Science.gov

Sample records for hanna basin wyoming

  1. Tectogenic sedimentary fill and subsidence history of Hanna Basin, southeastern Wyoming

    SciTech Connect

    Lefebre, G.B.; Steidtmann, J.R.; McElhaney, D.A.

    1986-08-01

    The Hanna basin in southeastern Wyoming if unique because of its small size, and great depth, and extremely thick upper Cretaceous through Tertiary tectogenic sedimentary fill. The basin filled from the north, where proximal conglomeratic sediments were shed by the rising Sweetwater arch, and from the southwest, where more distal sandy sediments prograded into the basin. At the same time, vast coal deposits were accumulating in the center of the basin. Subsidence analysis, together with detailed stratigraphic and structural studies along the northern basin margin, show that the Hanna basin did not form as a flexural response to tectonic loading by the Shirley thrust. Constraints on potential mechanisms for Hanna basin evolution include (1) approximately 43,000 ft of basement offset adjacent to the Shirley thrust, (2) nearly 25,000 ft of basement relief adjacent to Simpson Ridge, (3) deposition of about 30,000 ft of Late Cretaceous through Tertiary tectogenic sedimentary fill, and (4) a pre-Shirley fault source for feldspathic sediments from the north. Their current modeling suggests that the present basin configuration is the result of at least three evolutionary phases: (1) initial uplift of the Sweetwater arch and associated downwarping of the adjacent syncline to the south, (2) breakup and deepening of the synclinal depression, possibly by basement-block rotation and associated extension, and (3) post-early Eocene compression that activated the Shirley thrust and molded the present structural configuration of the Hanna basin.

  2. Coal-spoil and ground-water chemical data from two coal mines; Hanna Basin and Powder River basin, Wyoming

    USGS Publications Warehouse

    Larson, L.R.

    1988-01-01

    Data are presented describing chemical and mineralogical composition of spoil material and chemical quality of groundwater at 2 Wyoming mine sites. Samples were collected at Medicine Bow-Seminoe Number 1 mining area in the Hanna basin and at the Cordero Mine in the Powder River basin. The data collected from these sites, along with similar data from other coal-mining states in the West, are used to evaluate methods used in predicting post-mining groundwater quality. The data include mineral-composition analyses, paste-extract analyses, and sulfur-forms analyses of coal spoil, chemical analyses of water from batch-mixing experiments; and analyses of water samples collected from wells in the coal aquifers and from wells in the saturated spoils. (USGS)

  3. National Assessment of Oil and Gas Project: Petroleum Systems and Geologic Assessment of Undiscovered Oil and Gas, Hanna, Laramie, and Shirley Basins Province, Wyoming

    USGS Publications Warehouse

    U.S. Geological Survey Hanna, Laramie, and Shirley Basins Province Assessment Team

    2007-01-01

    INTRODUCTION The purpose of the U.S. Geological Survey?s (USGS) National Oil and Gas Assessment is to develop geologically based hypotheses regarding the potential for additions to oil and gas reserves in priority areas of the United States. The U.S. Geological Survey (USGS) recently completed an assessment of the undiscovered oil and gas potential of the Hanna, Laramie, and Shirley Basins Province in Wyoming and northeastern Colorado. The assessment is based on the geologic elements of each total petroleum system (TPS) defined in the province, including hydrocarbon source rocks (source-rock maturation, hydrocarbon generation, and migration), reservoir rocks (sequence stratigraphy and petrophysical properties), and hydrocarbon traps (trap formation and timing). Using this geologic framework, the USGS defined three TPSs and seven assessment units (AUs) within them; undiscovered resources for three of the seven AUs were quantitatively assessed.

  4. Statistical summary of the chemical quality of surface water in the Powder River coal basin, the Hanna coal field, and the Green River coal region, Wyoming

    USGS Publications Warehouse

    Peterson, D.A.

    1988-01-01

    A summary of the chemical quality of surface water in the three principal coal-producing areas of Wyoming was intensified by the U.S. Geologic Survey during 1975-81, in response to interest spurred by a dramatic increase in surface mining of the areas. This statistical summary consists of descriptive statistics and regression analyses of data from 72 stations on streams in the Powder River coal basin, the Hanna coal field, and the Green River coal region of Wyoming. The mean dissolved-solids concentrations in streams ranged from 15 to 4,800 mg/L. Samples collected near mountainous areas or in the upstream reaches of perennial streams in the plains had the smallest concentrations of dissolved solids, and the predominant ions were calcium and bicarbonate. Samples from ephemeral, intermittent, and the downstream reaches of perennial streams in the plains contained relatively large dissolved-solids concentrations, and the predominant ions usually were sodium and sulfate. Regression models showed that the concentrations of dissolved solids, calcium, magnesium, sodium, alkalinity, sulfate, and chloride correlated well with specific-conductance values in many of the streams. (USGS)

  5. What Does Energy Development Mean for Wyoming? A Community Study at Hanna, Wyoming.

    ERIC Educational Resources Information Center

    Nellis, Lee

    The enormous but often overlooked impact of energy resource development on small Western United States communities can be illustrated by the experiences of the traditional coal mining town of Hanna, Wyoming. Coal development doubled the population between 1970 and 1972, and required the addition of a sewer system and a police force, plus the…

  6. Geologic framework for the national assessment of carbon dioxide storage resources: Hanna, Laramie, and Shirley Basins, Wyoming: Chapter C in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Merrill, Matthew D.; Covault, Jacob A.; Craddock, William H.; Slucher, Ernie R.; Warwick, Peter D.; Blondes, Madalyn S.; Gosai, Mayur A.; Freeman, Philip A.; Cahan, Steven M.; Lohr, Celeste D.

    2012-01-01

    The 2007 Energy Independence and Security Act (Public Law 110-140) directs the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2). The methodology used for the national CO2 assessment is non-economic and intended to be used at regional to subbasinal scales. This report identifies and contains geologic descriptions of twelve storage assessment units (SAUs) in six separate packages of sedimentary rock within the Hanna, Laramie, and Shirley Basins of Wyoming. It focuses on the particular characteristics, specified in the methodology, that influence the potential CO2 storage resource in those SAUs. Specific descriptions of SAU boundaries as well as their sealing and reservoir units are included. Properties for each SAU, such as depth to top, gross thickness, net porous thickness, porosity, permeability, groundwater quality, and structural reservoir traps are provided to illustrate geologic factors critical to the assessment. Although assessment results are not contained in this report, the geologic information included herein will be employed, as specified in the methodology, to calculate a statistical Monte Carlo-based distribution of potential storage space in the various SAUs. Figures in this report show SAU boundaries and cell maps of well penetrations through the sealing unit into the top of the storage formation. Cell maps show the number of penetrating wells within one square mile and are derived from interpretations of incompletely attributed well data in a digital compilation that is known not to include all drilling. The USGS does not expect to know the location of all wells and cannot guarantee the amount of drilling through specific formations in any given cell shown on cell maps.

  7. Hanna, Wyoming underground coal gasification data base. Volume 1. General information and executive summary

    SciTech Connect

    Bartke, T.C.; Fischer, D.D.; King, S.B.; Boyd, R.M.; Humphrey, A.E.

    1985-08-01

    This report is part of a seven-volume series on the Hanna, Wyoming, underground coal gasification field tests. Volume 1 is a summary of the project and each of Volumes 2 through 6 describes a particular test. Volume 7 is a compilation. This report covers: (1) history of underground coal gasification leading to the Hanna tests; (2) area characteristics (basic meteorological and socioeconomic data); (3) site selection history; (4) site characteristics; (5) permitting; and (6) executive summary. 5 figs., 15 tabs.

  8. Sampling and analyses report for December 1991 semiannual postburn sampling at the RM1 UCG site, Hanna, Wyoming

    SciTech Connect

    Lindblom, S.R.

    1992-01-01

    The Rocky Mountain 1 (RM1) underground coal gasification (UCG) test was conducted from November 16, 1987, through February 26, 1988 at a site approximately one mile south of Hanna, Wyoming. The test consisted of a dual-module operation to evaluate the controlled retracting injection point (CRIP) technology, the elongated linked well (ELW) technology, and the interaction of closely spaced modules operating simultaneously. The test caused two cavities to form in the Hanna No. 1 coal seam and associated overburden. The Hanna No. 1 coal seam was approximately 30 ft thick and lay at depths between 350 and 365 ft below the surface in the test area. The coal seam was overlain by sandstones, siltstones, and claystones deposited by various fluvial environments. The groundwater monitoring was designed to satisfy the requirements of the Wyoming Department of Environmental Quality (WDEQ) in addition to providing research data toward the development of UCG technology that minimizes environmental impacts. Further background material and the sampling and analytical procedures associated with the sampling task are described in the Rocky Mountain 1 Postburn Groundwater Monitoring Quality Assurance Plan (Mason and Johnson 1988).

  9. Fluorescence spectral analysis of resinite macerals from coals of the Hanna Formation, Wyoming, U.S.A.

    USGS Publications Warehouse

    Teerman, S.C.; Crelling, J.C.; Glass, G.B.

    1987-01-01

    Flourescence spectral analysis indicates that resinite macerals from Tertiary Hanna Formation coals (Hanna Coal Field, southcentral Wyoming, U.S.A.) can be separated into five distinct groups. The first resinite group fluoresces a a medium green (in blue light); its average spectral maximum occurs at or below 440 mm with a red/green quotient of 0.22. The second resinite group fluoresces yellow-green with an average spectral maximum of 500 nm and a red/green quotient of 0.53. The third resinite group displays a yellow fluorescence having an average spectral maximum of 580 nm and a red/green quotient of 0.86. The fourth resinite group fluorescence orange-brown having an average spectral maximum of 610 nm and a red/green quotient of 1.20. These four groups mostly occur as primary globular resinites exhibiting scratches and fractures, indicating that they are brittle, solid substances. Primary cell-filling and secondary fracture-filling resinites also occur in these four groups. The fifth group only occurs as a secondary void-filling material and lacks evidence of br of brittle properties. It fluoresces a reddish-brown, has a spectral maximum at 690 nm, and a red/green quotient of 1.54. The fifth group has properties resembling exsudatinite. The five resinite groups can be separated on the basis of their nine spectral properties alone, without qualitative petrographic interpretation. The relative quantities of the five resinite groups vary among Hanna Formation coals. The origins of these five resinite groups are probably related to their botanical properties and pre- and post-depossitional conditions. Overall, Hanna Formation resinites have petrographic characteristics similar to other North American resinites; however, only four resinite groups have been distinguished in in certain coals from Utah and New Mexico (U.S.A.), and western Canada. ?? 1987.

  10. Sampling and analyses report for December 1991 semiannual postburn sampling at the RM1 UCG site, Hanna, Wyoming. [Quarterly report, January--March 1992

    SciTech Connect

    Lindblom, S.R.

    1992-01-01

    The Rocky Mountain 1 (RM1) underground coal gasification (UCG) test was conducted from November 16, 1987, through February 26, 1988 at a site approximately one mile south of Hanna, Wyoming. The test consisted of a dual-module operation to evaluate the controlled retracting injection point (CRIP) technology, the elongated linked well (ELW) technology, and the interaction of closely spaced modules operating simultaneously. The test caused two cavities to form in the Hanna No. 1 coal seam and associated overburden. The Hanna No. 1 coal seam was approximately 30 ft thick and lay at depths between 350 and 365 ft below the surface in the test area. The coal seam was overlain by sandstones, siltstones, and claystones deposited by various fluvial environments. The groundwater monitoring was designed to satisfy the requirements of the Wyoming Department of Environmental Quality (WDEQ) in addition to providing research data toward the development of UCG technology that minimizes environmental impacts. Further background material and the sampling and analytical procedures associated with the sampling task are described in the Rocky Mountain 1 Postburn Groundwater Monitoring Quality Assurance Plan (Mason and Johnson 1988).

  11. Geology of photo linear elements, Great Divide Basin, Wyoming

    NASA Technical Reports Server (NTRS)

    Blackstone, D. L., Jr.

    1973-01-01

    The author has identified the following significant results. Ground examination of photo linear elements in the Great Divide Basin, Wyoming indicates little if any tectonic control. Aeolian aspects are more widespread and pervasive than previously considered.

  12. Wyoming Basin Rapid Ecoregional Assessment: Work Plan

    USGS Publications Warehouse

    Carr, Natasha B.; Garman, Steven L.; Walters, Annika; Ray, Andrea; Melcher, Cynthia P.; Wesner, Jeff S.; O’Donnell, Michael S.; Sherrill, Kirk R.; Babel, Nils C.; Bowen, Zachary H.

    2013-01-01

    The overall goal of the Rapid Ecoregional Assessments (REAs) being conducted for the Bureau of Land Management (BLM) is to provide information that supports regional planning and analysis for the management of ecological resources. The REA provides an assessment of baseline ecological conditions, an evaluation of current risks from drivers of ecosystem change, and a predictive capacity for evaluating future risks. The REA also may be used for identifying priority areas for conservation or restoration and for assessing the cumulative effects of a variety of land uses. There are several components of the REAs. Management Questions, developed by the BLM and partners for the ecoregion, identify the information needed for addressing land-management responsibilities. Conservation Elements represent regionally significant aquatic and terrestrial species and communities that are to be conserved and (or) restored. The REA also will evaluate major drivers of ecosystem change (Change Agents) currently affecting or likely to affect the status of Conservation Elements. We selected 8 major biomes and 19 species or species assemblages to be included as Conservation Elements. We will address the four primary Change Agents—development, fire, invasive species, and climate change—required for the REA. The purpose of the work plan for the Wyoming Basin REA is to document the selection process for, and final list of, Management Questions, Conservation Elements, and Change Agents. The work plan also presents the overall assessment framework that will be used to assess the status of Conservation Elements and answer Management Questions.

  13. New vitrinite reflectance data for the Wind River Basin, Wyoming

    USGS Publications Warehouse

    Pawlewicz, Mark J.; Finn, Thomas M.

    2013-01-01

    The Wind River Basin is a large Laramide (Late Cretaceous through Eocene) structural and sedimentary basin that encompasses about 7,400 square miles in central Wyoming. The basin is bounded by the Washakie Range and Owl Creek and southern Bighorn Mountains on the north, the Casper arch on the east and northeast, and the Granite Mountains on the south, and Wind River Range on the west. The purpose of this report is to present new vitrinite reflectance data collected mainly from Cretaceous marine shales in the Wind River Basin to better characterize their thermal maturity and hydrocarbon potential.

  14. Bison basin, central Wyoming - geologic overview

    SciTech Connect

    Pinnell, M.L.

    1984-07-01

    The northeastern part of the Great Divide basin is a separate, unique, and until recently, little-explored subbasin sometimes called the Bison basin. It is bounded by the Wind River Mountains, Sweetwater-Granite Mountain foreland uplift, Lost Soldier-Wertz structure, and a little-studied very positive east-west structural arch approximately coincident with the Sweetwater-Fremont county line. A comprehensive seismic, Landsat, and subsurface geologic examination or, better, dissection of the Bison basin was initiated in 1978. Numerous oil and gas prospects were delineated by this study. Since this small, 12 by 40 mi (19 by 64 km) basin is bordered by known reserves of 260 million bbl of oil and 90 million bcf of gas, these prospects proved to be a popular target of the drill bit. At least one of these prospects appears to be productive; others are currently being drilled. The presence of major east-west wrench faults, a well-documented foreland uplift, until recently undrilled surface and subsurface structures, faults with throw measured in tens of thousands of feet, and an oil seep indicate possible additional hydrocarbon potential in the Bison basin that could exceed presently known reserves. Currently drilling wells and abundant already acquired reflection seismic data are the beginning step in an ongoing exploration program of an interesting, complex, and rewarding small basin with a lot of promise.

  15. UPR, DOE team to find gas deposits in Wyoming`s Green River Basin

    SciTech Connect

    Clinton, C.L.; Guennewig, V.B.

    1996-04-01

    Union Pacific and the U.S. Department of Energy have entered into a project in an effort to find a more economic and technologically efficient method of drilling for and producing the exceptionally large gas resources trapped in tight sands in the Greater Green River Basin. The project will be conducted in the Frontier Formation in Southwestern Wyoming. A vertical well will be drilled and tested to evaluate the economic benefit of various technologies.

  16. Thermal history determined by fission-track dating for three sedimentary basins in California and Wyoming

    USGS Publications Warehouse

    Naeser, Nancy D.

    1984-01-01

    The use of fission-tracks is demonstrated in studies of time-temperature relationships in three sedimentary basins in the western United States; in the Tejon Oil Field area of the southern San Joaquin Valley, California; in the northeastern Green River basin, Wyoming, and in drill holes in the southern Powder River Basin, Wyoming.

  17. Water resources of the Bighorn basin, northwestern Wyoming

    USGS Publications Warehouse

    Lowry, Marlin E.; Lowham, H.W.; Lines, Gregory C.

    1976-01-01

    This 2-sheet map report includes the part of the Bighorn Basin and adjacent mountains in northwestern Wyoming. Water-bearing properties of the geologic units are summarized. The hydrogeologic map illustrates the distribution of wells in the different units and gives basic data on the yields of wells, depth of wells, depth to water, and dissolved solids and conductance of the water. Aquifers capable of yielding more than 1,000 gpm (gallons per minute) underlie the area everywhere, except in the mountains on the periphery of the basin. In 1970, approximately 29,500 of the 40,475 people living in the Bighorn Basin were served by municipal water supplies. The municipal supply for about 6,300 of these people was from ground water. The natural flows of streams in the Bighorn Basin differ greatly due to a wide range in the meteorologic, topographic, and geologic conditions of the basin. The station locations and the average discharge per square mile are shown on the map and give an indication of the geographic variation of basin yields. The maximum instantaneous discharge that has occurred at each station during its period of record is shown. Most of the runoff in the basin is from snowmelt in the mountains. (Woodard-USGS)

  18. Pesticides in Surface Water in the Bighorn River and North Platte River Basins, Wyoming, 2006

    USGS Publications Warehouse

    Eddy-Miller, Cheryl A.; Boughton, Gregory K.; Woodruff, R.E.

    2007-01-01

    Introduction In 2006, the U.S. Geological Survey (USGS), in cooperation with the Wyoming Department of Agriculture, sampled five surface-water sites in Wyoming-three in the Bighorn River Basin (BRB) and two in the North Platte River Basin (NPRB) (fig. 1). The purpose of the sampling was to describe the occurrence of pesticides in these basins during three different times of the year. This fact sheet presents the results of the sampling.

  19. Depositional environments of Fort Union Formation, Bison Basin, Wyoming

    SciTech Connect

    Southwell, E.H.; Steidtmann, J.R.; Middleton, L.

    1983-08-01

    The Paleocene Fort Union Formation crops out in the vicinity of the Bison basin, approximately equidistant from the southeast terminus of the Wind River Range and the southwestern edge of the Granite Mountains uplift in central Wyoming. Early Laramide tectonic activity produced a series of uplifts north of the area forming a platform separating the Wind River and Great Divide basins. During middle to late Paleocene, aggrading fluvial systems flowing southward, rapidly deposited a sequence of thin, lenticular conglomerates and medium to coarse-grained planar-bedded sandstones in braided and anastomosing stream channels and carbonaceous overbank silt and claystones. Subaerially exposed interchannel areas developed cyclic pedogenic horizons. Early diagenetic cementation preserved tubular burrows and rhizoliths as well as impressions of fruits, nuts, leaves, and wood. Anomalous silicic cementation of mudstone, sandstone, and conglomerates probably are silcrete soil horizons developed in a warm temperature to subtropical humid climate. The sandstones are multicyclic containing fragments of preexisting siliceous sedimentary rocks (e.g., Tensleep Sandstone, Mowry Shale, and cherts from the Madison, Morrison, and Phosphoria Formations). Reworked glauconite is locally abundant in some Fort Union sandstones, reflecting the proximity of Paleozoic sources. Altered and embayed feldspars are present in trace amounts throughout most of the section, but significant accumulations of fresh feldspar are present near the top, indicating unroofing of Precambrian source before the Eocene.

  20. 78 FR 65609 - Medicine Bow-Routt National Forests and Thunder Basin National Grassland; Wyoming; Thunder Basin...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-01

    ... 13, 2013 (78 FR 56650). This corrected NOI is being published to reinitiate the scoping period to... Forest Service Medicine Bow-Routt National Forests and Thunder Basin National Grassland; Wyoming; Thunder Basin National Grassland Prairie Dog Amendment Environmental Impact Statement; Correction AGENCY:...

  1. 78 FR 77644 - Black Hills National Forest, South Dakota; Thunder Basin National Grassland, Wyoming; Teckla...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ... Forest Service Black Hills National Forest, South Dakota; Thunder Basin National Grassland, Wyoming... Dakota and portions of the Thunder Basin National Grasslands, private lands, BLM lands, and state lands... Grasslands in Douglas, WY at (307) 358- 4690. Individuals who use telecommunication devices for the deaf...

  2. Gas desorption and adsorption isotherm studies of coals in the Powder River basin, Wyoming and adjacent basins in Wyoming and North Dakota

    USGS Publications Warehouse

    Stricker, Gary D.; Flores, Romeo M.; McGarry, Dwain E.; Stillwell, Dean P.; Hoppe, Daniel J.; Stillwell, Cathy R.; Ochs, Alan M.; Ellis, Margaret S.; Osvald, Karl S.; Taylor, Sharon L.; Thorvaldson, Marjorie C.; Trippi, Michael H.; Grose, Sherry D.; Crockett, Fred J.; Shariff, Asghar J.

    2006-01-01

    The U.S. Geological Survey (USGS), in cooperation with the State Office, Reservoir Management Group (RMG), of the Bureau of Land Management (BLM) in Casper (Wyoming), investigated the coalbed methane resources (CBM) in the Powder River Basin, Wyoming and Montana, from 1999 to the present. Beginning in late 1999, the study also included the Williston Basin in Montana and North and South Dakota and Green River Basin and Big Horn Basin in Wyoming. The rapid development of CBM (referred to as coalbed natural gas by the BLM) during the early 1990s, and the lack of sufficient data for the BLM to fully assess and manage the resource in the Powder River Basin, in particular, gave impetus to the cooperative program. An integral part of the joint USGS-BLM project was the participation of 25 gas operators that entered individually into confidential agreements with the USGS, and whose cooperation was essential to the study. The arrangements were for the gas operators to drill and core coal-bed reservoirs at their cost, and for the USGS and BLM personnel to then desorb, analyze, and interpret the coal data with joint funding by the two agencies. Upon completion of analyses by the USGS, the data were to be shared with both the BLM and the gas operator that supplied the core, and then to be released or published 1 yr after the report was submitted to the operator.

  3. Aqueous geochemistry of the Thermopolis hydrothermal system, southern Bighorn Basin, Wyoming, U.S.A.

    SciTech Connect

    Kaszuba, John P.; Sims, Kenneth W.W.; Pluda, Allison R.

    2014-06-01

    The Thermopolis hydrothermal system is located in the southern portion of the Bighorn Basin, in and around the town of Thermopolis, Wyoming. It is the largest hydrothermal system in Wyoming outside of Yellowstone National Park. The system includes hot springs, travertine deposits, and thermal wells; published models for the hydrothermal system propose the Owl Creek Mountains as the recharge zone, simple conductive heating at depth, and resurfacing of thermal waters up the Thermopolis Anticline.

  4. Megascopic lithologic studies of coals in the Powder River basin in Wyoming and in adjacent basins in Wyoming and North Dakota

    USGS Publications Warehouse

    Trippi, Michael H.; Stricker, Gary D.; Flores, Romeo M.; Stanton, Ronald W.; Chiehowsky, Lora A.; Moore, Timothy A.

    2010-01-01

    Between 1999 and 2007, the U.S. Geological Survey (USGS) investigated coalbed methane (CBM) resources in the Wyoming portion of the Powder River Basin. The study also included the CBM resources in the North Dakota portion of the Williston Basin of North Dakota and the Wyoming portion of the Green River Basin of Wyoming. This project involved the cooperation of the State Office, Reservoir Management Group (RMG) of the Bureau of Land Management (BLM) in Casper, Wyo., and 16 independent gas operators in the Powder River, Williston, and Green River Basins. The USGS and BLM entered into agreements with these CBM operators to supply samples for the USGS to analyze and provide the RMG with rapid, timely results of total gas desorbed, coal quality, and high-pressure methane adsorption isotherm data. This program resulted in the collection of 963 cored coal samples from 37 core holes. This report presents megascopic lithologic descriptive data collected from canister samples extracted from the 37 wells cored for this project.

  5. Basin analysis studies of lower Paleozoic rocks, Powder River basin, Wyoming and Montana

    SciTech Connect

    Macke, D.L.

    1988-07-01

    The lower Paleozoic (Cambrian through Mississippian) sedimentary rocks of the Powder River basin represent nearly half of Phanerozoic time, yet they remain virtually unexplored in the subsurface. Rocks of the same age in the Big Horn and Williston basins and in the Central Montana trough have produced much oil and gas, as have the overlying Pennsylvanian strata of the Powder River basin. A synthesis of published stratigraphic information, together with a regional analysis of sedimentary sequences, has been undertaken to evaluate the economic potential of the lower Paleozoic formations. The lack of an economic impetus to study these rocks has hampered the development of precise depositional models for these sequences. Furthermore, the depths of prospective beds, as well as long-standing misconceptions about the regional stratigraphy, have also served to restrain exploration. Stratigraphic studies have documented a succession of marine transgressions and regressions on the flanks of a highland in southeastern Wyoming. The highland persisted as a subdued geographic feature through most of early Paleozoic time, until it rose at the end of the Mississippian. Erosion during the Late Silurian and Devonian removed much of the depositional record in the area, but onlap can be demonstrated with relative certainty for Ordovician and Mississippian rocks. The repetition of sedimentologic features indicates persistent geologic controls in the region and suggests that these paleoenvironments might provide good targets for exploration.

  6. Results of Phase 1 postburn drilling and coring, Rocky Mountain 1 Underground Coal Gasification Site, Hanna Basin, Wyoming

    SciTech Connect

    Lindblom, S.R.; Covell, J.R.; Oliver, R.L.

    1990-09-01

    The Rocky Mountain 1 (RM1) Underground Coal Gasification (UCG) test consisted of two different module configurations: the controlled retracting injection point (CRIP) and elongated linked well (ELW) configurations. The postburn coring of the RM1 UCG site was designed in two phases to fulfill seven objectives outlined in the Western Research Institute's (WRI) annual project plan for 1988--1989. The seven objectives were to (1) delineate the areal extent of the cavities, (2) identify the extent of roof collapse, (3) obtain samples of all major cavity rock types, (4) characterize outflow channels and cavity stratigraphy, (5) characterize the area near CRIP points and ignition points, (6) further define the structural geology of the site, and (7) identify the vertical positioning of the horizontal process wells within the coal seam. Phase 1 of the coring was completed in the summer of 1989 and served to partially accomplish all seven objectives. In relation to the seven objectives, WRI determined that (1) the ELW cavity extends farther to the west and the CRIP cavity was located 5--10 feet farther to the south than anticipated; (2) roof collapse was contained within unit A in both modules; (3) samples of all major rock types were recovered; (4) insufficient data were obtained to characterize the outflow channels, but cavity stratigraphy was well defined; (5) bore holes near the CRIP points and ignition point did not exhibit characteristics significantly different from other bore holes in the cavities; (6) a fault zone was detected between VIW=1 and VIW-2 that stepped down to the east; and (7) PW-1 was only 7--12 feet below the top of the coal seam in the eastern part of the ELW module area; and CIW-1 was located 18--20 feet below the top of the coal seam in the CRIP module area. 7 refs., 7 figs., 1 tab.

  7. Database for the geologic map of Upper Geyser Basin, Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Abendini, Atosa A.; Robinson, Joel E.; Muffler, L. J. Patrick; White, D. E.; Beeson, Melvin H.; Truesdell, A. H.

    2015-01-01

    This dataset contains contacts, geologic units, and map boundaries from Miscellaneous Investigations Series Map I-1371, "The Geologic map of upper Geyser Basin, Yellowstone, National Park, Wyoming". This dataset was constructed to produce a digital geologic map as a basis for ongoing studies of hydrothermal processes.

  8. Glacial geology of the West Tensleep Drainage Basin, Bighorn Mountains, Wyoming

    SciTech Connect

    Burggraf, G.B.

    1980-08-01

    The glacial deposits of the West Tensleep Basin in the Bighorn Mountains of Wyoming are mapped and a relative chromology established. The deposits are correlated with the regional model as defined in the Wind River Mountains. A statistical analysis is performed on the density and weathering characteristics of the surficial boulders to determine their validity as indicators of relative age. (ACR)

  9. Assessment of Undiscovered Oil and Gas Resources of the Bighorn Basin Province, Wyoming and Montana, 2008

    USGS Publications Warehouse

    U.S. Geological Survey

    2008-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated a mean of 989 billion cubic feet of undiscovered natural gas, a mean of 72 million barrels of undiscovered oil, and a mean of 13 million barrels of undiscovered natural gas liquids in the Bighorn Basin Providence of Wyoming and Montana.

  10. Assessment of coal geology, resources, and reserves in the northern Wyoming Powder River Basin

    USGS Publications Warehouse

    Scott, David C.; Haacke, Jon E.; Osmonson, Lee M.; Luppens, James A.; Pierce, Paul E.; Rohrbacher, Timothy J.

    2010-01-01

    The abundance of new borehole data from recent coal bed natural gas development in the Powder River Basin was utilized by the U.S. Geological Survey for the most comprehensive evaluation to date of coal resources and reserves in the Northern Wyoming Powder River Basin assessment area. It is the second area within the Powder River Basin to be assessed as part of a regional coal assessment program; the first was an evaluation of coal resources and reserves in the Gillette coal field, adjacent to and south of the Northern Wyoming Powder River Basin assessment area. There are no active coal mines in the Northern Wyoming Powder River Basin assessment area at present. However, more than 100 million short tons of coal were produced from the Sheridan coal field between the years 1887 and 2000, which represents most of the coal production within the northwestern part of the Northern Wyoming Powder River Basin assessment area. A total of 33 coal beds were identified during the present study, 24 of which were modeled and evaluated to determine in-place coal resources. Given current technology, economic factors, and restrictions to mining, seven of the beds were evaluated for potential reserves. The restrictions included railroads, a Federal interstate highway, urban areas, and alluvial valley floors. Other restrictions, such as depth, thickness of coal beds, mined-out areas, and areas of burned coal, were also considered. The total original coal resource in the Northern Wyoming Powder River Basin assessment area for all 24 coal beds assessed, with no restrictions applied, was calculated to be 285 billion short tons. Available coal resources, which are part of the original coal resource that is accessible for potential mine development after subtracting all restrictions, are about 263 billion short tons (92.3 percent of the original coal resource). Recoverable coal, which is that portion of available coal remaining after subtracting mining and processing losses, was determined for seven coal beds with a stripping ratio of 10:1 or less. After mining and processing losses were subtracted, a total of 50 billion short tons of recoverable coal was calculated. Coal reserves are the portion of the recoverable coal that can be mined, processed, and marketed at a profit at the time of the economic evaluation. With a discounted cash flow at 8 percent rate of return, the coal reserves estimate for the Northern Wyoming Powder River Basin assessment area is 1.5 billion short tons of coal (1 percent of the original resource total) for the seven coal beds evaluated.

  11. Geothermal resources of the Wind River Basin, Wyoming

    SciTech Connect

    Hinckley, B.S.; Heasler, H.P.

    1985-01-01

    The geothermal resources of the Wind River Basin were investigated. Oil-well bottom-hole temperatures, thermal logs of wells, and heat flow data have been interpreted within a framework of geologic and hydrologic constraints. Basic thermal data, which includes the background thermal gradient and the highest recorded temperature and corresponding depth for each basin, is tabulated. Background heat flow in the Wind River Basin is generally insufficient to produce high conductive gradients. Only where hydrologic systems re-distribute heat through mass movement of water will high temperatures occur at shallow depths. Aquifers which may have the confinement and structural characteristics necessary to create such geothermal systems are the Lance/Fort Union, Mesa Verde, Frontier, Muddy, Cloverly, Sundance, Nugget, Park City, Tensleep, Amsden, Madison, Bighorn, and Flathead Formations. Of these the Tensleep Sandstone and Madison Limestone are the most attractive in terms of both productivity and water quality. Most of the identified geothermal anomalies in the Wind River Basin occur along complex structures in the southwest and south. The most attractive geothermal prospects identified are anomalous Areas 2 and 3 north of Lander, Sweetwater Station Springs west of Jeffrey City, and the thermal springs southwest of Dubois. Even in these areas, it is unlikely temperatures in excess of 130 to 150/sup 0/F can be developed. 16 refs., 7 figs., 7 tabs. (ACR)

  12. Coalbed Methane Extraction and Soil Suitability Concerns in the Powder River Basin, Montana and Wyoming

    USGS Publications Warehouse

    U.S. Geological Survey

    2006-01-01

    The Powder River Basin is located in northeastern Wyoming and southeastern Montana. It is an area of approximately 55,000 square kilometers. Extraction of methane gas from the coal seams that underlie the Powder River Basin began in Wyoming in the late 1980s and in Montana in the late 1990s. About 100-200 barrels of co-produced water per day are being extracted from each active well in the Powder River Basin, which comes to over 1.5 million barrels of water per day for all the active coalbed methane wells in the Basin. Lab testing indicates that Powder River Basin co-produced water is potable but is high in sodium and other salts, especially in the western and northern parts of the Powder River Basin. Common water management strategies include discharge of co-produced water into drainages, stock ponds, evaporation ponds, or infiltration ponds; treatment to remove sodium; or application of the water directly on the land surface via irrigation equipment or atomizers. Problems may arise because much of the Powder River Basin contains soils with high amounts of swelling clays. As part of the USGS Rocky Mountain Geographic Science Center's hyperspectral research program, researchers are investigating whether hyperspectral remote sensing data can be beneficial in locating areas of swelling clays. Using detailed hyperspectral data collected over parts of the Powder River Basin and applying our knowledge of how the clays of interest reflect energy, we will attempt to identify and map areas of swelling clays. If successful, such information will be useful to resource and land managers.

  13. Geospatial data for coal beds in the Powder River Basin, Wyoming and Montana

    USGS Publications Warehouse

    Kinney, Scott A.; Scott, David C.; Osmonson, Lee M.; Luppens, James A.

    2015-01-01

    The purpose of this report is to provide geospatial data for various layers and themes in a Geographic Information System (GIS) format for the Powder River Basin, Wyoming and Montana. In 2015, as part of the U.S. Coal Resources and Reserves Assessment Project, the U.S. Geological Survey (USGS) completed an assessment of coal resources and reserves within the Powder River Basin, Wyoming and Montana. This report is supplemental to USGS Professional Paper 1809 and contains GIS data that can be used to view digital layers or themes, including the Tertiary limit of the Powder River Basin boundary, locations of drill holes, clinker, mined coal, land use and technical restrictions, geology, mineral estate ownership, coal thickness, depth to the top of the coal bed (overburden), and coal reliability categories. Larger scale maps may be viewed using the GIS data provided in this report supplemental to the page-size maps provided in USGS Professional Paper 1809. Additionally, these GIS data can be exported to other digital applications as needed by the user. The database used for this report contains a total of 29,928 drill holes, of which 21,393 are in the public domain. The public domain database is linked to the geodatabase in this report so that the user can access the drill-hole data through GIS applications. Results of this report are available at the USGS Energy Resources Program Web site,http://energy.usgs.gov/RegionalStudies/PowderRiverBasin.aspx.

  14. An economic framework for analyzing reclamation after energy extraction in the Powder River Basin of Wyoming

    NASA Astrophysics Data System (ADS)

    Perry, Abby A.

    Wyoming's economy is highly dependent on natural gas and coal production, but energy extraction degrades rangelands. Federal and state laws and policies govern reclamation of disturbed lands. However, establishing sagebrush plant communities is difficult and defining successful reclamation can be challenging. We analyze reclamation costs in the Powder River Basin of northeastern Wyoming using coal company annual reclamation reports. We also construct a probabilistic mathematical programming model that characterizes a coal company's reclamation decision-,making process and proposes a way to incorporate uncertainty into reclamation modeling. We also use results from a plant sciences field experiment to incorporate costs into optimal seed mix and herbicide choice. This thesis also draws attention to the disconnect between the data biologists collect and the data that economists need to model reclamation decision-making.

  15. Geologic application of thermal-inertia mapping from satellite. [Powder River Basin, Wyoming

    NASA Technical Reports Server (NTRS)

    Offield, T. W. (principal investigator); Miller, S. H.; Watson, K.

    1980-01-01

    The author has identified the following significant results. Two night-time thermal images of the Powder River Basin, Wyoming distinctly show a major thermal feature. This feature is substantially coincident with a drainage divide and the southward facing slope appears cooler, suggesting a lower thermal inertia. An initial examination of regional geologic maps provides no clear evidence to suggest what type of geologic feature or structure may be present, although it can be noted that its northeastern end passes directly through Lead, South Dakota where the Homestake Gold Mine is located.

  16. Maps showing thermal maturity of Upper Cretaceous marine shales in the Wind River Basin, Wyoming

    USGS Publications Warehouse

    Finn, Thomas M.; Pawlewicz, Mark J.

    2013-01-01

    The Wind River Basin is a large Laramide (Late Cretaceous through Eocene) structural and sedimentary basin that encompasses about 7,400 square miles in central Wyoming. The basin is bounded by the Washakie Range, Owl Creek, and southern Bighorn Mountains on the north, the Casper arch on the east and northeast, the Granite Mountains on the south, and the Wind River Range on the west. Important conventional and unconventional oil and gas resources have been discovered and produced from reservoirs ranging in age from Mississippian through Tertiary. It has been suggested that various Upper Cretaceous marine shales are the principal hydrocarbon source rocks for many of these accumulations. Numerous source rock studies of various Upper Cretaceous marine shales throughout the Rocky Mountain region have led to the conclusion that these rocks have generated, or are capable of generating, oil and (or) gas. With recent advances and success in horizontal drilling and multistage fracture stimulation there has been an increase in exploration and completion of wells in these marine shales in other Rocky Mountain Laramide basins that were traditionally thought of only as hydrocarbon source rocks. Important parameters that control hydrocarbon production from shales include: reservoir thickness, amount and type of organic matter, and thermal maturity. The purpose of this report is to present maps and a structural cross section showing levels of thermal maturity, based on vitrinite reflectance (Ro), for Upper Cretaceous marine shales in the Wind River Basin.

  17. Depositional history of Lower Triassic Dinwoody Formation, Bighorn basin, Wyoming and Montana

    SciTech Connect

    Paull, R.A.; Paull, R.K.

    1986-08-01

    The Lower Triassic Dinwoody Formation in the Bighorn basin of Wyoming and Montana records the northeasternmost extent of the widespread and rapid Griesbachian transgression onto the Wyoming shelf. Depositional patterns document a progressive change from sparsely fossiliferous, inner-shelf marine conditions in the southwest and west to restricted, marginal-marine environments to the north and east. Characteristic lithologies include greenish-gray calcareous or dolomitic mudstone and siltstone, very thin to thick beds of gypsum, and thin-bedded, commonly laminated dolomite. A formation thickness of approximately 20 m persists throughout most of the basin but diminishes abruptly near the northern and eastern limits of deposition. The Dinwoody is disconformable on the Ervay Member of the Permian Park City Formation except in the northeasternmost part of the basin, where it locally overlies the Pennsylvanian Tensleep Sandstone. Considering the significant time interval involved, physical evidence at the Permian-Triassic boundary is generally limited to an abrupt lithologic change from light-colored shallow marine or intertidal Permian dolomite to greenish-gray Dinwoody siltstone. The Dinwoody grades vertically as well as laterally to the east and north into red beds of the Lower Triassic Red Peak Formation of the Chugwater Group. The Early Triassic depositional environment in the present-day Bighorn basin was hostile. A sparse molluscan fauna was observed at only one of the 20 sections studied, and no conodonts were recovered from Dinwoody carbonates. Significant amounts of gypsum within the Dinwoody suggest periodic high evaporation from hypersaline waters on a low-energy shallow shelf during intervals of reduced terrigenous sediment supply from the north and east. However, sufficient organic material was present to create reducing conditions, as evidenced by greenish rock color and abundant pyrite.

  18. Depositional history of the Lower Triassic Dinwoody Formation in the Wind River basin area, Wyoming

    SciTech Connect

    Paul, R.K.; Paull, R.A. )

    1993-04-01

    Thirty-three measured sections of the Dinwoody Formation, including five from the literature, provide information on thickness, lithology, paleontology, and stratigraphic relations within the Wind River basin and immediately adjacent areas of Wyoming. Most of these sections are in Fremont County, and some lie within the Wind River Indian Reservation. The Dinwoody becomes progressively thinner eastward, from a maximum thickness of 54.6 m in the northwestern Wind River Mountains to zero near the Natrona County line. The formation is characterized by yellowish-weathering, gray siltstone and silty shale. Variable amounts of limestone, sandstone, gypsum, and claystone are also present. Marine bivalves, gastropods, brachiopods (Lingula), and conodonts are common in the western part of the study area, but are absent to the northeast in gypsiferous strata, and near the eastern limit of Dinwoody deposition. The Dinwoody in the Wind River Basin area was deposited unconformably on the Upper Permian Ervary Member of the Park City Formation during the initial Mesozoic flood onto the Wyoming shelf during the Griesbachian, and represents the first of three Lower Triassic transgressive sequences in the western miogeocline. Conodonts of the Isarcica Chronozone document the rapid nature of this eastward transgression. The Permian surface underlying the Dinwoody rarely shows evidence of the long hiatus separating rocks of this age and earliest Triassic deposits. The Dinwoody transgression was followed by westward progradation of the Red Peak Formation of the Chugwater Group across the study area.

  19. Paleoenvironmental reconstruction of the Early Eocene Wind River Formation in the Wind River Basin, Wyoming

    NASA Astrophysics Data System (ADS)

    Hyland, E.; Fan, M.; Sheldon, N. D.

    2011-12-01

    Terrestrial basin systems provide important information on paleoclimatic, paleoecological, and paleoenvironmental factors and how they control and respond to global changes and spatio-temporal heterogeneity. Examining these dynamics is crucial for times of major global change like the broad-scale climatic trends (warm/wet/high-CO2 conditions) of the Early Eocene Climatic Optimum (EECO). As most climatic records of such events are derived from global marine datasets, regional terrestrial studies such as these provide a better model for understanding ecological responses and the localized effects of events like the EECO. The formation of the Wind River Basin (northwestern Wyoming) has been studied for decades, but its regional climatic, environmental, and ecological dynamics have been largely overlooked. Recent work in other contemporaneous sites in the Green River Basin has suggested that the dynamics and rapidity of climate change in terrestrial interiors during the EECO may have been significantly different than what is indicated by the marine record, so to address these issues on a more regional scale we examined paleosols preserved in the fluvial, basin-margin Wind River Formation preserved near Dubois, Wyoming. Field identification of the paleosols indicated a suite that includes primarily Inceptisols and Alfisols; most exhibited significant redoximorphic features and Bg horizons that indicate a ponded floodplain paleoenvironment, while others contained deep Bk horizons (>100 cm) consistent with more well-drained, but still sub-humid to humid conditions. Based on the identification of these well-developed soil features, along with distinct horizonation and root development, paleosols were robustly correlated and sampled throughout the Formation, and environmental descriptors were assigned. To further examine the question of regional terrestrial climate/environmental change, whole rock geochemistry (XRF) samples from paleosol depth profiles were analyzed for use in quantitative paleoclimatic proxies (mean annual temperature, mean annual precipitation, ?W). Samples were also collected for occluded carbon and phytolith (taxonomically diagnostic plant silica bodies) extractions, for the purpose of detailing local vegetation change throughout the EECO event. By combining these botanical and climatic proxies, we will reconstruct an integrated environmental history of the Early Eocene in the Wind River Basin that can be compared both to other regional paleoenvironmental records and to global paleoclimatic trends.

  20. Chapter 1: Executive Summary - Geologic Assessment of Undiscovered Oil and Gas Resources of the Wind River Basin Province, Wyoming, 2005

    USGS Publications Warehouse

    USGS Wind River Basin Province Assessment Team

    2007-01-01

    The U.S. Geological Survey estimated a mean of 2.4 trillion cubic feet of undiscovered natural gas, a mean of 41 million barrels of undiscovered oil, and a mean of 20.5 million barrels of undiscovered natural gas liquids in the Wind River Basin Province of Wyoming.

  1. MAJOR SOURCES OF NITROGEN INPUT AND LOSS IN THE UPPER SNAKE RIVER BASIN, IDAHO AND WESTERN WYOMING, 1990.

    EPA Science Inventory

    Total nitrogen input and loss from cattle manure, fertilizer, legume crops, precipitation, and domestic septic systems in the upper Snake River Basin, Idaho and western Wyoming (1704), were estimated by county for water year 1990. The purpose of these estimations was to rank inp...

  2. WATER QUALITY ASSESSMENT OF THE UPPER SNAKE RIVER BASIN, IDAHO AND WESTERN WYOMING - ENVIRONMENTAL SETTING, 1980-92.

    EPA Science Inventory

    Data summarized in this report are used in companion reports to help define the relations among land use, water use, water quality, and biological conditions. The upper Snake River Basin (1704) is located in southeastern Idaho and northwestern Wyoming and includes small parts of...

  3. RIVERTON DOME GAS EXPLORATION AND STIMULATION TECHNOLOGY DEMONSTRATION, WIND RIVER BASIN, WYOMING

    SciTech Connect

    Ronald C. Surdam; Zunsheng Jiao; Nicholas K. Boyd

    1999-11-01

    The new exploration technology for basin center gas accumulations developed by R.C. Surdam and Associates at the Institute for Energy Research, University of Wyoming, was applied to the Riverton Dome 3-D seismic area. Application of the technology resulted in the development of important new exploration leads in the Frontier, Muddy, and Nugget formations. The new leads are adjacent to a major north-south trending fault, which is downdip from the crest of the major structure in the area. In a blind test, the drilling results from six new Muddy test wells were accurately predicted. The initial production values, IP, for the six test wells ranged from < one mmcf/day to four mmcf/day. The three wells with the highest IP values (i.e., three to four mmcf/day) were drilled into an intense velocity anomaly (i.e., anomalously slow velocities). The well drilled at the end of the velocity anomaly had an IP value of one mmcf/day, and the two wells drilled outside of the velocity anomaly had IP values of < one mmcf/day and are presently shut in. Based on these test results, it is concluded that the new IER exploration strategy for detecting and delineating commercial, anomalously pressured gas accumulation is valid in the southwestern portions of the Wind River Basin, and can be utilized to significantly reduce exploration risk and to increase profitability of so-called basin center gas accumulations.

  4. Status Report: USGS coal assessment of the Powder River Basin, Wyoming

    SciTech Connect

    James A. Luppens; Timothy J. Rohrbacher; Jon E. Haacke; David C. Scott; Lee M. Osmonson

    2006-07-01

    This publication reports on the status of the current coal assessment of the Powder River Basin (PRB) in Wyoming and Montana. This slide program was presented at the Energy Information Agency's 2006 EIA Energy Outlook and Modeling Conference in Washington, DC, on March 27, 2006. The PRB coal assessment will be the first USGS coal assessment to include estimates of both regional coal resources and reserves for an entire coal basin. Extensive CBM and additional oil and gas development, especially in the Gillette coal field, have provided an unprecedented amount of down-hole geological data. Approximately 10,000 new data points have been added to the PRB database since the last assessment (2002) which will provide a more robust evaluation of the single most productive U.S. coal basin. The Gillette coal field assessment, including the mining economic evaluation, is planned for completion by the end of 2006. The geologic portion of the coal assessment work will shift to the northern and northwestern portions of the PRB before the end of 2006 while the Gillette engineering studies are finalized. 7 refs.

  5. Genetic structure of cougar populations across the Wyoming basin: Metapopulation or megapopulation

    USGS Publications Warehouse

    Anderson, C.R., Jr.; Lindzey, F.G.; McDonald, D.B.

    2004-01-01

    We examined the genetic structure of 5 Wyoming cougar (Puma concolor) populations surrounding the Wyoming Basin, as well as a population from southwestern Colorado. When using 9 microsatellite DNA loci, observed heterozygosity was similar among populations (HO = 0.49-0.59) and intermediate to that of other large carnivores. Estimates of genetic structure (FST = 0.028, RST = 0.029) and number of migrants per generation (Nm) suggested high gene flow. Nm was lowest between distant populations and highest among adjacent populations. Examination of these data, plus Mantel test results of genetic versus geographic distance (P ??? 0.01), suggested both isolation by distance and an effect of habitat matrix. Bayesian assignment to population based on individual genotypes showed that cougars in this region were best described as a single panmictic population. Total effective population size for cougars in this region ranged from 1,797 to 4,532 depending on mutation model and analytical method used. Based on measures of gene flow, extinction risk in the near future appears low. We found no support for the existence of metapopulation structure among cougars in this region.

  6. Vegetation analysis in the Laramie Basin, Wyoming from ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Evans, M. A.; Redfern, F. R.

    1973-01-01

    The author has identified the following significant results. The application of ERTS-1 imagery to vegetation mapping and identification was tested and confirmed by field checking. ERTS-1 imagery interpretation and density contour mapping allows definition of minute vegetation features and estimation of vegetative biomass and species composition. Large- and small-scale vegetation maps were constructed for test areas in the Laramie Basin and Laramie mountains of Wyoming. Vegetative features reflecting grazing intensity, moisture availability, changes within the growing season, cutting of hay crops, and plant community constituents in forest and grassland are discussed and illustrated. Theoretical considerations of scattering, sun angle, slope, and instrument aperture upon image and map resolution were investigated. Future suggestions for applications of ERTS-1 data to vegetative analysis are included.

  7. Invasive species and coal bed methane development in the Powder River Basin, Wyoming

    USGS Publications Warehouse

    Bergquist, E.; Evangelista, P.; Stohlgren, T.J.; Alley, N.

    2007-01-01

    One of the fastest growing areas of natural gas production is coal bed methane (CBM) due to the large monetary returns and increased demand for energy from consumers. The Powder River Basin, Wyoming is one of the most rapidly expanding areas of CBM development with projections of the establishment of up to 50,000 wells. CBM disturbances may make the native ecosystem more susceptible to invasion by non-native species, but there are few studies that have been conducted on the environmental impacts of this type of resource extraction. To evaluate the potential effects of CBM development on native plant species distribution and patterns of non-native plant invasion, 36 modified Forest Inventory and Analysis plots (each comprised of four 168-m2 subplots) were established in the Powder River Basin, Wyoming. There were 73 168-m2 subplots on control sites; 42 subplots on secondary disturbances; 14 on major surface disturbances; eight on well pads; and seven on sites downslope of CBM wells water discharge points. Native plant species cover ranged from 39.5 ?? 2.7% (mean ?? 1 SE) in the secondary disturbance subplots to 17.7 ?? 7.5% in the pad subplots. Non-native plant species cover ranged from 31.0 ?? 8.4% in the discharge areas to 14.7 ?? 8.9% in the pad subplots. The control subplots had significantly less non-native species richness than the combined disturbance types. The combined disturbance subplots had significantly greater soil salinity than the control sites. These results suggest that CBM development and associated disturbances may facilitate the establishment of non-native plants. Future research and management decisions should consider the accumulative landscape-scale effects of CBM development on preserving native plant diversity. ?? Springer Science+Business Media B.V. 2006.

  8. Viability of underground coal gasification in the 'deep coals' of the Powder River Basin, Wyoming

    SciTech Connect

    2007-06-15

    The objective of this work is to evaluate the PRB coal geology, hydrology, infrastructure, environmental and permitting requirements and to analyze the possible UCG projects which could be developed in the PRB. Project economics on the possible UCG configurations are presented to evaluate the viability of UCG. There are an estimated 510 billion tons of sub-bituminous coal in the Powder River Basin (PRB) of Wyoming. These coals are found in extremely thick seams that are up to 200 feet thick. The total deep coal resource in the PRB has a contained energy content in excess of twenty times the total world energy consumption in 2002. However, only approximately five percent of the coal resource is at depths less than 500 feet and of adequate thickness to be extracted by open pit mining. The balance is at depths between 500 and 2,000 feet below the surface. These are the PRB 'deep coals' evaluated for UCG in this report. The coal deposits in the Powder River Basin of Wyoming are thick, laterally continuous, and nearly flat lying. These deposits are ideal for development by Underground Coal Gasification. The thick deep coal seams of the PRB can be harvested using UCG and be protective of groundwater, air resources, and with minimum subsidence. Protection of these environmental values requires correct site selection, site characterization, impact definition, and impact mitigation. The operating 'lessons learned' of previous UCG operations, especially the 'Clean Cavity' concepts developed at Rocky Mountain 1, should be incorporated into the future UCG operations. UCG can be conducted in the PRB with acceptable environmental consequences. The report gives the recommended development components for UCG commercialization. 97 refs., 31 figs., 57 tabs., 1 app.

  9. Nature of natural gas in anomalously thick coal beds, Powder River basin, Wyoming

    SciTech Connect

    Rice, D.D.; Flores, R.M. )

    1989-09-01

    Anomalously thick coal beds (as much as 250 ft thick) occur in the Paleocene Tongue River Member of the Fort Union Formation in the Powder River basin, Wyoming. These laterally discontinuous coal beds were deposited in raised, ombrotrophic peat bogs of fluvial environments. The coal beds include the Anderson-Canyon, Wyodak-Anderson, and Big George zones in the Powder River-Recluse area, Gillette area, and central part of the basin, respectively. The coal resources in these areas are approximately 155 billion short tons. The average maceral composition of the coals is 88% huminite (vitrinite), 5% liptinite, and 7% inertinite. The coals vary in rank from subbituminous C to A (R{sub 0} values of 0.4 to 0.5%). Natural gas desorbed and produced from the coal beds and adjacent sandstones is composed mainly of methane with lesser amounts of CO{sub 2} (less than 10%). The methane is isotopically light ({delta}{sup 13}C{sup 1} values of {minus}56.7 to {minus}60.9%). Based on the chemical and isotopic composition of the gases and on the low rank of the coals, the gases are interpreted to be microbial in origin: they were generated by anaerobic bacteria that broke down the coals at low temperatures, prior to the main phase of thermogenic methane generation by devolatilization. The adsorbed amounts of methane-rich microbial gas per unit of coal in the Powder River basin are relatively low compared to amounts of thermogenic coal-bed gases from other basins. However, the total coal-bed gas resource is considered to be large (as much as several trillion cubic feet) because of the vast coal resources.

  10. Evaporite replacement within the Permian strata of the Bighorn Basin, Wyoming and the Delaware Basin, west Texas and New Mexico

    SciTech Connect

    Ulmer, D.S.; Scholle, P.A. )

    1992-01-01

    The Park City and Goose Egg Formations of the Big Horn Basin, Wyoming and the Seven Rivers, Yates and Tansill Formations of west Texas and New Mexico contain numerous examples of silicified and calcitized evaporites. Both areas show significant preserved interstitial evaporite, but on outcrop the discrete crystals and nodular evaporites have been extensively replaced. These replacements appear to be a multistage phenomenon. Field and petrographic evidence (matted fabrics in nodules; evaporite inclusions) indicate that silicification involved direct replacement of evaporites and probably occurred during earlier stages of burial. Calcitization, however, appears to be a much later phenomenon and involved precipitation of coarse crystals within evaporite molds. The calcites are typically free of evaporite inclusions. Isotopic analyses of these calcites give a wide range of values from [minus]6.04 to [minus]25.02 [per thousand] [delta][sup 18]O and +6.40 to [minus]25.26 [per thousand] [delta][sup 13]C, reflecting their complex diagenetic histories. In both localities, silicification of evaporites was completed by the end of hydrocarbon migration and emplacement. The extremely broad isotopic range of the calcites indicates that the calcitization occurred during a long period of progressive uplift and increased groundwater circulation associated with mid-Tertiary block faulting. The very light oxygen values within the Bighorn Basin were produced by thermochemical sulfate reduction during deepest burial of the region. Evaporite diagenesis in both the Bighorn and Delaware Basins is an ongoing process that started prior to hydrocarbon migration, continued over millions of years, and has the potential to do significant porosity change.

  11. Characterization and fluid flow simulation of naturally fractured Frontier sandstone, Green River Basin, Wyoming

    SciTech Connect

    Harstad, H.; Teufel, L.W.; Lorenz, J.C.; Brown, S.R.

    1996-08-01

    Significant gas reserves are present in low-permeability sandstones of the Frontier Formation in the greater Green River Basin, Wyoming. Successful exploitation of these reservoirs requires an understanding of the characteristics and fluid-flow response of the regional natural fracture system that controls reservoir productivity. Fracture characteristics were obtained from outcrop studies of Frontier sandstones at locations in the basin. The fracture data were combined with matrix permeability data to compute an anisotropic horizontal permeability tensor (magnitude and direction) corresponding to an equivalent reservoir system in the subsurface using a computational model developed by Oda (1985). This analysis shows that the maximum and minimum horizontal permeability and flow capacity are controlled by fracture intensity and decrease with increasing bed thickness. However, storage capacity is controlled by matrix porosity and increases linearly with increasing bed thickness. The relationship between bed thickness and the calculated fluid-flow properties was used in a reservoir simulation study of vertical, hydraulically-fractured and horizontal wells and horizontal wells of different lengths in analogous naturally fractured gas reservoirs. The simulation results show that flow capacity dominates early time production, while storage capacity dominates pressure support over time for vertical wells. For horizontal wells drilled perpendicular to the maximum permeability direction a high target production rate can be maintained over a longer time and have higher cumulative production than vertical wells. Longer horizontal wells are required for the same cumulative production with decreasing bed thickness.

  12. Stratigraphy and tectonic significance of the Tunp conglomerate in the Fossil basin, southwest Wyoming

    SciTech Connect

    Hurst, D.J.; Steidtmann, J.R.

    1986-01-01

    The Tunp Member of the Wasatch Formation in the Fossil basin of southwestern Wyoming was deposited by debris flows containing abundant, very poorly sorted to unsorted coarse debris in a mudstone matrix. Deposition occurred on alluvial fans where small braided streams reworked the toes of the debris flows generating minor fluvial deposits. Tunp sediments are preserved in three separate north-south trending belts adjacent to the northern Fossil basin and deposits in each belt had separate sources in discrete highlands. The Tunp on Commissary Ridge was generated by passive uplift of the Absaroka sheet over a ramp in the Darby thrust. The deposits on Rock Creek and Dempsey ridges are related to motion on the Tunp thrust. The Tunp on Boulder Ridge was derived from the hanging wall of the Crawford thrust but it is not clear whether this was a passive or active source. Stratigraphic relations of these Tunp deposits with dated beds in the Wasatch and Green River formations indicate that the belts of Tunp are successively older to the west and that passive rotation of the Absaroka sheet preceded movement on the Tunp thrust which, in turn, preceded the generation of a source on the Crawford. Deposition of the Tunp therefore records a sequence, progressively younger to the west, of minor adjustments to compression during the last phase of thrusting.

  13. Seismic properties investigation of the Springer Ranch landslide, Powder River basin, Wyoming

    USGS Publications Warehouse

    Miller, C.H.; Ramirez, A.L.; Bullard, T.G.

    1980-01-01

    A recent and rapid increase since the mid-1970's in commercial and residential development in the Powder River Basin, Wyoming and Montana, is caused by exploitation of vast coal and other resources in the basin. One geologic hazard to such development is landsliding. A landslide sufficiently representative of others in the area was chosen for detailed seismic studies. Studies of this landslide show that a low-velocity layer overlies a high-velocity layer both on the slide and away from it and that the contact between the volocity layers is nearly parallel with the preslide topographic surface. Computed shear and other elastic moduli of the low-velocity layer are about one-tenth those of the high-velocity layer. When failure occurs within the slope materials, it will very likely be confined to the low-velocity layer. The number and position of main shear planes in the landslide are unknown, but the main slippage surface is probably near the contact between the low- and high-velocity layers. The main cause of landslide failure in the study area is apparently the addition of moisture to the low-velocity layer.

  14. An oxygen isotope model for interpreting carbonate diagenesis in nonmarine rocks (Green River Basin, Wyoming, USA)

    USGS Publications Warehouse

    Dickinson, W.W.

    1987-01-01

    A closed-system model is used for predicting the ??18O of formation waters in the deep portions of the northern Green River basin, Wyoming. ??18Ocalcite is calculated from this modeled water and compared with the ??18O of measured calcites to help interpret diagenesis in the basin. The modification of ??18Owater which may be caused by diagenetic reactions at elevated temperatures, is modeled from two mass-balance equations. Three diagenetic reactions used to modify ??18Owater include: detrital limestone???calcite cement; detrital quartz???quartz cement; and detrital clay???authigenic illite/smectite. A weighted average ??18Owater and ??18O of calcite, quartz and illite/smectite in equilibrium with this water are calculated at 500-m increments. For a closed-system model, calculated variables at one depth are used for input variables at the next depth. An open system can be crudely simulated by adjusting the input variables at each depth. Petrographic and hydrologic data suggest that throughout much of the basin an open hydrochemical system overlies a relatively closed system which is below 3000 m. From the surface to 3000 m deep, ??18Ocalcite measured in sandstone cements deviates from calculated ??18Ocalcite for the closed-system model. Below 3000 m, ??18Ocalcite of cement and bulk shale converge from opposite directions with increasing depth toward the calculated ??18Ocalcite. Adjusting the calculated ??18Ocalcite to match the measured ??18Ocalcite indicates that the deviation above 3000 m results from mixing of meteoric waters with 18O-rich formation water. ?? 1987.

  15. Trace element chemistry of coal bed natural gas produced water in the Powder River Basin, Wyoming

    SciTech Connect

    Richard E. Jackson; K.J. Reddy

    2007-09-15

    Coal bed natural gas (CBNG) produced water is usually disposed into nearby constructed disposal ponds. Geochemistry of produced water, particularly trace elements interacting with a semiarid environment, is not clearly understood. The objective of this study was to collect produced water samples at outfalls and corresponding disposal ponds and monitor pH, iron (Fe), aluminum (Al), chromium (Cr), manganese (Mn), lead (Pb), copper (Cu), zinc (Zn), arsenic (As), boron (B), selenium (Se), molybdenum (Mo), cadmium (Cd), and barium (Ba). Outfalls and corresponding disposal ponds were sampled from five different watersheds including Cheyenne River (CHR), Belle Fourche River (BFR), Little Powder River (LPR), Powder River (PR), and Tongue River (TR) within the Powder River Basin (PRB), Wyoming from 2003 to 2005. Paired tests were conducted between CBNG outfalls and corresponding disposal ponds for each watershed. Results suggest that produced water from CBNG outfalls is chemically different from the produced water from corresponding disposal ponds. Most trace metal concentrations in the produced water increased from outfall to disposal pond except for Ba. In disposal ponds, Ba, As, and B concentrations increased from 2003 to 2005. Geochemical modeling predicted precipitation and dissolution reactions as controlling processes for Al, Cu, and Ba concentrations in CBNG produced water. Adsorption and desorption reactions appear to control As, Mo, and B concentrations in CBNG water in disposal ponds. Overall, results of this study will be important to determine beneficial uses (e.g., irrigation, livestock/wildlife water, and aquatic life) for CBNG produced water in the PRB, Wyoming. 18 refs., 4 figs., 3 tabs.

  16. Middle Jurassic (Bajocian and Bathonian) dinosaur megatracksites, Bighorn Basin, Wyoming, USA

    USGS Publications Warehouse

    Kvale, E.P.; Johnson, G.D.; Mickelson, D.L.; Keller, K.; Furer, L.; Archer, A.

    2001-01-01

    Two previously unknown rare Middle Jurassic dinosaur megatracksites are reported from the Bighorn Basin of northern Wyoming in the Western Interior of the United States. These trace fossils occur in carbonate units once thought to be totally marine in origin, and constitute the two most extensive Middle Jurassic dinosaur tracksites currently known in North America. The youngest of these occurs primarily along a single horizon at or near the top of the "basal member" of the "lower" Sundance Formation, is mid-Bathonian in age, and dates to ??? 167 ma. This discovery necessitates a major change in the paleogeographic reconstructions for Wyoming for this period. The older tracksites occur at multiple horizons within a 1 m interval in the middle part of the Gypsum Spring Formation. This interval is uppermost Bajocian in age and dates to ??? 170 ma. Terrestrial tracks found, to date, have been all bipedal tridactyl dinosaur prints. At least some of these prints can be attributed to the theropods. Possible swim tracks of bipedal dinosaurs are also present in the Gypsum Spring Formation. Digitigrade prints dominate the Sundance trackways, with both plantigrade and digitigrade prints being preserved in the Gypsum Spring trackways. The Sundance track-bearing surface locally covers 7.5 square kilometers in the vicinity of Shell, Wyoming. Other tracks occur apparently on the same horizon approximately 25 kilometers to the west, north of the town of Greybull. The Gypsum Spring megatracksite is locally preserved across the same 25 kilometer east-west expanse, with the Gypsum Spring megatracksite more extensive in a north-south direction with tracks occurring locally across a 100 kilometer extent. Conservative estimates for the trackway density based on regional mapping in the Sundance tracksite discovery area near Shell suggests that over 150, 000 in situ tracks may be preserved per square kilometer in the Sundance Formation in this area. Comparable estimates have not been made for other areas. Similarities between the two megatracksites include their formation and preservation in upper intertidal to supratidal sediments deposited under at least seasonally arid conditions. Microbial mat growth on the ancient tidal flats apparently initiated the preservation of these prints.

  17. In-place oil shale resources underlying Federal lands in the Green River and Washakie Basins, southwestern Wyoming

    USGS Publications Warehouse

    Mercier, Tracey J.; Johnson, Ronald C.; Brownfield, Michael E.

    2011-01-01

    Using a geologic-based assessment methodology, the U.S. Geological Survey estimated an in-place oil shale resource of 906 billion barrels under Federal mineral rights, or 62 percent of the total oil shale in place, in the Green River and Washakie Basins, Wyoming. More than 67 percent of the total oil shale in-place resource, or 969 billion barrels, is under Federal surface management.

  18. Fluvial deposits of Yellowstone tephras: Implications for late Cenozoic history of the Bighorn basin area, Wyoming and Montana

    USGS Publications Warehouse

    Reheis, M.C.

    1992-01-01

    Several deposits of tephra derived from eruptions in Yellowstone National Park occur in the northern Bighorn basin area of Wyoming and Montana. These tephra deposits are mixed and interbedded with fluvial gravel and sand deposited by several different rivers. The fluvial tephra deposits are used to calculate stream incision rates, to provide insight into drainage histories and Quaternary tectonics, to infer the timing of alluvial erosion-deposition cycles, and to calibrate rates of soil development. ?? 1992.

  19. Petrophysical Properties of Cody, Mowry, Shell Creek, and Thermopolis Shales, Bighorn Basin, Wyoming

    NASA Astrophysics Data System (ADS)

    Nelson, P. H.

    2013-12-01

    The petrophysical properties of four shale formations are documented from well-log responses in 23 wells in the Bighorn Basin in Wyoming. Depths of the examined shales range from 4,771 to 20,594 ft. The four formations are the Thermopolis Shale (T), the Shell Creek Shale (SC), the Mowry Shale (M), and the lower part of the Cody Shale (C), all of Cretaceous age. These four shales lie within a 4,000-ft, moderately overpressured, gas-rich vertical interval in which the sonic velocity of most rocks is less than that of an interpolated trendline representing a normal increase of velocity with depth. Sonic velocity, resistivity, neutron, caliper, and gamma-ray values were determined from well logs at discrete intervals in each of the four shales in 23 wells. Sonic velocity in all four shales increases with depth to a present-day depth of about 10,000 ft; below this depth, sonic velocity remains relatively unchanged. Velocity (V), resistivity (R), neutron porosity (N), and hole diameter (D) in the four shales vary such that: VM > VC > VSC > VT, RM > RC > RSC > RT, NT > NSC ? NC > NM, and DT > DC ? DSC > DM. These orderings can be partially understood on the basis of rock compositions. The Mowry Shale is highly siliceous and by inference comparatively low in clay content, resulting in high sonic velocity, high resistivity, low neutron porosity, and minimal borehole enlargement. The Thermopolis Shale, by contrast, is a black fissile shale with very little silt--its high clay content causes low velocity, low resistivity, high neutron response, and results in the greatest borehole enlargement. The properties of the Shell Creek and lower Cody Shales are intermediate to the Mowry and Thermopolis Shales. The sonic velocities of all four shales are less than that of an interpolated trendline that is tied to velocities in shales above and below the interval of moderate overpressure. The reduction in velocity varies among the four shales, such that the amount of offset (O) from the trendline is OT > OSC > OC > OM, that is, the velocity in the Mowry Shale is reduced the least and the velocity in the Thermopolis Shale is reduced the most. Velocity reductions are attributed to increases in pore pressure during burial, caused by the generation and retention of gas, with lithology playing a key role in the amount of reduction. Sonic velocity in the four shale units remains low to the present day, after uplift and erosion of as much as 6,500 ft in the deeper part of the basin and consequent possible reduction from maximum pore pressures reached when strata were more deeply buried. A model combining burial history, the decrease of effective stress with increasing pore pressure, and Bower's model for the dependence of sonic velocity on effective stress is proposed to explain the persistence of low velocity in shale units. Interruptions to compaction gradients associated with gas occurrences and overpressure are observed in correlative strata in other basins in Wyoming, so the general results for shales in the Bighorn Basin established in this paper should be applicable elsewhere.

  20. Analysis of stream quality in the Yampa River Basin, Colorado and Wyoming

    USGS Publications Warehouse

    Wentz, Dennis A.; Steele, Timothy Doak

    1980-01-01

    Historic data show no significant water-temperature changes since 1951 for the Little Snake or Yampa Rivers, the two major streams of the Yampa River basin in Colorado and Wyoming. Regional analyses indicate that harmonic-mean temperature is negatively correlated with altitude. No change in specific conductance since 1951 was noted for the Little Snake River; however, specific conductance in the Yampa River has increaed 14 % since that time and is attributed to increased agricultural and municipal use of water. Site-specific relationships between major inorganic constituents and specific conductance for the Little Snake and Yampa Rivers were similar to regional relationships developed from both historic and recent (1975) data. These relationships provide a means for estimating concentrations of major inorganic constituents from specific conductance, which is easily measured. Trace-element and nutrient data collected from August 1975 through September 1976 at 92 sites in the Yampa River basin indicate that water-quality degradation occurred upstream from 3 sites. The degradation resulted from underground drainage from pyritic materials that probably are associated with coal at one site, discharge from powerplant cooling-tower blowdown water at a second site, and runoff from a small watershed containing a gas field at the third site. Ambient concentrations of dissolved and total iron and manganese frequently exceeded proposed Colorado water-quality standards. The concentrations of many dissolved and total trace elements and nutrients were greatest during March 1976. These were associated with larger suspended-sediment concentrations and smaller pH values than at other times of the year. (USGS)

  1. Irrigated acreage in the Bear River Basin as of the 1975 growing season. [Idaho, Utah, and Wyoming

    NASA Technical Reports Server (NTRS)

    Ridd, M. K.; Jaynes, R. A.; Landgraf, K. F.; Clark, L. D., Jr. (principal investigators)

    1982-01-01

    The irrigated cropland in the Bear River Basin as of the 1975 growing season was inventoried from satellite imagery. LANDSAT color infrared images (scale 1:125,000) were examined for early, mid, and late summer dates, and acreage was estimated by use of township/section overlays. The total basin acreage was estimated to be 573,435 acres, with individual state totals as follows: Idaho 234,370 acres; Utah 265,505 acres; and Wyoming 73,560 acres. As anticipated, wetland areas intermingled among cropland appears to have produced an over-estimation of irrigated acreage. According to a 2% random sample of test sites evaluated by personnel from the Soil Conservation Service such basin-wide over-estimation is 7.5%; individual counties deviate significantly from the basin-wide figure, depending on the relative amount of wetland areas intermingled with cropland.

  2. Comparison of Landsat multispectral scanner and thematic mapper data from Wind River basin, Wyoming

    SciTech Connect

    Geronsin, R.L.; Merry, M.C.

    1984-07-01

    Landsat Multispectral Scanner (MSS) data are limited by MSS spatial resolution (80 m or 262 ft) and bandwidth selection. Landsat 4 Thematic Mapper (TM) data have greatly enhanced spatial resolution (30 m or 98 ft) and TM operates in spectral bands suited to geologic interpretation. To compare the two systems, three images center over the Wind River basin of Wyoming were obtained. Two were TM images - a false color composite (FCC) and a natural color composite (NCC) - and the third was an MSS image. A systematic analysis of drainage, landforms, geologic structure, gross lithologic characteristics, lineaments, and curvilinears was performed on the three images. Drainage density and landform distinction were greatly enhanced on the TM images. Geologic features such as faults, strike and dip, folds, and lithologic characteristics are often difficult to distinguish on the MSS image but are readily apparent on the TM images. The lineament-curvilinear analysis of the MSS image showed longer but less distinct linear features. In comparison, the TM images allowed interpretation of shorter but more distinct linear elements, providing a more accurate delineation of the actual dimensions of the geologic features which these lineaments are thought to represent. An analysis of the oil production present in the study area showed 75% of the surface productive structures were delineated on the TM images, whereas only the most obvious structures were visible on the MSS image.

