants and to ensure a net upward flow in areas where downward vertical gradients exist. The mathematical formulation of the groundwater remediation problem as a mixed-integer model and the strategy for solving the model are presented. Numerical results are presented for the Toms River Plant site, which is modeled as a five-layer aquifer system with interconnecting aquitards. A sensitivity analysis on the relative magnitude of the continuous operating costs and the fixed-charge costs is also presented.

  2. Compilation of data to estimate groundwater migration potential for constituents in active liquid discharges at the Hanford Site

    SciTech Connect

    Ames, L.L.; Serne, R.J.

    1991-03-01

    A preliminary characterization of the constituents present in the 33 liquid waste streams at the US Department of Energy's Hanford Site has been completed by Westinghouse Hanford Company. In addition, Westinghouse Hanford has summarized the soil characteristics based on drill logs collected at each site that receives these liquid wastes. Literature searches were conducted and available Hanford-specific data were tabulated and reviewed. General literature on organic chemicals present in the liquid waste streams was also reviewed. Using all of this information, Pacific Northwest Laboratory has developed a best estimate of the transport characteristics (water solubility and soil adsorption properties) for those radionuclides and inorganic and organic chemicals identified in the various waste streams. We assume that the potential for transport is qualified through the four geochemical parameters: solubility, distribution coefficient, persistence (radiogenic or biochemical half-life), and volatility. Summary tables of these parameters are presented for more than 50 inorganic and radioactive species and more than 50 organic compounds identified in the liquid waste streams. Brief descriptions of the chemical characteristics of Hanford sediments, solubility, and adsorption processes, and of how geochemical parameters are used to estimate migration in groundwater-sediment environments are also presented. Groundwater monitoring data are tabulated for wells neighboring the facilities that receive the liquid wastes. 91 refs., 16 figs., 23 tabs.

  3. Ground-water surveillance at the Hanford Site for CY 1983

    SciTech Connect

    Prater, L.S.; Rieger, J.T.; Cline, C.S.; Jensen, E.J.; Liikala, T.L.; Oster, K.R.

    1984-07-01

    Operations at the Hanford Site have resulted in the discharge of large volumes of process cooling water and other waste waters to the ground. These effluents contain low level of radioactive and chemical substances. During 1983, 328 monitoring wells were sampled at various times for radioactive and chemical constituents. Three of these constituents, specifically tritium, nitrate, and gross beta activity, were selected for detailed discussion in this report because they are more readily transported in the ground water than some of the other constituents. Transport of these constituents in the ground water has resulted in the formation of plumes that can be mapped by contouring the analytical data obtained from the monitoring wells. This report describes recent changes in the configuration of the tritium, nitrate and gross beta plumes. Changes or trends in contaminant levels in wells located within both the main plumes (originating from the 200 Areas) and the smaller plumes are discussed in this report. Two potential pathways for radionuclide transport from the ground water to the environmental are discussed in this report, and the radiological impacts are examined. In addition to describing the present status of the ground water beneath the Hanford Site, this report contains the results of studies conducted in support of the ground-water surveillance effort during CY 1983. 21 references, 26 figures, 5 tables.

  4. Broom fibre PRB for heavy metals groundwater remediation

    NASA Astrophysics Data System (ADS)

    Molinari, A.; Troisi, S.; Fallico, C.; Paparella, A.; Straface, S.

    2009-04-01

    Soil contamination by heavy metal and, though it, of groundwater represent a serious alteration of original geochemical levels owing to various human activities as: particular industrial processes and their non-correct treatment emission, urban traffic, use of phytosanitary product and mineral fertilizer. Heavy metals are genotoxic contaminants who can be found by environmental matrix analysis or by examination of the genetic damage inducted, after exposition, to sentry organism. In this last case we use a relative quantitation of the gene expression monitoring the mitochondrial oxidative metabolism hepatopancreas's gene of the organism used by bioindicator. This test is based on consideration that the hepatopancreas is the first internal organ affected by heavy metals or any other pollutant that the organism is exposed. In this work, the organism used by bioindicator to evalutate the pollutant contamination of waste water is Danio rerio (Zebrafish) that is a little tropical fish of 2-3 cm, native on asiatic south-east rivers. This organism has a large use in scientific field because its genoma is almost completely mapped and, above all, because the congenital gene cause in human, if it was mutated in zebrafish, similar damage or almost similar mutation that happens in human being so you can develop a dose - response curve. To do this, after prepared a cadmium solution with a concentration 10 times the Italian normative limit, the organisms have been put in the aquarium to recreate the optimal condition to survival of zebrafish observed by continuous monitoring by web-cam. After one month exposition, that we took little by little sample fish to analyzing, for different exposition time, the hepatopancreas's fish. First results shows considerable variation of the gene expression by interested gene in mitochondrial oxidative metabolism compared to control, highlighting the mutagenity caused by heavy metals on Danio rerio's hepatopancreas and, mutatis mutandis, also in

  5. Optimization-based multicriteria decision analysis for identification of desired petroleum-contaminated groundwater remediation strategies.

    PubMed

    Lu, Hongwei; Feng, Mao; He, Li; Ren, Lixia

    2015-06-01

    The conventional multicriteria decision analysis (MCDA) methods used for pollution control generally depend on the data currently available. This could limit their real-world applications, especially where the input data (e.g., the most cost-effective remediation cost and eventual contaminant concentration) might vary by scenario. This study proposes an optimization-based MCDA (OMCDA) framework to address such a challenge. It is capable of (1) capturing various preferences of decision-makers, (2) screening and analyzing the performance of various optimized remediation strategies under changeable scenarios, and (3) compromising incongruous decision analysis results. A real-world case study is employed for demonstration, where four scenarios are considered with each one corresponding to a set of weights representative of the preference of the decision-makers. Four criteria are selected, i.e., optimal total pumping rate, remediation cost, contaminant concentration, and fitting error. Their values are determined through running optimization and optimization-based simulation procedures. Four sets of the most desired groundwater remediation strategies are identified, implying specific pumping rates under varied scenarios. Results indicate that the best action lies in groups 32 and 16 for the 5-year, groups 49 and 36 for the 10-year, groups 26 and 13 for the 15-year, and groups 47 and 13 for the 20-year remediation. PMID:25613797

  6. Water movement in the zone of interaction between groundwater and the Columbia River, Hanford Site, Washington

    SciTech Connect

    Peterson, Robert E.; Connelly, Michael P.

    2004-03-01

    A two-dimensional model that simulates flow pathlines in a vertical cross section oriented perpendicular to the Columbia River has been developed for a location on the Hanford Site. Hydraulic head data from wells and the adjacent river were available to calculate flow direction and velocity in hourly increments for an entire seasonal cycle. The computer code Subsurface Transport Over Multiple Phases was used for flow calculations. River stage cycles extend through a range of several meters, thus exerting a strong influence on water motion in the zone of interaction. Flow pathlines from the aquifer are deflected downward beneath the bank storage zone. Discharge upward into the river channel is focused relatively close to shore and the region immediately beneath the shoreline appears to be dominated by river water. If the model is run assuming a constant, average river stage, these features are not represented, thus demonstrating the need to include transient boundary conditions when a fluctuating river stage influences the interface between ground and surface water. The model provides information that supports a variety of applications, including monitoring strategies, contaminant transport models, risk assessments, remedial action design, and compliance requirements for remedial actions.

  7. Groundwater Monitoring Plan for the Hanford Site 216-B-3 Pond RCRA Facility

    SciTech Connect

    Barnett, D BRENT.; Smith, Ronald M.; Chou, Charissa J.; McDonald, John P.

    2005-11-01

    The 216-B-3 Pond system was a series of ponds used for disposal of liquid effluent from past Hanford production facilities. In operation from 1945 to 1997, the B Pond System has been a Resource Conservation and Recovery Act (RCRA) facility since 1986, with RCRA interim-status groundwater monitoring in place since 1988. In 1994 the expansion ponds of the facility were clean closed, leaving only the main pond and a portion of the 216-B-3-3 ditch as the currently regulated facility. In 2001, the Washington State Department of Ecology (Ecology) issued a letter providing guidance for a two-year, trial evaluation of an alternate, intrawell statistical approach to contaminant detection monitoring at the B Pond system. This temporary variance was allowed because the standard indicator-parameters evaluation (pH, specific conductance, total organic carbon, and total organic halides) and accompanying interim status statistical approach is ineffective for detecting potential B-Pond-derived contaminants in groundwater, primarily because this method fails to account for variability in the background data and because B Pond leachate is not expected to affect the indicator parameters. In July 2003, the final samples were collected for the two-year variance period. An evaluation of the results of the alternate statistical approach is currently in progress. While Ecology evaluates the efficacy of the alternate approach (and/or until B Pond is incorporated into the Hanford Facility RCRA Permit), the B Pond system will return to contamination-indicator detection monitoring. Total organic carbon and total organic halides were added to the constituent list beginning with the January 2004 samples. Under this plan, the following wells will be monitored for B Pond: 699-42-42B, 699-43-44, 699-43-45, and 699-44-39B. The wells will be sampled semi-annually for the contamination indicator parameters (pH, specific conductance, total organic carbon, and total organic halides) and annually for

  8. Least-cost groundwater remediation design using uncertain hydrogeological information. 1998 annual progress report

    SciTech Connect

    Pinder, G.F.

    1998-06-01

    'The objective of the project is to formulate, test, and evaluate a new approach to the least-cost design of groundwater contamination containment and decontamination systems. The proposed methodology employs robust optimization, the outer-approximation method of non-linear programming, and groundwater flow and transport modeling to find the most cost-effective pump-and-treat design possible given the physical parameters describing the groundwater reservoir are known with uncertainty. The result is a methodology that will provide the least-cost groundwater remediation design possible given a specified set of design objectives and physical and sociological constraints. As of the end of the first year of this 3-year project the author has developed and tested the concept of robust optimization within the framework of least-cost groundwater-contamination-containment design. The outer-approximation method has been employed in this context for the relatively simple linear-constraint case associated with the containment problem. In an effort to enhance the efficiency and applicability of this methodology, a new strategy for selecting the various realizations arising out of the Monte-Carlo underpinnings of the robust-optimization technique has been developed and tested. Based upon observations arising out of this work a yet more promising approach has been discovered. The theoretical foundation for this most recent approach has been, and continues to be, the primary focus of the research.'

  9. Evaluation and Screening of Remedial Technologies for Uranium at the 300-FF-5 Operable Unit, Hanford Site, Washington

    SciTech Connect

    Nimmons, Michael J.

    2007-08-01

    Pacific Northwest National Laboratory (PNNL) is presently conducting a re-evaluation of remedies addressing persistent dissolved uranium concentrations in the upper aquifer under the 300 Area of the Hanford Site in southeastern Washington State. This work is being conducted as a Phase III feasibility study for the 300-FF-5 Operable Unit on behalf of the U.S. Department of Energy. As part of the feasibility study process, a comprehensive inventory of candidate remedial technologies was conducted by PNNL. This report documents the identification and screening of candidate technologies. The screening evaluation was conducted in accordance with guidance and processes specified by U.S. Environmental Protection Agency regulations associated with implementation of the Comprehensive Environmental Response, Compensation, and Liability Act process.

  10. Calcium carbonate-based permeable reactive barriers for iron and manganese groundwater remediation at landfills.

    PubMed

    Wang, Yu; Pleasant, Saraya; Jain, Pradeep; Powell, Jon; Townsend, Timothy

    2016-07-01

    High concentrations of iron (Fe(II)) and manganese (Mn(II)) reductively dissolved from soil minerals have been detected in groundwater monitoring wells near many municipal solid waste landfills. Two in situ permeable reactive barriers (PRBs), comprised of limestone and crushed concrete, were installed downgradient of a closed, unlined landfill in Florida, USA, to remediate groundwater containing high concentrations of these metals. Influent groundwater to the PRBs contained mean Fe and Mn concentrations of approximately 30mg/L and 1.62mg/L, respectively. PRBs were constructed in the shallow aquifer (maximum depth 4.6m below land surface) and groundwater was sampled from a network of nearby monitoring wells to evaluate barrier performance in removing these metals. PRBs significantly (p<0.05) removed dissolved Fe and Mn from influent groundwater; Fe was removed from influent water at average rates of 91% and 95% (by mass) for the limestone and crushed concrete PRBs, respectively, during the first year of the study. The performance of the PRBs declined after 3years of operation, with Fe removal efficiency decreasing to 64% and 61% for limestone and concrete PRBs, respectively. A comparison of water quality in shallow and deep monitoring wells showed a more dramatic performance reduction in the deeper section of the concrete PRB, which was attributed to an influx of sediment into the barrier and settling of particulates from the upper portions of the PRBs. Although removal of Fe and Mn from redox impacts was achieved with the PRBs, the short time frame of effectiveness relative to the duration of a full-scale remediation effort may limit the applicability of these systems at some landfills because of the construction costs required. PMID:26992666

  11. Ground-water maps of the Hanford Site Separations Area, December 1987

    SciTech Connect

    Schatz, A.L.; Ammerman, J.J.

    1988-03-01

    The ground-water maps of the Separations Area are prepared by the Environmental Technology Section of the Defense Waste Management Division of Westinghouse Hanford Company. The Separations Area consists of the 200 East and 200 West Areas, where chemical processing activities are carried out. This set of ground-water maps consists of a water-table map of the unconfined aquifer, a depth-to-water map of the unconfined aquifer, and a potentiometric map of the uppermost confined aquifer (the Rattlesnake Ridge sedimentary interbed) in the area where West Lake, the deactivated Gable Mountain Pond, and the B Pond system are located. The Separations Area water-table map is prepared from water-level measurements made in June and December. For the December 1987 map approximately 200 wells were used for contouring the water table. The water-table mound beneath the deactivated U Pond has decreased in size since the June 1987 measurements were taken, reflecting the impact of shutting off flow to the pond in the fall of 1984. This mound has declined approximately 8 ft. since 1984. The water-table map also shows the locations of wells where the December 1987 measurements were made, and the data for these measurements are listed.

  12. Ground-Water Protection and Monitoring Program

    SciTech Connect

    Dresel, P.E.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the ground-water protection and monitoring program strategy for the Hanford Site in 1994. Two of the key elements of this strategy are to (1) protect the unconfined aquifer from further contamination, and (2) conduct a monitoring program to provide early warning when contamination of ground water does occur. The monitoring program at Hanford is designed to document the distribution and movement of existing ground-water contamination and provides a historical baseline for evaluating current and future risk from exposure to the contamination and for deciding on remedial action options.

  13. Evaluation of the effectiveness of using alfalfa and buffalo grass for remediation of trichloroethylene from groundwater

    SciTech Connect

    Caravello, V.

    1998-06-03

    Phytoremediation is receiving increasing attention due to the potential for vegetation to play a significant role in bioremediation of contaminated soils and groundwater. The purpose of this research was to conduct a pilot study to determine if buffalo grass would enhance the remediation of groundwater contaminated with trichloroethylene (TCE). A mass-balance experiment was designed and executed to determine the extent of TCE remediation/degradation occurring through buffalo grass. Measurements for TCE in air, water, and soil were completed for three treatments: (1) buffalo grass, (2) alfalfa, and (3) soil following challenge with a water-TCE mixture. In total, 267 air samples, 43 water samples, 85 soil samples, and 40 vegetative samples were collected and analyzed. The analysis identified two important facts. First, there were no significant differences detected between TCE concentrations in soil, water, and air between groups. Second, there is a significant difference in the amount of the TCE-water mixture consumed in chambers with plants versus chambers without plants. The mass balance of the experiment was not achieved due to unaccountable losses of TCE from the chambers. The major loss mechanism for TCE appears to be from the breakthrough of air sampling media during the experiment. Thus, the data are insufficient to determine if remediation occurred via plants or by preferential pathways through the soil. Future experiments should be designed to include daily monitoring of the aquifer, humidity tolerant air sampling protocol, and relief from the build-up of humidity and transpiration inside the chambers.

  14. Optimal groundwater remediation using artificial neural networks and the genetic algorithm

    SciTech Connect

    Rogers, L.L.

    1992-01-01

    An innovative computational approach for the optimization of groundwater remediation is presented which uses artificial neural networks (ANNs) and the genetic algorithm (GA). In this approach, the ANN is trained to predict an aspect of the outcome of a flow and transport simulation. Then the trained network searches through realizations or patterns of pumping selected by the GA, predicting the outcome. This approach has advantages of parallel processing of the groundwater simulations and the ability to [open quotes]recycle[close quotes] or reuse the base of knowledge formed by these simulations. These advantages offer reduction of computational burden of the groundwater simulations relative to a more conventional approach which uses nonlinear programming (NLP) with a quasi-newtonian search. Also the modular nature of this approach facilitates substitution of different groundwater simulation models. The ANN technology, inspired by neurobiological theories of massive interconnection and parallelism, has been applied to a variety of optimization problems. In the ANN groundwater management approach presented here, the behavior of complex groundwater scenarios with spatially-variable transport parameters and multiple contaminant plumes are simulated with 2-D flow and transport codes. An ANN is trained upon a set of examples developed from groundwater simulations. The input of the ANN characterizes the different realizations of pumping. The output characterizes the objectives and constraints of the optimization, such as whether regulatory goals have been met, value of cost functions or cleanup time, and mass of contaminant removal. The supervised learning algorithm of backpropagation is used to train the network. The conjugate gradient method and weight-elimination procedures are used to speed convergence and improve performance, respectively. Then a search is made through possible pumping realizations to find optimal realizations.

  15. A calcite permeable reactive barrier for the remediation of Fluoride from spent potliner (SPL) contaminated groundwater

    NASA Astrophysics Data System (ADS)

    Turner, Brett D.; Binning, Philip J.; Sloan, Scott W.

    2008-01-01

    The use of calcite (CaCO 3) as a substrate for a permeable reactive barrier (PRB) for removing fluoride from contaminated groundwater is proposed and is illustrated by application to groundwater contaminated by spent potliner leachate (SPL), a waste derived from the aluminium smelting process. The paper focuses on two issues in the implementation of calcite permeable reactive barriers for remediating fluoride contaminated water: the impact of the groundwater chemical matrix and CO 2 addition on fluoride removal. Column tests comparing pure NaF solutions, synthetic SPL solutions, and actual SPL leachate indicate that the complex chemical matrix of the SPL leachate can impact fluoride removal significantly. For SPL contaminant mixtures, fluoride removal is initially less than expected from idealized, pure, solutions. However, with time, the effect of other contaminants on fluoride removal diminishes. Column tests also show that pH control is important for optimizing fluoride removal with the mass removed increasing with decreasing pH. Barrier pH can be regulated by CO 2 addition with the point of injection being critical for optimising the remediation performance. Experimental and model results show that approximately 99% of 2300 mg/L fluoride can be removed when CO 2 is injected directly into the barrier. This can be compared to approximately 30-50% removal when the influent solution is equilibrated with atmospheric CO 2 before contact with calcite.

  16. A calcite permeable reactive barrier for the remediation of Fluoride from spent potliner (SPL) contaminated groundwater.

    PubMed

    Turner, Brett D; Binning, Philip J; Sloan, Scott W

    2008-01-28

    The use of calcite (CaCO3) as a substrate for a permeable reactive barrier (PRB) for removing fluoride from contaminated groundwater is proposed and is illustrated by application to groundwater contaminated by spent potliner leachate (SPL), a waste derived from the aluminium smelting process. The paper focuses on two issues in the implementation of calcite permeable reactive barriers for remediating fluoride contaminated water: the impact of the groundwater chemical matrix and CO2 addition on fluoride removal. Column tests comparing pure NaF solutions, synthetic SPL solutions, and actual SPL leachate indicate that the complex chemical matrix of the SPL leachate can impact fluoride removal significantly. For SPL contaminant mixtures, fluoride removal is initially less than expected from idealized, pure, solutions. However, with time, the effect of other contaminants on fluoride removal diminishes. Column tests also show that pH control is important for optimizing fluoride removal with the mass removed increasing with decreasing pH. Barrier pH can be regulated by CO2 addition with the point of injection being critical for optimising the remediation performance. Experimental and model results show that approximately 99% of 2300 mg/L fluoride can be removed when CO2 is injected directly into the barrier. This can be compared to approximately 30-50% removal when the influent solution is equilibrated with atmospheric CO2 before contact with calcite. PMID:17913284

  17. The cooling pond of the Chernobyl Nuclear Power Plant: A groundwater remediation case history

    NASA Astrophysics Data System (ADS)

    Bugai, Dmitri A.; Waters, Robert D.; Dzhepo, Sergei P.; Skalsk'ij, Alexander S.

    1997-04-01

    The cooling pond of the Chernobyl nuclear power plant was heavily contaminated as a result of the reactor accident in April 1986. From 1989 to 1993 the cooling pond represented one of the major sources of 90Sr migration from the Chernobyl site to the Dnieper River. Several attempts have been made to contain radioactive contamination within the pond. Overestimation of releases via groundwater pathway and design mistakes led to unsuccessful remedial actions in 1986 and in later periods. In addition, remediation criteria based solely on comparison of contaminant concentrations in groundwater with drinking water standards were not effective from the health risk perspective, because the public was not directly exposed to contaminated groundwater; the exclusion zone surrounding the site acted as an institutional control to prevent public access. In light of recent estimates of low risks due to radionuclide transport outside the exclusion zone, a "no action" approach may represent the most reasonable strategy for the near-term management of the cooling pond.

  18. Agar agar-stabilized milled zerovalent iron particles for in situ groundwater remediation.

    PubMed

    Velimirovic, Milica; Schmid, Doris; Wagner, Stephan; Micić, Vesna; von der Kammer, Frank; Hofmann, Thilo

    2016-09-01

    Submicron-scale milled zerovalent iron (milled ZVI) particles produced by grinding macroscopic raw materials could provide a cost-effective alternative to nanoscale zerovalent iron (nZVI) particles for in situ degradation of chlorinated aliphatic hydrocarbons in groundwater. However, the aggregation and settling of bare milled ZVI particles from suspension presents a significant obstacle to their in situ application for groundwater remediation. In our investigations we reduced the rapid aggregation and settling rate of bare milled ZVI particles from suspension by stabilization with a "green" agar agar polymer. The transport potential of stabilized milled ZVI particle suspensions in a diverse array of natural heterogeneous porous media was evaluated in a series of well-controlled laboratory column experiments. The impact of agar agar on trichloroethene (TCE) removal by milled ZVI particles was assessed in laboratory-scale batch reactors. The use of agar agar significantly enhanced the transport of milled ZVI particles in all of the investigated porous media. Reactivity tests showed that the agar agar-stabilized milled ZVI particles were reactive towards TCE, but that their reactivity was an order of magnitude less than that of bare, non-stabilized milled ZVI particles. Our results suggest that milled ZVI particles could be used as an alternative to nZVI particles as their potential for emplacement into contaminated zone, their reactivity, and expected longevity are beneficial for in situ groundwater remediation. PMID:26596889

  19. Application of State and Federal Guidelines for Establishing Alternate Soil Clean-Up Levels for the Protection of Groundwater at the Hanford Site

    SciTech Connect

    Leary, K.; McMahon, W.; Hoover, J.

    2008-07-01

    Risk-based soil cleanup levels that are protective of groundwater have been calculated for use in environmental remediation activities at the Hanford Site using vadose zone fate and transport modeling. The determination of soil cleanup levels is important because it involves the technical basis for the levels of contamination that can be left in place, which are protective of human health and the environment. The determination of risk-based soil cleanup levels is an especially important issue at the Hanford Site where site conditions such as a semi-arid climate, and a thick vadose zone of over 100 meters necessitate the use of appropriate risk-based methods. In the absence of an alternative risk-based approach, the cleanup levels default to background, detection limits, or simplistic formulas not intended for applications involving these distinctive site conditions. However, the use of vadose zone fate and transport modeling for risk-based applications such as the determination of soil cleanup levels in the vadose zone are not as well established as modeling for groundwater applications. Thus, the use of models in this manner involves additional challenges for the demonstration of the efficacy of its use for risk-based applications, in accordance with federal and state regulatory requirements and guidelines. An approach has been developed to integrate with federal and state regulatory guidelines in conjunction with the development of the risk-based methodology. Demonstration of integration with these guidelines primarily involves documentation of the objectives of the problem to be solved, the technical basis and rationale associated with the selection of an appropriate risk-based method (e.g., model type and code selection), and documentation associated with the use of the model, e.g., conceptual site model, parameter estimation, uncertainty and assumptions analyses, and model results. (authors)

  20. Ground-water monitoring at the Hanford Site, January-December 1984

    SciTech Connect

    Cline, C.S.; Rieger, J.T.; Raymond, J.R.

    1985-09-01

    This program is designed to evaluate existing and potential pathways of exposure to radioactivity and hazardous chemicals from site operations. This document contains an evaluation of data collected during CY 1984. During 1984, 339 monitoring wells were sampled at various times for radioactive and nonradioactive constituents. Two of these constituents, specifically, tritium and nitrate, have been selected for detailed discussion in this report. Tritium and nitrate in the primary plumes originating from the 200 Areas continue to move generally eastward toward the Columbia River in the direction of ground-water flow. The movement within these plumes is indicated by changes in trends within the analytical data from the monitoring wells. No discernible impact on ground water has yet been observed from the start-up of the PUREX plant in December 1983. The shape of the present tritium plume is similar to those described in previous ground-water monitoring reports, although slight changes on the outer edges have been noted. Radiological impacts from two potential pathways for radionuclide transport in ground water to the environment are discussed in this report. The pathways are: (1) human consumption of ground water from onsite wells, and (2) seepage of ground water into the Columbia River. Concentrations of tritium in spring samples that were collected and analyzed in 1983, and in wells sampled adjacent to the Columbia River in 1984 confirmed that constituents in the ground water are entering the river via springs and subsurface flow. The primary areas where radionuclides enter the Columbia River via ground-water flow are the 100-N and 300 Areas and the shoreline adjacent to the Hanford Townsite. 44 refs., 25 figs., 11 tabs.

  1. Acceleration of groundwater remediation by deep sweeps and vortex ejections induced by rapidly pulsed pumping

    NASA Astrophysics Data System (ADS)

    Kahler, David M.; Kabala, Zbigniew J.

    2016-05-01

    One key limiting factor to groundwater remediation is contaminant sequestered in pores whose contents do not mix well with the bulk flow. Mixing between well-connected (pores whose volume is flushed as water flows through the aquifer) and poorly connected pores (pores whose volume does not exchange readily when water flows through the aquifer) is of primary concern. Under steady flow, contaminants are effectively trapped in the poorly connected pores and are transferred only by molecular diffusion. This slow mixing process between pore types is a bottleneck to remediation. We present a novel rapidly pulsed pumping method that increases the mixing between these pore types. We do it in the context of pump-and-treat remediation because it is the most common remediation practice. In rapidly pulsed pumping, the increase in flow causes a deep sweep, which pushes the flow into poorly connected pores and sweeps out sequestered contaminants. The decrease in flow causes a vortex ejection, which causes the vortex within the poorly connected pore to emerge with contaminant. These actions are modeled with computational fluid mechanics to elucidate the individual mechanisms and determine how they function and interact. Cleanup of single and multiple poorly connected pore systems were simulated and show the acceleration possible. This technique can decrease the time and cost needed to remediate contaminated aquifers, which in the United States has been estimated to exceed $1 trillion. Since our rapidly pulsed pumping method enhances mixing between well-connected and poorly connected pores, it can be applied to other remediation schemes such as in situ methods.

  2. Interim site characterization report and ground-water monitoring program for the Hanford site solid waste landfill

    SciTech Connect

    Fruland, R.M.; Hagan, R.A.; Cline, C.S.; Bates, D.J.; Evans, J.C.; Aaberg, R.L.

    1989-07-01

    Federal and state regulations governing the operation of landfills require utilization of ground-water monitoring systems to determine whether or not landfill operations impact ground water at the point of compliance (ground water beneath the perimeter of the facility). A detection-level ground-water monitoring system was designed, installed, and initiated at the Hanford Site Solid Waste Landfill (SWL). Chlorinated hydrocarbons were detected at the beginning of the ground-water monitoring program and continue to be detected more than 1 year later. The most probable source of the chlorinated hydrocarbons is washwater discharged to the SWL between 1985 and 1987. This is an interim report and includes data from the characterization work that was performed during well installation in 1987, such as field observations, sediment studies, and geophysical logging results, and data from analyses of ground-water samples collected in 1987 and 1988, such as field parameter measurements and chemical analyses. 38 refs., 27 figs., 8 tabs.

  3. Groundwater quality assessment plan for single-shell waste management area B-BX-BY at the Hanford Site

    SciTech Connect

    SM Narbutovskih

    2000-03-31

    Pacific Northwest National Laboratory conducted a first determination groundwater quality assessment at the Hanford Site. This work was performed for the US Department of Energy, Richland Operations Office, in accordance with the Federal Facility Compliance Agreement during the time period 1996--1998. The purpose of the assessment was to determine if waste from the Single-Shell Tank (SST) Waste Management Area (WMA) B-BX-BY had entered the groundwater at levels above the drinking water standards (DWS). The resulting assessment report documented evidence demonstrating that waste from the WMA has, most likely, impacted groundwater quality. Based on 40 CFR 265.93 [d] paragraph (7), the owner-operator must continue to make the minimum required determinations of contaminant level and of rate/extent of migrations on a quarterly basis until final facility closure. These continued determinations are required because the groundwater quality assessment was implemented prior to final closure of the facility.

  4. Independent Technical Review of the X-740 Groundwater Remedy, Portsmouth, Ohio: Technical Evaluation and Recommendations

    SciTech Connect

    Looney, B.; Rhia, B.; Jackson, D.; Eddy-Dilek, C.

    2010-04-30

    Two major remedial campaigns have been applied to a plume of trichloroethene (TCE) contaminated groundwater near the former X-740 facility at the Portsmouth Gaseous Diffusion Plant in Piketon Ohio. The two selected technologies, phytoremediation using a stand of hybrid poplar trees from 1999-2007 and in situ chemical oxidation using modified Fenton's Reagent from 2008-2009, have proven ineffective in achieving remedial action objectives (RAOs). The 'poor' performance of these technologies is a direct result of site specific conditions and the local contaminant hydrogeology. Key among these challenges is the highly heterogeneous subsurface geology with a thin contaminated aquifer zone (the Gallia) - the behavior of the contamination in the Gallia is currently dominated by slow release of TCE from the clay of the overlying Minford formation, from the sandstone of the underlying Berea formation, and from clayey layers within the Gallia itself. In response to the remediation challenges for the X-740 plume, the Portsmouth team (including the US Department of Energy (DOE), the site contractor (CDM), and the Ohio Environmental Protection Agency (OEPA)) is evaluating the feasibility of remediation at this site and identifying specific alternatives that are well matched to site conditions and that would maximize the potential for achieving RAOs. To support this evaluation, the DOE Office of Groundwater and Soil Remediation (EM-32) assembled a team of experts to serve as a resource and provide input and recommendations to Portsmouth. Despite the challenging site conditions and the failure of the previous two remediation campaigns to adequately move the site toward RAOs, the review team was unanimous in the conclusion that an effective combination of cost effective technologies can be identified. Further, the team expressed optimism that RAOs can be achieved if realistic timeframes are accepted by all parties. The initial efforts of the review team focused on reviewing the

  5. Treatment tests for ex situ removal of chromate, nitrate, and uranium (VI) from Hanford (100-HR-3) groundwater. Final report

    SciTech Connect

    Beck, M.A.; Duncan, J.B.

    1993-11-15

    This report describes batch and anion exchange column laboratory-scale studies investigating ex situ methods to remove chromate (chromium [VI]), nitrate (NO{sub 3}), and uranium (present as uranyl (uranium [VI]) carbonato anionic species) from contaminated Hanford Site groundwaters. The technologies investigated include chemical precipitation or coprecipitation to remove chromate and uranium, and anion exchange to remove chromate, uranium, and nitrate. The technologies investigated were specified in the 100-HR-3 Groundwater Treatability Test Plan (DOE-RL 1993). The goal of these tests was to determine the best method to remove selected contaminants to below the concentration of the project performance goals. The raw data and observations made during these tests can be found in the Westinghouse Hanford Company (WHC) laboratory notebooks (Beck 1992, Herting 1993). The method recommended for future study is anion exchange with Dowex 21K resin.

  6. Natural Attenuation Software (NAS): A computer program for estimating remediation times of contaminated groundwater

    USGS Publications Warehouse

    Mendez, E.; Widdowson, M.; Brauner, S.; Chapelle, F.; Casey, C.

    2004-01-01

    This paper describes the development and application of a modeling system called Natural Attenuation Software (NAS). NAS was designed as a screening tool to estimate times of remediation (TORs), associated with monitored natural attenuation (MNA), to lower groundwater contaminant concentrations to regulatory limits. Natural attenuation processes that NAS models include advection, dispersion, sorption, biodegradation, and non-aqueous phase liquid (NAPL) dissolution. This paper discusses the three main interactive components of NAS: 1) estimation of the target source concentration required for a plume extent to contract to regulatory limits, 2) estimation of the time required for NAFL contaminants in the source area to attenuate to a predetermined target source concentration, and 3) estimation of the time required for a plume extent to contract to regulatory limits after source reduction. The model's capability is illustrated by results from a case study at a MNA site, where NAS time of remediation estimates compared well with observed monitoring data over multiple years.

  7. Modelling the remediation of contaminated groundwater using zero-valent iron barrier

    SciTech Connect

    Kwong, S.; Small, J.; Tahar, B.

    2007-07-01

    This paper presents results of modelling studies on remediation of groundwater contaminated with uranium using a zero-valent iron permeable reactive barrier (ZVI PRB) at the U.S. Oak Ridge Y-12 site that are used to establish modelling techniques that are of value to other sites such as in the UK. A systematic modelling methodology has been developed to study the problem by using a suite of modelling tools. Firstly a conceptual basis of the main chemical processes representing the remediation of uranium by the ZVI PRB is developed. Two main effects involving reduction and corrosion have been identified as being relevant for the remediation processes. These are then formulated and implemented using the reactive chemical model PHREEQC to provide underpinning chemical input parameters for subsequent reactive solute transport modelling using the TRAFFIC and PHAST codes. Initial results shows that modelling can be a very cost-effective means to study the hydrogeological and geochemical processes involved and to aid understanding of the remediation concept. The modelling approaches presented and lessons learnt are thought to be relevant to other cases of contaminated land study and are likely to be of value to site management concepts which consider on-site disposal of contaminated soils and materials. (authors)

  8. Integration of Socio-Economic Measures in Benefit-Cost Analysis for Groundwater Remediation

    NASA Astrophysics Data System (ADS)

    Shaqadan, A. A.; Kaluarachchi, J. J.; Khalil, Y. H.

    2006-12-01

    Groundwater quality is a major concern since sources of contamination are common and degraded water quality has severe economic and health impacts to the society. Management of contaminated groundwater resources has been a challenge due to limited resources committed to monitor and remediate a large number of contaminated sites. Therefore, there is a prominent question on the optimal allocation of resources for additional data collection and actual remedial measures. In this work, we extended the risk assessment methodology under subsurface heterogeneity and population variability proposed by others to estimate individuals' willingness-to-pay(WTP) for a proposed risk reduction by adding socio-economic measures. We introduced one of the early applications of welfare measures namely, health state, utility, and WTP concepts to study the benefits and costs of collecting additional data to reduce uncertainty for groundwater remediation. The proposed framework considered uncertainty due to subsurface heterogeneity and public health risk through a utility theory based approach that can be used in decision-making. Our framework replaced costly contingent valuation approaches and used a meta analysis which considered a theoretical structure on population age, income, and health state and used empirical estimates from previous contingent valuation methods. We also performed sensitivity analysis on important variables such as WTP and utility levels. Our findings showed that health state and age have vital impacts on WTP. The predictions of WTP trends are consistent with patterns expected in economic theory. We illustrated the proposed framework by evaluating two scenarios of gathering additional information to better describe subsurface heterogeneity. In this example we considered a small addition of data at a correlation scale of 112 m versus a large addition of data at a correlation scale of 22 m. The results showed the two scenarios have annual individuals' WTP of 258 and

  9. In situ remediation of a shallow BTEX plume using vertical groundwater circulation (CGC) technology

    SciTech Connect

    Wasp, R.G.; Desrosiers, R.J.

    1997-12-31

    Remediation of a BTEX plume at a gasoline service station located adjacent to a waterway in lower Westchester County, New York, required the design, installation and operation of two Coaxial Groundwater Circulation (CGC) wells. The CGC units induce a vertical groundwater circulation cell around the well, drawing in contamination into the lower portion of the well for treatment and releasing treated groundwater back into the aquifer. The technique is hydraulically balanced and does not rely on extraction and surface treatment, as required by many conventional technologies. The presence of a 3-dimensional flow field provides soil flushing of the plume through heterogeneous soils. This flushing action mobilizes more contamination to the CGC wells for treatment and reduces rebound effects. This leads to quicker remediation times and shorter post monitoring of the plume. CGC systems use considerably lower injection pressures than conventional sparging wells, eliminating increases in heat. This leads to reduced fouling and reduced energy consumption. The data collected as part of the remediation effort included pressure transducer tests to verify the presence of the circulation cell and geochemical data to demonstrate chemical reductions by the CGC units. Data collected was used to validate the initial mathematical modeling used to predict the radius of influence of the vertical circulation cell. The results indicated that the radius of influence was 25 feet with an effective upgradient capture area of 80 feet in the shallow portion of the plume. Chemical reduction over the first 60 days indicated a 30% reduction in BTEX and a 54% reduction in Benzene. The two CGC units effectively captured the upgradient plume between the units without impacting the adjacent waterway.

  10. Data Quality Assessment Report for the Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington

    SciTech Connect

    L.C. Hulstrom

    2010-08-10

    This report summarizes the results of the data quality assessment that was performed on the analytical data generated in connection with the 2008/2009 surface water, sediment, and soil data collection; groundwater upwelling investigation sample collection; and fish tissue sample collection.

  11. Data Quality Assessment Report for the Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington

    SciTech Connect

    L.C. Hulstrom

    2010-09-21

    This report summarizes the results of the data quality assessment that was performed on the analytical data generated in connection with the 2008/2009 surface water, sediment, and soil data collection; groundwater upwelling investigation sample collection; and fish tissue sample collection.

  12. Interim Status Groundwater Monitoring Plan for Low-Level Waste Management Areas 1 to 4, RCRA Facilities, Hanford,Washington

    SciTech Connect

    Dresel, P Evan

    2004-10-25

    This document describes the monitoring plan to meet the requirements for interim status groundwater monitoring at Hanford Site low-level waste burial grounds as specified by 40 CFR 265, incorporated by reference in WAC 173-303-400. The monitoring will take place at four separate low-level waste management areas in the 200-West and 200-East Areas, in the central part of the site. This plan replaces the previous monitoring plan.

  13. Using Nitrogen and Oxygen Isotope Compositions of Nitrate to Distinguish Contaminant Sources in Hanford Soil and Groundwater

    SciTech Connect

    Conrad, Mark; Bill, Markus

    2008-08-01

    The nitrogen ({delta}{sup 15}N) and oxygen ({delta}{sup 18}O) isotopic compositions of nitrate in the environment are primarily a function of the source of the nitrate. The ranges of isotopic compositions for nitrate resulting from common sources are outlined in Figure 1 from Kendall (1998). As noted on Figure 1, processes such as microbial metabolism can modify the isotopic compositions of the nitrate, but the effects of these processes are generally predictable. At Hanford, nitrate and other nitrogenous compounds were significant components of most of the chemical processes used at the site. Most of the oxygen in nitrate chemicals (e.g., nitric acid) is derived from atmospheric oxygen, giving it a significantly higher {delta}{sup 18}O value (+23.5{per_thousand}) than naturally occurring nitrate that obtains most of its oxygen from water (the {delta}{sup 18}O of Hanford groundwater ranges from -14{per_thousand} to -18{per_thousand}). This makes it possible to differentiate nitrate from Hanford site activities from background nitrate at the site (including most fertilizers that might have been used prior to the Department of Energy plutonium production activities at the site). In addition, the extreme thermal and chemical conditions that occurred during some of the waste processing procedures and subsequent waste storage in select single-shell tanks resulted in unique nitrate isotopic compositions that can be used to identify those waste streams in soil and groundwater at the site (Singleton et al., 2005; Christensen et al., 2007). This report presents nitrate isotope data for soil and groundwater samples from the Hanford 200 Areas and discusses the implications of that data for potential sources of groundwater contamination.

