QCD dynamics in mesons at soft and hard scales
Nguyen, T.; Souchlas, N. A.; Tandy, P. C.
2010-07-27
Using a ladder-rainbow kernel previously established for the soft scale of light quark hadrons, we explore, within a Dyson-Schwinger approach, phenomena that mix soft and hard scales of QCD. The difference between vector and axial vector current correlators is examined to estimate the four quark chiral condensate and the leading distance scale for the onset of non-perturbative phenomena in QCD. The valence quark distributions, in the pion and kaon, defined in deep inelastic scattering, and measured in the Drell Yan process, are investigated with the same ladder-rainbow truncation of the Dyson-Schwinger and Bethe-Salpeter equations.
Soft and Hard Scale QCD Dynamics in Mesons
NASA Astrophysics Data System (ADS)
Nguyen, T.; Souchlas, N. A.; Tandy, P. C.
2011-09-01
Using a ladder-rainbow kernel previously established for light quark hadron physics, we explore the extension to masses and electroweak decay constants of ground state pseudoscalar and vector quarkonia and heavy-light mesons in the c- and b-quark regions. We make a systematic study of the effectiveness of a constituent mass concept as a replacement for a heavy quark dressed propagator for such states. The difference between vector and axial vector current correlators is explored within the same model to provide an estimate of the four quark chiral condensate and the leading distance scale for the onset of non-perturbative phenomena in QCD.
Behavior of single-scale hard small-x processes in QCD near the black disk limit
NASA Astrophysics Data System (ADS)
Blok, B.; Frankfurt, L.
2006-03-01
We argue that at sufficiently small Bjorken x where pQCD amplitudes rapidly increase with energy and violate probability conservation the shadowing effects in the single-scale small x hard QCD processes can be described by an effective quantum field theory of interacting quasiparticles—perturbative QCD ladders. We find, within the WKB approximation, that the smallness of the QCD coupling constant ensures the hierarchy among many-quasiparticle interactions evaluated within the physical vacuum and, in particular, the dominance in the Lagrangian of the triple quasiparticle interaction. It is explained that the effective field theory considered near the perturbative QCD vacuum contains a tachyon relevant for the divergency of the perturbative QCD series at sufficiently small x. We solve the equations of motion of the effective field theory within the WKB approximation and find the physical vacuum and the transitions between the false (perturbative) and physical vacua. Classical solutions which dominate transitions between the false and physical vacua are kinks that cannot be decomposed into perturbative series over the powers of αs. These kinks lead to color inflation and the Bose-Einstein condensation of quasiparticles. The account of the quantum fluctuations around the WKB solution reveals the appearance of the “massless” particles—phonons. It is explained that phonons are relevant for the black disk behavior of cross sections of small x processes. The Bose-Einstein condensation of the ladders produces a color network occupying a “macroscopic” longitudinal volume. We discuss briefly the possible detection of new QCD effects. We outline albeit briefly the relationship between the small x hard QCD processes and the coherent critical phenomena.
Breakdown of QCD factorization in hard diffraction
NASA Astrophysics Data System (ADS)
Kopeliovich, B. Z.
2016-07-01
Factorization of short- and long-distance interactions is severely broken in hard diffractive hadronic collisions. Interaction with the spectator partons leads to an interplay between soft and hard scales, which results in a leading twist behavior of the cross section, on the contrary to the higher twist predicted by factorization. This feature is explicitly demonstrated for diffractive radiation of abelian (Drell-Yan, gauge bosons, Higgs) and non-abelian (heavy flavors) particles.
QCD and hard diffraction at the LHC
Albrow, Michael G.; /Fermilab
2005-09-01
As an introduction to QCD at the LHC the author gives an overview of QCD at the Tevatron, emphasizing the high Q{sup 2} frontier which will be taken over by the LHC. After describing briefly the LHC detectors the author discusses high mass diffraction, in particular central exclusive production of Higgs and vector boson pairs. The author introduces the FP420 project to measure the scattered protons 420m downstream of ATLAS and CMS.
Soft and hard contributions to QCD processes
Slavnov, D.A.; Bakulina, E.N.
1995-06-01
QCD corrections of order {alpha}{sub s} for deep inelastic lepton scattering and the Drell-Yan process are considered. The common soft part of these corrections is found. This result makes it possible to determine the modified parton distribution functions unambiguously beyond the leading logarithmic approximation. These distribution functions are used to obtain QCD corrections that are free of infrared and collinear ambiguities. 6 refs., 2 figs.
Early Run 2 Hard QCD Results from the ATLAS Collaboration
NASA Astrophysics Data System (ADS)
Orlando, Nicola
2016-07-01
We provide an overview of hard QCD results based on data collected with the ATLAS detector in proton-proton collision at √s = 13 TeV at the Large Hadron Collider. The production of high transverse momentum jets, photons and photon-pairs were studied; the inclusive jet cross section is found to agree well with the prediction of perturbative QCD calculations performed at next-to-leading accuracy. The production cross sections for W and Z bosons in their e and μ decays was measured; in general, agreement is found with the expectation of next-to-next-to leading order QCD calculations and interesting sensitivities to the proton structure functions are already observed. The top production cross sections were measured in different top decay channels and found to agree with the state of the art QCD predictions.
Hard elastic scattering in QCD: Leading behavior
Botts, J.F.
1989-01-01
The author derives the asymptotic behavior of elastic meson-meson and baryon-baryon scattering at high energy and large angle t/s {approximately} O(1). The results organize both Sudakov and nonleading logarithmic corrections to independent (Landshoff) scatterings of valence quarks. He shows how to separate these contributions systematically from single scattering contributions, in a manner which suggests that the complete amplitudes should be computable perturbatively down to the dimensional counting power, in terms of hadronic wave functions. In the final chapter, the perturbative asymptotic amplitude and differential cross section for elastic pion-pion scattering is calculated numerically. For various choices of pion wave function and running coupling, the onset of power law behavior, d{sigma}/dt {approximately} s{sup {minus}5.8}, was observed. The dependence in d{sigma}/dt on the cutoff in gluon momentum, chosen to be O({Lambda}{sub QCD}/Q), was observed to be sharp for ln(s/1GeV{sup 2}) less than 1. Very small oscillations in d{sigma}/dt appear in physically realizable energies, but these are cutoff dependent, and their interpretation unclear. Higher twist effects were estimated to be roughly {approximately}15% for 2 < ln(s/1GeV{sup 2}) < 10.
Pion Form Factor in Chiral Limit of Hard-Wall AdS/QCD Model
Anatoly Radyushkin; Hovhannes Grigoryan
2007-12-01
We develop a formalism to calculate form factor and charge density distribution of pion in the chiral limit using the holographic dual model of QCD with hard-wall cutoff. We introduce two conjugate pion wave functions and present analytic expressions for these functions and for the pion form factor. They allow to relate such observables as the pion decay constant and the pion charge electric radius to the values of chiral condensate and hard-wall cutoff scale. The evolution of the pion form factor to large values of the momentum transfer is discussed, and results are compared to existing experimental data.
The hard gluon component of the QCD Pomeron
White, A.R.
1996-10-20
The authors argue that deep-inelastic diffractive scaling provides fundamental insight into the QCD Pomeron. The logarithmic scaling violations seen experimentally are in conflict with the scale-invariance of the BFKL Pomeron and with phenomenological two-gluon models. Instead the Pomeron appears as a single gluon at short-distances, indicating the appearance of a Super-Critical phase of Reggeon Field Theory. That the color compensation takes place at a longer distance is consistent with the Pomeron carrying odd color charge parity.
Large Scale Commodity Clusters for Lattice QCD
A. Pochinsky; W. Akers; R. Brower; J. Chen; P. Dreher; R. Edwards; S. Gottlieb; D. Holmgren; P. Mackenzie; J. Negele; D. Richards; J. Simone; W. Watson
2002-06-01
We describe the construction of large scale clusters for lattice QCD computing being developed under the umbrella of the U.S. DoE SciDAC initiative. We discuss the study of floating point and network performance that drove the design of the cluster, and present our plans for future multi-Terascale facilities.
QCD description of backward vector meson hard electroproduction
NASA Astrophysics Data System (ADS)
Pire, B.; Semenov-Tian-Shansky, K.; Szymanowski, L.
2015-05-01
We consider backward vector meson exclusive electroproduction off nucleons in the framework of collinear QCD factorization. Nucleon to vector meson transition distribution amplitudes (TDAs) arise as building blocks for the corresponding factorized amplitudes. In the near-backward kinematics, the suggested factorization mechanism results in the dominance of the transverse cross section of vector meson production (σT≫σL ) and in the characteristic 1 /Q8-scaling behavior of the cross section. We evaluate nucleon to vector meson TDAs in the cross-channel nucleon exchange model and present estimates of the differential cross section for backward ρ0, ω and ϕ meson production off protons. The resulting cross sections are shown to be measurable in the forthcoming JLab@12 GeV experiments.
Nonlinear κ⊥-Factorization: A New Paradigm for an In-Nucleus Hard QCD
NASA Astrophysics Data System (ADS)
Nikolaev, N. N.; Schäfer, W.; Zakharov, B. G.; Zoller, V. R.
2006-06-01
We review the origin, and salient features, of the breaking of the conventional linear k⊥ factorization for an in-nucleus hard pQCD processes. A realization of the nonlinear k⊥-factorization which emerges instead is shown to depend on color properties of the underlying pQCD subprocesses. We discuss the emerging universality classes and extend nonlinear k⊥-factorization to AGK unitarity rules for the excitation of the target nucleus.
The renormalization scale problem and novel perspectives for QCD
NASA Astrophysics Data System (ADS)
Brodsky, Stanley J.
2015-11-01
I discuss a number of novel tests of QCD, measurements which can illuminate fundamental features of hadron physics. These include the origin of the “ridge” in proton-proton collisions; the production of the Higgs at high xF; the role of digluon-initiated processes for quarkonium production; flavor-dependent anti-shadowing; the effect of nuclear shadowing on QCD sum rules; direct production of hadrons at high transverse momentum; and leading-twist lensing corrections; and the breakdown of perturbative QCD factorization. I also review the “Principle of Maximum Conformalit” (PMC) which systematically sets the renormalization scale order-by-order in pQCD, independent of the choice of renormalization scheme, thus eliminating an unnecessary theoretical uncertainty.
Scaling, dimensional analysis, and hardness measurements
NASA Astrophysics Data System (ADS)
Cheng, Yang-Tse; Cheng, Che-Min; Li, Zhiyong
2000-03-01
Hardness is one of the frequently used concepts in tribology. For nearly one hundred years, indentation experiments have been performed to obtain the hardness of materials. Recent years have seen significant improvements in indentation equipment and a growing need to measure the mechanical properties of materials on small scales. However, questions remain, including what properties can be measured using instrumented indention techniques and what is hardness? We discuss these basic questions using dimensional analysis together with finite element calculations. We derive scaling relationships for loading and unloading curve, initial unloading slope, contact depth, and hardness. Hardness is shown to depend on elastic, as well as plastic properties of materials. The conditions for "piling-up" and "sinking-in" of surface profiles in indentation are obtained. The methods for estimating contact area are examined. The work done during indentation is also studied. A relationship between hardness, elastic modulus, and the work of indentation is revealed. This relationship offers a new method for obtaining hardness and elastic modulus. In addition, we demonstrate that stress-strain relationships may not be uniquely determined from loading/unloading curves alone using a conical or pyramidal indenter. The dependence of hardness on indenter geometry is also studied. Finally, a scaling theory for indentation in power-law creep solids using self-similar indenters is developed. A connection between creep and "indentation size effect" is established.
No inverse magnetic catalysis in the QCD hard and soft wall models
NASA Astrophysics Data System (ADS)
Dudal, David; Granado, Diego R.; Mertens, Thomas G.
2016-06-01
In this paper, we study the influence of an external magnetic field in holographic QCD models where the backreaction is modeled via an appropriate choice of the background metric. We add a phenomenological soft wall dilaton to incorporate better IR behavior (confinement). Elaborating on previous studies conducted by [K. A. Mamo, J. High Energy Phys. 05 (2015) 121.], we first discuss the Hawking-Page transition, the dual of the deconfinement transition, as a function of the magnetic field. We confirm that the critical deconfinement temperature can drop with the magnetic field. Secondly, we study the quark condensate holographically as a function of the applied magnetic field and demonstrate that this model does not exhibit inverse magnetic catalysis at the level of the chiral transition. The quest for a holographic QCD model that qualitatively describes the inverse magnetic catalysis at finite temperature is thus still open. Throughout this work, we pay special attention to the different holographic parameters and we attempt to fix them by making the link to genuine QCD as close as possible. This leads to several unanticipated and so far overlooked complications (such as the relevance of an additional length scale ℓc in the confined geometry) that we discuss in detail.
NASA Astrophysics Data System (ADS)
Fleming, Sean
In this talk I review recent experimental and theoretical results in QCD. Since the topic is too vast to cover within given time constraints I choose to highlight some of the subjects that I find particularly exciting. On the experimental side I focus on measurements made at the Tevatron. Specifically jet production rates, and the cross section for B meson production. In addition I discuss an interesting measurement made by the Belle collaboration of double exclusive charmonium production. On the theory side I quickly review recent advances in computing hadronic cross sections at subleading order in perturbation theory. I then move on to soft-collinear effective theory. After a lightning review of the formalism I discuss recently published results on color-suppressed B → D decays.
Hard Break-Up of Two-Nucleons and QCD Dynamics of NN Interaction
NASA Astrophysics Data System (ADS)
Sargsian, Misak; Granados, Carlos
2009-05-01
We investigate hard photodisintegration of two nucleons from ^3He nucleus within the framework of hard rescattering model (HRM). In HRM a quark of one nucleon knocked-out by incoming photon rescatters with a quark of the other nucleon leading to the production of two nucleons with high relative momentum. HRM allows to express the amplitude of two-nucleon break-up reaction through the convolution of photon-quark scattering, NN hard scattering amplitude and nuclear spectral function which can be calculated using nonrelativistic ^3He wave function. HRM predicts several specific features for hard break-up reaction. First, the cross section will approximately scale as s-11. Also one predicts comparable or larger cross section for pp break up as compared to that of pn break-up, which is opposite to what is observed in low energy kinematics. Another result is the prediction of different spectator momentum dependencies of pp and pn break-up cross sections. This is due to the fact that same-helicity pp-component is strongly suppressed in the ground state wave function of ^3He. Due to this suppression HRM predicts significantly different asymmetries for the cross section of polarization transfer NN break-up reactions for circularly polarized photons. For the pp break-up this asymmetry is predicted to be zero while for the pn it is close to 23.
Large-scale magnetic fields, dark energy, and QCD
Urban, Federico R.; Zhitnitsky, Ariel R.
2010-08-15
Cosmological magnetic fields are being observed with ever increasing correlation lengths, possibly reaching the size of superclusters, therefore disfavoring the conventional picture of generation through primordial seeds later amplified by galaxy-bound dynamo mechanisms. In this paper we put forward a fundamentally different approach that links such large-scale magnetic fields to the cosmological vacuum energy. In our scenario the dark energy is due to the Veneziano ghost (which solves the U(1){sub A} problem in QCD). The Veneziano ghost couples through the triangle anomaly to the electromagnetic field with a constant which is unambiguously fixed in the standard model. While this interaction does not produce any physical effects in Minkowski space, it triggers the generation of a magnetic field in an expanding universe at every epoch. The induced energy of the magnetic field is thus proportional to cosmological vacuum energy: {rho}{sub EM{approx_equal}}B{sup 2{approx_equal}}(({alpha}/4{pi})){sup 2{rho}}{sub DE}, {rho}{sub DE} hence acting as a source for the magnetic energy {rho}{sub EM}. The corresponding numerical estimate leads to a magnitude in the nG range. There are two unique and distinctive predictions of our proposal: an uninterrupted active generation of Hubble size correlated magnetic fields throughout the evolution of the Universe; the presence of parity violation on the enormous scales 1/H, which apparently has been already observed in CMB. These predictions are entirely rooted into the standard model of particle physics.
TMD Evolution at Moderate Hard Scales
Rogers, Ted; Collins, John C.
2016-01-01
We summarize some of our recent work on non-perturbative transverse momentum dependent (TMD) evolution, emphasizing aspects that are necessary for dealing with moderately low scale processes like semi-inclusive deep inelastic scattering.
Strong Memories Are Hard to Scale
ERIC Educational Resources Information Center
Mickes, Laura; Hwe, Vivian; Wais, Peter E.; Wixted, John T.
2011-01-01
People are generally skilled at using a confidence scale to rate the strength of their memories over a wide range. Specifically, low-confidence recognition decisions are often associated with close-to-chance accuracy, whereas high-confidence recognition decisions can be associated with close-to-perfect accuracy. However, using a 20-point rating…
Hard Break-Up of Two-Nucleons and QCD Dynamics of NN Interaction
Sargsian, Misak
2008-10-13
We discus recent developments in theory of high energy two-body break-up of few-nucleon systems. The characteristics of these reactions are such that the hard two-body quasielastic subprocess can be clearly separated from the accompanying soft subprocesses. We discuss in details the hard rescattering model (HRM) in which hard photodisintegration develops in two stages. At first, photon knocks-out an energetic quark which rescatters subsequently with a quark of the other nucleon. The latter provides a mechanism of sharing the initial high momentum of the photon between two outgoing nucleons. This final state hard rescattering can be expressed through the hard NN scattering amplitude. Within HRM we discuss hard break-up reactions involving D and {sup 3}He targets and demonstrate how these reactions are sensitive to the dynamics of hard pn and pp interaction. Another development of HRM is the prediction of new helicity selection mechanism for hard two-body reactions, which was apparently confirmed in the recent JLab experiment.
Hard Break-Up of Two-Nucleons and QCD Dynamics of NN Interaction
NASA Astrophysics Data System (ADS)
Sargsian, Misak
2008-10-01
We discus recent developments in theory of high energy two-body break-up of few-nucleon systems. The characteristics of these reactions are such that the hard two-body quasielastic subprocess can be clearly separated from the accompanying soft subprocesses. We discuss in details the hard rescattering model (HRM) in which hard photodisintegration develops in two stages. At first, photon knocks-out an energetic quark which rescatters subsequently with a quark of the other nucleon. The latter provides a mechanism of sharing the initial high momentum of the photon between two outgoing nucleons. This final state hard rescattering can be expressed through the hard NN scattering amplitude. Within HRM we discuss hard break-up reactions involving D and 3He targets and demonstrate how these reactions are sensitive to the dynamics of hard pn and pp interaction. Another development of HRM is the prediction of new helicity selection mechanism for hard two-body reactions, which was apparently confirmed in the recent JLab experiment.
Setting the Renormalization Scale in QCD: The Principle of Maximum Conformality
Brodsky, Stanley J.; Di Giustino, Leonardo; /SLAC
2011-08-19
A key problem in making precise perturbative QCD predictions is the uncertainty in determining the renormalization scale {mu} of the running coupling {alpha}{sub s}({mu}{sup 2}): The purpose of the running coupling in any gauge theory is to sum all terms involving the {beta} function; in fact, when the renormalization scale is set properly, all non-conformal {beta} {ne} 0 terms in a perturbative expansion arising from renormalization are summed into the running coupling. The remaining terms in the perturbative series are then identical to that of a conformal theory; i.e., the corresponding theory with {beta} = 0. The resulting scale-fixed predictions using the 'principle of maximum conformality' (PMC) are independent of the choice of renormalization scheme - a key requirement of renormalization group invariance. The results avoid renormalon resummation and agree with QED scale-setting in the Abelian limit. The PMC is also the theoretical principle underlying the BLM procedure, commensurate scale relations between observables, and the scale-setting method used in lattice gauge theory. The number of active flavors nf in the QCD {beta} function is also correctly determined. We discuss several methods for determining the PMC/BLM scale for QCD processes. We show that a single global PMC scale, valid at leading order, can be derived from basic properties of the perturbative QCD cross section. The elimination of the renormalization scheme ambiguity using the PMC will not only increase the precision of QCD tests, but it will also increase the sensitivity of collider experiments to new physics beyond the Standard Model.
Scaling study of pure SU(3) theory - the QCD-TARO collaboration
NASA Astrophysics Data System (ADS)
Akemi, K.; Fujisaki, M.; Okuda, M.; Tago, Y.; Hashimoto, T.; Hioki, S.; Miyamura, O.; Takaishi, T.; Nakamura, A.; de Forcrand, Ph.; Hege, C.; Stamatescu, I. O.
1994-04-01
We present very precise results from the MCRG analysis on large lattices performed in the frame of the QCD-TARO collaboration using the highly parallel computer AP1000 of Fujitsu. We find good scaling behavior of pure SU(3) theory with strong non-perturbative effects in the range 6< β<7.5.
Renormalization group invariance and optimal QCD renormalization scale-setting: a key issues review
NASA Astrophysics Data System (ADS)
Wu, Xing-Gang; Ma, Yang; Wang, Sheng-Quan; Fu, Hai-Bing; Ma, Hong-Hao; Brodsky, Stanley J.; Mojaza, Matin
2015-12-01
A valid prediction for a physical observable from quantum field theory should be independent of the choice of renormalization scheme—this is the primary requirement of renormalization group invariance (RGI). Satisfying scheme invariance is a challenging problem for perturbative QCD (pQCD), since a truncated perturbation series does not automatically satisfy the requirements of the renormalization group. In a previous review, we provided a general introduction to the various scale setting approaches suggested in the literature. As a step forward, in the present review, we present a discussion in depth of two well-established scale-setting methods based on RGI. One is the ‘principle of maximum conformality’ (PMC) in which the terms associated with the β-function are absorbed into the scale of the running coupling at each perturbative order; its predictions are scheme and scale independent at every finite order. The other approach is the ‘principle of minimum sensitivity’ (PMS), which is based on local RGI; the PMS approach determines the optimal renormalization scale by requiring the slope of the approximant of an observable to vanish. In this paper, we present a detailed comparison of the PMC and PMS procedures by analyzing two physical observables R e+e- and Γ(H\\to b\\bar{b}) up to four-loop order in pQCD. At the four-loop level, the PMC and PMS predictions for both observables agree within small errors with those of conventional scale setting assuming a physically-motivated scale, and each prediction shows small scale dependences. However, the convergence of the pQCD series at high orders, behaves quite differently: the PMC displays the best pQCD convergence since it eliminates divergent renormalon terms; in contrast, the convergence of the PMS prediction is questionable, often even worse than the conventional prediction based on an arbitrary guess for the renormalization scale. PMC predictions also have the property that any residual dependence on
Importance of proper renormalization scale-setting for QCD testing at colliders
Wu, Xing -Gang; Wang, Sheng -Quan; Brodsky, Stanley J.
2015-12-22
A primary problem affecting perturbative quantum chromodynamic (pQCD) analyses is the lack of a method for setting the QCD running-coupling renormalization scale such that maximally precise fixed-order predictions for physical observables are obtained. The Principle of Maximum Conformality (PMC) eliminates the ambiguities associated with the conventional renormalization scale-setting procedure, yielding predictions that are independent of the choice of renormalization scheme. The QCD coupling scales and the effective number of quark flavors are set order-by-order in the pQCD series. The PMC has a solid theoretical foundation, satisfying the standard renormalization group invariance condition and all of the self-consistency conditions derived frommore » the renormalization group. The PMC scales at each order are obtained by shifting the arguments of the strong force coupling constant αs to eliminate all non-conformal {βi} terms in the pQCD series. The {βi} terms are determined from renormalization group equations without ambiguity. The correct behavior of the running coupling at each order and at each phase-space point can then be obtained. The PMC reduces in the NC → 0 Abelian limit to the Gell-Mann-Low method. In this brief report, we summarize the results of our recent application of the PMC to a number of collider processes, emphasizing the generality and applicability of this approach. A discussion of hadronic Z decays shows that, by applying the PMC, one can achieve accurate predictions for the total and separate decay widths at each order without scale ambiguities. We also show that, if one employs the PMC to determine the top-quark pair forward-backward asymmetry at the next-to-next-to-leading order level, one obtains a comprehensive, self-consistent pQCD explanation for the Tevatron measurements of the asymmetry. This accounts for the “increasing-decreasing” behavior observed by the D0 collaboration for increasing tt¯ invariant mass. At lower
Importance of proper renormalization scale-setting for QCD testing at colliders
Wu, Xing -Gang; Wang, Sheng -Quan; Brodsky, Stanley J.
2015-12-22
A primary problem affecting perturbative quantum chromodynamic (pQCD) analyses is the lack of a method for setting the QCD running-coupling renormalization scale such that maximally precise fixed-order predictions for physical observables are obtained. The Principle of Maximum Conformality (PMC) eliminates the ambiguities associated with the conventional renormalization scale-setting procedure, yielding predictions that are independent of the choice of renormalization scheme. The QCD coupling scales and the effective number of quark flavors are set order-by-order in the pQCD series. The PMC has a solid theoretical foundation, satisfying the standard renormalization group invariance condition and all of the self-consistency conditions derived from the renormalization group. The PMC scales at each order are obtained by shifting the arguments of the strong force coupling constant αs to eliminate all non-conformal {βi} terms in the pQCD series. The {βi} terms are determined from renormalization group equations without ambiguity. The correct behavior of the running coupling at each order and at each phase-space point can then be obtained. The PMC reduces in the N_{C} → 0 Abelian limit to the Gell-Mann-Low method. In this brief report, we summarize the results of our recent application of the PMC to a number of collider processes, emphasizing the generality and applicability of this approach. A discussion of hadronic Z decays shows that, by applying the PMC, one can achieve accurate predictions for the total and separate decay widths at each order without scale ambiguities. We also show that, if one employs the PMC to determine the top-quark pair forward-backward asymmetry at the next-to-next-to-leading order level, one obtains a comprehensive, self-consistent pQCD explanation for the Tevatron measurements of the asymmetry. This accounts for the “increasing-decreasing” behavior observed by the D0 collaboration for increasing tt¯ invariant mass. At lower
Importance of proper renormalization scale-setting for QCD testing at colliders
NASA Astrophysics Data System (ADS)
Wu, Xing-Gang; Wang, Sheng-Quan; Brodsky, Stanley J.
2016-02-01
A primary problem affecting perturbative quantum chromodynamic (pQCD) analyses is the lack of a method for setting the QCD running-coupling renormalization scale such that maximally precise fixed-order predictions for physical observables are obtained. The Principle of Maximum Conformality (PMC) eliminates the ambiguities associated with the conventional renormalization scale-setting procedure, yielding predictions that are independent of the choice of renormalization scheme. The QCD coupling scales and the effective number of quark flavors are set order-by-order in the pQCD series. The PMC has a solid theoretical foundation, satisfying the standard renormalization group invariance condition and all of the self-consistency conditions derived from the renormalization group. The PMC scales at each order are obtained by shifting the arguments of the strong force coupling constant α s to eliminate all non-conformal { β i } terms in the pQCD series. The { β i } terms are determined from renormalization group equations without ambiguity. The correct behavior of the running coupling at each order and at each phase-space point can then be obtained. The PMC reduces in the N C → 0 Abelian limit to the Gell-Mann-Low method. In this brief report, we summarize the results of our recent application of the PMC to a number of collider processes, emphasizing the generality and applicability of this approach. A discussion of hadronic Z decays shows that, by applying the PMC, one can achieve accurate predictions for the total and separate decay widths at each order without scale ambiguities. We also show that, if one employs the PMC to determine the top-quark pair forward-backward asymmetry at the next-to-next-to-leading order level, one obtains a comprehensive, self-consistent pQCD explanation for the Tevatron measurements of the asymmetry. This accounts for the "increasing-decreasing" behavior observed by the D0 collaboration for increasing t overline t invariant mass. At
The generalized BLM approach to fix scale- dependence in QCD: the current status of investigations
NASA Astrophysics Data System (ADS)
Kataev, A. L.
2015-05-01
I present a brief review of the generalized Brodsky-Lepage-McKenzie (BLM) approaches to fix the scale-dependence of the renormalization group (RG) invariant quantities in QCD. At first, these approaches are based on the expansions of the coefficients of the perturbative series for the RG-invariant quantities in the products of the coefficients βi of the QCD β-function, which are evaluated in the MS-like schemes. As a next step all βi-dependent terms are absorbed into the BLM-type scale(s) of the powers of the QCD couplings. The difference between two existing formulations of the above mentioned generalizations based on the seBLM approach and the Principle of Maximal Conformality (PMC) are clarified in the case of the Bjorken polarized deep-inelastic scattering sum rule. Using the conformal symmetry-based relations for the non-singlet coefficient functions of the Adler D-function and of Bjorken polarized deep-inelastic scattering sum rules CBjpNS (as) the βi-dependent structure of the NNLO approximation for CBjpNS (as) is predicted in QCD with ngl-multiplet of gluino degrees of freedom, which appear in SUSY extension of QCD. The importance of performing the analytical calculation of the N3LO additional contributions of ngl gluino multiplet to CBjpNS (as) for checking the presented in the report NNLO prediction and for the studies of the possibility to determine the discussed β-expansion pattern of this sum rule at the O(a4s)-level is emphasised.