  3. Water resources of Upper Separation Creek Basin, south-central Wyoming

    USGS Publications Warehouse

    Larson, L.R.; Zimmerman, Everett Alfred

    1981-01-01

    Expected development of coal in the 85-square-mile upper Separation Creek basin of south-central Wyoming will greatly increase the demands on water resources. Flows in Separation Creek are seasonal and highly variable. Streamflow is primarily caused by snowmelt. Very light snowpack in the spring of 1977 resulted in annual runoff being only 10 percent of that for the previous year. Surface-water quality is variable in both time and space. Dissolved-solids concentrations ranged from less than 100 to more than 1,500 milligrams per liter. Flushing of accumulated salts occurs during a rising stage. Ground water is obtainable from the Mesaverde Formation, the Lance and Fort Union Formations, and from alluvium. Yields from wells and springs are usually less than 10 gallons per minute, though some springs flow as much as 35 gallons per minute. Ground-water quality varies with the formation. Stream biota are governed by the intermittent nature of the stream and by habitat. Daily mean sediment concentrations ranged from 34 to 11,900 milligrams per liter. (USGS)

  4. Post-Laramide uplift and erosional history of northern Wind River Basin, Wyoming

    SciTech Connect

    Conel, J.E.; Lang, H.R.; Paylor, E.D.

    1985-02-01

    Landsat Thematic Mapper (TM) multispectral scanner images together with aerial photographs have been used to infer Laramide to Holocene tectonic events along the northern fringe of Wind River basin near Wind River Canyon, Wyoming. TM images reveal the presence of a large system of alluvial fans, terraces, and residual tongue-shaped debris deposits covering an area of 90 mi/sup 2/ at the base of Copper Mountain. The debris system contains predominantly dark metasedimentary clasts. Both Eocene (Wind River and Wagon Bed Formations) and Quaternary deposits are present, and some Eocene gravel has been reworked into the later units. These deposits contrast sharply in brightness and color with rocks in adjacent areas. Detailed topographic analysis of the terraces and fan remnants disclosed an episodic history of post-Wagon Bed (upper to middle Eocene) uplift and pediment cutting. At least 3 principal stages covering a vertical interval possibly as great as 1300 ft have been identified. Soil profiles in Quaternary gravels capping the pediments show increase in maturity consistent with age inferred from topographic elevations. These local erosional stages may record tectonic events of regional significance. Their absolute ages need to be determined.

  5. Strong Wintertime Ozone Events in the Upper Green River Basin, Wyoming

    NASA Astrophysics Data System (ADS)

    Rappenglück, Bernhard; Ackermann, Luis; Alvarez, Sergio; Golovko, Julia; Buhr, Martin; Hauze, Bill; Adamson, Scott; Risch, Dan; Wilkerson, George; Bush, David; Stoeckenius, Till; Keslar, Cara

    2013-04-01

    Over the last years elevated ozone values have been observed repeatedly in the Upper Green River Basin, Wyoming during wintertime. Here we will report results from the Upper Green Winter Ozone Study (UGWOS) 2011. This campaign included comprehensive in-situ measurements of O3, NO, NO2, NOx, NOy, HNO3, HONO, HCHO, CH4 and speciated VOC canister and particulate matter measurements. Also, data about the vertical distribution of meteorological parameters as well as some selected trace gases (O3, NO, NOx, NMHC) were collected at a tall tower (levels: 5 m, 25 m, 50 m, and 73 m) and on selected intensive operational days (IOPs) at a tethered balloon system (levels: 4 m, 33 m, 67 m, and 100 m). On IOP days the suite of measurements were complemented by radiosondes, ozonesondes and SODAR measurements. During UGWOS 2011 high O3 values were observed during the IOPs days, These days were characterized by light wind conditions and low mixing layer heights. Extensive snow cover was consistently present on those days. The presentation will focus on selected IOP days, when maximum hourly ozone values reached up to 166 ppb, and describe the meteorological and chemical processes leading to these extreme events during wintertime.

  6. Spectral stratigraphy: multispectral remote sensing as a stratigraphic tool, Wind River/Big Horn basin, Wyoming

    SciTech Connect

    Lang, H.R.; Paylor, E.D.

    1987-05-01

    Stratigraphic and structural analyses of the Wind River and Big Horn basins areas of central Wyoming are in progress. One result has been the development of a new approach to stratigraphic and structural analysis that uses photogeologic and spectral interpretation of multispectral image data to remotely characterize the attitude, thickness, and lithology of strata. New multispectral systems that have only been available since 1982 are used with topographic data to map upper paleozoic and Mesozoic strata exposed on the southern margin of the Bighorn Mountains. Thematic Mapper (TM) satellite data together with topographic data are used to map lithologic contacts, measure dip and strike, and develop a stratigraphic column that is correlated with conventional surface and subsurface sections. Aircraft-acquired Airborne Imaging Spectrometer and Thermal Infrared Multispectral Scanner data add mineralogical information to the TM column, including the stratigraphic distribution of quartz, calcite, dolomite, montmorillonite, and gypsum. Results illustrate an approach that has general applicability in other geologic investigations that could benefit from remotely acquired information about areal variations in attitude, sequence, thickness, and lithology of strata exposed at the Earth's surface. Application of their methods elsewhere is limited primarily by availability of multispectral and topographic data and quality of bedrock exposures.

  7. Geochemical constraints on Cenozoic intraplate magmatism in the Upper Wind River Basin, Wyoming (USA)

    NASA Astrophysics Data System (ADS)

    Downey, A. C.; Dodd, Z. C.; Brueseke, M. E.; Adams, D. C.

    2014-12-01

    The Upper Wind River Basin is located in north-central Wyoming (USA). At the northwestern edge of the basin, preliminary work by others has identified <4 Ma igneous rocks (lavas and shallow intrusives in low volumes) that are exposed southeast of the Yellowstone Plateau volcanic field. Virtually no literature exists on these rocks aside from a few K-Ar ages. Pilot Knob is an augite-rich intrusive body that yields a 3.4 ± 0.06 Ma K-Ar age. Lava Mountain, which lies ~ 4 km south of Pilot Knob, is a shield volcano where ~25 lavas are exposed in what appear to be glacially truncated cliffs. At the summit, a small capping cinder cone overlies lavas; one of the youngest lavas yields a K-Ar age of 0.48 ± 0.06 Ma. Crescent Mountain lies ~6 miles northeast of Lava Mountain and one Crescent Mountain lava yielded an ~3.6 Ma K-Ar age. At Spring Mountain, ~14 km north of Dubois, WY, local eruptions of at least one thin basaltic lava occurred from fissures that cut Paleozoic and Eocene sedimentary strata. Materials sampled from all locations range from basalt to dacite and define a primarily calc-alkaline differentiation array. Pilot Knob and one Crescent Mountain sample have wt. % K2O values between 2.7 to 3.8 at ~53 to 56 wt. % SiO2, which are much more K-rich than any other sample. These samples are also characterized by enrichments in LILE (e.g., >2000 ppm Ba, >1500 ppm Sr), LREE (>100 ppm La, >250 ppm Ce), Zr, Pb, and HREE depletions, relative to the other samples. The least evolved basalts from Spring Mountain are primitive with Mg # ~70 and Cr >900 ppm. Preliminary field constraints and satellite imagery indicates that regional fault zones control the location of individual eruptive loci/intrusives. For example, Pilot Knob and Lava Mountain lie along the projection of a normal fault zone that extends southeast from the Yellowstone Plateau volcanic field. Work is ongoing to further physically, geochemically, and isotopically characterize these igneous rocks with the goal of determining whether they are related to mantle melting associated with the Yellowstone Plateau volcanic field and the eastern Snake River Plain (e.g., Yellowstone hotspot), or other regional lithospheric-derived melting associated with continental extension (e.g., Basin and Range faulting or other causes).

  8. Magnetostratigraphy of the Willwood Formation, Bighorn Basin, Wyoming: new constraints on the location of Paleocene/Eocene boundary

    USGS Publications Warehouse

    Tauxe, L.; Gee, J.; Gallet, Y.; Pick, T.; Bown, T.

    1994-01-01

    The lower Eocene Willwood Formation in the Bighorn Basin of Wyoming preserves a rich and diverse mammalian and floral record. The paleomagnetic behavior of the sequence of floodplain paleosols of varying degrees of maturation ranges from excellent to poor. We present a magnetostratigraphic section for a composite section near Worland, Wyoming, by using a set of strict criteria for interpreting the step-wise alternating field and thermal demagnetization data of 266 samples from 90 sites throughout the composite section. Correlation to the geomagnetic reversal time scale was achieved by combining magnetostratigraphic and biostratigraphic data from this section, from a section in the Clark's Fork Basin in northern Wyoming, and from DSDP Site 550, with the isotopic data determined on a tuff near the top of our section. Our correlation suggests that the Bighorn Basin composite section in the Worland area spans from within Chron C24r to near the top of Chron C24n, or from approximately 55 to 52 Ma. This correlation places the Paleocene/Eocene boundary within the vicinity of the base of the section. Cryptochron C24r.6 of Cande and Kent is tentatively identified some 100 m above the base of the section. The temporal framework provided here enables correlation of the mammalian biostratigraphy of the Bighorn Basin to other continental sequences as well as to marine records. It also provides independent chronological information for the calculation of sediment accumulation rates to constrain soil maturation rates. We exclude an age as young as 53 Ma for the Paleocene/Eocene boundary and support older ages, as recommended in recent time scales. The location of a tuff dated at 52.8 ?? 0.3 Ma at the older boundary C24n.1 is consistent with the age of 52.5 Ma estimated by Cande and Kent and inconsistent with that of 53.7 Ma, from Harland et al. ?? 1994.

  9. Water-quality assessment of the Great Salt Lake basins, Utah, Idaho, and Wyoming; environmental setting and study design

    USGS Publications Warehouse

    Baskin, Robert L.; Waddell, K.M.; Thiros, S.A.; Giddings, E.M.; Hadley, H.K.; Stephens, D.W.; Gerner, S.J.

    2002-01-01

    The Great Salt Lake Basins, Utah, Idaho, and Wyoming is one of 51 study units in the United States where the status and trends of water quality, and the factors controlling water quality, are being studied by the National Water-Quality Assessment Program of the U.S. Geological Survey. The 14,500-square-mile Great Salt Lake Basins study unit encompasses three major river systems that enter Great Salt Lake: the Bear, the Weber, and the Utah Lake/Jordan River systems. The environmental setting of the study unit includes natural and human-related factors that potentially influence the physical, chemical, and/or biological quality of the surface- and ground-water resources. Surface- and ground-water components of the planned assessment activities are designed to evaluate the sources of natural and human-related factors that affect the water quality in the Great Salt Lake Basins study unit.

  10. Raman spectroscopy of carbonaceous material in PETM sediments from the Bighorn Basin, Wyoming

    NASA Astrophysics Data System (ADS)

    Baczynski, A. A.; McInerney, F. A.; Jacobsen, S. D.; Blair, N. E.; Thomas, S.; Kraus, M. J.

    2009-12-01

    Raman microspectroscopy has become a widely used method in geosciences to characterize carbonaceous material (CM) because of its non-destructive nature, short aquisition times, high spatial resolution, and minimal sample preparation. Spectral parameters such as vibrational band position, peak width and peak ratios are used to characterize the CM in terms of thermal maturity. Such information is important to C-biogeochemical studies of both present and past environments because surface pools, such as soils and sediments, typically contain CM exhibiting a wide range of ages and hence thermal maturity. Resolution of those sources is critical to an accurate interpretation of the organic geochemical record. Using Raman spectroscopy, we have identified different types of CM in untreated mudstones, carbonaceous shales, and fine-grained sandstones from the Willwood and Fort Union formations of the southeastern Bighorn Basin, Wyoming. In order to systematically characterize the thermal maturity along a 64 m vertical section spanning the Paleocene-Eocene Thermal Maximum, we measured Raman spectra of the CM. The samples contain at least two different types of CM, irregularly shaped black coal-like fragments and remnants of fossil roots. The Raman spectra of the black carbon fragments consist of bands at ~1347, 1385 cm-1 (D band) and 1588 cm-1 (G band) and weak bands at 2854 cm-1 and 3172 cm-1. The fossil root fragments reveal a different vibrational signature; bands are present at ~1338, 1367 cm-1 and 1582 cm-1 and weak bands at 2778 cm-1 and 2966 cm-1. The Raman spectra indicate that the black carbonaceous material has a higher degree of aromatization than the root material. The black CM spectra are consistent with either paleocharcoal or a recycled CM from an older, more thermally mature lithology that can co-occur with the fossil root debris. Initial results indicate that Raman spectroscopy is an effective method to resolve and characterize multiple sources of CM within samples.

  11. Simulating Grazing Impacts on Ecosystem Carbon Dynamics in the Green River Basin, Wyoming

    NASA Astrophysics Data System (ADS)

    li, Z.; Liu, S.; Tan, Z.; Young, C.

    2011-12-01

    Grazing is one of the key disturbances on semi-arid grasslands. To understand the grazing impacts on carbon (C ) dynamics in these grasslands can help to create livestock management in a sustainable way. We used the General Ensemble Biogeochemical Modeling System (GEMS) to study the effects of grazing intensity on ecosystem carbon dynamics between 1970 and 1999 across the Green River Basin (GRB) in southwest Wyoming. The National Land Cover Database and multi-year MODIS Net Primary Production (NPP) data were used as inputs to produce the spatial maps of carbon dynamics in GRB. We set three scenarios based on different levels of grazing intensity: no grazing, light grazing, and moderate grazing. Our results indicate that if potential vegetation production (which is defined by the biological traits of the grass species) does not change, excluding grazing on semi-arid grasslands reduces grassland production. The moderate-grazing scenario resulted in the highest production (5.1 TgC), followed by the light-grazing scenario (4.6 TgC) and no-grazing scenario (4.3 TgC). The NPP differences between grazing and no-grazing scenarios varied annually and were significantly affected by annual precipitation and temperature. Excluding grazing for 30 years on the grasslands increased the ecosystem carbon by 6.7% while reducing grazing to light-grazing increased 3.6%. The spatial distribution of ecosystem carbon change wereas significantly impacted by initial ecosystem carbon storage, vegetation production, and carbon removed from ecosystem. The carbon dynamic maps generated by our approach can be used as a diagnostic tool for rangeland managements.

  12. Hydrothermal alteration in research drill hole Y-3, Lower Geyser Basin, Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Bargar, Keith E.; Beeson, Melvin H.

    1985-01-01

    Y-3, a U.S. Geological Survey research diamond-drill hole in Lower Geyser Basin, Yellowstone National Park, Wyoming, reached a depth of 156.7 m. The recovered drill core consists of 42.2 m of surficial (mostly glacial) sediments and two rhyolite flows (Nez Perce Creek flow and an older, unnamed rhyolite flow) of the Central Plateau Member of the Pleistocene Plateau Rhyolite. Hydrothermal alteration is fairly extensive in most of the drill core. The surficial deposits are largely cemented by silica and zeolite minerals; and the two rhyolite flows are, in part, bleached by thermal water that deposited numerous hydrothermal minerals in cavities and fractures. Hydrothermal minerals containing sodium as a dominant cation (analcime, clinoptilolite, mordenite, Na-smectite, and aegirine) are more abundant than calcium-bearing minerals (calcite, fluorite, Ca-smectite, and pectolite) in the sedimentary section of the drill core. In the volcanic section of drill core Y-3, calcium-rich minerals (dachiardite, laumontite, yugawaralite, calcite, fluorite, Ca-smectite, pectolite, and truscottite) are predominant over sodium-bearing minerals (aegirine, mordenite, and Na-smectite). Hydrothermal minerals that contain significant amounts of potassium (alunite and lepidolite in the sediments and illitesmectite in the rhyolite flows) are found in the two drill-core intervals. Drill core y:.3 also contains hydrothermal silica minerals (opal, [3-cristobalite, chalcedony, and quartz), other clay minerals (allophane, halloysite, kaolinite, and chlorite), gypsum, pyrite, and hematite. The dominance of calcium-bearing hydrothermal minerals in the lower rhyolitic section of the y:.3 drill core appears to be due to loss of calcium, along with potassium, during adiabatic cooling of an ascending boiling water.

  13. Gas, Oil, and Water Production in the Wind River Basin, Wyoming

    USGS Publications Warehouse

    Nelson, Philip H.; Trainor, Patrick K.; Finn, Thomas M.

    2009-01-01

    Gas, oil, and water production data were collected from the Fuller Reservoir, Cooper Reservoir, Frenchie Draw, Cave Gulch, and Madden fields in the Wind River Basin, Wyoming. These fields produce from the Mississippian Madison Limestone, the Upper Cretaceous Cody Shale and Mesaverde Formation, and the Paleocene lower unnamed member and Shotgun Member of the Fort Union Formation. Diagrams of water and gas production from tight gas accumulations in three formations in the Madden field show that (1) water production either increased or decreased with time in all three formations, (2) increases and decreases in water production were greater in the Cody Shale than in either the Mesaverde Formation or the lower unnamed member of the Fort Union Formation, (3) the gas production rate declined more slowly in the lower part of the Fort Union Formation than in the Cody Shale or the Mesaverde Formation, (4) changes in gas and water production were not related to their initial production rates, and (5) there appears to be no relation between well location and the magnitudes or trends of gas and water production. To explain the apparent independence of gas and water production in the Cody Shale and Mesaverde Formation, a two-step scenario is proposed: gas was generated and emplaced under the compressive stress regime resulting from Laramide tectonism; then, fractures formed during a subsequent period of stress relaxation and extension. Gas is produced from the pore and fracture system near the wellbore, whereas water is produced from a larger scale system of extension fractures. The distribution of gas and water in the lower Fort Union resulted from a similar scenario, but continued generation of gas during post-Laramide extension may have allowed its more widespread distribution.

  14. Near surface characterisation with passive seismic data - a case study from the La Barge basin (Wyoming)

    NASA Astrophysics Data System (ADS)

    Behm, M.; Snieder, R.; Tomic, J.

    2012-12-01

    In regions where active source seismic data are inadequate for imaging purposes due to energy penetration and recovery, cost and logistical concerns, or regulatory restrictions, analysis of natural source and ambient seismic data may provide an alternative. In this study, we investigate the feasibility of using locally-generated seismic noise and teleseismic events in the 2-10 Hz band to obtain a subsurface model. We apply different techniques to 3-component data recorded during the LaBarge Passive Seismic Experiment, a local deployment in southwestern Wyoming in a producing hydrocarbon basin. Fifty-five broadband instruments with an inter-station distance of 250 m recorded continuous seismic data between November 2008 and June 2009. The consistency and high quality of the data set make it an ideal test ground to determine the value of passive seismology techniques for exploration purposes. The near surface is targeted by interferometric analysis of ambient noise. Our results indicate that traffic noise from a state highway generates coherent Rayleigh and Love waves that can then be inverted for laterally varying velocities. The results correlate well with surface geology, and are thought to represent the average of the few upper hundred meters. The autocorrelation functions (ACF) of teleseismic body waves provide information on the uppermost part (1 to 5 km depth) of the crust. ACFs from P-waves correlate with the shallow structure as known from active source studies. The analysis of S-waves exhibits a pronounced azimuthal dependency, which might be used to gain insights on anisotropy.

  15. 78 FR 65609 - Medicine Bow-Routt National Forests and Thunder Basin National Grassland; Wyoming; Thunder Basin...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-01

    ...Thunder Basin National Grassland Prairie Dog Amendment Environmental Impact Statement...Thunder Basin National Grassland Prairie Dog Amendment EIS. The EIS will form the basis...Thunder Basin National Grassland Prairie Dog Amendment. The Open House/...

  16. Assessment of Coal Geology, Resources, and Reserves in the Gillette Coalfield, Powder River Basin, Wyoming

    USGS Publications Warehouse

    Luppens, James A.; Scott, David C.; Haacke, Jon E.; Osmonson, Lee M.; Rohrbacher, Timothy J.; Ellis, Margaret S.

    2008-01-01

    The Gillette coalfield, within the Powder River Basin in east-central Wyoming, is the most prolific coalfield in the United States. In 2006, production from the coalfield totaled over 431 million short tons of coal, which represented over 37 percent of the Nation's total yearly production. The Anderson and Canyon coal beds in the Gillette coalfield contain some of the largest deposits of low-sulfur subbituminous coal in the world. By utilizing the abundance of new data from recent coalbed methane development in the Powder River Basin, this study represents the most comprehensive evaluation of coal resources and reserves in the Gillette coalfield to date. Eleven coal beds were evaluated to determine the in-place coal resources. Six of the eleven coal beds were evaluated for reserve potential given current technology, economic factors, and restrictions to mining. These restrictions included the presence of railroads, a Federal interstate highway, cities, a gas plant, and alluvial valley floors. Other restrictions, such as thickness of overburden, thickness of coal beds, and areas of burned coal were also considered. The total original coal resource in the Gillette coalfield for all eleven coal beds assessed, and no restrictions applied, was calculated to be 201 billion short tons. Available coal resources, which are part of the original coal resource that is accessible for potential mine development after subtracting all restrictions, are about 164 billion short tons (81 percent of the original coal resource). Recoverable coal, which is the portion of available coal remaining after subtracting mining and processing losses, was determined for a stripping ratio of 10:1 or less. After mining and processing losses were subtracted, a total of 77 billion short tons of coal were calculated (48 percent of the original coal resource). Coal reserves are the portion of the recoverable coal that can be mined, processed, and marketed at a profit at the time of the economic evaluation. With a discounted cash flow at 8 percent rate of return, the coal reserves estimate for the Gillette coalfield is10.1 billion short tons of coal (6 percent of the original resource total) for the 6 coal beds evaluated.

  17. Geothermal resources of the Green River Basin, Wyoming, including thermal data for the Wyoming portion of the Thrust Belt

    SciTech Connect

    Spencer, S.A.; Heasler, H.P.; Hinckley, B.S.

    1985-01-01

    The geothermal resources of the Green River basin were investigated. Oil-well bottom-hole temperatures, thermal logs of wells, and heat flow data have been interpreted within a framework of geologic and hydrologic constraints. Basic thermal data, which includes the background thermal gradient and the highest recorded temperature and corresponding depth is tabulated. It was concluded that large areas are underlain by water at temperatures greater than 120/sup 0/F. Although much of this water is too deep to be economically tapped solely for geothermal use, oil and gas wells presently provide access to this significant geothermal resource. Isolated areas with high temperature gradients exist. These areas - many revealed by hot springs - represent geothermal systems which might presently be developed economically. 34 refs., 11 figs., 8 tabs. (ACR)

  18. Evapotranspiration Retrieval through Optical/Thermal Satellite Imagery and Ground Measurements in the Green River Basin, Wyoming

    NASA Astrophysics Data System (ADS)

    Pradhan, N.; Hendrickx, J. M.; Ogden, F. L.; Wollf, S. W.

    2010-12-01

    Remote sensing methods are increasingly employed in combination with modeling for evapotranspiration estimation because they can provide multi-temporal, spatially-distributed estimates of key variables based on spatially distributed measurements. The approach for estimating evapotranspiration with remotely sensed data couples thermal and optical remote sensing with energy balance models such as: SEBAL, Surface Energy Balance Algorithms for Land, and METRICtm, Mapping Evapotranspiration at high Resolution using Internalized Calibration. The objective of this study is to investigate how ground measurements and satellite imagery at different scales can be combined to retrieve actual evapotranspiration over large watersheds. Scales of ground measurements are: (1) point scale that is typical for regular meteorological measurements such as air temperature, relative humidity, solar radiation, and wind speed; (2) footprint scale that varies from about 5,000 m2 for eddy-covariance measurements of sensible and latent heat fluxes to about 5,000,000 m2 for scintillometer sensible heat flux measurements when optical/thermal Landsat and MODIS satellites pass over around 10 am. In our analysis, we focused on evapotranspiration or consumptive use associated with irrigated agriculture in the Green River Basin in Wyoming that is the main headwater tributary of the entire Colorado River Basin. Ground-based meteorological stations, eddy-covariance and large-aperture scintillometers were set up in Pinedale, Green River basin, Wyoming to conduct the research. METRIC is used to retrieve evapotranspiration estimates from Landsat5 (30-120 m resolution) and MODIS (250-1000 m resolution) imagery.

  19. Tree-Ring-Based Reconstruction of Precipitation in the Bighorn Basin, Wyoming, since 1260 a.d.

    NASA Astrophysics Data System (ADS)

    Gray, Stephen T.; Fastie, Christopher L.; Jackson, Stephen T.; Betancourt, Julio L.

    2004-10-01

    Cores and cross sections from 79 Douglas fir () and limber pine (Pinus flexilis) trees at four sites in the Bighorn Basin of north-central Wyoming and south-central Montana were used to develop a proxy for annual (June June) precipitation spanning 1260 1998 A.D. The reconstruction exhibits considerable nonstationarity, and the instrumental era (post-1900) in particular fails to capture the full range of precipitation variability experienced in the past 750 years. Both single-year and decadal-scale dry events were more severe before 1900. Dry spells in the late thirteenth and sixteenth centuries surpass both magnitude and duration of any droughts in the Bighorn Basin after 1900. Precipitation variability appears to shift to a higher-frequency mode after 1750, with 15 20-yr droughts becoming rare. Comparisons between instrumental and reconstructed values of precipitation and indices of Pacific basin variability reveal that precipitation in the Bighorn Basin generally responds to Pacific forcing in a manner similar to that of the southwestern United States (drier during La Niña events), but high country precipitation in areas surrounding the basin displays the opposite response (drier during El Niño events).


  20. Tree-ring-based reconstruction of precipitation in the Bighorn Basin, Wyoming, since 1260 A.D

    USGS Publications Warehouse

    Gray, S.T.; Fastie, C.L.; Jackson, S.T.; Betancourt, J.L.

    2004-01-01

    Cores and cross sections from 79 Douglas fir (Pseudotsuga menziesii) and limber pine (Pinus flexilis) trees at four sites in the Bighorn Basin of north-central Wyoming and south-central Montana were used to develop a proxy for annual (June-June) precipitation spanning 1260-1998 A.D. The reconstruction exhibits considerable nonstationarity, and the instrumental era (post-1900) in particular fails to capture the full range of precipitation variability experienced in the past ???750 years. Both single-year and decadal-scale dry events were more severe before 1900. Dry spells in the late thirteenth and sixteenth centuries surpass both magnitude and duration of any droughts in the Bighorn Basin after 1900. Precipitation variability appears to shift to a higher-frequency mode after 1750, with 15-20-yr droughts becoming rare. Comparisons between instrumental and reconstructed values of precipitation and indices of Pacific basin variability reveal that precipitation in the Bighorn Basin generally responds to Pacific forcing in a manner similar to that of the southwestern United States (drier during La Nin??a events), but high country precipitation in areas surrounding the basin displays the opposite response (drier during El Nin??o events). ?? 2004 American Meteorological Society.

  1. Revised Subsurface Stratigraphic Framework of the Fort Union and Wasatch Formations, Powder River Basin, Wyoming and Montana

    USGS Publications Warehouse

    Flores, Romeo M.; Spear, Brianne D.; Purchase, Peter A.; Gallagher, Craig M.

    2010-01-01

    Described in this report is an updated subsurface stratigraphic framework of the Paleocene Fort Union Formation and Eocene Wasatch Formation in the Powder River Basin (PRB) in Wyoming and Montana. This framework is graphically presented in 17 intersecting west-east and north-south cross sections across the basin. Also included are: (1) the dataset and all associated digital files and (2) digital files for all figures and table 1 suitable for large-format printing. The purpose of this U.S. Geological Survey (USGS) Open-File Report is to provide rapid dissemination and accessibility of the stratigraphic cross sections and related digital data to USGS customers, especially the U.S. Bureau of Land Management (BLM), to facilitate their modeling of the hydrostratigraphy of the PRB. This report contains a brief summary of the coal-bed correlations and database, and is part of a larger ongoing study that will be available in the near future.

  2. Wyoming Basin Rapid Ecoregional Assessment: A Science-Management Partnership to Inform Public Land Management under Changing Climate Conditions

    NASA Astrophysics Data System (ADS)

    Ray, A. J.; Means, R.; Liebmann, B.; Carr, N. B.

    2013-12-01

    The U.S. Bureau of Land Management (BLM) administers more public land in the U.S. West than any other Federal agency, including over 17.5 million acres of public lands and 40.7 million acres of federal mineral estate in Wyoming. BLM is developing Rapid Ecoregional Assessments (REAs), to support ecoregion-based conservation strategies on public lands and to facilitate planning and analysis for the management of ecological resources, and will feed into a wide range management plans such as Resource Management Plans and National Environmental Policy Act documents. This analysis includes 'change agents' including climate and energy development. BLM Wyoming, the National Oceanic and Atmospheric Administration (NOAA), and US Geological Survey (USGS) are partnering to synthesize and create climate science to inform the BLM Wyoming Basin Rapid Ecoregional Assessment, a landscape-scale ecological assessment for over 33 million acres in Wyoming, Colorado, Utah, Idaho, and Montana. BLM needs to know vulnerabilities to climate of their resources, therefore, a primary focus of the assessment is to project the potential risks and vulnerabilities to the structure and functions of ecological communities posed by changing climate, and the associated management implications. In addition to synthesizing information from various downscaling efforts, NOAA is working to provide BLM with the translational information to provide an assessment of the strengths and weaknesses of different downscaling datasets being used in ecological modeling. Primary among BLM's concerns is which among the global climate models reasonably represent the climate features of Wyoming. Another significant concern arises because ecological modelers have put substantial effort into studies using different downscaled climate datasets; BLM Wyoming is interested in how the ecological modeling results would be expected to be different, given these different climate datasets. For longer range decision making, BLM needs an understanding of what the confidence or uncertainty in trends and changes in climate for the region, and also which areas within the region have more or less certainty, if any. NOAA is working with BLM and USGS on the concept of 'Reasonably Foreseeable Climate Futures,' to commmunicate about scenarios we are more confident about and the range of scenarios. This term is a deliberate analogue to the Reasonably Foreseeable Development Futures that are created for energy development and familiar to BLM stakeholders. This presentation will discuss the science-management partnership between BLM, NOAA, and USGS and provide some results of our analyses to support their decisionmaking.

  3. Burial History, Thermal Maturity, and Oil and Gas Generation History of Source Rocks in the Bighorn Basin, Wyoming and Montana

    USGS Publications Warehouse

    Roberts, Laura N.R.; Finn, Thomas M.; Lewan, Michael D.; Kirschbaum, Mark A.

    2008-01-01

    Burial history, thermal maturity, and timing of oil and gas generation were modeled for seven key source-rock units at eight well locations throughout the Bighorn Basin in Wyoming and Montana. Also modeled was the timing of cracking to gas of Phosphoria Formation-sourced oil in the Permian Park City Formation reservoirs at two well locations. Within the basin boundary, the Phosphoria is thin and only locally rich in organic carbon; it is thought that the Phosphoria oil produced from Park City and other reservoirs migrated from the Idaho-Wyoming thrust belt. Other petroleum source rocks include the Cretaceous Thermopolis Shale, Mowry Shale, Frontier Formation, Cody Shale, Mesaverde and Meeteetse Formations, and the Tertiary (Paleocene) Fort Union Formation. Locations (wells) selected for burial history reconstructions include three in the deepest parts of the Bighorn Basin (Emblem Bench, Red Point/Husky, and Sellers Draw), three at intermediate depths (Amoco BN 1, Santa Fe Tatman, and McCulloch Peak), and two at relatively shallow locations (Dobie Creek and Doctor Ditch). The thermal maturity of source rocks is greatest in the deep central part of the basin and decreases to the south, east, and north toward the basin margins. The Thermopolis and Mowry Shales are predominantly gas-prone source rocks, containing a mix of Type-III and Type-II kerogens. The Frontier, Cody, Mesaverde, Meeteetse, and Fort Union Formations are gas-prone source rocks containing Type-III kerogen. Modeling results indicate that in the deepest areas, (1) the onset of petroleum generation from Cretaceous rocks occurred from early Paleocene through early Eocene time, (2) peak petroleum generation from Cretaceous rocks occurred during Eocene time, and (3) onset of gas generation from the Fort Union Formation occurred during early Eocene time and peak generation occurred from late Eocene to early Miocene time. Only in the deepest part of the basin did the oil generated from the Thermopolis and Mowry Shales start generating gas from secondary cracking, which occurred in the late Eocene to Miocene. Also, based on modeling results, gas generation from the cracking of Phosphoria oil reservoired in the Park City Formation began in the late Eocene in the deep part of the basin but did not anywhere reach peak generation.

  4. Basin analysis of Upper Cretaceous strata of the Washakie and Red Desert basins, southwestern Wyoming, employing computer-generated maps and cross sections

    SciTech Connect

    Kohles, K.M.; Potts, J. ); Reid, F.S.

    1991-03-01

    The Washakie and Red Desert basins comprise the eastern portion of the Greater Green River basins of southwestern Wyoming. Stratigraphically the basins are dominated by a thick package of Cretaceous clastic sediments, as much as 16,000 ft thick, which resulted from several major transgressive-regressive cycles. Upper Cretaceous strata deposited during the latest cycle contain extensive deposits of commercial hydrocarbons, particularly gas. Much of the present structural configuration of the area is the result of the Laramide Orogeny in Late Cretaceous time. To facilitate a comprehensive geological analysis of the area a computerized subsurface data base was constructed from available well logs for approximately 3,000 wells in the Washakie and Red Desert basins. This data base contains correlated tops for most of the major Upper Cretaceous stratigraphic units, including selected subdivisions and net sand thickness values. Consistent correlations were achieved through the use of a tight, loop-tied cross section and key well network containing over 400 correlated well-logs. A complete suite of structure contour maps on all correlated horizons was generated from the data base with commercially available software. These maps, along with selected computer-generated structural cross sections, reveal a detailed subsurface picture of the Washakie and Red Desert basins. Isopachous maps of selected intervals were also produced to illustrate the Late Cretaceous depositional history of the area.

  5. Stratigraphic positioning of the Lower Cretaceous conglomerates, Wind River basin, Wyoming and implications for possible hydrocarbon traps

    SciTech Connect

    Furer, L.C.; Kvale, E.P. ); May, M.T.; Suttner, L.J. )

    1991-03-01

    Most previous outcrop and subsurfaces studies of the Lower Cretaceous conglomerates and conglomeratic sandstones in Wyoming have assumed a time equivalency for these deposits. The conglomerates have been utilized to identify the Jurassic-Cretaceous boundary and interpret tectonic conditions within the Sevier foreland basin. However, the authors integrated subsurface-outcrop correlations show that the conglomerates occur at distinctly different stratigraphic levels, thus invalidating their use in marking the Jurassic-Cretaceous boundary and complicating interpretations of their tectonic significance. A chert-bearing conglomerate occurs at the base of the Cloverly Formation over the entire western flank of the Wind River basin except within a 30 km Cloverly outcrop belt near Lander. The zero edge of this unit lies just east of Muskrat field where it may be a facies equivalent with what has previously been interpreted as the Upper Jurassic Morrison Formation. In contrast, in the eastern quarter of the Wind River basin, a thick chert-bearing conglomerate occurs in the upper part of the Cloverly Formation. This conglomerate may be the time-stratigraphic equivalent to the transitional marine 'Rusty beds' present in the western margin of the basin. In both areas, the conglomerates and conglomeratic sandstones are encased in thick mudstones. Paleocurrent data suggest different source areas for the eastern and western conglomerates. The basal conglomerate was derived from the southwest, whereas the younger, eastern conglomerate was derived from the south. Their areal distributions have been useful in suggesting areas of potential structural-stratigraphic hydrocarbon plays.

  6. Outcrops, Fossils, Geophysical Logs, and Tectonic Interpretations of the Upper Cretaceous Frontier Formation and Contiguous Strata in the Bighorn Basin, Wyoming and Montana

    USGS Publications Warehouse

    Merewether, E.A.; Cobban, W.A.; Tillman, R.W.

    2010-01-01

    In the Bighorn Basin of north-central Wyoming and south-central Montana, the Frontier Formation of early Late Cretaceous age consists of siliciclastic, bentonitic, and carbonaceous beds that were deposited in marine, brackish-water, and continental environments. Most lithologic units are laterally discontinuous. The Frontier Formation conformably overlies the Mowry Shale and is conformably overlain by the Cody Shale. Molluscan fossils collected from outcrops of these formations and listed in this report are mainly of marine origin and of Cenomanian, Turonian, and Coniacian ages. The lower and thicker part of the Frontier in the Bighorn Basin is of Cenomanian age and laterally equivalent to the Belle Fourche Member of the Frontier in central Wyoming. Near the west edge of the basin, these basal strata are disconformably overlain by middle Turonian beds that are the age equivalent of the Emigrant Gap Member of the Frontier in central Wyoming. The middle Turonian beds are disconformably overlain by lower Coniacian strata. Cenomanian strata along the south and east margins of the basin are disconformably overlain by upper Turonian beds in the upper part of the Frontier, as well as in the lower part of the Cody; these are, in turn, conformably overlain by lower Coniacian strata. Thicknesses and ages of Cenomanian strata in the Bighorn Basin and adjoining regions are evidence of regional differential erosion and the presence of an uplift during the early Turonian centered in northwestern Wyoming, west of the basin, probably associated with a eustatic event. The truncated Cenomanian strata were buried by lower middle Turonian beds during a marine transgression and possibly during regional subsidence and a eustatic rise. An uplift in the late middle Turonian, centered in north-central Wyoming and possibly associated with a eustatic fall, caused the erosion of lower middle Turonian beds in southern and eastern areas of the basin as well as in an adjoining region of north-central Wyoming. Similarly, in east-central Wyoming and an adjacent area to the south, Cenomanian strata are disconformably overlain by upper middle and lower upper Turonian strata that probably reflect uplift and erosion in that region during the interim period of middle Turonian time. During later subsidence and a marine transgression, upper Turonian deposits buried Cenomanian beds in areas along the south and east margins of the Bighorn Basin and buried lower middle Turonian beds in much of northern Wyoming. Upper Turonian and lower Coniacian strata are apparently conformable in eastern and southern areas of the basin as well as near Riverton, Kaycee, and Casper in central Wyoming. Upper Turonian strata are absent on the west flank of the Bighorn Basin and in outcrops west of the basin, where middle Turonian beds are disconformably overlain by lower Coniacian beds . The conformable upper Turonian and lower Coniacian beds apparently transgressed an eroded middle Turonian surface in the region, but only Coniacian strata overlie middle Turonian beds on the west side of the basin and areas farther west. Coniacian strata onlap the truncated lower middle Turonian surface west of the basin, indicating a region that had higher elevation possibly resulting from tectonic uplift. In east-central Wyoming and an adjoining region to the south, upper middle Turonian and lower upper Turonian strata are disconformably overlain by lower and middle Coniacian beds. That region apparently was uplifted and eroded during the latest Turonian.

  7. Description and correlation of Eocene rocks in stratigraphic reference sections for the Green River and Washakie basins, southwest Wyoming

    SciTech Connect

    Roehler, H.W.

    1992-01-01

    Stratigraphic reference sections of the Wasatch, Green River, and Bridger (Washakie) Formations were measured on outcrops in the Green River and Washakie basins adjacent to the Rock Springs uplift in southwest Wyoming. The Washakie basin reference section is 7,939 feet thick and consists of 708 beds that were measured, described, and sampled to evaluate the origin, composition, and paleontology of the rocks. The reference section in the Green River basin is 6,587 feet thick and consists of 624 beds that were measured and described but were not sampled. Columnar sections that have been prepared combine information on the stratigraphic nomenclature, age, depositional environments, lithologies, and fossils of each bed in the reference sections. Eocene strata in the Green River and Washakie basins have been correlated biostratigraphically, chronostratigraphically, and lithostratigraphically. The time boundaries of the lower, middle, and upper Eocene rocks in the reference sections are located partly from biostratigraphic investigations and partly from chronostratigraphic investigations. The time boundaries agree with North American land mammal ages. Major stratigraphic units and key marker beds correlated between the reference sections appeared similar in thickness and lithology, which suggests that most depositional events were contemporaneous in both basins. Rocks sampled in the Washakie basin reference section were examined petrographically and were analyzed using heavy mineral separations, X-ray techniques, and assays. The mineralogy suggests that source rocks in the lower part of the Eocene were mostly of plutonic origin and that source rocks in the upper part of the Eocene were mostly of volcanic origin. Economically significant beds of oil shale and zeolite were identified by the analyses. 51 refs., 31 figs., 5 tabs.

  8. Geology of the Pumpkin Buttes Area of the Powder River Basin, Campbell and Johnson Counties, Wyoming

    USGS Publications Warehouse

    Sharp, William Neil; White, Amos McNairy

    1956-01-01

    About 200 uranium occurrences have been examined in the Pumpkin Buttes area, Wyoming. Uranium minerals are visible at most of these places and occur in red and buff sandstone lenses in the Wasatch formation of Eocene age. The uranium minerals are disseminated in buff sandstone near red sandstone, and also occur in red sandstone in manganese oxide concretions and uraninite concretions.

  9. The history of dinosaur footprint discoveries in Wyoming with emphasis on the Bighorn basin

    USGS Publications Warehouse

    Kvale, E.P.; Mickelson, D.L.; Hasiotis, S.T.; Johnson, G.D.

    2003-01-01

    Dinosaur traces are well known from the western United States in the Colorado Plateau region (Utah, Colorado, New Mexico, and Arizona). Utah contains the greatest abundance of known and documented dinosaur footprints and trackways. Far less well known, however, is the occurrence and distribution of dinosaur footprint-bearing horizons in Wyoming. Scientific studies over the past 10 years have shown that three of the four Middle and Upper Jurassic formations in northern Wyoming contain dinosaur footprints. Two of the footprint-bearing horizons are located in geologic intervals that were once thought to have been deposited in offshore to nearshore marine settings and represent rare North American examples of Middle Jurassic (Bajocian and Bathonian) dinosaur remains. Some of these new Wyoming sites can be correlated to known dinosaur footprint-bearing horizons or intervals in Utah. Wyoming has a great potential for additional discoveries of new dinosaur footprint-bearing horizons, and further prospecting and study is warranted and will ultimately lead to a much better understanding of the geographic distribution and behavior of the potential footprint-makers. ?? Taylor and Francis Inc.

  10. Fischer Assays of Oil-Shale Drill Cores and Rotary Cuttings from the Greater Green River Basin, Southwestern Wyoming

    USGS Publications Warehouse

    U.S. Geological Survey Oil Shale Assessment Team

    2008-01-01

    Chapter 1 of this CD-ROM is a database of digitized Fischer (shale-oil) assays of cores and cuttings from boreholes drilled in the Eocene Green River oil shale deposits in southwestern Wyoming. Assays of samples from some surface sections are also included. Most of the Fischer assay analyses were made by the former U.S. Bureau of Mines (USBM) at its laboratory in Laramie, Wyoming. Other assays, made by institutional or private laboratories, were donated to the U.S. Geological Survey (USGS) and are included in this database as well as Adobe PDF-scanned images of some of the original laboratory assay reports and lithologic logs prepared by USBM geologists. The size of this database is 75.2 megabytes and includes information on 971 core holes and rotary-drilled boreholes and numerous surface sections. Most of these data were released previously by the USBM and the USGS through the National Technical Information Service but are no longer available from that agency. Fischer assays for boreholes in northeastern Utah and northwestern Colorado have been published by the USGS. Additional data include geophysical logs, groundwater data, chemical and X-ray diffraction analyses, and other data. These materials are available for inspection in the office of the USGS Central Energy Resources Team in Lakewood, Colorado. The digitized assays were checked with the original laboratory reports, but some errors likely remain. Other information, such as locations and elevations of core holes and oil and gas tests, were not thoroughly checked. However, owing to the current interest in oil-shale development, it was considered in the public interest to make this preliminary database available at this time. Chapter 2 of this CD-ROM presents oil-yield histograms of samples of cores and cuttings from exploration drill holes in the Eocene Green River Formation in the Great Divide, Green River, and Washakie Basins of southwestern Wyoming. A database was compiled that includes about 47,000 Fischer assays from 186 core holes and 240 rotary drill holes. Most of the oil yield data are from analyses performed by the former U.S. Bureau of Mines oil shale laboratory in Laramie, Wyoming, with some analyses made by private laboratories. Location data for 971 Wyoming oil-shale drill holes are listed in a spreadsheet that is included in the CD-ROM. These Wyoming Fischer assays and histograms are part of a much larger collection of oil-shale information, including geophysical and lithologic logs, water data, chemical and X-ray diffraction analyses on the Green River oil-shale deposits in Colorado, Utah, and Wyoming held by the U.S. Geological Survey. Because of an increased interest in oil shale, this CD-ROM containing Fischer assay data and oil-yield histograms for the Green River oil-shale deposits in southwestern Wyoming is being released to the public. Microsoft Excel spreadsheets included with Chapter 2 contain the Fischer assay data from the 426 holes and data on the company name and drill-hole name, and location. Histograms of the oil yields obtained from the Fischer assays are presented in both Grapher and PDF format. Fischer assay text data files are also included in the CD-ROM.

  11. The potential for coalbed gas exploration and production in the Greater Green River Basin, southwest Wyoming and northwest Colorado

    SciTech Connect

    Tyler, R.; Kaiser, W.R.; Scott, A.R.; Hamilton, D.S.

    1997-01-01

    Coalbed gas is an important source of natural gas in the United States. In 1993, approximately 740 BCF of coalbed gas was produced in the United States, or about 4.2% of the nation`s total gas production. Nearly 96% of this coalbed gas is produced from just two basins, the San Juan (615.7 BCF; gas in place 84 TCF) and Black Warrior (105 BCF; gas in place 20 TCF), and current production represents only a fraction of the nation`s estimated 675 TCF of in-place coalbed gas. Coal beds in the Greater Green River Basin in southwest Wyoming and northwest Colorado hold almost half of the gas in place (314 TCF) and are an important source of gas for low-permeability Almond sandstones. Because total gas in place in the Greater Green River Basin is reported to exceed 3,000 TCF (Law et al., 1989), the basin may substantially increase the domestic gas resource base. Therefore, through integrated geologic and hydrologic studies, the coalbed gas potential of the basin was assessed where tectonic, structural, and depositional setting, coal distribution and rank, gas content, coal permeability, and ground-water flow are critical controls on coalbed gas producibility. Synergism between these geologic and hydrologic controls determines gas productivity. High productivity is governed by (1) thick, laterally continuous coals of high thermal maturity, (2) basinward flow of ground water through fractured and permeable coals, down the coal rank gradient toward no-flow boundaries oriented perpendicular to the regional flow direction, and (3) conventional trapping of gas along those boundaries to provide additional sources of gas beyond that sorbed on the coal surface.

  12. Tectonic significance of lithicwacke-polymictic conglomerate petrofacies association within Upper Cretaceous torchlight sandstone, Big Horn basin, Wyoming

    SciTech Connect

    Khandaker, N.I.; Vondra, C.F.

    1987-05-01

    The Torchlight Sandstone belonging to the Upper Cretaceous Frontier Formation in the Big Horn basin, Wyoming, shows a distinctive lithicwacke-polymictic conglomerate is composed of granule-cobble-sized clasts of quartzite, chert, andesite, and argillite, and phyllite. The survival of phyllite, argillite, and neovolcanic andesite clasts indicate that the detritus underwent very little subaerial transport before it was deposited along the proximal margin of the foreland basin. A petrologically heterogeneous upland source of high to moderate relief is indicated by the clast size and composition. Hydrodynamic structures, in conjunction with textural attributes, and compositional data indicate that detritus moved southeast from its source terrane and was deposited by a high-energy distributary complex. The lithicwacke petrofacies is dominated by higher chert and quartz content with a subordinate amount of labile components including paleovolcanic clasts and fine-grained matrix. The development of phyllosilicate matrix around quartz and chert grains preserved the primary porosity and permeability of the sandstone. Absence of any noticeable quartz overgrowth apparently contributed to the preservation of good reservoir quality in this petrofacies. Considering its (Torchlight Sandstone) close proximity to the thrust belt and to the locus of andesite volcanism in the northwest and west, it is suggested that the extrabasinal detritus within the foreland basin can provide significant clues as to the timing of the thrust events and volcanicity in the adjacent region. New perspectives for hydrocarbon exploration and regional correlation may be gained by employing this petrofacies association.

  13. Geology of the Powder River Basin, Wyoming and Montana, with reference to subsurface disposal of radioactive wastes

    USGS Publications Warehouse

    Beikman, Helen M.

    1962-01-01

    The Powder River Basin is a structural and topographic basin occupying an area of about 20,000 square miles in northeastern Wyoming arid southeastern Montana. The Basin is about 230 miles long in a northwest-southeast direction and is about 100 miles wide. It is bounded on three sides by mountains in which rocks of Precambrian age are exposed. The Basin is asymmetrical with a steep west limb adjacent to the Bighorn Mountains and a gentle east limb adjacent to the Black Hills. Sedimentary rocks within the Basin have a maximum thickness of about 18,000 feet and rocks of every geologic period are represented. Paleozoic rocks are about 2,500 feet thick and consist of marine bonate rocks and sandstone; Mesozoic rocks are about 9,500 feet thick and consist of both marine and nonmarine siltstone and sandstone; and Cenozoic rocks are from 4,000 to 6,000 feet thick and consist of coal-bearing sandstone and shale. Radioactive waste could be stored in the pore space of permeable sandstone or in shale where space could be developed. Many such rock units that could be used for storing radioactive wastes are present within the Powder River Basin. Permeable sandstone beds that may be possible reservoirs for storage of radioactive waste are present throughout the Powder River Basin. These include sandstone beds in the Flathead Sandstone and equivalent strata in the Deadwood Formation, the Tensleep Sandstone and equivalent strata in the Minnelusa Formation and the Sundance Formation in rocks of pre-Cretaceous age. However, most of the possible sandstone reservoirs are in rocks of Cretaceous age and include sandstone beds in the Fall River, Lakota, Newcastle, Frontier, Cody, and Mesaverde Formations. Problems of containment of waste such as clogging of pore space and chemical incompatibility would have to be solved before a particular sandstone unit could be selected for waste disposal. Several thick sequences of impermeable shale such as those in the Skull Creek, Mowry, Frontier, Belle Fourche, Cody, Lewis, and Pierre Formations, occur in rocks of Cretaceous age in the Basin. Limited storage space for liquid waste might be developed in impermeable shale by fracturing the shale and space for calcined or fused waste could be developed by mining cavities.

  14. Geologic map and coal stratigraphy of the Doty Mountain quadrangle, eastern Washakie basin, Carbon County, Wyoming

    USGS Publications Warehouse

    Hettinger, R.D.; Honey, J.G.

    2006-01-01

    This report provides a geologic map of the Doty Mountain 7.5-minute quadrangle, located along the eastern flank of the Washakie Basin, Wyo. Geologic formations and individual coal beds were mapped at a scale of 1:24,000; surface stratigraphic sections were measured and described; and well logs were examined to determine coal correlations and thicknesses in the subsurface. Detailed measured sections are provided for the type sections of the Red Rim Member of the Upper Cretaceous Lance Formation and China Butte and Overland Members of the Paleocene Fort Union Formation. The data set was collected as part of a larger effort to acquire data on Upper Cretaceous and Tertiary coal-bearing rocks in the eastern Washakie Basin and southeastern Great Divide Basin. Regions in the eastern Washakie Basin and southeastern Great Divide Basin have potential for coal development and were considered previously for coal leasing by the U.S. Bureau of Land Management.

  15. The application of geologic remote sensing to vertebrate biostratigraphy - General results from the Wind River Basin, Wyoming

    NASA Technical Reports Server (NTRS)

    Stucky, Richard K.; Krishtalka, Leonard

    1991-01-01

    Since 1986, remote sensing images derived from satellite and aircraft-borne sensor data have been used to study the stratigraphy and sedimentology of the vertebrate-bearing Wind River and Wagon Bed formations in the Wind River Basin (Wyoming). Landsat 5 TM and aircraft Thermal Infrared Multispectral Scanner data were combined with conventional geologic analyses. The remote sensing data have contributed significantly to: (1) geologic mapping at the formation, member, and bed levels; (2) stratigraphic correlation; (3) reconstruction of ancient depositional environments; and (4) identification of structural complexity. This information is critical to vertebrate paleontology in providing the stratigraphic, sedimentologic, and structural framework required for evolutionary and paleoecologic studies. Of primary importance is the ability to map at minimal cost the geology of large areas (20,000 sq km or greater) at a high level of precision. Remote sensing data can be especially useful in geologically and paleontologically unexplored or poorly understood regions.

  16. Petroleum Systems and Geologic Assessment of Oil and Gas Resources in the Wind River Basin Province, Wyoming

    USGS Publications Warehouse

    U.S. Geological Survey Wind River Basin Assessment Team

    2007-01-01

    The purpose of the U.S. Geological Survey's (USGS) National Oil and Gas Assessment is to develop geologically based hypotheses regarding the potential for additions to oil and gas reserves in priority areas of the United States. The U.S. Geological Survey (USGS) recently completed an assessment of the undiscovered oil and gas potential of the Wind River Basin Province which encompasses about 4.7 million acres in central Wyoming. The assessment is based on the geologic elements of each total petroleum system (TPS) defined in the province, including hydrocarbon source rocks (source-rock maturation, hydrocarbon generation, and migration), reservoir rocks (sequence stratigraphy and petrophysical properties), and hydrocarbon traps (trap formation and timing). Using this geologic framework, the USGS defined three TPSs: (1) Phosphoria TPS, (2) Cretaceous-Tertiary TPS, and (3) Waltman TPS. Within these systems, 12 Assessment Units (AU) were defined and undiscovered oil and gas resources were quantitatively estimated within 10 of the 12 AUs.

  17. Petroleum Systems and Geologic Assessment of Oil and Gas in the Bighorn Basin Province, Wyoming and Montana

    USGS Publications Warehouse

    U.S. Geological Survey Bighorn Basin Province Assessment Team

    2010-01-01

    The U.S. Geological Survey (USGS) recently completed an assessment of the undiscovered oil and gas potential of the Bighorn Basin Province, which encompasses about 6.7 million acres in north-central Wyoming and southern Montana. The assessment is based on the geologic elements of each total petroleum system defined in the province, including petroleum source rocks (source-rock maturation, petroleum generation, and migration), reservoir rocks (sequence stratigraphy and petrophysical properties), and traps (trap formation and timing). Using this geologic framework, the USGS defined two total petroleum systems: (1) Phosphoria, and (2) Cretaceous-Tertiary Composite. Within these two systems, eight assessment units (AU) were defined, and undiscovered oil and gas resources were quantitatively estimated within each AU.

  18. Preliminary Geologic/spectral Analysis of LANDSAT-4 Thematic Mapper Data, Wind River/bighorn Basin Area, Wyoming

    NASA Technical Reports Server (NTRS)

    Lang, H. R.; Conel, J. E.; Paylor, E. D.

    1984-01-01

    A LIDQA evaluation for geologic applications of a LANDSAT TM scene covering the Wind River/Bighorn Basin area, Wyoming, is examined. This involves a quantitative assessment of data quality including spatial and spectral characteristics. Analysis is concentrated on the 6 visible, near infrared, and short wavelength infrared bands. Preliminary analysis demonstrates that: (1) principal component images derived from the correlation matrix provide the most useful geologic information. To extract surface spectral reflectance, the TM radiance data must be calibrated. Scatterplots demonstrate that TM data can be calibrated and sensor response is essentially linear. Low instrumental offset and gain settings result in spectral data that do not utilize the full dynamic range of the TM system.

  19. Subsurface cross section of lower Paleozoic rocks, Powder River basin, Wyoming and Montana

    SciTech Connect

    Macke, D.L.

    1988-07-01

    The Powder River basin is one of the most actively explored Rocky Mountain basins for hydrocarbons, yet the lower Paleozoic (Cambrian through Mississippian) rocks of this interval remain little studied. As a part of a program studying the evolution of sedimentary basins, approximately 3200 km of cross section, based on more than 50 combined geophysical and lithologic logs, have been constructed covering an area of about 200,000 km/sup 2/. The present-day basin is a Cenozoic structural feature located between the stable interior of the North American craton and the Cordilleran orogenic belt. At various times during the early Paleozoic, the basin area was not distinguishable from either the stable craton, the Williston basin, the Central Montana trough, or the Cordilleran miogeocline. Both deposition and preservation in the basin have been greatly influenced by the relative uplift of the Transcontinental arch. Shows of oil and dead oil in well cuttings confirm that hydrocarbons have migrated through at least parts of the basin's lower Paleozoic carbonate section. These rocks may have been conduits for long-distance migration of hydrocarbons as early as Late Cretaceous, based on (1) the probable timing of thermal maturation of hydrocarbon-source rocks within the basin area and to the west, (2) the timing of Laramide structural events, (3) the discontinuous nature of the reservoirs in the overlying, highly productive Pennsylvanian-Permian Minnelusa Formation, and (4) the under-pressuring observed in some Minnelusa oil fields. Vertical migration into the overlying reservoirs could have been through deep fractures within the basin, represented by major lineament systems. Moreover, the lower Paleozoic rocks themselves may also be hydrocarbon reservoirs.

  20. 78 FR 56650 - Medicine Bow-Routt National Forests and Thunder Basin National Grassland; Wyoming; Thunder Basin...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ...Thunder Basin National Grassland Prairie Dog Amendment AGENCY: Forest Service, USDA...modify Categories 1 and 2 of the 2009 Prairie Dog Management Strategy. The amendment is being...address continuing concerns regarding prairie dog management, raised by the [[Page...

  1. Infiltration from an impoundment for coal-bed natural gas, Powder River Basin, Wyoming: Evolution of water and sediment chemistry

    USGS Publications Warehouse

    Healy, R.W.; Rice, C.A.; Bartos, T.T.; McKinley, M.P.

    2008-01-01

    Development of coal-bed natural gas (CBNG) in the Powder River Basin, Wyoming, has increased substantially in recent years. Among environmental concerns associated with this development is the fate of groundwater removed with the gas. A preferred water-management option is storage in surface impoundments. As of January 2007, permits for more than 4000 impoundments had been issued within Wyoming. A study was conducted on changes in water and sediment chemistry as water from an impoundment infiltrated the subsurface. Sediment cores were collected prior to operation of the impoundment and after its closure and reclamation. Suction lysimeters were used to collect water samples from beneath the impoundment. Large amounts of chloride (12,300 kg) and nitrate (13,500 kg as N), most of which accumulated naturally in the sediments over thousands of years, were released into groundwater by infiltrating water. Nitrate was more readily flushed from the sediments than chloride. If sediments at other impoundment locations contain similar amounts of chloride and nitrate, impoundments already permitted could release over 48 x 106 kg of chloride and 52 x 106 kg of nitrate into groundwater in the basin. A solute plume with total dissolved solid (TDS) concentrations at times exceeding 100,000 mg/L was created in the subsurface. TDS concentrations in the plume were substantially greater than those in the CBNG water (about 2300 mg/L) and in the ambient shallow groundwater (about 8000 mg/L). Sulfate, sodium, and magnesium are the dominant ions in the plume. The elevated concentrations are attributed to cation-exchange-enhanced gypsum dissolution. As gypsum dissolves, calcium goes into solution and is exchanged for sodium and magnesium on clays. Removal of calcium from solution allows further gypsum dissolution.

  2. Assessment of in-place oil shale resources of the Green River Formation, Greater Green River Basin in Wyoming, Colorado, and Utah

    USGS Publications Warehouse

    Johnson, R.C.; Mercier, T.J.; Brownfield, M.E.

    2011-01-01

    The U.S. Geological Survey (USGS) recently (2011) completed an assessment of in-place oil shale resources, regardless of grade, in the Eocene Green River Formation of the Greater Green River Basin in southwestern Wyoming, northwestern Colorado, and northeastern Utah. Green River Formation oil shale also is present in the Piceance Basin of western Colorado and in the Uinta Basin of eastern Utah and western Colorado, and the results of these assessments are published separately. No attempt was made to estimate the amount of oil that is economically recoverable because there has not yet been an economic method developed to recover the oil from Green River Formation oil shale.

  3. The geology and remarkable thermal activity of Norris Geyser Basin, Yellowstone National Park, Wyoming

    SciTech Connect

    White, D.E.; Keith, T.E.C. ); Hutchinson, R.A. )

    1988-01-01

    Norris Geyser Basin is adjacent to the north rim of the Yellowstone Caldera, one of the largest volcanic features of its type in the world. Hydrothermal activity may have been continuous for {gt}100,000 years B.P. Norris Basin includes the highest erupting geyser of recent water types, colors of organisms and inorganic precipitates, frequent changes in activity and chemistry, and very high subsurface temperatures ({gt}240{degrees}C). Norris Basin is only a part of the Norris-Mammoth Corridor that strikes north from the caldera rim to Mammoth Hot Springs. Norris Basin has a heat flow roughly 10 percent of that of the Yellowstone Caldera and requires an estimated 0.01 km{sup 3} of rhyolitic magma per year-a quantity far greater than the corridor's rate of eruption.

  4. A point-infiltration model for estimating runoff from rainfall on small basins in semiarid areas of Wyoming

    USGS Publications Warehouse

    Rankl, James G.

    1990-01-01

    A physically based point-infiltration model was developed for computing infiltration of rainfall into soils and the resulting runoff from small basins in Wyoming. The user describes a 'design storm' in terms of average rainfall intensity and storm duration. Information required to compute runoff for the design storm by using the model include (1) soil type and description, and (2) two infiltration parameters and a surface-retention storage parameter. Parameter values are tabulated in the report. Rainfall and runoff data for three ephemeral-stream basins that contain only one type of soil were used to develop the model. Two assumptions were necessary: antecedent soil moisture is some long-term average, and storm rainfall is uniform in both time and space. The infiltration and surface-retention storage parameters were determined for the soil of each basin. Observed rainstorm and runoff data were used to develop a separation curve, or incipient-runoff curve, which distinguishes between runoff and nonrunoff rainfall data. The position of this curve defines the infiltration and surface-retention storage parameters. A procedure for applying the model to basins that contain more than one type of soil was developed using data from 7 of the 10 study basins. For these multiple-soil basins, the incipient-runoff curve defines the infiltration and retention-storage parameters for the soil having the highest runoff potential. Parameters were defined by ranking the soils according to their relative permeabilities and optimizing the position of the incipient-runoff curve by using measured runoff as a control for the fit. Analyses of runoff from multiple-soil basins indicate that the effective contributing area of runoff is less than the drainage area of the basin. In this study, the effective drainage area ranged from 41.6 to 71.1 percent of the total drainage area. Information on effective drainage area is useful in evaluating drainage area as an independent variable in statistical analyses of hydrologic data, such as annual peak frequency distributions and sediment yield.A comparison was made of the sum of the simulated runoff and the sum of the measured runoff for all available records of runoff-producing storms in the 10 study basins. The sums of the simulated runoff ranged from 12.0 percent less than to 23.4 percent more than the sums of the measured runoff. A measure of the standard error of estimate was computed for each data set. These values ranged from 20 to 70 percent of the mean value of the measured runoff. Rainfall-simulator infiltrometer tests were made in two small basins. The amount of water uptake measured by the test in Dugout Creek tributary basin averaged about three times greater than the amount of water uptake computed from rainfall and runoff data. Therefore, infiltrometer data were not used to determine infiltration rates for this study.

  5. After a century-Revised Paleogene coal stratigraphy, correlation, and deposition, Powder River Basin, Wyoming and Montana

    USGS Publications Warehouse

    Flores, Romeo M.; Spear, Brianne D.; Kinney, Scott A.; Purchase, Peter A.; Gallagher, Craig M.

    2010-01-01

    The stratigraphy, correlation, mapping, and depositional history of coal-bearing strata in the Paleogene Fort Union and Wasatch Formations in the Powder River Basin were mainly based on measurement and description of outcrops during the early 20th century. Subsequently, the quality and quantity of data improved with (1) exploration and development of oil, gas, and coal during the middle 20th century and (2) the onset of coalbed methane (CBM) development during the late 20th and early 21st centuries that resulted in the drilling of more than 26,000 closely spaced wells with accompanying geophysical logs. The closeness of the data control points, which average 0.5 mi (805 m) apart, made for better accuracy in the subsurface delineation and correlation of coal beds that greatly facilitated the construction of regional stratigraphic cross sections and the assessment of resources. The drillhole data show that coal beds previously mapped as merged coal zones, such as the Wyodak coal zone in the Wyoming part of the Powder River Basin, gradually thinned into several discontinuous beds and sequentially split into as many as 7 hierarchical orders westward and northward. The thinning and splitting of coal beds in these directions were accompanied by as much as a ten-fold increase in the thicknesses of sandstone-dominated intervals within the Wyodak coal zone. This probably resulted from thrust loading by the eastern front of the Bighorn uplift accompanied by vertical displacement along lineaments that caused subsidence of the western axial part of the Powder River Basin during Laramide deformation in Late Cretaceous and early Tertiary time. Accommodation space was thereby created for synsedimentary alluvial infilling that controlled thickening, thinning, splitting, pinching out, and areal distribution of coal beds. Equally important was differential subsidence between this main accommodation space and adjoining areas, which influenced the overlapping, for example, of the Dietz coal zone in Montana, over the Wyodak coal zone in Wyoming. Correlation in a circular track of the Wyodak coal zone in the southern part of the basin also demonstrates overlapping with lower coal zones. Recognition of this stratigraphic relationship has led to revision of the correlations and nomenclature of coal beds because of inconsistency within these zones as well as those below and above them, which have long been subjects of controversy. Also, it significantly changes the traditional coal bed-to-bed correlations, and estimates of coal and coalbed methane resources of these coal zones due to thinning and pinching out of beds. More notably, thickness isopach, orientation, and distribution of the merged Wyodak coal bodies in the south-southeast part of the basin suggest that differential movement of lineament zones active during the Cretaceous was not a major influence on coal accumulation during the Paleocene. Improved knowledge of alluvial depositional environments as influenced by external and internal paleotectonic conditions within the Powder River Basin permits more accurate correlation, mapping, and resource estimation of the Fort Union and Wasatch coal beds. The result is a better understanding of the sedimentology of the basin infill deposits in relation to peat bog accumulation.

  6. Grebull sandstone pool (Lower Cretaceous) on Elk Basin thrust-fold complex, Wyoming and Montana

    SciTech Connect

    Stone, D.S.

    1984-07-01

    The Elk Basin field in the northern Bighorn basin is a giant structural trap with cumulative production surpassing 500 million bbl, principally from a Paleozoic common pool. Abundant well data and seismic information have been used in a stratigraphic and structural study focusing on the Greybull (Lower Cretaceous) gas pool and on deeper formations along this structural complex. These data support an interpretation of the Elk Basin field as a thrust-fold complex, underlain by a listric thrust fault zone which probably emanates from Precambrian basement at an angle of 45/sup 0/ or less. The fault steepens upward and dies out in steeply dipping Mesozoic clastics that are attenuated and cut by extensional faults at the surface. The little known Greybull Sandstone pool at Elk Basin field, which is now used for gas storage, was discovered in 1920, and contained estimated primary recoverable reserves of 54 bcf of gas at an average depth of about 2500 ft (760 m). The Greybull lies stratigraphically between the Dakota and Morrison Formations, and is composed of two distinct sandstone units, called A and B at the North Clark's Fork field in southern Montana. The lower B unit at Elk Basin is a fluvial river-channel deposit which ranges up to 150 ft (45 m) in thickness and nearly 2 mi (3 km) in width. The upper A unit is a series of shoreline sandstone deposits oriented northwest-southeast. Individual, porous A sandstone bodies range from a few feet to more than 20 ft (6 m) in thickness at Elk Basin. These two Greybull Sandstone units are part of a common gas pool covering about 2000 acres (800 ha.) of the crestal closure of the Elk Basin anticline. Seismic modeling indicates that Greybull Sandstone channels over 60 ft (18 m) thick may be detected by reflection character changes in CDP seismic data.

  7. Using HEM surveys to evaluate disposal of by-product water from CBNG development in the Powder River Basin, Wyoming

    SciTech Connect

    Lipinski, Brian A.; Sams, James I.; Smith, Bruce D.; Harbert, William

    2008-05-01

    Production of methane from thick, extensive coal beds in the Powder River Basin of Wyoming has created water management issues. Since development began in 1997, more than 650 billion liters of water have been produced from approximately 22,000 wells. Infiltration impoundments are used widely to dispose of by-product water from coal bed natural gas (CBNG) production, but their hydrogeologic effects are poorly understood. Helicopter electromagnetic surveys (HEM) were completed in July 2003 and July 2004 to characterize the hydrogeology of an alluvial aquifer along the Powder River. The aquifer is receiving CBNG produced water discharge from infiltration impoundments. HEM data were subjected to Occam's inversion algorithms to determine the aquifer bulk conductivity, which was then correlated to water salinity using site-specific sampling results. The HEM data provided high-resolution images of salinity levels in the aquifer, a result not attainable using traditional sampling methods. Interpretation of these images reveals clearly the produced water influence on aquifer water quality. Potential shortfalls to this method occur where there is no significant contrast in aquifer salinity and infiltrating produced water salinity and where there might be significant changes in aquifer lithology. Despite these limitations, airborne geophysical methods can provide a broadscale (watershed-scale) tool to evaluate CBNG water disposal, especially in areas where field-based investigations are logistically prohibitive. This research has implications for design and location strategies of future CBNG water surface disposal facilities within the Powder River Basin.

  8. Using HEM surveys to evaluate disposal of by-product water from CBNG development in the Powder River Basin, Wyoming

    SciTech Connect

    Lipinski, B.A.; Sams, J.I.; Smith, B.D.; Harbert, W.P.

    2008-05-01

    Production of methane from thick, extensive coal beds in the Powder River Basin ofWyoming has created water management issues. Since development began in 1997, more than 650 billion liters of water have been produced from approximately 22,000 wells. Infiltration impoundments are used widely to dispose of by-product water from coal bed natural gas (CBNG) production, but their hydrogeologic effects are poorly understood. Helicopter electromagnetic surveys (HEM) were completed in July 2003 and July 2004 to characterize the hydrogeology of an alluvial aquifer along the Powder River. The aquifer is receiving CBNG produced water discharge from infiltration impoundments. HEM data were subjected to Occam’s inversion algorithms to determine the aquifer bulk conductivity, which was then correlated to water salinity using site-specific sampling results. The HEM data provided high-resolution images of salinity levels in the aquifer, a result not attainable using traditional sampling methods. Interpretation of these images reveals clearly the produced water influence on aquifer water quality. Potential shortfalls to this method occur where there is no significant contrast in aquifer salinity and infiltrating produced water salinity and where there might be significant changes in aquifer lithology. Despite these limitations, airborne geophysical methods can provide a broadscale (watershed-scale) tool to evaluate CBNG water disposal, especially in areas where field-based investigations are logistically prohibitive. This research has implications for design and location strategies of future CBNG water surface disposal facilities within the Powder River Basin.

  9. Enigmatic uppermost Permian-lowermost Triassic stratigraphic relations in the northern Bighorn basin of Wyoming and Montana

    SciTech Connect

    Paull, R.A.; Paull, R.K. )

    1991-06-01

    Eighteen measured sections in the northern Bighorn basin of Wyoming and Montana provide the basis for an analysis of Permian-Triassic stratigraphic relations. This boundary is well defined to the south where gray calcareous siltstones of the Lower Triassic Dinwoody disconformably overlie the Upper Permian Ervay Member of the Park City Formation with little physical evidence of a significant hiatus. The Dinwoody is gradationally overlain by red beds of the Red Peak Formation. The Dinwoody this to zero near the state line. Northward, the erathem boundary is enigmatic because fossils are absent and there is no evidence of an unconformity. Poor and discontinuous exposures contribute to the problem. Up to 20 m of Permian or Triassic rocks or both overlie the Pennsylvanian Tensleep Sandstone in the westernmost surface exposures on the eastern flank of the Bighorn basin with physical evidence of an unconformity. East of the exposed Tensleep, Ervay-like carbonates are overlain by about 15 m of Dinwoody-like siltstones interbedded with red beds and thin dolomitic limestone. In both areas, they are overlain by the Red Peak Formation. Thin carbonates within the Dinwoody are silty, coarse algal laminates with associated peloidal micrite. Carbonates north of the Dinwoody termination and above probably Ervay are peloidal algal laminates with fenestral fabric and sparse coated shell fragments with pisoids. These rocks may be Dinwoody equivalents or they may be of younger Permian age than the Ervay. Regardless, revision of stratigraphic nomenclature in this area may bed required.

  10. Evolutionary relationships of a new genus and three new species of Omomyid primates (Willwood Formation, Lower Eocene, Bighorn Basin, Wyoming)

    USGS Publications Warehouse

    Bown, T.M.

