Science.gov

Sample records for hardened high strength

  1. Investigation of Clusters in Medium Carbon Secondary Hardening Ultra-high-strength Steel After Hardening and Aging Treatments

    NASA Astrophysics Data System (ADS)

    Veerababu, R.; Balamuralikrishnan, R.; Muraleedharan, K.; Srinivas, M.

    2015-06-01

    Clusters, containing between 10 and 1000 atoms, have been investigated in a martensitic secondary hardening ultra-high-strength steel austenitized at 1173 K (900 °C) for 1 hour and tempered at either 768 K or 783 K (495 °C or 510 °C) for 4 or 8 hours using 3D atom probe. The presence of clusters was unambiguously established by comparing the observed spatial distribution of the different alloying elements against the corresponding distribution expected for a random solid solution. Maximum separation envelope method has been used for delineating the clusters from the surrounding "matrix." Statistical analysis was used extensively for size and composition analyses of the clusters. The clusters were found to constitute a significant fraction accounting for between 1.14 and 2.53 vol pct of the microstructure. On the average, the clusters in the 783 K (510 °C) tempered sample were coarser by ~65 pct, with an average diameter of 2.26 nm, relative to the other samples. In all samples, about 85 to 90 pct of the clusters have size less than 2 nm. The percentage frequency histograms for carbon content of the clusters in 768 K and 783 K (495 °C and 510 °C) tempered samples revealed that the distribution shifts toward higher carbon content when the tempering temperature is higher. It is likely that the presence of these clusters exerts considerable influence on the strength and fracture toughness of the steel.

  2. Deep Drawing Simulation Of High And Ultrahigh Strength Steels Under Consideration Of Anisotropic Hardening

    SciTech Connect

    Roll, Karl; Faust, Alexander; Kessler, Lutz

    2007-05-17

    In today's sheet metal forming simulation, most attention is paid to yield loci functions, which describe the anisotropy of the material in yielding. The coefficients, defining the shape of the yield locus in these functions are usually fitted at a certain level of plastic work and are then valid for the whole range of plastic deformation. Modern high and ultrahigh strength steels, especially those with induced plasticity, may often exhibit only a very small anisotropy in yielding, but a severe anisotropy in work hardening for different loading conditions. This behavior can not be described by fitting the yield locus at a specific value of plastic deformation. An approach to take into account the anisotropic hardening of sheet metals is to provide different yield curves for several loading conditions and expand the yield locus dependent on the current form of load. By doing this, one can use a comparatively simple yield locus, like that of Hill from 1948, because all anisotropy is given by the different hardening curves. For the commercial FEM code LS DYNA the material model MATFEM Generalized Yield is available as a user subroutine, which supports this approach. In this paper, forming simulation results of different yield loci are compared with experimental results. The simulations were carried out in LS-DYNA with the Barlat 89 and 2000 yield loci and isotropic hardening and with the GenYld model combining a Hill 48 yield locus and anisotropic hardening. The deep drawing experiments were conducted on a hydraulic press, measuring binder and punch forces. The deformation of the sheet was measured by optical grid analysis. A comparison of the simulated and measured plastic strains shows that using a model including anisotropic hardening can produce better results than the usage of a complex yield locus but isotropic hardening for the examined materials. This might be interesting for e.g. spring back simulations. By combining a simple yield locus with anisotropic

  3. The development of high strength corrosion resistant precipitation hardening cast steels

    NASA Astrophysics Data System (ADS)

    Abrahams, Rachel A.

    Precipitation Hardened Cast Stainless Steels (PHCSS) are a corrosion resistant class of materials which derive their properties from secondary aging after a normalizing heat treatment step. While PHCSS materials are available in austenitic and semi-austenitic forms, the martensitic PHCSS are most widely used due to a combination of high strength, good toughness, and corrosion resistance. If higher strength levels can be achieved in these alloys, these materials can be used as a lower-cost alternative to titanium for high specific strength applications where corrosion resistance is a factor. Although wrought precipitation hardened materials have been in use and specified for more than half a century, the specification and use of PHCSS has only been recent. The effects of composition and processing on performance have received little attention in the cast steel literature. The work presented in these investigations is concerned with the experimental study and modeling of microstructural development in cast martensitic precipitation hardened steels at high strength levels. Particular attention is focused on improving the performance of the high strength CB7Cu alloy by control of detrimental secondary phases, notably delta ferrite and retained austenite, which is detrimental to strength, but potentially beneficial in terms of fracture and impact toughness. The relationship between age processing and mechanical properties is also investigated, and a new age hardening model based on simultaneous precipitation hardening and tempering has been modified for use with these steels. Because the CB7Cu system has limited strength even with improved processing, a higher strength prototype Fe-Ni-Cr-Mo-Ti system has been designed and adapted for use in casting. This prototype is expected to develop high strengths matching or exceed that of cast Ti-6Al-4V alloys. Traditional multicomponent constitution phase diagrams widely used for phase estimation in conventional stainless steels

  4. Double Sided Irradiation for Laser-assisted Shearing of Ultra High Strength Steels with Process Integrated Hardening

    NASA Astrophysics Data System (ADS)

    Brecher, Christian; Emonts, Michael; Eckert, Markus; Weinbach, Matthias

    Most small or medium sized parts produced in mass production are made by shearing and forming of sheet metal. This technology is cost effective, but the achievable quality and geometrical complexity are limited when working high and highest strength steel. Based on the requirements for widening the process limits of conventional sheet metal working the Fraunhofer IPT has developed the laser-assisted sheet metal working technology. With this enhancement it is possible to produce parts made of high and highest strength steel with outstanding quality, high complexity and low tool wear. Additionally laser hardening has been implemented to adjust the mechanical properties of metal parts within the process. Currently the process is limited to lower sheet thicknesses (<2 mm) to maintain short cycle times. To enable this process for larger geometries and higher sheet thicknesses the Fraunhofer IPT developed a system for double sided laser-assisted sheet metal working within progressive dies.

  5. Group precipitation and age hardening of nanostructured Fe-based alloys with ultra-high strengths

    NASA Astrophysics Data System (ADS)

    Jiao, Z. B.; Luan, J. H.; Miller, M. K.; Yu, C. Y.; Liu, C. T.

    2016-02-01

    The precipitation of nanoparticles plays a key role in determining the properties of many structural materials, and the understanding of their formation and stabilization mechanisms has been a long standing interest in the material field. However, the critical issues involving the group precipitation of various nanoparticles and their cooperative hardening mechanism remain elusive in the newly discovered Fe-based alloys with nanostructures. Here we quantitatively elucidate the nucleation mechanism, evolution kinetics and hardening effects of the group-precipitated nanoparticles in the Fe-Cu-Ni-Al-based alloys by atom probe tomography together with both first-principles and thermodynamic calculations. Our results provide the compelling evidence for two interesting but complex group precipitation pathways of nanoparticles, i.e., the Cu-rich and NiAl-based precipitations. The co-existence of the two precipitation pathways plays a key role in age hardening kinetics and ultimately enhances the hardening response, as compared to the single particle type of strengthening, therefore providing an effective new approach for strengthening materials for structural applications.

  6. Group precipitation and age hardening of nanostructured Fe-based alloys with ultra-high strengths

    DOE PAGESBeta

    Jiao, Z. B.; Luan, J. H.; Miller, M. K.; Yu, C. Y.; Liu, C. T.

    2016-02-19

    The precipitation of nanoparticles plays a key role in determining the properties of many structural materials, and the understanding of their formation and stabilization mechanisms has been a long standing interest in the material field. However, the critical issues involving the group precipitation of various nanoparticles and their cooperative hardening mechanism remain elusive in the newly discovered Fe-based alloys with nanostructures. Here we quantitatively elucidate the nucleation mechanism, evolution kinetics and hardening effects of the group-precipitated nanoparticles in the Fe-Cu-Ni-Al-based alloys by atom probe tomography together with both first-principles and thermodynamic calculations. Our results provide the compelling evidence for twomore » interesting but complex group precipitation pathways of nanoparticles, i.e., the Cu-rich and NiAl-based precipitations. Lastly, the co-existence of the two precipitation pathways plays a key role in age hardening kinetics and ultimately enhances the hardening response, as compared to the single particle type of strengthening, therefore providing an effective new approach for strengthening materials for structural applications.« less

  7. Group precipitation and age hardening of nanostructured Fe-based alloys with ultra-high strengths

    PubMed Central

    Jiao, Z. B.; Luan, J. H.; Miller, M. K.; Yu, C. Y.; Liu, C. T.

    2016-01-01

    The precipitation of nanoparticles plays a key role in determining the properties of many structural materials, and the understanding of their formation and stabilization mechanisms has been a long standing interest in the material field. However, the critical issues involving the group precipitation of various nanoparticles and their cooperative hardening mechanism remain elusive in the newly discovered Fe-based alloys with nanostructures. Here we quantitatively elucidate the nucleation mechanism, evolution kinetics and hardening effects of the group-precipitated nanoparticles in the Fe-Cu-Ni-Al-based alloys by atom probe tomography together with both first-principles and thermodynamic calculations. Our results provide the compelling evidence for two interesting but complex group precipitation pathways of nanoparticles, i.e., the Cu-rich and NiAl-based precipitations. The co-existence of the two precipitation pathways plays a key role in age hardening kinetics and ultimately enhances the hardening response, as compared to the single particle type of strengthening, therefore providing an effective new approach for strengthening materials for structural applications. PMID:26892834

  8. Group precipitation and age hardening of nanostructured Fe-based alloys with ultra-high strengths.

    PubMed

    Jiao, Z B; Luan, J H; Miller, M K; Yu, C Y; Liu, C T

    2016-01-01

    The precipitation of nanoparticles plays a key role in determining the properties of many structural materials, and the understanding of their formation and stabilization mechanisms has been a long standing interest in the material field. However, the critical issues involving the group precipitation of various nanoparticles and their cooperative hardening mechanism remain elusive in the newly discovered Fe-based alloys with nanostructures. Here we quantitatively elucidate the nucleation mechanism, evolution kinetics and hardening effects of the group-precipitated nanoparticles in the Fe-Cu-Ni-Al-based alloys by atom probe tomography together with both first-principles and thermodynamic calculations. Our results provide the compelling evidence for two interesting but complex group precipitation pathways of nanoparticles, i.e., the Cu-rich and NiAl-based precipitations. The co-existence of the two precipitation pathways plays a key role in age hardening kinetics and ultimately enhances the hardening response, as compared to the single particle type of strengthening, therefore providing an effective new approach for strengthening materials for structural applications. PMID:26892834

  9. Conservation Research and Development/ New Ultra-Low Carbon High Strength Steels with Improved Bake Hardenability for Enhanced Stretch Formability and Dent Resistance

    SciTech Connect

    Anthony J. DeArdo; C. Isaac Garcia

    2003-12-15

    Conservation Research and Development/New Ultra-Low Carbon High Strength Steels with Improved Bake Hardenability for Enhanced Stretch Formability and Dent Resistance. The experimental work can be divided into four phases. In each phase, the materials were received or designed, processed and tested, to evaluate the BH increment or response, as a function of compositions and processing conditions. Microstructural characterization by various techniques was performed in order to gain insights into the mechanisms of flow stress increment by bake hardening.

  10. Oxide dispersion hardened mechanically alloyed materials for high temperatures

    NASA Technical Reports Server (NTRS)

    Benjamin, J. S.; Strassburg, F. W.

    1982-01-01

    The procedure of mechanical alloying makes it possible to obtain, with the aid of powder-metallurgy techniques, alloys that consist of a metallic matrix in which very fine oxide particles are dispersed. Mechanically alloyed compound powders can be used for making either forged or hot-rolled semifinished products. For these products, dispersion strengthening and precipitation hardening has been combined. At high temperatures, the strength characteristics of the alloy are determined by both dispersion hardening and by precipitation hardening processes. The effect produced by each process is independent of that due to the other. Attention is given to the principle of mechanical alloying developed by Benjamin (1970, 1976), the strength characteristics of mechanically alloyed materials, the corrosion resistance of mechanically alloyed material at high temperatures, and the preparation and characteristics of the alloy MA 6000 E.

  11. Method for increasing the rate of compressive strength gain in hardenable mixtures containing fly ash

    DOEpatents

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1997-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention provides a method for increasing the rate of strength gain of a hardenable mixture containing fly ash by exposing the fly ash to an aqueous slurry of calcium oxide (lime) prior to its incorporation into the hardenable mixture. The invention further relates to such hardenable mixtures, e.g., concrete and mortar, that contain fly ash pre-reacted with calcium oxide. In particular, the fly ash is added to a slurry of calcium oxide in water, prior to incorporating the fly ash in a hardenable mixture. The hardenable mixture may be concrete or mortar. In a specific embodiment, mortar containing fly ash treated by exposure to an aqueous lime slurry are prepared and tested for compressive strength at early time points.

  12. Method for increasing the rate of compressive strength gain in hardenable mixtures containing fly ash

    DOEpatents

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1997-10-28

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention provides a method for increasing the rate of strength gain of a hardenable mixture containing fly ash by exposing the fly ash to an aqueous slurry of calcium oxide (lime) prior to its incorporation into the hardenable mixture. The invention further relates to such hardenable mixtures, e.g., concrete and mortar, that contain fly ash pre-reacted with calcium oxide. In particular, the fly ash is added to a slurry of calcium oxide in water, prior to incorporating the fly ash in a hardenable mixture. The hardenable mixture may be concrete or mortar. In a specific embodiment, mortar containing fly ash treated by exposure to an aqueous lime slurry are prepared and tested for compressive strength at early time points. 2 figs.

  13. YIELD STRENGTH PREDICTION FOR RAPID AGE-HARDENING HEAT TREATMENT OF ALUMINUM ALLOYS

    SciTech Connect

    Yin, Hebi; Sabau, Adrian S; Ludtka, Gerard Michael; Skszek, Timothy; Niu, X

    2013-01-01

    A constitutive model has been developed to predict the yield strength aging curves for aluminum casting alloys during non-isothermal age-hardening processes. The model provides the specific relationship between the process variables and yield strength. Several aging heat treatment scenarios have been investigated using the proposed model, including two-step aging recipes. Two-step aging heat treatments involve a low temperature regime to promote nucleation of secondary phases and a second step at higher temperature for the growth of the secondary phases. The predicted results show that yield strength of approximately 300MPa might be obtained in shorter aging time, of approximately 30 minutes. Thus, better mechanical properties can be obtained by optimizing the time-temperature schedules for the precipitation hardening process of heat treatable aluminum alloys.

  14. Methodology for the evaluation of yield strength and hardening behavior of metallic materials by indentation with spherical tip

    NASA Astrophysics Data System (ADS)

    Ma, Dejun; Ong, Chung Wo; Lu, Jian; He, Jiawen

    2003-07-01

    This article presents a methodology for evaluating the yield strength and hardening behavior of metallic materials by spherical indentation. Two types of assumed material behaviors with a pure elastic-Hollomon's power law hardening and a pure elastic-linear hardening were considered separately in the models of spherical indentation. The numerical relationships between the material properties and indentation responses were established on the basis of dimensional and finite element analysis. As the first approximation to the real plastic flow properties, the yield strengths and hardening behaviors determined from the spherical indentation loading curve and the numerical relationships were used to derive the intersecting points between Hollomon's power law hardening curve and linear hardening line. Through proceeding the three parameter's regression analysis with Swift's power law function for the intersecting points determined at different maximum indentation depths, the final yield strength and hardening behavior of tested material can be obtained. The validation of this method was examined by investigating three groups of materials with near linear hardening behavior, near Hollomon's power law hardening behavior, and initial yield plateau. It is concluded that the proposed method is applicable to a wide variety of materials which exhibit separate hardening behaviors.

  15. A mathematical model to predict the strength of aluminum alloys subjected to precipitation hardening

    SciTech Connect

    Qureshi, F.S.; Sheikh, A.K.; Rashid, M.

    1999-06-01

    A number of alloys, notably most of the aluminum alloys, can be heat treated by aging. This aging due to time-dependent precipitation hardening increases the strength and hardness as well as modifying other mechanical properties. Precipitation hardening has been a popular strengthening mechanism for many decades; therefore, extensive information is available in literature about the precipitation-hardening response of various series of aluminum alloys. The age-hardening response of these alloys is usually represented in graphical form as plotted between property changes and aging time for different temperatures. In designing a suitable precipitation-hardening strategy, one can refer to these graphs. However, for automatic control of aging furnaces, as well as for decision making regarding optimal selection of aging conditions (time/temperature combination), it is desirable to express these relationships in a formal mathematical structure. A mathematical model is developed in this article for widely used heat treatable aluminum alloys used in the extrusion industry. This model is a condensed representation of all {sigma} = f(T,t) curves in different series of aluminum alloys, and the parameters of this model characterize the various compositions of the alloys in the series.

  16. High-Performance, Radiation-Hardened Electronics for Space Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Watson, Michael D.; Frazier, Donald O.; Adams, James H.; Johnson, Michael A.; Kolawa, Elizabeth A.

    2007-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project endeavors to advance the current state-of-the-art in high-performance, radiation-hardened electronics and processors, ensuring successful performance of space systems required to operate within extreme radiation and temperature environments. Because RHESE is a project within the Exploration Technology Development Program (ETDP), RHESE's primary customers will be the human and robotic missions being developed by NASA's Exploration Systems Mission Directorate (ESMD) in partial fulfillment of the Vision for Space Exploration. Benefits are also anticipated for NASA's science missions to planetary and deep-space destinations. As a technology development effort, RHESE provides a broad-scoped, full spectrum of approaches to environmentally harden space electronics, including new materials, advanced design processes, reconfigurable hardware techniques, and software modeling of the radiation environment. The RHESE sub-project tasks are: SelfReconfigurable Electronics for Extreme Environments, Radiation Effects Predictive Modeling, Radiation Hardened Memory, Single Event Effects (SEE) Immune Reconfigurable Field Programmable Gate Array (FPGA) (SIRF), Radiation Hardening by Software, Radiation Hardened High Performance Processors (HPP), Reconfigurable Computing, Low Temperature Tolerant MEMS by Design, and Silicon-Germanium (SiGe) Integrated Electronics for Extreme Environments. These nine sub-project tasks are managed by technical leads as located across five different NASA field centers, including Ames Research Center, Goddard Space Flight Center, the Jet Propulsion Laboratory, Langley Research Center, and Marshall Space Flight Center. The overall RHESE integrated project management responsibility resides with NASA's Marshall Space Flight Center (MSFC). Initial technology development emphasis within RHESE focuses on the hardening of Field Programmable Gate Arrays (FPGA)s and Field Programmable Analog

  17. High Strength Stainless Steel Properties that Affect Resistance Welding

    SciTech Connect

    Kanne, W.R.

    2001-08-01

    This report discusses results of a study on selected high strength stainless steel alloy properties that affect resistance welding. The austenitic alloys A-286, JBK-75 (Modified A-286), 21-6-9, 22-13-5, 316 and 304L were investigated and compared. The former two are age hardenable, and the latter four obtain their strength through work hardening. Properties investigated include corrosion and its relationship to chemical cleaning, the effects of heat treatment on strength and surface condition, and the effect of mechanical properties on strength and weldability.

  18. Influence of explosive density on mechanical properties of high manganese steel explosion hardened

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoyan; Shen, Zhaowu; Liu, Yingbin; Liu, Tiansheng; Wang, Fengying

    2013-12-01

    The explosion hardening tests of high manganese steel were carried out by using two kinds of explosives of the same composition but different density, respectively. The detonation velocities were tested and the relevant mechanical properties were studied. The results show that the stronger single impulse acting on the specimen, the more hardness of surface increases and the more impact toughness decreases. Compared with the explosive of 1.48 g/cm3 density, the hardness, elongation rate, and impact toughness of the sample for triple explosion with explosive of 1.38 g/cm3 density are larger at the same hardening depth. In addition, the tensile strength of the sample for triple explosion with density of 1.38 g/cm3 is higher from the surface to 15 mm below the surface hardened.

  19. The effect of material strain hardening on the buckling strength of a perforated plate under uniaxial loading

    NASA Astrophysics Data System (ADS)

    Patil, Mayuri Suresh

    Plates or members containing plate elements have been used in the offshore, aerospace and construction industry. Cutouts are often located to lighten the weight of the structure, but these cutouts reduce the ultimate strength of the plate. A number of studies have taken place for determining the buckling strength of a perforated plated but few discuss the effect of material strain hardening on the buckling strength of a perforated plate. Buckling strength is often considered as an important criterial to determine the serviceable limit of the perforated plate in the offshore structure. The aim of the present study is to investigate the effect of material strain hardening on the strength characteristic of a perforated plate under uniaxial loading. This load at some point could lead to a possibility of instability. A square plate with perforation is considered here. The plate is considered to be simply supported at all four edges and has been kept straight. The perforation is located at the center of the plate. A number of ANSYS static nonlinear analysis are undertaken with different strain hardening material properties for AL7075. The Ramberg-Osgood method is used to determine the stress-strain curve for different strain hardening values. The plate thickness and the cutout size of the perforation are varied to determine the effect on the strength. The study covers the behavior of the system in the elastic buckling and the elastic-plastic region.

  20. High strength alloys

    SciTech Connect

    Maziasz, Phillip James; Shingledecker, John Paul; Santella, Michael Leonard; Schneibel, Joachim Hugo; Sikka, Vinod Kumar; Vinegar, Harold J.; John, Randy Carl; Kim, Dong Sub

    2012-06-05

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tublar that is at least partially made from a material containing at least one of the metal alloys.

  1. High strength alloys

    SciTech Connect

    Maziasz, Phillip James; Shingledecker, John Paul; Santella, Michael Leonard; Schneibel, Joachim Hugo; Sikka, Vinod Kumar; Vinegar, Harold J; John, Randy Carl; Kim, Dong Sub

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  2. Precipitation Hardenable High Temperature Shape Memory Alloy

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald Dean (Inventor); Draper, Susan L. (Inventor); Nathal, Michael V. (Inventor); Crombie, Edwin A. (Inventor)

    2010-01-01

    A composition of the invention is a high temperature shape memory alloy having high work output, and is made from (Ni+Pt+Y),Ti(100-x) wherein x is present in a total amount of 49-55 atomic % Pt is present in a total amount of 10-30 atomic %, Y is one or more of Au, Pd. and Cu and is present in a total amount of 0 to 10 atomic %. The alloy has a matrix phase wherein the total concentration of Ni, Pt, and the one or more of Pd. Au, and Cu is greater than 50 atomic %.

  3. Hardening electronic devices against very high total dose radiation environments

    NASA Technical Reports Server (NTRS)

    Buchanan, B.; Shedd, W.; Roosild, S.; Dolan, R.

    1972-01-01

    The possibilities and limitations of hardening silicon semiconductor devices to the high neutron and gamma radiation levels and greater than 10 to the eighth power rads required for the NERVA nuclear engine development are discussed. A comparison is made of the high dose neutron and gamma hardening potential of bipolar, metal insulator semiconductors and junction field effect transistors. Experimental data is presented on device degradation for the high neutron and gamma doses. Previous data and comparisons indicate that the JFET is much more immune to the combined neutron displacement and gamma ionizing effects than other transistor types. Experimental evidence is also presented which indicates that p channel MOS devices may be able to meet the requirements.

  4. High strength composites evaluation

    SciTech Connect

    Marten, S.M.

    1992-02-01

    A high-strength, thick-section, graphite/epoxy composite was identified. The purpose of this development effort was to evaluate candidate materials and provide LANL with engineering properties. Eight candidate materials (Samples 1000, 1100, 1200, 1300, 1400, 1500, 1600, and 1700) were chosen for evaluation. The Sample 1700 thermoplastic material was the strongest overall.

  5. High-strength magnetic materials

    NASA Technical Reports Server (NTRS)

    Detert, K.

    1970-01-01

    Two new precipitation-hardened magnetic alloys are suitable for operation in 800 to 1600 deg F range. One is a martensitic alloy and the other a cobalt-based alloy. They possess improved creep resistance and have application in high temperature inductors and alternators.

  6. High strength ferritic alloy

    DOEpatents

    Hagel, William C.; Smidt, Frederick A.; Korenko, Michael K.

    1977-01-01

    A high-strength ferritic alloy useful for fast reactor duct and cladding applications where an iron base contains from about 9% to about 13% by weight chromium, from about 4% to about 8% by weight molybdenum, from about 0.2% to about 0.8% by weight niobium, from about 0.1% to about 0.3% by weight vanadium, from about 0.2% to about 0.8% by weight silicon, from about 0.2% to about 0.8% by weight manganese, a maximum of about 0.05% by weight nitrogen, a maximum of about 0.02% by weight sulfur, a maximum of about 0.02% by weight phosphorous, and from about 0.04% to about 0.12% by weight carbon.

  7. High-strength alloy with resistance to hydrogen-environment embrittlement

    NASA Technical Reports Server (NTRS)

    Mcnamara, T. G.

    1975-01-01

    Alloy is precipitation-hardened, high-strength, and low-thermal-expansion materials. It is iron-based and contains nickel and chromium at lower levels than high-strength alloys. It is readily welded and brazed and has good oxidation resistance. Tests indicated there was no reduction of notched or smooth strength.

  8. Microstructures, Mechanical Properties, and Strain Hardening Behavior of an Ultrahigh Strength Dual Phase Steel Developed by Intercritical Annealing of Cold-Rolled Ferrite/Martensite

    NASA Astrophysics Data System (ADS)

    Mazaheri, Y.; Kermanpur, A.; Najafizadeh, A.

    2015-07-01

    A dual phase (DP) steel was produced by a new process utilizing an uncommon cold-rolling and subsequent intercritical annealing of a martensite-ferrite duplex starting structure. Ultrafine grained DP steels with an average grain size of about 2 μm and chain-networked martensite islands were achieved by short intercritical annealing of the 80 pct cold-rolled duplex microstructure. The strength of the low carbon steel with the new DP microstructure was reached about 1300 MPa (140 pct higher than that of the as-received state, e.g., 540 MPa), without loss of ductility. Tensile testing revealed good strength-elongation balance for the new DP steels (UTS × UE ≈ 11,000 to 15,000 MPa pct) in comparison with the previous works and commercially used high strength DP steels. Two strain hardening stages with comparable exponents were observed in the Holloman analysis of all DP steels. The variations of hardness, strength, elongation, and strain hardening behavior of the specimens with thermomechanical parameters were correlated to microstructural features.

  9. Production of high strength concrete

    SciTech Connect

    Peterman, M.B.; Carrasquillo, R.L.

    1986-01-01

    The criteria for selection of concrete materials and their proportions to producer uniform, economical, high strength concrete are presented in this book. The recommendations provided are based on a study of the interactions among components of plain concrete and mix proportions, and of their contribution to the compressive strength of high strength concrete. These recommendations will serve as guidelines to practicing engineers, in the selection of materials and their proportions for the production of high strength concrete. Increasing demands for improved efficiency and reduced construction costs have resulted in engineers beginning to design large structures using higher strength concrete at higher stress levels. There are definite advantages, both technical and economical, in using high strength concrete. For example, for a given cross section, prestresses concrete bridge girders can carry greater service loads across longer spans if made using high strength concrete. In addition, cost comparisons have shown that the savings obtained are significantly greater than the added cost of the higher quality concrete.

  10. Radiation Hardened, Modulator ASIC for High Data Rate Communications

    NASA Technical Reports Server (NTRS)

    McCallister, Ron; Putnam, Robert; Andro, Monty; Fujikawa, Gene

    2000-01-01

    Satellite-based telecommunication services are challenged by the need to generate down-link power levels adequate to support high quality (BER approx. equals 10(exp 12)) links required for modem broadband data services. Bandwidth-efficient Nyquist signaling, using low values of excess bandwidth (alpha), can exhibit large peak-to-average-power ratio (PAPR) values. High PAPR values necessitate high-power amplifier (HPA) backoff greater than the PAPR, resulting in unacceptably low HPA efficiency. Given the high cost of on-board prime power, this inefficiency represents both an economical burden, and a constraint on the rates and quality of data services supportable from satellite platforms. Constant-envelope signals offer improved power-efficiency, but only by imposing a severe bandwidth-efficiency penalty. This paper describes a radiation- hardened modulator which can improve satellite-based broadband data services by combining the bandwidth-efficiency of low-alpha Nyquist signals with high power-efficiency (negligible HPA backoff).

  11. Microstructure of high-strength foam concrete

    SciTech Connect

    Just, A.; Middendorf, B.

    2009-07-15

    Foam concretes are divided into two groups: on the one hand the physically foamed concrete is mixed in fast rotating pug mill mixers by using foaming agents. This concrete cures under atmospheric conditions. On the other hand the autoclaved aerated concrete is chemically foamed by adding aluminium powder. Afterwards it is cured in a saturated steam atmosphere. New alternatives for the application of foam concretes arise from the combination of chemical foaming and air curing in manufacturing processes. These foam concretes are new and innovative building materials with interesting properties: low mass density and high strength. Responsible for these properties are the macro-, meso- and microporosity. Macropores are created by adding aluminium powder in different volumes and with different particle size distributions. However, the microstructure of the cement matrix is affected by meso- and micropores. In addition, the matrix of the hardened cement paste can be optimized by the specific use of chemical additives for concrete. The influence of aluminium powder and chemical additives on the properties of the microstructure of the hardened cement matrices were investigated by using petrographic microscopy as well as scanning electron microscopy.

  12. FUNDAMENTAL PROPERTIES OF ULTRA HIGH PERFORMANCE-STRAIN HARDENING CEMENTITIOUS COMPOSITES AND USAGE FOR REPAIR

    NASA Astrophysics Data System (ADS)

    Kunieda, Minoru; Shimizu, Kosuke; Eguchi, Teruyuki; Ueda, Naoshi; Nakamura, Hikaru

    This paper presents the fundamental properties of Ultra High Performance-Strain Hardening Cementitious Composites (UHP-SHCC), which were depeloped for repair applications. In particular, mechanical properties such as tensile response, shrinkage and bond strength were investigated experimentally. Protective performance of the material such as air permeability, water permeability and penetration of chloride ion was also confirmed comparing to that of ordinary concrete. This paper also introduces the usage of the material in repair of concrete st ructures. Laboratory tests concerining the deterioration induced by corrosion were conducted. The UHP-SHCC that coverd the RC beam resisted not only crack opening along the rebar due to corrosion but also crack opening due to loading tests.

  13. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off.