NASA Astrophysics Data System (ADS)
Sun, Junfeng; Chang, Qin; Hu, Xiaohui; Yang, Yueling
2015-04-01
In this paper, we investigate the contributions of hard spectator scattering and annihilation in B → PV decays within the QCD factorization framework. With available experimental data on B → πK* , ρK , πρ and Kϕ decays, comprehensive χ2 analyses of the parameters XA,Hi,f (ρA,Hi,f, ϕA,Hi,f) are performed, where XAf (XAi) and XH are used to parameterize the endpoint divergences of the (non)factorizable annihilation and hard spectator scattering amplitudes, respectively. Based on χ2 analyses, it is observed that (1) The topology-dependent parameterization scheme is feasible for B → PV decays; (2) At the current accuracy of experimental measurements and theoretical evaluations, XH = XAi is allowed by B → PV decays, but XH ≠ XAf at 68% C.L.; (3) With the simplification XH = XAi, parameters XAf and XAi should be treated individually. The above-described findings are very similar to those obtained from B → PP decays. Numerically, for B → PV decays, we obtain (ρA,Hi ,ϕA,Hi [ ° ]) = (2.87-1.95+0.66 , -145-21+14) and (ρAf, ϕAf [ ° ]) = (0.91-0.13+0.12 , -37-9+10) at 68% C.L. With the best-fit values, most of the theoretical results are in good agreement with the experimental data within errors. However, significant corrections to the color-suppressed tree amplitude α2 related to a large ρH result in the wrong sign for ACPdir (B- →π0K*-) compared with the most recent BABAR data, which presents a new obstacle in solving "ππ" and "πK" puzzles through α2. A crosscheck with measurements at Belle (or Belle II) and LHCb, which offer higher precision, is urgently expected to confirm or refute such possible mismatch.
Random walk through recent CDF QCD results
C. Mesropian
2003-04-09
We present recent results on jet fragmentation, jet evolution in jet and minimum bias events, and underlying event studies. The results presented in this talk address significant questions relevant to QCD and, in particular, to jet studies. One topic discussed is jet fragmentation and the possibility of describing it down to very small momentum scales in terms of pQCD. Another topic is the studies of underlying event energy originating from fragmentation of partons not associated with the hard scattering.
Meson effective mass in the isospin medium in hard-wall AdS/QCD model
NASA Astrophysics Data System (ADS)
Mamedov, Shahin
2016-02-01
We study a mass splitting of the light vector, axial-vector, and pseudoscalar mesons in the isospin medium in the framework of the hard-wall model. We write an effective mass definition for the interacting gauge fields and scalar field introduced in gauge field theory in the bulk of AdS space-time. Relying on holographic duality we obtain a formula for the effective mass of a boundary meson in terms of derivative operator over the extra bulk coordinate. The effective mass found in this way coincides with the one obtained from finding of poles of the two-point correlation function. In order to avoid introducing distinguished infrared boundaries in the quantization formula for the different mesons from the same isotriplet we introduce extra action terms at this boundary, which reduces distinguished values of this boundary to the same value. Profile function solutions and effective mass expressions were found for the in-medium ρ , a_1, and π mesons.
NASA Astrophysics Data System (ADS)
Markov, Yu. A.; Markova, M. A.
2007-03-01
In general line with our first work [Yu.A. Markov, M.A. Markova, Nucl. Phys. A 770 (2006) 162] within the framework of semiclassical approximation a general theory for the scattering processes of soft (anti)quark excitations off hard thermal particles in hot QCD-medium is thoroughly considered. The dynamical equations describing evolution for the usual classical color charge Q(t) and Grassmann color charges θ(t),θ(t) of hard particle taking into account the soft fermion degree of freedom of the system are suggested. On the basis of these equations and the Blaizot-Iancu equations iterative procedure of calculation of effective currents and sources generating the scattering processes under consideration is defined and their form up to third order in powers of free soft quark field, soft gluon one, and initial values of the color charges of hard particle is explicitly calculated. With use of the generalized Tsytovich principle a connection between matrix elements of the scattering processes and the effective currents and sources is established. In the context of the effective theory suggested for soft and hard fermion excitations new mechanisms of energy losses of high-energy parton propagating through QCD-medium are considered.
Nanometer Scale Hard/Soft Bilayer Magnetic Antidots.
Béron, Fanny; Kaidatzis, Andreas; Velo, Murilo F; Arzuza, Luis C C; Palmero, Ester M; Del Real, Rafael P; Niarchos, Dimitrios; Pirota, Kleber R; García-Martín, José Miguel
2016-12-01
The effect of arrays of nanometer scale pores on the magnetic properties of thin films has been analyzed. Particularly, we investigated the influence of the out-of-plane magnetization component created by the nanopores on the in-plane magnetic behavior of patterned hard/soft magnetic thin films in antidot morphology. Its influence on the coupling in Co/Py bilayers of few tens of nanometer thick is compared for disordered and ordered antidots of 35-nm diameter. The combination of magneto-optical Kerr effect (MOKE) and first-order reversal curve (FORC) technique allows probing the effects of the induced perpendicular magnetization component on the bilayer magnetic behavior, while magnetic force microscopy (MFM) is used to image it. We found that ordered antidots yield a stronger out-of-plane component than disordered ones, influencing in a similar manner the hard layer global in-plane magnetic behavior if with a thin or without soft layer. However, its influence changes with a thicker soft layer, which may be an indication of a weaker coupling. PMID:26873261
Scaled particle theory for hard sphere pairs. I. Mathematical structure.
Stillinger, Frank H; Debenedetti, Pablo G; Chatterjee, Swaroop
2006-11-28
We develop an extension of the original Reiss-Frisch-Lebowitz scaled particle theory that can serve as a predictive method for the hard sphere pair correlation function g(r). The reversible cavity creation work is analyzed both for a single spherical cavity of arbitrary size, as well as for a pair of identical such spherical cavities with variable center-to-center separation. These quantities lead directly to a prediction of g(r). Smooth connection conditions have been identified between the small-cavity situation where the work can be exactly and completely expressed in terms of g(r), and the large-cavity regime where macroscopic properties become relevant. Closure conditions emerge which produce a nonlinear integral equation that must be satisfied by the pair correlation function. This integral equation has a structure which straightforwardly generates a solution that is a power series in density. The results of this series replicate the exact second and third virial coefficients for the hard sphere system via the contact value of the pair correlation function. The predicted fourth virial coefficient is approximately 0.6% lower than the known exact value. Detailed numerical analysis of the nonlinear integral equation has been deferred to the subsequent paper. PMID:17144712
Scaled particle theory for hard sphere pairs. I. Mathematical structure
NASA Astrophysics Data System (ADS)
Stillinger, Frank H.; Debenedetti, Pablo G.; Chatterjee, Swaroop
2006-11-01
We develop an extension of the original Reiss-Frisch-Lebowitz scaled particle theory that can serve as a predictive method for the hard sphere pair correlation function g(r ). The reversible cavity creation work is analyzed both for a single spherical cavity of arbitrary size, as well as for a pair of identical such spherical cavities with variable center-to-center separation. These quantities lead directly to a prediction of g(r ). Smooth connection conditions have been identified between the small-cavity situation where the work can be exactly and completely expressed in terms of g(r ), and the large-cavity regime where macroscopic properties become relevant. Closure conditions emerge which produce a nonlinear integral equation that must be satisfied by the pair correlation function. This integral equation has a structure which straightforwardly generates a solution that is a power series in density. The results of this series replicate the exact second and third virial coefficients for the hard sphere system via the contact value of the pair correlation function. The predicted fourth virial coefficient is approximately 0.6% lower than the known exact value. Detailed numerical analysis of the nonlinear integral equation has been deferred to the subsequent paper.
Impact of CMOS Scaling on Single-Event Hard Errors in Space Systems
NASA Technical Reports Server (NTRS)
Johnston, A. H.; Swift, G. M.; Shaw, D. C.
1995-01-01
Applications of highly scaled devices in space applications are shown to be limited by hard errors from cosmic rays. Hard errors were first observed in 0.8 (micro)m DRAMs. For feature sizes below 0.5 (micro)m, scaling theory predicts that low power devices will have much lower hard error rates than devices optimized for high speed.
NASA Astrophysics Data System (ADS)
Brodsky, Stanley J.; de Téramond, Guy F.; Deur, Alexandre; Dosch, Hans Günter
2015-09-01
The valence Fock-state wavefunctions of the light-front (LF) QCD Hamiltonian satisfy a relativistic equation of motion, analogous to the nonrelativistic radial Schrödinger equation, with an effective confining potential U which systematically incorporates the effects of higher quark and gluon Fock states. If one requires that the effective action which underlies the QCD Lagrangian remains conformally invariant and extends the formalism of de Alfaro, Fubini and Furlan to LF Hamiltonian theory, the potential U has a unique form of a harmonic oscillator potential, and a mass gap arises. The result is a nonperturbative relativistic LF quantum mechanical wave equation which incorporates color confinement and other essential spectroscopic and dynamical features of hadron physics, including a massless pion for zero quark mass and linear Regge trajectories with the same slope in the radial quantum number n and orbital angular momentum L. Only one mass parameter κ appears. The corresponding LF Dirac equation provides a dynamical and spectroscopic model of nucleons. The same LF equations arise from the holographic mapping of the soft-wall model modification of AdS5 space with a unique dilaton profile to QCD (3+1) at fixed LF time. LF holography thus provides a precise relation between the bound-state amplitudes in the fifth dimension of Anti-de Sitter (AdS) space and the boost-invariant LFWFs describing the internal structure of hadrons in physical space-time. We also show how the mass scale underlying confinement and the masses of light-quark hadrons determines the scale controlling the evolution of the perturbative QCD coupling. The relation between scales is obtained by matching the nonperturbative dynamics, as described by an effective conformal theory mapped to the LF and its embedding in AdS space, to the perturbative QCD regime computed to four-loop order. The data for the effective coupling defined from the Bjorken sum rule are remarkably consistent with the
Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins
2011-08-12
I review a number of topics where conventional wisdom in hadron physics has been challenged. For example, hadrons can be produced at large transverse momentum directly within a hard higher-twist QCD subprocess, rather than from jet fragmentation. Such 'direct' processes can explain the deviations from perturbative QCD predictions in measurements of inclusive hadron cross sections at fixed x{sub T} = 2p{sub T}/{radical}s, as well as the 'baryon anomaly', the anomalously large proton-to-pion ratio seen in high centrality heavy ion collisions. Initial-state and final-state interactions of the struck quark, the soft-gluon rescattering associated with its Wilson line, lead to Bjorken-scaling single-spin asymmetries, diffractive deep inelastic scattering, the breakdown of the Lam-Tung relation in Drell-Yan reactions, as well as nuclear shadowing and antishadowing. The Gribov-Glauber theory predicts that antishadowing of nuclear structure functions is not universal, but instead depends on the flavor quantum numbers of each quark and antiquark, thus explaining the anomalous nuclear dependence measured in deep-inelastic neutrino scattering. Since shadowing and antishadowing arise from the physics of leading-twist diffractive deep inelastic scattering, one cannot attribute such phenomena to the structure of the nucleus itself. It is thus important to distinguish 'static' structure functions, the probability distributions computed from the square of the target light-front wavefunctions, versus 'dynamical' structure functions which include the effects of the final-state rescattering of the struck quark. The importance of the J = 0 photon-quark QCD contact interaction in deeply virtual Compton scattering is also emphasized. The scheme-independent BLM method for setting the renormalization scale is discussed. Eliminating the renormalization scale ambiguity greatly improves the precision of QCD predictions and increases the sensitivity of searches for new physics at the LHC
Remarks on diquarks, strong binding, and a large hidden QCD scale
Shifman, M.; Vainshtein, A.
2005-04-01
We present arguments regarding the possible role of diquarks in low-energy hadron phenomenology that has so far escaped theorists' attention. Good diquarks, i.e. the 0{sup +} states of two quarks, are argued to have a two-component structure with one of the components peaking at distances several times shorter than a typical hadron size (a short-range core). This can play a role in solving two old puzzles of the 't Hooft 1/N expansion: strong quark-mass dependence of vacuum energy density and strong violations of the Okubo-Zweig-Iizuka (OZI) rule in quark-antiquark 0{sup {+-}} channels. In both cases empiric data defy 't Hooft's 1/N suppression. If good diquarks play a role at an intermediate energy scale they ruin 't Hooft's planarity because of their mixed-flavor composition. This new scale associated with good diquarks may be related to a numerically large scale discovered in [V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl. Phys. B 191, 301 (1981)] in a number of phenomena mostly related to vacuum quantum numbers and 0{sup {+-}} glueball channels. If SU(3){sub color} of bona fide QCD is replaced by SU(2){sub color}, diquarks become well-defined gauge-invariant objects. Moreover, there is an exact symmetry relating them to pions. In this limit predictions regarding good diquarks are ironclad. If passage from SU(2){sub color} to SU(3){sub color} does not lead to dramatic disturbances, these predictions remain qualitatively valid in bona fide QCD.
Quantum Phase Transitions and New Scales in QCD-Like Theories
Unsal, Mithat
2008-07-03
It is commonly believed that in confining vector-like gauge theories the center and chiral symmetry realizations are parametrically entangled, and if phase transitions occur, they must take place around the strong scale {Lambda}{sup -1} of the gauge theory. We demonstrate that (non-thermal) vector-like theories formulated on R{sup 3} x S{sup 1} where S{sup 1} is a spatial circle exhibit new dynamical scales and new phenomena. There are chiral phase transitions taking place at {Lambda}{sup -1}/N{sub c} in the absence of any change in center symmetry. {Lambda}{sup -1}/N{sub c}, invisible in (planar) perturbation theory, is also the scale where abelian versus non-abelian confinement regimes meet. Large N{sub c} volume independence (a working Eguchi-Kawai reduction) provides new insights and independently confirms the existence of these scales. We show that certain phases and scales are outside the reach of holographic (supergravity) modeling of QCD.
NASA Astrophysics Data System (ADS)
Wang, Zhiyuan; Ma, Bo-Qiang
2016-05-01
We propose a unified approach to study meson, nucleon and Δ -baryon properties at zero and finite temperatures in the context of hard-wall AdS/QCD model. We first combine some previous works dealing with mesons and baryons separately, and introduce a new parameter ξ so that the model could give a universal description of spectrum and couplings of both sectors in a self-consistent way. All observables calculated numerically show reasonable agreement with experimental data. We then study these observables at nonzero temperature by modifying the AdS space-time into AdS-Schwartzchild space-time. Numerically solving the model, we find an interesting temperature dependence of the spectrum and the couplings. We also make a prediction on the finite-temperature decay width of some nucleon and Δ excited states.
NASA Astrophysics Data System (ADS)
Bi, Huan-Yu; Wu, Xing-Gang; Ma, Yang; Ma, Hong-Hao; Brodsky, Stanley J.; Mojaza, Matin
2015-09-01
The Principle of Maximum Conformality (PMC) eliminates QCD renormalization scale-setting uncertainties using fundamental renormalization group methods. The resulting scale-fixed pQCD predictions are independent of the choice of renormalization scheme and show rapid convergence. The coefficients of the scale-fixed couplings are identical to the corresponding conformal series with zero β-function. Two all-orders methods for systematically implementing the PMC-scale setting procedure for existing high order calculations are discussed in this article. One implementation is based on the PMC-BLM correspondence (PMC-I); the other, more recent, method (PMC-II) uses the Rδ-scheme, a systematic generalization of the minimal subtraction renormalization scheme. Both approaches satisfy all of the principles of the renormalization group and lead to scale-fixed and scheme-independent predictions at each finite order. In this work, we show that PMC-I and PMC-II scale-setting methods are in practice equivalent to each other. We illustrate this equivalence for the four-loop calculations of the annihilation ratio Re+e- and the Higgs partial width Γ (H → b b bar). Both methods lead to the same resummed ('conformal') series up to all orders. The small scale differences between the two approaches are reduced as additional renormalization group {βi }-terms in the pQCD expansion are taken into account. We also show that special degeneracy relations, which underly the equivalence of the two PMC approaches and the resulting conformal features of the pQCD series, are in fact general properties of non-Abelian gauge theory.
Bi, Huan -Yu; Wu, Xing -Gang; Ma, Yang; Ma, Hong -Hao; Brodsky, Stanley J.; Mojaza, Matin
2015-06-26
The Principle of Maximum Conformality (PMC) eliminates QCD renormalization scale-setting uncertainties using fundamental renormalization group methods. The resulting scale-fixed pQCD predictions are independent of the choice of renormalization scheme and show rapid convergence. The coefficients of the scale-fixed couplings are identical to the corresponding conformal series with zero β-function. Two all-orders methods for systematically implementing the PMC-scale setting procedure for existing high order calculations are discussed in this article. One implementation is based on the PMC-BLM correspondence (PMC-I); the other, more recent, method (PMC-II) uses the R_{δ}-scheme, a systematic generalization of the minimal subtraction renormalization scheme. Both approaches satisfy all of the principles of the renormalization group and lead to scale-fixed and scheme-independent predictions at each finite order. In this work, we show that PMC-I and PMC-II scale-setting methods are in practice equivalent to each other. We illustrate this equivalence for the four-loop calculations of the annihilation ratio R_{e+e–} and the Higgs partial width I'(H→bb¯). Both methods lead to the same resummed (‘conformal’) series up to all orders. The small scale differences between the two approaches are reduced as additional renormalization group {β_{i}}-terms in the pQCD expansion are taken into account. In addition, we show that special degeneracy relations, which underly the equivalence of the two PMC approaches and the resulting conformal features of the pQCD series, are in fact general properties of non-Abelian gauge theory.
NASA Astrophysics Data System (ADS)
Filho, J. T.; Fratari, R. Q.; Azeredo, C. R. S.; Oliveira, S. P.
2015-10-01
The standardization of Vickers hardness quantity in Brazil was established as related to the quality management system and the properties of metallic materials that are used in industries like steelworks, car makers aircraft manufacturers. This work aimed in describing the metrological methodology applied in the requalification of the Inmetro's Primary Hardness Standardization Machine for low, medium and high hardness ranges of Vickers HV3 scale.
Setting the scale of the pp and pp total cross sections using AdS/QCD
Domokos, Sophia K.; Harvey, Jeffrey A.; Mann, Nelia
2010-11-15
This paper is an addendum to earlier work where we computed the Pomeron contribution to pp and pp scattering in AdS/QCD. Our model for pp scattering in the Regge regime depends on four parameters: the slope and intercept of the Pomeron trajectory {alpha}{sub c}{sup '}, {alpha}{sub c}(0), a mass scale M{sub d}, which determines a form factor entering into matrix elements of the energy-momentum tensor, and a coupling {lambda}{sub P} between the lightest spin-two glueball and the proton, which sets the overall scale of the total cross section. Here we perform a more detailed computation of {lambda}{sub P} in the Sakai-Sugimoto model by using the construction of nucleons as instantons of the dual 5D gauge theory and an effective 5D fermion description of these nucleons which has been successfully used to compute a variety of nucleon-meson couplings. We find {lambda}{sub P,SS{approx_equal}}6.38 GeV{sup -1}, which is in reasonable agreement with the value {lambda}{sub P,fit}=8.28 GeV{sup -1} determined by fitting single Pomeron exchange to data.
Brodsky, Stanley J.; de Teramond, Guy F.; Deur, Alexandre P.; Dosch, Hans G.
2015-09-01
The valence Fock-state wavefunctions of the light-front QCD Hamiltonian satisfy a relativistic equation of motion with an effective confining potential U which systematically incorporates the effects of higher quark and gluon Fock states. If one requires that the effective action which underlies the QCD Lagrangian remains conformally invariant and extends the formalism of de Alfaro, Fubini and Furlan to light front Hamiltonian theory, the potential U has a unique form of a harmonic oscillator potential, and a mass gap arises. The result is a nonperturbative relativistic light-front quantum mechanical wave equation which incorporates color confinement and other essential spectroscopic and dynamical features of hadron physics, including a massless pion for zero quark mass and linear Regge trajectories with the same slope in the radial quantum number n and orbital angular momentum L. Only one mass parameter κ appears. Light-front holography thus provides a precise relation between the bound-state amplitudes in the fifth dimension of AdS space and the boost-invariant light-front wavefunctions describing the internal structure of hadrons in physical space-time. We also show how the mass scale κ underlying confinement and hadron masses determines the scale Λ_{{ovr MS}} controlling the evolution of the perturbative QCD coupling. The relation between scales is obtained by matching the nonperturbative dynamics, as described by an effective conformal theory mapped to the light-front and its embedding in AdS space, to the perturbative QCD regime computed to four-loop order. The result is an effective coupling defined at all momenta. The predicted value Λ_{{ovr MS}}=0.328±0.034 GeV is in agreement with the world average 0.339±0.010 GeV. The analysis applies to any renormalization scheme.
NASA Astrophysics Data System (ADS)
Diaz Saez, Bastian; Levin, Eugene
2011-11-01
In this paper we show that the intuitive guess that the geometric scaling behavior should be violated in the case of the running QCD coupling, turns out to be correct. The scattering amplitude of the dipole with the size r depends on new dimensional scale: Λ, even at large values Y=ln(1/x) and l=ln(α(r)/α(1/Qs2)). However, in this region we found a new scaling behavior: the amplitude is a function of ζ=Yl. We state that only in the vicinity of the saturation scale Q ( α(Qs2)ln(rQs2)⩽1), the amplitude shows the geometric scaling behavior. Based on these finding the geometric scaling behavior that has been seen experimentally, stems from either we have not probed the proton at HERA and the LHC deeply inside the saturation region or that there exists the mechanism of freezing of the QCD coupling constant at r≈1/Qs2.
Quarkonium states in an anisotropic QCD plasma
Dumitru, Adrian; Guo Yun; Mocsy, Agnes; Strickland, Michael
2009-03-01
We consider quarkonium in a hot quantum chromodynamics (QCD) plasma which, due to expansion and nonzero viscosity, exhibits a local anisotropy in momentum space. At short distances the heavy-quark potential is known at tree level from the hard-thermal loop resummed gluon propagator in anisotropic perturbative QCD. The potential at long distances is modeled as a QCD string which is screened at the same scale as the Coulomb field. At asymptotic separation the potential energy is nonzero and inversely proportional to the temperature. We obtain numerical solutions of the three-dimensional Schroedinger equation for this potential. We find that quarkonium binding is stronger at nonvanishing viscosity and expansion rate, and that the anisotropy leads to polarization of the P-wave states.
On the Behavior of the Effective QCD Coupling {alpha}{sub {tau}}(s)at Low Scales
Brodsky, Stanley J.
2002-12-11
The hadronic decays of the {tau} lepton can be used to determine the effective charge {alpha}{tau}(m{sub {tau}{prime}}{sup 2}) for a hypothetical {tau}-lepton with mass in the range 0 < m{sub {tau}{prime}} < m{sub {tau}}. This definition provides a fundamental definition of the QCD coupling at low mass scales. We study the behavior of {alpha}{sub {tau}} at low mass scales directly from first principles and without any renormalization-scheme dependence by looking at the experimental data from the OPAL Collaboration. The results are consistent with the freezing of the physical coupling at mass scales s = m{sub {tau}{prime}}{sup 2} of order 1 GeV{sup 2} with a magnitude {alpha}{sub {tau}} {approx} 0.9 {+-} 0.1.
Bornyakov, V.G.
2005-06-01
Possibilities that are provided by a lattice regularization of QCD for studying nonperturbative properties of QCD are discussed. A review of some recent results obtained from computer calculations in lattice QCD is given. In particular, the results for the QCD vacuum structure, the hadron mass spectrum, and the strong coupling constant are considered.
Brodsky, Stanley J.; Wu, Xing-Gang; /SLAC /Chongqing U.
2012-02-16
A key problem in making precise perturbative QCD predictions is to set the proper renormalization scale of the running coupling. The extended renormalization group equations, which express the invariance of physical observables under both the renormalization scale- and scheme-parameter transformations, provide a convenient way for estimating the scale- and scheme-dependence of the physical process. In this paper, we present a solution for the scale-equation of the extended renormalization group equations at the four-loop level. Using the principle of maximum conformality (PMC)/Brodsky-Lepage-Mackenzie (BLM) scale-setting method, all non-conformal {beta}{sub i} terms in the perturbative expansion series can be summed into the running coupling, and the resulting scale-fixed predictions are independent of the renormalization scheme. Different schemes lead to different effective PMC/BLM scales, but the final results are scheme independent. Conversely, from the requirement of scheme independence, one not only can obtain scheme-independent commensurate scale relations among different observables, but also determine the scale displacements among the PMC/BLM scales which are derived under different schemes. In principle, the PMC/BLM scales can be fixed order-by-order, and as a useful reference, we present a systematic and scheme-independent procedure for setting PMC/BLM scales up to NNLO. An explicit application for determining the scale setting of R{sub e{sup +}e{sup -}}(Q) up to four loops is presented. By using the world average {alpha}{sub s}{sup {ovr MS}}(MZ) = 0.1184 {+-} 0.0007, we obtain the asymptotic scale for the 't Hooft associated with the {ovr MS} scheme, {Lambda}{sub {ovr MS}}{sup 'tH} = 245{sub -10}{sup +9} MeV, and the asymptotic scale for the conventional {ovr MS} scheme, {Lambda}{sub {ovr MS}} = 213{sub -8}{sup +19} MeV.
SAITO,N.
1999-12-09
In this lecture I give a pedagogical introduction to the Perturbative QCD to understand the short-distance dynamics of the strong interaction. Starting with fundamental concepts such as the color degree of freedom of QCD, non-abelian gauge field theory, renormalization group equation etc., I explain a basic idea of the perturbative QCD and apply this idea to the e{sup +}e{sup {minus}} processes and the structure functions. The notion of mass singularity and the necessity of its factorization is discussed in some detail.
Ma, Hong -Hao; Wu, Xing -Gang; Ma, Yang; Brodsky, Stanley J.; Mojaza, Matin
2015-05-26
A key problem in making precise perturbative QCD (pQCD) predictions is how to set the renormalization scale of the running coupling unambiguously at each finite order. The elimination of the uncertainty in setting the renormalization scale in pQCD will greatly increase the precision of collider tests of the Standard Model and the sensitivity to new phenomena. Renormalization group invariance requires that predictions for observables must also be independent on the choice of the renormalization scheme. The well-known Brodsky-Lepage-Mackenzie (BLM) approach cannot be easily extended beyond next-to-next-to-leading order of pQCD. Several suggestions have been proposed to extend the BLM approach to all orders. In this paper we discuss two distinct methods. One is based on the “Principle of Maximum Conformality” (PMC), which provides a systematic all-orders method to eliminate the scale and scheme ambiguities of pQCD. The PMC extends the BLM procedure to all orders using renormalization group methods; as an outcome, it significantly improves the pQCD convergence by eliminating renormalon divergences. An alternative method is the “sequential extended BLM” (seBLM) approach, which has been primarily designed to improve the convergence of pQCD series. The seBLM, as originally proposed, introduces auxiliary fields and follows the pattern of the β0-expansion to fix the renormalization scale. However, the seBLM requires a recomputation of pQCD amplitudes including the auxiliary fields; due to the limited availability of calculations using these auxiliary fields, the seBLM has only been applied to a few processes at low orders. In order to avoid the complications of adding extra fields, we propose a modified version of seBLM which allows us to apply this method to higher orders. As a result, we then perform detailed numerical comparisons of the two alternative scale-setting approaches by investigating their predictions for the annihilation cross section ratio R
NASA Astrophysics Data System (ADS)
Ma, Hong-Hao; Wu, Xing-Gang; Ma, Yang; Brodsky, Stanley J.; Mojaza, Matin
2015-05-01
A key problem in making precise perturbative QCD (pQCD) predictions is how to set the renormalization scale of the running coupling unambiguously at each finite order. The elimination of the uncertainty in setting the renormalization scale in pQCD will greatly increase the precision of collider tests of the Standard Model and the sensitivity to new phenomena. Renormalization group invariance requires that predictions for observables must also be independent on the choice of the renormalization scheme. The well-known Brodsky-Lepage-Mackenzie (BLM) approach cannot be easily extended beyond next-to-next-to-leading order of pQCD. Several suggestions have been proposed to extend the BLM approach to all orders. In this paper we discuss two distinct methods. One is based on the "Principle of Maximum Conformality" (PMC), which provides a systematic all-orders method to eliminate the scale and scheme ambiguities of pQCD. The PMC extends the BLM procedure to all orders using renormalization group methods; as an outcome, it significantly improves the pQCD convergence by eliminating renormalon divergences. An alternative method is the "sequential extended BLM" (seBLM) approach, which has been primarily designed to improve the convergence of pQCD series. The seBLM, as originally proposed, introduces auxiliary fields and follows the pattern of the β0 -expansion to fix the renormalization scale. However, the seBLM requires a recomputation of pQCD amplitudes including the auxiliary fields; due to the limited availability of calculations using these auxiliary fields, the seBLM has only been applied to a few processes at low orders. In order to avoid the complications of adding extra fields, we propose a modified version of seBLM which allows us to apply this method to higher orders. We then perform detailed numerical comparisons of the two alternative scale-setting approaches by investigating their predictions for the annihilation cross section ratio Re+e- at four-loop order in pQCD.