    1991-01-01

    Studies of new finds of omomyid primates from the lower Eocene Willwood Formation of northwest Wyoming reveal the presence of a new genus and two new species of anaptomorphines and a new species of omomyine. All were apparently short-lived immigrants into the Bighorn Basin. The new genus and speciesTatmanius szalayi is typified by a diminutive single-rooted p3 and a bilobed-rooted p4 with a crown smaller than ml. These traits were probably derived fromPseudotetonius and parallel similar conditions inTrogolemur andNannopithex. The new speciesArapahovius advena is the first occurrence ofArapahovius outside the Washakie Basin, where it appears to have also been a vagrant species.Steinius annectens, sp. nov., is larger than the olderSteinius vespertinus and strengthens the alliance between this genus and BridgerianOraorays carteri, although which species ofSteinius is closer toOmomys is not yet clear. The available evidence suggests a derivation ofOmomys (Omomyini) fromSteinius and all Washakiini from the anaptomorphineTeilhardina, which would indicate that Omomyinae were at least diphyletic. Preliminary evidence suggests that the geographic distributions of at least some Willwood omomyids correlate with paleosol distributions.

  11. A new Cretaceous-Tertiary boundary locality in the western powder River basin, Wyoming: biological and geological implications

    USGS Publications Warehouse

    Nichols, D.J.; Brown, J.L.; Attrep, M., Jr.; Orth, C.J.

    1992-01-01

    A newly discovered Cretaceous-Tertiary (K-T) boundary locality in the western Powder River basin, Wyoming, is characterized by a palynologically defined extinction horizon, a fern-spore abundance anomaly, a strong iridium anomaly, and shock-metamorphosed quartz grains. Detailed microstratigraphic analyses show that about one third of the palynoflora (mostly angiosperm pollen) disappeared abruptly, placing the K-T boundary within a distinctive, 1- to 2-cm-thick claystone layer. Shocked quartz grains are concentrated at the top of this layer, and although fern-spore and iridium concentrations are high in this layer, they reach their maximum concentrations in a 2-cm-thick carbonaceous claystone that overlies the boundary claystone layer. The evidence supports the theory that the K-T boundary event was associated with the impact of an extraterrestrial body or bodies. Palynological analyses of samples from the K-T boundary interval document extensive changes in the flora that resulted from the boundary event. The palynologically and geochemically defined K-T boundary provides a unique time-line of use in regional basin analysis. ?? 1992.

  12. Fluvial and glacial implications of tephra localities in the western Wind River basin, Wyoming, U. S. A

    SciTech Connect

    Jaworowski, C. . Dept. of Geology)

    1993-04-01

    Examination of Quaternary fluvial and glacial deposits in the western Wind River Basin allows a new understanding of the Quaternary Wind River fluvial system. Interbedded fluvial sediments and volcanic ashes provide important temporal information for correlation of Quaternary deposits. In the western Wind River Basin, six mid-Pleistocene localities of tephra, the Muddy Creek, Red Creek, Lander, Kinnear, Morton and Yellow Calf ashes are known. Geochronologic studies confirm the Muddy Creek, Red Creek, Kinnear and Lander ashes as the 620--650ka Lava Creek tephra from the Yellowstone region in northwestern Wyoming. The stratigraphic position and index of refraction of volcanic glass from the Morton and Yellow Calf ashes are consistent with identification as Lava Creek tephra. Approximately 350 feet (106 meters) above the Wind River and 13 miles downstream from Bull Lake, interbedded Wind River fluvial gravels, volcanic glass and pumice at the Morton locality correlate to late (upper) Sacajawea Ridge gravels mapped by Richmond and Murphy. Associated with the oxygen isotope 16--15 boundary, the ash-bearing terrace deposits reveal the nature of the Wind River fluvial system during late glacial-early interglacial times. The Lander and Yellow Calf ashes, are found in terrace deposits along tributaries of the Wind River. Differences in timing and rates of incision between the Wind River and its tributary, the Little Wind River, results in complex terrace development near their junction.

  13. Eustatic and tectonic control on localization of porosity and permeability, Mid-Permian, Bighorn Basin, Wyoming

    SciTech Connect

    Simmons, S.P.; Scholle, P.A. )

    1990-05-01

    The Goose Egg Formation of the northeastern Bighorn basin was deposited in an arid shoreline (sabkha) environment during a time of global cyclic sea level variations and local tectonic uplift Eustatic sea level lows are represented by terrestrial red beds (seals), whereas highs resulted in the deposition of supratidal to shallow subtidal carbonates (reservoirs). Pennsylvanian and Permian differential uplift along the present basin margin localized a broken chain of barrier islands and shoals during deposition of the Ervay and earlier carbonate members, as recognized in outcrop at Sheep and Little Sheep Mountain anticlines. The Ervay Member on these paleohighs is typified by fenestral dolomite, containing abundant tepees and pisoids. This fabric is interpreted to have folded in the highest intertidal to supratidal sabkha environment which developed on the leeward shores of these islands. The fenestral carbonates grade basinward (westward) into narrow bioclastic grainstone beach deposits and then to open-shelf fossiliferous packstones and wackestone. To the east lie laminated lagoonal micritic limestones and dolomites. Outcrop and core study has shown the fenestral facies to be limited to areas coincident with present-day basin margin anticlines. Not only are these the locations of the most porous facies, but tight Laramide folding of the Goose Egg carbonates resulted in pervasive fracturing and thus very high permeabilities in the same structures. The close association of Laramide folds and productive Permian carbonate horizons in the northeast Bighorn basin could well be characteristic for other yet to be explored structures along the basin-margin trend.

  14. Environmental setting of the Yellowstone River basin, Montana, North Dakota, and Wyoming

    USGS Publications Warehouse

    Zelt, Ronald B.; Boughton, G.K.; Miller, K.A.; Mason, J.P.; Gianakos, L.M.

    1999-01-01

    Natural and anthropogenic factors influence water-quality conditions in the Yellowstone River Basin. Physiography parallels the structural geologic setting that is generally composed of several uplifts and structural basins. Contrasts in climate and vegetation reflect topographic controls and the midcontinental location of the study unit. Surface-water hydrology reflects water surpluses in mountainous areas that are dominated by snowmelt runoff, and arid to semiarid conditions in the plains that are dissected by typically irrigated valleys in the remainder of the study unit. Principal shallow aquifers are Tertiary sandstones and unconsolidated Quaternary deposits. Human population, though sparsely distributed in general, is growing most rapidly in a few urban centers and resort areas, mostly in the northwestern part of the basin. Land use is areally dominated by grazing in the basins and plains and economically dominated by mineral-extraction activities. Forests are the dominant land cover in mountainous areas. Cropland is a major land use in principal stream valleys. Water use is dominated by irrigated agriculture overall, but mining and public-supply facilities are major users of ground water. Coal and hydrocarbon production and reserves distinguish the Yellowstone River Basin as a principal energy-minerals resources region. Current metallic ore production or reserves are nationally significant for platinum-group elements and chromium.The study unit was subdivided as an initial environmental stratification for use in designing the National Water-Quality Assessment Program investigation that began in 1997. Ecoregions, geologic groups, mineral-resource areas, and general land-cover and land-use categories were used in combination to define 18 environmental settings in the Yellowstone River Basin. It is expected that these different settings will be reflected in differing water-quality or aquatic-ecological characteristics.

  15. Phreatophytic land-cover map of the northern and central Great Basin Ecoregion: California, Idaho, Nevada, Utah, Oregon, and Wyoming

    USGS Publications Warehouse

    Mathie, Amy M.; Welborn, Toby L.; Susong, David D.; Tumbusch, Mary L.

    2011-01-01

    Increasing water use and changing climate in the Great Basin of the western United States are likely affecting the distribution of phreatophytic vegetation in the region. Phreatophytic plant communities that depend on groundwater are susceptible to natural and anthropogenic changes to hydrologic flow systems. The purpose of this report is to document the methods used to create the accompanying map that delineates areas of the Great Basin that have the greatest potential to support phreatophytic vegetation. Several data sets were used to develop the data displayed on the map, including Shrub Map (a land-cover data set derived from the Regional Gap Analysis Program) and Gap Analysis Program (GAP) data sets for California and Wyoming. In addition, the analysis used the surface landforms from the U.S. Geological Survey (USGS) Global Ecosystems Mapping Project data to delineate regions of the study area based on topographic relief that are most favorable to support phreatophytic vegetation. Using spatial analysis techniques in a GIS, phreatophytic vegetation classes identified within Shrub Map and GAP were selected and compared to the spatial distribution of selected landforms in the study area to delineate areas of phreatophyte vegetation. Results were compared to more detailed studies conducted in selected areas. A general qualitative description of the data and the limitations of the base data determined that these results provide a regional overview but are not intended for localized studies or as a substitute for detailed field analysis. The map is intended as a decision-support aide for land managers to better understand, anticipate, and respond to ecosystem changes in the Great Basin.

  16. Detection of hydrocarbons and hydrocarbon microseepage in the Bighorn Basin, Wyoming using isotopic, biogeochemical, and spectral reflectance techniques

    SciTech Connect

    Bammel, B.H.

    1992-01-01

    A stable isotope, biogeochemical, and gebotanical reflectance study was conducted at five areas in the Bighorn Basin of Wyoming. Three of the areas are active hydrocarbon producing fields, including Little Buffalo Basin, Bonanza, and Enigma oil fields. One area contains no surface or subsurface hydrocarbons, the Cody Base area. One area, Trapper Canyon, is a surface tar sand deposit. In each area numerous reflectance spectra were measured and leaf samples collected from sagebrush over and surrounding the fields. At Bonanza and Trapper Canyon, sagebrush plants were also growing directly in hydrocarbon impregnated formations. Unusually low [delta][sup 13]C values of calcite were found in calcite-bearing samples over the Little Buffalo Basin Field. The systematic distribution of these low [delta][sup 13]C values is correlated with the subsurface oil and gas production axis. Significant distinctions between the surface hydrocarbon occurrences at Trapper Canyon and Bonanza Seeps are highlighted by chemical differences in sagebrush leaves. At Trapper Canyon relatively high concentrations of aluminum and iron are found. Sagebrush leaves at the Bonanza Seeps contain relatively low concentrations of calcium and potassium, and a relatively high amount of organic material. Analyses from sagebrush growing over subsurface commercial hydrocarbon deposits tend to be relatively low in magnesium and relatively high in sodium. The increase in sodium may indicate subsurface reservoirs without regard to their hydrocarbon content. The results of the geobotanical reflectance study shows that a significant blue shift of the green peak and red trough positions is the most reliable indicator of hydrocarbon-induced stress in sagebrush plants, and can only be detected where the sage is actually growing in visible surface or near-surface hydrocarbons. Spectral reflectance intensity data have no significant correlation with the presence of surface or subsurface hydrocarbons.

  17. Hydrogeologic features of the alluvial deposits in the Greybull River valley, Bighorn Basin, Wyoming

    USGS Publications Warehouse

    Cooley, M.E.; Head, W.J.

    1979-01-01

    The alluvial aquifer along the Greybull River in Wyoming, consists principally of the Greybull terrace doposits and flood-plain alluvium but also includes Burlington terrace deposits east of Burlington, the McKinnie terrace, and the younger, generally undissected alluvial-fan deposits. Well-log data and 18 surface-resistivity measurements at four localities indicate that the thickness of the alluvial aquifer is as much as 60 feet thick only near Burlington and Otto. The most favorable area for development of ground water from the alluvial aquifer is near Burlington and Otto where relatively large amounts of water can be obtained from the Greybull terrace deposits and the flood-plain alluvium. Elsewhere, the deposits of the alluvial aquifer yield only small amounts of water to wells. (Woodard-USGS)

  18. Stress and strain evolution in foreland basins and its relation to the structural style : insights from the Bighorn Basin (Wyoming, USA)

    NASA Astrophysics Data System (ADS)

    Beaudoin, N.; Leprêtre, R.; Bellahsen, N.; Lacombe, O.; Amrouch, K.; Callot, J.-P.; Emmanuel, L.; Daniel, J.-M.

    2012-04-01

    The Rocky Mountains in western US provide amongst the best examples of thick-skinned tectonics: following the thin-skinned Sevier orogeny, the subsequent compressional reactivation of basement faults gave birth to the so-called Laramide uplifts/arches. The Bighorn basin, located in Wyoming, is therefore a key place to study the stress evolution during the transition from thin- to thick-skinned tectonics in orogenic forelands in terms of structural, microstructural and stress/strain evolution. We report the results of the analyses of fracture populations, inversion of fault-slip data and calcite twin data for stress as well as of calcite twinning paleopiezometry performed in two famous Laramide basement-cored structures located on each side of the basin: the Rattlesnake Mountain Anticline (RMA) and the Sheep Mountain Anticline (SMA). The comparison between the stress evolution in both folds allows to unravel (i) the pattern of both paleostress orientations and magnitudes and their evolution in time and space and (ii) the tectonic history at the basin scale. Structural and microstructural analyses show that both folds share similar kinematics. Most of the fractures are related to three main events: the Sevier thin-skinned contraction, the Laramide thick-skinned contraction, and the Basin and Range extension. During the thin-skinned period, in the innermost part of the foreland, the stress regime evolved from strike-slip to reverse while it remained strike-slip in the outermost part of the basin. Moreover, some fracture sets related to layer-parallel shortening during the early Sevier contraction formed only close to the Sevier deformation front and remained poorly expressed further away. Stress attenuation toward the craton interior is thus clearly shown by the dataset and illustrates the prominent role of the distance to the front of deformation in the way fracture sets developed in orogenic forelands. Alternatively, during the thick-skinned period, the evolution of stress trends and magnitudes is quite similar throughout the whole basin. In such context, differential stress magnitudes seem to be primarily controlled by the structure and the kinematics of the basement-cored anticlines themselves. This in turn suggests that basement faults were active since the very beginning of the Laramide shortening phase. In contrast to previous studies, our work thus supports the influence of the tectonic style on the evolution of stress magnitudes in orogenic forelands.

  19. Geologic map and coal stratigraphy of the Blue Gap quadrangle, eastern Washakie Basin, Carbon County, Wyoming

    USGS Publications Warehouse

    Hettinger, R.D.; Honey, J.G.

    2005-01-01

    This report provides a geologic map of the Blue Gap 7.5-minute quadrangle, located along the eastern flank of the Washakie Basin, Wyo. Geologic formations and individual coal beds were mapped at a scale of 1:24,000; surface stratigraphic sections were measured and described; and well logs were examined to determine coal correlations and thicknesses in the subsurface.

  20. A history of the oil business in the Big Horn Basin, Wyoming

    SciTech Connect

    Hares, C.J.

    1988-01-01

    This paper provides a historical account of the discovery and development of the Big Horn Basin. It discusses the exploration and drilling history; government purchases and leasing programs; development of geophysical survey techniques; oil and gas market history; impacts of World War II; and production history.

  1. Structural control on paleovalley development, muddy sandstone, Powder River basin, Wyoming

    SciTech Connect

    Gustason, E.R.; Wheeler, D.A.; Ryer, T.A.

    1988-07-01

    A subaerial unconformity within the Lower Cretaceous Muddy Sandstone in the Powder River basin developed during a late Albian sea level lowstand and resulted in a markedly rectangular drainage pattern. Numerous right-angle bends and perpendicular confluences of Muddy paleovalleys are believed to reflect syndepositional movement on basement faults and dissolution of salts in the Goose Egg Formation. A detailed subsurface analysis of geophysical logs from closely spaced wells reveals that up to 30 ft of vertical displacement occurred along northwest- and northeast-trending faults prior to and during the development of the subaerial unconformity. An analysis of a high-resolution magnetic survey (NewMag) of the Powder River basin reveals that numerous paleovalleys parallel the boundaries, or basement shear zones, between basement blocks. Small, irregularly shaped, thin intervals of the Permian Goose Egg Formation, which resemble karst topography, also occur along these northwest- and northeast-trending basement faults beneath Muddy paleovalleys. An arcuate Muddy paleovalley located in the northern Powder River basin parallels contours of isopach and trend surface maps of the Goose Egg Formation. These relationships suggest that the location and orientation of Muddy paleovalleys were controlled by a combination of movement along northwest- and northeast-trending faults and syntectonic dissolution of salt within the Goose Egg Formation. Simultaneous dissolution of Goose Egg salts and headward erosion of Muddy paleovalleys along this conjugate fault pattern also indicate that the Powder River basin was influenced by wrench fault tectonics during the late Albian.

  2. The Geology and Remarkable Thermal Activity of Norris Geyser Basin, Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    White, Donald Edward; Hutchinson, Roderick A.; Keith, Terry E.C.

    1988-01-01

    Norris Geyser Basin, normally shortened to Norris Basin, is adjacent to the north rim of the Yellowstone caldera at the common intersection of the caldera rim and the Norris-Mammoth Corridor, a zone of faults, volcanic vents, and thermal activity that strikes north from the caldera rim to Mammoth Hot Springs. An east-west fault zone terminates the Gallatin Range at its southern end and extends from Hebgen Lake, west of the park, to Norris Basin. No local evidence exists at the surface in Norris Basin for the two oldest Yellowstone volcanic caldera cycles (~2.0 and 1.3 m.y.B.P.). The third and youngest cycle formed the Yellowstone caldera, which erupted the 600,000-year-old Lava Creek Tuff. No evidence is preserved of hydrothermal activity near Norris Basin during the first 300,000.years after the caldera collapse. Glaciation probably removed most of the early evidence, but erratics of hot-spring sinter that had been converted diagenetically to extremely hard, resistant chalcedonic sinter are present as cobbles in and on some moraines and till from the last two glacial stages, here correlated with the early and late stages of the Pinedale glaciation <150,000 years B.P.). Indirect evidence for the oldest hydrothermal system at Norris Basin indicates an age probably older than both stages of Pinedale glaciation. Stream deposits consisting mainly of rounded quartz phenocrysts of the Lava Creek Tuff were subaerial, perhaps in part windblown and redeposited by streams. A few small rounded pebbles are interpreted as chalcedonic sinter of a still older cycle. None of these are precisely dated but are unlikely to be more than 150,000 to 200,000 years old. ...Most studies of active hydrothermal areas have noted chemical differences in fluids and alteration products but have given little attention to differences and models to explain evolution in types. This report, in contrast, emphasizes the kinds of changes in vents and their changing chemical types of waters and then provides models for explaining these differences. Norris Basin is probably not an independent volcanic-hydrothermal system. The basin and nearby acid-leached areas (from oxidation of H2S-enriched vapor) are best considered as parts of the same system, extending from Norris Basin to Roaring Mountain and possibly to Mammoth. If so, are they parts of a single large system centered within the Yellowstone caldera, or are Norris Basin and the nearby altered areas both parts of one or more young independent corridor systems confined, at least in the shallow crust, to the Norris-Mammoth Corridor? Tentatively, we favor the latter relation, probably having evolved in the past ~300,000 years. A model for large, long-lived, volcanic-hydrothermal activity is also suggested, involving all of the crust and upper mantle and using much recent geophysical data bearing on crust-mantle interrelations. Our model for large systems is much superior to previous suggestions for explaining continuing hydrothermal activity over hundreds of thousands of years, but is less attractive for the smaller nonhomogenized volcanic system actually favored here for the Norris-Mammoth Corridor.

  3. U.S. Geological Survey and Bureau of Land Management Cooperative Coalbed Methane Project in the Powder River Basin, Wyoming

    USGS Publications Warehouse

    U.S. Geological Survey

    2006-01-01

    Introduction: Evidence that earthquakes threaten the Mississippi, Ohio, and Wabash River valleys of the Central United States abounds. In fact, several of the largest historical earthquakes to strike the continental United States occurred in the winter of 1811-1812 along the New Madrid seismic zone, which stretches from just west of Memphis, Tenn., into southern Illinois (fig. 1). Several times in the past century, moderate earthquakes have been widely felt in the Wabash Valley seismic zone along the southern border of Illinois and Indiana (fig. 1). Throughout the region, between 150 and 200 earthquakes are recorded annually by a network of monitoring instruments, although most are too small to be felt by people. Geologic evidence for prehistoric earthquakes throughout the region has been mounting since the late 1970s. But how significant is the threat? How likely are large earthquakes and, more importantly, what is the chance that the shaking they cause will be damaging?The Bureau of Land Management (BLM) Wyoming Reservoir Management Group and the U.S. Geological Survey (USGS) began a cooperative project in 1999 to collect technical and analytical data on coalbed methane (CBM) resources and quality of the water produced from coalbeds in the Wyoming part of the Powder River Basin. The agencies have complementary but divergent goals and these kinds of data are essential to accomplish their respective resource evaluation and management tasks. The project also addresses the general public need for information pertaining to Powder River Basin CBM resources and development. BLM needs, which relate primarily to the management of CBM resources, include improved gas content and gas in-place estimates for reservoir characterization and resource/reserve assessment, evaluation, and utilization. USGS goals include a basinwide assessment of CBM resources, an improved understanding of the nature and origin of coalbed gases and formation waters, and the development of predictive models for the assessment of CBM resources that can be used for such purposes in other basins in the United States (for example, the Bighorn, Greater Green River, and Williston Basins) and in other countries throughout the world (for example, Indonesia, New Zealand, and the Philippines). Samples of coal, produced water, and gas from coalbed methane drill holes throughout the Powder River Basin, many of which are adjacent to several active mine areas (figs. 1, 2), have been collected by personnel in the USGS, BLM Reservoir Management Group, and Casper and Buffalo BLM Field Offices. Sampling was done under confidentiality agreements with 29 participating CBM companies and operators. Analyses run on the samples include coal permeability, coal quality and chemistry, coal petrography and petrology, methane desorption and adsorption, produced-water chemistry, and gas composition and isotopes. The USGS has supplied results to the BLM Reservoir Management Group for their resource management needs, and data are released when the terms of the confidentiality agreements are completed and consent is obtained.

  4. Variation in sedimentology and architecture of Eocene alluvial strata, Wind River and Washakie basins, Wyoming

    SciTech Connect

    Patterson, P.E.; Larson, E.E. )

    1991-03-01

    Eocene continental, alluvial strata of the Wind River Formation (Wind River Basin) and the Cathedral Bluffs Member of the Wasatch Formation (Washakie basin) provide two examples of Laramide intermontane basin aggradation. These alluvial sediments primarily represent overbank flood deposits marginal to channel complexes. Their sedimentology and architecture, although grossly similar, appear to vary somewhat with proximity to Laramide uplifts. In both cases, repetitive sedimentation on the floodplain produced a succession of depositional couplets, each composed of a light-gray sand overlain by a red clay-rich silt or sand. The lower sands are tabular bodies that, near their distal margins, taper discernibly. They commonly display planar and ripple-drift laminations. Upper clay-rich layers, which are laminated, are also generally tabular. Those floodplain strata depositional proximal to Laramide uplifts show little evidence of scouring prior to deposition of the next, overlying couplet. Most of these sedimentary layers, therefore, are laterally continuous (up to 2 km). This alluvial architecture results in relatively uniform porosity laterally within depositional units but variable porosity stratigraphically through the sequence. In contrast, alluvial sediments deposited farther from the Laramide uplifts have undergone sporadic incision (either during rising flood stage or subsequently) followed by aggradation. As a result, many of these floodplain couplets are discontinuous laterally and, hence, exhibit large-scale lateral variability in porosity. Both alluvial sequences have undergone similar types and extents of burial diagenesis.

  5. Generation and expulsion of petroleum and gas from Almond Formation Coal, Greater Green River Basin, Wyoming

    SciTech Connect

    Garcia-Gonzalez, M.; Surdam, R.C.; Lee, M.L.

    1997-01-01

    Petrographic and geochemical studies of coal from the Almond Formation in the Greater Green River basin demonstrate that the coal contains important volumes of stored liquid petroleum, as well as methane. Modeling indicates that at the basin center, most of the oil generated in the coal has been thermally cracked to gas, whereas at the basin flank the oil-to-gas reaction has barely proceeded. Several new concepts are presented about the mechanism of petroleum generation in coal based on (1) natural maturation trends gleaned form examination of Almond coal samples from different burial depths and (2) similar maturation trends observed in hydrous pyrolysis experiments using immature Almond coal samples. These new concepts show that the oil in the coal was generated during the alteration of desmocollinite and liptinite macerals to exsudatinite (waxy oil) and inertinite solid residue; that the waxy oil was initially stored in porous structures and subsequently in vesicles as the coal matured under increasing temperature; that primary migration of the oil occurred as the generation of a sufficient volume of exsudatinite microfractured the vitrinite-semifusinite vesicles, interconnecting vesicles and pores; and that the thermal cracking of exsudatinite generated a sufficient volume of gas to fracture the vesiculated coal as pore pressure increased and allowed migration of hydrocarbons out of the coal.

  6. An empirical method for determining average soil infiltration rates and runoff, Powder River structural basin, Wyoming

    USGS Publications Warehouse

    Rankl, James G.

    1982-01-01

    This report describes a method to estimate infiltration rates of soils for use in estimating runoff from small basins. Average rainfall intensity is plotted against storm duration on log-log paper. All rainfall events are designated as having either runoff or nonrunoff. A power-decay-type curve is visually fitted to separate the two types of rainfall events. This separation curve is an incipient-ponding curve and its equation describes infiltration parameters for a soil. For basins with more than one soil complex, only the incipient-ponding curve for the soil complex with the lowest infiltration rate can be defined using the separation technique. Incipient-ponding curves for soils with infiltration rates greater than the lowest curve are defined by ranking the soils according to their relative permeabilities and optimizing the curve position. A comparison of results for six basins produced computed total runoff for all events used ranging from 16.6 percent less to 2.3 percent more than measured total runoff. (USGS)

  7. Climate control on Quaternary coal fires and landscape evolution, Powder River basin, Wyoming and Montana

    SciTech Connect

    Riihimaki, C.A.; Reiners, P.W.; Heffern, E.L.

    2009-03-15

    Late Cenozoic stream incision and basin excavation have strongly influenced the modern Rocky Mountain landscape, but constraints on the timing and rates of erosion are limited. The geology of the Powder River basin provides an unusually good opportunity to address spatial and temporal patterns of stream incision. Numerous coal seams in the Paleocene Fort Union and Eocene Wasatch Formations within the basin have burned during late Cenozoic incision, as coal was exposed to dry and oxygen-rich near-surface conditions. The topography of this region is dominated by hills capped with clinker, sedimentary rocks metamorphosed by burning of underlying coal beds. We use (U-Th)/He ages of clinker to determine times of relatively rapid erosion, with the assumption that coal must be near Earth's surface to burn. Ages of 55 in situ samples range from 0.007 to 1.1 Ma. Clinker preferentially formed during times in which eccentricity of the Earth's orbit was high, times that typically but not always correlate with interglacial periods. Our data therefore suggest that rates of landscape evolution in this region are affected by climate fluctuations. Because the clinker ages correlate better with eccentricity time series than with an oxygen isotope record of global ice volume, we hypothesize that variations in solar insolation modulated by eccentricity have a larger impact on rates of landscape evolution in this region than do glacial-interglacial cycles.

  8. Geology and remarkable thermal activity of Norris Geyser Basin, Yellowstone National Park, Wyoming

    SciTech Connect

    White, D.E.; Hutchinson, R.A.; Keith, T.E.C.

    1988-01-01

    Norris Geyser Basin is adjacent to the north rim of the Yellowstone caldera at the common intersection of the caldera rim and the Norris-Mammoth Corridor, a zone of faults, volcanic vents, and thermal activity that strikes north from the caldera rim to Mammoth Hot Springs. The dominant quartz sand is hydrothermally cemented by chalcedony and is extremely hard, thereby justifying the term hydrothermal quartzite. The fundamental water type in Norris Basin is nearly neutral in pH and high in Cl and SiO/sub 2/. Another common type of water in Norris Basin is high in SO/sub 4/ and moderately high in Cl, with Cl/SO/sub 4/ ratios differing considerably. This study provides no new conclusive data on an old problem, the source or sources of rare dissolved constitutents. An important part of this paper consists of examples of numerous changes in behavior and chemical composition of most springs and geysers, to extents not known elsewhere in the park and perhaps in the world. Hydrothermal mineralogy in core samples from three research holes drilled entirely in Lava Creek Tuff to a maximum depth of -331.6 m permits an interpretation of the hydrothermal alteration history. A model for large, long-lived, volcanic-hydrothermal activity is also suggested, involving all of the crust and upper mantle and using much recent geophysical data bearing on crust-mantle interrelations.

  9. Ground support data from July 10 to July 29, 1978, for HCMM thermal satellite data of the Powder River Basin, Wyoming

    NASA Technical Reports Server (NTRS)

    Hummer-Miller, S.; Watson, K.; Kipfinger, R. (principal investigators)

    1980-01-01

    Radiometric and meteorological data acquired at three ground stations located approximately 150 km apart in the Powder River Basin, Wyoming, are summarized. The data were collected between July 10 and July 29, 1978, to support the HCMM thermal satellite data acquired during this time period. The parameters measured are direct solar radiance, total solar radiance, sky radiance, air temperature, relative humidity, wind speed, and wind direction. A tabulation of the measurement accuracies is presented.

  10. Chapter A. Effects of urbanization on stream ecosystems in the South Platte River basin, Colorado and Wyoming

    USGS Publications Warehouse

    Sprague, Lori A.; Zuellig, Robert E.; Dupree, Jean A.

    2006-01-01

    This report describes the effects of urbanization on physical, chemical, and biological characteristics of stream ecosystems in 28 basins along an urban land-use gradient in the South Platte River Basin, Colorado and Wyoming, from 2002 through 2003. Study basins were chosen to minimize natural variability among basins due to factors such as geology, elevation, and climate and to maximize coverage of different stages of urban development among basins. Because land use or population density alone often are not a complete measure of urbanization, land use, land cover, infrastructure, and socioeconomic variables were integrated in a multimetric urban intensity index to represent the degree of urban development in each study basin. Physical characteristics studied included stream hydrology, stream temperature, and habitat; chemical characteristics studied included nutrients, pesticides, suspended sediment, sulfate, chloride, and fecal bacteria concentrations; and biological characteristics studied included algae, fish, and invertebrate communities. Semipermeable membrane devices (SPMDs), passive samplers that concentrate trace levels of hydrophobic organic contaminants like polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), also were used. The objectives of the study were to (1) examine physical, chemical, and biological responses along the gradient of urbanization; (2) determine the major physical, chemical, and landscape variables affecting the structure of aquatic communities; and (3) evaluate the relevance of the results to the management of water resources in the South Platte River Basin. Commonly observed effects of urbanization on instream physical, chemical, and biological characteristics, such as increased flashiness, higher magnitude and more frequent peak flows, increased concentrations of chemicals, and changes in aquatic community structure, generally were not observed in this study. None of the hydrologic, temperature, habitat, or chemical variables were correlated strongly (Spearman's rho greater than or equal to 0.7) with urban intensity, with the exception of some of the SPMD-based toxicity and chemical variables. SPMD-based measures of potential toxicity and PAH concentrations were positively correlated with urban intensity. The PAH concentrations also were positively correlated with measures of road density and negatively correlated with distance to the nearest road, indicating that automobile exhaust is a major source of these compounds in the study area. This source may be localized enough that the transport of PAHs would be minimally affected by water-management practices such as diversion or storage upstream. In contrast, the predominant sources of nutrients, bacteria, suspended sediment, sulfate, chloride, and pesticides may be more dispersed throughout the drainage area and, therefore, their transport to downstream sites may be subject to greater disruption by water regulation. Although no direct link was found between most water-chemistry characteristics and urbanization, invertebrate, algae, and fish-community characteristics were strongly associated with nutrients, pesticides, sulfate, chloride, and suspended sediment. None of the biological community variables were strongly correlated with the urban intensity index. Algal biomass predominantly was associated with total nitrogen concentrations, nitrite-plus-nitrate concentrations, and the duration of high flows. Fish communities predominantly were associated with housing age, the percentage of suspended sediment finer than 0.063 millimeters and chloride concentrations. Invertebrate communities predominantly were associated with the frequency of rising and falling flow events, the duration of high flows, total nitrogen concentrations, nitrite-plus-nitrate concentrations, and total herbicide concentrations. Historical records indicate that aquatic communities in the region may have been altered prior to any substantial urban development by early agricultural and water-management practices. Present-day aquatic communities ar

  11. Depositional systems and petroleum potential, Mesaverde Formation southeastern Wind River basin, Wyoming

    SciTech Connect

    Hippe, D.J.; Needham, D.W.; Ethridge, F.G.

    1986-08-01

    Depositional environments and systems of the Wind River basin Mesaverde Formation were interpreted from an analysis of outcrops along the Casper arch and Rattlesnake Hills anticline and cores and wireline logs from the adjacent subsurface. The Fales Sandstone and Parkman Sandstone/unnamed middle member are deposits of eastward progradational, wave-dominated strand-plain and deltaic complexes. Basal portions of the Fales Sandstone and the Parkman Sandstone are composed of a thickening- and coarsening-upward sandstone sequence whose facies represent storm-dominated inner-shelf and wave-dominated shore-zone environments. Facies sequences in the upper Fales Sandstone interval and the unnamed middle member are interpreted as deposits of lower coastal plain (marshes, bay fills, distributary channels, and crevasse splays) and upper coastal plain (alluvial channels, crevasse splays and fine-grained flood basin) sequences. The Teapot Sandstone is interpreted as an alluvial deposit. Analysis of facies sequences in the Teapot suggests a change in fluvial style, from braided-belt deposits along the southwest flank to meander-belt deposits along the northeast flank of the basin. These fluvial systems fed the Teapot deltas to the east. Stratigraphic plays for oil and gas include alluvial valley fills and point-bar deposits in the Teapot Sandstone, storm-dominated shelf sands in the upper Cody Shale and the Fales and Parkman Sandstones, and a transgressive barrier-bar sequence in the upper Fales Sandstone. Laterally continuous shore-zone sandstones may form combination traps where pinch-outs occur on structure.

  12. Genesis of clay mineral assemblages and micropaleoclimatic implications in the Tertiary Powder River Basin, Wyoming

    SciTech Connect

    Flores, R.M.; Weaver, J.N. ); Bossiroy, D.; Thorez, J. )

    1990-05-01

    An x-ray diffraction (XRD) study was undertaken on the clay mineralogy of the early Tertiary coal-bearing sequences of the Powder River basin. The vertical and lateral distribution of alternating fluvial conglomerates, sandstones, mudstones, shales, coals, and paleosols reveals a transition from alluvial fans along the basin margin to an alluvial plain and peat bogs basinward. Samples included unweathered shales and mudstones from a borehole and a variety of corresponding surface outcrop samples of Cambrian to Eocene age. Samples older than Tertiary were collected along the basin margin specifically to determine the potential source of parent material during Tertiary sedimentation. XRD analyses were performed on the <2-{mu}m fraction prepared as oriented aggregates. To investigate the materials in their natural state, no chemical pre-treatments the authors applied before the analysis. A series of specific post-treatments, consisting of catonic saturation (Li+, K+), a solution with polyalcohols, heating, acid attack and hydrazine saturation was selectively applied. These post-treatments permit a good discrimination between the mimetic clay minerals such as smectite and illite-smectite mixed layers that constitute the bulk of the clay fraction in the Tertiary rocks. When analyzed only using routine XRD, these swelling minerals are apparently uniformly distributed in the fluvial sedimentary rocks and are better interpreted as a single smectitic population. However, the post-treatments clearly differentiate both qualitatively and quantitatively this smectitic stock. Other clays include illite and kaolinite, which have different degrees of crystallinity, and minor interstratified clays (i.e., illite-chlorite, chlorite-smectite). The clay minerals in pre-Tertiary (and pedogenic) materials are different from those in the Tertiary rocks.

  13. Preliminary report on coal resources of the Wyodak-Anderson coal zone, Powder River Basin, Wyoming and Montana

    USGS Publications Warehouse

    Ellis, Margaret S.; Gunther, Gregory L.; Flores, Romeo M.; Ochs, Allen M.; Stricker, Gary D.; Roberts, Steven B.; Taber, Thomas T.; Bader, Lisa R.; Schuenemeyer, John H.

    1998-01-01

    The National Coal Resource Assessment (NCRA) project by the U.S. Geological Survey is designed to assess US coal with the greatest potential for development in the next 20 to 30 years. Coal in the Wyodak-Anderson (WA) coal zone in the Powder River Basin of Wyoming and Montana is plentiful, clean, and compliant with EPA emissions standards. This coal is considered to be very desirable for development for use in electric power generation. The purpose of this NCRA study was to compile all available data relating to the Wyodak- Anderson coal, correlate the beds that make up the WA coal zone, create digital files pertaining to the study area and the WA coal, and produce a variety of reports on various aspects of the assessed coal unit. This report contains preliminary calculations of coal resources for the WA coal zone and is one of many products of the NCRA study. Coal resource calculations in this report were produced using both public and confidential data from many sources. The data was manipulated using a variety of commercially available software programs and several custom programs. A general description of the steps involved in producing the resource calculations is described in this report.

  14. Tracking solutes and water from subsurface drip irrigation application of coalbed methane–produced waters, Powder River Basin, Wyoming

    SciTech Connect

    Engle, Mark A.; Bern, Carleton R.; Healy, Richard W.; Sams, James I.; Zupancic, John W.; Schroeder, Karl T.

    2011-09-01

    One method to beneficially use water produced from coalbed methane (CBM) extraction is subsurface drip irrigation (SDI) of croplands. In SDI systems, treated CBM water (injectate) is supplied to the soil at depth, with the purpose of preventing the buildup of detrimental salts near the surface. The technology is expanding within the Powder River Basin, but little research has been published on its environmental impacts. This article reports on initial results from tracking water and solutes from the injected CBM-produced waters at an SDI system in Johnson County, Wyoming. In the first year of SDI operation, soil moisture significantly increased in the SDI areas, but well water levels increased only modestly, suggesting that most of the water added was stored in the vadose zone or lost to evapotranspiration. The injectate has lower concentrations of most inorganic constituents relative to ambient groundwater at the site but exhibits a high sodium adsorption ratio. Changes in groundwater chemistry during the same period of SDI operation were small; the increase in groundwater-specific conductance relative to pre-SDI conditions was observed in a single well. Conversely, groundwater samples collected beneath another SDI field showed decreased concentrations of several constituents since the SDI operation. Groundwater-specific conductance at the 12 other wells showed no significant changes. Major controls on and compositional variability of groundwater, surface water, and soil water chemistry are discussed in detail. Findings from this research provide an understanding of water and salt dynamics associated with SDI systems using CBM-produced water.

  15. Mammalian community response to the latest Paleocene thermal maximum: An isotaphonomic study in the northern Bighorn Basin, Wyoming

    NASA Astrophysics Data System (ADS)

    Clyde, William C.; Gingerich, Philip D.

    1998-11-01

    New stratigraphic and paleontological information from the McCullough Peaks, northern Bighorn Basin, Wyoming, is incorporated into an isotaphonomic faunal database and used to investigate the impact of the latest Paleocene thermal maximum and coincident earliest Wasatchian immigration event on local mammalian community structure. Surface collections from Willwood Formation overbank deposits provide taphonomically consistent and stratigraphically resolved samples of the medium- to large-sized components of underlying mammalian communities. Rarefaction shows that the immigration event caused an abrupt and dramatic increase in species richness and evenness. After this initial increase, diversity tapered off to more typical Wasatchian levels that were still higher than those in the preceding Clarkforkian. Wasatchian immigrants were rapidly incorporated into the new community organization, representing ˜20% of the taxa and ˜50% of the individuals. Immigrant taxa generally had larger body sizes and more herbivorous and frugivorous dietary habits compared to endemic taxa, causing significant turnover in body-size structure and trophic structure. There was a significant short-term body-size decrease in many lineages that may have been prompted by the elevated temperatures and/or decreased latitudinal thermal gradients during the latest Paleocene thermal maximum. Rapid short-term climatic change (transient climates) and associated biotic dispersal can have abrupt and long-lasting effects on mammalian community evolution.

  16. A critical review of published coal quality data from the southwestern part of the Powder River Basin, Wyoming

    USGS Publications Warehouse

    Luppens, James A.

    2011-01-01

    A review of publicly available coal quality data during the coal resource assessment of the southwestern part of the Powder River Basin, Wyoming (SWPRB), revealed significant problems and limitations with those data. Subsequent citations of data from original sources often omitted important information, such as moisture integrity and information needed to evaluate the issue of representativeness. Occasionally, only selected data were quoted, and some data were misquoted. Therefore, it was important to try to resolve issues concerning both the accuracy and representativeness of each available dataset. The review processes demonstrated why it is always preferable to research and evaluate the circumstances regarding the sampling and analytical methodology from the original data sources when evaluating coal quality information, particularly if only limited data are available. Use of the available published data at face value would have significantly overestimated the coal quality for all the coal fields from both the Fort Union and Wasatch Formations in the SWPRB assessment area. However, by using the sampling and analytical information from the original reports, it was possible to make reasonable adjustments to reported data to derive more realistic estimates of coal quality.

  17. Influences of fragmentation on three species of native warmwater fishes in a Colorado River Basin headwater stream system, Wyoming

    USGS Publications Warehouse

    Compton, R.I.; Hubert, W.A.; Rahel, F.J.; Quist, M.C.; Bower, M.R.

    2008-01-01

    We investigated the effects of constructed instream structures on movements and demographics of bluehead suckers Catostomus discobolus, flannelmouth suckers C. latipinnis, and roundtail chub Gila robusta in the upstream portion of Muddy Creek, an isolated headwater stream system in the upper Colorado River basin of Wyoming. Our objectives were to (1) evaluate upstream and downstream movements of these three native species past a small dam built to divert irrigation water from the stream and a barrier constructed to prevent upstream movements of nonnative salmonids and (2) describe population characteristics in stream segments created by these structures. Our results indicated that upstream and downstream movements of the three target fishes were common. Fish of all three species moved frequently downstream over both structures, displayed some upstream movements over the irrigation diversion dam, and did not move upstream over the fish barrier. Spawning migrations by some fish into an intermittent tributary, which was not separated from Muddy Creek by a barrier, were observed for all three species. Both the irrigation diversion dam and the fish barrier contributed to fragmentation of the native fish populations, and considerable differences in population features were observed among segments. The instream structures may eventually cause extirpation of some native species in one or more of the segments created by the structures. ?? Copyright by the American Fisheries Society 2008.

  18. Effects of coal-bed methane discharge waters on the vegetation and soil ecosystem in Powder River Basin, Wyoming

    USGS Publications Warehouse

    Stearns, M.; Tindall, J.A.; Cronin, G.; Friedel, M.J.; Bergquist, E.

    2005-01-01

    Coal-bed methane (CBM) co-produced discharge waters in the Powder River Basin of Wyoming, resulting from extraction of methane from coal seams, have become a priority for chemical, hydrological and biological research during the last few years. Soil and vegetation samples were taken from affected and reference sites (upland elevations and wetted gully) in Juniper Draw to investigate the effects of CBM discharge waters on soil physical and chemical properties and on native and introduced vegetation density and diversity. Results indicate an increase of salinity and sodicity within local soil ecosystems at sites directly exposed to CBM discharge waters. Elevated concentrations of sodium in the soil are correlated with consistent exposure to CBM waters. Clay-loam soils in the study area have a much larger specific surface area than the sandy soils and facilitate a greater sodium adsorption. However, there was no significant relation between increasing water sodium adsorption ratio (SAR) values and increasing sediment SAR values downstream; however, soils exposed to the CBM water ranged from the moderate to severe SAR hazard index. Native vegetation species density was highest at the reference (upland and gully) and CBM affected upland sites. The affected gully had the greatest percent composition of introduced vegetation species. Salt-tolerant species had the greatest richness at the affected gully, implying a potential threat of invasion and competition to established native vegetation. These findings suggest that CBM waters could affect agricultural production operations and long-term water quality. ?? Springer 2005.

  19. Potential for oil mining at Elk Basin oil field, Wyoming-Montana

    SciTech Connect

    Ayler, M.F.; Brechtel, C.

    1987-08-01

    By using the teachings of two US Patents, 4,458,945 and 4,595,239, it is possible to place mine workings below the Frontier sands of the Elk basin field, drill upward safely into the reservoir, and produce by gravity added to any present drive system. The patents describe equipment and a way of drilling upward with all cuttings and fluids flowing into a closed pipeline system for surface discharge. A final casing can be cemented into place and the well completed, again with all production into a closed pipeline. This system would permit field pressure control and maintenance with gravity drainage. Wells could be placed on one-acre spacing or less, thus producing much of the oil normally lost between surface wells. An analysis will be presented of probable mining costs for development of the Elk basin oil field on one-acre spacing. Petroleum engineers will then be able to estimate for themselves which method has the most profit potential and maximum recovery - the present systems or oil recovery by mining.

  20. Design, implementation, and completion of a horizontal tight gas wellbore - case study: Green River Basin, Wyoming

    SciTech Connect

    Billingsley, R.L.; Evans, L.W.; Anderson, T.M.

    1995-06-01

    In September, 1993 Amoco Production Company began drilling the Champlin 254B No. 2H, a horizontal well test located near the Wamsutter Arch, southwestem Wyoming. The Champlin 254B No. 2H was designed to confirm a fractured reservoir concept and to test the economic viability of a horizontal wellbore in the Almond fm.. The wellbore was designed to determine real-time, the fracture direction and the optimum horizontal leg direction within the confines of the drilling permit. A deviated pilot hole was drilled to optimize our ability to cross vertical natural fractures. MWD gamma-ray, oriented core, a vertical seismic profile, Formation Microimager, and a robust suite of electric logs were obtained to gain information on the presence and orientation of fractures before kickoff for the horizontal leg. Electromagnetic goniometry was used onsite to orient fractures in core. Log and core data were consistent and a wellbore trajectory of due South was chosen. A two thousand foot horizontal wellbore was drilled, 1700 feet of which is in the upper Almond formation productive zone. MWD gamma-ray, three 30` cores, Formation Microscanner logs, and a density-neutron log were obtained in the horizontal hole. This wellbore was completed open-hole with a stabilized gas rate of 1 mmcfd. In May, 1994 a portion of the original wellbore collapsed and a replacement horizontal leg was drilled. Oil-based mud and rotary BOP`s were utilized to minimize damage and invasion to the reservoir. Reservoir pressures encountered in the redrill indicate that depletion along the original wellbore had begun. The redrill was completed open-hole with a pre-perforated (every third joint) 5 1/2 inches liner and also stabilized at a rate of 1 mmcfd.

  1. Bighorn Basin Coring Project: Palynofloral changes and taphonomy through the Paleocene-Eocene Thermal Maximum in the Bighorn Basin, Wyoming, USA

    NASA Astrophysics Data System (ADS)

    Harrington, G.; Jardine, P.

    2012-12-01

    The early Palaeogene hyperthermals provide an unprecedented opportunity to investigate the biotic responses to rapid and transient global warming events. As part of the Bighorn Basin Coring Project (BBCP), we have analyzed 182 sporomorph (pollen and spore) samples from three newly cored sites in the Bighorn Basin of Wyoming. Two sites, Basin Substation (121 samples) and Polecat Bench (41 samples), contain the Paleocene-Eocene Thermal Maximum (PETM, ETM1), and one early Eocene site, Gilmore Hill (20 samples), contains the ELMO (ETM2) event. We have focused initially on the Basin Substation section, because it is more organic rich, has demonstrated higher sporomorph recovery potential than the other two sites, and is the main focus of complementary geochemical analyses. Below 90 m core depth sporomorph concentrations are typically 1000 - 10 000 grains/gram, but between 90 and 60 m these decline to <100 grains/gram, before rising again to levels similar to those seen at the base of the core. Correlation between marker beds in the core and those at outcrop suggests that this zone of low recovery corresponds closely to the position of the PETM. Prior to this interval, the sporomorph assemblage is dominated by the gymnosperms Cupressacites hiatipites (cypress, Cupressaceae) and bisaccate pollen (Pinaceae and/or Podocarpaceae), and the angiosperm taxa Polyatriopollenites vermontensis (wingnut or wheel wingnut, Juglandaceae), Caryapollenites spp. (hickory, Juglandaceae), and Alnipollenites spp. (alder, Betulaceae). However, samples are heterogeneous in terms of the dominant taxon, with different taxa having the highest relative abundance in different samples. In the upper part of the core, the assemblage is similar to that in the lower part, but with a more consistent dominance of gymnosperm taxa, and with the addition of Eocene marker taxa Intratriporopollenites instructus (linden, Tilioideae) and Celtis spp. (hackberry, Cannabaceae). These both have their first appearance at 56.14 m in the core, just above the zone of low sporomorph recovery. These results point to (a) a decrease in sporomorph preservation that is linked to environmental change during the PETM event, and (b) repeated reorganizations of plant relative abundances prior to the PETM. Current research is focusing on the timing, and possible climatic control, of these floral changes in the lead up to the PETM event.

  2. Facies and facies architecture of Paleogene floodplain deposits, Willwood Formation, Bighorn Basin, Wyoming, USA

    NASA Astrophysics Data System (ADS)

    Kraus, Mary J.; Gwinn, Brian

    1997-12-01

    Paleogene deposits of the Willwood Formation were analyzed in two areas of the Bighorn Basin to provide a better understanding of the facies and facies arrangement of floodplain deposits and the various processes that influence floodplain construction and facies variability. Despite similar facies and facies organization, floodplain deposits in the two areas differ in grain size, hydromorphy and maturity of the paleosols, and scale and organization of ribbon sandstones in the avulsion deposits. These differences appear to be controlled by basin position of the study areas and differences in avulsion between the areas. Two kinds of cumulative floodplain paleosols, red and purple paleosols, formed on overbank deposits. The red paleosols were better drained and formed on less clay-rich parent material. Intense mottling and iron-oxide nodules indicate that the purple paleosols, which formed on more clay-rich parent material, were poorly drained. The grain size differences reflect basin position, in particular, distance from a local sediment source. Avulsion deposits are volumetrically important, comprising about half of the floodplain deposits in both areas. The avulsion deposits resemble the Stage III splays described by Smith et al. (1989) [Smith, N.D., Cross, IA., Dufficy, J.P., Clough, S.R., 1989. Anatomy of an avulsion. Sedimentology 36, 1-24.] in terms of characteristics of their ribbon sandstones and the presence of thin, sheet sandstones or siltstones. Paleosols that formed on the fine-grained facies show morphologic differences interpreted as developmental differences and attributed to differing rates of avulsion in the two study areas. This study shows that avulsion-belt paleosols provide a key to understanding avulsion rate in the stratigraphic record. Other differences between the Willwood avulsion deposits in the two areas, and between these ancient deposits and the modern avulsion deposits described by Smith et al. may reflect: (1) problems in clearly recognizing ancient avulsion deposits in the field, and (2) sampling bias resulting from the areally restricted view provided by the stratigraphic record of an areally extensive modern depositional feature. At the same time, because exposures are three-dimensional, the Willwood strata reveal aspects of the facies and facies arrangement of avulsion belts not readily observed in the modern ones.

  3. Arsenic data for streams in the uppper Missouri River Basin, Montana and Wyoming

    USGS Publications Warehouse

    Knapton, J.R.; Horpestad, A.A.

    1987-01-01

    Although large concentrations of arsenic originating from geothermal sources within Yellowstone National Park have been known to be present in the Madison River for many years, systematic monitoring throughout the upper Missouri River basin had not been done. Therefore, a monitoring network consisting of 24 stations was established for the purpose of measuring arsenic concentrations and determining arsenic discharge. Included were 5 sites on mainstems of the Madison and Missouri Rivers and 19 sites on major and some minor tributaries from Yellowstone National Park to Canyon Ferry Lake. Fifteen of the 24 stations were sampled 12 times from November 1985 to October 1986. The remaining stations were sampled twice during the year, at high flow and at low flow. Total recoverable arsenic discharge (loading) in pounds per day was calculated for each sample by multiplying total recoverable arsenic concentration by water discharge (obtained at time of sample collection) and a conversion factor. This report presents data resulting from the monitoring program. (USGS)

  4. From fold-related fracture population analysis to paleofluid flow reconstruction at basin-scale : a case study in the Bighorn Basin (Wyoming, USA)

    NASA Astrophysics Data System (ADS)

    Beaudoin, N.; Bellahsen, N.; Lacombe, O.; Emmanuel, L.; Pironon, J.

    2012-04-01

    While fluid flows associated with thin-skinned folded structures have been extensively studied, reconstructions of paleofluid systems associated with thick-skinned tectonics remain scarce. In addition, major thrusts are usually considered as the preferential channels for fluids: investigating the role of diffuse fracture sets as potential drains for fluids has received poor attention. In this work, we tentatively reconstruct the paleofluid system related to the Bighorn basin (Wyoming, USA), a Sevier-Laramide foreland basin affected by large basement uplifts during the Laramide thick-skinned tectonic event. Fracture pattern and related paleofluid flow were studied in selected folds within this basin. For this purpose, Oxygen, Carbon and Strontium isotopic studies were performed on host rocks as well as on pre-folding and on fold-related calcite veins; these studies were combined to fluid inclusion chemical and microthermometric analysis. The results suggest a strong control of fluid chemistry by the tectonic style: our work evidences migration of exotic hydrothermal fluids (temperatures of homogenisation of fluid inclusion reaching 140°C) in basement-cored, thrust-related folds, while in detachment folds, only intra-formational fluids were characterized.At the scale of the entire basin, the open paleofluid system reconstructed in basement-cored folds appears to be consistent, with oxygen isotopic signature ranging from -25‰ to -5‰ PDB. Indeed, the scattering of oxygen isotopic signatures in cemented veins shows different degree of mixing between local basinal fluids and exotic hydrothermal fluids remaining unequilibrated with surrounding limestones. Strontium isotopic analyses suggest that these exotic hydrothermal fluids are a mixing of meteoric fluids and basinal fluids that havemigrated in basement rocks, likely deeper than the basement/cover interface. The timing of the fast upward flow of these fluids through the cover is given by, and related to, different fracturing events and the associated sudden increase of hydraulic permeability (related to the vertical persistence of the fractures). The local opening of the fluid system to the fast hydrothermal fluid flow is however diachronic: it occurs as early as Sevier in age in the western part of the basin (in foreland flexure-related fractures) and later, during the Laramide phase, in the eastern part (in the fold curvature-related fractures). This raise of hydraulic permeability allows fluid to flow vertically, which caused a fluid pressure drop in the Paleozoic strata, as demonstrated independently by the combined analysis of striated microfaults and fracture sets in terms of stress with calcite twinning paleopiezometry. The timing of the vertical hydraulic permeability increase also suggests that mode I fractures due to strata bending, either related to far-field (plate flexure) or local (strata curvature) stresses, were more efficient vertical drains than mode I fractures opened during layer-parallel shortening phases and connected the fracture pattern to allow lateral fluid flow.

  5. The Wayne State Plot Hanna A. Abebe

    E-print Network

    Cinabro, David

    The Wayne State Plot Hanna A. Abebe Astro-Physics Department, Wayne State University, Detroit with a linear fit with a quadratic distortion ("bad fit") . Both plots have a good 2 and the bias is only shown the "kurie plots"[1] of both wide scan and narrow scan spectrum, Hetherington had to introduce a fourth

  6. Chapter 4: The Cretaceous-Lower Tertiary Composite Total Petroleum System, Wind River Basin, Wyoming

    USGS Publications Warehouse

    Johnson, R.C.; Finn, Thomas M.; Kirschbaum, Mark A.; Roberts, Stephen B.; Roberts, Laura N.R.; Cook, Troy; Taylor, David J.

    2007-01-01

    The Cretaceous-Lower Tertiary Composite Total Petroleum System (TPS) of the Wind River Basin Province includes all strata from the base of the Lower Cretaceous Cloverly Formation to the base of the Waltman Shale Member of the Paleocene age Fort Union Formation and, where the Waltman is absent, includes strata as young as the Eocene Wind River Formation. Locally, Cretaceous-sourced gas migrated into strata as old as the Mississippian Madison Limestone, and in these areas the TPS extends stratigraphically downward to include these reservoirs. The extensive vertical migration of gases in highly fractured areas of the Wind River Basin led to the commingling of gases from several Upper Cretaceous and lower Tertiary sources, thus only two petroleum systems are recognized in these rocks, the Cretaceous-Lower Tertiary Composite TPS, the subject of this report, and the Waltman Shale TPS described by Roberts and others (Chapter 5, this CD-ROM). The Cretaceous-lower Tertiary Composite TPS was subdivided into (1) seven continuous gas assessment units (AU): (a) Frontier-Muddy Continuous Gas AU, (b) Cody Sandstone Continuous Gas AU, (c) Mesaverde--Meeteetse Sandstone Gas AU, (d) Lance-Fort Union Sandstone Gas AU, (e) Mesaverde Coalbed Gas AU, (f) Meeteetse Coalbed Gas AU, and (g) Fort Union Coalbed Gas AU; (2) one continuous oil assessement unit--- Cody Fractured Shale Continuous Oil AU; and (3) one conventional assessment Unit--- Cretaceous-Tertiary Conventional Oil and Gas AU. Estimates of undiscovered resources having the potential for additions to reserves were made for all but the Cody Fractured Shale Continuous Oil AU, which is considered hypothetical and was not quantitively assessed. The mean estimate of the total oil is 41.99 million barrels, mean estimate of gas is 2.39 trillion cubic feet, and mean estimate of natural gas liquids is 20.55 million barrels. For gas, 480.66 billion cubic feet (BCFG) is estimated for the Frontier-Muddy Continuous Gas AU, 115.34 BCFG for the Cody Sandstone Continuous Gas AU, 383.16 BCFG for the Mesaverde-Meeteetse Sandstone Continuous Gas AU, 711.30 BCFG for the Lance-Fort Union Sandstone Gas AU, 107.18 BCFG for the Mesaverde Coalbed Gas AU, 21.29 BCFG for the Meeteetse Coalbed Gas AU, and 118.08 BCFG for the Fort Union Coalbed Gas AU. All the undiscovered oil and 98.94 BCFG of undiscovered gas is in the Cretaceous-Tertiary Conventional Oil and Gas AU.

  7. Evapotranspiration rates at selected sites in the Powder River basin, Wyoming and Montana

    USGS Publications Warehouse

    Lenfest, L.W.

    1987-01-01

    Twelve sites were chosen for a study of evapotranspiration in the Powder River basin based on variations in topography and plant communities, geographic location, and the availability of groundwater data at the sites. Evapotranspiration rates were estimated from groundwater, meteorological, and vegetation data using the Blaney-Criddle method. Five of the sites were equipped with digital recorders that provided continuous groundwater level data at the sites for the 1978 growing season. Evapotranspiration was estimated monthly during the growing season and ranged from 0 to 3.7 inches per month. Total evapotranspiration rates for the growing season ranged from 8.3 to 14.9 inches. Discharge per mile of stream reach was estimated for three of the sites and ranged from 0.03 to 0.31 cubic foot per second. The well records for the remaining seven sites consisted of monthly, or less frequent, water-level measurements. Evapotranspiration rates estimated for those months for which water-level data were available ranged from 0 to 3.8 inches per month. Only one of these sites had monthly water-level measurements for the entire growing season; a total of 9.7 inches of evapotranspiration was estimated for the growing season at this site. (USGS)

  8. Lithologic variations and diagenesis of Lower Cretaceous Muddy Formation in northern Powder River basin, Wyoming

    SciTech Connect

    Walker, A.L.; Patterson, P.E.

    1986-08-01

    Regional facies studies show that sandstones in the Muddy Formation, northern Powder River basin, were deposited in fluvial and nearshore marine paleoenvironments. Most sandstones of the fluvial facies contain only minor amounts of clay matrix and are classified as quartzarenite or sublitharenite, whereas those of the shoreface facies contain appreciable clay and are classified as litharenite or arkose. The arkoses are concentrated along a narrow belt that trends northeastward, parallel to the inferred paleoshoreline. Both the fluvial and shoreface sandstones have been variably affected by postdepositional alteration. During early stages of diagenesis, matrix clay was formed predominantly within the shoreface sandstones, owing mainly to alteration of volcanic material. Later, quartz overgrowths and calcite cement were precipitated within the remaining pore spaces in both fluvial and shoreface sandstones. Calcite also replaced detrital framework grains and some of the previously formed matrix clay. During intermediate diagenetic stages, detrital feldspar grains, particularly those in the arkosic shoreface sandstones, were replaced by albite, which characteristically lacks twinning or displays distinctive chessboard texture. Microprobe analyses indicate that both forms are essentially pure albite. During later stages of diagenesis, following maximum burial, much of the calcite was dissolved, producing secondary porosity. Inasmuch as the calcite was precipitated early, i.e., prior to significant compaction, and inasmuch as it replaced both framework grains and authigenic matrix clay, the secondary pores exhibit a relatively high level of interconnection. It is this secondary porosity that has contributed to the migration and storage of hydrocarbons in the Muddy Formation.

  9. Hydrothermal alteration in research drill hole Y-2, Lower Geyser Basin, Yellowstone National Park, Wyoming

    SciTech Connect

    Bargar, K.E.; Beeson, M.H.

    1981-05-01

    Y-2, a US Geological Survey research diamond-drill hole in Lower Geyser Basin, Yellowstone National Park, was drilled to a depth of 157.4 meters. The hole penetrated interbedded siliceous sinter and travertine to 10.2 m, glacial sediments of the Pinedale Glaciation interlayered with pumiceous tuff from 10.2 to 31.7 m, and rhyolitic lavas of the Elephant Back flow of the Central Plateau Member and the Mallard Lake Member of the Pleistocene Plateau Rhyolite from 31.7 to 157.4 m. Hydrothermal alteration is pervasive in most of the nearly continuous drill core. Rhyolitic glass has been extensively altered to clay and zeolite minerals (intermediate heulandite, clinoptilolite, mordenite, montmorillonite, mixed-layer illite-montmorillonite, and illite) in addition to quartz and adularia. Numerous veins, vugs, and fractures in the core contain these and other minerals: silica minerals (opal, ..beta..-cristobalite, ..cap alpha..-cristobalite, and chalcedony), zeolites (analcime, wairakite, dachiardite, laumontite, and yugawaralite), carbonates (calcite and siderite), clay (kaolinite and chlorite), oxides (hematite, goethite, manganite, cryptomelane, pyrolusite, and groutite), and sulfides (pyrhotite and pyrite) along with minor aegirine, fluorite, truscottite, and portlandite. Interbedded travertine and siliceous sinter in the upper part of the drill core indicate that two distinct types of thermal water are responsible for precipitation of the surficial deposits, and further that the water regime has alternated between the two thermal waters more than once since the end of the Pinedale Glaciation (approx. 10,000 years B.P.). Alternation of zones of calcium-rich and sodium- and potassium-rich hydrothermal minerals also suggests that the calcium-rich and sodium- and potassium-rich hydrothermal minerals also suggests that the water chemistry in this drill hole varies with depth.

  10. Assessment of the Mowry Shale and Niobrara Formation as Continuous Hydrocarbon Systems, Powder River Basin, Montana and Wyoming

    USGS Publications Warehouse

    Anna, Lawrence O.; Cook, Troy A.

    2008-01-01

    A recent U.S. Geological Survey (USGS) oil and gas assessment of the Powder River Basin , Wyoming and Montana, identified the Upper Cretaceous Mowry Shale and Niobrara Formation as the primary hydrocarbon sources for Cretaceous conventional and unconventional reservoirs. Cumulative Mowry-sourced petroleum production is about 1.2 BBO (billion barrels of oil) and 2.2 TCFG (trillion cubic feet of gas) and cumulative Niobrara-sourced oil production is about 520 MMBO (million barrels of oil) and 0.95 TCFG. Burial history modeling indicated that hydrocarbon generation for both formations started at about 0.60 percent Ro at depths of about 8,000 ft. At maximum depths, Ro for the Mowry is about 1.2 to 1.3 percent and about 0.80 percent for the Niobrara. The Mowry and Niobrara continuous reservoirs were assessed using a cell-based methodology that utilized production data. The size of each cell was based on geologic controls and potential drainage areas in analog fields. Current and historical production data were used to determine the estimated ultimate recovery (EUR) distribution for untested cells. Only production data from unconventional fractured shale reservoirs with vertical wells were used. For the Mowry, the minimum, median, and maximum total recovery volumes per cell for untested cells are (1) 0.002, 0.25, and 0.35 MMBO, respectively; and for the Niobrara (2) 0.002, 0.028, and 0.5 MMBO. Sweet spots were identified by lineaments and faults, which are believed to be areas having the greatest petroleum potential; an upper limit of 8,000 ft depth was defined by overpressuring caused by hydrocarbon generation. Mean estimates of technically recoverable undiscovered continuous resource for the Mowry are 198 MMBO, 198 BCF (billion cubic feet of gas), and 11.9 MMBNGL (million barrels of natural gas liquid), and those for the Niobrara are 227 MMBO, 227 BCFG, and 13.6 MMBNGL.

  11. Competitive effects of introduced annual weeds on some native and reclamation species in the Powder River Basin, Wyoming

    SciTech Connect

    Allen, E.B.; Knight, D.H.

    1980-01-01

    Four experiments were conducted to examine the competitive effects of introduced annual weeds on certain native and reclamation species. The first experiment was initiated by discing three sites in the Powder River Basin, Wyoming, at three distances from introduced weed seed sources. Introduced weed colonization was greatest when a seed source was located nearby. Higher weed cover resulted in reductions of percent cover, density, and richness of the native species. The second experiment was conducted in the greenhouse and was designed to determine if there are changes in response of S. kali and the native grasses Agropyron smithii and Bouteloua gracilis to competition and water regime. Both grass species had lower biomass and higher stomatal resistance when growing in mixed culture with S. kali than in pure culture in the dry regime, but there were no significant differences in the wet regime. In general, the difference in plant response between mixed and pure cultures was more pronounced in the dry than in the wet regime. The third study was a greenhouse experiment on germination and competition of S. kali (a C/sub 4/ species) with native species Lepidium densiflorum (C/sub 3/), Chenopodium pratericola (C/sub 3/), A. smithii (C/sub 3/), and B. gracilis (C/sub 4/) under May, June, and July temperature regimes. Salsola kali germinated equally well in all three regimes, but the other C/sub 4/ species had highest germination in the July regime and the C/sub 3/ species in the May and June regimes. The fourth study was designed to examine the effect of weed colonization on the success of mine reclamation. Little effect was observed, but colonization by introduced annuals was very low. (ERB)

  12. Solid-state NMR analysis of coals and shales from the Mesaverde Group, Green River Basin, Wyoming

    SciTech Connect

    Miknis, F.P.; MacGowan, D.B.

    1993-08-01

    Samples of coals and shales from the Almond Formation of the Mesaverde Group, Greater Green River Basin, Wyoming were analyzed using solid-state {sup 13}C nuclear magnetic resonance (NMR) techniques of cross polarization with magic-angle spinning (CP/MAS). The samples were taken from a present-day depth of burial ranging from {approximately}3,000 to {approximately}15,000 ft. In addition, CP/MAS {sup 13}C NMR measurements were made on residues from the hydrous pyrolysis of Almond coal. The hydrous pyrolysis experiments were conducted isothermally for 72 hr in the temperature range of 290 to 360{degree}C (554 to 680{degree}F). In general, the maturation trends observed by NMR for the naturally and artificially matured samples were in agreement with results obtained from other geochemical analyses. The NMR spectra of the naturally matured shale samples showed only a small aliphatic component at depths greater than about 12,000 ft, indicating little capacity for hydrocarbon generation at depths greater than this. Vitrinite reflectance measurements placed the oil window at between 4,500 and 14,500 ft. NMR measurements of the hydrous pyrolysis residues showed a clear loss of aliphatic carbon, relative to the aromatic carbon, with temperature. For the residue obtained from the highest study temperature (360{degree}C/680{degree}F), there was a 60% depletion of the hydrocarbon-producing aliphatic components. The trends in loss of aliphatic carbon with temperature suggested a means of defining a geochemical transformation ratio in terms of the loss of the aliphatic carbon fraction. A good correlation was found between the NMR transformation ratio and the production index determined by Rock-Eval pyrolysis measurements.

  13. Phospholipid Evidence for Methanogenic Archaea and Sulfate-reducing Bacteria in Coalbed Methane Wells in the Powder River Basin, Wyoming

    NASA Astrophysics Data System (ADS)

    Glossner, A.; Flores, R. M.; Mandernack, K.

    2008-12-01

    The Powder River Basin (PRB) comprises roughly 22,000 mi2 in northeastern Wyoming and southeastern Montana; it is a major source of coal and natural gas in the Rocky Mountain and Great Plains regions. The coalbed methane (CBM) produced from Paleocene Fort Union Formation coals in the PRB is thought primarily to be of bacterial origin due to its low ?13C values of -51 to -82 permil. Determination of the timing of methanogenesis, however, requires a methodology suitable for distinguishing viable methanogenic microorganisms. Here we provide evidence of living methanogenic Archaea and sulfate- reducing bacteria collected from co-produced water from CBM wells using phospholipid fatty acid (PLFA) and phospholipid ether lipid (PLEL) analyses. Twelve producing wells were sampled in May, 2007, using a high- pressure filtering apparatus. PLFAs were analyzed as fatty acid methyl esters and PLELs analyzed by their liberated core components using gas chromatography/mass spectrometry. Phospholipid analyses revealed an ecosystem dominated by Archaea, as the Archaeal isoprenoid, phytane, was the dominant phospholipid observed in nine of the wells sampled. Total microbial biomass estimates ranged from 1.1 ×106 cells/L to 8.3 ×107 cells/L, with the proportion of Archaeal cells ranging from 77.5 to 99.7 percent. In addition, the biomarkers 10me16:0, and cy17:0, considered to be biomarkers for genera of sulfate-reducing bacteria, were observed in several wells. The dominance of lipids from living Archaea in co- produced waters from CBM wells provides evidence supporting a recent origin of gas in the PRB coals.

  14. Preliminary applications of Landsat images and aerial photography for determining land-use, geologic, and hydrologic characteristics, Yampa River basin, Colorado and Wyoming

    USGS Publications Warehouse

    Heimes, F.J.; Moore, G.K.; Steele, T.D.

    1978-01-01

    Expanded energy- and recreation-related activities in the Yampa River basin, Colorado and Wyoming, have caused a rapid increase in economic development which will result in increased demand and competition for natural resources. In planning for efficient allocation of the basin 's natural resources, Landsat images and small-scale color and color-infrared photographs were used for selected geologic, hydrologic and land-use applications within the Yampa River basin. Applications of Landsat data included: (1) regional land-use classification and mapping, (2) lineament mapping, and (3) areal snow-cover mapping. Results from the Landsat investigations indicated that: (1) Landsat land-use classification maps, at a regional level, compared favorably with areal land-use patterns that were defined from available ground information, (2) lineaments were mapped in sufficient detail using recently developed techniques for interpreting aerial photographs, (3) snow cover generally could be mapped for large areas with the exception of some densely forested areas of the basin and areas having a large percentage of winter-season cloud cover. Aerial photographs were used for estimation of turbidity for eight stream locations in the basin. Spectral reflectance values obtained by digitizing photographs were compared with measured turbidity values. Results showed strong correlations (variances explained of greater than 90 percent) between spectral reflectance obtained from color photographs and measured turbidity values. (Woodard-USGS)

  15. Provenance of the Tullock Member of the Fort Union Formation, Powder River Basin, Wyoming and Montana: evidence for early Paleocene Laramide uplift

    USGS Publications Warehouse

    Hansley, P.L.; Brown, J.L.

    1993-01-01

    A petrologic and provenance study indicates that Laramide uplifts to the west and south of the Powder River Basin (PRB) were emergent and shedding detritus by early Paleocene time. This conclusion is based largely on the presence of abundant first-cycle carbonate clasts in the northwestern PRB, and metamorphic and igneous clasts and labile heavy-mineral grains in the Tullock throughout the basin. The proximity and composition of the north end of the Bighorn uplift strongly suggest that it was the source for carbonate, igneous, and metamorphic rock fragments in northwestern Tullock outcrops. The conclusions are supported by recent fission-track, palynological, and sedimentological studies that indicate that Laramide-style foreland deformation in southwestern Montana began in late Cenomanian to Turonian time and migrated through central Wyoming to the Colorado Front Range by late Maastrichtian time. -from Authors

  16. Evaluation of the rhenium-osmium geochronometer in the Phosphoria petroleum system, Bighorn Basin of Wyoming and Montana, USA

    NASA Astrophysics Data System (ADS)

    Lillis, Paul G.; Selby, David

    2013-10-01

    Rhenium-osmium (Re-Os) geochronometry is applied to crude oils derived from the Permian Phosphoria Formation of the Bighorn Basin in Wyoming and Montana to determine whether the radiogenic age reflects the timing of petroleum generation, timing of migration, age of the source rock, or the timing of thermochemical sulfate reduction (TSR). The oils selected for this study are interpreted to be derived from the Meade Peak Phosphatic Shale and Retort Phosphatic Shale Members of the Phosphoria Formation based on oil-oil and oil-source rock correlations utilizing bulk properties, elemental composition, ?13C and ?34S values, and biomarker distributions. The ?34S values of the oils range from -6.2‰ to +5.7‰, with oils heavier than -2‰ interpreted to be indicative of TSR. The Re and Os isotope data of the Phosphoria oils plot in two general trends: (1) the main trend (n = 15 oils) yielding a Triassic age (239 ± 43 Ma) with an initial 187Os/188Os value of 0.85 ± 0.42 and a mean square weighted deviation (MSWD) of 1596, and (2) the Torchlight trend (n = 4 oils) yielding a Miocene age (9.24 ± 0.39 Ma) with an initial 187Os/188Os value of 1.88 ± 0.01 and a MSWD of 0.05. The scatter (high MSWD) in the main-trend regression is due, in part, to TSR in reservoirs along the eastern margin of the basin. Excluding oils that have experienced TSR, the regression is significantly improved, yielding an age of 211 ± 21 Ma with a MSWD of 148. This revised age is consistent with some studies that have proposed Late Triassic as the beginning of Phosphoria oil generation and migration, and does not seem to reflect the source rock age (Permian) or the timing of re-migration (Late Cretaceous to Eocene) associated with the Laramide orogeny. The low precision of the revised regression (±21 Ma) is not unexpected for this oil family given the long duration of generation from a large geographic area of mature Phosphoria source rock, and the possible range in the initial 187Os/188Os values of the Meade Peak and Retort source units. Effects of re-migration may have contributed to the scatter, but thermal cracking and biodegradation likely have had minimal or no effect on the main-trend regression. The four Phosphoria-sourced oils from Torchlight and Lamb fields yield a precise Miocene age Re-Os isochron that may reflect the end of TSR in the reservoir due to cooling below a threshold temperature in the last 10 m.y. from uplift and erosion of overlying rocks. The mechanism for the formation of a Re-Os isotopic relationship in a family of crude oils may involve multiple steps in the petroleum generation process. Bitumen generation from the source rock kerogen may provide a reset of the isotopic chronometer, and incremental expulsion of oil over the duration of the oil window may provide some of the variation seen in 187Re/188Os values from an oil family.