  14. RCRA (Resource Conservation and Recovery Act) ground-water monitoring projects for Hanford facilities: Annual progress report for 1988

    SciTech Connect

    Fruland, R.M.; Lundgren, R.E.

    1989-04-01

    This report describes the progress during 1988 of 14 Hanford Site ground-water monitoring projects covering 16 hazardous waste facilities and 1 nonhazardous waste facility (the Solid Waste Landfill). Each of the projects is being conducted according to federal regulations based on the Resource Conservation and Recovery Act (RCRA) of 1976 and the State of Washington Administrative Code. 21 refs., 23 figs., 8 tabs.

  15. Release Data Package for Hanford Site Assessments

    SciTech Connect

    Riley, Robert G.; Lopresti, Charles A.; Engel, David W.

    2006-07-01

    Beginning in fiscal year (FY) 2003, the U.S. Department of Energy (DOE) Richland Operations Office initiated activities, including the development of data packages, to support a Hanford assessment. This report describes the data compiled in FY 2003 through 2005 to support the Release Module of the System Assessment Capability (SAC) for the updated composite analysis. This work was completed as part of the Characterization of Systems Project, part of the Remediation and Closure Science Project, the Hanford Assessments Project, and the Characterization of Systems Project managed by Pacific Northwest National Laboratory. Related characterization activities and data packages for the vadose zone and groundwater are being developed under the remediation Decision Support Task of the Groundwater Remediation Project managed by Fluor Hanford, Inc. The Release Module applies release models to waste inventory data from the Inventory Module and accounts for site remediation activities as a function of time. The resulting releases to the vadose zone, expressed as time profiles of annual rates, become source terms for the Vadose Zone Module. Radioactive decay is accounted for in all inputs and outputs of the Release Module. The Release Module is implemented as the VADER (Vadose zone Environmental Release) computer code. Key components of the Release Module are numerical models (i.e., liquid, soil-debris, cement, saltcake, and reactor block) that simulate contaminant release from the different waste source types found at the Hanford Site. The Release Module also handles remediation transfers to onsite and offsite repositories.

  16. Optimal Design of Groundwater Remediation Problems under Uncertainty Using Probabilistic Multi-objective Evolutionary Technique

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Wu, J.

    2011-12-01

    The previous work in the field of multi-objective optimization under uncertainty has concerned with the probabilistic multi-objective algorithm itself, how to effectively evaluate an estimate of uncertain objectives and identify a set of reliable Pareto optimal solutions. However, the design of a robust and reliable groundwater remediation system encounters major difficulties owing to the inherent uncertainty of hydrogeological parameters such as hydraulic conductivity (K). Thus, we need to make reduction of uncertainty associated with the site characteristics of the contaminated aquifers. In this study, we first use the Sequential Gaussian Simulation (SGSIM) to generate 1000 conditional realizations of lnK based on the sampled conditioning data acquired by field test. It is worthwhile to note that the cost for field test often weighs heavily upon the remediation cost and must thus be taken into account in the tradeoff between the solution reliability and remedial cost optimality. In this situation, we perform Monte Carlo simulation to make an uncertainty analysis of lnK realizations associated with the different number of conditioning data points. The results indicate that the uncertainty of the site characteristics and the contaminant concentration output from transport model is decreasing and then tends toward stabilization with the increase of conditioning data. This study presents a probabilistic multi-objective evolutionary algorithm (PMOEA) that integrates noisy genetic algorithm (NGA) and probabilistic multi-objective genetic algorithm (MOGA). The evident difference between deterministic MOGA and probabilistic MOGA is the use of probabilistic Pareto domination ranking and niche technique to ensure that each solution found is most reliable and robust. The proposed algorithm is then evaluated through a synthetic pump-and-treat (PAT) groundwater remediation test case. The 1000 lnK realizations generated by SGSIM with appropriate number of conditioning data (30

  17. Analysis for remedial alternatives of unregulated municipal solid waste landfills leachate-contaminated groundwater

    NASA Astrophysics Data System (ADS)

    An, Da; Jiang, Yonghai; Xi, Beidou; Ma, Zhifei; Yang, Yu; Yang, Queping; Li, Mingxiao; Zhang, Jinbao; Bai, Shunguo; Jiang, Lei

    2013-09-01

    A groundwater flow and solute transport model was developed using Visual Modflow for forecasting contaminant transport and assessing effects of remedial alternatives based on a case study of an unregulated landfill leachate-contaminated groundwater in eastern China. The results showed that arsenic plume was to reach the pumping well in the downstream farmland after eight years, and the longest lateral and longitudinal distance of arsenic plume was to reach 200 m and 260 m, respectively. But the area of high concentration region of arsenic plume was not to obviously increase from eight years to ten years and the plume was to spread to the downstream river and the farmland region after 20 years; while the landfill's ground was hardened, the plume was not to reach the downstream farmland region after eight years; when the pumping well was installed in the plume downstream and discharge rate was 200m3/d, the plume was to be effectively restrained; for leakage-proof barriers, it might effectively protect the groundwater of sensitive objects within an extent time range. But for the continuous point source, the plume was still to circle the leakage-proof barrier; when discharge rate of drainage ditches was 170.26 m3/d, the plume was effectively controlled; the comprehensive method combining ground-harden with drainage ditches could get the best effect in controlling contaminant diffusion, and the discharge rate was to be reduced to 111.43 m3/d. Therefore, the comprehensive remedial alternative combining ground-harden with drainage ditch will be recommended for preventing groundwater contamination when leachate leakage has happened in unregulated landfills.

  18. Three candidate treatment technologies for remediating Hanford Site watch-list tanks

    SciTech Connect

    Colby, S.A.

    1993-02-01

    A major Hanford Site tank pretreatment objective is to resolve the tank safety issues regarding organic compounds (and accompanied hydrogen generation), which can all potentially react to evolve heat and gases. This paper reports scoping test results of three candidate waste pretreatment processes to oxidize organic compounds contained in the Hanford Site's radioactive waste storage tanks. Ozone oxidation, electrochemical oxidation, and calcination/dissolution were tested for their ability to destroy tank waste organics using a nonradioactive simulated tank waste.

  19. Three candidate treatment technologies for remediating Hanford Site watch-list tanks

    SciTech Connect

    Colby, S.A.

    1993-02-01

    A major Hanford Site tank pretreatment objective is to resolve the tank safety issues regarding organic compounds (and accompanied hydrogen generation), which can all potentially react to evolve heat and gases. This paper reports scoping test results of three candidate waste pretreatment processes to oxidize organic compounds contained in the Hanford Site`s radioactive waste storage tanks. Ozone oxidation, electrochemical oxidation, and calcination/dissolution were tested for their ability to destroy tank waste organics using a nonradioactive simulated tank waste.

  20. Evaluation of Geochemical Processes Affecting Uranium Sequestration and Longevity of Permeable Reactive Barriers for Groundwater Remediation

    NASA Astrophysics Data System (ADS)

    Fuller, C. C.; Webb, S.; Bargar, J.; Naftz, D. L.

    2009-12-01

    Development of effective remediation techniques for protecting existing drinking water supplies and for mitigating existing contamination problems requires evaluating both the contaminant sequestration processes and the secondary reactions affecting the long term stability of contaminant attenuation. Permeable reactive barriers (PRB) provide a means for passive remediation of dissolved groundwater contaminants and may be an effective strategy for remediation of uranium (U) groundwater contamination provided that long term stability of the sequestered U can be achieved for the geochemical conditions of the aquifer expected subsequent to remediation. Understanding the chemical reaction mechanisms resulting in U uptake and PRB performance are critical to evaluating the potential for release of sequestered U and for improved design of remediation devices. We are using synchrotron X-ray techniques to investigate U sequestration reaction mechanisms and biogeochemical processes in PRB materials recovered from a 9-year field demonstration of zero-valent iron (ZVI) and bone char apatite PRBs in a U contaminated aquifer near Fry Canyon, Utah. X-ray microprobe mapping of iron phases shows that extensive secondary precipitation of mackinawite, siderite and aragonite in the ZVI PRB has resulted from ZVI corrosion coupled with microbial sulfate reduction. Bulk U-EXAFS measurements and micron-scale U-oxidation state mapping indicates that U removal occurs largely by reduction and precipitation of a UO2-like U(IV) phase on the ZVI surfaces, and that the sequestered U is often buried by the secondary Fe precipitates. These findings are significant to the efficacy of ZVI PRBs for remediation of U and other contaminants in that the ongoing secondary phase precipitation cements grains and fills internal porosity resulting in the observed decreased PRB permeability and limits subsequent U removal, but likely limits oxidative remobilization of U. In the bone char apatite PRB, elevated

  1. Development of a three-dimensional ground-water model of the Hanford Site unconfined aquifer system: FY 1995 status report

    SciTech Connect

    Wurstner, S.K.; Thorne, P.D.; Chamness, M.A.; Freshley, M.D.; Williams, M.D.

    1995-12-01

    A three-dimensional numerical model of ground-water flow was developed for the uppermost unconfined aquifer at the Hanford Site in south-central Washington. Development of the model is supported by the Hanford Site Ground-Water Surveillance Project, managed by the Pacific Northwest National Laboratory, which is responsible for monitoring the sitewide movement of contaminants in ground water beneath the Hanford Site. Two objectives of the Ground-Water Surveillance Project are to (1) identify and quantify existing, emerging, or potential ground-water quality problems, and (2) assess the potential for contaminants to migrate from the Hanford Site through the ground-water pathway. Numerical models of the ground-water flow system are important tools for estimating future aquifer conditions and predicting the movement of contaminants through ground water. The Ground-Water Surveillance Project has supported development and maintenance of a two-dimensional model of the unconfined aquifer. This report describes upgrade of the two-dimensional model to a three-dimensional model. The numerical model is based on a three-dimensional conceptual model that will be continually refined and updated as additional information becomes available. This report presents a description of the three-dimensional conceptual model of ground-water flow in the unconfined aquifer system and then discusses the cur-rent state of the three-dimensional numerical model.

  2. Comparison of Field Groundwater Biostimulation Experiments Using Polylactate and Lactate Solutions at the Chromium-Contaminated Hanford 100-H Site

    NASA Astrophysics Data System (ADS)

    Hazen, T. C.; Faybishenko, B.; Beller, H. R.; Brodie, E. L.; Sonnenthal, E. L.; Steefel, C.; Larsen, J.; Conrad, M. E.; Bill, M.; Christensen, J. N.; Brown, S. T.; Joyner, D.; Borglin, S. E.; Geller, J. T.; Chakraborty, R.; Nico, P. S.; Long, P. E.; Newcomer, D. R.; Arntzen, E.

    2011-12-01

    The primary contaminant of concern in groundwater at the DOE Hanford 100 Area (Washington State) is hexavalent chromium [Cr(VI)] in Hanford coarse-grained sediments. Three lactate injections were conducted in March, August, and October 2010 at the Hanford 100-H field site to assess the efficacy of in situ Cr(VI) bioreductive immobilization. Each time, 55 gal of lactate solution was injected into the Hanford aquifer. To characterize the biogeochemical regimes before and after electron donor injection, we implemented a comprehensive plan of groundwater sampling for microbial, geochemical, and isotopic analyses. These tests were performed to provide evidence of transformation of toxic and soluble Cr(VI) into less toxic and poorly soluble Cr(III) by bioimmobilization, and to quantify critical and interrelated microbial metabolic and geochemical mechanisms affecting chromium in situ reductive immobilization and the long-term sustainability of chromium bioremediation. The results of lactate injections were compared with data from two groundwater biostimulation tests that were conducted in 2004 and 2008 by injecting Hydrogen Release Compound (HRC°), a slow-release glycerol polylactate, into the Hanford aquifer. In all HRC and lactate injection tests, 13C-labeled lactate was added to the injected solutions to track post-injection carbon pathways. Monitoring showed that despite a very low initial total microbial density (from <104 to 105 cells/mL), both HRC and lactate injections stimulated anaerobic microbial activity, which led to an increase in biomass to >107 cells/mL (including sulfate- and nitrate-reducing bacteria), resulting in a significant decrease in soluble Cr(VI) concentrations to below the MCL. In all tests, lactate was consumed nearly completely within the first week, much faster than HRC. Modeling of biogeochemical and isotope fractionation processes with the reaction-transport code TOUGHREACT captured the biodegradation of lactate, fermentative production

  3. A procedure to design a Permeable Adsorptive Barrier (PAB) for contaminated groundwater remediation.

    PubMed

    Erto, A; Lancia, A; Bortone, I; Di Nardo, A; Di Natale, M; Musmarra, D

    2011-01-01

    A procedure to optimize the design of a Permeable Adsorptive Barrier (PAB) for the remediation of a contaminated aquifer is presented in this paper. A computer code, including different routines that describe the groundwater contaminant transport and the pollutant capture by adsorption in unsteady conditions over the barrier solid surface, has been developed. The complete characterization of the chemical-physical interactions between adsorbing solids and the contaminated water, required by the computer code, has been obtained by experimental measurements. A case study in which the procedure developed has been applied to a tetrachloroethylene (PCE)-contaminated aquifer near a solid waste landfill, in the district of Napoli (Italy), is also presented and the main dimensions of the barrier (length and width) have been evaluated. Model results show that PAB is effective for the remediation of a PCE-contaminated aquifer, since the concentration of PCE flowing out of the barrier is everywhere always lower than the concentration limit provided for in the Italian regulations on groundwater quality. PMID:20846781

  4. Application of Biostimulation for Remediation of Sulfate-Contaminated Groundwater at a Mining Site

    NASA Astrophysics Data System (ADS)

    Miao, Z.; Carroll, K. C.; Carreon, C.; Brusseau, M. L.

    2011-12-01

    There is growing concern regarding sulfate contamination of groundwater. One innovative in-situ remediation option under investigation is biostimulation through addition of electron-donor amendments to enhance sulfate reduction. Two pilot-scale ethanol-injection tests were conducted at a former uranium mining site that is contaminated with sulfate and nitrate (with a lack of heavy metals), and for which there appears to be minimal natural attenuation of sulfate. The first test was a push-pull test that had a limited zone of influence, while the second test was a single-well injection test in which additional downgradient wells were monitored. For both tests, sulfate concentrations began to decline within a few weeks of injection, after nitrate concentrations were significantly reduced. Concomitantly, aqueous concentrations of manganese, iron, and hydrogen sulfide increased from background. Monitoring over many months revealed that the declines in sulfate concentration conformed to exponential decay, with first-order decay rates of approximately 0.01 /d. Analysis of sulfur stable isotope data indicated that the decrease in sulfate concentrations was microbially mediated. The results also indicated that sulfides formed during sulfate reduction may have undergone partial re-oxidation. This study illustrates the feasibility of using ethanol injection for remediation of sulfate-contaminated groundwater. However, re-oxidation of sulfides (both metal sulfide precipitates and hydrogen sulfide gas) is a potential issue of significance that would need to be addressed.

  5. The option to abandon: stimulating innovative groundwater remediation technologies characterized by technological uncertainty.

    PubMed

    Compernolle, T; Van Passel, S; Huisman, K; Kort, P

    2014-10-15

    Many studies on technology adoption demonstrate that uncertainty leads to a postponement of investments by integrating a wait option in the economic analysis. The aim of this study however is to demonstrate how the investment in new technologies can be stimulated by integrating an option to abandon. Furthermore, this real option analysis not only considers the ex ante decision analysis of the investment in a new technology under uncertainty, but also allows for an ex post evaluation of the investment. Based on a case study regarding the adoption of an innovative groundwater remediation strategy, it is demonstrated that when the option to abandon the innovative technology is taken into account, the decision maker decides to invest in this technology, while at the same time it determines an optimal timing to abandon the technology if its operation proves to be inefficient. To reduce uncertainty about the effectiveness of groundwater remediation technologies, samples are taken. Our analysis shows that when the initial belief in an effective innovative technology is low, it is important that these samples provide correct information in order to justify the adoption of the innovative technology. PMID:25063916

  6. Chromium-Removal Processes during Groundwater Remediation by a Zerovalent Iron Permeable Reactive Barrier

    SciTech Connect

    Wilkin, Richard T.; Su, Chunming; Ford, Robert G.; Paul, Cynthia J.

    2008-06-09

    Solid-phase associations of chromium were examined in core materials collected from a full-scale, zerovalent iron permeable reactive barrier (PRB) at the U.S. Coast Guard Support Center located near Elizabeth City, NC. The PRB was installed in 1996 to treat groundwater contaminated with hexavalent chromium. After eight years of operation, the PRB remains effective at reducing concentrations of Cr from average values >1500 {micro}g L{sup -1} in groundwater hydraulically upgradient of the PRB to values <1 {micro}g L{sup -1} in groundwater within and hydraulically downgradient of the PRB. Chromium removal from groundwater occurs at the leading edge of the PRB and also within the aquifer immediately upgradient of the PRB. These regions also witness the greatest amount of secondary mineral formation due to steep geochemical gradients that result from the corrosion of zerovalent iron. X-ray absorption near-edge structure (XANES) spectroscopy indicated that chromium is predominantly in the trivalent oxidation state, confirming that reductive processes are responsible for Cr sequestration. XANES spectra and microscopy results suggest that Cr is, in part, associated with iron sulfide grains formed as a consequence of microbially mediated sulfate reduction in and around the PRB. Results of this study provide evidence that secondary iron-bearing mineral products may enhance the capacity of zerovalent iron systems to remediate Cr in groundwater, either through redox reactions at the mineral-water interface or by the release of Fe(II) to solution via mineral dissolution and/or metal corrosion.

  7. In situ stimulation of groundwater denitrification with formate to remediate nitrate contamination

    USGS Publications Warehouse

    Smith, R.L.; Miller, D.N.; Brooks, M.H.; Widdowson, M.A.; Killingstad, M.W.

    2001-01-01

    In situ stimulation of denitrification has been proposed as a mechanism to remediate groundwater nitrate contamination. In this study, sodium formate was added to a sand and gravel aquifer on Cape Cod, MA, to test whether formate could serve as a potential electron donor for subsurface denitrification. During 16- and 10-day trials, groundwater from an anoxic nitrate-containing zone (0.5-1.5 mM) was continuously withdrawn, amended with formate and bromide, and pumped back into the aquifer. Concentrations of groundwater constituents were monitored in multilevel samplers after up to 15 m of transport by natural gradient flow. Nitrate and formate concentrations were decreased 80-100% and 60-70%, respectively, with time and subsequent travel distance, while nitrite concentrations inversely increased. The field experiment breakthrough curves were simulated with a two-dimensional site-specific model that included transport, denitrification, and microbial growth. Initial values for model parameters were obtained from laboratory incubations with aquifer core material and then refined to fit field breakthrough curves. The model and the lab results indicated that formate-enhanced nitrite reduction was nearly 4-fold slower than nitrate reduction, but in the lab, nitrite was completely consumed with sufficient exposure time. Results of this study suggest that a long-term injection of formate is necessary to test the remediation potential of this approach for nitrate contamination and that adaptation to nitrite accumulation will be a key determinative factor.In situ stimulation of denitrification has been proposed as a mechanism to remediate groundwater nitrate contamination. In this study, sodium formate was added to a sand and gravel aquifer on Cape Cod, MA, to test whether formate could serve as a potential electron donor for subsurface denitrification. During 16- and 10-day trials, groundwater from an anoxic nitrate-containing zone (0.5-1.5 mM) was continuously withdrawn

  8. Biodenitrification of Hanford groundwater and process effluents: FY 1988 Status Report

    SciTech Connect

    Koegler, S.S.; Brouns, T.M.; Heath, W.O.; Hicks, R.J.

    1989-09-01

    Laboratory screening tests were performed to select microorganisms for their ability to destroy nitrates and carbon tetrachloride in Hanford groundwaters. The microorganisms were subsequently tested in bench-scale experiments to determine the fundamental kinetic constants for denitrification with acetate. The microorganisms were also used as the inoculum for the pilot-scale bioreactor system, which was designed, constructed, and operated in FY 1988. The bench-scale denitrification kinetic data were analyzed using two rate models. The best fit was obtained using a first-order expression. The kinetic constants determined in the bench-scale experiments were later used to set operating parameters for the pilot-scale bioreactor test. The pilot-scale bioreactor system consisted of a 50-L continuous-stirred tank bioreactor, a 280-L clarifier, associated feed components, and a data acquisition and control system. The pilot plant was designed as a module for ease of installation and to facilitate relocation for on-site demonstration testing. The pilot-scale bioreactor was installed and operated in FY 1988, but steady-state operating data are not yet available. Preliminary denitrification data show destruction of nitrate to concentrations less than drinking water standards. A preliminary engineering evaluation was also completed in FY 1988 that examined the engineering feasibility of biodenitrification for the UO{sub 3} Plant process condensate through microorganism laboratory testing, development of flowsheets, and equipment size and cost estimates. 15 refs., 16 figs., 8 tabs.

  9. Optimal groundwater remediation design: Methodologies and software for contaminated aquifers. Final report

    SciTech Connect

    Dougherty, D.E.

    1994-10-31

    This document comprises the final report of work performed under sub-contract B-239648 between the Lawrence Livermore National Laboratory (LLNL) and the University of Vermont (UVM). This contract was subsidiary to one between LLNL and the U.S. Department of Energy (DOE). This project had the goal of developing tools and strategies regarding how and where and when to apply the environmental restoration (ER) technologies that are under development. The development of decision support software for advanced environmental remediation technologies is tentative; many of the ER technologies are poorly understood, the applicability of methods to new untested sites is questionable, the ability to predict the effects of alternative remediation designs is very limited, and there are a large number of uncertainties associated with processes and parameters (physical, chemical, and biological), contaminants (distribution and type), and sociopolitical environment. Nevertheless, the potential for significant savings by using optimal design methods and the need to make decisions regardless of uncertainties has made this project worthy. A stop-work order was received in September 1994. An additional upper limit of $15,000 was provided for project termination activities, including report preparation. One of four deliverables was completed and provided to LLNL. MODLP is a computational tool for use in groundwater remediation design. It is a FORTRAN program that incorporates the well known and widely used MODFLOW simulator to represent flow of water in a saturated natural porous medium. MODLP is designed to allow the user to create and solve optimization problems for hydraulic control in groundwater systems. Inasmuch as environmental restoration costs are very large, savings of on the order of ten percent represent significant amounts, and optimal design has been demonstrated to help produce savings larger than ten percent, these activities have an important role to play within DOE.

  10. Permeable Adsorptive Barrier (PAB) for the remediation of groundwater simultaneously contaminated by some chlorinated organic compounds.

    PubMed

    Erto, A; Bortone, I; Di Nardo, A; Di Natale, M; Musmarra, D

    2014-07-01

    In this paper, a Permeable Reactive Barrier (PRB) made with activated carbon, namely a Permeable Adsorptive Barrier (PAB), is put forward as an effective technique for the remediation of aquifers simultaneously contaminated by some chlorinated organic compounds. A design procedure, based on a computer code and including different routines, is presented as a tool to accurately describe mass transport within the aquifer and adsorption/desorption phenomena occurring inside the barrier. The remediation of a contaminated aquifer near a solid waste landfill in the district of Napoli (Italy), where Tetrachloroethylene (PCE) and Trichloroethylene (TCE) are simultaneously present, is considered as a case study. A complete hydrological and geotechnical site characterization, as well as a number of dedicated adsorption laboratory tests for the determination of activated carbon PCE/TCE adsorption capacity in binary systems, are carried out to support the barrier design. By means of a series of numerical simulations it is possible to determine the optimal barrier location, orientation and dimensions. PABs appear to be an effective remediation tool for the in-situ treatment of an aquifer contaminated by PCE and TCE simultaneously, as the concentration of both compounds flowing out of the barrier is everywhere lower than the regulatory limits on groundwater quality. PMID:24747934

  11. Uranium Contamination in the Subsurface Beneath the 300 Area, Hanford Site, Washington

    SciTech Connect

    Peterson, Robert E.; Rockhold, Mark L.; Serne, R. Jeffrey; Thorne, Paul D.; Williams, Mark D.

    2008-02-29

    This report provides a description of uranium contamination in the subsurface at the Hanford Site's 300 Area. The principal focus is a persistence plume in groundwater, which has not attenuated as predicted by earlier remedial investigations. Included in the report are chapters on current conditions, hydrogeologic framework, groundwater flow modeling, and geochemical considerations. The report is intended to describe what is known or inferred about the uranium contamination for the purpose of making remedial action decisions.

  12. LITERATURE SURVEY FOR GROUNDWATER TREATMENT OPTIONS FOR NITRATE IODINE-129 AND URANIUM 200-ZP-1 OPERABLE UNIT HANFORD SITE

    SciTech Connect

    BYRNES ME

    2008-06-05

    This literature review presents treatment options for nitrate, iodine-129, and uranium, which are present in groundwater at the 200-ZP-I Groundwater Operable Unit (OU) within the 200 West Area of the Hanford Site. The objective of this review is to determine available methods to treat or sequester these contaminants in place (i.e., in situ) or to pump-and-treat the groundwater aboveground (i.e., ex situ). This review has been conducted with emphasis on commercially available or field-tested technologies, but theoretical studies have, in some cases, been considered when no published field data exist. The initial scope of this literature review included only nitrate and iodine-I 29, but it was later expanded to include uranium. The focus of the literature review was weighted toward researching methods for treatment of nitrate and iodine-129 over uranium because of the relatively greater impact of those compounds identified at the 200-ZP-I OU.

  13. Implementing heterogeneous catalytic dechlorination technology for remediating TCE-contaminated groundwater.

    PubMed

    Davie, Matthew G; Cheng, Hefa; Hopkins, Gary D; Lebron, Carmen A; Reinhard, Martin

    2008-12-01

    To transition catalytic reductive dechlorination (CRD) into practice, it is necessary to demonstrate the effectiveness, robustness, and economic competitiveness of CRD-based treatment systems. A CRD system scaled up from previous laboratory studies was tested for remediating groundwater contaminated with 500-1200 microg L(-1) trichloroethylene (TCE) at Edwards Air Force Base (AFB), California. Groundwater was pumped from a treatment well at 2 gal min(-1), amended with hydrogen to 0.35 mg L(-1) and contacted for 2.3 min with 20 kg eggshell-coated Pd on alumina beads (2% Pd by wt) packed in a fixed-bed reactor, and then returned to the aquifer. Operation was continuous for 23 h followed a 1 h regeneration cycle. After regeneration, TCE removal was 99.8% for 4 to 9 h and then declined to 98.3% due to catalyst deactivation. The observed catalyst deactivation was tentatively attributed to formation of sulfidic compounds; modeling of catalyst deactivation kinetics suggests the presence of sulfidic species equivalent to 2-4 mg L(-1) hydrogen sulfide in the reactor water. Over the more than 100 day demonstration period, TCE concentrations in the treated groundwater were reduced by >99% to an average concentration of 4.1 microg L(-1). The results demonstrate CRD as a viable treatment alternative technically and economically competitive with activated carbon adsorption and other conventional physicochemical treatmenttechnologies. PMID:19192817

  14. The use of zero-valent iron and ultrasonic energy for in-situ groundwater remediation

    SciTech Connect

    Afiouni, G.F.; Clausen, C.A.; Geiger, C.L.; Reinhart, D.; Ruiz, N.E.

    1996-12-31

    Contamination in groundwater in general and drinking water in particular has become a major concern in the twentieth century. EPA strictly regulates the amount of acceptable contamination to extremely low levels for chemical industries. Old techniques, such as pump-and-treat, has proven to have some limitation in dropping the concentrations to acceptable levels thus forcing research groups to look into other alternatives for groundwater remediation. A new technique is to implement an in situ treatment of groundwater depending mainly on the natural water flow through a treatment wall. This active wall would consist of zero-valent-iron, with high surface area to mass ratio, in order to accelerate the kinetics of the dehalogenation of chlorinated organic molecules, mainly trichloroethylene TCE, into environmentally acceptable hydrocarbons that can be consumed by microorganisms underground. In addition, ultrasonic chemistry is co-applied in order to replenish the oxidized metal surface area i.e. to help in maintaining wall activity which theoretically should increase the wall lifetime. Data from both batch and column reactions show the feasibility of such a procedure. Kinetic data will be presented.

  15. Natural attenuation processes for remediation of arsenic contaminated soils and groundwater.

    PubMed

    Wang, Suiling; Mulligan, Catherine N

    2006-12-01

    Arsenic (As) contamination presents a hazard in many countries. Natural attenuation (NA) of As-contaminated soils and groundwater may be a cost-effective in situ remedial option. It relies on the site intrinsic assimilative capacity and allows in-place cleanup. Sorption to solid phases is the principal mechanism immobilizing As in soils and removing it from groundwater. Hydroxides of iron, aluminum and manganese, clay and sulfide minerals, and natural organic matter are commonly associated with soils and aquifer sediments, and have been shown to be significant As adsorbents. The extent of sorption is influenced by As speciation and the site geochemical conditions such as pH, redox potential, and the co-occurring ions. Microbial activity may catalyze the transformation of As species, or mediate redox reactions thus influencing As mobility. Plants that are capable of hyperaccumulating As may translocate As from contaminated soils and groundwater to their tissues, providing the basis for phytoremediation. However, NA is subject to hydrological changes and may take substantial periods of time, thus requiring long-term monitoring. The current understanding of As NA processes remains limited. Sufficient site characterization is critical to the success of NA. Further research is required to develop conceptual and mathematical models to predict the fate and transport of As and to evaluate the site NA capacity. Engineering enhanced NA using environmentally benign products may be an effective alternative. PMID:17049728

  16. Subsurface Transport Behavior of Micro-Nano Bubbles and Potential Applications for Groundwater Remediation

    PubMed Central

    Li, Hengzhen; Hu, Liming; Song, Dejun; Al-Tabbaa, Abir

    2013-01-01

    Micro-nano bubbles (MNBs) are tiny bubbles with diameters on the order of micrometers and nanometers, showing great potential in environmental remediation. However, the application is only in the beginning stages and remains to be intensively studied. In order to explore the possible use of MNBs in groundwater contaminant removal, this study focuses on the transport of MNBs in porous media and dissolution processes. The bubble diameter distribution was obtained under different conditions by a laser particle analyzer. The permeability of MNB water through sand was compared with that of air-free water. Moreover, the mass transfer features of dissolved oxygen in water with MNBs were studied. The results show that the bubble diameter distribution is influenced by the surfactant concentration in the water. The existence of MNBs in pore water has no impact on the hydraulic conductivity of sand. Furthermore, the dissolved oxygen (DO) in water is greatly increased by the MNBs, which will predictably improve the aerobic bioremediation of groundwater. The results are meaningful and instructive in the further study of MNB research and applications in groundwater bioremediation. PMID:24380978

  17. [Experimental study on the remediation of chromium contaminated groundwater with PRB media].

    PubMed

    Zhu, Wen-Hui; Dong, Liang-Fei; Wang, Xing-Run; Zhai, Ya-Li

    2013-07-01

    Due to the surface reaction between zero-valent iron and Cr(VI), iron cannot be fully utilized in the Fe(0)-Permeable Reactive Barrier(PRB), and the PRB is prone to compaction and blockage. In order to resolve these problems, iron powder coated with different polymer was tested in the treatment of chromium-polluted groundwater. Experimental results demonstrated that sodium alginate (SA) was the best package materials. According to analysis with FEI and EDX, pore structures were created by cross-linking of SA with Ca2+, in which a lot of attaching points exist, and through which Cr(VI) could react with interior iron powder. SA coating cast iron (SAC) and reduced iron (SAR) were tested in the treatment of chromium-polluted groundwater individually; the results showed that the removal efficiency of Cr( VI) by SAC was double that by SAR. After optimization of technology parameters of SAC, the Cr(VI) removal process follows the pseudo first-order kinetics. Based on dynamic experiments with SAC, Cr(VI)/Fe(0) was up to 32.25 mg x g(-1) and the PRB maintained high permeability coefficient (2.38 cm x s(-1)) after complete reaction. Compared with cast iron media is feasible in the remediation of chromium contaminated groundwater. PMID:24028003

  18. Supplemental Assessment of the Y-12 Groundwater Protection Program Using Monitoring and Remediation Optimization System Software

    SciTech Connect

    Elvado Environmental LLC; GSI Environmental LLC

    2009-01-01

    A supplemental quantitative assessment of the Groundwater Protection Program (GWPP) at the Y-12 National Security Complex (Y-12) in Oak Ridge, TN was performed using the Monitoring and Remediation Optimization System (MAROS) software. This application was previously used as part of a similar quantitative assessment of the GWPP completed in December 2005, hereafter referenced as the 'baseline' MAROS assessment (BWXT Y-12 L.L.C. [BWXT] 2005). The MAROS software contains modules that apply statistical analysis techniques to an existing GWPP analytical database in conjunction with hydrogeologic factors, regulatory framework, and the location of potential receptors, to recommend an improved groundwater monitoring network and optimum sampling frequency for individual monitoring locations. The goal of this supplemental MAROS assessment of the Y-12 GWPP is to review and update monitoring network optimization recommendations resulting from the 2005 baseline report using data collected through December 2007. The supplemental MAROS assessment is based on the findings of the baseline MAROS assessment and includes only the groundwater sampling locations (wells and natural springs) currently granted 'Active' status in accordance with the Y-12 GWPP Monitoring Optimization Plan (MOP). The results of the baseline MAROS assessment provided technical rationale regarding the 'Active' status designations defined in the MOP (BWXT 2006). One objective of the current report is to provide a quantitative review of data collected from Active but infrequently sampled wells to confirm concentrations at these locations. This supplemental MAROS assessment does not include the extensive qualitative evaluations similar to those presented in the baseline report.

  19. Subsurface transport behavior of micro-nano bubbles and potential applications for groundwater remediation.

    PubMed

    Li, Hengzhen; Hu, Liming; Song, Dejun; Al-Tabbaa, Abir

    2014-01-01

    Micro-nano bubbles (MNBs) are tiny bubbles with diameters on the order of micrometers and nanometers, showing great potential in environmental remediation. However, the application is only in the beginning stages and remains to be intensively studied. In order to explore the possible use of MNBs in groundwater contaminant removal, this study focuses on the transport of MNBs in porous media and dissolution processes. The bubble diameter distribution was obtained under different conditions by a laser particle analyzer. The permeability of MNB water through sand was compared with that of air-free water. Moreover, the mass transfer features of dissolved oxygen in water with MNBs were studied. The results show that the bubble diameter distribution is influenced by the surfactant concentration in the water. The existence of MNBs in pore water has no impact on the hydraulic conductivity of sand. Furthermore, the dissolved oxygen (DO) in water is greatly increased by the MNBs, which will predictably improve the aerobic bioremediation of groundwater. The results are meaningful and instructive in the further study of MNB research and applications in groundwater bioremediation. PMID:24380978

  20. Clean option: An alternative strategy for Hanford Tank Waste Remediation. Volume 2, Detailed description of first example flowsheet

    SciTech Connect

    Swanson, J.L.

    1993-09-01

    Disposal of high-level tank wastes at the Hanford Site is currently envisioned to divide the waste between two principal waste forms: glass for the high-level waste (HLW) and grout for the low-level waste (LLW). The draft flow diagram shown in Figure 1.1 was developed as part of the current planning process for the Tank Waste Remediation System (TWRS), which is evaluating options for tank cleanup. The TWRS has been established by the US Department of Energy (DOE) to safely manage the Hanford tank wastes. It includes tank safety and waste disposal issues, as well as the waste pretreatment and waste minimization issues that are involved in the ``clean option`` discussed in this report. This report describes the results of a study led by Pacific Northwest Laboratory to determine if a more aggressive separations scheme could be devised which could mitigate concerns over the quantity of the HLW and the toxicity of the LLW produced by the reference system. This aggressive scheme, which would meet NRC Class A restrictions (10 CFR 61), would fit within the overall concept depicted in Figure 1.1; it would perform additional and/or modified operations in the areas identified as interim storage, pretreatment, and LLW concentration. Additional benefits of this scheme might result from using HLW and LLW disposal forms other than glass and grout, but such departures from the reference case are not included at this time. The evaluation of this aggressive separations scheme addressed institutional issues such as: radioactivity remaining in the Hanford Site LLW grout, volume of HLW glass that must be shipped offsite, and disposition of appropriate waste constituents to nonwaste forms.

  1. Remediation of Nitrate-contaminated Groundwater by a Mixture of Iron and Activated Carbon

    NASA Astrophysics Data System (ADS)

    Huang, Guoxin; Liu, Fei; Jin, Aifang; Qin, Xiaopeng

    2010-11-01

    Nitrate contamination in groundwater has become a major environmental and health problem worldwide. The aim of the present study is to remediate groundwater contaminated by nitrate and develop potential reactive materials to be used in PRBs (Permeable Reactive Barriers). A new approach was proposed for abiotic groundwater remediation by reactive materials of iron chips and granular activated carbon particles. Batch tests were conducted and remediation mechanisms were discussed. The results show that nitrate decreases from 86.31 to 33.79 mgṡL-1 under the conditions of near neutral pH and reaction time of 1h. The combination of iron chips and activated carbon particles is cost-effective and suitable for further use as denitrification media in PRBs. Nitrogen species don't change significantly with the further increase in reaction time (>1 h). The iron-activated carbon-water-nitrate system tends to be steady-state. Small amounts of ammonium and nitrite (0.033-0.039 and 0.14-3.54 mgṡL-1, respectively) appear at reaction time from 0 h to 5 h. There is no substantial accumulation of nitrogen products in the system. The removal rate of nitrate only reaches 16.11% by sole iron chips at reaction time of 5 h, while 63.57% by the mixture of iron chips and activated carbon particles. There is significantly synergistic and promotive effect of mixing the two different types of materials on nitrate treatment. Fe/C ratio (1/1.5-1/2.5) doesn't cause dramatically different residual nitrate concentrations (24.09-26.70 mgṡL-1). Nitrate can't be limitlessly decreased with decreasing Fe/C ratio. The concomitant occurrences of chemical reduction, galvanic cell reaction, electrophoretic accumulation, chemical coagulation, and physical adsorption are all responsible for the overall nitrate removal by iron allied with activated carbon. To accurately quantify various nitrogen species, further studies on adsorption mechanisms of nitrite and nitrate are needed.

  2. USEPA'S RESEARCH PROGRAM ON REMEDIATION AND CONTAINMENT OF ARSENIC AND MERCURY IN SOILS, INDUSTRIAL WASTES, AND GROUNDWATER

    EPA Science Inventory

    In the U.S. and around the world, mercury and arsenic contaminated soils, industrial wastes, and groundwater are difficult to effectively and cheaply remediate and contain. Mercury is a serious health concern and has been identified as a contaminant in the air, soil, sediment, su...

