Science.gov

Sample records for harmonic noise sources

  1. Active Noise Control of Acoustic Sources Using Spherical Harmonics Expansion and a Genetic Algorithm: Simulation and Experiment

    NASA Astrophysics Data System (ADS)

    Martin, T.; Roure, A.

    1998-05-01

    A general method is presented to optimize transducer location in an active noise control problem. The method includes two parts. First, the actuator configuration is determined by using a model of the primary field which is a spherical harmonics expansion. In the second part, a genetic algorithm is used to determine the error sensor configuration. This method is then applied to two real acoustic sources: a dipole and an electrical transformer. In numerical simulations, the primary field of both sources measured in an anechoic room was used to determine the active control configurations. Then, the actuator and error sensor arrangement was tested in an active control experiment involving both primary, sources.

  2. An Analysis of Shot Noise Propagation and Amplificationin Harmonic Cascade FELs

    SciTech Connect

    Huang, Z.; /SLAC

    2006-12-11

    The harmonic generation process in a harmonic cascade (HC) FEL is subject to noise degradation which is proportional to the square of the total harmonic order. In this paper, we study the shot noise evolution in the first-stage modulator and radiator of a HC FEL that produces the dominant noise contributions. We derive the effective input noise for a modulator operating in the low-gain regime, and analyze the radiator noise for a density-modulated beam. The significance of these noise sources in different harmonic cascade designs is also discussed.

  3. The Effects of Crosswind Flight on Rotor Harmonic Noise Radiation

    NASA Technical Reports Server (NTRS)

    Greenwood, Eric; Sim, Ben W.

    2013-01-01

    In order to develop recommendations for procedures for helicopter source noise characterization, the effects of crosswinds on main rotor harmonic noise radiation are assessed using a model of the Bell 430 helicopter. Crosswinds are found to have a significant effect on Blade-Vortex Interaction (BVI) noise radiation when the helicopter is trimmed with the fuselage oriented along the inertial flight path. However, the magnitude of BVI noise remains unchanged when the pilot orients the fuselage along the aerodynamic velocity vector, crabbing for zero aerodynamic sideslip. The effects of wind gradients on BVI noise are also investigated and found to be smaller in the crosswind direction than in the headwind direction. The effects of crosswinds on lower harmonic noise sources at higher flight speeds are also assessed. In all cases, the directivity of radiated noise is somewhat changed by the crosswind. The model predictions agree well with flight test data for the Bell 430 helicopter captured under various wind conditions. The results of this investigation would suggest that flight paths for future acoustic flight testing are best aligned across the prevailing wind direction to minimize the effects of winds on noise measurements when wind cannot otherwise be avoided.

  4. Understanding Slat Noise Sources

    NASA Technical Reports Server (NTRS)

    Khorrami, Medhi R.

    2003-01-01

    Model-scale aeroacoustic tests of large civil transports point to the leading-edge slat as a dominant high-lift noise source in the low- to mid-frequencies during aircraft approach and landing. Using generic multi-element high-lift models, complementary experimental and numerical tests were carefully planned and executed at NASA in order to isolate slat noise sources and the underlying noise generation mechanisms. In this paper, a brief overview of the supporting computational effort undertaken at NASA Langley Research Center, is provided. Both tonal and broadband aspects of slat noise are discussed. Recent gains in predicting a slat s far-field acoustic noise, current shortcomings of numerical simulations, and other remaining open issues, are presented. Finally, an example of the ever-expanding role of computational simulations in noise reduction studies also is given.

  5. A LOW NOISE RF SOURCE FOR RHIC.

    SciTech Connect

    HAYES,T.

    2004-07-05

    The Relativistic Heavy Ion Collider (RHIC) requires a low noise rf source to ensure that beam lifetime during a store is not limited by the rf system. The beam is particularly sensitive to noise from power line harmonics. Additionally, the rf source must be flexible enough to handle the frequency jump required for rebucketing (transferring bunches from the acceleration to the storage rf systems). This paper will describe the design of a Direct Digital Synthesizer (DDS) based system that provides both the noise performance and the flexibility required.

  6. Temporal Characterization of Aircraft Noise Sources

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Sullivan, Brenda M.; Rizzi, Stephen A.