  17. Evaluation of the rhenium-osmium geochronometer in the Phosphoria petroleum system, Bighorn Basin of Wyoming and Montana, USA

    USGS Publications Warehouse

    Lillis, Paul G.; Selby, David

    2013-01-01

    Rhenium-osmium (Re-Os) geochronometry is applied to crude oils derived from the Permian Phosphoria Formation of the Bighorn Basin in Wyoming and Montana to determine whether the radiogenic age reflects the timing of petroleum generation, timing of migration, age of the source rock, or the timing of thermochemical sulfate reduction (TSR). The oils selected for this study are interpreted to be derived from the Meade Peak Phosphatic Shale and Retort Phosphatic Shale Members of the Phosphoria Formation based on oil-oil and oil-source rock correlations utilizing bulk properties, elemental composition, ?13C and ?34S values, and biomarker distributions. The ?34S values of the oils range from -6.2‰ to +5.7‰, with oils heavier than -2‰ interpreted to be indicative of TSR. The Re and Os isotope data of the Phosphoria oils plot in two general trends: (1) the main trend (n = 15 oils) yielding a Triassic age (239 ± 43 Ma) with an initial 187Os/188Os value of 0.85 ± 0.42 and a mean square weighted deviation (MSWD) of 1596, and (2) the Torchlight trend (n = 4 oils) yielding a Miocene age (9.24 ± 0.39 Ma) with an initial 187Os/188Os value of 1.88 ± 0.01 and a MSWD of 0.05. The scatter (high MSWD) in the main-trend regression is due, in part, to TSR in reservoirs along the eastern margin of the basin. Excluding oils that have experienced TSR, the regression is significantly improved, yielding an age of 211 ± 21 Ma with a MSWD of 148. This revised age is consistent with some studies that have proposed Late Triassic as the beginning of Phosphoria oil generation and migration, and does not seem to reflect the source rock age (Permian) or the timing of re-migration (Late Cretaceous to Eocene) associated with the Laramide orogeny. The low precision of the revised regression (±21 Ma) is not unexpected for this oil family given the long duration of generation from a large geographic area of mature Phosphoria source rock, and the possible range in the initial 187Os/188Os values of the Meade Peak and Retort source units. Effects of re-migration may have contributed to the scatter, but thermal cracking and biodegradation likely have had minimal or no effect on the main-trend regression. The four Phosphoria-sourced oils from Torchlight and Lamb fields yield a precise Miocene age Re-Os isochron that may reflect the end of TSR in the reservoir due to cooling below a threshold temperature in the last 10 m.y. from uplift and erosion of overlying rocks. The mechanism for the formation of a Re-Os isotopic relationship in a family of crude oils may involve multiple steps in the petroleum generation process. Bitumen generation from the source rock kerogen may provide a reset of the isotopic chronometer, and incremental expulsion of oil over the duration of the oil window may provide some of the variation seen in 187Re/188Os values from an oil family.

  18. Water-quality characteristics, including sodium-adsorption ratios, for four sites in the Powder River drainage basin, Wyoming and Montana, water years 2001-2004

    USGS Publications Warehouse

    Clark, Melanie L.; Mason, Jon P.

    2006-01-01

    The U.S. Geological Survey, in cooperation with the Wyoming Department of Environmental Quality, monitors streams throughout the Powder River structural basin in Wyoming and parts of Montana for potential effects of coalbed natural gas development. Specific conductance and sodium-adsorption ratios may be larger in coalbed waters than in stream waters that may receive the discharge waters. Therefore, continuous water-quality instruments for specific conductance were installed and discrete water-quality samples were collected to characterize water quality during water years 2001-2004 at four sites in the Powder River drainage basin: Powder River at Sussex, Wyoming; Crazy Woman Creek near Arvada, Wyoming; Clear Creek near Arvada, Wyoming; and Powder River at Moorhead, Montana. During water years 2001-2004, the median specific conductance of 2,270 microsiemens per centimeter at 25 degrees Celsius (?S/cm) in discrete samples from the Powder River at Sussex, Wyoming, was larger than the median specific conductance of 1,930 ?S/cm in discrete samples collected downstream from the Powder River at Moorhead, Montana. The median specific conductance was smallest in discrete samples from Clear Creek (1,180 ?S/cm), which has a dilution effect on the specific conductance for the Powder River at Moorhead, Montana. The daily mean specific conductance from continuous water-quality instruments during the irrigation season showed the same spatial pattern as specific conductance values for the discrete samples. Dissolved sodium, sodium-adsorption ratios, and dissolved solids generally showed the same spatial pattern as specific conductance. The largest median sodium concentration (274 milligrams per liter) and the largest range of sodium-adsorption ratios (3.7 to 21) were measured in discrete samples from the Powder River at Sussex, Wyoming. Median concentrations of sodium and sodium-adsorption ratios were substantially smaller in Crazy Woman Creek and Clear Creek, which tend to decrease sodium concentrations and sodium-adsorption ratios at the Powder River at Moorhead, Montana. Dissolved-solids concentrations in discrete samples were closely correlated with specific conductance values; Pearson's correlation coefficients were 0.98 or greater for all four sites. Regression equations for discrete values of specific conductance and sodium-adsorption ratios were statistically significant (p-values <0.001) at all four sites. The strongest relation (R2=0.92) was at the Powder River at Sussex, Wyoming. Relations on Crazy Woman Creek (R2=0.91) and Clear Creek (R2=0.83) also were strong. The relation between specific conductance and sodium-adsorption ratios was weakest (R2=0.65) at the Powder River at Moorhead, Montana; however, the relation was still significant. These data indicate that values of specific conductance are useful for estimating sodium-adsorption ratios. A regression model called LOADEST was used to estimate dissolved-solids loads for the four sites. The average daily mean dissolved-solids loads varied among the sites during water year 2004. The largest average daily mean dissolved-solids load was calculated for the Powder River at Moorhead, Montana. Although the smallest concentrations of dissolved solids were in samples from Clear Creek, the smallest average daily mean dissolved-solids load was calculated for Crazy Woman Creek. The largest loads occurred during spring runoff, and the smallest loads occurred in late summer, when streamflows typically were smallest. Dissolved-solids loads may be smaller than average during water years 2001-2004 because of smaller than average streamflow as a result of drought conditions.

  19. Groundwater well inventory and assessment in the area of the proposed Normally Pressured Lance natural gas development project, Green River Basin, Wyoming, 2012

    USGS Publications Warehouse

    Sweat, Michael J.

    2013-01-01

    During May through September 2012, the U.S. Geological Survey, in cooperation with the Bureau of Land Management, inventoried and assessed existing water wells in southwestern Wyoming for inclusion in a possible groundwater-monitor network. Records were located for 3,282 wells in the upper Green River Basin, which includes the U.S. Geological Survey study area and the proposed Normally Pressured Lance natural gas development project area. Records for 2,713 upper Green River Basin wells were determined to be unique (not duplicated) and to have a Wyoming State Engineers Office permit. Further, 376 of these wells were within the U.S. Geological Survey Normally Pressured Lance study area. Of the 376 wells in the U.S. Geological Survey Normally Pressured Lance study area, 141 well records had sufficient documentation, such as well depth, open interval, geologic log, and depth to water, to meet many, but not always all, established monitor well criteria. Efforts were made to locate each of the 141 wells and to document their current condition. Field crews were able to locate 121 of the wells, and the remaining 20 wells either were not located as described, or had been abandoned and the site reclaimed. Of the 121 wells located, 92 were found to meet established monitor well criteria. Results of the field efforts during May through September 2012, and specific physical characteristics of the 92 wells, are presented in this report.

  20. Geologic framework for the national assessment of carbon dioxide storage resources: Greater Green River Basin, Wyoming, Colorado, and Utah, and Wyoming-Idaho-Utah Thrust Belt: Chapter E in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Buursink, Marc L.; Slucher, Ernie R.; Brennan, Sean T.; Doolan, Colin A.; Drake II, Ronald M.; Merrill, Matthew D.; Warwick, Peter D.; Blondes, Madalyn S.; Freeman, Philip A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.

    2014-01-01

    The 2007 Energy Independence and Security Act (Public Law 110–140) directs the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2). The methodology used by the USGS for the national CO2 assessment follows up on previous USGS work. The methodology is non-economic and intended to be used at regional to subbasinal scales. This report identifies and contains geologic descriptions of 14 storage assessment units (SAUs) in Ordovician to Upper Cretaceous sedimentary rocks within the Greater Green River Basin (GGRB) of Wyoming, Colorado, and Utah, and eight SAUs in Ordovician to Upper Cretaceous sedimentary rocks within the Wyoming-Idaho-Utah Thrust Belt (WIUTB). The GGRB and WIUTB are contiguous with nearly identical geologic units; however, the GGRB is larger in size, whereas the WIUTB is more structurally complex. This report focuses on the characteristics, specified in the methodology, that influence the potential CO2 storage resource in the SAUs. Specific descriptions of the SAU boundaries, as well as their sealing and reservoir units, are included. Properties for each SAU, such as depth to top, gross thickness, porosity, permeability, groundwater quality, and structural reservoir traps, are typically provided to illustrate geologic factors critical to the assessment. This geologic information was employed, as specified in the USGS methodology, to calculate a probabilistic distribution of potential storage resources in each SAU. Figures in this report show SAU boundaries and cell maps of well penetrations through sealing units into the top of the storage formations. The cell maps show the number of penetrating wells within one square mile and are derived from interpretations of variably attributed well data and a digital compilation that is known not to include all drilling.

  1. A Synoptic Study of Fecal-Indicator Bacteria in the Wind River, Bighorn River, and Goose Creek Basins, Wyoming, June-July 2000

    USGS Publications Warehouse

    Clark, Melanie L.; Gamper, Merry E.

    2003-01-01

    A synoptic study of fecal-indicator bacteria was conducted during June and July 2000 in the Wind River, Bighorn River, and Goose Creek Basins in Wyoming as part of the U.S. Geological Survey's National Water-Quality Assessment Program for the Yellowstone River Basin. Fecal-coliform concentrations ranged from 2 to 3,000 col/100 mL (colonies per 100 milliliters) for 100 samples, and Escherichia coli concentrations ranged from 1 to 2,800 col/100 mL for 97 samples. Fecal-coliform concentrations exceeded the U.S. Environmental Protection Agency's recommended limit for a single sample for recreational contact with water in 37.0 percent of the samples. Escherichia coli concentrations exceeded the U.S. Environmental Protection Agency's recommended limit for a single sample for moderate use, full-body recreational contact with water in 38.1 percent of the samples and the recommended limit for infrequent use, full-body recreational contact with water in 24.7 percent of the samples. Fecal-indicator-bacteria concentrations varied by basin. Samples from the Bighorn River Basin had the highest median concentrations for fecal coliform of 340 col/100 mL and for Escherichia coli of 300 col/100 mL. Samples from the Wind River Basin had the lowest median concentrations for fecal coliform of 50 col/100 mL and for Escherichia coli of 62 col/100 mL. Fecal-indicator-bacteria concentrations varied by land cover. Samples from sites with an urban land cover had the highest median concentrations for fecal coliform of 540 col/100 mL and for Escherichia coli of 420 col/100 mL. Maximum concentrations for fecal coliform of 3,000 col/100 mL and for Escherichia coli of 2,800 col/100 mL were in samples from sites with an agricultural land cover. The lowest median concentrations for fecal coliform of 130 col/100 mL and for Escherichia coli of 67 col/100 mL were for samples from sites with a forested land cover. A strong and positive relation existed between fecal coliform and Escherichia coli (Spearman's Rho value of 0.976). The majority of the fecal coliforms were Escherichia coli during the synoptic study. Fecal-indicator-bacteria concentrations were not correlated to streamflow, water temperature, dissolved oxygen, pH, specific conduc-tance, and alkalinity. Fecal-indicator-bacteria concentrations were moderately correlated with turbidity (Spearman's Rho values of 0.662 and 0.640 for fecal coliform and Escherichia coli, respectively) and sediment (Spearman's Rho values of 0.628 and 0.636 for fecal coliform and Escherichia coli, respectively). Escherichia coli isolates analyzed by discriminant analysis of ribotype patterns for samples from the Bighorn River at Basin, Wyoming, and Bitter Creek near Garland, Wyoming, in the Bighorn River Basin were determined to be from nonhuman and human sources. Using a confidence interval of 90 percent, more of the isolates from both sites were classified as being from nonhuman than human sources; however, both samples had additional isolates that were classified as unknown sources. --------------------------------------------------------------------------------

  2. Structural and microstructural evolution of the Rattlesnake Mountain Anticline (Wyoming, USA): New insights into the Sevier and Laramide orogenic stress build-up in the Bighorn Basin

    NASA Astrophysics Data System (ADS)

    Beaudoin, Nicolas; Leprêtre, Rémi; Bellahsen, Nicolas; Lacombe, Olivier; Amrouch, Khalid; Callot, Jean-Paul; Emmanuel, Laurent; Daniel, Jean-Marc

    2012-11-01

    The Rocky Mountains in western US provide among the best examples of thick-skinned tectonics: following a period of thin-skinned tectonics related to the Sevier orogeny, the compressional reactivation of basement faults gave birth to the so-called Laramide uplifts/arches. The Bighorn basin, located in Wyoming, is therefore a key place to study the transition from thin- to thick-skinned tectonics in orogenic forelands, especially in terms of microstructural and stress/strain evolution. Our study focuses on a classic Laramide structure: the Rattlesnake Mountain Anticline (RMA, Wyoming, USA), a basement-cored anticline located in the western part of the Bighorn basin. Stress and strain evolution analysis in folded sedimentary layers and underlying faulted basement rocks were performed on the basis of combined analyses of fractures, fault-slip data and calcite twinning paleopiezometry. Most of the fractures are related to three main tectonic events: the Sevier thin-skinned contraction, the Laramide thick-skinned contraction, and the Basin and Range extension. Serial balanced cross-sections of RMA and displacement profiles suggest that all thrust faults were coeval, evidencing strain distribution in the basement during faulting. The comparison of RMA with another structure located in the eastern edge of the Bighorn basin, i.e. the Sheep Mountain Anticline (SMA), allows to propose a conceptual model for the geometric and kinematic evolution of Laramide-related basement-cored anticlines. Finally, the stress evolution is reconstructed at both the fold scale and the basin scale. We show that the evolution of stress trends and magnitudes was quite similar in both structures (RMA and SMA) during Laramide times (thick-skinned tectonics), in spite of different stress regimes. During Sevier (thin-skinned tectonics) and post-Laramide times, stress trends and fracture patterns were different in these two structures. These results suggest that the distance to the orogenic front influenced the fracture patterns but not the foreland stress magnitudes, which were likely controlled by the structural style.

  3. Detailed measured sections, cross sections, and paleogeographic reconstructions of the upper cretaceous and lower tertiary nonmarine interval, Wind River Basin, Wyoming: Chapter 10 in Petroleum systems and geologic assessment of oil and gas resources in the Wind River Basin Province, Wyoming

    USGS Publications Warehouse

    Johnson, Ronald C.

    2007-01-01

    Detailed measured sections and regional stratigraphic cross sections are used to reconstruct facies maps and interpret paleogeographic settings for the interval from the base of Upper Cretaceous Mesaverde Formation to top of lower member of the Paleocene Fort Union Formation in the Wind River Basin, Wyoming. The Mesaverde Formation spans the time during which the Upper Cretaceous seaway retreated eastward out of central Wyoming in Campanian time and the initial stages of the Lewis transgression in earliest Maastrichtian time. This retreat stalled for a considerable period of time during deposition of the lower part of the Mesaverde, creating a thick buildup of marginal marine sandstones and coaly coastal plain deposits across the western part of the basin. The Lewis sea transgressed into the northeast part of Wind River Basin, beginning in early Maastrichtian time during deposition of the Teapot Sandstone Member of the Mesaverde Formation. The Meeteetse Formation, which overlies the Teapot, was deposited in a poorly-drained coastal plain setting southwest of the Lewis seaway. The Lewis seaway, at maximum transgression, covered much of the northeast half of the Wind River Basin area but was clearly deflected around the present site of the Wind River Range, southwest of the basin, providing the first direct evidence of Laramide uplift on that range. Uplift of the Wind River Range continued during deposition of the overlying Maastrichtian Lance Formation. The Granite Mountains south of the basin also became a positive feature during this time. A rapidly subsiding trough during the Maastrichtian time formed near the presentday trough of the Wind River Basin in which more than 6,000 feet of Lance was deposited. The development of this trough appears to have begun before the adjacent Owl Creek Mountains to the north started to rise; however, a muddy facies in the upper part of Lance in the deep subsurface, just to the south, might be interpreted to indicate that the Cretaceous Cody Shale was being eroded off a rising Owl Creek Mountains in latest Cretaceous time. The Paleocene Fort Union Formation unconformably overlies older units but with only slight angular discordance around much of the margins of the Wind River Basin. Pre-Fort Union erosion was most pronounced toward the Wind River Range to the southwest, where the Fort Union ultimately overlies strata as old as the upper part of the Cretaceous Cody Shale. The unconformity appears to die out toward the basin center. Coal-forming mires developed throughout the western part of the basin near the beginning of the Paleocene. River systems entering the basin from the Wind River Range to the southwest and the Granite Mountains to the south produced areas of sandy fluvial deposition along mountain fronts. A major river system appears to have entered the basin from about the same spot along the Wind River Range throughout much of the Paleocene, probably because it became incised and could not migrate laterally. The muddy floodplain facies that developed along the deep basin trough during latest Cretaceous time, expanded during the early part of the Paleocene. Coal-forming mires that characterize part of the lower Fort Union Formation reached maximum extent near the beginning of the late Paleocene and just prior to the initial transgression of Lake Waltman. From the time of initial flooding, Lake Waltman expanded rapidly, drowning the coal-forming mires in the central part of the basin and spreading to near basin margins. Outcrop studies along the south margin of the basin document that once maximum transgression was reached, the lake was rapidly pushed basinward and replaced by fluvial environments.

  4. An assessment of cumulative impacts of coal mining on the hydrology in part of the Powder River structural basin, Wyoming; a progress report

    USGS Publications Warehouse

    Jordan, P.R.; Bloyd, R.M.; Daddow, P.B.

    1984-01-01

    The U.S. Geological Survey and the Wyoming Department of Environmental Quality are involved in a cooperative effort to assess the probable cumulative impacts of coal mining on the hydrology of a part of the Powder River Structural Basin in Wyoming. It was assumed that the principal impacts on the ground-water system due to mining will occur in the relatively shallow aquifers which can be grouped into three homogeneous aquifers, namely, the Wyodak coal, the overburden, and the under burden. Emphasis of this report is on the results of analysis of surface-water resources in the Caballo Creek drainage. A surface-water model of the Caballo Creek drainage was developed using the Hydrological Simulation Program-Fortran model to help assess the impacts of mining activities on streamflow. The Caballo Creek drainage was divided into 10 land segments and 6 stream reaches in the modeling process. Three simulation runs show little, if any, change in streamflow between pre- and post-mining conditions and very little change between pre-mining and during-mining conditions. The principal reason for the absence of change is the high infiltration rate used in the model for all three conditions. (USGS)

  5. Chapter 3: Geologic Assessment of Undiscovered Oil and Gas Resources in the Phosphoria Total Petroleum System of the Wind River Basin Province, Wyoming

    USGS Publications Warehouse

    Kirschbaum, M.A.; Lillis, P.G.; Roberts, L.N.R.

    2007-01-01

    The Phosphoria Total Petroleum System (TPS) encompasses the entire Wind River Basin Province, an area of 4.7 million acres in central Wyoming. The source rocks most likely are black, organic-rich shales of the Meade Peak and Retort Phosphatic Shale Members of the Permian Phosphoria Formation located in the Wyoming and Idaho thrust belt to the west and southwest of the province. Petroleum was generated and expelled during Jurassic and Cretaceous time in westernmost Wyoming and is interpreted to have migrated into the province through carrier beds of the Pennsylvanian Tensleep Sandstone where it was preserved in hypothesized regional stratigraphic traps in the Tensleep and Permian Park City Formation. Secondary migration occurred during the development of structural traps associated with the Laramide orogeny. The main reservoirs are in the Tensleep Sandstone and Park City Formation and minor reservoirs are in the Mississippian Madison Limestone, Mississippian-Pennsylvanian Amsden Formation, Triassic Chugwater Group, and Jurassic Nugget Sandstone and Sundance Formation. The traps are sealed by shale or evaporite beds of the Park City, Amsden, and Triassic Dinwoody Formations, Triassic Chugwater Group, and Jurassic Gypsum Spring Formation. A single conventional oil and gas assessment unit (AU), the Tensleep-Park City AU, was defined for the Phosphoria TPS. Both the AU and TPS cover the entire Wind River Basin Province. Oil is produced from 18 anticlinal fields, the last of which was discovered in 1957, and the possibility of discovering new structural oil accumulations is considered to be relatively low. Nonassociated gas is produced from only two fields, but may be underexplored in the province. The discovery of new gas is more promising, but will be from deep structures. The bulk of new oil and gas accumulations is dependent on the discovery of hypothesized stratigraphic traps in isolated carbonate reservoirs of the Park City Formation. Mean resource estimates for the Tensleep-Park City Conventional Oil and Gas AU total 18 million barrels of oil, 294 billion cubic feet of gas, and 5.9 million barrels of natural gas liquids.

  6. Assessment of impacts of proposed coal-resource and related economic development on water resources, Yampa River basin, Colorado and Wyoming; a summary

    USGS Publications Warehouse

    Steele, Timothy Doak; Hillier, Donald E.

    1981-01-01

    Expanded mining and use of coal resources in the Rocky Mountain region of the western United States will have substantial impacts on water resources, environmental amenities, and social and economic conditions. The U.S. Geological Survey has completed a 3-year assessment of the Yampa River basin, Colorado and Wyoming, where increased coal-resource development has begun to affect the environment and quality of life. Economic projections of the overall effects of coal-resource development were used to estimate water use and the types and amounts of waste residuals that need to be assimilated into the environment. Based in part upon these projections, several physical-based models and other semiquantitative assessment methods were used to determine possible effects upon the basin's water resources. Depending on the magnitude of mining and use of coal resources in the basin, an estimated 0.7 to 2.7 million tons (0.6 to 2.4 million metric tons) of waste residuals may be discharged annually into the environment by coal-resource development and associated economic activities. If the assumed development of coal resources in the basin occurs, annual consumptive use of water, which was approximately 142,000 acre-feet (175 million cubic meters) during 1975, may almost double by 1990. In a related analysis of alternative cooling systems for coal-conversion facilities, four to five times as much water may be used consumptively in a wet-tower, cooling-pond recycling system as in once-through cooling. An equivalent amount of coal transported by slurry pipeline would require about one-third the water used consumptively by once-through cooling for in-basin conversion. Current conditions and a variety of possible changes in the water resources of the basin resulting from coal-resource development were assessed. Basin population may increase by as much as threefold between 1975 and 1990. Volumes of wastes requiring treatment will increase accordingly. Potential problems associated with ammonia-nitrogen concentrations in the Yampa River downstream from Steamboat Springs were evaluated using a waste-load assimilative-capacity model. Changes in sediment loads carried by streams due to increased coal mining and construction of roads and buildings may be apparent only locally; projected increases in sediment loads relative to historic loads from the basin are estimated to be 2 to 7 percent. Solid-waste residuals generated by coal-conversion processes and disposed of into old mine pits may cause widely dispersed ground-water contamination, based on simulation-modeling results. Projected increases in year-round water use will probably result in the construction of several proposed reservoirs. Current seasonal patterns of streamflow and of dissolvedsolids concentrations in streamflow will be altered appreciably by these reservoirs. Decreases in time-weighted mean-annual dissolved-solids concentrations of as much as 34 percent are anticipated, based upon model simulations of several configurations of proposed reservoirs. Detailed statistical analyses of water-quality conditions in the Yampa River basin were made. Regionalized maximum waterquality concentrations were estimated for possible comparison with future conditions. Using Landsat imagery and aerial photographs, potential remote-sensing applications were evaluated to monitor land-use changes and to assess both snow cover and turbidity levels in streams. The technical information provided by the several studies of the Yampa River basin assessment should be useful to regional planners and resource managers in evaluating the possible impacts of development on the basin's water resources.

  7. Density of river otters (Lontra canadensis) in relation to energy development in the Green River Basin, Wyoming.

    PubMed

    Godwin, B L; Albeke, S E; Bergman, H L; Walters, A; Ben-David, M

    2015-11-01

    Exploration and extraction of oil and natural gas have increased in recent years and are expected to expand in the future. Reduction in water quality from energy extraction may negatively affect water supply for agriculture and urban use within catchments as well as down river. We used non-invasive genetic techniques and capture-recapture modeling to estimate the abundance and density of North American river otters (Lontra canadensis), a sentinel species of aquatic ecosystems, in Southwestern Wyoming. While densities in two of three river reaches were similar to those reported in other freshwater systems in the western US (1.45-2.39 km per otter), otters appeared to avoid areas near energy development. We found no strong difference in habitat variables, such as overstory cover, at the site or reach level. Also, fish abundance was similar among the three river reaches. Otter activity in our study area could have been affected by elevated levels of disturbance surrounding the industrial gas fields, and by potential surface water contamination as indicated by patterns in water conductivity. Continued monitoring of surface water quality in Southwestern Wyoming with the aid of continuously recording devices and sentinel species is warranted. PMID:26125409

  8. Coal Quality and Major, Minor, and Trace Elements in the Powder River, Green River, and Williston Basins, Wyoming and North Dakota

    USGS Publications Warehouse

    Stricker, Gary D.; Flores, Romeo M.; Trippi, Michael H.; Ellis, Margaret S.; Olson, Carol M.; Sullivan, Jonah E.; Takahashi, Kenneth I.

    2007-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Wyoming Reservoir Management Group (RMG) of the Bureau of Land Management (BLM) and nineteen independent coalbed methane (CBM) gas operators in the Powder River and Green River Basins in Wyoming and the Williston Basin in North Dakota, collected 963 coal samples from 37 core holes (fig. 1; table 1) between 1999 and 2005. The drilling and coring program was in response to the rapid development of CBM, particularly in the Powder River Basin (PRB), and the needs of the RMG BLM for new and more reliable data for CBM resource estimates and reservoir characterization. The USGS and BLM entered into agreements with the gas operators to drill and core Fort Union coal beds, thus supplying core samples for the USGS to analyze and provide the RMG with rapid, real-time results of total gas desorbed, coal quality, and high pressure methane adsorption isotherm data (Stricker and others, 2006). The USGS determined the ultimate composition of all coal core samples; for selected samples analyses also included proximate analysis, calorific value, equilibrium moisture, apparent specific gravity, and forms of sulfur. Analytical procedures followed those of the American Society of Testing Materials (ASTM; 1998). In addition, samples from three wells (129 samples) were analyzed for major, minor, and trace element contents. Ultimate and proximate compositions, calorific value, and forms of sulfur are fundamental parameters in evaluating the economic value of a coal. Determining trace element concentrations, along with total sulfur and ash yield, is also essential to assess the environmental effects of coal use, as is the suitability of the coal for cleaning, gasification, liquefaction, and other treatments. Determination of coal quality in the deeper part (depths greater than 1,000 to 1,200 ft) of the PRB (Rohrbacher and others, 2006; Luppens and others, 2006) is especially important, because these coals are targeted for future mining and development. This report contains summary tables, histograms, and isopleth maps of coal analyses. Details of the compositional internal variability of the coal beds are based on the continuous vertical sampling of coal sequences, including beds in the deeper part of the PRB. Such sampling allows for close comparisons of the compositions of different parts of coal beds as well as within the same coal beds at different core hole locations within short distances of each other.

  9. Assessment of Undiscovered Oil and Gas Resources of the Powder River Basin Province of Wyoming and Montana--2006 Update

    USGS Publications Warehouse

    U.S. Geological Survey

    2006-01-01

    Using a geology-based assessment method, the U.S. Geological Survey estimated means of 16.6 trillion cubic feet of undiscovered natural gas, 639 million barrels of undiscovered oil, and 131 million barrels of natural gas liquids in the Powder River Basin Province.

  10. Estimates of monthly streamflow characteristics at selected sites, Wind River and part of Bighorn River drainage basins, Wyoming

    USGS Publications Warehouse

    Rankl, J.G.; Montague, Ellen; Lenz, B.N.

    1994-01-01

    Monthly streamflow records from gaging stations with more than 5 years of record were extended to a 50-year base period, 1941-90, using a mixed- station, record-extension model. Monthly streamflow characteristics were computed from the extended record. Four statistical methods--basin characteristics, active-channel width, concurrent measurement, and weighted average were used to estimate monthly streamflow characteristics at ungaged sites and at streamflow-gaging stations with fewer than 5 years of record. Linear- regression models were used with the basin characteristic and active-channel-width methods to define the relations between the monthly streamflow characteristics and physical basin, climatic, and channel characteristics. The concurrent-measurement method used a Maintenance of Variance Extension, Type 1 curve-fitting technique to correlate discharge at active streamflow-gaging stations, which had computed streamflow characteristics, with discharge measured at ungaged sites. The weighted-average method is a weighted combination of estimates from any two or all three of the other methods. For the basin-characteristics method, the standard errors of estimate ranged from 37 to 83 percent and for the active-channel-width method, 34 to 100 percent. Standard errors for the concurrent- measurement method ranged from 27 to 151 percent. The standard error for the weighted-average method, ranged from 18 to 82 percent, which was lower than any individual method. Application of the equations for estimating monthly streamflow characteristics is limited to perennial streams with physical-basin, climatic, and active channel- width characteristics that are within the range of values used in the study. The equations are not applicable to estimate flow for ephemeral streams.

  11. Carbon dioxide and hydrogen sulfide degassing and cryptic thermal input to Brimstone Basin, Yellowstone National Park, Wyoming

    NASA Astrophysics Data System (ADS)

    Bergfeld, D.; Evans, W.; Lowenstern, J. B.; Hurwitz, S.

    2012-12-01

    Brimstone Basin is a remote area of intense hydrothermal alteration a few km outside the southeast boundary of the Yellowstone Caldera. The area has long been considered to be a cold remnant of an ancient hydrothermal system. A 2008 field campaign confirmed that emissions from discrete gas vents were cold and that soil temperatures in the altered area were at background levels. Accumulation chamber measurements across the altered ground revealed a surprisingly large diffuse flux of CO2 and H2S, ~277 and 0.6 tonnes per day, respectively, comparable to those from Yellowstone's thermal areas. The acidic nature and low discharge of the creeks that drain the basin preclude a significant flux of dissolved magmatic carbon. Diffuse gas flux is clearly the main component of the magmatic volatile efflux from Brimstone Basin. The cold waters of Alluvium Creek flow through the active degassing areas at Brimstone Basin. On average, the isotopic composition of the waters in the degassing areas are shifted about 3.5 permil off the global meteoric water line to lighter ?18O values without an apparent shift in ?D. We used the measured diffuse CO2 discharge from Brimstone Basin and stable isotope mass balance modeling to show that the observed ?18O shift can be plausibly linked to isotopic equilibration with CO2 from an underlying thermal reservoir at 88±17°C. Results from analyses of Brimstone gases indicate that although there are no surface thermal anomalies, a clear connection to a heat source remains. The ?13C-CO2 values of -2.9 and -3.0 per mil (3 sites) are typical of CO2 in Yellowstone high-temperature gas, and the helium isotope ratio of 3.0 RA (2 sites) clearly indicates that some of the helium is from a magmatic source. Relations between C2H6 and CH4 concentrations and ?13C-CH4 values (3 sites; -46.4 to -42.8 per mil) reveal the gases have a distinct thermogenic signature. Findings from gas and water chemistry when combined with the diffuse gas flux suggest that the hydrothermal system at Brimstone Basin is likely fed by thermal waters that migrate out from the high-temperature, gas-rich system within the caldera, but then mix with non-thermal groundwaters to reach a temperature <90°C. The results from this study emphasize that cold emissions may be a significant component of the total CO2 output from Yellowstone.

  12. Controls on bacterial gas accumulations in thick Tertiary coal beds and adjacent channel sandstones, Powder River basin, Wyoming and Montana

    SciTech Connect

    Rice, D.D.; Flores, R.M. )

    1991-03-01

    Coal beds, as much as 250 ft thick, and adjacent sandstones in the Paleocene Tongue River Member of the Fort Union Formation are reservoirs for coal-derived natural gas in the Powder River basin. The discontinuous coal beds were deposited in raised, ombrotrophic peat bogs about 3 mi{sup 2} in size, adjoining networks of fluvial channels infilled by sand. Coal-bed thickness was controlled by basin subsidence and depositional environments. The average maceral composition of the coals is 88% huminite (vitrinite), 5% liptinite, and 7% inertinite. The coals vary in rank from subbituminous C to A (R{sub o} values of 0.4 to 0.5%). Although the coals are relatively low rank, they display fracture systems. Natural gas desorbed and produced from the coal beds and adjacent sandstones is composed mainly of methane with lesser amount of Co{sub 2} ({lt}10%). The methane is isotopically light and enriched in deuterium. The gases are interpreted to be generated by bacterial processes and the fermentation pathway, prior to the main phase of thermogenic methane generation by devolatilization. Large amounts of bicarbonate water generated during early stages of coalification will have to be removed from the fracture porosity in the coal beds before desorption and commercial gas production can take place. Desorbed amounts of methane-rich, bacterial gas in the Powder River basin are relatively low ({lt}60 Scf/ton) compared to amounts of thermogenic coal-bed gases (hundreds of Scf/ton) from other Rocky Mountain basins. However, the total coal-bed gas resource in both the coal beds and the adjacent sandstones is considered to be large (as much as 40 Tcf) because of the vast coal resources (as much as 1.3 trillion tons).

  13. Infiltration from an impoundment for coal-bed natural gas, Powder River Basin, Wyoming: Evolution of water and sediment chemistry - article no. W06424

    SciTech Connect

    Healy, R.W.; Rice, C.A.; Bartos, T.T.; McKinley, M.P.

    2008-06-15

    Development of coal-bed natural gas (CBNG) in the Powder River Basin, Wyoming, has increased substantially in recent years. Among environmental concerns associated with this development is the fate of groundwater removed with the gas. A preferred water-management option is storage in surface impoundments. A study was conducted on changes in water and sediment chemistry as water from an impoundment infiltrated the subsurface. Sediment cores were collected prior to operation of the impoundment and after its closure and reclamation. Suction lysimeters were used to collect water samples from beneath the impoundment. Large amounts of chloride (12,300 kg) and nitrate (13,500 kg as N), most of which accumulated naturally in the sediments over thousands of years, were released into groundwater by infiltrating water. Nitrate was more readily flushed from the sediments than chloride. If sediments at other impoundment locations contain similar amounts of chloride and nitrate, impoundments already permitted could release over 48 x 10{sup 6} kg of chloride and 52 x 10{sup 6} kg of nitrate into groundwater in the basin. A solute plume with total dissolved solid (TDS) concentrations at times exceeding 100,000 mg/L was created in the subsurface. TDS concentrations in the plume were substantially greater than those in the CBNG water (about 2300 mg/L) and in the ambient shallow groundwater (about 8000 mg/L). Sulfate, sodium, and magnesium are the dominant ions in the plume. The elevated concentrations are attributed to cation-exchange-enhanced gypsum dissolution. As gypsum dissolves, calcium goes into solution and is exchanged for sodium and magnesium on clays. Removal of calcium from solution allows further gypsum dissolution.

  14. Structure and kinematic genesis of the Quealy wrench duplex: Transpressional reactivation of the Precambrian Cheyenne belt in the Laramie Basin, Wyoming

    SciTech Connect

    Stone, D.S.

    1995-09-01

    Seismic and borehole data in the southern Laramie basin of southeastern Wyoming outline a fault-bordered pop-up structure that is central to the Quealy wrench duplex and the site of the Quealy Dome oil field. This contractional duplex formed at a restraining fault offset between two parallel, laterally extensive, northeast-trending fault zones-the South and North Quealy faults. Spaced about 2 mi (3.2 km) apart, these parallel fault zones are interpreted as wrench straights, equivalent to the floor and roof thrusts of a duplex in a fold and thrust belt, but described in map view rather than in cross section. The Quealy wrench duplex is comprised of three east-vergent, basement-involved thrust imbricates and a west-vergent, antithetic thrust, detached in Permian shales. Duplex thrusts strike at high angles to the bordering South and North Quealy fault zones. Measurements based on interpretive piercing-point evidence and fault-parallel, differential shortening indicate that net slip on the dominant shortening indicate that net slip on the dominant South Quealy fault zone is dextraloblique. A component of dextral slip is also indicated on the North Quealy fault zone. The South Quealy fault and North Quealy/Overland fault trends can be traced southwesterly into the footwall of the north-trending Arlington (basin-boundary) thrust and projected into the Precambrian Cheyenne belt of the Medicine Bow Mountains in the hanging wall of the Arlington thrust. It is proposed that the Quealy wrench duplex is a product of Precambrian shear zone reactivation along the Cheyenne belt under Permian and Laramide (Tertiary) transpression.

  15. Expression of syndepositional tectonic uplift in Permian Goose Egg formation (Phosphoria equivalent) carbonates and red beds of Sheep Mountain anticline, Bighorn basin, Wyoming

    SciTech Connect

    Simmons, S.P.; Ulmer, D.S.; Scholle, P.A.

    1989-03-01

    Based on detailed field observations at Sheep Mountain, a doubly plunging anticline in the northeastern Bighorn basin in Wyoming, there appears to have been active tectonic uplift at this site contemporaneous with Pennsylvanian and Permian sedimentation. The Permian (Leonardian to Guadalupian) Goose Egg Formation at Sheep Mountain consists of 25-60 m of silty red beds (including minor carbonate and evaporite units) capped by 15-30 m of dominantly intertidal carbonates (the Ervay Member). A strong lateral variation of facies normal to the trend of the anticline is found within the red-bed sequence: carbonate beds on the anticline flanks are transitional with a gypsum/anhydrite facies along the crest. Similarly, shales on the anticline limbs grade into sandstones near the fold axis, indicating a paleohigh roughly coincidental with the present-day anticline crest. Ervay deposition (late Guadalupian) was marked by a more extensive uplifted structure in a marginal marine setting. On Sheep Mountain the unit is typified by intertidal fenestral carbonates, whereas outcrops to the east suggest a restricted marine facies and outcrops to the west reflect a more open marine environment. Thin sand lenses present in the Ervay are thought to represent terrigenous sediments blown onto the sometimes emergent bank which were then captured through adhesion and cementation. Anticlinal features similar to Sheep Mountain are common along the eastern margin of the Bighorn basin. When found in the subsurface, these structures are often associated with hydrocarbon production from the Ervay Member. Tectonic uplift contemporaneous with deposition of this unit may explain the localization of the productive fenestral facies on the present-day anticlines.

  16. Systematics of Water Temperature and Flow at Tantalus Creek During Calendar Year 2005, Norris Geyser Basin, Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Clor, Laura E.; Lowenstern, Jacob B.; Heasler, Henry P.

    2007-01-01

    We analyze data for stream flow and water temperature from Tantalus Creek in the Norris Geyser Basin and their relationship to air temperature, precipitation, and geyser eruptions during calendar year 2005. The creek is of interest because it is the primary drainage of the Norris Geyser Basin and carries a very high proportion of thermal water derived directly from hot springs. Two separate diurnal patterns emerge - (1) a winter pattern where increases in water temperature and stream flow closely track those of air temperature and (2) a summer pattern where water and air temperature are closely aligned but stream flow declines once water temperature reaches its daily maximum. The winter pattern is present when the daily average temperature consistently drops below 0 ?C whereas the summer pattern is recognizable when the daily average temperature regularly exceeds 0 ?C. Spring and fall systematics are much more irregular, although both summer and winter patterns can be discerned occasionally during those seasons. We interpret increases in stream flow associated with the winter pattern to result from addition of locally sourced melt water (both snow and soil-bound ice) that increases in abundance once temperatures increase in the morning. Melting is facilitated by the warm ground temperatures in the geyser basin, which are significantly higher than air temperatures in the winter. The summer pattern appears to be strongly affected by increased evaporation in the afternoon, decreasing flow and cooling the remaining water. Discharge from eruptions at Echinus Geyser are clearly visible as peaks in the hydrograph, and indicate that water from this geyser reach the Tantalus weir in 80 to 90 minutes, reflecting a slug of water that travels about 0.4 m s-1.

  17. Remote Stratigraphic Analysis: Combined TM and AIS Results in the Wind River/bighorn Basin Area, Wyoming

    NASA Technical Reports Server (NTRS)

    Lang, H. R.; Paylor, E. D.; Adams, S.

    1985-01-01

    An in-progress study demonstrates the utility of airborne imaging spectrometer (AIS) data for unraveling the stratigraphic evolution of a North American, western interior foreland basin. AIS data are used to determine the stratigraphic distribution of mineralogical facies that are diagnostic of specific depositional environments. After wavelength and amplitude calibration using natural ground targets with known spectral characteristics, AIS data identify calcite, dolomite, gypsum and montmorillonite-bearing strata in the Permian-Cretaceous sequence. Combined AIS and TM results illustrate the feasibility of spectral stratigraphy, remote analysis of stratigraphic sequences.

  18. Hydrologic properties and ground-water flow systems of the Paleozoic rocks in the upper Colorado River basin in Arizona, Colorado, New Mexico, Utah, and Wyoming, excluding the San Juan Basin

    USGS Publications Warehouse

    Geldon, Arthur L.

    2003-01-01

    The hydrologic properties and ground-water flow systems of Paleozoic sedimentary rocks in the Upper Colorado River Basin were investigated under the Regional Aquifer-System Analysis (RASA) program of the U.S. Geological Survey in anticipation of the development of water supplies from bedrock aquifers to fulfill the region's growing water demands. The study area, in parts of Arizona, Colorado, New Mexico, Utah, and Wyoming, covers about 100,000 square miles. It includes parts of four physiographic provinces--the Middle Rocky Mountains, Wyoming Basin, Southern Rocky Mountains, and Colorado Plateaus. A variety of landforms, including mountains, plateaus, mesas, cuestas, plains, badlands, and canyons, are present. Altitudes range from 3,100 to 14,500 feet. Precipitation is distributed orographically and ranges from less than 6 inches per year at lower altitudes to more than 60 inches per year in some mountainous areas. Most of the infrequent precipitation at altitudes of less than 6,000 feet is consumed by evapotranspiration. The Colorado and Green Rivers are the principal streams: the 1964-82 average discharge of the Colorado River where it leaves the Upper Colorado River Basin is 12,170 cubic feet per second (a decrease of 5,680 cubic feet per second since construction of Glen Canyon Dam in 1963). On the basis of their predominant lithologic and hydrologic properties, the Paleozoic rocks are classified into four aquifers and three confining units. The Flathead aquifer, Gros Ventre confining unit, Bighorn aquifer, Elbert-Parting confining unit, and Madison aquifer (Redwall-Leadville and Darwin-Humbug zones) make up the Four Corners aquifer system. A thick sequence, composed mostly of Mississippian and Pennsylvanian shale, anhydrite, halite, and carbonate rocks--the Four Corners confining unit (Belden-Molas and Paradox-Eagle Valley subunits)--overlies the Four Corners aquifer system in most areas and inhibits vertical ground-water flow between the Four Corners aquifer system and the overlying Canyonlands aquifer. Composed of the uppermost Paleozoic rocks, the Canyonlands aquifer consists, in ascending order, of the Cutler-Maroon, Weber-De Chelly, and Park City-State Bridge zones. The Paleozoic rocks are underlain by a basal confining unit consisting of Precambrian sedimentary, igneous, and metamorphic rocks and overlain throughout most of the Upper Colorado River Basin by the Chinle-Moenkopi confining unit, which consists of Triassic formations composed mostly of shale. The largest values of porosity, permeability, hydraulic conductivity, transmissivity, and artesian yield are exhibited by the Redwall-Leadville zone of the Madison aquifer and the Weber-De Chelly zone of the Canyonlands aquifer. The former consists almost entirely of Devonian and Mississippian carbonate rocks: the latter consists mostly of Pennsylvanian and Permian quartz sandstone. Unit-averaged porosity in hydrogeologic units composed of Paleozoic rocks ranges from less than 1 to 28 percent. Permeability ranges from less than 0.0001 to 3,460 millidarcies. Unit-averaged hydraulic conductivity ranges from 0.000005 to 200 feet per day. The composite transmissivity of Paleozoic rocks ranges from 0.0005 to 47,000 feet squared per day. Artesian yields to wells and springs (excluding atypical springflows) from these hydrogeologic units range from less than 1 to 10,000 gallons per minute. The permeability and watersupply capabilities of all hydrogeologic units progressively decrease from uplifted areas to structural basins. Recharge to the Paleozoic rocks is provided by direct infiltration of precipitation, leakage from streams, and ground-water inflows from structurally continuous areas west and north of the Upper Colorado River Basin. The total recharge available flom ground-water systems in the basin from direct precipitation and stream leakage is estimated to be 6,600,000 acre-feet per year. However, little of this recharge directly enters the Paleozoic rocks

  19. Determining erodibility, critical shear stress, and allowable discharge estimates for cohesive channels: case study in the Powder River Basin of Wyoming

    SciTech Connect

    Thoman, R.W.; Niezgoda, S.L.

    2008-12-15

    The continuous discharge of coalbed natural gas-produced (CBNG-produced) water within ephemeral, cohesive channels in the Powder River Basin (PRB) of Wyoming can result in significant erosion. A study was completed to investigate channel stability in an attempt to correlate cohesive soil properties to critical shear stress. An in situ jet device was used to determine critical shear stress (tau{sub c}) and erodibility (k{sub d}); cohesive soil properties were determined following ASTM procedures for 25 reaches. The study sites were comprised of erodible to moderately resistant clays with tau{sub c} ranging from 0.11 to 15.35 Pa and k{sub d} ranging from 0.27 to 2.38 cm{sup 3}/N s. A relationship between five cohesive soil characteristics and tau{sub c} was developed and presented for use in deriving tau{sub c} for similar sites. Allowable discharges for CBNG-produced water were also derived using tau{sub c} and the tractive force method. An increase in the allowable discharge was found for channels in which vegetation was maintained. The information from this case study is critical to the development of a conservative methodology to establish allowable discharges while minimizing flow-induced instability.

  20. Depositional environments in an alluvial-lacustrine system: molluscan paleoecology and lithofacies relations in upper part of Tongue River Member of Fort Union Formation, Powder River Basin, Wyoming

    SciTech Connect

    Hanley, J.H.; Flores, R.M.

    1983-03-01

    The upper part of the Tongue River Member of the Fort Union Formation (Paleocene) in the northern Powder River basin, Wyoming, contains assemblages of excellently preserved nonmarine mollusks which occur in laterally continuous outcrops of diverse lithologic sequences and sedimentary structures. Three facies are recognized vertically within an alluvial-lacustrine system. The interfluvial lake and lake splay facies is characterized by sequences of coarsening-upward detritus, abundant continuous limestone beds, and few beds of discontinuous coal and continuous carbonaceous shale. Limestones contain two lacustrine mollusk assemblages: a locally reworked assemblage dominated by the bivalve Plesielliptio (two species), and the gastropods Viviparus, Lioplacodes (three species), and Clenchiella; and a quite-water assemblage dominated by sphaeriid bivalves. The interfluvial crevasse splay-crevasse channel facies is characterized by sequences of coarsening-upward detritus and few discontinuous limestone beds, separated vertically by thick, continuous coal and carbonaceous shale beds. This facies includes small crevasse channel sandstones which scour into splay sandstones. Biofabric of lacustrine mollusk assemblages, which are identical in composition (but with dwarfed species of Plesielliptio) to locally reworked lacustrine assemblages of the interfluvial lake and lake splay facies, reflects deterioration of lakes through active infilling by crevasses. The fluvial channel and interchannel facies is typified by thick channel sandstones laterally separated by sequences of coarsening-upward detritus, overbank sediments, and rare limestones. This facies includes thick, continuous coal and carbonaceous shale beds.

  1. Activities and summary statistics of radon-222 in stream- and ground-water samples, Owl Creek basin, north-central Wyoming, September 1991 through March 1992

    USGS Publications Warehouse

    Ogle, K.M.; Lee, R.W.

    1994-01-01

    Radon-222 activity was measured for 27 water samples from streams, an alluvial aquifer, bedrock aquifers, and a geothermal system, in and near the 510-square mile area of Owl Creek Basin, north- central Wyoming. Summary statistics of the radon- 222 activities are compiled. For 16 stream-water samples, the arithmetic mean radon-222 activity was 20 pCi/L (picocuries per liter), geometric mean activity was 7 pCi/L, harmonic mean activity was 2 pCi/L and median activity was 8 pCi/L. The standard deviation of the arithmetic mean is 29 pCi/L. The activities in the stream-water samples ranged from 0.4 to 97 pCi/L. The histogram of stream-water samples is left-skewed when compared to a normal distribution. For 11 ground-water samples, the arithmetic mean radon- 222 activity was 486 pCi/L, geometric mean activity was 280 pCi/L, harmonic mean activity was 130 pCi/L and median activity was 373 pCi/L. The standard deviation of the arithmetic mean is 500 pCi/L. The activity in the ground-water samples ranged from 25 to 1,704 pCi/L. The histogram of ground-water samples is left-skewed when compared to a normal distribution. (USGS)

  2. Wyoming Snowmelt 2013 - Duration: 14 seconds.

    NASA Video Gallery

    Images from NASA/USGS Landsat satellites show the snow cover in Wyoming's Fremont Lake Basin throughout 2013. NASA scientists have used Landsat data from 1972-2013 to determine that the snow is mel...

  3. Erosion and deposition as indicated by sediment accumulation in stock reservoirs in the Powder River drainage basin, Wyoming

    USGS Publications Warehouse

    Roach, Carl H.; Colby, Bruce R.

    1957-01-01

    This report gives the results of an investigation by the U.S. Geological Survey and U.S. Bureau of Reclamation of sediment accumulation in stock reservoirs in the powder River drainage basin upstream from Arvada, Wyo. The study was made to determine the net rates of erosion in the upland areas and the effects of the reservoirs on the amount of sediment transported to the parent stream. The climate of the area ranges from cold and humid on the high mountains to warm and semiarid on the plains. The average annual precipitation ranges from less than 15 inches on the plains to more than 27 inches in the high mountains, which have a maximum altitude of 13,165 feet. The rocks in the Powder River drainage basin range in age from Precambrian to Recent. The 25 stock reservoirs that were used in the study have drainage areas of 0.09 to 3.53 square miles, are from 3 to 51 years old, and impound water from areas that have land slopes averaging from about 3 to 41 percent. The ratio of average reservoir capacity to drainage area ranges from about 2 to nearly 200 acre-feet per square mile. After adjustment for trap efficiency the average annual sediment yield to the 25 reservoirs ranged from 0.04 to 1.49 acre-feet per square mile and averaged 0.50 acre-foot per square mile of drainage area. The average sediment yield from 6 drainage areas mostly underlain by shale was 0.80 acre-foot per year, 2.3 times greater than yields from the areas underlain by sandstone or sandy shales. Correlations show that the sediment yield increased approximately as the 1.5 power of the channel density, the 0.4 power oif the shape factor, the 0.7 power of the average land slope, and the -0.25 power of the age of the reservoir. Empirical equations for sediment yield and trap efficiency for the area studied are given.

  4. Occurrence and flux of selected pesticides in surface water of the upper snake River Basin, Idaho and western Wyoming

    USGS Publications Warehouse

    Clark, G.M.

    1997-01-01

    During May and June 1994, 37 water samples were collected at 31 sites in the upper Snake River Basin and analyzed for 83 pesticides and pesticide metabolites. EPTC, atrazine, and the atrazine metabolite deethylated atrazine were the most frequently detected and were found in 30, 20, and 13 of the samples, respectively. Fifteen additional pesticides were detected at least once. All the compounds detected were at concentrations of less than 1 microgram per liter. Total annual applications of EPTC and atrazine within subbasins and their instantaneous instream fluxes have a logarithmic relation with coefficients of determination (R2 values) of 0.55 and 0.62, respectively. At the time of sampling, the median daily flux of EPTC was about O. 0001% of the annual amount applied in a subbasin, whereas the median daily flux of atrazine was between 0.001 and 0.01%. The difference in fluxes between EPTC and atrazine probably results from differences in their physical properties and in the method and timing of application.

  5. Carbon dioxide and hydrogen sulfide degassing and cryptic thermal input to Brimstone Basin, Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Bergfeld, D.; Evans, William C.; Lowenstern, J. B.; Hurwitz, S.

    2012-01-01

    Brimstone Basin, a remote area of intense hydrothermal alteration a few km east of the Yellowstone Caldera, is rarely studied and has long been considered to be a cold remnant of an ancient hydrothermal system. A field campaign in 2008 confirmed that gas emissions from the few small vents were cold and that soil temperatures in the altered area were at background levels. Geochemical and isotopic evidence from gas samples (3He/4He ~ 3RA, ?13C-CO2 ~ ? 3‰) however, indicate continuing magmatic gas input to the system. Accumulation chamber measurements revealed a surprisingly large diffuse flux of CO2 (~ 277 t d-1) and H2S (0.6 t d-1). The flux of CO2 reduces the 18O content of the overlying cold groundwater and related stream waters relative to normal meteoric waters. Simple isotopic modeling reveals that the CO2 likely originates from geothermal water at a temperature of 93 ± 19 °C. These results and the presence of thermogenic hydrocarbons (C1:C2 ~ 100 and ?13C-CH4 = ? 46.4 to ? 42.8‰) in gases require some heat source at depth and refute the assumption that this is a “fossil” hydrothermal system.

  6. Unraveling the multiple origins of heterogeneity within Lower Mississippian Madison reservoirs: Bighorn Basin, Wyoming and Montana, USA

    SciTech Connect

    Sonnenfeld, M.D.

    1995-08-01

    {open_quotes}Fracture-controlled{close_quotes} and {open_quotes}karst-controlled{close_quotes} contributions to reservoir heterogeneity tend to be viewed as non-fabric selective in nature. Given such an outlook, predictions of fracture and karst overprints depend on an awareness of extrinsic controls such as past and present stress-fields, structural curvature, fault proximity, and the positions and movements of paleo-water tables. The hierarchical sequence stratigraphy of the 300 m Madison provides the stratigraphic framework necessary to characterize the vertical distribution of early, fabric-selective platformal dolomite; additionally, this framework assists in discriminating between fabric-selective and non-fabric-selective styles of karst and fracturing. In the case of Madison karst, early meteoric lithification and subtle Mississippian tectonics resulted in a vertically oriented fracture-controlled karst on top of the Madison, yet this non fabric-selective system channeled waters into several fabric-selective, regionally widespread solution collapse zones and cave systems. The horizontally oriented regional dissolution was stratigraphically controlled by soluble evaporitic zones and/or argillaceous aquitards overlying intra-Madison sequence boundaries rather than occurring at various unconfined water-table stillstands. Evaporite solution collapse breccias presently form partial to complete barriers to vertical fluid flow depending on thickness and degree of associated argillaceous influx, while cave-roof {open_quotes}fracture breccias{close_quotes} were preferential sites of late dolomitization within the giant Elk Basin Madison reservoir. In the case of Madison fracturing, stratigraphic cycles of several scales provide effective scales of analysis in the quest for true mechanical stratigraphic units defined by common fracture styles.

  7. A debris flow deposit in alluvial, coal-bearing facies, Bighorn Basin, Wyoming, USA: Evidence for catastrophic termination of a mire

    USGS Publications Warehouse

    Roberts, S.B.; Stanton, R.W.; Flores, R.M.

    1994-01-01

    Coal and clastic facies investigations of a Paleocene coal-bearing succession in the Grass Creek coal mine, southwestern Bighorn Basin, Wyoming, USA, suggest that disruption of peat accumulation in recurrent mires was caused by the repetitive progradation of crevasse splays and, ultimately, by a catastrophic mass movement. The mass movement, represented by deposits of debris flow, marked the termination of significant peat accumulation in the Grass Creek coal mine area. Megascopic and microscopic analyses of coal beds exposed along the mine highwalls suggest that these deposits developed in low-lying mires, as evidenced primarily by their ash yields and maceral composition. Disruption of peat accumulation in successive mires was caused by incursions of sediment into the mire environments. Termination by crevasse splay progradation is represented by coarsening-upward successions of mudrock and tabular, rooted sandstone, which overlie coal beds in the lower part of the coal-bearing interval. A more rapid process of mire termination by mass movement is exemplified by a debris flow deposit of diamictite, which overlies the uppermost coal bed at the top of the coal-bearing interval. The diamictite consists of a poorly sorted, unstratified mixture of quartzite cobbles and pebbles embedded in a claystone-rich or sandy mudstone matrix. Deposition of the diamictite may have taken place over a matter of weeks, days, or perhaps even hours, by catastrophic flood, thus reflecting an instantaneous process of mire termination. Coarse clastics and mud were transported from the southwest some 20-40 km as a viscous debris flow along stream courses from the ancestral Washakie Range to the Grass Creek area, where the flow overrode a low-lying mire and effectively terminated peat accumulation. ?? 1994.

  8. Geochemistry of inorganic nitrogen in waters released from coal-bed natural gas production wells in the powder river basin, wyoming

    USGS Publications Warehouse

    Smith, R.L.; Repert, D.A.; Hart, C.P.

    2009-01-01

    Water originating from coal-bed natural gas (CBNG) production wells typically contains ammonium and is often disposed via discharge to ephemeral channels. A. study conducted in the Powder River Basin, Wyoming, documented downstream changes in CBNG water composition, emphasizing nitrogen-cycling processes and the fate of ammonium. Dissolved ammonium concentrations from 19 CBNG discharge points ranged from 95 to 527 ??M. Within specific channels, ammonium concentrations decreased with transport distance, with subsequent increases in nitrite and nitrate concentrations. Removal efficiency, or uptake, of total dissolved inorganic nitrogen (DIN) varied between channel types. DIN uptake was greater in the gentle-sloped, vegetated channel as compared to the incised, steep, and sparsely vegetated channel and was highly correlated with diel patterns of incident light and dissolved oxygen concentration. In a larger main channel with multiple discharge inputs (n = 13), DIN concentrations were >300 ??M, with pH > 8.5, after 5 km of transport. Ammonium represented 25-30% of the large-channel DIN, and ammonium concentrations remained relatively constant with time, with only a weak diel pattern evident. In July 2003, the average daily large-channel DIN load was 23 kg N day-1 entering the Powder River, an amount which substantially increased the total Powder River DIN load after the channel confluence. These results suggest that CBNG discharge may be an important source of DIN to western watersheds, at least at certain times of the year, and that net oxidation and/or removal is dependent upon the extent of contact with sediment and biomass, type of drainage channel, and time of day. ?? 2009 American Chemical Society.

  9. Geochemistry of Inorganic Nitrogen in Waters Released from Coal-Bed Natural Gas Production Wells in the Powder River Basin, Wyoming

    USGS Publications Warehouse

    Smith, Richard L.; Repert, Deborah A.; Hart, Charles P.

    2009-01-01

    Water originating from coal-bed natural gas (CBNG) production wells typically contains ammonium and is often disposed via discharge to ephemeral channels. A study conducted in the Powder River Basin, Wyoming, documented downstream changes in CBNG water composition, emphasizing nitrogen-cycling processes and the fate of ammonium. Dissolved ammonium concentrations from 19 CBNG discharge points ranged from 95 to 527 µM. Within specific channels, ammonium concentrations decreased with transport distance, with subsequent increases in nitrite and nitrate concentrations. Removal efficiency, or uptake, of total dissolved inorganic nitrogen (DIN) varied between channel types. DIN uptake was greater in the gentle-sloped, vegetated channel as compared to the incised, steep, and sparsely vegetated channel and was highly correlated with diel patterns of incident light and dissolved oxygen concentration. In a larger main channel with multiple discharge inputs (n = 13), DIN concentrations were >300 µM, with pH > 8.5, after 5 km of transport. Ammonium represented 25-30% of the large-channel DIN, and ammonium concentrations remained relatively constant with time, with only a weak diel pattern evident. In July 2003, the average daily large-channel DIN load was 23 kg N day-1 entering the Powder River, an amount which substantially increased the total Powder River DIN load after the channel confluence. These results suggest that CBNG discharge may be an important source of DIN to western watersheds, at least at certain times of the year, and that net oxidation and/or removal is dependent upon the extent of contact with sediment and biomass, type of drainage channel, and time of day.

  10. Geochemical processes and the effects of natural organic solutes on the solubility of selenium in coal-mine backfill samples from the Powder River basin, Wyoming

    USGS Publications Warehouse

    See, R.B.; Reddy, K.J.; Vance, G.F.; Fadlelmawla, A.A.; Blaylock, M.J.

    1995-01-01

    Geochemical processes and the effects of natural organic solutes on the solubility of selenium in coal-mine backfill aquifers were investigated. Backfill and ground-water samples were collected at coal mines in the Powder River Basin, Wyoming. Backfill was generally dominated by aluminum (14,400 to 49,000 mg/kg (milligrams per kilogram)), iron (3,330 to 23,200 mg/kg), and potassium (7,950 to 18,000 mg/kg). Backfill saturated-paste selenium concentrations ranged from 1 to 156 mg/kg (microsiemens per kilogram). Ground-water total selenium concentrations ranged from 3 to 125 mg/L. Dissolved organic carbon in all ground-water samples was dominated by hydrophobic and hydrophilic acids (38 to 84 percent). Selenite sorption/desorption experiments were conducted using background solutions of distilled-deionized water, 0.1 molar calcium chloride, and isolated hydrophobic and hydrophilic acids. Selenite sorption was larger when 0.1 molar calcium chloride was used. The addition of hydrophilic acid decreased selenite sorption more than the addition of hydrophobic acids. Geochemical modelling was used to predict the solid phases controlling dissolved selenium concentrations and to evaluate the effects of dissolved organic carbon on selenium solubility. Results suggested that 55 to 90 percent of selenium in backfill precipitation/dissolution extracts was dominated by magnesium selenate ion pairs. Dissolved organic carbon had little effect on selenium speciation. A redox chamber was constructed to control Eh and pH in water and backfill-core sample suspensions. The response of selenite and selenate in water samples to redox conditions did not follow thermodynamic predictions. Reduction of selenate in water samples did not occur at any of the redox levels tested.

  11. Artesian pressures and water quality in Paleozoic aquifers in the Ten Sleep area of the Bighorn Basin, north-central Wyoming

    USGS Publications Warehouse

    Cooley, M.E.

    1985-01-01

    Major Paleozoic artesian aquifers in the southeastern Bighorn Basin of Wyoming area, in descending order, the Tensleep Sandstone; the Madison Limestone and Bighorn Dolomite, which together form the Madison-Bighorn aquifer; and the Flathead Sandstone. Operating yields commonly are more than 1,000 gallons per minute from flowing wells completed in the Madison-Bighorn aquifer. The initial test of one well indicated a flow of 14,000 gallons per minute. Wellhead pressures range from less than 50 to more than 400 pounds per square inch. Transmissivities are 500-1,900 feet squared per day for the Madison-Bighorn aquifer and 90-325 feet squared per day for the Tensleep and Flathead Sandstones. Despite extensive development for irrigation there have been few decreases in pressure. Some decreases in pressure have occurred in wells completed in the Flathead Sandstone. Fractures along linear structural features result in significant secondary permeability and allow upward interformational movement of water that affects the altitude of the potentiometric surfaces in the Tensleep Sandstone and Madison-Bighorn aquifer. Upward-moving water from the Tensleep and other formations discharges at the land surface as springs along or near these lineations. Water from the aquifers generally contains minimal concentrations of dissolved solids and individual constituents but has excessive hardness. The water is satisfactory for irrigation and other purposes when hardness is not a detrimental factor. Wellhead temperatures range from 11 degrees to 27.5 degrees C, giving a geothermal gradient of about 0.44 degrees C per 100 feet. (USGS)

  12. Lower Eocene alluvial paleosols (Willwood Formation, Northwest Wyoming, U.S.A.) and their significance for paleoecology, paleoclimatology, and basin analysis

    USGS Publications Warehouse

    Bown, T.M.; Kraus, M.J.

    1981-01-01

    The lower Eocene Willwood Formation of northwest Wyoming is a 700 m thick accumulation of alluvial floodplain and channel mudstones and sandstones, nearly all of which show paleopedogenic modifications. Pedogenesis of Willwood sandstones is indicated by taproot and vertebrate and invertebrate bioturbation, early local cementation by calcium carbonate, and thin illuviation cutans on clastic grains. Pedogenesis in Willwood mudstones is indicated by plant bioturbation, insect and other invertebrate burrow casts and lebensspuren; free iron, aluminum, and manganese mobilization, including hydromorphic gleying; sesquioxide and calcareous glaebule formation in lower parts of the solum; presence of clay-rich and organic carbon-rich zones; and well differentiated epipedons and albic and spodic horizons. Probable A horizons are also locally well developed. Occurrence of variegated paleosol units in thick floodplain mudstone deposits and their association with thin, lenticular, and unconnected fluvial sandstones in the Willwood Formation of the central and southeast Bighorn Basin suggest that these soils formed during times of rapid sediment accumulation. The tabular geometry and lateral persistence of soil units as well as the absence of catenization indicate that Willwood floodplains were broad and essentially featureless. All Willwood paleosols were developed on alluvial parent materials and are complex in that B horizons of younger paleosols were commonly superimposed upon and mask properties of suspected A and B horizons of the next older paleosols. The soils appear to be wet varieties of the Spodosol and Entisol groups (aquods and ferrods, and aquents, respectively), though thick, superposed and less mottled red, purple, and yellow paleosols resemble some ultisols. Most Willwood paleosols resemble warm temperate to subtropical alluvial soils that form today under alternating wet and dry conditions and (or) fluctuating water tables. The up-section decrease in frequency of gley mottles, increase in numerical proportion and thickness of red versus orange coloration, and increase in abundance of calcrete glaebules indicate better drained soils and probably drier climate in late Willwood time. This drying is believed to be related to creation of rain shadows and spacing of rainfall (but not necessarily decrease in absolute rainfall) due to progressive tectonic structural elevation of the mountainous margins of the Bighorn Basin. ?? 1981.

  13. Workforce: Wyoming

    ERIC Educational Resources Information Center

    Western Interstate Commission for Higher Education, 2006

    2006-01-01

    From 2002 to 2012, the economy in Wyoming and the nation will continue generating jobs for workers at all levels of education and training, but there will be an increasing demand for employees with at least some postsecondary education, preferably a bachelor's degree. Nationwide, during a decade that will witness large numbers of baby boomers…

  14. Chapter 5: Geologic Assessment of Undiscovered Petroleum Resources in the Waltman Shale Total Petroleum System,Wind River Basin Province, Wyoming

    USGS Publications Warehouse

    Roberts, Steve B.; Roberts, Laura N.R.; Cook, Troy

    2007-01-01

    The Waltman Shale Total Petroleum System encompasses about 3,400 square miles in the Wind River Basin Province, Wyoming, and includes accumulations of oil and associated gas that were generated and expelled from oil-prone, lacustrine shale source rocks in the Waltman Shale Member of the Paleocene Fort Union Formation. Much of the petroleum migrated and accumulated in marginal lacustrine (deltaic) and fluvial sandstone reservoirs in the Shotgun Member of the Fort Union, which overlies and intertongues with the Waltman Shale Member. Additional petroleum accumulations derived from Waltman source rocks are present in fluvial deposits in the Eocene Wind River Formation overlying the Shotgun Member, and also might be present within fan-delta deposits included in the Waltman Shale Member, and in fluvial sandstone reservoirs in the uppermost part of the lower member of the Fort Union Formation immediately underlying the Waltman. To date, cumulative production from 53 wells producing Waltman-sourced petroleum exceeds 2.8 million barrels of oil and 5.8 billion cubic feet of gas. Productive horizons range from about 1,770 feet to 5,800 feet in depth, and average about 3,400 to 3,500 feet in depth. Formations in the Waltman Shale Total Petroleum System (Fort Union and Wind River Formations) reflect synorogenic deposition closely related to Laramide structural development of the Wind River Basin. In much of the basin, the Fort Union Formation is divided into three members (ascending order): the lower unnamed member, the Waltman Shale Member, and the Shotgun Member. These members record the transition from deposition in dominantly fluvial, floodplain, and mire environments in the early Paleocene (lower member) to a depositional setting characterized by substantial lacustrine development (Waltman Shale Member) and contemporaneous fluvial, and marginal lacustrine (deltaic) deposition (Shotgun Member) during the middle and late Paleocene. Waltman Shale Member source rocks have total organic carbon values ranging from 0.93 to 6.21 weight percent, averaging about 2.71 weight percent. The hydrocarbon generative potential of the source rocks typically exceeds 2.5 milligrams of hydrocarbon per gram of rock and numerous samples had generative potentials exceeding 6.0 milligrams of hydrocarbon per gram of rock. Waltman source rocks are oil prone, and contain a mix of Type-II and Type-III kerogen, indicating organic input from a mix of algal and terrestrial plant matter, or a mix of algal and reworked or recycled material. Thermal maturity at the base of the Waltman Shale Member ranges from a vitrinite reflectance value of less than 0.60 percent along the south basin margin to projected values exceeding 1.10 percent in the deep basin west of Madden anticline. Burial history reconstructions for three wells in the northern part of the Wind River Basin indicate that the Waltman Shale Member was well within the oil window (Ro equal to or greater than 0.65 percent) by the time of maximum burial about 15 million years ago; maximum burial depths exceeded 10,000 feet. Onset of oil generation calculated for the base of the Waltman Shale member took place from about 49 million years ago to about 20 million years ago. Peak oil generation occurred from about 31 million years ago to 26 million years ago in the deep basin west of Madden anticline. Two assessment units were defined in the Waltman Shale Total Petroleum System: the Upper Fort Union Sandstones Conventional Oil and Gas Assessment Unit (50350301) and the Waltman Fractured Shale Continuous Oil Assessment Unit (50350361). The conventional assessment unit primarily relates to the potential for undiscovered petroleum accumulations that are derived from source rocks in the Waltman Shale Member and trapped within sandstone reservoirs in the Shotgun Member (Fort Union Formation) and in the lower part of the overlying Wind River Formation. The potential for Waltman-sourced oil accumulations in fan-delta depos

  15. Anisotropy and spatial variation of relative permeability and lithologic character of Tensleep Sandstone reservoirs in the Bighorn and Wind River basins, Wyoming. Annual report, September 15, 1993--September 30, 1994

    SciTech Connect

    Dunn, T.L.

    1995-07-01

    The principal focus of this project is to evaluate the importance of relative permeability anisotropy with respect to other known geologic and engineering production concepts. This research is to provide improved strategies for enhanced oil recovery from the Tensleep Sandstone oil reservoirs in the Bighorn and Wind River basins, Wyoming. The Tensleep Sandstone contains the largest potential reserves within reservoirs which are candidates for EOR processes in the State of Wyoming. Although this formation has produced billions of barrels of oil, in some fields, as little as one in seven barrels of discovered oil is recoverable by current primary and secondary techniques. Because of the great range of {degree}API gravities of the oils produced from the Tensleep Sandstone reservoirs, the proposed study concentrates on establishing an understanding of the spatial variation and anisotropy of relative permeability within the Tensleep Sandstone. This research is to associate those spatial distributions and anisotropies with the depositional subfacies and zones of diagenetic alteration found within the Tensleep Sandstone. In addition, these studies are being coupled with geochemical modeling and coreflood experiments to investigate the potential for wellbore scaling and formation damage anticipated during EOR processes (e.g., C0{sub 2} flooding). This multidisciplinary project will provide a regional basis for EOR strategies which can be clearly mapped and efficiently applied to the largest potential target reservoir in the State of Wyoming. Additionally, the results of this study have application to all eolian reservoirs through the correlations of relative permeability variation and anisotropy with eolian depositional lithofacies.