  3. Optimal design of groundwater remediation system using a probabilistic multi-objective fast harmony search algorithm under uncertainty

    NASA Astrophysics Data System (ADS)

    Luo, Qiankun; Wu, Jianfeng; Yang, Yun; Qian, Jiazhong; Wu, Jichun

    2014-11-01

    This study develops a new probabilistic multi-objective fast harmony search algorithm (PMOFHS) for optimal design of groundwater remediation systems under uncertainty associated with the hydraulic conductivity (K) of aquifers. The PMOFHS integrates the previously developed deterministic multi-objective optimization method, namely multi-objective fast harmony search algorithm (MOFHS) with a probabilistic sorting technique to search for Pareto-optimal solutions to multi-objective optimization problems in a noisy hydrogeological environment arising from insufficient K data. The PMOFHS is then coupled with the commonly used flow and transport codes, MODFLOW and MT3DMS, to identify the optimal design of groundwater remediation systems for a two-dimensional hypothetical test problem and a three-dimensional Indiana field application involving two objectives: (i) minimization of the total remediation cost through the engineering planning horizon, and (ii) minimization of the mass remaining in the aquifer at the end of the operational period, whereby the pump-and-treat (PAT) technology is used to clean up contaminated groundwater. Also, Monte Carlo (MC) analysis is employed to evaluate the effectiveness of the proposed methodology. Comprehensive analysis indicates that the proposed PMOFHS can find Pareto-optimal solutions with low variability and high reliability and is a potentially effective tool for optimizing multi-objective groundwater remediation problems under uncertainty.

  4. REMOVAL OF ADDED NITRATE IN COTTON BURR COMPOST, MULCH COMPOST, AND PEAT: MECHANISMS AND POTENTIAL USE FOR GROUNDWATER NITRATE REMEDIATION

    EPA Science Inventory

    We conducted batch tests on the nature and kinetics of removal of added nitrate in cotton burr compost, mulch compost, and sphagnum peat that may be potentially used in a permeable reactive barrier (PRB) for groundwater nitrate remediation. A rigorous steam autoclaving protocol (...

  5. Tracking sources of unsaturated zone and groundwater nitrate contamination using nitrogen and oxygen stable isotopes at the Hanford site, Washington.

    PubMed

    Singleton, Michael J; Woods, Katharine N; Conrad, Mark E; Depaolo, Donald J; Dresel, P Evan

    2005-05-15

    The nitrogen and oxygen isotopic compositions of nitrate in pore water extracts from unsaturated zone (UZ) core samples and groundwater samples indicate at least four potential sources of nitrate in groundwaters at the U.S. DOE Hanford Site in south-central Washington. Natural sources of nitrate identified include microbially produced nitrate from the soil column (delta15N of 4 - 8 per thousand, delta18O of -9 to 2 per thousand) and nitrate in buried caliche layers (delta15N of 0-8 per thousand, delta 18O of -6to 42 per thousand). Isotopically distinctindustrial sources of nitrate include nitric acid in low-level disposal waters (delta15N approximately per thousand, delta 18O approximately 23%o) per thousandnd co-contaminant nitrate in high-level radioactive waste from plutonium processing (6'5delta1of 8-33 % o, per thousand18delta oO -9 to 7%0). per thousandThe isotopic compositions of nitrate from 97 groundwater wells with concentrations up to 1290 mg/L NO3- have been analyzed. Stable isotope analyses from this study site, which has natural and industrial nitrate sources, provide a tool to distinguish nitrate sources in an unconfined aquiferwhere concentrations alone do not. These data indicate that the most common sources of high nitrate concentrations in groundwater at Hanford are nitric acid and natural nitrate flushed out of the UZ during disposal of low-level wastewater. Nitrate associated with high-level radioactive UZ contamination does not appear to be a major source of groundwater nitrate at this time. PMID:15952359

  6. Sealable joint steel sheet piling for groundwater control and remediation: Case histories

    SciTech Connect

    Smyth, D.; Jowett, R.; Gamble, M.

    1997-12-31

    The Waterloo Barrier{trademark} steel sheet piling (patents pending) incorporates a cavity at each interlocking joint that is flushed clean and injected with sealant after the piles have been driven into the ground to form a vertical cutoff wall. The installation and sealing procedures allow for a high degree of quality assurance and control. Bulk wall hydraulic conductivities of 10{sup -8} to 10{sup -10} cm/sec have been demonstrated at field installations. Recent case histories are presented in which Waterloo Barrier{trademark} cutoff walls are used to prevent off-site migration of contaminated groundwater or soil gases to adjacent property and waterways. Full enclosures to isolate DNAPL source zones or portions of contaminated aquifers for pilot-scale remediation testing will also be described. Monitoring data will be used to demonstrate the effectiveness of the Waterloo Barrier{trademark} in these applications.

  7. Development of Enhanced Remedial Techniques for Petroleum Fuel and Related Contaminants in Soil and Groundwater

    SciTech Connect

    Paul Fallgren

    2009-02-10

    Western Research Institute (WRI) in conjunction with Earth Tech and the U.S. Department of Energy (DOE) was to identify proper sites with soils and/or groundwater contaminated by petroleum constituents and MTBE. Biodegradation rates would have been quantitatively assessed in both laboratory and field tests to achieve the optimal destruction of contaminants of concern. WRI and Earth Tech identified a site contaminated with high concentrations of methanol associated with petroleum hydrocarbons. The site was assessed and a remediation project plan was prepared; however, the site was soon acquired by a new company. An agreement between Earth Tech, WRI, and the new site owners could not be reached; therefore, a work was performed to identify a new project site. Task 33 was terminated and the available funding was redeployed to other Tasks after receiving approval from the U.S. DOE task manager.

  8. Framework for Uncertainty Assessment - Hanford Site-Wide Groundwater Flow and Transport Modeling

    NASA Astrophysics Data System (ADS)

    Bergeron, M. P.; Cole, C. R.; Murray, C. J.; Thorne, P. D.; Wurstner, S. K.

    2002-05-01

    Pacific Northwest National Laboratory is in the process of development and implementation of an uncertainty estimation methodology for use in future site assessments that addresses parameter uncertainty as well as uncertainties related to the groundwater conceptual model. The long-term goals of the effort are development and implementation of an uncertainty estimation methodology for use in future assessments and analyses being made with the Hanford site-wide groundwater model. The basic approach in the framework developed for uncertainty assessment consists of: 1) Alternate conceptual model (ACM) identification to identify and document the major features and assumptions of each conceptual model. The process must also include a periodic review of the existing and proposed new conceptual models as data or understanding become available. 2) ACM development of each identified conceptual model through inverse modeling with historical site data. 3) ACM evaluation to identify which of conceptual models are plausible and should be included in any subsequent uncertainty assessments. 4) ACM uncertainty assessments will only be carried out for those ACMs determined to be plausible through comparison with historical observations and model structure identification measures. The parameter uncertainty assessment process generally involves: a) Model Complexity Optimization - to identify the important or relevant parameters for the uncertainty analysis; b) Characterization of Parameter Uncertainty - to develop the pdfs for the important uncertain parameters including identification of any correlations among parameters; c) Propagation of Uncertainty - to propagate parameter uncertainties (e.g., by first order second moment methods if applicable or by a Monte Carlo approach) through the model to determine the uncertainty in the model predictions of interest. 5)Estimation of combined ACM and scenario uncertainty by a double sum with each component of the inner sum (an individual CCDF

  9. Plutonium in groundwater at the 100K-Area of the U.S. DOE Hanford Site.

    PubMed

    Dai, Minhan; Buesseler, Ken O; Pike, Steven M

    2005-02-01

    We examined the concentration, size distribution, redox state and isotopic composition of plutonium (Pu) in groundwater at the 100K-Area at the U.S. Department of Energy's (DOE) Hanford Site. Total concentrations of Pu isotopes were extremely low (10(-4) to 10(-6) pCi/kg, approximately 10(4) to 10(6) atoms/kg) but measurable for the first time in the 100K-Area wells using mass spectrometric analyses that are much more sensitive than alpha spectroscopy methods used previously. Size fractionation data from two wells suggest that 7-29% of the Pu is associated with colloids, operationally defined here as particles between 1 kDa-0.2 microm in size. These colloids were collected using a 1 kDa cross-flow ultrafiltration (CFF) system developed specifically for groundwater actinide studies to include careful controls both in the field and during processing to ensure in situ geochemical conditions are maintained and size separations can be well characterized. Pu in this colloidal fraction was exclusively in the more reduced Pu(III/IV) form, consistent with the higher affinity of Pu in the lower oxidation states for particle surfaces. While the overall concentrations of Pu were low, the Pu isotopic composition suggests at least two local sources of groundwater Pu, namely, local Hanford reactor operations at the 100K-Area and spent nuclear fuel from the N-reactor, which was stored in concrete pools at this site. Differences between this site and the Savannah River Site (SRS) are noted, since groundwater Pu at the F-Area seepage basin at SRS has been found using these same methods, to be characterized by lower colloidal abundances and higher oxidation states. This difference is not directly attributable to groundwater redox potential or geochemical conditions, but rather the physical-chemical difference in Pu sources, which at SRS appear to be dominated downstream from the seepage basins by decay of 244Cm, resulting in more oxidized forms of 240Pu. There is no clear evidence

  10. Plutonium in groundwater at the 100K-Area of the U.S. DOE Hanford Site

    NASA Astrophysics Data System (ADS)

    Dai, Minhan; Buesseler, Ken O.; Pike, Steven M.

    2005-02-01

    We examined the concentration, size distribution, redox state and isotopic composition of plutonium (Pu) in groundwater at the 100K-Area at the U.S. Department of Energy's (DOE) Hanford Site. Total concentrations of Pu isotopes were extremely low (10 -4 to 10 -6 pCi/kg, ≈10 4 to 10 6 atoms/kg) but measurable for the first time in the 100K-Area wells using mass spectrometric analyses that are much more sensitive than alpha spectroscopy methods used previously. Size fractionation data from two wells suggest that 7-29% of the Pu is associated with colloids, operationally defined here as particles between 1 kDa-0.2 μm in size. These colloids were collected using a 1 kDa cross-flow ultrafiltration (CFF) system developed specifically for groundwater actinide studies to include careful controls both in the field and during processing to ensure in situ geochemical conditions are maintained and size separations can be well characterized. Pu in this colloidal fraction was exclusively in the more reduced Pu(III/IV) form, consistent with the higher affinity of Pu in the lower oxidation states for particle surfaces. While the overall concentrations of Pu were low, the Pu isotopic composition suggests at least two local sources of groundwater Pu, namely, local Hanford reactor operations at the 100K-Area and spent nuclear fuel from the N-reactor, which was stored in concrete pools at this site. Differences between this site and the Savannah River Site (SRS) are noted, since groundwater Pu at the F-Area seepage basin at SRS has been found using these same methods, to be characterized by lower colloidal abundances and higher oxidation states. This difference is not directly attributable to groundwater redox potential or geochemical conditions, but rather the physical-chemical difference in Pu sources, which at SRS appear to be dominated downstream from the seepage basins by decay of 244Cm, resulting in more oxidized forms of 240Pu. There is no clear evidence for colloid

  11. Laboratory Validation of Passive Flow Focusing of Horizontal Wells for in Situ Groundwater Remediation

    NASA Astrophysics Data System (ADS)

    DiMarco, A.; Crimi, M.; Holsen, T.; Bellona, C.; Kumarage, P.; Divine, C.; O'Fallon, T.

    2014-12-01

    A new concept for in situgroundwater remediation was recently developed where drilled horizontal wells filled with granular treatment media are installed in the direction of groundwater flow. Due to the differences in hydraulic conductivity (K) of the media in the well and the surrounding aquifer, groundwater is "focused" into the well and treated (Figure 1). Initial computer simulations demonstrate that the horizontal well will have a substantial capture zone making this a viable and appealing remediation strategy. In this work, a laboratory scale model was constructed to validate the computer simulations and determine the expected capture zone of a horizontal well under a range of hydraulic conductivity differentials. We have built a physical model to replicate a horizontal well in a confined aquifer. The model is constructed inside a 55-gallon drum packed with sand and water is pumped into the bottom of the drum and flows upward through the system. Within the aquifer, we installed a 1" screened well packed with lime-soda beads. To define the capture zone, we placed manometers in the aquifer. Finally, a constant head is applied to the system (Figure 2 and 3). Initial tests have shown that the 1" well with a hydraulic conductivity 65 times greater than the surrounding aquifer (kwell= 1.3 cm/sec vs. kaquifer= 0.02cm/sec) will capture a significant percentage (over 80% in some configurations) of the water applied to the system. A tracer test has shown that the water velocity in the well is substantially higher than the aquifer. Manometer readings confirm the flowfield effects of the well and these data are being used to calibrate numerical models. The presentation will focus on the observed behavior of the physical model under varying applied head and hydraulic conductivities and discuss the potential design implications for full-scale application.

  12. Influence of hexavalent chromium on lactate-enriched Hanford groundwater microbial communities.

    SciTech Connect

    Somenahally, Anil C; Mosher, Jennifer J; Yuan, Tong; Podar, Mircea; Phelps, Tommy Joe; Brown, Steven D; Yang, Zamin Koo; Hazen, Terry C; Arkin, Adam; Palumbo, Anthony Vito; Zhou, Jizhong; Elias, Dwayne A

    2013-01-01

    Microbial reduction and immobilization of chromate (Cr(VI)) is a plausible bioremediation strategy. However, higher Cr(VI) concentrations may impose stress on native Cr-reducing communities. We sought to determine if Cr(VI) would influence the lactate enriched native microbial community structure and function in groundwater from the Cr contaminated site at Hanford, WA. Steady state continuous flow bioreactors were amended with lactate and Cr(VI) (0.0, 0.1 and 3.0 mg/L). Microbial growth, metabolites, Cr(VI) concentrations, 16S rRNA gene sequences and GeoChip based functional gene composition in bioreactors were monitored for 15 weeks. Temporal trends and some differences in growth, metabolite profiles, and community composition were observed, largely between Low-Cr and High-Cr bioreactors. In both High-Cr and Low-Cr bioreactors, Cr(VI) was reduced in the bioreactors. With lactate enrichment, the native communities did not significantly differ between Cr concentrations. Native bacterial communities were diverse, whereas after lactate enrichment, Pelosinus spp., and Sporotalea spp., were the most predominant groups in all bioreactors. Similarly, the Archaea diversity significantly decreased from Methanosaeta (35%), Methanosarcina (17%), Halobacteriales (12%), Methanoregula (8%) and others, to mostly Methanosarcina spp. (95%) after lactate enrichment. Composition of several key functional genes was distinct in Low-Cr bioreactors compared to High-Cr. Among the Cr resistant probes (chrA), Burkholderia vietnamiensis, Comamonas testosterone and Ralstonia pickettii proliferated in Cr amended bioreactors. In-situ fermentative conditions facilitated Cr(VI) reduction, and as a result the 3.0 mg/L Cr(VI) did not appear to give chromate reducing strains a competitive advantage for proliferation or for increasing Cr-reduction.

  13. Remediation and cleanout levels for Hanford site single-shell tanks

    SciTech Connect

    Boothe, G.F.

    1995-12-31

    The Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1994), requires the retrieval of 99 percent of the Hanford Site single-shell tank (SST) waste. Retrieval of the waste requires the completion of saltwell pumping and then the sluicing of all 149 tanks, at a cost of over $3 billion. The retrieved waste is to be processed and vitrified for ultimate disposal as glass. This document shows that the intent of the Tri-Party Agreement can be met by sluicing the waste from only 86 tanks, after the completion of saltwell pumping. This partial retrieval option will result in a cost savings of over $600 million in construction and operation alone, and will significantly reduce the volume of glass requiring disposal

  14. Remediation of trichloroethylene-contaminated groundwater by three modifier-coated microscale zero-valent iron.

    PubMed

    Han, Jun; Xin, Jia; Zheng, Xilai; Kolditz, Olaf; Shao, Haibing

    2016-07-01

    Building a microscale zero-valent iron (mZVI) reaction zone is a promising in situ remediation technology for restoring groundwater contaminated by trichloroethylene (TCE). In order to determine a suitable modifier that could not only overcome gravity sedimentation of mZVI but also improve its remediation efficiency for TCE, the three biopolymers xanthan gum (XG), guargum (GG), and carboxymethyl cellulose (CMC) were employed to coat mZVI for surface modification. The suspension stability of the modified mZVI and its TCE removal efficiency were systematically investigated. The result indicated that XG as a shear-thinning fluid showed the most remarkable efficiency of preventing mZVI from gravity sedimentation and enhancing the TCE removal efficiency by mZVI. In a 480-h experiment, the presence of XG (3 g L(-1)) increased the TCE removal efficiency by 31.85 %, whereas GG (3 g L(-1)) and CMC (3 g L(-1)) merely increased by 15.61 and 9.69 % respectively. The pH value, Eh value, and concentration of ferrous ion as functions of the reaction time were recorded in all the reaction systems, which indicated that XG worked best in buffering the pH value of the solution and inhibiting surface passivation of mZVI. PMID:27068901

  15. Immobilization of U(VI) from oxic groundwater by Hanford 300 Area sediments and effects of Columbia River water.

    PubMed

    Ahmed, Bulbul; Cao, Bin; Mishra, Bhoopesh; Boyanov, Maxim I; Kemner, Kenneth M; Fredrickson, Jim K; Beyenal, Haluk

    2012-09-01

    Regions within the U.S. Department of Energy Hanford 300 Area (300 A) site experience periodic hydrologic influences from the nearby Columbia River as a result of changing river stage, which causes changes in groundwater elevation, flow direction and water chemistry. An important question is the extent to which the mixing of Columbia River water and groundwater impacts the speciation and mobility of uranium (U). In this study, we designed experiments to mimic interactions among U, oxic groundwater or Columbia River water, and 300 A sediments in the subsurface environment of Hanford 300 A. The goals were to investigate mechanisms of: 1) U immobilization in 300 A sediments under bulk oxic conditions and 2) U remobilization from U-immobilized 300 A sediments exposed to oxic Columbia River water. Initially, 300 A sediments in column reactors were fed with U(VI)-containing oxic 1) synthetic groundwater (SGW), 2) organic-amended SGW (OA-SGW), and 3) de-ionized (DI) water to investigate U immobilization processes. After that, the sediments were exposed to oxic Columbia River water for U remobilization studies. The results reveal that U was immobilized by 300 A sediments predominantly through reduction (80-85%) when the column reactor was fed with oxic OA-SGW. However, U was immobilized by 300 A sediments through adsorption (100%) when the column reactors were fed with oxic SGW or DI water. The reduced U in the 300 A sediments fed with OA-SGW was relatively resistant to remobilization by oxic Columbia River water. Oxic Columbia River water resulted in U remobilization (∼7%) through desorption, and most of the U that remained in the 300 A sediments fed with OA-SGW (∼93%) was in the form of uraninite nanoparticles. These results reveal that: 1) the reductive immobilization of U through OA-SGW stimulation of indigenous 300 A sediment microorganisms may be viable in the relatively oxic Hanford 300 A subsurface environments and 2) with the intrusion of Columbia River water

  16. Immobilization of U(VI) from Oxic Groundwater by Hanford 300 Area Sediments and Effects of Columbia River Water

    SciTech Connect

    Ahmed, B.; Cao, Bin; Mishra, Bhoopesh; Boyanov, Maxim I.; Kemner, Kenneth M.; Fredrickson, Jim K.; Beyenal, Haluk

    2012-09-23

    Regions within the U.S. Department of Energy Hanford 300 Area (300 A) site experience periodic hydrologic influences from the nearby Columbia River as a result of changing river stage, which causes changes in groundwater elevation, flow direction and water chemistry. An important question is the extent to which the mixing of Columbia River water and groundwater impacts the speciation and mobility of uranium (U). In this study, we designed experiments to mimic interactions among U, oxic groundwater or Columbia River water, and 300 A sediments in the subsurface environment of Hanford 300 A. The goals were to investigate mechanisms of: 1) U immobilization in 300 A sediments under bulk oxic conditions and 2) U remobilization from U-immobilized 300 A sediments exposed to oxic Columbia River water. Initially, 300 A sediments in column reactors were fed with U(VI)-containing oxic 1) synthetic groundwater (SGW), 2) organic-amended SGW (OA-SGW), and 3) de-ionized (DI) water to investigate U immobilization processes. After that, the sediments were exposed to oxic Columbia River water for U remobilization studies. The results reveal that U was immobilized by 300 A sediments predominantly through reduction (80-85%) when the column reactor was fed with oxic OA-SGW. However, U was immobilized by 300 A sediments through adsorption (100%) when the column reactors were fed with oxic SGW or DI water. The reduced U in the 300 A sediments fed with OA-SGW was relatively resistant to remobilization by oxic Columbia River water. Oxic Columbia River water resulted in U remobilization (~7%) through desorption, and most of the U that remained in the 300 A sediments fed with OA-SGW (~93%) was in the form of uraninite nanoparticles. These results reveal that: 1) the reductive immobilization of U through OA-SGW stimulation of indigenous 300 A sediment microorganisms may be viable in the relatively oxic Hanford 300 A subsurface environments and 2) with the intrusion of Columbia River water

  17. Application of iron sulfide particles for groundwater and soil remediation: A review.

    PubMed

    Gong, Yanyan; Tang, Jingchun; Zhao, Dongye

    2016-02-01

    Rapid industrialization and urbanization have resulted in elevated concentrations of hazardous inorganic and organic contaminants in groundwater and soil, which has become a paramount concern to the environment and the public health. In recent years, iron sulfide (FeS), a major constituent of acid-volatile sulfides, has elicited extensive interests in environmental remediation due to its ubiquitous presence and high treatment efficiency in anoxic environment. This paper provides a comprehensive review on recent advances in: (1) synthesis of FeS particles (including nanoscale FeS); and (2) reactivity of FeS towards a variety of common environmental contaminants in groundwater and soil over extended periods of time, namely, heavy metals (Hg(II), Cu(II), Pb(II), and Cr(VI)), oxyanions (arsenite, arsenate, selenite, and selenate), radionuclides (e.g., uranium (U) and neptunium (Np)), chlorinated organic compounds (e.g., trichloroethane, trichloroethylene, and p-chloroaniline), nitroaromatic compounds, and polychlorinated biphenyls. Different physiochemical and biological methods for preparing FeS with desired particle size, structure, and surface properties are discussed. Reaction principles and removal effectiveness/constraints are discussed in details. Special attention is placed to the application of nanoscale FeS particles because of their unique properties, such as small particle size, large specific surface area, high surface reactivity, and soil deliverability in the subsurface. Moreover, current knowledge gaps and further research needs are identified. PMID:26707732

  18. Fungal permeable reactive barrier to remediate groundwater in an artificial aquifer.

    PubMed

    Folch, Albert; Vilaplana, Marcel; Amado, Leila; Vicent, Teresa; Caminal, Glòria

    2013-11-15

    Biobarriers, as permeable reactive barriers (PRBs), are a common technology that mainly uses bacteria to remediate groundwater in polluted aquifers. In this study, we propose to use Trametes versicolor, a white-rot fungus, as the reactive element because of its capacity to degrade a wide variety of highly recalcitrant and xenobiotic compounds. A laboratory-scale artificial aquifer was constructed to simulate groundwater flow under real conditions in shallow aquifers. Orange G dye was chosen as a contaminant to visually monitor the hydrodynamic behaviour of the system and any degradation of the dye by the fungus. Batch experiments at different pH values (6 and 7) and several temperatures (15 °C, 18 °C, 20 °C and 25 °C) were performed to select the appropriate residence time and glucose consumption rate required for continuous treatment. The maximum Orange G degradation was 97%. Continuous degradation over 85% was achieved for more than 8 days. Experimental results indicate for the first time that this fungus can potentially be used as a permeable reactive barrier in real aquifers. PMID:24095995

  19. An overview of permeable reactive barriers for in situ sustainable groundwater remediation.

    PubMed

    Obiri-Nyarko, Franklin; Grajales-Mesa, S Johana; Malina, Grzegorz

    2014-09-01

    Permeable reactive barriers (PRBs) are one of the innovative technologies widely accepted as an alternative to the 'pump and treat' (P&T) for sustainable in situ remediation of contaminated groundwater. The concept of the technology involves the emplacement of a permeable barrier containing reactive materials across the flow path of the contaminated groundwater to intercept and treat the contaminants as the plume flows through it under the influence of the natural hydraulic gradient. Since the invention of PRBs in the early 1990s, a variety of materials has been employed to remove contaminants including heavy metals, chlorinated solvents, aromatic hydrocarbons, and pesticides. Contaminant removal is usually accomplished via processes such as adsorption, precipitation, denitrification and biodegradation. Despite wide acknowledgment, there are still unresolved issues about long term-performance of PRBs, which have somewhat affected their acceptability and full-scale implementation. The current paper presents an overview of the PRB technology, which includes the state of art, the merits and limitations, the reactive media used so far, and the mechanisms employed to transform or immobilize contaminants. The paper also looks at the design, construction and the long-term performance of PRBs. PMID:24997925

  20. Remediating explosive-contaminated groundwater by in situ redox manipulation (ISRM) of aquifer sediments.

    PubMed

    Boparai, H K; Comfort, S D; Shea, P J; Szecsody, J E

    2008-03-01

    In situ chemical reduction of clays and iron oxides in subsurface environments is an emerging technology for treatment of contaminated groundwater. Our objective was to determine the efficacy of dithionite-reduced sediments from the perched Pantex Aquifer (Amarillo, TX) to abiotically degrade the explosives RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine), and TNT (2,4,6-trinitrotoluene). The effects of dithionite/buffer concentrations, sediments-solution ratios, and the contribution of Fe(II) were evaluated in batch experiments. Results showed that reduced Pantex sediments were highly effective in degrading all three high explosives. Degradation rates increased with increasing dithionite/buffer concentrations and soil to solution ratios (1:80-1:10 w/v). When Fe(II) was partially removed from the reduced sediments by washing (citrate-bicarbonate buffer), RDX degradation slowed, but degradation efficiency could be restored by adding Fe(II) back to the treated sediments and maintaining an alkaline pH. These data support in situ redox manipulation as a remedial option for treating explosive-contaminated groundwater at the Pantex site. PMID:18086486

  1. Sustainable remediation: electrochemically assisted microbial dechlorination of tetrachloroethene-contaminated groundwater

    PubMed Central

    Patil, Sayali S; Adetutu, Eric M; Rochow, Jacqueline; Mitchell, James G; Ball, Andrew S

    2014-01-01

    Microbial electric systems (MESs) hold significant promise for the sustainable remediation of chlorinated solvents such as tetrachlorethene (perchloroethylene, PCE). Although the bio-electrochemical potential of some specific bacterial species such as Dehalcoccoides and Geobacteraceae have been exploited, this ability in other undefined microorganisms has not been extensively assessed. Hence, the focus of this study was to investigate indigenous and potentially bio-electrochemically active microorganisms in PCE-contaminated groundwater. Lab-scale MESs were fed with acetate and carbon electrode/PCE as electron donors and acceptors, respectively, under biostimulation (BS) and BS-bioaugmentation (BS-BA) regimes. Molecular analysis of the indigenous groundwater community identified mainly Spirochaetes, Firmicutes, Bacteroidetes, and γ and δ-Proteobacteria. Environmental scanning electron photomicrographs of the anode surfaces showed extensive indigenous microbial colonization under both regimes. This colonization and BS resulted in 100% dechlorination in both treatments with complete dechlorination occurring 4 weeks earlier in BS-BA samples and up to 11.5 μA of current being generated. The indigenous non-Dehalococcoides community was found to contribute significantly to electron transfer with ∼61% of the current generated due to their activities. This study therefore shows the potential of the indigenous non-Dehalococcoides bacterial community in bio-electrochemically reducing PCE that could prove to be a cost-effective and sustainable bioremediation practice. PMID:24119162

  2. Evaluation of ultraviolet oxidation methods for the remediation of explosives-contaminated groundwater

    SciTech Connect

    Wujcik, W.J.; Young, C.T.; Hammell, J.O.

    1995-12-31

    An evaluation of commercially available ultraviolet oxidation (UV/Ox) processes for remediation of explosives-contaminated groundwater was performed by conducting a pilot-scale demonstration at Savanna Army Depot Activity (SADA) of four vendo processes. This demonstration was performed to assess whether UV/Ox methods offer a technically feasible and cost-effective alternative to granular activated carbon (GAC) for the treatment of explosives compounds including trinitrotoluene (2,4,6-TNT), trinitrobenzene (1,3,5-TNB), and other nitroaromatics found in groundwaters at Army installations nationwide. The adequacy of bench-scale testing data for predicting full-scale equipment requirements was also evaluated. Daily average effluent concentrations of nitroaromatic compounds were calculated and compared with daily average treatment criteria. There was considerable variation in the consistency with which the processes met the criteria; only the Ultrox process achieved the criteria for all 14 days of the demonstration. Initial and revised cost estimates were prepared by each vendor. The full-scale system configurations and cost estimated made after bench-scale testing and after pilot-scale testing were significantly different, indicating that pilot-scale testing provides data necessary for the accurate sizing of full-scale systems. Based on this demonstration, routine bench-scale testing is inadequate for providing sufficient data for full-scale UV/Ox systems.

  3. Remediating explosive-contaminated groundwater by in situ redox manipulation (ISRM) of aquifer sediments

    SciTech Connect

    Boparai, Hardiljeet K.; Comfort, Steve; Shea, Phyllis J.; Szecsody, James E.

    2008-03-01

    In situ chemical reduction of clays and iron oxides in subsurface environments is an emerging technology for treatment of contaminated groundwater. Our objective was to determine the efficacy of dithionite-reduced sediments from the perched Pantex Aquifer (Amarillo, TX) to abiotically degrade the explosives RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), HMX (octahydro-1,3,5,7-tetranitro- 1,3,5,7-tetrazocine), and TNT (2,4,6-trinitrotoluene). The effects of dithionite/buffer concentrations, sediments-solution ratios, and the contribution of Fe(II) were evaluated in batch experiments. Results showed that reduced Pantex sediments were highly effective in degrading all three high explosives. Degradation rates increased with increasing dithionite/buffer concentrations and soil to solution ratios (1:80–1:10 w/v). When Fe(II) was partially removed from the reduced sediments by washing (citrate-bicarbonate buffer), RDX degradation slowed, but degradation efficiency could be restored by adding Fe(II) back to the treated sediments and maintaining an alkaline pH. These data support in situ redox manipulation as a remedial option for treating explosive-contaminated groundwater at the Pantex site.

  4. A Case Study of Using Zero-Valent Iron Nanoparticles for Groundwater Remediation

    NASA Astrophysics Data System (ADS)

    Xiong, Z.; Kaback, D.; Bennett, P. J.

    2011-12-01

    Zero-valent iron nanoparticle (nZVI) is a promising technology for rapid in situ remediation of numerous contaminants, including chlorinated solvents, in groundwater and soil. Because of the high specific surface area of nZVI particles, this technology achieves treatment rates that are significantly faster than micron-scale and granular ZVI. However, a key technical challenge facing this technology involves agglomeration of nZVI particles. To improve nZVI mobility/deliverability and reactivity, an innovative method was recently developed using a low-cost and bio-degradable organic polymer as a stabilizer. This nZVI stabilization strategy offers unique advantages including: (1) the organic polymer is cost-effective and "green" (completely bio-compatible), (2) the organic polymer is highly effective in stabilizing nZVI particles; and (3) the stabilizer is applied during particle preparation, making nZVI particles more stable. Through a funding from the U.S. Air Force Center for Engineering and the Environment (AFCEE), AMEC performed a field study to test the effectiveness of this innovative technology for degradation of chlorinated solvents in groundwater at a military site. Laboratory treatability tests were conducted using groundwater samples collected from the test site and results indicated that trichloroethene (main groundwater contaminant at the site) was completely degraded within four hours by nZVI particles. In March and May 2011, two rounds of nZVI injection were performed at the test site. Approximately 700 gallons of nZVI suspension with palladium as a catalyst were successfully prepared in the field and injected into the subsurface. Before injection, membrane filters with a pore size of 450 nm were used to check the nZVI particle size and it was observed that >85% of nZVI particles were passed through the filter based on total iron measurement, indicating particle size of <450 nm. During field injections, nZVI particles were observed in a monitoring well

  5. Particulate Pyrite Autotrophic Denitrification (PPAD) for Remediation of Nitrate-contaminated Groundwater

    NASA Astrophysics Data System (ADS)

    Tong, S.; Rodriguez-Gonzalez, L. C.; Henderson, M.; Feng, C.; Ergas, S. J.

    2015-12-01

    The rapid movement of human civilization towards urbanization, industrialization, and increased agricultural activities has introduced a large amount of nitrate into groundwater. Nitrate is a toxic substance discharged from groundwater to rivers and leads to decreased dissolved oxygen and eutrophication. For this experiment, an electron donor is needed to convert nitrate into non-toxic nitrogen gas. Pyrite is one of the most abundant minerals in the earth's crust making it an ideal candidate as an electron donor. The overall goal of this research was to investigate the potential for pyrite to be utilized as an electron donor for autotrophic denitrification of nitrate-contaminated groundwater. Batch studies of particulate pyrite autotrophic denitrification (PPAD) of synthetic groundwater (100 mg NO3--N L-1) were set up with varying biomass concentration, pyrite dose, and pyrite particle size. Reactors were seeded with mixed liquor volatile suspended solids (VSS) from a biological nitrogen removal wastewater treatment facility. PPAD using small pyrite particles (<0.45mm) resulted in a favorable nitrate removal. The nitrate removal rate increased from 0.26 to 0.34 mg L-1h-1 and then to 0.86 mg L-1h-1, approaching that of the sulfur oxidizing denitrification (SOD) rate of 1.19 mg L-1h-1. Based on Box-Behnken design (BBD) and response surface methodology (RSM), the optimal amount of biomass concentration, pyrite dose, and pyrite particle size were 1,250 mg VSS L-1, 125 g L-1, and 0.815-1.015 mm, respectively. PPAD exhibited substantial nitrate removal rate, lower sulfate accumulation (5.46 mg SO42-/mg NO3--N) and lower alkalinity consumption (1.70 mg CaCO3/mg NO3--N) when compared to SOD (7.54 mg SO42-/mg NO3--N, 4.57 mg CaCO3/mg NO3--N based on stoichiometric calculation). This research revealed that the PPAD process is a promising technique for nitrate-contaminated groundwater treatment and promoted the utilization of pyrite in the field of environmental remediation.

  6. Potential remediation approach for uranium-contaminated groundwaters through potassium uranyl vanadate precipitation

    SciTech Connect

    Tokunaga, T.K.; Kim, Y.; Wan, J.

    2009-06-01

    Methods for remediating groundwaters contaminated with uranium (U) through precipitation under oxidizing conditions are needed because bioreduction-based approaches require indefinite supply of electron donor. Although strategies based on precipitation of some phosphate minerals within the (meta)autunite group have been considered for this purpose, thermodynamic calculations for K- and Ca-uranyl phopsphates, meta-ankoleite and autunite, predict that U concentrations will exceed the Maximum Contaminant Level (MCL = 0.13 {micro}M for U) at any pH and pCO{sub 2}, unless phosphate is maintained at much higher concentrations than the sub-{micro}M levels typically found in groundwaters. We hypothesized that potassium uranyl vanadate will control U(VI) concentrations below regulatory levels in slightly acidic to neutral solutions based on thermodynamic data available for carnotite, K{sub 2}(UO{sub 2}){sub 2}V{sub 2}O8. The calculations indicate that maintaining U concentrations below the MCL through precipitation of carnotite will be sustainable in some oxidizing waters having pH in the range of 5.5 to 7, even when dissolution of this solid phase becomes the sole supply of sub-{micro}M levels of V. Batch experiments were conducted in solutions at pH 6.0 and 7.8, chosen because of their very different predicted extents of U(VI) removal. Conditions were identified where U concentrations dropped below its MCL within 1 to 5 days of contact with oxidizing solutions containing 0.2 to 10 mM K, and 0.1 to 20 {micro}M V(V). This method may also have application in extracting (mining) U and V from groundwaters where they both occur at elevated concentrations.

  7. Resource Conservation and Recovery Act ground-water monitoring projects for Hanford facilities: Progress report for the period October 1 to December 31, 1989

    SciTech Connect

    Smith, R.M.; Bates, D.J.; Lundgren, R.E.

    1990-03-01

    This is Volume 1 of a two-volume document that describes the progress of 15 Hanford Site ground-water monitoring projects for the period October 1 to December 31, 1989. This volume discusses the projects. The work described in this document is conducted by the Pacific Northwest Laboratory under the management of Westinghouse Hanford Company for the US Department of Energy. Concentrations of ground-water constituents are compared to federal drinking water standards throughout this document for reference purposes. All drinking water supplied from the samples aquifer meets regulatory standards for drinking water quality. 51 refs., 35 figs., 86 tabs.

  8. Sustainability appraisal tools for soil and groundwater remediation: how is the choice of remediation alternative influenced by different sets of sustainability indicators and tool structures?

    PubMed

    Beames, Alistair; Broekx, Steven; Lookman, Richard; Touchant, Kaat; Seuntjens, Piet

    2014-02-01

    The state-of-the-science in sustainability assessment of soil and groundwater remediation is evaluated with the application of four decision support systems (DSSs) to a large-scale brownfield revitalization case study. The DSSs were used to perform sustainability appraisals of four technically feasible remediation alternatives proposed for the site. The first stage of the review compares the scope of each tool's sustainability indicators, how these indicators are measured and how the tools differ in terms of standardization and weighting procedures. The second stage of the review compares the outputs from the tools and determines the key factors that result in differing results between tools. The evaluation of indicator sets and tool structures explains why the tools generate differing results. Not all crucial impact areas, as identified by sustainable remediation forums, are thoroughly considered by the tools, particularly with regard to the social and economic aspects of sustainability. Variations in boundary conditions defined between technologies, produce distorted environmental impact results, especially when in-situ and ex-situ technologies are compared. The review draws attention to the need for end users to be aware of which aspects of sustainability are considered, how the aspects are measured and how all aspects are ultimately balanced in the evaluation of potential remediation strategies. Existing tools can be improved by considering different technologies within the same boundary conditions and by expanding indicator sets to include indicators deemed to be relevant by remediation forums. PMID:24239816

  9. A master-slave parallel hybrid multi-objective evolutionary algorithm for groundwater remediation design under general hydrogeological conditions

    NASA Astrophysics Data System (ADS)

    Wu, J.; Yang, Y.; Luo, Q.; Wu, J.

    2012-12-01

    This study presents a new hybrid multi-objective evolutionary algorithm, the niched Pareto tabu search combined with a genetic algorithm (NPTSGA), whereby the global search ability of niched Pareto tabu search (NPTS) is improved by the diversification of candidate solutions arose from the evolving nondominated sorting genetic algorithm II (NSGA-II) population. Also, the NPTSGA coupled with the commonly used groundwater flow and transport codes, MODFLOW and MT3DMS, is developed for multi-objective optimal design of groundwater remediation systems. The proposed methodology is then applied to a large-scale field groundwater remediation system for cleanup of large trichloroethylene (TCE) plume at the Massachusetts Military Reservation (MMR) in Cape Cod, Massachusetts. Furthermore, a master-slave (MS) parallelization scheme based on the Message Passing Interface (MPI) is incorporated into the NPTSGA to implement objective function evaluations in distributed processor environment, which can greatly improve the efficiency of the NPTSGA in finding Pareto-optimal solutions to the real-world application. This study shows that the MS parallel NPTSGA in comparison with the original NPTS and NSGA-II can balance the tradeoff between diversity and optimality of solutions during the search process and is an efficient and effective tool for optimizing the multi-objective design of groundwater remediation systems under complicated hydrogeologic conditions.

  10. USE OF A UNIQUE BIOBARRIER TO REMEDIATE NITRATE AND PERCHLORATE IN GROUNDWATER

    SciTech Connect

    Strietelmeier, E. A.; Espinosa, Melissa L.; Adams, J. D.; Leonard, P. A.; Hodge, E. M.