    PubMed

    Li, Zhiming; Pradeep, Konda Gokuldoss; Deng, Yun; Raabe, Dierk; Tasan, Cemal Cem

    2016-06-01

    Metals have been mankind's most essential materials for thousands of years; however, their use is affected by ecological and economical concerns. Alloys with higher strength and ductility could alleviate some of these concerns by reducing weight and improving energy efficiency. However, most metallurgical mechanisms for increasing strength lead to ductility loss, an effect referred to as the strength-ductility trade-off. Here we present a metastability-engineering strategy in which we design nanostructured, bulk high-entropy alloys with multiple compositionally equivalent high-entropy phases. High-entropy alloys were originally proposed to benefit from phase stabilization through entropy maximization. Yet here, motivated by recent work that relaxes the strict restrictions on high-entropy alloy compositions by demonstrating the weakness of this connection, the concept is overturned. We decrease phase stability to achieve two key benefits: interface hardening due to a dual-phase microstructure (resulting from reduced thermal stability of the high-temperature phase); and transformation-induced hardening (resulting from the reduced mechanical stability of the room-temperature phase). This combines the best of two worlds: extensive hardening due to the decreased phase stability known from advanced steels and massive solid-solution strengthening of high-entropy alloys. In our transformation-induced plasticity-assisted, dual-phase high-entropy alloy (TRIP-DP-HEA), these two contributions lead respectively to enhanced trans-grain and inter-grain slip resistance, and hence, increased strength. Moreover, the increased strain hardening capacity that is enabled by dislocation hardening of the stable phase and transformation-induced hardening of the metastable phase produces increased ductility. This combined increase in strength and ductility distinguishes the TRIP-DP-HEA alloy from other recently developed structural materials. This metastability-engineering strategy should

  14. Welding High Strength Modern Line Pipe Steel

    NASA Astrophysics Data System (ADS)

    Goodall, Graeme Robertson

    The effect of modern mechanized girth welding on high strength line pipe has been investigated. The single cycle grain coarsened heat affected zone in three grade 690 line pipe steels and a grade 550 steel has been simulated using a Gleeble thermo-mechanical simulator. The continuous cooling transformation diagrams applicable to the grain coarsened heat affected zone resulting from a range of heat inputs applicable to modern mechanized welding have been established by dilatometry and metallography. The coarse grained heat affected zone was found to transform to lath martensite, bainite, and granular bainite depending on the cooling rate. The impact toughness of the steels was measured using Charpy impact toughness and compared to the toughness of the grain coarsened heat affected zone corresponding to a welding thermal cycle. The ductile to brittle transition temperature was found to be lowest for the steel with the highest hardenability. The toughness resulting from three different thermal cycles including a novel interrupted intercritically reheated grain coarsened (NTR ICR GC HAZ) that can result from dual torch welding at fast travel speed and close torch spacing have been investigated. All of the thermally HAZ regions showed reduced toughness that was attributed to bainitic microstructure and large effective grain sizes. Continuous cooling transformation diagrams for five weld metal chemistries applicable to mechanized pulsed gas metal arc welding of modern high strength pipe steel (SMYS>550 MPa) have been constructed. Welds at heat inputs of 1.5 kJmm-1 and 0.5 kJmm-1 have been created for simulation and analysis. Dilatometric analysis was performed on weld metal specimens cut from single pass 1.5 kJmm-1 as deposited beads. The resulting microstructures were found to range from martensite to polygonal ferrite. There is excellent agreement between the simulated and as deposited weld metal regions. Toughness testing indicates improved energy absorption at -20

  15. Construction Placement and Hardened Properties of Shotcrete with Highly Functional Fly Ash

    NASA Astrophysics Data System (ADS)

    Yuno, Kunihiro; Ishii, Mitsuhiro; Hashimoto, Chikanori; Mizuguchi, Hiroyuki

    Shikoku Electric Power Co., Inc. has developed the technology to manufacture a brand name "Finash" about 12 years ago, by sorting and classifying coal ash generated in coal fired power plants. "Finash" is highly functional fly ash (HFA) is produced by removing irregular coarse particles. It is important for the production of HFA to minimize the variation in quality of coal ash with sophisticated classification technique and extracting good-quality spherical fine particles. It is now widely utilized as concrete admixture for general civil engineering structures and buildings in Japan. When highly functional fly ash (HFA) is used as shotcrete admixture to substitute for fine aggregate of 100kg/m3, the shotcrete has the advantages of decreasing the amount of dust and rebound during spraying operation, improving the hardened properties of concrete, etc. Therefore, it has been applied in many tunnel construction projects. This paper discusses about the various characteristics such as construction placement, strength, neutralization and dry shrinkage of shotcrete using highly functional fly ash (HFA), using the results that is obtained from spray test in an actual road tunnel.

  16. Strength, thermal defects, and solid solution hardening in nickel-containing B2 iron aluminides

    SciTech Connect

    Schneibel, J.H.; Munroe, P.R.; Pike, L.M.

    1996-12-31

    Nickel-containing ternary iron aluminides with an aluminum concentration of 45 at.% were investigated with respect to room temperature strength, equilibrium vacancy concentration, and the kinetics of vacancy removal. As compared to binary iron aluminides with the same Al concentration, nickel additions reduce the thermal equilibrium vacancy concentration at 1,273 K, whereas they increase this concentration at 973 K. Furthermore, at low temperatures such as 673 K, nickel additions increase dramatically the time needed to reach vacancy equilibrium. During prolonged annealing at 673 K, the density of <001> dislocations in Fe-45Al-3Ni (at.%) increased by an order of magnitude. This suggests that dislocations act as sinks for vacancies. At the same time, the number density of small (20--50 nm) voids decreased, indicating that they were not stable in the absence of substantial vacancy supersaturations. The findings show also that the solid solution strengthening of iron aluminides due to Ni is much weaker than previously thought.

  17. Development of high strength, high temperature ceramics

    NASA Technical Reports Server (NTRS)

    Hall, W. B.

    1982-01-01

    Improvement in the high-pressure turbopumps, both fuel and oxidizer, in the Space Shuttle main engine were considered. The operation of these pumps is limited by temperature restrictions of the metallic components used in these pumps. Ceramic materials that retain strength at high temperatures and appear to be promising candidates for use as turbine blades and impellers are discussed. These high strength materials are sensitive to many related processing parameters such as impurities, sintering aids, reaction aids, particle size, processing temperature, and post thermal treatment. The specific objectives of the study were to: (1) identify and define the processing parameters that affect the properties of Si3N4 ceramic materials, (2) design and assembly equipment required for processing high strength ceramics, (3) design and assemble test apparatus for evaluating the high temperature properties of Si3N4, and (4) conduct a research program of manufacturing and evaluating Si3N4 materials as applicable to rocket engine applications.

  18. Strength Development of High-Strength Ductile Concrete Incorporating Metakaolin and PVA Fibers

    PubMed Central

    Nuruddin, Muhammad Fadhil; Shafiq, Nasir

    2014-01-01

    The mechanical properties of high-strength ductile concrete (HSDC) have been investigated using Metakaolin (MK) as the cement replacing material and PVA fibers. Total twenty-seven (27) mixes of concrete have been examined with varying content of MK and PVA fibers. It has been found that the coarser type PVA fibers provide strengths competitive to control or higher than control. Concrete with coarser type PVA fibers has also refined microstructure, but the microstructure has been undergone with the increase in aspect ratio of fibers. The microstructure of concrete with MK has also more refined and packing of material is much better with MK. PVA fibers not only give higher stiffness but also showed the deflection hardening response. Toughness Index of HSDC reflects the improvement in flexural toughness over the plain concrete and the maximum toughness indices have been observed with 10% MK and 2% volume fraction of PVA fibers. PMID:24707202

  19. Strength development of high-strength ductile concrete incorporating Metakaolin and PVA fibers.

    PubMed

    Nuruddin, Muhammad Fadhil; Khan, Sadaqat Ullah; Shafiq, Nasir; Ayub, Tehmina

    2014-01-01

    The mechanical properties of high-strength ductile concrete (HSDC) have been investigated using Metakaolin (MK) as the cement replacing material and PVA fibers. Total twenty-seven (27) mixes of concrete have been examined with varying content of MK and PVA fibers. It has been found that the coarser type PVA fibers provide strengths competitive to control or higher than control. Concrete with coarser type PVA fibers has also refined microstructure, but the microstructure has been undergone with the increase in aspect ratio of fibers. The microstructure of concrete with MK has also more refined and packing of material is much better with MK. PVA fibers not only give higher stiffness but also showed the deflection hardening response. Toughness Index of HSDC reflects the improvement in flexural toughness over the plain concrete and the maximum toughness indices have been observed with 10% MK and 2% volume fraction of PVA fibers. PMID:24707202

  20. High strength high modulus ceramic fiber

    NASA Technical Reports Server (NTRS)

    Fetterolf, R. N.

    1972-01-01

    Low cost method was developed for producing high strength, high modulus, continuous ceramic oxide fibers. Process transforms inexpensive metallic salts into syrup-like liquids that can be fiberized at room temperatures. Resulting salt fibers are then converted to oxides by calcination at relatively low temperatures.

  1. Characterization of Radiation Hardened Bipolar Linear Devices for High Total Dose Missions

    NASA Technical Reports Server (NTRS)

    McClure, Steven S.; Harris, Richard D.; Rax, Bernard G.; Thorbourn, Dennis O.

    2012-01-01

    Radiation hardened linear devices are characterized for performance in combined total dose and displacement damage environments for a mission scenario with a high radiation level. Performance at low and high dose rate for both biased and unbiased conditions is compared and the impact to hardness assurance methodology is discussed.

  2. High strength, tough alloy steel

    DOEpatents

    Thomas, Gareth; Rao, Bangaru V. N.

    1979-01-01

    A high strength, tough alloy steel is formed by heating the steel to a temperature in the austenite range (1000.degree.-1100.degree. C.) to form a homogeneous austenite phase and then cooling the steel to form a microstructure of uniformly dispersed dislocated martensite separated by continuous thin boundary films of stabilized retained austenite. The steel includes 0.2-0.35 weight % carbon, at least 1% and preferably 3-4.5% chromium, and at least one other substitutional alloying element, preferably manganese or nickel. The austenite film is stable to subsequent heat treatment as by tempering (below 300.degree. C.) and reforms to a stable film after austenite grain refinement.

  3. Laser beam hardening of cast carbon steels, plain cast irons, and high-speed steels

    NASA Astrophysics Data System (ADS)

    Bylica, Andrzej; Adamiak, Stanislaw; Bochnowski, Wojciech; Dziedzic, Andrzej

    2000-11-01

    The examinations of the structure, hardness and abrasion resistance of surface layer of Fe-C alloys having the contents of carbon up to 4% and high-speed steel: 6-5-2, 4- 4-2-5+C after laser hardening are presented in the paper. They are compared with the properties obtained after conventional hardening. Laser of impulse operation - YAG:Nd and of continuous operation - CO2 were used. Analysis of structure was carried out based on metallographic and fractographic examinations as well as on X-ray properties, parameters of laser and conventional heat treatment of steels were defined.

  4. High strength cast aluminum alloy development

    NASA Astrophysics Data System (ADS)

    Druschitz, Edward A.

    The goal of this research was to understand how chemistry and processing affect the resulting microstructure and mechanical properties of high strength cast aluminum alloys. Two alloy systems were investigated including the Al-Cu-Ag and the Al-Zn-Mg-Cu systems. Processing variables included solidification under pressure (SUP) and heat treatment. This research determined the range in properties that can be achieved in BAC 100(TM) (Al-Cu micro-alloyed with Ag, Mn, Zr, and V) and generated sufficient property data for design purposes. Tensile, stress corrosion cracking, and fatigue testing were performed. CuAl2 and Al-Cu-Fe-Mn intermetallics were identified as the ductility limiting flaws. A solution treatment of 75 hours or longer was needed to dissolve most of the intermetallic CuAl 2. The Al-Cu-Fe-Mn intermetallic was unaffected by heat treatment. These results indicate that faster cooling rates, a reduction in copper concentration and a reduction in iron concentration might increase the ductility of the alloy by decreasing the size and amount of the intermetallics that form during solidification. Six experimental Al-Zn-Mg-Cu series alloys were produced. Zinc concentrations of 8 and 12wt% and Zn/Mg ratios of 1.5 to 5.5 were tested. Copper was held constant at 0.9%. Heat treating of the alloys was optimized for maximum hardness. Al-Zn-Mg-Cu samples were solution treated at 441°C (826°F) for 4 hours before ramping to 460°C (860°F) for 75 hours and then aged at 120°C (248°F) for 75 hours. X-ray diffraction showed that the age hardening precipitates in most of these alloys was the T phase (Mg32Zn 31.9Al17.1). Tensile testing of the alloys showed that the best mechanical properties were obtained in the lowest alloy condition. Chilled Al-8.2Zn-1.4Mg-0.9Cu solidified under pressure resulted in an alloy with a yield strength of 468MPa (68ksi), tensile strength of 525MPa (76ksi) and an elongation of 9%.

  5. High temperature, radiation hardened electronics for application to nuclear power plants

    SciTech Connect

    Gover, J.E.

    1980-01-01

    Electronic circuits were developed and built at Sandia for many aerospace and energy systems applications. Among recent developments were high temperature electronics for geothermal well logging and radiation hardened electronics for a variety of aerospace applications. Sandia has also been active in technology transfer to commercial industry in both of these areas.

  6. Identification of orthorhombic phase in a high-strength cupronickel

    SciTech Connect

    Grylls, R.J.; Loretto, M.H.; Tuck, C.D.S.

    1996-01-01

    MARINEL is the latest alloy in a series of high-strength, age-hardenable wrought cupronickels. It combines excellent resistance to corrosion and hydrogen embrittlement with high strength and is designed particularly for use in critical subsea bolting applications. Strengthening is provided by additions of Mn, Al, Fe, Nb and Cr. In this work the microstructure of MARINEL has been studied using optical and electron microscopy with the aim of understanding the strengthening mechanisms. As part of this major program the predominant micron-scale phase has been analyzed in some detail. This paper describes the composition and crystal structure of this phase, and identifies it as the {var_epsilon} phase already seen in Incoloy alloy 909.

  7. High strength and high toughness steel

    DOEpatents

    Parker, Earl R.; Zackay, Victor F.

    1979-01-01

    A structural steel which possess both high strength and high toughness and has particular application of cryogenic uses. The steel is produced by the utilization of thermally induced phase transformation following heating in a three-phase field in iron-rich alloys of the Fe-Ni-Ti system, with a preferred composition of 12% nickel, 0.5% titanium, the remainder being iron.

  8. High strength, high ductility low carbon steel

    DOEpatents

    Koo, Jayoung; Thomas, Gareth

    1978-01-01

    A high strength, high ductility low carbon steel consisting essentially of iron, 0.05-0.15 wt% carbon, and 1-3 wt% silicon. Minor amounts of other constituents may be present. The steel is characterized by a duplex ferrite-martensite microstructure in a fibrous morphology. The microstructure is developed by heat treatment consisting of initial austenitizing treatment followed by annealing in the (.alpha. + .gamma.) range with intermediate quenching.

  9. Finite-Element Simulation of Conventional and High-Speed Peripheral Milling of Hardened Mold Steel

    NASA Astrophysics Data System (ADS)

    Tang, D. W.; Wang, C. Y.; Hu, Y. N.; Song, Y. X.

    2009-12-01

    A finite-element model (FEM) with the flow stress and typical fracture is used to simulate a hard machining process, which before this work could not adequately represent the constitutive behavior of workpiece material that is usually heat treated to hardness levels above 50 Rockwell C hardness (HRC). Thus, a flow stress equation with a variation in hardness is used in the computer simulation of hard machining. In this article, the influence of the milling speed on the cutting force, chip morphology, effective stress, and cutting temperature in the deformation zones of both conventional and high-speed peripheral milling hardened mold steel is systematically studied by finite-element analysis (FEA). By taking into consideration the importance of material characteristics during the milling process, the similar Johnson-Cook’s constitutive equation with hardened mold steel is introduced to the FEM to investigate the peripheral milling of hardened mold steel. In comparison with the experimental data of the cutting force at various cutting speeds, the simulation result is identical with the measured data. The results indicate that the model can be used to accurately predict the behavior of hardened mold steel in both conventional and high-speed milling.

  10. Constitutive equation for hardened SKD11 steel at high temperature and high strain rate using the SHPB technique

    NASA Astrophysics Data System (ADS)

    Tang, D. W.; Wang, C. Y.; Hu, Y. N.; Song, Y. X.

    2010-03-01

    In this present work, dynamic tests have been performed on hardened SKD11 steel (62 Rockwell C hardness) specimens by means of a high temperature split Hopkinson pressure bar (SHPB) test system. Effects of temperature as well as those of strain and strain rate for the hardened steel are taken into account by using two ellipsoidal radiant heating reflectors with two halogen lamps and magnetic valve. The result obtained at high stain rates were compared with those at low strain rates under the different temperature. It was seen that the flow stress curves are found to include a work hardening region and a work softening region and the mechanical behavior of the hardened steel is highly sensitive to both the strain rate and the temperature. To determine the true flow stress- true strain, temperature relationship, specimens are tested from room temperature to 1073K at a strain rate form 0.01 s-1 to 104 s-1: The parameters for a Johnson-Cook constitutive equation and a modified Johnson-Cook constitutive equation are determined from the test results by fitting the data from both quasi-static compression and high temperature-dynamic compression tests. The modified Johnson-Cook constitutive equation is more suitable for expressing the dynamic behavior of the hardened SKD11 steel above the vicinity of the recrystallization temperature.

  11. Constitutive equation for hardened SKD11 steel at high temperature and high strain rate using the SHPB technique

    NASA Astrophysics Data System (ADS)

    Tang, D. W.; Wang, C. Y.; Hu, Y. N.; Song, Y. X.

    2009-12-01

    In this present work, dynamic tests have been performed on hardened SKD11 steel (62 Rockwell C hardness) specimens by means of a high temperature split Hopkinson pressure bar (SHPB) test system. Effects of temperature as well as those of strain and strain rate for the hardened steel are taken into account by using two ellipsoidal radiant heating reflectors with two halogen lamps and magnetic valve. The result obtained at high stain rates were compared with those at low strain rates under the different temperature. It was seen that the flow stress curves are found to include a work hardening region and a work softening region and the mechanical behavior of the hardened steel is highly sensitive to both the strain rate and the temperature. To determine the true flow stress- true strain, temperature relationship, specimens are tested from room temperature to 1073K at a strain rate form 0.01 s-1 to 104 s-1: The parameters for a Johnson-Cook constitutive equation and a modified Johnson-Cook constitutive equation are determined from the test results by fitting the data from both quasi-static compression and high temperature-dynamic compression tests. The modified Johnson-Cook constitutive equation is more suitable for expressing the dynamic behavior of the hardened SKD11 steel above the vicinity of the recrystallization temperature.

  12. Research on the hydration, hardening mechanism, and microstructure of high performance expansive concrete

    SciTech Connect

    Hu Shuguang; Li Yue

    1999-07-01

    High performance expansive fly ash concrete (HPEC) was prepared and the differences of mechanical properties between the high performance concrete and HPEC were compared under free- and confined-curing conditions. By means of XRD and SEM methods, the hydration progress and microstructure of HPEC were investigated. The results show that an expansive agent is useful and the confinement action could improve the microstructure of hardened expansive concrete.

  13. High-Strength Glass Fibers and Markets

    NASA Astrophysics Data System (ADS)

    Hausrath, Robert L.; Longobardo, Anthony V.

    High-strength glass fibers play a crucial role in composite applications requiring combinations of strength, modulus, and high-temperature stability. Compositions in the high-strength glass group include S-glass and R-glass, which are used for applications requiring physical properties that cannot be satisfied by conventional E-glass. Additional compositions are also available for specialized applications requiring extreme performance in any one area. The main competition for high-strength glasses in the marketplace comes from carbon and polymer fibers. Ultimately, the product of choice is based on a compromise between cost and performance and will vary depending on the application.

  14. High-Strength Glass for Solar Applications

    NASA Technical Reports Server (NTRS)

    Bouquet, F. L.

    1987-01-01

    Technology for strengthening thin sections reviewed. Report reviews technology of high-strength glass for such solar applications as heat collectors, reflectors, and photovoltaic arrays. Discusses most feasible methods - heat strengthening and chemical strengthening of increasing strength of glass for solar-energy use. Also estimates cost and availability of high-strength glass and considers physical characteristics, amenability to back-silvering, and effects of atmospheric contamination.

  15. Tailoring the strength and porosity of rapid-hardening magnesia phosphate paste via the pre-foaming method

    NASA Astrophysics Data System (ADS)

    Liu, Li-Jie; Li, Jin-Hong; Wang, Xiang; Qian, Ting-Ting; Li, Xiao-Hui

    2015-08-01

    High-porosity magnesia phosphate paste (HPMPP) was prepared via the pre-foaming method. In the pre-foaming method, sintering treatment was not required. The bulk density and maximum compressive strength of the HPMPP prepared according to the ratio of water to solids (W/So) of 0.32 reached 464.00 ± 5.00 Kg/m3 and 0.30 ± 0.05 MPa, respectively. The compressive strength increased with the increases in the addition amounts of sodium silicate and polypropylene fibers. The bulk density of HPMPP increased with the increase in the addition of sodium silicate and decreased with the increase in the addition of polypropylene fibers. Besides, the porosity of the magnesia phosphate paste increased from 79.85% to 81.27% and from 80.31% to 83.75% after the addition of sodium silicate and polypropylene fibers respectively. The highest porosity (83.75%) of the prepared HPMPP was realized under the addition proportion (sodium silicate: polypropylene fibers: solids = 0.06:0.0025:1). The average pore size of the prepared HPMPP is about 180 μm and the pore distribution range is relatively narrow. The hydration product (struvite) is combined with MgO particle one by one and then coated on the surface of bubbles. With the decrease of the water content, after breaking bubbles, the porous structure can be achieved.

  16. High-Performance, Radiation-Hardened Electronics for Space and Lunar Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Cressler, John D.; Darty, Ronald C.; Johnson, Michael A.; Patrick, Marshall C.

    2008-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project develops advanced technologies needed for high performance electronic devices that will be capable of operating within the demanding radiation and thermal extremes of the space, lunar, and Martian environment. The technologies developed under this project enhance and enable avionics within multiple mission elements of NASA's Vision for Space Exploration. including the Constellation program's Orion Crew Exploration Vehicle. the Lunar Lander project, Lunar Outpost elements, and Extra Vehicular Activity (EVA) elements. This paper provides an overview of the RHESE project and its multiple task tasks, their technical approaches, and their targeted benefits as applied to NASA missions.

  17. High-Performance, Radiation-Hardened Electronics for Space and Lunar Environments

    NASA Astrophysics Data System (ADS)

    Keys, Andrew S.; Adams, James H.; Cressler, John D.; Darty, Ronald C.; Johnson, Michael A.; Patrick, Marshall C.

    2008-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project develops advanced technologies needed for high performance electronic devices that will be capable of operating within the demanding radiation and thermal extremes of the space, lunar, and Martian environment. The technologies developed under this project enhance and enable avionics within multiple mission elements of NASA's Vision for Space Exploration, including the Constellation program's Orion Crew Exploration Vehicle, the Lunar Lander project, Lunar Outpost elements, and Extra Vehicular Activity (EVA) elements. This paper provides an overview of the RHESE project and its multiple task tasks, their technical approaches, and their targeted benefits as applied to NASA missions.

  18. High-strength, low-alloy steels.

    PubMed

    Rashid, M S

    1980-05-23

    High-strength, low-alloy (HSLA) steels have nearly the same composition as plain carbon steels. However, they are up to twice as strong and their greater load-bearing capacity allows engineering use in lighter sections. Their high strength is derived from a combination of grain refinement; precipitation strengthening due to minor additions of vanadium, niobium, or titanium; and modifications of manufacturing processes, such as controlled rolling and controlled cooling of otherwise essentially plain carbon steel. HSLA steels are less formable than lower strength steels, but dualphase steels, which evolved from HSLA steels, have ferrite-martensite microstructures and better formability than HSLA steels of similar strength. This improved formability has substantially increased the utilization potential of high-strength steels in the manufacture of complex components. This article reviews the development of HSLA and dual-phase steels and discusses the effects of variations in microstructure and chemistry on their mechanical properties. PMID:17772810

  19. High-Hot-Strength Ceramic Fibers

    NASA Technical Reports Server (NTRS)

    Sayir, Ali; Matson, Lawrence E.

    1994-01-01

    Continuous fibers consisting of laminae of alumina and yttrium aluminum garnet offer exceptionally high strength, resistance to creep, and chemical stability at high temperatures. These fibers exceed tensile strength of sapphire fibers. Leading candidates for reinforcement of intermetallic-matrix composites in exhaust nozzles of developmental high-speed civil transport aircraft engines. Other applications are in aerospace, automotive, chemical-process, and power-generation industries.

  20. High strength and high ductility behavior of 6061-T6 alloy after laser shock processing

    NASA Astrophysics Data System (ADS)

    Gencalp Irizalp, Simge; Saklakoglu, Nursen

    2016-02-01

    The plastic deformation behavior of 6061-T6 alloy which was subjected to severe plastic deformation (SPD) at high strain rates during laser shock processing (LSP) was researched. In LSP-treated materials, the near surface microstructural change was examined by TEM and fracture surfaces after tensile testing were examined by SEM. An increase in strength of metallic materials brings about the decrease in ductility. In this study, the results showed that LSP-treated 6061-T6 alloy exhibited both high strength and high ductility. TEM observation showed that stacking fault (SF) ribbon enlarged, deformation twins formed and twin boundary increased in LSP-treated 6061-T6 alloy. This observation was an indication of stacking fault energy (SFE) decrease. Work hardening capability was recovered after LSP impacts.

  1. Carbide precipitation and high-temperature strength of hot-rolled high-strength, low-alloy steels containing Nb and Mo

    NASA Astrophysics Data System (ADS)

    Lee, Won-Beom; Hong, Seung-Gab; Park, Chan-Gyung; Park, Sung-Ho

    2002-06-01

    The effects of a Mo addition on both the precipitation kinetics and high-temperature strength of a Nb carbide have been investigated in the hot-rolled high-strength, low-alloy (HSLA) steels containing both Nb and Mo. These steels were fabricated by four-pass hot rolling and coiling at 650°C, 600°C, and 550°C. Microstructural analysis of the carbides has been performed using field-emission gun transmission electron microscopy (TEM) employing energy-dispersive X-ray spectroscopy (EDS). The steels containing both Nb and Mo exhibited a higher strength at high temperatures (˜600 °C) in comparison to the steel containing only Nb. The addition of Mo increased the hardenability and led to the refinement of the bainitic microstructure. The proportion of the bainitic phase increased with the increase of Mo content. The TEM observations revealed that the steels containing both Nb and Mo exhibited fine (<10 nm) and uniformly distributed metal carbide (MC)-type carbides, while the carbides were coarse and sparsely distributed in the steels containing Nb only. The EDS analysis also indicated that the fine MC carbides contain both Nb and Mo, and the ratio of Mo/Nb was higher in the finer carbides. In addition, electron diffraction analysis revealed that most of the MC carbides had one variant of the B-N relationship ((100)MC//(100)ferrite, [011]MC//[010]ferrite) with the matrix, suggesting that they were formed in the ferrite region. That is, the addition of Mo increased the nucleation sites of MC carbides in addition to the bainitic transformation, which resulted in finer and denser MC carbides. It is, thus, believed that the enhanced high-temperature strength of the steels containing both Nb and Mo was attributed to both bainitic transformation hardening and the precipitation hardening caused by uniform distribution of fine MC particles.

  2. Development of ductile high-strength chromium alloys, phase 2

    NASA Technical Reports Server (NTRS)

    Filippi, A. M.

    1973-01-01

    Strength and ductility were evaluated for chromium alloys dispersion hardened with the putative TaC, TaB, CbC, and CbB compounds. TaC and TaB proved to be the most potent strengtheners, but when combined, their effect far outweighed that produced individually. Tests at 1422 K (2100 F) on an alloy containing these two compounds at the combined level of 0.5 m/o revealed a 495 MN/sq m (70 ksi) tensile strength for wrought material, and a 100 hour rupture strength of 208 MN/sq m (30 ksi) when solution annealed and aged to maximize creep resistance. These levels of high temperature strength greatly exceed that reported for any other chromium-base alloy. The ductile-to-brittle transition temperature (DBTT) of the two phase strengthened alloy occurred at approximately 588 K (600 F) when heat treated to optimize creep strength and was not improved by fabrication to produce a wrought and recovered microstructure. The lowest DBTT measured on any of the alloys investigated was 422 K (300 F). Strengthening phases actually formed in Cr-Ta-B and Cr-Cb-B compositions are probable M2CrB2 (M=Ta or Cb) compounds of tetragonal crystal structure. The likely habit relationship between these compounds and chromium is postulated. Cube habit coherency was identified for TaC precipitation in chromium by electron microscopy. In another study, the maximum solubility of carbon in chromium was indicated to lie between 3/4 and 1 a/o and that of boron to be 1/2 a/o.

  3. Influence of slip system hardening assumptions on modeling stress dependence of work hardening

    NASA Astrophysics Data System (ADS)

    Miller, Matthew; Dawson, Paul

    1997-11-01

    Due to the discrete directional nature of processes such as crystallographic slip, the orientation of slip planes relative to a fixed set of loading axes has a direct effect on the magnitude of the external load necessary to induce dislocation motion (yielding). The effect such geometric or textural hardening has on the macroscopic flow stress can be quantified in a polycrystal by the average Taylor factor M¯. Sources of resistance to dislocation motion such as interaction with dislocation structures, precipitates, and grain boundaries, contribute to the elevation of the critically resolved shear strength τcrss. In continuum slip polycrystal formulations, material hardening phenomena are reflected in the slip system hardness equations. Depending on the model, the hardening equations and the mean field assumption can both affect geometric hardening through texture evolution. In this paper, we examine continuum slip models and focus on how the slip system hardening model and the mean field assumption affect the stress-strain response. Texture results are also presented within the context of how the texture affects geometric hardening. We explore the effect of employing slip system hardnesses averaged over different size scales. We first compare a polycrystal simulation employing a single hardness per crystal to one using a latent hardening formulation producing distinct slip system hardnesses. We find little difference between the amplitude of the single hardness and a crystal-average of the latent hardening values. The geometric hardening is different due to the differences in the textures predicted by each model. We also find that due to the high degree of symmetry in an fcc crystal, macroscopic stress-strain predictions using simulations employing crystal- and aggregateaveraged hardnesses are nearly identical. We find this to be true for several different mean field assumptions. An aggregate-averaged hardness may be preferred in light of the difficulty

  4. Eliminating beam-hardening artifacts in high-energy industrial computed tomography(ICT)

    NASA Astrophysics Data System (ADS)

    Kang, Kejun; Zhao, Ziran; Chen, Zhiqiang; Zhang, Li

    2004-10-01

    Beam-hardening is caused by the filtering of a polychromatic X-ray beam by the objects in the scan field. In industrial field, both the X-ray source and the attenuation characteristics of the materials are different with those in medical field. Methods that work in medical field cannot give satisfying results here. The author has developed a computer software, named simulative tomographic machine (STM) platform. STM platform is designed to simulate the procedure of high-energy ICT scanning. It is also the platform for developing data process algorithm. With the STM platform, this paper presents an efficient correction technique, which can eliminate beam-hardening artifacts efficiently in high-energy ICT. The new algorithm is based on the following facts: the attenuation coefficient of each substance is precisely known; the polychromatic spectrum of accelerator can be computed with Monte Carlo (MC) method; the total photon interaction cross-section of most inspected object can be treated as constant in the energy region between 1.5 and 9MeV. The monochromatic projection can be computed from the polychromatic projection with an iterative algorithm. So we can reconstruct perfect image from the projection made only by high-energy photons.