  16. Anisotropy and spatial variation of relative permeability and lithologic character of Tensleep Sandstone reservoirs in the Bighorn and Wind River Basins, Wyoming. Annual report, October 1, 1994-- September 30, 1995

    SciTech Connect

    Dunn, T.L.

    1996-03-01

    This research is to provide improved strategies for enhanced oil recovery from the Tensleep Sandstone oil reservoirs in the Bighorn and Wind River basins, Wyoming. Because of the great range of API gravities of the oils produced from these reservoirs, the proposed study concentrates on understanding the spatial variation and anisotropy of relative permeability within the Tensleep Sandstone. This research will associate those spatial distributions and anisotropies with the depositional subfacies and zones of diagenetic alteration found within the sandstone. The associations of the above with pore geometry will link relative permeability with the dimensions of lithofacies and authigenic mineral facies. Hence, the study is to provide criteria for scaling this parameter on a range of scales, from the laboratory to the basin-wide scale of subfacies distribution. Effects of depositional processes and burial diagenesis will be investigated. Image analysis of pore systems will be done to produce algorithms for estimating relative permeability from petrographic analyses of core and well cuttings. In addition, these studies are being coupled with geochemical modeling and coreflood experiments to investigate the potential for wellbore scaling and formation damage anticipated during EOR, eg., CO{sub 2} flooding. This will provide a regional basis for EOR strategies for the largest potential target reservoir in Wyoming; results will have application to all eolian reservoirs through correlations of relative permeability variation and anisotropy with eolian depositional lithofacies.

  17. Burial history, thermal maturity, and oil and gas generation history of petroleum systems in the Wind River Basin Province, central Wyoming: Chapter 6 in Petroleum systems and geologic assessment of oil and gas resources in the Wind River Basin Province, Wyoming

    USGS Publications Warehouse

    Roberts, Laura N.R.; Finn, Thomas M.; Lewan, Michael D.; Kirschbaum, Mark A.

    2007-01-01

    Burial history, thermal maturity, and timing of oil and gas generation were modeled for eight key source rock units at nine well locations throughout the Wind River Basin Province. Petroleum source rocks include the Permian Phosphoria Formation, the Cretaceous Mowry Shale, Cody Shale, and Mesaverde, Meeteetse, and Lance Formations, and the Tertiary (Paleocene) Fort Union Formation, including the Waltman Shale Member. Within the province boundary, the Phosphoria is thin and only locally rich in organic carbon. Phosphoria oil produced from reservoirs in the province is thought to have migrated from the Wyoming and Idaho thrust belt. Locations (wells) selected for burial history reconstructions include three in the deepest parts of the province (Adams OAB-17, Bighorn 1-5, and Coastal Owl Creek); three at intermediate depths (Hells Half Acre, Shell 33X-10, and West Poison Spider); and three at relatively shallow locations (Young Ranch, Amoco Unit 100, and Conoco-Coal Bank). The thermal maturity of source rocks is greatest in the deep northern and central parts of the province and decreases to the south and east toward the basin margins. The results of the modeling indicate that, in the deepest areas, (1) peak petroleum generation from Cretaceous rocks occurred from Late Cretaceous through middle Eocene time, and (2) onset of oil generation from the Waltman Shale Member occurred from late Eocene to early Miocene time. Based on modeling results, gas generation from the cracking of Phosphoria oil reservoired in the Park City Formation reached a peak in the late Paleocene/early Eocene (58 to 55 Ma) only in the deepest parts of the province. The Mowry Shale and Cody Shale (in the eastern half of the basin) contain a mix of Type-II and Type-III kerogens. Oil generation from predominantly Type-II source rocks of these units in the deepest parts of the province reached peak rates during the latest Cretaceous to early Eocene (65 to 55 Ma). Only in these areas of the basin did these units reach peak gas generation from the cracking of oil, which occurred in the early to middle Eocene (55 to 42 Ma). Gas-prone source rocks of the Mowry and Cody Shales (predominantly Type-III kerogen), and the Mesaverde, Meeteetse, Lance, and Fort Union Formations (Type –III kerogen) reached peak gas generation in the latest Cretaceous to late Eocene (67 to 38 Ma) in the deepest parts of the province. Gas generation from the Mesaverde source rocks started at all of the modeled locations but reached peak generation at only the deepest locations and at the Hells Half Acre location in the middle Paleocene to early Eocene (59 to 48 Ma). Also at the deepest locations, peak gas generation occurred from the late Paleocene to the early Eocene (57 to 49 Ma) for the Meeteetse Formation, and during the Eocene for the Lance Formation (55 to 48 Ma) and the Fort Union Formation (44 to 38 Ma). The Waltman Shale Member of the Fort Union Formation contains Type-II kerogen. The base of the Waltman reached a level of thermal maturity to generate oil only at the deep-basin locations (Adams OAB-17 and Bighorn 1-5 locations) in the middle Eocene to early Miocene (36 to 20 Ma).

  18. Artesian pressures and water quality in Paleozoic aquifers in the Ten Sleep area of the Bighorn Basin, north-central Wyoming

    USGS Publications Warehouse

    Cooley, Maurice E.

    1986-01-01

    The major Paleozoic artesian aquifers, the aquifers most favorable for continued development, in the Ten Sleep area of the Bighorn Basin of Wyoming are the Tensleep Sandstone, the Madison Limestone and Bighorn Dolomite (Madison-Bighorn aquifer), and the Flathead Sandstone. The minor aquifers include the Goose Egg and Park City Formations (considered in the Ten Sleep area to be the lateral equivalent of the Phosphoria Formation) and the Amsden Formation. Most wells completed in the major and minor aquifers flow at the land surface. Wellhead pressures generally are less than 50 pounds per square inch for the Tensleep Sandstone, 150-250 pounds per square inch for the Madison-Bighorn aquifer, and more than 400 pounds per square inch for the Flathead Sandstone. Flowing wells completed in the Madison-Bighorn aquifer and the Flathead Sandstone yield more than 1,000 gallons per minute. The initial test of one well completed in the Madison-Bighorn aquifer indicated a flow rate of 14,000 gallons per minute. Transmissivities range from 500 to 1,900 feet squared per day for the Madison-Bighorn aquifer and from about 90 to 325 feet squared per day for the Tensleep and Flathead Sandstones. Significant secondary permeability from fracturing in the Paleozoic aquifers allows local upward interformational movement of water, and this affects the altitude of the potentiometric surfaces of the Tensleep Sandstone and the Madison-Bighorn aquifer. Water moves upward from the Tensleep and other formations, through the Goose Egg Formation, to discharge at the land surface as springs. Much of the spring flow is diverted for irrigation or is used for rearing fish. Decreases from original well pressures were not apparent in wells completed in the Tensleep Sandstone or in the Madison-Bighorn aquifer in the study area except for a few wells in or near the town of Ten Sleep. Most wells completed in the Flathead Sandstone, which also are open to the Madison-Bighorn aquifer, show a decrease of pressure from the time of completion to 1978. The decrease of pressure is partly the result of water moving from the Flathead Sandstone into the Madison-Bighorn aquifer, which has a lower potentiometric surface than does the Flathead Sandstone, even during the time the wells are not in operation. Pressure in some small-capacity wells completed in the Goose Egg Formation also has decreased near Ten Sleep. Most of the wells, particularly the irrigation wells, show a progressive decrease in pressure during the irrigation season but recover during periods of nonuse. Measurements of the pressure were made principally in 1953, 1962, 1970, and 1975-78. Well water from the Paleozoic aquifers generally contains minimal concentrations of dissolved solids and individual constituents but excessive hardness. Dissolved-solids concentrations of water are less than 300 milligrams per liter in the Tensleep Sandstone and the Madison-Bighorn aquifer, less than 200 milligrams per liter in the Flathead Sandstone, and as much as 450 milligrams per liter in the Goose Egg Formation. Bicarbonate is the major constituent, followed by calcium and magnesium. Relatively large concentrations of sulfate, as much as 490 milligrams per liter, were found, mainly in water from the Goose Egg Formation. The water has low sodium (alkali) and medium salinity; therefore, the water is satisfactory for irrigation and most other uses, if excessive hardness is not a detrimental factor. Wellhead temperatures range from 11 ? to 27.5 ? Celsius (51 ? to 81.5 ? Fahrenheit) within a range in depth of approximately 250 to 4,000 feet. This gives a geothermal gradient of about 0.44 ? Celsius per 100 feet (0.79 ? Fahrenheit per 100 feet).

  19. Tectonically induced climate and its control on the distribution of depositional systems in a continental foreland basin, Cloverly and Lakota Formations (Lower Cretaceous) of Wyoming, U.S.A.

    NASA Astrophysics Data System (ADS)

    Elliott, William S.; Suttner, Lee J.; Pratt, Lisa M.

    2007-12-01

    Continental sediments of the Cloverly and Lakota Formations (Lower Cretaceous) in Wyoming are subdivided into three depositional systems: perennial to intermittent alluvial, intermittent to ephemeral alluvial, and playa. Chert-bearing sandstones, conglomerates, carbonaceous mudrocks, blocky mudrocks, and skeletal limestones were deposited by perennial to intermittent alluvial systems. Carbonaceous mudrocks contain abundant wood fragments, cuticle and cortical debris, and other vascular plant remains representing deposition in oxbow lakes, abandoned channels, and on floodplains under humid to seasonal conditions. Intraformational conglomerates, sandstones, bioturbated and blocky mudrocks with caliche nodules, and bioturbated limestones characterize deposition in intermittent to ephemeral alluvial systems. Bioturbated limestones are encased in bioturbated mudrocks with abundant pseudo-slickensides. The presence of caliche nodules in some of the blocky to bioturbated mudrocks is consistent with supersaturation and precipitation of calcium carbonate from groundwater under semi-arid conditions. Caliche nodules, pseudo-slickensides, and carbonate-rich floodplain sediments are interpreted to have been deposited by intermittent to ephemeral alluvial systems under seasonal to semi-arid climatic conditions. Laminated mudrocks, siltstones, vuggy carbonates, bedded to nodular evaporites, pebbly mudrocks, and diamictites were deposited in evaporative alkaline lakes or playas. Pebbly mudrocks and diamictites are interpreted to represent deposition from channelized and unchannelized hyperconcentrated flows on a playa, resulting from intense rain events within the basin. The areal abundance and distribution of these depositional systems change systematically across the overfilled portion of the Early Cretaceous Cordilleran foreland basin in Wyoming. The lower part (A-interval) of the Cloverly and Lakota Formations is characterized by deposits of perennial to intermittent rivers that existed 300 to 1000 km east of the Sevier fold-and-thrust belt. Proximal to the Sevier fold-and-thrust belt, the A-interval of the Cloverly Formation and upper Ephraim Formation of the Gannett Group are typified by deposits of intermittent to ephemeral rivers and their associated floodplains. In the middle part (B-interval) of the Cloverly Formation, intermittent to ephemeral alluvial systems expand to 600 km into the basin. The upper part (C-interval) of the Cloverly Formation is characterized by playa deposits in the Bighorn and Wind River Basins and intermittent to ephemeral alluvial deposits along the front of the ancestral Sevier Mountains. Deposits of perennial to intermittent alluvial systems in the C-interval of the Cloverly and Lakota Formations are restricted to the Black Hills region, almost 900 km to the east of the Sevier Mountains. The change in the areal distribution of depositional systems through time within this continental foreland basin may be attributed to the development of a rain shadow associated with the uplift of the Sevier Mountains in the Early Cretaceous.

  20. WATER QUALITY ASSESSMENT OF THE UPPER SNAKE RIVER BASIN, IDAHO AND WESTERN WYOMING - SUMMARY OF AQUATIC BIOLOGICAL DATA FOR SURFACE WATER THROUGH 1992

    EPA Science Inventory

    The initial phase of this study involved compiling data to describe the current (1992) and historical aquatic biological conditions of surface water in the Snake River Basin (1704). To assess water quality of the basin, at least 26 different macroinvertebrate and fish community ...

  1. Geologic framework for the national assessment of carbon dioxide storage resources: Denver Basin, Colorado, Wyoming, and Nebraska: Chapter G in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Drake II, Ronald M.; Brennan, Sean T.; Covault, Jacob A.; Blondes, Madalyn S.; Freeman, Philip A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.

    2014-01-01

    This is a report about the geologic characteristics of five storage assessment units (SAUs) within the Denver Basin of Colorado, Wyoming, and Nebraska. These SAUs are Cretaceous in age and include (1) the Plainview and Lytle Formations, (2) the Muddy Sandstone, (3) the Greenhorn Limestone, (4) the Niobrara Formation and Codell Sandstone, and (5) the Terry and Hygiene Sandstone Members. The described characteristics, as specified in the methodology, affect the potential carbon dioxide storage resource in the SAUs. The specific geologic and petrophysical properties of interest include depth to the top of the storage formation, average thickness, net-porous thickness, porosity, permeability, groundwater quality, and the area of structural reservoir traps. Descriptions of the SAU boundaries and the overlying sealing units are also included. Assessment results are not contained in this report; however, the geologic information included here will be used to calculate a statistical Monte Carlo-based distribution of potential storage volume in the SAUs.

  2. Geologic map of the Peach Orchard Flat quadrangle, Carbon County, Wyoming, and descriptions of new stratigraphic units in the Upper Cretaceous Lance Formation and Paleocene Fort Union Formation, eastern Greater Green River Basin, Wyoming-Colorado

    USGS Publications Warehouse

    Honey, J.D.; Hettinger, R.D.

    2004-01-01

    This report provides a geologic map of the Peach Orchard Flat 7.5-minute quadrangle, located along the eastern flank of the Washakie Basin, Wyo. Geologic formations and individual coal beds were mapped at a scale of 1:24,000; surface stratigraphic sections were measured and described; and well logs were examined to determine coal correlations and thicknesses in the subsurface. In addition, four lithostratigraphic units were named: the Red Rim Member of the Upper Cretaceous Lance Formation, and the China Butte, Blue Gap, and Overland Members of the Paleocene Fort Union Formation.

  3. Assessment of selected constituents in surface water of the upper Snake River basin, Idaho and western Wyoming, water years 1975-89

    USGS Publications Warehouse

    Clark, Gregory M.

    1994-01-01

    A more extensive data-collection program in the upper Snake River Basin is needed to address a number of water-quality issues. These include an analysis of effects of land use on the quality of surface water; quantification of mass movement of nutrients and suspended sediment at key locations in the basin; distribution of aquatic organisms; and temporal and spatial distribution of pesticides in surface water, bottom sediment, and biota.

  4. Geologic framework for the national assessment of carbon dioxide storage resources: Powder River Basin, Wyoming, Montana, South Dakota, and Nebraska: Chapter B in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Craddock, William H.; Drake II, Ronald M.; Mars, John L.; Merrill, Matthew D.; Warwick, Peter D.; Blondes, Madalyn S.; Gosai, Mayur A.; Freeman, Philip A.; Cahan, Steven A.; DeVera, Christina A.; Lohr, Celeste D.

    2012-01-01

    This report presents ten storage assessment units (SAUs) within the Powder River Basin of Wyoming, Montana, South Dakota, and Nebraska. The Powder River Basin contains a thick succession of sedimentary rocks that accumulated steadily throughout much of the Phanerozoic, and at least three stratigraphic packages contain strata that are suitable for CO2 storage. Pennsylvanian through Triassic siliciclastic strata contain two potential storage units: the Pennsylvanian and Permian Tensleep Sandstone and Minnelusa Formation, and the Triassic Crow Mountain Sandstone. Jurassic siliciclastic strata contain one potential storage unit: the lower part of the Sundance Formation. Cretaceous siliciclastic strata contain seven potential storage units: (1) the Fall River and Lakota Formations, (2) the Muddy Sandstone, (3) the Frontier Sandstone and Turner Sandy Member of the Carlile Shale, (4) the Sussex and Shannon Sandstone Members of Cody Shale, and (5) the Parkman, (6) Teapot, and (7) Teckla Sandstone Members of the Mesaverde Formation. For each SAU, we discuss the areal distribution of suitable CO2 reservoir rock. We also characterize the overlying sealing unit and describe the geologic characteristics that influence the potential CO2 storage volume and reservoir performance. These characteristics include reservoir depth, gross thickness, net thickness, porosity, permeability, and groundwater salinity. Case-by-case strategies for estimating the pore volume existing within structurally and (or) stratigraphically closed traps are presented. Although assessment results are not contained in this report, the geologic information included herein will be employed to calculate the potential storage space in the various SAUs.

  5. Basin-margin depositional environments of the Fort Union and Wasatch Formations (Tertiary) in the Buffalo-Lake De Smet area, Johnson County, Wyoming

    USGS Publications Warehouse

    Obernyer, Stanley L.

    1979-01-01

    The Paleocene Fort Union and Eocene Wasatch Formations along the east flank of the Bighorn Mountains in the Buffalo-Lake De Smet area, Wyoming, consist of continental alluvial fan, braided stream, and poorly drained alluvial plain deposits. The Fort Union conformably overlies the Cretaceous Lance Formation, which is marine in its lower units and nonmarine in its upper part. The formations dip steeply along the western margin of the study area and are nearly horizontal in the central and eastern portions. This structural configuration permits the reconstruction of depositional environments as an aid to understanding: (1) the evolution of the Bighorn uplift and its effects on the depositional patterns marginal to the uplift during Paleocene and Eocene time and (2) the changing depositional environments basinward from the margin of the uplift during a relatively small period of time in the Eocene.

  6. ANALYSIS OF DATA ON NUTRIENTS AND ORGANIC COMPOUNDS IN GROUND WATER IN THE UPPER SNAKE RIVER BASIN, IDAHO AND WESTERN WYOMING, 1980-91

    EPA Science Inventory

    Nutrient and organic compound data from the U.S. Geological Survey and the U.S. Environmental Protection Agency STORET data bases provided information for development of a preliminary conceptual model of spatial and temporal ground-water quality in the upper Snake River Basin (17...

  7. ASSESSMENT OF SELECTED CONSTITUENTS IN THE SURFACE WATER OF THE UPPER SNAKE RIVER BASIN, IDAHO AND WESTERN WYOMING, WATER YEARS 1975-1989.

    EPA Science Inventory

    In 1991, a water-quality investigation of the upper Snake River Basin (1704) was initiated as part of the USGS National Water-Quality Assessment Program. Nearly 9,000 analyses of nutrients and suspended sediment from more than 450 stations were retrieved from the U.S. Environmen...

  8. Characteristics of fish assemblages and related environmental variables for streams of the upper Snake River basin, Idaho and western Wyoming, 1993-95

    USGS Publications Warehouse

    Maret, Terry R.

    1997-01-01

    limited designation for the middle reach of the Snake River between Milner Dam and King Hill and provide a framework for developing indices of biotic integrity by using fish assemblages to evaluate water quality of streams in the upper Snake River Basin.

  9. Characterization of Habitat and Biological Communities at Fixed Sites in the Great Salt Lake Basins, Utah, Idaho, and Wyoming, Water Years 1999-2001

    USGS Publications Warehouse

    Albano, Christine M.; Giddings, Elise M.P.

    2007-01-01

    Habitat and biological communities were sampled at 10 sites in the Great Salt Lake Basins as part of the U.S. Geological Survey National Water-Quality Assessment program to assess the occurrence and distribution of biological organisms in relation to environmental conditions. Sites were distributed among the Bear River, Weber River, and Utah Lake/Jordan River basins and were selected to represent stream conditions in different land-use settings that are prominent within the basins, including agriculture, rangeland, urban, and forested. High-gradient streams had more diverse habitat conditions with larger substrates and more dynamic flow characteristics and were typically lower in discharge than low-gradient streams, which had a higher degree of siltation and lacked variability in geomorphic channel characteristics, which may account for differences in habitat. Habitat scores were higher at high-gradient sites with high percentages of forested land use within their basins. Sources and causes of stream habitat impairment included effects from channel modifications, siltation, and riparian land use. Effects of hydrologic modifications were evident at many sites. Algal sites where colder temperatures, less nutrient enrichment, and forest and rangeland uses dominated the basins contained communities that were more sensitive to organic pollution, siltation, dissolved oxygen, and salinity than sites that were warmer, had higher degrees of nutrient enrichment, and were affected by agriculture and urban land uses. Sites that had high inputs of solar radiation and generally were associated with agricultural land use supported the greatest number of algal species. Invertebrate samples collected from sites where riffles were the richest-targeted habitat differed in species composition and pollution tolerance from those collected at sites that did not have riffle habitat (nonriffle sites), where samples were collected in depositional areas, woody snags, or macrophyte beds. Invertebrate taxa richness, pollution tolerance, and trophic interactions at riffle and nonriffle sites responded differently to environmental variables. Fish communities were assessed in relation to the designated beneficial use for aquatic life for each site. Fish-community sites in basins where agriculture and urbanization were prevalent consistently had poorer conditions than sites with forest and rangeland uses. Warm temperatures appear to be limiting most native fish species, and more introduced, warm-water fish species were present at sites with warmer temperatures. Ranges of environmental conditions where native species were present or absent were identified. The farthest-upstream site in each of the three basins had better ecological condition overall, as indicated by the integrity of habitat and the presence of more sensitive algae, invertebrate, and fish species than were observed at sites downstream. The farthest-downstream site in each of the three basins showed the poorest ecological condition, with more tolerant organisms present, degraded habitat and water-quality conditions, and a high degree of effects from agriculture, grazing, and urbanization. Of the mid-basin sites, the site most affected by urbanization had more degraded biological condition than the agricultural indicator site of similar basin size.

  10. Paleotectonics of Frontier Formation in Wyoming

    SciTech Connect

    Curry, W.H. III

    1983-08-01

    The most intense and widespread pre-Laramide structural deformation of Cretaceous sedimentary rocks in Wyoming is associated with the Wall Creek sandstone of the Frontier Formation. Most of the evidence of structural deformation is found immediately below the regional unconformity at the base of this sandstone. Regionally, an isopach map from the top of the Frontier Formation to the top of the Mowry Formation shows strong and persistent thinning onto a north-trending arch in western Wyoming and thickening into a northwest trending basin in eastern Wyoming. Part of the thinning onto the western arch is caused by progressively deeper erosion of a regional unconformity at the base of the Wall Creek sandstone, and regional onlap of the Wall Creek sandstone above the unconformity. There is also some westward thinning of the lower Frontier interval, however, which is not related to the Wall Creek unconformity. Of the more specific paleostructures discussed, the north-trending anticlines in the vicinity of the Moxa arch in southwestern Wyoming are particularly well developed. An east-west anticline in the Bison basin area appears to have been faulted on the south flank, and a broad arch on the west side of the Powder River basin may have influenced paleocurrents and sandstone depositional trends of the productive First Frontier Sandstone of that area.

  11. Evaluation of Phytoremediation of Coal Bed Methane Product Water and Waters of Quality Similar to that Associated with Coal Bed Methane Reserves of the Powder River Basin, Montana and Wyoming

    SciTech Connect

    James Bauder

    2008-09-30

    U.S. emphasis on domestic energy independence, along with advances in knowledge of vast biogenically sourced coalbed methane reserves at relatively shallow sub-surface depths with the Powder River Basin, has resulted in rapid expansion of the coalbed methane industry in Wyoming and Montana. Techniques have recently been developed which constitute relatively efficient drilling and methane gas recovery and extraction techniques. However, this relatively efficient recovery requires aggressive reduction of hydrostatic pressure within water-saturated coal formations where the methane is trapped. Water removed from the coal formation during pumping is typically moderately saline and sodium-bicarbonate rich, and managed as an industrial waste product. Current approaches to coalbed methane product water management include: surface spreading on rangeland landscapes, managed irrigation of agricultural crop lands, direct discharge to ephermeral channels, permitted discharge of treated and untreated water to perennial streams, evaporation, subsurface injection at either shallow or deep depths. A Department of Energy-National Energy Technology Laboratory funded research award involved the investigation and assessment of: (1) phytoremediation as a water management technique for waste water produced in association with coalbed methane gas extraction; (2) feasibility of commercial-scale, low-impact industrial water treatment technologies for the reduction of salinity and sodicity in coalbed methane gas extraction by-product water; and (3) interactions of coalbed methane extraction by-product water with landscapes, vegetation, and water resources of the Powder River Basin. Prospective, greenhouse studies of salt tolerance and water use potential of indigenous, riparian vegetation species in saline-sodic environments confirmed the hypothesis that species such as Prairie cordgrass, Baltic rush, American bulrush, and Nuttall's alkaligrass will thrive in saline-sodic environments when water supplies sourced from coalbed methane extraction are plentiful. Constructed wetlands, planted to native, salt tolerant species demonstrated potential to utilize substantial volumes of coalbed methane product water, although plant community transitions to mono-culture and limited diversity communities is a likely consequence over time. Additionally, selected, cultured forage quality barley varieties and native plant species such as Quail bush, 4-wing saltbush, and seaside barley are capable of sustainable, high quality livestock forage production, when irrigated with coalbed methane product water sourced from the Powder River Basin. A consequence of long-term plant water use which was enumerated is elevated salinity and sodicity concentrations within soil and shallow alluvial groundwater into which coalbed methane product water might drain. The most significant conclusion of these investigations was the understanding that phytoremediation is not a viable, effective technique for management of coalbed methane product water under the present circumstances of produced water within the Powder River Basin. Phytoremediation is likely an effective approach to sodium and salt removal from salt-impaired sites after product water discharges are discontinued and site reclamation is desired. Coalbed methane product water of the Powder River Basin is most frequently impaired with respect to beneficial use quality by elevated sodicity, a water quality constituent which can cause swelling, slaking, and dispersion of smectite-dominated clay soils, such as commonly occurring within the Powder River Basin. To address this issue, a commercial-scale fluid-bed, cationic resin exchange treatment process and prototype operating treatment plant was developed and beta-tested by Drake Water Technologies under subcontract to this award. Drake Water Technologies secured U.S. Patent No. 7,368,059-B2, 'Method for removal of benevolent cations from contaminated water', a beta Drake Process Unit (DPU) was developed and deployed for operation in the Powder River Basin. First year operatio

  12. Activities of the National Water-Quality Assessment Program in the upper Snake River Basin, Idaho and western Wyoming, 1991-2001

    USGS Publications Warehouse

    Low, Walton H.

    1997-01-01

    In 1991, the U.S. Geological Survey (USGS) began a full-scale National Water-Quality Assessment (NAWQA) Program. The long-term goals of the NAWQA Program are to describe the status and trends in the water quality of a large part of the Nation's rivers and aquifers and to improve understanding of the primary natural and human factors that affect water-quality conditions. In meeting these goals, the program will produce water-quality, ecological, and geographic information that will be useful to policy makers and managers at the national, State, and local levels. A major component of the program is study-unit investigations, upon which national-level assessment activities are based. The program's 60 study-unit investigations are associated with principal river basins and aquifer systems throughout the Nation. Study units encompass areas from 1,200 to more than 65,000 mi2 (square miles) and incorporate about 60 to 70 percent of the Nation's water use and population served by public water supply. In 1991, the upper Snake River Basin was among the first 20 NAWQA study units selected for implementation. From 1991 to 1995, a high-intensity data-collection phase of the upper Snake River Basin study unit (fig. 1) was implemented and completed. Components of this phase are described in a report by Gilliom and others (1995). In 1997, a low-intensity phase of data collection began, and work continued on data analysis, report writing, and data documentation and archiving activities that began in 1996. Principal data-collection activities during the low-intensity phase will include monitoring of surface-water and ground-water quality, assessment of aquatic biological conditions, and continued compilation of environmental setting information.

  13. In-place oil shale resources examined by grade in the major basins of the Green River Formation, Colorado, Utah, and Wyoming

    USGS Publications Warehouse

    Birdwell, Justin E.; Mercier, Tracey J.; Johnson, Ronald C.; Brownfield, Michael E.

    2013-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated a total of 4.285 trillion barrels of oil in-place in the oil shale of the three principal basins of the Eocene Green River Formation. Using oil shale cutoffs of potentially viable (15 gallons per ton) and high grade (25 gallons per ton), it is estimated that between 353 billion and 1.146 trillion barrels of the in-place resource have a high potential for development.

  14. Geologic framework for the national assessment of carbon dioxide storage resources: Bighorn Basin, Wyoming and Montana: Chapter A in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Covault, Jacob A.; Buursink, Mark L.; Craddock, William H.; Merrill, Matthew D.; Blondes, Madalyn S.; Gosai, Mayur A.; Freeman, Philip A.

    2012-01-01

    This report identifies and contains geologic descriptions of twelve storage assessment units (SAUs) in six separate packages of sedimentary rocks within the Bighorn Basin of Wyoming and Montana and focuses on the particular characteristics, specified in the methodology, that influence the potential CO2 storage resource in those SAUs. Specific descriptions of the SAU boundaries as well as their sealing and reservoir units are included. Properties for each SAU such as depth to top, gross thickness, net porous thickness, porosity, permeability, groundwater quality, and structural reservoir traps are provided to illustrate geologic factors critical to the assessment. Although assessment results are not contained in this report, the geologic information included here will be employed, as specified in the methodology of earlier work, to calculate a statistical Monte Carlo-based distribution of potential storage space in the various SAUs. Figures in this report show SAU boundaries and cell maps of well penetrations through the sealing unit into the top of the storage formation. Wells sharing the same well borehole are treated as a single penetration. Cell maps show the number of penetrating wells within one square mile and are derived from interpretations of incompletely attributed well data, a digital compilation that is known not to include all drilling. The USGS does not expect to know the location of all wells and cannot guarantee the amount of drilling through specific formations in any given cell shown on cell maps.

  15. National Assessment of Oil and Gas Project: Petroleum Systems and Assessment of Undiscovered Oil and Gas in the Denver Basin Province, Colorado, Kansas, Nebraska, South Dakota, and Wyoming - USGS Province 39

    USGS Publications Warehouse

    Higley, Debra K.

    2007-01-01

    INTRODUCTION The purpose of the U.S. Geological Survey's (USGS) National Oil and Gas Assessment is to develop geologically based hypotheses regarding the potential for additions to oil and gas reserves in priority areas of the United States. The USGS recently completed an assessment of undiscovered oil and gas resources of the Denver Basin Province (USGS Province 39), Colorado, Kansas, Nebraska, South Dakota, and Wyoming. Petroleum is produced in the province from sandstone, shale, and limestone reservoirs that range from Pennsylvanian to Upper Cretaceous in age. This assessment is based on geologic principles and uses the total petroleum system concept. The geologic elements of a total petroleum system include hydrocarbon source rocks (source rock maturation, hydrocarbon generation and migration), reservoir rocks (sequence stratigraphy and petrophysical properties), and hydrocarbon traps (trap formation and timing). The USGS used this geologic framework to define seven total petroleum systems and twelve assessment units. Nine of these assessment units were quantitatively assessed for undiscovered oil and gas resources. Gas was not assessed for two coal bed methane assessment units due to lack of information and limited potential; oil resources were not assessed for the Fractured Pierre Shale Assessment Unit due to its mature development status.

  16. Prevalence of Yersinia pestis in rodents and fleas associated with black-tailed prairie dogs (Cynomys ludovicianus) at Thunder Basin National Grassland, Wyoming

    USGS Publications Warehouse

    Thiagarajan, B.; Bal, Y.; Gage, K.L.; Cully, J.F., Jr.

    2008-01-01

    Rodents (and their fleas) that are associated with prairie dogs are considered important for the maintenance and transmission of the bacterium (Yersinia pestis) that causes plague. Our goal was to identify rodent and flea species that were potentially involved in a plague epizootic in black-tailed prairie dogs at Thunder Basin National Grassland. We collected blood samples and ectoparasites from rodents trapped at off- and on-colony grids at Thunder Basin National Grassland between 2002 and 2004. Blood samples were tested for antibodies to Y. pestis F-1 antigen by a passive hemagglutination assay, and fleas were tested by a multiplex polymerase chain reaction, for the presence of the plague bacterium. Only one of 1,421 fleas, an Oropsylla hirsuta collected in 2002 from a deer mouse, Peromyscus maniculatus, tested positive for Y. pestis. Blood samples collected in summer 2004 from two northern grasshopper mice, Onychomys leucogaster, tested positive for Y. pestis antibodies. All three positive samples were collected from on-colony grids shortly after a plague epizootic occurred. This study confirms that plague is difficult to detect in rodents and fleas associated with prairie dog colonies, unless samples are collected immediately after a prairie dog die-off. ?? Wildlife Disease Association 2008.

  17. Impact of fracture stratigraphy on the paleo-hydrogeology of the Madison Limestone in two basement-involved folds in the Bighorn basin, (Wyoming, USA)

    NASA Astrophysics Data System (ADS)

    Barbier, Mickael; Leprêtre, Rémi; Callot, Jean-Paul; Gasparrini, Marta; Daniel, Jean-Marc; Hamon, Youri; Lacombe, Olivier; Floquet, Marc

    2012-11-01

    Based on the study of the Madison Limestone at Sheep Mountain and Rattlesnake Mountain, a unique outcrop dataset including (1) facies and diagenetic analyses, (2) vertical persistence and cement stratigraphy of vein sets and (3) fluid inclusions thermometry are used to demonstrate the impact of folding and fracturing on paleo-hydrogeology. Quantification of the vertical persistence of fractures shows that Sheep Mountain and Rattlesnake Mountain differ by the vertical persistence of the pre-folding Laramide vein sets, which are strictly bed-confined in Sheep Mountain but cut across bedding at Rattlesnake Mountain, whereas the syn-folding veins are through-going in both. The emplacement chronology and the various sources of the fluids responsible for the paragenetic sequence are based on isotope chemistry and fluid inclusions analysis of the matrix and vein cements. At Sheep Mountain and Rattlesnake Mountain, the cements related to the burial are characterized by isotopic signatures of marine formation waters that were diluted during the karstification of the Madison Platform at the end of Mississippian. Meteoric fluids, presumably migrating during the Cenomanian from Wind River Range and Teton Range, recharge zones located in the south-west of the Bighorn Basin, were remobilized in the early bed-confined and through-going syn-folding veins of the Sheep Mountain Anticline. The former vein set drained only local fluids whose isotopic signature relates to an increase of temperature of the meteoric fluids during their migration, whereas the latter set allowed quick drainage of basinal fluids.

  18. Inventory of biological investigations related to stream water quality in the South Platte River basin, Colorado, Nebraska, and Wyoming, 1891-1994

    USGS Publications Warehouse

    Tate, Cathy M.; Ortiz-Zayas, Jorge R.

    1995-01-01

    An inventory of the biological investigations conducted in the South Platte River Basin from 1891 to 1994 was done as a part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) program in the South Platte River Basin. To aid in the sampling design of the biological component of the South Platte NAWQA, sources of water-related studies were compiled from computerized literature searches of biological data bases and by contacting other Federal, State, and local agencies. Biological investigations were categorized by their location in either of two major physiographic provinces-the Southern Rocky Mountains or the Great Plains, or in the transition zone between the mountains and the plains. From this collection of 102 references, five general categories of biological investigations were identified: algae, invertebrates, fish, habitat characterization, and chemicals in organism tissue. The most abundant literature was on studies of invertebrate and fish communities. Invertebrate studies primarily were conducted in the mountain region. There was limited information on algae, invertebrates in the plains region, flood-plain vegetation in the mountains and transition zone, and chemicals in organism tissue.

  19. Coal as a source rock of petroleum and gas - a comparison between natural and artificial maturation of the Almond Formation coals, Greater Green River Basin in Wyoming

    SciTech Connect

    Garcia-Gonzalez, M.; MacGowan, D.B.; Surdam, R.C. )

    1993-01-01

    Organic petrological and geochemical studies demonstrate that the Almond Formation coals contain great unrecognized volumes of stored gas and oil. Oil is generated during maturation of hydrogen-rich vitrinite (desmocollinite) and liptinite macerals into exsudatinite (waxy oil) and inertinite solid residue. The waxy oil is initially stored in pores and vesicles. As the coal thermally matures, stored hydrocarbons are expelled from the pores and vesicles. This phase change causes a significant volume increase, which may overcome the storage capacity of these coals, fracturing them and allowing primary migration of hydrocarbons. Kinetic modeling, based on hydrous pyrolysis experiments, indicates that at the basin center, most oil generated and expelled from Almond coals has been thermally cracked to gas, whereas at the basin flank the oil-to-gas reaction is unimportant. During hydrous pyrolysis these coals expel up to 0.17 barrels of oil and 404 cubic feet of gas per ton of coal, indicating excellent generative capacity. Calculations of the volume of Upper Cretaceous coals in the Greater Green River at vitrinite reflectances between 0.9 and 1.7 percent indicate that these coals may have generated 24 billion barrels of oil and 66 trillion cubic feet of gas. 39 refs., 51 figs., 11 tabs.

  20. Prevalence of Yersinia pestis in rodents and fleas associated with black-tailed prairie dogs (Cynomys ludovicianus) at Thunder Basin National Grassland, Wyoming.

    PubMed

    Thiagarajan, Bala; Bai, Ying; Gage, Kenneth L; Cully, Jack F

    2008-07-01

    Rodents (and their fleas) that are associated with prairie dogs are considered important for the maintenance and transmission of the bacterium (Yersinia pestis) that causes plague. Our goal was to identify rodent and flea species that were potentially involved in a plague epizootic in black-tailed prairie dogs at Thunder Basin National Grassland. We collected blood samples and ectoparasites from rodents trapped at off- and on-colony grids at Thunder Basin National Grassland between 2002 and 2004. Blood samples were tested for antibodies to Y. pestis F-1 antigen by a passive hemagglutination assay, and fleas were tested by a multiplex polymerase chain reaction, for the presence of the plague bacterium. Only one of 1,421 fleas, an Oropsylla hirsuta collected in 2002 from a deer mouse, Peromyscus maniculatus, tested positive for Y. pestis. Blood samples collected in summer 2004 from two northern grasshopper mice, Onychomys leucogaster, tested positive for Y. pestis antibodies. All three positive samples were collected from on-colony grids shortly after a plague epizootic occurred. This study confirms that plague is difficult to detect in rodents and fleas associated with prairie dog colonies, unless samples are collected immediately after a prairie dog die-off. PMID:18689663

  1. Assessment of nutrients, suspended sediment, and pesticides in surface water of the upper Snake River basin, Idaho and western Wyoming, water years 1991-95

    USGS Publications Warehouse

    Clark, Gregory M.

    1997-01-01

    Quality Assessment Program. As part of the investigation, intensive monitoring was conducted during water years 1993 through 1995 to assess surface-water quality in the basin. Sampling and analysis focused on nutrients, suspended sediments, and pesticides because of nationwide interest in these constituents. Concentrations of nutrients and suspended sediment in water samples from 19 sites in the upper Snake River Basin, including nine on the main stem, were assessed. In general, concentrations of nutrients and suspended sediment were smaller in water from the 11 sites upstream from American Falls Reservoir than in water from the 8 sites downstream from the reservoir where effects from land-use activities are most pronounced. Median concentrations of dissolved nitrite plus nitrate as nitrogen at the 19 sites ranged from less than 0.05 to 1.60 milligrams per liter; total phosphorus as phosphorus, less than 0.01 to 0.11 milligrams per liter; and suspended sediment, 4 to 72 milligrams per liter. Concentrations of nutrients and suspended sediment in the main stem of the Snake River, in general, increased downstream. The largest concentrations in the main stem were in the middle reach of the Snake River between Milner Dam and the outlet of the upper Snake River Basin at King Hill. Significant differences (p Nutrient and suspended sediment inputs to the middle Snake reach were from a variety of sources. During water year 1995, springs were the primary source of water and total nitrogen to the river and accounted for 66 and 60 percent of the total input, respectively. Isotope and water-table information indicated that the springs derived most of their nitrogen from agricultural activities along the margins of the Snake River. Aquacultural effluent was a major source of ammonia (82 percent), organic nitrogen (30 percent), and total phosphorus (35 percent). Tributary streams were a major source of organic nitrogen (28 percent) and suspended sediment (58 percent). In proportion to its discharge (less than 1 percent), the Twin Falls sewage-treatment plant was a major source of total phosphorus (13 percent). A comparison of discharge and loading in water year 1995 with estimates of instream transport showed a good correlation (relative difference of less than 15 percent) for discharge, total organic nitrogen, dissolved nitrite plus nitrate, total nitrogen, and total phosphorus. Estimates of dissolved ammonia and suspended sediment loads correlated poorly with instream transport; relative differences were about 79 and 61 percent, respectively. The pesticides EPTC, atrazine, desethylatrazine, metolachlor, and alachlor were the most commonly detected in the upper Snake River Basin and accounted for about 75 percent of all pesticide detections. All pesticides detected were at concentrations less than 1 microgram per liter and below water-quality criteria established by the U.S. Environmental Protection Agency. In samples collected from two small agriculturally dominated tributary basins, the largest number and concentrations of pesticides were detected in May and June following early growing season applications. At one of the sites, the pesticide atrazine and its metabolite desethylatrazine were detected throughout the year. On the basis of 37 samples collected basinwide in May and June 1994, total annual subbasin applications and instantaneous instream fluxes of EPTC and atrazine showed logarithmic relations with coefficients of determination (R2 values) of 0.55 and 0.62, respectively. At the time of sampling, the median daily flux of EPTC was about 0.0001 percent of the annual quantity applied, whereas the median daily flux of atrazine was between 0.001 and 0.01 percent.

  2. Analysis of data on nutrients and organic compounds in ground water in the upper Snake River basin, Idaho and western Wyoming, 1980-91

    USGS Publications Warehouse

    Rupert, Michael G.

    1994-01-01

    Nutrient and organic compound data from the U.S. Geological Survey and the U.S. Environmental Protection Agency STORET data bases provided information for development of a preliminary conceptual model of spatial and temporal ground-water quality in the upper Snake River Basin. Nitrite plus nitrate (as nitrogen; hereafter referred to as nitrate) concentrations exceeded the Federal drinking-water regulation of 10 milligrams per liter in three areas in Idaho" the Idaho National Engineering Laboratory, the area north of Pocatello (Fort Hall area), and the area surrounding Burley. Water from many wells in the Twin Falls area also contained elevated (greater than two milligrams per liter) nitrate concentrations. Water from domestic wells contained the highest median nitrate concentrations; water from industrial and public supply wells contained the lowest. Nitrate concentrations decreased with increasing well depth, increasing depth to water (unsaturated thickness), and increasing depth below water table (saturated thickness). Kjeldahl nitrogen concentrations decreased with increasing well depth and depth below water table. The relation between kjeldahl nitrogen concentrations and depth to water was poor. Nitrate and total phosphorus concentrations in water from wells were correlated among three hydrogeomorphic regions in the upper Snake River Basin, Concentrations of nitrate were statistically higher in the eastern Snake River Plain and local aquifers than in the tributary valleys. There was no statistical difference in total phosphorus concentrations among the three hydrogeomorphic regions. Nitrate and total phosphorus concentrations were correlated with land-use classifications developed using the Geographic Information Retrieval and Analysis System. Concentrations of nitrate were statistically higher in area of agricultural land than in areas of rangeland. There was no statistical difference in concentrations between rangeland and urban land and between urban land and agricultural land. There was no statistical difference in total phosphorus concentrations among any of the land-use classifications. Nitrate and total phosphorus concentrations also were correlated with land-use classifications developed by the Idaho Department of Water Resources for the Idaho part of the upper Snake River Basin. Nitrate concentrations were statistically higher in areas of irrigated agriculture than in areas of dryland agriculture and rangeland. There was no statistical difference in total phosphorus concentrations among any of the Idaho Department of Water Resources land-use classifications. Data were sufficient to assess long-term trends of nitrate concentrations in water from only eight wells: four wells north of Burley and four wells northwest of Pocatello. The trend in nitrate concentrations in water from all wells in upward. The following organic compounds were detected in ground water in the upper Snake River Basin: cyanazine, 2,4-D DDT, dacthal, diazinon, dichloropropane, dieldrin, malathion, and metribuzin. Of 211 wells sampled for organic compounds, water from 17 contained detectable concentrations.

  3. National Assessment of Oil and Gas Project: petroleum systems and geologic assessment of oil and gas in the Southwestern Wyoming Province, Wyoming, Colorado and Utah

    USGS Publications Warehouse

    USGS Southwest Wyoming Province Assessment Team

    2005-01-01

    The U.S. Geological Survey (USGS) completed an assessment of the undiscovered oil and gas potential of the Southwestern Wyoming Province of southwestern Wyoming, northwestern Colorado, and northeastern Utah (fig. 1). The USGS Southwestern Wyoming Province for this assessment included the Green River Basin, Moxa arch, Hoback Basin, Sandy Bend arch, Rock Springs uplift, Great Divide Basin, Wamsutter arch, Washakie Basin, Cherokee ridge, and the Sand Wash Basin. The assessment of the Southwestern Wyoming Province is based on geologic principles and uses the total petroleum system concept. The geologic elements of a total petroleum system include hydrocarbon source rocks (source rock maturation, hydrocarbon generation, and migration), reservoir rocks (sequence stratigraphy, petrophysical properties), and hydrocarbon traps (trap types, formation, and timing). Using this geologic framework, the USGS defined 9 total petroleum systems (TPS) and 23 assessment units (AU) within these TPSs, and quantitatively estimated the undiscovered oil and gas resources within 21 of the 23 AUs.

  4. Stratigraphy, depositional history, and trapping mechanisms of Lone Tree Creek and Lodgepole Creek oil fields, Lower Cretaceous Fall River formation, Powder River Basin, Wyoming

    SciTech Connect

    Gustason, E.R.; Ryer, T.A.

    1985-05-01

    Stratigraphically trapped accumulations of oil in the Lone Tree Creek and Lodgepole Creek fields occur within and just updip from a fluvial meander belt within the Fall River Formation. The meander belt can be mapped north-to-south over a distance of at least 100 mi (161 km) in the eastern part of the Powder River basin. The northern part of the meander belt contains the oil fields of the Coyote Creek-Miller Creek trend; the southern part contains only the relatively small Lone Tree Creek and Lodgepole Creek fields. These small fields are of considerable interest, as they display a style of stratigraphic trapping of hydrocarbons not observed in the prolific Coyote Creek-Miller Creek trend. The stratigraphic traps of the Coyote Creek-Miller Creek trend occur at updip facing convexities along the eastern edge of the meander belt, with abandonment clay plugs serving as lateral permeability barriers to hydrocarbon migration. Oil has been produced in part of the Lone Tree Creek field from a similar trap. The remaining part of Lone Tree Creek field and Lodgepole creek field produce from stratigraphic traps formed by lateral pinch-outs of delta-front sandstone bodies. These traps are situated updip from and apparently in continuity with the meander-belt deposits, indicating that they may have been charged with hydrocarbons that found their way through the clay-plug barriers along the margin of the meander belt. Similar, undiscovered traps may exist updip from Fall River meander belts elsewhere in the basin.

  5. A new approach to fluid flow modeling of directional permeability in a faulted anticline, Little Sand Draw Field, Big Horn Basin, Wyoming

    NASA Astrophysics Data System (ADS)

    Raba'A, Ali Saleh Bin

    2001-09-01

    Little Sand Draw field, Hot Springs County, Wyoming, is a fractured and faulted asymmetric anticlinal oil reservoir. The main producing formation is the Permian Phosphoria Formation. Numerical simulation of this reservoir is important for evaluating reservoir quality and past and future performance. This study presents a new integrated methodology which combines reservoir engineering with geology to improve reservoir characterization, simulation, and planning for reservoir management. The goal of this project is to apply a new geological and engineering approach to simulate directional permeability in a faulted and fractured anticlinal oil reservoir. Tear faults, which have apparent strike slip offset and occur at high angles to the fold axis, have been quantified at Thermopolis anticline, an analogous structure 6 mi (10 km) to the south. The observed tear faults could be significant source of permeability anisotropy, and may provide high permeability conduits across structural folds. Anisotropic directional permeabilities, roughly perpendicular to fold axes, are known from pressure- interference tests in the Phosphoria Formation at Little Sand Draw field. The hypothesis is that tear faults are the cause of the observed directional permeability. To accomplish the objectives, this study constructed 3- dimensional geological and fluid-flow models of the Little Sand Draw field. The spacing of faults in outcrop was used as input for fault compartments in the reservoir simulation model. The hypothesis to be tested in this study is whether reservoir models with or without tear faults provide a good history match. The 3-D geological model was built using EarthVision (Dynamic Graphics) software. The geological model correctly honors the structural geology. Petrophysical properties are distributed in 3-D using five zones in the upper Phosphoria Formation and one zone in the Tensleep Formation. The full-field, 3-D reservoir fluid-flow model was built using the ECLIPSE black-oil simulator (Geoquest, Schlumberger) to perform history matches and forecast. Three fluid-flow models were generated: (1)an unfaulted-unfractured model, (2)a faulted- unfractured model, and (3)a faulted-fractured model. History matching performed on these models tested which one of them best resembles actual field performance. The unfaulted-unfractured model could not produce enough total fluids to match historical data, and reservoir pressures were too low. The faulted-unfractured model improved the history match, but could not match production data. The faulted-fractured model does the best job of matching the observed past performance at Little Sand Draw field. Forecasting future performance of the faulted-fractured model under existing operating conditions showed production rates for the next 20 years.

  6. Law in Wyoming.

    ERIC Educational Resources Information Center

    Wyoming Law-Related Education Advisory Council, Cheyenne.

    This document is intended to give students an overview of laws in Wyoming. Subjects covered include civil and criminal law; courts in Wyoming; juvenile law, juvenile court procedure; rights of children; family law; employment law; automobile-related law; laws affecting the schools; and citizenship rights and responsibilities. The laws and courts…

  7. Impact of fracture stratigraphy on the paleohydrogeology of the Madison limestone in two basement involved folds in the Bighorn Basin (Wyoming, USA)

    NASA Astrophysics Data System (ADS)

    Barbier, Mickael; Leprêtre, Rémi; Hamon, Youri; Callot, Jean-Paul; Gasparrini, Marta; Daniel, Jean-Marc; Lacombe, Olivier

    2013-04-01

    Based on the study of the Madison Limestone at Sheep Mountain and Rattlesnake Mountain, a unique outcrop dataset including (1) facies and diagenenitc analyses, (2) vertical persistence and cement stratigraphy of vein sets and (3) fluid inclusions thermometry are used to demonstrate (i) the importance of the eo-diagenetic phases on reservoirs petrophysical and mechanical properties, and (ii) the impact of folding and fracturing on paleo-hydrogeology. The different phases of porosity and permeability development of the carbonates of the Madison Limestone occurred mainly during the syn-depositional eogenesis, the postponed eogenesis (reflux of brine during LFS3) and during the karstification at the end of the Mississippian. The early sealing by the Amsden Formation during the Early Pennsylvanian, limited the vertical exchanges and initiated the confinement of the Madison "aquifer". The burial of the Madison Limestone leaded to the occlusion of the pore network due to the calcite cementation in the distal parts of the platform whereas it leaded to the pore network development due to the crystallization of dolomite in proximal parts. Quantification of the vertical persistence of fractures shows that Sheep Mountain and Rattlesnake Mountain differ by the vertical persistence of the pre-folding Laramide vein sets, which are strictly bed-confined in Sheep Mountain but cut across bedding at Rattlesnake Mountain, whereas the syn-folding veins are through-going in both. The emplacement chronology and the various sources of the fluids responsible for the paragenetic sequence are based on isotope chemistry and fluid inclusions analysis of the matrix and vein cements. At Sheep Mountain and Rattlesnake Mountain, the two cements related to the burial are characterized by isotopic signatures of marine formation waters that were diluted during the karstification of the Madison Platform at the end of Mississippian. Meteoric fluids, presumably migrating during the Cenomanian from Wind River Range and Teton Range, recharge zones located in the south-west of the Bighorn Basin, were remobilized in the early bed-confined and through-going syn-folding veins of the Sheep Mountain Anticline. The former vein set drained only local fluids whose isotopic signature relates to an increase of temperature of the meteoric fluids during their migration, whereas the latter set allowed quick drainage of basinal fluids.

  8. Castle Geyser and Bobby Sox Trees: Pulses and Pauses in the Development of Hydrothermal Features in the Upper Geyser Basin, Yellowstone National Park, Wyoming

    NASA Astrophysics Data System (ADS)

    Foley, D.

    2007-12-01

    Preliminary 14-C dating of Castle Geyser, combined with observations of living and dead trees in hydrothermal areas, suggests that hydrothermal systems in Yellowstone have pulses of activity interspersed with pauses of little or no activity. Between the time scale of volcanic activity, with pulses and pauses over thousands to hundreds of thousands of years, and geyser eruptions, with pulses and pauses over minutes to decades, lies the time scale for pulses and pauses in the development of individual hydrothermal systems and large thermal basins. Castle Geyser has long been noted as being among the largest, and therefore probably oldest, geysers in Yellowstone. Watson (1961) proposed an age of 8000 years for the geyser cone, and Bryan (2001) suggested that it is 5000 to 15000 years old. Recent dating, accompanied by 3-D laser mapping, suggests a complex, multi- stage development of the geyser. AMS 14C dating of microbial and pollen carbon trapped in siliceous sinter that forms a broad, gently-sloping shield at the base of the geyser cone yields ages of 8787 +/- 60 years BP and 10472 +/- 70 years BP. Carbon from sinter on the cone of the geyser yields ages equal to or younger than 1038 +/- 35 years BP. No samples dated so far have ages between 8787 and 1038 years BP. The morphology of the geyser suggests that the pause after shield formation was followed at least one stage of terrace formation (from either hot spring or pool-type geyser activity), which in turn has been followed by the construction and partial destruction of a massive cone. Where thermal waters are high in silica, thermally killed trees may develop white lower trunks, informally known as "bobby sox." Forest growth implies a time of no thermal activity; forest death, where clear evidence of thermal activity exists, implies inception or rejuvenation of hydrothermal activity. Many thermal features, such as Castle and Old Faithful geysers, have evidence of trees that are now encrusted by silica. The duration from initial tree kill to complete desiccation may be long enough to provide a useful chronometer for thermal activity. The 14C date of a small bobby sox tree near Gem Pool in the Upper Geyser Basin yielded an age of 190 years BP. The pulses and pauses documented by 14C dating of Castle Geyser, and observed in the nature of tree growth and subsequent hydrothermal kill, may be combined to develop a chronology of hydrothermal activity which, when combined with other data sets, may help provide clues to deeper processes in the Yellowstone caldera.

  9. Gas, Oil, and Water Production from Jonah, Pinedale, Greater Wamsutter, and Stagecoach Draw Fields in the Greater Green River Basin, Wyoming

    USGS Publications Warehouse

    Nelson, Philip H.; Ewald, Shauna M.; Santus, Stephen L.; Trainor, Patrick K.

    2010-01-01

    Gas, oil, and water production data were compiled from selected wells in four gas fields in rocks of Late Cretaceous age in southwestern Wyoming. This study is one of a series of reports examining fluid production from tight-gas reservoirs, which are characterized by low permeability, low porosity, and the presence of clay minerals in pore space. Production from each well is represented by two samples spaced five years apart, the first sample typically taken two years after commencement of production. For each producing interval, summary diagrams of oil versus gas and water versus gas production show fluid production rates, the change in rates during five years, the water-gas and oil-gas ratios, and the fluid type. These diagrams permit well-to-well and field-to-field comparisons. Fields producing water at low rates (water dissolved in gas in the reservoir) can be distinguished from fields producing water at moderate or high rates, and the water-gas ratios are quantified. The ranges of first-sample gas rates in Pinedale field and Jonah field are quite similar, and the average gas production rate for the second sample, taken five years later, is about one-half that of the first sample for both fields. Water rates are generally substantially higher in Pinedale than in Jonah, and water-gas ratios in Pinedale are roughly a factor of ten greater in Pinedale than in Jonah. Gas and water production rates from each field are fairly well grouped, indicating that Pinedale and Jonah fields are fairly cohesive gas-water systems. Pinedale field appears to be remarkably uniform in its flow behavior with time. Jonah field, which is internally faulted, exhibits a small spread in first-sample production rates. In the Greater Wamsutter field, gas production from the upper part of the Almond Formation is greater than from the main part of the Almond. Some wells in the main and the combined (upper and main parts) Almond show increases in water production with time, whereas increases in water production are rare in the upper part of the Almond, and a higher percentage of wells in the upper part of the Almond show water decreasing at the same rate as gas than in the main or combined parts of the Almond. In Stagecoach Draw field, the gas production rate after five years is about one-fourth that of the first sample, whereas in Pinedale, Jonah, and Greater Wamsutter fields, the production rate after five years is about one-half that of the first sample. The more rapid gas decline rate seems to be the outstanding feature distinguishing Stagecoach Draw field, which is characterized as a conventional field, from Pinedale, Jonah, and Greater Wamsutter fields, which are generally characterized as tight-gas accumulations. Oil-gas ratios are fairly consistent within Jonah, Pinedale, and Stagecoach Draw fields, suggesting similar chemical composition and pressure-temperature conditions within each field, and are less than the 20 bbl/mmcf upper limit for wet gas. However, oil-gas ratios vary considerably from one area to another in the Greater Wamsutter field, demonstrating a lack of commonality in either chemistry or pressure-temperature conditions among the six areas. In all wells in all four fields examined here, water production commences with gas production-there are no examples of wells with water-free production and no examples where water production commences after first-sample gas production. The fraction of records with water production higher in the second sample than in the first sample varies from field to field, with Pinedale field showing the lowest percentage of such cases and Jonah field showing the most. Most wells have water-gas ratios exceeding the amount that could exist dissolved in gas at reservoir pressure and temperature.

  10. Wyoming Kids Count in Wyoming Factbook, 1999.

    ERIC Educational Resources Information Center

    Wyoming Children's Action Alliance, Cheyenne.

    This Kids Count factbook details statewide trends in the well-being of Wyoming's children. Following an overview of key indicators and data sources, the factbook documents trends by county for 20 indicators, including the following: (1) poverty and population; (2) welfare reform; (3) certified day care facilities; (4) births; (5) infant deaths;…

  11. Depositional environments, sequence stratigraphy, and trapping mechanisms of Fall River Formation in Donkey Creek and Coyote Creek oil fields, Powder River basin, Wyoming

    SciTech Connect

    Knox, P.R. )

    1989-09-01

    Donkey Creek and Coyote Creek fields contain combined reserves of approximately 35 million bbl of oil and are within a trend of fields on the eastern flank of the Powder River basin that totals over 100 million bbl of reserves. The principal producing formation is the Lower Cretaceous Fall River Sandstone. A study of 45 cores and 248 logs from the three pools in the Donkey Creek and Coyote fields has shown that the Fall River is composed of three progradational deltaic units deposited during a period of rising relative sea level. These are locally eroded and are filled by a fluvial point-bar complex deposited following a lowering of relative sea level. Four important depositional facies have been recognized: the delta-front and distributary-channel sandstone of the highstand deltaic sequence and the point-bar sandstone and channel-abandonment of the lowstand fluvial sequence. Stratigraphic traps in Coyote Creek and south Donkey Creek pools are the result of permeable (250 md) point-bar sandstone (250 bbl oil/day ip) bounded updip by impermeable (0.1 md) channel abandonment mudstone. Most of the oil in the central Donkey Creek pool is produced from permeable (76 md) distributary-channel sandstone (150 bbl oil/day ip), which is restricted to the western flank of a structural nose. Lesser production, on the crest and upper western flank of the structure, is obtained from the less permeable (2.8 md) delta-front sandstone (50 bbl oil/day ip). Production is possibly limited to the crest and western flank by hydrodynamic processes.

  12. Water quality and environmental isotopic analyses of ground-water samples collected from the Wasatch and Fort Union Formations in areas of coalbed methane development : implications to recharge and ground-water flow, eastern Powder River basin, Wyoming

    USGS Publications Warehouse

    Bartos, Timothy T.; Ogle, Kathy Muller

    2002-01-01

    Chemical analyses of ground-water samples were evaluated as part of an investigation of lower Tertiary aquifers in the eastern Powder River Basin where coalbed methane is being developed. Ground-water samples were collected from two springs discharging from clinker, eight monitoring wells completed in the Wasatch aquifer, and 13 monitoring or coalbed methane production wells completed in coalbed aquifers. The ground-water samples were analyzed for major ions and environmental isotopes (tritium and stable isotopes of hydrogen and oxygen) to characterize the composition of waters in these aquifers, to relate these characteristics to geochemical processes, and to evaluate recharge and ground-water flow within and between these aquifers. This investigation was conducted in cooperation with the Wyoming State Engineer's Office and the Bureau of Land Management. Water quality in the different aquifers was characterized by major-ion composition. Samples collected from the two springs were classified as calcium-sulfate-type and calcium-bicarbonate-type waters. All ground-water samples from the coalbed aquifers were sodium-bicarbonate-type waters as were five of eight samples collected from the overlying Wasatch aquifer. Potential areal patterns in ionic composition were examined. Ground-water samples collected during this and another investigation suggest that dissolved-solids concentrations in the coalbed aquifers may be lower south of the Belle Fourche River (generally less than 600 milligrams per liter). As ground water in coalbed aquifers flows to the north and northwest away from an inferred source of recharge (clinker in the study area), dissolved-solids concentrations appear to increase. Variation in ionic composition in the vertical dimension was examined qualitatively and statistically within and between aquifers. A relationship between ionic composition and well depth was noted and corroborates similar observations by earlier investigators in the Powder River Basin in both Wyoming and Montana. This relationship results in two different water-quality zones with different characteristics - a shallow zone, comprising the upper part of the Wasatch aquifer, characterized by mixed cation composition and either sulfate or bicarbonate as the dominant anion; and a deeper zone, comprising the lower (deeper) part of the Wasatch aquifer and the underlying coalbed aquifers, characterized by sodium-bicarbonate-type waters. The zonation appears to be related to geochemical processes described by earlier investigators such as dissolution and precipitation of minerals, ion exchange, sulfate reduction, and mixing of waters. Qualitative and statistically significant differences were observed in sulfate concentrations between the coalbed aquifers and the overlying Wasatch aquifer. Ionic composition suggests that bacterially mediated redox processes such as sulfate reduction were probably the dominant geochemical processes in the anaerobic coalbed aquifers. Tritium was used to qualitatively estimate the time of ground-water recharge. Tritium concentrations in both springs suggests that both were recharged after 1952 and contain modern water. Tritium was not detected at concentrations suggestive of modern water in any ground-water samples collected from the coalbed aquifers or in six of eight ground-water samples collected from the overlying Wasatch aquifer. Tritium concentrations in the remaining two wells from the Wasatch aquifer suggest a mixture between submodern (recharged before 1952) and modern water, although the low concentrations suggest that ground water in these two wells have very little modern water. The relative absence of modern water in all aquifers in the study area suggests that recharge processes to these aquifers are probably very slow. Paired d2H (deuterium/hydrogen isotopic ratio) and d18O (oxygen-18/oxygen-16 isotopic ratio) values for samples collected from the springs and all aquifers are close to the Globa

  13. Geological Characterization, Capacity Estimates and Long-Term Fate of CO2 Storage in Deep Saline Aquifers in the Two Elk Energy Park Pilot Test site, Powder River Basin, Wyoming

    NASA Astrophysics Data System (ADS)

    Calvo, R.; Benson, S. M.

    2011-12-01

    The Energy Park (North America Power Group) is a commercial-scale demonstration project planned as a series of renewable and other electric power generation, carbon capture, sequestration and related facilities, located in the eastern side of the Powder River Basin, northeastern Wyoming. The site is located on top of several deep saline aquifers, depleted oil reservoirs, and coal seams. The Powder River basin was identified by NETL and Big Sky partnership as having high potential for CO2 sequestration. The aims of our current study were to identify and describe all porous sections below the proposed site, to estimate the capacity of each unit, and to conduct simulations to better understand the faith of injected CO2 between those different layers. The storage goal of the project is 3 Mt/year for 50 years of operation. The project is supported by the DOE. Detailed geological characterization of the section between the Madison Formation and the Mowry Shale was based on two wells, located ~10 km from the proposed site. Porous sandstone layers were identified in the Minnelusa, Spearfish, Sundance, Morrison, Lakota, and Dakota formations. Average porosity in all of those units is between 8 to 15%. These formations consist of interbedded sandstone and shale, with some anhydrite and dolomite layers in the Minnelusa Formation. Our interest was to examine the ability of these impermeable layers (shale, anhydrite, and dolomite) to act as local seal to the different porous units. Other shale dominant formations also occur in the section (Opeche, Fuson, Skull, and Mowry formations) and will act as major seals to the whole porous section. The complex stratigraphy and relatively low permeability of the rocks at this site appear to preclude identification of a single unit that can be used for CO2 storage. Instead, the most promising option is to inject CO2 into large thickness of sediments, resulting in the injection of a relatively small amount of CO2 into a number of formations isolated from each other by low permeability shale, anyhydrite and dolomite layers. The benefits and drawbacks of storage in this type of setting for injectivity and long term storage security are examined using the TOUGH2-ECO2N simulation model. Additionally, CO2 capacity was calculated, using NETL equations and range for storage efficiency, and compared to estimates based on the TOUGH2-ECO2N simulation model.

  14. Chemical and stable isotopic composition of water and gas in the Fort Union Formation of the Powder River Basin, Wyoming and Montana: Evidence for water/rock interaction and the biogenic origin of coalbed natural gas

    USGS Publications Warehouse

    Rice, Cynthia A.; Flores, Romeo M.; Stricker, Gary D.; Ellis, Margaret S.

    2008-01-01

    Significant amounts (> 36 million m3/day) of coalbed methane (CBM) are currently being extracted from coal beds in the Paleocene Fort Union Formation of the Powder River Basin of Wyoming and Montana. Information on processes that generate methane in these coalbed reservoirs is important for developing methods that will stimulate additional production. The chemical and isotopic compositions of gas and ground water from CBM wells throughout the basin reflect generation processes as well as those that affect water/rock interaction. Our study included analyses of water samples collected from 228 CBM wells. Major cations and anions were measured for all samples, ?DH2O and ?18OH2O were measured for 199 of the samples, and ?DCH4 of gas co-produced with water was measured for 100 of the samples. Results show that (1) water from Fort Union Formation coal beds is exclusively Na–HCO3-type water with low dissolved SO4 content (median < 1 mg/L) and little or no dissolved oxygen (< 0.15 mg/L), whereas shallow groundwater (depth generally < 120 m) is a mixed Ca–Mg–Na–SO4–HCO3 type; (2) water/rock interactions, such as cation exchange on clay minerals and precipitation/dissolution of CaCO3 and SO4 minerals, account for the accumulation of dissolved Na and depletion of Ca and Mg; (3) bacterially-mediated oxidation–reduction reactions account for high HCO3 (270–3310 mg/L) and low SO4 (median < 0.15 mg/L) values; (4) fractionation between ?DCH4 (? 283 to ? 328 per mil) and ?DH2O (? 121 to ? 167 per mil) indicates that the production of methane is primarily by biogenic CO2 reduction; and (5) values of ?DH2O and ?18OH2O (? 16 to ? 22 per mil) have a wide range of values and plot near or above the global meteoric water line, indicating that the original meteoric water has been influenced by methanogenesis and by being mixed with surface and shallow groundwater.

  15. Chemical and stable isotopic evidence for water/rock interaction and biogenic origin of coalbed methane, Fort Union Formation, Powder River Basin, Wyoming and Montana U.S.A

    USGS Publications Warehouse

    Rice, C.A.; Flores, R.M.; Stricker, G.D.; Ellis, M.S.

    2008-01-01

    Significant amounts (> 36??million m3/day) of coalbed methane (CBM) are currently being extracted from coal beds in the Paleocene Fort Union Formation of the Powder River Basin of Wyoming and Montana. Information on processes that generate methane in these coalbed reservoirs is important for developing methods that will stimulate additional production. The chemical and isotopic compositions of gas and ground water from CBM wells throughout the basin reflect generation processes as well as those that affect water/rock interaction. Our study included analyses of water samples collected from 228 CBM wells. Major cations and anions were measured for all samples, ??DH2O and ??18OH2O were measured for 199 of the samples, and ??DCH4 of gas co-produced with water was measured for 100 of the samples. Results show that (1) water from Fort Union Formation coal beds is exclusively Na-HCO3-type water with low dissolved SO4 content (median < 1??mg/L) and little or no dissolved oxygen (< 0.15??mg/L), whereas shallow groundwater (depth generally < 120??m) is a mixed Ca-Mg-Na-SO4-HCO3 type; (2) water/rock interactions, such as cation exchange on clay minerals and precipitation/dissolution of CaCO3 and SO4 minerals, account for the accumulation of dissolved Na and depletion of Ca and Mg; (3) bacterially-mediated oxidation-reduction reactions account for high HCO3 (270-3310??mg/L) and low SO4 (median < 0.15??mg/L) values; (4) fractionation between ??DCH4 (- 283 to - 328 per mil) and ??DH2O (- 121 to - 167 per mil) indicates that the production of methane is primarily by biogenic CO2 reduction; and (5) values of ??DH2O and ??18OH2O (- 16 to - 22 per mil) have a wide range of values and plot near or above the global meteoric water line, indicating that the original meteoric water has been influenced by methanogenesis and by being mixed with surface and shallow groundwater.

  16. Einstein in Wyoming.

    ERIC Educational Resources Information Center

    Elliot, Ian

    1996-01-01

    Describes "Einstein's Adventurarium," a science center housed in an empty shopping mall in Gillette, Wyoming, created through school, business, and city-county government partnership. Describes how interactive exhibits allow exploration of life sciences, physics, and paleontology. (KDFB)

  17. Energy Development Opportunities for Wyoming

    SciTech Connect

    Larry Demick

    2012-11-01

    The Wyoming Business Council, representing the state’s interests, is participating in a collaborative evaluation of energy development opportunities with the NGNP Industry Alliance (an industry consortium), the University of Wyoming, and the US Department of Energy’s Idaho National Laboratory. Three important energy-related goals are being pursued by the State of Wyoming: Ensuring continued reliable and affordable sources of energy for Wyoming’s industries and people Restructuring the coal economy in Wyoming Restructuring the natural gas economy in Wyoming

  18. Learning the Structure of Deep Sparse Graphical Models Ryan Prescott Adams Hanna M. Wallach Zoubin Ghahramani

    E-print Network

    Edinburgh, University of

    of research: nonparametric Bayesian methods and deep belief net- works. Specifically, we develop1 Learning the Structure of Deep Sparse Graphical Models Ryan Prescott Adams Hanna M. Wallach Abstract Deep belief networks are a powerful way to model complex probability distributions. However

  19. Statistical Visual Language Models for Ink Parsing Michael Shilman, Hanna Pasula, Stuart Russell, Richard Newton

    E-print Network

    Russell, Stuart

    Statistical Visual Language Models for Ink Parsing Michael Shilman, Hanna Pasula, Stuart Russell for automatic recognition of hand-sketched digital ink. By viewing sketched drawings as utterances in a visual developed an algorithm for ink parsing that uses a statistical model to disambiguate. Under this formulation

  20. An Alternative Prior Process for Nonparametric Bayesian Clustering Hanna M. Wallach Shane T. Jensen

    E-print Network

    Heller, Katherine

    a crucial role in Bayesian approaches to clustering. Two commonly-used prior distributions are the Dirichlet for the Dirichlet and Pitman-Yor processes. We compare performance on a real document clustering task, demonstratingAn Alternative Prior Process for Nonparametric Bayesian Clustering Hanna M. Wallach Shane T. Jensen

  1. An Alternative Prior Process for Nonparametric Bayesian Clustering Hanna M. Wallach Shane T. Jensen

    E-print Network

    Jensen, Shane T.

    892 An Alternative Prior Process for Nonparametric Bayesian Clustering Hanna M. Wallach Shane T distributions play a crucial role in Bayesian approaches to clustering. Two commonly-used prior distributions are the Dirichlet and Pitman-Yor processes. In this paper, we investigate the predictive prob- abilities

  2. HIGH RESOLUTION SIMULATION OF THE SUCCESSION OF HURRICANES IN 2008: GUSTAV, HANNA, AND IKE

    E-print Network

    HIGH RESOLUTION SIMULATION OF THE SUCCESSION OF HURRICANES IN 2008: GUSTAV, HANNA, AND IKE W. Lin of Atlantic hurricanes in August-September 2008 is used to assess the ability of the Weather Research and the eastern United States. The succession of the hurricanes in observation developed from either local

  3. Runoff and mass balance of the Greenland ice sheet: 19582003 Edward Hanna,1

    E-print Network

    Huybrechts, Philippe

    that for every 1 K rise in surface air temperature, 20­50% more Greenland ice melt is produced [Oerlemans, 1991Runoff and mass balance of the Greenland ice sheet: 1958­­2003 Edward Hanna,1 Philippe Huybrechts,2 to retrieve annual accumulation, runoff, and surface mass balance on a 5 km  5 km grid for the Greenland ice

  4. Identity Uncertainty and Citation Matching Hanna Pasula, Bhaskara Marthi, Brian Milch, Stuart Russell, Ilya Shpitser

    E-print Network

    Russell, Stuart

    Identity Uncertainty and Citation Matching Hanna Pasula, Bhaskara Marthi, Brian Milch, Stuart consider the problem in the context of citation matching--the prob- lem of deciding which citations and a probabilistic citation grammar. Identity uncertainty is handled by extending standard models to incorporate

  5. A new Wyoming phytosaur

    E-print Network

    Eaton, T. H., Jr.