Andersen, Jens O.; Leganger, Lars E.; Strickland, Michael; Su, Nan
2011-10-15
In this brief report we compare the predictions of a recent next-to-next-to-leading order hard-thermal-loop perturbation theory (HTLpt) calculation of the QCD trace anomaly to available lattice data. We focus on the trace anomaly scaled by T{sup 2} in two cases: N{sub f}=0 and N{sub f}=3. When using the canonical value of {mu}=2{pi}T for the renormalization scale, we find that for Yang-Mills theory (N{sub f}=0) agreement between HTLpt and lattice data for the T{sup 2}-scaled trace anomaly begins at temperatures on the order of 8T{sub c}, while treating the subtracted piece as an interaction term when including quarks (N{sub f}=3) agreement begins already at temperatures above 2T{sub c}. In both cases we find that at very high temperatures the T{sup 2}-scaled trace anomaly increases with temperature in accordance with the predictions of HTLpt.
Relevant gluonic energy scale of spontaneous chiral symmetry breaking from lattice QCD
Yamamoto, Arata; Suganuma, Hideo
2010-01-01
We analyze which momentum component of the gluon field induces spontaneous chiral symmetry breaking in lattice QCD. After removing the high-momentum or low-momentum component of the gluon field, we calculate the chiral condensate and observe the roles of these momentum components. The chiral condensate is found to be drastically reduced by removing the zero-momentum gluon. The reduction is about 40% of the total in our calculation condition. The nonzero-momentum infrared gluon also has a sizable contribution to the chiral condensate. From the Banks-Casher relation, this result reflects the nontrivial relation between the infrared gluon and the zero-mode quark.
NASA Astrophysics Data System (ADS)
Gary, J. William
2000-06-01
I examine the determination of the QCD color factor ratio CA/CF from the scale evolution of particle multiplicity in e+e- three jet events. I fit an analytic expression for the multiplicity in three jet events to event samples generated with QCD multihadronic event generators. I demonstrate that a one parameter fit of CA/CF yields the expected result CA/CF=2.25 in the limit of asymptotically large energies if energy conservation is included in the calculation. In contrast, a two parameter fit of CA/CF and a constant offset to the gluon jet multiplicity, proposed in a recent study, does not yield CA/CF=2.25 in this limit. I apply the one parameter fit method to recently published data of the DELPHI experiment at the e+e- collider LEP at CERN and determine the effective value of CA/CF from this technique, at the finite energy of the Z0 boson, to be 1.74+/-0.03+/-0.10, where the first uncertainty is statistical and the second is systematic.
The galaxy hosts and large-scale environments of short-hard (gamma)-ray bursts
Prochaska, J X; Bloom, J S; Chen, H; Foley, R J; Perley, D A; Ramirez-Ruiz, E; Granot, J; Lee, W H; Pooley, D; Alatalo, K; Hurley, K; Cooper, M C; Dupree, A K; Gerke, B F; Hansen, B S; Kalirai, J S; Newman, J A; Rich, R M; Richer, H; Stanford, S A; Stern, D; van Breugel, W
2006-04-07
The nature of the progenitors of short duration, hard spectrum, gamma-ray bursts (GRBs) has remained a mystery. Even with the recent localizations of four short-hard GRBs, no transient emission has been found at long wavelengths that directly constrains the progenitor nature. Instead, as was the case in studying the different morphological subclasses of supernovae and the progenitors of long-duration GRBs, we suggest that the progenitors of short bursts can be meaningfully constrained by the environment in which the bursts occur. Here we present the discovery spectra of the galaxies that hosted three short-hard GRBs and the spectrum of a fourth host. The results indicate that these environments, both at the galaxy scale and galaxy-cluster scale, differ substantially from those of long-soft GRBs. The spatial offset of three bursts from old and massive galaxy hosts strongly favors an origin from the merger of compact stellar remnants, such as double neutron stars or a neutron-star black hole binary. The star-forming host of another GRB provides confirmation that, like supernovae of Type Ia, the progenitors of short-hard bursts are created in all galaxy types. This indicates a class of progenitors with a wide distribution of delay times between formation and explosion.
Finite-size scaling as a tool for the search of the critical endpoint of QCD in heavy-ion data
Palhares, L. F.; Fraga, E. S.
2012-07-15
We briefly discuss the role played by the finiteness of the system created in high-energy heavyion collisions (HIC's) in the experimental search of the QCD critical endpoint and, in particular, the applicability of the predicting power of finite-size scaling plots in data analysis of current HIC's.
Scaling of noise correlations in one-dimensional lattice hard-core boson systems
NASA Astrophysics Data System (ADS)
He, Kai; Rigol, Marcos
2011-03-01
Noise correlations are studied for systems of hard-core bosons in one-dimensional lattices. We use an exact numerical approach based on the Bose-Fermi mapping and properties of Slater determinants. We focus on the scaling of the noise correlations with system size in superfluid and insulating phases, which are generated in the homogeneous lattice, with period-two superlattices, and with uniformly distributed random diagonal disorder. For the superfluid phases, the leading contribution is shown to exhibit a density independent scaling proportional to the system size, while the first subleading term exhibits a density dependent power-law exponent.
Scaling of noise correlations in one-dimensional-lattice-hard-core-boson systems
NASA Astrophysics Data System (ADS)
He, Kai; Rigol, Marcos
2011-02-01
Noise correlations are studied for systems of hard-core bosons in one-dimensional lattices. We use an exact numerical approach based on the Bose-Fermi mapping and properties of Slater determinants. We focus on the scaling of the noise correlations with system size in superfluid and insulating phases, which are generated in the homogeneous lattice, with period-two superlattices and with uniformly distributed random diagonal disorder. For the superfluid phases, the leading contribution is shown to exhibit a density-independent scaling proportional to the system size, while the first subleading term exhibits a density-dependent power-law exponent.
Brodsky, Stanley J.; /SLAC
2007-07-06
I discuss a number of novel topics in QCD, including the use of the AdS/CFT correspondence between Anti-de Sitter space and conformal gauge theories to obtain an analytically tractable approximation to QCD in the regime where the QCD coupling is large and constant. In particular, there is an exact correspondence between the fifth-dimension coordinate z of AdS space and a specific impact variable {zeta} which measures the separation of the quark constituents within the hadron in ordinary space-time. This connection allows one to compute the analytic form of the frame-independent light-front wavefunctions of mesons and baryons, the fundamental entities which encode hadron properties and allow the computation of exclusive scattering amplitudes. I also discuss a number of novel phenomenological features of QCD. Initial- and final-state interactions from gluon-exchange, normally neglected in the parton model, have a profound effect in QCD hard-scattering reactions, leading to leading-twist single-spin asymmetries, diffractive deep inelastic scattering, diffractive hard hadronic reactions, the breakdown of the Lam Tung relation in Drell-Yan reactions, and nuclear shadowing and non-universal antishadowing--leading-twist physics not incorporated in the light-front wavefunctions of the target computed in isolation. I also discuss tests of hidden color in nuclear wavefunctions, the use of diffraction to materialize the Fock states of a hadronic projectile and test QCD color transparency, and anomalous heavy quark effects. The presence of direct higher-twist processes where a proton is produced in the hard subprocess can explain the large proton-to-pion ratio seen in high centrality heavy ion collisions.
Scaled Particle Theory for Multicomponent Hard Sphere Fluids Confined in Random Porous Media.
Chen, W; Zhao, S L; Holovko, M; Chen, X S; Dong, W
2016-06-23
The formulation of scaled particle theory (SPT) is presented for a quite general model of fluids confined in a random porous media, i.e., a multicomponent hard sphere (HS) fluid in a multicomponent hard sphere or a multicomponent overlapping hard sphere (OHS) matrix. The analytical expressions for pressure, Helmholtz free energy, and chemical potential are derived. The thermodynamic consistency of the proposed theory is established. Moreover, we show that there is an isomorphism between the SPT for a multicomponent system and that for a one-component system. Results from grand canonical ensemble Monte Carlo simulations are also presented for a binary HS mixture in a one-component HS or a one-component OHS matrix. The accuracy of various variants derived from the basic SPT formulation is appraised against the simulation results. Scaled particle theory, initially formulated for a bulk HS fluid, has not only provided an analytical tool for calculating thermodynamic properties of HS fluid but also helped to gain very useful insight for elaborating other theoretical approaches such as the fundamental measure theory (FMT). We expect that the general SPT for multicomponent systems developed in this work can contribute to the study of confined fluids in a similar way. PMID:27294670
NASA Astrophysics Data System (ADS)
Deur, Alexandre; Brodsky, Stanley J.; de Téramond, Guy F.
2016-09-01
We review the present theoretical and empirical knowledge for αs, the fundamental coupling underlying the interactions of quarks and gluons in Quantum Chromodynamics (QCD). The dependence of αs(Q2) on momentum transfer Q encodes the underlying dynamics of hadron physics-from color confinement in the infrared domain to asymptotic freedom at short distances. We review constraints on αs(Q2) at high Q2, as predicted by perturbative QCD, and its analytic behavior at small Q2, based on models of nonperturbative dynamics. In the introductory part of this review, we explain the phenomenological meaning of the coupling, the reason for its running, and the challenges facing a complete understanding of its analytic behavior in the infrared domain. In the second, more technical, part of the review, we discuss the behavior of αs(Q2) in the high momentum transfer domain of QCD. We review how αs is defined, including its renormalization scheme dependence, the definition of its renormalization scale, the utility of effective charges, as well as "Commensurate Scale Relations" which connect the various definitions of the QCD coupling without renormalization-scale ambiguity. We also report recent significant measurements and advanced theoretical analyses which have led to precise QCD predictions at high energy. As an example of an important optimization procedure, we discuss the "Principle of Maximum Conformality", which enhances QCD's predictive power by removing the dependence of the predictions for physical observables on the choice of theoretical conventions such as the renormalization scheme. In the last part of the review, we discuss the challenge of understanding the analytic behavior αs(Q2) in the low momentum transfer domain. We survey various theoretical models for the nonperturbative strongly coupled regime, such as the light-front holographic approach to QCD. This new framework predicts the form of the quark-confinement potential underlying hadron spectroscopy and
The Galaxy Hosts And Large-Scale Environments of Short-Hard Gamma-Ray Bursts
Prochaska, Jason X.; Bloom, J.S.; Chen, H.-W.; Foley, R.J.; Perley, D.A.; Ramirez-Ruiz, E.; Granot, J.; Lee, W.H.; Pooley, D.; Alatalo, K.; Hurley, K.; Cooper, M.C.; Dupree, A.K.; Gerke, B.F.; Hansen, B.M.S.; Kalirai, J.S.; Newman, J.A.; Rich, R.M.; Richer, H.; Stanford, S.A.; Stern, D.; /Lick Observ. /UC, Berkeley, Astron. Dept. /Chicago U., Astron. Astrophys. Ctr. /Princeton, Inst. Advanced Study /KIPAC, Menlo Park /UNAM, Inst. Astron. /UC, Berkeley, Space Sci. Dept. /Harvard-Smithsonian Ctr. Astrophys. /UC, Berkeley /UCLA /LBL, Berkeley /British Columbia U. /UC, Davis /LLNL, Livermore /Caltech, JPL
2005-10-07
The rapid succession of discovery of short-duration hard-spectrum GRBs has led to unprecedented insights into the energetics of the explosion and nature of the progenitors. Yet short of the detection of a smoking gun, like a burst of coincident gravitational radiation or a Li-Paczynski mini-supernova, it is unlikely that a definitive claim can be made for the progenitors. As was the case with long-duration soft-spectrum GRBs, however, the expectation is that a systematic study of the hosts and the locations of short GRBs could begin to yield fundamental clues about their nature. We present the first aggregate study of the host galaxies of short-duration hard-spectrum GRBs. In particular, we present the Gemini-North and Keck discovery spectra of the galaxies that hosted three short GRBs and a moderate-resolution (R {approx} 6000) spectrum of a fourth host. We find that these short-hard GRBs originate in a variety of low-redshift (z < 1) environments that differ substantially from those of long-soft GRBs, both on individual galaxy scales and on galaxy-cluster scales. Specifically, three of the bursts are found to be associated with old and massive galaxies with no current (< 0.1M{sub {circle_dot}} yr{sup -1}) or recent star formation. Two of these galaxies are located within a cluster environment. These observations support an origin from the merger of compact stellar remnants, such as double neutron stars of a neutron star-black hole binary. The fourth event, in contrast, occurred within a dwarf galaxy with a star formation rate exceeding 0.5 M{sub {circle_dot}} yr{sup -1}. Therefore, it appears that like supernovae of Type Ia, the progenitors of short-hard bursts are created in all galaxy types, suggesting a corresponding class with a wide distribution of delay times between formation and explosion.
Large-scale mapping of hard-rock aquifer properties applied to Burkina Faso.
Courtois, Nathalie; Lachassagne, Patrick; Wyns, Robert; Blanchin, Raymonde; Bougaïré, Francis D; Somé, Sylvain; Tapsoba, Aïssata
2010-01-01
A country-scale (1:1,000,000) methodology has been developed for hydrogeologic mapping of hard-rock aquifers (granitic and metamorphic rocks) of the type that underlie a large part of the African continent. The method is based on quantifying the "useful thickness" and hydrodynamic properties of such aquifers and uses a recent conceptual model developed for this hydrogeologic context. This model links hydrodynamic parameters (transmissivity, storativity) to lithology and the geometry of the various layers constituting a weathering profile. The country-scale hydrogeological mapping was implemented in Burkina Faso, where a recent 1:1,000,000-scale digital geological map and a database of some 16,000 water wells were used to evaluate the methodology. PMID:19754849
Next-to-next-to-leading order QCD corrections in models of TeV-scale gravity
NASA Astrophysics Data System (ADS)
de Florian, Daniel; Mahakhud, Maguni; Mathews, Prakash; Mazzitelli, Javier; Ravindran, V.
2014-04-01
We compute the next-to-next-to-leading order QCD corrections to the graviton production in models of TeV-scale gravity, within the soft-virtual approximation. For the Arkani-Hamed, Dimopoulos and Dvali (ADD) model we evaluate the contribu-tion to the Drell-Yan cross section, and we present distributions for the di-lepton invariant mass at the LHC with a center-of-mass energy = 14 TeV. We find a large K factor ( K ≃ 1 .8) for large values of invariant mass, which is the region where the ADD graviton contribution dominates the cross section. The increase in the cross section with respect to the previous order result is larger than 10% in the same invariant mass region. We also observe a substantial reduction in the scale uncertainty. For the Randall-Sundrum (RS) model we computed the total single graviton production cross section at the LHC. We find an increase between 10% and 13% with respect to the next-to-leading order prediction, depending on the model parameters. We provide an analytic expression for the NNLO K factor as a function of the lightest RS graviton mass.
NASA Astrophysics Data System (ADS)
Semkiv, Mykhailo; Long, Didier; Hütter, Markus
2016-05-01
A dynamic two-scale model is developed for describing the mechanical behavior of elastomers filled with hard nanoparticles. Using nonequilibrium thermodynamics, a closed system of evolution equations is derived, coupling continuum mechanics with a fine-scale description on the level of filler particles. So doing, a constitutive stress-strain relation emerges that is applicable to transient situations. In addition to the number density of filler particles, the particle arrangement is captured by the distribution of the difference vector between two representative interacting particles, which makes this model efficient in comparison with many-particle models. The two-particle model presented here is analyzed numerically in oscillatory deformation, for two purposes. First, the nonlinearity of the model is studied in detail, in terms of the Payne effect, that compares favorably with the literature. And second, the two-particle model is compared with a corresponding many-particle model in the literature.
NASA Astrophysics Data System (ADS)
Kuijlaars, Arno B. J.; Zhang, Lun
2014-12-01
Akemann, Ipsen and Kieburg recently showed that the squared singular values of products of M rectangular random matrices with independent complex Gaussian entries are distributed according to a determinantal point process with a correlation kernel that can be expressed in terms of Meijer G-functions. We show that this point process can be interpreted as a multiple orthogonal polynomial ensemble. We give integral representations for the relevant multiple orthogonal polynomials and a new double contour integral for the correlation kernel, which allows us to find its scaling limits at the origin (hard edge). The limiting kernels generalize the classical Bessel kernels. For M = 2 they coincide with the scaling limits found by Bertola, Gekhtman, and Szmigielski in the Cauchy-Laguerre two-matrix model, which indicates that these kernels represent a new universality class in random matrix theory.
NLO QCD corrections to ZZ jet production at hadron colliders
Binoth, T.; Gleisberg, T.; Karg, S.; Kauer, N.; Sanguinetti, G.; /Annecy, LAPTH
2010-05-26
A fully differential calculation of the next-to-leading order QCD corrections to the production of Z-boson pairs in association with a hard jet at the Tevatron and LHC is presented. This process is an important background for Higgs particle and new physics searches at hadron colliders. We find sizable corrections for cross sections and differential distributions, particularly at the LHC. Residual scale uncertainties are typically at the 10% level and can be further reduced by applying a veto against the emission of a second hard jet. Our results confirm that NLO corrections do not simply rescale LO predictions.
Bjorken, J.D.
1996-10-01
New directions for exploring QCD at future high-energy colliders are sketched. These include jets within jets. BFKL dynamics, soft and hard diffraction, searches for disoriented chiral condensate, and doing a better job on minimum bias physics. The new experimental opportunities include electron-ion collisions at HERA, a new collider detector at the C0 region of the TeVatron, and the FELIX initiative at the LHC.
LATTICE QCD THERMODYNAMICS WITH WILSON QUARKS.
EJIRI,S.
2007-11-20
We review studies of QCD thermodynamics by lattice QCD simulations with dynamical Wilson quarks. After explaining the basic properties of QCD with Wilson quarks at finite temperature including the phase structure and the scaling properties around the chiral phase transition, we discuss the critical temperature, the equation of state and heavy-quark free energies.
Spin correlations and velocity scaling in color-octet nonrelativistic QCD matrix elements
NASA Astrophysics Data System (ADS)
Bodwin, Geoffrey T.; Lee, Jungil; Sinclair, D. K.
2005-07-01
We compute spin-dependent decay matrix elements for S-wave charmonium and bottomonium in lattice nonrelativistic quantum chromodynamics (NRQCD). Particular emphasis is placed upon the color-octet matrix elements, since the corresponding production matrix elements are expected to appear in the dominant contributions to the production cross sections at large transverse momenta. We use three slightly different versions of the heavy-quark lattice Green’s functions in order to minimize the contributions that scale as powers of the ultraviolet cutoff. The lattice matrix elements that we calculate obey the hierarchy that is suggested by the velocity-scaling rules of NRQCD.
New Perspectives for QCD Physics at the LHC
Brodsky, Stanley J.; /SLAC /Stanford U. /Southern Denmark U., CP3-Origins
2011-02-07
I review a number of topics where conventional wisdom relevant to hadron physics at the LHC has been challenged. For example, the initial-state and final-state interactions of the quarks and gluons entering perturbative QCD hard-scattering subprocesses lead to the breakdown of traditional concepts of factorization and universality for transverse-momentum-dependent observables at leading twist. These soft-gluon rescattering effect produce single-spin asymmetries, the breakdown of the Lam-Tung relation in Drell-Yan reactions, as well as diffractive deep inelastic scattering, The antishadowing of nuclear structure functions is predicted to depend on the flavor quantum numbers of each quark and antiquark. Isolated hadrons can be produced at large transverse momentum directly within a hard higher-twist QCD subprocess, rather than from jet fragmentation, even at the LHC. Such 'direct' processes can explain the observed deviations from pQCD predictions of the power-law fall-off of inclusive hadron cross sections as well as the 'baryon anomaly' seen in high-centrality heavy-ion collisions at RHIC. The intrinsic charm contribution to the proton structure function at high x can explain the large rate for high p{sub T} photon plus charm-jet events observed at the Tevatron and imply a large production rate for charm and bottom jets at high p{sub T} at the LHC, as well as a novel mechanism for Higgs and Z{sup 0} production at high x{sub F}. The light-front wavefunctions derived in AdS/QCD can be used to calculate jet hadronization at the amplitude level. The elimination of the renormalization scale ambiguity for the QCD coupling using the scheme-independent BLM method will increase the sensitivity of searches for new physics at the LHC. The implications of 'in-hadron condensates' for the QCD contribution to the cosmological constant are also discussed.
NASA Astrophysics Data System (ADS)
Baglay, Roman; Roth, Connie
Polymer-polymer interfaces are ubiquitous in polymer blends and block copolymers, while opening up another avenue for the study of interfacial perturbations to the local glass transition temperature Tg(z). We have previously reported the full local Tg(z) profile across a glassy-rubbery polymer interface between polystyrene (PS) and poly(n-butyl methacrylate) (PnBMA), an 80 K difference in bulk Tg [Baglay & Roth, J Chem Phys 2015, 143, 111101]. By using local fluorescence measurements, we revealed how the Tg(z) profile extends hundreds of nanometers away from the interface showing an asymmetric behavior penetrating deeper into the glassy PS side relative to the composition profile. Here, we extend these measurements to investigate how the local Tg profile in PS varies when in contact with a variety of immiscible polymers whose Tgs vary between +90 K and -80 K relative to the bulk Tg of PS, so-called hard vs. soft confinement. The data reveal that the onset of local Tg deviation from bulk in PS occurs at two distinct length scales, which depend on whether PS is the low Tg component (hard confinement) or the high Tg component (soft confinement). In addition, we explore the influence of finite system size on the range of dynamics by the introduction of periodic boundary conditions, as is commonly encountered in computer simulations or block copolymer systems.
Brodsky, Stanley J.; de Teramond, Guy F.; /Costa Rica U.
2012-02-16
the AdS metric around its static solution. A gravity dual to QCD is not known, but the mechanisms of confinement can be incorporated in the gauge/gravity correspondence by modifying the AdS geometry in the large infrared (IR) domain z {approx} 1 = {Lambda}{sub QCD}, which also sets the scale of the strong interactions. In this simplified approach we consider the propagation of hadronic modes in a fixed effective gravitational background asymptotic to AdS space, which encodes salient properties of the QCD dual theory, such as the ultraviolet (UV) conformal limit at the AdS boundary, as well as modifications of the background geometry in the large z IR region to describe confinement. The modified theory generates the point-like hard behavior expected from QCD, instead of the soft behavior characteristic of extended objects.
Opportunities, challenges, and fantasies in lattice QCD
NASA Astrophysics Data System (ADS)
Wilczek, Frank
2003-05-01
Some important problems in quantitative QCD will certainly yield to hard work and adequate investment of resources, others appear difficult but may be accessible, and still others will require essentially new ideas. Here I identify several examples in each class.
Harris, R.
1992-05-01
We present measurements of jet production and isolated prompt photon production in p{bar p} collisions at {radical}s = 1.8 TeV from the 1988--89 run of the Collider Detector at Fermilab (CDF). To test QCD with jets, the inclusive jet cross section (p{bar p} {yields} J + X) and two jet angular distributions (p{bar P} {yields} JJ + X) are compared to QCD predictions and are used to search for composite quarks. The ratio of the scaled jet cross sections at two Tevatron collision energies ({radical}s= 546 and 1800 GeV) is compared to QCD predictions for X{sub T} scaling violations. Also, we present the first evidence for QCD interference effects (color coherence) in third jet production (p{bar p} {yields} JJJ + X). To test QCD with photons, we present measurements of the transverse momentum spectrum of single isolated prompt photon production (p{bar p} {yields} {gamma} + X), double isolated prompt photon production (p{bar p} {yields} {gamma}{gamma} + X), and the angular distribution of photon-jet events (p{bar p} {yields} {gamma} J + X). We have also measured the isolated production ratio of {eta} and {pi}{sup 0} mesons (p{bar p} {yields} {eta} + X)/(p{bar p} {yields} {pi}{sup 0} + X) = 1.02 {plus minus} .15(stat) {plus minus} .23(sys).
Harris, R.; The CDF Collaboration
1992-05-01
We present measurements of jet production and isolated prompt photon production in p{bar p} collisions at {radical}s = 1.8 TeV from the 1988--89 run of the Collider Detector at Fermilab (CDF). To test QCD with jets, the inclusive jet cross section (p{bar p} {yields} J + X) and two jet angular distributions (p{bar P} {yields} JJ + X) are compared to QCD predictions and are used to search for composite quarks. The ratio of the scaled jet cross sections at two Tevatron collision energies ({radical}s= 546 and 1800 GeV) is compared to QCD predictions for X{sub T} scaling violations. Also, we present the first evidence for QCD interference effects (color coherence) in third jet production (p{bar p} {yields} JJJ + X). To test QCD with photons, we present measurements of the transverse momentum spectrum of single isolated prompt photon production (p{bar p} {yields} {gamma} + X), double isolated prompt photon production (p{bar p} {yields} {gamma}{gamma} + X), and the angular distribution of photon-jet events (p{bar p} {yields} {gamma} J + X). We have also measured the isolated production ratio of {eta} and {pi}{sup 0} mesons (p{bar p} {yields} {eta} + X)/(p{bar p} {yields} {pi}{sup 0} + X) = 1.02 {plus_minus} .15(stat) {plus_minus} .23(sys).
Excited Baryons in Holographic QCD
de Teramond, Guy F.; Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins
2011-11-08
The light-front holographic QCD approach is used to describe baryon spectroscopy and the systematics of nucleon transition form factors. Baryon spectroscopy and the excitation dynamics of nucleon resonances encoded in the nucleon transition form factors can provide fundamental insight into the strong-coupling dynamics of QCD. The transition from the hard-scattering perturbative domain to the non-perturbative region is sensitive to the detailed dynamics of confined quarks and gluons. Computations of such phenomena from first principles in QCD are clearly very challenging. The most successful theoretical approach thus far has been to quantize QCD on discrete lattices in Euclidean space-time; however, dynamical observables in Minkowski space-time, such as the time-like hadronic form factors are not amenable to Euclidean numerical lattice computations.
Plunkett, R.; The CDF Collaboration
1991-10-01
Results are presented for hadronic jet and direct photon production at {radical}{bar s} = 1800 GeV. The data are compared with next-to-leading QCD calculations. A new limit on the scale of possible composite structure of the quarks is also reported. 12 refs., 4 figs.
Deur, Alexandre; Brodsky, Stanley J.; de Téramond, Guy F.
2016-05-09
Here, we review present knowledge onmore » $$\\alpha_{s}$$, the Quantum Chromodynamics (QCD) running coupling. The dependence of $$\\alpha_s(Q^2)$$ on momentum transfer $Q$ encodes the underlying dynamics of hadron physics --from color confinement in the infrared domain to asymptotic freedom at short distances. We will survey our present theoretical and empirical knowledge of $$\\alpha_s(Q^2)$$, including constraints at high $Q^2$ predicted by perturbative QCD, and constraints at small $Q^2$ based on models of nonperturbative dynamics. In the first, introductory, part of this review, we explain the phenomenological meaning of the coupling, the reason for its running, and the challenges facing a complete understanding of its analytic behavior in the infrared domain. In the second, more technical, part of the review, we discuss $$\\alpha_s(Q^2)$$ in the high momentum transfer domain of QCD. We review how $$\\alpha_s$$ is defined, including its renormalization scheme dependence, the definition of its renormalization scale, the utility of effective charges, as well as `` Commensurate Scale Relations" which connect the various definitions of the QCD coupling without renormalization scale ambiguity. We also report recent important experimental measurements and advanced theoretical analyses which have led to precise QCD predictions at high energy. As an example of an important optimization procedure, we discuss the ``Principle of Maximum Conformality" which enhances QCD's predictive power by removing the dependence of the predictions for physical observables on the choice of the gauge and renormalization scheme. In last part of the review, we discuss $$\\alpha_s(Q^2)$$ in the low momentum transfer domain, where there has been no consensus on how to define $$\\alpha_s(Q^2)$$ or its analytic behavior. We will discuss the various approaches used for low energy calculations. Among them, we will discuss the light-front holographic approach to QCD in the strongly coupled
How to impose initial conditions for QCD evolution of double parton distributions?
NASA Astrophysics Data System (ADS)
Golec-Biernat, Krzysztof; Lewandowska, Emilia
2014-07-01
Double parton distribution functions are used in the QCD description of double parton scattering. The double parton distributions evolve with hard scales through QCD evolution equations which obey nontrivial momentum and valence quark number sum rules. We describe an attempt to construct initial conditions for the evolution equations which exactly fulfill these sum rules and discuss its shortcomings. We also discuss the factorization of the double parton distributions into a product of two single parton distribution functions at small values of the parton momentum fractions.
Basics of QCD perturbation theory
Soper, D.E.
1997-06-01
This is an introduction to the use of QCD perturbation theory, emphasizing generic features of the theory that enable one to separate short-time and long-time effects. The author also covers some important classes of applications: electron-positron annihilation to hadrons, deeply inelastic scattering, and hard processes in hadron-hadron collisions. 31 refs., 38 figs.
Exclusive processes in QCD and spin-spin correlations
de Teramond, G.F.
1988-09-01
The unexpected spin behavior observed in hard proton-proton collisions is described in terms of new degrees of freedom associated with the onset of strange and charmed thresholds. The deviation from dimensional scaling laws, the anomalous broadening of angular distributions, and the unusual energy dependence of pp quasielastic scattering in nuclear targets are also consistent with the onset of highly inelastic contributions to elastic pp amplitudes interfering with a perturbative QCD background. The model predicts significant charm production above 12 GeV/c and a relaxation of the spin correlation parameters to their scaling values at higher energies. 13 refs., 3 figs.