    2001-01-01

    Research was conducted to evaluate a multiple-layer system of volcanic rock, limestone, Apatite mineral and a 'biobarrier' to impede migration of radionuclides, metals and colloids through shallow alluvial groundwater, while simultaneously destroying contaminants such as nitrate and perchlorate. The 'bio' portion of this Multi-Barrier system uses highly porous, slowly degradable, carbon-based material (pecan shells) that serves as an energy source and supports the growth of indigenous microbial populations capable of destroying biodegradable compounds. The studies, using elevated nitrate concentrations in groundwater, have demonstrated reduction from levels of 6.5-9.7 mM nitrate (400-600 mg/L) to below discharge limits (0.16 mM nitrate). Perchlorate levels of 4.3 {micro}M (350 {micro}g/L) were also greatly reduced. Elevated levels of nitrate in drinking water are a public health concern, particularly for infants and adults susceptible to gastric cancer. Primary sources of contamination include feedlots, agriculture (fertilization), septic systems, mining and nuclear operations. A major source of perchlorate contamination in water is ammonium perchlorate from manufacture/use of rocket propellants. Perchlorate, recently identified as an EPA contaminant of concern, may affect thyroid function and cause tumor formation. A biobarrier used to support the growth of microbial populations (i.e. a biofilm) is a viable and inexpensive tool for cleaning contaminated groundwater. Aquatic ecosystems and human populations worldwide are affected by contaminated water supplies. One of the most frequent contaminants is nitrate. Remediation of nitrate in groundwater and drinking water by biodegradation is a natural solution to this problem. Microbial processes play an extremely important role in in situ groundwater treatment technologies. The assumption of carbon limitation is the basis for addition of carbon-based substrates to a system in the development of bioremediation schemes

  11. Remedial investigation/feasibility study work plan for the 100-BC-2 operable unit, Hanford Site, Richland, Washington

    SciTech Connect

    Not Available

    1993-05-01

    This work plan and attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) remedial investigation/feasibility study (RI/FS) for the 100-BC-2 operable unit in the 100 Area of the Hanford Site. The 100 Area is one of four areas at the Hanford Site that are on the US Environmental Protection Agency`s (EPA) National Priorities List under CERCLA. The 100-BC-2 operable unit is one of two source operable units in the 100-B/C Area (Figure ES-1). Source operable units are those that contain facilities and unplanned release sites that are potential sources of hazardous substance contamination. The 100-BC-2 source operable unit contains waste sites that were formerly in the 100-BC-2, 100-BC-3, and 100-BC-4 operable units. Because of their size and geographic location, the waste sites from these two operable units were added to 100-BC-2. This allows for a more efficient and effective investigation of the remaining 100-B/C Reactor area waste sites. The investigative approach to waste sites associated with the 100-BC-2 operable unit are listed in Table ES-1. The waste sites fall into three general categories: high priority liquid waste disposal sites, low priority liquid waste disposal sites, and solid waste burial grounds. Several sites have been identified as candidates for conducting an IRM. Two sites have been identified as warranting additional limited field sampling. The two sites are the 116-C-2A pluto crib, and the 116-C-2C sand filter.

  12. Characterization and Potential Remediation Approaches for Vadose Zone Contamination at Hanford 241-SX Tank Farm

    SciTech Connect

    Eberlein, Susan J.; Sydnor, Harold A.; Parker, Danny L.; Glaser, Danney R.

    2013-01-10

    Unplanned releases of radioactive and hazardous wastes have occurred at the 241-SX Tank Farm on the U.S. Department of Energy Hanford Site in southeast Washington State. Interim and long-term mitigation efforts are currently under evaluation for 241-SX Tank Farm. Two contiguous interim surface barriers have been designed for deployment at 241-SX Tank Farm to reduce future moisture infiltration; however, construction of the surface barriers has been deferred to allow testing of alternative technologies for soil moisture reduction and possibly contaminant source term reduction. Previous tests performed by other organizations at the Hanford Site have demonstrated that: vadose zone desiccation using large diameter (greater than 4 inch) boreholes is feasible; under certain circumstances, mobile contaminants may be removed in addition to water vapor; and small diameter (approximately 2 inch) boreholes (such as those placed by the direct push hydraulic hammer) can be used to perform vapor extractions. Evaluation of the previous work combined with laboratory test results have led to the design of a field proof-of-principle test to remove water and possibly mobile contaminants at greater depths, using small boreholes placed with the direct push unit.

  13. Characterization and Potential Remediation Approaches for Vadose Zone Contamination at Hanford 241-SX Tank Farm - 13235

    SciTech Connect

    Eberlein, Susan J.; Sydnor, Harold A.; Parker, Danny L.; Glaser, Danney R.

    2013-07-01

    Unplanned releases of radioactive and hazardous wastes have occurred at the 241-SX Tank Farm on the U.S. Department of Energy Hanford Site in southeast Washington State. Interim and long-term mitigation efforts are currently under evaluation for 241-SX Tank Farm. Two contiguous interim surface barriers have been designed for deployment at 241-SX Tank Farm to reduce future moisture infiltration; however, construction of the surface barriers has been deferred to allow testing of alternative technologies for soil moisture reduction and possibly contaminant source term reduction. Previous tests performed by other organizations at the Hanford Site have demonstrated that: vadose zone desiccation using large diameter (greater than 4 inch) boreholes is feasible; under certain circumstances, mobile contaminants may be removed in addition to water vapor; and small diameter (approximately 2 inch) boreholes (such as those placed by the direct push hydraulic hammer) can be used to perform vapor extractions. Evaluation of the previous work combined with laboratory test results have led to the design of a field proof-of-principle test to remove water and possibly mobile contaminants at greater depths, using small boreholes placed with the direct push unit. (authors)

  14. One perspective on stakeholder involvement at Hanford.

    PubMed

    Martin, Todd

    2011-11-01

    The Hanford nuclear site in Washington State had a major role in the production of nuclear weapons materials during the Manhattan Project in World War II and during the Cold War that followed. The production of weapons-grade radionuclides produced a large amount of radioactive byproducts that have been stored since the mid-1900s at the Hanford Site. These by-product radionuclides have leaked from containment facilities into the groundwater, contaminated buildings used for radionuclide processing, and also contaminated the nuclear reactors used to produce weapons-grade uranium and plutonium. This issue has been a major concern to Hanford stakeholders for several decades, and the U.S. Department of Energy, the U.S. Environmental Protection Agency, and the Washington State Department of Ecology established a Tri-Party Agreement in 1989, at which time Hanford ceased production of nuclear weapons materials and began a major effort to clean up and remediate the Hanford Site's contaminated groundwater, soil, and facilities. This paper describes the concerns of stakeholders in the production of nuclear weapons, the secrecy of Hanford operations, and the potential impacts to public health and the environment from the unintended releases of weapons-grade materials and by-products associated with their production at the Hanford Site. It also describes the involvement of public stakeholders in the development and oversight by the Hanford Advisory Board of the steps that have been taken in cleanup activities at the Hanford Site that began as a major effort about two decades ago. The importance of involvement of the general public and public interest organizations in developing and implementing the Hanford cleanup strategy are described in detail. PMID:21979534

  15. THE POSITIVE IMPACTS OF AMERICAN REINVESTMENT AND RECOVERY ACT (ARRA) FUNDING TO THE WASTE MANAGEMENT PROGRAM ON HANFORD'S PLATEAU REMEDIATION PROJECT

    SciTech Connect

    BLACKFORD LT

    2010-01-19

    In April 2009, the Department of Energy (DOE) Richland Operations Office (RL) was allocated $1.6 billion (B) in ARRA funding to be applied to cleanup projects at the Hanford Site. DOE-RL selected projects to receive ARRA funding based on 3-criteria: creating/saving jobs, reducing the footprint of the Hanford Site, and reducing life-cycle costs for cleanup. They further selected projects that were currently covered under regulatory documents and existing prime contracts, which allowed work to proceed quickly. CH2M HILL Plateau Remediation Company (CHPRC) is a prime contractor to the DOE focused on the environmental cleanup of the DOE Hanford Site Central Plateau. CHPRC was slated to receive $1.36B in ARRA funding. As of January, 2010, CHPRC has awarded over $200 million (M) in subcontracts (64% to small businesses), created more that 1,100 jobs, and touched more than 2,300 lives - all in support of long-term objectives for remediation of the Central Plateau, on or ahead of schedule. ARRA funding is being used to accelerate and augment cleanup activities already underway under the baseline Plateau Remediation Contract (PRC). This paper details challenges and accomplishments using ARRA funding to meet DOE-RL objectives of creating/saving jobs, expediting cleanup, and reducing lifecycle costs for cleanup during the first months of implementation.

  16. POSTCLOSURE GROUNDWATER REMEDIATION AND MONITORING AT THE SANITARY LANDFILL, SAVANNAH RIVER SITE TRANSITIONING TO MONITORED NATURAL ATTENUATION

    SciTech Connect

    Ross, J; Walt Kubilius, W; Thomas Kmetz, T; D Noffsinger, D; Karen M Adams, K

    2006-11-17

    Resource Conservation and Recovery Act (RCRA) requirements for hazardous waste facilities include 30 years of post-closure monitoring. The use of an objective-based monitoring strategy allows for a significant reduction in the amount of groundwater monitoring required, as the groundwater remediation transitions from an active biosparging system to monitored natural attenuation. The lifecycle of groundwater activities at the landfill has progressed from detection monitoring and plume characterization, to active groundwater remediation, and now to monitored natural attenuation and postclosure monitoring. Thus, the objectives of the groundwater monitoring have changed accordingly. Characterization monitoring evaluated what biogeochemical natural attenuation processes were occurring and determined that elevated levels of radium were naturally occurring. Process monitoring of the biosparging system required comprehensive sampling network up- and down-gradient of the horizontal wells to verify its effectiveness. Currently, the scope of monitoring and reporting can be significantly reduced as the objective is to demonstrate that the alternate concentration limits (ACL) are being met at the point of compliance wells and the maximum contaminant level (MCL) is being met at the surface water point of exposure. The proposed reduction is estimated to save about $2M over the course of the remaining 25 years of postclosure monitoring.

  17. The effect of ionic strength and hardness of trichloroethylene contaminated groundwater in remediation using granular activated carbon

    NASA Astrophysics Data System (ADS)

    Heo, J.; Chang, H.

    2005-12-01

    The objective of this study is to evaluate the trichloroethylene (TCE) removal by granular activated carbon (GAC) based on influential factors (ionic strength, hardness) of various groundwaters. The experimental method used in this study was batch experiments. Synthetic groundwater for test was made according to ionic strength, hardness and then it was artificially contaminated by TCE 5ppm. The variation of ions in synthetic groundwater was measured by I.C. and I.C.P. Surface area of GAC was determined by the Brunauer, Emmett and Teller (BET) adsorption data. The results of tests showed that TCE removal using GAC is affected by the hardness of synthetic groundwaters. It was founded that surface area of GAC was decreased by increasing of ions. Due to pore blocking of ions by functional group, the surface area of GAC decreased and the difference of the remediation appeared. This result was affected by the ionic strength and hardness of water. Therefore, the ionic strength and hardness of contaminated groundwater must be considered in remediation using GAC.

  18. Transfer of Physical and Hydraulic Properties Databases to the Hanford Environmental Information System - PNNL Remediation Decision Support Project, Task 1, Activity 6

    SciTech Connect

    Rockhold, Mark L.; Middleton, Lisa A.

    2009-03-31

    This report documents the requirements for transferring physical and hydraulic property data compiled by PNNL into the Hanford Environmental Information System (HEIS). The Remediation Decision Support (RDS) Project is managed by Pacific Northwest National Laboratory (PNNL) to support Hanford Site waste management and remedial action decisions by the U.S. Department of Energy and one of their current site contractors - CH2M-Hill Plateau Remediation Company (CHPRC). The objective of Task 1, Activity 6 of the RDS project is to compile all available physical and hydraulic property data for sediments from the Hanford Site, to port these data into the Hanford Environmental Information System (HEIS), and to make the data web-accessible to anyone on the Hanford Local Area Network via the so-called Virtual Library.1 These physical and hydraulic property data are used to estimate parameters for analytical and numerical flow and transport models that are used for site risk assessments and evaluation of remedial action alternatives. In past years efforts were made by RDS project staff to compile all available physical and hydraulic property data for Hanford sediments and to transfer these data into SoilVision{reg_sign}, a commercial geotechnical software package designed for storing, analyzing, and manipulating soils data. Although SoilVision{reg_sign} has proven to be useful, its access and use restrictions have been recognized as a limitation to the effective use of the physical and hydraulic property databases by the broader group of potential users involved in Hanford waste site issues. In order to make these data more widely available and useable, a decision was made to port them to HEIS and to make them web-accessible via a Virtual Library module. In FY08 the original objectives of this activity on the RDS project were to: (1) ensure traceability and defensibility of all physical and hydraulic property data currently residing in the SoilVision{reg_sign} database

  19. A Demonstration of the System Assessment Capability (SAC) Rev. 1 Software for the Hanford Remediation Assessment Project

    SciTech Connect

    Eslinger, Paul W.; Kincaid, Charles T.; Nichols, William E.; Wurstner, Signe K.

    2006-11-06

    The System Assessment Capability (SAC) is a suite of interrelated computer codes that provides the capability to conduct large-scale environmental assessments on the Hanford Site. Developed by Pacific Northwest National Laboratory for the Department of Energy, SAC models the fate and transport of radioactive and chemical contaminants, starting with the inventory of those contaminants in waste sites, simulating transport through the environment, and continuing on through impacts to the environment and humans. Separate modules in the SAC address inventory, release from waste forms, water flow and mass transport in the vadose zone, water flow and mass transport in the groundwater, water flow and mass transport in the Columbia River, air transport, and human and ecological impacts. The SAC supports deterministic analyses as well as stochastic analyses using a Monte Carlo approach, enabling SAC users to examine the effect of uncertainties in a number of key parameters. The initial assessment performed with the SAC software identified a number of areas where both the software and the analysis approach could be improved. Since that time the following six major software upgrades have been made: (1) An air pathway model was added to support all-pathway analyses. (2) Models for releases from glass waste forms, buried graphite reactor cores, and buried naval reactor compartments were added. (3) An air-water dual-phase model was added to more accurately track the movement of volatile contaminants in the vadose zone. (4) The ability to run analyses was extended from 1,000 years to 10,000 years or longer after site closure. (5) The vadose zone flow and transport model was upgraded to support two-dimensional or three-dimensional analyses. (6) The ecological model and human risk models were upgraded so the concentrations of contaminants in food products consumed by humans are produced by the ecological model. This report documents the functions in the SAC software and provides a

  20. ELECTROCHEMICAL REMEDIATION OF ARSENIC-CONTAMINATED GROUNDWATER — RESULTS OF PROTOTYPE FIELD TESTS IN BANGLADESH

    SciTech Connect

    Kowolik, K; Addy, S.E.A.; Gadgil, A.

    2009-01-01

    According to the World Health Organization (WHO), more than 50 million people in Bangladesh drink arsenic-laden water, making it the largest case of mass poisoning in human history. Many methods of arsenic removal (mostly using chemical adsorbents) have been studied, but most of these are too expensive and impractical to be implemented in poor countries such as Bangladesh. This project investigates ElectroChemical Arsenic Remediation (ECAR) as an affordable means of removing arsenic. Experiments were performed on site in Bangladesh using a prototype termed “sushi”. This device consists of carbon steel sheets that serve as electrodes wrapped into a cylinder, separated by plastic mesh and surrounded by a tube-like container that serves as a holding cell in which the water is treated electrochemically. During the electrochemical process, current is applied to both electrodes causing iron to oxidize to various forms of iron (hydr)oxides. These species bind to arsenic(V) with very high affi nity. ECAR also has the advantage that As(III), the more toxic form of arsenic, oxidizes to As(V) in situ. Only As(V) is known to complex with iron (hydr)oxides. One of the main objectives of this research is to demonstrate the ability of the new prototype to reduce arsenic concentrations in Bangladesh groundwater from >200 ppb to below the WHO limit of 10 ppb. In addition, varying fl ow rate and dosage and the effect on arsenic removal was investigated. Experiments showed that ECAR reduced Bangladeshi water with an initial arsenic concentration as high as 250 ppb to below 10 ppb. ECAR proved to be effective at dosages as high as 810 Coulombs/Liter (C/L) and as low as 386 C/L (current 1 A, voltage 12 V). These results are encouraging and provide great promise that ECAR is an effi cient method in the remediation of arsenic from contaminated groundwater. A preliminary investigation of arsenic removal trends with varying Coulombic dosage, complexation time and fi ltration methods is

  1. Direct Push Groundwater Circulation Wells for Remediation of BTEX and Volatile Organics

    SciTech Connect

    Borden, R.C.; Cherry, R.S.

    2000-09-30

    Direct push groundwater circulation wells (DP-GCW) are a promising technology for remediation of groundwater contaminated with dissolved hydrocarbons and chlorinated solvents. In these wells, groundwater is withdrawn from the formation at the bottom of the well, aerated and vapor stripped and injected back into the formation at or above the water table. Previous field studies have shown that: (a) GCWs can circulate significant volumes of groundwater; and (b) GCWs can effectively remove volatile compounds and add oxygen. In this work, we describe the development and field-testing of a system of DP-GCWs for remediation of volatile organics such as benzene, toluene, ethylbenzene, and toluene (BTEX). The GCWs were constructed with No. 20 slotted well screen (2.4 cm ID) and natural sand pack extending from 1.5 to 8.2 m below grade. Air is introduced {approximately}7.5 m below grade via 0.6 cm tubing. Approximately 15% of the vertical length of the air supply tubing is wrapped in tangled mesh polypropylene geonet drainage fabric to provide surface area for biological growth and precipitation of oxidized iron. These materials were selected to allow rapid installation of the GCWs using 3.8 cm direct push Geoprobe{reg_sign} rods, greatly reducing well installation costs. Laboratory testing of these sparged wells and computational fluid dynamics (CFD) modeling showed that these wells, although they used only about 1 L/min of air, could circulate about 1 L/min of water through the surrounding aquifer. This flow was sufficient to capture all of a flowing contaminant if the wells are sufficiently closely together, about 1 meter on center depending on the air flow rate supplied, in a line across the plume. The CFD work showed the details of this ability to capture, and also showed that unforeseen heterogeneities in the aquifer such as a gradient of permeability or a thin impermeable layer (such as a clay layer) did not prevent the system from working largely as intended. The

  2. Direct Push Groundwater Circulation Wells for Remediation of BTEX and Volatile Organics

    SciTech Connect

    Borden, R. E.; Cherry, Robert Stephen

    2000-09-01

    Direct push groundwater circulation wells (DP-GCW) are a promising technology for remediation of groundwater contaminated with dissolved hydrocarbons and chlorinated solvents. In these wells, groundwater is withdrawn from the formation at the bottom of the well, aerated and vapor stripped and injected back into the formation at or above the water table. Previous field studies have shown that: (a) GCWs can circulate significant volumes of groundwater; and (b) GCWs can effectively remove volatile compounds and add oxygen. In this work, we describe the development and field-testing of a system of DP-GCWs for remediation of volatile organics such as benzene, toluene, ethylbenzene, and toluene (BTEX). The GCWs were constructed with No. 20 slotted well screen (2.4 cm ID) and natural sand pack extending from 1.5 to 8.2 m below grade. Air is introduced ~7.5 m below grade via 0.6 cm tubing. Approximately 15% of the vertical length of the air supply tubing is wrapped in tangled mesh polypropylene geonet drainage fabric to provide surface area for biological growth and precipitation of oxidized iron. These materials were selected to allow rapid installation of the GCWs using 3.8 cm direct push Geoprobe® rods, greatly reducing well installation costs. Laboratory testing of these sparged wells and computational fluid dynamics (CFD) modeling showed that these wells, although they used only about 1 L/min of air, could circulate about 1 L/min of water through the surrounding aquifer. This flow was sufficient to capture all of a flowing contaminant if the wells are sufficiently closely together, about 1 meter on center depending on the air flow rate supplied, in a line across the plume. The CFD work showed the details of this ability to capture, and also showed that unforeseen heterogeneities in the aquifer such as a gradient of permeability or a thin impermeable layer (such as a clay layer) did not prevent the system from working largely as intended. The system was tested in a

  3. Implications of Fe/Pd Bimetallic Nanoparticles Immobilized on Adsorptive Activated Carbon for the Remediation of Groundwater and Sediment Contaminated with PCBs

    EPA Science Inventory

    In order to respond to the current limitations and challenges in remediating groundwater and sediment contaminated with polychlorinated biphenyls (PCBs), we have recently developed a new strategy, integration of the physical adsorption of PCBs with their electrochemical dechlori...

  4. A study of chemical remediation on 1,2,4-Trichlorobenzene in groundwater

    NASA Astrophysics Data System (ADS)

    Ye, S.

    2015-12-01

    Shujun Ye, Guanqun Wang, and Jichun WuKey Laboratory of Surficial Geochemistry, Ministry of Education; School of Earth Sciences and Engineering, Nanjing University, Nanjing 210093, China, Nanjing, 210093, China; sjye@nju.edu.cn The ground water is contaminated by 1,2,4 Trichlorobenzene (TCB) in a former chemical plant in Nanjing, China. So 1,2,4-TCB is the contaminant of concern in this study. As chemical oxidation technology is a common in-site remediation technique, hydrogen peroxide, sodium sulfate and the two-mixed oxidants under the catalytic condition are used to remove 1,2,4-TCB from groundwater. By changing the values of temperature and pH in the experiments, the best conditions for chemical oxidation with oxidants mentioned above were determined. The fluorescent brightener of PF, manufactured by the former chemical plant, was added to groundwater to evaluate whether its existence made an impact on the chemical oxidation. 1-D sand column tests were conducted to study the degradation effect by using the chemical oxidation technology. The experiment results showed that single oxidant and mixed both oxidants can remove 1,2,4-TCB completely. The oxidation efficiency of both oxidants is influenced by temperature and pH. For hydrogen peroxide, the oxidation efficiency decreases with the increase of pH, while, for sodium sulfate, the efficiency is high under the mild acidic condition. The fluorescent brightener PF has an impact on the oxidation efficiency, with negative effect on the oxidation with hydrogen peroxide but positive effect with sodium sulfate. 1-D sand column tests testified the degradation of 1,2,4-TCB by the chemical oxidation with hydrogen peroxide and sodium sulfate. KEY WORDS: 1,2,4-trichlorobenzene hydrogen peroxide sodium persulfate optical brightener PF chemical oxidation AcknowledgementsFunding for this research from DuPont Company and NSFC Project No. 41472212.

  5. Optimal groundwater remediation design of pump and treat systems via a simulation-optimization approach and firefly algorithm

    NASA Astrophysics Data System (ADS)

    Javad Kazemzadeh-Parsi, Mohammad; Daneshmand, Farhang; Ahmadfard, Mohammad Amin; Adamowski, Jan; Martel, Richard

    2015-01-01

    In the present study, an optimization approach based on the firefly algorithm (FA) is combined with a finite element simulation method (FEM) to determine the optimum design of pump and treat remediation systems. Three multi-objective functions in which pumping rate and clean-up time are design variables are considered and the proposed FA-FEM model is used to minimize operating costs, total pumping volumes and total pumping rates in three scenarios while meeting water quality requirements. The groundwater lift and contaminant concentration are also minimized through the optimization process. The obtained results show the applicability of the FA in conjunction with the FEM for the optimal design of groundwater remediation systems. The performance of the FA is also compared with the genetic algorithm (GA) and the FA is found to have a better convergence rate than the GA.

  6. Program plan for evaluation and remediation of the generation and release of flammable gases in Hanford Site waste tanks

    SciTech Connect

    Johnson, G.D.

    1991-08-01

    This program plan describes the activities being conducted for the resolution of the flammable gas problem that is associated with 23 high-level waste tanks at the Hanford Site. The classification of the wastes in all of these tanks is not final and some wastes may not be high-level wastes. However, until the characterization and classification is complete, all the tanks are treated as if they contain high-level waste. Of the 23 tanks, Tank 241-SY-101 (referred to as Tank 101-SY) has exhibited significant episodic releases of flammable gases (hydrogen and nitrous oxide) for the past 10 years. The major near-term focus of this program is for the understanding and stabilization of this tank. An understanding of the mechanism for gas generation and the processes for the episodic release will be obtained through sampling of the tank contents, laboratory studies, and modeling of the tank behavior. Additional information will be obtained through new and upgraded instrumentation for the tank. A number of remediation, or stabilization, concepts will be evaluated for near-term (2 to 3 years) applications to Tank 101-SY. Detailed safety assessments are required for all activities that will occur in the tank (sampling, removal of equipment, and addition of new instruments). This program plan presents a discussion of each task, provides schedules for near-term activities, and gives a summary of the expected work for fiscal years 1991, 1992, and 1993. 16 refs., 7 figs., 8 tabs.

  7. Case Study of Anomalies Encountered During Remediation of Mixed Low-Level Waste Burial Grounds in the 100 and 300 Areas of the Hanford Site

    SciTech Connect

    Haass, M.J.; Zacharias, P.E.; Zacharias, A.E.

    2007-07-01

    Under the U.S. Department of Energy's River Corridor Closure Project, Washington Closure Hanford has completed remediation of more than 10 mixed low-level waste burial grounds in the 100 and 300 Areas of the Hanford Site. The records of decision for the burial grounds required excavation, characterization, and transport of contaminated material to a Resource Conservation and Recovery Act of 1976-compliant hazardous waste landfill. This paper discusses a sample of the anomalous waste found during remediation and provides an overview of the waste excavation activities. The 100 Area burial grounds received plutonium production reactor waste and waste associated with various test programs. Examples of 100 Area anomalies include spent nuclear fuel, elemental mercury, reactor hardware, and the remains of animals used in testing the effects of radionuclides on living organisms. The 300 Area burial grounds received waste from research and development laboratories and fuel manufacturing operations. Of the seven 300 Area burial grounds remediated to date, the most challenging has been the 618-2 Burial Ground. It presented significant challenges because of the potential for airborne alpha contamination and the discovery of plutonium in an isotopically pure form. Anomalies encountered in the 618-2 Burial Ground included a combination safe that contained gram quantities of plutonium, miscellaneous containers of unknown liquids, and numerous types of shielded shipping casks. Information presented in this paper will be an aid to those involved in remediation activities throughout the U.S. Department of Energy complex and at other nuclear waste disposal sites. (authors)

  8. Necessary and Sufficient Standards Closure Process pilot: F- and H-Area groundwater remediation

    SciTech Connect

    Bullington, M.

    1995-09-25

    The DOE Standards Committee`s Necessary and Sufficient (N and S) Standards Closure Process was piloted at SRS on the F- and H- Area Seepage Basins Groundwater Remediation Project. For this existing Environmental Restoration project, the set of N and S standards for design and safety documentation were identified, independently confirmed and approved. Implementation of these standards on the project can lead to a $2.8 Million cost savings on the design, construction/installation, and safety documentation scope of $18 Million. These savings were primarily from site design of power distribution and piping for the water treatment units. Also contributing to the savings were a more appropriate level of safety documentation and the alternate ``commercial`` bids made by vendors in response to a request for proposals for water treatment units. The use of the N and S Process on an ER activity, details on the cost savings, lessons learned and recommendations for broader implementation of the N and S Process are described herein.

  9. Effects of heterogeneity on active spreading strategies to remediate contaminated groundwater

    NASA Astrophysics Data System (ADS)

    Kasprzyk, J. R.; Piscopo, A. N.; Neupauer, R.

    2015-12-01

    The effectiveness of in situ chemical oxidation (ISCO) to remediate contaminated aquifers is constrained by the amount of contact between the groundwater contaminant and the injected oxidant. Contaminant degradation during ISCO can be enhanced using innovative active spreading strategies, which involve injecting and extracting water at wells in the vicinity of the plume to generate flow fields that spread the contaminant and oxidant plumes in a manner that increases their contact. Because aquifer heterogeneity affects the transport of the contaminant and oxidant during injection and extraction, aquifer heterogeneity also affects the amount of contact and the degree of contaminant degradation achieved using active spreading strategies during ISCO. Consequently, we can improve the effectiveness of active spreading strategies by generating sequences of injection and extraction that take the aquifer heterogeneity into account. In this study, we optimize sequences of injections and extractions to maximize contaminant degradation in aquifers with zonal and spatially-correlated heterogeneity for three contaminant-oxidant pairings with different reaction kinetics. Analysis of the transport and degradation corresponding to the optimal sequences of injection and extraction demonstrates that the underlying aquifer and contaminant properties are reflected by the optimal sequences.

  10. REACTIVE BARRIER TREATMENT WALL TECHNOLOGY FOR REMEDIATION OF INORGANIC CONTAMINATED GROUNDWATER

    SciTech Connect

    T. TAYLOR; ET AL

    2001-03-01

    The potential for subsurface reactive barrier wall technology to aid in remediation of contaminated groundwater in situ has prompted testing of novel porous media. Treatability testing of contaminants contacted with various media has been conducted using equilibrium batch techniques, one-dimensional (1-D) columns and 2-D boxes. Continuous mode column and box experiments are useful for assessing critical design parameters under dynamic flow conditions. Experiments have been conducted using a multi-layer barrier treatment approach to immobilize a suite of contaminants. For example, basalt coated with a cationic polymer (poly diallyl dimethyl ammonium chloride [Catfloc{reg_sign}]) was used to agglomerate colloids, Apatite II{reg_sign} sorbed aqueous phase metals and radionuclides including {sup 85,87}Sr and {sup 235}U and facilitated reduction of nitrate and perchlorate, crushed pecan shells sorbed aqueous phase metals and served as a secondary medium for reduction of nitrate and perchlorate concentrations, and finally limestone raised the pH of exiting pore waters close to natural levels.

  11. Assessing the Life Cycle Impact of Four Groundwater Remediation Technologies: P&T, EIB, PRB, and ISM

    NASA Astrophysics Data System (ADS)

    Hou, D.; Al-Tabbaa, A.

    2012-12-01

    As sustainable remediation draws attention from both industry and academia, there is growing interest in evaluating the environmental sustainability of various environmental remediation technologies. This study aims at assessing four groundwater remediation technologies from a life cycle impact perspective: pump and treat (P&T), enhanced in-situ bioremediation (EIB), permeable reactive barrier (PRB), and in-situ soil mixing (ISM). The technologies were compared under a variety of scenarios, with site location, plume dimension, hydrology, and chemistry and geochemistry parameters changing in a wide range. This life cycle assessment (LCA) has chosen chlorinated ethylene as the study subject because chlorinated solvents are the most prevalent organic contaminants in soil and groundwater. The USEPA TRACI method was used in the life cycle impact assessment (LCIA). A multi-criteria decision analysis (MCDA) score is used to rank the four remediation technologies. The assessment results indicated that P&T tended to have the highest life cycle impact under most scenarios. The other three technologies can all be the most desired technology (with lowest life cycle impact), under different distributional, hydrogeological, and chemical conditions: PRB was the most desired when treatment zone was long, hydraulic gradient or hydraulic conductivity was low, or contaminants degraded fast in the reactive media; ISM became the most desirable when hydraulic gradient or hydraulic conductivity was very high; and EIB was most desirable under most other conditions.

  12. Mitigation/remediation concepts for Hanford Site flammable gas generating waste tanks

    SciTech Connect

    Babad, H.; Deichman, J.L.; Johnson, B.M.; Lemon, D.K.; Strachan, D.M.

    1992-04-01

    This report presents a preliminary assessment of concepts for the mitigation and/or remediation of the hydrogen gas generation, storage, and periodic release in Tank 241-SY-101 (101-SY) and 22 other tanks. The 22 other tanks exhibit much less hydrogen generation (volume and concentration of released flammable gases) than Tank 101-SY and have not had the focus nor attention that has been given to Tank 101-SY. These tanks have been listed as potential hydrogen gas-generating tanks from analysis of tank performance and data from flowsheets and Track Radioactive Constituents Reports (TRAC). These lesser hydrogen-generating tanks will also need to be revisited and revalidated. Of the 23 hydrogen class tanks, 5 are double-shell tanks (DST) and 18 are single-shell tanks (SST). Options for mitigation or remediation are different for the two types of tanks because of age, configuration, and waste form. While this document principally focuses on Tank 101-SY, the information presented has been useful to address other tanks containing hydrogen-generating waste.

  13. Hanford 100-N Area In Situ Apatite and Phosphate Emplacement by Groundwater and Jet Injection: Geochemical and Physical Core Analysis

    SciTech Connect

    Szecsody, James E.; Vermeul, Vincent R.; Fruchter, Jonathan S.; Williams, Mark D.; Rockhold, Mark L.; Qafoku, Nikolla; Phillips, Jerry L.

    2010-07-01

    The purpose of this study is to evaluate emplacement of phosphate into subsurface sediments in the Hanford Site 100-N Area by two different technologies: groundwater injection of a Ca-citrate-PO4 solution and water-jet injection of sodium phosphate and/or fish-bone apatite. In situ emplacement of phosphate and apatite adsorbs, then incorporates Sr-90 into the apatite structure by substitution for calcium. Overall, both technologies (groundwater injection of Ca-citrate-PO4) and water-jet injection of sodium phosphate/fish-bone apatite) delivered sufficient phosphate to subsur¬face sediments in the 100-N Area. Over years to decades, additional Sr-90 will incorporate into the apatite precipitate. Therefore, high pressure water jetting is a viable technology to emplace phosphate or apatite in shallow subsurface sediments difficult to emplace by Ca-citrate-PO4 groundwater injections, but further analysis is needed to quantify the relevant areal extent of phosphate deposition (in the 5- to 15-ft distance from injection points) and cause of the high deposition in finer grained sediments.

  14. Maximizing Operational Efficiencies in Waste Management on the Hanford Plateau Remediation Contract in a Down-turned Market - 13484

    SciTech Connect

    Simiele, Connie J.; Blackford, L. Ty; West, Lori D.

    2013-07-01

    Recent changes in DOE priorities and funding have pressed DOE and its contractors to look for innovative methods to sustain critical operations at sites across the Complex. At the Hanford Site, DOE Richland Operations and its prime contractor, CH2M Hill Plateau Remediation Company (CHPRC), have completed in-depth assessments of the Plateau Remediation Contract (PRC) operations that compared available funding to mission and operational objectives in an effort to maintain requisite safety and compliance margins while realizing cost savings that meet funding profiles. These assessments included confirmation of current baseline activities, identification of potential efficiencies, barriers to implementation, and potential increased risks associated with implementation. Six operating PRC waste management facilities were evaluated against three possible end-states: complete facility closure, maintaining base operations, and performing minimum safe surveillance and maintenance activities. The costs to completely close evaluated facilities were determined to be prohibitively high and this end-state was quickly dropped from consideration. A summary of the analysis of remaining options by facility, efficiencies identified, impact to risk profiles, and expected cost savings is provided in Table I. The expected cost savings are a result of: - right-sizing and cross-training work crews to address maintenance activities across facilities; - combining and sequencing 'like-moded' operational processes; - cross-cutting emergency planning and preparedness staffing; - resource redistribution and optimization; - reducing areas requiring routine surveillance and inspection. For the efficiencies identified, there are corresponding increases in risk, including a loss of breadth and depth of available resources; lengthened response time to emergent issues; inability to invest in opportunities for improvement (OFIs); potential single-point failures or non-compliancies due to resource

  15. Hydrogeologic properties and ground-water chemistry of the Rattlesnake Ridge interbed at well 699-25-80 (DB-14) Hanford Site

    SciTech Connect

    Spane, F.A. Jr.; Howland, M.D.; Strait, S.R.

    1980-11-01

    Offsite migration studies were conducted to characterize the hydraulic properties and groundwater chemistry of confined aquifer systems within the Hanford Site. These studies support the recommendations in ERDA-1538 to provide input for hydrologic modeling of groundwater flow within the Hanford Site, to afford information concerning possible contamination of underlying confined aquifer systems and to make the results available to the public. This report presents analytical results and aquifer test procedures used in characterizing the Rattlesnake Ridge interbed at well 699-25-80. The overall close association in groundwater chemistries and presence of elevated nitrate levels suggest that the Rattlesnake Ridge interbed may be locally in communication with the overlying unconfined aquifer system. Other physical evidence which indicates a potential local communication with the unconfined aquifer system includes: favorable stratigraphic position; absence of the confining Elephant Mountain basalt in surrounding areas; and intersection of a recharge boundary during aquifer tests of well 699-25-80.

  16. Passive Neutron Non-Destructive Assay for Remediation of Radiological Waste at Hanford Burial Grounds- 13189

    SciTech Connect

    Simpson, A.; Pitts, M.; Ludowise, J.D.; Valentinelli, P.; Grando, C.J.; Haggard, D.L.

    2013-07-01

    The Hanford burial grounds contains a broad spectrum of low activity radioactive wastes, transuranic (TRU) wastes, and hazardous wastes including fission products, byproduct material (thorium and uranium), plutonium and laboratory chemicals. A passive neutron non-destructive assay technique has been developed for characterization of shielded concreted drums exhumed from the burial grounds. This method facilitates the separation of low activity radiological waste containers from TRU waste containers exhumed from the burial grounds. Two identical total neutron counting systems have been deployed, each consisting of He-3 detectors surrounded by a polyethylene moderator. The counts are processed through a statistical filter that removes outliers in order to suppress cosmic spallation events and electronic noise. Upon completion of processing, a 'GO / NO GO' signal is provided to the operator based on a threshold level equivalent to 0.5 grams of weapons grade plutonium in the container being evaluated. This approach allows instantaneous decisions to be made on how to proceed with the waste. The counting systems have been set up using initial on-site measurements (neutron emitting standards loaded into surrogate waste containers) combined with Monte Carlo modeling techniques. The benefit of this approach is to allow the systems to extend their measurement ranges, in terms of applicable matrix types and container sizes, with minimal interruption to the operations at the burial grounds. (authors)

  17. CALCITE PRECIPITATION AND TRACE METAL PARTITIONING IN GROUNDWATER AND THE VADOSE ZONE: REMEDIATION OF STRONTIUM-90 AND OTHER DIVALENT METALS AND RADIONUCLIDES IN ARID WESTERN ENVIRONMENTS

    EPA Science Inventory

    Radionuclide and metal contaminants are present in the vadose zone and groundwater throughout the U.S. Department of Energy (DOE) weapons complex. Demonstrating in situ immobilization of these contaminants in vadose zones or groundwater plumes is a cost-effective remediation str...

  18. Nitrate Remediation of Soil and Groundwater Using Phytoremediation: Transfer of Nitrogen Containing Compounds from the Subsurface to Surface Vegetation

    NASA Astrophysics Data System (ADS)

    Nelson, Sheldon

    2013-04-01

    Nitrate Remediation of Soil and Groundwater Using Phytoremediation: Transfer of Nitrogen Containing Compounds from the Subsurface to Surface Vegetation Sheldon Nelson Chevron Energy Technology Company 6001 Bollinger Canyon Road San Ramon, California 94583 snne@chevron.com The basic concept of using a plant-based remedial approach (phytoremediation) for nitrogen containing compounds is the incorporation and transformation of the inorganic nitrogen from the soil and/or groundwater (nitrate, ammonium) into plant biomass, thereby removing the constituent from the subsurface. There is a general preference in many plants for the ammonium nitrogen form during the early growth stage, with the uptake and accumulation of nitrate often increasing as the plant matures. The synthesis process refers to the variety of biochemical mechanisms that use ammonium or nitrate compounds to primarily form plant proteins, and to a lesser extent other nitrogen containing organic compounds. The shallow soil at the former warehouse facility test site is impacted primarily by elevated concentrations of nitrate, with a minimal presence of ammonium. Dissolved nitrate (NO3-) is the primary dissolved nitrogen compound in on-site groundwater, historically reaching concentrations of 1000 mg/L. The initial phases of the project consisted of the installation of approximately 1750 trees, planted in 10-foot centers in the areas impacted by nitrate and ammonia in the shallow soil and groundwater. As of the most recent groundwater analytical data, dissolved nitrate reductions of 40% to 96% have been observed in monitor wells located both within, and immediately downgradient of the planted area. In summary, an evaluation of time series groundwater analytical data from the initial planted groves suggests that the trees are an effective means of transfering nitrogen compounds from the subsurface to overlying vegetation. The mechanism of concentration reduction may be the uptake of residual nitrate from the

  19. Technology needs for remediation: Hanford and other DOE sites. Buried Waste Integrated Demonstration Program

    SciTech Connect

    Stapp, D.C.