    1965-08-01

    PALEONTOLOGICAL CONTRIBUTIONS August, 1965 Paper 2 A NEW WYOMING PHYTOSAUR By THEODORE H. EATON, JR. [Museum of Natural History, University of Kansas I ABSTRACT The skull of a new species of Angistorhinus, family Phytosauridae, is described from the Popo Agie... Member of the Chugwater Formation, Upper Triassic, Fremont County, Wyoming. It is large but not maximum for the genus, rostrum slender and slightly concave in dorsal outline, septomaxillaries slender, antorbital fenestrae long and spindle-shaped, skull...

  6. Bitter bonanza in Wyoming

    SciTech Connect

    Randall, D.

    1980-12-01

    Mineral and energy-related exploration, such as the drilling activity in the Overthrust Belt for petroleum, has made Wyoming a leading energy supplier in the U.S. The energy boom has had many unfortunate effects on the state's environment. Environmental degradation caused by exploration and production in Wyoming includes loss of habitat, poaching of wildlife, water pollution from oil dumping and erosion, and impacts from squatter's camps.

  7. Assessment of ecological conditions and potential effects of water produced from coalbed natural gas development on biological communities in streams of the Powder River structural basin, Wyoming and Montana, 2005-08

    USGS Publications Warehouse

    Peterson, David A.; Clark, Melanie L.; Foster, Katharine; Wright, Peter R.; Boughton, Gregory K.

    2010-01-01

    Ongoing development of coalbed natural gas in the Powder River structural basin in Wyoming and Montana led to formation of an interagency task group to address concerns about the effects of the resulting production water on biological communities in streams of the area. The interagency task group developed a monitoring plan and conducted sampling of macroinvertebrate, algal, and fish communities at 47 sites during 2005-08 to document current ecological conditions and determine existing and potential effects of water produced from coalbed natural gas development on biological communities. Macroinvertebrate, algal, and fish community composition varied between drainage basins, among sites within drainage basins, and by year. Macroinvertebrate communities of the main-stem Tongue River were characterized by higher taxa richness and higher abundance of Ephemeroptera, for example, compared to macroinvertebrate communities in plains tributaries of the Tongue River and the main-stem Powder River. Fish communities of the Tongue River were characterized by higher taxa richness and abundance of introduced species compared to the Powder River where native species were dominant. Macroinvertebrate community metric values from sites in the middle reach of the main-stem Powder River, from below Willow Creek to below Crazy Woman Creek, differed from metric values in the upper and lower reaches of the Powder River. Metrics indicative of communitywide differences included measures of taxa richness, relative abundance, feeding mode, and tolerance. Some of the variation in the macroinvertebrate communities could be explained by variation in environmental variables, including physical (turbidity, embeddedness, bed substrate size, and streamflow) and chemical (alkalinity and specific conductance) variables. Of these environmental variables, alkalinity was the best indicator of coalbed natural gas development because of the sodiumbicarbonate signature of the production water. Algal samples from the main-stem Powder River generally confirmed the pattern observed in the macroinvertebrate communities. Algal communities at sites in the middle reach of the Powder River commonly were characterized by dominance by a single taxon and by low biovolume of algae compared to other sites. In contrast to the macroinvertebrate and algal communities, species richness of fish communities was highest in the middle reach of the Powder River. Although a few significant differences in fish metrics were determined along the main-stem Powder River, the differences did not correspond to the pattern observed for the macroinvertebrate and algae communities. Differences in biological communities were noted between years, potentially due to the effects of drought. Macroinvertebrate community metrics, such as Diptera taxa richness, were significantly different in the severe drought year of 2006 from metric values in 2005 and 2007-08. Waterquality data collected during the study indicated that, with few exceptions, water-quality constituents generally did not exceed State or Federal acute and chronic criteria for the protection of aquatic life.

  8. Natural Gas Resources of the Greater Green River and Wind River Basins of Wyoming (Assessing the Technology Needs of Sub-economic Resources, Phase I: Greater Green River and Wind river Basins, Fall 2002)

    SciTech Connect

    Boswell, Ray; Douds, Ashley; Pratt, Skip; Rose, Kelly; Pancake, Jim; Bruner, Kathy; Kuuskraa, Vello; Billingsley, Randy

    2003-02-28

    In 2000, NETL conducted a review of the adequacy of the resource characterization databases used in its Gas Systems Analysis Model (GSAM). This review indicated that the most striking deficiency in GSAM’s databases was the poor representation of the vast resource believed to exist in low-permeability sandstone accumulations in western U.S. basins. The model’s databases, which are built primarily around the United States Geological Survey (USGS) 1995 National Assessment (for undiscovered resources), reflected an estimate of the original-gas-inplace (OGIP) only in accumulations designated “technically-recoverable” by the USGS –roughly 3% to 4% of the total estimated OGIP of the region. As these vast remaining resources are a prime target of NETL programs, NETL immediately launched an effort to upgrade its resource characterizations. Upon review of existing data, NETL concluded that no existing data were appropriate sources for its modeling needs, and a decision was made to conduct new, detailed log-based, gas-in-place assessments.

  9. Characterization and modes of occurrence of elements in feed coal and coal combustion products from a power plant utilizing low-sulfur coal from the Powder River Basin, Wyoming

    USGS Publications Warehouse

    Brownfield, Michael E.; Cathcart, James D.; Affolter, Ronald H.; Brownfield, Isabelle K.; Rice, Cynthia A.; O'Connor, Joseph T.; Zielinski, Robert A.; Bullock, John H., Jr.; Hower, James C.; Meeker, Gregory P.

    2005-01-01

    The U.S. Geological Survey and the University of Kentucky Center for Applied Energy Research are collaborating with an Indiana utility company to determine the physical and chemical properties of feed coal and coal combustion products from a coal-fired power plant. The Indiana power plant utilizes a low-sulfur (0.23 to 0.47 weight percent S) and lowash (4.9 to 6.3 weight percent ash) subbituminous coal from the Wyodak-Anderson coal zone in the Tongue River Member of the Paleocene Fort Union Formation, Powder River Basin, Wyoming. Based on scanning electron microscope and X-ray diffraction analyses of feed coal samples, two mineral suites were identified: (1) a primary or detrital suite consisting of quartz (including beta-form grains), biotite, feldspar, and minor zircon; and (2) a secondary authigenic mineral suite containing alumino-phosphates (crandallite and gorceixite), kaolinite, carbonates (calcite and dolomite), quartz, anatase, barite, and pyrite. The primary mineral suite is interpreted, in part, to be of volcanic origin, whereas the authigenic mineral suite is interpreted, in part, to be the result of the alteration of the volcanic minerals. The mineral suites have contributed to the higher amounts of barium, calcium, magnesium, phosphorus, sodium, strontium, and titanium in the Powder River Basin feed coals in comparison to eastern coals. X-ray diffraction analysis indicates that (1) fly ash is mostly aluminate glass, perovskite, lime, gehlenite, quartz, and phosphates with minor amounts of periclase, anhydrite, hematite, and spinel group minerals; and (2) bottom ash is predominantly quartz, plagioclase (albite and anorthite), pyroxene (augite and fassaite), rhodonite, and akermanite, and spinel group minerals. Microprobe and scanning electron microscope analyses of fly ash samples revealed quartz, zircon, and monazite, euhedral laths of corundum with merrillite, hematite, dendritic spinels/ferrites, wollastonite, and periclase. The abundant calcium and magnesium mineral phases in the fly ash are attributed to the presence of carbonate, clay, and phosphate minerals in the feed coal and their alteration to new phases during combustion. The amorphous diffraction-scattering maxima or glass 'hump' appears to reflect differences in chemical composition of fly ash and bottom ash glasses. In Wyodak-Anderson fly and bottom ashes, the center point of scattering maxima is due to calcium and magnesium content, whereas the glass 'hump' of eastern fly ash reflects variation in aluminum content. The calcium- and magnesium-rich and alumino-phosphate mineral phases in the coal combustion products can be attributed to volcanic minerals deposited in peat-forming mires. Dissolution and alteration of these detrital volcanic minerals occurred either in the peat-forming stage or during coalification and diagenesis, resulting in the authigenic mineral suite. The presence of free lime (CaO) in fly ash produced from Wyodak-Anderson coal acts as a self-contained 'scrubber' for SO3, where CaO + SO3 form anhydrite either during combustion or in the upper parts of the boiler. Considering the high lime content in the fly ash and the resulting hydration reactions after its contact with water, there is little evidence that major amounts of leachable metals are mobilized in the disposal or utilization of this fly ash.

  10. Analysis of nitrate and volatile organic compound data for ground water in the Great Salt Lake Basins, Utah, Idaho, and Wyoming, 1980-98, National Water-Quality Assessment Program

    USGS Publications Warehouse

    Thiros, Susan A.

    2000-01-01

    In 1995, ground water was the source of drinking water to about 52 percent of the population served by public drinking water systems in the Great Salt Lake Basins study unit, which includes parts of Utah, Idaho, and Wyoming. Existing nitrate and volatile organic compound data for ground water collected in the study unit were compiled and summarized as part of the National Water-Quality Assessment Program?s objective to describe water-quality conditions in the Nation?s aquifers. Prerequisites for the inclusion of nitrate and volatile organic compound data into this retrospective analysis are that the data set is available in electronic form, the data were collected during 1980-98, the data set is somewhat regional in coverage, and the locations of the sampled sites are known. Ground-water data stored in the U.S. Geological Survey?s National Water Information Systemand the Idaho and Utah Public DrinkingWater Systems databases were reviewed. Only the most recent analysis was included in the data sets if more than one analysis was available for a site. The National Water Information System data set contained nitrate analyses for water from 480 wells. The median concentration of nitratewas 1.30 milligrams per liter for the 388 values above minimum reporting limits. The maximum contaminant level for nitrate as established by the U.S. Environmental Protection Agency was exceeded in water from 10 of the 200 wells less than or equal to 150 feet deep and in water from3 of 280 wells greater than 150 feet deep. The Public Drinking Water Systems data set contained nitrate analyses for water from 587 wells. The median concentration of nitrate was 1.12 milligrams per liter for the 548 values above minimum reporting limits. The maximum contaminant level for nitrate was exceeded at 1 site and 22 sites had concentrations equal to or greater than 5 milligrams per liter. The types of land use surrounding a well and the well depth were related to measured nitrate concentrations in the sampled ground water. Overall, water sampled from wells in rangeland areas had a lowermedianmeasured nitrate concentration (0.76 milligrams per liter) than water from areas with an agricultural or urban/residential land use (1.41 and 1.20 milligrams per liter, respectively). In the NationalWater Information System data set, the median measured nitrate concentration in water from urban/residential areas varied from 1.00 milligrams per liter for wells greater than 150 feet deep to 1.84 milligrams per liter for wells less than or equal to 150 feet deep. The Public DrinkingWater Systems and the National Water Information System data sets contained analyses for most of the State and Federally regulated volatile organic compounds in water from about 368 and 74 wells, respectively. Fifteen different volatile organic compounds were detected at least once in ground water sampled from the Great Salt Lake Basins study unit. Water from 21 wells contained at least 1 volatile organiccompound at detectable concentrations. About 68 percent of the volatile organic compounds detected were in water sampled from wells in Salt Lake County, Utah. Tetrachloroethylene was the most commonly detected volatile organic compound in ground water sampled from the study unit, present in 8 out of 442 samples. Maximum contaminant levels for tetrachloroethylene and 1,1-dichloroethylene as established by the U.S. Environmental Protection Agency were exceeded in water from one well each.

  11. The bats of Wyoming

    USGS Publications Warehouse

    Bogan, Michael A.; Cryan, Paul M.

    2000-01-01

    We examined 1280 bats of 12 species submitted to the Wyoming State Veterinary Laboratory (WSVL) for ra­bies testing between 1981 and 1992. The most abundant species in the sample was Myotis lucifugus, followed by Epte­sicus fuscus, Lasionycteris noetivagans, M. ciliolabrum, and M. volans. Using the WSVL sample and additional museum specimens, we summarized available records and knowledge for 17 species of bats in Wyoming, Records of the WSVL show that, between 1981 and 1992, 113 bats actually tested positive for rabies. We examined 45 of those rabies­ positive bats; E. fuscus had the highest incidence (60%) in the sample, followed by L. noctivagans (11 %) and L. cinereus (9%).

  12. Wyoming Indians, Unit II.

    ERIC Educational Resources Information Center

    Robinson, Terry

    This unit on Wyoming Indians provides concepts, activities, Indian stories, and resources for elementary school students. Indian values and contributions are summarized. Concepts include the incorrectness of the term "Indian," the Indians' democratic society and sophisticated culture, historical events, and conflicts with whites over the land.…

  13. Pitchfork Ranch, Wyoming

    USGS Multimedia Gallery

    Over 30 organizations and agencies are testing a USGS-developed oral sylvatic plague vaccine (SPV) at sites such as the Pitchfork Ranch in Wyoming, pictured here. If successful, the SPV could help protect endangered black-footed ferret populations in the western U.S. be...

  14. Wyoming Government, Unit VII.

    ERIC Educational Resources Information Center

    Robinson, Terry

    This unit on Wyoming government presents concepts, activities, and stories for elementary school students. Concepts stress that the functions of government are determined according to the demands, needs, and traditions of the people; each part of government has a special function; as citizens, we should be loyal to the underlying concepts of our…

  15. Excess energies of n-and i-octane molecular clusters Hanna Vehkamakia)

    E-print Network

    Ford, Ian

    ­7 the number of molecules of n-octane, nn* , in the critical cluster is given by nn* ln J ln Sn Si ,T ln J0 ln Sn Si ,T , 1 and a similar equation provides a relation between ni* , the number of molecules of i-octaneExcess energies of n- and i-octane molecular clusters Hanna Vehkama¨kia) and Ian J. Ford Department

  16. Minerals outlook for Wyoming

    SciTech Connect

    Glass, G.B.

    1983-01-01

    Wyoming drilling activity was down. The rig count was at a seven year low in February. Crude oil prices also affect Wyoming's gas production. Fuel oil prices are already low enough to compete with higher priced gas, and may edge out part of the market for natural gas. This year's coal production is still forecast at 112 million tons - a 3.7 percent increase over the 108 million tons produced in 1982. Average coal prices are currently forecast at $13.20 in 1982 and $13.86 in 1983. In 1983, demand for soda ash (trona), iron ore, limestone, and gypsum should reflect any improvements in the national economy. Bentonite is dependent enough on oil and gas drilling activity that significant improvements will probably mirror the status of the petroleum industry. Aggregate (sand, gravel, ballast, clinker, etc.) production will primarily depend on the levels of highway construction and railroad maintenance. Uranium production will remain at low levels, and may even decline with the closure of the Sweetwater mine. There will be some exploration for metals and diamonds in Wyoming this year, however, unless gold and silver prices improve, exploration will fall short of earlier expectations. (DP)

  17. The trials of Hanna Porn: the campaign to abolish midwifery in Massachusetts.

    PubMed Central

    Declercq, E R

    1994-01-01

    The case of Hanna Porn affords an opportunity to examine how the laws that led to the abolition of midwifery in Massachusetts evolved and were applied to the midwife whose case set the state legal precedent. Mrs Porn served primarily a Finnish-Swedish clientele of wives of laborers. The outcomes of the births she attended appear to have been positive, and she maintained a neonatal mortality rate of less than half that of local physicians. She also repeatedly defied court orders to stop practicing. Her case exemplifies the efforts that occurred nationally to abolish midwifery in the United States. PMID:8203670

  18. The trials of Hanna Porn: the campaign to abolish midwifery in Massachusetts.

    PubMed

    Declercq, E R

    1994-06-01

    The case of Hanna Porn affords an opportunity to examine how the laws that led to the abolition of midwifery in Massachusetts evolved and were applied to the midwife whose case set the state legal precedent. Mrs Porn served primarily a Finnish-Swedish clientele of wives of laborers. The outcomes of the births she attended appear to have been positive, and she maintained a neonatal mortality rate of less than half that of local physicians. She also repeatedly defied court orders to stop practicing. Her case exemplifies the efforts that occurred nationally to abolish midwifery in the United States. PMID:8203670

  19. A Platform for Evaluating Autonomous Intersection Management Policies Chien-Liang Fok, Maykel Hanna, Seth Gee, Tsz-Chiu Au,

    E-print Network

    Julien, Christine

    A Platform for Evaluating Autonomous Intersection Management Policies Chien-Liang Fok, Maykel Hanna vehicular delay, while improving the aggregate traversal time of the intersection by 169%. Keywords-Autonomous vehicles, Intersection management I. INTRODUCTION Imagine driving down a deserted street and approaching

  20. Measuring children's search behaviour on a large scale Emiel Hollander, Theo Huibers, Hanna Jochmann-Mannak, Paul van der Vet

    E-print Network

    Theune, Mariët

    Measuring children's search behaviour on a large scale Emiel Hollander, Theo Huibers, Hanna Enschede {e.s.hollander,t.w.c.huibers,h.e.mannak,p.e.vandervet}@ewi.utwente.nl ABSTRACT Children often, that are designed for adults. This is because children engage with the world in fundamentally different ways than

  1. Cretaceous biostratigraphy in the Wyoming thrust belt

    SciTech Connect

    Nichols, D.J.; Jacobson, S.R.

    1982-07-01

    Biostratigraphy is essential to exploration for oil and gas in the Wyoming thrust belt because fossils provide a temporal framework for interpretation of events of faulting, erosion, sedimentation, and the development of hydrocarbon traps and migration pathways. In the Cretaceous section, fossils are especially useful for dating and correlating repetitive facies of different ages in structurally complex terrain. The biostratigraphic zonation for the region is based on megafossils (chiefly ammonites), which permit accurate dating and correlation of outcrop sections, and which have been calibrated with the radiometric time scale for the Western Interior. Molluscan and vertebrate zone fossils are difficult to obtain from the subsurface, however, and ammonities are restricted to rocks of margin origin. Palynomorphs (plant microfossils) have proven to be the most valuable fossils in investigations of stratigraphy and structures in the subsurface of the thrust belt because palynomorphs can be recovered from drill cuttings. Palynomorphs also are found in both marine and nonmarine rocks and can be used for correlation between facies. In this paper, stratigraphic ranges of selected Cretaceous marine and nonmarine palynomorphs in previously designated reference sections in Fossil Basin, Wyoming, are correlated with the occurrence of ammonities and other zone fossils in the same sections. These correlations can be related to known isotopic ages, and they contribute to the calibration of palynomorph ranges in the Cretaceous of the Western Interior.

  2. 76 FR 36040 - Wyoming Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-21

    ... Wyoming program in the November 26, 1980, Federal Register (45 FR 78637). You can also find later actions... Office of Surface Mining Reclamation and Enforcement 30 CFR Part 950 Wyoming Regulatory Program AGENCY... proposed amendment to the Wyoming regulatory program (hereinafter, the ``Wyoming program'') under...

  3. 78 FR 13004 - Wyoming Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-26

    ... approval of the Wyoming program in the November 26, 1980, Federal Register (45 FR 78637). You can also find... Office of Surface Mining Reclamation and Enforcement 30 CFR Part 950 Wyoming Regulatory Program AGENCY... proposed amendment to the Wyoming regulatory program (hereinafter, the ``Wyoming program'') under...

  4. 76 FR 80310 - Wyoming Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ... Wyoming program in the November 26, 1980, Federal Register (45 FR 78637). You can also find later actions... Office of Surface Mining Reclamation and Enforcement 30 CFR Part 950 Wyoming Regulatory Program AGENCY... proposed amendment to the Wyoming regulatory program (hereinafter, the ``Wyoming program'') under...

  5. Expansion and Enhacement of the Wyoming Coalbed Methane Clearinghouse Website to the Wyoming Energy Resources Information Clearinghouse.

    SciTech Connect

    Hulme, Diana; Hamerlinck, Jeffrey; Bergman, Harold; Oakleaf, Jim

    2010-03-26

    Energy development is expanding across the United States, particularly in western states like Wyoming. Federal and state land management agencies, local governments, industry and non-governmental organizations have realized the need to access spatially-referenced data and other non-spatial information to determine the geographical extent and cumulative impacts of expanding energy development. The Wyoming Energy Resources Information Clearinghouse (WERIC) is a web-based portal which centralizes access to news, data, maps, reports and other information related to the development, management and conservation of Wyomingâ??s diverse energy resources. WERIC was established in 2006 by the University of Wyomingâ??s Ruckelshaus Institute of Environment and Natural Resources (ENR) and the Wyoming Geographic Information Science Center (WyGISC) with funding from the US Department of Energy (DOE) and the US Bureau of Land Management (BLM). The WERIC web portal originated in concept from a more specifically focused website, the Coalbed Methane (CBM) Clearinghouse. The CBM Clearinghouse effort focused only on coalbed methane production within the Powder River Basin of northeast Wyoming. The CBM Clearinghouse demonstrated a need to expand the effort statewide with a comprehensive energy focus, including fossil fuels and renewable and alternative energy resources produced and/or developed in Wyoming. WERIC serves spatial data to the greater Wyoming geospatial community through the Wyoming GeoLibrary, the WyGISC Data Server and the Wyoming Energy Map. These applications are critical components that support the Wyoming Energy Resources Information Clearinghouse (WERIC). The Wyoming GeoLibrary is a tool for searching and browsing a central repository for metadata. It provides the ability to publish and maintain metadata and geospatial data in a distributed environment. The WyGISC Data Server is an internet mapping application that provides traditional GIS mapping and analysis functionality via the web. It is linked into various state and federal agency spatial data servers allowing users to visualize multiple themes, such as well locations and core sage grouse areas, in one domain. Additionally, this application gives users the ability to download any of the data being displayed within the web map. The Wyoming Energy Map is the newest mapping application developed directly from this effort. With over a 100 different layers accessible via this mapping application, it is the most comprehensive Wyoming energy mapping application available. This application also provides the public with the ability to create cultural and wildlife reports based on any location throughout Wyoming and at multiple scales. The WERIC website also allows users to access links to federal, state, and local natural resource agency websites and map servers; research documents about energy; and educational information, including information on upcoming energy-relate conferences. The WERIC website has seen significant use by energy industry consultants, land management agencies, state and local decision-makers, non-governmental organizations and the public. Continued service to these sectors is desirable but some challenges remain in keeping the WERIC site viable. The most pressing issue is finding the human and financial resources to keep the site continually updated. Initially, the concept included offering users the ability to maintain the site themselves; however, this has proven not to be a viable option since very few people contributed. Without user contributions, the web page relied on already committed university staff to publish and link to the appropriate documents and web-pages. An option that is currently being explored to address this issue is development of a partnership with the University of Wyoming, School of Energy Resources (SER). As part of their outreach program, SER may be able to contribute funding for a full-time position dedicated to maintenance of WERIC.

  6. Hydrogeologic data from a test well at Kathryn Abbey Hanna Park, City of Jacksonville, Florida

    USGS Publications Warehouse

    Brown, D.P.; Johnson, R.A.; Baker, J.S.

    1984-01-01

    A 2,026-foot test well was drilled at Hanna Park, City of Jacksonville, Florida, to obtain hydrogeologic data. Drill cuttings and water samples were collected, and water-level measurements and lithologic and geophysical logs were made. The well is constructed with 6-inch diameter casing from land surface to a depth of 1,892 feet and cement grouted in place. The remainder is open hole. The uppermost 411 feet of material penetrated by the well consists of sand, clayey sand, phosphatic sandy clay, coquina, sandy limestone, and dolostone. In the remainder of the hole, the material consists of limestone and dolostone, which comprise the Floridan aquifer in the area. (USGS)

  7. Anisotropy and spatial variation of relative permeability and lithologic character of Tensleep Sandstone reservoirs in the Bighorn and Wind River basins, Wyoming. Final technical report, September 15, 1993--October 31, 1996

    SciTech Connect

    Dunn, T.L.

    1996-10-01

    This multidisciplinary study was designed to provide improvements in advanced reservoir characterization techniques. This goal was accomplished through: (1) an examination of the spatial variation and anisotropy of relative permeability in the Tensleep Sandstone reservoirs of Wyoming; (2) the placement of that variation and anisotropy into paleogeographic, and depositional regional frameworks; (3) the development of pore-system imagery techniques for the calculation of relative permeability; and (4) reservoir simulations testing the impact of relative permeability anisotropy and spatial variation on Tensleep Sandstone reservoir enhanced oil recovery. Concurrent efforts were aimed at understanding the spatial and dynamic alteration in sandstone reservoirs that is caused by rock-fluid interaction during CO{sub 2} enhanced oil recovery processes. The work focused on quantifying the interrelationship of fluid-rock interaction with lithologic characterization and with fluid characterization in terms of changes in chemical composition and fluid properties. This work establishes new criteria for the susceptibility of Tensleep Sandstone reservoirs to formation alteration that results in wellbore scale damage. This task was accomplished by flow experiments using core material; examination of regional trends in water chemistry; examination of local water chemistry trends the at field scale; and chemical modeling of both the experimental and reservoir systems.

  8. Natural gas resource characterization study of the Mesaverde group in the Greater Green River basin, Wyoming: A strategic plan for the exploitation of tight gas sands. Final report, September 1993-April 1996

    SciTech Connect

    Surdam, R.C.

    1996-05-01

    This final report summarizes work completed during the contract on developing an innovative exploration and production strategy for the Mesaverde Group tight gas sands in the Greater Green River Basin (GGRB). Thorough investigation of the processes affecting the sources and reservoirs of this gas resource has been undertaken in order to establish the critical parameters that determine how gas accumulates in gas-saturated, anomalously pressured rocks and that affect the successful and efficient exploitation of tight gas sands. During the contract, IER researchers have (1) developed a natural gas exploration paradigm that can be be used to create improved exploitation strategies for the Mesaverde Group tight gas sands, thereby lowing exploration risk; (2) detected and delineated sweet spots using 2-D and 3-D models of well log responses, petrographic and petrophysical studies, water chemistry analyses, and natural frature studies; (3) investigated the relationship of natural fractures and lineaments to hydrocarbon production in the GGRB; (4) created an expanded database for the GGRB; (5) prioritized volunteered experimental drill sites in the GGRB for potential cooperative research and development; and (6) participated in joint studies on a horizontal well completion in the Almond Formation, Echo Springs field, Washakie Basin.

  9. Energy map of southwestern Wyoming, Part B: oil and gas, oil shale, uranium, and solar

    USGS Publications Warehouse

    Biewick, Laura R.H.; Wilson, Anna B.

    2014-01-01

    The U.S. Geological Survey (USGS) has compiled Part B of the Energy Map of Southwestern Wyoming for the Wyoming Landscape Conservation Initiative (WLCI). Part B consists of oil and gas, oil shale, uranium, and solar energy resource information in support of the WLCI. The WLCI represents the USGS partnership with other Department of the Interior Bureaus, State and local agencies, industry, academia, and private landowners, all of whom collaborate to maintain healthy landscapes, sustain wildlife, and preserve recreational and grazing uses while developing energy resources in southwestern Wyoming. This product is the second and final part of the Energy Map of Southwestern Wyoming series (also see USGS Data Series 683, http://pubs.usgs.gov/ds/683/), and encompasses all of Carbon, Lincoln, Sublette, Sweetwater, and Uinta Counties, as well as areas in Fremont County that are in the Great Divide and Green River Basins.

  10. Agricultural land-use classification using landsat imagery data, and estimates of irrigation water use in Gooding, Jerome, Lincoln, and Minidoka counties, 1992 water year, Upper Snake River basin, Idaho and western Wyoming

    USGS Publications Warehouse

    Maupin, Molly A.

    1997-01-01

    As part of the U.S. Geological Survey's National Water-Quality Assessment Program in the upper Snake River Basin study unit, land- and water-use data were used to describe activities that have potential effects on water quality, including biological conditions, in the basin. Land-use maps and estimates of water use by irrigated agriculture were needed for Gooding, Jerome, Lincoln, and Minidoka Counties (south-central Idaho), four of the most intensively irrigated counties in the study unit. Land use in the four counties was mapped from Landsat Thematic Mapper imagery data for the 1992 water year using the SPECTRUM computer program. Land-use data were field verified in 108 randomly selected sections (640 acres each); results compared favorably with land-use maps from other sources. Water used for irrigation during the 1992 water year was estimated using land-use and ancillary data. In 1992, a drought year, estimated irrigation withdrawals in the four counties were about 2.9 million acre-feet of water. Of the 2.9 million acre-feet, an estimated 2.12 million acre-feet of water was withdrawn from surface water, mainly the Snake River, and nearly 776,000 acre-feet was withdrawn from ground water. One-half of the 2.9 million acre-feet of water withdrawn for irrigation was considered to be lost during conveyance or was returned to the Snake River; the remainder was consumptively used by crops during the growing season.

  11. 75 FR 6332 - Wyoming Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-09

    ..., Federal Register (45 FR 78637). You can also find later actions concerning Wyoming's program and program... resources, prime farmland, siltation structures and impoundments, and operator information. Wyoming intends... regarding cultural and historic resources, prime farmland, siltation structures and impoundments,...

  12. Investigation of a bluetongue disease epizootic caused by bluetongue virus serotype 17 in sheep in Wyoming

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: To better characterize a 2007 bluetongue virus serotype 17 epizootic in the Big Horn Basin of Wyoming. Design: A study using samples collected 3-6 months post outbreak to determine infection rate, susceptibility to infection in the next summer, and long term presence of virus. Samples fro...

  13. An outbreak of Bluetongue Virus serotype 17 in sheep ranches of Wyoming.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technical Abstract: In 2007 the Big Horn Basin of Wyoming experienced an epizootic of bluetongue virus serotype 17 that resulted in large-scale losses in some sheep herds. Serology, virus isolation, and reverse transcriptase-PCR were used to determine infection rate, virus presence, and susceptibili...

  14. Wyoming Kids Count Factbook, 1997.

    ERIC Educational Resources Information Center

    Wyoming Kids Count, Cheyenne.

    This Kids Count factbook details statewide trends in the well-being of Wyoming's children. The 1997 report has been expanded to include detailed information on the status of children by categories of welfare, health, and education. The first part of the factbook documents trends by county for 15 indicators: (1) poverty and population; (2)…

  15. MAP OF ECOREGIONS OF WYOMING

    EPA Science Inventory

    The ecoregions of Wyoming have been identified, mapped, and described and provide a geographic structure for environmental resources research, assessment, monitoring, and management. This project is part of a larger effort by the U.S. EPA to create a national, hierarchical ecore...

  16. Wyoming Early Childhood Readiness Standards.

    ERIC Educational Resources Information Center

    Wyoming State Dept. of Education, Cheyenne.

    Because children entering kindergarten come with a variety of preschool and home experiences, and accordingly, with varying levels of school readiness, the Wyoming Early Childhood Readiness Standards have been developed to provide a more consistent definition of school readiness. The goal for the Standards is to provide early childhood educators…

  17. Original Article Burning and Mowing Wyoming Big

    E-print Network

    Beck, Jeffrey L.

    Original Article Burning and Mowing Wyoming Big Sagebrush: Do Treated Sites Meet Minimum Guidelines, WY 82071, USA ABSTRACT Wyoming big sagebrush (Artemisia tridentata wyomingensis) treatments are often, USA. We compared minimum guidelines for canopy cover and height of Wyoming big sagebrush and perennial

  18. 40 CFR 81.351 - Wyoming.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Wyoming. 81.351 Section 81.351 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Section 107 Attainment Status Designations § 81.351 Wyoming. Wyoming—SO2 Designated area Does not...

  19. 40 CFR 81.351 - Wyoming.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Wyoming. 81.351 Section 81.351 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Section 107 Attainment Status Designations § 81.351 Wyoming. Wyoming—1971 Sulfur Dioxide NAAQS (Primary...

  20. CLOUD PEAK PRIMITIVE AREA AND ADJACENT AREAS, WYOMING.

    USGS Publications Warehouse

    Kiilsgaard, Thor H.; Patten, Lowell L.

    1984-01-01

    The results of a mineral survey of the Cloud Peak Primitive Area and adjacent areas in Wyoming indicated little promise for the occurrence of mineral resources. There are some prospect workings, particularly in the northern part of the area, but in none of them were there indications that ore had been mined. Samples from the workings, from nearby rocks and sediments from streams that drain the area did not yield any metal values of significance. The crystalline rocks that underlie the area do not contain oil and gas or coal, products that are extracted from the younger rocks that underlie basins on both sides of the study area.

  1. Smoke over Montana and Wyoming

    NASA Technical Reports Server (NTRS)

    2002-01-01

    California was not the only western state affected by fire during the last weekend of July. Parts of Montana and Wyoming were covered by a thick pall of smoke on July 30, 2000. This true-color image was captured by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). It is much easier to distinguish smoke from cloud in the color SeaWiFS imagery than the black and white Geostationary Operational Environmental Satellite (GOES) imagery. However, GOES provides almost continuous coverage (animation of Sequoia National Forest fire) and has thermal infrared bands (Extensive Fires in the Western U.S.) which detect the heat from fires. On Monday July 31, 2000, eight fires covering 105,000 acres were burning in Montana, and three fires covering 12,000 acres were burning in Wyoming. Image provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  2. Wyoming DOE EPSCoR

    SciTech Connect

    Gern, W.A.

    2004-01-15

    All of the research and human resource development projects were systemic in nature with real potential for becoming self sustaining. They concentrated on building permanent structure, such as faculty expertise, research equipment, the SEM Minority Center, and the School of Environment and Natural Resources. It was the intent of the DOE/EPSCoR project to permanently change the way Wyoming does business in energy-related research, human development for science and engineering careers, and in relationships between Wyoming industry, State Government and UW. While there is still much to be done, the DOE/EPSCoR implementation award has been successful in accomplishing that change and enhancing UW's competitiveness associated with coal utilization, electrical energy efficiency, and environmental remediation.

  3. Cretaceous biostratigraphy in the Wyoming thrust belt.

    USGS Publications Warehouse

    Nichols, D.J.; Jacobson, S.R.

    1982-01-01

    In the Cretaceous section of the thrust belt, fossils are especially useful for dating and correlating repetitive facies of different ages in structurally complex terrain. The biostratigraphic zonation for the region is based on megafossils (chiefly ammonites) , which permit accurate dating and correlation of outcrop sections, and which have been calibrated with the radiometric time scale for the Western Interior. Molluscan and vertebrate zone fossils are difficult to obtain from the subsurface, however, and ammonites are restricted to rocks of marine origin. Palynomorphs (plant microfossils) have proven to be the most valuable fossils in the subsurface because they can be recovered from drill cuttings. Palynomorphs also are found in both marine and nonmarine rocks and can be used for correlation between facies. Stratigraphic ranges of selected Cretaceous marine and nonmarine palynomorphs in previously designated reference sections in Fossil Basin, Wyoming are correlated with the occurrence of ammonites and other zone fossils in the same sections. These correlations can be related to known isotopic ages, and they contribute to the calibration of palynomorph ranges in the Cretaceous of the Western Interior. -from Authors

  4. 76 FR 32225 - Notice of Public Meeting; Wyoming Resource Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-03

    ... Yellowstone, Cheyenne, Wyoming. FOR FURTHER INFORMATON CONTACT: Cindy Wertz, Wyoming Resource Advisory Council Coordinator, Wyoming State Office, 5353 Yellowstone, Cheyenne, Wyoming, 82009, telephone 307-775-6014....

  5. Phanerozoic stratigraphy of Northwind Ridge, magnetic anomalies in the Canada Basin, and the geometry and timing of rifting in the Amerasia Basin, Arctic Ocean

    USGS Publications Warehouse

    Grantz, A.; Clark, D.L.; Phillips, R.L.; Srivastava, S.P.; Blome, C.D.; Gray, L.-B.; Haga, H.; Mamet, B.L.; McIntyre, D.J.; McNeil, D.H.; Mickey, M.B.; Mullen, M.W.; Murchey, B.I.; Ross, C.A.; Stevens, C.H.; Silberling, Norman J.; Wall, J.H.; Willard, D.A.

    1998-01-01

    Cores from Northwind Ridge, a high-standing continental fragment in the Chukchi borderland of the oceanic Amerasia basin, Arctic Ocean, contain representatives of every Phanerozoic system except the Silurian and Devonian systems. Cambrian and Ordovician shallow-water marine carbonates in Northwind Ridge are similar to basement rocks beneath the Sverdrup basin of the Canadian Arctic Archipelago. Upper Mississippian(?) to Permian shelf carbonate and spicularite and Triassic turbidite and shelf lutite resemble coeval strata in the Sverdrup basin and the western Arctic Alaska basin (Hanna trough). These resemblances indicate that Triassic and older strata in southern Northwind Ridge were attached to both Arctic Canada and Arctic Alaska prior to the rifting that created the Amerasia basin. Late Jurassic marine lutite in Northwind Ridge was structurally isolated from coeval strata in the Sverdrup and Arctic Alaska basins by rift shoulder and grabens, and is interpreted to be a riftogenic deposit. This lutite may be the oldest deposit in the Canada basin. A cape of late Cenomanian or Turonian rhyodacite air-fall ash that lacks terrigenous material shows that Northwind Ridge was structurally isolated from the adjacent continental margins by earliest Late Cretaceous time. Closing Amerasia basin by conjoining seafloor magnetic anomalies beneath the Canada basin or by uniting the pre-Jurassic strata of Northwind Ridge with kindred sections in the Sverdrup basin and Hanna trough yield simular tectonic reconstructions. Together with the orientation and age of rift-marine structures, these data suggest that: 1) prior to opening of the Amerasia basin, both northern Alaska and continental ridges of the Chukchi borderland were part of North America, 2) the extension that created the Amerasia basin formed rift-margin graben beginning in Early Jurassic time and new oceanic crust probably beginning in Late Jurassic or early Neocomian time. Reconstruction of the Amerasia basin on the basis of the stratigraphy of Northwind Ridge and sea-floor magnetic anomalies in the Canada basin accounts in a general way for the major crustal elements of the Americasia basin, including the highstanding ridges of the Chukchi borderland, and supports S.W. Carye's hypothesis that the Amerasia basin is the product of anticlockwise rotational rifting of Arctic Alaska from North America.

  6. Review of Machine Learning, written by A. AbuHanna. Appeared in Artificial Intelligence in Medicine, Elsevier, vol. 16, 1999, pp. 201--204.

    E-print Network

    Mitchell, Tom

    Review of Machine Learning, written by A. Abu­Hanna. Appeared in Artificial Intelligence in Medicine, Elsevier, vol. 16, 1999, pp. 201--204. Tom M. Mitchell Machine Learning McGraw­Hill, 1997 ISBN 0­07­115467­1 Paperback, 414 pages Price $21.99 An old dream of Machine Learning has been to teach computers how to solve

  7. Subgroup Achievement and Gap Trends: Wyoming, 2010

    ERIC Educational Resources Information Center

    Center on Education Policy, 2010

    2010-01-01

    This paper profiles the student subgroup achievement and gap trends in Wyoming for 2010. Wyoming's demographic profile is such that achievement trends could only be determined for white, Latino, male and female, and low-income student subgroups. In grade 8 (the only grade in which subgroup trends were analyzed by achievement level), the white,…

  8. Evaluation of Cottonwood Creek field complex, Bighorn basin, Wyoming

    SciTech Connect

    Inden, R.; Anderson, R.

    1986-08-01

    Most of the 83 million bbl of oil produced from Cottonwood Creek and associated fields (Worland, Rattlesnake, South Frisby) is from a suite of peritidal dolomite facies that were deposited in and on the flanks of an ancient estuarine system. Isopach and facies maps suggest that the Tensleep fault and related northwest-southeast-oriented basement fault blocks, controlled the formation of this estuary during Late Pennsylvanian/Early Permian time and the pattern of late Ervay deposition within the estuary. Upper Ervay pisolitic and algal-laminated units, along with intraclast grainstones, map as thick (40 to 90 ft), 1 to 2-mi wide and 2 to 5-mi long pods that represent a northwest-southeast peninsular system of islands. The thickest (i.e., central and highest) portions of these islands are made up of extensively altered pisolitic, brecciated units whose porosity systems were destroyed by aragonite and calcite cementation during periodically low sea level stands. The thinner margins of these island pods are made up of reservoir-quality peritidal fenestral fabric, algal-laminated units, and intraclast grainstones that were subjected to significantly less cementation because of less-frequent exposure. Permeability in these units may be enhanced by preferential fracturing because they were deposited along paleostructural zones of weakness. As a result of these depositional, diagenetic, and fracture patterns, cumulative production is commonly much higher (> 200,000 bbl/well) from the flank positions of these pods. Lagoonal dolomite mudstones and red-bed/evaporite sequences were deposited between and behind these islands, respectively, and form the major updip hydrocarbon seals.

  9. Mineral resources of the Adobe Town Wilderness Study Area, Sweetwater County, Wyoming

    SciTech Connect

    Van Loenen, R.E.; Hill, R.H.; Bankey, V.; Bryant, W.A. ); Kness, R.F. )

    1989-01-01

    The Adobe Town Wilderness Study Area is in Southwest Wyoming about 60 miles southeast of Rock Springs. This study area consists of flat-lying sedimentary rock of Eocene age located near the center of the Washakie Basin. There are no identified resources. This study area has a high resource potential for undiscovered oil and gas, in over pressured Cretaceous and Tertiary sandstone reservoirs. This study area has a low resource potential for undiscovered oil shale, zeolites, uranium, coal, and metallic minerals.

  10. Status report: USGS coal assessment of the Powder River, Wyoming

    USGS Publications Warehouse

    Luppens, James A.; Rohrbacher, Timothy J.; Haacke, Jon E.; Scott, David C.; Osmonson, Lee M.

    2006-01-01

    Summary: This publication reports on the status of the current coal assessment of the Powder River Basin (PRB) in Wyoming and Montana. This slide program was presented at the Energy Information Agency's 2006 EIA Energy Outlook and Modeling Conference in Washington, DC, on March 27, 2006. The PRB coal assessment will be the first USGS coal assessment to include estimates of both regional coal resources and reserves for an entire coal basin. Extensive CBM and additional oil and gas development, especially in the Gillette coal field, have provided an unprecedented amount of down-hole geological data. Approximately 10,000 new data points have been added to the PRB database since the last assessment (2002) which will provide a more robust evaluation of the single most productive U.S. coal basin. The Gillette coal field assessment, including the mining economic evaluation, is planned for completion by the end of 2006. The geologic portion of the coal assessment work will shift to the northern and northwestern portions of the PRB before the end of 2006 while the Gillette engineering studies are finalized.

  11. Flexural analysis of two broken foreland basins; Late Cenozoic Bermejo basin and Early Cenozoic Green River basin

    SciTech Connect

    Flemings, P.B.; Jordan, T.E.; Reynolds, S.

    1986-05-01

    Lithospheric flexure that generates basin in a broke foreland setting (e.g., the Laramide foreland of Wyoming) is a three-dimensional system related to shortening along basin-bounding faults. The authors modeled the elastic flexure in three dimensions for two broken foreland basins: the early Cenozoic Green River basin and the analogous late Cenozoic Bermejo basin of Argentina. Each basin is located between a thrust belt and a reverse-fault-bounded basement uplift. Both basins are asymmetric toward the basement uplifts and have a central basement high: the Rock Springs uplift and the Pie de Palo uplift, respectively. The model applies loads generated by crustal thickening to an elastic lithosphere overlying a fluid mantle. Using the loading conditions of the Bermejo basin based on topography, limited drilling, and reflection and earthquake seismology, the model predicts the current Bermejo basin geometry. Similarly, flexure under the loading conditions in the Green River basin, which are constrained by stratigraphy, well logs, and seismic profiling and summed for Late Cretaceous (Lance Formation) through Eocene (Wasatch Formation), successfully models the observed geometry of the pre-Lance surface. Basin depocenters (> 4 km for the Green River basin; > 7 km for the Bermejo basin) and central uplifts are predicted to result from constructive interference of the nonparallel applied loads. Their Bermejo model implies that instantaneous basin geometry is successfully modeled by crustal loading, whereas the Green River basin analysis suggests that basin evolution can be modeled over large time steps (e.g., 20 Ma). This result links instantaneous basin geometry to overall basin evolution and is a first step in predicting stratigraphic development.

  12. Upper Almond and Lewis reservoir geometries, southwestern Wyoming and northwestern Colorado

    SciTech Connect

    Hendricks, M.L.

    1996-06-01

    Upper Almond marine sandstones are major petroleum reservoirs in southwestern Wyoming. These sandstones were deposited as part of a transgressive systems tract which capped fluvial and coastal plain sediments of the upper Ericson and lower Almond formations. Marine sandstone reservoirs were deposited in shoreface and tidal channel environments. Shoreface environments in the Echo Springs-Standard Draw trend are extensive and constitute major gas reserves in Carbon County. Shoreface and tidal channel deposits are major oil and gas reservoirs at Patrick Draw Field, Sweetwater County. Major gas resources in upper Almond marine sandstones are yet to be exploited in the deeper portions of the Great Divide, Washakie, and Sand Wash basins. Tapping this basin centered gas resource will require careful reservoir modeling and fracture treatments that significantly increase permeability and reservoir flow. Lewis sandstones are also petroleum reservoirs in the Great Divide, Washakie, and Sand Wash basins. The sandstones are part of the final Cretaceous regressive systems tract in southwestern Wyoming and northwestern Colorado. Well developed clinoforms accompany Lewis and Fox Hills progradation and basin fill. Associated with these progradational systems are correlative density flow and turbidite deposits that locally form reservoirs. These reservoirs commonly occur near the toe of prograding clinoforms and are trapped by rapid facies changes to impermeable siltstones and basinal shales.

  13. Reconnaissance examination of selected oil-sand outcrops in Wyoming

    SciTech Connect

    Ver Ploeg, A.

    1986-08-01

    Numerous surface occurrences of oil sands and oil seeps have been reported in the geologic literature for Wyoming. Seventy-eight reported occurrences are listed in Wyoming Geological Survey Open-File Report 82-5. Most of the listed deposits are taken from old references with vague descriptions and locations. Field reconnaissance examinations of selected oil-sand occurrences were conducted to describe them better and to assess their potential economic importance. A reconnaissance geologic map of each examined deposit was constructed, and the deposits were sampled and described. Ten occurrences were described during the 1984 and 1985 field seasons. The oil-sand occurrences were all sandstone reservoirs ranging from Pennsylvanian to Tertiary. Based on these reconnaissance examinations, only three occurrences appeared to be potentially significant. The Rattlesnake Hills occurrence, west of Casper, is an asymmetrical anticline with oil-impregnated sands in the Mesaverde Formation, Frontier Formation, and, most extensively, the Muddy Sandstone. Other formations in the structure contain minor amounts of oil staining. The Muddy Creek occurrence, southwest of Rawlins, contains oil-impregnated sandstones in the lower Wasatch Formation. This stratigraphically controlled trap dips to the west into the Washakie basin. The Conant Creek occurrence, southeast of Riverton, includes stratigraphically controlled oil sands in the relatively flat Wagon Bed Formation.

  14. 77 FR 34894 - Wyoming Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-12

    ...INFORMATION CONTACT: Jeffrey Fleischman, Director, Casper Field Office, Office of Surface Mining Reclamation and Enforcement, Dick Cheney Federal Building, POB 11018, 150 East B Street, Casper, Wyoming 82601-1018; Telephone: 307-261-6550,...

  15. 78 FR 10512 - Wyoming Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-14

    ...DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part...Regulatory Program AGENCY: Office of Surface Mining Reclamation and Enforcement, Interior...Wyoming program'') under the Surface Mining Control and Reclamation Act of...

  16. 78 FR 43061 - Wyoming Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-19

    ...regulations under the Surface Mining Control and Reclamation Act...B)(I), which is revised text from Chapter IV, section 2...B)(I), which is revised text from Chapter IV, section 2...surface and underground coal mining operations. Wyoming...

  17. 76 FR 78234 - Medicine Bow-Routt National Forests and Thunder Basin National Grassland, Campbell County, WY...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ... Forest Service Medicine Bow-Routt National Forests and Thunder Basin National Grassland, Campbell County... System (NFS) land on Thunder Basin National Grassland. The proposal comprises new construction of... Forests and Thunder Basin National Grassland, 2250 East Richards Street, Douglas, Wyoming 82633, or...

  18. 76 FR 53400 - Black Hills National Forest, SD; Thunder Basin National Grassland, WY; Teckla-Osage-Rapid City...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ... Forest Service Black Hills National Forest, SD; Thunder Basin National Grassland, WY; Teckla-Osage-Rapid... Basin National Grasslands, private lands, BLM lands, and state lands in Wyoming. The line would be... Geri Proctor, Thunder Basin National Grasslands, 2250 East Richards Street, Douglas, WY...

  19. Basin-scale relations via conditioning

    USGS Publications Warehouse

    Troutman, B.M.; Karlinger, M.R.; Guertin, D.P.

    1989-01-01

    A rainfall-runoff model is used in conjunction with a probabilistic description of the input to this model to obtain simple regression-like relations for basin runoff in terms of basin and storm characteristics. These relations, similar to those sought in regionalization studies, are computed by evaluating the conditional distribution of model output given basin and storm characteristics. This method of conditioning provides a general way of examining model sensitivity to various components of model input. The resulting relations may be expected to resemble corresponding relations obtained by regionalization using actual runoff to the extent that the rainfall-runoff model and the model input specification are physically realistic. The probabilistic description of model input is an extension of so-called "random-model" of channel networks and involves postulating an ensemble of basins and associated probability distributions that mimic the variability of basin characteristics seen in nature. Application is made to small basins in the State of Wyoming. Parameters of the input variable distribution are estimated using data from Wyoming, and basin-scale relations are estimated both, parametrically and nonparametrically using model-generated runoff from simulated basins. Resulting basin-scale relations involving annual flood quantiles are in reasonable agreement with those presented in a previous regionalization study, but error estimates are smaller than those in the previous study, an artifact of the simplicity of the rainfall-runoff model used in this paper. We also obtain relations for peak of the instantaneous unit hydrograph which agree fairly well with theoretical relations given in the literature. Finally, we explore the issues of sensitivity of basin-scale, relations and error estimates to parameterization of the model input probability distribution and of how this sensitivity is related to making inferences about a particular ungaged basin. ?? 1989 Springer-Verlag.

  20. Paleoecology of Early eocene strata near Buffalo, Wyoming

    SciTech Connect

    Durkin, T.V.; Rich, F.J.

    1986-08-01

    Palynological investigation has helped illustrate the paleoecology of a vertical section of strata from the Wasatch Formation between the Healy and Walters coal burns near Buffalo, Wyoming. Numerous silicified logs and stumps of cypress and sequoia have been preserved at the site and drew initial attention to it. Flood-basin deposits enclose the trees and include sandstones, siltstones, shale, and coal beds that accumulated as channel, levee, crevasse-splay, and swamp/marsh sediments. Detrital sediments were probably derived from the Bighorn Mountains and accumulated as they were carried into the Powder River basin fluvial system. One hundred five polynomorph taxa have been distinguished, as well as 10 types of fungal spores. Platycarya, Tilia, Sparganium, and Platanus pollen indicate an early Eocene age for the strata. Other pollen, as well as the genera of trees and megafossil remains from a clinker bed several miles from the study area, reinforce the interpretation of a warm-temperature or subtropical climate at the time of deposition. The megafossil assemblage includes pinnae of the aquatic fern Marsilea, never before described from the fossil record. Variations in the species composition of the polynomorph assemblages show that several plant communities existed in succession at the site. These varied from pond or marsh types to mature forests.

  1. ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING

    SciTech Connect

    Peggy Robinson

    2005-01-01

    This report summarizes activities that have taken place in the last 6 months (July 2004-December 2004) under the DOE-NETL cooperative agreement ''Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields, New Mexico and Wyoming'' DE-FC26-02NT15445. This project examines the practices and results of cultural resource investigation and management in two different oil and gas producing areas of the US: southeastern New Mexico and the Powder River Basin of Wyoming. The project evaluates how cultural resource investigations have been conducted in the past and considers how investigation and management could be pursued differently in the future. The study relies upon full database population for cultural resource inventories and resources and geomorphological studies. These are the basis for analysis of cultural resource occurrence, strategies for finding and evaluating cultural resources, and recommendations for future management practices. Activities can be summarized as occurring in either Wyoming or New Mexico.

  2. RESERVES IN WESTERN BASINS PART IV: WIND RIVER BASIN

    SciTech Connect

    Robert Caldwell

    1998-04-01

    Vast quantities of natural gas are entrapped within various tight formations in the Rocky Mountain area. This report seeks to quantify what proportion of that resource can be considered recoverable under today's technological and economic conditions and discusses factors controlling recovery. The ultimate goal of this project is to encourage development of tight gas reserves by industry through reducing the technical and economic risks of locating, drilling and completing commercial tight gas wells. This report is the fourth in a series and focuses on the Wind River Basin located in west central Wyoming. The first three reports presented analyses of the tight gas reserves and resources in the Greater Green River Basin (Scotia, 1993), Piceance Basin (Scotia, 1995) and the Uinta Basin (Scotia, 1995). Since each report is a stand-alone document, duplication of language will exist where common aspects are discussed. This study, and the previous three, describe basin-centered gas deposits (Masters, 1979) which contain vast quantities of natural gas entrapped in low permeability (tight), overpressured sandstones occupying a central basin location. Such deposits are generally continuous and are not conventionally trapped by a structural or stratigraphic seal. Rather, the tight character of the reservoirs prevents rapid migration of the gas, and where rates of gas generation exceed rates of escape, an overpressured basin-centered gas deposit results (Spencer, 1987). Since the temperature is a primary controlling factor for the onset and rate of gas generation, these deposits exist in the deeper, central parts of a basin where temperatures generally exceed 200 F and drill depths exceed 8,000 feet. The abbreviation OPT (overpressured tight) is used when referring to sandstone reservoirs that comprise the basin-centered gas deposit. Because the gas resources trapped in this setting are so large, they represent an important source of future gas supply, prompting studies to understand and quantify the resource itself and to develop technologies that will permit commercial exploitation. This study is a contribution to that process.

  3. Population and habitat viability assessment for the Wyoming toad (Bufo baxteri): Final workshop report

    USGS Publications Warehouse

    2001-01-01

    The Wyoming toad was listed as an endangered species under the Endangered Species Act on January 17, 1984, with a recovery plan approved in 1991. Currently the total population of the Wyoming toad includes approximately 200 animals in the captive breeding program and as few as 62 toads surviving at reintroduction sites in the Laramie Basin based upon fall 2000 survey data (after releases of more than 10,000 toads and tadpoles since 1995). Necessary conservation measures include improving reproduction and survival in the captive breeding program, improving survival at reintroduction sites, developing techniques to control the effects of the amphibian chytrid fungus, and eliminating threats and further habitat degradation in the wild.

  4. Field guide to Muddy Formation outcrops, Crook County, Wyoming

    SciTech Connect

    Rawn-Schatzinger, V.

    1993-11-01

    The objectives of this research program are to (1) determine the reservoir characteristics and production problems of shoreline barrier reservoirs; and (2) develop methods and methodologies to effectively characterize shoreline bamer reservoirs to predict flow patterns of injected and produced fluids. Two reservoirs were selected for detailed reservoir characterization studies -- Bell Creek field, Carter County, Montana that produces from the Lower Cretaceous (Albian-Cenomanian) Muddy Formation, and Patrick Draw field, Sweetwater County, Wyoming that produces from the Upper Cretaceous (Campanian) Almond Formation of the Mesaverde Group. An important component of the research project was to use information from outcrop exposures of the producing formations to study the spatial variations of reservoir properties and the degree to which outcrop information can be used in the construction of reservoir models. This report contains the data and analyses collected from outcrop exposures of the Muddy Formation, located in Crook County, Wyoming, 40 miles south of Bell Creek oil field. The outcrop data set contains permeability, porosity, petrographic, grain size and geologic data from 1-inch-diameter core plugs chilled from the outcrop face, as well as geological descriptions and sedimentological interpretations of the outcrop exposures. The outcrop data set provides information about facies characteristics and geometries and the spatial distribution of permeability and porosity on interwell scales. Appendices within this report include a micropaleontological analyses of selected outcrop samples, an annotated bibliography of papers on the Muddy Formation in the Powder River Basin, and over 950 permeability and porosity values measured from 1-inch-diameter core plugs drilled from the outcrop. All data contained in this resort are available in electronic format upon request. The core plugs drilled from the outcrop are available for measurement.

  5. SIMULATION MODELING OF LIMITED IRRIGATION CROPPING SYSTEMS IN THE SOUTH PLATTE RIVER BASIN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The South Platte River Basin is located primarily in Northeastern Colorado, with lesser parts in Nebraska and Wyoming. Agriculture is the predominant water user in the basin and demand frequently exceeds supply, particularly in times of drought. Further exacerbating the problem is water demand from ...

  6. 77 FR 11566 - Public Meeting; Wyoming Resource Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-27

    ... Management (BLM) Wyoming Resource Advisory Council (RAC) will meet as indicated below. DATES: The meetings... be at the Hilton Garden Inn and University of Wyoming Conference Center, 2229 Grand Avenue,...

  7. 76 FR 34815 - Wyoming Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-14

    ..., Federal Register (45 FR 78637). You can also find later actions concerning Wyoming's program and program... Register (75 FR 6332). In the same document, we opened the public comment period and provided an... Rules and Regulations and was approved by OSMRE in a November 24, 1986, Federal Register notice (51...

  8. Wyoming: The State and Its Educational System.

    ERIC Educational Resources Information Center

    Hodgkinson, Harold L.

    Wyoming is a state of great natural beauty with only five people per square mile and a unique way of life that deserves to be preserved. The economy, though, is almost totally dependent on energy extraction, an area that has not done well of late. The state's small population makes "boutique" products and services not very profitable, and efforts…

  9. SHEEP MOUNTAIN URANIUM PROJECT CROOKS GAP, WYOMING

    E-print Network

    SHEEP MOUNTAIN URANIUM PROJECT CROOKS GAP, WYOMING US EPA Project Meeting April 7 2011April 7, 2011/Titan Uranium, VP Development · Deborah LebowAal/EPA Region 8 Air Program Introduction to Titan Uranium USA ·Location ·Project Scope·Project Scope ·Mining Milli·Milling 4 #12;Sheep Mountain Project Location 5 #12

  10. 78 FR 16204 - Wyoming Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-14

    ... the November 26, 1980, Federal Register (45 FR 78637). You can also find later actions concerning... existing rights (VER) and a Federal Register notice (78 FR 10512) that disapproved several proposed VER... Office of Surface Mining Reclamation and Enforcement 30 CFR Part 950 Wyoming Regulatory Program...

  11. 77 FR 34894 - Wyoming Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-12

    ... 76 FR 80310, is withdrawn June 12, 2012. FOR FURTHER INFORMATION CONTACT: Jeffrey Fleischman..., Federal Register (45 FR 78637). You can also find later actions concerning Wyoming's program and program... receipt of the proposed amendment in the December 23, 2011, Federal Register (76 FR 80310). In the...

  12. Wyoming Community Colleges Annual Partnership Report, 2014

    ERIC Educational Resources Information Center

    Wyoming Community College Commission, 2014

    2014-01-01

    The "Annual Partnership Report" catalogs partnerships that Wyoming community colleges established and maintained for each fiscal year. Each community college maintains numerous partnerships for the development and provision of academic, occupational-technical, workforce development, and enrichment educational programs. These partnerships…

  13. Ranch in the Green River Valley, Wyoming

    USGS Multimedia Gallery

    A section of the Upper Green River Valley in western Wyoming, just south of Yellowstone and Grand Teton National Parks, showing different ecosystems (such as forests, wetlands, and aquatic habitats) whose capacities for carbon storage and reduction of greenhouse gas emissions will be assessed by the...

  14. 40 CFR 81.436 - Wyoming.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Wyoming. 81.436 Section 81.436 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Identification of Mandatory Class I Federal Areas Where Visibility Is an Important Value § 81.436...

  15. The Emergence of Civil Rights in Wyoming.

    ERIC Educational Resources Information Center

    Wyoming State Advisory Committee to the U.S. Commission on Civil Rights, Cheyenne.

    Local, state, and federal government representatives and private citizens participated in a two-day consultation on civil rights in Wyoming. Panel discussions focused on the difficulties of civil rights enforcement in the areas of housing and economic opportunity, medical care, education, the handicapped, employment discrimination, and women's…

  16. Wyoming Water Resources Center Annual Technical Report

    E-print Network

    Wyoming Water Resources Center Annual Technical Report FY 1999 Introduction Research Program In the west, water is critical to survival. Data and information concerning this resource are very valuable by the Water Research Program. Basic Project Information Category Data Title Water Resources Data System Water

  17. 76 FR 45643 - Wyoming Disaster #WY-00017

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-29

    ...Assistance Only for the State of Wyoming (FEMA- 4007-DR), dated 07/22/2011. Incident: Severe Storms, Flooding, and Landslides. Incident Period: 05/18/2011 through 07/08/2011. Effective Date: 07/22/2011. Physical Loan Application...

  18. 75 FR 6332 - Wyoming Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-09

    ...Field Office, Office of Surface Mining Reclamation and Enforcement...the regulation of surface coal mining and reclamation operations on...the regulation of surface coal mining and reclamation operations in...Wyoming's own initiative. The full text of the program amendment...

  19. State Teacher Policy Yearbook, 2009. Wyoming

    ERIC Educational Resources Information Center

    National Council on Teacher Quality, 2009

    2009-01-01

    This Wyoming edition of the National Council on Teacher Quality's (NCTQ's) 2009 "State Teacher Policy Yearbook" is the third annual look at state policies impacting the teaching profession. It is hoped that this report will help focus attention on areas where state policymakers can make changes that will have a positive impact on teacher quality…

  20. Late Quaternary stratigraphy and geochronology of the western Killpecker Dunes, Wyoming, USA

    USGS Publications Warehouse

    Mayer, J.H.; Mahan, S.A.

    2004-01-01

    New stratigraphic and geochronologic data from the Killpecker Dunes in southwestern Wyoming facilitate a more precise understanding of the dune field's history. Prior investigations suggested that evidence for late Pleistocene eolian activity in the dune field was lacking. However, luminescence ages from eolian sand of ???15,000 yr, as well as Folsom (12,950-11,950 cal yr B.P.) and Agate Basin (12,600-10,700 cal yr) artifacts overlying eolian sand, indicate the dune field existed at least during the latest Pleistocene, with initial eolian sedimentation probably occurring under a dry periglacial climate. The period between ???13,000 and 8900 cal yr B.P. was characterized by relatively slow eolian sedimentation concomitant with soil formation. Erosion occurred between ???8182 and 6600 cal yr B.P. on the upwind region of the dune field, followed by relative stability and soil formation between ???5900 and 2700 cal yr B.P. The first of at least two latest Holocene episodes of eolian sedimentation occurred between ???2000 and 1500 yr, followed by a brief (???500 yr) episode of soil formation; a second episode of sedimentation, occurring by at least ???700 yr, may coincide with a hypothesized Medieval warm period. Recent stabilization of the western Killpecker Dunes likely occurred during the Little Ice Age (???350-100 yr B.P.). The eolian chronology of the western Killpecker Dunes correlates reasonably well with those of other major dune fields in the Wyoming Basin, suggesting that dune field reactivation resulted primarily due to departures toward aridity during the late Quaternary. Similar to dune fields on the central Great Plains, dune fields in the Wyoming Basin have been active under a periglacial climate during the late Pleistocene, as well as under near-modern conditions during the latest Holocene. ?? 2003 University of Washington. All rights reserved.

  1. HYDROTHERMAL MINERALOGY OF RESEARCH DRILL HOLE Y-3, YELLOWSTONE NATIONAL PARK, WYOMING.

    USGS Publications Warehouse

    Bargar, Keith E.; Beeson, Melvin H.

    1984-01-01

    The approximate paragenetic sequence of hydrothermal minerals in the Y-3 U. S. Geological Survey research diamond-drill hole in Lower Geyser Basin, Yellowstone National Park, Wyoming, is: hydrothermal chalcedony, hematite, pyrite, quartz, clay minerals (smectite and mixed-layer illite-smectite), calcite, chlorite, fluorite, pyrite, quartz, zeolite minerals (analcime, dachiardite, laumontite, stilbite, and yugawaralite), and clay minerals (smectite and mixed-layer illite-smectite). A few hydrothermal minerals that were identified in drill core Y-3 (lepidolite, aegirine, pectolite, and truscottite) are rarely found in modern geothermal areas. The alteration minerals occur primarily as vug and fracture fillings that were deposited from cooling thermal water. Refs.

  2. Mineral resources of the Bobcat Draw Badlands Wilderness Study Area, Bir Horn and Washakie Counties, Wyoming

    SciTech Connect

    Gibbons, A.B.; Carlson, R.R.; Kulik, D.M.; Lundby, W.

    1989-01-01

    The Bobcat Draw Wilderness Study Area is in the Bighorn Basin about 45 mi west of Worland, Wyoming, and is underlain by early Tertiary sedimentary rocks. No resources were identified in this study area, which lacks mines or prospects, but is mostly under lease for oil and gas. This study area has a high potential for oil and gas and for subeconomic resources of coal and a moderate potential for a deep-seated geothermal energy resource. The resource potential for oil shale and metals, including uranium, is low.

  3. Multidisciplinary study of Wyoming test sites. [hydrology, biology, geology, lithology, geothermal, and land use

    NASA Technical Reports Server (NTRS)

    Houston, R. S. (principal investigator); Marrs, R. W.; Agard, S. S.; Downing, K. G.; Earle, J. L.; Froman, N. L.; Gordon, R.; Kolm, K. E.; Tomes, B.; Vietti, J.

    1974-01-01

    The author has identified the following significant results. Investigation of a variety of applications of EREP photographic data demonstrated that EREP S-190 data offer a unique combination of synoptic coverage and image detail. The broad coverage is ideal for regional geologic mapping and tectonic analysis while the detail is adequate for mapping of crops, mines, urban areas, and other relatively small features. The investigative team at the University of Wyoming has applied the EREP S-190 data to: (1) analysis of photolinear elements of the Powder River Basin, southern Montana, and the Wind River Mountains; (2) drainage analysis of the Powder River Basin and Beartooth Mountains; (3) lithologic and geologic mapping in the Powder River Basin, Black Hills, Green River Basin, Bighorn Basin and Southern Bighorn Mountains; (4) location of possible mineralization in the Absaroka Range; and (5) land use mapping near Riverton and Gillette. All of these applications were successful to some degree. Image enhancement procedures were useful in some efforts requiring distinction of small objects or subtle contrasts.

  4. Summer food habits and trophic overlap of roundtail chub and creek chub in Muddy Creek, Wyoming

    USGS Publications Warehouse

    Quist, M.C.; Bower, M.R.; Hubert, W.A.

    2006-01-01

    Native fishes of the Upper Colorado River Basin have experienced substantial declines in abundance and distribution, and are extirpated from most of Wyoming. Muddy Creek, in south-central Wyoming (Little Snake River watershed), contains sympatric populations of native roundtail chub (Gila robusta), bluehead sucker, (Catostomus discobolus), and flannelmouth sucker (C. tatipinnis), and represents an area of high conservation concern because it is the only area known to have sympatric populations of all 3 species in Wyoming. However, introduced creek chub (Semotilus atromaculatus) are abundant and might have a negative influence on native fishes. We assessed summer food habits of roundtail chub and creek chub to provide information on the ecology of each species and obtain insight on potential trophic overlap. Roundtail chub and creek chub seemed to be opportunistic generalists that consumed a diverse array of food items. Stomach contents of both species were dominated by plant material, aquatic and terrestrial insects, and Fishes, but also included gastropods and mussels. Stomach contents were similar between species, indicating high trophic, overlap. No length-related patterns in diet were observed for either species. These results suggest that creek chubs have the potential to adversely influence the roundtail chub population through competition for food and the native fish assemblage through predation.

  5. Heat flow, radioactivity, gravity, and geothermal resources in northern Colorado and southern Wyoming

    SciTech Connect

    Decker, E.R.; Buelow, K.L.

    1981-12-01

    The surface heat flow values in the Sierra Madre-Medicine Bow-Laramie Mountains region are in the range 0.6 to 1.5 HFU. When the heat from local bedrock radioactivity is considered, the reduced flux in these mountains is low to normal (0.6 to 1.2 HFU). These data and the low to normal gradients (10 to 25/sup 0/C/km) in the studied drill holes strongly suggest that the resource potential of the Southern Rockies in Wyoming is low. The geothermal resource potential of the sedimentary basins in Wyoming that border these mountains also appears to be low because preliminary estimates for the flux in these areas are less than or equal to 1.5 HFU and the average gradients in analyzed drill holes are generally less than or equal to 30/sup 0/C/km. In contrast to southern Wyoming, the high surface and reduced heat flows strongly suggest that the Park areas and other parts of the Southern Rockies in northern Colorado are potentially valuable geothermal resource areas. The narrow northerly borders (less than or equal to 50 km) of these positive anomalies suggest that some of the resources could be shallow, as does the evidence for regional igneous and tectonic activity in the late Cenozoic. The small number of combined heat flow and radioactivity stations precludes detailed site-specific evaluations in these regions, but a few generalizations are made.

  6. 40 CFR 81.436 - Wyoming.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... manager Bridger Wild 392,160 88-577 USDA-FS Fitzpatrick Wild 191,103 94-567 USDA-FS Grand Teton NP 305,504... Wild 686,584 92-476 USDA-FS Yellowstone NP 1 2,020,625 (2) USDI-NPS 1 Yellowstone National Park, 2,219,737 acres overall, of which 2,020,625 acres are in Wyoming, 167,624 acres are in Montana, and...

  7. 40 CFR 81.436 - Wyoming.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... manager Bridger Wild 392,160 88-577 USDA-FS Fitzpatrick Wild 191,103 94-567 USDA-FS Grand Teton NP 305,504... Wild 686,584 92-476 USDA-FS Yellowstone NP 1 2,020,625 (2) USDI-NPS 1 Yellowstone National Park, 2,219,737 acres overall, of which 2,020,625 acres are in Wyoming, 167,624 acres are in Montana, and...

  8. 40 CFR 81.436 - Wyoming.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... manager Bridger Wild 392,160 88-577 USDA-FS Fitzpatrick Wild 191,103 94-567 USDA-FS Grand Teton NP 305,504... Wild 686,584 92-476 USDA-FS Yellowstone NP 1 2,020,625 (2) USDI-NPS 1 Yellowstone National Park, 2,219,737 acres overall, of which 2,020,625 acres are in Wyoming, 167,624 acres are in Montana, and...

  9. 40 CFR 81.436 - Wyoming.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... manager Bridger Wild 392,160 88-577 USDA-FS Fitzpatrick Wild 191,103 94-567 USDA-FS Grand Teton NP 305,504... Wild 686,584 92-476 USDA-FS Yellowstone NP 1 2,020,625 (2) USDI-NPS 1 Yellowstone National Park, 2,219,737 acres overall, of which 2,020,625 acres are in Wyoming, 167,624 acres are in Montana, and...

  10. Mixing Water and Oil Under Static High Pressure H.K. Ploeg1, M.D. McCluskey2,3, G.J. Hanna2,3

    E-print Network

    Collins, Gary S.

    Mixing Water and Oil Under Static High Pressure H.K. Ploeg1, M.D. McCluskey2,3, G.J. Hanna2,3 1The. Turning the screws on the cell increases the pressure on the sample. The sample consists of water and O. Grasset, Journal of Chemical Physics 127, 124506 (2007) Citations: Water in Oil: Procedure: ·The

  11. A summary of the U.S. Geological Survey 1999 resource assessment of selected coal zones in the Northern Rocky Mountains and Great Plains region, Wyoming, Montana, and North Dakota

    USGS Publications Warehouse

    Ellis, M.S.; Nichols, D.J.

    2002-01-01

    In 1999, 1,100 million short tons of coal were produced in the United States, 38 percent from the Northern Rocky Mountains and Great Plains region. This coal has low ash content, and sulfur content is in compliance with Clean Air Act standards (U.S. Statutes at Large, 1990).The National Coal Resource Assessment for this region includes geologic, stratigraphic, palynologic, and geochemical studies and resource calculations for 18 major coal zones in the Powder River, Williston, Green River, Hanna, and Carbon Basins. Calculated resources are 660,000 million short tons. Results of the study are available in U.S. Geological Survey Professional Paper 1625?A (Fort Union Coal Assess-ment Team, 1999) and Open-File Report 99-376 (Flores and others, 1999) in CD-ROM format.

  12. [McWilliams, Possible Wind River Basin Thrust Fault]1 Evidence of a Possible 32-Mile-Wide Thrust Fault,

    E-print Network

    Lee Jr., Richard E.

    [McWilliams, Possible Wind River Basin Thrust Fault]1 Evidence of a Possible 32-Mile-Wide Thrust Fault, Wind River Basin, Fremont County Wyoming Robert G. McWilliams, Professor Emeritus, Department Indian Meadows and lower Wind River Formations. Love (1987) described in detail this fold-thrust fault

  13. Analysis of ERTS-1 imagery of Wyoming and its application to evaluation of Wyoming's natural resources

    NASA Technical Reports Server (NTRS)

    Marrs, R. W.