Wong, Cheuk-Yin; Wilk, Grzegorz; Cirto, Leonardo J. L.; Tsallis, Constantino
2015-01-01
Transverse spectra of both jets and hadrons obtained in high-energymore » $pp$ and $$p\\bar p $$ collisions at central rapidity exhibit power-law behavior of $1/p_T^n$ at high $p_T$. The power index $n$ is 4-5 for jet production and is slightly greater for hadron production. Furthermore, the hadron spectra spanning over 14 orders of magnitude down to the lowest $p_T$ region in $pp$ collisions at LHC can be adequately described by a single nonextensive statistical mechanical distribution that is widely used in other branches of science. This suggests indirectly the dominance of the hard-scattering process over essentially the whole $p_T$ region at central rapidity in $pp$ collisions at LHC. We show here direct evidences of such a dominance of the hard-scattering process by investigating the power index of UA1 jet spectra over an extended $p_T$ region and the two-particle correlation data of the STAR and PHENIX Collaborations in high-energy $pp$ and $$p \\bar p$$ collisions at central rapidity. We then study how the showering of the hard-scattering product partons alters the power index of the hadron spectra and leads to a hadron distribution that can be cast into a single-particle non-extensive statistical mechanical distribution. Because of such a connection, the non-extensive statistical mechanical distribution can be considered as a lowest-order approximation of the hard-scattering of partons followed by the subsequent process of parton showering that turns the jets into hadrons, in high energy $pp$ and $$p\\bar p$$ collisions.« less
NASA Astrophysics Data System (ADS)
Wong, Cheuk-Yin; Wilk, Grzegorz; Cirto, Leonardo J. L.; Tsallis, Constantino
2015-06-01
Transverse spectra of both jets and hadrons obtained in high-energy p p and p p ¯ collisions at central rapidity exhibit power-law behavior of 1 /pTn at high pT . The power index n is 4-5 for jet production and is 6-10 for hadron production. Furthermore, the hadron spectra spanning over 14 orders of magnitude down to the lowest pT region in p p collisions at the LHC can be adequately described by a single nonextensive statistical mechanical distribution that is widely used in other branches of science. This suggests indirectly the possible dominance of the hard-scattering process over essentially the whole pT region at central rapidity in high-energy p p and p p ¯ collisions. We show here direct evidences of such a dominance of the hard-scattering process by investigating the power indices of UA1 and ATLAS jet spectra over an extended pT region and the two-particle correlation data of the STAR and PHENIX collaborations in high-energy p p and p p ¯ collisions at central rapidity. We then study how the showering of the hard-scattering product partons alters the power index of the hadron spectra and leads to a hadron distribution that may be cast into a single-particle nonextensive statistical mechanical distribution. Because of such a connection, the nonextensive statistical mechanical distribution may be considered as a lowest-order approximation of the hard-scattering of partons followed by the subsequent process of parton showering that turns the jets into hadrons, in high-energy p p and p p ¯ collisions.
Wong, Cheuk-Yin; Wilk, Grzegorz; Cirto, Leonardo J. L.; Tsallis, Constantino
2015-06-22
Transverse spectra of both jets and hadrons obtained in high-energymore » $pp$ and $$p\\bar p $$ collisions at central rapidity exhibit power-law behavior of $1/p_T^n$ at high $p_T$. The power index $n$ is 4-5 for jet production and is slightly greater for hadron production. Furthermore, the hadron spectra spanning over 14 orders of magnitude down to the lowest $p_T$ region in $pp$ collisions at LHC can be adequately described by a single nonextensive statistical mechanical distribution that is widely used in other branches of science. This suggests indirectly the dominance of the hard-scattering process over essentially the whole $p_T$ region at central rapidity in $pp$ collisions at LHC. We show here direct evidences of such a dominance of the hard-scattering process by investigating the power index of UA1 jet spectra over an extended $p_T$ region and the two-particle correlation data of the STAR and PHENIX Collaborations in high-energy $pp$ and $$p \\bar p$$ collisions at central rapidity. We then study how the showering of the hard-scattering product partons alters the power index of the hadron spectra and leads to a hadron distribution that can be cast into a single-particle non-extensive statistical mechanical distribution. Lastly, because of such a connection, the non-extensive statistical mechanical distribution can be considered as a lowest-order approximation of the hard-scattering of partons followed by the subsequent process of parton showering that turns the jets into hadrons, in high energy $pp$ and $$p\\bar p$$ collisions.« less
ERIC Educational Resources Information Center
Qi, Sen; Mitchell, Ross E.
2012-01-01
The first large-scale, nationwide academic achievement testing program using Stanford Achievement Test (Stanford) for deaf and hard-of-hearing children in the United States started in 1969. Over the past three decades, the Stanford has served as a benchmark in the field of deaf education for assessing student academic achievement. However, the…
Magnetic fluid conditioning system allows 3000 ppm hardness without cooling tower scale buildup
Szostak, R.J.; Toy, D.A.
1985-08-01
Big Three Industries, a manufacturer of compressed and liquefied atmospheric gases, operates a large production complex in Bayport, TX which recirculates 100,000 gpm cooling water. Due to regulatory agency guidelines, high costs, and limited effectiveness of conventional chemical treatment methods, Big Three was in need of a treatment method to prevent corrosion and scaling in recirculating water cooling systems. In December 1983 a magnetic fluid conditioner (MFC) was installed in the pump discharge piping of one cooling tower at Bayport. The patented MFC is an 18'' long spool pipe fitted with uranium-based alloy magnets. The MFC has no moving parts and requires no chemicals, external power source, or maintenance. The MFC is designed so that the fluid is accelerated through a magnetic field. The high velocity of the fluid causes nucleation of the salts in the fluid. The salts are separated from the water by precipitation. During eighteen months of using the MFC, the cooling tower has concentrated in excess of 50 cycles. Conductivity is in excess of 10,000 micromhos, and total hardness (CaCO/sub 3/) is above 4000 ppm with pH stabilized between 8 and 9. However, inspections have revealed clean surfaces. The cleaner metal surfaces within the cooling water system provide better heat transfer which has resulted in reduction of tower blowdown, makeup water requirements, and pumping costs. Associated savings will enable the MFC to achieve payback in two and a half years.
Probing the hard and intermediate states of X-ray binaries using short time-scale variability
NASA Astrophysics Data System (ADS)
Skipper, Chris J.; McHardy, Ian M.
2016-05-01
Below an accretion rate of approximately a few per cent of the Eddington accretion rate, X-ray binary systems are not usually found in the soft spectral state. However, at accretion rates a factor of a few lower still, in the hard state, there is another spectral transition which is well observed but not well understood. Below {˜ }0.5-1 per cent of the Eddington accretion rate (dot{m}_crit), the spectral index hardens with increasing accretion rate, but above dot{m}_crit, although still in the hard state, the spectral index softens with increasing accretion rate. Here we use a combination of X-ray spectral fitting and a study of short time-scale spectral variability to examine the behaviour of three well-known X-ray binaries: Cygnus X-1, GX 339-4 and XTE J1118+480. In Cygnus X-1 we find separate hard and soft continuum components, and show using root mean square (rms) spectra that the soft component dominates the variability. The spectral transition at dot{m}_crit is clearly present in the hard-state hardness-intensity diagrams of Cygnus X-1. Above dot{m}_crit, GX 339-4 shows similar softer-when-brighter behaviour at both long and short time-scales. Similarly, XTE J1118+480, which remains well below dot{m}_crit, has harder-when-brighter behaviour on all time-scales. We interpret these results in terms of two continuum components: a hard power law which dominates the spectra when the accretion rate is low, probably arising from Comptonization of cyclo-synchrotron photons from the corona, and a soft power law which dominates at higher accretion rates, arising from Comptonization of seed photons from the accretion disc.
QCD Results from the Fermilab Tevatron proton-antiproton Collider
Warburton, Andreas; CDF, for the; Collaborations, D0
2010-01-01
Selected recent quantum chromodynamics (QCD) measurements are reviewed for Fermilab Run II Tevatron proton-antiproton collisions studied by the Collider Detector at Fermilab (CDF) and D0 Collaborations at a centre-of-mass energy of {radical}s = 1.96 TeV. Tantamount to Rutherford scattering studies at the TeV scale, inclusive jet and dijet production cross-section measurements are used to seek and constrain new particle physics phenomena, test perturbative QCD calculations, inform parton distribution function (PDF) determinations, and extract a precise value of the strong coupling constant, a{sub s}(m{sub Z}) = 0.1161{sub -0.0048}{sup +0.0041}. Inclusive photon production cross-section measurements reveal an inability of next-to-leading-order (NLO) perturbative QCD (pQCD) calculations to describe low-energy photons arising directly in the hard scatter. Events with {gamma} + 3-jet configurations are used to measure the increasingly important double parton scattering (DPS) phenomenon, with an obtained effective interaction cross section of {sigma}{sub eff} = 16.4 {+-} 2.3 mb. Observations of central exclusive particle production demonstrate the viability of observing the Standard Model Higgs boson using similar techniques at the Large Hadron Collider (LHC). Three areas of inquiry into lower energy QCD, crucial to understanding high-energy collider phenomena, are discussed: the examination of intra-jet track kinematics to infer that jet formation is dominated by pQCD, and not hadronization, effects; detailed studies of the underlying event and its universality; and inclusive minimum-bias charged-particle momentum and multiplicity measurements, which are shown to challenge the Monte Carlo generators.
Viswanath, R. N.; Polaki, S. R.; Rajaraman, R.; Abhaya, S.; Chirayath, V. A.; Amarendra, G.; Sundar, C. S.
2014-06-09
The scaling behavior of hardness with ligament diameter and vacancy defect concentration in nanoporous Au (np-Au) has been investigated using a combination of Vickers Hardness, Scanning electron microscopy, and positron lifetime measurements. It is shown that for np-Au, the hardness scales with the ligament diameter with an exponent of −0.3, that is, at variance with the conventional Hall-Petch exponent of −0.5 for bulk systems, as seen in the controlled experiments on cold worked Au with varying grain size. The hardness of np-Au correlates with the vacancy concentration C{sub V} within the ligaments, as estimated from positron lifetime experiments, and scales as C{sub V}{sup 1/2}, pointing to the interaction of dislocations with vacancies. The distinctive Hall-Petch exponent of −0.3 seen for np-Au, with ligament diameters in the range of 5–150 nm, is rationalized by invoking the constrained motion of dislocations along the ligaments.
QCD analogy for quantum gravity
NASA Astrophysics Data System (ADS)
Holdom, Bob; Ren, Jing
2016-06-01
Quadratic gravity presents us with a renormalizable, asymptotically free theory of quantum gravity. When its couplings grow strong at some scale, as in QCD, then this strong scale sets the Planck mass. QCD has a gluon that does not appear in the physical spectrum. Quadratic gravity has a spin-2 ghost that we conjecture does not appear in the physical spectrum. We discuss how the QCD analogy leads to this conjecture and to the possible emergence of general relativity. Certain aspects of the QCD path integral and its measure are also similar for quadratic gravity. With the addition of the Einstein-Hilbert term, quadratic gravity has a dimensionful parameter that seems to control a quantum phase transition and the size of a mass gap in the strong phase.
A quantitative model for interpreting nanometer scale hardness measurements of thin films
Poisl, W.H.; Fabes, B.D.; Oliver, W.C.
1993-09-01
A model was developed to determine hardness of thin films from hardness versus depth curves, given film thickness and substrate hardness. The model is developed by dividing the measured hardness into film and substrate contributions based on the projected areas of both the film and substrate under the indenter. The model incorporates constraints on the deformation of the film by the surrounding material in the film, the substrate, and friction at the indenter/film and film/substrate interfaces. These constraints increase the pressure that the film can withstand and account for the increase in measured hardness as the indenter approaches the substrate. The model is evaluated by fitting the predicted hardness versus depth curves obtained from titanium and Ta{sub 2}O{sub 5} films of varying thicknesses on sapphire substrates. The model is also able to describe experimental data for Ta{sub 2}O{sub 5} films on sapphire with a carbon layer between the film and the substrate by a reduction in the interfacial strength from that obtained for a film without an interfacial carbon layer.
Hess, Peter O.
2006-09-25
A review is presented on the contributions of Mexican Scientists to QCD phenomenology. These contributions range from Constituent Quark model's (CQM) with a fixed number of quarks (antiquarks) to those where the number of quarks is not conserved. Also glueball spectra were treated with phenomenological models. Several other approaches are mentioned.
Exponentially modified QCD coupling
Cvetic, Gorazd; Valenzuela, Cristian
2008-04-01
We present a specific class of models for an infrared-finite analytic QCD coupling, such that at large spacelike energy scales the coupling differs from the perturbative one by less than any inverse power of the energy scale. This condition is motivated by the Institute for Theoretical and Experimental Physics operator product expansion philosophy. Allowed by the ambiguity in the analytization of the perturbative coupling, the proposed class of couplings has three parameters. In the intermediate energy region, the proposed coupling has low loop-level and renormalization scheme dependence. The present modification of perturbative QCD must be considered as a phenomenological attempt, with the aim of enlarging the applicability range of the theory of the strong interactions at low energies.
Dudek, Jozef J.; Edwards, Robert G.
2012-03-21
In this study, we present the first comprehensive study of hybrid baryons using lattice QCD methods. Using a large basis of composite QCD interpolating fields we extract an extensive spectrum of baryon states and isolate those of hybrid character using their relatively large overlap onto operators which sample gluonic excitations. We consider the spectrum of Nucleon and Delta states at several quark masses finding a set of positive parity hybrid baryons with quantum numbers $N_{1/2^+},\\,N_{1/2^+},\\,N_{3/2^+},\\, N_{3/2^+},\\,N_{5/2^+},\\,$ and $\\Delta_{1/2^+},\\, \\Delta_{3/2^+}$ at an energy scale above the first band of `conventional' excited positive parity baryons. This pattern of states is compatible with a color octet gluonic excitation having $J^{P}=1^{+}$ as previously reported in the hybrid meson sector and with a comparable energy scale for the excitation, suggesting a common bound-state construction for hybrid mesons and baryons.
Single transverse-spin asymmetry in QCD
NASA Astrophysics Data System (ADS)
Koike, Yuji
2014-09-01
So far large single transverse-spin asymmetries (SSA) have been observed in many high-energy processes such as semi-inclusive deep inelastic scattering and proton-proton collisions. Since the conventional parton model and perturbative QCD can not accomodate such large SSAs, the framework for QCD hard processes had to be extended to understand the mechanism of SSA. In this extended frameworks of QCD, intrinsic transverse momentum of partons and the multi-parton (quark-gluon and pure-gluonic) correlations in the hadrons, which were absent in the conventional framework, play a crucial role to cause SSAs, and well-defined formulation of these effects has been a big challenge for QCD theorists. Study on these effects has greatly promoted our understanding on QCD dynamics and hadron structure. In this talk, I will present an overview on these theoretical activity, emphasizing the important role of the Drell-Yan process.
Chaudhari, Mangesh I.; Holleran, Sinead A.; Ashbaugh, Henry S.; Pratt, Lawrence R.
2013-01-01
The osmotic second virial coefficients, B2, for atomic-sized hard spheres in water are attractive (B2 < 0) and become more attractive with increasing temperature (ΔB2/ΔT < 0) in the temperature range 300 K ≤ T ≤ 360 K. Thus, these hydrophobic interactions are attractive and endothermic at moderate temperatures. Hydrophobic interactions between atomic-sized hard spheres in water are more attractive than predicted by the available statistical mechanical theory. These results constitute an initial step toward detailed molecular theory of additional intermolecular interaction features, specifically, attractive interactions associated with hydrophobic solutes. PMID:24297918
Electroproduction of tensor mesons in QCD
NASA Astrophysics Data System (ADS)
Braun, V. M.; Kivel, N.; Strohmaier, M.; Vladimirov, A. A.
2016-06-01
Due to multiple possible polarizations hard exclusive production of tensor mesons by virtual photons or in heavy meson decays offers interesting possibilities to study the helicity structure of the underlying short-distance process. Motivated by the first measurement of the transition form factor γ∗γ → f 2(1270) at large momentum transfers by the BELLE collaboration we present an improved QCD analysis of this reaction in the framework of collinear factorization including contributions of twist-three quark-antiquark-gluon operators and an estimate of soft end-point corrections using light-cone sum rules. The results appear to be in good agreement with the data, in particular the predicted scaling behavior is reproduced in all cases.
QCD measurements at the Tevatron
Bandurin, Dmitry; /Florida State U.
2011-12-01
Selected quantum chromodynamics (QCD) measurements performed at the Fermilab Run II Tevatron p{bar p} collider running at {radical}s = 1.96 TeV by CDF and D0 Collaborations are presented. The inclusive jet, dijet production and three-jet cross section measurements are used to test perturbative QCD calculations, constrain parton distribution function (PDF) determinations, and extract a precise value of the strong coupling constant, {alpha}{sub s}(m{sub Z}) = 0.1161{sub -0.0048}{sup +0.0041}. Inclusive photon production cross-section measurements reveal an inability of next-to-leading-order (NLO) perturbative QCD (pQCD) calculations to describe low-energy photons arising directly in the hard scatter. The diphoton production cross-sections check the validity of the NLO pQCD predictions, soft-gluon resummation methods implemented in theoretical calculations, and contributions from the parton-to-photon fragmentation diagrams. Events with W/Z+jets productions are used to measure many kinematic distributions allowing extensive tests and tunes of predictions from pQCD NLO and Monte-Carlo (MC) event generators. The charged-particle transverse momenta (p{sub T}) and multiplicity distributions in the inclusive minimum bias events are used to tune non-perturbative QCD models, including those describing the multiple parton interactions (MPI). Events with inclusive production of {gamma} and 2 or 3 jets are used to study increasingly important MPI phenomenon at high p{sub T}, measure an effective interaction cross section, {sigma}{sub eff} = 16.4 {+-} 2.3 mb, and limit existing MPI models.
Soft Power and Hard Measures: Large-Scale Assessment, Citizenship and the European Union
ERIC Educational Resources Information Center
Rutkowski, David; Engel, Laura C.
2010-01-01
This article explores the International Civic and Citizenship Education Study (ICCS) with particular emphasis on the European Union's (EU's) involvement in the regional portion. Using the ICCS, the EU actively combines hard measures with soft power, allowing the EU to define and steer cross-national rankings of values of EU citizenship. The…
Thick-target bremsstrahlung interpretation of short time-scale solar hard X-ray features
NASA Technical Reports Server (NTRS)
Emslie, A. G.
1983-01-01
Steady-state analyses of bremsstrahlung hard X-ray production in solar flares are appropriate only if the lifetime of the high energy electrons in the X-ray source is much shorter than the duration of the observed X-ray burst. For a thick-target nonthermal model, this implies that a full time-dependent analysis is required when the duration of the burst is comparable to the collisional lifetime of the injected electrons, in turn set by the lengths and densities of the flaring region. In this paper we present the results of such a time-dependent analysis, and we point out that the intrinsic temporal signature of the thick-target production mechanism, caused by the finite travel time of the electrons through the target, may indeed rule out such a mechanism for extremely short duration hard X-ray events.
Hard X-ray Detectability of Small-Scale Coronal Heating Events
NASA Astrophysics Data System (ADS)
Marsh, Andrew; Glesener, Lindsay; Klimchuk, James A.; Bradshaw, Stephen; Smith, David; Hannah, Iain
2016-05-01
The nanoflare heating theory predicts the ubiquitous presence of hot (~>5 MK) plasma in the solar corona, but evidence for this high-temperature component has been scarce. Current hard x-ray instruments such as RHESSI lack the sensitivity to see the trace amounts of this plasma that are predicted by theoretical models. New hard X-ray instruments that use focusing optics, such as FOXSI (the Focusing Optics X-ray Solar Imager) and NuSTAR (the Nuclear Spectroscopic Telescope Array) can extend the visible parameter space of nanoflare “storms” that create hot plasma. We compare active-region data from FOXSI and NuSTAR with a series of EBTEL hydrodynamic simulations, and constrain nanoflare properties to give good agreement with observations.
Assessing the role of static length scales behind glassy dynamics in polydisperse hard disks.
Russo, John; Tanaka, Hajime
2015-06-01
The possible role of growing static order in the dynamical slowing down toward the glass transition has recently attracted considerable attention. On the basis of random first-order transition theory, a new method to measure the static correlation length of amorphous order, called "point-to-set" (PTS) length, has been proposed and used to show that the dynamic length grows much faster than the static length. Here, we study the nature of the PTS length, using a polydisperse hard-disk system, which is a model that is known to exhibit a growing hexatic order upon densification. We show that the PTS correlation length is decoupled from the steeper increase of the correlation length of hexatic order and dynamic heterogeneity, while closely mirroring the decay length of two-body density correlations. Our results thus provide a clear example that other forms of order can play an important role in the slowing down of the dynamics, casting a serious doubt on the order-agnostic nature of the PTS length and its relevance to slow dynamics, provided that a polydisperse hard-disk system is a typical glass former. PMID:26038545
The supercritical pomeron in QCD.
White, A. R.
1998-06-29
Deep-inelastic diffractive scaling violations have provided fundamental insight into the QCD pomeron, suggesting a single gluon inner structure rather than that of a perturbative two-gluon bound state. This talk outlines a derivation of a high-energy, transverse momentum cut-off, confining solution of QCD. The pomeron, in first approximation, is a single reggeized gluon plus a ''wee parton'' component that compensates for the color and particle properties of the gluon. This solution corresponds to a super-critical phase of Reggeon Field Theory.
QCD corrections to triboson production
NASA Astrophysics Data System (ADS)
Lazopoulos, Achilleas; Melnikov, Kirill; Petriello, Frank
2007-07-01
We present a computation of the next-to-leading order QCD corrections to the production of three Z bosons at the Large Hadron Collider. We calculate these corrections using a completely numerical method that combines sector decomposition to extract infrared singularities with contour deformation of the Feynman parameter integrals to avoid internal loop thresholds. The NLO QCD corrections to pp→ZZZ are approximately 50% and are badly underestimated by the leading order scale dependence. However, the kinematic dependence of the corrections is minimal in phase space regions accessible at leading order.
Qu, Qingming; Zhu, Min; Wang, Wei
2013-01-01
Recent discoveries of early bony fishes from the Silurian and earliest Devonian of South China (e.g. Psarolepis, Achoania, Meemannia, Styloichthys and Guiyu) have been crucial in understanding the origin and early diversification of the osteichthyans (bony fishes and tetrapods). All these early fishes, except Guiyu, have their dermal skeletal surface punctured by relatively large pore openings. However, among these early fishes little is known about scale morphology and dermal skeletal histology. Here we report new data about the scales and dermal skeletal histology of Psarolepis romeri, a taxon with important implications for studying the phylogeny of early gnathostomes and early osteichthyans. Seven subtypes of rhombic scales with similar histological composition and surface sculpture are referred to Psarolepis romeri. They are generally thick and show a faint antero-dorsal process and a broad peg-and-socket structure. In contrast to previously reported rhombic scales of osteichthyans, these scales bear a neck between crown and base as in acanthodian scales. Histologically, the crown is composed of several generations of odontodes and an irregular canal system connecting cylindrical pore cavities. Younger odontodes are deposited on older ones both superpositionally and areally. The bony tissues forming the keel of the scale are shown to be lamellar bone with plywood-like structure, whereas the other parts of the base are composed of pseudo-lamellar bone with parallel collagen fibers. The unique tissue combination in the keel (i.e., extrinsic Sharpey's fibers orthogonal to the intrinsic orthogonal sets of collagen fibers) has rarely been reported in the keel of other rhombic scales. The new data provide insights into the early evolution of rhombic (ganoid and cosmoid) scales in osteichthyans, and add to our knowledge of hard tissues of early vertebrates. PMID:23585902
Qu, Qingming; Zhu, Min; Wang, Wei
2013-01-01
Recent discoveries of early bony fishes from the Silurian and earliest Devonian of South China (e.g. Psarolepis, Achoania, Meemannia, Styloichthys and Guiyu) have been crucial in understanding the origin and early diversification of the osteichthyans (bony fishes and tetrapods). All these early fishes, except Guiyu, have their dermal skeletal surface punctured by relatively large pore openings. However, among these early fishes little is known about scale morphology and dermal skeletal histology. Here we report new data about the scales and dermal skeletal histology of Psarolepis romeri, a taxon with important implications for studying the phylogeny of early gnathostomes and early osteichthyans. Seven subtypes of rhombic scales with similar histological composition and surface sculpture are referred to Psarolepis romeri. They are generally thick and show a faint antero-dorsal process and a broad peg-and-socket structure. In contrast to previously reported rhombic scales of osteichthyans, these scales bear a neck between crown and base as in acanthodian scales. Histologically, the crown is composed of several generations of odontodes and an irregular canal system connecting cylindrical pore cavities. Younger odontodes are deposited on older ones both superpositionally and areally. The bony tissues forming the keel of the scale are shown to be lamellar bone with plywood-like structure, whereas the other parts of the base are composed of pseudo-lamellar bone with parallel collagen fibers. The unique tissue combination in the keel (i.e., extrinsic Sharpey's fibers orthogonal to the intrinsic orthogonal sets of collagen fibers) has rarely been reported in the keel of other rhombic scales. The new data provide insights into the early evolution of rhombic (ganoid and cosmoid) scales in osteichthyans, and add to our knowledge of hard tissues of early vertebrates. PMID:23585902
A rapid, small-scale sedimentation method to predict breadmaking quality of hard winter wheat
Technology Transfer Automated Retrieval System (TEKTRAN)
Breeders and processors are always looking for rapid and accurate methods to evaluate wheat quality. A rapid small-scale hybrid sedimentation method was developed for predicting breadmaking quality of breeders samples by combining the sodium dodecyl-sulfate (SDS) sedimentation method (AACC 56-70) an...
QCD in hadron-hadron collisions
Albrow, M.
1997-03-01
Quantum Chromodynamics provides a good description of many aspects of high energy hadron-hadron collisions, and this will be described, along with some aspects that are not yet understood in QCD. Topics include high E{sub T} jet production, direct photon, W, Z and heavy flavor production, rapidity gaps and hard diffraction.
Pluto collaboration
1981-02-01
Results obtained with the PLUTO detector at PETRA are presented. Multihadron final states have been analysed with respect to clustering, energy-energy correlations and transverse momenta in jets. QCD predictions for hard gluon emission and soft gluon-quark cascades are discussed. Results on ..cap alpha../sub s/ and the gluon spin are given.
Dudek, Jozef J.; Edwards, Robert G.
2012-03-21
In this study, we present the first comprehensive study of hybrid baryons using lattice QCD methods. Using a large basis of composite QCD interpolating fields we extract an extensive spectrum of baryon states and isolate those of hybrid character using their relatively large overlap onto operators which sample gluonic excitations. We consider the spectrum of Nucleon and Delta states at several quark masses finding a set of positive parity hybrid baryons with quantum numbersmore » $$N_{1/2^+},\\,N_{1/2^+},\\,N_{3/2^+},\\, N_{3/2^+},\\,N_{5/2^+},\\,$$ and $$\\Delta_{1/2^+},\\, \\Delta_{3/2^+}$$ at an energy scale above the first band of `conventional' excited positive parity baryons. This pattern of states is compatible with a color octet gluonic excitation having $$J^{P}=1^{+}$$ as previously reported in the hybrid meson sector and with a comparable energy scale for the excitation, suggesting a common bound-state construction for hybrid mesons and baryons.« less
Heavy Quarks, QCD, and Effective Field Theory
Thomas Mehen
2012-10-09
The research supported by this OJI award is in the area of heavy quark and quarkonium production, especially the application Soft-Collinear E ective Theory (SCET) to the hadronic production of quarkonia. SCET is an e ffective theory which allows one to derive factorization theorems and perform all order resummations for QCD processes. Factorization theorems allow one to separate the various scales entering a QCD process, and in particular, separate perturbative scales from nonperturbative scales. The perturbative physics can then be calculated using QCD perturbation theory. Universal functions with precise fi eld theoretic de nitions describe the nonperturbative physics. In addition, higher order perturbative QCD corrections that are enhanced by large logarithms can be resummed using the renormalization group equations of SCET. The applies SCET to the physics of heavy quarks, heavy quarkonium, and similar particles.
The gray-scale ink-jet printer: value in making hard copies of digital images.
Combs, M J; Snell, J; Cail, W S; Maier, T; Buck, D A
1995-01-01
Referring physicians often are supplied with copies of images to illustrate a report of the findings of a radiologic study or so that the radiologist can retain the original images. The increasing costs of production, film, and recovery of chemicals have enhanced the requirement for a clean, low-cost dry printing process. An ink-jet gray-scale paper printer (Unitone, Scitex Medical Systems, Bedford, MA) can print high-quality (300 dots per inch [dpi]) images with an effective 10-bit gray scale range by using the Hertz continuous ink-jet method [1-3], which does not require the use of a darkroom or hazardous chemicals. Several types of media (matte paper, glossy paper, transparency film) with a printing area of 26.9 x 43.7 cm (10.6 x 17.4 inches) may be used. The consumables are approximately 50-70% less expensive than the cost of silver halide film, providing a cost advantage over film for referral and archival copies. The results of an initial evaluation of the ink-jet printer at our institution are reported here. PMID:7998544
Simple analytic QCD model with perturbative QCD behavior at high momenta
Contreras, Carlos; Espinosa, Olivier; Cvetic, Gorazd; Martinez, Hector E.