    1993-01-01

    Technologies are being developed under the Buried Waste Integrated Demonstration (BWID) program to facilitate remediation of the US Department of Energy`s (DOE) buried and stored low-level radioactive, transuranic (TRU), and mixed radioactive and hazardous buried wastes. The BWID program is being coordinated by the Idaho National Engineering Laboratory (INEL) in southeastern Idaho, a DOE site that has large volumes of buried radioactive wastes. The program is currently focusing its efforts on the problems at INEL`s Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC). As specific technologies are successfully demonstrated, they will be available for transfer to applications at other DOE buried waste sites. The purpose of this study is to present buried waste technology needs that have been identified for DOE sites other than INEL.

  20. ANNUAL REPORT FOR THE FINAL GROUNDWATER REMEDIATION, TEST AREA NORTH, OPERABLE UNIT 1-07B, FISCAL YEAR 2009

    SciTech Connect

    FORSYTHE, HOWARD S

    2010-04-14

    This Annual Report presents the data and evaluates the progress of the three-component remedy implemented for remediation of groundwater contamination at Test Area North, Operable Unit 1-07B, at the Idaho National Laboratory Site. Overall, each component is achieving progress toward the goal of total plume remediation. In situ bioremediation operations in the hot spot continue to operate as planned. Progress toward the remedy objectives is being made, as evidenced by continued reduction in the amount of accessible residual source and decreases in downgradient contaminant flux, with the exception of TAN-28. The injection strategy is maintaining effective anaerobic reductive dechlorination conditions, as evidenced by complete degradation of trichloroethene and ethene production in the biologically active wells. In the medial zone, the New Pump and Treat Facility operated in standby mode. Trichloroethene concentrations in the medial zone wells are significantly lower than the historically defined concentration range of 1,000 to 20,000 μg/L. The trichloroethene concentrations in TAN-33, TAN-36, and TAN-44 continue to be below 200 μg/L. Monitoring in the distal zone wells outside and downgradient of the plume boundary demonstrate that some plume expansion has occurred, but less than the amount allowed in the Record of Decision Amendment. Additional data need to be collected for wells in the monitored natural attenuation part of the plume to confirm that the monitored natural attenuation part of the remedy is proceeding as predicted in the modeling.

  1. Proposed plan for remedial action for the Groundwater Operable Unit at the Chemical Plant Area of the Weldon Spring Site, Weldon Spring, Missouri

    SciTech Connect

    1999-08-10

    This Proposed Plan addresses the remediation of groundwater contamination at the chemical plant area of the Weldon Spring site in Weldon Spring, Missouri. The site is located approximately 48 km (30 mi) west of St. Louis in St. Charles County . Remedial activities at the site will be conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The U.S. Department of Energy (DOE), in conjunction with the U.S. Department of the Army (DA), conducted a joint remedial investigation/feasibility study (RI/FS) to allow for a comprehensive evaluation of groundwater conditions at the Weldon Spring chemical plant area and the Weldon Spring ordnance works area, which is an Army site adjacent to the chemical plant area. Consistent with DOE policy, National Environmental Policy Act (NEPA) values have been incorporated into the CERCLA process. That is, the analysis conducted and presented in the RVFS reports included an evaluation of environmental impacts that is comparable to that performed under NEPA. This Proposed Plan summarizes information about chemical plant area groundwater that is presented in the following documents: (1) The Remedial Investigation (RI), which presents information on the nature and extent of contamination; (2) The Baseline Risk Assessment (BRA), which evaluates impacts to human health and the environment that could occur if no cleanup action of the groundwater were taken (DOE and DA 1997a); and (3) The Feasibility Study (FS) and the Supplemental FS, which develop and evaluate remedial action alternatives for groundwater remediation.

  2. Development Of A New Redox-Active Porous Material For Groundwater Remediation

    NASA Astrophysics Data System (ADS)

    Zhuang, Y.; White, M.; Fialips, C. I.

    2008-12-01

    Laboratory experiments have shown that reducing iron in smectites promotes the degradation of various redox sensitive organics, including nitroaromatics and chlorinated compounds. Fe-bearing smectites have however never been used in the design of permeable reactive barriers (PRBs) for groundwater remediation. One basic requirement when designing PRBs is to keep their permeability equal to or higher than that of the surrounding aquifer materials to avoid affecting groundwater flow. Smectite clays are very low permeability materials and, when physically mixed with permeable materials, such as sand, clay particles can migrate and clog up pores, resulting in a progressive loss in permeability. In this study, we are developing a novel Fe-bearing clay-material suitable for permeable water treatment systems, including PRBs. Fe-smectite particles are tightly attached to the surface of sand grains using polyvinyl alcohol (PVA). To identify optimum procedures, we are studying the relationships between the size and texture of the sand grains, the clay/PVA and clay/sand ratio, the quality and extent of clay coverage, the stability of the clay-coated sand to changes in pH and redox conditions, and its hydraulic properties before and after iron reduction. The best clay coatings have been obtained using the most angular sands with rough surfaces and medium grain sizes (0.3-0.6mm). An optimum coating of 61.5 mg clay/g sand was obtained using the nontronite Nau- 2. The clay-coated sand is stable when pH is below 7 (no detachment of the clay particles). For pH higher than 7, a maximum of 14% of the clay-coating is detaching when the sample is not disturbed, and 28% if shaken. XRD analyses of the clay-coated sand also show that the coated smectite retains its swelling properties (d-spacing at 17.1Å after ethylene glycol treatment). The clay-coated sand is also stable to changes in redox conditions, with less than 15% detachment after 4h of treatment with sodium dithionite at 25

  3. Viscosity-Modification to Improve Remediation Efficiencies within Heterogeneous Contaminated Groundwater Aquifers: Laboratory and Field-Scale Evaluation

    NASA Astrophysics Data System (ADS)

    Silva, J. A.; Crimi, M.

    2013-12-01

    A key challenge in in situ groundwater remediation practice is achieving efficient contact between the injected remedial fluid and the target contamination in the presence of subsurface permeability heterogeneities. Even apparently small permeability contrasts can affect the delivery and subsurface distribution of injected remedial fluids, as a result of preferential flows, and reduce treatment effectiveness as a result of bypassing of contaminated media of lower permeability. Viscosity-modification is a technique that can be used to mitigate the effects of permeability heterogeneity and improve the delivery and distribution of remediation fluids during subsurface injection. Viscosity-modification involves increasing the viscosity of the injected fluid, and modifying the fluids rheological character in some cases. The increased viscosity provides a reduced fluid mobility condition within higher permeability media that, in turn, enhances the penetration of fluids into adjacent lower permeability media, improving the overall sweep efficiency within heterogeneous geomedia. Herein, we present the results of laboratory (two-dimensional flow tank) and numerical experiments that were designed to critically evaluate the utility of viscosity-modification for groundwater remediation application. Specifically, we will address the benefits and limitations of the approach and highlight the effect of system variables on the degree sweep efficiency improvement achievable. We also present the results of a recently completed Environmental Security Technology Certification Program (ESTCP) technology validation project in which viscosity-modification was applied to permanganate in situ chemical oxidation. Site selection criteria, implementation design considerations, and the long-term effects of viscosity-modified fluid treatments will be discussed.

  4. Coupling of zero valent iron and biobarriers for remediation of trichloroethylene in groundwater.

    PubMed

    Teerakun, Mullika; Reungsang, Alissara; Lin, Chien-Jung; Liao, Chih-Hsiang

    2011-01-01

    This study attempted to construct a three series barrier system to treat high concentrations of trichloroethylene (TCE; 500 mg/L) in synthetic groundwater. The system consisted of three reactive barriers using iron fillings as an iron-based barrier in the first column, sugarcane bagasse mixed with anaerobic sludge as an anaerobic barrier in the second column, and a biofilm coated on oxygen carbon inducer releasing material as an aerobic barrier in the third column. In order to evaluate the extent of removal of TCE and its metabolites in the aquifer down gradient of the barrier system, a fourth column filled with sand was applied. Residence time of the system was investigated by a bromide tracer test. The results showed that residence time in the column system of the control set and experimental set were 23.62 and 29.99 days, respectively. The efficiency of the three series barrier system in removing TCE was approximately 84% in which the removal efficiency of TCE by the iron filling barrier, anaerobic barrier and aerobic barrier were 42%, 16% and 25%, respectively, cis-Dichloroethylene (cis-DCE), vinyl chloride (VC), ethylene and chloride ions were observed as metabolites following TCE degradation. The presence of chloride ions in the effluent from the column system indicated the degradation of TCE. However, cis-DCE and VC were not fully degraded by the proposed barrier system which suggested that another remediation technology after the barrier treatment such as air sparging and adsorption by activated carbon should be conducted. PMID:21793396

  5. RESULTS OF TRITIUM TRACKING AND GROUNDWATER MONITORING AT THE HANFORD SITE 200 AREA STATE APPROVED LAND DISPOSAL SITE FY2008

    SciTech Connect

    ERB DB

    2008-11-19

    The Hanford Site's 200 Area Effluent Treatment Facility (ETF) processes contaminated aqueous wastes derived from Hanford Site facilities. The treated wastewater occasionally contains tritium, which cannot be removed by the ETF prior to the wastewater being discharged to the 200 Area State-Approved Land Disposal Site (SALDS). During the first 11 months of fiscal year 2008 (FY08) (September 1, 2007, to July 31, 2008), approximately 75.15 million L (19.85 million gal) of water were discharged to the SALDS. Groundwater monitoring for tritium and other constituents, as well as water-level measurements, is required for the SALDS by State Waste Discharge Permit Number ST-4500 (Ecology 2000). The current monitoring network consists of three proximal (compliance) monitoring wells and nine tritium-tracking wells. Quarterly sampling of the proximal wells occurred in October 2007 and in January/February 2008, April 2008, and August 2008. The nine tritium-tracking wells, including groundwater monitoring wells located upgradient and downgradient of the SALDS, were sampled in January through April 2008. Water-level measurements taken in the three proximal SALDS wells indicate that a small groundwater mound is present beneath the facility, which is a result of operational discharges. The mound increased in FY08 due to increased ETF discharges from treating groundwater from extraction wells at the 200-UP-l Operable Unit and the 241-T Tank Farm. Maximum tritium activities increased by an order of magnitude at well 699-48-77A (to 820,000 pCi/L in April 2008) but remained unchanged in the other two proximal wells. The increase was due to higher quantities of tritium in wastewaters that were treated and discharged in FY07 beginning to appear at the proximal wells. The FY08 tritium activities for the other two proximal wells were 68,000 pCi/L at well 699-48-77C (October 2007) and 120,000 pCi/L at well 699-48-77D (October 2007). To date, no indications of a tritium incursion from the

  6. Natural Oxidant Demand Variability, Potential Controls, and Implications for in Situ, Oxidation-Based Remediation of Contaminated Groundwater

    NASA Astrophysics Data System (ADS)

    Dettmer, A.; Cruz, S.; Dungan, B.; Holguin, F. O.; Ulery, A. L.; Hunter, B.; Carroll, K. C.

    2014-12-01

    Naturally occurring reduced species associated with subsurface materials can impose a significant natural oxidant demand (NOD), which is the bulk consumption of oxidants by soil water, minerals, and organic matter. Although injection of oxidants has been used for chemical transformation of organic contaminants, NOD represents a challenge for the in-situ delivery of oxidants as a remediation alternative. Co-injection of complexation agents with oxidants has been proposed to facilitate the delivery of oxidants for in situ chemical oxidation remediation of contaminated groundwater. This study investigates variability of NOD for different oxidants and sediments. The effect of the addition of various complexation agents, including EDTA, tween 80, hydroxypropyl-beta-cyclodextrin (HPCD), humic acid, and four generations of poly(amidoamine) (PAMAM) dendrimers, on the NOD was also examined. NOD was measured for a clay loam (collected from Air Force Plant 44 in Tucson, AZ). Varying amounts of biosolids were mixed with subsamples of the clay loam to create three additional reference soils in order to study the effect of organic matter and other soil characteristics on the NOD. Bench-scale laboratory experiments were conducted to determine the NOD for various oxidants, using the four soils, and replicated with and without various delivery agents. Measured NOD showed variability for each soil and oxidant composition. Additionally, significant differences were observed in NOD with the addition of delivery agents. The results support the elucidation of potential controls over NOD and have implications for in situ, oxidation-based remediation of contaminated groundwater.

  7. Remedial investigation work plan for the Groundwater Operable Unit at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    Not Available

    1994-03-01

    This Remedial Investigation (RI) Work Plan has been developed as part of the US Department of Energy`s (DOE`s) investigation of the Groundwater Operable Unit (GWOU) at Oak Ridge National Laboratory (ORNL) located near Oak Ridge, Tennessee. The first iteration of the GWOU RI Work Plan is intended to serve as a strategy document to guide the ORNL GWOU RI. The Work Plan provides a rationale and organization for groundwater data acquisition, monitoring, and remedial actions to be performed during implementation of environmental restoration activities associated with the ORNL GWOU. It Is important to note that the RI Work Plan for the ORNL GWOU is not a prototypical work plan. The RI will be conducted using annual work plans to manage the work activities, and task reports will be used to document the results of the investigations. Sampling and analysis results will be compiled and reported annually with a review of data relative to risk (screening level risk assessment review) for groundwater. This Work Plan outlines the overall strategy for the RI and defines tasks which are to be conducted during the initial phase of investigation. This plan is presented with the understanding that more specific addenda to the plan will follow.

  8. Remedial Process Optimization and Green In-Situ Ozone Sparging for Treatment of Groundwater Impacted with Petroleum Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Leu, J.

    2012-12-01

    A former natural gas processing station is impacted with TPH and BTEX in groundwater. Air sparging and soil vapor extraction (AS/AVE) remediation systems had previously been operated at the site. Currently, a groundwater extraction and treatment system is operated to remove the chemicals of concern (COC) and contain the groundwater plume from migrating offsite. A remedial process optimization (RPO) was conducted to evaluate the effectiveness of historic and current remedial activities and recommend an approach to optimize the remedial activities. The RPO concluded that both the AS/SVE system and the groundwater extraction system have reached the practical limits of COC mass removal and COC concentration reduction. The RPO recommended an in-situ chemical oxidation (ISCO) study to evaluate the best ISCO oxidant and approach. An ISCO bench test was conducted to evaluate COC removal efficiency and secondary impacts to recommend an application dosage. Ozone was selected among four oxidants based on implementability, effectiveness, safety, and media impacts. The bench test concluded that ozone demand was 8 to 12 mg ozone/mg TPH and secondary groundwater by-products of ISCO include hexavalent chromium and bromate. The pH also increased moderately during ozone sparging and the TDS increased by approximately 20% after 48 hours of ozone treatment. Prior to the ISCO pilot study, a capture zone analysis (CZA) was conducted to ensure containment of the injected oxidant within the existing groundwater extraction system. The CZA was conducted through a groundwater flow modeling using MODFLOW. The model indicated that 85%, 90%, and 95% of an injected oxidant could be captured when a well pair is injecting and extracting at 2, 5, and 10 gallons per minute, respectively. An ISCO pilot test using ozone was conducted to evaluate operation parameters for ozone delivery. The ozone sparging system consisted of an ozone generator capable of delivering 6 lbs/day ozone through two ozone

  9. In-situ wastewater treatment and groundwater remediation at a sugar beet processing facility

    SciTech Connect

    Olson, J.L.; Fuller-Pratt, P.R.; Mielke, R.A.

    1996-06-01

    Groundwater monitoring data collected at the Western Sugar Company sugar beet processing plant, in Billings, Montana identified groundwater mounding and groundwater nitrogen concentration increases associated with lime slurry discharge to an on-site storage pile. The nitrogen impacts (primarily ammonia) likely originated through decomposition of organic matter in the slurry. Initially, Western Sugar considered constructing an expensive anaerobic and nitrification-denitrification wastewater treatment system. However, further investigation of the lime pile revealed that it was already serving as an efficient filter and anaerobic reactor. Comparisons of slurry application with other land application systems suggested that groundwater nitrogen impacts could be minimized through groundwater capture, re-application, and improved slurry management. The resultant system required little capitol and maintenance cost. The immediate effect was to substantially decrease the groundwater mound. Subsequent monitoring has demonstrated a gradual decline in nitrogen concentrations under the lime pile and a considerable concentration decrease downgradient of the groundwater recovery system.

  10. An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation.

    PubMed

    Zhao, Xiao; Liu, Wen; Cai, Zhengqing; Han, Bing; Qian, Tianwei; Zhao, Dongye

    2016-09-01

    Nano-scale zero-valent iron (nZVI) is one of the most intensively studied materials for environmental cleanup uses over the past 20 years or so. Freshly prepared nZVI is highly reactive due to its high specific surface area and strong reducing power. Over years, the classic borohydride reduction method for preparing nZVI has been modified by use of various stabilizers or surface modifiers to acquire more stable and soil deliverable nZVI for treatment of different organic and inorganic contaminants in water and soil. While most studies have been focused on testing nZVI for water treatment, the greater potential or advantage of nZVI appears to be for in situ remediation of contaminated soil and groundwater by directly delivering stabilized nZVI into the contaminated subsurface as it was proposed from the beginning. Compared to conventional remediation practices, the in situ remediation technique using stabilized nZVI offers some unique advantages. This work provides an update on the latest development of stabilized nZVI for various environmental cleanup uses, and overviews the evolution and environmental applications of stabilized nZVI. Commonly used stabilizers are compared and the stabilizing mechanisms are discussed. The effectiveness and constraints of the nZVI-based in situ remediation technology are summarized. This review also reveals some critical knowledge gaps and research needs, such as interactions between delivered nZVI and the local biogeochemical conditions. PMID:27206054

  11. Optimal design of groundwater remediation systems using a probabilistic multi-objective fast harmony search algorithm under uncertainty

    NASA Astrophysics Data System (ADS)

    Luo, Q.; Wu, J.; Qian, J.

    2013-12-01

    This study develops a new probabilistic multi-objective fast harmony search algorithm (PMOFHS) for optimal design of groundwater remediation system under uncertainty associated with the hydraulic conductivity of aquifers. The PMOFHS integrates the previously developed deterministic multi-objective optimization method, namely multi-objective fast harmony search algorithm (MOFHS) with a probabilistic Pareto domination ranking and probabilistic niche technique to search for Pareto-optimal solutions to multi-objective optimization problems in a noisy hydrogeological environment arising from insufficient hydraulic conductivity data. The PMOFHS is then coupled with the commonly used flow and transport codes, MODFLOW and MT3DMS, to identify the optimal groundwater remediation system of a two-dimensional hypothetical test problem involving two objectives: (i) minimization of the total remediation cost through the engineering planning horizon, and (ii) minimization of the percentage of mass remaining in the aquifer at the end of the operational period, which uses the Pump-and-Treat (PAT) technology to clean up contaminated groundwater. Also, Monte Carlo (MC) analysis is used to demonstrate the effectiveness of the proposed methodology. The MC analysis is taken to each Pareto solutions for every K realization. Then the statistical mean and the upper and lower bounds of uncertainty intervals of 95% confidence level are calculated. The MC analysis results show that all of the Pareto-optimal solutions are located between the upper and lower bounds of the MC analysis. Moreover, the root mean square errors (RMSEs) between the Pareto-optimal solutions by the PMOFHS and the average values of optimal solutions by the MC analysis are 0.0204 for the first objective and 0.0318 for the second objective, quite smaller than those RMSEs between the results by the existing probabilistic multi-objective genetic algorithm (PMOGA) and the MC analysis, 0.0384 and 0.0397, respectively. In

  12. Estimation of the release and migration of lead through soils and groundwater at the Hanford Site 218-E-12B Burial Ground. Volume 1, Final report

    SciTech Connect

    Rhoads, K.; Bjornstad, B.N.; Lewis, R.E.; Teel, S.S.; Cantrell, K.J.; Serne, R.J.; Smoot, J.L.; Kincaid, C.T.; Wurstner, S.K.

    1992-10-01

    This study was performed to evaluate the potential for transport of lead from the Hanford Site 218-E-12B Burial Ground to the surrounding surface- and groundwater. Burial of metal components containing nickel alloy steel and lead at this location may eventually result in release of lead to the subsurface environment, including groundwater aquifers that may be used for domestic and agricultural purposes in the future and, ultimately, to the Columbia River. The rate at which lead is transported to downgradient locations depends on a complex set of factors, such as climate, soil and groundwater chemistry, and the geologic and hydrologic configuration of the subsurface region between the burial ground and a potential receptor location. The groundwater transport analysis was conducted using a one-dimensional screening model with a relatively conservative matrix of parameters obtained from the hydrogeologic and geochemical studies.

  13. Estimation of the release and migration of lead through soils and groundwater at the Hanford Site 218-E-12B Burial Ground

    SciTech Connect

    Rhoads, K.; Bjornstad, B.N.; Lewis, R.E.; Teel, S.S.; Cantrell, K.J.; Serne, R.J.; Smoot, J.L.; Kincaid, C.T.; Wurstner, S.K.

    1992-10-01

    This study was performed to evaluate the potential for transport of lead from the Hanford Site 218-E-12B Burial Ground to the surrounding surface- and groundwater. Burial of metal components containing nickel alloy steel and lead at this location may eventually result in release of lead to the subsurface environment, including groundwater aquifers that may be used for domestic and agricultural purposes in the future and, ultimately, to the Columbia River. The rate at which lead is transported to downgradient locations depends on a complex set of factors, such as climate, soil and groundwater chemistry, and the geologic and hydrologic configuration of the subsurface region between the burial ground and a potential receptor location. The groundwater transport analysis was conducted using a one-dimensional screening model with a relatively conservative matrix of parameters obtained from the hydrogeologic and geochemical studies.

  14. Resource Conservation and Recovery Act ground-water monitoring projects for Hanford Facilities: Progress report for the period July 1 to September 30, 1989 - Volume 1 - Text

    SciTech Connect

    Smith, R.M.; Bates, D.J.; Lundgren, R.E.

    1989-12-01

    This is Volume 1 of a two-volume document that describes the progress of 14 Hanford Site ground-water monitoring projects for the period July 1 to September 30, 1989. This volume discusses the projects; Volume 2 provides as-built diagrams, completion/inspection reports, drilling logs, and geophysical logs for wells drilled, completed, or logged during this period. Volume 2 can be found on microfiche in the back pocket of Volume 1. The work described in this document is conducted by the Pacific Northwest Laboratory under the management of Westinghouse Hanford Company for the US Department of Energy. Concentrations of ground-water constituents are compared to federal drinking water standards throughout this document for reference purposes. All drinking water supplied from the sampled aquifer meets regulatory standards for drinking water quality.

  15. Radionuclide Sensors and Systems for Monitoring Technetium-99 and Strontium-90 in Groundwater at the Hanford Site

    NASA Astrophysics Data System (ADS)

    Grate, J. W.; O'Hara, M. J.; Egorov, O. B.; Burge, S. R.

    2009-12-01

    We have developed automated sensor and analyzer devices for detection and monitoring of trace radionuclides in water, using preconcentrating columns and radiometric detection. The preconcentrating minicolumn sensor concept combines selective capture and detection in a single functional unit, where the column contains tens to hundreds of milligrams of selectively sorbent material, and the entire column content is monitored with a radiometric detector. Compared to thin film sensors with a few microgram of sorbent, this approach achieves tremendous preconcentration with efficient mass transport via pumping. Furthermore, in an equilibration-based mode of operation, the preconcentration by the sensor is maximized while eliminating the need for consumable reagents to regenerate the column; it can simply be re-equilibrated. We have demonstrated quantification of radionuclides such as technetium-99 to levels below drinking water standards in an equilibration-based process that produces steady state signals, signal proportional to concentration, and easy re-equilibration to new concentration levels. Alternatively, analyzers can be developed with separate separation and detection units that are fluidically linked. We have demonstrated detection of strontium-90 to levels below drinking water standards by this approach. We are developing autonomous systems for at-site monitoring on the Hanford Site in Washington State, using the fluidic sensor and analyzer methods, with the aim of monitoring natural and accelerated attenuation processes, remediation and barrier performance, and contaminant fluxes in the environment. Figure 1. The strontium-90 monitoring method deployed as part of the Burge Environmental Universal Sensor Platform, shown on the shores of the Columbia River on the Hanford site in Washington State.

  16. Ground-water monitoring compliance projects for Hanford Site facilities: Volume 1, The report and Appendix A, Progress report for the period October 1 to December 31, 1986

    SciTech Connect

    Not Available

    1987-02-01

    This report documents recent progress on ground-water monitoring projects for four Hanford Site facilities: the 300 Area Process Trenches, the 183-H Solar Evaporation Basins, the 200 Area Low-Level Burial Grounds, and the Nonradioactive Dangerous Waste (NRDW) Landfill. The existing ground-water monitoring projects for the first two facilities named in the paragraph above are currently being expanded by adding new wells to the networks. During the reporting period, sampling of the existing wells continued on a monthly basis, and the analytical results for samples collected from September through November 1986 are included and discussed in this document. 8 refs., 41 figs., 7 tabs.

  17. Estimation of the release and migration of lead through soils and groundwater at the Hanford Site 218-E-12B Burial Ground. Volume 2, Appendices

    SciTech Connect

    Rhoads, K.; Bjornstad, B.N.; Lewis, R.E.; Teel, S.S.; Cantrell, K.J.; Serne, R.J.; Smoot, J.L.; Kincaid, C.T.; Wurstner, S.K.

    1992-10-01

    This report describes the technical basis for a groundwater transport analysis that was conducted to evaluate migration of potentially hazardous materials from the Hanford Site 218-E-12B burial ground. The analysis characterized the geologic, chemical, and hydrologic properties of the disposal site, and used that information to perform a screening analysis for transport of materials from the burial ground to downgradient groundwater locations and to the Columbia River. Subsequent sections of the appendix describe the geologic setting, geochemistry, and hydrology of the disposal site and their relationship to the transport analysis.

  18. Estimation of the release and migration of lead through soils and groundwater at the Hanford Site 218-E-12B Burial Ground

    SciTech Connect

    Rhoads, K.; Bjornstad, B.N.; Lewis, R.E.; Teel, S.S.; Cantrell, K.J.; Serne, R.J.; Smoot, J.L.; Kincaid, C.T.; Wurstner, S.K.

    1992-10-01

    This report describes the technical basis for a groundwater transport analysis that was conducted to evaluate migration of potentially hazardous materials from the Hanford Site 218-E-12B burial ground. The analysis characterized the geologic, chemical, and hydrologic properties of the disposal site, and used that information to perform a screening analysis for transport of materials from the burial ground to downgradient groundwater locations and to the Columbia River. Subsequent sections of the appendix describe the geologic setting, geochemistry, and hydrology of the disposal site and their relationship to the transport analysis.

  19. Limitations in determining redox chemistry in basalt groundwaters at the Hanford site

    SciTech Connect

    Dill, J.A.; Jones, T.E.; Marcy, A.D.; West, M.H.

    1986-03-01

    The oxidation-reduction (redox) chemistry of the basalt groundwater system will be an important factor governing both the design and performance of a high-level nuclear waste repository in basalt. Although the redox state of the basalt groundwater system is inherently difficult to measure, there are a number of types of measurements that provide valuable information on this subject. These measurements include concentrations of dissolved sulfide, ferrous iron, electrode redox potential, and groundwater reducing capacity. These measurements have been made on a limited basis in a number of different repository test horizons. Taken collectively, the results of these measurements suggest that both sulfide and ferrous iron play an important role in the establishment of the basalt groundwater redox condition. Thermodynamic calculations of redox potential (E/sub h/) based on these measurements are indicative of an E/sub h/ of -0.4 V. Additional measurements are proposed that will provide a more complete understanding of basalt groundwater redox conditions. The proposed measurements include a more in-depth analysis of redox active species as well as quantification of dissolved gas species such as oxygen and methane.

  20. Mobility of Nanoscale and Microscale iron for groundwater remediation: experiments and modelling

    NASA Astrophysics Data System (ADS)

    Tosco, T.; Gastone, F.; Sethi, R.

    2012-12-01

    Colloidal suspensions of zerovalent iron micro- and nanoparticles (MZVI and NZVI) have been studied in recent years for in-situ groundwater remediation. Thanks to their small size, MZVI and NZVI can be dispersed in aqueous suspensions and directly injected into the subsurface, for a targeted treatment of contamination plumes and even sources. However, colloidal dispersions of such particles are not stable in pure water, due to fast aggregation (for NZVI) and gravitational sedimentation (for MZVI). Viscous, environmentally friendly fluids (guar gum and xanthan gum solutions), which exhibit shear thinning rheological properties, were found to be effective in improving colloidal stability, thus greatly improving handling and injectability (1-3). The present work reports laboratory tests and numerical modelling concerning the mobility of MZVI and NZVI viscous suspensions in porous media. The efficacy of xanthan and guar gum was investigated in column transport tests, performed injecting highly concentrated iron suspensions (20 g/L), dispersed in xanthan gum (3g/L) and guar gum (3-6 g/l) solutions. Particle breakthrough curves and concentration profiles were monitored by magnetic susceptibility measurements. Pressure drop at column ends was also continuously monitored. The tests proved that green polymers can greatly improve both colloidal stability and mobility of the particles. Their use is fundamental in particular for MZVI, which cannot be transported nor even dispersed in pure water. A numerical model for NZVI and NZVI transport in porous media was then developed (E-MNM1D, Enhanced Micro-and Nanoparticle transport Model in porous media in 1D geometry) (4). Due to the high concentration of the particles and to the non-Newtonian rheology of the carrier fluid, hydrodynamic parameters, fluid properties and concentration of deposed and suspended particles are mutually influenced. The rheological properties of the suspensions are accounted for through a variable

  1. Ground-water monitoring compliance projects for Hanford Site Facilities: Progress report for the period April 1--June 30, 1988: Volume 1, Text

    SciTech Connect

    Not Available

    1988-09-01

    This is Volume 1 of a two-volume set of documents that describes the progress of 10 Hanford Site ground-water monitoring projects for the period April 1 to June 30, 1988. This volume discusses the projects; Volume 2 provides as-built diagrams, drilling logs, and geophysical logs for wells drilled during this period in the 100-N Area and near the 216-A-36B Crib.

  2. Grand challenge problems in environmental modeling and remediation: Groundwater contaminant transport. Final project report 1998

    SciTech Connect

    1998-04-01

    The over-reaching goal of the Groundwater Grand Challenge component of the Partnership in Computational Science (PICS) was to develop and establish the massively parallel approach for the description of groundwater flow and transport and to address the problem of uncertainties in the data and its interpretation. This necessitated the development of innovative algorithms and the implementation of massively parallel computational tools to provide a suite of simulators for groundwater flow and transport in heterogeneous media. This report summarizes the activities and deliverables of the Groundwater Grand Challenge project funded through the High Performance Computing grand challenge program of the Department of Energy from 1995 through 1997.

  3. Remediation of groundwater containing radionuclides and heavy metals using ion exchange and the AlgaSORB[reg sign] biosorbent system

    SciTech Connect

    Feiler, H.D. ); Darnall, D.W. )

    1991-11-07

    Bio-Recovery Systems, Inc. (BRS) studied the application of an immobilized algal biomass, termed AlgaSORB[reg sign], which has high affinity for heavy metal ions to DOE-contaminated groundwaters. The material can be packed into columns similar to commercial ion exchange resins. Dilute solutions containing heavy metals are passed through columns where metals are absorbed by the AlgaSORB[reg sign] resins. Once saturated, metal ions can be stripped from the resin biomass in a highly concentrated solution. Groundwaters contaminated with heavy metal ions from three different Department of Energy (DOE) sites: Savannah River, Hanford and the Oak Ridge Y-12 Plant were studied. The objective was to perform bench-scale treatability studies to establish treatment protocols and to optimize an AlgaSORB[reg sign]/ion exchange technology system to remove and recover toxic metal ions from these contaminated groundwaters. The specialty ion exchange/AlgaSORB[reg sign] resins tested in these studies show promise for selectively removing chromium, mercury and uranium from contaminated groundwater at DOE sites. The data show that effluents which satisfy the allowable metal ion limits are possible and most likely achievable. The use of these highly selective resins also offer advantages in terms of cost/benefit, risk and scheduling. Their high selectivity allows for high capacity and opportunities for recovery of removed constituents due to high pollutant concentration possible (3 to 4 orders of magnitude). Ion exchange is a proven technology which is easily automated and can be cost-effective, depending on the application.

  4. Analysis of natural ground-water level variations for hydrogeologic conceptualization, Hanford Site, Washington

    NASA Astrophysics Data System (ADS)

    Nevulis, Richard H.; Davis, Donald R.; Sorooshian, Soroosh

    1989-07-01

    This study involves the analysis of groundwater level time series for the purpose of obtaining details for a conceptual hydrogeologic model at a time when conventional hydraulic stress testing was not feasible due to regulatory considerations. The study area is located in south central Washington in the Pasco Basin which was a candidate site for underground disposal of high-level radioactive nuclear wastes. Advantages of such passive methods of analysis may include relative simplicity, low cost, and avoidance of disturbances typically associated with stress testing of aquifers. Through this approach, natural and incidental man-made groundwater level variations, most of which are quite small, are examined by statistical and analytical methods in conjunction with hydrogeologic models to draw inferences on the hydrogeology. Vertical connectivity of the hydrostratigraphic units is also examined by analyzing groundwater level time series of five units at three piezometer nests. It is concluded that a combination of statistical/analytical approaches used in a complementary fashion can provide useful information about the hydrogeology of a given area. A meaningful analysis requires that there is (1) a source of influence on the groundwater levels, (2) a response to that influence, (3) a sufficiently long data record, and (4) measurement and analytical techniques which allow the detection and identification of the influence and response.

  5. Understanding pH Effects on Trichloroethylene and Perchloroethylene Adsorption to Iron in Permeable Reactive Barriers for Groundwater Remediation.

    PubMed

    Luo, Jing; Farrell, James

    2013-01-01

    Metallic iron filings are becoming increasing used in permeable reactive barriers for remediating groundwater contaminated by chlorinated solvents. Understanding solution pH effects on rates of reductive dechlorination in permeable reactive barriers is essential for designing remediation systems that can meet treatment objectives under conditions of varying groundwater properties. The objective of this research was to investigate how the solution pH value affects adsorption of trichloroethylene (TCE) and perchloroethylene (PCE) on metallic iron surfaces. Because adsorption is first required before reductive dechlorination can occur, pH effects on halocarbon adsorption energies may explain pH effects on dechlorination rates. Adsorption energies for TCE and PCE were calculated via molecular mechanics simulations using the Universal force field and a self-consistent reaction field charge equilibration scheme. A range in solution pH values was simulated by varying the amount of atomic hydrogen adsorbed on the iron. The potential energies associated TCE and PCE complexes were dominated by electrostatic interactions, and complex formation with the surface was found to result in significant electron transfer from the iron to the adsorbed halocarbons. Adsorbed atomic hydrogen was found to lower the energies of TCE complexes more than those for PCE. Attractions between atomic hydrogen and iron atoms were more favorable when TCE versus PCE was adsorbed to the iron surface. These two findings are consistent with the experimental observation that changes in solution pH affect TCE reaction rates more than those for PCE. PMID:23626602

  6. Comparison of permeable reactive barrier, funnel and gate, nonpumped wells, and low-capacity wells for groundwater remediation.

    PubMed

    Hudak, Paul F

    2014-01-01

    This modeling study compared the performance of a no-action and four active groundwater remediation alternatives: a permeable reactive barrier, a funnel and gate, nonpumped wells with filter media, and a low-capacity extraction and injection well. The simulated aquifer had an average seepage velocity of 0.04 m d(-1), and the initial contaminant plume was 58 m long and 13 m wide. For each active alternative, mass transport modeling identified the smallest structure necessary to contain and remove the contaminant plume. Although the no-action alternative did not contain the plume, each active alternative did contain and remove the plume, but with significantly different installation and operation requirements. Low-capacity pumping wells required the least infrastructure, with one extraction well and one injection well each discharging only 1.7 m(3) d(-1). The amount of time necessary to remove the contaminant plume was similar among active alternatives, except for the funnel and gate, which required much more time. Results of this study suggest that, for a modest seepage velocity and relatively narrow contaminant plume, low-capacity wells may be an effective alternative for groundwater remediation. PMID:24844898

  7. Understanding pH Effects on Trichloroethylene and Perchloroethylene Adsorption to Iron in Permeable Reactive Barriers for Groundwater Remediation

    PubMed Central

    Luo, Jing; Farrell, James

    2013-01-01

    Metallic iron filings are becoming increasing used in permeable reactive barriers for remediating groundwater contaminated by chlorinated solvents. Understanding solution pH effects on rates of reductive dechlorination in permeable reactive barriers is essential for designing remediation systems that can meet treatment objectives under conditions of varying groundwater properties. The objective of this research was to investigate how the solution pH value affects adsorption of trichloroethylene (TCE) and perchloroethylene (PCE) on metallic iron surfaces. Because adsorption is first required before reductive dechlorination can occur, pH effects on halocarbon adsorption energies may explain pH effects on dechlorination rates. Adsorption energies for TCE and PCE were calculated via molecular mechanics simulations using the Universal force field and a self-consistent reaction field charge equilibration scheme. A range in solution pH values was simulated by varying the amount of atomic hydrogen adsorbed on the iron. The potential energies associated TCE and PCE complexes were dominated by electrostatic interactions, and complex formation with the surface was found to result in significant electron transfer from the iron to the adsorbed halocarbons. Adsorbed atomic hydrogen was found to lower the energies of TCE complexes more than those for PCE. Attractions between atomic hydrogen and iron atoms were more favorable when TCE versus PCE was adsorbed to the iron surface. These two findings are consistent with the experimental observation that changes in solution pH affect TCE reaction rates more than those for PCE. PMID:23626602

  8. PERMEABLE REACTIVE BARRIER STRATEGIES FOR REMEDIATION OF ARSENIC-CONTAMINATED GROUNDWATER

    EPA Science Inventory

    Results are presented from laboratory batch tests using zero-valent iron to treat arsenic-contaminated groundwater. The laboratory tests were conducted using near- neutral pH groundwater from a contaminated aquifer located adjacent to a custom smelting facility. Experiments we...

  9. Vadose zone characterization of highly radioactive contaminated soil at the Hanford Site

    SciTech Connect

    Buckmaster, M.A.

    1993-05-01

    The Hanford Site in south-central Washington State contains over 1500 identified waste sites and numerous groundwater plumes that will be characterized and remediated over the next 30 years. As a result of the Hanford Federal Facility Agreement and Consent Order, the US Department of Energy has initiated a remedial investigation/feasibility study at the 200-BP-1 operable unit. The 200-BP-1 remedial investigation is the first Comprehensive Environmental Response, Compensation, and Liability Act of 1980 investigation on the Hanford Site that involves drilling into highly radioactive and chemically contaminated soils. The initial phase of site characterization was designed to assess the nature and extent of contamination associated with the source waste site within the 200-BP-1 operable unit. Characterization activities consisted of drilling and sampling the waste site, chemical and physical analysis of samples, and development of a conceptual vadose zone model. Predicted modeling concentrations compared favorably to analytical data collected during the initial characterization activities.