    1973-01-01

    The author has identified the following significant results. Significant results of the Wyoming investigation during the first six months include: (1) successful segregation of Precambrian metasedimentary/metavolcanic rocks from igneous rocks; (2) discovery of iron formation within the metasedimentary sequence; (3) mapping of previously unreported tectonic elements of major significance; (4) successful mapping of large scale fractures of the Wind River Mountains; (5) sucessful distinction of some metamorphic, igneous, and sedimentary lithologies by color-additive viewing of ERTS images; (6) mapping and interpretation of glacial features in western Wyoming; and (7) development of techniques for mapping small urban areas.

  14. Ground-water resources of Natrona County, Wyoming

    USGS Publications Warehouse

    Crist, Marvin A.; Lowry, Marlin E.

    1972-01-01

    Natrona County covers an area of 5.369 square miles in central Wyoming. The climate is arid except in the mountainous areas. The county includes parts of the Great Plains, Middle Rocky Mountains, Wyoming Basin, and Southern Rocky Mountains physiographic provinces. There is wide variation of topography. More than 30 geologic formations are exposed in the county, 28 of which are known to yield water to wells and springs. The formations range in age from Precambrian to Holocene. Ground water in approximately 40 percent of the county contains more than 1.000 mg/l (milligrams per liter) of dissolved solids. Water chemically suitable for livestock can be developed at depths of less than 1,000 feet throughout most of the area. Many of the geologic formations were deposited under similar conditions and have similar water-bearing properties; also. water from these rocks deposited under similar conditions tends to have similar chemical characteristics. For this report, the stratigraphic section has been arbitrarily divided into six rock units based on similarity of deposition. The igneous and metamorphic rock unit includes rocks of Precambrian age and igneous intrusives and extrusives of Tertiary age. These rocks probably would not yield more than about 5 gpm (gallons per minute) to wells. The water is usually calcium bicarbonate type and contains less than 500 mg/l of dissolved solids. The marine rock unit includes formations of Cambrian, Mississippian, and Pennsylvanian and Permian age, having a maximum total thickness of about 1,900 feet. The Madison Limestone of Mississippian age and the Tensleep Sandstone and the Casper Formation of Pennsylvanian and Permian age supply the largest yields to wells and springs in the county. In the northeastern part of the county, flow from each of three wells in the Madison reportedly is more than 4.000 gpm. Each of three wells in the Tensleep in the same area flows more than 400 gpm. Yields of springs in the Casper Formation near Casper Mountain range from about 1.0 to 17 cubic feet per second. Ground water from near the outcrop of all these formations usually contains less than 500 rag/l of dissolved solids. The dissolved-solids content increases with distance from the outcrop and in places is more than 3.200 mg/l. Several types of water were found in this unit including sodium sulfate, calcium sodium sulfate, calcium sulfate, sodium calcium sulfate, sodium chloride, and calcium bicarbonate.

  15. Wyoming Community Colleges Partnership Report, July 1, 2001-June 30, 2002.

    ERIC Educational Resources Information Center

    Wyoming Community Coll. Commission, Cheyenne.

    This document offers individual institution reports for partnership programs in Wyoming's seven community colleges. The colleges are: (1) Casper College; (2) Central Wyoming College; (3) Eastern Wyoming College; (4) Laramie County Community College; (5) Northwest College; (6) Sheridan College; and (7) Western Wyoming Community College. Wyoming

  16. Wyoming Community Colleges Partnership Report, July 1, 2002-June 30, 2003.

    ERIC Educational Resources Information Center

    Wyoming Community Coll. Commission, Cheyenne.

    This document offers individual institution reports for partnership programs in Wyoming's seven community colleges. The colleges are: (1) Casper College; (2) Central Wyoming College; (3) Eastern Wyoming College; (4) Laramie County Community College; (5) Northwest College; (6) Sheridan College; and (7) Western Wyoming Community College. Wyoming

  17. Wyoming Carbon Capture and Storage Institute

    SciTech Connect

    Nealon, Teresa

    2014-06-30

    This report outlines the accomplishments of the Wyoming Carbon Capture and Storage (CCS) Technology Institute (WCTI), including creating a website and online course catalog, sponsoring technology transfer workshops, reaching out to interested parties via news briefs and engaging in marketing activities, i.e., advertising and participating in tradeshows. We conclude that the success of WCTI was hampered by the lack of a market. Because there were no supporting financial incentives to store carbon, the private sector had no reason to incur the extra expense of training their staff to implement carbon storage. ii

  18. Wyoming Community College Commission Statewide Strategic Plan: Planning for the Future of Wyoming's Community Colleges

    ERIC Educational Resources Information Center

    Richards, Amanda; Sipes, Laurel; Studier, Carol; Staklis, Sandra; Farr, Beverly; Horn, Laura J.

    2009-01-01

    With the national spotlight on community colleges, Wyoming is poised to become a leader through its efforts to align the programs of its seven community colleges with defined state interests. As local economies become more globally focused and knowledge-based, community colleges are a critical way for learners to gain access to postsecondary…

  19. Water quality of two streams near Yellowstone Park, Wyoming, following the 1988 Clover-Mist wildfire

    USGS Publications Warehouse

    Gerla, P.J.; Galloway, J.M.

    1998-01-01

    In 1988, wildfire burned over 50% of the Jones Creek watershed near Yellowstone Park, Wyoming. Crow Creek, an adjacent watershed, was unburned. Water quality data collected from 1989-1993 may show the fire's effect on weathering and nutrient transport. Jones Creek had 25-75% larger concentration of dissolved solids than Crow Creek during the sampling period. Both streams revealed molar ratios consistent with the stoichiometry of andesine and pyroxene hydrolysis in the trachyandesites that underlie the basins. During 1989, nitrate transported from the unburned Crow Creek basin peaked at 2 mmol ha-1 s-1. This was twice as much as Jones Creek, possibly indicating a source from ash fallout. By 1992 these rates diminished to 0.1 mmol ha-1 s-1 in Crow Creek and increased to 1.8 mmol ha-1 s-1 in Jones Creek, suggesting later nitrate mobilization in the burned watershed. Phosphorus transported from Jones Creek basin averaged 0.011 mmol ha-1 s-1 during summer 1989, but fell to 0.004 mg ha-1 s-1 in subsequent years.In 1988, wildfire burned over 50% of the Jones Creek watershed near Yellowstone Park, Wyoming. Crow Creek, an adjacent watershed, was unburned. Water quality data collected from 1989-1993 may show the fire's effect on weathering and nutrient transport. Jones Creek had 25-75% larger concentrations of dissolved solids than Crow Creek during the sampling period. Both streams revealed molar ratios consistent with the stoichiometry of andesine and pyroxene hydrolysis in the trachyandesites that underlie the basins. During 1989, nitrate transported from the unburned Crow Creek basin peaked at 2 mmol ha-1 s-1. This was twice as much as Jones Creek, possibly indicating a source from ash fallout. By 1992 these rates diminished to 0.1 mmol ha-1 s-1 in Crow Creek and increased to 1.8 mmol ha-1 s-1 in Jones Creek, suggesting later nitrate mobilization in the burned watershed. Phosphorus transported from Jones Creek basin averaged 0.011 mmol ha-1 s-1 during summer 1989, but fell to 0.004 mg ha-1 s-1 in subsequent years.

  20. Geologic structure and altitude of the top of the Minnelusa Formation, northern Black Hills, South Dakota and Wyoming, and Bear Lodge Mountains, Wyoming

    USGS Publications Warehouse

    Peter, Kathy D.; Kyllonen, David P.; Mills, K.R.

    1987-01-01

    Beginning in 1981, a 3-yr project was conducted to determine the availability and quality of groundwater in the sedimentary bedrock aquifers in the Black Hills of South Dakota and Wyoming. The project was limited to three bedrock units in order of increasing age: the Cretaceous Inyan kara Group, Permian and Pennsylvanian Minnelusa Formation, and Mississippian Madison (or Pahasapa) Limestone. This map shows the altitude of the top of the Minnelusa Formation in the northern Black Hills, and shows the configuration of the structural features in the northern part of the Black Hills and the eastern part of the Bear Lodge Mountains. In general, the Minnelusa Formation dips away from the Black Hills uplift, either to the northeast and the Williston Basin or, south of the Bear Lodge Mountains, to the southwest and the Powder River basin, which is outside the map area. In the map area, the upper beds of the Minnelusa Formation are an aquifer and the lower beds are a confining or semi-confining unit. The upper part of the Minnelusa Formation has a greater percentage of coarse-grained sandstone beds than the lower part. Furthermore, solution and removal of anhydrite, brecciation, and solution of cement binding the sandstone grains may have increased the permeability of the upper part of the Minnelusa Formation in the Black Hills. Wells completed in the upper part of the Minnelusa have yields that exceed 100 gal/min in some areas and at least one large diameter well is reported to flow 1,000 gal/min in some areas and at least one large diameter well is reported to flow 1,000 gal/min. Flowing wells have been completed in the Minnelusa aquifer in most of the study area in South Dakota and in about the northern one-half of Crook County, Wyoming. (Lantz-PTT)

  1. 75 FR 5108 - Notice of Inventory Completion: University of Wyoming, Anthropology Department, Human Remains...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-01

    ...Completion: University of Wyoming, Anthropology Department, Human Remains Repository...control of the University of Wyoming, Anthropology Department, Human Remains Repository...was made by University of Wyoming, Anthropology Department, Human Remains...

  2. 76 FR 14057 - Notice of Inventory Completion: University of Wyoming, Anthropology Department, Human Remains...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-15

    ...Completion: University of Wyoming, Anthropology Department, Human Remains Repository...control of the University of Wyoming Anthropology Department, Human Remains Repository...was made by University of Wyoming, Anthropology Department, Human Remains...

  3. 76 FR 14058 - Notice of Inventory Completion: University of Wyoming, Anthropology Department, Human Remains...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-15

    ...Completion: University of Wyoming, Anthropology Department, Human Remains Repository...control of the University of Wyoming Anthropology Department, Human Remains Repository...was made by University of Wyoming, Anthropology Department, Human Remains...

  4. 75 FR 5108 - Notice of Inventory Completion: University of Wyoming, Anthropology Department, Human Remains...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-01

    ... National Park Service Notice of Inventory Completion: University of Wyoming, Anthropology Department, Human... possession and control of the University of Wyoming, Anthropology Department, Human Remains Repository... notice. A detailed assessment of the human remains was made by University of Wyoming,...

  5. 30 CFR 825.2 - Special bituminous coal mines in Wyoming.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 false Special bituminous coal mines in Wyoming. 825.2 Section 825...PERFORMANCE STANDARDS-SPECIAL BITUMINOUS COAL MINES IN WYOMING § 825.2 Special bituminous coal mines in Wyoming. Special bituminous...

  6. 30 CFR 825.2 - Special bituminous coal mines in Wyoming.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 false Special bituminous coal mines in Wyoming. 825.2 Section 825...PERFORMANCE STANDARDS-SPECIAL BITUMINOUS COAL MINES IN WYOMING § 825.2 Special bituminous coal mines in Wyoming. Special bituminous...

  7. Wyoming's Early Settlement and Ethnic Groups, Unit IV.

    ERIC Educational Resources Information Center

    Robinson, Terry

    This unit on Wyoming's early settlement and ethnic groups provides concepts, activities, stories, charts, and graphs for elementary school students. Concepts include the attraction Wyoming held for trappers; the major social, economic, and religious event called "The Rendezvous"; the different ethnic and religious groups that presently inhabit…

  8. NO-TILL GRAIN PRODUCTION IN WYOMING: STATUS AND POTENTIAL

    E-print Network

    Norton, Jay B.

    with supplies, so more intensive management is required. As soil organic matter lost during decades of frequent programs, both on-farm and at Wyoming's research & extension centers, have potential to increase the number-till farming, focusing on wheat production, and adoption rates in Wyoming and surrounding states

  9. 76 FR 35465 - Notice of Competitive Coal Lease Sale, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-17

    ... Bureau of Land Management Notice of Competitive Coal Lease Sale, Wyoming AGENCY: Bureau of Land Management, Interior. ACTION: Notice of competitive coal lease sale. SUMMARY: Notice is hereby given that certain coal resources in the Caballo West Coal Tract described below in Campbell County, Wyoming, will...

  10. 77 FR 3790 - Notice of Competitive Coal Lease Sale, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-25

    ... Bureau of Land Management Notice of Competitive Coal Lease Sale, Wyoming AGENCY: Bureau of Land Management, Interior. ACTION: Notice. SUMMARY: Notice is hereby given that certain coal resources in the South Porcupine Coal Tract described below in Campbell County, Wyoming, will be offered for...

  11. 76 FR 28063 - Notice of Competitive Coal Lease Sale, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-13

    ... Bureau of Land Management Notice of Competitive Coal Lease Sale, Wyoming AGENCY: Bureau of Land Management, Interior. ACTION: Notice. SUMMARY: Notice is hereby given that certain coal resources in the Belle Ayr North Coal Tract described below in Campbell County, Wyoming, will be offered for...

  12. 77 FR 31385 - Notice of Competitive Coal Lease Sale, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-25

    ... Bureau of Land Management Notice of Competitive Coal Lease Sale, Wyoming AGENCY: Bureau of Land Management, Interior. ACTION: Notice. SUMMARY: Notice is hereby given that certain coal resources in the North Porcupine Coal Tract described below in Campbell County, Wyoming, will be offered for...

  13. Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming

    SciTech Connect

    Eckerle, William; Hall, Stephen

    2005-12-30

    In 2002, Gnomon, Inc., entered into a cooperative agreement with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) for a project entitled, Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming (DE-FC26-02NT15445). This project, funded through DOE’s Preferred Upstream Management Practices grant program, examined cultural resource management practices in two major oil- and gas-producing areas, southeastern New Mexico and the Powder River Basin of Wyoming (Figure 1). The purpose of this project was to examine how cultural resources have been investigated and managed and to identify more effective management practices. The project also was designed to build information technology and modeling tools to meet both current and future management needs. The goals of the project were described in the original proposal as follows: Goal 1. Create seamless information systems for the project areas. Goal 2. Examine what we have learned from archaeological work in the southeastern New Mexico oil fields and whether there are better ways to gain additional knowledge more rapidly or at a lower cost. Goal 3. Provide useful sensitivity models for planning, management, and as guidelines for field investigations. Goal 4. Integrate management, investigation, and decision- making in a real-time electronic system. Gnomon, Inc., in partnership with the Wyoming State Historic Preservation Office (WYSHPO) and Western GeoArch Research, carried out the Wyoming portion of the project. SRI Foundation, in partnership with the New Mexico Historic Preservation Division (NMHPD), Statistical Research, Inc., and Red Rock Geological Enterprises, completed the New Mexico component of the project. Both the New Mexico and Wyoming summaries concluded with recommendations how cultural resource management (CRM) processes might be modified based on the findings of this research.

  14. US hydropower resource assessment for Wyoming

    SciTech Connect

    Francfort, J.E.

    1993-12-01

    The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Wyoming.

  15. Wyoming operator solves mercury exposure problems

    SciTech Connect

    Lund, D.L.

    1996-05-13

    The gas-processing industry is often faced with the need to remove mercury from natural gas to protect downstream equipment. Mercury exists naturally in many gas-producing reservoirs and can accumulate in low-temperature equipment. Experience at Amoco Exploration and Production Co.`s Anschutz Ranch East plant in southwestern Wyoming has indicated that proper monitoring and maintenance of mercury-removal material can yield excellent removal performance. Surrounding-seal welding of backing rings, manways, and N{sub 2} connections on cold-boxes can be employed during initial design as prevention and contingency measures. Improved operation of gas pretreatment and cold-box equipment has led to sustained performance of the NGL/nitrogen-rejection unit (NRU) plant.

  16. Overview of Energy Development Opportunities for Wyoming

    SciTech Connect

    Larry Demick

    2012-11-01

    An important opportunity exists for the energy future of Wyoming that will • Maintain its coal industry • Add substantive value to its indigenous coal and natural gas resources • Improve dramatically the environmental impact of its energy production capability • Increase its Gross Domestic Product These can be achieved through development of a carbon conversion industry that transforms coal and natural gas to synthetic transportation fuels, chemical feedstocks, and chemicals that are the building blocks for the chemical industry. Over the longer term, environmentally clean nuclear energy can provide the substantial energy needs of a carbon conversion industry and be part of the mix of replacement technologies for the current fleet of aging coal-fired electric power generating stations.

  17. Absaroka folio, Crandall and Ishawooa quadrangles, Wyoming 

    E-print Network

    Hague, Arnold, 1840-1917.

    1899-01-01

    that the anomaly is caused by a deeply buried, nearly continuous, narrow body of relatively uniform magnetization?probably a dike of oceanic basalt emplaced during early fracturing of the South Atlantic. A buried dike or ridge could have served as a dam to trap.......................................................................... 29 Reservoir Rocks Within the Basin ..................................................... 30 Probable Source and Migration Paths................................................. 31 METHODS AND MATERIALS...

  18. Geodynamic basin classification

    SciTech Connect

    Klein, G.

    1987-05-01

    Four criteria (continental margin type, basin position within a plate, crustal type, geodynamic models and processes of basin formation) are used to classify sedimentary basins. Within plate interiors, cratonic margin basins and interior cratonic basins are distinguished by position on a tectonic plate. In passive margins, rift basins, aulacogens, and flexure basins are distinguished by orientation with respect to margins (rifts parallel and aulacogens normal to margins) and geodynamic process (rifts and aulacogens form by stretching, flexure basins by elastic or viscoelastic flexure). Basins associated with active continental margins are distinguished by position with respect to margin, crustal type, and stress regimen. Trench-slope basins involve compressional-extensional regimens, whereas trench basins, forearc basins and retroarc basins form in compressional regimes (retroarc basins on continental crust; forearc and trench basins occupy different positions on margin boundaries). Extensional intra-arc basins form on continental crust whereas backarc basins form by rifting oceanic crust and rapid thermal subsidence. Both pull-apart and transform basins form in transform margins by rifting and thermal subsidence with different translational stress regimens. In collision margins, foreland basins occur within continental plates, and superposed (or collage) basins occur along suture zones. Polyhistory basins include successor basins involving changing tectonic styles, and resurgent basins involving repeated tectonic styles. Many mapped basins show polyhistory. Thus the cratonic Illinois basin evolved through stages of a rift basin, followed by thermal subsidence akin to passive margins, followed by viscoelastic basin formation akin to a foreland basin.

  19. Col. Hanna & Officers 

    E-print Network

    Unknown

    2011-08-17

    of all bridge collapses are due to scour. Not only are these failures costly, they can be deadly for the traveling public. On April 5, 1987, ten people were killed in New York when a pier collapsed on the Schoharie Creek Bridge causing two spans...

  20. Hydrology of area 50, Northern Great Plains and Rocky Mountain coal provinces, Wyoming and Montana

    USGS Publications Warehouse

    Lowry, Marlin E.; Wilson, James F., Jr.; and others

    1983-01-01

    This report is one of a series designed to characterize the hydrology of drainage basins within coal provinces, nationwide. Area 50 includes all of the Powder River Basin, Wyoming and Montana and the upstream parts of the Cheyenne and Belle Fourche River Basins - a total of 20,676 sq mi. The area has abundant coal (81.2 million tons mined in 1982), but scarce water. The information in the report is intended to describe the hydrology of the ' general area ' of any proposed mine. The report represents a summary of results of the water resources investigations of the U.S. Geological Survey, carried out in cooperation with State and other Federal agencies. Each of more than 50 topics is discussed in a brief text that is accompanied by maps, graphs, and other illustrations. Primary topics in the report are: physiography, economic development, surface-water data networks, surface water quantity and quality, and groundwater. The report also contains an extensive description of sources of additional information. (USGS)

  1. Annotated bibliography of selected references on shoreline barrier island deposits with emphasis on Patrick Draw Field, Sweetwater County, Wyoming

    SciTech Connect

    Rawn-Schatzinger, V.; Schatzinger, R.A.

    1993-07-01

    This bibliography contains 290 annotated references on barrier island and associated depositional environments and reservoirs. It is not an exhaustive compilation of all references on the subject, but rather selected papers on barrier islands, and the depositional processes of formation. Papers that examine the morphology and internal architecture of barrier island deposits, exploration and development technologies are emphasized. Papers were selected that aid in understanding reservoir architecture and engineering technologies to help maximize recovery efficiency from barrier island oil reservoirs. Barrier islands from Wyoming, Montana and the Rocky Mountains basins are extensively covered.

  2. Recent craton growth by slab stacking beneath Wyoming

    NASA Astrophysics Data System (ADS)

    Humphreys, Eugene D.; Schmandt, Brandon; Bezada, Maximiliano J.; Perry-Houts, Jonathan

    2015-11-01

    Seismic tomography images high-velocity mantle beneath the Wyoming craton extending to >250 km depth. Although xenoliths and isostatic arguments suggest that this mantle is depleted of basaltic component, it is not typical craton: its NE elongate shape extends SW of the Wyoming craton; xenoliths suggest that the base of Archean mantle was truncated from ?180-200 to ?140-150 km depth since the Devonian, and that the deeper mantle is younger than ?200 Ma. The Sevier-Laramide orogeny is the only significant Phanerozoic tectonic event to have affected the region, and presumably caused the truncation. Apparently, the base of the Wyoming craton was removed and young, depleted mantle was emplaced beneath the Wyoming craton during the Sevier-Laramide orogeny. We suggest that the Wyoming craton experienced a ?75 Ma phase of growth through a three-stage process. First, flat-slab subduction removed 40-50 km off the base of the Archean Wyoming craton. This was followed by emplacement of basalt-depleted ocean plateau mantle lithosphere of the Shatsky Rise conjugate, which arrived in the early Laramide. The geologic recorded of vertical motion in the Wyoming region suggests that the plateau's crust escaped into the Earth's interior at 70-75 Ma. Initiation of Colorado Mineral Belt magmatism at this time may represent a slab rupture through which the ocean crust escaped.

  3. Lower Mississippian Positive Carbon Isotope Excursion in Shallow Water Carbonates, Wyoming and Montana

    NASA Astrophysics Data System (ADS)

    Katz, D. A.; Swart, P. K.; Buoniconti, M. R.; Eberli, G. P.; Smith, L. B.

    2004-12-01

    Lower Mississippian carbonates from Wyoming and Montana show a positive carbon isotope excursion (maximum \\delta13C values range from +5 to +7.5 \\permil PDB) within North American-Lower Mississippian/Kinderhookian to Osagean (Tournasian to Lower Visean) intervals, indicating a fluctuation in the global carbon cycle at that time. This carbon isotope excursion is found along the entire Madison ramp in cores (Elk and Bighorn Basins) and in measured sections in Wyoming and Montana. The excursion is independent of facies and occurrs in pervasively dolomitized up dip locations as well as basinward locations composed entirely of limestone. Positive carbon values are intimately associated with sequence stratigraphy previously determined in the measured sections. The onset of the transgression in Sequence II coincides with the most depleted carbon values (ca. 1 \\permil PDB) and a progressive increase of enrichment during the transgression. It reaches a maximum enrichment (ca. 7 \\permil PDB) at the turnaround to the regression, followed by a gradual trend from maximum values at the turnaround to minimum values (ca. 2 \\permil PDB) at the top of the sequence. On the Madison ramp, the positive carbon excursion can be used to correlate third order sequence boundaries across the 1100 km ramp system, providing a time line within otherwise undatable sections. On a larger scheme, these enriched values also correlate to time-equivalent strata discovered in previous studies from Utah, Nevada, Idaho, Wyoming, Iowa, and Western Europe, indicating its potential use as a global chronostratigraphic tool. The timing of this event probably coincides with low atmospheric CO2 levels and the initiation of conditions that lead to the Icehouse Earth in the Upper Mississippian. In order to confirm this interpretation we are measuring the \\delta13C of coexisting organic material to compare the difference between \\delta13C of the inorganic and organic components and assess pCO2 levels and associated changes within the marine organic and inorganic carbon pools.

  4. Geologic map of the Sand Creek Pass quadrangle, Larimer County, Colorado, and Albany County, Wyoming

    USGS Publications Warehouse

    Workman, Jeremiah B.; Braddock, William A.

    2010-01-01

    New geologic mapping within the Sand Creek Pass 7.5 minute quadrangle defines geologic relationships within the northern Front Range of Colorado along the Wyoming border approximately 35 km south of Laramie, Wyo. Previous mapping within the quadrangle was limited to regional reconnaissance mapping; Eaton Reservoir 7.5 minute quadrangle to the east (2008), granite of the Rawah batholith to the south (1983), Laramie River valley to the west (1979), and the Laramie 30' x 60' quadrangle to the north (2007). Fieldwork was completed during 1981 and 1982 and during 2007 and 2008. Mapping was compiled at 1:24,000-scale. Minimal petrographic work was done and no isotope work was done in the quadrangle area, but detailed petrographic and isotope studies were performed on correlative map units in surrounding areas as part of a related regional study of the northern Front Range. Stratigraphy of Proterozoic rocks is primarily based upon field observation of bulk mineral composition, macroscopic textural features, and field relationships that allow for correlation with rocks studied in greater detail outside of the map area. Stratigraphy of Phanerozoic rocks is primarily based upon correlation with similar rocks to the north in the Laramie Basin of Wyoming and to the east in the Front Range of Colorado.

  5. Ground-water resources of Sheridan County, Wyoming

    USGS Publications Warehouse

    Lowry, Marlin E.; Cummings, T. Ray

    1966-01-01

    Sheridan County is in the north-central part of Wyoming and is an area of about 2,500 square miles. The western part of the county is in the Bighorn Mountains, and the eastern part is in the Powder River structural basin. Principal streams are the Powder and Tongue Rivers, which are part of the Yellowstone River system. The climate is semiarid, and the mean annual precipitation at Sheridan is about 16 inches. Rocks of Precambrian age are exposed in the central part of the Bighorn Mountains, and successively younger rocks are exposed eastward. Rocks of Tertiary age, which are the most widespread, are exposed throughout a large part of the Powder River structural basin. Deposits of Quaternary age underlie the flood plains and terraces along the larger streams, particularly in the western part of the basin. Aquifers of pre-Tertiary age are exposed in the western part of the county, but they dip steeply and are deeply buried just a few miles east of their outcrop. Aquifers that might yield large supplies of water include the Bighorn Dolomite, Madison Limestone, Amsden Formation, and Tensleep Sandstone. The Flathead Sandstone, Sundance Formation, Morrison Formation, Cloverly Formation,. Newcastle Sandstone, Frontier Formation, Parkman Sandstone, Bearpaw Shale, .and Lance Formation may yield small or, under favorable conditions, moderate supplies of water. Few wells tap aquifers of pre-Tertiary age, and these are restricted to the outcrop area. The meager data available indicate that the water from the Lance Formation, Bearpaw Shale, Parkman Sandstone, Tensleep Sandstone and Amsden Formation, and Flathead Standstone is of suitable quality for domestic or stock purposes, and that water from the Tensleep Sandstone and Amsden Formation and the Flathead Sandstone is of good quality for irrigation. Samples could not be obtained from other aquifers of pre-Tertiary age; so the quality of water in these aquifers could not be determined. Adequate supplies of ground water for stock or domestic use can be developed throughout much of the report area from the Fort Union and Wasatch Formations of Tertiary age; larger supplies might be obtained from the coarse-grained sandstone facies of the Wasatch Formation near Moncreiffe Ridge. Four aquifer tests were made at wells tapping formations of Tertiary age, and the coefficients of permeability determined ranged from 2.5 to 7.9 gallons per day per square foot. The depths to which wells must be drilled to penetrate an aquifer differ within relatively short distances because of the lenticularity of the aquifers. Water in aquifers of Tertiary age may occur under water-table, artesian, or a combination of artesian and gas-lift conditions. Water from the Fort Union is usable for domestic purposes, but the iron and dissolved-solids content impair the quality at some localities. Water from the Fort Union Formation is not recommended for irrigation because of sodium and bicarbonate content. The water is regarded as good to fair for stock use. Water from the Wasatch Formation generally contains dissolved solids in excess of the suggested domestic standards, but this water is usable in the absence of other supplies. The development of irrigation supplies from the Wasatch Formation may be possible in some areas, but the water quality should be carefully checked. Water of good to very poor quality for stock supplies is obtained, depending upon the location. Hydrogen sulfide, commonly present in water of the Fort Union and Wasatch Formations, becomes an objectionable characteristic when the water is used for human consumption. Deposits of Quaternary age generally yield small to moderate supplies of water to wells. Two pumping tests were conducted, and the coefficients of permeability of the aquifers tested were 380 and 1,100 gallons per day per square foot. Usable supplies of ground water can be developed from the deposits of Quaternary age, principally along the valleys of perennial strea

  6. Powder River Basin: new energy frontier

    SciTech Connect

    Richards, B.

    1981-02-01

    The Powder River Basin in Wyoming represents a new energy frontier, where traditional ranch styles are giving way to boomtown development around new coal mines. Plans for extensive strip mining, coal trains and pipelines, and synthetic fuels plants will transform a 12,000 square mile area. The environmental and social impacts of trailer villages and the influx of new mores and life styles are already following traditional patterns for newcomers and long-time residents alike. Some local residents, however, are optimistic about the opportunities energy development will have. (DCK)

  7. Behavioral and catastrophic drift of invertebrates in two streams in northeastern Wyoming

    USGS Publications Warehouse

    Wangsness, David J.; Peterson, David A.

    1980-01-01

    Invertebrate drift samples were collected in August 1977 from two streams in the Powder River structural basin in northeastern Wyoming. The streams are Clear Creek, a mountain stream, and the Little Powder River, a plains stream. Two major patterns of drift were recognized. Clear Creek was sampled during a period of normal seasonal conditions. High drift rates occurred during the night indicating a behavioral drift pattern that is related to the benthic invertebrate density and carrying capacity of the stream substrates. The mayfly genes Baetis, a common drift organism, dominated the peak periods of drift in Clear Creek. The Little Powder River has a high discharge during the study period. Midge larvae of the families Chironomidae and Ceratopogonidae, ususally not common in drift, dominated the drift community. The dominance of midge larvae, the presence of several other organisms not common in drift, and the high discharge during the study period caused a catastrophic drift pattern. (USGS)

  8. U.S. Geological Survey science for the Wyoming Landscape Conservation Initiative—2014 annual report

    USGS Publications Warehouse

    Bowen, Zachary H.; Aldridge, Cameron; Anderson, Patrick J.; Assal, Timothy J.; Bartos, Timothy T.; Biewick, Laura R; Boughton, Gregory K.; Chalfoun, Anna L.; Chong, Geneva W.; Dematatis, Marie K.; Eddy-Miller, Cheryl A.; Garman, Steven L.; Germaine, Stephen; Homer, Collin; Huber, Christopher; Kauffman, Matthew J.; Latysh, Natalie; Manier, Daniel; Melcher, Cynthia P.; Miller, Alexander; Miller, Kirk A.; Olexa, Edward M.; Schell, Spencer; Walters, Annika W.; Wilson, Anna B.; Wyckoff, Teal B.

    2015-01-01

    Other highlights of FY2014 included a renewed effort to gather and analyze wildlife and habitat status and trend data for the WLCI Interagency Monitoring Database (IAMD) to assess long-term trends and cumulative effects associated with land-use and climate changes. Water-monitoring efforts included drilling four new groundwater-monitoring wells in the Green and New Fork River basins near the proposed Normally Pressured Lance Formation energy development, and continued data collection at established water-monitoring sites. Three additional wells were sampled as part of the Wyoming Groundwater Monitoring Network, bringing the total to 19 Network wells sampled in the WLCI region since 2010. Combined, these water-monitoring efforts can help to identify potential changes in water quality or levels that may result from land-use changes. Major terrestri

  9. Parana basin

    SciTech Connect

    Zalan, P.V.; Wolff, S.; Conceicao, J.C.J.; Vieira, I.S.; Astolfi, M.A.; Appi, V.T.; Zanotto, O.; Neto, E.V.S.; Cerqueira, J.R.

    1987-05-01

    The Parana basin is a large intracratonic basin in South America, developed entirely on continental crust and filled with sedimentary and volcanic rocks ranging in age from Silurian to Cretaceous. It occupies the southern portion of Brazil (1,100,000 km/sup 2/ or 425,000 mi/sup 2/) and the eastern half of Paraguay (100,000 km/sup 2/ or 39,000 mi/sup 2/); its extension into Argentina and Uruguay is known as the Chaco-Parana basin. Five major depositional sequences (Silurian, Devonian, Permo-Carboniferous, Triassic, Juro-Cretaceous) constitute the stratigraphic framework of the basin. The first four are predominantly siliciclastic in nature, and the fifth contains the most voluminous basaltic lava flows of the planet. Maximum thicknesses are in the order of 6000 m (19,646 ft). The sequences are separated by basin wide unconformities related in the Paleozoic to Andean orogenic events and in the Mesozoic to the continental breakup and sea floor spreading between South America and Africa. The structural framework of the Parana basin consists of a remarkable pattern of criss-crossing linear features (faults, fault zones, arches) clustered into three major groups (N45/sup 0/-65/sup 0/W, N50/sup 0/-70/sup 0/E, E-W). The northwest- and northeast-trending faults are long-lived tectonic elements inherited from the Precambrian basement whose recurrent activity throughout the Phanerozoic strongly influenced sedimentation, facies distribution, and development of structures in the basin. Thermomechanical analyses indicate three main phases of subsidence (Silurian-Devonian, late Carboniferous-Permian, Late Jurassic-Early Cretaceous) and low geothermal gradients until the beginning of the Late Jurassic Permian oil-prone source rocks attained maturation due to extra heat originated from Juro-Cretaceous igneous intrusions. The third phase of subsidence also coincided with strong tectonic reactivation and creation of a third structural trend (east-west).

  10. Water Planning in the States of the Upper Basin of the Colorado River.

    ERIC Educational Resources Information Center

    Mann, Dean E.

    1978-01-01

    Discussion of issues involved in water planning of the upper basin of the Colorado River: attitudes toward water planning, agricultural leisure and environmental issues, pollution, and energy issues. Various sections are devoted to Indian interests and the interests of Utah, Wyoming, Colorado, and New Mexico. Final section discusses the future of…

  11. 15. CLOSEUP OF THE SWITCHGEAR, LOOKING SOUTHEAST. Wyoming Valley ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. CLOSEUP OF THE SWITCHGEAR, LOOKING SOUTHEAST. - Wyoming Valley Flood Control System, Woodward Pumping Station, East of Toby Creek crossing by Erie-Lackawanna Railroad, Edwardsville, Luzerne County, PA

  12. ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING

    SciTech Connect

    Peggy Robinson

    2005-07-01

    This report summarizes activities that have taken place in the last six (6) months (January 2005-June 2005) under the DOE-NETL cooperative agreement ''Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields, New Mexico and Wyoming'' DE-FC26-02NT15445. This project examines the practices and results of cultural resource investigation and management in two different oil and gas producing areas of the United States: southeastern New Mexico and the Powder River Basin of Wyoming. The project evaluates how cultural resource investigations have been conducted in the past and considers how investigation and management could be pursued differently in the future. The study relies upon full database population for cultural resource inventories and resources and geomorphological studies. These are the basis for analysis of cultural resource occurrence, strategies for finding and evaluating cultural resources, and recommendations for future management practices. Activities can be summarized as occurring in either Wyoming or New Mexico. Gnomon as project lead, worked in both areas.

  13. Multidisciplinary study on Wyoming test sites

    NASA Technical Reports Server (NTRS)

    Houston, R. S. (principal investigator); Marrs, R. W.; Borgman, L. E.

    1975-01-01

    The author has identified the following significant results. Ten EREP data passes over the Wyoming test site provided excellent S190A and S190B coverage and some useful S192 imagery. These data were employed in an evaluation of the EREP imaging sensors in several earth resources applications. Boysen Reservoir and Hyattsville were test areas for band to band comparison of the S190 and S192 sensors and for evaluation of the image data for geologic mapping. Contrast measurements were made from the S192 image data for typical sequence of sedimentary rocks. Histograms compiled from these measurements show that near infrared S192 bands provide the greatest amount of contrast between geologic units. Comparison was also made between LANDSAT imagery and S190B and aerial photography for regional land use mapping. The S190B photography was found far superior to the color composite LANDSAT imagery and was almost as effective as the 1:120,000 scale aerial photography. A map of linear elements prepared from LANDSAT and EREP imagery of the southwestern Bighorn Mountains provided an important aid in defining the relationship between fracture and ground water movement through the Madison aquifer.

  14. Deformational stress fields of Casper Mountain, Wyoming

    SciTech Connect

    Burfod, A.E.; Gable, D.J.

    1985-01-01

    Casper Mountain is an east-west-trending Laramide feature located immediately west of the north termination of the Laramie Mountains in central Wyoming. Precambrian rocks are exposed as its core; off-dipping Paleozoic and Mesozoic strata characterize the flanks and ends. The north side is abruptly downthrown along a major east-west fault or faults. A complex of stress fields of Precambrian and younger ages is indicated by high-angle shears and shear zones, steep-dip foliations, and multiple joint systems. One or more of the indicated Precambrian stress fields may be equivalent to that of the Cheyenne belt of the southern Laramie Mountains. In addition, at least two well-developed Laramide stress fields were active during the formation of the mountain structure. The principal maximum compressive stress of each was oriented north-south; the mean compressive axis of one was vertical whereas in the other the minimum compressive axis was vertical. Some structural features of Precambrian age, faulting in particular, appear to have influenced structures of younger ages. Prominent east-northeast-trending, high-angle faults lie approximately parallel to the Precambrian structural grain; they offset structural features of Laramide age and may be of late Laramide and/or post-Laramide age.

  15. Uranium assessment for the Precambrian pebble conglomerates in southeastern Wyoming

    SciTech Connect

    Borgman, L.E.; Sever, C.; Quimby, W.F.; Andrew, M.E.; Karlstrom, K.E.; Houston, R.S.

    1981-03-01

    This volume is a geostatistical resource estimate of uranium and thorium in quartz-pebble conglomerates, and is a companion to Volume 1: The Geology and Uranium Potential to Precambrian Conglomerates in the Medicine Bow Mountains and Sierra Madre of Southeastern Wyoming; and to Volume 2: Drill-Hole Data, Drill-Site Geology, and Geochemical Data from the Study of Precambrian Uraniferous Conglomerates of the Medicine Bow Mountains and the Sierra Madre of Southeastern Wyoming.

  16. Digital representation of oil and natural gas well pad scars in southwest Wyoming: 2012 update

    USGS Publications Warehouse

    Garman, Steven L.; McBeth, Jamie L.

    2015-01-01

    The recent proliferation of oil and natural gas energy development in the Greater Green River Basin of southwest Wyoming has accentuated the need to understand wildlife responses to this development. The location and extent of surface disturbance that is created by oil and natural gas well pad scars are key pieces of information used to assess the effects of energy infrastructure on wildlife populations and habitat. A digital database of oil and natural gas pad scars had previously been generated from 1-meter (m) National Agriculture Imagery Program imagery (NAIP) acquired in 2009 for a 7.7-million hectare (ha) (19,026,700 acres) region of southwest Wyoming. Scars included the pad area where wellheads, pumps, and storage facilities reside and the surrounding area that was scraped and denuded of vegetation during the establishment of the pad. Scars containing tanks, compressors, the storage of oil and gas related equipment, and produced-water ponds were also collected on occasion. This report updates the digital database for the five counties of southwest Wyoming (Carbon, Lincoln, Sublette, Sweetwater, Uinta) within the Wyoming Landscape Conservation Initiative (WLCI) study area and for a limited portion of Fremont, Natrona, and Albany Counties using 2012 1-m NAIP imagery and 2012 oil and natural gas well permit information. This report adds pad scars created since 2009, and updates attributes of all pad scars using the 2012 well permit information. These attributes include the origination year of the pad scar, the number of active and inactive wells on or near each pad scar in 2012, and the overall status of the pad scar (active or inactive). The new 2012 database contains 17,404 pad scars of which 15,532 are attributed as oil and natural gas well pads. Digital data are stored as shapefiles projected to the Universal Transverse Mercator (zones 12 and 13) coordinate system. These data are available from the U.S. Geological Survey (USGS) at http://dx.doi.org/10.3133/ds934.

  17. Permian Basin

    SciTech Connect

    Donaldson, D.A.

    1981-12-01

    A description of the geology of the Permian Basin of the West Texas And Southeastern New Mexico was presented. Also, a brief history of the petroleum and natural gas drilling in the region was given. It was concluded that the New Mexico portion of the Permian Basin has the greatest potential for future fuel production. During 1980, there were 646 oil well completions, and 168 dry holes were recorded in southeast New Mexico. The average total depths of new wells completed was 4,901 feet for oil wells, 8,987 feet for gas wells, and 6,250 feet for dry holes.

  18. Oil and Gas Development in Southwestern Wyoming - Energy Data and Services for the Wyoming Landscape Conservation Initiative (WLCI)

    USGS Publications Warehouse

    Biewick, Laura R.H.

    2009-01-01

    The purpose of this report is to explore current oil and gas energy development in the area encompassing the Wyoming Landscape Conservation Initiative. The Wyoming Landscape Conservation Initiative is a long-term science-based effort to ensure southwestern Wyoming's wildlife and habitat remain viable in areas facing development pressure. Wyoming encompasses some of the highest quality wildlife habitats in the Intermountain West. At the same time, this region is an important source of natural gas. Using Geographic Information System technology, energy data pertinent to the conservation decision-making process have been assembled to show historical oil and gas exploration and production in southwestern Wyoming. In addition to historical data, estimates of undiscovered oil and gas are included from the 2002 U.S. Geological Survey National Assessment of Oil and Gas in the Southwestern Wyoming Province. This report is meant to facilitate the integration of existing data with new knowledge and technologies to analyze energy resources development and to assist in habitat conservation planning. The well and assessment data can be accessed and shared among many different clients including, but not limited to, an online web-service for scientists and resource managers engaged in the Initiative.

  19. 2480 Ma mafic magmatism in the northern Black Hills, South Dakota: A new link connecting the Wyoming and Superior cratons

    USGS Publications Warehouse

    Dahl, P.S.; Hamilton, M.A.; Wooden, J.L.; Foland, K.A.; Frei, R.; McCombs, J.A.; Holm, D.K.

    2006-01-01

    The Laramide Black Hills uplift of southwest South Dakota exposes a Precambrian crystalline core of ???2560-2600 Ma basement granitoids nonconformably overlain by two Paleoproterozoic intracratonic rift successions. In the northern Black Hills, a 1 km thick, layered sill (the Blue Draw metagabbro) that intrudes the older rift succession provides a key constraint on the timing of mafic magmatism and of older rift-basin sedimentation. Ion microprobe spot analyses of megacrysts of magmatic titanite from a horizon of dioritic pegmatite in the uppermost sill portion yield a 207Pb/206Pb upper-intercept age of 2480 ?? 6 Ma (all age errors ??2??), comparable to two-point 207Pb/206Pb errorchron ages obtained by Pb stepwise leaching of the same titanites. Nearly concordant domains in coexisting magmatic zircon yield apparent spot ages ranging from 2458 ?? 16 to 2284 ?? 20 Ma (i.e., differentially reset along U-Pb concordia), and hornblende from an associated metadiorite yields a partially reset date with oldest apparent-age increments ranging between 2076 ?? 16 and 2010 ?? 8 Ma. We interpret these data as indicating that an episode of gabbroic magmatism occurred at 2480 Ma, in response to earlier rifting of the eastern edge of the Wyoming craton. Layered mafic intrusions of similar thickness and identical age occur along a rifted belt in the southern Superior craton (Sudbury region, Ontario). Moreover, these mafic intrusions are spatially aligned using previous supercontinent restorations of the Wyoming and Superior cratons (Kenorland-Superia configurations). This new "piercing point" augments one previously inferred by spatial-temporal correlation of the Paleoproterozoic Huronian (southern Ontario) and Snowy Pass (southeastern Wyoming) supergroups. We propose that layered mafic intrusions extending from Nemo, South Dakota, to Sudbury, Ontario, delineate an axial rift zone along which Wyoming began to separate from Superior during initial fragmentation of the Neoarchean supercontinent at ???2480 Ma. ?? 2006 NRC Canada.

  20. Macro- and micromorphology of superimposed paleo-spodosols, Fort Union Formation (Paleocene), central Wyoming

    SciTech Connect

    Southwell, E.H.; Steidtmann, J.R.; Munn, L.C.

    1985-01-01

    The interfluvial overbank deposits of the Paleocene Fort Union Fm. near Bison Basin, Wyoming, contain a series of superimposed paleo-spodosols. Soil horizon differentiation took place during periods of quiescence between flood events. Paleosols developed under a broad-leafed, deciduous forest cover and their mineralogy supports evidence of a humid, warm temperature climate with marked seasonality. Former land surfaces are defined by endocarp compressions, tree trunks in growth position, zones of vertebrate fossil accumulation and traces of invertebrate burrowing activity. Soil horizons are distinctively color banded due to translocation of silica, Fe, Mn, Al and clay from the grey elluvial layers to the dusky red illuvial layers. This early, pedogenic cementation has preserved a variety of durinode concretions, rhizoliths, micro- and macro-endostratal faunal traces, as well as clues to the original mineralogy of the deposit. Local variations in thickness and mineralogy of the soil profiles offer unique information on paleotopography, drainage and ground water levels with indications of rapid, punctuated deposition and basin subsidence.

  1. Reserves in western basins: Part 1, Greater Green River basin

    SciTech Connect

    Not Available

    1993-10-01

    This study characterizes an extremely large gas resource located in low permeability, overpressured sandstone reservoirs located below 8,000 feet drill depth in the Greater Green River basin, Wyoming. Total in place resource is estimated at 1,968 Tcf. Via application of geologic, engineering and economic criteria, the portion of this resource potentially recoverable as reserves is estimated. Those volumes estimated include probable, possible and potential categories and total 33 Tcf as a mean estimate of recoverable gas for all plays considered in the basin. Five plays (formations) were included in this study and each was separately analyzed in terms of its overpressured, tight gas resource, established productive characteristics and future reserves potential based on a constant $2/Mcf wellhead gas price scenario. A scheme has been developed to break the overall resource estimate down into components that can be considered as differing technical and economic challenges that must be overcome in order to exploit such resources: in other words, to convert those resources to economically recoverable reserves. Total recoverable reserves estimates of 33 Tcf do not include the existing production from overpressured tight reservoirs in the basin. These have estimated ultimate recovery of approximately 1.6 Tcf, or a per well average recovery of 2.3 Bcf. Due to the fact that considerable pay thicknesses can be present, wells can be economic despite limited drainage areas. It is typical for significant bypassed gas to be present at inter-well locations because drainage areas are commonly less than regulatory well spacing requirements.

  2. Hydrology of area 53, Northern Great Plains and Rocky Mountain coal provinces, Colorado, Wyoming, and Utah

    USGS Publications Warehouse

    Driver, N.E.; Norris, J.M.; Kuhn, Gerhard; and others

    1984-01-01

    Hydrologic information and analysis are needed to aid in decisions to lease Federally owned coal and for the preparation of the necessary Environmental Assessments and Impact Study Reports. This need has become even more critical with the enactment of the Surface Mining Control and Reclamation Act of 1977 (Public Law 95-87). This report, one in a series of nationwide coal province reports, presents information thematically by describing single hydrologic topics through the use of brief texts and accompanying maps, graphs, or other illustrations. The report broadly characterizes the hydrology of Area 53 in northwestern Colorado, south-central Wyoming, and northeastern Utah. The report area, located primarily in the Wyoming Basin and Colorado Plateau physiographic provinces, consists of 14,650 square miles of diverse geology, topography, and climate. This diversity results in contrasting hydrologic characteristics. The two major rivers, the Yampa and the White Rivers, originate in humid granitic and basaltic mountains, then flow over sedimentary rocks underlying semiarid basins to their respective confluences with the Green River. Altitudes range from 4,800 to greater than 12,000 feet above sea level. Annual precipitation in the mountains, as much as 60 inches, is generally in the form of snow. Snowmelt produces most streamflow. Precipitation in the lower altitude sedimentary basins, ranging from 8 to 16 inches, is generally insufficient to sustain streamflow; therefore, most streams originating in the basins (where most of the streams in coal-mining areas originate) are ephemeral. Streamflow quality is best in the mountains where dissolved-solids concentrations generally are small. As streams flow across the sedimentary basins, mineral dissolution from the sedimentary rocks and irrigation water with high mineral content increase the dissolved-solids concentrations in a downstream direction. Due to the semiarid climate of the basins, soils are not adequately leached; consequently, flows in the ephemeral streams usually have larger concentrations of dissolved solids than those in perennial streams. Ground-water supplies are restricted by the low yields of wells due to small permeability. Most ground-water use is for domestic and stock-watering purposes; it is limited by the amount and type of dissolved material. The ground-water ionic composition is highly variable. Dissolved-solids concentrations for aquifers sampled in Area 53 range from a minimum of 46 milligrams per liter to a maximum of 109,000 milligrams per liter. Trace element concentrations generally are not a problem. An estimated 82 billion tons of coal exist above a depth of 6,000 feet in the Colorado parts of the area. The coal beds of greatest economic interest occur in the sedimentary deposits of the Upper Cretaceous Iles and Williams Fork Formations of the Mesaverde Group and the Upper Cretaceous Lance Formation and the Fort Union and Wasatch Formations of Tertiary age. The coal characteristically has a low sulfur content. Hydrologic problems related to surface mining are erosion, sedimentation, decline in water levels, disruption of aquifers, and degradation of water quality. Because the semiarid mine areas have very little runoff and the major streams have large buffer and dilution capacities, the effects of mining on surface water are minimal. However, effects on ground water may be much more severe and long lasting.

  3. The boron isotope systematics of the Yellowstone National Park (Wyoming) hydrothermal system: A reconnaissance

    SciTech Connect

    Palmer, M.R. ); Sturchio, N.C. )

    1990-10-01

    Boron concentrations and isotope compositions have been measured in fourteen hot spring waters, two drill hole waters, an unaltered rhyolite flow, and hydrothermally altered rhyolite from the geothermal system in Yellowstone National Park, Wyoming. The samples are representative of the major thermal areas within the park and span the range of fluid types. For the fluids, the B concentrations range from 0.043-2.69 mM/kg, and the {delta}{sup 11}B values range from {minus}9.3 to +4.4{per thousand}. There is no relationship between the dissolved B concentrations or isotope compositions with the concentration of any major element (other than Cl) or physical property. Each basin is characterized by a restricted range in B/Cl ratios and {delta}{sup 11}B values. Hot spring waters from the Norris Basin, Upper Geyser Basin, Calcite Springs, and Clearwater have {delta}{sup 11}B values close to that of unaltered rhyolite ({minus}5.2{per thousand}) and are interpreted to have derived their B from this source. Waters from Mammoth Hot Springs, Sheepeater, and Rainbow Springs have lower {delta}{sup 11}B values close to {minus}8{per thousand}. These lower values may reflect leaching of B from sedimentary rocks outside the Yellowstone caldera, but they are similar to the {delta}{sup 11}B value of hydrothermally altered rhyolite ({minus}9.7{per thousand}). Hence, the light boron isotope compositions recorded in these hot spring waters may reflect leaching of previously deposited hydrothermal minerals. Cooler springs along the Yellowstone River just outside the park boundary have lower B concentrations and higher {delta}{sup 11}B values that may reflect mixing with shallow meteoric water.

  4. Spatial mapping and attribution of Wyoming wind turbines

    USGS Publications Warehouse

    O'Donnell, Michael S.; Fancher, Tammy S.

    2010-01-01

    This Wyoming wind-turbine data set represents locations of wind turbines found within Wyoming as of August 1, 2009. Each wind turbine is assigned to a wind farm. For each turbine, this report contains information about the following: potential megawatt output, rotor diameter, hub height, rotor height, land ownership, county, wind farm power capacity, the number of units currently associated with its wind farm, the wind turbine manufacturer and model, the wind farm developer, the owner of the wind farm, the current purchaser of power from the wind farm, the year the wind farm went online, and the status of its operation. Some attributes are estimates based on information that was obtained through the American Wind Energy Association and miscellaneous online reports. The locations are derived from August 2009 true-color aerial photographs made by the National Agriculture Imagery Program; the photographs have a positional accuracy of approximately ?5 meters. The location of wind turbines under construction during the development of this data set will likely be less accurate than the location of turbines already completed. The original purpose for developing the data presented here was to evaluate the effect of wind energy development on seasonal habitat used by greater sage-grouse. Additionally, these data will provide a planning tool for the Wyoming Landscape Conservation Initiative Science Team and for other wildlife- and habitat-related projects underway at the U.S. Geological Survey's Fort Collins Science Center. Specifically, these data will be used to quantify disturbance of the landscape related to wind energy as well as quantifying indirect disturbances to flora and fauna. This data set was developed for the 2010 project 'Seasonal predictive habitat models for greater sage-grouse in Wyoming.' This project's spatially explicit seasonal distribution models of sage-grouse in Wyoming will provide resource managers with tools for conservation planning. These specific data are being used for assessing the effect of disturbance resulting from wind energy development within Wyoming on sage-grouse populations.

  5. An evaluation of the Wyoming gauge system for snowfall measurement

    USGS Publications Warehouse

    Yang, D.; Kane, D.L.; Hinzman, L.D.; Goodison, B.E.; Metcalfe, J.R.; Louie, P.Y.T.; Leavesley, G.H.; Emerson, D.G.; Hanson, C.L.

    2000-01-01

    The Wyoming snow fence (shield) has been widely used with precipitation gauges for snowfall measurement at more than 25 locations in Alaska since the late 1970s. This gauge's measurements have been taken as the reference for correcting wind-induced gauge undercatch of snowfall in Alaska. Recently, this fence (shield) was tested in the World Meteorological Organization Solid Precipitation Measurement Intercomparison Project at four locations in the United States of America and Canada for six winter seasons. At the Intercomparison sites an octagonal vertical Double Fence with a Russian Tretyakov gauge or a Universal Belfort recording gauge was installed and used as the Intercomparison Reference (DFIR) to provide true snowfall amounts for this intercomparison experiment. The intercomparison data collected were compiled at the four sites that represent a variety of climate, terrain, and exposure. On the basis of these data sets the performance of the Wyoming gauge system for snowfall observations was carefully evaluated against the DFIR and snow cover data. The results show that (1) the mean snow catch efficiency of the Wyoming gauge compared with the DFIR is about 80-90%, (2) there exists a close linear relation between the measurements of the two gauge systems and this relation may serve as a transfer function to adjust the Wyoming gauge records to obtain an estimate of the true snowfall amount, (3) catch efficiency of the Wyoming gauge does not change with wind speed and temperature, and (4) Wyoming gauge measurements are generally compatible to the snowpack water equivalent at selected locations in northern Alaska. These results are important to our effort of determining true snowfall amounts in the high latitudes, and they are also useful for regional hydrologic and climatic analyses.

  6. Geohydrology of bedrock aquifers in the Northern Great Plains in parts of Montana, North Dakota, South Dakota, and Wyoming

    SciTech Connect

    Downey, J.S.

    1986-01-01

    Development of energy-related resources in the northern Great Plains of the US will require large quantities of ground water. Because Montana, North Dakota, and Wyoming are semiarid, the primary local sources of nonappropriated water are the deep bedrock aquifers of Paleozoic and Mesozoic age. The US Geological Survey undertook a 4-year interdisciplinary study that has culminated in a digital-simulation model of the regional flow system and incorporates the results of geochemical, hydrologic, and geologic studies. Rocks of Paleozoic and Mesozoic age form at least five artesian aquifers that are recharged in the mountainous areas of Montana, South Dakota, and Wyoming. The aquifers extend for more than 600 mi to discharge areas in the northeastern part of North Dakota and in Manitoba. In general, the direction of flow in each aquifer is east to northeast, but flow is deflected to the north and south around the Williston basin. Flow through the Williston basin is restricted because of brine (200,000-350,000 mg/l), halite beds, geologic structures, and decreased permeability of rocks in the deeper parts of the basin. Fracture systems and lineaments transverse the entire area and act either as conduits or as barriers to ground-water flow, depending on their hydrogeologic and geochemical history. Vertical leakage from the aquifers is restricted by shale with low permeability, by halite beds, and by stratigraphic traps or low-permeability zones associated with petroleum accumulations. However, interaquifer leakage appears to occur through and along some of the major lineaments and fractures. Interaquifer leakage may be a major consideration in determining the quality of water produced from wells.

  7. Paleontological overview of oil shale and tar sands areas in Colorado, Utah, and Wyoming.

    SciTech Connect

    Murphey, P. C.; Daitch, D.; Environmental Science Division

    2009-02-11

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the ''Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005,'' Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. In addition, Congress declared that both research- and commercial-scale development of oil shale and tar sands should (1) be conducted in an environmentally sound manner using management practices that will minimize potential impacts, (2) occur with an emphasis on sustainability, and (3) benefit the United States while taking into account concerns of the affected states and communities. To support this declaration of policy, Congress directed the Secretary of the Interior to undertake a series of steps, several of which are directly related to the development of a commercial leasing program for oil shale and tar sands. One of these steps was the completion of a programmatic environmental impact statement (PEIS) to analyze the impacts of a commercial leasing program for oil shale and tar sands resources on public lands, with an emphasis on the most geologically prospective lands in Colorado, Utah, and Wyoming. For oil shale, the scope of the PEIS analysis includes public lands within the Green River, Washakie, Uinta, and Piceance Creek Basins. For tar sands, the scope includes Special Tar Sand Areas (STSAs) located in Utah. This paleontological resources overview report was prepared in support of the Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and PEIS, and it is intended to be used by Bureau of Land Management (BLM) regional paleontologists and field office staff to support future projectspecific analyses. Additional information about the PEIS can be found at http://ostseis.anl.gov.

  8. 78 FR 55694 - Draft Research Report: Investigation of Ground Water Contamination Near Pavillion, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-11

    ...EPA-HQ-ORD-2011-0895] Draft Research Report: Investigation of Ground Water Contamination Near Pavillion, Wyoming AGENCY: Environmental...draft research report titled, ``Investigation of Ground Water Contamination near Pavillion, Wyoming.'' The...

  9. Sodium-Copper Exchange on Wyoming Montmorillonite in Chloride, Perchlorate, Nitrate, and Sulfate Solutions

    E-print Network

    Sparks, Donald L.

    Sodium-Copper Exchange on Wyoming Montmorillonite in Chloride, Perchlorate, Nitrate, and Sulfate. The copper exchange capacity (CuEC) and Na-Cu exchange reactions on Wyoming montmo- rillonite were studied

  10. 77 FR 33235 - Public Land Order No. 7791; Extension of Public Land Order No. 6928; Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-05

    ..., 43 U.S.C. 1714, it is ordered as follows: Public Land Order No. 6928 (57 FR 22659, (1992)), which... Schurman, Bureau Land Management, Wyoming State Office, 5353 Yellowstone Road, Cheyenne, Wyoming 82009,...

  11. 77 FR 32665 - Notice of Invitation To Participate; Coal Exploration License Application WYW180763, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ...and BLM, Wyoming State Office, Branch of Solid Minerals, Attn: Mavis Love, P.O. Box 1828, Cheyenne, Wyoming 82003. FOR FURTHER INFORMATION CONTACT: Mavis Love, Land Law Examiner, at 307- 775-6258. Persons who use a...

  12. Wyoming Community College System Fall 2006 Enrollment Report

    ERIC Educational Resources Information Center

    Wyoming Community College Commission, 2007

    2007-01-01

    This report includes Fall 2006 semester enrollment information for Wyoming's seven comprehensive community colleges. Selected data includes student counts by credit hours, county, full-time students (FTE), program or study, ethnicity and a 10-year history. (Contains 12 tables.) [For the Fall 2005 edition of this report, see ED502745.

  13. Wyoming Community College System Summer 2005 Enrollment Report

    ERIC Educational Resources Information Center

    Wyoming Community College Commission, 2006

    2006-01-01

    This report includes Summer 2005 semester enrollment information for Wyoming's seven comprehensive community colleges. Selected data includes student counts by credit hours, county, full-time students (FTE), program or study, ethnicity and a ten-year history. (Contains 11 tables.) [For Spring 2005 enrollment report, see ED502747.

  14. Wyoming Community College System Summer 2007 Enrollment Report

    ERIC Educational Resources Information Center

    Wyoming Community College Commission, 2008

    2008-01-01

    This report includes Summer 2007 semester enrollment information for Wyoming's seven comprehensive community colleges. Selected data includes student counts by credit hours, county, full-time students (FTE), program or study, ethnicity and a ten-year history. (Contains 12 tables.) [For the Spring 2007 enrollment report, see ED502750.

  15. Wyoming Community College System Spring 2007 Enrollment Report

    ERIC Educational Resources Information Center

    Wyoming Community College Commission, 2007

    2007-01-01

    This report includes Spring 2007 semester enrollment information for Wyoming's seven comprehensive community colleges. Selected data includes student counts by credit hours, county, full-time students (FTE), program or study, ethnicity and a ten-year history. (Contains 12 tables.) [For the Fall 2006 enrollment report, see ED502749.

  16. Wyoming Community College System Fall 2005 Enrollment Report

    ERIC Educational Resources Information Center

    Wyoming Community College Commission, 2006

    2006-01-01

    This report includes Fall 2005 semester enrollment information for Wyoming's seven comprehensive community colleges. Selected data includes student counts by credit hours, county, full-time students (FTE), program or study, ethnicity and a ten-year history. (Contains 12 tables.) [For Summer 2005 enrollment report, see ED502746.

  17. Wyoming Community College System Spring 2005 Enrollment Report

    ERIC Educational Resources Information Center

    Wyoming Community College Commission, 2005

    2005-01-01

    This report includes Spring semester enrollment information for Wyoming's seven comprehensive community colleges. Selected data includes student counts by credit hours, county, full-time students (FTE), program or study, ethnicity and a 10-year history. (Contains 12 tables.) [For the Spring 2004 edition of this report, see ED483292.

  18. VEGETATION CHARACTERISTICS ACROSS PART OF THE WYOMING BIG SAGEBRUSH ALLIANCE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis (Beetle & A. Young) S.L. Welsh) alliance is the most extensive of the big sagebrush complex in the Intermountain West. This alliance provides critical habitat for many sagebrush obligate and facultative wildlife species and serves as...

  19. RELATIONSHIPS BETWEEN ENVIRONMENTAL AND VEGETATION CHARACTERISTICS: WYOMING BIG SAGEBRUSH ALLIANCE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Wyoming big sagebrush (Artemisia tridentata spp. wyomingenis (Beetle & A. Young) S.L. Welsh) alliance is the most extensive of the big sagebrush complex in the Intermountain West and is characterized by a wide range of environments and vegetation heterogeneity. However, the influence of environ...

  20. Contribution to CCN Workshop report from University of Wyoming group

    NASA Technical Reports Server (NTRS)

    Rogers, D. C.; Politovich, M. K.

    1981-01-01

    The group's CCN counter is described. It is a static, horizontal, parallel plate thermal gradient diffusion chamber. Examples of the application of the CCN are presented and include the CCN spectra measured during the winter of 1978-79 near Elk Mountain, Wyoming. Comparisons of droplet concentrations derived from upwind CCN spectra are covered.

  1. Wyoming Tombstone Symbolism: A Reflection of Western Culture.

    ERIC Educational Resources Information Center

    Cochenour, John; Rezabek, Landra L.

    Eleven cemeteries in Wyoming are examined for visuals pertaining to life in the West. The purpose is to demonstrate the importance of Western culture tradition evidenced through tombstone symbolism--representations of the activities and environments of the living through the memory provided by the deceased. The visual symbols found on the…

  2. Woody fuels reduction in Wyoming big sagebrush communities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle & Young) ecosystems historically have been subject to disturbances that reduce or remove shrubs primarily by fire, although insect outbreaks and disease have also been important. Depending on site productivity, fire return in...

  3. Wyoming Landscape Conservation Initiative data management and integration

    USGS Publications Warehouse

    Latysh, Natalie; Bristol, R. Sky

    2011-01-01

    Six Federal agencies, two State agencies, and two local entities formally support the Wyoming Landscape Conservation Initiative (WLCI) and work together on a landscape scale to manage fragile habitats and wildlife resources amidst growing energy development in southwest Wyoming. The U.S. Geological Survey (USGS) was tasked with implementing targeted research and providing scientific information about southwest Wyoming to inform the development of WLCI habitat enhancement and restoration projects conducted by land management agencies. Many WLCI researchers and decisionmakers representing the Bureau of Land Management, U.S. Fish and Wildlife Service, the State of Wyoming, and others have overwhelmingly expressed the need for a stable, robust infrastructure to promote sharing of data resources produced by multiple entities, including metadata adequately describing the datasets. Descriptive metadata facilitates use of the datasets by users unfamiliar with the data. Agency representatives advocate development of common data handling and distribution practices among WLCI partners to enhance availability of comprehensive and diverse data resources for use in scientific analyses and resource management. The USGS Core Science Informatics (CSI) team is developing and promoting data integration tools and techniques across USGS and partner entity endeavors, including a data management infrastructure to aid WLCI researchers and decisionmakers.

  4. Wyoming big sagebrush associations of eastern Oregon; vegetation attributes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report provides a synopsis of several vegetative characteristics for the Wyoming big sagebrush complex in eastern Oregon covering the High Desert , Snake River, and Owyhee Ecological Provinces in Harney, Lake, and Malheur Counties. The complex has been grouped into six associations defined by t...

  5. Bioprospecting for podophyllotoxin in the Big Horn Mountains, Wyoming

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to evaluate variations in podophyllotoxin concentrations in Juniperus species found in the Big Horn Mountains in Wyoming. It was found that Juniperus species in the Big Horn Mountains included three species; J. communis L. (common juniper), J. horizontalis Moench. (c...

  6. Sage Grouse Conservation in Wyoming: A Case Study in Cooperation

    E-print Network

    Wyoming, University of

    Sage Grouse Conservation in Wyoming: A Case Study in Cooperation Bob Budd, Chairman Governor of Endangered Species Act · Broad distribution of Sage-grouse #12;History of the Issue · Petitioning under: "Not Warranted" · 2007: Sage Grouse Summit led to establishment of SGIT · 2007: December decision

  7. 76 FR 64099 - Notice of Competitive Coal Lease Sale, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-17

    ... delivered. The BLM Wyoming State Office Cashier will issue a receipt for each hand-delivered bid. Bids... payment of an annual rental of $3 per acre, or fraction thereof, and a royalty payment to the United... From the Federal Register Online via the Government Printing Office DEPARTMENT OF THE...

  8. 76 FR 64099 - Notice of Competitive Coal Lease Sale, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-17

    ...LLWY922000-L13200000-EL0000; WYW174596] Notice of Competitive Coal Lease Sale, Wyoming AGENCY: Bureau of...Interior. ACTION: Notice of competitive coal lease sale...SUMMARY: Notice is hereby given that certain coal resources in the South Hilight Field...

  9. 76 FR 35465 - Notice of Competitive Coal Lease Sale, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-17

    ...LLWY922000-L51100000-GA0000-LVEMK09CK36; WYW172657] Notice of Competitive Coal Lease Sale, Wyoming AGENCY: Bureau of...Interior. ACTION: Notice of competitive coal lease sale...SUMMARY: Notice is hereby given that certain coal resources in the Caballo West Coal...

  10. 77 FR 31385 - Notice of Competitive Coal Lease Sale, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-25

    ...LLWY922000-L57000000.BX0000; WYW173408] Notice of Competitive Coal Lease Sale, Wyoming AGENCY: Bureau of Land Management...SUMMARY: Notice is hereby given that certain coal resources in the North Porcupine Coal Tract described below in Campbell County,...

  11. 76 FR 28063 - Notice of Competitive Coal Lease Sale, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-13

    ...LLWY922000-L13200000-EL0000; WYW161248] Notice of Competitive Coal Lease Sale, Wyoming AGENCY: Bureau of Land Management...SUMMARY: Notice is hereby given that certain coal resources in the Belle Ayr North Coal Tract described below in Campbell County,...

  12. 77 FR 3790 - Notice of Competitive Coal Lease Sale, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-25

    ...LLWY922000-L13200000-EL0000; WYW176095] Notice of Competitive Coal Lease Sale, Wyoming AGENCY: Bureau of Land Management...SUMMARY: Notice is hereby given that certain coal resources in the South Porcupine Coal Tract described below in Campbell County,...

  13. 77 FR 22607 - Notice of Competitive Coal Lease Sale, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-16

    ...LLWY922000-L57000000-BX0000; WYW176095] Notice of Competitive Coal Lease Sale, Wyoming AGENCY: Bureau of Land Management...SUMMARY: Notice is hereby given that certain coal resources in the South Porcupine Coal Tract described below in Campbell County,...

  14. 76 FR 11258 - Notice of Competitive Coal Lease Sale, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-01

    ...LLWY922000-L13200000-EL0000; WYW163340] Notice of Competitive Coal Lease Sale, Wyoming AGENCY: Bureau of...Interior. ACTION: Notice of Competitive Coal Lease Sale...SUMMARY: Notice is hereby given that certain coal resources in the West Antelope II...

  15. 76 FR 18240 - Notice of Competitive Coal Lease Sale, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-01

    ...LLWY922000-L13200000-EL0000; WYW177903] Notice of Competitive Coal Lease Sale, Wyoming AGENCY: Bureau of...Interior. ACTION: Notice of competitive coal lease sale...SUMMARY: Notice is hereby given that certain coal resources in the West Antelope II...

  16. The Casper Star-Tribune Casper, Wyoming -[date

    E-print Network

    Wilf, Peter

    impact did not kill off the dinosaurs or cause other mass extinctions, as some scientists believe, a Penn | Wyoming | National Report: Climate change didn't kill dinosaurs ddlfonpnasrlsjp By DAN LEWERENZ Associated of light and, in turn, starving dinosaurs and other animals of the plants they needed to survive

  17. Ethnic Medicine on the Frontier: A Case Study in Wyoming.

    ERIC Educational Resources Information Center

    Meredith, John D.

    1984-01-01

    Utilizing both quantitative and qualitative approaches, the study assessed the strengths of selected components of the Mexican American ethnic medical system within the local community of Casper, Wyoming. Findings indicated that few local Hispanics adhered to much of the system, except in the realm of some easily available home remedies.…

  18. RECOVERY AND STRUCTURAL CHARACTERISTICS OF MECHANICALLY TREATED WYOMING BIG SAGEBRUSH

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis (Beetle & A. Young) S.L. Welsh) steppe plant communities are common across the Intermountain West. These plant communities provide critical wildlife habitat and serve as a forage base for livestock production. Sagebrush is frequently me...

  19. The Earthworms (Oligochaeta: Lumbricidae)of Wyoming, USA, Revisited.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This survey of the earthworms from 22 of the 23 counties of Wyoming recorded 13 species of terrestrial Oligochaeta, all members of the family Lumbricidae. One of these species, Aporrectodea limicola, is reported for the first time from the state. Current nomenclature is applied to historical records...

  20. 77 FR 22607 - Notice of Competitive Coal Lease Sale, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-16

    ... From the Federal Register Online via the Government Printing Office DEPARTMENT OF THE INTERIOR Bureau of Land Management Notice of Competitive Coal Lease Sale, Wyoming AGENCY: Bureau of Land... amended. DATES: The lease sale will be held at 10 a.m. on Thursday, May 17, 2012. Sealed bids must...

  1. A Bibliography of Materials: Adult Basic Education: Wyoming.

    ERIC Educational Resources Information Center

    Wyoming State Dept. of Education, Cheyenne. Adult Basic Education Div.

    The document is an annotated bibliography of curriculum materials, machines, and equipment produced prior to 1966 and available to assist adult basic education students, developed for the State of Wyoming Department of Education. The materials are arranged alphabetically by author under 38 subject headings: adult education and teaching methods;…

  2. Precision fertilization of Wyoming sugar beets: A case study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field Studies were conducted on a farm in northwest Wyoming to compare variable-rate fertilization (VRF) with uniform-rate fertilization (URF) of sugar beets. Results from this study failed to show an economic advantage from VRF compared to URF, implying producers should be very cautious to adopt VR...

  3. A HANDBOOK FOR TEACHERS OF MIGRANT CHILDREN IN WYOMING, 1967.

    ERIC Educational Resources Information Center

    BENITENDI, WILMA LEE; AND OTHERS

    A SURVEY MADE DURING THE SUMMER OF 1967 SHOWED THAT ALMOST ONE THOUSAND SCHOOL-AGE MIGRANT CHILDREN WERE IN THE STATE OF WYOMING FOR 6 TO 8 WEEKS DURING THE SUGAR BEET SEASON. THIS HANDBOOK, PREPARED FOR THE USE OF THOSE TEACHERS AND ADMINISTRATORS WHO WORK IN SUMMER SCHOOL PROGRAMS, IS DIVIDED INTO FIVE CHAPTERS. CHAPTERS 1 AND 2 DEAL WITH THE…

  4. LEVEL IV ECOREGION DELINEATION FOR THE STATE OF WYOMING

    EPA Science Inventory

    Level III ecoregions were refined and subdivided into level IV for the state of Wyoming in a manner consistent with ecoregion revision and subdivision that has been completed or is on-going in 37 of the conterminous United States. The project was collaborative, involving the scie...