2010-10-01
Analytic QCD models are those where the QCD running coupling has the physically correct analytic behavior, i.e., no Landau singularities in the Euclidean regime. We present a simple analytic QCD model in which the discontinuity function of the running coupling at high momentum scales is the same as in perturbative QCD (just like in the analytic QCD model of Shirkov and Solovtsov), but at low scales it is replaced by a delta function which parametrizes the unknown behavior there. We require that the running coupling agree to a high degree with the perturbative coupling at high energies, which reduces the number of free parameters of the model from four to one. The remaining parameter is fixed by requiring the reproduction of the correct value of the semihadronic tau decay ratio.
Foundations of Perturbative QCD
NASA Astrophysics Data System (ADS)
Collins, John
2011-04-01
1. Introduction; 2. Why QCD?; 3. Basics of QCD; 4. Infra-red safety and non-safety; 5. Libby-Sterman analysis and power counting; 6. Parton model to parton theory I; 7. Parton model to parton theory II; 8. Factorization; 9. Corrections to the parton model in QCD; 10. Factorization and subtractions; 11. DIS in QCD; 12. Fragmentation; 13. TMD factorization; 14. Hadron-hadron collisions; 15. More advanced topics; Appendices; References; Index.
Foundations of Perturbative QCD
NASA Astrophysics Data System (ADS)
Collins, John
2013-11-01
1. Introduction; 2. Why QCD?; 3. Basics of QCD; 4. Infra-red safety and non-safety; 5. Libby-Sterman analysis and power counting; 6. Parton model to parton theory I; 7. Parton model to parton theory II; 8. Factorization; 9. Corrections to the parton model in QCD; 10. Factorization and subtractions; 11. DIS in QCD; 12. Fragmentation; 13. TMD factorization; 14. Hadron-hadron collisions; 15. More advanced topics; Appendices; References; Index.
QCD corrections to B → π form factors from light-cone sum rules
NASA Astrophysics Data System (ADS)
Wang, Yu-Ming; Shen, Yue-Long
2015-09-01
We compute perturbative corrections to B → π form factors from QCD light-cone sum rules with B-meson distribution amplitudes. Applying the method of regions we demonstrate factorization of the vacuum-to-B-meson correlation function defined with an interpolating current for pion, at one-loop level, explicitly in the heavy quark limit. The short-distance functions in the factorization formulae of the correlation function involves both hard and hard-collinear scales; and these functions can be further factorized into hard coefficients by integrating out the hard fluctuations and jet functions encoding the hard-collinear information. Resummation of large logarithms in the short-distance functions is then achieved via the standard renormalization-group approach. We further show that structures of the factorization formulae for fBπ+ (q2) and fBπ0 (q2) at large hadronic recoil from QCD light-cone sum rules match that derived in QCD factorization. In particular, we perform an exploratory phenomenological analysis of B → π form factors, paying attention to various sources of perturbative and systematic uncertainties, and extract |Vub | = (3.05-0.38+0.54|th. ± 0.09|exp.) ×10-3 with the inverse moment of the B-meson distribution amplitude ϕB+ (ω) determined by reproducing fBπ+ (q2 = 0) obtained from the light-cone sum rules with π distribution amplitudes. Furthermore, we present the invariant-mass distributions of the lepton pair for B → πℓνℓ (ℓ = μ, τ) in the whole kinematic region. Finally, we discuss non-valence Fock state contributions to the B → π form factors fBπ+ (q2) and fBπ0 (q2) in brief.
Multi-scale thermal stability of a hard thermoplastic protein-based material
NASA Astrophysics Data System (ADS)
Latza, Victoria; Guerette, Paul A.; Ding, Dawei; Amini, Shahrouz; Kumar, Akshita; Schmidt, Ingo; Keating, Steven; Oxman, Neri; Weaver, James C.; Fratzl, Peter; Miserez, Ali; Masic, Admir
2015-09-01
Although thermoplastic materials are mostly derived from petro-chemicals, it would be highly desirable, from a sustainability perspective, to produce them instead from renewable biopolymers. Unfortunately, biopolymers exhibiting thermoplastic behaviour and which preserve their mechanical properties post processing are essentially non-existent. The robust sucker ring teeth (SRT) from squid and cuttlefish are one notable exception of thermoplastic biopolymers. Here we describe thermoplastic processing of squid SRT via hot extrusion of fibres, demonstrating the potential suitability of these materials for large-scale thermal forming. Using high-resolution in situ X-ray diffraction and vibrational spectroscopy, we elucidate the molecular and nanoscale features responsible for this behaviour and show that SRT consist of semi-crystalline polymers, whereby heat-resistant, nanocrystalline β-sheets embedded within an amorphous matrix are organized into a hexagonally packed nanofibrillar lattice. This study provides key insights for the molecular design of biomimetic protein- and peptide-based thermoplastic structural biopolymers with potential biomedical and 3D printing applications.
Multi-scale thermal stability of a hard thermoplastic protein-based material
Latza, Victoria; Guerette, Paul A.; Ding, Dawei; Amini, Shahrouz; Kumar, Akshita; Schmidt, Ingo; Keating, Steven; Oxman, Neri; Weaver, James C.; Fratzl, Peter; Miserez, Ali; Masic, Admir
2015-01-01
Although thermoplastic materials are mostly derived from petro-chemicals, it would be highly desirable, from a sustainability perspective, to produce them instead from renewable biopolymers. Unfortunately, biopolymers exhibiting thermoplastic behaviour and which preserve their mechanical properties post processing are essentially non-existent. The robust sucker ring teeth (SRT) from squid and cuttlefish are one notable exception of thermoplastic biopolymers. Here we describe thermoplastic processing of squid SRT via hot extrusion of fibres, demonstrating the potential suitability of these materials for large-scale thermal forming. Using high-resolution in situ X-ray diffraction and vibrational spectroscopy, we elucidate the molecular and nanoscale features responsible for this behaviour and show that SRT consist of semi-crystalline polymers, whereby heat-resistant, nanocrystalline β-sheets embedded within an amorphous matrix are organized into a hexagonally packed nanofibrillar lattice. This study provides key insights for the molecular design of biomimetic protein- and peptide-based thermoplastic structural biopolymers with potential biomedical and 3D printing applications. PMID:26387704
Multi-scale thermal stability of a hard thermoplastic protein-based material.
Latza, Victoria; Guerette, Paul A; Ding, Dawei; Amini, Shahrouz; Kumar, Akshita; Schmidt, Ingo; Keating, Steven; Oxman, Neri; Weaver, James C; Fratzl, Peter; Miserez, Ali; Masic, Admir
2015-01-01
Although thermoplastic materials are mostly derived from petro-chemicals, it would be highly desirable, from a sustainability perspective, to produce them instead from renewable biopolymers. Unfortunately, biopolymers exhibiting thermoplastic behaviour and which preserve their mechanical properties post processing are essentially non-existent. The robust sucker ring teeth (SRT) from squid and cuttlefish are one notable exception of thermoplastic biopolymers. Here we describe thermoplastic processing of squid SRT via hot extrusion of fibres, demonstrating the potential suitability of these materials for large-scale thermal forming. Using high-resolution in situ X-ray diffraction and vibrational spectroscopy, we elucidate the molecular and nanoscale features responsible for this behaviour and show that SRT consist of semi-crystalline polymers, whereby heat-resistant, nanocrystalline β-sheets embedded within an amorphous matrix are organized into a hexagonally packed nanofibrillar lattice. This study provides key insights for the molecular design of biomimetic protein- and peptide-based thermoplastic structural biopolymers with potential biomedical and 3D printing applications. PMID:26387704
Precision lattice QCD: challenges and prospects
NASA Astrophysics Data System (ADS)
Hashimoto, Shoji
2013-04-01
With Peta-flops scale computational resources, lattice QCD simulation has recently reached one of its primary goals, i.e. reproducing the low-lying hadron spectrum starting from the QCD Lagrangian. Applications to various other phenomenological quantities, for which no other way of precise theoretical calculation is available, would become the next milestone. In this talk I will provide a brief overview of the field and summarize the remaining problems to be solved before achieving the precision calculations.
ERIC Educational Resources Information Center
Truckenmiller, James L.
Recent national surveys have found marked increases in the use of illicit drugs and alcohol among adolescents. To investigate differential prediction of alcohol versus hard drug use amoung youths, 6% of the youths, aged 10-19, from a Pennsylvania county school system (N=1,689) were assessed on the HEW Community Youth Program Impact Scales. The 12…
Towards the chiral limit in QCD
Shailesh Chandrasekharan
2006-02-28
Computing hadronic observables by solving QCD from first principles with realistic quark masses is an important challenge in fundamental nuclear and particle physics research. Although lattice QCD provides a rigorous framework for such calculations many difficulties arise. Firstly, there are no good algorithms to solve lattice QCD with realistically light quark masses. Secondly, due to critical slowing down, Monte Carlo algorithms are able to access only small lattice sizes on coarse lattices. Finally, due to sign problems it is almost impossible to study the physics of finite baryon density. Lattice QCD contains roughly three mass scales: the cutoff (or inverse lattice spacing) a{sup -1}, the confinement scale {Lambda}{sub QCD}, and the pion mass m{sub {pi}}. Most conventional Monte Carlo algorithms for QCD become inefficient in two regimes: when {Lambda}{sub QCD} becomes small compared to a{sup -1} and when m{sub {pi}} becomes small compared to {Lambda}{sub QCD}. The former can be largely controlled by perturbation theory thanks to asymptotic freedom. The latter is more difficult since chiral extrapolations are typically non-analytic and can be unreliable if the calculations are not done at sufficiently small quark masses. For this reason it has been difficult to compute quantities close to the chiral limit. The essential goal behind this proposal was to develop a new approach towards understanding QCD and QCD-like theories with sufficiently light quarks. The proposal was based on a novel cluster algorithm discovered in the strong coupling limit with staggered fermions [1]. This algorithm allowed us to explore the physics of exactly massless quarks and as well as light quarks. Thus, the hope was that this discovery would lead to the complete solution of at least a few strongly coupled QCD-like theories. The solution would be far better than those achievable through conventional methods and thus would be able to shed light on the chiral physics from a new
QCD mechanisms for heavy particle production
Brodsky, S.J.
1985-09-01
For very large pair mass, the production of heavy quarks and supersymmetric particles is expected to be governed by ACD fusion subprocesses. At lower mass scales other QCD mechanisms such as prebinding distortion and intrinsic heavy particle Fock states can become important, possibly accounting for the anomalies observed for charm hadroproduction. We emphasize the importance of final-state Coulomb interactions at low relative velocity in QCD and predict the existence of heavy narrow four quark resonances (c c-bar u u-bar) and (cc c-bar c-bar) in ..gamma gamma.. reactions. Coherent QCD contributions are discussed as a contribution to the non-additivity of nuclear structure functions and heavy particle production cross sections. We also predict a new type of amplitude zero for exclusive heavy meson pair production which follows from the tree-graph structure of QCD. 35 refs., 8 figs., 1 tab.
NASA Astrophysics Data System (ADS)
Wilczek, Frank
Introduction Symmetry and the Phenomena of QCD Apparent and Actual Symmetries Asymptotic Freedom Confinement Chiral Symmetry Breaking Chiral Anomalies and Instantons High Temperature QCD: Asymptotic Properties Significance of High Temperature QCD Numerical Indications for Quasi-Free Behavior Ideas About Quark-Gluon Plasma Screening Versus Confinement Models of Chiral Symmetry Breaking More Refined Numerical Experiments High-Temperature QCD: Phase Transitions Yoga of Phase Transitions and Order Parameters Application to Glue Theories Application to Chiral Transitions Close Up on Two Flavors A Genuine Critical Point! (?) High-Density QCD: Methods Hopes, Doubts, and Fruition Another Renormalization Group Pairing Theory Taming the Magnetic Singularity High-Density QCD: Color-Flavor Locking and Quark-Hadron Continuity Gauge Symmetry (Non)Breaking Symmetry Accounting Elementary Excitations A Modified Photon Quark-Hadron Continuity Remembrance of Things Past More Quarks Fewer Quarks and Reality
Urban, Federico R.; Zhitnitsky, Ariel R.
2010-08-30
We review two mechanisms rooted in the infrared sector of QCD which, by exploiting the properties of the QCD ghost, as introduced by Veneziano, provide new insight on the cosmological dark energy problem, first, in the form of a Casimir-like energy from quantising QCD in a box, and second, in the form of additional, time-dependent, vacuum energy density in an expanding universe. Based on [1, 2].
The QCD/SM working group: Summary report
W. Giele et al.
2004-01-12
Quantum Chromo-Dynamics (QCD), and more generally the physics of the Standard Model (SM), enter in many ways in high energy processes at TeV Colliders, and especially in hadron colliders (the Tevatron at Fermilab and the forthcoming LHC at CERN), First of all, at hadron colliders, QCD controls the parton luminosity, which rules the production rates of any particle or system with large invariant mass and/or large transverse momentum. Accurate predictions for any signal of possible ''New Physics'' sought at hadron colliders, as well as the corresponding backgrounds, require an improvement in the control of uncertainties on the determination of PDF and of the propagation of these uncertainties in the predictions. Furthermore, to fully exploit these new types of PDF with uncertainties, uniform tools (computer interfaces, standardization of the PDF evolution codes used by the various groups fitting PDF's) need to be proposed and developed. The dynamics of colour also affects, both in normalization and shape, various observables of the signals of any possible ''New Physics'' sought at the TeV scale, such as, e.g. the production rate, or the distributions in transverse momentum of the Higgs boson. Last, but not least, QCD governs many backgrounds to the searches for this ''New Physics''. Large and important QCD corrections may come from extra hard parton emission (and the corresponding virtual corrections), involving multi-leg and/or multi-loop amplitudes. This requires complex higher order calculations, and new methods have to be designed to compute the required multi-legs and/or multi-loop corrections in a tractable form. In the case of semi-inclusive observables, logarithmically enhanced contributions coming from multiple soft and collinear gluon emission require sophisticated QCD resummation techniques. Resummation is a catch-all name for efforts to extend the predictive power of QCD by summing the large logarithmic corrections to all orders in perturbation theory. In
Emadi, Naghmeh; Safi, Yaser; Akbarzadeh Bagheban, Alireza; Asgary, Saeed
2014-01-01
Introduction: Computed tomography (CT) and cone-beam CT (CBCT) are valuable diagnostic aids for many clinical applications. This study was designed to compare the gray scale value (GSV) and Hounsfield unit (HU) of selected dental materials and various hard tissues using CT or CBCT. Methods and Materials: Three samples of all test materials including amalgam (AM), composite resin (CR), glass ionomer (GI), zinc-oxide eugenol (ZOE), calcium-enriched mixture (CEM) cement, AH-26 root canal sealer (AH-26), gutta-percha (GP), Coltosol (Col), Dycal (DL), mineral trioxide aggregate (MTA), zinc phosphate (ZP), and polycarbonate cement (PC) were prepared and scanned together with samples of bone, dentin and enamel using two CBCT devices, Scanora 3D (S3D) and NewTom VGi (NTV) and a spiral CT (SCT) scanner (Somatom Emotion 16 multislice spiral CT);. Subsequently, the HU and GSV values were determined and evaluated. The data were analyzed by the Kruskal-Wallis and Mann-Whitney U tests. The level of significance was determined at 0.05. Results: There were significant differences among the three different scanners (P<0.05). The differences between HU/GSV values of 12 selected dental materials using NTV was significant (P<0.05) and for S3D and SCT was insignificant (P>0.05). All tested materials showed maximum values in S3D and SCT (3094 and 3071, respectively); however, bone and dentin showed low/medium values (P<0.05). In contrast, the tested materials and tissues showed a range of values in NTV (366 to15383; P<0.05). Conclusion: Scanner system can influence the obtained HU/GSV of dental materials. NTV can discriminate various dental materials, in contrast to S3D/SCT scanners. NTV may be a more useful diagnostic aid for clinical practice. PMID:25386210
Report of the QCD Working Group
Hinchliffe, I.; Shapiro, M.D.
1989-01-13
We discuss some current problems associated with the applications of QCD to event rates in high energy collisions. Emphasis is given to the current ambiguities and uncertainties that exist in estimates of signals and backgrounds. The production of jets and isolated photons at hadron colliders is discussed in some detail. The problems of jet definition are addressed. Some features of the events underlying the hard scattering process are discussed. 72 refs., 32 figs., 3 tabs.
Heavy-Quark Associated Production with One Hard Photon at Hadron Colliders
Hartanto, Heribertus Bayu
2013-01-01
We present the calculation of heavy-quark associated production with a hard photon at hadron colliders, namely $pp(p\\bar p) → Q\\bar Q +X$γ (for $Q=t,b$), at Next-to-Leading Order (NLO) in Quantum Chromodynamics (QCD). We study the impact of NLO QCD corrections on the total cross section and several differential distributions at both the Tevatron and the Large Hadron Collider (LHC). For $t\\bar t$γ production we observe a sizeable reduction of the renormalization and factorization scale dependence when the NLO QCD corrections are included, while for $b\\bar b$γ production a considerable scale dependence still persists at NLO in QCD. This is consistent with what emerges in similar processes involving $b$ quarks and vector bosons and we explain its origin in detail. For $b\\bar b$γ production we study both the case in which at least one $b$ jet and the case in which at least two $b$ jets are observed. We perform the $b\\bar b$γ calculation using the Four Flavor Number Scheme (4FNS) and compare the case where at least one $b$ jet is observed with the corresponding results from the Five Flavor Number Scheme (5FNS) calculation. Finally we compare our results for $p\\bar p →+b+X$γ with the Tevatron data.
Heavy-quark associated production with one hard photon at hadron colliders
NASA Astrophysics Data System (ADS)
Hartanto, Heribertus Bayu
We present the calculation of heavy-quark associated production with a hard photon at hadron colliders, namely pp( pp) → QQgamma + X (for Q = t, b), at Next-to-Leading Order (NLO) in Quantum Chromodynamics (QCD). We study the impact of NLO QCD corrections on the total cross section and several differential distributions at both the Tevatron and the Large Hadron Collider (LHC). For ttgamma production we observe a sizeable reduction of the renormalization and factorization scale dependence when the NLO QCD corrections are included, while for bbgamma production a considerable scale dependence still persists at NLO in QCD. This is consistent with what emerges in similar processes involving b quarks and vector bosons and we explain its origin in detail. For bbgamma production we study both the case in which at least one b jet and the case in which at least two b jets are observed. We perform the bbgamma calculation using the Four Flavor Number Scheme (4FNS) and compare the case where at least one b jet is observed with the corresponding results from the Five Flavor Number Scheme (5FNS) calculation. Finally we compare our results for p p → gamma + b + X with Tevatron data.
Norniella, Olga; /Barcelona, IFAE
2005-01-01
Recent QCD measurements from the CDF collaboration at the Tevatron are presented, together with future prospects as the luminosity increases. The measured inclusive jet cross section is compared to pQCD NLO predictions. Precise measurements on jet shapes and hadronic energy flows are compared to different phenomenological models that describe gluon emissions and the underlying event in hadron-hadron interactions.
Merging weak and QCD showers with matrix elements
Christiansen, Jesper Roy; Prestel, Stefan
2016-01-22
In this study, we present a consistent way of combining associated weak boson radiation in hard dijet events with hard QCD radiation in Drell–Yan-like scatterings. This integrates multiple tree-level calculations with vastly different cross sections, QCD- and electroweak parton-shower resummation into a single framework. The new merging strategy is implemented in the P ythia event generator and predictions are confronted with LHC data. Improvements over the previous strategy are observed. Results of the new electroweak-improved merging at a future 100 TeV proton collider are also investigated.
Measuring the Hardness of Minerals
ERIC Educational Resources Information Center
Bushby, Jessica
2005-01-01
The author discusses Moh's hardness scale, a comparative scale for minerals, whereby the softest mineral (talc) is placed at 1 and the hardest mineral (diamond) is placed at 10, with all other minerals ordered in between, according to their hardness. Development history of the scale is outlined, as well as a description of how the scale is used…
Brodsky, Stanley J.; de Teramond, Guy F.; /Costa Rica U. /SLAC
2007-02-21
The AdS/CFT correspondence between string theory in AdS space and conformal .eld theories in physical spacetime leads to an analytic, semi-classical model for strongly-coupled QCD which has scale invariance and dimensional counting at short distances and color confinement at large distances. Although QCD is not conformally invariant, one can nevertheless use the mathematical representation of the conformal group in five-dimensional anti-de Sitter space to construct a first approximation to the theory. The AdS/CFT correspondence also provides insights into the inherently non-perturbative aspects of QCD, such as the orbital and radial spectra of hadrons and the form of hadronic wavefunctions. In particular, we show that there is an exact correspondence between the fifth-dimensional coordinate of AdS space z and a specific impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron in ordinary space-time. This connection allows one to compute the analytic form of the frame-independent light-front wavefunctions, the fundamental entities which encode hadron properties and allow the computation of decay constants, form factors, and other exclusive scattering amplitudes. New relativistic lightfront equations in ordinary space-time are found which reproduce the results obtained using the 5-dimensional theory. The effective light-front equations possess remarkable algebraic structures and integrability properties. Since they are complete and orthonormal, the AdS/CFT model wavefunctions can also be used as a basis for the diagonalization of the full light-front QCD Hamiltonian, thus systematically improving the AdS/CFT approximation.
Nuclear Physics and Lattice QCD
Beane, Silas
2003-11-01
Impressive progress is currently being made in computing properties and interac- tions of the low-lying hadrons using lattice QCD. However, cost limitations will, for the foreseeable future, necessitate the use of quark masses, Mq, that are signif- icantly larger than those of nature, lattice spacings, a, that are not significantly smaller than the physical scale of interest, and lattice sizes, L, that are not sig- nificantly larger than the physical scale of interest. Extrapolations in the quark masses, lattice spacing and lattice volume are therefore required. The hierarchy of mass scales is: L 1 j Mq j â ºC j a 1 . The appropriate EFT for incorporating the light quark masses, the finite lattice spacing and the lattice size into hadronic observables is C-PT, which provides systematic expansions in the small parame- ters e m L, 1/ Lâ ºC, p/â ºC, Mq/â ºC and aâ ºC . The lattice introduces other unphysical scales as well. Lattice QCD quarks will increasingly be artificially separated
Lattice QCD in rotating frames.
Yamamoto, Arata; Hirono, Yuji
2013-08-23
We formulate lattice QCD in rotating frames to study the physics of QCD matter under rotation. We construct the lattice QCD action with the rotational metric and apply it to the Monte Carlo simulation. As the first application, we calculate the angular momenta of gluons and quarks in the rotating QCD vacuum. This new framework is useful to analyze various rotation-related phenomena in QCD. PMID:24010426
QCD structure of nuclear interactions
NASA Astrophysics Data System (ADS)
Granados, Carlos G.
The research presented in this dissertation investigated selected processes involving baryons and nuclei in hard scattering reactions. These processes are characterized by the production of particles with large energies and transverse momenta. Through these processes, this work explored both, the constituent (quark) structure of baryons (specifically nucleons and Delta-Isobars), and the mechanisms through which the interactions between these constituents ultimately control the selected reactions. The first of such reactions is the hard nucleon-nucleon elastic scattering, which was studied here considering the quark exchange between the nucleons to be the dominant mechanism of interaction in the constituent picture. In particular, it was found that an angular asymmetry exhibited by proton-neutron elastic scattering data is explained within this framework if a quark-diquark picture dominates the nucleon's structure instead of a more traditional SU(6) three quarks picture. The latter yields an asymmetry around 90o center of mass scattering with a sign opposite to what is experimentally observed. The second process is the hard breakup by a photon of a nucleon-nucleon system in light nuclei. Proton-proton (pp) and proton-neutron (pn) breakup in 3He, and DeltaDelta-isobars production in deuteron breakup were analyzed in the hard rescattering model (HRM), which in conjunction with the quark interchange mechanism provides a Quantum Chromodynamics (QCD) description of the reaction. Through the HRM, cross sections for both channels in 3He photodisintegration were computed without the need of a fitting parameter. The results presented here for pp breakup show excellent agreement with recent experimental data. In DeltaDelta-isobars production in deuteron breakup, HRM angular distributions for the two DeltaDelta channels were compared to the pn channel and to each other. An important prediction fromthis study is that the Delta++Delta- channel consistently dominates Delta+Delta0
QCD Evolution of Helicity and Transversity TMDs
Prokudin, Alexei
2014-01-01
We examine the QCD evolution of the helicity and transversity parton distribution functions when including also their dependence on transverse momentum. Using an appropriate definition of these polarized transverse momentum distributions (TMDs), we describe their dependence on the factorization scale and rapidity cutoff, which is essential for phenomenological applications.
Phase structure of QCD for heavy quarks
NASA Astrophysics Data System (ADS)
Fischer, Christian S.; Luecker, Jan; Pawlowski, Jan M.
2015-01-01
We investigate the nature of the deconfinement and Roberge-Weiss transition in the heavy quark regime for finite real and imaginary chemical potential within the functional approach to continuum QCD. We extract the critical phase boundary between the first-order and crossover regions and also explore tricritical scaling. Our results confirm previous ones from finite volume lattice studies.
Effective charges and expansion parameters in QCD
Braaten, E.; Leveille, J.P.
1981-10-01
The momentum subtraction scheme MOM has been empirically successful in producing small QCD corrections to physical quantities at one loop order. By explicit calculations, we show that with a suitable shift in the renormalization scale, the minimal subtraction scheme coupling constant ..cap alpha../sub MS/ coincides with typical momentum scheme coupling constants at both one and two loop order.
None
2011-10-06
Modern QCD - Lecture 3 We will introduce processes with initial-state hadrons and discuss parton distributions, sum rules, as well as the need for a factorization scale once radiative corrections are taken into account. We will then discuss the DGLAP equation, the evolution of parton densities, as well as ways in which parton densities are extracted from data.
NASA Astrophysics Data System (ADS)
Lutz, Matthias F. M.; Lange, Jens Sören; Pennington, Michael; Bettoni, Diego; Brambilla, Nora; Crede, Volker; Eidelman, Simon; Gillitzer, Albrecht; Gradl, Wolfgang; Lang, Christian B.; Metag, Volker; Nakano, Takashi; Nieves, Juan; Neubert, Sebastian; Oka, Makoto; Olsen, Stephen L.; Pappagallo, Marco; Paul, Stephan; Pelizäus, Marc; Pilloni, Alessandro; Prencipe, Elisabetta; Ritman, Jim; Ryan, Sinead; Thoma, Ulrike; Uwer, Ulrich; Weise, Wolfram
2016-04-01
We report on the EMMI Rapid Reaction Task Force meeting 'Resonances in QCD', which took place at GSI October 12-14, 2015. A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions: What is needed to understand the physics of resonances in QCD? Where does QCD lead us to expect resonances with exotic quantum numbers? What experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with up, down and strange quark content were considered. For heavy-light and heavy-heavy meson systems, those with charm quarks were the focus. This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.
QCD on the Massively Parallel Computer AP1000
NASA Astrophysics Data System (ADS)
Akemi, K.; Fujisaki, M.; Okuda, M.; Tago, Y.; Hashimoto, T.; Hioki, S.; Miyamura, O.; Takaishi, T.; Nakamura, A.; de Forcrand, Ph.; Hege, C.; Stamatescu, I. O.
We present the QCD-TARO program of calculations which uses the parallel computer AP1000 of Fujitsu. We discuss the results on scaling, correlation times and hadronic spectrum, some aspects of the implementation and the future prospects.
Skands, Peter Z.; /Fermilab
2005-07-01
Recent developments in QCD phenomenology have spurred on several improved approaches to Monte Carlo event generation, relative to the post-LEP state of the art. In this brief review, the emphasis is placed on approaches for (1) consistently merging fixed-order matrix element calculations with parton shower descriptions of QCD radiation, (2) improving the parton shower algorithms themselves, and (3) improving the description of the underlying event in hadron collisions.
Nonperturbative vacuum and hard scattering processes
Sakai, N.
1980-08-01
A number of interesting suggestions for the QCD nonperturbative vacuum have been advocated in recent years by a group of people in Copenhagen. Some of the main ideas are briefly reviewed. An attempt to obtain the physical effects of the nonperturbative vacuum by studying hard scattering processes such as e/sup +/e/sup -/ ..-->.. hadrons is also described. 2 figures.
Beta Backscatter Measures the Hardness of Rubber
NASA Technical Reports Server (NTRS)
Morrissey, E. T.; Roje, F. N.
1986-01-01
Nondestructive testing method determines hardness, on Shore scale, of room-temperature-vulcanizing silicone rubber. Measures backscattered beta particles; backscattered radiation count directly proportional to Shore hardness. Test set calibrated with specimen, Shore hardness known from mechanical durometer test. Specimen of unknown hardness tested, and radiation count recorded. Count compared with known sample to find Shore hardness of unknown.