  10. Combined nano-biotechnology for in-situ remediation of mixed contamination of groundwater by hexavalent chromium and chlorinated solvents.

    PubMed

    Němeček, Jan; Pokorný, Petr; Lhotský, Ondřej; Knytl, Vladislav; Najmanová, Petra; Steinová, Jana; Černík, Miroslav; Filipová, Alena; Filip, Jan; Cajthaml, Tomáš

    2016-09-01

    The present report describes a 13month pilot remediation study that consists of a combination of Cr(VI) (4.4 to 57mg/l) geofixation and dechlorination of chlorinated ethenes (400 to 6526μg/l), achieved by the sequential use of nanoscale zerovalent iron (nZVI) particles and in situ biotic reduction supported by whey injection. The remediation process was monitored using numerous techniques, including physical-chemical analyses and molecular biology approaches which enabled both the characterization of the mechanisms involved in pollutant transformation and the description of the overall background processes of the treatment. The results revealed that nZVI was efficient toward Cr(VI) by itself and completely removed it from the groundwater (LOQ 0.05mg/l) and the subsequent application of whey resulted in a high removal of chlorinated ethenes (97 to 99%). The persistence of the reducing conditions, even after the depletion of the organic substrates, indicated a complementarity between nZVI and the whey phases in the combined technology as the subsequent application of whey phase partially assisted the microbial regeneration of the spent nZVI by promoting its reduction into Fe(II), which further supported remediation conditions at the site. Illumina sequencing and the detection of functional vcrA and bvcA genes documented a development in the reducing microbes (iron-reducing, sulfate-reducing and chlororespiring bacteria) that benefited under the conditions of the site and that was probably responsible for the high dechlorination and/or Cr(VI) reduction. The results of this study demonstrate the feasibility and high efficiency of the combined nano-biotechnological approach of nZVI and whey application in-situ for the removal of Cr(VI) and chlorinated ethenes from the groundwater of the contaminated site. PMID:26850861

  11. Demonstration test and evaluation of ultraviolet/ultraviolet catalyzed peroxide oxidation for groundwater remediation at Oak Ridge K-25 Site

    SciTech Connect

    1994-12-31

    In the UItraviolet/Ultraviolet Catalyzed Groundwater Remediation program, W.J. Schafer Associates, Inc. (WJSA) demonstrated, tested and evaluated a new ultraviolet (UV) lamp integrated with an existing commercial technology employing UV catalyzed peroxide oxidation to destroy organics in groundwater at an Oak Ridge K-25 site. The existing commercial technology is the perox-pure{trademark} process of Peroxidation Systems Incorporated (PSI) that employs standard UV lamp technology to catalyze H{sub 2}O{sub 2} into OH radicals, which attack many organic molecules. In comparison to classical technologies for remediation of groundwater contaminated with organics, the perox-pure{trademark} process not only is cost effective but also reduces contaminants to harmless by-products instead of transferring the contaminants from one medium to another (such as in activated carbon or air stripping). Although the perox-pure{trademark} process is cost effective against many organics, it is not effective for some organic contaminants of interest to DOE such as TCA, which has the highest concentration of the organics at the K-25 test site. Contaminants such as TCA are treated more readily by direct photolysis using short wavelength UV light. WJSA has been developing a unique UV lamp which is very efficient in the short UV wavelength region. Consequently, combining this UV lamp with the perox-pure{trademark} process results in a means for treating essentially all organic contaminants. In the program reported here, the new UV lamp lifetime was improved and the lamp integrated into a PSI demonstration trailer. Even though this UV lamp operated at less than optimum power and UV efficiency, the destruction rate for the TCA was more than double that of the commercial unit. An optimized UV lamp may double again the destruction rate; i.e., a factor of four greater than the commercial system.

  12. Applications of Nano Reactive Materials in Remediation of Persistence Organic Pollutants in Sediments and Groundwater - Presentation

    EPA Science Inventory

    Remediation of sediments and water contaminated hydrophobic organic chemicals (HOCs) such as polychlorinated biphenyls (PCBs) remains a scientific and technical challenge. PCBs-contaminated sediments are ubiquitous despite the production and use of PCBs was banned in 1979 due to...

  13. Groundwater.

    ERIC Educational Resources Information Center

    Braids, Olin C.; Gillies, Nola P.

    1978-01-01

    Presents a literature review of groundwater quality covering publications of 1977. This review includes: (1) sources of groundwater contamination; and (2) management of groundwater. A list of 59 references is also presented. (HM)

  14. Application of Maximum Likelihood Bayesian Model Averaging to Groundwater Flow and Transport at the Hanford Site 300 Area

    SciTech Connect

    Meyer, Philip D.; Ye, Ming; Neuman, Shlomo P.; Rockhold, Mark L.

    2008-06-01

    A methodology to systematically and quantitatively assess model predictive uncertainty was applied to saturated zone uranium transport at the 300 Area of the U.S. Department of Energy Hanford Site in Washington State, USA. The methodology extends Maximum Likelihood Bayesian Model Averaging (MLBMA) to account jointly for uncertainties due to the conceptual-mathematical basis of models, model parameters, and the scenarios to which the models are applied. Conceptual uncertainty was represented by postulating four alternative models of hydrogeology and uranium adsorption. Parameter uncertainties were represented by estimation covariances resulting from the joint calibration of each model to observed heads and uranium concentration. Posterior model probability was dominated by one model. Results demonstrated the role of model complexity and fidelity to observed system behavior in determining model probabilities, as well as the impact of prior information. Two scenarios representing alternative future behavior of the Columbia River adjacent to the site were considered. Predictive simulations carried out with the calibrated models illustrated the computation of model- and scenario-averaged predictions and how results can be displayed to clearly indicate the individual contributions to predictive uncertainty of the model, parameter, and scenario uncertainties. The application demonstrated the practicability of applying a comprehensive uncertainty assessment to large-scale, detailed groundwater flow and transport modelling.

  15. DESCRIPTION OF MODELING ANALYSES IN SUPPORT OF THE 200-ZP-1 REMEDIAL DESIGN/REMEDIAL ACTION

    SciTech Connect

    VONGARGEN BH

    2009-11-03

    The Feasibility Study/or the 200-ZP-1 Groundwater Operable Unit (DOE/RL-2007-28) and the Proposed Plan/or Remediation of the 200-ZP-1 Groundwater Operable Unit (DOE/RL-2007-33) describe the use of groundwater pump-and-treat technology for the 200-ZP-1 Groundwater Operable Unit (OU) as part of an expanded groundwater remedy. During fiscal year 2008 (FY08), a groundwater flow and contaminant transport (flow and transport) model was developed to support remedy design decisions at the 200-ZP-1 OU. This model was developed because the size and influence of the proposed 200-ZP-1 groundwater pump-and-treat remedy will have a larger areal extent than the current interim remedy, and modeling is required to provide estimates of influent concentrations and contaminant mass removal rates to support the design of the aboveground treatment train. The 200 West Area Pre-Conceptual Design/or Final Extraction/Injection Well Network: Modeling Analyses (DOE/RL-2008-56) documents the development of the first version of the MODFLOW/MT3DMS model of the Hanford Site's Central Plateau, as well as the initial application of that model to simulate a potential well field for the 200-ZP-1 remedy (considering only the contaminants carbon tetrachloride and technetium-99). This document focuses on the use of the flow and transport model to identify suitable extraction and injection well locations as part of the 200 West Area 200-ZP-1 Pump-and-Treat Remedial Design/Remedial Action Work Plan (DOEIRL-2008-78). Currently, the model has been developed to the extent necessary to provide approximate results and to lay a foundation for the design basis concentrations that are required in support of the remedial design/remediation action (RD/RA) work plan. The discussion in this document includes the following: (1) Assignment of flow and transport parameters for the model; (2) Definition of initial conditions for the transport model for each simulated contaminant of concern (COC) (i.e., carbon

  16. Status Report on Transfer of Physical and Hydraulic Properties Databases to the Hanford Environmental Information System - PNNL Remediation Decision Support Project, Task 1, Activity 6

    SciTech Connect

    Rockhold, Mark L.; Middleton, Lisa A.; Cantrell, Kirk J.

    2009-06-30

    This document provides a status report on efforts to transfer physical and hydraulic property data from PNNL to CHPRC for incorporation into HEIS. The Remediation Decision Support (RDS) Project is managed by Pacific Northwest National Laboratory (PNNL) to support Hanford Site waste management and remedial action decisions by the U.S. Department of Energy and their contractors. The objective of Task 1, Activity 6 of the RDS project is to compile all available physical and hydraulic property data for sediments from the Hanford Site, to port these data into the Hanford Environmental Information System (HEIS), and to make the data web-accessible to anyone on the Hanford Local Area Network via the so-called Virtual Library. These physical and hydraulic property data are used to estimate parameters for analytical and numerical flow and transport models that are used for site risk assessments and evaluation of remedial action alternatives. In past years efforts were made by RDS project staff to compile all available physical and hydraulic property data for Hanford sediments and to transfer these data into SoilVision{reg_sign}, a commercial geotechnical software package designed for storing, analyzing, and manipulating soils data. Although SoilVision{reg_sign} has proven to be useful, its access and use restrictions have been recognized as a limitation to the effective use of the physical and hydraulic property databases by the broader group of potential users involved in Hanford waste site issues. In order to make these data more widely available and useable, a decision was made to port them to HEIS and to make them web-accessible via a Virtual Library module. In FY08 the original objectives of this activity on the RDS project were to: (1) ensure traceability and defensibility of all physical and hydraulic property data currently residing in the SoilVision{reg_sign} database maintained by PNNL, (2) transfer the physical and hydraulic property data from the Microsoft

  17. Two- and Three-Dimensional Depiction of Subsurface Geology Using Commercial Software for Support of Groundwater Contaminant Fate and Transport Analysis - 13345

    SciTech Connect

    Ivarson, Kristine A.; Miller, Charles W.; Arola, Craig C.

    2013-07-01

    Groundwater contamination by hexavalent chromium and other nuclear reactor operation-related contaminants has resulted in the need for groundwater remedial actions within the Hanford Site reactor areas (the Hanford Site 100 Area). The large geographic extent of the resultant contaminant plumes requires an extensive level of understanding of the aquifer structure, characteristics, and configuration to support assessment and design of remedial alternatives within the former 100-D, 100-H, and 100-K reactor areas. The authors have prepared two- and three-dimensional depictions of the key subsurface geologic structures at two Hanford Site reactor operable units (100-K and 100-D/H). These depictions, prepared using commercial-off-the-shelf (COTS) visualization software, provide a basis for expanding the understanding of groundwater contaminant migration pathways, including identification of geologically-defined preferential groundwater flow pathways. These identified preferential flow pathways support the conceptual site model and help explain both historical and current contaminant distribution and transport. (authors)

  18. Identification of Errors in the Hanford Site-Wide Groundwater Flow Model by Inverse Modeling of Alternative Conceptual Models

    NASA Astrophysics Data System (ADS)

    Cole, C. R.; Scheibe, T. D.; Vermeul, V. R.; Wurstner, S. K.; Thorne, P. D.; Freedman, V. L.; Murray, C. J.; Bergeron, M. P.

    2002-12-01

    A regional-scale, three-dimensional groundwater flow and transport modeling effort has been undertaken to quantify the environmental consequences of past waste disposal activities and support ongoing environmental management activities at the U.S. Department of Energy's Hanford Site. An important aspect of this effort is the identification and quantification of uncertainties associated with model predictions. It is recognized that such uncertainties arise not only from selection of inappropriate groundwater model parameters (parameter error), but also from the underlying conceptualization of the groundwater system (model error). Therefore, we have adopted an approach to uncertainty characterization that involves the evaluation of multiple alternative conceptual models (ACMs) within an inverse modeling framework. The initial step in implementation of the framework was the development of a multi-processor implementation of the UCODE inverse modeling system and application of the inverse framework to update parameter estimates from a prior deterministic model. A preliminary first-order uncertainty analysis was performed based on the model results. At the same time, site geologists developed an improved conceptual model of the 3D structure of the aquifer system. Inverse modeling of the updated conceptual model led to estimates of some parameters, especially specific yield, that were not plausible, indicating that there were problems with the conceptual model. As a result, additional ACMs were developed and subjected to inverse analysis, including an alternative with modified boundary conditions (leaky underlying bedrock), an alternative incorporating surface recharge modifications based on surface run-on from an adjacent topographic feature, and an alternative incorporating an improved description of the timing and volume of waste discharges arriving at the water table (upper model boundary). Model predictions of transient hydraulic heads under each ACM were compared

  19. Site Characterization To Support Use Of Monitored Natural Attentuation For Remediation Of Inorganic Contaminants In Groundwater

    EPA Science Inventory

    Technical recommendations have recently been published by the U.S. Environmental Protection Agency to address site characterization needed to support selection of Monitored Natural Attenuation (MNA) for cleanup of inorganic contaminant plumes in groundwater. Immobilization onto ...

  20. DEVELOPMENT OF SULFATE RADICAL-BASED CHEMICAL OXIDATION PROCESSES FOR GROUNDWATER REMEDIATION

    EPA Science Inventory

    This study investigates the development of novel sulfate radical-based chemical oxidation processes for treatment of groundwater contaminants. Environmentally friendly transition metal (Fe (II), Fe (III)) has been evaluated for the activation of common oxidants (peroxymonosulfat...

  1. Ground-water flow and the possible effects of remedial actions at J-Field, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Hughes, W.B.

    1995-01-01

    J-Field, located in the Edgewood Area of Aberdeen Proving Ground, Md, has been used since World War II to test and dispose of explosives, chemical warfare agents, and industrial chemicals resulting in ground-water, surface-water, and soil contami- nation. The U.S. Geological Survey finite-difference model was used to better understand ground-water flow at the site and to simulate the effects of remedial actions. A surficial aquifer and a confined aquifer were simulated with the model. A confining unit separates these units and is represented by leakance between the layers. The area modeled is 3.65 mi2; the model was constructed with a variably spaced 40 X 38 grid. The horizontal and lower boundaries of the model are all no-flow boundaries. Steady-state conditions were used. Ground water at the areas under investigation flows from disposal pit areas toward discharge areas in adjacent estuaries or wetlands. Simulations indicate that capping disposal areas with an impermeable cover effectively slows advective ground water flow by 0.7 to 0.5 times. Barriers to lateral ground-water flow were simulated and effectively prevented the movement of ground water toward discharge areas. Extraction wells were simulated as a way to contain ground-water contamination and to extract ground water for treatment. Two wells pumping 5 gallons per minute each at the toxic-materials disposal area and a single well pumping 2.5 gallons per minute at the riot-control-agent disposal area effectively contained contamination at these sites. A combi- nation of barriers to horizontal flow east and south of the toxic-materials disposal area, and a single extraction well pumping at 5 gallons per minute can extract contaminated ground water and prevent pumpage of marsh water.

  2. THE APPLICATION OF IN SITU PERMEABLE REACTIVE (ZERO-VALENT IRON) BARRIER TECHNOLOGY FOR THE REMEDIATION OF CHROMATE-CONTAMINATED GROUNDWATER: A FIELD TEST

    EPA Science Inventory

    A small-scale field test was initiated in September 1994 to evaluate the in situ remediation of groundwater contaminated with chromate using a permeable reactive barrier composed of a mixture of zero-valent Fe, sand and aquifer sediment. The site used was an old chrome-plating f...

  3. New Pump and Treat Facility Remedial Action Work Plan For Test Area North Final Groundwater Remediation, Operable Unit 1-07B

    SciTech Connect

    Nelson, L. O.

    2007-06-12

    This remedial action work plan identifies the approach and requirements for implementing the medial zone remedial action for Test Area North, Operable Unit 1-07B, at the Idaho National Laboratory. This plan details the management approach for the construction and operation of the New Pump and Treat Facility (NPTF). As identified in the remediatial design/remedial action scope of work, a separate remedial design/remedial action work plan will be prepared for each remedial component of the Operable Unit 1-07B remedial action.

  4. Depth of the biologically active zone in upland habitats at the Hanford Site, Washington: Implications for remediation and ecological risk management.

    PubMed

    Sample, Bradley E; Lowe, John; Seeley, Paul; Markin, Melanie; McCarthy, Chris; Hansen, Jim; Aly, Alaa H

    2015-01-01

    Soil invertebrates, mammals, and plants penetrate and exploit the surface soil layer (i.e., the biologically active zone) to varying depths. As the US Department of Energy remediates radioactive and hazardous wastes in soil at the Hanford Site, a site-specific definition of the biologically active zone is needed to identify the depth to which remedial actions should be taken to protect the environment and avoid excessive cleanup expenditures. This definition may then be considered in developing a point of compliance for remediation in accordance with existing regulations. Under the State of Washington Model Toxic Control Act (MTCA), the standard point of compliance for soil cleanup levels with unrestricted land use is 457 cm (15 ft) below ground surface. When institutional controls are required to control excavations to protect people, MTCA allows a conditional point of compliance to protect biological resources based on the depth of the biologically active zone. This study was undertaken to identify and bound the biologically active zone based on ecological resources present at the Hanford Site. Primary data were identified describing the depths to which ants, mammals, and plants may exploit the surface soil column at the Hanford Site and other comparable locations. The maximum depth observed for harvester ants (Pogonomyrmex spp.) was 270 cm (8.9 ft), with only trivial excavation below 244 cm (8 ft). Badgers (Taxidea taxus) are the deepest burrowing mammal at the Hanford Site, with maximum burrow depths of 230 cm (7.6 ft); all other mammals did not burrow below 122 cm (4 ft). Shrubs are the deepest rooting plants with rooting depths to 300 cm (9.8 ft) for antelope bitterbrush (Purshia tridentata). The 2 most abundant shrub species did not have roots deeper than 250 cm (8.2 ft). The deepest rooted forb had a maximum root depth of 240 cm (7.9 ft). All other forbs and grasses had rooting depths of 200 cm (6.6 ft) or less. These data indicate that the biologically

  5. 2000-hour stress-corrosion cracking tests on 90-10 cupronickel in simulated Hanford groundwater

    SciTech Connect

    Mills, W.J.

    1987-02-01

    Self-loaded fracture mechanics specimens were tested in simulated groundwater at 150/degree/C to evaluate the susceptibility of 90-10 cupronickel to environmentally enhanced cracking. The test duration was 2000 hours. Electron fractographic evidence indicated that no stress corrosion cracking occurred during the test. Compliance methods demonstrated that a substantial amount of crack extension did not occur during the 2000-hour exposure, but this method was insensitive to detecting crack growth increments less than 0.030 inch. Conventional macroscopic examination of fracture surfaces could not be used to determine if any crack extension occurred during the test because stains were observed beyond the original precrack. The stains were attributed to artifacts associated with postcracking procedures. 7 refs., 11 figs., 3 tabs.

  6. SCOPE safety-controls optimization by performance evaluation: A systematic approach for safety-related decisions at the Hanford Tank Remediation System. Phase 1, final report

    SciTech Connect

    Bergeron, K.D.; Williams, D.C.; Slezak, S.E.; Young, M.L.

    1996-12-01

    The Department of Energy`s Hanford Tank Waste Remediation system poses a significant challenge for hazard management because of the uncertainty that surrounds many of the variables that must be considered in decisions on safety and control strategies. As a result, site managers must often operate under excessively conservative and expensive assumptions. This report describes a systematic approach to quantifying the uncertainties surrounding the critical parameters in control decisions (e.g., condition of the tanks, kinds of wastes, types of possible accidents) through the use of expert elicitation methods. The results of the elicitations would then be used to build a decision support system and accident analysis model that would allow managers to see how different control strategies would affect the cost and safety of a facility configuration.

  7. REDUCED PERMEABILITY IN GROUNDWATER REMEDIATION SYSTEMS: ROLE OF MOBILIZED COLLOIDS AND INJECTED CHEMICALS

    EPA Science Inventory

    The success of pump-and-treat or in situ remediation of contaminated aquifers depends in part on the ability to maintain the permeability of the aquifer, withdrawal wells, and delivery systems at a reasonable cost while moving significant quantities of water. We have considered o...

  8. Transient Inverse Calibration of Site-Wide Groundwater Model to Hanford Operational Impacts from 1943 to 1996--Alternative Conceptual Model Considering Interaction with Uppermost Basalt Confined Aquifer

    SciTech Connect

    Vermeul, Vincent R.; Cole, Charles R.; Bergeron, Marcel P.; Thorne, Paul D.; Wurstner, Signe K.

    2001-08-29

    The baseline three-dimensional transient inverse model for the estimation of site-wide scale flow parameters, including their uncertainties, using data on the transient behavior of the unconfined aquifer system over the entire historical period of Hanford operations, has been modified to account for the effects of basalt intercommunication between the Hanford unconfined aquifer and the underlying upper basalt confined aquifer. Both the baseline and alternative conceptual models (ACM-1) considered only the groundwater flow component and corresponding observational data in the 3-Dl transient inverse calibration efforts. Subsequent efforts will examine both groundwater flow and transport. Comparisons of goodness of fit measures and parameter estimation results for the ACM-1 transient inverse calibrated model with those from previous site-wide groundwater modeling efforts illustrate that the new 3-D transient inverse model approach will strengthen the technical defensibility of the final model(s) and provide the ability to incorporate uncertainty in predictions related to both conceptual model and parameter uncertainty. These results, however, indicate that additional improvements are required to the conceptual model framework. An investigation was initiated at the end of this basalt inverse modeling effort to determine whether facies-based zonation would improve specific yield parameter estimation results (ACM-2). A description of the justification and methodology to develop this zonation is discussed.

  9. Ground-water monitoring compliance projects for Hanford Site facilities: Progress Report for the Period July 1 to September 30, 1987

    SciTech Connect

    Not Available

    1987-11-01

    This report documents the progress of four Hanford Site ground-water monitoring projects for the period from July 1 to September 310, 1987. The four disposal facilities are the 300 Area Process Trenches, 183-H Solar Evaporation Basins, 200 Area Low-Level Burial Grounds, and Nonradioactive Dangerous Waste (NRDW) Landfill. This report is the fifth in a series of periodic status reports. During this reporting period, field activities consisted of completing repairs on five monitoring wells originally present around the 183-H Basins and completing construction of 25 monitoring wells around the 200 Area Burial Grounds. The 14 wells in the 200 East Area were completed by Kaiser Engineers Hanford (KEH) and the 11 wells in the 200 West Area were compelted by ONWEGO Well Drilling. The NRDW Landfill interim characterization report was submitted to the WDOE and the USEPA in August 1987. Analytical results for the 300 Area, 183-H, and the NRDW Landfill indicate no deviations from previously established trends. Results from the NRDW Land-fill indiate that the facility has no effect on the ground-water quality beneath the facility, except for the detection of coliform bacteria. A possible source of this contamination is the solid-waste lanfill (SWL) adjacent to the NRDW Landfill. Ground-water monitoring data for the NRDW and SWL will be evaluated together in the future. Aquifer testing was completed in the 25 new wells surrounding the 200 Area buiral grounds. 13 refs., 19 refs., 13 tabs.

  10. Assessing best management practices for remediation of selenium loading in groundwater to streams in an irrigated region

    NASA Astrophysics Data System (ADS)

    Bailey, Ryan T.; Romero, Erica C.; Gates, Timothy K.

    2015-02-01

    Selenium (Se) contamination in groundwater and surface water in numerous river basins worldwide has become a critical issue in recent decades. An essential micro-nutrient, Se can prove harmful to fish, water fowl, livestock, and even humans at elevated concentrations. In an overall effort to curb Se contamination in environmental systems, this study aims to identify best-management practices (BMPs) that can assist in remediating Se contamination in irrigated river basins. Using multi-decadal simulations of a calibrated and tested groundwater flow model (MODFLOW-UZF) and Se chemical reactive transport model (UZF-RT3D), the impact of water- and land-management strategies in reducing Se contamination are explored for a 500 km2 study region in the Lower Arkansas River Valley (LARV) in southeastern Colorado. The effectiveness of reduced applied irrigation volumes, sealing of earthen irrigation canals, rotational fallowing of cultivated land, reduced fertilizer loading, and enhanced riparian buffer zones, implemented individually as well as concurrently in various combinations, is explored. Results indicate that significant (>10%) decreases in Se mass loading to the Arkansas River system (main stem and tributaries) can be achieved when individual BMPs are implemented, with land fallowing, reduced irrigation, and enhanced riparian buffer zones providing the best results (13-14% load reduction). Even greater impacts (20-50% Se load reduction) can be achieved with 3 or 4 BMPs implemented concurrently. Results demonstrate that Se remediation can potentially be achieved within the LARV, and also can serve as a guide for other Se-affected river basins within the western United States and throughout the world.

  11. Environmental- and health-risk-induced remediation design for benzene-contaminated groundwater under parameter uncertainty: a case study in Western Canada.

    PubMed

    Fan, X; He, L; Lu, H W; Li, J

    2014-09-01

    This study proposes an environmental- and health-risk-induced remediation design approach for benzene-contaminated groundwater. It involves exposure frequency and intake rates that are important but difficult to be exactly quantified as breakthrough point. Flexible health-risk control is considered in the simulation and optimization work. The proposed approach is then applied to a petroleum-contaminated site in western Canada. Different situations about remediation durations, public concerns, and satisfactory degrees are addressed by the approach. The relationship between environmental standards and health-risk limits is analyzed, in association with their effect on remediation costs. Insights of three uncertain factors (i.e. exposure frequency, intake rate and health-risk threshold) for the remediation system are also explored, on a basis of understanding their impacts on health risk as well as their importance order. The case study results show that (1) nature attenuation plays a more important role in long-term remediation scheme than the pump-and-treat system; (2) carcinogenic risks have greater impact on total pumping rates than environmental standards for long-term remediation; (3) intake rates are the second important factor affecting the remediation system's performance, followed by exposure frequency; (4) the 10-year remediation scheme is the most robust choice when environmental and health-risk concerns are not well quantified. PMID:24997972

  12. Ground-water flow and the potential effects of remediation at Graces Quarters, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Tenbus, F.J.; Fleck, W.B.

    1996-01-01

    Ground water in the east-central part of Graces Quarters, a former open-air chemical-agent test facility at Aberdeen Proving Ground, Maryland, is contaminated with chlorinated volatile organic compounds. The U.S. Geological Survey's finite- difference model was used to help understand ground-water flow and simulate the effects of alternative remedial actions to clean up the ground water. Scenarios to simulate unstressed conditions and three extraction well con- figurations were used to compare alternative remedial actions on the contaminant plume. The scenarios indicate that contaminants could migrate from their present location to wetland areas within 10 years under unstressed conditions. Pumping 7 gal/min (gallons per minute) from one well upgradient of the plume will not result in containment or removal of the highest contaminant concentrations. Pumping 7 gal/min from three wells along the central axis of the plume should result in containment and removal of dissolved contami- nants, as should pumping 7 gal/min from three wells at the leading edge of the plume while injecting 7 gal/min back into an upgradient well.

  13. REMEDIATION COMPLETED: BUT IS THE GROUNDWATER MEETING THE SAFEDRINKING WATER ACT REQUIREMENTS?

    EPA Science Inventory

    Groundwater treatment is a theme that runs through several of EPA'sprograms including Drinking Water, Superfund, Underground StorageTanks, RCRA, etc. requently the same terms are used in thedifferent programs with quite different meanings. or example, thephrase "pump and treat" m...

  14. Long-Term Capacity of Plant Mulch to Remediate Trichloroethylene in Groundwater

    EPA Science Inventory

    Passive reactive barriers are commonly used to treat groundwater that is contaminated with chlorinated solvents such as trichloroethylene (TCE). A number of passive reactive barriers have been constructed with plant mulch as the reactive medium. The TCE is removed in these barr...

  15. CHROMIUM REMOVAL PROCESSES DURING GROUNDWATER REMEDIATION BY A ZEROVALENT IRON PERMEABLE REACTIVE BARRIER

    EPA Science Inventory

    Solid-phase associations of chromium were examined in core materials collected from a full-scale, zerovalent iron, permeable reactive barrier (PRB) at the U.S. Coast Guard Support Center located near Elizabeth City (NC). The PRB was installed in 1996 to treat groundwater contami...

  16. HYDROGEOLOGIC CHARACTERIZATION OF FRACTURED ROCK FORMATIONS: A GUIDE FOR GROUNDWATER REMEDIATORS

    EPA Science Inventory

    A field site was developed in the foothills of the Sierra Nevada, California, to develop and test a multidisciplinary approach to the characterization of groundwater flow and transport in fractured rocks. Nine boreholes were drilled into the granite bedrock, and a wide variety of...

  17. Grand Challenge Problems in Environmental Modeling and Remediation: Groundwater Contaminant Transport (Partnerships in Computational Science)

    SciTech Connect

    Sharpley, Robert C.

    1997-12-01

    The over-reaching goal of the Groundwater Grand Challenge component of the Partnership in Computational Science (PICS) was to develop and establish the massively parallel approach for the description of groundwater flow and transport and to address the problem of uncertainties in the data and its interpretation. This necessitated the development of innovative algorithms and the implementation of massively parallel computational tools to provide a suite of simulators for groundwater flow and transport in heterogeneous media. This report summarizes the activities and deliverables of the University of South Carolina component of the Groundwater Grand Challenge project funded through the High Performance Computing grand challenge program of the Department of Energy from 1995 through 1997. Seven institutions were primarily involved in this project: Brookhaven National Laboratory, Oak Ridge National Laboratory, Princeton University, SUNY at Stony Brook, Texas A&M University, The University of South Carolina, and the University of Texas at Austin, with contributing efforts from the Westinghouse Savannah River Technology Center. Each institution had primary responsibility for specific research components, but strong collaboration among all institutions was essential for the success of the project and in producing the final deliverables. PICS deliverables include source code for the suite of research simulators and auxiliary HPC tools, associated documentation, and test problems. These materials will be available as indicated from each institution's web page or from the Center for Computational Sciences Oak Ridge National Laboratory in January 1998.

  18. DISCRETE-LEVEL GROUND-WATER MONITORING SYSTEM FOR CONTAINMENT AND REMEDIAL PERFORMANCE ASSESSMENT OBJECTIVES

    EPA Science Inventory

    A passive discrete-level multilayer ground-water sampler was evaluated to determine its capability to obtain representative discrete-interval samples within the screen intervals of traditional monitoring wells without purging. Results indicate that the device is able to provide ...

  19. Test/QA Plan for Verification of Nitrate Sensors for Groundwater Remediation Monitoring

    EPA Science Inventory

    A submersible nitrate sensor is capable of collecting in-situ measurements of dissolved nitrate concentrations in groundwater. Although several types of nitrate sensors currently exist, this verification test will focus on submersible sensors equipped with a nitrate-specific ion...

  20. POTENTIAL USE OF ACTIVATED CARBON TO RECOVER TC-99 FROM 200 WEST AREA GROUNDWATER AS AN ALTERNATIVE TO MORE EXPENSIVE RESINS HANFORD SITE RICHLAND WASNINGTON

    SciTech Connect

    BYRNES ME; ROSSI AJ; TORTOSO AC

    2009-12-03

    Recent treatability testing performed on groundwater at the 200-ZP-1 Operable Unit at the Hanford Site in Richland, Washington, has shown that Purolite{reg_sign} A530E resin very effectively removes Tc-99 from groundwater. However, this resin is expensive and cannot be regenerated. In an effort to find a less expensive method for removing Tc-99 from the groundwater, a literature search was performed. The results indicated that activated carbon may be used to recover technetium (as pertechnetate, TCO{sub 4}{sup -}) from groundwater. Oak Ridge National Laboratory used activated carbon in both batch adsorption and column leaching studies. The adsorption study concluded that activated carbon absorbs TCO{sub 4}{sup -} selectively and effectively over a wide range of pH values and from various dilute electrolyte solutions (< 0.01 molarity). The column leaching studies confirmed a high adsorption capacity and selectivity of activated carbon for TCO{sub 4}{sup -}. Since activated carbon is much less expensive than Purolite A530E resin, it has been determined that a more extensive literature search is warranted to determine if recent studies have reached similar conclusions, and, if so, pilot testing of 200-ZP-1 groundwater wi11 likely be implemented. It is possible that less expensive, activated carbon canisters could be used as pre-filters to remove Tc-99, followed by the use of the more expensive Purolite A530E resin as a polishing step.

  1. Remediation of arsenic-contaminated groundwater using media-injected permeable reactive barriers with a modified montmorillonite: sand tank studies.

    PubMed

    Luo, Ximing; Liu, Haifei; Huang, Guoxin; Li, Ye; Zhao, Yan; Li, Xu

    2016-01-01

    A modified montmorillonite (MMT) was prepared using an acid activation-sodium activation-iron oxide coating method to improve the adsorption capacities of natural MMTs. For MMT, its interlamellar distance increased from 12.29 to 13.36 Å, and goethite (α-FeOOH) was intercalated into its clay layers. Two novel media-injected permeable reactive barrier (MI-PRB) configurations were proposed for removing arsenic from groundwater. Sand tank experiments were conducted to investigate the performance of the two MI-PRBs: Tank A was filled with quartz sand. Tank B was packed with quartz sand and zero-valent iron (ZVI) in series, and the MMT slurry was respectively injected into them to form reactive zones. The results showed that for tank A, total arsenic (TA) removal of 98.57% was attained within the first 60 mm and subsequently descended slowly to 88.84% at the outlet. For tank B, a similar spatial variation trend was observed in the quartz sand layer, and subsequently, TA removal increased to ≥99.80% in the ZVI layer. TA removal by MMT mainly depended on both surface adsorption and electrostatic adhesion. TA removal by ZVI mainly relied on coagulation/precipitation and adsorption during the iron corrosion. The two MI-PRBs are feasible alternatives for in situ remediation of groundwater with elevated As levels. PMID:26347414

  2. Column test-based optimization of the permeable reactive barrier (PRB) technique for remediating groundwater contaminated by landfill leachates

    NASA Astrophysics Data System (ADS)

    Zhou, Dan; Li, Yan; Zhang, Yinbo; Zhang, Chang; Li, Xiongfei; Chen, Zhiliang; Huang, Junyi; Li, Xia; Flores, Giancarlo; Kamon, Masashi

    2014-11-01

    We investigated the optimum composition of permeable reactive barrier (PRB) materials for remediating groundwater heavily contaminated by landfill leachate, in column tests using various mixtures of zero-valent iron (ZVI), zeolite (Zeo) and activated carbon (AC) with 0.01-0.25, 3.0-5.0 and 0.7-1.0 mm grain sizes, respectively. The main contributors to the removal of organic/inorganic contaminants were ZVI and AC, and the optimum weight ratio of the three PRB materials for removing the contaminants and maintaining adequate hydraulic conductivity was found to be 5:1:4. Average reductions in chemical oxygen demand (COD) and contents of total nitrogen (TN), ammonium, Ni, Pb and 16 polycyclic aromatic hydrocarbons (PAHs) from test samples using this mixture were 55.8%, 70.8%, 89.2%, 70.7%, 92.7% and 94.2%, respectively. We also developed a systematic method for estimating the minimum required thickness and longevity of the PRB materials. A ≥ 309.6 cm layer with the optimum composition is needed for satisfactory longevity, defined here as meeting the Grade III criteria (the Chinese National Bureau of Standards: GB/T14848/93) for in situ treatment of the sampled groundwater for ≥ 10 years.

  3. Laboratory column study for evaluating a multimedia permeable reactive barrier for the remediation of ammonium contaminated groundwater.

    PubMed

    Kong, Xiangke; Bi, Erping; Liu, Fei; Huang, Guoxin; Ma, Jianfei

    2015-01-01

    In order to remediate ammonium contaminated groundwater, an innovative multimedia permeable reactive barrier (M-PRB) was proposed, which consisted of sequential columns combining oxygen releasing compound (ORC), zeolite, spongy iron and pine bark in the laboratory scale. Results showed that both ammonium and nitrate could be reduced to levels below the regulatory discharge limits through ion exchange and microbial degradation (nitrification and denitrification) in different compartments of the M-PRB system. The concentration of dissolved oxygen (DO) increased from 2 to above 20 mg/L after the simulated groundwater flowed through the oxygen releasing column packed with ORC, demonstrating that ORC could supply sufficient oxygen for subsequent microbial nitrification. Ammonium was efficiently removed from about 10 to below 0.5 mg N/L in the aerobic reaction column which was filled with biological zeolite. After 54 operating days, more than 70% ammonium could be removed by microbial nitrification in the aerobic reaction column, indicating that the combined use of ion exchange and nitrification by biological zeolite could ensure high and sustainable ammonium removal efficiency. To avoid the second pollution of nitrate produced by the former nitrification, spongy iron and pine bark were used to remove oxygen and supply organic carbon for heterotrophic denitrification in the oxygen removal column and anaerobic reaction column separately. The concentration of nitrate decreased from 14 to below 5 mg N/L through spongy iron-based chemical reduction and microbial denitrification. PMID:25428576

  4. Monitoring the injection of microscale zerovalent iron particles for groundwater remediation by means of complex electrical conductivity imaging.

    PubMed

    Flores Orozco, Adrián; Velimirovic, Milica; Tosco, Tiziana; Kemna, Andreas; Sapion, Hans; Klaas, Norbert; Sethi, Rajandrea; Bastiaens, Leen

    2015-05-01

    The injection of microscale zerovalent iron (mZVI) particles for groundwater remediation has received much interest in recent years. However, to date, monitoring of mZVI particle injection is based on chemical analysis of groundwater and soil samples and thus might be limited in its spatiotemporal resolution. To overcome this deficiency, in this study, we investigate the application of complex electrical conductivity imaging, a geophysical method, to monitor the high-pressure injection of mZVI in a field-scale application. The resulting electrical images revealed an increase in the induced electrical polarization (∼20%), upon delivery of ZVI into the targeted area, due to the accumulation of metallic surfaces at which the polarization takes place. Furthermore, larger changes (>50%) occurred in shallow sediments, a few meters away from the injection, suggesting the migration of particles through preferential flowpaths. Correlation of the electrical response and geochemical data, in particular the analysis of recovered cores from drilling after the injection, confirmed the migration of particles (and stabilizing solution) to shallow areas through fractures formed during the injection. Hence, our results demonstrate the suitability of the complex conductivity imaging method to monitor the transport of mZVI during subsurface amendment in quasi real-time. PMID:25884287

  5. Ground-water monitoring compliance projects for Hanford Site facilities: Progress report for the period April 1 to June 30, 1988: Volume 2, Appendices

    SciTech Connect

    Not Available

    1988-09-01

    This is Volume 2 of a two-volume set of documents that describes the progress of 10 Hanford Site ground-water monitoring projects for the period April 1 to June 30, 1988. This volume discusses as-built diagrams, drilling logs, and geophysical logs for wells drilled during this period in the 100-N Area (Appendix A) and near the 216-A-36B Crib (Appendix B). Volume 1 discusses the 10 projects. This work was supported by the US Department of Energy under Contract AC06-76RL01830.

  6. Resource conservation and recovery act ground-water monitoring projects for Hanford facilities: Progress report for the period July 1 to September 30, 1988: Volume 2, Appendices

    SciTech Connect

    Fruland, R.M.; Bates, D.J.; Lundgren, R.E.

    1989-02-01

    This is Volume 2 of a two-volume set of documents that describes the progress of 12 Hanford Site ground-water monitoring projects for the period July 1 to September 30, 1988. This volume provides those drilling logs and well inspection/completion reports inadvertently left out of last quarter's report for the 216-A-36B Crib (Appendix A) and as-built diagrams, drilling logs, and geophysical logs for wells drilled this quarter near the 2101-M Pond. Volume 1 discusses the 12 projects.