    2004-01-01

    Current aircraft source noise prediction tools yield time-independent frequency spectra as functions of directivity angle. Realistic evaluation and human assessment of aircraft fly-over noise require the temporal characteristics of the noise signature. The purpose of the current study is to analyze empirical data from broadband jet and tonal fan noise sources and to provide the temporal information required for prediction-based synthesis. Noise sources included a one-tenth-scale engine exhaust nozzle and a one-fifth scale scale turbofan engine. A methodology was developed to characterize the low frequency fluctuations employing the Short Time Fourier Transform in a MATLAB computing environment. It was shown that a trade-off is necessary between frequency and time resolution in the acoustic spectrogram. The procedure requires careful evaluation and selection of the data analysis parameters, including the data sampling frequency, Fourier Transform window size, associated time period and frequency resolution, and time period window overlap. Low frequency fluctuations were applied to the synthesis of broadband noise with the resulting records sounding virtually indistinguishable from the measured data in initial subjective evaluations. Amplitude fluctuations of blade passage frequency (BPF) harmonics were successfully characterized for conditions equivalent to take-off and approach. Data demonstrated that the fifth harmonic of the BPF varied more in frequency than the BPF itself and exhibited larger amplitude fluctuations over the duration of the time record. Frequency fluctuations were found to be not perceptible in the current characterization of tonal components.

  7. High speed helicopter noise sources

    NASA Technical Reports Server (NTRS)

    Lee, A.

    1977-01-01

    The state-of-the art of helicopter rotor impulsive noise is reviewed. A triangulation technique for locating impulsive noise sources is developed using once-per-rev index signals as time references. A computer program (INSL) was written implementing this technique. Applying triangulation to the full-scale UH-1 noise data of NASA/Ames Research Center 40- by 80-Foot Wind Tunnel, three different noise sources are found on the rotor disk. The primary sources of thickness noise are in the second quadrant and on the advancing side of rotor disk. Two aerodynamic sources due to blade/vortex interaction are found in the first quadrant.

  8. Noise Amplification in Echo-Enabled Harmonic Generation (EEHG)

    SciTech Connect

    Stupakov, G.; Huang, Z.; Ratner, D.; /SLAC

    2010-08-25

    Two essential elements of a seeded FEL based on the echo-enabled harmonic generation (EEHG) are the undulator-modulators, in which a laser beam modulates the beam energy. We study how the interaction of electrons in these undulators changes the noise properties of the beam. This paper is based on the method of noise analysis developed in Ref. [1] and extends it for the case of EEHG.

  9. Speech synthesis with pitch modification using harmonic plus noise model

    NASA Astrophysics Data System (ADS)

    Lehana, Parveen K.; Pandey, Prem C.

    2003-10-01

    In harmonic plus noise model (HNM) based speech synthesis, the input signal is modeled as two parts: the harmonic part using amplitudes and phases of the harmonics of the fundamental and the noise part using an all-pole filter excited by random white Gaussian noise. This method requires relatively less number of parameters and computations, provides good quality output, and permits pitch and time scaling without explicit estimation of vocal tract parameters. Pitch scaling to synthesize the speech with interpolated original amplitudes and phases at the multiples of the scaled pitch frequency results in an unnatural quality. Our investigation for obtaining natural quality output showed that the frequency scale of the amplitudes and phases of the harmonics of the original signal needed to be modified by a speaker dependent warping function. The function was obtained by studying the relationship between pitch frequency and formant frequencies for the three cardinal vowels naturally occurring with different pitches in a passage with intonation. Listening tests showed that good quality speech was obtained by linear frequency scaling of the amplitude and phase spectra, by the same factor as the pitch-scaling.

  10. Aerodynamic noise sources

    NASA Astrophysics Data System (ADS)

    Munin, A. G.; Kuznetsov, V. M.; Leontev, E. A.

    A general theory is developed for aerodynamic sound generation and its propagation in an inhomogeneous medium. Results of theoretical and experimental studies of the acoustic characteristics of jets are discussed, and a solution is presented to the problem concerning the noise from a section, free rotor, and a rotor located inside a channel. Sound propagation in a channel with flow and selection of soundproofing liners for the channel walls are also discussed.

  11. Demonstration of Johnson noise thermometry with all-superconducting quantum voltage noise source

    NASA Astrophysics Data System (ADS)

    Yamada, Takahiro; Urano, Chiharu; Maezawa, Masaaki

    2016-01-01

    We present a Johnson noise thermometry (JNT) system based on an integrated quantum voltage noise source (IQVNS) that has been fully implemented using superconducting circuit technology. To enable precise measurement of Boltzmann's constant, an IQVNS chip was designed to produce intrinsically calculable pseudo-white noise to calibrate the JNT system. On-chip real-time generation of pseudo-random codes via simple circuits produced pseudo-voltage noise with a harmonic tone interval of less than 1 Hz, which was one order of magnitude finer than the harmonic tone interval of conventional quantum voltage noise sources. We estimated a value for Boltzmann's constant experimentally by performing JNT measurements at the temperature of the triple point of water using the IQVNS chip.