  5. Gradient twinned 304 stainless steels for high strength and high ductility

    DOE PAGESBeta

    Chen, Aiying; Liu, Jiabin; Wang, Hongtao; Lu, Jian; Wang, Y. Morris

    2016-04-23

    Gradient materials often have attractive mechanical properties that outperform uniform microstructure counterparts. It remains a difficult task to investigate and compare the performance of various gradient microstructures due to the difficulty of fabrication, the wide range of length scales involved, and their respective volume percentage variations. We have investigated four types of gradient microstructures in 304 stainless steels that utilize submicrotwins, nanotwins, nanocrystalline-, ultrafine- and coarse-grains as building blocks. Tensile tests reveal that the gradient microstructure consisting of submicrotwins and nanotwins has a persistent and stable work hardening rate and yields an impressive combination of high strength and high ductility,more » leading to a toughness that is nearly 50% higher than that of the coarse-grained counterpart. Ex- and in-situ transmission electron microscopy indicates that nanoscale and submicroscale twins help to suppress and limit martensitic phase transformation via the confinement of martensite within the twin lamellar. Twinning and detwinning remain active during tensile deformation and contribute to the work hardening behavior. We discuss the advantageous properties of using submicrotwins as the main load carrier and nanotwins as the strengthening layers over those coarse and nanocrystalline grains. Furthermore, our work uncovers a new gradient design strategy to help metals and alloys achieve high strength and high ductility.« less

  6. Effect of strain rate on formability in warm deep drawing of high tensile strength steel sheet

    NASA Astrophysics Data System (ADS)

    Yoshihara, Shoichiro; Iwamatsu, Go

    2014-10-01

    In tensile test of the high tensile strength steel, tensile strength isdrastically decreased as the temperature is raised. Then, the strain rate sensitivity exponent of high tensile strength steel (SUS631) in this study is high at 800 degrees especially. Also, elongation is increased as the temperature is raised. In deep drawing, the maximum punch load of the high tensile strength steel is examined on difference punch speed at 600 and 800 degrees. On the other hand, finite element (FE) simulation was used for the possibility to evaluate the forming load on difference punch speed in warm deep drawing. In FE simulation, we have considered both the strain hardening exponent and the strain rate sensitivity exponent (m-value) because we cannot neglect m-value 0.184 at 800 degrees. The tendency of the forming load in the experiments agrees the results in FE simulation.

  7. High-Strength, Superelastic Compounds

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm; Noebe, Ronald; Dellacorte, Christopher; Bigelow, Glen; Thomas, Fransua

    2013-01-01

    can be used in the heat treatment process, less energy will be consumed, and there will be less dimensional distortion and quench cracking. This results in fewer scrap parts, less material waste from large amounts of material removal, and fewer machining steps to rework parts that are out of specification. This material has a combination of properties that have been previously unobtainable. The material has a Young s modulus of approximately 95 GPa (about half that of conventional steels), moderate density (10 to 15% lower than conventional steels), excellent corrosion resistance, and high hardness (58 to 62 HRC). These properties make this material uniquely suited for advanced bearings.

  8. High resolution transmission electron microscopy study of the hardening mechanism through phase separation in a beta-Ti-35Nb-7Zr-5Ta alloy for implant applications.

    PubMed

    Afonso, Conrado R M; Ferrandini, Peterson L; Ramirez, Antonio J; Caram, Rubens

    2010-04-01

    beta-Ti alloys are highly attractive metallic materials for biomedical applications due to their high specific strength, high corrosion resistance and excellent biocompatibility, including low elastic modulus. This work aims to clarify the hardening mechanism of a beta-Ti-Nb-Zr-Ta alloy using different characterization techniques. Ingots (50 g) of Ti-35Nb-7Zr-5Ta (wt.%) alloy were arc furnace melted in an Ar((g)) atmosphere, homogenized, hot rolled, solubilized and finally aged at several temperatures from 200 to 700 degrees C for 4 h. Microstructure characterization was performed using X-ray diffraction, optical microscopy, scanning and high resolution transmission electron microscopy (HR-TEM). The 4 h aging showed that the highest hardness values were found when aged at 400 degrees C and the HR-TEM images confirmed splitting of spots on the Fourier space map, which indicated the presence of a coherent interface between separated phases (beta and beta') and explains the hardening mechanism of the alloy. Through geometric phase analysis analysis, using the HR-TEM image, the localized strain map showed 5-10 nm domains of the beta and beta' phases. The combination of suitable values of yield strength, hardness and low Young's modulus makes Ti-35Nb-7Zr-5Ta alloy suitable for medical applications as a metallic orthopedic implant. PMID:19913645

  9. Development of High Specific Strength Envelope Materials

    NASA Astrophysics Data System (ADS)

    Komatsu, Keiji; Sano, Masa-Aki; Kakuta, Yoshiaki

    Progress in materials technology has produced a much more durable synthetic fabric envelope for the non-rigid airship. Flexible materials are required to form airship envelopes, ballonets, load curtains, gas bags and covering rigid structures. Polybenzoxazole fiber (Zylon) and polyalirate fiber (Vectran) show high specific tensile strength, so that we developed membrane using these high specific tensile strength fibers as a load carrier. The main material developed is a Zylon or Vectran load carrier sealed internally with a polyurethane bonded inner gas retention film (EVOH). The external surface provides weather protecting with, for instance, a titanium oxide integrated polyurethane or Tedlar film. The mechanical test results show that tensile strength 1,000 N/cm is attained with weight less than 230g/m2. In addition to the mechanical properties, temperature dependence of the joint strength and solar absorptivity and emissivity of the surface are measured. 

  10. High toughness-high strength iron alloy

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R. (Inventor)

    1980-01-01

    An iron alloy is provided which exhibits strength and toughness characteristics at cryogenic temperatures. The alloy consists essentially of about 10 to 16 percent by weight nickel, about 0.1 to 1.0 percent by weight aluminum, and 0 to about 3 percent by weight copper, with the balance being essentially iron. The iron alloy is produced by a process which includes cold rolling at room temperature and subsequent heat treatment.

  11. Change in high-temperature strength properties of 12Kh1MF steel in long-term loading under creep conditions

    SciTech Connect

    Shron, R.Z.; Mints, I.I.; Shul`gina, N.G.

    1995-01-01

    Stress-rupture strength tests were made of metal steam pipe (12Kh1MF steel) in various conditions, the original, after aging under laboratory conditions (580{degrees}C, 10,000 h), and after long service. It was shown that the more the steel is hardened by heat treatment or cold plastic working in the original condition, the less it hardens in creep. It was established that softening in creep of steel with a moderate yield strength is caused primarily by aging and with a high yield strength by pore formation.

  12. Yield strength of molybdenum at high pressures.

    PubMed

    Jing, Qiumin; Bi, Yan; Wu, Qiang; Jing, Fuqian; Wang, Zhigang; Xu, Jian; Jiang, Sheng

    2007-07-01

    In the diamond anvil cell technology, the pressure gradient approach is one of the three major methods in determining the yield strength for various materials at high pressures. In the present work, by in situ measuring the thickness of the sample foil, we have improved the traditional technique in this method. Based on this modification, the yield strength of molybdenum at pressures has been measured. Our main experimental conclusions are as follows: (1) The measured yield strength data for three samples with different initial thickness (100, 250, and 500 microm) are in good agreement above a peak pressure of 10 GPa. (2) The measured yield strength can be fitted into a linear formula Y=0.48(+/-0.19)+0.14(+/-0.01)P (Y and P denote the yield strength and local pressure, respectively, both of them are in gigapascals) in the local pressure range of 8-21 GPa. This result is in good agreement with both Y=0.46+0.13P determined in the pressure range of 5-24 GPa measured by the radial x-ray diffraction technique and the previous shock wave data below 10 GPa. (3) The zero-pressure yield strength of Mo is 0.5 GPa when we extrapolate our experimental data into the ambient pressure. It is close to the tensile strength of 0.7 GPa determined by Bridgman [Phys. Rev. 48, 825 (1934)] previously. The modified method described in this article therefore provides the confidence in determination of the yield strength at high pressures. PMID:17672772

  13. Reinforcing aluminum alloys with high strength fibers

    NASA Technical Reports Server (NTRS)

    Kolpashnikov, A. I.; Manuylov, V. F.; Chukhin, B. D.; Shiryayev, Y. V.; Shurygin, A. S.

    1982-01-01

    A study is made of the possibility of reinforcing aluminum and aluminum based alloys with fibers made of high strength steel wire. The method of introducing the fibers is described in detail. Additional strengthening by reinforcement of the high alloy system Al - An - Mg was investigated.

  14. Design of high performance and radiation hardened SPARC-V8 processor

    NASA Astrophysics Data System (ADS)

    Yuanfu, Zhao; Hui, Qin; Heping, Peng; Lixin, Yu

    2015-11-01

    Design of a highly reliable SPARC-V8 processor for space applications requires consideration single-event effects including single event upsets, single event transients, single event latch-up, as well as cumulative effects such as the total ionizing dose (TID). In this paper, the fault tolerance of the SPARC-V8 processor to radiation effects is discussed in detail. The SPARC-V8 processor, fabricated in the 65 nm CMOS process, achieves a frequency of 300 MHz with a core area of 9.78 × 9.78 mm2, and it is demonstrated that its radiation hardened performance is suitable for operating in a space environment through the key elements' experiments, which show TID resistance to 300 krad(Si), SEL immunity to greater than 92.5 MeV·cm2/mg, and an SEU error rate of 2.51 × 10-4 per day.

  15. Work-Hardening Induced Tensile Ductility of Bulk Metallic Glasses via High-Pressure Torsion

    NASA Astrophysics Data System (ADS)

    Joo, Soo-Hyun; Pi, Dong-Hai; Setyawan, Albertus Deny Heri; Kato, Hidemi; Janecek, Milos; Kim, Yong Chan; Lee, Sunghak; Kim, Hyoung Seop

    2015-04-01

    The mechanical properties of engineering materials are key for ensuring safety and reliability. However, the plastic deformation of BMGs is confined to narrow regions in shear bands, which usually result in limited ductilities and catastrophic failures at low homologous temperatures. The quasi-brittle failure and lack of tensile ductility undercut the potential applications of BMGs. In this report, we present clear tensile ductility in a Zr-based BMG via a high-pressure torsion (HPT) process. Enhanced tensile ductility and work-hardening behavior after the HPT process were investigated, focusing on the microstructure, particularly the changed free volume, which affects deformation mechanisms (i.e., initiation, propagation, and obstruction of shear bands). Our results provide insights into the basic functions of hydrostatic pressure and shear strain in the microstructure and mechanical properties of HPT-processed BMGs.

  16. 'Work-Hardenable' Ductile Bulk Metallic Glass

    SciTech Connect

    Das, Jayanta; Eckert, Juergen; Tang Meibo; Wang Weihua; Kim, Ki Buem; Baier, Falko; Theissmann, Ralf

    2005-05-27

    Usually, monolithic bulk metallic glasses undergo inhomogeneous plastic deformation and exhibit poor ductility (<1%) at room temperature. We present a new class of bulk metallic glass, which exhibits high strength of up to 2265 MPa together with extensive 'work hardening' and large ductility of 18%. Significant increase in the flow stress was observed during deformation. The 'work-hardening' capability and ductility of this class of metallic glass is attributed to a unique structure correlated with atomic-scale inhomogeneity, leading to an inherent capability of extensive shear band formation, interactions, and multiplication of shear bands.

  17. Method for producing high dielectric strength microvalves

    SciTech Connect

    Kirby, Brian J.; Reichmuth, David S.; Shepodd, Timothy J.

    2006-04-04

    A microvalve having a cast-in-place and lithographically shaped mobile, polymer monolith for fluid flow control in microfluidic devices and method of manufacture. The microvalve contains a porous fluorinated polymer monolithic element whose pores are filled with an electrically insulating, high dielectric strength fluid, typically a perfluorinated liquid. This combination provides a microvalve that combines high dielectric strength with extremely low electrical conductivity. These microvalves have been shown to have resistivities of at least 100 G.OMEGA. and are compatible with solvents such as water at a pH between 2.7 and 9.0, 1-1 propanol, acetonitrile, and acetone.

  18. Development of high strength high toughness third generation advanced high strength steels

    NASA Astrophysics Data System (ADS)

    Martis, Codrick John

    Third generation advanced high strength steels (AHSS's) are emerging as very important engineering materials for structural applications. These steels have high specific strength and thus will contribute significantly to weight reduction in automotive and other structural component. In this investigation two such low carbon low alloy steels (LCLA) with high silicon content (1.6-2wt %) has been developed. These two steel alloys were subjected to single step and two step austempering in the temperature range of 260-399°C to obtain desired microstructures and mechanical properties. Austempering heat treatment was carried out for 2 hours in a molten salt bath. The microstructures were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and optical metallography. Quantitative analysis was carried out by image analysis technique. The effect of austempering temperature on the mechanical properties of these two alloys was examined. The influence of microstructures on the mechanical properties of alloys was also studied. Austempering heat treatment resulted in fine carbide free bainitic ferrite and high carbon austenite microstructure in the samples austempered above Ms temperature, whereas tempered martensite and austenite microstructure was obtained in samples austempered below Ms temperature. Yield strength, tensile strength and fracture toughness were found to increase as the austempering temperature decreases, whereas ductility increases as the austempering temperature increases. Tensile strength in the range of 1276MPa -1658 MPa and the fracture toughness in the range of 80-141MPa√m were obtained in these two steels. Volume fractions of different phases present and their lath sizes are related to the mechanical properties. Austempered samples consisting of mixed microstructure of bainitic ferrite and tempered martensite phases resulted in the exceptional combination of strength and toughness.

  19. Laser beam welding of new ultra-high strength and supra-ductile steels

    NASA Astrophysics Data System (ADS)

    Dahmen, Martin

    2015-03-01

    Ultra-high strength and supra-ductile are entering fields of new applications. Those materials are excellent candidates for modern light-weight construction and functional integration. As ultra-high strength steels the stainless martensitic grade 1.4034 and the bainitic steel UNS 53835 are investigated. For the supra-ductile steels stand two high austenitic steels with 18 and 28 % manganese. As there are no processing windows an approach from the metallurgical base on is required. Adjusting the weld microstructure the Q+P and the QT steels require weld heat treatment. The HSD steel is weldable without. Due to their applications the ultra-high strength steels are welded in as-rolled and strengthened condition. Also the reaction of the weld on hot stamping is reflected for the martensitic grades. The supra-ductile steels are welded as solution annealed and work hardened by 50%. The results show the general suitability for laser beam welding.

  20. Springback analysis of ultra high strength steel

    NASA Astrophysics Data System (ADS)

    Tenma, Kenji; Kina, Futoshi; Suzuki, Wataru

    2013-12-01

    It is an inevitable trend in the automotive industry to apply more and more high strength steels and even ultra-high strength steels. Even though these materials are more difficult to process the development time of forming tools must be reduced. In order to keep the development time under control, simulation tools are used to verify the forming process in advance. At Aoi Machine Industry a project has been executed to accurately simulate springback of ultra-high strength steels in order to reduce the tool tryout time. In the first phase of the project the simulation settings were optimized based on B-Pillar model A made of Dual Phase 980. In the second phase, it was verified with B-Pillar model B whether these simulation settings were usable as general setting. Results showed that with the right settings it is very well possible to accurately simulate springback of ultra-high strength steels. In the third phase the project the stamping of a B-Pillar of Dual Phase 1180 was studied.

  1. High strength composites evaluation. Final report

    SciTech Connect

    Marten, S.M.

    1992-02-01

    A high-strength, thick-section, graphite/epoxy composite was identified. The purpose of this development effort was to evaluate candidate materials and provide LANL with engineering properties. Eight candidate materials (Samples 1000, 1100, 1200, 1300, 1400, 1500, 1600, and 1700) were chosen for evaluation. The Sample 1700 thermoplastic material was the strongest overall.

  2. Development, properties and performance testing of a very high strength cupronickel with resistance to hydrogen embrittlement

    SciTech Connect

    Bendall, K.C.

    1995-09-01

    A precipitation hardened cupronickel has been developed to provide 750 N/mm{sup 2} typical proof stress, high resistance to marine environments and complete freedom from hydrogen embrittlement. The designing and development of the alloy are described and laboratory and field testing and results discussed. Service experience with the very high strength cupronickel is reviewed and assessment of components which have seen long term service is described. It is concluded that the developed alloy, applied correctly, offers the opportunity to utilize the benefits of a copper alloy for highly loaded critical components such as bolting on Naval vessels and offshore structures.

  3. Bulk metallic glass composite with good tensile ductility, high strength and large elastic strain limit

    PubMed Central

    Wu, Fu-Fa; Chan, K. C.; Jiang, Song-Shan; Chen, Shun-Hua; Wang, Gang

    2014-01-01

    Bulk metallic glasses exhibit high strength and large elastic strain limit but have no tensile ductility. However, bulk metallic glass composites reinforced by in-situ dendrites possess significantly improved toughness but at the expense of high strength and large elastic strain limit. Here, we report a bulk metallic glass composite with strong strain-hardening capability and large elastic strain limit. It was found that, by plastic predeformation, the bulk metallic glass composite can exhibit both a large elastic strain limit and high strength under tension. These unique elastic mechanical properties are attributed to the reversible B2↔B19′ phase transformation and the plastic-predeformation-induced complicated stress state in the metallic glass matrix and the second phase. These findings are significant for the design and application of bulk metallic glass composites with excellent mechanical properties. PMID:24931632

  4. High-strength mineralized collagen artificial bone

    NASA Astrophysics Data System (ADS)

    Qiu, Zhi-Ye; Tao, Chun-Sheng; Cui, Helen; Wang, Chang-Ming; Cui, Fu-Zhai

    2014-03-01

    Mineralized collagen (MC) is a biomimetic material that mimics natural bone matrix in terms of both chemical composition and microstructure. The biomimetic MC possesses good biocompatibility and osteogenic activity, and is capable of guiding bone regeneration as being used for bone defect repair. However, mechanical strength of existing MC artificial bone is too low to provide effective support at human load-bearing sites, so it can only be used for the repair at non-load-bearing sites, such as bone defect filling, bone graft augmentation, and so on. In the present study, a high strength MC artificial bone material was developed by using collagen as the template for the biomimetic mineralization of the calcium phosphate, and then followed by a cold compression molding process with a certain pressure. The appearance and density of the dense MC were similar to those of natural cortical bone, and the phase composition was in conformity with that of animal's cortical bone demonstrated by XRD. Mechanical properties were tested and results showed that the compressive strength was comparable to human cortical bone, while the compressive modulus was as low as human cancellous bone. Such high strength was able to provide effective mechanical support for bone defect repair at human load-bearing sites, and the low compressive modulus can help avoid stress shielding in the application of bone regeneration. Both in vitro cell experiments and in vivo implantation assay demonstrated good biocompatibility of the material, and in vivo stability evaluation indicated that this high-strength MC artificial bone could provide long-term effective mechanical support at human load-bearing sites.

  5. Making High-Tensile-Strength Amalgam Components

    NASA Technical Reports Server (NTRS)

    Grugel, Richard

    2008-01-01

    Structural components made of amalgams can be made to have tensile strengths much greater than previously known to be possible. Amalgams, perhaps best known for their use in dental fillings, have several useful attributes, including room-temperature fabrication, corrosion resistance, dimensional stability, and high compressive strength. However, the range of applications of amalgams has been limited by their very small tensile strengths. Now, it has been discovered that the tensile strength of an amalgam depends critically on the sizes and shapes of the particles from which it is made and, consequently, the tensile strength can be greatly increased through suitable choice of the particles. Heretofore, the powder particles used to make amalgams have been, variously, in the form of micron-sized spheroids or flakes. The tensile reinforcement contributed by the spheroids and flakes is minimal because fracture paths simply go around these particles. However, if spheroids or flakes are replaced by strands having greater lengths, then tensile reinforcement can be increased significantly. The feasibility of this concept was shown in an experiment in which electrical copper wires, serving as demonstration substitutes for copper powder particles, were triturated with gallium by use of a mortar and pestle and the resulting amalgam was compressed into a mold. The tensile strength of the amalgam specimen was then measured and found to be greater than 10(exp 4) psi (greater than about 69 MPa). Much remains to be done to optimize the properties of amalgams for various applications through suitable choice of starting constituents and modification of the trituration and molding processes. The choice of wire size and composition are expected to be especially important. Perusal of phase diagrams of metal mixtures could give insight that would enable choices of solid and liquid metal constituents. Finally, whereas heretofore, only binary alloys have been considered for amalgams

  6. Improvement in surface fatigue life of hardened gears by high-intensity shot peening

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis P.

    1992-01-01

    Two groups of carburized, hardened, and ground spur gears that were manufactured from the same heat vacuum induction melted vacuum arc melted (VIM VAR) AISI 9310 steel were endurance tested for surface fatigue. Both groups were manufactured with a standard ground 16 rms surface finish. One group was subjected to a shot peening (SP) intensity of 7 to 9A, and the second group was subjected to a SP intensity of 15 to 17A. All gears were honed after SP to a surface finish of 16 rms. The gear pitch diameter was 8.89 cm. Test conditions were a maximum Hertz stress of 1.71 GPa, a gear temperature of 350 K, and a speed of 10000 rpm. The lubricant used for the tests was a synthetic paraffinic oil with an additive package. The following results were obtained: The 10 pct. surface fatigue (pitting) life of the high intensity (15 to 17A) SPed gears was 2.15 times that of the medium intensity (7 to 9A) SPed gears, the same as that calculated from measured residual stress at a depth of 127 microns. The measured residual stress for the high intensity SPed gears was 57 pct. higher than that for the medium intensity SPed gears at a depth of 127 microns and 540 pct. higher at a depth of 51 microns.

  7. High-throughput design of low-activation, high-strength creep-resistant steels for nuclear-reactor applications

    NASA Astrophysics Data System (ADS)

    Lu, Qi; van der Zwaag, Sybrand; Xu, Wei

    2016-02-01

    Reduced-activation ferritic/martensitic steels are prime candidate materials for structural applications in nuclear power reactors. However, their creep strength is much lower than that of creep-resistant steel developed for conventional fossil-fired power plants as alloying elements with a high neutron activation cannot be used. To improve the creep strength and to maintain a low activation, a high-throughput computational alloy design model coupling thermodynamics, precipitate-coarsening kinetics and an optimization genetic algorithm, is developed. Twelve relevant alloying elements with either low or high activation are considered simultaneously. The activity levels at 0-10 year after the end of irradiation are taken as optimization parameter. The creep-strength values (after exposure for 10 years at 650 °C) are estimated on the basis of the solid-solution strengthening and the precipitation hardening (taking into account precipitate coarsening). Potential alloy compositions leading to a high austenite fraction or a high percentage of undesirable second phase particles are rejected automatically in the optimization cycle. The newly identified alloys have a much higher precipitation hardening and solid-solution strengthening at the same activity level as existing reduced-activation ferritic/martensitic steels.

  8. Hardened solar array high temperature adhesive. Final report, April 1980-January 1981

    SciTech Connect

    Beard, C.; Sherwood, C.; Basiulis, D.; Magallanes, P.; Wolff, G.

    1981-04-01

    Ultrahigh molecular weight m-carborane-siloxane polymers exhibit good stability at high temperature in vacuum. This thermal stability coupled with desirable viscoelastic properties make these materials attractive as thermoplastic adhesives for solar cell attachment to solar panel substrates, especially for hardened systems. Unfortunately, development of a reproducible chemical synthesis for these polymers has eluded all efforts in recent years. In this current effort to reproducibly prepare these ultrahigh molecular weight elastomers, major progress has been made. This progress has resulted from careful and orderly experimentation involving the main elements of the problem, namely: (a) purification of reactants and solvents, (b) preparation, workup, and characterization of monomers, (c) preparation and workup of prepolymers, (d) development of a trace level, silanol end group analysis for estimating prepolymer advanceability, and (e) prepolymer advancement to the final polymer. Significant additional progress in the prepolymer preparation and advancement steps is still required for definition of a reproducible process for preparing the ultrahigh molecular weight material. Pending achievement of such progress, adhesive formulation efforts are limited.

  9. Hydrogen trapping in high-strength steels

    SciTech Connect

    Pound, B.G.

    1998-10-09

    Hydrogen trapping in three high-strength steels -- AerMet 100 and AISI 4340 and H11 -- was studied using a potentiostatic pulse technique. Irreversible trapping constants (k) and hydrogen entry fluxes were determined for these alloys in 1 mol/1 acetic acid/1 mol/1 sodium acetate. The order of the k values for the three steels and two 18Ni maraging steels previously studies inversely parallels their threshold stress intensities for stress corrosion cracking (K{sub 1SCC}). Irreversible trapping in AerMet 100 varies with aging temperature and appears to depend on the type of carbide (Fe{sub 3}C or M{sub 2}C) present. For 4340 steel, k can be correlated with K{sub 1SCC} over a range of yield strengths. The change in k is consistent with a change in the principal type of irreversible trap from matrix boundaries to incoherent Fe{sub 3}C. The principal irreversible traps in H11 at high yield strengths are thought to be similar to those in 4340 steel.

  10. High-strength iron aluminide alloys

    SciTech Connect

    McKamey, C.G.; Maziasz, P.J.

    1996-06-01

    Past studies have shown that binary Fe{sub 3}Al possesses low creep-rupture strength compared to many other alloys, with creep-rupture lives of less than 5 h being reported for tests conducted at 593{degrees}C and 207 MPa. The combination of poor creep resistance and low room-temperature tensile ductility due to a susceptibility to environmentally-induced dynamic hydrogen embrittlement has limited use of these alloys for structural applications despite their excellent corrosion properties. With regard to the ductility problem, alloy development efforts have produced significant improvements, with ductilities of 10-20% and tensile yield strengths as high as 500 MPa being reported. Likewise, initial improvements in creep resistance have been realized through small additions of Mo, Nb, and Zr.

  11. Two-surface plasticity Model and Its Application to Spring-back Simulation of Automotive Advanced High Strength Steel Sheets

    NASA Astrophysics Data System (ADS)

    Park, Taejoon; Seok, Dong-Yoon; Lee, Chul-Hwan; Noma, Nobuyasu; Kuwabara, Toshihiko; Stoughton, Thomas B.; Chung, Kwansoo

    2011-08-01

    A two-surface isotropic-kinematic hardening law was developed based on a two-surface plasticity model previously proposed by Lee et al., (2007, Int. J. Plast. 23, 1189-1212). In order to properly represent the Bauschinger and transient behaviors as well as permanent softening during reverse loading with various pre-strains, both the inner yield surface and the outer bounding surface expand (isotropic hardening) and translate (kinematic hardening) in this two-surface model. As for the permanent softening, both the isotropic hardening and the kinematic hardening evolution of the outer bounding surface were modified by introducing softening parameters. The numerical formulation was also developed based on the incremental plasticity theory and the developed constitutive law was implemented into the commercial finite element program, ABAQUS/Explicit and ABAQUS/Standard using the user-defined material subroutines. In this work, a dual phase (DP) steel was considered as an advanced high strength steel sheet and uni-axial tension tests and uni-axial tension-compression-tension tests were performed for the characterization of the material property. For a validation purpose, the developed two-surface plasticity model was applied to the 2-D draw bending test proposed as a benchmark problem of the NUMISHEET 2011 conference and successfully validated with experiments.

  12. Thermophilic anaerobic digestion of high strength wastewaters

    SciTech Connect

    Wiegant, W.M.; Claassen, J.A.; Lettinga, G.

    1985-09-01

    Investigations on the thermophilic anaerobic treatment of high-strength wastewaters (14-65 kg COD/mT) are presented. Vinasse, the wastewater of alcohol distilleries, was used as an example of such wastewaters. Semicontinuously fed digestion experiments at high retention times revealed that the effluent quality of digestion at 55C is comparable with that at 30C at similar loading rates. The amount of methane formed per kilogram of vinasse drops almost linearly with increasing vinasse concentrations. The treatment of vinasse was also investigated using upflow anaerobic sludge blanket (UASB) reactors.

  13. HIGH STRENGTH CONTROL RODS FOR NEUTRONIC REACTORS

    DOEpatents

    Lustman, B.; Losco, E.F.; Cohen, I.

    1961-07-11

    Nuclear reactor control rods comprised of highly compressed and sintered finely divided metal alloy panticles and fine metal oxide panticles substantially uniformly distributed theretbrough are described. The metal alloy consists essentially of silver, indium, cadmium, tin, and aluminum, the amount of each being present in centain percentages by weight. The oxide particles are metal oxides of the metal alloy composition, the amount of oxygen being present in certain percentages by weight and all the oxygen present being substantially in the form of metal oxide. This control rod is characterized by its high strength and resistance to creep at elevated temperatures.

  14. Radiation hardening of V C, V O, V N alloys neutron-irradiated to high fluences

    NASA Astrophysics Data System (ADS)

    Chuto, Toshinori; Satou, Manabu; Abe, Katsunori

    1998-10-01

    Vanadium has a large affinity for interstitial impurities such as C, N and O. Mechanical properties and irradiation performance of vanadium alloys are affected by the impurities. Radiation hardening and defect microstructures of vanadium alloys doped with relatively large amounts of these interstitial elements were studied. Neutron irradiation was conducted in the Materials Open Test Assembly of the Fast Flux Test Facility (FFTF/MOTA-1F) to 47.9 dpa at temperatures of 679, 793 and 873 K. Irradiation hardening decreased with increasing irradiation temperature. Increase in hardness for the V-C alloy was relatively greater after irradiation at the low temperatures. Decorated dislocations and voids were observed depending on the alloying elements. The factors for irradiation hardening were different for each interstitial element in the alloys irradiated at 873 K to 47.9 dpa.

  15. Heavyweight cement concrete with high stability of strength parameters

    NASA Astrophysics Data System (ADS)

    Kudyakov, Konstantin; Nevsky, Andrey; Danke, Ilia; Kudyakov, Aleksandr; Kudyakov, Vitaly

    2016-01-01

    The present paper establishes regularities of basalt fibers distribution in movable cement concrete mixes under different conditions of their preparation and their selective introduction into mixer during the mixing process. The optimum content of basalt fibers was defined as 0.5% of the cement weight, which provides a uniform distribution of fibers in the concrete volume. It allows increasing compressive strength up to 51.2% and increasing tensile strength up to 28.8%. Micro-structural analysis identified new formations on the surface of basalt fibers, which indicates the good adhesion of hardened cement paste to the fibers. Stability of concrete strength parameters has significantly increased with introduction of basalt fibers into concrete mix.

  16. High-strength iron aluminide alloys

    SciTech Connect

    McKamey, C.G.; Marrero-Santos, Y.; Maziasz, P.J.

    1995-06-01

    Past studies have shown that binary Fe{sub 3}Al possesses low creep-rupture strength compared to many other alloys, with creep-rupture lives of less than 5 h being reported for tests conducted at 593{degrees}C and 207 MPa. The combination of poor creep resistance and low room-temperature tensile density due to a susceptibility to environmentally-induced dynamic hydrogen embrittlement has limited use of these alloys for structural applications, despite their excellent corrosion properties. Improvements in room temperature tensile ductility have been realized mainly through alloying effects, changes in thermomechanical processing to control microstructure, and by control of the specimen`s surface condition. Ductilities of 10-20% and tensile yield strengths as high as 500 MPa have been reported. In terms of creep-rupture strength, small additions of Mo, Nb, and Zr have produced significant improvements, but at the expense of weldability and room-temperature tensile ductility. Recently an alloy containing these additions, designated FA-180, was shown to exhibit a creep-rupture life of over 2000 h after a heat treatment of 1 h at 1150{degrees}C. This study presents the results of creep-rupture tests at various test temperatures and stresses and discusses the results as part of our effort to understand the strengthening mechanisms involved with heat treatment at 1150{degrees}C.

  17. Explosive Surface Hardening of Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Kovacs-Coskun, T.

    2016-04-01

    In this study, the effects of explosion hardening on the microstructure and the hardness of austenitic stainless steel have been studied. The optimum explosion hardening technology of austenitic stainless steel was researched. In case of the explosive hardening used new idea mean indirect hardening setup. Austenitic stainless steels have high plasticity and can be easily cold formed. However, during cold processing the hardening phenomena always occurs. Upon the explosion impact, the deformation mechanism indicates a plastic deformation and this deformation induces a phase transformation (martensite). The explosion hardening enhances the mechanical properties of the material, includes the wear resistance and hardness. In case of indirect hardening as function of the setup parameters specifically the flayer plate position the hardening increased differently. It was find a relationship between the explosion hardening setup and the hardening level.

  18. Protective claddings for high strength chromium alloys

    NASA Technical Reports Server (NTRS)

    Collins, J. F.