  7. Considerations of a nonhomogeneous fluid in the deep groundwater flow system at Hanford

    SciTech Connect

    Nelson, R.W.

    1988-11-01

    This report presents such a general theory capable of describing the flow on nonhomogeneous fluids in porous media, theory that is a composite from several disciplines including groundwater hydrology, soil physics, civil engineering, petroleum reservoir engineering, mechanics, and mathematical physics. The report discussed the conceptual basis for considering the flow of nonhomogeneous fluids. From this conceptual basis emphasis shifts to providing complete definitions and then appropriately describing those definitions in mathematical terms. Throughout the report, the necessary assumptions are stated in detail because the limitations of any theory are best assessed through careful scrutiny of the assumptions. From the mathematical definitions with appropriate functional dependence the results and constraints needed are derived to provide the general theory necessary to describe the flow of nonhomogeneous fluids in porous media. Particular attention is given to comparing the general theory with the classical theory of flow for a homogeneous fluid. Such comparison provides significant insight to the effects of variable fluid properties on subsurface flow systems. The comparisons also indicate the importance of carefully formulating subsurface flow models within the more general theoretical framework describing the flow of nonhomogeneous fluids in porous media. 29 refs.; 6 figs.; 1 tab.

  8. Optimal Well Placement for Enhanced Degradation during In Situ Groundwater Remediation

    NASA Astrophysics Data System (ADS)

    Greene, J. A.; Neupauer, R.; Piscopo, A. N.; Kasprzyk, J. R.

    2015-12-01

    Active spreading strategies have been developed to enhance contaminant degradation during in situ remediation by increasing contact of the injected treatment chemical with the contaminant plume. The contact between these reactants is increased by strategically injecting and extracting water at wells surrounding the plume to reconfigure the treatment chemical and contaminant plume in the aquifer, which leads to enhanced contaminant degradation. The distance and orientation of the wells relative to the contaminant plume affects the ability of active spreading strategies to efficiently degrade contaminant. In this study, we use a multi-objective evolutionary algorithm to optimize the distance and orientation of wells for both circular and elliptical contaminant plumes with uniform and Gaussian initial concentration distributions. The optimization yields results that maximize the amount of degradation achieved during in situ remediation while minimizing any extraction of treatment chemical.

  9. Hanford wells

    SciTech Connect

    McGhan, V.L.

    1989-06-01

    The Site Characterization and Assessment Section of the Geosciences Department at Pacific Northwest Laboratory (PNL) has compiled a list of wells located on or near the Hanford Site. Information has been updated on wells existing from the days before construction of the Hanford Works to the present. This work was funded by the US Department of Energy (DOE). The list of wells will be used by DOE contractors who need condensed, tabular information on well location, construction, and completion dates. This report does not include data on lithologic logs and ground-water contamination. Moreover, the completeness of this list is limited because of new well construction and existing well modifications, which are continually under way. Despite these limitations, this list represents the most complete description possible of data pertaining to wells on or adjacent to the Hanford Site. 7 refs., 1 fig., 2 tabs.

  10. The role of wellbore remediation on the evolution of groundwater quality from CO₂ and brine leakage

    DOE PAGESBeta

    Mansoor, Kayyum; Carroll, Susan A.; Sun, Yunwei

    2014-12-31

    Long-term storage of CO₂ in underground reservoirs requires a careful assessment to evaluate risk to groundwater sources. The focus of this study is to assess time-frames required to restore water quality to pre-injection levels based on output from complex reactive transport simulations that exhibit plume retraction within a 200-year simulation period. We examined the relationship between plume volume, cumulative injected CO₂ mass, and permeability. The role of mitigation was assessed by projecting falloffs in plume volumes from their maximum peak levels with a Gaussian function to estimate plume recovery times to reach post-injection groundwater compositions. The results show a strongmore » correlation between cumulative injected CO₂ mass and maximum plume pH volumes and a positive correlation between CO₂ flux, cumulative injected CO₂, and plume recovery times, with secondary dependence on permeability.« less

  11. The role of wellbore remediation on the evolution of groundwater quality from CO₂ and brine leakage

    SciTech Connect

    Mansoor, Kayyum; Carroll, Susan A.; Sun, Yunwei

    2014-12-31

    Long-term storage of CO₂ in underground reservoirs requires a careful assessment to evaluate risk to groundwater sources. The focus of this study is to assess time-frames required to restore water quality to pre-injection levels based on output from complex reactive transport simulations that exhibit plume retraction within a 200-year simulation period. We examined the relationship between plume volume, cumulative injected CO₂ mass, and permeability. The role of mitigation was assessed by projecting falloffs in plume volumes from their maximum peak levels with a Gaussian function to estimate plume recovery times to reach post-injection groundwater compositions. The results show a strong correlation between cumulative injected CO₂ mass and maximum plume pH volumes and a positive correlation between CO₂ flux, cumulative injected CO₂, and plume recovery times, with secondary dependence on permeability.

  12. Development of water quality criteria for diesel fuel No. 2 for remediating contaminated groundwater

    SciTech Connect

    Kangas, M.J.; Proctor, D.M.; Trowbridge, K.R.

    1994-12-31

    Site-specific ambient water quality criteria (AWQC) were developed as benchmarks for back-calculating safe levels of diesel fuel No. 2 as a petroleum mixture in groundwater that could migrate to Fish Creek north of Butler, Indiana. Three types of AWQC were considered relevant according to State-modified US Environmental Protection Agency procedures: An Acute Aquatic Criterion (AAC); A Chronic Aquatic Criterion (CAC); and A Terrestrial Life Cycle Safe Concentration (TLSC). The AAC is the maximum concentration considered protective for aquatic life exposed in the zone of discharge-induced mixing and outside the zone of initial dilution. The remaining criteria applies to all areas of a stream outside the mixing zone. The CAC is intended to protect aquatic life from chronic toxic effects under a four-day average exposure. The TLSC is developed to protect terrestrial organisms that may experience a four-day average exposure to surface water as a result of consumption of aquatic organisms and water from the creek. Scientifically valid toxicological data on the water soluble fraction of diesel fuel and site-specific resident and surrogate species information were used for criterion development. An AAC of 11.4 mg/L was derived as the benchmark for back-calculating a safe level of diesel fuel in groundwater based on modeled groundwater and surface water flow from the spill area to the creek. Uncertainties and limitations of developing benchmark concentrations for mixtures are presented.

  13. Observational Approach to Chromium Site Remediation - 13266

    SciTech Connect

    Scott Myers, R.

    2013-07-01

    Production reactors at the U.S. Department of Energy's (DOE) Hanford Site in Richland, Washington, required massive quantities of water for reactor cooling and material processing. To reduce corrosion and the build-up of scale in pipelines and cooling systems, sodium dichromate was added to the water feedstock. Spills and other releases at the makeup facilities, as well as leaks from miles of pipelines, have led to numerous areas with chromium-contaminated soil and groundwater, threatening fish populations in the nearby Columbia River. Pump-and-treat systems have been installed to remove chromium from the groundwater, but significant contamination remain in the soil column and poses a continuing threat to groundwater and the Columbia River. Washington Closure Hanford, DOE, and regulators are working on a team approach that implements the observational approach, a strategy for effectively dealing with the uncertainties inherent in subsurface conditions. Remediation of large, complex waste sites at a federal facility is a daunting effort. It is particularly difficult to perform the work in an environment of rapid response to changing field and contamination conditions. The observational approach, developed by geotechnical engineers to accommodate the inherent uncertainties in subsurface conditions, is a powerful and appropriate method for site remediation. It offers a structured means of quickly moving into full remediation and responding to the variations and changing conditions inherent in waste site cleanups. A number of significant factors, however, complicate the application of the observational approach for chromium site remediation. Conceptual models of contamination and site conditions are difficult to establish and get consensus on. Mid-stream revisions to the design of large excavations are time-consuming and costly. And regulatory constraints and contract performance incentives can be impediments to the flexible responses required under the observational

  14. Estimating Groundwater Concentrations from Mass Releases to the Aquifer at Integrated Disposal Facility and Tank Farm Locations Within the Central Plateau of the Hanford Site

    SciTech Connect

    Bergeron, Marcel P.; Freeman, Eugene J.

    2005-06-09

    This report summarizes groundwater-related numerical calculations that will support groundwater flow and transport analyses associated with the scheduled 2005 performance assessment of the Integrated Disposal Facility (IDF) at the Hanford Site. The report also provides potential supporting information to other ongoing Hanford Site risk analyses associated with the closure of single-shell tank farms and related actions. The IDF 2005 performance assessment analysis is using well intercept factors (WIFs), as outlined in the 2001 performance assessment of the IDF. The flow and transport analyses applied to these calculations use both a site-wide regional-scale model and a local-scale model of the area near the IDF. The regional-scale model is used to evaluate flow conditions, groundwater transport, and impacts from the IDF in the central part of the Hanford Site, at the core zone boundary around the 200 East and 200 West Areas, and along the Columbia River. The local-scale model is used to evaluate impacts from transport of contaminants to a hypothetical well 100 m downgradient from the IDF boundaries. Analyses similar to the regional-scale analysis of IDF releases are also provided at individual tank farm areas as additional information. To gain insight on how the WIF approach compares with other approaches for estimating groundwater concentrations from mass releases to the unconfined aquifer, groundwater concentrations were estimated with the WIF approach for two hypothetical release scenarios and compared with similar results using a calculational approach (the convolution approach). One release scenario evaluated with both approaches (WIF and convolution) involved a long-term source release from immobilized low-activity waste glass containing 25,550 Ci of technetium-99 near the IDF; another involved a hypothetical shorter-term release of {approx}0.7 Ci of technetium over 600 years from the S-SX tank farm area. In addition, direct simulation results for both release

  15. CENTRAL PLATEAU REMEDIATION

    SciTech Connect

    ROMINE, L.D.

    2006-02-01

    A systematic approach to closure planning is being implemented at the Hanford Site's Central Plateau to help achieve the goal of closure by the year 2035. The overall objective of Central Plateau remediation is to protect human health and the environment from the significant quantity of contaminated material that resulted from decades of plutonium production in support of the nation's defense. This goal will be achieved either by removing contaminants or placing the residual contaminated materials in a secure configuration that minimizes further migration to the groundwater and reduces the potential for inadvertent intrusion into contaminated sites. The approach to Central Plateau cleanup used three key concepts--closure zones, closure elements, and closure process steps--to create an organized picture of actions required to complete remediation. These actions were merged with logic ties, constraints, and required resources to produce an integrated time-phased schedule and cost profile for Central Plateau closure. Programmatic risks associated with implementation of Central Plateau closure were identified and analyzed. Actions to mitigate the most significant risks are underway while high priority remediation projects continue to make progress.

  16. Assessment of Hexavalent Chromium Natural Attenuation for the Hanford Site 100 Area

    SciTech Connect

    Truex, Michael J.; Szecsody, James E.; Qafoku, Nikolla P.; Sahajpal, Rahul; Zhong, Lirong; Lawter, Amanda R.; Lee, Brady D.

    2015-09-01

    Hexavalent chromium (Cr(VI)) plumes are present in the 100 Area at the Hanford Site. Remediation efforts are under way with objectives of restoring the groundwater to meet the drinking-water standard (48 µg/L) and protecting the Columbia River by ensuring that discharge of groundwater to the river is below the surface-water quality standard (10 µg/L). Current remedies include application of Pump-and-Treat (P&T) at the 100-D, 100-H, and 100-K Areas and Monitored Natural Attenuation (MNA) at the 100-F/IU Area. Remedy selection is still under way at the other 100 Areas. Additional information about the natural attenuation processes for Cr(VI) is important in all of these cases. In this study, laboratory experiments were conducted to demonstrate and quantify natural attenuation mechanisms using 100 Area sediments and groundwater conditions.

  17. Feasibility study for remedial action for the groundwater operable units at the chemical plant area and the ordnance works area, Weldon Spring, Missouri

    SciTech Connect

    1999-07-15

    The U.S. Department of Energy (DOE) and the U.S. Department of Army (DA) are conducting an evaluation to identify the appropriate response action to address groundwater contamination at the Weldon Spring Chemical Plant (WSCP) and the Weldon Spring Ordnance Works (WSOW), respectively. The two areas are located in St. Charles County, about 48 km (30 rni) west of St. Louis. The groundwater operable unit (GWOU) at the WSCP is one of four operable units being evaluated by DOE as part of the Weldon Spring Site Remedial Action Project (WSSRAP). The groundwater operable unit at the WSOW is being evaluated by the DA as Operable Unit 2 (OU2); soil and pipeline contamination are being managed under Operable Unit 1 (OU1). Remedial activities at the WSCP and the WSOW are being conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Consistent with DOE policy, National Environmental Policy Act (NEPA) values have been incorporated into the CERCLA process. A remedial investigation/feasibility study (RI/FS) work plan summarizing initial site conditions and providing site hydrogeological and exposure models was published in August of 1995 (DOE 1995). The remedial investigation (RI) and baseline risk assessment (BRA) have also recently been completed. The RI (DOE and DA 1998b) discusses in detail the nature, extent, fate, and transport of groundwater and spring water contamination. The BRA (DOE and DA 1998a) is a combined baseline assessment of potential human health and ecological impacts and provides the estimated potential health risks and ecological impacts associated with groundwater and springwater contamination if no remedial action were taken. This feasibility study (FS) has been prepared to evaluate potential options for addressing groundwater contamination at the WSCP and the WSOW. A brief description of the history and environmental setting of the sites is presented in Section 1.1, key information relative to the

  18. Evaluation of Natural Attenuation as One Component of Chloroethene-Contaminated Groundwater Remediation

    SciTech Connect

    Sorenson, K.S.; Peterson, L.N.; Green, T.S.

    1998-10-01

    Test Area North (TAN) at the Idaho National Engineering and Environmental Laboratory (INEEL) is the site of a large trichloroethene (TCE) plume resulting from the historical injection of wastewater into the Snake River Plain Aquifer. The TAN Record of Decision (ROD) selected pump and treat as the final remedy and included a contingency for post-ROD treatability studies of alternative technologies. The technologies still under consideration are in situ bioremediation, in situ chemical oxidation, and natural attenuation. Both anaerobic and aerobic laboratory microcosm studies indicate the presence of microorganisms capable of chloroethene degradation. Field data indicate that TCE concentrations decrease relative to tritium and tetrachloroethene indicating an as yet unknown process is contributing to natural attenuation of TCE. Several methods for analyzing the field data have been evaluated and important limitations identified. Early results from the continued evaluation of the three alternative technologies suggest the combined approach of active remediation of the source area (in situ bioremediation and/or chemical oxidation replacing or augmenting pump and treat) and natural attenuation within the dissolved phase plume may be more cost and schedule effective than the base case pump and treat.

  19. Evaluation of Natural Attenuation as One Component of Chloroethene-Contaminated Groundwater Remediation

    SciTech Connect

    K.S. Sorenson; L.N. Peterson; T.S. Green

    1998-10-01

    Test Area North (TAN) at the Idaho National Engineering and Environmental Laboratory (INEEL) is the site of a large trichloroethene (TCE) plume resulting from the historical injection of wastewater into the Snake River Plain Aquifer. The TAN Record of Decision (ROD) selected pump and treat as the final remedy and included a contingency for post-ROD treatability studies of alternative technologies. The technologies still under consideration are in-situ bioremediation, in-situ chemical oxidation, and natural attenuation. Both anaerobic and aerobic laboratory microcosm studies indicate the presence of microorganisms capable of chloroethene degradation. Field data indicate that TCE concentrations decrease relative to tritium and tetrachloroethene indicating an as yet unknown process is contributing to natural attenuation of TCE. Several methods for analyzing the field data have been evaluated and important limitations identified. Early results from the continued evaluation of the three alternative technologies suggest the combined approach of active remediation of the source area (in situ bioremediation and/or chemical oxidation replacing or augmenting pump and treat) and natural attenuation within the dissolved phase plume may be more cost and schedule effective than the base case pump and treat.

  20. {In Situ} Remediation of Contaminated Groundwater via Enhanced Reductive Dehalogenation and Dual-Screened Wells

    NASA Astrophysics Data System (ADS)

    Cunningham, J. A.; Hoelen, T. P.; Hopkins, G. D.; Reinhard, M.; Lebrón, C. A.

    2003-12-01

    Groundwater contaminated by chlorinated solvents, principally cis-dichloroethene (cis-DCE), was cleaned {in situ} by a technology that combines enhanced reductive dechlorination with dual-screened treatment wells. The prolonged historic presence of cis-DCE at the contaminated site suggested that natural attenuation rates were limited by the supply of electron donors. Therefore, propionate was added to the contaminated groundwater to serve as an electron donor and to accelerate the reductive dechlorination process. Propionate was added from the ground surface via a pair of dual-screened wells emplaced in the contaminated portion of the aquifer. The wells were screened at two depths, from 3.0--7.6 m below ground surface (bgs) and from 9.1--12.2 m bgs. These wells functioned to intercept the contaminant plume, augment the contaminated water with propionate, recirculate a portion of the contaminated water, and release treated water for continued downgradient migration. Treatment occurred wholly {in situ}. Within the recirculation zone of the well pair, cis-DCE was effectively removed during a two-month period of operation. In the lower aquifer zone, 800 μ g/L cis-DCE was converted stoichiometrically to ethene. In the upper aquifer zone, the concentration of cis-DCE was reduced from over 400 μ g/L to less than 40 μ g/L. Dechlorination was accompanied by significant sulfate reduction, but not by methanogenesis. The hydraulics of the groundwater flow are described with a relatively simple analytical mathematical model. Measured concentrations of a bromide tracer agree very well with model predictions, suggesting that the model is valid for this contaminated site. At this site, it appears sufficient to model the aquifer as consisting of two homogeneous layers separated by an impermeable aquitard; smaller-scale heterogeneity in the hydraulic conductivity can apparently be ignored.

  1. RCRA (Resource Conservation and Recovery Act of 1976) ground-water monitoring projects for Hanford facilities: Progress report, October 1--December 31, 1988: Volume 1, Text

    SciTech Connect

    Fruland, R.M.; Bates, D.J.; Lundgren, R.E.

    1989-04-01

    This report describes the progress of 13 Hanford ground-water monitoring projects for the period October 1 to December 31, 1988. There are 16 individual hazardous waste facilities covered by the 13 ground-water monitoring projects. The Grout Treatment Facility is included in this series of quarterly reports for the first time. The 13 projects discussed in this report were designed according to applicable interim-status ground-water monitoring requirements specified in the Resource Conservation and Recovery Act of 1976 (RCRA). During this quarter, field activities primarily consisted of sampling and analyses, and water-level monitoring. The 200 Areas Low-Level Burial Grounds section includes sediment analyses in addition to ground-water monitoring results. Twelve new wells were installed during the previous quarter: two at the 216-A-29 Ditch, six at the 216-A-10 Crib, and four at the 216-B-3 Pond. Preliminary characterization data for these new wells include drillers' logs and other drilling and site characterization data, and are provided in Volume 2 or on microfiche in the back of Volume 1. 26 refs., 28 figs., 74 tabs.

  2. Resource Conservation and Recovery Act ground-water monitoring projects for Hanford facilities: Progress report for the period July 1 to September 30, 1988: Volume 1, Text

    SciTech Connect

    Fruland, R.M.; Bates, D.J.; Lundgren, R.E.

    1989-02-01

    This report describes the progress of 12 Hanford ground-water monitoring projects for the period July 1 to September 30, 1988. During this quarter, field activities at the 300 Area process trenches, the Nonradioactive Dangerous Waste Landfill, the 183-H Solar Evaporation Basins, the 1324-N/NA Surface Impoundment and Percolation Ponds, the 1301-N and 1325-N Liquid Waste Disposal Facilities, and the 216-A-36B Crib consisted of ground-water sampling and analyses, and water-level monitoring. The 200 Area Low-Level Burial Grounds section includes well development data, sediment analysis, and water-level measurements. Ground-water sampling was begun at this site, and results will be included in next quarter's report. Twelve new wells were installed during the quarter, two at the 216-A-29 Ditch, size at the 216-A-10 Crib, and four at the 216-B-3 Pond. Preliminary characterization data for these new wells are included in this report. Driller's logs and other drilling and site characterization data will be provided in the next quarterly report. At the 2101-M Pond, construction was completed on four wells, and initial ground-water samples were taken. The drilling logs, geophysical logging data, and as-built diagrams are included in this report in Volume 2. 19 refs., 24 figs., 39 tabs.

  3. A/M Area Groundwater Corrective Action Southern Sector Remediation Technology Alternatives Evaluation

    SciTech Connect

    Looney, B.B.; Phifer, M.A.

    1994-06-30

    Several technologies for clean up of solvents such as trichloroethylene, from groundwater were examined to determine the most reasonable strategy for the southern Sector in A/M Area of Savannah River Site. The most promising options identified were: pump and treat technology, airlift recirculation technology, and bioremediation technology. These options range from baseline/traditional methods to more innovative technologies. The traditional methods would be straightforward to implement, while the innovative methods have the potential to improve efficiency and reduce long term costs.

  4. Use of electrical imaging and distributed temperature sensing methods to characterize surface water-groundwater exchange regulating uranium transport at the Hanford 300 Area, Washington

    USGS Publications Warehouse

    Slater, Lee D.; Ntarlagiannis, Dimitrios; Day-Lewis, Frederick D.; Mwakanyamale, Kisa; Versteeg, Roelof J.; Ward, Andy; Strickland, Christopher; Johnson, Carole D.; Lane, John W.

    2010-01-01

    We explored the use of continuous waterborne electrical imaging (CWEI), in conjunction with fiber-optic distributed temperature sensor (FO-DTS) monitoring, to improve the conceptual model for uranium transport within the Columbia River corridor at the Hanford 300 Area, Washington. We first inverted resistivity and induced polarization CWEI data sets for distributions of electrical resistivity and polarizability, from which the spatial complexity of the primary hydrogeologic units was reconstructed. Variations in the depth to the interface between the overlying coarse-grained, high-permeability Hanford Formation and the underlying finer-grained, less permeable Ringold Formation, an important contact that limits vertical migration of contaminants, were resolved along ∼3 km of the river corridor centered on the 300 Area. Polarizability images were translated into lithologic images using established relationships between polarizability and surface area normalized to pore volume (Spor). The FO-DTS data recorded along 1.5 km of cable with a 1 m spatial resolution and 5 min sampling interval revealed subreaches showing (1) temperature anomalies (relatively warm in winter and cool in summer) and (2) a strong correlation between temperature and river stage (negative in winter and positive in summer), both indicative of reaches of enhanced surface water–groundwater exchange. The FO-DTS data sets confirm the hydrologic significance of the variability identified in the CWEI and reveal a pattern of highly focused exchange, concentrated at springs where the Hanford Formation is thickest. Our findings illustrate how the combination of CWEI and FO-DTS technologies can characterize surface water–groundwater exchange in a complex, coupled river-aquifer system.

  5. Three-dimensional analysis of future groundwater flow conditions and contaminant plume transport in the Hanford Site unconfined aquifer system: FY 1996 and 1997 status report

    SciTech Connect

    Cole, C.R.; Wurstner, S.K.; Williams, M.D.; Thorne, P.D.; Bergeron, M.P.

    1997-12-01

    A three-dimensional numerical model of groundwater flow and transport, based on the Coupled Fluid Energy, and Solute Transport (CFEST) code, was developed for the Hanford Site to support the Hanford Groundwater Project (HGWP), managed by Pacific Northwest National Laboratory. The model was developed to increase the understanding and better forecast the migration of several contaminant plumes being monitored by the HGWP, and to support the Hanford Site Composite Analysis for low-level waste disposal in the 200-Area Plateau. Recent modeling efforts have focused on continued refinement of an initial version of the three-dimensional model developed in 1995 and its application to simulate future transport of selected contaminant plumes in the aquifer system. This version of the model was updated using a more current version of the CFEST code called CFEST96. Prior to conducting simulations of contaminant transport with the three-dimensional model, a previous steady-state, two-dimensional model of the unconfined aquifer system was recalibrated to 1979 water-table conditions with a statistical inverse method implemented in the CFEST-INV computer code. The results of the recalibration were used to refine the three-dimensional conceptual model and to calibrate it with a conceptualization that preserves the two-dimensional hydraulic properties and knowledge of the aquifer`s three-dimensional properties for the same 1979 water-table conditions. The transient behavior of the three-dimensional flow model was also calibrated by adjusting model storage properties (specific yield) until transient water-table predictions approximated observed water-table elevations between 1979 and 1996.

  6. Permeability of iron sulfide (FeS)-based materials for groundwater remediation.

    PubMed

    Henderson, Andrew D; Demond, Avery H

    2013-03-01

    Iron sulfide (FeS) has been extensively assessed as a reactive medium to remove both metals and halogenated organics from groundwater. However, to address its suitability as a material for permeable reactive barriers (PRBs), its propensity for solids and gas production, which result in reduced permeability, must be evaluated. The reduction in permeability for sands coated with FeS (as mackinawite), under the anoxic conditions often encountered at contaminated groundwater sites, was examined through column experiments and geochemical modeling under conditions of high calcium and nitrate, which have been previously shown to cause significant permeability reduction in zero-valent iron (ZVI) systems. The column experiments showed negligible production of both solids and gases. The geochemical modeling predicted a maximum reduction in permeability of 1% due to solids and about 30% due to gas formation under conditions for which a complete loss of permeability was predicted for ZVI systems. This difference in permeability reduction is driven by the differences in thermodynamic stability of ZVI and FeS in aqueous solutions. The results suggest that geochemical conditions that result in high permeability losses for ZVI systems will likely not be problematic for FeS-based reactive materials. PMID:23246668

  7. Monitoring the injection of microscale zero-valent iron particles for groundwater remediation by means of complex electrical conductivity imaging

    NASA Astrophysics Data System (ADS)

    Flores Orozco, A.; Velimirovic, M.; Tosco, T.; Kemna, A.; Sapion, H.; Klaas, N.; Sethi, R.; Bastiaens, L.

    2015-12-01

    The injection of nano- and microscale zerovalent iron (ZVI) particles has emerged as a promising technique for groundwater remediation. In particular, ZVI injections offer a suitable alternative for the remediation of areas not accessible with other techniques, such as areas characterized by low hydraulic conductivity. In such cases, the injection is performed at high pressure in order to create preferential flow paths (i.e., fractures). Particle injection via fracturing demands an adequate monitoring of the ZVI delivery to track the migration path of the particles as well as to delineate the extension and distribution of the iron slurry. However, characterization of ZVI injections is to date based mainly on the analysis of groundwater and soil samples, thus, limiting the spatio-temporal resolution of the investigation and making it not suitable for real-time monitoring. To overcome this, here we present the application of the complex conductivity (CC) imaging method to characterize the delivery of guar gum stabilized microscale ZVI (GG-mZVI) particles during a field-scale injection by hydraulic fracturing. Our results demonstrated that CC images provide not only an improved characterization of the contaminant distribution, but also valuable information to identify the migration pathway of the injected GG-mZVI. The relatively short acquisition time of CC datasets permitted to obtain monitoring data with enhanced temporal resolution, i.e., after each injection (every ~15 minutes), while still covering an extended area of investigation in comparison to conventional geochemical monitoring by means of soil and water samples. As presented in Figure 1, the CC images revealed an increase (~20%) in the induced electrical polarization (Φ), upon delivery of ZVI into the targeted area, due to the accumulation of ZVI. Furthermore, larger changes (>50%) occurred in shallow sediments, a few meters away from the injection, suggesting the migration of particles through

  8. Environmental Technology Verification Report for Instrumentation Northwest, Inc., Aquistar® TempHion Smart Sensor and Datalogger Nitrate-specific Ion-selective Electrode for Groundwater Remediation Monitoring

    EPA Science Inventory

    Environmental Technology Verification Report for Instrumentation Northwest, Inc., Aquistar® TempHion Smart Sensor and Datalogger Nitrate-specific Ion-selective Electrode for Groundwater Remediation Monitoring

  9. Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: implications for remediation of groundwater contaminated by antibiotics.

    PubMed

    Ji, Yuefei; Ferronato, Corinne; Salvador, Arnaud; Yang, Xi; Chovelon, Jean-Marc

    2014-02-15

    The wide occurrence of antibiotics in groundwater raised great scientific interest as well as public awareness in recent years due to their potential ability to spread antibiotic resistant gene and pose risk to humans. The present study investigated the ferrous ion (Fe(II)) activated decomposition of persulfate (S2O8(2-)), as a potential in situ chemical oxidation (ISCO) approach, for remediation of groundwater contaminated by antibiotics. Fe(II)-persulfate mediated ciprofloxacin (CIP) degradation was found to be more efficient than sulfamethoxazole (SMX) at near neutral pH (pH6.0), probably due to the higher electric density in CIP molecule and its ability to form complex with Fe(II) as a ligand. Hydroxyl (HO) and sulfate radical (SO4(-)) were determined to be responsible for the degradation of CIP and SMX in Fe(II)-persulfate system by molecular probes. No enhancement in the degradation of CIP was observed when citrate (CA), ethylenediaminetetraacetate (EDTA) and (S,S)-ethylenediamine-N,N'-disuccinate (EDDS) were used as Fe(II) chelating agents in Fe(II)-persulfate system. For SMX, CA and EDTA accelerated the degradation by Fe(II)-persulfate. Degradation of antibiotics in river water matrix was nearly the same as that in Milli-Q water, implying the possibility of using Fe(II)-persulfate for antibiotics depletion under environmentally relevant condition. A comparison of the degradation efficiency of SMX with other sulfonamides and sulfanilic acid indicated that the heterocyclic ring has a large impact on the degradation of sulfonamides. Transformation products of CIP and SMX by Fe(II)-persulfate were analyzed by solid phase extraction-liquid chromatography-mass spectrometry (SPE-LC-MS) technique. Based on the intermediate products, Fe(II)-persulfate mediated CIP degradation pathways were tentatively proposed. PMID:24342085

  10. FLUOR HANFORD (FH) MAKES CLEANUP A REALITY IN NEARLY 11 YEARS AT HANFORD

    SciTech Connect

    GERBER, M.S.

    2007-05-24

    For nearly 11 years, Fluor Hanford has been busy cleaning up the legacy of nuclear weapons production at one of the Department of Energy's (DOE'S) major sites in the United States. As prime nuclear waste cleanup contractor at the vast Hanford Site in southeastern Washington state, Fluor Hanford has changed the face of cleanup. Fluor beginning on October 1, 1996, Hanford Site cleanup was primarily a ''paper exercise.'' The Tri-Party Agreement, officially called the Hanford Federal Facility Agreement and Consent Order - the edict governing cleanup among the DOE, U.S. Environmental Protection Agency (EPA) and Washington state - was just seven years old. Milestones mandated in the agreement up until then had required mainly waste characterization, reporting, and planning, with actual waste remediation activities off in the future. Real work, accessing waste ''in the field'' - or more literally in huge underground tanks, decaying spent fuel POO{approx}{approx}S, groundwater, hundreds of contaminated facilities, solid waste burial grounds, and liquid waste disposal sites -began in earnest under Fluor Hanford. The fruits of labors initiated, completed and/or underway by Fluor Hanford can today be seen across the site. Spent nuclear fuel is buttoned up in secure, dry containers stored away from regional water resources, reactive plutonium scraps are packaged in approved containers, transuranic (TRU) solid waste is being retrieved from burial trenches and shipped offsite for permanent disposal, contaminated facilities are being demolished, contaminated groundwater is being pumped out of aquifers at record rates, and many other inventive solutions are being applied to Hanford's most intransigent nuclear wastes. (TRU) waste contains more than 100 nanocuries per gram, and contains isotopes higher than uranium on the Periodic Table of the Elements. (A nanocurie is one-billionth of a curie.) At the same time, Fluor Hanford has dramatically improved safety records, and cost

  11. Electrospun and oxidized cellulose materials for environmental remediation of heavy metals in groundwater

    SciTech Connect

    Han, Dong; Halada, Gary P.; Spalding, Brian Patrick; Brooks, Scott C

    2009-12-01

    This chapter focuses on the use of modified cellulosic materials in the field of environmental remediation. Two different chemical methods were involved in fabricating oxidized cellulose (OC), which has shown promise as a metal ion chelator in environmental applications. Electrospinning was utilized to introduce a more porous structure into an oxidized cellulose matrix. FTIR and Raman spectroscopy were used to study both the formation of OC and its surface complexation with metal ions. IR and Raman spectroscopic data demonstrate the formation of characteristic carboxylic groups in the structure of the final products and the successful formation of OC-metal complexes. Subsequent field tests at the Field Research Site at Oak Ridge National Laboratory confirmed the value of OC for sorption of both U and Th ions.

  12. The Relationship Between Partial Contaminant Source Zone Remediation and Groundwater Plume Attenuation

    NASA Astrophysics Data System (ADS)

    Falta, R. W.

    2004-05-01

    Analytical solutions are developed that relate changes in the contaminant mass in a source area to the behavior of biologically reactive dissolved contaminant groundwater plumes. Based on data from field experiments, laboratory experiments, numerical streamtube models, and numerical multiphase flow models, the chemical discharge from a source region is assumed to be a nonlinear power function of the fraction of contaminant mass removed from the source zone. This function can approximately represent source zone mass discharge behavior over a wide range of site conditions ranging from simple homogeneous systems, to complex heterogeneous systems. A mass balance on the source zone with advective transport and first order decay leads to a nonlinear differential equation that is solved analytically to provide a prediction of the time-dependent contaminant mass discharge leaving the source zone. The solution for source zone mass discharge is coupled semi-analytically with a modified version of the Domenico (1987) analytical solution for three-dimensional reactive advective and dispersive transport in groundwater. The semi-analytical model then employs the BIOCHLOR (Aziz et al., 2000; Sun et al., 1999) transformations to model sequential first order parent-daughter biological decay reactions of chlorinated ethenes and ethanes in the groundwater plume. The resulting semi-analytic model thus allows for transient simulation of complex source zone behavior that is fully coupled to a dissolved contaminant plume undergoing sequential biological reactions. Analyses of several realistic scenarios show that substantial changes in the ground water plume can result from the partial removal of contaminant mass from the source zone. These results, however, are sensitive to the nature of the source mass reduction-source discharge reduction curve, and to the rates of degradation of the primary contaminant and its daughter products in the ground water plume. Aziz, C.E., C.J. Newell, J

  13. Biochar- and phosphate-induced immobilization of heavy metals in contaminated soil and water: implication on simultaneous remediation of contaminated soil and groundwater.

    PubMed

    Liang, Yuan; Cao, Xinde; Zhao, Ling; Arellano, Eduardo

    2014-03-01

    Long-term wastewater irrigation or solid waste disposal has resulted in the heavy metal contamination in both soil and groundwater. It is often separately implemented for remediation of contaminated soil or groundwater at a specific site. The main objective of this study was to demonstrate the hypothesis of simultaneous remediation of both heavy metal contaminated soil and groundwater by integrating the chemical immobilization and pump-and-treat methods. To accomplish the objective, three experiments were conducted, i.e., an incubation experiment was first conducted to determine how dairy-manure-derived biochar and phosphate rock tailing induced immobilization of Cd in the Cd-contaminated soils; second, a batch sorption experiment was carried out to determine whether the pre-amended contaminated soil still had the ability to retain Pb, Zn and Cd from aqueous solution. BCR sequential extraction as well as XRD and SEM analysis were conducted to explore the possible retention mechanism; and last, a laboratory-scale model test was undertaken by leaching the Pb, Zn, and Cd contaminated groundwater through the pre-amended contaminated soils to demonstrate how the heavy metals in both contaminated soil and groundwater were simultaneously retained and immobilized. The incubation experiment showed that the phosphate biochar were effective in immobilizing soil Cd with Cd concentration in TCLP (toxicity characteristics leaching procedure) extract reduced by 19.6 % and 13.7 %, respectively. The batch sorption experiment revealed that the pre-amended soil still had ability to retain Pb, Zn, and Cd from aqueous solution. The phosphate-induced metal retention was mainly due to the metal-phosphate precipitation, while both sorption and precipitation were responsible for the metal stabilization in the biochar amendment. The laboratory-scale test demonstrated that the soil amended with phosphate removed groundwater Pb, Zn, and Cd by 96.4 %, 44.6 %, and 49.2 %, respectively, and the

  14. Remediation of the Highland Drive South Ravine, Port Hope, Ontario: Contaminated Groundwater Discharge Management Using Permeable Reactive Barriers and Contaminated Sediment Removal - 13447

    SciTech Connect

    Smyth, David; Roos, Gillian; Ferguson Jones, Andrea; Case, Glenn; Yule, Adam

    2013-07-01

    The Highland Drive South Ravine (HDSR) is the discharge area for groundwater originating from the Highland Drive Landfill, the Pine Street North Extension (PSNE) roadbed parts of the Highland Drive roadbed and the PSNE Consolidation Site that contain historical low-level radioactive waste (LLRW). The contaminant plume from these LLRW sites contains elevated concentrations of uranium and arsenic and discharges with groundwater to shallow soils in a wet discharge area within the ravine, and directly to Hunt's Pond and Highland Drive South Creek, which are immediately to the south of the wet discharge area. Remediation and environmental management plans for HDSR have been developed within the framework of the Port Hope Project and the Port Hope Area Initiative. The LLRW sites will be fully remediated by excavation and relocation to a new Long-Term Waste Management Facility (LTWMF) as part of the Port Hope Project. It is projected, however, that the groundwater contaminant plume between the remediated LLRW sites and HDSR will persist for several hundreds of years. At the HDSR, sediment remediation within Hunt's Ponds and Highland Drive South Creek, excavation of the existing and placement of clean fill will be undertaken to remove current accumulations of solid-phase uranium and arsenic associated with the upper 0.75 m of soil in the wet discharge area, and permeable reactive barriers (PRBs) will be used for in situ treatment of contaminated groundwater to prevent the ongoing discharge of uranium and arsenic to the area in HDSR where shallow soil excavation and replacement has been undertaken. Bench-scale testing using groundwater from HDSR has confirmed excellent treatment characteristics for both uranium and arsenic using permeable reactive mixtures containing granular zero-valent iron (ZVI). A sequence of three PRBs containing ZVI and sand in backfilled trenches has been designed to intercept the groundwater flow system prior to its discharge to the ground surface

  15. Remedial Investigation work plan for Bear Creek Valley Operable Unit 4 (shallow groundwater in Bear Creek Valley) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    Not Available

    1993-09-01

    To effectively evaluate the cumulative impact of releases from multiple sources of contamination, a structured approach has been adopted for Oak Ridge Reservation (ORR) based on studies of the groundwater and surface water separate from studies of the sources. Based on the realization of the complexity of the hydrogeologic regime of the ORR, together with the fact that there are numerous sources contributing to groundwater contamination within a geographical area, it was agreed that more timely investigations, at perhaps less cost, could be achieved by separating the sources of contamination from the groundwater and surface water for investigation and remediation. The result will be more immediate attention [Records of Decision (RODS) for interim measures or removal actions] for the source Operable Units (OUs) while longer-term remediation investigations continue for the hydrogeologic regime`s, which are labeled as integrator OUs. This Remedial Investigation work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to the unit. Taking advantage of the historical data base and ongoing monitoring activities and applying the observational approach to focus data gathering activities will allow the Feasibility Study to evaluate all probable or likely alternatives.