NASA Astrophysics Data System (ADS)
Kirchmaier, Leo; Irrgeher, Johanna; Prohaska, Thomas; Zitek, Andreas
2013-04-01
Elemental and isotopic fingerprints of different hard parts of fish are a powerful tool to gain life history information of individual fish. Most of these structures, like otoliths, scales, fin rays and vertebrae show incremental growth, allowing for a time resolved analysis of this information using e.g. laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS). Scales and fin-rays serve as important non-lethal alternatives to otoliths. Additional structures without incremental growth such as eye lenses might contain complementary information. However, there is a lack of solid matrix-matched reference materials that are needed to quantify elemental concentrations using LA-ICPMS. In this study we determined the elemental composition ("elemental fingerprint") of otoliths, scales, fin rays, vertebrae and eye lenses from freshwater fish of the Danube catchment using microwave-assisted digestion and solution based inductively coupled plasma mass spectrometry in order to gain information on the natural concentration ranges of various elements of interest in such samples. The investigation has focused on macro (Ca, Mg and P), minor and trace elements (Ba, Cu, Mn, Pb, Sr and Zn). Method validation was performed using the following certified reference materials (CRMs): riverine water (NRC SLRS-5), bone ash (NIST SRM 1400), bone meal (NIST SRM 1486) and fish otolith (NRC FEBS-1). Significant differences in elemental concentrations among different hard parts analyzed were found suggesting that different structures might be suited for a particular research purpose e.g. tracing environmental pollution. Based on this work, the preparation of in-house certified matrix-matched reference materials (co-precipitated hydroxyapatite calibration standards pressed to pellets) is established allowing for the quantification of the elemental concentration on a time resolved level in different hard parts by direct solid sampling via laser.
Light-front holographic QCD and emerging confinement
NASA Astrophysics Data System (ADS)
Brodsky, Stanley J.; de Téramond, Guy F.; Dosch, Hans Günter; Erlich, Joshua
2015-07-01
In this report we explore the remarkable connections between light-front dynamics, its holographic mapping to gravity in a higher-dimensional anti-de Sitter (AdS) space, and conformal quantum mechanics. This approach provides new insights into the origin of a fundamental mass scale and the physics underlying confinement dynamics in QCD in the limit of massless quarks. The result is a relativistic light-front wave equation for arbitrary spin with an effective confinement potential derived from a conformal action and its embedding in AdS space. This equation allows for the computation of essential features of hadron spectra in terms of a single scale. The light-front holographic methods described here give a precise interpretation of holographic variables and quantities in AdS space in terms of light-front variables and quantum numbers. This leads to a relation between the AdS wave functions and the boost-invariant light-front wave functions describing the internal structure of hadronic bound-states in physical space-time. The pion is massless in the chiral limit and the excitation spectra of relativistic light-quark meson and baryon bound states lie on linear Regge trajectories with identical slopes in the radial and orbital quantum numbers. In the light-front holographic approach described here currents are expressed as an infinite sum of poles, and form factors as a product of poles. At large q2 the form factor incorporates the correct power-law fall-off for hard scattering independent of the specific dynamics and is dictated by the twist. At low q2 the form factor leads to vector dominance. The approach is also extended to include small quark masses. We briefly review in this report other holographic approaches to QCD, in particular top-down and bottom-up models based on chiral symmetry breaking. We also include a discussion of open problems and future applications.
Light-front holographic QCD and emerging confinement
Brodsky, Stanley J.; de Téramond, Guy F.; Dosch, Hans Günter; Erlich, Joshua
2015-05-21
In this study we explore the remarkable connections between light-front dynamics, its holographic mapping to gravity in a higher-dimensional anti-de Sitter (AdS) space, and conformal quantum mechanics. This approach provides new insights into the origin of a fundamental mass scale and the physics underlying confinement dynamics in QCD in the limit of massless quarks. The result is a relativistic light-front wave equation for arbitrary spin with an effective confinement potential derived from a conformal action and its embedding in AdS space. This equation allows for the computation of essential features of hadron spectra in terms of a single scale. The light-front holographic methods described here give a precise interpretation of holographic variables and quantities in AdS space in terms of light-front variables and quantum numbers. This leads to a relation between the AdS wave functions and the boost-invariant light-front wave functions describing the internal structure of hadronic bound-states in physical spacetime. The pion is massless in the chiral limit and the excitation spectra of relativistic light-quark meson and baryon bound states lie on linear Regge trajectories with identical slopes in the radial and orbital quantum numbers. In the light-front holographic approach described here currents are expressed as an infinite sum of poles, and form factors as a product of poles. At large q^{2} the form factor incorporates the correct power-law fall-off for hard scattering independent of the specific dynamics and is dictated by the twist. At low q^{2} the form factor leads to vector dominance. The approach is also extended to include small quark masses. We briefly review in this report other holographic approaches to QCD, in particular top-down and bottom-up models based on chiral symmetry breaking. We also include a discussion of open problems and future applications.
NASA Technical Reports Server (NTRS)
Shaw, D. C.; Swift, G. M.; Johnston, A. H.
1995-01-01
In this paper, total ionizing dose radiation evaluations of the Micron 64 Mb 3.3 V, fast page mode DRAM and the IBM LUNA-ES 16 Mb DRAM are presented. The effects of scaling on total ionizing dose radiation hardness are studied utilizing test structures and a series of 16 Mb DRAMs with different feature sizes from the same manufacturing line. General agreement was found between the threshold voltage shifts of 16 Mb DRAM test structures and the threshold voltage measured on complete circuits using retention time measurements. Retention time measurement data from early radiation doses are shown that allow internal failure modes to be distinguished.
FOREWORD: Extreme QCD 2012 (xQCD)
NASA Astrophysics Data System (ADS)
Alexandru, Andrei; Bazavov, Alexei; Liu, Keh-Fei
2013-04-01
The Extreme QCD 2012 conference, held at the George Washington University in August 2012, celebrated the 10th event in the series. It has been held annually since 2003 at different locations: San Carlos (2011), Bad Honnef (2010), Seoul (2009), Raleigh (2008), Rome (2007), Brookhaven (2006), Swansea (2005), Argonne (2004), and Nara (2003). As usual, it was a very productive and inspiring meeting that brought together experts in the field of finite-temperature QCD, both theoretical and experimental. On the experimental side, we heard about recent results from major experiments, such as PHENIX and STAR at Brookhaven National Laboratory, ALICE and CMS at CERN, and also about the constraints on the QCD phase diagram coming from astronomical observations of one of the largest laboratories one can imagine, neutron stars. The theoretical contributions covered a wide range of topics, including QCD thermodynamics at zero and finite chemical potential, new ideas to overcome the sign problem in the latter case, fluctuations of conserved charges and how they allow one to connect calculations in lattice QCD with experimentally measured quantities, finite-temperature behavior of theories with many flavors of fermions, properties and the fate of heavy quarkonium states in the quark-gluon plasma, and many others. The participants took the time to write up and revise their contributions and submit them for publication in these proceedings. Thanks to their efforts, we have now a good record of the ideas presented and discussed during the workshop. We hope that this will serve both as a reminder and as a reference for the participants and for other researchers interested in the physics of nuclear matter at high temperatures and density. To preserve the atmosphere of the event the contributions are ordered in the same way as the talks at the conference. We are honored to have helped organize the 10th meeting in this series, a milestone that reflects the lasting interest in this
Technology Transfer Automated Retrieval System (TEKTRAN)
Field-scale flow and transport studies are frequently conducted to assess and quantify a variety of environmental and agricultural scenarios. The utility of field-scale flow and transport studies, however, is frequently limited by our inability to characterize the heterogeneous distribution of hydr...
NASA Astrophysics Data System (ADS)
Wehkamp, Stephanie; Fischer, Philipp
2013-03-01
The micro-scale spatial distribution patterns of a demersal fish and decapod crustacean assemblage were assessed in a hard-bottom kelp environment in the southern North Sea. Using quadrats along line transects, we assessed the in situ fish and crustacean abundance in relation to substratum types (rock, cobbles and large pebbles) and the density of algae. Six fish and four crustacean species were abundant, with Ctenolabrus rupestris clearly dominating the fish community and Galathea squamifera dominating the crustacean community. Differences in the substratum types had an even stronger effect on the micro-scale distribution than the density of the dominating algae species. Kelp had a negative effect on the fish abundances, with significantly lower average densities in kelp beds compared with adjacent open areas. Averaged over all of the substrata, the most attractive substratum for the fish was large pebbles . In contrast, crustaceans did not show a specific substratum affinity. The results clearly indicate that, similar to other complex systems, significant micro-scale species-habitat associations occur in northern hard-bottom environments. However, because of the frequently harsh environmental conditions, these habitats are mainly sampled from ships with sampling gear, and the resulting data cannot be used to resolve small-scale species-habitat associations. A detailed substratum classification and community assessment, often only possible using SCUBA diving, is therefore important to reach a better understanding of the functional relationships between species and their environment in northern temperate waters, knowledge that is very important with respect to the increasing environmental pressure caused by global climate change.
Higgs production in heavy-quark annihilation through next-to-next-to-leading order QCD
NASA Astrophysics Data System (ADS)
Harlander, Robert V.
2016-05-01
The total inclusive cross section for charged and neutral Higgs production in heavy-quark annihilation is presented through NNLO QCD. It is shown that, aside from an overall factor, the partonic cross section is independent of the initial-state quark flavors, and that any interference terms involving two different Yukawa couplings vanish. A simple criterion for defining the central renormalization and factorization scale is proposed. Its application to the bbar{b}φ process yields results which are compatible with the values usually adopted for this process. Remarkably, we find little variation in these values for the other initial-state quark flavors. Finally, we disentangle the impact of the different parton luminosities from genuine hard NNLO effects and find that, for the central scales, a naive rescaling by the parton luminosities approximates the full result remarkably well.
Electroweak symmetry breaking via QCD.
Kubo, Jisuke; Lim, Kher Sham; Lindner, Manfred
2014-08-29
We propose a new mechanism to generate the electroweak scale within the framework of QCD, which is extended to include conformally invariant scalar degrees of freedom belonging to a larger irreducible representation of SU(3)c. The electroweak symmetry breaking is triggered dynamically via the Higgs portal by the condensation of the colored scalar field around 1 TeV. The mass of the colored boson is restricted to be 350 GeV≲mS≲3 TeV, with the upper bound obtained from perturbative renormalization group evolution. This implies that the colored boson can be produced at the LHC. If the colored boson is electrically charged, the branching fraction of the Higgs boson decaying into two photons can slightly increase, and moreover, it can be produced at future linear colliders. Our idea of nonperturbative electroweak scale generation can serve as a new starting point for more realistic model building in solving the hierarchy problem. PMID:25215976
NASA Astrophysics Data System (ADS)
These are the proceedings of the QCD Evolution 2015 Workshop which was held 26-30 May, 2015 at Jefferson Lab, Newport News, Virginia, USA. The workshop is a continuation of a series of workshops held during four consecutive years 2011, 2012, 2013 at Jefferson Lab, and in 2014 in Santa Fe, NM. With the rapid developments in our understanding of the evolution of parton distributions including low-x, TMDs, GPDs, higher-twist correlation functions, and the associated progress in perturbative QCD, lattice QCD and effective field theory techniques we look forward with great enthusiasm to the 2015 meeting. A special attention was also paid to participation of experimentalists as the topics discussed are of immediate importance for the JLab 12 experimental program and a future Electron Ion Collider.
NASA Astrophysics Data System (ADS)
Sarcevic, Ina; Tan, Chung-I.
2000-07-01
The Table of Contents for the full book PDF is as follows: * Preface * Monday morning session: Hadronic Final States - Conveners: E. de Wolf and J. W. Gary * Session Chairman: J. W. Gary * Inclusive Jets at the Tevatron * Forward Jets, Dijets, and Subjets at the Tevatron * Inclusive Hadron Production and Dijets at HERA * Recent Opal Results on Photon Structure and Interactions * Review of Two-Photon Physics at LEP * Session Chairman: E. de Wolf * An Intriguing Area-Law-Based Hadron Production Scheme in e+e- Annihilation and Its Possible Extensions * Hyperfine Splitting in Hadron Production at High Energies * Event Selection Effects on Multiplicities in Quark and Gluon Jets * Quark and Gluon Jet Properties at LEP * Rapidity Gaps in Quark and Gluon Jets -- A Perturbative Approach * Monday afternoon session: Diffractive and Small-x - Conveners: M. Derrick and A. White * Session Chairman: A. White * Structure Functions: Low x, High y, Low Q2 * The Next-to-Leading Dynamics of the BFKL Pomeron * Renormalization Group Improved BFKL Equation * Session Chairman: G. Briskin * New Experimental Results on Diffraction at HERA * Diffractive Parton Distributions in Light-Cone QCD * The Logarithmic Derivative of the F2 Structure Function and Saturation * Spin Dependence of Diffractive DIS * Monday evening session * Session Chairman: M. Braun * Tests of QCD with Particle Production at HERA: Review and Outlook * Double Parton Scattering and Hadron Structure in Transverse Space * The High Density Parton Dynamics from Eikonal and Dipole Pictures * Hints of Higher Twist Effects in the Slope of the Proton Structure Function * Tuesday morning session: Correlations and Fluctuations - Conveners: R. Hwa and M. Tannenbaum * Session Chairman: A. Giovannini -- Fluctuations and Correlations * Bose-Einstein Results from L3 * Short-Range and Long-Range Correlations in DIS at HERA * Coior Mutation Model, Intermittency, and Erraticity * QCD Queuing and Hadron Multiplicity * Soft and Semi-hard
NASA Astrophysics Data System (ADS)
Patton, Howard J.
2016-04-01
Surface wave magnitude Ms for a compilation of 72 nuclear tests detonated in hard rock media for which yields and burial depths have been reported in the literature is shown to scale with yield W as a + b × log[W], where a = 2.50 ± 0.08 and b = 0.80 ± 0.05. While the exponent b is consistent with an Ms scaling model for fully coupled, normal containment-depth explosions, the intercept a is offset 0.45 magnitude units lower than the model. The cause of offset is important to understand in terms of the explosion source. Hard rock explosions conducted in extensional and compressional stress regimes show similar offsets, an indication that the tectonic setting in which an explosion occurs plays no role causing the offset. The scaling model accounts for the effects of source medium material properties on the generation of 20-s period Rayleigh wave amplitudes. Aided by thorough characterizations of the explosion and tectonic release sources, an extensive analysis of the 26 October 1963 Shoal nuclear test detonated in granite 27 miles southeast of Fallon NV shows that the offset is consistent with the predictions of a material damage source model related to nonlinear stress wave interactions with the free surface. This source emits Rayleigh waves with polarity opposite to waves emitted by the explosion. The Shoal results were extended to analyze surface waves from the 15 February 1962 Hardhat nuclear test, the 14 September 1988 Soviet Joint Verification Experiment, and the anomalous 18 August 1979 northeast Balapan explosion which exhibits opposite polarity, azimuth-independent source component U1 compared to an explosion. Modeling these tests shows that Rayleigh wave amplitudes generated by the damage source are nearly as large as or larger than amplitudes from the explosion. As such, destructive interference can be drastic, introducing metastable conditions due to the sensitivity of reduced amplitudes to Rayleigh wave initial phase angles of the explosion and damage
NASA Astrophysics Data System (ADS)
Patton, Howard J.
2016-07-01
Surface wave magnitude Ms for a compilation of 72 nuclear tests detonated in hard rock media for which yields and burial depths have been reported in the literature is shown to scale with yield W as a + b × log[W], where a = 2.50 ± 0.08 and b = 0.80 ± 0.05. While the exponent b is consistent with an Ms scaling model for fully coupled, normal containment-depth explosions, the intercept a is offset 0.45 magnitude units lower than the model. The cause of offset is important to understand in terms of the explosion source. Hard rock explosions conducted in extensional and compressional stress regimes show similar offsets, an indication that the tectonic setting in which an explosion occurs plays no role causing the offset. The scaling model accounts for the effects of source medium material properties on the generation of 20-s period Rayleigh wave amplitudes. Aided by thorough characterizations of the explosion and tectonic release sources, an extensive analysis of the 1963 October 26 Shoal nuclear test detonated in granite 27 miles southeast of Fallon NV shows that the offset is consistent with the predictions of a material damage source model related to non-linear stress wave interactions with the free surface. This source emits Rayleigh waves with polarity opposite to waves emitted by the explosion. The Shoal results were extended to analyse surface waves from the 1962 February 15 Hardhat nuclear test, the 1988 September 14 Soviet Joint Verification Experiment, and the anomalous 1979 August 18 northeast Balapan explosion which exhibits opposite polarity, azimuth-independent source component U1 compared to an explosion. Modelling these tests shows that Rayleigh wave amplitudes generated by the damage source are nearly as large as or larger than amplitudes from the explosion. As such, destructive interference can be drastic, introducing metastable conditions due to the sensitivity of reduced amplitudes to Rayleigh wave initial phase angles of the explosion and
Smith, W.H.
1997-06-01
These lectures describe QCD physics studies over the period 1992--1996 from data taken with collisions of 27 GeV electrons and positrons with 820 GeV protons at the HERA collider at DESY by the two general-purpose detectors H1 and ZEUS. The focus of these lectures is on structure functions and jet production in deep inelastic scattering, photoproduction, and diffraction. The topics covered start with a general introduction to HERA and ep scattering. Structure functions are discussed. This includes the parton model, scaling violation, and the extraction of F{sub 2}, which is used to determine the gluon momentum distribution. Both low and high Q{sup 2} regimes are discussed. The low Q{sup 2} transition from perturbative QCD to soft hadronic physics is examined. Jet production in deep inelastic scattering to measure {alpha}{sub s}, and in photoproduction to study resolved and direct photoproduction, is also presented. This is followed by a discussion of diffraction that begins with a general introduction to diffraction in hadronic collisions and its relation to ep collisions, and moves on to deep inelastic scattering, where the structure of diffractive exchange is studied, and in photoproduction, where dijet production provides insights into the structure of the Pomeron. 95 refs., 39 figs.
Supersymmetric QCD and high energy cosmic rays: Fragmentation functions of supersymmetric QCD
NASA Astrophysics Data System (ADS)
Corianò, Claudio; Faraggi, Alon E.
2002-04-01
The supersymmetric evolution of the fragmentation functions (or timelike evolution) within N=1 QCD is discussed and predictions for the fragmentation functions of the theory (into final protons) are given. We use a backward running of the supersymmetric DGLAP equations, using a method developed in previous works. We start from the usual QCD parametrizations at low energy and run the DGLAP back, up to an intermediate scale-assumed to be supersymmetric-where we switch-on supersymmetry. From there on we assume the applicability of an N=1 supersymmetric evolution (ESAP). We elaborate on the possible application of these results to high energy cosmic rays near the GZK cutoff.
Lattice QCD for parallel computers
NASA Astrophysics Data System (ADS)
Quadling, Henley Sean
Lattice QCD is an important tool in the investigation of Quantum Chromodynamics (QCD). This is particularly true at lower energies where traditional perturbative techniques fail, and where other non-perturbative theoretical efforts are not entirely satisfactory. Important features of QCD such as confinement and the masses of the low lying hadronic states have been demonstrated and calculated in lattice QCD simulations. In calculations such as these, non-lattice techniques in QCD have failed. However, despite the incredible advances in computer technology, a full solution of lattice QCD may still be in the too-distant future. Much effort is being expended in the search for ways to reduce the computational burden so that an adequate solution of lattice QCD is possible in the near future. There has been considerable progress in recent years, especially in the research of improved lattice actions. In this thesis, a new approach to lattice QCD algorithms is introduced, which results in very significant efficiency improvements. The new approach is explained in detail, evaluated and verified by comparing physics results with current lattice QCD simulations. The new sub-lattice layout methodology has been specifically designed for current and future hardware. Together with concurrent research into improved lattice actions and more efficient numerical algorithms, the very significant efficiency improvements demonstrated in this thesis can play an important role in allowing lattice QCD researchers access to much more realistic simulations. The techniques presented in this thesis also allow ambitious QCD simulations to be performed on cheap clusters of commodity computers.
Big bang nucleosynthesis and ΛQCD
NASA Astrophysics Data System (ADS)
Kneller, James P.; McLaughlin, Gail C.
2003-11-01
Big bang nucleosynthesis (BBN) has increasingly become the tool of choice for investigating the permitted variation of fundamental constants during the earliest epochs of the Universe. Here we present a BBN calculation that has been modified to permit changes in the QCD scale, ΛQCD. The primary effects of changing the QCD scale upon BBN are through the deuteron binding energy BD and the neutron-proton mass difference δmnp, which both play crucial roles in determining the primordial abundances. In this paper we show how a simplified BBN calculation allows us to restrict the nuclear data we need to just BD and δmnp yet still gives useful results so that any variation in ΛQCD may be constrained via the corresponding shifts in BD and δmnp by using the current estimates of the primordial deuterium abundance and helium mass fraction. The simplification predicts the helium-4 and deuterium abundances to within 1% and 50%, respectively, when compared with the results of a standard BBN code. But ΛQCD also affects much of the remaining required nuclear input so this method introduces a systematic error into the calculation and we find a degeneracy between BD and δmnp. We show how increased understanding of the relationship of the pion mass and/or BD to other nuclear parameters, such as the binding energy of tritium and the cross section of T+D→4He+n, would yield constraints upon any change in BD and δmnp at the 10% level.
Devlin, T.; CDF Collaboration
1996-10-01
The CDF collaboration is engaged in a broad program of QCD measurements at the Fermilab Tevatron Collider. I will discuss inclusive jet production at center-of-mass energies of 1800 GeV and 630 GeV, properties of events with very high total transverse energy and dijet angular distributions.
Brodsky, Stanley J.; Deshpande, Abhay L.; Gao, Haiyan; McKeown, Robert D.; Meyer, Curtis A.; Meziani, Zein-Eddine; Milner, Richard G.; Qiu, Jianwei; Richards, David G.; Roberts, Craig D.
2015-02-26
This White Paper presents the recommendations and scientific conclusions from the Town Meeting on QCD and Hadronic Physics that took place in the period 13-15 September 2014 at Temple University as part of the NSAC 2014 Long Range Planning process. The meeting was held in coordination with the Town Meeting on Phases of QCD and included a full day of joint plenary sessions of the two meetings. The goals of the meeting were to report and highlight progress in hadron physics in the seven years since the 2007 Long Range Plan (LRP07), and present a vision for the future by identifying the key questions and plausible paths to solutions which should define the next decade. The introductory summary details the recommendations and their supporting rationales, as determined at the Town Meeting on QCD and Hadron Physics, and the endorsements that were voted upon. The larger document is organized as follows. Section 2 highlights major progress since the 2007 LRP. It is followed, in Section 3, by a brief overview of the physics program planned for the immediate future. Finally, Section 4 provides an overview of the physics motivations and goals associated with the next QCD frontier: the Electron-Ion-Collider.
Andreas S. Kronfeld
2002-09-30
After reviewing some of the mathematical foundations and numerical difficulties facing lattice QCD, I review the status of several calculations relevant to experimental high-energy physics. The topics considered are moments of structure functions, which may prove relevant to search for new phenomena at the LHC, and several aspects of flavor physics, which are relevant to understanding CP and flavor violation.
Radyushkin, Anatoly V.; Efremov, Anatoly Vasilievich; Ginzburg, Ilya F.
2013-04-01
We discuss some problems concerning the application of perturbative QCD to high energy soft processes. We show that summing the contributions of the lowest twist operators for non-singlet $t$-channel leads to a Regge-like amplitude. Singlet case is also discussed.
Lincoln, Don
2016-06-28
The strongest force in the universe is the strong nuclear force and it governs the behavior of quarks and gluons inside protons and neutrons. The name of the theory that governs this force is quantum chromodynamics, or QCD. In this video, Fermilab?s Dr. Don Lincoln explains the intricacies of this dominant component of the Standard Model.
Nathan Isgur
1997-03-01
The author presents an idiosyncratic view of baryons which calls for a marriage between quark-based and hadronic models of QCD. He advocates a treatment based on valence quark plus glue dominance of hadron structure, with the sea of q pairs (in the form of virtual hadron pairs) as important corrections.
Exclusive QCD processes, quark-hadron duality, and the transition to perturbative QCD
NASA Astrophysics Data System (ADS)
Corianò, Claudio; Li, Hsiang-nan; Savkli, Cetin
1998-07-01
Experiments at CEBAF will scan the intermediate-energy region of the QCD dynamics for the nucleon form factors and for Compton Scattering. These experiments will definitely clarify the role of resummed perturbation theory and of quark-hadron duality (QCD sum rules) in this regime. With this perspective in mind, we review the factorization theorem of perturbative QCD for exclusive processes at intermediate energy scales, which embodies the transverse degrees of freedom of a parton and the Sudakov resummation of the corresponding large logarithms. We concentrate on the pion and proton electromagnetic form factors and on pion Compton scattering. New ingredients, such as the evolution of the pion wave function and the complete two-loop expression of the Sudakov factor, are included. The sensitivity of our predictions to the infrared cutoff for the Sudakov evolution is discussed. We also elaborate on QCD sum rule methods for Compton Scattering, which provide an alternative description of this process. We show that, by comparing the local duality analysis to resummed perturbation theory, it is possible to describe the transition of exclusive processes to perturbative QCD.
Hard processes in hadronic interactions
Satz, H. |; Wang, X.N.
1995-07-01
Quantum chromodynamics is today accepted as the fundamental theory of strong interactions, even though most hadronic collisions lead to final states for which quantitative QCD predictions are still lacking. It therefore seems worthwhile to take stock of where we stand today and to what extent the presently available data on hard processes in hadronic collisions can be accounted for in terms of QCD. This is one reason for this work. The second reason - and in fact its original trigger - is the search for the quark-gluon plasma in high energy nuclear collisions. The hard processes to be considered here are the production of prompt photons, Drell-Yan dileptons, open charm, quarkonium states, and hard jets. For each of these, we discuss the present theoretical understanding, compare the resulting predictions to available data, and then show what behaviour it leads to at RHIC and LHC energies. All of these processes have the structure mentioned above: they contain a hard partonic interaction, calculable perturbatively, but also the non-perturbative parton distribution within a hadron. These parton distributions, however, can be studied theoretically in terms of counting rule arguments, and they can be checked independently by measurements of the parton structure functions in deep inelastic lepton-hadron scattering. The present volume is the work of Hard Probe Collaboration, a group of theorists who are interested in the problem and were willing to dedicate a considerable amount of their time and work on it. The necessary preparation, planning and coordination of the project were carried out in two workshops of two weeks` duration each, in February 1994 at CERn in Geneva andin July 1994 at LBL in Berkeley.
Nawa, Kanabu; Suganuma, Hideo; Kojo, Toru
2007-04-15
We study baryons in holographic QCD with D4/D8/D8 multi-D-brane system. In holographic QCD, the baryon appears as a topologically nontrivial chiral soliton in a four-dimensional effective theory of mesons. We call this topological soliton brane-induced Skyrmion. Some review of D4/D8/D8 holographic QCD is presented from the viewpoints of recent hadron physics and QCD phenomenologies. A four-dimensional effective theory with pions and {rho} mesons is uniquely derived from the non-Abelian Dirac-Born-Infeld (DBI) action of D8 brane with D4 supergravity background at the leading order of large N{sub c}, without small amplitude expansion of meson fields to discuss chiral solitons. For the hedgehog configuration of pion and {rho}-meson fields, we derive the energy functional and the Euler-Lagrange equation of brane-induced Skyrmion from the meson effective action induced by holographic QCD. Performing the numerical calculation, we obtain the soliton solution and figure out the pion profile F(r) and the {rho}-meson profile G-tilde(r) of the brane-induced Skyrmion with its total energy, energy density distribution, and root-mean-square radius. These results are compared with the experimental quantities of baryons and also with the profiles of standard Skyrmion without {rho} mesons. We analyze interaction terms of pions and {rho} mesons in brane-induced Skyrmion, and find a significant {rho}-meson component appearing in the core region of a baryon.
Compositeness and QCD at the SSC
Barnes, V.; Blumenfeld, B.; Cahn, R.; Chivukula, S.; Ellis, S.; Freeman, J.; Heusch, C.; Huston, J.; Kondo, K.; Morfin, J.
1987-10-12
Compositeness may be signaled by an increase in the production of high transverse momentum hadronic jet pairs or lepton pairs. The hadronic jet signal competes with the QCD production of jets, a subject of interest in its own right. Tests of perturbative QCD at the SSC will be of special interest because the calculations are expected to be quite reliable. Studies show that compositeness up to a scale of 20 to 35 TeV would be detected in hadronic jets at the SSC. Leptonic evidence would be discovered for scales up to 10 to 20 TeV. The charge asymmetry for leptons would provide information on the nature of the compositeness interaction. Calorimetry will play a crucial role in the detection of compositeness in the hadronic jet signal. Deviations from an e/h response of 1 could mask the effect. The backgrounds for lepton pair production seem manageable. 30 refs., 19 figs., 10 tabs.
Classification of QCD defects via holography
Gorsky, Alexander S.; Zakharov, Valentin I.; Zhitnitsky, Ariel R.
2009-05-15
We discuss classification of defects of various codimensions within a holographic model of pure Yang-Mills theories or gauge theories with fundamental matter. We focus on their role below and above the phase transition point as well as their weights in the partition function. The general result is that objects which are stable and heavy in one phase are becoming very light (tensionless) in the other phase. We argue that the {theta} dependence of the partition function drastically changes at the phase transition point, and therefore it correlates with stability properties of configurations. We also explore the possibility that novel stable glueballlike particles, with mass which scales like N{sub c} and which are analogous to carbon Fullerenes, may exist in nature on the QCD scale. Some possible applications for studying the QCD vacuum properties above and below the phase transition are also discussed.
Bylaska, Eric J.; Glass, Kevin A.; Baxter, Douglas J.; Baden, Scott B.; Weare, John H.