  12. Determination of noise descriptors and criteria for pyrotechnic noise sources

    NASA Astrophysics Data System (ADS)

    Wu, Weixiong

    2005-04-01

    A noise study was conducted to determine appropriate noise descriptors and criteria for assessing pyrotechnic noise sources. The study was carried out to support an environmental impact statement (EIS) that defined sensitive land uses adjacent to reservoirs in New York City area, where potential noise impacts from avian dispersion measures would occur. The pyrotechnic techniques defined as impulsive noise sources are among the avian dispersion measures that would be used at the reservoirs. Determining appropriate noise descriptors and criteria was critical to the EIS because of the distinctive sound characteristics of pyrotechnic impulse noise sources, the lack of published literature on assessing them, and the absence of corresponding noise regulations. Noise descriptors and criteria used for EIS in the United States were investigated, and noise measurements for pyrotechnic noise sources and some impulsive noise sources were also performed. The study results demonstrate that C-weighted DNL is an appropriate descriptor for assessing noise impacts from the pyrotechnics based on the U.S. Army Environmental Noise Management Program criteria, and peak hour A-weighted Leq(1) is a suitable noise descriptor for determining noise impacts for avian dispersion measures, including the pyrotechnics, based on the New York City Environmental Quality Review criteria.

  13. Observations of discrete harmonics emerging from equatorial noise.

    PubMed

    Balikhin, Michael A; Shprits, Yuri Y; Walker, Simon N; Chen, Lunjin; Cornilleau-Wehrlin, Nicole; Dandouras, Iannis; Santolik, Ondrej; Carr, Christopher; Yearby, Keith H; Weiss, Benjamin

    2015-01-01

    A number of modes of oscillations of particles and fields can exist in space plasmas. Since the early 1970s, space missions have observed noise-like plasma waves near the geomagnetic equator known as 'equatorial noise'. Several theories were suggested, but clear observational evidence supported by realistic modelling has not been provided. Here we report on observations by the Cluster mission that clearly show the highly structured and periodic pattern of these waves. Very narrow-banded emissions at frequencies corresponding to exact multiples of the proton gyrofrequency (frequency of gyration around the field line) from the 17th up to the 30th harmonic are observed, indicating that these waves are generated by the proton distributions. Simultaneously with these coherent periodic structures in waves, the Cluster spacecraft observes 'ring' distributions of protons in velocity space that provide the free energy for the waves. Calculated wave growth based on ion distributions shows a very similar pattern to the observations. PMID:26169360

  14. Tuning third harmonic generation of impurity doped quantum dots in the presence of Gaussian white noise

    NASA Astrophysics Data System (ADS)

    Saha, Surajit; Ghosh, Manas

    2016-03-01

    We perform a broad exploration of profiles of third harmonic generation (THG) susceptibility of impurity doped quantum dots (QDs) in the presence and absence of noise. We have invoked Gaussian white noise in the present study. A Gaussian impurity has been introduced into the QD. Noise has been applied to the system additively and multiplicatively. A perpendicular magnetic field emerges out as a confinement source and a static external electric field has been applied. The THG profiles have been pursued as a function of incident photon energy when several important parameters such as electric field strength, magnetic field strength, confinement energy, dopant location, Al concentration, dopant potential, relaxation time and noise strength assume different values. Moreover, the role of the pathway through which noise is applied (additive/multiplicative) on the THG profiles has also been deciphered. The THG profiles are found to be decorated with interesting observations such as shift of THG peak position and maximization/minimization of THG peak intensity. Presence of noise alters the characteristics of THG profiles and sometimes enhances the THG peak intensity. Furthermore, the mode of application of noise (additive/multiplicative) also regulates the THG profiles in a few occasions in contrasting manners. The observations highlight the possible scope of tuning the THG coefficient of doped QD systems in the presence of noise and bears tremendous technological importance.

  15. Observations of discrete harmonics emerging from equatorial noise

    PubMed Central

    Balikhin, Michael A.; Shprits, Yuri Y.; Walker, Simon N.; Chen, Lunjin; Cornilleau-Wehrlin, Nicole; Dandouras, Iannis; Santolik, Ondrej; Carr, Christopher; Yearby, Keith H.; Weiss, Benjamin

    2015-01-01

    A number of modes of oscillations of particles and fields can exist in space plasmas. Since the early 1970s, space missions have observed noise-like plasma waves near the geomagnetic equator known as ‘equatorial noise'. Several theories were suggested, but clear observational evidence supported by realistic modelling has not been provided. Here we report on observations by the Cluster mission that clearly show the highly structured and periodic pattern of these waves. Very narrow-banded emissions at frequencies corresponding to exact multiples of the proton gyrofrequency (frequency of gyration around the field line) from the 17th up to the 30th harmonic are observed, indicating that these waves are generated by the proton distributions. Simultaneously with these coherent periodic structures in waves, the Cluster spacecraft observes ‘ring' distributions of protons in velocity space that provide the free energy for the waves. Calculated wave growth based on ion distributions shows a very similar pattern to the observations. PMID:26169360