  16. Remedial investigation work plan for Bear Creek Valley Operable Unit 4 (shallow groundwater in Bear Creek Valley) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    Not Available

    1993-07-01

    To effectively evaluate the cumulative impact of releases from multiple sources of contamination, a structured approach has been adopted for Oak Ridge Reservation (ORR) based on studies of the groundwater and surface water separate from studies of the sources. Based on the realization of the complexity of the hydrogeologic regime of the ORR, together with the fact that there are numerous sources contributing to groundwater contamination within a geographical area, it was agreed that more timely investigations, at perhaps less cost, could be achieved by separating the sources of contamination from the groundwater and surface water for investigation and remediation. The result will be more immediate attention [Records of Decision (RODs) for interim measures or removal actions] for the source Operable Units (OUs) while longer-term remediation investigations continue for the hydrogeologic regimes, which are labeled as integrator OUs. This remedial investigation work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to the unit. Taking advantage of the historical data base and ongoing monitoring activities and applying the observational approach to focus data gathering activities will allow the feasibility study to evaluate all probable or likely alternatives.

  17. Central Plateau Cleanup at DOE's Hanford Site - 12504

    SciTech Connect

    Dowell, Jonathan

    2012-07-01

    wells. As a companion to the Hanford Site Cleanup Completion Framework document, DOE issued its draft Central Plateau Cleanup Completion Strategy in September 2009 to provide an outline of DOE's vision for completion of cleanup activities across the Central Plateau. As major elements of the Hanford cleanup along the Columbia River Corridor near completion, DOE believed it appropriate to articulate the agency vision for the remainder of the cleanup mission. The Central Plateau Cleanup Completion Strategy and the Hanford Site Cleanup Completion Framework were provided to the regulatory community, the Tribal Nations, political leaders, the public, and Hanford stakeholders to promote dialogue on Hanford's future. The Central Plateau Cleanup Completion Strategy describes DOE's vision for completion of Central Plateau cleanup and outlines the decisions needed to achieve the vision. The Central Plateau strategy involves steps to: (1) contain and remediate contaminated groundwater, (2) implement a geographic cleanup approach that guides remedy selection from a plateau-wide perspective, (3) evaluate and deploy viable treatment methods for deep vadose contamination to provide long-term protection of the groundwater, and (4) conduct essential waste management operations in coordination with cleanup actions. The strategy will also help optimize Central Plateau readiness to use funding when it is available upon completion of River Corridor cleanup projects. One aspect of the Central Plateau strategy is to put in place the process to identify the final footprint for permanent waste management and containment of residual contamination within the 20-square-mile Industrial-Exclusive Area. The final footprint identified for permanent waste management and containment of residual contamination should be as small as practical and remain under federal ownership and control for as long as a potential hazard exists. Outside the final footprint, the remainder of the Central Plateau will be

  18. Aquifer Testing Recommendations for Well 299-W15-225: Supporting Phase I of the 200-ZP-1 Groundwater Operable Unit Remedial Design

    SciTech Connect

    Spane, Frank A.; Newcomer, Darrell R.

    2009-03-10

    Aquifer characterization needs are currently being assessed to optimize pump-and-treat remedial strategies within the 200-ZP-1 Operable Unit (OU), specifically for the immediate area of the 241-TX-TY Tank Farm. Currently, 14 extraction wells are actively used in the Interim Record of Decision ZP-1 pump-and-treat system to remediate the existing groundwater contamination within this general area. Four of these wells (299-W15-40, 299-W15-43, 299-W15-44, and 299-W15-765) are targeted to remediate contamination within the immediate 241-TX-TY Tank Farm area. The major contaminant of concern (COC) for the 200-ZP-1 OU is carbon tetrachloride. Other COC’s include total chromium (trivalent [III] and hexavalent [VI], nitrate, trichloroethlyene, iodine-129, technetium-99, and tritium.

  19. ZVI-Clay remediation of a chlorinated solvent source zone, Skuldelev, Denmark: 2. Groundwater contaminant mass discharge reduction.

    PubMed

    Fjordbøge, Annika S; Lange, Ida V; Bjerg, Poul L; Binning, Philip J; Riis, Charlotte; Kjeldsen, Peter

    2012-10-01

    The impact of source mass depletion on the down-gradient contaminant mass discharge was monitored for a 19-month period as a part of a field demonstration of the ZVI-Clay soil mixing remediation technology. Groundwater samples were collected from conventional monitoring wells (120 samples) and a dense network of multilevel samplers (640 samples). The hydraulic gradient and conductivity were determined. Depletion of the contaminant source is described in the companion paper (Fjordbøge et al., 2012). Field data showed four distinct phases for PCE mass discharge: (1) baseline conditions, (2) initial rapid reduction, (3) temporary increase, and (4) slow long-term reduction. Numerical modeling was utilized to develop a conceptual understanding of the four phases and to identify the governing processes. The initial rapid reduction of mass discharge was a result of the changed hydraulic properties in the source zone after soil mixing. The subsequent phases depended on the changed accessibility of the contaminant mass after mixing, the rate of source depletion, and the concentration gradient at the boundaries of the mixed source zone. Overall, ZVI-Clay soil mixing resulted in a significant down-gradient contaminant mass discharge reduction (76%) for the parent compound (PCE), while the overall reduction of chlorinated ethenes was smaller (21%). PMID:23010547

  20. Development of a Conceptual Model for Vadose Zone Transport of Tc-99 at Hanford's BC Cribs and the Screening of Remedial Alternatives

    SciTech Connect

    Ward, Anderson L.; Serne, R. Jeffrey; Benecke, Mark W.

    2009-03-05

    A number of waste trenches at cribs at Hanford's BC Cribs and Trenches site, which received about 10 Mgal of scavenged tank waste with elevated concentrations of technetium-99 and nitrate, are currently being evaluated for remediation. The objective of this study was to investigate the influence of fine-scale heterogeneity (i.e. horizontal laminations, cross-bedding) on the large-scale transport behavior of mobile contaminants through the vadose zone with the purpose of developing a remedial strategy. The vertical heterogeneity structure, conditioned on grain size distributions and geophysical logs (water content and natural isotopes), was developed from a single borehole at the site. Geostatistical methods were used to impose the 3-D spatial correlation structure from the nearby well-characterized experimental site to merge the heterogeneities at various scales. Flow and transport properties were derived using physically-based property transfer models. The STOMP simulator was then used to predict contaminant transport through the vadose zone and into a 5-m thick confined aquifer during the period of trench operations (1956-1958) and to present time. Simulation results show that the fine-scale heterogeneity inside the large-scale lithologic units has considerable impact on the large-scale transport behavior of contaminants. The fine-scale heterogeneity enhanced the lateral flow and mixing and limited vertical penetration in the vadose zone. Model results are in excellent agreement with the vertical contaminant profile obtained from a borehole installed in the 216-B-26 trench. The simulated 2-D distribution of nitrate and electrical resistivity sounding curves also agreed well with results of field-scale resistivity surveys. These results suggest that installation of an engineered surface barrier would reduce the threat to ground water by reducing the mass flux of contaminants to the water table and increasing the residence time in the vadose zone.

  1. Supporting evaluation for the proposed plan for final remedial action for the groundwater operable unit at the chemical plant area of the Weldon Spring Site, Weldon Spring, Missouri.

    SciTech Connect

    2003-08-06

    This report presents the technical information developed since the interim record of decision (IROD) was issued in September 2000 (U.S. Department of Energy [DOE] 2000). The information was incorporated into the evaluation that was performed in selecting the preferred alternative for the Chemical Plant groundwater operable unit (GWOU) of the Weldon Spring site. The contaminants of concern (COCs) in groundwater and springs are trichloroethylene (TCE), nitrate, uranium, and nitroaromatic compounds. The preferred alternative of monitored natural attenuation (MNA) coupled with institutional controls (ICs) and contingency activities is described in the ''Proposed Plan (PP) for Final Remedial Action for the Groundwater Operable Unit at the Chemical Plant Area of the Weldon Spring Site, Weldon Spring, Missouri'' (DOE 2003b).

  2. Feasibility of the Shallow High Resolution Seismic Reflection Technique for Use at the Hanford Site

    SciTech Connect

    Narbutovskih, S.M.

    1993-07-30

    Data obtained during site characterization should be useful to assess the need for remediation, to evaluate and design effective remedial plans, and to allow long-term monitoring to discern remediation effectiveness. A valuable environmental tool that incorporates this data is a model that describes groundwater and vadose zone flow and transport characteristics. Data on geology and hydrology combined with information on contaminant sources are incorporated into these conceptual models that delineate the relative significance of the various fluid migration pathways. Downstream these same models also support risk assessment, remediation design, and long-term assessment of remediation effectiveness. Consequently, the building of coherent, accurate vadose zone and groundwater models is fundamental to a successful remediation. Among the important requirements for these models is accurate knowledge of flow domain boundaries and soil characteristics. At the Hanford Site, this knowledge is obtained primarily from borehole data, which provides information only at a point. In the high energy flood and fluvial deposits found at the Hanford Site, it can, at times, be difficult to correlate lithologic horizons between boreholes. Where there is no borehole control, our understanding of the geometry of hydrogeologic boundaries and thus of fluid migration paths is limited. Surface geophysical techniques are generally used to provide a measure of geologic control between boreholes. In particular, the seismic reflection method has the potential to provide the greatest resolution of the subsurface hydrogeology between and beyond boreholes.

  3. In situ redox manipulation of aquifer sediments for groundwater remediation: From the flask to the field

    SciTech Connect

    Amonette, J.E.; Szecsody, J.E.; Williams, M.D.

    1995-12-31

    Structural iron in sediment clay minerals can be reduced to Fe(II) in situ by treatment with buffered dithionite solutions. The Fe(II) is then available to react with oxidized contaminants in groundwater that passes through the treated zone. Contaminants are removed by reductive precipitation [e.g., Cr(VI)(aq) {r_arrow} Cr(OH){sub 3}(s)] or destroyed by reductive dechlorination (e.g., CCl{sub 4} {r_arrow} reduced C + 4 Cl{sup -}). The effectiveness of the technology depends on several factors including available structural iron in the sediment, porosity of the aquifer, stability of the dithionite solution, and the rates of heterogeneous redox processes. These factors have been studied in a series of experiments ranging from small bench-scale batch and column studies through intermediate-scale transport experiments in a 7-meter-long physical aquifer model to a large-scale pilot field experiment. Each experimental system yields specific types of information that, when integrated, provide a cost-effective means to bring an experimental treatment technology {open_quotes}from the flask to the field.{close_quotes}

  4. Experimental Design for One Dimensional Electrolytic Reactive Barrier for Remediation of Munition Constituent in Groundwater

    PubMed Central

    Gent, David B.; Wani, Altaf; Alshawabkeh, Akram N.

    2012-01-01

    A combination of direct electrochemical reduction and in-situ alkaline hydrolysis has been proposed to decompose energetic contaminants such as 1,3,5-Trinitroperhydro- 1,3,5-triazine and 2,4,6-Trinitrotoluene (RDX) in deep aquifers. This process utilizes natural groundwater convection to carry hydroxide produced by an upstream cathode to remove the contaminant at the cathode as well as in the pore water downstream as it migrates toward the anode. Laboratory evaluation incorporated fundamental principles of column design coupled with reactive contaminant modeling including electrokinetics transport. Batch and horizontal sand-packed column experiments included both alkaline hydrolysis and electrochemical treatment to determine RDX decomposition reaction rate coefficients. The sand packed columns simulated flow through a contaminated aquifer with a seepage velocity of 30.5 cm/day. Techniques to monitor and record the transient electric potential, hydroxide transport and contaminant concentration within the column were developed. The average reaction rate coefficients for both the alkaline batch (0.0487 hr−1) and sand column (0.0466 hr−1) experiments estimated the distance between the cathode and anode required to decompose 0.5 mg/L RDX to the USEPA drinking water lifetime Health Advisory level of 0.002 mg/L to be 145 and 152 cm. PMID:23472044

  5. In situ remediation of chromium contaminated groundwater using zero valent iron

    SciTech Connect

    Blowes, D.W.; Ptacek, C.J.; Hanton-Fong, C.J.; Jambor, J.L.

    1995-12-01

    In situ porous reactive walls, using zero-valent iron as a reductant, are an alternative technology for the treatment of groundwater contaminated with electroactive elements, such as Cr(VI). Laboratory column and batch experiments were conducted to assess the treatment of Cr(VI) using zero-valent iron in the form of iron filings. Batch tests were conducted with and without calcite addition. Batch test results indicate that removal using iron filings is rapid, with initial Cr(VI) concentrations reduced from approximately 20 mg/L to < 0.05 mg/L within 3 hours. Iron filings retained from the batch tests were examined mineralogically. The results indicate that the most abundant secondary minerals are goethite, lepidocrocite, maghemite and hematite. Of these minerals, the most abundant was goethite. No discrete chromium-bearing phases were detected, but chromium-rich zones, containing up to 27.3 wt.% Cr as Cr(OH){sub 3}, were detected within the iron oxyhydroxides, most notably within the goethite. A flow-through column experiment, conducted at a flow rate of 10 m/a indicated continuing treatment of Cr(VI) at concentrations of approximately 20 mg/L to <0.05 mg/L for more than 130 pore volumes.

  6. Setting information priorities for remediation decisions at a contaminated-groundwater site.

    PubMed

    Ma, Hwong-wen; Wu, Kuen-Yuh; Ton, Chung-Da

    2002-01-01

    Many sites of contamination due to inappropriate disposal of hazardous materials or wastes have been found. These sites have the potential of damaging the environment and human health and thus need to be evaluated as to whether and what actions should be initiated. In the decision on whether a contaminated site should be subject to management, the knowledge concerning important parameters that would influence the decision will be beneficial to planning of data collection to support the decision. This paper presents a case study of contaminated site located in northern Taiwan, where the groundwater is contaminated by chlorinated hydrocarbons including trichloroethylene (TCE) and tetrachloroethylene (PCE). A site-specific multimedia risk assessment is performed to estimate the total risk resulting from the contamination. In addition, Monte Carlo simulation, rank correlation coefficients, and decision criteria are combined to develop a methodology for assessing the important of parameters in terms of their influence on the decision. It is found that TCE concentration, vegetable yield, deposition interception fraction of vegetables, and plant surface loss constant, are the four parameters important to the decision-making of the case problem. PMID:11806535

  7. Experimental Design for One Dimensional Electrolytic Reactive Barrier for Remediation of Munition Constituent in Groundwater.

    PubMed

    Gent, David B; Wani, Altaf; Alshawabkeh, Akram N

    2012-12-30

    A combination of direct electrochemical reduction and in-situ alkaline hydrolysis has been proposed to decompose energetic contaminants such as 1,3,5-Trinitroperhydro- 1,3,5-triazine and 2,4,6-Trinitrotoluene (RDX) in deep aquifers. This process utilizes natural groundwater convection to carry hydroxide produced by an upstream cathode to remove the contaminant at the cathode as well as in the pore water downstream as it migrates toward the anode. Laboratory evaluation incorporated fundamental principles of column design coupled with reactive contaminant modeling including electrokinetics transport. Batch and horizontal sand-packed column experiments included both alkaline hydrolysis and electrochemical treatment to determine RDX decomposition reaction rate coefficients. The sand packed columns simulated flow through a contaminated aquifer with a seepage velocity of 30.5 cm/day. Techniques to monitor and record the transient electric potential, hydroxide transport and contaminant concentration within the column were developed. The average reaction rate coefficients for both the alkaline batch (0.0487 hr(-1)) and sand column (0.0466 hr(-1)) experiments estimated the distance between the cathode and anode required to decompose 0.5 mg/L RDX to the USEPA drinking water lifetime Health Advisory level of 0.002 mg/L to be 145 and 152 cm. PMID:23472044

  8. SOIL DESICCATION TECHNIQUES STRATEGIES FOR IMMOBILIZATION OF DEEP VADOSE CONTAMINANTS AT THE HANFORD CENTRAL PLATEAU

    SciTech Connect

    BENECKE MW; CHRONISTER GB; TRUEX MJ

    2012-01-30

    Deep vadose zone contamination poses some of the most difficult remediation challenges for the protection of groundwater at the Hanford Site where processes and technologies are being developed and tested for use in the on-going effort to remediate mobile contamination in the deep vadose zone, the area deep beneath the surface. Historically, contaminants were discharged to the soil along with significant amounts of water, which continues to drive contaminants deeper in the vadose zone toward groundwater. Soil desiccation is a potential in situ remedial technology well suited for the arid conditions and the thick vadose zone at the Hanford Site. Desiccation techniques could reduce the advance of contaminants by removing the pore water to slow the rate of contaminants movement toward groundwater. Desiccation technologies have the potential to halt or slow the advance of contaminants in unsaturated systems, as well as aid in reduction of contaminants from these same areas. Besides reducing the water flux, desiccation also establishes capillary breaks that would require extensive rewetting to resume pore water transport. More importantly, these techniques have widespread application, whether the need is to isolate radio nuclides or address chemical contaminant issues. Three different desiccation techniques are currently being studied at Hanford.

  9. Fiscal year 1992 program plan for evaluation and remediation of the generation and release of flammable gases in Hanford Site waste tanks

    SciTech Connect

    Johnson, G.D.

    1992-06-01

    The Waste Tank Flammable Gas Stabilization Program was established in 1990 to provide for resolution of a major safety issue identified for 23 of the high-level waste tanks at the Hanford Site. This safety issue involves flammable gas mixtures, consisting mainly of hydrogen, nitrous oxide, and that are generated and periodically released in concentrations that nitrogen, exceed the lower flamability limit. Initial activities of the program have been directed at tank 241-SY-101 because it exhibits the largest risk. Activities conducted in fiscal year (FY) 1991 included waste sampling, waste sample analysis, development of tank models, conducting laboratory tests with synthetic wastes, upgrading of tank instrumentation and ventilation systems, evaluation of new methods for characterizing waste, and development of remedial actions. In addition to the work being conducted to resolve the flammable gas issue, programs have been established (Gasper and Reep 1992) to develop corrective actions for high priority safety issues associated with potential explosive mixtures of ferrocyanides in tanks, potential organic-nitrate reactions in tanks, and for the continued cooling for heat generation in tank 106{degrees}C. The purpose of this document is to provide a brief description of the FY 1992 priorities, logic, work breakdown structure (WBS), and task descriptions for the Waste Tank Flammable Gas Stabilization Program.

  10. Fiscal year 1992 program plan for evaluation and remediation of the generation and release of flammable gases in Hanford Site waste tanks. Revision 1

    SciTech Connect

    Johnson, G.D.

    1992-06-01

    The Waste Tank Flammable Gas Stabilization Program was established in 1990 to provide for resolution of a major safety issue identified for 23 of the high-level waste tanks at the Hanford Site. This safety issue involves flammable gas mixtures, consisting mainly of hydrogen, nitrous oxide, and that are generated and periodically released in concentrations that nitrogen, exceed the lower flamability limit. Initial activities of the program have been directed at tank 241-SY-101 because it exhibits the largest risk. Activities conducted in fiscal year (FY) 1991 included waste sampling, waste sample analysis, development of tank models, conducting laboratory tests with synthetic wastes, upgrading of tank instrumentation and ventilation systems, evaluation of new methods for characterizing waste, and development of remedial actions. In addition to the work being conducted to resolve the flammable gas issue, programs have been established (Gasper and Reep 1992) to develop corrective actions for high priority safety issues associated with potential explosive mixtures of ferrocyanides in tanks, potential organic-nitrate reactions in tanks, and for the continued cooling for heat generation in tank 106{degrees}C. The purpose of this document is to provide a brief description of the FY 1992 priorities, logic, work breakdown structure (WBS), and task descriptions for the Waste Tank Flammable Gas Stabilization Program.

  11. Effectiveness of UV-based advanced oxidation processes for the remediation of hydrocarbon pollution in the groundwater: a laboratory investigation.

    PubMed

    Mascolo, Giuseppe; Ciannarella, Ruggero; Balest, Lydia; Lopez, Antonio

    2008-04-15

    The effectiveness of advanced oxidation processes in a batch and a flow reactor was investigated for the remediation of hydrocarbon pollution in the groundwater underlying a petrochemical industrial site. The main organic contaminants present in the groundwater were MTBE, benzene, alkyl-benzenes and alkyl-naphthalenes. Experimental results with a batch reactor showed that for all the organic contaminants the removal efficiency order is UV/TiO2 approximately UV/H2O2>UV (medium-pressure) in a synthetic aqueous solution, compared to UV/H2O2>UV (medium-pressure)>UV/TiO2 for the real polluted groundwater. The much lower performance of UV/TiO2 with respect to UV/H2O2 was inferred to the matrix of the groundwater, i.e. the salt content, as well as the organic and particulate matter. In fact, it is likely that the salts and dissolved organic matter quench the superoxide anion O2(-) and hydroxyl radicals just formed at the surface of the TiO2 catalyst. MTBE was the hardest compound to remove with each of the investigated treatments. UV and UV/TiO2 treatments were not able to reach a residual concentration of 10 microg/L (set by Italian legislation) even after 180 min. As for the UV/H2O2 process, only the MTBE degradation rate resulted affected by the initial H2O2 concentration, while for other compounds a complete removal was obtained within 20 min even with the lowest H2O2 concentration used (0.13 g/L). Only after 120 min of treatment, with an initial H2O2 concentration of 0.13 g/L, did the residual MTBE concentration fall below the above reported maximum admissible concentration. Instead, by using an initial concentration of 2g/L a residual concentration lower than 5 microg/L was obtained after just 30 min of reaction. The UV/H2O2 process was also investigated with a flow reactor. Results showed that it was more efficient than the batch reactor for removing MTBE, in terms of reaction time and initial H2O2 concentration required. This is consistent with the higher power of

  12. Phosphate-Based Mineralization of Arsenic in Contaminated Soil: A Potential Remediation Method for Soil and Groundwater

    NASA Astrophysics Data System (ADS)

    Neupane, G.; Donahoe, R. J.

    2009-12-01

    Soil arsenic contamination resulting from the use of arsenical compounds is a widespread environmental problem. A phosphate-based remediation method which has the potential to immobilize arsenic in both oxidizing and reducing subsurface systems is under laboratory investigation. Although phosphate treatments have been reported to be effective in removal of arsenic from contaminated water, its use in contaminated soils has not been tested. This study aims to (1) determine the competitive adsorption/desorption of arsenate and phosphate at surfaces of ferric hydroxide coated sand in the absence or presence of calcium ions, and (2) develop a method of arsenic fixation which involves phosphoric acid flushing of arsenic from contaminated soil and precipitation of arsenic as apatite-like phases. Ferric hydroxide is a significant arsenic sequestering constituent in soil. Phosphate competes with arsenate for adsorption sites on the ferric hydroxide surface. Batch adsorption experiments conducted using ferric hydroxide coated sand have indicated similar pH-controlled adsorption mechanisms for both arsenate and phosphate. The data obtained from the adsorption experiments is being used to guide the development of a phosphate-based method for soil and groundwater arsenic remediation. Batch experiments were performed using 3g of contaminated soil in contact with 45 ml of treatment fluid (a dilute phosphoric acid and calcium hydroxide solution). Solution samples were collected at 24, 72, 144, 312, and 384 hours, with continuous agitation at 200 rpm. Solution concentrations of phosphorus and calcium generally decreased with time and were primarily controlled by pH. It has been experimentally demonstrated that solution arsenic concentrations can be lowered by maintaining high pH with adequate calcium supply. A batch experiment conducted at pH > 11, using 1 kg of soil in contact with 1 liter of 0.25% H3PO4, precipitated a white material giving an XRD signature indicative of brushite

  13. Response to Comment on “Iodine-129 and Iodine-127 Speciation in Groundwater at Hanford Site, U.S. Iodate Incorporation into Calcite”

    SciTech Connect

    Zhang, Saijin; Xu, Chen; Creeley, Danielle; Ho, Yi-Fang; Li, Hsiu-Ping; Grandbois, Russell; Schwehr, Kathy; Kaplan, D. I.; Yeager, Chris; Wellman, Dawn M.; Santschi, Peter H.

    2013-11-04

    In his comment on our paper “Iodine-129 and Iodine-127 Speciation in Groundwater at Hanford Site, U.S.: Iodate Incorporation into Calcite”, Lu specified three concerns for Zhang et al’s study,1 including (1) precipitation mechanism (degassing vs freezing), (2) analytical methods, and (3) mass balance control. In response, comparative and comprehensive discussions on the precipitation mechanisms and iodine incorporation can be found in the paper, as well as below. This includes additional experiments of iodine distribution and speciation in calcite precipitates. In addition, the measurements of total iodine in soils/sediment were clarified below as well. The calculations on mass balance in this comment were clarified by using correct data sets. Lu proposed that freezing samples

  14. Resource Conservation and Recovery Act ground-water monitoring projects for Hanford facilities: Progress Report for the Period April 1 to June 30, 1989

    SciTech Connect

    Smith, R.M.; Bates, D.J.; Lundgren, R.E.

    1989-09-01

    This report describes the progress of 13 Hanford ground-water monitoring projects for the period April 1 to June 30, 1989. These projects are for the 300 area process trenches (300 area), 183-H solar evaporation basins (100-H area), 200 areas low-level burial grounds, nonradioactive dangerous waste landfill (southeast of the 200 areas), 1301-N liquid waste disposal facility (100-N area), 1324-N surface impoundment and 1324-NA percolation pond (100-N area), 1325-N liquid waste disposal facility (100-N area), 216-A-10 crib (200-east area), 216-A-29 ditch (200-east area), 216-A-36B crib (200-east area), 216-B-36B crib (200-east area), 216-B-3 pond (east of the 200-east area), 2101-M pond (200-east area), grout treatment facility (200-east area).

  15. River Corridor Closure at DOE's Hanford Site - 12503

    SciTech Connect

    Dowell, Jonathan; Franco, Joe

    2012-07-01

    The discussion of Hanford's River Corridor will cover work that has already been completed plus the work remaining to be done. This includes the buildings, waste sites, and groundwater plumes in the 300 Area; large-scale burial ground remediation in the 600 Area; plutonium production reactor dismantling and 'cocooning' along the river; preservation of the world's first full-scale plutonium production reactor; removal of more than 14 million tons of contaminated soil and debris along the Columbia River shoreline and throughout the River Corridor; and the excavation of buried waste sites in the river shore area. It also includes operating an EPA-permitted low-level waste disposal facility in the central portion of the site. At the completions of cleanup in 2015, Hanford's River Corridor will be the largest closure project ever completed by the Department of Energy. Cleanup of the River Corridor has been one of Hanford's top priorities since the early 1990's. This urgency has been due to the proximity of hundreds of waste sites to the Columbia River. In addition, removal of the sludge from K West Basin, near the river, remains a high priority. This 220-square-mile area of the Hanford Site sits on the edge of the last free-flowing stretch of the Columbia River. The River Corridor portion of the Hanford Site includes the 100 and 300 Areas along the south shore of the Columbia River. The 100 Areas contain nine retired plutonium production reactors. These areas are also the location of numerous support facilities and solid and liquid waste disposal sites that have contaminated groundwater and soil. The 300 Area, located just north of the city of Richland, contains fuel fabrication facilities, nuclear research and development facilities, and their associated solid and liquid waste disposal sites that have contaminated groundwater and soil. In order to ensure that cleanup actions address all threats to human health and the environment, the River Corridor includes the

  16. Synchrotron X-ray characterization of mackinawite and uraninite relevant to bio-remediation of groundwater contaminated with uranium

    NASA Astrophysics Data System (ADS)

    Carpenter, J.; Hyun, S.; Hayes, K. F.

    2010-12-01

    Uranium (U) originating from mining operations for weapon manufacturing and nuclear energy production is a significant radionuclide contaminant in groundwater local to uranium mining, uranium milling, and uranium mill tailing (UMT) storage sites. In the USA, the Department of Energy (DOE) is currently overseeing approximately 24 Uranium Mill Tailing Remediation Action (UMTRA) sites which have collectively processed over 27 million tons of uranium ore1,2. In-Situ microbial bio-reduction of the highly mobile U6+ ion into the dramatically less mobile U4+ ion has been demonstrated as an effective remedial process to inhibit uranium migration in the aqueous phase3. The resistance of this process to oxidization and possible remobilization of U when bioremediation stops (and oxidants such as oxygen from the air or nitrate in water diffuse into the formation) in the long term is not known. UMTRA site studies3 have shown that iron sulfide solids are produced by sulfate reducing bacteria (SRB) during U bioremediation, and some forms of these iron sulfide solids are known to be effective oxidant scavengers, potentially protecting against re-oxidation and thus remobilization of U. This work is investigating the role of iron sulfide solids in the long-term immobilization of reduced U compounds after bioremediation is completed in groundwater local to UMTRA sites. Re-oxidation tests are being performed in packed media columns loaded with both FeS and U solids. High quality mackinawite (FeS), and uraninite (UO2) have been synthesized in our laboratory via a wet chemistry approach. These synthetic materials are expected to mimic the naturally occurring and biogenic materials present in biologically stimulated UMTRA sites. In order to establish the initial conditions of the prepared experimental columns and to compare synthetic and biogenic FeS and UO2, these synthesized materials have been characterized with synchrotron radiation at the Stanford Synchrotron Radiation Lightsource

  17. Results of Phase I groundwater quality assessment for single-shell tank waste management Area S-SX at the Hanford Site

    SciTech Connect

    Johnson, V.G.; Chou, C.J.

    1998-01-01

    Pacific Northwest National Laboratory (PNNL) conducted a Phase I, Resource Conservation and Recovery Act of 1976 (RCRA) groundwater quality assessment for the Richland Field Office of the U.S. Department of Energy (DOE-RL), in accordance with the Federal Facility Compliance Agreement. The purpose of the investigation was to determine if the Single-Shell Tank Waste Management Area (WMA) S-SX has impacted groundwater quality. The WMA is located in the southern portion of the 200 West Area of the Hanford Site and consists of the 241-S and 241-SX tank farms and ancillary waste systems. The unit is regulated under RCRA interim-status regulations (40 CFR 265, Subpart F) and was placed in assessment groundwater monitoring (40 CFR 265.93 [d]) in August 1996 because of elevated specific conductance and technetium-99, a non-RCRA co-contaminant, in downgradient monitoring wells. Major findings of the assessment are summarized below: (1) Distribution patterns for radionuclides and RCRA/dangerous waste constituents indicate WMA S-SX has contributed to groundwater contamination observed in downgradient monitoring wells. (2) Drinking water standards for nitrate and technetium-99 are currently exceeded in one RCRA-compliant well (299-W22-46) located at the southeastern comer of the SX tank farm. (3) Technetium-99, nitrate, and chromium concentrations in downgradient well 299-W22-46 (the well with the highest current concentrations) appear to be declining after reaching maximum concentrations in May 1997. (4) Cesium-137 and strontium-90, major constituents of concern in single-shell tank waste, were not detected in any of the RCRA-compliant wells in the WMA network, including the well with the highest current technetium-99 concentrations (299-W22-46). (5) Low but detectable strontium-90 and cesium-137 were found in one old well (2-W23-7), located inside and between the S and SX tank farms.

  18. Remedial investigation concept plan for the groundwater operable units at the chemical plant area and the ordnance works area, Weldon Spring, Missouri

    SciTech Connect

    1999-07-15

    The U.S. Department of Energy (DOE) and the U.S. Department of the Army (DA) are conducting cleanup activities at two properties--the DOE chemical plant area and the DA ordnance works area (the latter includes the training area)--located in the Weldon Spring area in St. Charles County, Missouri. These areas are on the National Priorities List (NPL), and cleanup activities at both areas are conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. DOE and DA are conducting a joint remedial investigation (RI) and baseline risk assessment (BRA) as part of the remedial investigation/feasibility study (RI/FS) for the groundwater operable units for the two areas. This joint effort will optimize further data collection and interpretation efforts and facilitate overall remedial decision making since the aquifer of concern is common to both areas. A Work Plan issued jointly in 1995 by DOE and the DA discusses the results of investigations completed at the time of preparation of the report. The investigations were necessary to provide an understanding of the groundwater system beneath the chemical plant area and the ordnance works area. The Work Plan also identifies additional data requirements for verification of the evaluation presented.

  19. Data validation summary report 300-FF-5 round 5 groundwater

    SciTech Connect

    Hulstrom, L.C.

    1993-07-15

    Laboratory data for Fifth Round Groundwater samples collected during the 300-FF-5 Operable Unit Remedial Investigation have been reviewed and validated to ensure that they are of sufficient quality to support decisions regarding further actions to be taken at the 300-FF-5 Operable Unit. Table 1-1 is a summary of the validated samples. This report summarizes the results previously presented to Westinghouse Hanford in a series of Preliminary Quality Assurance Reports (PQAR) for the 300-FF-5 Fifth Round Groundwater samples. In some instances, the data qualifiers originally presented in the PQARs have been changed based upon further review of the data; these changes are highlighted in the text.

  20. Cr(VI)-contaminated groundwater remediation with simulated permeable reactive barrier (PRB) filled with natural pyrite as reactive material: Environmental factors and effectiveness.

    PubMed

    Liu, Yuanyuan; Mou, Haiyan; Chen, Liqun; Mirza, Zakaria A; Liu, Li

    2015-11-15

    Permeable reactive barriers (PRBs) are efficient technologies for in situ remediation of contaminated groundwater, the effectiveness of which greatly depends on the reactive media filled. Natural pyrite is an iron sulfide material with a very low content of iron and sulfur, and a mining waste which is a potential material for Cr(VI) immobilization. In this study, we conducted a series of batch tests to research the effects of typical environmental factors on Cr(VI) removal and also simulated PRB filled with natural pyrite to investigate its effectiveness, in order to find a both environmentally and economically fine method for groundwater remediation. Batch tests showed that pH had the significant impact on Cr(VI) removal with an apparently higher efficiency under acidic conditions, and dissolved oxygen (DO) would inhibit Cr(VI) reduction; a relatively high initial Cr(VI) concentration would decrease the rate of Cr(VI) sorption; ionic strength and natural organic matter resulted in no significant effects on Cr(VI) removal. Column tests demonstrated that the simulated PRB with natural pyrite as the reactive media was considerably effective for removing Cr(VI) from groundwater, with a sorption capability of 0.6222 mg Cr per gram of natural pyrite at an initial Cr(VI) concentration of 10mg/L at pH 5.5 in an anoxic environment. PMID:26026959

  1. Tritium monitoring in groundwater and evaluation of model predictions for the Hanford Site 200 Area Effluent Treatment Facility

    SciTech Connect

    Barnett, D.B.; Bergeron, M.P.; Cole, C.R.; Freshley, M.D.; Wurstner, S.K.

    1997-08-01

    The Effluent Treatment Facility (ETF) disposal site, also known as the State-Approved Land Disposal Site (SALDS), receives treated effluent containing tritium, which is allowed to infiltrate through the soil column to the water table. Tritium was first detected in groundwater monitoring wells around the facility in July 1996. The SALDS groundwater monitoring plan requires revision of a predictive groundwater model and reevaluation of the monitoring well network one year from the first detection of tritium in groundwater. This document is written primarily to satisfy these requirements and to report on analytical results for tritium in the SALDS groundwater monitoring network through April 1997. The document also recommends an approach to continued groundwater monitoring for tritium at the SALDS. Comparison of numerical groundwater models applied over the last several years indicate that earlier predictions, which show tritium from the SALDS approaching the Columbia River, were too simplified or overly robust in source assumptions. The most recent modeling indicates that concentrations of tritium above 500 pCi/L will extend, at most, no further than {approximately}1.5 km from the facility, using the most reasonable projections of ETF operation. This extent encompasses only the wells in the current SALDS tritium-tracking network.

  2. In Situ Redox Manipulation Field Injection Test Report - Hanford 100-H Area

    SciTech Connect

    Fruchter, J.S.; Amonette, J.E.; Cole, C.R.

    1996-11-01

    This report presents results of an In Situ Redox Manipulation (ISRM) Field Injection Withdrawal Test performed at the 100-H Area of the US. Department of Energy`s (DOE`s) Hanford Site in Washington State in Fiscal Year 1996 by researchers at Pacific Northwest National Laboratory (PNNL). The test is part of the overall ISRM project, the purpose of which is to determine the potential for remediating contaminated groundwater with a technology based on in situ manipulation of subsurface reduction-oxidation (redox) conditions. The ISRM technology would be used to treat subsurface contaminants in groundwater zones at DOE sites.

  3. Remediation of Uranium in the Hanford Vadose Zone Using Ammonia Gas: FY 2010 Laboratory-Scale Experiments

    SciTech Connect

    Szecsody, James E.; Truex, Michael J.; Zhong, Lirong; Qafoku, Nikolla; Williams, Mark D.; McKinley, James P.; Wang, Zheming; Bargar, John; Faurie, Danielle K.; Resch, Charles T.; Phillips, Jerry L.

    2010-12-01

    This investigation is focused on refining an in situ technology for vadose zone remediation of uranium by the addition of ammonia (NH3) gas. Objectives are to: a) refine the technique of ammonia gas treatment of low water content sediments to minimize uranium mobility by changing uranium surface phases (or coat surface phases), b) identify the geochemical changes in uranium surface phases during ammonia gas treatment, c) identify broader geochemical changes that occur in sediment during ammonia gas treatment, and d) predict and test injection of ammonia gas for intermediate-scale systems to identify process interactions that occur at a larger scale and could impact field scale implementation.Overall, NH3 gas treatment of low-water content sediments appears quite effective at decreasing aqueous, adsorbed uranium concentrations. The NH3 gas treatment is also fairly effective for decreasing the mobility of U-carbonate coprecipitates, but shows mixed success for U present in Na-boltwoodite. There are some changes in U-carbonate surface phases that were identified by surface phase analysis, but no changes observed for Na-boltwoodite. It is likely that dissolution of sediment minerals (predominantly montmorillonite, muscovite, kaolinite) under the alkaline conditions created and subsequent precipitation as the pH returns to natural conditions coat some of the uranium surface phases, although a greater understanding of these processes is needed to predict the long term impact on uranium mobility. Injection of NH3 gas into sediments at low water content (1% to 16% water content) can effectively treat a large area without water addition, so there is little uranium mobilization (i.e., transport over cm or larger scale) during the injection phase.

  4. Can nitrate contaminated groundwater be remediated by optimizing flood irrigation rate with high nitrate water in a desert oasis using the WHCNS model?

    PubMed

    Liang, Hao; Qi, Zhiming; Hu, Kelin; Prasher, Shiv O; Zhang, Yuanpei

    2016-10-01

    Nitrate contamination of groundwater is an environmental concern in intensively cultivated desert oases where this polluted groundwater is in turn used as a major irrigation water resource. However, nitrate fluxes from root zone to groundwater are difficult to monitor in this complex system. The objectives of this study were to validate and apply the WHCNS (soil Water Heat Carbon Nitrogen Simulator) model to simulate water drainage and nitrate leaching under different irrigation and nitrogen (N) management practices, and to assess the utilization of groundwater nitrate as an approach to remediate nitrate contaminated groundwater while maintain crop yield. A two-year field experiment was conducted in a corn field irrigated with high nitrate groundwater (20 mg N L(-1)) in Alxa, Inner Mongolia, China. The experiment consisted of two irrigation treatments (Istd, standard, 750 mm per season; Icsv, conservation, 570 mm per season) factorially combined with two N fertilization treatments (Nstd, standard, 138 kg ha(-1); Ncsv, conservation, 92 kg ha(-1)). The validated results showed that the WHCNS model simulated values of crop dry matter, yield, soil water content and soil N concentration in soil profile all agreed well with the observed values. Compared to the standard water management (Istd), the simulated drainage and nitrate leaching decreased about 65% and 59%, respectively, under the conservation water management (Icsv). Nearly 55% of input N was lost by leaching under the IstdNstd and IstdNcsv treatments, compared to only 26% under the IcsvNstd and IcsvNcsv treatments. Simulations with more than 240 scenarios combing different levels of irrigation and fertilization indicated that irrigation was the main reason leading to the high risk of nitrate leaching, and the nitrate in irrigation