2010-09-16
An overview of the parallel algorithms for ab initio molecular dynamics (AIMD) used in the NWChem program package is presented, including recent developments for computing exact exchange. These algorithms make use of a two-dimensional processor geometry proposed by Gygi et al for use in AIMD algorithms. Using this strategy, a highly scalable algorithm for exact exchange has been developed and incorporated it into AIMD. This new algorithm for exact exchange employs an incomplete butterfly to overcome the bottleneck associated with exact exchange term, and it makes judicious use of data replication. Initial testing has shown that this algorithm can scale to over 20,000 CPUs even for modest size simulation.
Scaling study of the pion electroproduction cross sections and the pion form factor
Tanja Horn; Xin Qian; John Arrington; Razmik Asaturyan; Fatiha Benmokthar; Werner Boeglin; Peter Bosted; Antje Bruell; Eric Christy; Eugene Chudakov; Ben Clasie; Mark Dalton; AJI Daniel; Donal Day; Dipangkar Dutta; Lamiaa El Fassi; Rolf Ent; Howard Fenker; J. Ferrer; Nadia Fomin; H. Gao; K Garrow; Dave Gaskell; C Gray; G. Huber; M. Jones; N Kalantarians; C. Keppel; K Kramer; Y Li; Y Liang; A. Lung; S Malace; P. Markowitz; A. Matsumura; D. Meekins; T Mertens; T Miyoshi; H. Mykrtchyan; R. Monson; T. Navasardyan; G. Niculescu; I. Niculescu; Y. Okayasu; A. Opper; C Perdrisat; V. Punjabi; A. Rauf; V. Rodriguez; D. Rohe; J Seely; E Segbefia; G. Smith; M. Sumihama; V. Tadevoyan; L Tang; V. Tvaskis; A. Villano; W. Vulcan; F. Wesselmann; S. Wood; L. Yuan; X. Zheng
2007-07-12
The $^{1}$H($e,e^\\prime \\pi^+$)n cross section was measured for a range of four-momentum transfer up to $Q^2$=3.91 GeV$^2$ at values of the invariant mass, $W$, above the resonance region. The $Q^2$-dependence of the longitudinal component is consistent with the $Q^2$-scaling prediction for hard exclusive processes. This suggests that perturbative QCD concepts are applicable at rather low values of $Q^2$. Pion form factor results, while consistent with the $Q^2$-scaling prediction, are inconsistent in magnitude with perturbative QCD calculations. The extraction of Generalized Parton Distributions from hard exclusive processes assumes the dominance of the longitudinal term. However, transverse contributions to the cross section are still significant at $Q^2$=3.91 GeV$^2$.
QCD with many fermions and QCD topology
NASA Astrophysics Data System (ADS)
Shuryak, Edward
2013-04-01
Major nonperturbative phenomena in QCD - confinement and chiral symmetry breaking - are known to be related with certain topological objects. Recent lattice advances into the domain of many Nf = O(10) fermion flavors have shown that both phase transitions had shifted in this case to much stronger coupling. We discuss confinement in terms of monopole Bose condensation, and discuss how it is affected by fermions "riding" on the monopoles, ending with the Nf dependence of the critical line. Chiral symmetry breaking is discussed in terms of the (anti)selfdual dyons, the instanton constituents. The fermionic zero modes of those have a different meaning and lead to strong interaction between dyons and antidyons. We report some qualitative consequences of this theory and also some information about our first direct numerical study of the dyonic ensemble, in respect to both chiral symmetry breaking and confinement (via back reaction to the holonomy potential).
Diffraction theory in QCD and beyond
White, A.R.
1987-12-11
A study of the Pomeron in QCD is briefly outlined. Implications for the production of W/sup +/W/sup -/ and Z/sup 0/Z/sup 0/ pairs are described and the possibility that the electroweak scale is a major strong-interaction threshold discussed. The application of Pomeron phase-transition theory to SU(5) dynamical symmetry breaking is suggested and the related ''strong-interaction'' properties of the photon briefly mentioned.
Ultrahigh energy neutrinos and nonlinear QCD dynamics
Machado, Magno V.T.
2004-09-01
The ultrahigh energy neutrino-nucleon cross sections are computed taking into account different phenomenological implementations of the nonlinear QCD dynamics. Based on the color dipole framework, the results for the saturation model supplemented by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution as well as for the Balitskii-Fadin-Kuraev-Lipatov (BFKL) formalism in the geometric scaling regime are presented. They are contrasted with recent calculations using next-to-leading order DGLAP and unified BFKL-DGLAP formalisms.
Kovacs, E.; CDF Collaboration
1996-02-01
We present results for the inclusive jet cross section and the dijet mass distribution. The inclusive cross section and dijet mass both exhibit significant deviations from the predictions of NLO QCD for jets with E{sub T}>200 GeV, or dijet masses > 400 GeV/c{sup 2}. We show that it is possible, within a global QCD analysis that includes the CDF inclusive jet data, to modify the gluon distribution at high x. The resulting increase in the jet cross-section predictions is 25-35%. Owing to the presence of k{sub T} smearing effects, the direct photon data does not provide as strong a constraint on the gluon distribution as previously thought. A comparison of the CDF and UA2 jet data, which have a common range in x, is plagued by theoretical and experimental uncertainties, and cannot at present confirm the CDF excess or the modified gluon distribution.
NASA Astrophysics Data System (ADS)
Dudek, Jozef J.
2016-03-01
I describe how hadron-hadron scattering amplitudes are related to the eigenstates of QCD in a finite cubic volume. The discrete spectrum of such eigenstates can be determined from correlation functions computed using lattice QCD, and the corresponding scattering amplitudes extracted. I review results from the Hadron Spectrum Collaboration who have used these finite volume methods to study ππ elastic scattering, including the ρ resonance, as well as coupled-channel πK, ηK scattering. The very recent extension to the case where an external current acts is also presented, considering the reaction πγ* → ππ, from which the unstable ρ → πγ transition form factor is extracted. Ongoing calculations are advertised and the outlook for finite volume approaches is presented.
Gupta, R.
1998-12-31
The goal of the lectures on lattice QCD (LQCD) is to provide an overview of both the technical issues and the progress made so far in obtaining phenomenologically useful numbers. The lectures consist of three parts. The author`s charter is to provide an introduction to LQCD and outline the scope of LQCD calculations. In the second set of lectures, Guido Martinelli will discuss the progress they have made so far in obtaining results, and their impact on Standard Model phenomenology. Finally, Martin Luescher will discuss the topical subjects of chiral symmetry, improved formulation of lattice QCD, and the impact these improvements will have on the quality of results expected from the next generation of simulations.
Giannetti, P. )
1991-05-01
Recent analysis of jet data taken at the Fermilab Tevatron Collider at {radical}S = 1.8 Tev are presented. Inclusive jet, dijet, trijet and direct photon measurements are compared to QCD parton level calculations, at orders {alpha}{sub s}{sup 3} or {alpha}{sub s}{sup 2}. The large total transverse energy events are well described by the Herwig shower Montecarlo. 19 refs., 20 figs., 1 tab.
Kronfeld, A.S.; Allison, I.F.; Aubin, C.; Bernard, C.; Davies, C.T.H.; DeTar, C.; Di Pierro, M.; Freeland, E.D.; Gottlieb, Steven; Gray, A.; Gregor, E.; Heller, U.M.; Hetrick, J.E.; El-Khadra, Aida X.; Levkova, L.; Mackenzie, P.B.; Maresca, F.; Menscher, D.; Nobes, M.; Okamoto, M.; Oktay, M.B.; /Fermilab /Glasgow U. /Columbia U. /Washington U., St. Louis /Utah U. /DePaul U. /Art Inst. of Chicago /Indiana U. /Ohio State U. /Arizona U. /APS, New York /U. Pacific, Stockton /Illinois U., Urbana /Cornell U., LEPP /Simon Fraser U. /UC, Santa Barbara
2005-09-01
In the past year, we calculated with lattice QCD three quantities that were unknown or poorly known. They are the q{sup 2} dependence of the form factor in semileptonic D {yields} K/{nu} decay, the decay constant of the D meson, and the mass of the B{sub c} meson. In this talk, we summarize these calculations, with emphasis on their (subsequent) confirmation by experiments.
Roberts, C.D.
1994-09-01
The Dyson-Schwinger equations (DSEs) are a tower of coupled integral equations that relate the Green functions of QCD to one another. Solving these equations provides the solution of QCD. This tower of equations includes the equation for the quark self-energy, which is the analogue of the gap equation in superconductivity, and the Bethe-Salpeter equation, the solution of which is the quark-antiquark bound state amplitude in QCD. The application of this approach to solving Abelian and non-Abelian gauge theories is reviewed. The nonperturbative DSE approach is being developed as both: (1) a computationally less intensive alternative and; (2) a complement to numerical simulations of the lattice action of QCD. In recent years, significant progress has been made with the DSE approach so that it is now possible to make sensible and direct comparisons between quantities calculated using this approach and the results of numerical simulations of Abelian gauge theories. Herein the application of the DSE approach to the calculation of pion observables is described: the {pi}-{pi} scattering lengths (a{sub 0}{sup 0}, a{sub 0}{sup 2}, A{sub 1}{sup 1}, a{sub 2}{sup 2}) and associated partial wave amplitudes; the {pi}{sup 0} {yields} {gamma}{gamma} decay width; and the charged pion form factor, F{sub {pi}}(q{sup 2}). Since this approach provides a straightforward, microscopic description of dynamical chiral symmetry breaking (D{sub X}SB) and confinement, the calculation of pion observables is a simple and elegant illustrative example of its power and efficacy. The relevant DSEs are discussed in the calculation of pion observables and concluding remarks are presented.
Spin effects in hard collision processes
Ranft, G.; Ranft, J.
1984-05-01
Questions of conservation and nonconservation of parity in phenomena associated with particle spin are reviewed. The main attention is concentrated on the production of hadrons, jets, and photons with large momentum transfer and the production of lepton pairs. The mechanisms of the hard-scattering subprocess include exchange of W/sup + -/ and Z/sup 0/ mesons, QCD and QED, and also interference between QCD and the weak interactions and between QED and the weak interactions. Effective cross sections of hard scattering processes are calculated, a factorization of the hadron--hadron scattering cross section is proposed, and the possible types of spin effects manifested in the hadronic subprocesses are classified and discussed. The properties of the polarized proton distributions and polarized structure functions are given in two appendices.
Hadronic Resonances from Lattice QCD
Lichtl, Adam C.; Bulava, John; Morningstar, Colin; Edwards, Robert; Mathur, Nilmani; Richards, David; Fleming, George; Juge, K. Jimmy; Wallace, Stephen J.
2007-10-26
The determination of the pattern of hadronic resonances as predicted by Quantum Chromodynamics requires the use of non-perturbative techniques. Lattice QCD has emerged as the dominant tool for such calculations, and has produced many QCD predictions which can be directly compared to experiment. The concepts underlying lattice QCD are outlined, methods for calculating excited states are discussed, and results from an exploratory Nucleon and Delta baryon spectrum study are presented.
Hadronic Resonances from Lattice QCD
John Bulava; Robert Edwards; George Fleming; K. Jimmy Juge; Adam C. Lichtl; Nilmani Mathur; Colin Morningstar; David Richards; Stephen J. Wallace
2007-06-16
The determination of the pattern of hadronic resonances as predicted by Quantum Chromodynamics requires the use of non-perturbative techniques. Lattice QCD has emerged as the dominant tool for such calculations, and has produced many QCD predictions which can be directly compared to experiment. The concepts underlying lattice QCD are outlined, methods for calculating excited states are discussed, and results from an exploratory Nucleon and Delta baryon spectrum study are presented.
NASA Astrophysics Data System (ADS)
Ghoshal, Tandra; Senthamaraikannan, Ramsankar; Shaw, Matthew T.; Holmes, Justin D.; Morris, Michael A.
2014-03-01
We report a simple technique to fabricate horizontal, uniform Si nanowire arrays with controlled orientation and density at spatially well defined locations on substrate based on insitu hard mask pattern formation approach by microphase separated polystyrene-b-poly(ethylene oxide) (PS-b-PEO) block copolymer (BCP) thin films. The methodology may be applicable to large scale production. Ordered microphase separated patterns of the BCP were defined by solvent annealing and the orientation was controlled by film thickness and annealing time. Films of PEO cylinders with parallel orientation (to the surface plane) were applied to create `frames' for the generation of inorganic oxide nanowire arrays. These PEO cylinders were subject to selective metal ion inclusion and subsequent processing was used to create iron oxide nanowire arrays. The oxide nanowires were isolated, of uniform diameter and their structure a mimic of the original BCP nanopatterns. The phase purity, crystallinity and thermal stability of the nanowires coupled to the ease of large scale production may make them useful in technological applications. Here, we demonstrate that the oxide nanowire arrays could be used as a resist mask to fabricate densely packed, identical ordered, good fidelity silicon nanowire arrays on the substrate. The techniques may have significant application in the manufacture of transistor circuitry.
Connections between chiral Lagrangians and QCD sum-rules
NASA Astrophysics Data System (ADS)
Fariborz, Amir H.; Pokraka, A.; Steele, T. G.
2016-01-01
In this paper, it is shown how a chiral Lagrangian framework can be used to derive relationships connecting quark-level QCD correlation functions to mesonic-level two-point functions. Crucial ingredients of this connection are scale factor matrices relating each distinct quark-level substructure (e.g. quark-antiquark, four-quark) to its mesonic counterpart. The scale factors and mixing angles are combined into a projection matrix to obtain the physical (hadronic) projection of the QCD correlation function matrix. Such relationships provide a powerful bridge between chiral Lagrangians and QCD sum-rules that are particularly effective in studies of the substructure of light scalar mesons with multiple complicated resonance shapes and substantial underlying mixings. The validity of these connections is demonstrated for the example of the isotriplet a0(980)-a0(1450) system, resulting in an unambiguous determination of the scale factors from the combined inputs of QCD sum-rules and chiral Lagrangians. These scale factors lead to a remarkable agreement between the quark condensates in QCD and the mesonic vacuum expectation values that induce spontaneous chiral symmetry breaking in chiral Lagrangians. This concrete example shows a clear sensitivity to the underlying a0-system mixing angle, illustrating the value of this methodology in extensions to more complicated mesonic systems.
Resource Letter QCD-1: Quantum chromodynamics
NASA Astrophysics Data System (ADS)
Kronfeld, Andreas S.; Quigg, Chris
2010-11-01
This Resource Letter provides a guide to the literature on quantum chromodynamics (QCD), the relativistic quantum field theory of the strong interactions. Journal articles, books, and other documents are cited for the following topics: Quarks and color, the parton model, Yang-Mills theory, experimental evidence for color, QCD as a color gauge theory, asymptotic freedom, QCD for heavy hadrons, QCD on the lattice, the QCD vacuum, pictures of quark confinement, early and modern applications of perturbative QCD, the determination of the strong coupling and quark masses, QCD and the hadron spectrum, hadron decays, the quark-gluon plasma, the strong nuclear interaction, and QCD's role in nuclear physics.
NASA Astrophysics Data System (ADS)
Andersson, Peter; Byegård, Johan; Tullborg, Eva-Lena; Doe, Thomas; Hermanson, Jan; Winberg, Anders
2004-06-01
Experiments were conducted at the Äspö Hard Rock Laboratory in order to improve the understanding of radionuclide retention properties of fractured crystalline bedrock in the 10-100 m scale (TRUE Block Scale Project, jointly funded by ANDRA, ENRESA, Nirex, JNC, Posiva and SKB). A series of tracer experiments were performed using sorbing tracers in three different flow paths. The different flow paths had Euclidian lengths of 14, 17 and 33 m, respectively, and one to three water conducting structures. Four tests were performed using different cocktails made up of radioactive sorbing tracers ( 22,24Na +, 42K +, 47Ca 2+, 85Sr 2+, 83,86Rb +, 131,133Ba 2+ and 134,137Cs +). For each tracer injection, the breakthrough of sorbing tracers was compared to the breakthrough of a conservative tracer, 82Br -, 131I -, HTO and 186ReO 4-, respectively. In the two longer flow paths, no breakthrough of 83Rb + and 137Cs + was observed after 8 months of pumping. Selected tracer tests were subject to basic modelling in which a one-dimensional (1D) advection-dispersion model, including surface sorption, and an unlimited matrix diffusion were used for the interpretation of the results. The results of the modelling indicated that there is a slightly higher mass transfer into a highly porous material in the block-scale experiment compared with in situ experiments performed over shorter distances and significantly higher than what would have been expected from laboratory data obtained from studies of the interactions in nonaltered intact rock.
Breakdown of QCD factorization theorems for inclusive reactions
Brodsky, S.J.; Bodwin, G.T.; Lepage, G.P.
1982-08-01
Initial state interactions are shown to violate standard factorization for massive lepton pair production and hadron-induced hard-scattering inclusive reactions order-by-order in QCD perturbation theory. Initial and final state interactions lead to a number of new physical phenomena including K/sub 1/ fluctuations, color correlations, anomalous nuclear number dependence of inclusive cross sections, and induced hadron production in the central rapidity region.
Effective string theory and QCD scattering amplitudes
Makeenko, Yuri
2011-01-15
QCD string is formed at distances larger than the confinement scale and can be described by the Polchinski-Strominger effective string theory with a nonpolynomial action, which has nevertheless a well-defined semiclassical expansion around a long-string ground state. We utilize modern ideas about the Wilson-loop/scattering-amplitude duality to calculate scattering amplitudes and show that the expansion parameter in the effective string theory is small in the Regge kinematical regime. For the amplitudes we obtain the Regge behavior with a linear trajectory of the intercept (d-2)/24 in d dimensions, which is computed semiclassically as a momentum-space Luescher term, and discuss an application to meson scattering amplitudes in QCD.
Phase transitions in QCD and string theory
NASA Astrophysics Data System (ADS)
Campell, Bruce A.; Ellis, John; Kalara, S.; Nanopoulos, D. V.; Olive, Keith A.
1991-02-01
We develop a unified effective field theory approach to the high-temperature phase transitions in QCD and string theory, incorporating winding modes (time-like Polyakov loops, vortices) as well as low-mass states (pseudoscalar mesons and glueballs, matter and dilaton supermultiplets). Anomalous scale invariance and the Z3 structure of the centre of SU(3) decree a first-order phase transition with simultaneous deconfinement and Polyakov loop condensation in QCD, whereas string vortex condensation is a second-order phase transition breaking a Z2 symmetry. We argue that vortex condensation is accompanied by a dilaton phase transition to a strong coupling regime, and comment on the possible role of soliton degrees of freedom in the high-temperature string phase. On leave of absence from the School of Physics & Astronomy, University of Minnesota, Minneapolis, Minnesota, USA.
ERIC Educational Resources Information Center
Kolata, Gina
1985-01-01
To determine how hard it is for computers to solve problems, researchers have classified groups of problems (polynomial hierarchy) according to how much time they seem to require for their solutions. A difficult and complex proof is offered which shows that a combinatorial approach (using Boolean circuits) may resolve the problem. (JN)
QCD coupling constants and VDM
Erkol, G.; Ozpineci, A.; Zamiralov, V. S.
2012-10-23
QCD sum rules for coupling constants of vector mesons with baryons are constructed. The corresponding QCD sum rules for electric charges and magnetic moments are also derived and with the use of vector-meson-dominance model related to the coupling constants. The VDM role as the criterium of reciprocal validity of the sum rules is considered.
QCD: Questions, challenges, and dilemmas
Bjorken, J.
1996-11-01
An introduction to some outstanding issues in QCD is presented, with emphasis on work by Diakonov and co-workers on the influence of the instanton vacuum on low-energy QCD observables. This includes the calculation of input valence-parton distributions for deep-inelastic scattering. 35 refs., 3 figs.
NASA Astrophysics Data System (ADS)
Bartels, Jochen
2006-06-01
I summarize the present status of the AGK cutting rules in perturbative QCD. Particular attention is given to the application of the AGK analysis to diffraction and multiple scattering in DIS at HERA and to pp collisions at the LHC. I also discuss the bootstrap conditions which appear in pQCD.
Hardness correlation for uranium and its alloys
Humphreys, D L; Romig, Jr, A D
1983-03-01
The hardness of 16 different uranium-titanium (U-Ti) alloys was measured on six (6) different hardness scales (R/sub A/, R/sub B/, R/sub C/, R/sub D/, Knoop, and Vickers). The alloys contained between 0.75 and 2.0 wt % Ti. All of the alloys were solutionized (850/sup 0/C, 1 h) and ice-water quenched to produce a supersaturated martensitic phase. A range of hardnesses was obtained by aging the samples for various times and temperatures. The correlation of various hardness scales was shown to be virtually identical to the hardness-scale correlation for steels. For more-accurate conversion from one hardness scale to another, least-squares-curve fits were determined for the various hardness-scale correlations. 34 figures, 5 tables.
Advances in Light-Front QCD and New Perspectives for QCD from AdS/CFT
Brodsky, Stanley J.; de Teramond, Guy F.; /Costa Rica U.
2005-10-26
The light-front quantization of gauge theories in light-cone gauge provides a frame-independent wavefunction representation of relativistic bound states, simple forms for current matrix elements, explicit unitarity, and a Fock space built on a trivial vacuum. The AdS/CFT correspondence has led to important insights into the properties of quantum chromodynamics even though QCD is a broken conformal theory. We have recently shown how a model based on a truncated AdS space can be used to obtain the hadronic spectrum of q{bar q}, qqq and gg bound states, as well as their respective light-front wavefunctions. Specific hadrons are identified by the correspondence of string modes with the dimension of the interpolating operator of the hadron's valence Fock state, including orbital angular momentum excitations. The predicted mass spectrum is linear M {proportional_to} L at high orbital angular momentum, in contrast to the quadratic dependence M{sup 2}/L found in the description of spinning strings. Since only one parameter, the QCD scale {Lambda}{sub QCD}, is introduced, the agreement with the pattern of physical states is remarkable. In particular, the ratio of {Delta} to nucleon trajectories is determined by the ratio of zeros of Bessel functions. As a specific application of QCD dynamics from AdS/CFT duality, we describe a computation of the proton magnetic form factor in both the space-like and time-like regions. The extended AdS/CFT space-time theory also provides an analytic model for hadronic light-front wavefunctions, thus providing a relativistic description of hadrons in QCD at the amplitude level. The model wavefunctions display confinement at large inter-quark separation and conformal symmetry at short distances. In particular, the scaling and conformal properties of the LFWFs at high relative momenta agree with perturbative QCD. These AdS/CFT model wavefunctions could be used as an initial ansatz for a variational treatment of the light-front QCD Hamiltonian.
Sakai, Tadakatsu; Sugimoto, Shigeki
2005-12-02
We propose a holographic dual of QCD with massless flavors on the basis of a D4/D8-brane configuration within a probe approximation. We are led to a five-dimensional Yang-Mills theory on a curved space-time along with a Chern-Simons five-form on it, both of which provide us with a unifying framework to study the massless pion and an infinite number of massive vector mesons. We make sample computations of the physical quantities that involve the mesons and compare them with the experimental data. It is found that most of the results of this model are compatible with the experiments.
NASA Astrophysics Data System (ADS)
Sakai, Tadakatsu; Sugimoto, Shigeki
2005-12-01
We propose a holographic dual of QCD with massless flavors on the basis of a D4/D8-brane configuration within a probe approximation. We are led to a five-dimensional Yang-Mills theory on a curved space-time along with a Chern-Simons five-form on it, both of which provide us with a unifying framework to study the massless pion and an infinite number of massive vector mesons. We make sample computations of the physical quantities that involve the mesons and compare them with the experimental data. It is found that most of the results of this model are compatible with the experiments.
Sekhar Chivukula
2010-01-08
The symmetries of a quantum field theory can be realized in a variety of ways. Symmetries can be realized explicitly, approximately, through spontaneous symmetry breaking or, via an anomaly, quantum effects can dynamically eliminate a symmetry of the theory that was present at the classical level. Quantum Chromodynamics (QCD), the modern theory of the strong interactions, exemplify each of these possibilities. The interplay of these effects determine the spectrum of particles that we observe and, ultimately, account for 99% of the mass of ordinary matter.
QCD and Asymptotic Freedom:. Perspectives and Prospects
NASA Astrophysics Data System (ADS)
Wilczek, Frank
QCD is now a mature theory, and it is possible to begin to view its place in the conceptual universe of physics with an appropriate perspective. There is a certain irony in the achievements of QCD. For the problems which initially drove its development — specifically, the desire to understand in detail the force that holds atomic nuclei together, and later the desire to calculate the spectrum of hadrons and their interactions — only limited insight has been achieved. However, I shall argue that QCD is actually more special and important a theory than one had any right to anticipate. In many ways, the importance of the solution transcends that of the original motivating problems. After elaborating on these quasiphilosophical remarks, I discuss two current frontiers of physics that illustrate the continuing vitality of the ideas. The recent wealth of beautiful precision experiments measuring the parameters of the standard model have made it possible to consider the unification of couplings in unprecedented quantitative detail. One central result emerging from these developments is a tantalizing hint of virtual supersymmetry. The possibility of phase transitions in matter at temperatures of order ~102 MeV, governed by QCD dynamics, is of interest from several points of view. Besides having a certain intrinsic grandeur, the question “Does the nature of matter change qualitatively, as it is radically heated?” is important for cosmology, relevant to planned high-energy heavy-ion collision experiments, and provides a promising arena for numerical simulations of QCD. Recent numerical work seems to be consistent with expectations suggested by renormalization group analysis of the potential universality classes of the QCD chiral phase transition; specifically, that the transition is second-order for two species of massless quarks but first order otherwise. There is an interesting possibility of long-range correlations in heavy ion collisions due to the creation of
Light-front holographic QCD and emerging confinement
Brodsky, Stanley J.; de Téramond, Guy F.; Dosch, Hans Günter; Erlich, Joshua
2015-05-21
In this study we explore the remarkable connections between light-front dynamics, its holographic mapping to gravity in a higher-dimensional anti-de Sitter (AdS) space, and conformal quantum mechanics. This approach provides new insights into the origin of a fundamental mass scale and the physics underlying confinement dynamics in QCD in the limit of massless quarks. The result is a relativistic light-front wave equation for arbitrary spin with an effective confinement potential derived from a conformal action and its embedding in AdS space. This equation allows for the computation of essential features of hadron spectra in terms of a single scale. Themore » light-front holographic methods described here give a precise interpretation of holographic variables and quantities in AdS space in terms of light-front variables and quantum numbers. This leads to a relation between the AdS wave functions and the boost-invariant light-front wave functions describing the internal structure of hadronic bound-states in physical spacetime. The pion is massless in the chiral limit and the excitation spectra of relativistic light-quark meson and baryon bound states lie on linear Regge trajectories with identical slopes in the radial and orbital quantum numbers. In the light-front holographic approach described here currents are expressed as an infinite sum of poles, and form factors as a product of poles. At large q2 the form factor incorporates the correct power-law fall-off for hard scattering independent of the specific dynamics and is dictated by the twist. At low q2 the form factor leads to vector dominance. The approach is also extended to include small quark masses. We briefly review in this report other holographic approaches to QCD, in particular top-down and bottom-up models based on chiral symmetry breaking. We also include a discussion of open problems and future applications.« less
Cool QCD: Hadronic Physics and QCD in Nuclei
NASA Astrophysics Data System (ADS)
Cates, Gordon
2015-10-01
QCD is the only strongly-coupled theory given to us by Nature, and it gives rise to a host of striking phenomena. Two examples in hadronic physics include the dynamic generation of mass and the confinement of quarks. Indeed, the vast majority of the mass of visible matter is due to the kinetic and potential energy of the massless gluons and the essentially massless quarks. QCD also gives rise to the force that binds protons and neutrons into nuclei, including subtle effects that have historically been difficult to understand. Describing these phenomena in terms of QCD has represented a daunting task, but remarkable progress has been achieved in both theory and experiment. Both CEBAF at Jefferson Lab and RHIC at Brookhaven National Lab have provided unprecedented experimental tools for investigating QCD, and upgrades at both facilities promise even greater opportunities in the future. Also important are programs at FermiLab as well as the LHC at CERN. Looking further ahead, an electron ion collider (EIC) has the potential to answer whole new sets of questions regarding the role of gluons in nuclear matter, an issue that lies at the heart of the generation of mass. On the theoretical side, rapid progress in supercomputers is enabling stunning progress in Lattice QCD calculations, and approximate forms of QCD are also providing deep new physical insight. In this talk I will describe both recent advances in Cool QCD as well as the exciting scientific opportunities that exist for the future.
Gravitational waves from the cosmological QCD transition
NASA Astrophysics Data System (ADS)
Mourão Roque, V. R. C.; Roque, G. Lugones o.; Lugones, G.
2014-09-01
We determine the minimum fluctuations in the cosmological QCD phase transition that could be detectable by the eLISA/NGO gravitational wave observatory. To this end, we performed several hydrodynamical simulations using a state-of-the-art equation of state derived from lattice QCD simulations. Based on the fact that the viscosity per entropy density of the quark gluon plasma obtained from heavy-ion collision experiments at the RHIC and the LHC is extremely small, we considered a non-viscous fluid in our simulations. Several previous works about this transition considered a first order transition that generates turbulence which follows a Kolmogorov power law. We show that for the QCD crossover transition the turbulent spectrum must be very different because there is no viscosity and no source of continuous energy injection. As a consequence, a large amount of kinetic energy accumulates at the smallest scales. From the hydrodynamic simulations, we have obtained the spectrum of the gravitational radiation emitted by the motion of the fluid, finding that, if typical velocity and temperature fluctuations have an amplitude Δ v /c ≳ 10-2 and/or Δ T/T_c ≳ 10-3, they would be detected by eLISA/NGO at frequencies larger than ˜ 10-4 Hz.