  16. Double coherence resonance of the FitzHughNagumo neuron driven by harmonic velocity noise

    NASA Astrophysics Data System (ADS)

    Song, Yan-Li

    2014-08-01

    The effect of noise frequency on the FitzHughNagumo neuron is investigated by the use of the harmonic velocity noise, which has a direct frequency parameter and no zero frequency part of the power spectrum. It is shown that the neuron has the resonance characteristic strongly responding to the noise with a certain frequency at fixed power, and there is double coherence resonance related to the frequency and the intensity. If the harmonic velocity noise lacks low frequency ingredients, there is no synchronization between the frequency of the neuron and that of the noise. Thus the low frequency part of the noise plays an important role in creating the synchronization.

  17. Noise levels and the sources of noise pollution in Karachi.

    PubMed

    Zaidi, S H

    1989-03-01

    The menace of noise is a by-product of civilization and its hazards are well known. Noise levels were measured in Karachi, at different places and at different times of the night and day, using an Amplaid noise meter. The leg for Karachi came to 80 dB (A), the General Noise Index x (G.N.I.) to 460, and the noise pollution level (N.P.L.) to 99 dB (A). These values are significantly higher (P less than 0.01) than the available international data. The sources of noise production were indentified as, the road traffic, human activity, industrial and civil works, mechanical and engineering workshops. The most noticeable sources of noise pollution in Karachi, are the autorickshaws, trail motor bikes and the fag horns of public transport (JPMA 39-62, 1989). PMID:2500539

  18. En route noise: NASA propfan test aircraft (calculated source noise

    NASA Astrophysics Data System (ADS)

    Rickley, E. J.

    1990-04-01

    The second phase of a joint National Aeronautics and Space Administration (NASA) and Federal Aviation Administration (FAA) program to study the high-altitude, low-frequency acoustic noise propagation characteristics of the Advanced Turboprop (propfan) Aircraft was conducted on April 3-13, 1989 at the White Sands Missile Range (WSMR), New Mexico. The first phase was conducted on October 26-31, 1987 in Huntsville, Alabama. NASA (Lewis) measured the source noise of the test aircraft during both phases while NASA (Langley) measured surface noise only during the second phase. FAA/NASA designed a program to obtain noise level data from the propfan test bed aircraft, both in the near field and at ground level, during simulated en route flights (35,000 and 20,000 feet ASL), and to test low frequency atmospheric absorption algorithms and prediction technology to provide insight into the necessity for regulatory measures. The curves of calculated source noise versus emission angle are based on a second order best-fit curve of the peak envelope of the adjusted ground data. Centerline and sideline derived source noise levels are shown to be in good agreement. A comparison of the Alabama chase plane source data and the calculated source noise at centerline for both the Alabama and New Mexico data shows good agreement for the 35,000 and the 20,000 feet (ASL) overflights. With the availability of the New Mexico in-flight data, further in depth comparisons will be made.

  19. En route noise: NASA propfan test aircraft (calculated source noise

    NASA Technical Reports Server (NTRS)

    Rickley, E. J.

    1990-01-01

    The second phase of a joint National Aeronautics and Space Administration (NASA) and Federal Aviation Administration (FAA) program to study the high-altitude, low-frequency acoustic noise propagation characteristics of the Advanced Turboprop (propfan) Aircraft was conducted on April 3-13, 1989 at the White Sands Missile Range (WSMR), New Mexico. The first phase was conducted on October 26-31, 1987 in Huntsville, Alabama. NASA (Lewis) measured the source noise of the test aircraft during both phases while NASA (Langley) measured surface noise only during the second phase. FAA/NASA designed a program to obtain noise level data from the propfan test bed aircraft, both in the near field and at ground level, during simulated en route flights (35,000 and 20,000 feet ASL), and to test low frequency atmospheric absorption algorithms and prediction technology to provide insight into the necessity for regulatory measures. The curves of calculated source noise versus emission angle are based on a second order best-fit curve of the peak envelope of the adjusted ground data. Centerline and sideline derived source noise levels are shown to be in good agreement. A comparison of the Alabama chase plane source data and the calculated source noise at centerline for both the Alabama and New Mexico data shows good agreement for the 35,000 and the 20,000 feet (ASL) overflights. With the availability of the New Mexico in-flight data, further in depth comparisons will be made.

  20. Flow noise source-resonator coupling

    SciTech Connect

    Pollack, M.L.