    1971-01-01

    The application of a Cr-Y-Hf-Th alloy as a protective cladding for a high strength chromium alloy was investigated for its effectiveness in inhibiting nitrogen embrittlement of a core alloy. Cladding was accomplished by a combination of hot gas pressure bonding and roll cladding techniques. Based on bend DBTT, the cladding alloy was effective in inhibiting nitrogen embrittlement of the chromium core alloy for up to 720 ks (200hours) in air at 1422 K (2100 F). A significant increase in the bend DBTT occurred with longer time exposures at 1422 K or short time exposures at 1589 K (2400 F).

  19. The effect of hydrogen on strain hardening and fracture mechanism of high-nitrogen austenitic steel

    NASA Astrophysics Data System (ADS)

    Maier, G. G.; Astafurova, E. G.; Melnikov, E. V.; Moskvina, V. A.; Vojtsik, V. F.; Galchenko, N. K.; Zakharov, G. N.

    2016-07-01

    High-nitrogen austenitic steels are perspective materials for an electron-beam welding and for producing of wear-resistant coatings, which can be used for application in aggressive atmospheres. The tensile behavior and fracture mechanism of high-nitrogen austenitic steel Fe-20Cr-22Mn-1.5V-0.2C-0.6N (in wt.%) after electrochemical hydrogen charging for 2, 10 and 40 hours have been investigated. Hydrogenation of steel provides a loss of yield strength, uniform elongation and tensile strength. The degradation of tensile properties becomes stronger with increase in charging duration - it occurs more intensive in specimens hydrogenated for 40 hours as compared to ones charged for 2-10 hours. Fracture analysis reveals a hydrogen-induced formation of brittle surface layers up to 6 μm thick after 40 hours of saturation. Hydrogenation changes fracture mode of steel from mixed intergranular-transgranular to mainly transgranular one.

  20. Metallurgical considerations of the high yield to ultimate ratio in high strength steels for use in offshore engineering

    SciTech Connect

    Healy, J.; Billingham, J.

    1995-12-31

    High strength steels are increasingly being specified for offshore applications primarily on topsides, but also more recently in jackets themselves. Compared with conventional structural steels, modem high strength steels possess higher yield ratios (YR). This has caused some concern and debate on their work hardening capacity and moreover, current material specification and design codes severely penalize their use by placing limits on YR and on allowable design stress. Many changes have occurred in steel processing and alloying methods over the past 15 years or so, to produce higher strength steels with increased toughness yet utilizing leaner chemistries to enhance weldability. High strength steels in the range 355--550MPa are likely to be increasingly used in future offshore applications and the current paper, although concerned with studies aimed specifically to assess the importance of variations in YR, also presents an overview of typical mechanical properties possessed by such steels. In general, the actual yield strength of steel plates exceeds the SMYS by a significant margin, sometimes by as much as 100MPa, which has important implications for material selection, design procedures and welding considerations. In general, as the yield strength increases, so also does the YR. However, despite possessing high YR values, modem steels maintain high levels of combined toughness, ductility and weldability. Variability in mechanical properties can be correlated with parameters such as particular steel manufacturer and production route, composition, and plate thickness. It has been demonstrated that some manufacturers can exert closer control on variability in properties, thereby consistently satisfying current offshore requirements.

  1. RHOBOT: Radiation hardened robotics

    SciTech Connect

    Bennett, P.C.; Posey, L.D.

    1997-10-01

    A survey of robotic applications in radioactive environments has been conducted, and analysis of robotic system components and their response to the varying types and strengths of radiation has been completed. Two specific robotic systems for accident recovery and nuclear fuel movement have been analyzed in detail for radiation hardness. Finally, a general design approach for radiation-hardened robotics systems has been developed and is presented. This report completes this project which was funded under the Laboratory Directed Research and Development program.

  2. Constitutive Modeling of Hot Deformation Behavior of High-Strength Armor Steel

    NASA Astrophysics Data System (ADS)

    Bobbili, Ravindranadh; Madhu, Vemuri

    2016-05-01

    The hot isothermal compression tests of high-strength armor steel under a wide range of deformation temperatures (1100-1250 °C) and strain rates of (0.001-1/s) were performed. Based on the experimental data, constitutive models were established using the original Johnson-Cook (JC) model, modified JC model, and strain-compensated Arrhenius model, respectively. The modified JC model considers the coupled effects of strain hardening, strain rate hardening, and thermal softening. Moreover, the prediction accuracy of these developed models was determined by estimating the correlation coefficient ( R) and average absolute relative error (AARE). The results demonstrate that the flow behavior of high-strength armor steel is considerably influenced by the strain rate and temperature. The original JC model is inadequate to provide good description on the flow stress at evaluated temperatures. The modified JC model and strain-compensated Arrhenius model significantly enhance the predictability. It is also observed from the microstructure study that at low strain rates (0.001-0.01/s) and high temperatures (1200-1250 °C), a typical dynamic recrystallization (DRX) occurs.

  3. Microstructures in laser welded high strength steels

    NASA Astrophysics Data System (ADS)

    Rizzi, P.; Bellingeri, S.; Massimino, F.; Baldissin, D.; Battezzati, L.

    2009-01-01

    In this work, the effect of laser welding on the microstructure was studied for three Advanced High Strength Steels: transformation induced plasticity steel (TRIP), dual phase steel (DP) and martensitic steel. Two sheets of the same steel were laser welded and a microstructural study was performed by optical microscopy, scanning electron microscopy and X-ray diffraction. For all samples the welded zone was constituted by martensite and the heat affected zone shows a continuous change in microstructure depending on temperatures reached and on the different cooling rates. The change in mechanical properties in the welded area was followed by Vickers micro-hardness measurements. Quasi binary phase diagrams were calculated and, according to position of T0 lines, it was deduced that austenite is the primary phase forming during rapid solidification for all steels.

  4. High strength air-dried aerogels

    DOEpatents

    Coronado, Paul R.; Satcher, Jr., Joe H.

    2012-11-06

    A method for the preparation of high strength air-dried organic aerogels. The method involves the sol-gel polymerization of organic gel precursors, such as resorcinol with formaldehyde (RF) in aqueous solvents with R/C ratios greater than about 1000 and R/F ratios less than about 1:2.1. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be air dried at ambient temperatures and pressures. The method significantly reduces the time and/or energy required to produce a dried aerogel compared to conventional methods using either supercritical solvent extraction. The air dried gel exhibits typically less than 5% shrinkage.

  5. High strength ferritic alloy-D53

    DOEpatents

    Hagel, William C.; Smidt, Frederick A.; Korenko, Michael K.

    1977-01-01

    A high strength ferritic alloy is described having from about 0.2% to about 0.8% by weight nickel, from about 2.5% to about 3.6% by weight chromium, from about 2.5% to about 3.5% by weight molybdenum, from about 0.1% to about 0.5% by weight vanadium, from about 0.1% to about 0.5% by weight silicon, from about 0.1% to about 0.6% by weight manganese, from about 0.12% to about 0.20% by weight carbon, from about 0.02% to about 0.1% by weight boron, a maximum of about 0.05% by weight nitrogen, a maximum of about 0.02% by weight phosphorous, a maximum of about 0.02% by weight sulfur, and the balance iron.

  6. High early strength calcium phosphate bone cement: effects of dicalcium phosphate dihydrate and absorbable fibers.

    PubMed

    Burguera, Elena F; Xu, Hockin H K; Takagi, Shozo; Chow, Laurence C

    2005-12-15

    Calcium phosphate cement (CPC) sets in situ to form resorbable hydroxyapatite with chemical and crystallographic similarity to the apatite in human bones, hence it is highly promising for clinical applications. The objective of the present study was to develop a CPC that is fast setting and has high strength in the early stages of implantation. Two approaches were combined to impart high early strength to the cement: the use of dicalcium phosphate dihydrate with a high solubility (which formed the cement CPC(D)) instead of anhydrous dicalcium phosphate (which formed the conventional cement CPC(A)), and the incorporation of absorbable fibers. A 2 x 8 design was tested with two materials (CPC(A) and CPC(D)) and eight levels of cement reaction time: 15 min, 30 min, 1 h, 1.5 h, 2 h, 4 h, 8 h, and 24 h. An absorbable suture fiber was incorporated into cements at 25% volume fraction. The Gilmore needle method measured a hardening time of 15.8 min for CPC(D), five-fold faster than 81.5 min for CPC(A), at a powder:liquid ratio of 3:1. Scanning electron microscopy revealed the formation of nanosized rod-like hydroxyapatite crystals and platelet crystals in the cements. At 30 min, the flexural strength (mean +/- standard deviation; n = 5) was 0 MPa for CPC(A) (the paste did not set), (4.2 +/- 0.3) MPa for CPC(D), and (10.7 +/- 2.4) MPa for CPC(D)-fiber specimens, significantly different from each other (Tukey's at 0.95). The work of fracture (toughness) was increased by two orders of magnitude for the CPC(D)-fiber cement. The high early strength matched the reported strength for cancellous bone and sintered porous hydroxyapatite implants. The composite strength S(c) was correlated to the matrix strength S(m): S(c) = 2.16S(m). In summary, substantial early strength was imparted to a moldable, self-hardening and resorbable hydroxyapatite via two synergistic approaches: dicalcium phosphate dihydrate, and absorbable fibers. The new fast-setting and strong cement may help prevent

  7. High Performance Processors for Space Environments: A Subproject of the NASA Exploration Missions Systems Directorate "Radiation Hardened Electronics for Space Environments" Technology Development Program

    NASA Technical Reports Server (NTRS)

    Johnson, M.; Label, K.; McCabe, J.; Powell, W.; Bolotin, G.; Kolawa, E.; Ng, T.; Hyde, D.

    2007-01-01

    Implementation of challenging Exploration Systems Missions Directorate objectives and strategies can be constrained by onboard computing capabilities and power efficiencies. The Radiation Hardened Electronics for Space Environments (RHESE) High Performance Processors for Space Environments project will address this challenge by significantly advancing the sustained throughput and processing efficiency of high-per$ormance radiation-hardened processors, targeting delivery of products by the end of FY12.

  8. Strength analysis of laser welded lap joint for ultra high strength steel

    NASA Astrophysics Data System (ADS)

    Jeong, Young Cheol; Kim, Cheol Hee; Cho, Young Tae; Jung, Yoon Gyo

    2013-12-01

    Several industries including the automotive industry have recently applied the process of welding high strength steel. High strength steel is steel that is harder than normal high strength steel, making it much stronger and stiffer. HSS can be formed in pieces that can be up to 10 to 15 percent thinner than normal steel without sacrificing strength, which enables weight reduction and improved fuel economy. Furthermore, HSS can be formed into complex shapes that can be welded into structural areas. This study is based on previous experiments and is aimed at establishing the stress distribution for laser welded high strength steel. Research on the stress distribution for laser welded high strength steel is conducted by using Solid Works, a program that analyzes the stress of a virtual model. In conclusion, we found that the stress distribution is changed depending on the shape of welded lap joint. In addition, the Influence of the stress distribution on welded high strength steel can be used to standard for high energy welding of high strength steel, and we can also predict the region in welded high strength steel that may cracked.

  9. Surface Fatigue Resistance with Induction Hardening

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis; Turza, Alan; Chapman, Mike

    1996-01-01

    Induction hardening has been used for some years to harden the surface and improve the strength and service life of gears and other components. Many applications that employ induction hardening require a relatively long time to finish the hardening process and controlling the hardness of the surface layer and its depth often was a problem. Other surface hardening methods, ie., carbonizing, take a very long time and tend to cause deformations of the toothing, whose elimination requires supplementary finishing work. In double-frequency induction hardening, one uses a low frequency for the preheating of the toothed wheel and a much higher frequency for the purpose of rapidly heating the surface by way of surface hardening.

  10. Aluminum/steel wire composite plates exhibit high tensile strength

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Composite plate of fine steel wires imbedded in an aluminum alloy matrix results in a lightweight material with high tensile strength. Plates have been prepared having the strength of titanium with only 85 percent of its density.

  11. Process design of press hardening with gradient material property influence

    SciTech Connect

    Neugebauer, R.; Schieck, F.; Rautenstrauch, A.

    2011-05-04

    Press hardening is currently used in the production of automotive structures that require very high strength and controlled deformation during crash tests. Press hardening can achieve significant reductions of sheet thickness at constant strength and is therefore a promising technology for the production of lightweight and energy-efficient automobiles. The manganese-boron steel 22MnB5 have been implemented in sheet press hardening owing to their excellent hot formability, high hardenability, and good temperability even at low cooling rates. However, press-hardened components have shown poor ductility and cracking at relatively small strains. A possible solution to this problem is a selective increase of steel sheet ductility by press hardening process design in areas where the component is required to deform plastically during crash tests. To this end, process designers require information about microstructure and mechanical properties as a function of the wide spectrum of cooling rates and sequences and austenitizing treatment conditions that can be encountered in production environments. In the present work, a Continuous Cooling Transformation (CCT) diagram with corresponding material properties of sheet steel 22MnB5 was determined for a wide spectrum of cooling rates. Heating and cooling programs were conducted in a quenching dilatometer. Motivated by the importance of residual elasticity in crash test performance, this property was measured using a micro-bending test and the results were integrated into the CCT diagrams to complement the hardness testing results. This information is essential for the process design of press hardening of sheet components with gradient material properties.

  12. Process design of press hardening with gradient material property influence

    NASA Astrophysics Data System (ADS)

    Neugebauer, R.; Schieck, F.; Rautenstrauch, A.

    2011-05-01

    Press hardening is currently used in the production of automotive structures that require very high strength and controlled deformation during crash tests. Press hardening can achieve significant reductions of sheet thickness at constant strength and is therefore a promising technology for the production of lightweight and energy-efficient automobiles. The manganese-boron steel 22MnB5 have been implemented in sheet press hardening owing to their excellent hot formability, high hardenability, and good temperability even at low cooling rates. However, press-hardened components have shown poor ductility and cracking at relatively small strains. A possible solution to this problem is a selective increase of steel sheet ductility by press hardening process design in areas where the component is required to deform plastically during crash tests. To this end, process designers require information about microstructure and mechanical properties as a function of the wide spectrum of cooling rates and sequences and austenitizing treatment conditions that can be encountered in production environments. In the present work, a Continuous Cooling Transformation (CCT) diagram with corresponding material properties of sheet steel 22MnB5 was determined for a wide spectrum of cooling rates. Heating and cooling programs were conducted in a quenching dilatometer. Motivated by the importance of residual elasticity in crash test performance, this property was measured using a micro-bending test and the results were integrated into the CCT diagrams to complement the hardness testing results. This information is essential for the process design of press hardening of sheet components with gradient material properties.

  13. Microstructure evolution and mechanical behavior of a high strength dual-phase steel under monotonic loading

    SciTech Connect

    Nesterova, E.V.; Bouvier, S.; Bacroix, B.

    2015-02-15

    Transmission electron microscopy (TEM) microstructures of a high-strength dual-phase steel DP800 have been examined after moderate plastic deformations in simple shear and uniaxial tension. Special attention has been paid to the effect of the intergranular hard phase (martensite) on the microstructure evolution in the near-grain boundary regions. Quantitative parameters of dislocation patterning have been determined and compared with the similar characteristics of previously examined single-phase steels. The dislocation patterning in the interiors of the ferrite grains in DP800 steel is found to be similar to that already observed in the single-phase IF (Interstitial Free) steel whereas the martensite-affected zones present a delay in patterning and display very high gradients of continuous (gradual) disorientations associated with local internal stresses. The above stresses are shown to control the work-hardening of dual-phase materials at moderate strains for monotonic loading and are assumed to influence their microstructure evolution and mechanical behavior under strain-path changes. - Highlights: • The microstructure evolution has been studied by TEM in a DP800 steel. • It is influenced by both martensite and dislocations in the initial state. • The DP800 steel presents a high work-hardening rate due to internal stresses.

  14. Local heat treatment of high strength steels with zoom-optics and 10kW-diode laser

    NASA Astrophysics Data System (ADS)

    Baumann, Markus; Krause, Volker; Bergweiler, Georg; Flaischerowitz, Martin; Banik, Janko

    2012-03-01

    High strength steels enable new solutions for weight optimized car bodies without sacrificing crash safety. However, cold forming of these steels is limited due to the need of high press capacity, increased tool wear, and limitations in possible geometries. One can compensate for these drawbacks by local heat treatment of the blanks. In high-deformation areas the strength of the material is reduced and the plasticity is increased by diode laser irradiation. Local heat treatment with diode laser radiation could also yield key benefits for the applicability of press hardened parts. High strength is not desired all over the part. Joint areas or deformation zones for requested crash properties require locally reduced strength. In the research project "LOKWAB" funded by the German Federal Ministry of Education and Research (BMBF), heat treatment of high strength steels was investigated in cooperation with Audi, BMW, Daimler, ThyssenKrupp, Fraunhofer- ILT, -IWU and others. A diode laser with an output power of 10 kW was set up to achieve acceptable process speed. Furthermore a homogenizing zoom-optics was developed, providing a rectangular focus with homogeneous power density. The spot size in x- and y-direction can be changed independently during operation. With pyrometer controlled laser power the surface temperature is kept constant, thus the laser treated zone can be flexibly adapted to the needs. Deep-drawing experiments show significant improvement in formability. With this technique, parts can be manufactured, which can conventionally only be made of steel with lower strength. Locally reduced strength of press hardened serial parts was demonstrated.

  15. Development of a Press-Hardened Steel Suitable for Thin Slab Direct Rolling Processing

    NASA Astrophysics Data System (ADS)

    Lee, Jewoong; De Cooman, Bruno C.

    2015-01-01

    The thin slab casting and direct rolling process is a hot-rolled strip production method which has maintained commercial quality steel grades as a major material in many industrial applications due to its low processing cost. Few innovative products have however been developed specifically for production by thin slab direct rolling. Press hardening or hot press forming steel grades which are now widely used to produce structural automotive steel parts requiring ultra-high strength and formability may however offer an opportunity for thin slab direct rolling-specific ultra-high strength products. In this work, a newly designed press hardening steel grade developed specifically for thin slab direct rolling processing is presented. The press hardening steel has a high nitrogen content compared with press hardening steel grades produced by conventional steelmaking routes. Boron and titanium which are key alloying additions in conventional press hardening steel such as the 22MnB5 press hardening steel grade are not utilized. Cr is added in the press hardening steel to obtain the required hardenability. The properties of the new thin slab direct rolling-specific 22MnCrN5 press hardening steel grade are reviewed. The evolution of the microstructure and mechanical properties with increasing amounts of Cr additions from 0.6 to 1.4 wt pct and the effect of the cooling rate during die-quenching were studied by means of laboratory simulations. The selection of the optimum chemical composition range for the thin slab direct rolling-specific 22MnCrN5 steel in press hardening heat treatment conditions is discussed.

  16. Evaluation of Springback for DP980 S Rail Using Anisotropic Hardening Models

    NASA Astrophysics Data System (ADS)

    Choi, Jisik; Lee, Jinwoo; Bae, Gihyun; Barlat, Frederic; Lee, Myoung-Gyu

    2016-07-01

    The effect of anisotropic hardening models on springback of an S-rail part was investigated. Two advanced constitutive models based on distortional and kinematic hardening, which captured the Bauschinger effect, transient hardening, and permanent softening during strain path change, were implemented in a finite element (FE) code. In-plane compression-tension tests were performed to identify the model parameters. The springback of the S-rail after forming a 980 MPa dual-phase steel sheet sample was measured and analyzed using different hardening models. The comparison between experimental and FE results demonstrated that the advanced anisotropic hardening models, which are particularly suitable for non-proportional loading, significantly improved the springback prediction capability of an advanced high strength steel.

  17. Structural application of high strength, high temperature ceramics

    NASA Technical Reports Server (NTRS)

    Hall, W. B.

    1982-01-01

    The operation of rocket engine turbine pumps is limited by the temperature restrictions of metallic components used in the systems. Mechanical strength and stability of these metallic components decrease drastically at elevated temperatures. Ceramic materials that retain high strength at high temperatures appear to be a feasible alternate material for use in the hot end of the turbopumps. This project identified and defined the processing parameters that affected the properties of Si3N4, one of candidate ceramic materials. Apparatus was assembled and put into operation to hot press Si3N4 powders into bulk material for in house evaluation. A work statement was completed to seek outside contract services to design, manufacture, and evaluate Si3N4 components in the service environments that exists in SSME turbopumps.

  18. Friction Stir Spot Welding (FSSW) of Advanced High Strength Steel (AHSS)

    SciTech Connect

    Santella, M. L.; Hovanski, Yuri; Pan, Tsung-Yu

    2012-04-16

    Friction stir spot welding (FSSW) is applied to join advanced high strength steels (AHSS): galvannealed dual phase 780 MPa steel (DP780GA), transformation induced plasticity 780 MPa steel (TRIP780), and hot-stamped boron steel (HSBS). A low-cost Si3N4 ceramic tool was developed and used for making welds in this study instead of polycrystalline cubic boron nitride (PCBN) material used in earlier studies. FSSW has the advantages of solid-state, low-temperature process, and the ability of joining dissimilar grade of steels and thicknesses. Two different tool shoulder geometries, concave with smooth surface and convex with spiral pattern, were used in the study. Welds were made by a 2-step displacement control process with weld time of 4, 6, and 10 seconds. Static tensile lap-shear strength achieved 16.4 kN for DP780GA-HSBS and 13.2kN for TRIP780-HSBS, above the spot weld strength requirements by AWS. Nugget pull-out was the failure mode of the joint. The joining mechanism was illustrated from the cross-section micrographs. Microhardness measurement showed hardening in the upper sheet steel (DP780GA or TRIP780) in the weld, but softening of HSBS in the heat-affect zone (HAZ). The study demonstrated the feasibility of making high-strength AHSS spot welds with low-cost tools.

  19. Gaseous hydrogen embrittlement of high strength steels

    NASA Technical Reports Server (NTRS)

    Gangloff, R. P.; Wei, R. P.

    1977-01-01

    The effects of temperature, hydrogen pressure, stress intensity, and yield strength on the kinetics of gaseous hydrogen assisted crack propagation in 18Ni maraging steels were investigated experimentally. It was found that crack growth rate as a function of stress intensity was characterized by an apparent threshold for crack growth, a stage where the growth rate increased sharply, and a stage where the growth rate was unchanged over a significant range of stress intensity. Cracking proceeded on load application with little or no detectable incubation period. Gaseous hydrogen embrittlement susceptibility increased with increasing yield strength.

  20. Development of K-Basin High-Strength Homogeneous Sludge Simulants and Correlations Between Unconfined Compressive Strength and Shear Strength

    SciTech Connect

    Onishi, Yasuo; Baer, Ellen BK; Chun, Jaehun; Yokuda, Satoru T.; Schmidt, Andrew J.; Sande, Susan; Buchmiller, William C.

    2011-02-20

    K-Basin sludge will be stored in the Sludge Transport and Storage Containers (STSCs) at an interim storage location on Central Plateau before being treated and packaged for disposal. During the storage period, sludge in the STSCs may consolidate/agglomerate, potentially resulting in high-shear-strength material. The Sludge Treatment Project (STP) plans to use water jets to retrieve K-Basin sludge after the interim storage. STP has identified shear strength to be a key parameter that should be bounded to verify the operability and performance of sludge retrieval systems. Determining the range of sludge shear strength is important to gain high confidence that a water-jet retrieval system can mobilize stored K-Basin sludge from the STSCs. The shear strength measurements will provide a basis for bounding sludge properties for mobilization and erosion. Thus, it is also important to develop potential simulants to investigate these phenomena. Long-term sludge storage tests conducted by Pacific Northwest National Laboratory (PNNL) show that high-uranium-content K-Basin sludge can self-cement and form a strong sludge with a bulk shear strength of up to 65 kPa. Some of this sludge has 'paste' and 'chunks' with shear strengths of approximately 3-5 kPa and 380-770 kPa, respectively. High-uranium-content sludge samples subjected to hydrothermal testing (e.g., 185 C, 10 hours) have been observed to form agglomerates with a shear strength up to 170 kPa. These high values were estimated by measured unconfined compressive strength (UCS) obtained with a pocket penetrometer. Due to its ease of use, it is anticipated that a pocket penetrometer will be used to acquire additional shear strength data from archived K-Basin sludge samples stored at the PNNL Radiochemical Processing Laboratory (RPL) hot cells. It is uncertain whether the pocket penetrometer provides accurate shear strength measurements of the material. To assess the bounding material strength and potential for erosion, it

  1. High-power multibeam lasers and their applications for surface hardening

    NASA Astrophysics Data System (ADS)

    Bukhanova, I. F.; Divinsky, V. V.; Zhuravel, V. M.

    2000-07-01

    The paper deals with laser technological units (LTU) based on multi-beam lasers of 1 to 10 kW power. To save working gases the laser technological units employ regeneration systems. The LTU have been the basic units used in multipurpose systems for laser processing various parts of the kind of rotation bodies or plane parts, cranckshafts, etc., as well as in special-purpose systems and automatic lines with the full cycle of auxiliary technological operations which are necessary to perform laser processing. The technologies of heat treatment of parts with the use of multi-beam lasers have been developed for the purposes of improvement of heavy-loaded rubbing parts wear resistance; local treatment of non-rigid parts; reduction of labor consumption in some cases of thermo-chemical treatment or induction (bulk) hardening replacement with laser irradiation; reconditioning of worn parts by precision facing, alloying or similar processes.

  2. Achieving high strength and high ductility in magnesium alloy using hard-plate rolling (HPR) process

    NASA Astrophysics Data System (ADS)

    Wang, Hui–Yuan; Yu, Zhao–Peng; Zhang, Lei; Liu, Chun–Guo; Zha, Min; Wang, Cheng; Jiang, Qi–Chuan

    2015-11-01

    Magnesium alloys are highly desirable for a wide range of lightweight structural components. However, rolling Mg alloys can be difficult due to their poor plasticity, and the strong texture yielded from rolling often results in poor plate forming ability, which limits their further engineering applications. Here we report a new hard-plate rolling (HPR) route which achieves a large reduction during a single rolling pass. The Mg-9Al-1Zn (AZ91) plates processed by HPR consist of coarse grains of 30-60 μm, exhibiting a typical basal texture, fine grains of 1-5 μm and ultrafine (sub) grains of 200-500 nm, both of the latter two having a weakened texture. More importantly, the HPR was efficient in gaining a simultaneous high strength and uniform ductility, i.e., ~371 MPa and ~23%, respectively. The superior properties should be mainly attributed to the cooperation effect of the multimodal grain structure and weakened texture, where the former facilitates a strong work hardening while the latter promotes the basal slip. The HPR methodology is facile and effective, and can avoid plate cracking that is prone to occur during conventional rolling processes. This strategy is applicable to hard-to-deform materials like Mg alloys, and thus has a promising prospect for industrial application.

  3. Achieving high strength and high ductility in magnesium alloy using hard-plate rolling (HPR) process

    PubMed Central

    Wang, Hui–Yuan; Yu, Zhao–Peng; Zhang, Lei; Liu, Chun–Guo; Zha, Min; Wang, Cheng; Jiang, Qi–Chuan

    2015-01-01

    Magnesium alloys are highly desirable for a wide range of lightweight structural components. However, rolling Mg alloys can be difficult due to their poor plasticity, and the strong texture yielded from rolling often results in poor plate forming ability, which limits their further engineering applications. Here we report a new hard-plate rolling (HPR) route which achieves a large reduction during a single rolling pass. The Mg-9Al-1Zn (AZ91) plates processed by HPR consist of coarse grains of 30–60 μm, exhibiting a typical basal texture, fine grains of 1–5 μm and ultrafine (sub) grains of 200–500 nm, both of the latter two having a weakened texture. More importantly, the HPR was efficient in gaining a simultaneous high strength and uniform ductility, i.e., ~371 MPa and ~23%, respectively. The superior properties should be mainly attributed to the cooperation effect of the multimodal grain structure and weakened texture, where the former facilitates a strong work hardening while the latter promotes the basal slip. The HPR methodology is facile and effective, and can avoid plate cracking that is prone to occur during conventional rolling processes. This strategy is applicable to hard-to-deform materials like Mg alloys, and thus has a promising prospect for industrial application. PMID:26603776

  4. Achieving high strength and high ductility in magnesium alloy using hard-plate rolling (HPR) process.

    PubMed

    Wang, Hui-Yuan; Yu, Zhao-Peng; Zhang, Lei; Liu, Chun-Guo; Zha, Min; Wang, Cheng; Jiang, Qi-Chuan

    2015-01-01

    Magnesium alloys are highly desirable for a wide range of lightweight structural components. However, rolling Mg alloys can be difficult due to their poor plasticity, and the strong texture yielded from rolling often results in poor plate forming ability, which limits their further engineering applications. Here we report a new hard-plate rolling (HPR) route which achieves a large reduction during a single rolling pass. The Mg-9Al-1Zn (AZ91) plates processed by HPR consist of coarse grains of 30-60 μm, exhibiting a typical basal texture, fine grains of 1-5 μm and ultrafine (sub) grains of 200-500 nm, both of the latter two having a weakened texture. More importantly, the HPR was efficient in gaining a simultaneous high strength and uniform ductility, i.e., ~371 MPa and ~23%, respectively. The superior properties should be mainly attributed to the cooperation effect of the multimodal grain structure and weakened texture, where the former facilitates a strong work hardening while the latter promotes the basal slip. The HPR methodology is facile and effective, and can avoid plate cracking that is prone to occur during conventional rolling processes. This strategy is applicable to hard-to-deform materials like Mg alloys, and thus has a promising prospect for industrial application. PMID:26603776

  5. Silicon nitride having a high tensile strength

    DOEpatents

    Pujari, V.K.; Tracey, D.M.; Foley, M.R.; Paille, N.I.; Pelletier, P.J.; Sales, L.C.; Willkens, C.A.; Yeckley, R.L.

    1996-11-05

    A silicon nitride ceramic is disclosed comprising: (a) inclusions no greater than 25 microns in length, (b) agglomerates no greater than 20 microns in diameter, and (c) a surface finish of less than about 8 microinches, said ceramic having a four-point flexural strength of at least about 900 MPa. 4 figs.

  6. Silicon nitride having a high tensile strength

    DOEpatents

    Pujari, Vimal K.; Tracey, Dennis M.; Foley, Michael R.; Paille, Norman I.; Pelletier, Paul J.; Sales, Lenny C.; Willkens, Craig A.; Yeckley, Russell L.

    1996-01-01

    A silicon nitride ceramic comprising: a) inclusions no greater than 25 microns in length, b) agglomerates no greater than 20 microns in diameter, and c) a surface finish of less than about 8 microinches, said ceramic having a four-point flexural strength of at least about 900 MPa.

  7. Ultra-high-strength boron fibers

    NASA Technical Reports Server (NTRS)

    Behrendt, D. R.; Dicarlo, J. A.; Grimes, H. H.; Smith, R. J.

    1978-01-01

    Boron-on-tungsten fibers with tensile strength and strain-to-failure values increased by fifty percent over commercial grades are produced by controlled chemical-etching process. Improved fibers have potential applications as lightweight composites in ground vehicles, spacecraft, and rotors for energy storage.

  8. An analytical electron microscopy study of paraequilibrium cementite precipitation in ultra-high-strength steel

    NASA Astrophysics Data System (ADS)

    Ghosh, G.; Olson, G. B.; Campbell, C. E.