Electromagnetic polarizabilities: Lattice QCD in background fields
W. Detmold, B.C. Tiburzi, A. Walker-Loud
2012-04-01
Chiral perturbation theory makes definitive predictions for the extrinsic behavior of hadrons in external electric and magnetic fields. Near the chiral limit, the electric and magnetic polarizabilities of pions, kaons, and nucleons are determined in terms of a few well-known parameters. In this limit, hadrons become quantum mechanically diffuse as polarizabilities scale with the inverse square-root of the quark mass. In some cases, however, such predictions from chiral perturbation theory have not compared well with experimental data. Ultimately we must turn to first principles numerical simulations of QCD to determine properties of hadrons, and confront the predictions of chiral perturbation theory. To address the electromagnetic polarizabilities, we utilize the background field technique. Restricting our attention to calculations in background electric fields, we demonstrate new techniques to determine electric polarizabilities and baryon magnetic moments for both charged and neutral states. As we can study the quark mass dependence of observables with lattice QCD, the lattice will provide a crucial test of our understanding of low-energy QCD, which will be timely in light of ongoing experiments, such as at COMPASS and HI gamma S.
Nonperturbative QCD Calculations
NASA Astrophysics Data System (ADS)
Dellby, Niklas
1995-01-01
The research described in this thesis is an exact transformation of the Yang-Mills quantum chromodynamics (QCD) Lagrangrian into a form that is suitable for nonperturbative calculations. The conventional Yang-Mills Lagrangian has proven to be an excellent basis for perturbative calculations, but in nonperturbative calculations it is difficult to separate gauge problems from physical properties. To mitigate this problem, I develop a new equivalent Lagrangian that is not only expressed completely in terms of the field strengths ofthe gauge field but is also manifestly Lorentz and gauge invariant. The new Lagrangian is quadratic in derivatives, with non-linear local couplings, thus it is ideally suited for a numerical calculation. The field-strength Lagrangian is of such a form that it is possible to do a straightforward numerical stationary path expansion and find the fundamental QCD properties. This thesis examines several approximations analytically, investigating different ways to utilize the new Lagrangian. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253 -1690.).
Soltz, R; Vranas, P; Blumrich, M; Chen, D; Gara, A; Giampap, M; Heidelberger, P; Salapura, V; Sexton, J; Bhanot, G
2007-04-11
The theory of the strong nuclear force, Quantum Chromodynamics (QCD), can be numerically simulated from first principles on massively-parallel supercomputers using the method of Lattice Gauge Theory. We describe the special programming requirements of lattice QCD (LQCD) as well as the optimal supercomputer hardware architectures that it suggests. We demonstrate these methods on the BlueGene massively-parallel supercomputer and argue that LQCD and the BlueGene architecture are a natural match. This can be traced to the simple fact that LQCD is a regular lattice discretization of space into lattice sites while the BlueGene supercomputer is a discretization of space into compute nodes, and that both are constrained by requirements of locality. This simple relation is both technologically important and theoretically intriguing. The main result of this paper is the speedup of LQCD using up to 131,072 CPUs on the largest BlueGene/L supercomputer. The speedup is perfect with sustained performance of about 20% of peak. This corresponds to a maximum of 70.5 sustained TFlop/s. At these speeds LQCD and BlueGene are poised to produce the next generation of strong interaction physics theoretical results.
None
2011-10-06
Modern QCD - Lecture 1 Starting from the QCD Lagrangian we will revisit some basic QCD concepts and derive fundamental properties like gauge invariance and isospin symmetry and will discuss the Feynman rules of the theory. We will then focus on the gauge group of QCD and derive the Casimirs CF and CA and some useful color identities.
NASA Astrophysics Data System (ADS)
Shrestha, Ishor Kumar
The studies of hard x-ray (HXR) emission and electron beam generation in Z-pinch plasmas are very important for Inertial Confinement Fusion (ICF) research and HXR emission application for sources of K-shell and L-shell radiation. Energetic electron beams from Z-pinch plasmas are potentially a problem in the development of ICF. The electron beams and the accompanying HXR emission can preheat the fuel of a thermonuclear target, thereby preventing the fuel compression from reaching densities required for the ignition of a fusion reaction. The photons above 3-4 keV radiated from a Z pinch can provide detailed information about the high energy density plasmas produced at stagnation. Hence, the investigation of characteristics of hard x-rays and electron beams produced during implosions of wire array loads on university scale-generators may provide important data for future ICF, sources of K-shell and L-shell radiations and basic plasma research. This dissertation presents the results of experimental studies of HXR and electron beam generation in wire-array and X-pinch on the 1.7 MA, 100-ns current rise time Zebra generator at University of Nevada, Reno and 1-MA 100-ns current rise-time Cornell Beam Research Accelerator (COBRA) at Cornell University. The experimental study of characteristics of HXR produced by multi-planar wire arrays, compact cylindrical wire array (CCWA) and nested cylindrical wire array (NCWA) made from Al, Cu, Mo, Ag, W and Au were analyzed. The dependence of the HXR yield and power on geometry of the load, the wire material, and load mass was observed. The presence of aluminum wires in the load with the main material such as stainless steel, Cu, Mo, Ag, W or Au in combined wire array decreases HXR yield. The comparison of emission characteristics of HXR and generation of electron beams in CCWA and NCWA on both the high impedance Zebra generator and low impedance COBRA generator were investigated. Some of the "cold" K- shell spectral lines (0.7-2.3
QCD Factorization and PDFs from Lattice QCD Calculation
NASA Astrophysics Data System (ADS)
Ma, Yan-Qing; Qiu, Jian-Wei
2015-02-01
In this talk, we review a QCD factorization based approach to extract parton distribution and correlation functions from lattice QCD calculation of single hadron matrix elements of quark-gluon operators. We argue that although the lattice QCD calculations are done in the Euclidean space, the nonperturbative collinear behavior of the matrix elements are the same as that in the Minkowski space, and could be systematically factorized into parton distribution functions with infrared safe matching coefficients. The matching coefficients can be calculated perturbatively by applying the factorization formalism on to asymptotic partonic states.
Lattice QCD and Nuclear Physics
Konstantinos Orginos
2007-03-01
A steady stream of developments in Lattice QCD have made it possible today to begin to address the question of how nuclear physics emerges from the underlying theory of strong interactions. Central role in this understanding play both the effective field theory description of nuclear forces and the ability to perform accurate non-perturbative calculations in lo w energy QCD. Here I present some recent results that attempt to extract important low energy constants of the effective field theory of nuclear forces from lattice QCD.
Hadron physics in holographic QCD
NASA Astrophysics Data System (ADS)
Santra, A. B.; Lombardo, U.; Bonanno, A.
2012-07-01
Hadron physics deals with the study of strongly interacting subatomic particles such as neutrons, protons, pions and others, collectively known as baryons and mesons. Physics of strong interaction is difficult. There are several approaches to understand it. However, in the recent years, an approach called, holographic QCD, based on string theory (or gauge-gravity duality) is becoming popular providing an alternative description of strong interaction physics. In this article, we aim to discuss development of strong interaction physics through QCD and string theory, leading to holographic QCD.
Kim, Sechan; Choi, Gyuhyun; Chae, Heeyeop; Lee, Nae-Eung
2016-05-01
In order to study the effects of bias pulsing on the etching characteristics of a silicon dioxide (SiO2) layer using multi-level hard mask (MLHM) structures of ArF photoresist/bottom anti-reflected coating/SiO2/amorphous carbon layer (ACL)/SiO2, the effects of bias pulsing conditions on the etch characteristics of a SiO2 layer with an ACL mask pattern in C4F8/CH2F2/O2/Ar etch chemistries were investigated in a dual-frequency capacitively-coupled plasma (CCP) etcher. The effects of the pulse frequency, duty ratio, and pulse-bias power in the 2 MHz low-frequency (LF) power source were investigated in plasmas generated by a 27.12 MHz high-frequency (HF) power source. The etch rates of ACL and SiO2 decreased, but the etch selectivity of SiO2/ACL increased with decreasing duty ratio. When the ACL and SiO2 layers were etched with increasing pulse frequency, no significant change was observed in the etch rates and etch selectivity. With increasing LF pulse-bias power, the etch rate of ACL and SiO2 slightly increased, but the etch selectivity of SiO2/ACL decreased. Also, the precise control of the critical dimension (CD) values with decreasing duty ratio can be explained by the protection of sidewall etching of SiO2 by increased passivation. Pulse-biased etching was successfully applied to the patterning of the nano-scale line and space of SiO2 using an ACL pattern. PMID:27483889
R evolution: Improving perturbative QCD
NASA Astrophysics Data System (ADS)
Hoang, André H.; Jain, Ambar; Scimemi, Ignazio; Stewart, Iain W.
2010-07-01
Perturbative QCD results in the MS¯ scheme can be dramatically improved by switching to a scheme that accounts for the dominant power law dependence on the factorization scale in the operator product expansion. We introduce the “MSR scheme” which achieves this in a Lorentz and gauge invariant way and has a very simple relation to MS¯. Results in MSR depend on a cutoff parameter R, in addition to the μ of MS¯. R variations can be used to independently estimate (i.) the size of power corrections, and (ii.) higher-order perturbative corrections (much like μ in MS¯). We give two examples at three-loop order, the ratio of mass splittings in the B*-B and D*-D systems, and the Ellis-Jaffe sum rule as a function of momentum transfer Q in deep inelastic scattering. Comparing to data, the perturbative MSR results work well even for Q˜1GeV, and power corrections are reduced compared to MS¯.
Two flavor QCD and confinement
D'Elia, Massimo; Di Giacomo, Adriano; Pica, Claudio
2005-12-01
We argue that the order of the chiral transition for N{sub f}=2 is a sensitive probe of the QCD vacuum, in particular, of the mechanism of color confinement. A strategy is developed to investigate the order of the transition by use of finite size scaling analysis. An in-depth numerical investigation is performed with staggered fermions on lattices with L{sub t}=4 and L{sub s}=12, 16, 20, 24, 32 and quark masses am{sub q} ranging from 0.01335 to 0.307036. The specific heat and a number of susceptibilities are measured and compared with the expectations of an O(4) second order and of a first order phase transition. A detailed comparison with previous works, which all use similar techniques as ours, is performed. A second order transition in the O(4) and O(2) universality classes are incompatible with our data, which seem to prefer a first order transition. However we have L{sub t}=4 and unimproved action, so that a check with improved techniques (algorithm and action) and possibly larger L{sub t} will be needed to assess this issue on a firm basis.
R evolution: Improving perturbative QCD
Hoang, Andre H.; Jain, Ambar; Stewart, Iain W.; Scimemi, Ignazio
2010-07-01
Perturbative QCD results in the MS scheme can be dramatically improved by switching to a scheme that accounts for the dominant power law dependence on the factorization scale in the operator product expansion. We introduce the ''MSR scheme'' which achieves this in a Lorentz and gauge invariant way and has a very simple relation to MS. Results in MSR depend on a cutoff parameter R, in addition to the {mu} of MS. R variations can be used to independently estimate (i.) the size of power corrections, and (ii.) higher-order perturbative corrections (much like {mu} in MS). We give two examples at three-loop order, the ratio of mass splittings in the B*-B and D*-D systems, and the Ellis-Jaffe sum rule as a function of momentum transfer Q in deep inelastic scattering. Comparing to data, the perturbative MSR results work well even for Q{approx}1 GeV, and power corrections are reduced compared to MS.
Universality and the QCD Anderson transition.
Giordano, Matteo; Kovács, Tamás G; Pittler, Ferenc
2014-03-14
We study the Anderson-type transition previously found in the spectrum of the QCD quark Dirac operator in the high-temperature, quark-gluon plasma phase. Using finite size scaling for the unfolded level spacing distribution, we show that in the thermodynamic limit there is a genuine mobility edge, where the spectral statistics changes from Poisson to Wigner-Dyson statistics in a nonanalytic way. We determine the correlation length critical exponent ν and find that it is compatible with that of the unitary Anderson model. PMID:24679282
Quark-gluon plasma phenomenology from anisotropic lattice QCD
NASA Astrophysics Data System (ADS)
Skullerud, Jon-Ivar; Aarts, Gert; Allton, Chris; Amato, Alessandro; Burnier, Yannis; Evans, P. Wynne M.; Giudice, Pietro; Hands, Simon; Harris, Tim; Kelly, Aoife; Kim, Seyong; Lombardo, Maria Paola; Oktay, Mehmet B.; Rothkopf, Alexander; Ryan, Sinéad M.
2016-01-01
The FASTSUM collaboration has been carrying out simulations of Nf = 2 + 1 QCD at nonzero temperature in the fixed-scale approach using anisotropic lattices. Here we present the status of these studies, including recent results for electrical conductivity and charge diffusion, and heavy quarkonium (charm and beauty) physics.
Next-to-Leading-Order QCD Corrections to WW+Jet Production at Hadron Colliders
Dittmaier, S.; Kallweit, S.; Uwer, P.
2008-02-15
We report on the calculation of the next-to-leading-order QCD corrections to the production of W-boson pairs in association with a hard jet at the Fermilab Tevatron and CERN Large Hadron Collider, which is an important source of background for Higgs boson and new-physics searches. The corrections stabilize the leading-order prediction for the cross section considerably, in particular, if a veto against the emission of a second hard jet is applied.
Hadronic Spectrum of a Holographic Dual of QCD
Teramond, Guy F. de; Brodsky, Stanley J.
2005-05-27
We compute the spectrum of light hadrons in a holographic dual of QCD defined on AdS{sub 5}xS{sup 5} which has conformal behavior at short distances and confinement at large interquark separation. Specific hadrons are identified by the correspondence of string modes with the dimension of the interpolating operator of the hadron's valence Fock state. Higher orbital excitations are matched quanta to quanta with fluctuations about the AdS background. Since only one parameter, the QCD scale {lambda}{sub QCD}, is used, the agreement with the pattern of physical states is remarkable. In particular, the ratio of delta to nucleon trajectories is determined by the ratio of zeros of Bessel functions.
Calculation of equation of state of QCD at zero temperature and finite chemical potential
NASA Astrophysics Data System (ADS)
Jiang, Yu; Li, Ning; Sun, Wei-Min; Zong, Hong-Shi
2010-09-01
In this paper we calculate the equation of state (EOS) of QCD at zero temperature and finite chemical potential by using several models of quark propagators including the Dyson-Schwinger equations (DSEs) model, the hard-dense-loop (HDL) approximation and the quasi-particle model. The results are analyzed and compared with the known results in the literature.
Infrared behavior of real-time quark dispersion relations in hot QCD
Bouakaz, K.; Abada, A.
2012-06-27
We determine the analytic contributions to the complex self energy of slow-moving quarks in the context of hard-thermal-loop summed perturbation of massless quantum chromodynamics (QCD) at high temperature. The calculation is done using the real time formalism.
Novel QCD Effects from Initial and Final State Interactions
Brodsky, Stanley J.
2007-09-12
Initial-state and final-state interactions which are conventionally neglected in the parton model, have a profound effect in QCD hard-scattering reactions. The effects, which arise from gluon exchange between the active and spectator quarks, cause leading-twist single-spin asymmetries, diffractive deep inelastic scattering, diffractive hard hadronic reactions, and the breakdown of the Lam-Tung relation in Drell-Yan reactions. Diffractive deep inelastic scattering also leads to nuclear shadowing and non-universal antishadowing of nuclear structure functions through multiple scattering reactions in the nuclear target. Factorization-breaking effects are particularly important for hard hadron interactions since both initial-state and final-state interactions appear. Related factorization breaking effects can also appear in exclusive electroproduction reactions and in deeply virtual Compton scattering. None of the effects of initial-state and final-state interactions are incorporated in the light-front wavefunctions of the target hadron computed in isolation.
Comparative Study of Algorithms for the Numerical Simulation of Lattice QCD
Luz, Fernando H. P.; Mendes, Tereza
2010-11-12
Large-scale numerical simulations are the prime method for a nonperturbative study of QCD from first principles. Although the lattice simulation of the pure-gauge (or quenched-QCD) case may be performed very efficiently on parallel machines, there are several additional difficulties in the simulation of the full-QCD case, i.e. when dynamical quark effects are taken into account. We discuss the main aspects of full-QCD simulations, describing the most common algorithms. We present a comparative analysis of performance for two versions of the hybrid Monte Carlo method (the so-called R and RHMC algorithms), as provided in the MILC software package. We consider two degenerate flavors of light quarks in the staggered formulation, having in mind the case of finite-temperature QCD.
tt¯+large missing energy from top-quark partners: A comprehensive study at next-to-leading order QCD
NASA Astrophysics Data System (ADS)
Boughezal, Radja; Schulze, Markus
2013-12-01
We perform a detailed study of top-quark partner production in the tt¯ plus large missing energy final state at the LHC, presenting results for both scalar and fermionic top-quark partners in the semileptonic and dileptonic decay modes of the top quarks. We compare the results of several simulation tools: leading order matrix elements, next-to-leading order (NLO) matrix elements, leading order plus parton shower simulations, and merged samples that contain the signal process with an additional hard jet radiated. We find that predictions from leading order plus parton shower simulations can significantly deviate from NLO QCD or LO merged samples and do not correctly model the kinematics of the tt¯+ET,miss signature. They are therefore not a good framework for modeling this new physics signature. On the other hand, the acceptances obtained with a merged sample of the leading-order process together with the radiation of an additional hard jet are in agreement with the NLO predictions. We also demonstrate that the scale variation of the inclusive cross section, plus that of the acceptance, does not accurately reflect the uncertainty of the cross section after cuts, which is typically larger. We show the importance of including higher-order QCD corrections when using kinematic distributions to determine the spin of the top-quark partner.
Hard hadronic collisions: extrapolation of standard effects
Ali, A.; Aurenche, P.; Baier, R.; Berger, E.; Douiri, A.; Fontannaz, M.; Humpert, B.; Ingelman, G.; Kinnunen, R.; Pietarinen, E.
1984-01-01
We study hard hadronic collisions for the proton-proton (pp) and the proton-antiproton (p anti p) option in the CERN LEP tunnel. Based on our current knowledge of hard collisions at the present CERN p anti p Collider, and with the help of quantum chromodynamics (QCD), we extrapolate to the next generation of hadron colliders with a centre-of-mass energy E/sub cm/ = 10 to 20 TeV. We estimate various signatures, trigger rates, event topologies, and associated distributions for a variety of old and new physical processes, involving prompt photons, leptons, jets, W/sup + -/ and Z bosons in the final state. We also calculate the maximum fermion and boson masses accessible at the LEP Hadron Collider. The standard QCD and electroweak processes studied here, being the main body of standard hard collisions, quantify the challenge of extracting new physics with hadron colliders. We hope that our estimates will provide a useful profile of the final states, and that our experimental physics colleagues will find this of use in the design of their detectors. 84 references.
Multi-meson systems in lattice QCD / Many-body QCD
Detmold, William
2013-08-31
Nuclear physics entails the study of the properties and interactions of hadrons, such as the proton and neutron, and atomic nuclei and it is central to our understanding of our world at the smallest scales. The underlying basis for nuclear physics is provided by the Standard Model of particle physics which describes how matter interacts through the strong, electromagnetic and weak (electroweak) forces. This theory was developed in the 1970s and provides an extremely successful description of our world at the most fundamental level to which it has been probed. The Standard Model has been, and continues to be, subject to stringent tests at particle accelerators around the world, so far passing without blemish. However, at the relatively low energies that are relevant for nuclear physics, calculations involving the strong interaction, governed by the equations of Quantum Chromodynamics (QCD), are enormously challenging, and to date, the only systematic way to perform them is numerically, using a framework known as lattice QCD (LQCD). In this approach, one discretizes space-time and numerically solves the equations of QCD on a space-time lattice; for realistic calculations, this requires highly optimized algorithms and cutting-edge high performance computing (HPC) resources. Progress over the project period is discussed in detail in the following subsections
AdS/QCD and Light Front Holography: A New Approximation to QCD
Brodsky, Stanley J.; de Teramond, Guy
2010-02-15
The combination of Anti-de Sitter space (AdS) methods with light-front holography leads to a semi-classical first approximation to the spectrum and wavefunctions of meson and baryon light-quark bound states. Starting from the bound-state Hamiltonian equation of motion in QCD, we derive relativistic light-front wave equations in terms of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. These equations of motion in physical space-time are equivalent to the equations of motion which describe the propagation of spin-J modes in anti-de Sitter (AdS) space. Its eigenvalues give the hadronic spectrum, and its eigenmodes represent the probability distribution of the hadronic constituents at a given scale. Applications to the light meson and baryon spectra are presented. The predicted meson spectrum has a string-theory Regge form M{sup 2} = 4{kappa}{sup 2}(n+L+S/2); i.e., the square of the eigenmass is linear in both L and n, where n counts the number of nodes of the wavefunction in the radial variable {zeta}. The space-like pion form factor is also well reproduced. One thus obtains a remarkable connection between the description of hadronic modes in AdS space and the Hamiltonian formulation of QCD in physical space-time quantized on the light-front at fixed light-front time {tau}. The model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms.
Recent QCD results from the Tevatron
Pickarz, Henryk; CDF and DO collaboration
1997-02-01
Recent QCD results from the CDF and D0 detectors at the Tevatron proton-antiproton collider are presented. An outlook for future QCD tests at the Tevatron collider is also breifly discussed. 27 refs., 11 figs.
Kenneth Wilson and Lattice QCD
NASA Astrophysics Data System (ADS)
Ukawa, Akira
2015-09-01
We discuss the physics and computation of lattice QCD, a space-time lattice formulation of quantum chromodynamics, and Kenneth Wilson's seminal role in its development. We start with the fundamental issue of confinement of quarks in the theory of the strong interactions, and discuss how lattice QCD provides a framework for understanding this phenomenon. A conceptual issue with lattice QCD is a conflict of space-time lattice with chiral symmetry of quarks. We discuss how this problem is resolved. Since lattice QCD is a non-linear quantum dynamical system with infinite degrees of freedom, quantities which are analytically calculable are limited. On the other hand, it provides an ideal case of massively parallel numerical computations. We review the long and distinguished history of parallel-architecture supercomputers designed and built for lattice QCD. We discuss algorithmic developments, in particular the difficulties posed by the fermionic nature of quarks, and their resolution. The triad of efforts toward better understanding of physics, better algorithms, and more powerful supercomputers have produced major breakthroughs in our understanding of the strong interactions. We review the salient results of this effort in understanding the hadron spectrum, the Cabibbo-Kobayashi-Maskawa matrix elements and CP violation, and quark-gluon plasma at high temperatures. We conclude with a brief summary and a future perspective.
Decay Constants of Beauty Mesons from QCD Sum Rules
NASA Astrophysics Data System (ADS)
Lucha, Wolfgang; Melikhov, Dmitri; Simula, Silvano
2014-11-01
Our recently completed analysis of the decay constants of both pseudoscalar and vector beauty mesons reveals that in the bottom-quark sector two specific features of the sum-rule predictions show up: (i) For the input value of the bottom-quark mass in the M̅S̅ scheme m̅b(m̅b) ≈ 4:18 GeV; the sum-rule result fB ≈ 210-220 MeV for the B meson decay constant is substantially larger than the recent lattice-QCD finding fB ≈ 190 MeV: Requiring QCD sum rules to reproduce the lattice-QCD value of fB yields a significantly larger b-quark mass: m̅b(m̅b) = 4:247 GeV: (ii) Whereas QCD sum-rule predictions for the charmed-meson decay constants fD; fDs, fD* and fDs* are practically independent of the choice of renormalization scale, in the beauty sector the results for the decay constants—and especially for the ratio fB* / fB—prove to be very sensitive to the specific scale setting.
Threefold Complementary Approach to Holographic QCD
Brodsky, Stanley J.; de Teramond, Guy F.; Dosch, Hans Gunter
2013-12-27
A complementary approach, derived from (a) higher-dimensional anti-de Sitter (AdS) space, (b) light-front quantization and (c) the invariance properties of the full conformal group in one dimension leads to a nonperturbative relativistic light-front wave equation which incorporates essential spectroscopic and dynamical features of hadron physics. The fundamental conformal symmetry of the classical QCD Lagrangian in the limit of massless quarks is encoded in the resulting effective theory. The mass scale for confinement emerges from the isomorphism between the conformal group andSO(2,1). This scale appears in the light-front Hamiltonian by mapping to the evolution operator in the formalism of de Alfaro, Fubini and Furlan, which retains the conformal invariance of the action. Remarkably, the specific form of the confinement interaction and the corresponding modification of AdS space are uniquely determined in this procedure.
Glueball decay in holographic QCD
Hashimoto, Koji; Tan, C.-I; Terashima, Seiji
2008-04-15
Using holographic QCD based on D4-branes and D8-anti-D8-branes, we have computed couplings of glueballs to light mesons. We describe glueball decay by explicitly calculating its decay widths and branching ratios. Interestingly, while glueballs remain less well understood both theoretically and experimentally, our results are found to be consistent with the experimental data for the scalar glueball candidate f{sub 0}(1500). More generally, holographic QCD predicts that decay of any glueball to 4{pi}{sup 0} is suppressed, and that mixing of the lightest glueball with qq mesons is small.
QCD: Challenges for the future
Burrows, P.; Dawson, S.; Orr, L.; Smith, W.H.
1997-01-13
Despite many experimental verifications of the correctness of our basic understanding of QCD, there remain numerous open questions in strong interaction physics and we focus on the role of future colliders in addressing these questions. We discuss possible advances in the measurement of {alpha}{sub s}, in the study of parton distribution functions, and in the understanding of low x physics at present colliders and potential new facilities. We also touch briefly on the role of spin physics in advancing our understanding of QCD.
Neutron star structure from QCD
NASA Astrophysics Data System (ADS)
Fraga, Eduardo S.; Kurkela, Aleksi; Vuorinen, Aleksi
2016-03-01
In this review article, we argue that our current understanding of the thermodynamic properties of cold QCD matter, originating from first principles calculations at high and low densities, can be used to efficiently constrain the macroscopic properties of neutron stars. In particular, we demonstrate that combining state-of-the-art results from Chiral Effective Theory and perturbative QCD with the current bounds on neutron star masses, the Equation of State of neutron star matter can be obtained to an accuracy better than 30% at all densities.
QCD inequalities for hadron interactions.
Detmold, William
2015-06-01
We derive generalizations of the Weingarten-Witten QCD mass inequalities for particular multihadron systems. For systems of any number of identical pseudoscalar mesons of maximal isospin, these inequalities prove that near threshold interactions between the constituent mesons must be repulsive and that no bound states can form in these channels. Similar constraints in less symmetric systems are also extracted. These results are compatible with experimental results (where known) and recent lattice QCD calculations, and also lead to a more stringent bound on the nucleon mass than previously derived, m_{N}≥3/2m_{π}. PMID:26196617
Yun, J.C.
1990-10-10
In this paper we report recent QCD analysis with the new data taken from CDF detector. CDF recorded an integrated luminosity of 4.4 nb{sup {minus}1} during the 1988--1989 run at center of mass system (CMS) energy of 1.8 TeV. The major topics of this report are inclusive jet, dijet, trijet and direct photon analysis. These measurements are compared of QCD predictions. For the inclusive jet an dijet analysis, tests of quark compositeness are emphasized. 11 refs., 6 figs.
Lattice QCD clusters at Fermilab
Holmgren, D.; Mackenzie, Paul B.; Singh, Anitoj; Simone, Jim; /Fermilab
2004-12-01
As part of the DOE SciDAC ''National Infrastructure for Lattice Gauge Computing'' project, Fermilab builds and operates production clusters for lattice QCD simulations. This paper will describe these clusters. The design of lattice QCD clusters requires careful attention to balancing memory bandwidth, floating point throughput, and network performance. We will discuss our investigations of various commodity processors, including Pentium 4E, Xeon, Opteron, and PPC970. We will also discuss our early experiences with the emerging Infiniband and PCI Express architectures. Finally, we will present our predictions and plans for future clusters.
Nucleon Structure from Lattice QCD
David Richards
2007-09-05
Recent advances in lattice field theory, in computer technology and in chiral perturbation theory have enabled lattice QCD to emerge as a powerful quantitative tool in understanding hadron structure. I describe recent progress in the computation of the nucleon form factors and moments of parton distribution functions, before proceeding to describe lattice studies of the Generalized Parton Distributions (GPDs). In particular, I show how lattice studies of GPDs contribute to building a three-dimensional picture of the proton, I conclude by describing the prospects for studying the structure of resonances from lattice QCD.
Constraints on spin-dependent parton distributions at large x from global QCD analysis
NASA Astrophysics Data System (ADS)
Jimenez-Delgado, P.; Avakian, H.; Melnitchouk, W.
2014-11-01
We investigate the behavior of spin-dependent parton distribution functions (PDFs) at large parton momentum fractions x in the context of global QCD analysis. We explore the constraints from existing deep-inelastic scattering data, and from theoretical expectations for the leading x → 1 behavior based on hard gluon exchange in perturbative QCD. Systematic uncertainties from the dependence of the PDFs on the choice of parametrization are studied by considering functional forms motivated by orbital angular momentum arguments. Finally, we quantify the reduction in the PDF uncertainties that may be expected from future high-x data from Jefferson Lab at 12 GeV.