    1997-11-01

    This paper investigates the coupling mechanism between flow noise sources and acoustic resonators. Analytical solutions are developed for the classical cases of monopole and dipole types of flow noise sources. The effectiveness of the coupling between the acoustic resonator and the noise source is shown to be dependent on the type of noise source as well as its location on the acoustic pressure mode shape. For a monopole source, the maximum coupling occurs when the noise source is most intense near an acoustic pressure antinode (i.e., location of maximum acoustic pressure). A numerical study with the impedance method demonstrates this effect. A dipole source couples most effectively when located near an acoustic pressure node.

  1. Lifetime increase using passive harmonic cavities insynchrotronlight sources

    SciTech Connect

    Byrd, J.M.; Georgsson, M.

    2000-09-22

    Harmonic cavities have been used in storage rings to increase beam lifetime and Landau damping by lengthening the bunch.The need for lifetime increase is particularly great in the present generation of low to medium energy synchrotron light sources where the small transverse beam sizes lead to relatively short lifetimes from large-angle intrabeam (Touschek) scattering. We review the beam dynamics of harmonic radiofrequency (RF) systems and discuss optimization of the beam lifetime using passive harmonic cavities.

  2. Source and processing effects on noise correlations

    NASA Astrophysics Data System (ADS)

    Fichtner, Andreas

    2014-05-01

    We quantify the effects of spatially heterogeneous noise sources and seismic processing on noise correlation measurements and their sensitivity to Earth structure. Our analysis is based on numerical wavefield simulations in heterogeneous media. This allows us to calculate inter-station correlations for arbitrarily distributed noise sources where - as in the real Earth - different frequencies are generated in different locations. Using adjoint methods, we compute the exact structural sensitivities for a given combination of source distribution, processing scheme, and measurement technique. The key results of our study are as follows: (1) Heterogeneous noise sources and subjective processing, such as the application of spectral whitening, have profound effects on noise correlation wave forms. (2) Nevertheless, narrow-band traveltime measurements are only weakly affected by heterogeneous noise sources and processing. This result is in accord with previous analytical studies, and it explains the similarity of noise and earthquake tomographies that only exploit traveltime information. (3) Spatially heterogeneous noise sources can lead to structural sensitivities that deviate strongly from the classical cigar-shaped sensitivities. Furthermore, the frequency dependence of sensitivity kernels can go far beyond the well-know dependence of the Fresnel zone width on frequency. Our results imply that a meaningful application of modern full waveform inversion methods to noise correlations is not possible unless both the noise source distribution and the processing scheme are properly taken into account. Failure to do so can lead to erroneous misfit quantifications, slow convergence of optimisation schemes, and to the appearance of tomographic artefacts that reflect the incorrect structural sensitivity. These aspects acquire special relevance in the monitoring of subtle changes of subsurface structure that may be polluted when the time dependence of heterogeneous noise sources is ignored.

  3. Noise sources in wind turbines. Source identification research: Noise suppression design

    NASA Astrophysics Data System (ADS)

    Vanschie, L. W. A.; Debruijn, A.; Vantol, F. H.

    1985-06-01

    Aerodynamic and mechanical noise measurements on medium-sized wind turbines were carried out; literature on aerodynamic noise sources at wings was reviewed. The total emission level as a function of the average wind velocity was determined. Aerodynamic wing noise was measured seperately from the nacelle noise using a microphone. A trigger unit consisting of an optical sensor and telelens was developed to measure synchronically the noise signal of the wing in horizontal position. In the nacelle, noise and vibration measurements were done at the entering axis, the gear casing, and the generator. Main sources are the gear casing, the generator, and obstacles on the wings. Noise reducing design recommendations are given.

  4. Investigation of hydraulic transmission noise sources

    NASA Astrophysics Data System (ADS)

    Klop, Richard J.

    Advanced hydrostatic transmissions and hydraulic hybrids show potential in new market segments such as commercial vehicles and passenger cars. Such new applications regard low noise generation as a high priority, thus, demanding new quiet hydrostatic transmission designs. In this thesis, the aim is to investigate noise sources of hydrostatic transmissions to discover strategies for designing compact and quiet solutions. A model has been developed to capture the interaction of a pump and motor working in a hydrostatic transmission and to predict overall noise sources. This model allows a designer to compare noise sources for various configurations and to design compact and inherently quiet solutions. The model describes dynamics of the system by coupling lumped parameter pump and motor models with a one-dimensional unsteady compressible transmission line model. The model has been verified with dynamic pressure measurements in the line over a wide operating range for several system structures. Simulation studies were performed illustrating sensitivities of several design variables and the potential of the model to design transmissions with minimal noise sources. A semi-anechoic chamber has been designed and constructed suitable for sound intensity measurements that can be used to derive sound power. Measurements proved the potential to reduce audible noise by predicting and reducing both noise sources. Sound power measurements were conducted on a series hybrid transmission test bench to validate the model and compare predicted noise sources with sound power.