    1999-03-01

    To support quantitative design of ultra-high-strength (UHS) secondary-hardening steels, the precipitation of cementite prior to the precipitation of the M2C phase is investigated using a model alloy. The microstructure of cementite is investigated by transmission electron microscopy (TEM) techniques. Consistent with earlier studies on tempering of Fe-C martensite, lattice imaging of cementite suggests microsyntactic intergrowth of M5C2 (Hägg carbide). The concentration of substitutional alloying elements in cementite are quantified by high-resolution analytical electron microscopy (AEM) using extraction replica specimens. Quantification of the substitutional elements in cementite confirms its paraequilibrium (PE) state with ferrite at the very early stage of tempering. The implications of these results are discussed in terms of the thermodynamic driving force for nucleation of the primary-strengthening, coherent M2C carbide phase. The ferrite-cementite PE condition reduces the carbon concentration in the ferrite matrix with a significant reduction of M2C driving force. The kinetics of dissolution of PE cementite and its transition to other intermediate states will also influence the kinetics of secondary hardening behavior in UHS steels.

  9. High strength and corrosion resistant alloys weld overlays for oil patch applications

    SciTech Connect

    Hibner, E.L.; Maligas, M.N.; Vicic, J.C.

    1995-10-01

    Corrosion resistant alloys (CRAs) are specified for oilfield applications where severe environments cause general corrosion, pitting, crevice corrosion, chloride stress corrosion cracking and more importantly sulfide stress cracking. Historically, alloy 625 (UNS N06625) weld overlay has successfully been used in severely corrosive environments. Alloy 686 (UNS N06686) and alloy 725 (UNS N07725) have recently been evaluated as replacement materials for alloy 625. Alloy 686, because of it`s high alloying content, exhibits superior corrosion resistance to alloy 625. And, alloy 725 is a highly corrosion resistant alloy capable of being age hardened to 0.2% yield strengths of above 827 MPa (120 ksi) Mechanical properties and Slow Strain Rate test results for the alloy 686 and alloy 725 weld overlays are discussed relative to alloy 625, alloy C-22 (UNS N06622) and alloy 59 (UNS N06059) weld overlays.

  10. A New Perspective on Fatigue Performance of Advanced High- Strength Steels (AHSS) GMAW Joints

    SciTech Connect

    Feng, Zhili; Chiang, Dr. John; Kuo, Dr. Min; Jiang, Cindy; Sang, Yan

    2008-01-01

    Weld fatigue performance is a critical aspect for application of advanced high-strength steels (AHSS) in automotive body structures. A comparative study has been conducted to evaluate the fatigue life of AHSS welds. The material studied included seven AHSS of various strength levels - DP 600, DP 780, DP 980, M130, M220, solution annealed boron and fully hardened boron steels. Two conventional steels, HSLA 590 and DR 210, were also included for baseline comparison. Lap fillet welds were made on 2-mm nominal thick sheets by the gas metal arc welding process (GMAW). Fatigue test was conducted under a number of stress levels to obtain the S/N curves of the weld joints. It was found that, unlike in the static and impact loading conditions, the fatigue performance of AHSS is not influenced by the HAZ softening in AHSS. There are appreciable differences in the fatigue lives among different AHSS. Changes in weld parameters can influence the fatigue life of the weld joints, particularly of these of higher strength AHSS. A model is developed to predict the fatigue performance of AHSS welds. The validity of the model is benchmarked with the experimental results. This model is capable to capture the effects of weld geometry and weld microstructure and strength on the fatigue performance experimentally observed. The theoretical basis and application of the newly developed fatigue modeling methodology will be discussed.

  11. Evaluation of high strength, high conductivity CuNiBe alloys for fusion energy applications

    NASA Astrophysics Data System (ADS)

    Zinkle, S. J.

    2014-06-01

    The unirradiated tensile properties for several different heats and thermomechanical treatment conditions of precipitation strengthened Hycon 3HP™ CuNiBe (Cu-2%Ni-0.35%Be in wt.%) have been measured over the temperature range of 20-500 °C for longitudinal and long transverse orientations. The room temperature electrical conductivity has also been measured for several heats, and the precipitate microstructure was characterized using transmission electron microscopy. The CuNiBe alloys exhibit very good combination of strength and conductivity at room temperature, with yield strengths of 630-725 MPa and electrical conductivities of 65-72% International Annealed Copper Standard (IACS). The strength remained relatively high at all test temperatures, with yield strengths of 420-520 MPa at 500 °C. However, low levels of ductility (<5% uniform elongation) were observed at test temperatures above 200-250 °C, due to flow localization near grain boundaries (exacerbated by having only 10-20 grains across the gage thickness of the miniaturized sheet tensile specimens). Scanning electron microscopy observation of the fracture surfaces found a transition from ductile transgranular to ductile intergranular fracture with increasing test temperature. Fission neutron irradiation to a dose of ∼0.7 displacements per atom (dpa) at temperatures between 100 and 240 °C produced a slight increase in strength and a significant decrease in ductility. The measured tensile elongation after irradiation increased with increasing irradiation temperature, with a uniform elongation of ∼3.3% observed at 240 °C. The electrical conductivity decreased slightly following irradiation, due to the presence of defect clusters and Ni, Zn, Co transmutation products. Considering also previously published fracture toughness data, this indicates that CuNiBe alloys have irradiated tensile and electrical properties comparable or superior to CuCrZr and oxide dispersion strengthened copper at temperatures

  12. Evaluation of high strength, high conductivity CuNiBe alloys for fusion energy applications

    SciTech Connect

    Zinkle, Steven J

    2014-06-01

    The unirradiated tensile properties for several different heats and thermomechanical treatment conditions of precipitation strengthened Hycon 3HPTM CuNiBe (Cu-2%Ni-0.35%Be in wt.%) have been measured over the temperature range of 20-500 C for longitudinal and long transverse orientations. The room temperature electrical conductivity has also been measured for several heats, and the precipitate microstructure was characterized using transmission electron microscopy. The CuNiBe alloys exhibit very good combination of strength and conductivity at room temperature, with yield strengths of 630-725 MPa and electrical conductivities of 65-72% International Annealed Copper Standard (IACS). The strength remained relatively high at all test temperatures, with yield strengths of 420-520 MPa at 500 C. However, low levels of ductility (<5% uniform elongation) were observed at test temperatures above 200-250 C, due to flow localization near grain boundaries (exacerbated by having only 10-20 grains across the gage thickness of the miniaturized sheet tensile specimens). Scanning electron microscopy observation of the fracture surfaces found a transition from ductile transgranular to ductile intergranular fracture with increasing test temperature. Fission neutron irradiation to a dose of ~0.7 displacements per atom (dpa) at temperatures between 100 and 240 C produced a slight increase in strength and a significant decrease in ductility. The measured tensile elongation increased with increasing irradiation temperature, with a uniform elongation of ~3.3% observed at 240 C. The electrical conductivity decreased slightly following irradiation, due to the presence of defect clusters and Ni, Zn, Co transmutation products. Considering also previously published fracture toughness data, this indicates that CuNiBe alloys have irradiated tensile and electrical properties comparable or superior to CuCrZr and oxide dispersion strengthened copper at temperatures <250 C, and may be an attractive

  13. High-temperature strength of sapphire

    NASA Astrophysics Data System (ADS)

    Harris, Daniel C.

    2000-10-01

    The Sapphire Statistical Characterization and Risk Reduction Program tested approximately 1500 4-point flexure bars with different crystal orientations at different temperatures to establish a mechanical strength database for engineering design. Sapphire coupons were selected to represent surfaces on two different missile windows and a missile dome. Sapphire was obtained from the same suppliers used for the windows or dome and, as much as possible, coupons were fabricated in the same manner as the corresponding part of the window or dome. Perhaps the most interesting result was that sapphire from one fabricator was 50% stronger than sapphire made to the same specifications from the same blanks by another fabricator. In laser heating tests, sapphire performed better than predicted from flexure tests. When a compliant layer of graphite was used as a pad between the test specimens and the load fixture, sapphire in which the principal axis of tension and compression was parallel to the c-axis increased in apparent strength by a factor of 2 - 3. Strengths of other crystal orientations were not significantly affected by the graphite pads, but the incidence of twinning at 883 K was reduced by graphite.

  14. Toughening by the addition of phosphorus to a high-strength steel with ultrafine elongated grain structure

    NASA Astrophysics Data System (ADS)

    Jafari, Meysam; Kimura, Yuuji; Tsuzaki, Kaneaki

    2013-02-01

    Phosphorus-doped high-strength steels are typically brittle at room temperature. In contrast to the non-hardening embrittlement of body-centred cubic (bcc) steels which decreases toughness without increasing strength, we observed an increase in toughness of about 20% by adding a large amount (0.053 wt%) of phosphorus (P) to a high-strength bcc steel with an ultrafine elongated ferrite grain structure processed by warm calibre rolling at 500 °C which produced a 91% reduction in area. The enhanced toughness is attributed to P segregation, which causes grain boundaries to become feasible crack propagation paths, thereby enhancing delamination toughening. The 0.053% P steel showed a microstructure and tensile properties similar to those of 0.001% P steel (reference steel).

  15. System-Level Radiation Hardening

    NASA Technical Reports Server (NTRS)

    Ladbury, Ray

    2014-01-01

    Although system-level radiation hardening can enable the use of high-performance components and enhance the capabilities of a spacecraft, hardening techniques can be costly and can compromise the very performance designers sought from the high-performance components. Moreover, such techniques often result in a complicated design, especially if several complex commercial microcircuits are used, each posing its own hardening challenges. The latter risk is particularly acute for Commercial-Off-The-Shelf components since high-performance parts (e.g. double-data-rate synchronous dynamic random access memories - DDR SDRAMs) may require other high-performance commercial parts (e.g. processors) to support their operation. For these reasons, it is essential that system-level radiation hardening be a coordinated effort, from setting requirements through testing up to and including validation.

  16. Friction Stir Spot Welding of Advanced High Strength Steels

    SciTech Connect

    Hovanski, Yuri; Grant, Glenn J.; Santella, M. L.

    2009-11-13

    Friction stir spot welding techniques were developed to successfully join several advanced high strength steels. Two distinct tool materials were evaluated to determine the effect of tool materials on the process parameters and joint properties. Welds were characterized primarily via lap shear, microhardness, and optical microscopy. Friction stir spot welds were compared to the resistance spot welds in similar strength alloys by using the AWS standard for resistance spot welding high strength steels. As further comparison, a primitive cost comparison between the two joining processes was developed, which included an evaluation of the future cost prospects of friction stir spot welding in advanced high strength steels.

  17. Correlation between compressive strength and ultrasonic pulse velocity of high strength concrete incorporating chopped basalt fibre

    NASA Astrophysics Data System (ADS)

    Shafiq, Nasir; Fadhilnuruddin, Muhd; Elshekh, Ali Elheber Ahmed; Fathi, Ahmed

    2015-07-01

    Ultrasonic pulse velocity (UPV), is considered as the most important test for non-destructive techniques that are used to evaluate the mechanical characteristics of high strength concrete (HSC). The relationship between the compressive strength of HSC containing chopped basalt fibre stands (CBSF) and UPV was investigated. The concrete specimens were prepared using a different ratio of CBSF as internal strengthening materials. The compressive strength measurements were conducted at the sample ages of 3, 7, 28, 56 and 90 days; whilst, the ultrasonic pulse velocity was measured at 28 days. The result of HSC's compressive strength with the chopped basalt fibre did not show any improvement; instead, it was decreased. The UPV of the chopped basalt fibre reinforced concrete has been found to be less than that of the control mix for each addition ratio of the basalt fibre. A relationship plot is gained between the cube compressive strength for HSC and UPV with various amounts of chopped basalt fibres.

  18. Proceedings: 1986 Workshop on Advanced High-Strength Materials

    SciTech Connect

    1989-05-01

    Stress corrosion cracking (SCC) has contributed to many in-service failures of high-strength LWR components. In 25 workshop presentations, this report addresses the effects of metallurgical factors, manufacturing processes, design improvements, and installation practices on the resistance of high-strength alloys to SCC.

  19. PHETS (Permanent High Explosive Test Site) lightning hardening program: Misty Picture Event. Final report, January-November 1987

    SciTech Connect

    Chapman, G.P.; Gardner, R.L.; Lu, G.S.; Rison, W.; Gurbaxani, S.H.

    1988-06-01

    The Permanent High Explosive Test Site (PHETS) test-bed electrical topology and data flow are presented along with various equipments used in the topology. Using this information, recommendations are made to harden the test-bed instrumentation to electrical transients. These transients may be caused by lightning or electrostatic discharge. Specific attention is given to the junction box design, the shorting blocks, use of shielded cables, protection of the sensors, and the instrumentation bunker/container. Additional attention is given to the protection of personnel from lightning effects. Also, it is recommended the optimum design is of a Faraday-cage concept that completely encases the instrumentation from sensor to permanent recording medium. The optimum design should be prototyped and tested using the Precision Test bed and current injection before general application to the PHETS.

  20. A One Chip Hardened Solution for High Speed SpaceWire System Implementations. Session: Components

    NASA Technical Reports Server (NTRS)

    Marshall, Joseph R.; Berger, Richard W.; Rakow, Glenn P.

    2007-01-01

    An Application Specific Integrated Circuit (ASIC) that implements the SpaceWire protocol has been developed in a radiation hardened 0.25 micron CMOS technology. This effort began in March 2003 as a joint development between the NASA Goddard Space Flight Center (GSFC) and BAE Systems. The BAE Systems SpaceWire ASIC is comprised entirely of reusable core elements, many of which are already flight-proven. It incorporates a router with 4 SpaceWire ports and two local ports, dual PC1 bus interfaces, a microcontroller, 32KB of internal memory, and a memory controller for additional external memory use. The SpaceWire cores are also reused in other ASICs under development. The SpaceWire ASIC is planned for use on the Geostationary Operational Environmental Satellites (GOES)-R, the Lunar Reconnaissance Orbiter (LRO) and other missions. Engineering and flight parts have been delivered to programs and users. This paper reviews the SpaceWire protocol and those elements of it that have been built into the current and next SpaceWire reusable cores and features within the core that go beyond the current standard and can be enabled or disabled by the user. The adaptation of SpaceWire to BAE Systems' On Chip Bus (OCB) for compatibility with the other reusable cores will be reviewed and highlighted. Optional configurations within user systems and test boards will be shown. The physical implementation of the design will be described and test results from the hardware will be discussed. Application of this ASIC and other ASICs containing the SpaceWire cores and embedded microcontroller to Plug and Play and reconfigurable implementations will be described. Finally, the BAE Systems roadmap for SpaceWire developments will be updated, including some products already in design as well as longer term plans.

  1. Increasing Lean Mass and Strength: A Comparison of High Frequency Strength Training to Lower Frequency Strength Training

    PubMed Central

    THOMAS, MICHAEL H.; BURNS, STEVE P.

    2016-01-01

    The purpose of this study was to determine the effect strength training frequency has on improvements in lean mass and strength. Participants were 7 women and 12 men, age (χ̄= 34.64 years ± 6.91 years), with strength training experience, training age (χ̄= 51.16 months ± 39.02 months). Participants were assigned to one of two groups to equal baseline group demographics. High frequency training group (HFT) trained each muscle group as the agonist, 3 times per week, exercising with 3 sets per muscle group per session (3 total body workouts). Low frequency training group (LFT) trained each muscle group as the agonist one time per week, completing all 9 sets during that one workout. LFT consisted of a routine split over three days: 1) pectoralis, deltoids, and triceps; 2) upper back and biceps; 3) quadriceps, hamstrings, calves, and abdominals. Following eight weeks of training, HFT increased lean mass by 1.06 kg ± 1.78 kg, (1.9%), and LFT increased lean mass by .99 kg ± 1.31 kg, (2.0%). HFT strength improvements on the chest press was 9.07 kg ± 6.33 kg, (11%), and hack squat 20.16 kg ± 11.59 kg, (21%). LFT strength improvements on chest press was 5.80kg ± 4.26 kg, (7.0%), and hack squat 21.83 kg ± 11.17 kg, (24 %). No mean differences between groups were significant. These results suggest that HFT and LFT of equal set totals result in similar improvements in lean mass and strength, following 8 weeks of strength training. PMID:27182422

  2. Influence of electrified surface of cementitious materials on structure formation of hardened cement paste

    NASA Astrophysics Data System (ADS)

    Alekseev, A.; Gusakov, A.

    2015-01-01

    To provide high strength and durability of concrete it is necessary to study the influence of physical and chemical and mechanical principles of dispersed cementitious systems. The experimental bench was developed to study the influence of electrified surface of cementitious materials on structure formation of hardened cement paste. The test bench allows accelerating the processes of dissolution of cementing materials in water due to influence of electric discharge on their surface. Cement activation with high-voltage corona discharge when AC current is applied allows increasing the ultimate compressive strength of hardened cement paste by 46% at the age of one day and by 20% at the age of 28 days.

  3. Experience of high-nitrogenous steel powder application in repairs and surface hardening of responsible parts for power equipment by plasma spraying

    NASA Astrophysics Data System (ADS)

    Kolpakov, A. S.; Kardonina, N. I.

    2016-02-01

    The questions of the application of novel diffusion-alloying high-nitrogenous steel powders for repair and surface hardening of responsible parts of power equipment by plasma spraying are considered. The appropriateness of the method for operative repair of equipment and increasing its service life is justified. General data on the structure, properties, and manufacture of nitrogen-, aluminum-, and chromium-containing steel powders that are economically alloyed using diffusion are described. It is noted that the nitrogen release during the decomposition of iron nitrides, when heating, protects the powder particles from oxidation in the plasma jet. It is shown that the coating retains 50% of nitrogen that is contained in the powder. Plasma spraying modes for diffusion-alloying high-nitrogenous steel powders are given. The service properties of plasma coatings based on these powders are analyzed. It is shown that the high-nitrogenous steel powders to a nitrogen content of 8.9 wt % provide the necessary wear resistance and hardness of the coating and the strength of its adhesion to the substrate and corrosion resistance to typical aggressive media. It is noted that increasing the coating porosity promotes stress relaxation and increases its thickness being limited with respect to delamination conditions in comparison with dense coatings on retention of the low defectiveness of the interface and high adhesion to the substrate. The examples of the application of high-nitrogenous steel powders in power engineering during equipment repairs by service companies and overhaul subdivisions of heat power plants are given. It is noted that the plasma spraying of diffusion-alloyed high-nitrogenous steel powders is a unique opportunity to restore nitrided steel products.

  4. High-strength silicon carbides by hot isostatic pressing

    NASA Technical Reports Server (NTRS)

    Dutta, Sunil

    1988-01-01

    Silicon carbide has strong potential for heat engine hardware and other high-temperature applications because of its low density, good strength, high oxidation resistance, and good high-temperature creep resistance. Hot isostatic pressing (HIP) was used for producing alpha and beta silicon carbide (SiC) bodies with near-theoretical density, ultrafine grain size, and high strength at processing temperatures of 1900 to 2000 C. The HIPed materials exhibited ultrafine grain size. Furthermore, no phase transformation from beta to alpha was observed in HIPed beta-SiC. Both materials exhibited very high average flexural strength. It was also shown that alpha-SiC bodies without any sintering aids, when HIPed to high final density, can exhibit very high strength. Fracture toughness K (sub C) values were determined to be 3.6 to 4.0 MPa m (sup 1/2) for HIPed alpha-SiC and 3.7 to 4.1 MPa m (sup 1/2) for HIPed beta-SiC. In the HIPed specimens strength-controlling flaws were typically surface related. In spite of improvements in material properties such as strength and fracture toughness by elimination of the larger strength-limiting flaws and by grain size refinement, HIPing has no effect on the Weibull modulus.

  5. High-strength silicon carbides by hot isostatic pressing

    NASA Technical Reports Server (NTRS)

    Dutta, Sunil

    1989-01-01

    Silicon carbide has strong potential for heat engine hardware and other high-temperature applications because of its low density, good strength, high oxidation resistance, and good high-temperature creep resistance. Hot isostatic pressing (HIP) was used for producing alpha and beta silicon carbide (SiC) bodies with near-theoretical density, ultrafine grain size, and high strength at processing temperatures of 1900 to 2000 C. The HIPed materials exhibited ultrafine grain size. Furthermore, no phase transformation from beta to alpha was observed in HIPed beta-SiC. Both materials exhibited very high average flexural strength. It was also shown that alpha-SiC bodies without any sintering aids, when HIPed to high final density, can exhibit very high strength. Fracture toughness K (sub C) values were determined to be 3.6 to 4.0 MPa m (sup 1/2) for HIPed alpha-SiC and 3.7 to 4.1 MPa m (sup 1/2) for HIPed beta-SiC. In the HIPed specimens strength-controlling flaws were typically surface related. In spite of improvements in material properties such as strength and fracture toughness by elimination of the larger strength-limiting flaws and by grain size refinement, HIPing has no effect on the Weibull modulus.

  6. The High School Strength and Conditioning Professional: A Job Description.

    ERIC Educational Resources Information Center

    Best, Randy

    2001-01-01

    Presents a job description for the high school strength and conditioning professional, who is in a unique position to integrate athletics and academics, highlighting: minimum qualifications; school-related benefits derived from employing a strength and conditioning professional; whom the professional reports to and works with; job…

  7. Investigation of the plastic fracture of high strength steels

    NASA Technical Reports Server (NTRS)

    Cox, T. B.; Low, J. R., Jr.

    1972-01-01

    This investigation deals in detail with the three recognized stages of plastic fracture in high strength steels, namely, void initiation, void growth, and void coalescence. The particular steels under investigation include plates from both commercial purity and high purity heats of AISI 4340 and 18 Ni, 200 grade maraging steels. A scanning electron microscope equipped with an X-ray energy dispersive analyzer, together with observations made using light microscopy, revealed methods of improving the resistance of high strength steels to plastic fracture.

  8. Quantitative analysis of artifacts in 4D DSA: the relative contributions of beam hardening and scatter to vessel dropout behind highly attenuating structures

    NASA Astrophysics Data System (ADS)

    Hermus, James; Szczykutowicz, Timothy P.; Strother, Charles M.; Mistretta, Charles

    2014-03-01

    When performing Computed Tomographic (CT) image reconstruction on digital subtraction angiography (DSA) projections, loss of vessel contrast has been observed behind highly attenuating anatomy, such as dental implants and large contrast filled aneurysms. Because this typically occurs only in a limited range of projection angles, the observed contrast time course can potentially be altered. In this work, we have developed a model for acquiring DSA projections that models both the polychromatic nature of the x-ray spectrum and the x-ray scattering interactions to investigate this problem. In our simulation framework, scatter and beam hardening contributions to vessel dropout can be analyzed separately. We constructed digital phantoms with large clearly defined regions containing iodine contrast, bone, soft issue, titanium (dental implants) or combinations of these materials. As the regions containing the materials were large and rectangular, when the phantoms were forward projected, the projections contained uniform regions of interest (ROI) and enabled accurate vessel dropout analysis. Two phantom models were used, one to model the case of a vessel behind a large contrast filled aneurysm and the other to model a vessel behind a dental implant. Cases in which both beam hardening and scatter were turned off, only scatter was turned on, only beam hardening was turned on, and both scatter and beam hardening were turned on, were simulated for both phantom models. The analysis of this data showed that the contrast degradation is primarily due to scatter. When analyzing the aneurysm case, 90.25% of the vessel contrast was lost in the polychromatic scatter image, however only 50.5% of the vessel contrast was lost in the beam hardening only image. When analyzing the teeth case, 44.2% of the vessel contrast was lost in the polychromatic scatter image and only 26.2% of the vessel contrast was lost in the beam hardening only image.

  9. BIOLOGICAL TREATMENT OF HIGH STRENGTH PETROCHEMICAL WASTEWATER

    EPA Science Inventory

    The biological treatment of a complex petrochemical wastewater containing high concentrations of organic chlorides, nitrates, and amines was initially studied using a sequence of anaerobic methanogenesis and oxygen activated sludge. Bench-scale and pilot-plant treatability studie...

  10. High strength forgeable tantalum base alloy

    NASA Technical Reports Server (NTRS)

    Buckman, R. W., Jr.

    1975-01-01

    Increasing tungsten content of tantalum base alloy to 12-15% level will improve high temperature creep properties of existing tantalum base alloys while retaining their excellent fabrication and welding characteristics.

  11. Formability Characterization of a New Generation High Strength Steels

    SciTech Connect

    Sriram Sadagopan; Dennis Urban; Chris Wong; Mai Huang; Benda Yan

    2003-05-16

    Advanced high strength steels (AHSS) are being progressively explored by the automotive industry all around the world for cost-effective solutions to accomplish vehicle lightweighting, improve fuel economy, and consequently reduce greenhouse emissions. Because of their inherent high strength, attractive crash energy management properties, and good formability, the effective use of AHSS such as Duel Phase and TRIP (Transformation Induced Plasticity) steels, will significantly contribute to vehicle lightweighting and fuel economy. To further the application of these steels in automotive body and structural parts, a good knowledge and experience base must be developed regarding the press formability of these materials. This project provides data on relevant intrinsic mechanical behavior, splitting limits, and springback behavior of several lots of mild steel, conventional high strength steel (HSS), advanced high strength steel (AHSS) and ultra-high strength steel (UHSS), supplied by the member companies of the Automotive Applications Committee (AAC) of the American Iron and Steel Institute (AISI). Two lots of TRIP600, which were supplied by ThyssenKrupp Stahl, were also included in the study. Since sheet metal forming encompasses a very diverse range of forming processes and deformation modes, a number of simulative tests were used to characterize the forming behavior of these steel grades. In general, it was found that formability, as determined by the different tests, decreased with increased tensile strength. Consistant with previous findings, the formability of TRIP600 was found to be exceptionally good for its tensile strength.

  12. Retention of ductility in high-strength steels

    NASA Technical Reports Server (NTRS)

    Parker, E. R.; Zackay, V. F.

    1969-01-01

    To produce high strength alloy steel with retention of ductility, include tempering, cooling and subsequent tempering. Five parameters for optimum results are pretempering temperature, amount of strain, strain rate, temperature during strain, and retempering temperature.

  13. Investigation of the plastic fracture of high strength steels

    NASA Technical Reports Server (NTRS)

    Cox, T. B.; Low, J. R., Jr.

    1972-01-01

    An investigation of the plastic fracture process to improve tensile strength in high strength steels is presented. Two generic types of steels are considered: a quenched and tempered grade and a maraging grade, in order to compare two different matrix microstructures. Each type of steel was studied in commercial grade purity and in special melted high purity form, low in residual and impurity elements. The specific alloys dealt with include AISI 4340 and 18 Ni, 200 grade maraging steel, both heat treated to the same yield strength level of approximately 200 ksi.

  14. Survey of Processing Methods for High Strength High Conductivity Wires for High Field Magnet Applications

    SciTech Connect

    Han, K.; Embury, J.D.

    1998-10-01

    This paper will deal with the basic concepts of attaining combination of high strength and high conductivity in pure materials, in-situ composites and macrocomposites. It will survey current attainments, and outline where some future developments may lie in developing wire products that are close to the theoretical strength of future magnet applications.

  15. Evaluation of a low temperature hardening Inorganic Phosphate Cement for high-temperature applications

    SciTech Connect

    Alshaaer, M.; Cuypers, H.; Mosselmans, G.; Rahier, H.; Wastiels, J.

    2011-01-15

    Phase and mechanical changes of Inorganic Phosphate Cement (IPC) are identified along with changes in macro properties as functions of temperature and time. In addition to amorphous phases, the presence of significant amounts of brushite and wollastonite in the reference IPC is confirmed using X-ray diffraction. The thermal behavior of IPC up to 1000 {sup o}C shows that contraction of the solid phase in IPC due to chemical transformations causes reduction in the volume of the material. Also the ongoing meta-stable calcium phosphate transformations and reactions over a long time contribute significantly to the phase instability of the material at ambient conditions. It is found that the strength of IPC increases with ageing at ambient conditions but the formation microcracks below 105 {sup o}C causes a sharp reduction in the mechanical performance of IPC. According to the results obtained by Mercury intrusion porosimetry, the pore system of the reference IPC is dominated by mesopores.

  16. Application of high strength grooved wire in fiber protection

    NASA Astrophysics Data System (ADS)

    Kamata, Y.; Niijima, M.; Kawazoe, H.; Ogai, M.; Ninomiya, T.

    1986-11-01

    V Grooves were successfully machined on the high strength steel wire of around 3 mm diameter. Eight of thin coated fibers were protected in these grooves against pulling force of greater than 150kg (allowing 0.2% strain) and lateral pressure of greater 400kg/5cm. Many applications of this high strength grooved wire can be expected in design of optical fiber cable.

  17. Stress corrosion of high strength aluminum alloys.

    NASA Technical Reports Server (NTRS)

    Cocks, F. H.; Brummer, S. B.

    1972-01-01

    An investigation has been carried out to examine the relationship of the observed chemical and mechanical properties of Al-Cu and Al-Zn-Mg alloys to the stress corrosion mechanisms which dominate in each case. Two high purity alloys and analogous commercial alloys were selected. Fundamental differences between the behavior of Al-Cu and of Al-Zn-Mg alloys were observed. These differences in the corrosion behavior of the two types of alloys are augmented by substantial differences in their mechanical behavior. The relative cleavage energy of the grain boundaries is of particular importance.

  18. Investigating strength of materials at very high strain rates using magnetically driven expanding cylinders

    NASA Astrophysics Data System (ADS)

    Lovinger, Zev; Nemirovsky, Ron; Avriel, Eyal; Dorogoy, Avraham; Ashuach, Yehezkel; Rittel, Daniel

    2015-09-01

    Dynamic characterization of strength properties is done, in common practice by the means of a Split-Hopkinson Pressure Bar (also named Kolsky-Bar) apparatus. In such systems, strain rates are limited up to ˜ 5 ṡ 103 sec-1. For higher strain rates, the strain rate hardening is assumed to be the same as that measured at lower rates, with no direct measurement to validate the assumptions used for this extrapolation. In this work we are using a pulsed current generator (PCG) to create electro-magnetic (EM) driving forces on expanding cylinders. Most standard techniques for creating EM driving forces on cylinders or rings, as reported in the literature, reach strain rates of 1e3-1e4. Using our PCG, characterized by a fast rise time, we reach strain rates of ˜1e5, thus paving the way to a standard technique to measure strength at very high strain rates. To establish the experimental technique, we conducted a numerical study of the expanding cylinder set up using 2D hydrodynamic simulations to reach the desired high strain rates.

  19. Characterization of the thermal performance of high heat flux systems at the Laser Hardened Materials Evaluation Laboratory

    NASA Astrophysics Data System (ADS)

    Lander, Michael L.; Bagford, John O.; North, Mark T.; Hull, Robert J.

    1996-11-01

    When developing a high-heat-flux system, it is important to be able to test the system under relevant thermal conditions and environmental surroundings. Thermal characterization testing is best performed in parallel with analysis and design. This permits test results to impact materials selection and systems design decisions. This paper describes the thermal testing and characterization capabilities of the Laser Hardened Materials Evaluation Laboratory located at Wright-Patterson Air Force Base, Ohio. The facility features high-power carbon dioxide (CO2$ and neodymium:glass laser systems that can be teamed with vacuum chambers, wind tunnels, mechanical loading machines and/or ambient test sites to create application-specific thermal and environmental conditions local to the material sample or system. Representative results from recently conducted test series are summarized. The test series described demonstrate the successful use of a high power CO2 laser paired with environment simulation capability to : 1) simulate the expected in-service heat load on a newly developed heat transfer device to ensure its efficient operation prior to design completion, 2) simulate the heat load expected for a laser diode array cooler, 3) produce thermal conditions needed to test a radiator concept designed for space-based operation, and 4) produce thermal conditions experienced by materials use din solid rocket motor nozzles. Test diagnostics systems used to collect thermal and mechanical response data from the test samples are also described.