  5. 76 FR 11258 - Notice of Competitive Coal Lease Sale, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-01

    ... Bureau of Land Management Notice of Competitive Coal Lease Sale, Wyoming AGENCY: Bureau of Land Management, Interior. ACTION: Notice of Competitive Coal Lease Sale. SUMMARY: Notice is hereby given that certain coal resources in the West Antelope II North Coal Tract described below in Campbell...

  6. 76 FR 18240 - Notice of Competitive Coal Lease Sale, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-01

    ... Bureau of Land Management Notice of Competitive Coal Lease Sale, Wyoming AGENCY: Bureau of Land Management, Interior. ACTION: Notice of competitive coal lease sale. SUMMARY: Notice is hereby given that certain coal resources in the West Antelope II South Coal Tract described below in Converse...

  7. INVESTIGATION OF GROUND WATER CONTAMINATION NEAR PAVILLION, WYOMING

    EPA Science Inventory

    In response to complaints by domestic well owners regarding objectionable taste and odor problems in well water, the U.S. Environmental Protection Agency initiated a ground water investigation near the town of Pavillion, Wyoming under authority of the Comprehensive Environmental ...

  8. Ethology of Omniablautus nigronotum (Wilcox) (Diptera: Asilidae) in Wyoming

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In southwest Wyoming, Omniablautus nigronotum (Wilcox), hunted primarily from the surface of the sandy substrate in a greasewood community. Prey, captured in flight, represented four insect orders with Diptera and Hymenoptera predominating. Courtship consisted of the male approaching the female from...

  9. 78 FR 56650 - Medicine Bow-Routt National Forests and Thunder Basin National Grassland; Wyoming; Thunder Basin...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ... for use within the buffer (including the expansion of poisons) to control and prevent unwanted prairie...; and 4. Extending the poisoning season to reflect timeframes identified on the poison labels....

  10. Survival of Male Merriam's Turkeys in the Wyoming Black Hills Samuel J. Cahoy

    E-print Network

    Survival of Male Merriam's Turkeys in the Wyoming Black Hills BY Samuel J. Cahoy A thesis submitted South Dakota State University 2009 #12;11 Survival of Male Merriam's Turkeys in the Wyoming Black Hills possible without financial support from the following agencies: National Wild Turkey Federation, Wyoming

  11. The Spirit and Influence of the Wyoming Resolution: Looking Back to Look Forward

    ERIC Educational Resources Information Center

    McDonald, James C.; Schell, Eileen E.

    2011-01-01

    At the 1986 Wyoming Conference on English, a group of graduate students and part-time and tenure-line faculty formulated a statement known as the Wyoming Resolution, a rallying cry to improve composition teachers' pay, benefits, and working conditions. Adopted by the Conference on College Composition and Communication (CCCC) in 1987, the Wyoming

  12. 76 FR 77829 - Draft Research Report: Investigation of Ground Water Contamination Near Pavillion, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-14

    ... AGENCY Draft Research Report: Investigation of Ground Water Contamination Near Pavillion, Wyoming AGENCY... of Ground Water Contamination near Pavillion, Wyoming.'' The draft research report was prepared by... Contamination near Pavillion, Wyoming'' is available via the Internet on the EPA Region 8 home page under...

  13. 30 CFR 825.2 - Special bituminous coal mines in Wyoming.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Special bituminous coal mines in Wyoming. 825.2 Section 825.2 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... BITUMINOUS COAL MINES IN WYOMING § 825.2 Special bituminous coal mines in Wyoming. Special bituminous...

  14. 30 CFR 825.2 - Special bituminous coal mines in Wyoming.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Special bituminous coal mines in Wyoming. 825.2 Section 825.2 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... BITUMINOUS COAL MINES IN WYOMING § 825.2 Special bituminous coal mines in Wyoming. Special bituminous...

  15. 30 CFR 825.2 - Special bituminous coal mines in Wyoming.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Special bituminous coal mines in Wyoming. 825.2 Section 825.2 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... BITUMINOUS COAL MINES IN WYOMING § 825.2 Special bituminous coal mines in Wyoming. Special bituminous...

  16. 30 CFR 825.2 - Special bituminous coal mines in Wyoming.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Special bituminous coal mines in Wyoming. 825.2 Section 825.2 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... BITUMINOUS COAL MINES IN WYOMING § 825.2 Special bituminous coal mines in Wyoming. Special bituminous...

  17. 30 CFR 825.2 - Special bituminous coal mines in Wyoming.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Special bituminous coal mines in Wyoming. 825.2 Section 825.2 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... BITUMINOUS COAL MINES IN WYOMING § 825.2 Special bituminous coal mines in Wyoming. Special bituminous...

  18. Space Radar Image of Yellowstone Park, Wyoming

    NASA Technical Reports Server (NTRS)

    1994-01-01

    These two radar images show the majestic Yellowstone National Park, Wyoming, the oldest national park in the United States and home to the world's most spectacular geysers and hot springs. The region supports large populations of grizzly bears, elk and bison. In 1988, the park was burned by one of the most widespread fires to occur in the northern Rocky Mountains in the last 50 years. Surveys indicated that 793,880 acres of land burned. Of that, 41 percent was burned forest, with tree canopies totally consumed by the fire; 35 percent was a combination of unburned, scorched and blackened trees; 13 percent was surface burn under an unburned canopy; 6 percent was non-forest burn; and 5 percent was undifferentiated burn. Six years later, the burned areas are still clearly visible in these false-color radar images obtained by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar on board the space shuttle Endeavour. The image at the left was obtained using the L-band radar channel, horizontally received and vertically transmitted, on the shuttle's 39th orbit on October 2, 1994. The area shown is 45 kilometers by 71 kilometers (28 miles by 44 miles) in size and centered at 44.6 degrees north latitude, 110.7 degrees west longitude. North is toward the top of the image (to the right). Most trees in this area are lodge pole pines at different stages of fire succession. Yellowstone Lake appears as a large dark feature at the bottom of the scene. At right is a map of the forest crown, showing its biomass, or amount of vegetation, which includes foliage and branches. The map was created by inverting SIR-C data and using in situ estimates of crown biomass gathered by the Yellowstone National Biological Survey. The map is displayed on a color scale from blue (rivers and lakes with no biomass) to brown (non-forest areas with crown biomass of less than 4 tons per hectare) to light brown (areas of canopy burn with biomass of between 4 and 12 tons per hectare). Yellow indicates areas of canopy burn and mixed burn with a biomass of between 12 to 20 tons per hectare; light green is mixed burn and on-burn forest with a biomass of 20 to 35 tons per hectare; and green is non-burned forest with a biomass of greater than 35 tons per hectare. Forest recovery from the fire seems to depend on fire intensity and soil conditions. In areas of severe canopy burn and poor soil conditions, crown biomass was still low in 1994 (indicated by the brown areas at the center left), whereas in areas of mixed burn with nutrient-rich soils, seen west of Yellowstone Lake, crown biomass has increased significantly in six years (indicated by the yellow and light green areas). Imaging fire-affected regions with spaceborne radar illustrates SIR-C/X-SAR's keen abilities to monitor regrowth after a fire. Knowing the amount of carbon accumulated in the atmosphere by regenerating forest in the 20 to 50 years following a fire disturbance is also a significant factor in understanding the global carbon cycle. Measuring crown biomass is necessary to evaluate the effects of past and future fires in specific regions. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) are part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm), and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes that are caused by nature and those changes that are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italian

  19. Genetic sequences and unconformities in shallow marine to fluvial depositional systems, Mesaverde Group, north-central Wyoming

    SciTech Connect

    Klug, B.; Wurster, P. ); Vondra, C.F. )

    1991-03-01

    Continuous exposures of the Mesaverde Group (Campanian) in the Bighorn basin area, Wyoming, were utilized to establish regional facies architecture and to test sequence stratigraphic concepts along and perpendicular to the general trend of the shoreline of the Western Interior Cretaceous Seaway. Sections along the west flank of the basin begin with stacked seaward stepping, wave dominated beach sandstones that are fed by widely spaced river systems. These sandstones grade eastward into storm influenced intercalated shale/sandstone beds of the lower shoreface-shelf transitional zone. Bioturbated lower and upper shoreface deposits are often truncated by a laterally continuous erosion surface and overlain by coastal swamp and channel deposits, suggesting a regional regressive unconformity. The overlying fluvial units exhibit a distinct transition in architecture from single and multistoried, lens-shaped, avulsion-controlled, low sinuosity channel bodies to single-storied sheets of high sinuosity channels that consist exclusively of gently dipping, heterolithic lateral accretion units. The uppermost depositional sequence of the Mesaverde is the Teapot Sandstone, a conspicuous multistoried sheet sandstone that consists of laterally amalgamated, vertically stacked low to high sinuosity channels. Floodplain sediments are only represented by shale rip-up clasts in channel lags. Laterally persistent ferricrete horizons, containing plant impressions, are time significant surfaces within the Teapot and indicate a rhythmic pattern of sedimentation, nondeposition, and pedogenesis. The base of the Teapot unconformably overlies weathered lower shoreface sandstone along the east flank of the Bighorn basin and thus represents a regional sequence boundary.

  20. Geohydrology of bedrock aquifers in the Northern Great Plains in parts of Montana, North Dakota, South Dakota, and Wyoming

    USGS Publications Warehouse

    Downey, J.S.

    1986-01-01

    Rocks of Paleozoic and Mesozoic age underlie the entire northern Great Plains of the United States. These rocks form 5 artesian aquifer systems that are recharged in the mountainous areas of Montana, South Dakota, and Wyoming and extend more than 600 miles to discharge areas in the northeastern part of North Dakota and in the Canadian Province of Manitoba. Generally, the principal direction of flow in each aquifer is deflected to the north and south around the Williston basin. Flow through the Williston basin is restricted because of geologic structure, and decreased permeability of rocks in the deeper parts of the basin. Major fracture systems or lineaments traverse the geologic section and are either vertical or horizontal conduits, or barriers to, groundwater flow. Vertical leakage from the aquifers is restricted by shale of minimal permeability, halite beds, and stratigraphic traps or minimal-permeability zones associated with petroleum accumulations. Interaquifer leakage appears to occur through and along some of the major lineaments. During the Pleistocene Epoch, thick ice sheets completely covered the discharge areas of the bedrock aquifers. This effectively blocked flow northeastward from the system and, at some locations, it may have caused a reversal of flow. The existing flow, system therefore, may not have reached hydrologic equilibrium with the stress of the last glacial period. (USGS)

  1. SOIL SALINITY PATTERNS IN TAMARIX INVASIONS IN THE BIGHORN BASIN, WYOMING, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Saltcedar (Tamarix spp.) is an exotic, invasive shrub of riparian corridors in the western United States that can promote soil salinization via leaf exudates as Tamarix litter accumulates on the soil surface. Tamarix stands occur in association with big sagebrush (Artemisia tridentata), greasewood (...

  2. Depositional models for two Tertiary coal-bearing sequences in the Powder River Basin, Wyoming, USA

    USGS Publications Warehouse

    Warwick, P.D.; Stanton, R.W.

    1988-01-01

    Depositional controls on peat-forming environments which produce thick (>10 m) coal beds can be inferred from relationships between coal bed geometry, maceral composition and associated lithologies. The Wyodak-Anderson peat is interpreted to have formed in restricted parts of the floodplain that were separated by deposits of contemporaneous, anastomosed channels. The Felix coal bed is interpreted to have formed as a raised but widespread peat on an abandoned platform of meander-belt sands. These models may be useful as predictive tools for coal exploration and production. -from Authors

  3. Tight gas sand production from the Almond Formation, Washakie Basin, Wyoming

    SciTech Connect

    Iverson, W.P.; Surdam, R.C.

    1995-12-31

    Gas production from the Almond Formation in the Standard Draw trend can only be accounted for by draining numerous layers of tight gas sands via the permeable upper bar sand. Discovery of this field originally focused upon production from this bar sand. But continued development cannot be explained simply by considering depletion of a 30 foot sand. Gas volumetrics verify the need to include lower sands in reservoir analysis. Core obtained from the Almond bar sand confirm petrophysical constants used in the authors` models. Their results imply that economic levels of gas production should be possible wherever a similar horizontal conduit can be tied into gas saturated layers through massive hydraulic fracturing.

  4. 3-D reservoir characterization of the House Creek oil field, Powder River Basin, Wyoming

    USGS Publications Warehouse

    Higley, Debra K.; Pantea, Michael P.; Slatt, Roger M.

    1997-01-01

    This CD-ROM is intended to serve a broad audience. An important purpose is to explain geologic and geochemical factors that control petroleum production from the House Creek Field. This information may serve as an analog for other marine-ridge sandstone reservoirs. The 3-D slide and movie images are tied to explanations and 2-D geologic and geochemical images to visualize geologic structures in three dimensions, explain the geologic significance of porosity/permeability distribution across the sandstone bodies, and tie this to petroleum production characteristics in the oil field. Movies, text, images including scanning electron photomicrographs (SEM), thin-section photomicrographs, and data files can be copied from the CD-ROM for use in external mapping, statistical, and other applications.

  5. VEGETATION CHARACTERISTICS OF MOUNTAIN AND WYOMING BIG SAGEBRUSH PLANT COMMUNITIES IN THE NORTHERN GREAT BASIN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dominant plant species are often used as indicators of site potential in forest and rangelands. However, subspecies of dominant vegetation often indicate different site characteristics and therefore, may be more useful indicators of plant community potential and provide more precise information for...

  6. Upper Cretaceous Shannon Sandstone reservoirs, Powder River Basin, Wyoming: evidence for organic acid diagenesis?

    USGS Publications Warehouse

    Hansley, P.L.; Nuccio, V.F.

    1992-01-01

    Comparison of the petrology of shallow and deep oil reservoirs in the Upper Cretaceous Shannon Sandstone Beds of the Steele Member of the Cody Shale strongly suggests that organic acids have had a more significant impact on the diagenetic alteration of aluminosilicate grains and carbonate cements in the deep reservoirs than in the shallow reservoirs. Vitrinite reflectance and Rock-Eval measurements, as well as the time-temperature index and kinetic modeling, indicate that deep reservoirs have been subjected to maximum temperatures of approximately 110-120??C, whereas shallow reservoirs have reached only 75??C. -from Authors

  7. 78 FR 77644 - Black Hills National Forest, South Dakota; Thunder Basin National Grassland, Wyoming; Teckla...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ...DEPARTMENT OF AGRICULTURE Forest Service Black Hills National Forest, South Dakota...impact statement (EIS) on a proposal by Black Hills Power (BHP) to construct and operate...miles long. It would cross portions of the Black Hills National Forest and private...

  8. Ground-water resources of Riverton irrigation project area, Wyoming

    USGS Publications Warehouse

    Morris, Donald Arthur; Hackett, O.M.; Vanlier, K.E.; Moulder, E.A.; Durum, W.H.

    1959-01-01

    The Riverton irrigation project area is in the northwestern part of the Wind River basin in west-central Wyoming. Because the annual precipitation is only about 9 inches, agriculture, which is the principal occupation in the area, is dependent upon irrigation. Irrigation by surface-water diversion was begum is 1906; water is now supplied to 77,716 acres and irrigation has been proposed for an additional 31,344 acres. This study of the geology and ground-water resources of the Riverton irrigation project, of adjacent irrigated land, and of nearby land proposed for irrigation was begun during the summer of 1948 and was completed in 1951. The purpose of the investigation was to evaluate the ground-water resources of the area and to study the factors that should be considered in the solution of drainage and erosional problems within the area. The Riverton irrigation project area is characterized by flat to gently sloping stream terraces, which are flanked by a combination of badlands, pediment slopes, and broad valleys. These features were formed by long-continued erosion in an arid climate of the essentially horizontal, poorly consolidated beds of the Wind River formation. The principal streams of the area flow south-eastward. Wind River and Fivemile Creek are perennial streams and the others are intermittent. Ground-water discharge and irrigation return flow have created a major problem in erosion control along Fivemile Creek. Similar conditions might develop along Muddy and lower Cottonwood Creeks when land in their drainage basins is irrigated. The bedrock exposed in the area ranges in age from Late Cretaceous to early Tertiary (middle Eocene). The Wind River formation of early and middle Eocene age forms the uppermost bedrock formation in the greater part of the area. Unconsolidated deposits of Quaternary age, which consist of terrace gravel, colluvium, eolian sand and silt. and alluvium, mantle the Wind River formation in much of the area. In the irrigated parts of the project, water from domestic use is obtained chiefly from the sandstone beds of the Wind River formation although some is obtained from the alluvium underlying the bottom land and from the unconsolidated deposits underlying the lower terraces along the Wind River. Although adequate quantities if water for domestic use are available from the Wind River formation, there quantities are not considered to be large enough to warrant pumping of ground water for irrigation. Only a few wells are in the nonirrigated part of the area. When this new land is irrigated, a body of ground water will gradually form in the terrace deposits and the alluvial and colluvial-alluvial deposits. Eventually, the terrace deposits may yield adequate quantities of water for domestic and stock use, but only locally are the alluvial and colluvial-alluvial deposits likely to become suitable aquifers. In the Riverton irrigation project area, ground water occurs under water-table conditions near the surface and under artesian conditions in certain strata at both shallow and greater depths. Irrigation is the principal source of recharge to the shallow aquifers; the water level in wells that tap these aquifers fluctuates with irrigation. The depth to water in the shallow wells ranges from less than 1 foot to about 30 feet below the land surface, depending on the season of the year and on the length of time the land has been irrigated. The water level in the wells that tap the deep confined aquifers , which receive recharge indirectly from surface sources, fluctuates only slightly because the recharge and discharge are more constant. In most places the depth to water in wells penetrating the deep confined aquifers is mush greater than that in shallow wells. but in certain low areas water from the deep aquifers flows at the surface from wells. Ground water moves from the area of recharge in the direction of the hydraulic gradient and is discharges either by evapotranspiration; by inflow into streams, drains, or lakes; by pumping or flow of wells; or by flow of springs. Waterlogging and the a

  9. ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL AND GAS IN NEW MEXICO AND WYOMING

    SciTech Connect

    Peggy Robinson

    2003-07-25

    This report contains a summary of activities of Gnomon, Inc. and five sub-contractors that have taken place during the first six months (January 1, 2003--June 30, 2003) under the DOE-NETL cooperative agreement: ''Adaptive Management and Planning Models for Cultural Resources in Oil & Gas Fields in New Mexico and Wyoming'', DE-FC26-02NT15445. Gnomon, Inc. and all five (5) subcontractors have agreed on a process for the framework of this two-year project. They have also started gathering geomorphological information and entering cultural resource data into databases that will be used to create models later in the project. This data is being gathered in both the Power River Basin of Wyoming, and the Southeastern region of New Mexico. Several meetings were held with key players in this project to explain the purpose of the research, to obtain feedback and to gain support. All activities have been accomplished on time and within budget with no major setbacks.

  10. Seismic model study of Patrick Draw field, Wyoming: a stratigraphic trap in the Upper Cretaceous Almond Formation

    USGS Publications Warehouse

    Anderson, Robert C.; Ryder, Robert T.

    1978-01-01

    The Patrick Draw field, located on the eastern flank of the Rock Springs uplift in the Washakie basin of southwestern Wyoming, was discovered in 1959 without the use of geophysical methods. The field is a classic example of a stratigraphic trap, where Upper Cretaceous porous sandstone units pinch out on a structural nose. Two-dimensional seismic modeling was used to construct the seismic waveform expressions of the Patrick Draw field, and to better understand how to explore for other 'Patrick Draw' fields. Interpretation of the model shows that the detection of the reservoir sand is very difficult, owing to a combination of acoustic contrasts and bed thickness. Because the model included other major stratigraphic units in the subsurface, several stratigraphic traps are suggested as potential exploration targets.

  11. Revision of the Wind River faunas, early Eocene of central Wyoming. IX - The oldest known hystricomorphous rodent (Mammalia: Rodentia)

    NASA Technical Reports Server (NTRS)

    Dawson, Mary R.; Krishtalka, Leonard; Stucky, Richard K.

    1990-01-01

    The rostral portion of the skull of a new genus and species of rodent, Armintomys tullbergi, from the earliest middle Eocene of the Wind River Basin (Wyoming) provides the geologically oldest known record of the hystricomorphous zygomasseteric structure. Armintomys also preserves the oldest known occurrence of incisor enamel that is transitional from pauciserial to uniserial. Other dental characters include: anteriorly grooved incisor, small premolars, and relatively primitive sciuravidlike molars. Analysis of this unique combination of characters implies that Armintomys is the oldest known myomorph rodent and the only known representative of a new family. Armintomyidae, which is referred, with question, to the myomorph superfamily Dipodoidea. Armintomys is more primitive, especially in premolar retention and structure, than the Bridgerian zapodid Elymys from Nevada, but adds to evidence from the latter for an early origin and radiation of dipodoid rodents.

  12. Hydrogeology of sedimentary basins

    NASA Astrophysics Data System (ADS)

    Kreitler, Charles W.

    1989-03-01

    Hydrogeologic environments in sedimentary basins are as variable as are the different types of basins. Important hydrologic characteristics can be used to distinguish the different types of basin: (1) the topographic setting as determined by the geologic and structural history of the basin; (2) permeability distribution within the basin; and (3) potential energy distributions and flow mechanisms. These parameters control residence times of waters, rates and directions of saline groundwater flow and the origin and chemical composition of the saline waters. The Gulf Coast and Palo Duro Basins, Texas, exemplify two end member types of sedimentary basins. The Gulf Coast Basin is a relatively young, Tertiary-age basin which is presently compacting; fluid movement is from the overpressured, undercompacted sediments up the structural dip or up fault zones into the hydrostatic section, natural fluid pressures are either hydrostatic or overpressured. The Palo Duro is an older, Paleozoic-age basin that has been tectonically uplifted. Fluid flow is gravity driven from topographically high recharge areas to discharge in topographically low areas. Fluid pressures are subhydrostatic. Fluids discharge more easily than they are recharged. Not all flow is derived by a simple recharge discharge model. Brines may flow from other basins into the Palo Duro Basin and waters may discharge from the Palo Duro Basin into other basins. Areal differences in the chemical composition of the basin brines may be the result of different origins.

  13. Radium isotope geochemistry of thermal waters, Yellowstone National Park, Wyoming, USA

    SciTech Connect

    Sturchio, N.C.; Bohlke, J.K.; Markun, F.J. )

    1993-03-01

    Radium isotope activities ([sup 226]Ra, [sup 228]Ra, and [sup 224]Ra), chemical compositions, and sulfur isotope ratios in sulfate were determined for water samples from thermal areas in Yellowstone National Park, Wyoming. Activities of [sup 226]Ra in these waters range from <0.2 to 37.9 dpm/kg. Activity ratios of [sup 228]Ra/[sup 226]Ra range from 0.26 to 14.2, and those of [sup 224]Ra/[sup 228]Ra range from 0.73 to 3.1. Radium concentrations are inversely correlated with aquifer equilibration temperatures (estimated from dissolved silica concentrations), while [Ra/Ba][sub aq] and [sup 228]Ra/[sup 226]Ra activity ratios depend upon U/Ba and Th/U ratios in aquifer rocks. Major controls on Ra concentration in Yellowstone thermal waters are inferred to be (1) barite saturation (at Norris Geyser Basin, Mammoth Hot Springs, and other northern areas) and (2) zeolite-water ion exchange (at Upper Geyser Basin). The data are consistent with a model in which (1) radium and barium are supplied to water by bulk dissolution of aquifer rock, and (2) chemical equilibration of water with rock is rapid relative to the 1602 year half-life of [sup 226]Ra. The [sup 228]Ra/[sup 226]Ra activity ratios of the waters may in some cases reflect surface enrichments of [sup 232]Th and/or may indicate that [alpha]-recoil input of [sup 228]Ra is rapid relative to water-rock chemical equilibration. Activity ratios of [sup 224]Ra/[sup 228]Ra indicate a nearly ubiquitous [sup 224]Ra excess that generally increases with decreasing pH. Near-surface ([le]100 m) thermal water flow velocities at Mammoth Hot Springs are estimated from [sup 224]Ra/[sup 228]Ra variation to be [ge]1 m h[sup [minus]1]. 73 refs., 4 figs., 4 tabs.

  14. Sequence stratigraphic and tectonic controls on Shannon incised-valley distribution, Hartzog Draw, Wyoming

    SciTech Connect

    Sullivan, M.D.; Van Wagoner, J.C.; Jennette, D.C.

    1996-12-31

    The Upper Cretaceous Shannon Sandstone in the Powder River Basin, Wyoming is interpreted as stacked tidal bars infilling northwest-southeast trending incised valleys. The Shannon Sandstone can be subdivided into 3 sequences: Copenhagen Blue, Crimson Red, and Canary Yellow. The Copenhagen Blue sequence boundary is a regional unconformity at the base of the Shannon Sandstone marked by distal tidal-bar deposits resting on offshore mudstones of the Cody. The overlying Crimson Red sequence is the main reservoir interval at Hartzog Draw and is composed of proximal tidal-bar deposits. The highly erosional Canary Yellow sequence boundary forms the trap at Hartzog Draw by juxtaposing the reservoir sandstones of the Crimson Red sequence with the overlying offshore mudstones of the Canary Yellow sequence. The Shannon Sandstone is therefore an erosional remnant of originally more extensive tide-dominated deltas deposited within northwest-southeast trending incised valleys. The orientation and distribution of the Shannon incised valleys is the result of the interplay between tectonics and eustacy. During lowstand incised valley development the orientation of fluvial systems incising the shelf was strongly controlled by pre-existing northwest-southeast trending structural elements in the basin. During the subsequent sea-level rise the shoreline backstepped in a landward direction. The shoreline also gradually rotated from an east-west orientation during the lowstand to a north-south orientation during the highstand systems tract. Ultimately the highstand shorelines were located over 160 kms landward of the lowstand shorelines and oriented subparallel to the lowstand incised valleys.

  15. Sequence stratigraphic and tectonic controls on Shannon incised-valley distribution, Hartzog Draw, Wyoming

    SciTech Connect

    Sullivan, M.D.; Van Wagoner, J.C.; Jennette, D.C. )

    1996-01-01

    The Upper Cretaceous Shannon Sandstone in the Powder River Basin, Wyoming is interpreted as stacked tidal bars infilling northwest-southeast trending incised valleys. The Shannon Sandstone can be subdivided into 3 sequences: Copenhagen Blue, Crimson Red, and Canary Yellow. The Copenhagen Blue sequence boundary is a regional unconformity at the base of the Shannon Sandstone marked by distal tidal-bar deposits resting on offshore mudstones of the Cody. The overlying Crimson Red sequence is the main reservoir interval at Hartzog Draw and is composed of proximal tidal-bar deposits. The highly erosional Canary Yellow sequence boundary forms the trap at Hartzog Draw by juxtaposing the reservoir sandstones of the Crimson Red sequence with the overlying offshore mudstones of the Canary Yellow sequence. The Shannon Sandstone is therefore an erosional remnant of originally more extensive tide-dominated deltas deposited within northwest-southeast trending incised valleys. The orientation and distribution of the Shannon incised valleys is the result of the interplay between tectonics and eustacy. During lowstand incised valley development the orientation of fluvial systems incising the shelf was strongly controlled by pre-existing northwest-southeast trending structural elements in the basin. During the subsequent sea-level rise the shoreline backstepped in a landward direction. The shoreline also gradually rotated from an east-west orientation during the lowstand to a north-south orientation during the highstand systems tract. Ultimately the highstand shorelines were located over 160 kms landward of the lowstand shorelines and oriented subparallel to the lowstand incised valleys.

  16. Geology of the Carnegie museum dinosaur quarry site of Diplodocus carnegii, Sheep Creek, Wyoming

    USGS Publications Warehouse

    Brezinski, D.K.; Kollar, A.D.

    2008-01-01

    The holotype of Diplodocus carnegii Hatcher, 1901, consists of a partial skeleton (CM 84) that was recovered, along with a second partial skeleton of the same species (CM 94), from the upper 10 m of the Talking Rock facies of the Brushy Basin Member of the Morrison Formation exposed along Bone Quarry Draw, a tributary of Sheep Creek in Albany County, Wyoming. A composite measured section of the stratigraphic interval exposed adjacent to the quarry indicates that the Brushy Basin Member in this area is a stacked succession of lithofacies consisting of hackly, greenish gray, calcareous mudstone and greenish brown, dense, fine-grained limestone. The more erosion resistant limestone layers can be traced over many hundreds of meters. Thus, these strata do not appear to represent a highly localized deposit such as a stream channel, oxbow lake, or backwater pond. The Sheep Creek succession is interpreted as representing a clastic-dominated lake where high turbidity and sediment influx produced deposition of calcareous mudstone. During drier periods the lake's turbidity decreased and limestone and dolomite precipitation replaced mud deposition. Microkarsting at the top of some limestone/ dolomite layers suggests subaerial deposition may have prevailed during these dry episodes. The quarry of D. carnegii was excavated within the top strata of one of the numerous intervals of hackly, greenish gray, calcareous mudstone that represent an ephemeral freshwater lake. The quarry strata are directly overlain by 0.3 m of dolomite-capped limestone that was deposited shortly after interment of D. carnegii in the lake mudstones. The close vertical proximity of the overlying limestone to the skeleton's stratigraphic: level suggests that the animal's carcass may have been buried beneath the drying lake deposits during a period of decreased rainfall.

  17. Distribution of bromine in bedded halite in the Green River Formation, southwestern Wyoming

    USGS Publications Warehouse

    Higley, D.K.

    1983-01-01

    The Wilkins Peak Member of the Eocene Green River Formation of southwestern Wyoming contains a series of halite-trona beds deposited in ancestral Lake Gosiute. X-ray fluorescence analysis of 311) salt samples from 10 core holes revealed bromine contents ranging from 11 to 174 ppm. The average concentration, corrected to 100 percent sodium chloride, is approximately 80 ppm. The bromine content of most halite beds increases from the base upward. Variations or 'spikes' in the bromine profile and reversals of the upward increase in bromine are evidenced within several salt beds. Bromine of bed 10 salt zones exhibits a high degree of correlation laterally. No increase in bromine concentration for correlated salt zones was noted from the basin margins to the depositional center in the northeastern part of the study area. A great disparity in salt thickness from the depositional center to the margins suggests stratified lake conditions in which denser, sodium-chloride-saturated bottom brines did not extend to the margins during part of the depositional history of bed 10. Paleosalinity trends of Lake Gosiute determined from the bromine distribution include the following: (1) chemically stratified lake conditions with dense, highly saline bottom waters and a fresher water zone above during much of the depositional history of the halites, (2) gradual evaporation of lake waters in a closed basin with resultant upward increase in salinity for most intervals studied, and (3) absence of lateral lake-bottom salinity gradients or postdepositional salt alteration as determined by the lateral constancy of bromine concentrations for correlated bed 10 halite.

  18. Rocky Mountain Basins Produced Water Database

    DOE Data Explorer

    Historical records for produced water data were collected from multiple sources, including Amoco, British Petroleum, Anadarko Petroleum Corporation, United States Geological Survey (USGS), Wyoming Oil and Gas Commission (WOGC), Denver Earth Resources Library (DERL), Bill Barrett Corporation, Stone Energy, and other operators. In addition, 86 new samples were collected during the summers of 2003 and 2004 from the following areas: Waltman-Cave Gulch, Pinedale, Tablerock and Wild Rose. Samples were tested for standard seven component "Stiff analyses", and strontium and oxygen isotopes. 16,035 analyses were winnowed to 8028 unique records for 3276 wells after a data screening process was completed. [Copied from the Readme document in the zipped file available at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the Zipped file to your PC. When opened, it will contain four versions of the database: ACCESS, EXCEL, DBF, and CSV formats. The information consists of detailed water analyses from basins in the Rocky Mountain region.

  19. Depositional and tectonic setting of Quadrant and Tensleep Sandstone, Montana and Wyoming

    SciTech Connect

    Saperstone, H.I.; Maughan, E.K.

    1986-08-01

    The Quadrant Sandstone in southwestern Montana and the equivalent Tensleep Sandstone in northwestern Wyoming reflect transition from marine to nonmarine depositional settings. Thickness and facies relationships were influenced by tectonic events that preceded and followed deposition. Three important tectonic events are indicated in the Carboniferous strata: (1) separation of the Big Snowy Group and older Mississippian rocks from the overlying Amsden Group, (2) separation of the Amsden from the overlying Quadrant-Tensleep, and (3) separation of the latter from overlying Permian rocks. Locally, the Quadrant and Tensleep were deposited above rocks of significantly different ages within relatively short distances, owing to differential uplift and erosion of older rocks during the second tectonic event. Initial Quadrant and Tensleep deposition occurred as coastal dunes and as littoral sands in a shallow epeiric sea. Marine deposition was succeeded by progradation of a sand sea, characterized by extensive eolian dune and minor interdune facies. The dune facies seems more extensive in areas of subsidence, but this may be due to erosion of the eolian facies from positive areas during the third (pre-Permian) tectonic event. Some thickness and facies differences of the Quadrant are coincident with linear structural trends such as the northeast-trending Greenhorn lineament in southwestern Montana. Similar structural trends may also have affected deposition of the Tensleep Sandstone in the Bighorn basin.

  20. Correlation and sources of tuffs in the White River sequence, Wyoming, Nebraska, and Colorado

    SciTech Connect

    Larson, E.E. . Dept. of Geological Sciences); Evanoff, E. )

    1993-04-01

    The latest Eocene-early Oligocene White River sequence of the Great Plains and central Rocky Mountains contains numerous, widespread tuff beds. These tuffs, which range in age between 36 to 30 Ma, can be recognized over large areas of Wyoming, northern Colorado, Nebraska, and South Dakota. To date, however, the tuffs have generally been used only for local, not regional, correlations. The volcanic sources for these tuffs have been conjectural. The results of the authors' study of the stratigraphy, mineralogy, and geochemistry of 27 of these tuffs suggest source regions primarily in the Great Basin and secondarily in Colorado. The tuffs were correlated by a combination of methods, including single-crystal [sup 40]Ar/[sup 39]Ar dating, determination of mineral suites, microprobe analysis of mineral species and glass, and relation of the tuffs to previously determined bio- and magnetostratigraphies. The tuffs include rhyolitic, rhyo-dacitic, dacitic, and andesitic compositions, in decreasing order of abundance. A major shift in tuff compositions from predominantly rhyolite or rhyo-dacite to dacite occurred about 32 Ma. Mineral grain sizes in 10 of the most widespread tuffs show a decrease to the east and north, indicating wind transport to the northeast. Northeast-trending margins of several of the tuffs indicate a similar transport direction. So far, only one tuff can be correlated to a major eruption from a Colorado vent. With this exception, the radiometric dates and compositions of all the tuffs suggest a source region in Utah and Nevada.

  1. Report of the Workshop on Geologic Applications of Remote Sensing to the Study of Sedimentary Basins

    NASA Technical Reports Server (NTRS)

    Lang, H. R. (editor)

    1985-01-01

    The Workshop on Geologic Applications of Remote Sensing to the Study of Sedimentary Basins, held January 10 to 11, 1985 in Lakewood, Colorado, involved 43 geologists from industry, government, and academia. Disciplines represented ranged from vertebrate paleontology to geophysical modeling of continents. Deliberations focused on geologic problems related to the formation, stratigraphy, structure, and evolution of foreland basins in general, and to the Wind River/Bighorn Basin area of Wyoming in particular. Geological problems in the Wind River/Bighorn basin area that should be studied using state-of-the-art remote sensing methods were identified. These include: (1) establishing the stratigraphic sequence and mapping, correlating, and analyzing lithofacies of basin-filling strata in order to refine the chronology of basin sedimentation, and (2) mapping volcanic units, fracture patterns in basement rocks, and Tertiary-Holocene landforms in searches for surface manifestations of concealed structures in order to refine models of basin tectonics. Conventional geologic, topographic, geophysical, and borehole data should be utilized in these studies. Remote sensing methods developed in the Wind River/Bighorn Basin area should be applied in other basins.

  2. Habitat use and movements of repatriated Wyoming toads

    USGS Publications Warehouse

    Parker, J.M.; Anderson, S.H.

    2003-01-01

    We studied habitat use and movements of a repatriated population of federally endangered Wyoming toads (Bufo baxteri) after the breeding season at Mortenson Lake, Albany County, Wyoming, USA. We followed 8 adult toads using telemetry (n = 68 relocations) during periods of activity and observed 59 post-metamorphic juvenile toads (n = 59 locations). Adult toads used habitat with a greater mean vegetation canopy cover (mean = 52.6%) than juveniles (mean = 39.20%). We found adults farther from the shoreline (mean = 1.32 m) than juveniles (mean = 1.04 m). Substrates used by toads had a mean surface temperature of 20.31??C for adults and 23.05??C for juveniles. We found most adult and juvenile toads on saturated substrates. All adult toads sampled did not move outside of a 30 x 500 m area along the east-to-south shore where they were captured. Toads were active diurnally through the end of October. We found toads torpid at night. We compared our results to a similar study of the historic population and found that adult toads of the current population used denser vegetation than those of the historic population. Unlike many bufonids, terrestrial stages of the Wyoming toad appear to depend on saturated substrates. The best logistic regression predictors of adult and juvenile toad presence were surface temperature and distance to shore. Survey transects within the moist margin of the lake (???10 m from water) and after substrates have reached temperatures ???20??C will likely yield more detections.

  3. [DOE/EPSCoR traineeship program for Wyoming: Progress report

    SciTech Connect

    Not Available

    1992-08-01

    In the first year of the traineeship program supported by the Department of Energy EPSCoR funding, the University of Wyoming has made outstanding progress toward the objective of increasing the supply of highly trained engineers and scientists with interests in energy related disciplines. The scope of the traineeship program has already broadened to encompass both more departments than originally expected and nearly twice as many graduate students as expected. Further, since the primary emphasis was on new students, most of those recruited have developed ties to the DOE labs that would not have otherwise existed. This portion of this Progress Report gives an overall summary of the University of Wyoming`s approach to the DOE Traineeship Program implementation. It also provides an overview of the results so far and vision of how this program fits with the broader objectives for development of the University and its academic programs. Subsequent sections describe very briefly the impact of the traineeship students in each department that was successful in obtaining funds through the competitive process that was adopted. Finally, the report ends with a summary of both the academic status of the participants and the budget expenditures to date.

  4. Energy map of southwestern Wyoming, Part A - Coal and wind

    USGS Publications Warehouse

    Biewick, Laura R.H.; Jones, Nicholas R.

    2012-01-01

    To further advance the objectives of the Wyoming Landscape Conservation Initiative (WLCI) the U.S. Geological Survey (USGS) and the Wyoming State Geological Survey (WSGS) have compiled Part A of the Energy Map of Southwestern Wyoming. Focusing primarily on electrical power sources, Part A of the energy map is a compilation of both published and previously unpublished coal (including coalbed gas) and wind energy resources data, presented in a Geographic Information System (GIS) data package. Energy maps, data, documentation and spatial data processing capabilities are available in a geodatabase, published map file (pmf), ArcMap document (mxd), Adobe Acrobat PDF map (plate 1) and other digital formats that can be downloaded at the USGS website. Accompanying the map (plate 1) and the geospatial data are four additional plates that describe the geology, energy resources, and related infrastructure. These tabular plates include coal mine (plate 2), coal field (plate 3), coalbed gas assessment unit (plate 4), and wind farm (plate 5) information with hyperlinks to source publications and data on the internet. The plates can be printed and examined in hardcopy, or accessed digitally. The data represent decades of research by the USGS, WSGS, BLM and others, and can facilitate landscape-level science assessments, and resource management decisionmaking.

  5. Moving to the Powder River Basin in search of the American dream

    SciTech Connect

    Buchsbaum, L.

    2007-03-15

    As the Big Three American automakers cut jobs in Michigan, Wyoming's booming but isolated coal mining industry in the Powder River Basin is trying to lure some of these dissatisfied workers. DRM has attracted workers to the benefaction plant and P & H MinePro Services working on surface mining equipment has been successful, as have Peabody's Powder River coal subsidiary and Kiewitt's Buckshin mine. 2 photos.

  6. Ammonia emission inventory for the state of Wyoming

    SciTech Connect

    Kirchstetter, Thomas W.; Maser, Colette R.; Brown, Nancy J.

    2003-12-17

    Ammonia (NH{sub 3}) is the only significant gaseous base in the atmosphere and it has a variety of impacts as an atmospheric pollutant, including the formation of secondary aerosol particles: ammonium sulfate and ammonium nitrate. NH{sub 3} preferentially forms ammonium sulfate; consequently ammonium nitrate aerosol formation may be limited by the availability of NH{sub 3}. Understanding the impact of emissions of oxides of sulfur and nitrogen on visibility, therefore, requires accurately determined ammonia emission inventories for use in air quality models, upon which regulatory and policy decisions increasingly depend. This report presents an emission inventory of NH{sub 3} for the state of Wyoming. The inventory is temporally and spatially resolved at the monthly and county level, and is comprised of emissions from individual sources in ten categories: livestock, fertilizer, domestic animals, wild animals, wildfires, soil, industry, mobile sources, humans, and publicly owned treatment works. The Wyoming NH{sub 3} inventory was developed using the Carnegie Mellon University (CMU) Ammonia Model as framework. Current Wyoming-specific activity data and emissions factors obtained from state agencies and published literature were assessed and used as inputs to the CMU Ammonia Model. Biogenic emissions from soils comprise about three-quarters of the Wyoming NH{sub 3} inventory, though emission factors from soils are highly uncertain. Published emission factors are scarce and based on limited measurements. In Wyoming, agricultural land, rangeland, and forests comprise 96% of the land area and essentially all of the estimated emissions from soils. Future research on emission rates of NH{sub 3} for these land categories may lead to a substantial change in the magnitude of soil emissions, a different inventory composition, and reduced uncertainty in the inventory. While many NH{sub 3} inventories include annual emissions, air quality modeling studies require finer temporal resolution. Published studies indicate higher emission rates from soils and animal wastes at higher temperatures, and temporal variation in fertilizer application. A recent inverse modeling study indicates temporal variation in regional NH{sub 3} emissions. Monthly allocation factors were derived to estimate monthly emissions from soils, livestock and wild animal waste based on annual emission estimates. Monthly resolution of NH{sub 3} emissions from fertilizers is based on fertilizer sales to farmers. Statewide NH{sub 3} emissions are highest in the late spring and early summer months.

  7. Snow Cover, Snowmelt Timing and Stream Power in the Wind River Range, Wyoming

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Foster, James L.; DiGirolamo, Nicolo E.; Riggs, George A.

    2011-01-01

    Earlier onset of springtime weather, including earlier snowmelt, has been documented in the western United States over at least the last 50 years. Because the majority (is greater than 70%) of the water supply in the western U.S. comes from snowmelt, analysis of the declining spring snowpack (and shrinking glaciers) has important implications for the management of streamflow. The amount of water in a snowpack influences stream discharge which can also influence erosion and sediment transport by changing stream power, or the rate at which a stream can do work, such as move sediment and erode the stream bed. The focus of this work is the Wind River Range (WRR) in west-central Wyoming. Ten years of Moderate-Resolution Imaging Spectroradiometer (MODIS) snow-cover, cloud-gap-filled (CGF) map products and 30 years of discharge and meteorological station data are studied. Streamflow data from streams in WRR drainage basins show lower annual discharge and earlier snowmelt in the decade of the 2000s than in the previous three decades, though no trend of either lower streamflow or earlier snowmelt was observed within the decade of the 2000s. Results show a statistically-significant trend at the 95% confidence level (or higher) of increasing weekly maximum air temperature (for three out of the five meteorological stations studied) in the decade of the 1970s, and also for the 40-year study period as a whole. The extent of snow-cover (percent of basin covered) derived from the lowest elevation zone (2500-3000 m) of the WRR, using MODIS CGF snow-cover maps, is strongly correlated with maximum monthly discharge on 30 April, where Spearman's Rank correlation, rs,=0.89 for the decade of the 2000s. We also investigated stream power for Bull Lake Creek above Bull Lake; and found a trend (significant at the 90% confidence level) toward reduced stream power from 1970 to 2009. Observed changes in streamflow and stream power may be related to increasing weekly maximum air temperature measured during the 40-year study period, possibly contributing to a reduction in snow cover. In addition, the strong relationship between percent of basin that was snow covered, and maximum monthly streamflow indicates that MODIS snow-cover maps are useful for predicting streamflow, and can be used to improve management of water resources in the drought-prone western United States.

  8. Water Basins Civil Engineering

    E-print Network

    Provancher, William

    Water Basins Civil Engineering Objective · Connect the study of water, water cycle, and ecosystems with engineering · Discuss how human impacts can effect our water basins, and how engineers lessen these impacts: · The basic concepts of water basins are why they are important · To use a topographic map · To delineate

  9. Structural and facies characterization of the Niobrara Formation in Goshen and Laramie counties, Wyoming

    NASA Astrophysics Data System (ADS)

    Kernan, Nicholas Devereux

    The Niobrara Formation is a fine-grained marine rock deposited in the Western Interior Seaway during the Late Cretaceous. It is composed of fossil-rich interlayered shale, marls, and chalks. Recent interest in the Niobrara has grown due to the advent of lateral drilling and multi-stage hydraulic fracturing. This technology allows operators to economically extract hydrocarbons from chalkier Niobrara facies. Yet two aspects of the Niobrara Formation have remained enigmatic. The first is the occurrence of abundant, randomly oriented, layer-bound, normal faults. The second is the large degree of vertical heterogeneity. This research aimed to increase understanding in both these aspects of the Niobrara Formation. Randomly oriented normal faults have been observed in Niobrara outcrops for nearly a hundred years. Recent high resolution 3D seismic in the Denver Basin has allowed investigators to interpret these faults as part of a polygonal fault system (PFS). PFS are layer bound extensional structures that typically occur in fine-grained marine sediments. Though their genesis and development is still poorly understood, their almost exclusive occurrence in fine-grained rocks indicates their origin is linked to lithology. Interpretation of a 3D seismic cube in Southeast Wyoming found a tier of polygonal faulting within the Greenhorn-Carlile formations and another tier of polygonal faulting within the Niobrara and Pierre formations. This research also found that underlying structural highs influence fault growth and geometries within both these tiers. Core data and thin sections best describe vertical heterogeneity in fine-grained rocks. This investigation interpreted core data and thin sections in a well in Southeast Wyoming and identified 10 different facies. Most of these facies fall within a carbonate/clay spectrum with clay-rich facies deposited during periods of lower sea level and carbonate-rich facies deposited during periods of higher sea level. Because the average operator will typically have little core but abundant well logs, this investigation used three different methods of describing facies variability with logs. Facies interpreted with these methods are referred to as electrofacies. First, a conventional interpretation of Niobrara sub-units was done using gamma ray and resistivity logs. Then a cluster analysis was conducted on an extensive petrophysical log suite. Finally, a neural network was trained with the previous core interpretation so that it learned to identify facies from logs. The research found that when little core is available a cluster analysis method can capture significant amounts of vertical heterogeneity within the Niobrara Formation. But if core is available then a neural network method provides more meaningful and higher resolution interpretations.

  10. Economic Development from New Generation and Transmission in Wyoming and Colorado

    SciTech Connect

    Keyser, D.; Lantz, E.

    2013-03-01

    This report analyzes the potential economic impacts in Colorado and Wyoming of a 225 MW natural gas fired electricity generation facility and a 900 MW wind farm constructed in Wyoming as well as a 180 mile, 345 kV transmission line that runs from Wyoming to Colorado. This report and analysis is not a forecast, but rather an estimate of economic activity associated with a hypothetical scenario.

  11. Jobs and Economic Development from New Transmission and Generation in Wyoming (Fact Sheet)

    SciTech Connect

    Not Available

    2011-05-01

    Wyoming is a significant energy exporter, producing nearly 40% of the nation's coal and 10% of the nation's natural gas. However, opportunities to add new energy exports in the form of power generation are limited by insufficient transmission capacity. This fact sheet summarizes results from a recent analysis conducted by NREL for the Wyoming Infrastructure Authority (WIA) that estimates jobs and economic development activity that could occur in Wyoming should the market support new investments in power generation and transmission in the state.

  12. Jobs and Economic Development from New Transmission and Generation in Wyoming Fact Sheet

    SciTech Connect

    2011-05-10

    Wyoming is a significant energy exporter, producing nearly 40% of the nation's coal and 10% of the nation's natural gas. However, opportunities to add new energy exports in the form of power generation are limited by insufficient transmission capacity. This fact sheet summarizes results from a recent analysis conducted by NREL for the Wyoming Infrastructure Authority that estimates jobs and economic development activity that could occur in Wyoming should the market support new investments in power generation and transmission in the state.

  13. Economic Development from New Generation and Transmission in Wyoming and Colorado (Fact Sheet)

    SciTech Connect

    Not Available

    2013-03-01

    This report analyzes the potential economic impacts in Colorado and Wyoming of a 225 MW natural gas fired electricity generation facility and a 900 MW wind farm constructed in Wyoming as well as a 180 mile, 345 kV transmission line that runs from Wyoming to Colorado. This report and analysis is not a forecast, but rather an estimate of economic activity associated with a hypothetical scenario.

  14. U.S. Geological Survey Science for the Wyoming Landscape Conservation Initiative: 2012 annual report

    USGS Publications Warehouse

    Bowen, Zachary H.; Aldridge, Cameron L.; Anderson, Patrick J.; Assal, Timothy J.; Bern, Carleton R.; Biewick, Laura R.H.; Boughton, Gregory K.; Carr, Natasha B.; Chalfoun, Anna D.; Chong, Geneva W.; Clark, Melanie L.; Fedy, Bradford C.; Foster, Katharine; Garman, Steven L.; Germaine, Stephen; Hethcoat, Matthew G.; Homer, Collin G.; Kauffman, Matthew J.; Keinath, Douglas; Latysh, Natalie; Manier, Daniel J.; McDougal, Robert R.; Melcher, Cynthia P.; Miller, Kirk A.; Montag, Jessica; Potter, Christopher J.; Schell, Spencer; Shafer, Sarah L.; Smith, David B.; Sweat, Michael J.; Wilson, Anna B.

    2014-01-01

    Southwest Wyoming contains abundant energy resources, wildlife, habitat, open spaces, and outdoor recreational opportunities. Although energy exploration and development have been taking place in the region since the late 1800s, the pace of development for fossil fuels and renewable energy increased significantly in the early 2000s. This and the associated urban and exurban development are leading to landscape-level environmental and socioeconomic changes that have the potential to diminish wildlife habitat and other natural resources, and the quality of human lives, in Southwest Wyoming. The potential for negative effects of these changes prompted Federal, State, and local agencies to undertake the Wyoming Landscape Conservation Initiative for Southwest Wyoming.

  15. Biotoxicity characterization of a produced-water discharge in Wyoming

    SciTech Connect

    Mancini, E.R.; Stilwell, C.T. )

    1992-06-01

    The objectives of this paper are to document the physicochemical and aquatic toxicological quality of a beneficial-use produced-water discharge and its effect on a receiving stream in Wyoming. Fish and water-flea survival, growth, and reproduction tests indicated that the discharge and all other sampling stations passed the state effluent biomonitoring acute toxicity testing endpoints. while benthic macroinvertebrates were absent at the discharge point designated by the Natl. Pollutant Discharge Elimination System (NPDES), productive and reproducing populations were present at all other downstream and mixing-zone stations. This investigation confirmed the validity of the beneficial-use subcategory for this oilfield discharge.

  16. Bathymetry and temperature of some glacial lakes in Wyoming

    PubMed Central

    Leopold, Luna B.

    1980-01-01

    On the west flank of the Wind River Mountains, Wyoming, are several large lakes occupying glacially scoured depressions dammed by terminal moraines. Fremont, Willow, and New Fork Lakes, having maximal depths of 185, 85, and 62 m, respectively, are not only deep, but in 1970-1978 they had no measurable coliform. They have exceptionally low values of total dissolved solids; Fremont Lake has only 12.8 mg/liter, probably the second most dilute large lake in coterminus United States. Summer mixing is restricted to the uppermost 10 m, below which the lakes are essentially isothermal at the maximum density temperature, about 3.9°C. PMID:16592797

  17. Bathymetry and temperature of some glacial lakes in Wyoming.

    PubMed

    Leopold, L B

    1980-04-01

    On the west flank of the Wind River Mountains, Wyoming, are several large lakes occupying glacially scoured depressions dammed by terminal moraines. Fremont, Willow, and New Fork Lakes, having maximal depths of 185, 85, and 62 m, respectively, are not only deep, but in 1970-1978 they had no measurable coliform. They have exceptionally low values of total dissolved solids; Fremont Lake has only 12.8 mg/liter, probably the second most dilute large lake in coterminus United States. Summer mixing is restricted to the uppermost 10 m, below which the lakes are essentially isothermal at the maximum density temperature, about 3.9 degrees C. PMID:16592797

  18. Paleomagnetism of the Wyoming Craton: A Pre-Laurentian Puzzle

    NASA Astrophysics Data System (ADS)

    Kilian, T.; Chamberlain, K.; Mitchell, R. N.; Evans, D. A.; Bleeker, W.; Lecheminant, A. N.

    2010-12-01

    The Archean Wyoming craton is mostly buried beneath Phanerozoic sediments in the Rocky Mountains of the west central United States. Exposures of the craton are entirely in thrust-bounded Laramide uplifts and contain numerous swarms of Neoarchean-Proterozoic mafic dikes. U-Pb ages from these dikes include ~2685 Ma from a dike in the Owl Creek Mountains (Frost et al., 2006) as well as another in the Bald Mountain region of the Bighorn Mountains (this study), ~2170 Ma from the Wind River Mountain quartz diorite (Harlan et al., 2003), ~2110 Ma from a dike in the Granite Mountains (Bowers and Chamberlain, 2006), ~2010 Ma from a Kennedy dike in the Laramie Range (Cox et al., 2000), and ~780 Ma for dikes in the Beartooth and Teton Mountains (Harlan et al., 1997). These possible age ranges of magmatic events will allow a detailed comparison with other cratons, especially Superior and Slave. Prior to the assembly of Laurentia, Wyoming may have been connected with Slave in supercraton Sclavia (Bleeker, 2003; Frost et al., 2007), or alternatively, Wyoming may have been attached to the present southern margin of Superior in the supercraton Superia, as judged by similarities of the thrice-glaciated Huronian and Snowy Pass sedimentary successions (Roscoe and Card, 1993). Paleomagnetic results will be presented from over 150 dikes in the Wyoming craton. All dikes were from the basement uplifts of the Beartooth Mountains, Bighorn Mountains, Owl Creek Mountains, Granite Mountains, Ferris Mountains and Laramie Range. Dikes range in widths from 1 to >100 meters, and trends vary across all orientations. Stable remanence is observed in majority of sites with at least 8 different directions from the various uplifts. Structural corrections are applied when necessary to restore shallowly dipping Cambrian strata to horizontal. The paleomagnetic study is being integrated with precise U-Pb geochronology of dikes that bear stable remanence directions. Results will eventually allow a comparison of results from both Slave and Superior cratons throughout the Archean and Proterozoic. The data will test the prior connections, or lack thereof, among the Archean cratons in Laurentia, and help assess whether there was a supercontinent during the Archean-Proterozoic transition.

  19. Redescription of Bellerophon bittneri (Gastropoda: Triassic) from Wyoming.

    USGS Publications Warehouse

    Yochelson, E.L.; Boyd, D.W.; Wardlaw, B.

    1985-01-01

    Bellerophon bittneri Newell and Kummel is an Early Triassic bellerophontacean from the Dinwoody Formation in the Wind River Mountains. The available type material consists of one fair, but incomplete, external mold, which resembles a Bellerophon but is actually a Retispira. After repeated search, additional specimens were found at one locality in the southern Wind River Range of Wyoming; Retispira bittneri is redescribed from this new material. Like other Triassic bellerophontaceans, there is nothing unusual about the species apart from occurrence in the Mesozoic; it is clearly congeneric with Permian Retispira from underlying rocks. -Authors

  20. Bank stability and channel width adjustment, East Fork River, Wyoming.

    USGS Publications Warehouse

    Andrews, E.D.

    1982-01-01

    Frequent surveys of eight cross sections located in self-formed reaches of the East Fork River, Wyoming, during the 1974 snowmelt flood showed a close relation between channel morphology and scour and fill. Those cross sections narrower than the mean reach width filled at discharges less than bankfull and scoured at discharges greater than bankfull. Those cross sections wider than the mean reach width scoured at discharges less than bankfull and filled at discharges greater than bankfull. Bank stability, and to some extent the adjustment of stream channel width, in the East Fork River study reach appears to be controlled by the processes of scour and fill. -from Author

  1. (DOE/EPSCoR traineeship program for Wyoming: Progress report)

    SciTech Connect

    Not Available

    1992-01-01

    In the first year of the traineeship program supported by the Department of Energy EPSCoR funding, the University of Wyoming has made outstanding progress toward the objective of increasing the supply of highly trained engineers and scientists with interests in energy related disciplines. The scope of the traineeship program has already broadened to encompass both more departments than originally expected and nearly twice as many graduate students as expected. Further, since the primary emphasis was on new students, most of those recruited have developed ties to the DOE labs that would not have otherwise existed. This portion of this Progress Report gives an overall summary of the University of Wyoming's approach to the DOE Traineeship Program implementation. It also provides an overview of the results so far and vision of how this program fits with the broader objectives for development of the University and its academic programs. Subsequent sections describe very briefly the impact of the traineeship students in each department that was successful in obtaining funds through the competitive process that was adopted. Finally, the report ends with a summary of both the academic status of the participants and the budget expenditures to date.

  2. UMTRA project water sampling and analysis plan, Riverton, Wyoming

    SciTech Connect

    Not Available

    1994-03-01

    Surface remediation was completed at the former uranium mill site in Riverton, Wyoming, in 1990. Residual radioactive materials (contaminated soil and debris) were removed and disposed of at Union Carbide Corporation`s (Umetco) nearby Gas Hills Title 2 facility. Ground water in the surficial and semiconfined aquifers (known collectively as the `uppermost aquifer`) below the former mill and tailings site has been contaminated. No contamination has been detected in the deeper, confined sandstone aquifer. The contaminant plume extends off site to the south and east. The plume is constrained by surface wetlands and small streams to the east and west of the site and by the Little Wind River to the south. Fifteen monitor wells installed in 1993 were sampled to better define the contaminant plume and to provide additional water quality data for the baseline risk assessment. Samples also were collected from domestic wells in response to a request by the Wyoming Department of Environmental Quality in January 1994. No contamination attributable to the former uranium milling operations have ever been detected in any of the domestic wells used for potable supplies.

  3. Buried soils of Late Quaternary moraines of the Wind River Mountains, Wyoming

    SciTech Connect

    Dahms, D.E. . Geography Dept.)

    1992-01-01

    Buried soils occur on kettle floors of four Pinedale moraine catenas of the western Wind River Mountains of Wyoming. Radiocarbon ages from bulk samples of Ab horizons indicate the soils were buried during the mid-Holocene. Soils on kettle floors have silty A and Bw horizons that overlie buried A and B horizons that also formed in silt-rich sediments. Crests and backslope soils also have A and Bw horizons of sandy loam formed over 2BCb and 2Cb horizons of stony coarse loamy sand. Recent data show the silty textures of the A and B horizons are due to eolian silt and clay from the Green River Basin just west of the mountains. The buried soils appear to represent alternate periods of erosion and deposition on the moraines during the Holocene. The original soils developed on higher slopes of the moraines were eroded during the mid-Holocene and the 2BC and 2C horizons exposed at the surface. Eroded soil sediments were transported downslope onto the kettle floors. Following erosion, silt-rich eolian sediments accumulated on all surfaces and mixed with the BC and C horizons (the mixed loess of Shroba and Birkeland). The present surface soils developed within this silt-rich material. Stone lines often occur at the Bw-2BCb/2Cb boundary, and mark the depth to which the earlier soils were eroded. Thus, soil profiles at the four localities result from two periods of soil formation, interrupted by an interval of erosion during the mid-Holocene. Moraines of this study are adjacent to the Fremont Lake type area for the Pinedale glaciation of the Rocky Mountains. Buried soils in kettles of the moraines indicates the soil characteristics of the Pinedale type region are not necessarily due to continuous post-Pinedale development, but may result from more than one episode of soil formation.

  4. The impact of seasonality and elevation on dissolved greenhouse gas concentrations in a northeastern Wyoming watershed

    NASA Astrophysics Data System (ADS)

    Kuhn, C.; Bettigole, C.; Raymond, P. A.; Glick, H.; Seegmiller, L.; Oliver, C.; Khadka, A.; Routh, D.

    2014-12-01

    Quantification of river and stream contributions to global carbon emission budgets using field-based measurements is key to understanding how freshwater streams act as conduits between terrestrial and atmospheric carbon pools. In order to better characterize drivers of this process, this study quantifies: a) emissions of carbon dioxide and methane from a semi-arid, high plains riverine system with montaine headwaters in order to establish baseline data for the watershed; b) the impact of stream order, seasonality and elevation on dissolved gas concentrations to better understand the spatial and temporal heterogeneity of dissolved carbon gases. To achieve the latter objective, we conducted field surveys in first and second order streams in the Clear Creek drainage of the Powder River Basin watershed. We took direct measurements of stream gases using headspace sampling at thirty sites along an elevation gradient ranging from 1,203-3,346 meters. We also intensely monitored five transects throughout the descending limb of spring runoff (June 8th-August 12th) to investigate how temperature and discharge volume impact greenhouse gas concentrations. Clear Creek, located in northeastern Wyoming, is approximately 118.4 km long with a drainage area of 2,968 km2. The creek flows east out of Bighorn National Forest where it turns northeast to converge with the Powder River about ten miles before the Montana border. The stream straddles the Middle Rockies and Northwestern Great Plains ecoregions and experiences an abrupt shift in soil type, riparian vegetation, underlying geology and stream geometry as the stream exits the mountains and enters the agricultural alluvial floodplain. These site specific biological and physical changes along the elevation gradient affect dissolved greenhouse gas concentrations.

  5. Changing Snow Cover and Stream Discharge in the Western United States - Wind River Range, Wyoming

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Foster, James L.; DiGirolamo, Nicolo E.; Barton, Jonathan S.; Riggs, George A.

    2011-01-01

    Earlier onset of springtime weather has been documented in the western United States over at least the last 50 years. Because the majority (>70%) of the water supply in the western U.S. comes from snowmelt, analysis of the declining spring snowpack has important implications for the management of water resources. We studied ten years of Moderate-Resolution Imaging Spectroradiometer (MODIS) snow-cover products, 40 years of stream discharge and meteorological station data and 30 years of snow-water equivalent (SWE) SNOw Telemetry (SNOTEL) data in the Wind River Range (WRR), Wyoming. Results show increasing air temperatures for.the 40-year study period. Discharge from streams in WRR drainage basins show lower annual discharge and earlier snowmelt in the decade of the 2000s than in the previous three decades. Changes in streamflow may be related to increasing air temperatures which are probably contributing to a reduction in snow cover, although no trend of either increasingly lower streamflow or earlier snowmelt was observed within the decade of the 2000s. And SWE on 1 April does not show an expected downward trend from 1980 to 2009. The extent of snow cover derived from the lowest-elevation zone of the WRR study area is strongly correlated (r=0.91) with stream discharge on 1 May during the decade of the 2000s. The strong relationship between snow cover and streamflow indicates that MODIS snow-cover maps can be used to improve management of water resources in the drought-prone western U.S.

  6. Relief History and Coupling of Glacial Valley and Hillslope Erosion in the Teton Range, Wyoming

    NASA Astrophysics Data System (ADS)

    Tranel, L. M.; Spotila, J. A.; Dennen, R. L.; Hetland, B. R.; Morgan, S. A.; Waller, C. M.

    2007-12-01

    Alpine landscapes are the product of coupling and competition between erosion and weathering mechanisms. In the Teton Range, Wyoming, a unique, rugged landscape has evolved through a combination of block tilting, fluvial and glacial incision, cirque retreat, and physical weathering and mass wasting of ridges. We are studying the interaction and effectiveness of these processes using field observations and detrital thermochronology, with particular focus on changes associated with Late Cenozoic climate change. The Tetons are an ideal location for this investigation, because the patterns of net rock uplift and incision since onset of normal faulting at 9 Ma are structurally constrained. To investigate the erosion pattern since glacial advances began, we have used apatite (U-Th)/He detrital thermochronology of moraine and modern river sands to identify where sediment is sourced based on an established bedrock age-elevation gradient and basin hypsometry. Preliminary results from modern river sediment in Garnet Canyon are plagued by poor sample quality, but show a disproportionately large component of young ages, presumably sourced from low altitudes. This may reflect glacial incision, consistent with an increase in relief associated with Late Cenozoic global cooling that has been observed in numerous locations. However, evidence of hillslope denudation implies that glacial erosion may have brought the Tetons close to a topographic steady state. Estimates of mass flux based on surveys of talus fans in Garnet Canyon suggest ridges have recently eroded at close to the rate of long term rock uplift, whereas the long term average rate of peak and ridge erosion must have been much slower. We interpret that glacial incision increased relief up to a point, but then over steepened hillslopes, such that the landscape reached a threshold for mass wasting. Observations of densely spaced joints and fractures in the bedrock suggest material properties may have facilitated reaching this threshold. The Teton landscape thus illustrates the complexity of integrated erosional mechanisms through transitional climate conditions.

  7. Paleomagnetism and geochronology of an Early Proterozoic quartz diorite in the southern Wind River Range, Wyoming, USA

    USGS Publications Warehouse

    Harlan, S.S.; Geisman, J.W.; Premo, W.R.

    2003-01-01

    We present geochronologic and paleomagnetic data from a north-trending quartz diorite intrusion that cuts Archean metasedimentary and metaigneous rocks of the South Pass Greenstone Belt of the Wyoming craton. The quartz diorite was previously thought to be either Archean or Early Proterozoic (?) in age and is cut by north and northeast-trending Proterozoic diabase dikes of uncertain age, for which we also report paleomagnetic data. New U-Pb analyses of baddeleyite and zircon from the quartz diorite yield a concordia upper intercept age of 2170 ?? 8 Ma (95% confidence). An 40Ar/39Ar amphibole date from the same sample yields a similar apparent age of about 2124 ?? 30 Ma (2??), thus confirming that the intrusion is Early Proterozoic in age and that it has probably not been thermally disturbed since emplacement. A magmatic event at ca. 2.17 Ga has not previously been documented in the Wyoming craton. The quartz diorite and one of the crosscutting diabase dikes yield essentially identical, well-defined characteristic remanent magnetizations. Results from eight sites in the quartz diorite yield an in situ mean direction of north declination and moderate to steep positive inclination (Dec.=355??, Inc.=65??, k=145, ??95=5??) with a paleomagnetic pole at 84??N, 215??E (??m=6??, ??p=7??). Data from other diabase dike sites are inconsistent with the quartz diorite results, but the importance of these results is uncertain because the age of the dikes is not well known. Interpretation of the quartz diorite remanent magnetization is problematic. The in situ direction is similar to expected directions for magnetizations of Late Cretaceous/early Tertiary age. However, there is no compelling evidence to suggest that these rocks were remagnetized during the late Mesozoic or Cenozoic. Assuming this magnetization to be primary, then the in situ paleomagnetic pole is strongly discordant with poles of 2167, 2214, and 2217 Ma from the Canadian Shield, and is consistent with proposed separation of the Wyoming Craton and Laurentia prior to about 1.8 Ga. Correcting the quartz diorite pole for the possible effects of Laramide-age tilting of the Wind River Range, based on the attitude of nearby overlying Cambrian Flathead Sandstone (dip=20??, N20??E), gives a tilt corrected pole of 75??N, 58??E (??m=4??, ??p=6??), which is also discordant with respect to time-equivalent poles from the Superior Province. Reconstruction of the Superior and Wyoming Province using a rotation similar to that proposed by Roscoe and Card [Can. J. Earth Sci. 46(1993)2475] is problematic, but reconstruction of the Superior and Wyoming Provinces based on restoring them to their correct paleolatitude and orientation using a closest approach fit indicates that the two cratons could have been adjacent at about 2.17 Ga prior to rifting at about 2.15 Ga. The paleomagnetic data presented are consistent with the hypothesis that the Huronian and Snowy Pass Supergroups could have evolved as part of a single epicratonic sedimentary basin during the Early Proterozoic. ?? 2002 Elsevier Science B.V. All rights reserved.

  8. 75 FR 28818 - Notice of Realty Action: Proposed Sale of Public Land, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-24

    ...found the following public lands located in Teton County, Wyoming, suitable for direct...The following-described public land in Teton County, Wyoming, is being considered...contains 0.95 acres, more or less, in Teton County. The proposed direct sale is...

  9. A WATERBORNE OUTBREAK OF NORWALK-LIKE VIRUS AMONG SNOWMOBILERS - WYOMING, 2001

    EPA Science Inventory

    In February 2001, episodes of acute gastroenteritis were reported to the Wyoming Department of Health from persons who had recently vacationed at a snowmobile lodge in Wyoming. A retrospective cohort study found a significant association between water consumption and illness, a...

  10. Characterizing Wyoming ranching operations: natural resource goals, management practices and information sources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    What are the characteristics of Wyoming ranches, and how do they manage natural resources on 29 million acres of rangelands? In cooperation with the Wyoming Stock Growers Association (WSGA)—a predominant agricultural organization in the state—we asked WSGA producer members about their goals, ranchi...

  11. An Examination of Development of Wyoming's Alternative Assessment System, the Body of Evidence

    ERIC Educational Resources Information Center

    Dowding, Sharla Kay

    2011-01-01

    The overarching purpose of this qualitative study is to explore the patterns of development and implementation of Body of Evidence (BOE) science systems throughout the state of Wyoming, using an emerging and relatively open mixed methods design. BOEs were first launched throughout Wyoming a decade ago, and are ongoing today. Through interviews…

  12. 33 CFR 110.127b - Flaming Gorge Lake, Wyoming-Utah.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Flaming Gorge Lake, Wyoming-Utah... ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.127b Flaming Gorge Lake, Wyoming-Utah. (a.... (c) Antelope Flat, Utah. That portion of Flaming Gorge Lake inclosed by the shore and a...

  13. Are there benefits to mowing intact Wyoming big sagebrush communities? An evaluation from southeastern Oregon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis Beetle & Young) communities frequently are mowed in an attempt to increase perennial herbaceous vegetation. However, there is limited information as to whether expected benefits of mowing are realized when applied to Wyoming big sagebrus...

  14. Library of the Year 2008: Laramie County Library System, Wyoming--The Impact Library

    ERIC Educational Resources Information Center

    Berry, John N., III

    2008-01-01

    This article features Laramie County Library System (LCLS) of Cheyenne, Wyoming, which is named as Gale/"Library Journal" 2008 Library of the Year. It is not just strong, effective publicity or the fine new building or even a staff built around its ability to connect with the people, although all of those things add to the impact of Wyoming's…

  15. 78 FR 758 - Notice of Proposed Reinstatement of Terminated Oil and Gas Lease WYW164393, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-04

    ...Proposed Reinstatement of Terminated Oil and Gas Lease WYW164393, Wyoming AGENCY: Bureau...Wyoming), Inc., for competitive oil and gas lease WYW164393 for land in Converse County...the date the lease terminated under the law. FOR FURTHER INFORMATION CONTACT:...

  16. 77 FR 37706 - Notice of Proposed Reinstatement of Terminated Oil and Gas Lease WYW177129, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-22

    ...Proposed Reinstatement of Terminated Oil and Gas Lease WYW177129, Wyoming AGENCY: Bureau...Wyoming Inc., for competitive oil and gas lease WYW177129 for land in Converse County...the date the lease terminated under the law. FOR FURTHER INFORMATION CONTACT:...

  17. 30 CFR 950.30 - Approval of Wyoming abandoned mine land reclamation plan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... reclamation plan. 950.30 Section 950.30 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... § 950.30 Approval of Wyoming abandoned mine land reclamation plan. The Wyoming Abandoned Mine Land Reclamation Plan, as submitted on August 16, 1982, and as subsequently revised, is approved effective...

  18. 30 CFR 950.30 - Approval of Wyoming abandoned mine land reclamation plan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... reclamation plan. 950.30 Section 950.30 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... § 950.30 Approval of Wyoming abandoned mine land reclamation plan. The Wyoming Abandoned Mine Land Reclamation Plan, as submitted on August 16, 1982, and as subsequently revised, is approved effective...

  19. 30 CFR 950.30 - Approval of Wyoming abandoned mine land reclamation plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... reclamation plan. 950.30 Section 950.30 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... § 950.30 Approval of Wyoming abandoned mine land reclamation plan. The Wyoming Abandoned Mine Land Reclamation Plan, as submitted on August 16, 1982, and as subsequently revised, is approved effective...

  20. 30 CFR 950.30 - Approval of Wyoming abandoned mine land reclamation plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reclamation plan. 950.30 Section 950.30 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... § 950.30 Approval of Wyoming abandoned mine land reclamation plan. The Wyoming Abandoned Mine Land Reclamation Plan, as submitted on August 16, 1982, and as subsequently revised, is approved effective...