  5. The role of load harmonics in audible noise of electrical transformers

    NASA Astrophysics Data System (ADS)

    Ertl, Michael; Voss, Stephan

    2014-04-01

    Harmonic components in load currents have a larger impact on the load noise level of transformers than might be expected from their amplitude. There are several reasons for this larger impact: (a) the interaction of higher harmonics with the large fundamental load current at power frequency, (b) the increasing sound radiation efficiency with increasing frequency, and (c) the greater sensitivity of the human ear to higher frequencies, which is considered in sound measurements by applying the A-weighting filter. This paper describes the process of generation, transmission, and emission of load noise in the presence of load harmonics. A calculation scheme is presented that is able to estimate the noise increase and the noise spectrum of electrical transformers under non-sinusoidal load conditions. The proposed calculation scheme is applied to three practical examples.

  6. A Parameter Identification Method for Helicopter Noise Source Identification and Physics-Based Semi-Empirical Modeling

    NASA Technical Reports Server (NTRS)

    Greenwood, Eric, II; Schmitz, Fredric H.

    2010-01-01

    A new physics-based parameter identification method for rotor harmonic noise sources is developed using an acoustic inverse simulation technique. This new method allows for the identification of individual rotor harmonic noise sources and allows them to be characterized in terms of their individual non-dimensional governing parameters. This new method is applied to both wind tunnel measurements and ground noise measurements of two-bladed rotors. The method is shown to match the parametric trends of main rotor Blade-Vortex Interaction (BVI) noise, allowing accurate estimates of BVI noise to be made for operating conditions based on a small number of measurements taken at different operating conditions.

  7. A continuous wavelet transform approach for harmonic parameters estimation in the presence of impulsive noise

    NASA Astrophysics Data System (ADS)

    Dai, Yu; Xue, Yuan; Zhang, Jianxun

    2016-01-01

    Impulsive noise caused by some random events has the main character of short rise-time and wide frequency spectrum range, so it has the potential to degrade the performance and reliability of the harmonic estimation. This paper focuses on the harmonic estimation procedure based on continuous wavelet transform (CWT) when the analyzed signal is corrupted by the impulsive noise. The digital CWT of both the time-varying sinusoidal signal and the impulsive noise are analyzed, and there are two cross ridges in the time-frequency plane of CWT, which are generated by the signal and the noise separately. In consideration of the amplitude of the noise and the number of the spike event, two inequalities are derived to provide limitations on the wavelet parameters. Based on the amplitude distribution of the noise, the optimal wavelet parameters determined by solving these inequalities are used to suppress the contamination of the noise, as well as increase the amplitude of the ridge corresponding to the signal, so the parameters of each harmonic component can be estimated accurately. The proposed procedure is applied to a numerical simulation and a bone vibration signal test giving satisfactory results of stationary and time-varying harmonic parameter estimation.

  8. Noise reduction through source rerouting (L)

    NASA Astrophysics Data System (ADS)

    Makarewicz, Rufin

    2004-11-01

    Rerouting of a moving source can reduce noise exposure. For noise propagation governed by geometrical spreading and air absorption only, a lemniscate minimizes the A-weighted sound exposure. The route minimizing exposure in the presence of geometrical spreading and a simplified model for ground effects is found as well. .

  9. Programmable, very low noise current source.

    PubMed

    Scandurra, G; Cannat, G; Giusi, G; Ciofi, C

    2014-12-01

    We propose a new approach for the realization of very low noise programmable current sources mainly intended for application in the field of low frequency noise measurements. The design is based on a low noise Junction Field Effect Transistor (JFET) acting as a high impedance current source and programmability is obtained by resorting to a low noise, programmable floating voltage source that allows to set the sourced current at the desired value. The floating voltage source is obtained by exploiting the properties of a standard photovoltaic MOSFET driver. Proper filtering and a control network employing super-capacitors allow to reduce the low frequency output noise to that due to the low noise JFET down to frequencies as low as 100 mHz while allowing, at the same time, to set the desired current by means of a standard DA converter with an accuracy better than 1%. A prototype of the system capable of supplying currents from a few hundreds of ?A up to a few mA demonstrates the effectiveness of the approach we propose. When delivering a DC current of about 2 mA, the power spectral density of the current fluctuations at the output is found to be less than 25 pA/?Hz at 100 mHz and less than 6 pA/?Hz for f> 1 Hz, resulting in an RMS noise in the bandwidth from 0.1 to 10 Hz of less than 14 pA. PMID:25554328

  10. Programmable, very low noise current source

    NASA Astrophysics Data System (ADS)

    Scandurra, G.; Cannatà, G.; Giusi, G.; Ciofi, C.