  20. Physical processes at high field strengths

    SciTech Connect

    Rhodes, C.K.

    1986-01-01

    Measurements of the radiation produced by the high field interaction with the rare gases have revealed the presence of both copious harmonic production and fluorescence. The highest harmonic observed was the seventeenth (14.6 rm) in Ne, the shortest wavelength ever produced by that means. Strong fluorescence was seen in Ar, Kr, and Xe with the shortest wavelengths observed being below 10 nm. Furthermore, radiation from inner-shell excited configurations in Xe, specifically the 4d/sup 9/5s5p ..-->.. 4d/sup 10/5s manifold at approx. 17.7 nm, was detected. The behaviors of the rare gases with respect to multiquantum ionization, harmonic production, and fluorescence were found to be correlated so that the materials fell into two groups, He and Ne in one and Ar, Kr, and Xe in the other. These experimental findings, in alliance with other studies on inner-shell decay processes, give evidence for a role of atomic correlations in a direct nonlinear process of inner-shell excitation. It is expected that an understanding of these high-field processes will enable the generation of stimulated emission in the x-ray range. 59 refs., 6 figs., 5 tabs.

  1. Investigation of ultra violet (UV) resistance for high strength fibers

    NASA Astrophysics Data System (ADS)

    Said, M. A.; Dingwall, Brenda; Gupta, A.; Seyam, A. M.; Mock, G.; Theyson, T.

    Ultra long duration balloons (ULDB), currently under development by the National Aeronautics and Space Administration (NASA), requires the use of high strength fibers in the selected super-pressure pumpkin design. The pumpkin shape balloon concept allows clear separation of the load transferring functions of the major structural elements of the pneumatic envelope, the tendons and the film. Essentially, the film provides the gas barrier and transfers only local pressure load to the tendons. The tendons, in the mean time, provide the global pressure containing strength. In that manner, the strength requirement for the film only depends on local parameters. The tendon is made of p-phenylene-2,6-benzobisoxazole (PBO) fibers, which is selected due to its high strength to weight ratio when compared to other high performance, commercially available, fibers. High strength fibers, however, are known to degrade upon exposure to light, particularly at short wavelengths. This paper reports the results of an investigation of the resistance of four commercial high strength fibers to ultra violet (UV) exposure. The results indicate that exposing high strength fibers in continuous yarn form to UV led to serious loss in strength of the fibers except for Spectra® fibers. The adverse changes in mechanical behavior occurred over short duration of exposure compared to the 100 day duration targeted for these missions. UV blocking finishes to improve the UV resistance of these fibers are being investigated. The application of these specially formulated coatings is expected to lead to significant improvement of the UV resistance of these high performance fibers. In this publication, we report on the mechanical behavior of the fibers pre- and post-exposure to UV, but without application of the blocking finishes.

  2. Shock properties of high-strength ceramics

    SciTech Connect

    Grady, D.E.

    1994-12-31

    A broad class of brittle solids subjected to large amplitude shock waves can support substantial shear stress (of order 2-10 GPa) without failing due to the very limited slip systems in these materials. When failure occurs under sufficiently intense shock loading, the effect is usually observed as a wave splitting in the compressive shock front. Because of the high confining stress state associated with the failure event in the shock compression environment, it is no longer certain whether the microstructural processes of deformation are brittle or ductile. Some, although by no means sufficient, evidence supports a brittle deformation mechanism in the materials of interest. The present short paper focuses on two aspects of the transition regime neighboring the HEL in the compressive shock process. First, issues of rate dependence associated with prompt yield under shock compression are not well understood. We report here on observations of wave profile data on ceramics, examining he issue of elastic precursor decay. Also in this study, a number of the experimental observations of failure waves in ceramic materials (principally glass) are surveyed. Some of the principal results are summarized and dynamic failure mechanisms consistent with these results are discussed.

  3. Fatigue Properties of Automobile High-Strength Bolts

    NASA Astrophysics Data System (ADS)

    Zhou, Congling; Nishida, Shin-Ichi; Hattori, Nobusuke

    This study is focused on the fatigue properties of automobile high-strength bolts, including the effect of mean stress level, pre-processing schedule and the residual stresses. And the mean stress levels are 0.3, 0.5 and 0.7 times to the tensile strength (σB) of the material respectively. The main results obtained are as follows: 1) the fatigue strength increases under the mean stress loading, but the differences between the loading levels are not so evident; 2) most of the cases in this study are broken from the bottom of the screw thread, and the crack initiated from the impurities.

  4. Corrosion fatigue of high strength fastener materials in seawater

    NASA Astrophysics Data System (ADS)

    Tipton, D. G.

    1983-12-01

    Environmental effects which significantly reduce the fatigue life of metals are discussed. Corrosion fatigue is a major concern in the engineering application of high strength fasteners in marine environments. The corrosion fatigue failure of an AISI 41L4O high strength steel blade to hub attachment bolt at the MOD-OA 200 kW wind turbine generator was investigated. The reduction of fatigue strength of AISI 41L4O in marine environments and to obtain similar corrosion fatigue data for candidate replacement materials was studied. The AISI 4140, PH 13-8Mo stainless steel, alloy 718 and alloy MP-35N were tested in axial fatigue at a frequency of 20 Hz in dry air and natural seawater. The fatigue data are fitted by regression equations to allow determination of fatigue strength for a given number of cycles to failure.

  5. Corrosion fatigue of high strength fastener materials in seawater

    NASA Technical Reports Server (NTRS)

    Tipton, D. G.

    1983-01-01

    Environmental effects which significantly reduce the fatigue life of metals are discussed. Corrosion fatigue is a major concern in the engineering application of high strength fasteners in marine environments. The corrosion fatigue failure of an AISI 41L4O high strength steel blade to hub attachment bolt at the MOD-OA 200 kW wind turbine generator was investigated. The reduction of fatigue strength of AISI 41L4O in marine environments and to obtain similar corrosion fatigue data for candidate replacement materials was studied. The AISI 4140, PH 13-8Mo stainless steel, alloy 718 and alloy MP-35N were tested in axial fatigue at a frequency of 20 Hz in dry air and natural seawater. The fatigue data are fitted by regression equations to allow determination of fatigue strength for a given number of cycles to failure.

  6. Microchip Electrophoresis at Elevated Temperatures and High Separation Field Strengths

    PubMed Central

    Mitra, Indranil; Marczak, Steven P.; Jacobson, Stephen C.

    2014-01-01

    We report free-solution microchip electrophoresis performed at elevated temperatures and high separation field strengths. We used microfluidic devices with 11-cm long separation channels to conduct separations at temperatures between 22 (ambient) and 45 °C and field strengths from 100 to 1000 V/cm. To evaluate separation performance, N-glycans were used as a model system and labeled with 8-aminopyrene-1,3,6-trisulfonic acid to impart charge for electrophoresis and render them fluorescent. Typically, increased diffusivity at higher temperatures leads to increased axial dispersion and poor separation performance; however, we demonstrate that sufficiently high separation field strengths can be used to offset the impact of increased diffusivity in order to maintain separation efficiency. Efficiencies for these free-solution separations are the same at temperatures of 25, 35, and 45 °C with separation field strengths ≥500 V/cm. PMID:24114979

  7. Spontaneous Radiation Emission from Short, High Field Strength Insertion Devices

    SciTech Connect

    Geoffrey Krafft

    2005-09-15

    Since the earliest papers on undulaters were published, it has been known how to calculate the spontaneous emission spectrum from ''short'' undulaters when the magnetic field strength parameter is small compared to unity, or in ''single'' frequency sinusoidal undulaters where the magnetic field strength parameter is comparable to or larger than unity, but where the magnetic field amplitude is constant throughout the undulater. Fewer general results have been obtained in the case where the insertion device is both short, i.e., the magnetic field strength parameter changes appreciably throughout the insertion device, and the magnetic field strength is high enough that ponderomotive effects, radiation retardation, and harmonic generation are important physical phenomena. In this paper a general method is presented for calculating the radiation spectrum for short, high-field insertion devices. It is used to calculate the emission from some insertion device designs of recent interest.

  8. High strength nickel-chromium-iron austenitic alloy

    DOEpatents

    Gibson, Robert C.; Korenko, Michael K.

    1980-01-01

    A solid solution strengthened Ni-Cr-Fe alloy capable of retaining its strength at high temperatures and consisting essentially of 42 to 48% nickel, 11 to 13% chromium, 2.6 to 3.4% niobium, 0.2 to 1.2% silicon, 0.5 to 1.5% vanadium, 2.6 to 3.4% molybdenum, 0.1 to 0.3% aluminum, 0.1 to 0.3% titanium, 0.02 to 0.05% carbon, 0.002 to 0.015% boron, up to 0.06 zirconium, and the balance iron. After solution annealing at 1038.degree. C. for one hour, the alloy, when heated to a temperature of 650.degree. C., has a 2% yield strength of 307 MPa, an ultimate tensile strength of 513 MPa and a rupture strength of as high as 400 MPa after 100 hours.

  9. Effectiveness of hardening threaded parts by plastic deformation

    SciTech Connect

    Pyshkin, V.A.; Belai, S.V.; Dyad'kova, I.G.

    1983-03-01

    The rules of hardening threaded parts by roller burning the root of the inner diameter of a thread are studied. The effectiveness of hardening increases where the allowance for the inner diameter increases. By equations, a change in the inner diameter can be used to determine the depth of work hardening residual compressive stress, fatigue limit, and the mechanical properties of the threaded part. The effective stress concentration factor, increase in transmission load, and average tensile stress in cyclic loading, are also calculated. Equations help to determine the depth of hardening necessary; the optimum conditions of burnishing; and the maximum increase in fatigue strength, with optimum hardening conditions.

  10. Factors Affecting the Inclusion Potency for Acicular Ferrite Nucleation in High-Strength Steel Welds

    NASA Astrophysics Data System (ADS)

    Kang, Yongjoon; Jeong, Seonghoon; Kang, Joo-Hee; Lee, Changhee

    2016-03-01

    Factors affecting the inclusion potency for acicular ferrite nucleation in high-strength weld metals were investigated and the contribution of each factor was qualitatively evaluated. Two kinds of weld metals with different hardenabilities were prepared, in both, MnTi2O4-rich spinel formed as the predominant inclusion phase. To evaluate the factors determining the inclusion potency, the inclusion characteristics of size, phase distribution in the multiphase inclusion, orientation relationship with ferrite, and Mn distribution near the inclusion were analyzed. Three factors affecting the ferrite nucleation potency of inclusions were evaluated: the Baker-Nutting (B-N) orientation relationship between ferrite and the inclusion; the formation of an Mn-depleted zone (MDZ) near the inclusion; and the strain energy around the inclusion. Among these, the first two factors were found to be the most important. In addition, it was concluded that the increased chemical driving force brought about by the formation of an MDZ contributed more to the formation of acicular ferrite in higher-strength weld metals, because the B-N orientation relationship between ferrite and the inclusion was less likely to form as the transformation temperature decreased.

  11. Factors Affecting the Inclusion Potency for Acicular Ferrite Nucleation in High-Strength Steel Welds

    NASA Astrophysics Data System (ADS)

    Kang, Yongjoon; Jeong, Seonghoon; Kang, Joo-Hee; Lee, Changhee

    2016-06-01

    Factors affecting the inclusion potency for acicular ferrite nucleation in high-strength weld metals were investigated and the contribution of each factor was qualitatively evaluated. Two kinds of weld metals with different hardenabilities were prepared, in both, MnTi2O4-rich spinel formed as the predominant inclusion phase. To evaluate the factors determining the inclusion potency, the inclusion characteristics of size, phase distribution in the multiphase inclusion, orientation relationship with ferrite, and Mn distribution near the inclusion were analyzed. Three factors affecting the ferrite nucleation potency of inclusions were evaluated: the Baker-Nutting (B-N) orientation relationship between ferrite and the inclusion; the formation of an Mn-depleted zone (MDZ) near the inclusion; and the strain energy around the inclusion. Among these, the first two factors were found to be the most important. In addition, it was concluded that the increased chemical driving force brought about by the formation of an MDZ contributed more to the formation of acicular ferrite in higher-strength weld metals, because the B-N orientation relationship between ferrite and the inclusion was less likely to form as the transformation temperature decreased.

  12. Laser Cladding of CPM Tool Steels on Hardened H13 Hot-Work Steel for Low-Cost High-Performance Automotive Tooling

    NASA Astrophysics Data System (ADS)

    Chen, J.; Xue, L.

    2012-06-01

    This paper summarizes our research on laser cladding of high-vanadium CPM® tool steels (3V, 9V, and 15V) onto the surfaces of low-cost hardened H13 hot-work tool steel to substantially enhance resistance against abrasive wear. The results provide great potential for fabricating high-performance automotive tooling (including molds and dies) at affordable cost. The microstructure and hardness development of the laser-clad tool steels so obtained are presented as well.

  13. Role of interfaces i nthe design of ultra-high strength, radiation damage tolerant nanocomposites

    SciTech Connect

    Misra, Amit; Wang, Yongqiang; Nastasi, Michael A; Baldwin, Jon K; Wei, Qiangmin; Li, Nan; Mara, Nathan; Zhang, Xinghang; Fu, Engang; Anderoglu, Osman; Li, Hongqi; Bhattacharyya, Dhriti

    2010-12-09

    The combination of high strength and high radiation damage tolerance in nanolaminate composites can be achieved when the individual layers in these composites are only a few nanometers thick and contain special interfaces that act both as obstacles to slip, as well as sinks for radiation-induced defects. The morphological and phase stabilities and strength and ductility of these nano-composites under ion irradiation are explored as a function of layer thickness, temperature and interface structure. Magnetron sputtered metallic multilayers such as Cu-Nb and V-Ag with a range of individual layer thickness from approximately 2 nm to 50 nm and the corresponding 1000 nm thick single layer films were implanted with helium ions at room temperature. Cross-sectional Transmission Electron Microscopy (TEM) was used to measure the distribution of helium bubbles and correlated with the helium concentration profile measured vis ion beam analysis techniques to obtain the helium concentration at which bubbles are detected in TEM. It was found that in multilayers the minimum helium concentration to form bubbles (approximately I nm in size) that are easily resolved in through-focus TEM imaging was several atomic %, orders of magnitude higher than that in single layer metal films. This observation is consistent with an increased solubility of helium at interfaces that is predicted by atomistic modeling of the atomic structures of fcc-bcc interfaces. At helium concentrations as high as 7 at.%, a uniform distribution of I nm diameter bubbles results in negligible irradiation hardening and loss of deformability in multi layers with layer thicknesses of a few nanometers. The control of atomic structures of interfaces to produce high helium solubility at interfaces is crucial in the design of nano-composite materials that are radiation damage tolerant. Reduced radiation damage also leads to a reduction in the irradiation hardening, particularly at layer thickness of approximately 5 run

  14. Extracellular bone matrix exhibits hardening elastoplasticity and more than double cortical strength: Evidence from homogeneous compression of non-tapered single micron-sized pillars welded to a rigid substrate.

    PubMed

    Luczynski, Krzysztof W; Steiger-Thirsfeld, Andreas; Bernardi, Johannes; Eberhardsteiner, Josef; Hellmich, Christian

    2015-12-01

    We here report an improved experimental technique for the determination of Young׳s modulus and uniaxial strength of extracellular bone matrix at the single micrometer scale, giving direct access to the (homogeneous) deformation (or strain) states of the tested samples and to the corresponding mechanically recoverable energy, called potential or elastic energy. Therefore, a new protocol for Focused Ion Beam milling of prismatic non-tapered micropillars, and attaching them to a rigid substrate, was developed. Uniaxial strength turns out as at least twice that measured macroscopically, and respective ultimate stresses are preceded by hardening elastoplastic states, already at very low load levels. The unloading portion of quasi-static load-displacement curves revealed Young׳s modulus of 29GPa in bovine extracellular bone matrix. This value is impressively confirmed by the corresponding prediction of a multiscale mechanics model for bone, which has been comprehensively validated at various other observation scales, across tissues from the entire vertebrate animal kingdom. PMID:25842157

  15. Effect of microstructure on static and dynamic mechanical properties of high strength steels

    NASA Astrophysics Data System (ADS)

    Qu, Jinbo

    The high speed deformation behavior of a commercially available dual phase (DP) steel was studied by means of split Hopkinson bar apparatus in shear punch (25m/s) and tension (1000s-1) modes with an emphasis on the influence of microstructure. The cold rolled sheet material was subjected to a variety of heat treatment conditions to produce several different microstructures, namely ferrite plus pearlite, ferrite plus bainite and/or acicular ferrite, ferrite plus bainite and martensite, and ferrite plus different fractions of martensite. Static properties (0.01mm/s for shear punch and 0.001s -1 for tension) of all the microstructures were also measured by an MTS hydraulic machine and compared to the dynamic properties. The effects of low temperature tempering and bake hardening were investigated for some ferrite plus martensite microstructures. In addition, two other materials, composition designed as high strength low alloy (HSLA) steel and transformation induced plasticity (TRIP) steel, were heat treated and tested to study the effect of alloy chemistry on the microstructure and property relationship. A strong effect of microstructure on both static and dynamic properties and on the relationship between static and dynamic properties was observed. According to the variation of dynamic factor with static strength, three groups of microstructures with three distinct behaviors were identified, i.e. classic dual phase (ferrite plus less than 50% martensite), martensite-matrix dual phase (ferrite plus more than 50% martensite), and non-dual phase (ferrite plus non-martensite). Under the same static strength level, the dual phase microstructure was found to absorb more dynamic energy than other microstructures. It was also observed that the general dependence of microstructure on static and dynamic property relationship was not strongly influenced by chemical composition, except the ferrite plus martensite microstructures generated by the TRIP chemistry, which exhibited

  16. High Strength and Thermally Stable Nanostructured Magnesium Alloys and Nanocomposites

    NASA Astrophysics Data System (ADS)

    Chang, Yuan-Wei

    Magnesium and its alloys are currently in the spotlight of global research because of the need to limit energy consumption and reduce the environmental impact. In particular, their low densities compared to other structural metals make them a very attractive alternative in the automobile and aerospace industries. However, their low strength compared to other structural materials (e.g. Al and steels) has limited their widespread application. This dissertation presents the results of developing and investigation of a high strength nanostructured magnesium-aluminum alloy and composite. The nanostructured magnesium alloy is prepared by cryomilling and consolidated by spark-plasma-sintering. Focused ion beam is used to prepare micropillars with different diameters ranging from 1.5 to 8 mum and micro-compression test is conducted by nanoindenter in order to evaluate the mechanical properties. The yield strength obtained in the present study is around three times higher than conventional magnesium alloys (120 MPa vs. 370 MPa). The yield strength of the nanostructured magnesium alloy is further improved through hot extrusion, resulting in a yield strength of 550 MPa and an ultimate strength of 580 MPa. The nanostructured magnesium alloy exhibits a strong size-dependence, and a significant improvement in strength is observed when the pillar diameter is reduced to below 3.5 mum. The deformation mechanisms of the compressed pillars were characterized using transmission electron microscopy. The size-induced strengthening is attributed to a less number of dislocation sources along with a higher activity of non-basal deformation mechanisms. We have also developed a high strength and thermally stable nanostructured magnesium composite by adding diamantane. A yield strength of 500 MPa is achieved, moreover, excellent thermal stability is demonstrated in the magnesium alloy containing diamantanes. The strength and grain size are thermally stable after annealing at 400°C for 100

  17. A universal fracture criterion for high-strength materials

    PubMed Central

    Qu, Rui Tao; Zhang, Zhe Feng

    2013-01-01

    Recently developed advanced high-strength materials like metallic glasses, nanocrystalline metallic materials, and advanced ceramics usually fracture in a catastrophic brittle manner, which makes it quite essential to find a reasonable fracture criterion to predict their brittle failure behaviors. Based on the analysis of substantial experimental observations of fracture behaviors of metallic glasses and other high-strength materials, here we developed a new fracture criterion and proved it effective in predicting the critical fracture conditions under complex stress states. The new criterion is not only a unified one which unifies the three classical failure criteria, i.e., the maximum normal stress criterion, the Tresca criterion and the Mohr-Coulomb criterion, but also a universal criterion which has the ability to describe the fracture mechanisms of a variety of different high-strength materials under various external loading conditions.

  18. Mechanical behavior of precipitation hardenable steels exposed to highly corrosive environment

    NASA Technical Reports Server (NTRS)

    Rosa, Ferdinand

    1994-01-01

    Unexpected occurrences of failures, due to stress corrosion cracking (SCC) of structural components, indicate a need for improved characterization of materials and more advanced analytical procedures for reliably predicting structures performance. Accordingly, the purpose of this study was to determine the stress corrosion susceptibility of 15 - 5 PH steel over a wide range of applied strain rates in a highly corrosive environment. The selected environment for this investigation was a 3.5 percent NaCl aqueous solution. The material selected for the study was 15 - 5 PH steel in the H 900 condition. The Slow Strain Rate technique was used to test the metallic specimens.

  19. Surface hardening induced by high flux plasma in tungsten revealed by nano-indentation

    NASA Astrophysics Data System (ADS)

    Terentyev, D.; Bakaeva, A.; Pardoen, T.; Favache, A.; Zhurkin, E. E.

    2016-08-01

    Surface hardness of tungsten after high flux deuterium plasma exposure has been characterized by nanoindentation. The effect of plasma exposure was rationalized on the basis of available theoretical models. Resistance to plastic penetration is enhanced within the 100 nm sub-surface region, attributed to the pinning of geometrically necessary dislocations on nanometric deuterium cavities - signature of plasma-induced defects and deuterium retention. Sub-surface extension of thereby registered plasma-induced damage is in excellent agreement with the results of alternative measurements. The study demonstrates suitability of nano-indentation to probe the impact of deposition of plasma-induced defects in tungsten on near surface plasticity under ITER-relevant plasma exposure conditions.

  20. Optimum high temperature strength of two-dimensional nanocomposites

    SciTech Connect

    Monclús, M. A.; Molina-Aldareguía, J. M.; Polcar, T.; Llorca, J.

    2013-11-01

    High-temperature nanoindentation was used to reveal nano-layer size effects on the hardness of two-dimensional metallic nanocomposites. We report the existence of a critical layer thickness at which strength achieves optimal thermal stability. Transmission electron microscopy and theoretical bicrystal calculations show that this optimum arises due to a transition from thermally activated glide within the layers to dislocation transmission across the layers. We demonstrate experimentally that the atomic-scale properties of the interfaces profoundly affect this critical transition. The strong implications are that interfaces can be tuned to achieve an optimum in high temperature strength in layered nanocomposite structures.

  1. Shock characterization of an ultra-high strength concrete

    NASA Astrophysics Data System (ADS)

    Erzar, B.; Pontiroli, C.; Buzaud, E.

    2016-05-01

    Nowadays, the design of protective structures may imply ultra-high performance concretes. These materials present a compressive strength 5 times higher than standard concretes. However, few reliable data on the shock response of such materials are available in the literature. Thus, a characterization of an ultra-high strength concrete has been conducted by means of hydrostatic and triaxial tests in the quasi-static regime, and plate impact experiments for shock response. Data have been gathered up to 6 GPa and a simple modelling approach has been applied to get a reliable representation of the shock compression of this concrete.

  2. Cytocompatibility of high strength non-oxide ceramics.

    PubMed

    Cappi, Benjamin; Neuss, Sabine; Salber, Jochen; Telle, Rainer; Knüchel, Ruth; Fischer, Horst

    2010-04-01

    Oxide ceramic materials like alumina (Al(2)O(3)) and zirconia (ZrO(2)) are frequently used for medical applications like implants and prostheses because of their excellent biocompatibility and high wear resistance. Unfortunately, oxide ceramics cannot be used for minimal invasive thin-walled implants like resurfacing hip prostheses because of their limited strength. The hypothesis of this study is that non-oxide ceramics like silicon nitride (Si(3)N(4)) and silicon carbide (SiC)-not previously used in the medical field-are not only high strength and mechanically reliable ceramic materials due to their high amount of covalent bonds, but also exhibit a suitable biocompatibility for use as medical implants and prostheses. Mechanical investigations and cell culture tests with mouse fibroblast cells (L929) and human mesenchymal stem cells (hMSC) were performed on the ceramics. An excellent cytocompatibility was demonstrated by live/dead stainings for both L929 cells and hMSC. HMSC were able to differentiate towards osteoblasts on all tested ceramics. The determined strength of silicon nitride and silicon carbide was shown as significantly higher than that of oxide ceramics. Our results indicate that the high strength non-oxide ceramics are material candidates in the future especially for highly loaded, thin-walled implants like ceramic resurfacing hip prostheses. PMID:19484770

  3. Uncertainties in obtaining high reliability from stress-strength models

    NASA Technical Reports Server (NTRS)

    Neal, Donald M.; Matthews, William T.; Vangel, Mark G.

    1992-01-01

    There has been a recent interest in determining high statistical reliability in risk assessment of aircraft components. The potential consequences are identified of incorrectly assuming a particular statistical distribution for stress or strength data used in obtaining the high reliability values. The computation of the reliability is defined as the probability of the strength being greater than the stress over the range of stress values. This method is often referred to as the stress-strength model. A sensitivity analysis was performed involving a comparison of reliability results in order to evaluate the effects of assuming specific statistical distributions. Both known population distributions, and those that differed slightly from the known, were considered. Results showed substantial differences in reliability estimates even for almost nondetectable differences in the assumed distributions. These differences represent a potential problem in using the stress-strength model for high reliability computations, since in practice it is impossible to ever know the exact (population) distribution. An alternative reliability computation procedure is examined involving determination of a lower bound on the reliability values using extreme value distributions. This procedure reduces the possibility of obtaining nonconservative reliability estimates. Results indicated the method can provide conservative bounds when computing high reliability. An alternative reliability computation procedure is examined involving determination of a lower bound on the reliability values using extreme value distributions. This procedure reduces the possibility of obtaining nonconservative reliability estimates. Results indicated the method can provide conservative bounds when computing high reliability.

  4. AISI/DOE Technology Roadmap Program: Characterization of Fatigue and Crash Performance of New Generation High Strength Steels for Automotive Applications

    SciTech Connect

    Brenda Yan; Dennis Urban

    2003-04-21

    A 2-year project (2001-2002) to generate fatigue and high strain data for a new generation of high strength steels (HSS) has been completed in December 2002. The project tested eleven steel grades, including Dual Phase (DP) steels, Transformation-Induced Plasticity (TRIP) steels, Bake Hardenable (BH) steels, and conventional High Strength Low Alloy (HSLA) steels. All of these steels are of great interest in automotive industry due to the potential benefit in weight reduction, improved fuel economy, enhanced crash energy management and total system cost savings. Fatigue behavior includes strain controlled fatigue data notch sensitivity for high strength steels. High strain rate behavior includes stress-strain data for strain rates from 0.001/s to 1000/s, which are considered the important strain rate ranges for crash event. The steels were tested in two phases, seven were tested in Phase 1 and the remaining steels were tested in Phase. In a addition to the fatigue data and high st rain rate data generated for the steels studied in the project, analyses of the testing results revealed that Advanced High Strength Steels (AHSS) exhibit significantly higher fatigue strength and crash energy absorption capability than conventional HSS. TRIP steels exhibit exceptionally better fatigue strength than steels of similar tensile strength but different microstructure, for conditions both with or without notches present

  5. TREATMENT OF HIGH STRENGTH MEATPACKING PLANT WASTEWATER BY LAND APPLICATION

    EPA Science Inventory

    The purpose of this study was to determine the treatability of high strength meatpacking plant wastewater by land application. Both infiltration and overland flow type systems were studied at various hydraulic and organic loading rates. In addition to characterization of the raw ...

  6. Fabrication of carbon film composites for high-strength structures

    NASA Technical Reports Server (NTRS)

    Preiswerk, P. R.; Lippman, M.

    1972-01-01

    Physical and mechanical properties of fiber composite materials consisting of carbon films are described. Application of carbon film structural composites for constructing microwave filters or optical instruments is proposed. Applications in aerospace and architectural structures for high strength and low density properties are discussed.

  7. High-strength porous carbon and its multifunctional applications

    SciTech Connect

    Wojtowicz, Marek A; Rubenstein, Eric P; Serio, Michael A; Cosgrove, Joseph E

    2013-12-31

    High-strength porous carbon and a method of its manufacture are described for multifunctional applications, such as ballistic protection, structural components, ultracapacitor electrodes, gas storage, and radiation shielding. The carbon is produced from a polymer precursor via carbonization, and optionally by surface activation and post-treatment.

  8. Friction Stir Spot Welding of Advanced High Strength Steels

    SciTech Connect

    Santella, Michael L; Hovanski, Yuri; Grant, Glenn J; Frederick, D Alan; Dahl, Michael E

    2009-02-01

    Friction stir spot welding was used to join two advanced high-strength steels using polycrystalline cubic boron nitride tooling. Numerous tool designs were employed to study the influence of tool geometry on weld joints produced in both DP780 and a hot-stamp boron steel. Tool designs included conventional, concave shouldered pin tools with several pin configurations; a number of shoulderless designs; and a convex, scrolled shoulder tool. Weld quality was assessed based on lap shear strength, microstructure, microhardness, and bonded area. Mechanical properties were functionally related to bonded area and joint microstructure, demonstrating the necessity to characterize processing windows based on tool geometry.

  9. Friction Stir Spot Welding of Advanced High Strength Steels

    SciTech Connect

    Hovanski, Yuri; Santella, M. L.; Grant, Glenn J.

    2009-12-28

    Friction stir spot welding was used to join two advanced high-strength steels using polycrystalline cubic boron nitride tooling. Numerous tool designs were employed to study the influence of tool geometry on weld joints produced in both DP780 and a hot-stamp boron steel. Tool designs included conventional, concave shouldered pin tools with several pin configurations; a number of shoulderless designs; and a convex, scrolled shoulder tool. Weld quality was assessed based on lap shear strength, microstructure, microhardness, and bonded area. Mechanical properties were functionally related to bonded area and joint microstructure, demonstrating the necessity to characterize processing windows based on tool geometry.

  10. High strength graphite and method for preparing same

    DOEpatents

    Overholser, Lyle G.; Masters, David R.; Napier, John M.

    1976-01-01

    High strength graphite is manufactured from a mixture of a particulate filler prepared by treating a particulate carbon precursor at a temperature in the range of about 400.degree. to 1000.degree. C., an organic carbonizable binder, and green carbonizable fibers in a concentration of not more than 2 weight per cent of the filler. The use of the relatively small quantity of green fibers provides a substantial increase in the flexural strength of the graphite with only a relatively negligible increase in the modulus of elasticity.

  11. Fabrication Routes for High Strength High Conductivity Wires

    SciTech Connect

    Han, K.; Embury, J.D.; Sims, J.R.; Pantsyrnyi, V.I.; Shikov, A.; Bochvar, A.A.

    1998-10-01

    The development of suitable wires for magnet windings requires both the attainment of suitable combinations of properties (electrical conductivity and strength), the development of a production route capable of fabricating suitable quantity of wire of required dimension (5.2x7.6mm{sup 2} cross-section and 120 m in length) and a product with acceptable fabricability, joinability and service life. In this survey, the authors consider methods of producing suitable wire products by the codeformation of in-situ composites. This will include details of the quality control of the processing of Cu-Ag and Cu-Nb and the assessment of their detailed mechanical properties.

  12. [Hardening of dental instruments].

    PubMed

    Gerasev, G P

    1981-01-01

    The possibility of prolonging the service life of stomatological instruments by the local hardening of their working parts is discussed. Such hardening should be achieved by using hard and wear-resistant materials. The examples of hardening dental elevators and hard-alloy dental drills are given. New trends in the local hardening of instruments are the treatment of their working parts with laser beams, the application of coating on their surface by the gas-detonation method. The results of research work and trials are presented. PMID:7300627

  13. Ultra-high Burst Strength of CVD Graphene Membranes

    NASA Astrophysics Data System (ADS)

    Wang, Luda; Boutilier, Michael; Kidambi, Piran; Karnik, Rohit; Microfluidics; Nanofluidics Research Lab Team

    2015-11-01

    Porous graphene membranes have significant potential in gas separation, water desalination and nanofiltration. Understanding the mechanical strength of porous graphene is crucial because membrane separations can involve high pressures. We studied the burst strength of CVD graphene membrane placed on porous support at applied pressures up to 100 bar by monitoring the gas flow rate across the membrane as a function of pressure. Increase of gas flow rate with pressure allowed for extraction of the burst fraction of graphene as it failed under increasing pressure. We also studied the effect of sub-nanometer pores on the ability of graphene to withstand pressure. The results showed that porous graphene membranes can withstand pressures comparable to or even higher than the >50 bar pressures encountered in water desalination, with non-porous CVD graphene exhibiting even higher mechanical strength. Our study shows that porous polycrystalline CVD graphene has ultra-high burst strength under applied pressure, suggesting the possibility for its use in high-pressure membrane separations. Principal Investigator

  14. High strength zirconia ceramics from green body preforms

    SciTech Connect

    Bate, L.D.; Grievson, B.; HAll, R.G.; Jones, A.G.

    1995-09-01

    High strength zirconia ceramic articles ({approx}1.3GPa) have been manufactured by subjecting a mixture of zirconia powder, a binder, a plasticiser and a solvent to high shear mixing to reduce the size of flaw forming powder agglomerates. A flexible green body preform was produced that was further extruded or calendered to the final shape, e.g. flat plates and coil springs, prior to sintering to full density.

  15. Experimental study of self-compacted concrete in hardened state

    NASA Astrophysics Data System (ADS)

    Parra Costa, Carlos Jose

    The main aim of this work is to investigate the hardened behaviour of Self-Compacting Concrete (SCC). Self compacting Concrete is a special concrete that can flow in its gravity and fill in the formwork alone to its self-weight, passing through the bars and congested sections without the need of any internal or external vibration, while maintaining adequate homogeneity. SCC avoids most of the materials defects due to bleeding or segregation. With regard to its composition, SCC consists of the same components as traditional vibrated concrete (TC), but in different proportions. Thus, the high amount of superplasticizer and high powder content have to taken into account. The high workability of SCC does not allow to use traditional methods for measuring the fresh state properties, so new tests has developed (slump-flow, V-funnel, L-box, and others). The properties of the hardened SCC, which depend on the mix design, should be different from traditional concrete. In order to study the possible modifications of SCC hardened state properties, a review of the bibliography was done. The state of art was focused on the mechanical behaviour (compressive strength, tension strength and elastic modulus), on bond strength of reinforcement steel, and on material durability. The experimental program consisted in the production of two types of concretes: Self-Compacting Concrete and Traditional Concrete. Four different dosages was made with three different water/cement ratio and two strength types of Portland cement, in order to cover the ordinary strength used in construction. Based on this study it can be concluded that compressive strength of SCC and TC are similar (the differences are lesser than 10%), whereas the tensile strength of TC are up to 18% higher. The values of elastic modulus of both concrete are similar. On the other hand, in the ultimate state the bond strength of SCC and TC is similar, although SCC shows higher bond stiffness in the serviceability state (initial

  16. NEW HIGH STRENGTH AND FASTER DRILLING TSP DIAMOND CUTTERS

    SciTech Connect

    Robert Radtke

    2006-01-31

    The manufacture of thermally stable diamond (TSP) cutters for drill bits used in petroleum drilling requires the brazing of two dissimilar materials--TSP diamond and tungsten carbide. The ENDURUS{trademark} thermally stable diamond cutter developed by Technology International, Inc. exhibits (1) high attachment (shear) strength, exceeding 345 MPa (50,000 psi), (2) TSP diamond impact strength increased by 36%, (3) prevents TSP fracture when drilling hard rock, and (4) maintains a sharp edge when drilling hard and abrasive rock. A novel microwave brazing (MWB) method for joining dissimilar materials has been developed. A conventional braze filler metal is combined with microwave heating which minimizes thermal residual stress between materials with dissimilar coefficients of thermal expansion. The process results in preferential heating of the lower thermal expansion diamond material, thus providing the ability to match the thermal expansion of the dissimilar material pair. Methods for brazing with both conventional and exothermic braze filler metals have been developed. Finite element modeling (FEM) assisted in the fabrication of TSP cutters controllable thermal residual stress and high shear attachment strength. Further, a unique cutter design for absorbing shock, the densification of otherwise porous TSP diamond for increased mechanical strength, and diamond ion implantation for increased diamond fracture resistance resulted in successful drill bit tests.

  17. Hydrogen Embrittlement of Automotive Advanced High-Strength Steels

    NASA Astrophysics Data System (ADS)

    Lovicu, Gianfranco; Bottazzi, Mauro; D'Aiuto, Fabio; De Sanctis, Massimo; Dimatteo, Antonella; Santus, Ciro; Valentini, Renzo

    2012-11-01

    Advanced high-strength steels (AHSS) have a better combination between strength and ductility than conventional HSS, and higher crash resistances are obtained in concomitance with weight reduction of car structural components. These steels have been developed in the last few decades, and their use is rapidly increasing. Notwithstanding, some of their important features have to be still understood and studied in order to completely characterize their service behavior. In particular, the high mechanical resistance of AHSS makes hydrogen-related problems a great concern for this steel grade. This article investigates the hydrogen embrittlement (HE) of four AHSS steels. The behavior of one transformation induced plasticity (TRIP), two martensitic with different strength levels, and one hot-stamping steels has been studied using slow strain rate tensile (SSRT) tests on electrochemically hydrogenated notched samples. The embrittlement susceptibility of these AHSS steels has been correlated mainly to their strength level and to their microstructural features. Finally, the hydrogen critical concentrations for HE, established by SSRT tests, have been compared to hydrogen contents absorbed during the painting process of a body in white (BIW) structure, experimentally determined during a real cycle in an industrial plant.

  18. Mechanical Properties of Heat Affected Zone of High Strength Steels

    NASA Astrophysics Data System (ADS)

    Sefcikova, K.; Brtnik, T.; Dolejs, J.; Keltamaki, K.; Topilla, R.

    2015-11-01

    High Strength Steels became more popular as a construction material during last decade because of their increased availability and affordability. On the other hand, even though general use of Advanced High Strength Steels (AHSS) is expanding, the wide utilization is limited because of insufficient information about their behaviour in structures. The most widely used technique for joining steels is fusion welding. The welding process has an influence not only on the welded connection but on the area near this connection, the so-called heat affected zone, as well. For that reason it is very important to be able to determine the properties in the heat affected zone (HAZ). This area of investigation is being continuously developed in dependence on significant progress in material production, especially regarding new types of steels available. There are currently several types of AHSS on the world market. Two most widely used processes for AHSS production are Thermo-Mechanically Controlled Processing (TMCP) and Quenching in connection with Tempering. In the presented study, TMCP and QC steels grade S960 were investigated. The study is focused on the changes of strength, ductility, hardness and impact strength in heat affected zone based on the used amount of heat input.

  19. Microstructural Evolution of the 55 Wt Pct Al-Zn Coating During Press Hardening

    NASA Astrophysics Data System (ADS)

    Lee, Chang Wook; De Cooman, Bruno Charles

    2014-09-01

    Press hardening is increasingly being used to produce ultra-high strength steel parts for passenger cars. Al-Si, Zn, and Zn-alloy coatings have been used to provide corrosion protection to press hardening steel grades. The use of coatings has drawbacks such as coating delamination or liquid metal-induced embrittlement. In the present work, the microstructural evolution of Al-Zn coating during press hardening was studied. The 55 wt pct Al-Zn coating can in principle provide both Al barrier protection and Zn cathodic protection to press hardened steel. During the heat treatment associated with the press hardening, the 55 wt pct Al-Zn alloy coating is converted to an intermetallic surface layer of Fe2Al5 and a FeAl intermetallic diffusion layer. The Zn is separated from both intermetallic compounds and accumulates at grain boundaries and at the surface. This Zn separation process is beneficial in terms of providing cathodic protection to Al-Zn coated press hardening steel.

  20. Modifications of the Response of Materials to Shock Loading by Age Hardening

    NASA Astrophysics Data System (ADS)

    Millett, Jeremy C. F.

    2015-10-01

    The shock response of two age-hardened alloys, aluminum 6061 and copper-2 wt pct beryllium (CuBe), has been investigated in terms of their microstructual state; either solution treated or age hardened. While age hardening induces large increases in strength at quasi-static strain rates, age hardening does not produce the same magnitude of strength increase during shock loading. Examination of the shocked microstructures (of 6061) indicates that the presence of a fine distribution of precipitates throughout the microstructure hinders the motion and generation of dislocations and hence reduces the strain-rate sensitivity of the aged material, thus allowing the properties of the solution-treated state to approach those of the aged. It has also been observed that the shear strength of solution-treated CuBe is near identical to that of pure copper. It is suggested that this is the result of two competing processes; large lattice strains as beryllium substitutes onto the copper lattice inducing a high degree of solution strengthening acting against a reduction in shear strength caused by twinning in the alloy.

  1. Oxidation resistant high creep strength austenitic stainless steel

    DOEpatents

    Brady, Michael P.; Pint, Bruce A.; Liu, Chain-Tsuan; Maziasz, Philip J.; Yamamoto, Yukinori; Lu, Zhao P.

    2010-06-29

    An austenitic stainless steel displaying high temperature oxidation and creep resistance has a composition that includes in weight percent 15 to 21 Ni, 10 to 15 Cr, 2 to 3.5 Al, 0.1 to 1 Nb, and 0.05 to 0.15 C, and that is free of or has very low levels of N, Ti and V. The alloy forms an external continuous alumina protective scale to provide a high oxidation resistance at temperatures of 700 to 800.degree. C. and forms NbC nanocarbides and a stable essentially single phase fcc austenitic matrix microstructure to give high strength and high creep resistance at these temperatures.

  2. Constitutive modeling of the mechanical behavior of high strength ferritic steels for static and dynamic applications

    NASA Astrophysics Data System (ADS)

    Abed, Farid H.

    2010-11-01

    A constitutive relation is presented in this paper to describe the plastic behavior of ferritic steel over a broad range of temperatures and strain rates. The thermo-mechanical behavior of high strength low alloy (HSLA-65) and DH-63 naval structural steels is considered in this study at strains over 40%. The temperatures and strain rates are considered in the range where dynamic strain aging is not effective. The concept of thermal activation analysis as well as the dislocation interaction mechanism is used in developing the flow model for both the isothermal and adiabatic viscoplastic deformation. The flow stresses of the two steels are very sensitive to temperature and strain rate, the yield stresses increase with decreasing temperatures and increasing strain rates. That is, the thermal flow stress is mainly captured by the yield stresses while the hardening stresses are totally pertained to the athermal component of the flow stress. The proposed constitutive model predicts results that compare very well with the measured ones at initial temperature range of 77 K to 1000 K and strain rates between 0.001 s-1 and 8500 s-1 for both steels.

  3. Age hardening of 6061/alumina-silica fiber composite

    SciTech Connect

    Khangaonkar, P.R.; Shamsul, J.B.; Azmi, R.

    1994-12-31

    Continuous alumina-silica fiber (Altex of Sumitomo) which yields high performance composites with some aluminium alloys was tried for squeeze cast 6061 based composites with volume fractions of 0.5 and 0.32, and the matrix microhardness and resistivity changes during age hardening were studied. The matrix in the composites hardened much more than the unreinforced alloy. Microhardness increases of up to 70 VPN above the solution treated condition at various aging temperatures were observed. The resistivity variation indicated an appreciable state of internal stress which continued to persist even when hardness fell by overaging. Energy dispersive X-ray analysis indicated that the regions close to the fibers had a higher silicon content than the matrix, and amorphous silica in the fiber may have a role in the formation of an enriched layer which may help the bonding and strength in the composite.

  4. NDE detectability of fatigue type cracks in high strength alloys

    NASA Technical Reports Server (NTRS)

    Christner, B. K.; Rummel, W. D.

    1983-01-01

    Specimens suitable for investigating the reliability of production nondestructive evaluation (NDE) to detect tightly closed fatigue cracks in high strength alloys representative of those materials used in spacecraft engine/booster construction were produced. Inconel 718 was selected as representative of nickel base alloys and Haynes 188 was selected as representative of cobalt base alloys used in this application. Cleaning procedures were developed to insure the reusability of the test specimens and a flaw detection reliability assessment of the fluorescent penetrant inspection method was performed using the test specimens produced to characterize their use for future reliability assessments and to provide additional NDE flaw detection reliability data for high strength alloys. The statistical analysis of the fluorescent penetrant inspection data was performed to determine the detection reliabilities for each inspection at a 90% probability/95% confidence level.

  5. Grain refinement of high strength steels to improve cryogenic toughness

    NASA Technical Reports Server (NTRS)

    Rush, H. F.

    1985-01-01

    Grain-refining techniques using multistep heat treatments to reduce the grain size of five commercial high-strength steels were investigated. The goal of this investigation was to improve the low-temperature toughness as measured by Charpy V-notch impact test without a significant loss in tensile strength. The grain size of four of five alloys investigated was successfully reduced up to 1/10 of original size or smaller with increases in Charpy impact energy of 50 to 180 percent at -320 F. Tensile properties were reduced from 0 to 25 percent for the various alloys tested. An unexpected but highly beneficial side effect from grain refining was improved machinability.

  6. Determination of Constant Parameters of Copper as Power-Law Hardening Material at Different Test Conditions

    NASA Astrophysics Data System (ADS)

    Kowser, Md. A.; Mahiuddin, Md.

    2014-11-01

    In this paper a technique has been developed to determine constant parameters of copper as a power-law hardening material by tensile test approach. A work-hardening process is used to describe the increase of the stress level necessary to continue plastic deformation. A computer program is used to show the variation of the stress-strain relation for different values of stress hardening exponent, n and power-law hardening constant, α . Due to its close tolerances, excellent corrosion resistance and high material strength, in this analysis copper (Cu) has been selected as the material. As a power-law hardening material, Cu has been used to compute stress hardening exponent, n and power-law hardening constant, α from tensile test experiment without heat treatment and after heat treatment. A wealth of information about mechanical behavior of a material can be determined by conducting a simple tensile test in which a cylindrical specimen of a uniform cross-section is pulled until it ruptures or fractures into separate pieces. The original cross sectional area and gauge length are measured prior to conducting the test and the applied load and gauge deformation are continuously measured throughout the test. Based on the initial geometry of the sample, the engineering stress-strain behavior (stress-strain curve) can be easily generated from which numerous mechanical properties, such as the yield strength and elastic modulus, can be determined. A universal testing machine is utilized to apply the load in a continuously increasing (ramp) manner according to ASTM specifications. Finally, theoretical results are compared with these obtained from experiments where the nature of curves is found similar to each other. It is observed that there is a significant change of the value of n obtained with and without heat treatment it means the value of n should be determined for the heat treated condition of copper material for their applications in engineering fields.

  7. Reduced hydrogen embrittlement susceptibility in platinum implanted high strength steel

    NASA Astrophysics Data System (ADS)

    Cowie, J. G.; Lowder, L. J.; Culbertson, R. J.; Kosik, W. E.; Brown, R.

    1991-07-01

    High strength steels suffer from a high susceptibility to hydrogen embrittlement in a corrosive atmosphere, a factor which limits their usefulness. A good catalyst, such as platinum, present on the surface of the steel may lead to a low value of hydrogen overvoltage, thereby reducing the accumulation and subsequent diffusion of atomic hydrogen into the metal. In the present study, platinum was implanted into high strength electroslag remelted (ESR) 4340 steel specimens to a dose of 10 16 atoms/cm 2. Both Pt-implanted and unimplanted specimens were rate charged with hydrogen. The relative concentration of diffusible hydrogen was determined using an electrochemical measurement device known as a Barnacle Electrode. The specimens implanted with platinum exhibited less diffusible hydrogen than the unimplanted steel. Slow strain rate notched-tensile tests, in an aqueous solution of 3.5 wt.% NaCI, were performed in order to evaluate the effect of hydrogen on strength and ductility. The Pt-implanted specimens were able to sustain significantly higher loads before fracture than their unimplanted counterparts. Scanning electron microscopy (SEM) verified the presence of brittle cracking typical of hydrogen embrittlement type failures. Degradation of mechanical properties due to hydrogen embrittlement was thus significantly reduced. This suggested that both the electrochemical and catalytic properties of the Pt-implanted surface were responsible for the improvement in properties.

  8. Qualitative and quantitative fracture analyses of high-strength ceramics.

    PubMed

    Øilo, Marit; Tvinnereim, Helene M; Gjerdet, Nils R

    2009-04-01

    The aims of this study were to assess the applicability and repeatability of qualitative and quantitative analyses of the fracture patterns of four different high-strength ceramics. Ten bar-shaped specimens of four high-strength ceramics with different material composition and fabrication methods had been fractured by three-point bending in water (n = 40). Commonly used fractographic patterns for brittle materials, such as mirror and mist, were used to characterize and quantify the fractured surfaces of these specimens. The analyses were performed twice, on separate occasions, by the same operator. Assessment of the association between fractographic patterns and fracture stress was carried out, and repeatability assessments of the measurements were performed. The fracture initiator site and the common fractographic markers surrounding this site were found in all specimens. Statistically significant correlations were found between certain fracture patterns and stress at fracture. The repeatability of the measurements of the different fractographic patterns varied among the materials. Fracture analyses seem applicable as a tool to determine the fracture initiation site and to estimate the force vectors involved in the fracture of dental high-strength ceramics. PMID:19320729

  9. Performance optimization and computational design of ultra-high strength gear steels

    NASA Astrophysics Data System (ADS)

    Tiemens, Benjamin Lee

    Rising power density requirements in transmission gear applications are swiftly outpacing gear redesign alone and will ultimately depend on better materials. Ni-Co secondary hardening steels show great promise for these applications due to their optimized combination of strength and toughness. The commercially available secondary hardening alloys GearMet RTM C61 and C67 have already demonstrated promising contact fatigue resistance, however bending fatigue is anticipated to be the primary failure mode limiting high power density gear applications. Single tooth bending fatigue testing was therefore completed on C61 and C67 spur gears to both assess the optimized performance of these alloys as well as identify defect populations currently limiting further advances. The resultant best-practice C61 spur gears in a shot peened and isotropic superfinished condition outperformed the top-ranking premium gear steel, demonstrating an approximate 15% improvement in bending fatigue endurance limit. Fatigue failures limiting further bending fatigue performance were identified to primarily initiate at three defect classes: shot peening-induced surface damage, subsurface inter-granular cleavage facets and Al2O3 and La2O2S inclusions. C67 spur gears did not show increased performance despite elevated surface hardness levels due to the inability of current shot peening practices to achieve maximum compressive stress in ultra-high hardness materials. In an effort to reduce the material cost of these alloys through minimization/elimination of cobalt alloying additions, BCC Cu precipitation was incorporated to offset ensuing losses in temper resistance by providing additional heterogeneous nucleation sites for the M2C strengthening dispersion. Fifty-pound experimental heats were made of four designed compositions. Peak hardness levels achieved during tempering fell on average 200 VHN short of the 900 VHN designed surface hardness. 3-dimensional local electrode atom probe (LEAP

  10. Evaluation of high-strength Cu-Ni-Mn-Al bolting used in oil and gas service

    SciTech Connect

    Andersen, O.; Joosten, M.W.; Murali, J.; Milliams, D.E.

    1996-08-01

    High strength bolts, nuts, studs and screws manufactured from a precipitation hardening Cu-Ni-Mn-Al alloy have experienced several failures in recent years in oilfield installations with varying degrees of severity and consequence. Such failures have been broadly attributed to Stress Corrosion Cracking (SCC) and Liquid Metal Embrittlement (LME) phenomena. A detailed test program using the Slow Strain Rate Testing (SSRT) method has been conducted to identify the various parameters which could contribute to SCC. Results indicate that the Cu-Ni-Mn-Al alloy is susceptible to SCC in a variety of environments commonly found in oilfield equipment manufacturing and field installations such as amine-containing additives, sulfides and even natural seawater at elevated temperatures. SSRT testing indicated, however, that, in seawater environments, low service temperatures and cathodic protection did not adversely affect the alloy`s performance. Discussion of test program results and qualitative correlations with field failures are presented.

  11. A Modified Johnson-Cook Model for Advanced High-Strength Steels Over a Wide Range of Temperatures

    NASA Astrophysics Data System (ADS)

    Qingdong, Zhang; Qiang, Cao; Xiaofeng, Zhang

    2014-12-01

    Advanced high-strength steel (AHSS) is widely used in automotive industry. In order to investigate the mechanical behaviors of AHSS over a wide range of temperatures, quasi-static tensile experiments were conducted at the temperatures from 298 to 1073 K on a Gleeble-3500 thermo-simulation machine. The results show that flow behaviors are affected by testing temperature significantly. In order to describe the flow features of AHSS, the Johnson-Cook (JC) model is employed. By introducing polynomial functions to consider the effects of temperature on hardening behavior, the JC model is modified and used to predict flow behavior of AHSS at different experimental conditions. The accuracy of the modified JC model is verified and the predicted flow stress is in good agreement with experimental results, which confirms that the modified JC model can give an accurate and precise estimate over a wide range of temperatures.

  12. Material Selection for an Ultra High Strength Steel Component Based on the Failure Criteria of CrachFEM

    SciTech Connect

    Kessler, L.; Beier, Th.; Werner, H.; Horstkott, D.; Dell, H.; Gese, H.

    2005-08-05

    An increasing use of combining more than one process step is noticed for coupling crash simulations with the results of forming operations -- mostly by inheriting the forming history like plastic strain and material hardening. Introducing a continuous failure model allows a further benefit of these coupling processes; it sometimes can even be the most attractive result of such a work. In this paper the algorithm CrachFEM for fracture prediction has been used to generate more benefit of the successive forming and crash simulations -- especially for ultra high strength steels. The choice and selection of the material grade in combination with the component design can therefore be done far before the prototyping might show an unsuccessful crash result; and in an industrial applicable manner.

  13. Construction procedures using self hardening fly ash

    NASA Astrophysics Data System (ADS)

    Thornton, S. I.; Parker, D. G.

    1980-07-01

    Fly ash produced in Arkansas from burning Wyoming low sulfur coal is self-hardening and can be effective as a soil stabilizing agent for clays and sands. The strength of soil-self hardening fly ash develops rapidly when compacted immediately after mixing. Seven day unconfined compressive strengths up to 1800 psi were obtained from 20% fly ash and 80% sand mixtures. A time delay between mixing the fly ash with the soil and compaction of the mixture reduced the strength. With two hours delay, over a third of the strength was lost and with four hours delay, the loss was over half. Gypsum and some commercial concrete retarders were effective in reducing the detrimental effect of delayed compaction. Adequate mixing of the soil and fly ash and rapid compaction of the mixtures were found to be important parameters in field construction of stabilized bases.

  14. High Strength Discontinuously Reinforced Aluminum For Rocket Applications

    NASA Technical Reports Server (NTRS)

    Pandey, A. B.; Shah, S. R.; Shadoan, M.

    2003-01-01

    This study presents results on the development of a new aluminum alloy with very high strength and ductility. Five compositions of Al-Mg-Sc-Gd-Zr alloy were selected for this purpose. These alloys were also reinforced with 15 volume percent silicon-carbide and boron-carbide particles to produce Discontinuously Reinforced Aluminum (DRA) materials. Matrix alloys and DRA were processed using a powder metallurgy process. The helium gas atomization produced very fine powder with cellular-dentritic microstructure. The microstructure of matrix alloys showed fine Al3Sc based precipitate which provides significant strengthening in these alloys. DRA showed uniform distribution of reinforcement in aluminum matrix. DRA materials were tested at -320 F, 75 F in air and 7S F in gaseous hydrogen environments and matrix alloys were tested at 75 F in air. DRA showed high strengths in the range of 89-111 ksi (614-697 MPa) depending on alloy compositions and test environments. Matrix alloys had a good combination of strength, 84-89 ksi (579-621 MPa) and ductility, 4.5-6.5%. The properties of these materials can further be improved by proper control of processing parameters.

  15. New high-strength neodymium phosphate laser glass

    SciTech Connect

    Galagan, B I; Glushchenko, I N; Denker, B I; Kalachev, Yu L; Mikhailov, Viktor A; Sverchkov, S E; Shcherbakov, Ivan A; Kuleshov, N V

    2009-12-31

    A high-strength neodymium laser glass (SNLG) based on an alumoborophosphate composition is developed and synthesised; its physicochemical, spectral, luminescent, and lasing characteristics are studied. It is found that the chemical stability and thermal resistance of the new glass are considerably higher than the corresponding characteristics of known neodymium-doped phosphate laser glasses. Investigations of lasing upon longitudinal diode pumping showed that, due to the higher thermal resistance, the new glass allows one to obtain output powers twice as high as those of industrial GLS22 glass. (active media)

  16. Preliminary Strength Measurements of High Temperature Ash Filter Deposits

    SciTech Connect

    Kang, B.S.; Johnson, E.K.; Mallela, R.; Barberio, J.F.

    1996-12-31

    The objective of this study is to develop and evaluate preliminary strength measurement techniques for high temperature candle filter ash deposits. The efficient performance of a high temperature gas filtering system is essential for many of the new thermal cycles being proposed for power plants of the future. These new cycles hold the promise of higher thermal efficiency and lower emissions of pollutants. Many of these cycles involve the combustion or gasification of coal to produce high temperature gases to eventually be used in gas turbines. These high temperature gases must be relatively free of particulates. Today, the candle filter appears to be the leading candidate for high temperature particulate removal. The performance of a candle filter depends on the ash deposits shattering into relatively large particles during the pulse cleaning (back flushing) of the filters. These relatively large particles fall into the ash hopper and are removed from the system. Therefore, these 1247 particles must be sufficiently large so that they will not be re-entrained by the gas flow. The shattering process is dictated by the strength characteristics of the ash deposits. Consequently, the objective of this research is to develop measurements for the desired strength characteristics of the ash deposits. Experimental procedures were developed to measure Young`s modulus of the ash deposit at room temperature and the failure tensile strain of ash deposits from room temperature to elevated temperatures. Preliminary data has been obtained for both soft and hard ash deposits. The qualifier ``preliminary`` is used to indicate that these measurements are a first for this material, and consequently, the measurement techniques are not perfected. In addition, the ash deposits tested are not necessarily uniform and further tests are needed in order to obtain meaningful average data.

  17. High Breakdown Strength, Multilayer Ceramics for Compact Pulsed Power Applications

    SciTech Connect

    Gilmore, B.; Huebner, W.; Krogh, M.L.; Lundstrom, J.M.; Pate, R.C.; Rinehart, L.F.; Schultz, B.C.; Zhang, S.C.

    1999-07-20

    Advanced ceramics are being developed for use in large area, high voltage devices in order to achieve high specific energy densities (>10 6 J/m 3 ) and physical size reduction. Initial materials based on slip cast TiO2 exhibited a high bulk breakdown strength (BDS >300 kV/cm) and high permittivity with low dispersion (e�100). However, strong area and thickness dependencies were noted. To increase the BDS, multilayer dielectric compositions are being developed based on glass/TiO2 composites. The addition of glass increases the density (�99.8% theoretical), forms a continuous grain boundary phase, and also allows the use of high temperature processes to change the physical shape of the dielectric. The permittivity can also be manipulated since the volume fraction and connectivity of the glassy phase can be readily shifted. Results from this study on bulk breakdown of TiO2 multilayer structures with an area of 2cm 2 and 0.1cm thickness have measured 650 kV/cm. Furthermore, a strong dependence of breakdown strength and permittivity has been observed and correlated with microstructure and the glass composition. This paper presents the interactive effects of manipulation of these variables.

  18. Examination of some high-strength, high-conductivity copper alloys for high-temperature applications

    SciTech Connect

    Dadras, M.M.; Morris, D.G.

    1997-12-22

    Copper alloys with high strength and high thermal and electrical conductivity have received a lot of attention over the last decades. Most of such efforts have concentrated on the development of alloys containing fine, dispersed particles, and using rapid solidification techniques to ensure a sufficient volume fraction and sufficient fineness of the dispersed phase. In a recent study, a Cu-8Cr-4Nb alloy was developed which shows relatively good strength up to 700 C, a result which was explained by the resistance to coarsening of the fine Cr{sub 2}Nb intermetallic particles in this materials. The amount of intermetallic Cr{sub 2}Nb second phase in this alloy was about 14vol% and it was claimed that the special compound-nature of the intermetallic phase was responsible for the good stability and retention of strength to high temperature. In order to examine the influence of the nature of the fine particles present and their stability against coarsening, as well as to examine the influence of volume fraction of second phase on tensile strength, three different alloys have been chosen for study: Cu-2Nb and Cu-4Cr for examining the role of second phase chemistry (Nb or Cr) on structural and property stability; and a Cu-14Cr alloy, for comparison with the Cu-4Cr alloy, to examine the role of volume fraction of the second phase. The stability of these alloys will then be compared with that reported for the Cu-8Cr-4Nb alloy.

  19. Possible correlation between work-hardening and fatigue-failure

    NASA Technical Reports Server (NTRS)

    Kettunen, P. O.; Kocks, U. F.

    1969-01-01

    Conceptual theory proposes that cyclic hardening due to non-uniform strain and stress amplitudes during testing, especially during the initial application of stress to a specimen, may correlate positively with the ultimate strength of the specimen under test.

  20. Scratch-resistant, highly conductive, and high-strength carbon nanotube-based composite yarns.

    PubMed

    Liu, Kai; Sun, Yinghui; Lin, Xiaoyang; Zhou, Ruifeng; Wang, Jiaping; Fan, Shoushan; Jiang, Kaili

    2010-10-26

    High-strength and conductive carbon nanotube (CNT) yarns are very attractive in many potential applications. However, there is a difficulty when simultaneously enhancing the strength and conductivity of CNT yarns. Adding some polymers into CNT yarns to enhance their strength will decrease their conductivity, while treating them in acid or coating them with metal nanoparticles to enhance their conductivity will reduce their strength. To overcome this difficulty, here we report a method to make high-strength and highly conductive CNT-based composite yarns by using a continuous superaligned CNT (SACNT) yarn as a conductive framework and then inserting polyvinyl alcohol (PVA) into the intertube spaces of the framework through PVA/dimethyl sulphoxide solution to enhance the strength of yarns. The as-produced CNT/PVA composite yarns possess very high tensile strengths up to 2.0 GPa and Young's moduli more than 120 GPa, much higher than those of the CNT/PVA yarns reported. The electric conductivity of as-produced composite yarns is as high as 9.2 × 10(4) S/m, comparable to HNO(3)-treated or Au nanoparticle-coated CNT yarns. These composite yarns are flexible, lightweight, scratch-resistant, very stable in the lab environment, and resistant to extremely humid ambient and as a result can be woven into high-strength and heatable fabrics, showing potential applications in flexible heaters, bullet-proof vests, radiation protection suits, and spacesuits. PMID:20831235

  1. New steels and methods for induction hardening of bearing rings and rollers

    SciTech Connect

    Ouchakov, B.K.; Shepeljakovsky, K.Z.