    2014-12-01

    We propose a new approach for the realization of very low noise programmable current sources mainly intended for application in the field of low frequency noise measurements. The design is based on a low noise Junction Field Effect Transistor (JFET) acting as a high impedance current source and programmability is obtained by resorting to a low noise, programmable floating voltage source that allows to set the sourced current at the desired value. The floating voltage source is obtained by exploiting the properties of a standard photovoltaic MOSFET driver. Proper filtering and a control network employing super-capacitors allow to reduce the low frequency output noise to that due to the low noise JFET down to frequencies as low as 100 mHz while allowing, at the same time, to set the desired current by means of a standard DA converter with an accuracy better than 1%. A prototype of the system capable of supplying currents from a few hundreds of μA up to a few mA demonstrates the effectiveness of the approach we propose. When delivering a DC current of about 2 mA, the power spectral density of the current fluctuations at the output is found to be less than 25 pA/√Hz at 100 mHz and less than 6 pA/√Hz for f > 1 Hz, resulting in an RMS noise in the bandwidth from 0.1 to 10 Hz of less than 14 pA.

  11. Localized, Non-Harmonic Active Flap Motions for Low Frequency In-Plane Rotor Noise Reduction

    NASA Technical Reports Server (NTRS)

    Sim, Ben W.; Potsdam, Mark; Kitaplioglu, Cahit; LeMasurier, Philip; Lorber, Peter; Andrews, Joseph

    2012-01-01

    A first-of-its-kind demonstration of the use of localized, non-harmonic active flap motions, for suppressing low frequency, in-plane rotor noise, is reported in this paper. Operational feasibility is verified via testing of the full-scale AATD/Sikorsky/UTRC active flap demonstration rotor in the NFAC's 40- by 80-Foot anechoic wind tunnel. Effectiveness of using localized, non-harmonic active flap motions are compared to conventional four-per-rev harmonic flap motions, and also active flap motions derived from closed-loop acoustics implementations. All three approaches resulted in approximately the same noise reductions over an in-plane three-by-three microphone array installed forward and near in-plane of the rotor in the nearfield. It is also reported that using an active flap in this localized, non-harmonic manner, resulted in no more that 2% rotor performance penalty, but had the tendency to incur higher hub vibration levels.

  12. Noise sources in silver halide volume holograms

    NASA Astrophysics Data System (ADS)

    Fimia, Antonio; Carretero-Lopez, Luis; Belendez, Augusto

    1994-05-01

    Dichromated gelatin has been established as the most frequently used recording material for the obtention of holographic optical elements and new applications are being found for photopolymers in previously unexplored areas such as holographic interconnects. However, photographic emulsion from the beginning has been and continues to be the most used holographic recording material. This is due to the relatively high sensitivity and ease of processing of this material, improved processing chemistries, commercial films, and the repeatability of the results. In this paper we will analyze different sources of noise in photographic emulsions such as intermodulation noise, noise gratings and non-linear noise, and the influence of the photochemical process on the previously noise sources cited. Bleached emulsions by rehalogenating and solvent process will be considered and silver halide sensitized gelatin will be present as a solution in transmission holograms. At the same time, new developers and new noise models will be presented under the supposition that non-linear response of the recording material is due to the photochemical process.

  13. Phase effects in masking by harmonic complexes: Detection of bands of speech-shaped noise

    PubMed Central

    Deroche, Mickael L. D.; Culling, John F.; Chatterjee, Monita

    2014-01-01

    When phase relationships between partials of a complex masker produce highly modulated temporal envelopes on the basilar membrane, listeners may detect speech information from temporal dips in the within-channel masker envelopes. This source of masking release (MR) is however located in regions of unresolved masker partials and it is unclear how much of the speech information in these regions is really needed for intelligibility. Also, other sources of MR such as glimpsing in between resolved masker partials may provide sufficient information from regions that disregard phase relationships. This study simplified the problem of speech recognition to a masked detection task. Target bands of speech-shaped noise were restricted to frequency regions containing either only resolved or only unresolved masker partials, as a function of masker phase relationships (sine or random), masker fundamental frequency (F0) (50, 100, or 200 Hz), and masker spectral profile (flat-spectrum or speech-shaped). Although masker phase effects could be observed in unresolved regions at F0s of 50 and 100 Hz, it was only at 50-Hz F0 that detection thresholds were ever lower in unresolved than in resolved regions, suggesting little role of envelope modulations for harmonic complexes with F0s in the human voice range and at moderate level. PMID:25373972