    1998-12-31

    The new method of through-surface hardening (TSH) of bearing rings and rollers was developed and used in Russia and former USSR. The principles of the method include the use of special steels of low or controlled hardenability, through-the-section induction of furnace heating and intense quenching of the parts by water stream in special devices. Due to the low hardenability of applied steels, the bearing rings and rollers have high-strength martensitic surface layer, combined with a core strengthened with a troostite and sorbite structure. High compressive residual stresses are formed in the martensitic surface layers. For a long time TSH has been successfully used for inner rings of bearings for railway car boxes, large rings and rollers of bearings for cement furnaces and rolling mills. Recently TSH was used for hollow rollers of railway bearings. For bearing rings made of SAE 52100 type high-carbon, chromium-alloyed steel a new method of low-deformation hardening was developed. The method is based on self-calibration of the rings during the quenching process and is intended for through hardening by induction heating and quenching by rapidly moved water stream.

  2. Estimating surface hardening profile of blank for obtaining high drawing ratio in deep drawing process using FE analysis

    NASA Astrophysics Data System (ADS)

    Tan, C. J.; Aslian, A.; Honarvar, B.; Puborlaksono, J.; Yau, Y. H.; Chong, W. T.

    2015-12-01

    We constructed an FE axisymmetric model to simulate the effect of partially hardened blanks on increasing the limiting drawing ratio (LDR) of cylindrical cups. We partitioned an arc-shaped hard layer into the cross section of a DP590 blank. We assumed the mechanical property of the layer is equivalent to either DP980 or DP780. We verified the accuracy of the model by comparing the calculated LDR for DP590 with the one reported in the literature. The LDR for the partially hardened blank increased from 2.11 to 2.50 with a 1 mm depth of DP980 ring-shaped hard layer on the top surface of the blank. The position of the layer changed with drawing ratios. We proposed equations for estimating the inner and outer diameters of the layer, and tested its accuracy in the simulation. Although the outer diameters fitted in well with the estimated line, the inner diameters are slightly less than the estimated ones.

  3. Enhancement of superplastic formability in a high strength aluminum alloy

    NASA Technical Reports Server (NTRS)

    Agrawal, S. P.; Turk, G. R.; Vastava, R.

    1988-01-01

    A 7475 aluminum alloy was developed for superplastic forming (SPF). By lowering the Fe and Si contents in this alloy significantly below their normal levels and optimizing the thermomechanical processing to produce sheet, over 2000 percent thickness strain to failure was obtained. The microstructure, elevated-temperature uniaxial and biaxial tension, and cavitation behavior of the alloy were determined. In addition, a constitutive model was used to form a generic structural shape from which mechanical test specimens were removed and post-SPF characteristics were evaluated. The constitutive model included both material strain hardening and strain rate hardening effects, and was verified by accurately predicting forming cycles which resulted in successful component forming. Stress-life fatigue, stress rupture, and room and elevated temperature tensile tests were conducted on the formed material.

  4. Manufacturing of high-strength Ni-free Co-Cr-Mo alloy rods via cold swaging.

    PubMed

    Yamanaka, Kenta; Mori, Manami; Yoshida, Kazuo; Kuramoto, Koji; Chiba, Akihiko

    2016-07-01

    The strengthening of biomedical metallic materials is crucial to increasing component durability in biomedical applications. In this study, we employ cold swaging as a strengthening method for Ni-free Co-Cr-Mo alloy rods and examine its effect on the resultant microstructures and mechanical properties. N is added to the alloy to improve the cold deformability, and a maximum reduction in area (r) of 42.6% is successfully obtained via cold swaging. The rod strength and ductility increase and decrease, respectively, with increasing cold-swaging reduction r. Further, the 0.2% proof stress at r=42.6% eventually reaches 1900MPa, which is superior to that obtained for the other strengthening methods proposed to date. Such significant strengthening resulting from the cold-swaging process may be derived from extremely large work hardening due to a strain-induced γ (fcc)→ε (hcp) martensitic transformation, with the resultant intersecting ε-martensite plates causing local strain accumulation at the interfaces. The lattice defects (dislocations/stacking faults) inside the ε phase also likely contribute to the overall strength. However, excessive application of strain during the cold-swaging process results in a severe loss in ductility. The feasibility of cold swaging for the manufacture of high-strength Co-Cr-Mo alloy rods is discussed. PMID:26773647

  5. TOUGHREACT Testing in High Ionic Strength Brine Sandstone Systems

    SciTech Connect

    Xu, Tianfu

    2008-09-01

    Deep saline formations and oil and gas reservoirs often contain concentrated brine solutions of ionic strength greater than 1 (I > 1 M). Geochemical modeling, involving high ionic strength brines, is a challenge. In the original TOUGHREACT code (Xu et al., 2004; Xu et al., 2006), activity coefficients of charged aqueous species are computed using an extended Debye-Huckel (DH) equation and parameters derived by Helgeson et al. (1981). The DH model can deal with ionic strengths from dilute to moderately saline water (up to 6 molal for an NaCl-dominant solution). The equations implemented for the DH model are presented in Appendix A. During the course of the Yucca Mountain project, a Pitzer ion-interaction model was implemented into TOUGHREACT. This allows the application of this simulator to problems involving much more concentrated aqueous solutions, such as those involving geochemical processes in and around high-level nuclear waste repositories where fluid evaporation and/or boiling is expected to occur (Zhang et al., 2007). The Pitzer ion-interaction model, which we refer to as the Pitzer virial approach, and associated ion-interaction parameters have been applied successfully to study non-ideal concentrated aqueous solutions. The formulation of the Pitzer model is presented in Appendix B; detailed information can be founded in Zhang et al. (2007). For CO{sub 2} geological sequestration, the Pitzer ion-interaction model for highly concentrated brines was incorporated into TOUGHREACT/ECO2N, then was tested and compared with a previously implemented extended Debye-Hueckel (DH) ion activity model. The comparison was made through a batch geochemical system using a Gulf Coast sandstone saline formation.

  6. Hardening of the arteries

    MedlinePlus

    Atherosclerosis; Arteriosclerosis; Plaque buildup - arteries; Hyperlipidemia - atherosclerosis; Cholesterol - atherosclerosis ... Hardening of the arteries often occurs with aging. As you grow older, ... narrows your arteries and makes them stiffer. These changes ...

  7. 'Fire hardening' spear wood does slightly harden it, but makes it much weaker and more brittle.

    PubMed

    Ennos, Antony Roland; Chan, Tak Lok

    2016-05-01

    It is usually assumed that 'fire hardening' the tips of spears, as practised by hunter-gatherers and early Homo spp., makes them harder and better suited for hunting. This suggestion was tested by subjecting coppiced poles of hazel to a fire-hardening process and comparing their mechanical properties to those of naturally seasoned poles. A Shore D hardness test showed that fire treatment slightly increased the hardness of the wood, but flexural and impact tests showed that it reduced the strength and work of fracture by 30% and 36%, respectively. These results suggest that though potentially slightly sharper and more durable, fire-hardened tips would actually be more likely to break off when used, as may have been the case with the earliest known wooden tool, the Clacton spear. Fire might first have been used to help sharpen the tips of spears, and fire-hardening would have been a mostly negative side effect, not its primary purpose. PMID:27194289

  8. Method for providing a low density high strength polyurethane foam

    DOEpatents

    Whinnery, Jr., Leroy L.; Goods, Steven H.; Skala, Dawn M.; Henderson, Craig C.; Keifer, Patrick N.

    2013-06-18

    Disclosed is a method for making a polyurethane closed-cell foam material exhibiting a bulk density below 4 lbs/ft.sup.3 and high strength. The present embodiment uses the reaction product of a modified MDI and a sucrose/glycerine based polyether polyol resin wherein a small measured quantity of the polyol resin is "pre-reacted" with a larger quantity of the isocyanate in a defined ratio such that when the necessary remaining quantity of the polyol resin is added to the "pre-reacted" resin together with a tertiary amine catalyst and water as a blowing agent, the polymerization proceeds slowly enough to provide a stable foam body.

  9. PM alloy 625M for high strength corrosion resistant applications

    SciTech Connect

    Rizzo, F.J.; Floreen, S.

    1997-06-01

    In applications where the combination of high strength and good corrosion resistance are required, there have been only a few alloys of choice. A new powder metallurgy alloy has been developed, PM 625M, a niobium modification of Alloy 625, as a material to fill this need. One area of particular interest is the nuclear power industry, where many problems have been encountered with bolts, springs, and guidepins. Mechanical properties and stress corrosion cracking data of PM 625M are presented in this paper.

  10. Further observations on high impact strength denture-base materials.

    PubMed

    Rodford, R A; Braden, M

    1992-01-01

    Previous studies have shown that high impact strength can be conferred on denture-base poly(methyl methacrylate) polymers by modification with acrylic-terminated butadiene-styrene block copolymers, and that the acrylic end-group was necessary for effective reinforcement. It is now shown that, by solvent extraction studies, grafting of the copolymer occurs both with acrylic-terminated and non-terminated block copolymers. It is therefore concluded that the mode of grafting is different, and some possible mechanisms are discussed. PMID:1420720

  11. A new high strength alloy for hydrogen fueled propulsion systems

    NASA Technical Reports Server (NTRS)

    Mcpherson, W. B.

    1986-01-01

    This paper describes the development of a high-strength alloy (1241 MPa ultimate and 1103 MPa yield, with little or no degradation in hydrogen) for application in advanced hydrogen-fueled rocket engines. Various compositions of the Fe-Ni-Co-Cr system with elemental additions of Cb, Ti and Al are discussed. After processing, notched tensile specimens were tested in 34.5-MPa hydrogen at room temperature, as the main screening test. The H2/air notch tensile ratio was used as the selection/rejection criterion. The most promising alloys are discussed.

  12. Effect of microstructure on the fracture response of advanced high strength steels

    NASA Astrophysics Data System (ADS)

    Taylor, Mark David

    The effect of constituent hardness on formability performance for higher-strength dual phase (DP) steels was evaluated. A commercially-produced DP steel with 1080 MPa ultimate tensile strength (UTS) was processed to create eight additional constituent hardness conditions by tempering and cold-rolling, processes that primarily affected constituent hardness properties. Using nanoindentation, ferrite and martensite hardness values for the nine conditions of the DP steel (as-received, four as-tempered, four temper cold-rolled) provided a range of hardness values to evaluate formability performance. Formability performance for the nine steel conditions was evaluated using tensile and hole expansion testing. A decrease in martensite/ferrite hardness ratio corresponded to an increase in hole expansion ratio (HER), and an increase in yield strength (YS). A lower hardness ratio (increased similarity of ferrite and martensite hardness) was interpreted to increase strain-sharing between ferrite and martensite, which suppressed plastic strain localization to higher stresses for the case of YS, and to higher formability limits for the case of HER. A lower hardness ratio corresponded to a decrease in work-hardening, and was interpreted to be caused by the suppression of strain localization in ferrite. Multiple studies from literature correlated HER to tensile properties, and the nine steel conditions produced consistent trends with the data reported in each study, confirming the experimental HER and tensile properties obtained in the current study are consistent with literature. The microstructural response to plastic deformation was evaluated using two DP steels with equivalent UTS and different hardness ratios. Nanoindentation analyses on tensile specimens deformed to the UTS revealed a greater increase in ferrite hardness for the higher hardness ratio steel, interpreted to be caused by the greater amount of work hardening. EBSD crystallographic orientation maps for the two DP

  13. Effect of surface modification, microstructure, and trapping on hydrogen diffusion coefficients in high strength alloys

    NASA Astrophysics Data System (ADS)

    Jebaraj Johnley Muthuraj, Josiah

    Cathodic protection is widely used for corrosion prevention. However, this process generates hydrogen at the protected metal surface, and diffusion of hydrogen through the metal may cause hydrogen embrittlement or hydrogen induced stress corrosion cracking. Thus the choice of a metal for use as fasteners depends upon its hydrogen uptake, permeation, diffusivity and trapping. The diffusivity of hydrogen through four high strength alloys (AISI 4340, alloy 718, alloy 686, and alloy 59) was analyzed by an electrochemical method developed by Devanathan and Stachurski. The effect of plasma nitriding and microstructure on hydrogen permeation through AISI 4340 was studied on six different specimens: as-received (AR) AISI 4340, nitrided samples with and without compound layer, samples quenched and tempered (Q&T) at 320° and 520°C, and nitrided samples Q&T 520°C. Studies on various nitrided specimens demonstrate that both the gamma'-Fe 4N rich compound surface layer and the deeper N diffusion layer that forms during plasma nitriding reduce the effective hydrogen diffusion coefficient, although the gamma'-Fe4N rich compound layer has a larger effect. Multiple permeation transients yield evidence for the presence of only reversible trap sites in as-received, Q&T 320 and 520 AISI 4340 specimens, and the presence of both reversible and irreversible trap sites in nitrided specimens. Moreover, the changes in microstructure during the quenching and tempering process result in a significant decrease in the diffusion coefficient of hydrogen compared to as-received specimens. In addition, density functional theory-based molecular dynamics simulations yield hydrogen diffusion coefficients through gamma'- Fe4N one order of magnitude lower than through α-Fe, which supports the experimental measurements of hydrogen permeation. The effect of microstructure and trapping was also studied in cold rolled, solutionized, and precipitation hardened Inconel 718 foils. The effective hydrogen

  14. Radiation and chemical crosslinking promote strain hardening behavior and molecular alignment in ultra high molecular weight polyethylene during multi-axial loading conditions.

    PubMed

    Kurtz, S M; Pruitt, L A; Jewett, C W; Foulds, J R; Edidin, A A

    1999-08-01

    The mechanical behavior and evolution of crystalline morphology during large deformation of eight types of virgin and crosslinked ultra high molecular weight polyethylene (UHMWPE) were studied using the small punch test and transmission electron microscopy (TEM). We investigated the hypothesis that both radiation and chemical crosslinking hinder molecular mobility at large deformations, and hence promote strain hardening and molecular alignment during the multiaxial loading of the small punch test. Chemical crosslinking of UHMWPE was performed using 0.25% dicumyl peroxide (GHR 8110, GUR 1020 and 1050), and radiation crosslinking was performed using 150 kGy of electron beam radiation (GUR 1150). Crosslinking increased the ultimate load at failure and decreased the ultimate displacement of the polyethylenes during the small punch test. Crosslinking also increased the near-ultimate hardening behavior of the polyethylenes. Transmission electron microscopy was used to characterize the crystalline morphology of the bulk material, undeformed regions of the small punch test specimens, and deformed regions of the specimens oriented perpendicular and parallel to the punch direction. In contrast with the virgin polyethylenes, which showed only subtle evidence of lamellar alignment, the crosslinked polyethylenes exhibited enhanced crystalline lamellae orientation after the small punch test, predominantly in the direction parallel to the punch direction or deformation axis. Thus, the results of this study support the hypothesis that crosslinking promotes strain hardening during multiaxial loading because of increased resistance to molecular mobility at large deformations effected by molecular alignment. The data also illustrate the sensitivity of large deformation mechanical behavior and crystalline morphology to the method of crosslinking and resin of polyethylene. PMID:10458558

  15. Properties of modified anhydride hardener and its cured resin

    NASA Astrophysics Data System (ADS)

    Qiang, Chen; Bingjun, Gao; Jinglin, Chen; Tongzhao, Xu

    2000-01-01

    Methyl-nadic-tetrahydric-methylanhydride (MNA), nadic-tetrahydric-methylanhydride (NA), anhydride hardener was modified by solid diol molecule to improve the impregnation resin fracture toughness in cryogenic temperature. The lap-shear strength, transverse tension as well as the thermal shock test showed that the resin cured by the modified anhydride hardener had higher bond strength and more toughness at 77 K. After the experiment of vacuum pressure impregnation (VPI) processing, it was found that this resin had a longer usable life, better impregnating properties, but higher initial viscosity than the resin hybrid HY925 as hardener.

  16. Magnetic Implosion for Novel Strength Measurements at High Strain Rates

    SciTech Connect

    Lee, H.; Preston, D.L.; Bartsch, R.R.; Bowers, R.L.; Holtkamp, D.; Wright, B.L.

    1998-10-19

    Recently Lee and Preston have proposed to use magnetic implosions as a new method for measuring material strength in a regime of large strains and high strain rates inaccessible to previously established techniques. By its shockless nature, this method avoids the intrinsic difficulties associated with an earlier approach using high explosives. The authors illustrate how the stress-strain relation for an imploding liner can be obtained by measuring the velocity and temperature history of its inner surface. They discuss the physical requirements that lead us to a composite liner design applicable to different test materials, and also compare the code-simulated prediction with the measured data for the high strain-rate experiments conducted recently at LANL. Finally, they present a novel diagnostic scheme that will enable us to remove the background in the pyrometric measurement through data reduction.

  17. The Strengths of High-Achieving Black High School Students in a Racially Diverse Setting

    ERIC Educational Resources Information Center

    Marsh, Kris; Chaney, Cassandra; Jones, Derrick

    2012-01-01

    Robert Hill (1972) identified strengths of Black families: strong kinship bonds, strong work orientation, adaptability of family roles, high achievement orientation, and religious orientation. Some suggest these strengths sustain the physical, emotional, social, and spiritual needs of Blacks. This study used narratives and survey data from a…

  18. Production of high strength TMCP steel plate for offshore structures

    SciTech Connect

    Yoshida, Yuzuru; Tamehiro, Hiroshi; Chijiiwa, Rikio; Funato, Kazuo; Doi, Naoki; Tanaka, Kazuaki; Kibe, Masaomi

    1993-12-31

    Titanium-oxide bearing steel (Ti-O steel), which has improved toughness in the heat-affected zone (HAZ) by utilizing intragranular ferrite (IGF), has been developed, and successfully put into commercial production. This was also the first application of yield strength (YS) 420 N/mm{sup 2} class TMCP steel plates to offshore structures. In the Ti-O steel, IGF grows radially from Ti-oxides finely dispersed in the steel as nuclei when HAZ transforms from austenite to ferrite after welding, and thus the microstructure of the HAZ is remarkably refined. As Ti-oxide particles are chemically stable even in the region near the fusion line which was reheated to a high-temperature above 1,350 C, control of the microstructure is possible in the entire HAZ and excellent crack tip opening displacement (CTOD) properties can be obtained. By applying Ti-O steel, Nippon Steel has succeeded in the mass production (approximately 9,000 tons) of YS 420 N/mm{sup 2} class TMCP steel plate for offshore structures in the North Sea. In addition to high strength and strict CTOD properties, various other properties including low carbon equivalent, narrow YS range, etc., were required for this plate. In order to satisfy these requirements, it was necessary to take comprehensive measured in the entire production process including steel making, continuous casting and plate rolling. The Ti-O steel with low carbon equivalent satisfies the required strength and low-temperature toughness of the base material and exhibits excellent toughness in the CTOD and Charpy tests of the welded joints, and offers good field weldability. Furthermore, the YS was controlled within a narrow range of less than 100 N/mm{sup 2} by strictly controlling the range of chemical composition and the TMCP condition.

  19. Fatigue behavior of high-strength concrete under marine conditions

    SciTech Connect

    Mor, A.

    1987-01-01

    In this study, 24 high-strength reinforced concrete beams were tested in fatigue under simulated marine conditions. Low-cycle, high-magnitude loading was imposed on beams, some of which were exposed to air, and others which were submerged in water. The beams were cycled at 1 Hz, to 80% of their yield capacity in negative and positive flexure. Four concrete mixes were compared. Half of the specimens were made with lightweight aggregate (LWA), and half were made with river gravel (NWA). Half of each group contained silica-fume as partial replacement of cement (13%). By manipulating the water/cement ratio, the 28-day compressive strength of all concretes was 9500 {plus minus} 300 psi. The previously reported phenomenon of water pumping through the cracks was observed, but did not appear to be directly related to the subsequent failure. When silica fume is added to the concrete mix, the adhesion is greatly improved. LWA concrete utilizes this additional adhesion effectively. NWA concrete with silica-fume, on the other hand, is not able to utilize the increased adhesion due to microcracking. Main findings of both the fatigue and pull-out bond tests are listed.

  20. Control technology for surface treatment of materials using induction hardening

    SciTech Connect

    Kelley, J.B.; Skocypec, R.D.

    1997-04-01

    In the industrial and automotive industries, induction case hardening is widely used to provide enhanced strength, wear resistance, and toughness in components made from medium and high carbon steels. The process uses significantly less energy than competing batch process, is environmentally benign, and is a very flexible in-line manufacturing process. As such, it can directly contribute to improved component reliability, and the manufacture of high-performance lightweight parts. However, induction hardening is not as widely used as it could be. Input material and unexplained process variations produce significant variation in product case depth and quality. This necessitates frequent inspection of product quality by destructive examination, creates higher than desired scrap rates, and causes de-rating of load stress sensitive components. In addition, process and tooling development are experience-based activities, accomplished by trial and error. This inhibits the use of induction hardening for new applications, and the resultant increase in energy efficiency in the industrial sectors. In FY96, a Cooperative Research and Development Agreement under the auspices of the Technology Transfer Initiative and the Partnership for a New Generation of Vehicles was completed. A multidisciplinary team from Sandia National Labs and Delphi Saginaw Steering Systems investigated the induction hardening by conducting research in the areas of process characterization, computational modeling, materials characterization, and high speed data acquisition and controller development. The goal was to demonstrate the feasibility of closed-loop control for a specific material, geometry, and process. Delphi Steering estimated annual savings of $2-3 million per year due to reduced scrap losses, inspection costs, and machine down time if reliable closed-loop control could be achieved. A factor of five improvement in process precision was demonstrated and is now operational on the factory floor.

  1. Experimental investigation of bond strength under high loading rates

    NASA Astrophysics Data System (ADS)

    Michal, Mathias; Keuser, Manfred; Solomos, George; Peroni, Marco; Larcher, Martin; Esteban, Beatriz

    2015-09-01

    The structural behaviour of reinforced concrete is governed significantly by the transmission of forces between steel and concrete. The bond is of special importance for the overlapping joint and anchoring of the reinforcement, where rigid bond is required. It also plays an important role in the rotational capacity of plastic hinges, where a ductile bond behaviour is preferable. Similar to the mechanical properties of concrete and steel also the characteristics of their interaction changes with the velocity of the applied loading. For smooth steel bars with its main bond mechanisms of adhesion and friction, nearly no influence of loading rate is reported in literature. In contrast, a high rate dependence can be found for the nowadays mainly used deformed bars. For mechanical interlock, where ribs of the reinforcing steel are bracing concrete material surrounding the bar, one reason can be assumed to be in direct connection with the increase of concrete compressive strength. For splitting failure of bond, characterized by the concrete tensile strength, an even higher dynamic increase is observed. For the design of Structures exposed to blast or impact loading the knowledge of a rate dependent bond stress-slip relationship is required to consider safety and economical aspects at the same time. The bond behaviour of reinforced concrete has been investigated with different experimental methods at the University of the Bundeswehr Munich (UniBw) and the Joint Research Centre (JRC) in Ispra. Both static and dynamic tests have been carried out, where innovative experimental apparatuses have been used. The bond stress-slip relationship and maximum pull-out-forces for varying diameter of the bar, concrete compressive strength and loading rates have been obtained. It is expected that these experimental results will contribute to a better understanding of the rate dependent bond behaviour and will serve for calibration of numerical models.

  2. Mechanical Properties of High Strength Al-Mg Alloy Sheet

    NASA Astrophysics Data System (ADS)

    Choi, Bong-Jae; Hong, Kyung-Eui; Kim, Young-Jig

    The aim of this research is to develop the high strength Al alloy sheet for the automotive body. For the fabrication Al-Mg alloy sheet, the composition of alloying elements was designed by the properties database and CALPHAD (Calculation Phase Diagram) approach which can predict the phases during solidification using thermodynamic database. Al-Mg alloys were designed using CALPHAD approach according to the high content of Mg with minor alloying elements. After phase predictions by CALPHAD, designed Al-Mg alloys were manufactured. Addition of Mg in Al melts were protected by dry air/Sulphur hexafluoride (SF6) mixture gas which can control the severe Mg ignition and oxidation. After rolling procedure of manufactured Al-Mg alloys, mechanical properties were examined with the variation of the heat treatment conditions.

  3. Strength of VGCF/Al Composites for High Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Fukuchi, Kohei; Sasaki, Katsuhiko; Imanishi, Terumitsu; Katagiri, Kazuaki; Kakitsuji, Atsushi; Shimizu, Akiyuki

    In this paper, the evaluation of the strength of the VGCF/Aluminum composites which have high thermal conductivity is reported. VGCF (Vapor Growth Carbon Fiber) is a kind of the Carbon nanotube (CNT) which has very high thermal conductivity as well as CNT. The composites are made by spark plasma sintering. The stress-strain curves of the composites are obtained by the tensile tests and show that the composites have brittle behavior. The brittleness of the composites increases with increase in the volume fraction of VGCF. A numerical simulation based on the micromechanics is conducted to estimate nonlinear behavior in the elastic deformation and plastic deformation of the stress-strain relations of the composites. The theories of Eshelby, Mori-Tanaka, Weibull, and Ramberg-Osgood are employed for the numerical simulation. The simulations give some information of the microstructural change in the composite related to the volume fraction of VGCF.

  4. Prediction of Microstructure in High-Strength Ductile Forging Parts

    SciTech Connect

    Urban, M.; Back, A.; Hirt, G.; Keul, C.; Bleck, W.

    2010-06-15

    Governmental, environmental and economic demands call for lighter, stiffer and at the same time cheaper products in the vehicle industry. Especially safety relevant parts have to be stiff and at the same time ductile. The strategy of this project was to improve the mechanical properties of forging steel alloys by employing a high-strength and ductile bainitic microstructure in the parts while maintaining cost effective process chains to reach these goals for high stressed forged parts. Therefore, a new steel alloy combined with an optimized process chain has been developed. To optimize the process chain with a minimum of expensive experiments, a numerical approach was developed to predict the microstructure of the steel alloy after the process chain based on FEM simulations of the forging and cooling combined with deformation-time-temperature-transformation-diagrams.

  5. Scintillation-Hardened GPS Receiver

    NASA Technical Reports Server (NTRS)

    Stephens, Donald R.

    2015-01-01

    CommLargo, Inc., has developed a scintillation-hardened Global Positioning System (GPS) receiver that improves reliability for low-orbit missions and complies with NASA's Space Telecommunications Radio System (STRS) architecture standards. A software-defined radio (SDR) implementation allows a single hardware element to function as either a conventional radio or as a GPS receiver, providing backup and redundancy for platforms such as the International Space Station (ISS) and high-value remote sensing platforms. The innovation's flexible SDR implementation reduces cost, weight, and power requirements. Scintillation hardening improves mission reliability and variability. In Phase I, CommLargo refactored an open-source GPS software package with Kalman filter-based tracking loops to improve performance during scintillation and also demonstrated improved navigation during a geomagnetic storm. In Phase II, the company generated a new field-programmable gate array (FPGA)-based GPS waveform to demonstrate on NASA's Space Communication and Navigation (SCaN) test bed.

  6. Accelerated Creep Testing of High Strength Aramid Webbing

    NASA Technical Reports Server (NTRS)

    Jones, Thomas C.; Doggett, William R.; Stnfield, Clarence E.; Valverde, Omar

    2012-01-01

    A series of preliminary accelerated creep tests were performed on four variants of 12K and 24K lbf rated Vectran webbing to help develop an accelerated creep test methodology and analysis capability for high strength aramid webbings. The variants included pristine, aged, folded and stitched samples. This class of webbings is used in the restraint layer of habitable, inflatable space structures, for which the lifetime properties are currently not well characterized. The Stepped Isothermal Method was used to accelerate the creep life of the webbings and a novel stereo photogrammetry system was used to measure the full-field strains. A custom MATLAB code is described, and used to reduce the strain data to produce master creep curves for the test samples. Initial results show good correlation between replicates; however, it is clear that a larger number of samples are needed to build confidence in the consistency of the results. It is noted that local fiber breaks affect the creep response in a similar manner to increasing the load, thus raising the creep rate and reducing the time to creep failure. The stitched webbings produced the highest variance between replicates, due to the combination of higher local stresses and thread-on-fiber damage. Large variability in the strength of the webbings is also shown to have an impact on the range of predicted creep life.

  7. High-strength carbon nanotube fibre-like ribbon with high ductility and high electrical conductivity.

    PubMed

    Wang, J N; Luo, X G; Wu, T; Chen, Y

    2014-01-01

    Macroscopic fibres made up of carbon nanotubes exhibit properties far below theoretical predictions and even much lower than those for conventional carbon fibres. Here we report improvements of mechanical and electrical properties by more than one order of magnitude by pressurized rolling. Our carbon nanotubes self-assemble to a hollow macroscopic cylinder in a tube reactor operated at high temperature and then condense in water or ethanol to form a fibre, which is continually spooled in an open-air environment. This initial fibre is densified by rolling under pressure, leading to a combination of high tensile strength (3.76-5.53 GPa), high tensile ductility (8-13%) and high electrical conductivity ((1.82-2.24) × 10(4) S cm(-1)). Our study therefore demonstrates strategies for future performance maximization and the very considerable potential of carbon nanotube assemblies for high-end uses. PMID:24964266

  8. Strength and flexibility of bulk high-{Tc} superconductors

    SciTech Connect

    Goretta, K.C.; Jiang, M.; Kupperman, D.S.; Lanagan, M.T.; Singh, J.P.; Vasanthamohan, N.; Hinks, D.G.; Mitchell, J.F.; Richardson, J.W. Jr.

    1996-08-01

    Strength, fracture toughness, and elastic modulus data have been gathered for bulk high-temperature superconductors, commercial 99.9% Ag, and a 1.2 at.% Mg/Ag alloy. These data have been used to calculate fracture strains for bulk conductors. The calculations indicate that the superconducting cores of clad tapes should begin to fracture at strains below 0.2%. In addition, residual strains in Ag-clad (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} tapes have been measured by neutron diffraction. An explanation is offered for why many tapes appear to be able to tolerate large strains before exhibiting a reduction in current transport.

  9. Method of making high strength, tough alloy steel

    DOEpatents

    Thomas, Gareth; Rao, Bangaru V. N.

    1979-01-01

    A high strength, tough alloy steel, particularly suitable for the mining industry, is formed by heating the steel to a temperature in the austenite range (1000.degree.-1100.degree. C.) to form a homogeneous austenite phase and then cooling the steel to form a microstructure of uniformly dispersed dislocated martensite separated by continuous thin boundary films of stabilized retained austenite. The steel includes 0.2-0.35 weight % carbon, at least 1% and preferably 3-4.5% chromium, and at least one other subsitutional alloying element, preferably manganese or nickel. The austenite film is stable to subsequent heat treatment as by tempering (below 300.degree. C.) and reforms to a stable film after austenite grain refinement.

  10. Thermal Transport in High-Strength Polymethacrylimide (PMI) Foam Insulations

    NASA Astrophysics Data System (ADS)

    Qiu, L.; Zheng, X. H.; Zhu, J.; Tang, D. W.; Yang, S. Y.; Hu, A. J.; Wang, L. L.; Li, S. S.

    2015-11-01

    Thermal transport in high-strength polymethacrylimide (PMI) foam insulations is described, with special emphasis on the density and temperature effects on the thermal transport performance. Measurements of the effective thermal conductivity are performed by a freestanding sensor-based 3ω method. A linear relationship between the density and the effective thermal conductivity is observed. Based on the analysis of the foam insulation morphological structures and the corresponding geometrical cell model, the quantitative contribution of the solid conductivity and the gas conductivity as well as the radiative conductivity to the total effective thermal conductivity as a function of the density and temperature is calculated. The agreement between the curves of the results from the developed model and experimental data indicate the model can be used for PMI foam insulating performance optimization.