  14. Fan Noise Source Diagnostic Test: Vane Unsteady Pressure Results

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    2002-01-01

    To investigate the nature of fan outlet guide vane pressure fluctuations and their link to rotor-stator interaction noise, time histories of vane fluctuating pressures were digitally acquired as part of the Fan Noise Source Diagnostic Test. Vane unsteady pressures were measured at seven fan tip speeds for both a radial and a swept vane configuration. Using time-domain averaging and spectral analysis, the blade passing frequency (BPF) harmonic and broadband contents of the vane pressures were individually analyzed. Significant Sound Pressure Level (SPL) reductions were observed for the swept vane relative to the radial vane for the BPF harmonics of vane pressure, but vane broadband reductions due to sweep turned out to be much smaller especially on an average basis. Cross-correlation analysis was used to establish the level of spatial coherence of broadband pressures between different locations on the vane and integral length scales of pressure fluctuations were estimated from these correlations. Two main results of this work are: (1) the average broadband level on the vane (in dB) increases linearly with the fan tip speed for both the radial and swept vanes, and (2) the broadband pressure distribution on the vane is nearly homogeneous and its integral length scale is a monotonically decreasing function of fan tip speed.

  15. Experimental measurements of moving noise sources

    NASA Technical Reports Server (NTRS)

    Maestrello, L.; Norum, T. D.

    1979-01-01

    The far-field pressure was measured from three different types of moving sources: a point monopole, a small model jet, and an aircraft. Results for the pressure time history produced by the point source show good agreement with those predicted analytically. Both actual and simulated forward motion of the model jet show reductions in noise levels with forward speed at all angles between the source and observer. Measurement with the aircraft over both an anechoic floor and over the ground yields a method for evaluating the transfer function for ground reflections at various angles between the moving aircraft and measurement position.

  16. Generation of excess low frequency noise on an optical source

    SciTech Connect

    Voigtman, E.; Winefordner, J.D.

    1987-05-01

    This paper addresses the problem of impressing an excess low frequency (ELF) noise on an optical source. The authors do not much care what the noise intensity is, in what domain the noise is originally generated, or precisely what the noise power spectral density is, so long as the noise is ELF noise, i.e., noise that is predominantly low frequency in character. Clearly, this task is easiest when the optical source is readily electrically modulatable, as is the case for continuous wave (CW) lasers, LEDs, and hollow cathode lamps. The authors demonstrate several simple ways to generate ELF noise on several optical sources.

  17. Inhomogeneity of the phase space of the damped harmonic oscillator under Lvy noise

    NASA Astrophysics Data System (ADS)

    Cao, Zhan; Wang, Yu-Feng; Luo, Hong-Gang

    2012-04-01

    The damped harmonic oscillator under symmetric Lvy white noise shows inhomogeneous phase space, which is in contrast to the homogeneous phase space of the same oscillator under the Gaussian white noise, as shown in a recent paper [Sokolov, Ebeling, and Dybiec, Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.83.041118 83, 041118 (2011)]. The inhomogeneity of the phase space shows correlation between the coordinate and the velocity of the damped oscillator under symmetric Lvy white noise. In the present work we further explore the physical origin of these distinguished features and find that it is due to the combination of the damped effect and heavy tail of the noise. We directly demonstrate this in the reduced coordinate x versus velocity ? plots and identify the physics of the antiassociation of the coordinate and velocity.

  18. Modeling helicopter near-horizon harmonic noise due to transient maneuvers

    NASA Astrophysics Data System (ADS)

    Sickenberger, Richard D.

    A new first principles model has been developed to estimate the external harmonic noise radiation for a helicopter performing transient maneuvers in the longitudinal plane. This model, which simulates the longitudinal fuselage dynamics, main rotor blade flapping, and far field acoustics, was validated using in-flight measurements and recordings from ground microphones during a full-scale flight test featuring a Bell 206B-3 helicopter. The flight test was specifically designed to study transient maneuvers. The validated model demonstrated that the flapping of the main rotor blades does not significantly affect the acoustics radiated by the helicopter during maneuvering flight. Furthermore, the model also demonstrated that Quasi-Static Acoustic Mapping (Q-SAM) methods can be used to reliably predict the noise radiated during transient maneuvers. The model was also used to identify and quantify the contributions of main rotor thickness noise, low frequency loading noise, and blade-vortex interaction (BVI) noise during maneuvering flight for the Bell 206B-3 helicopter. Pull-up and push-over maneuvers from pure longitudinal cyclic and pure collective control inputs were investigated. The contribution of thickness noise and low frequency loading noise during maneuvering flight was found to depend on the orientation of the tip-path plane relative to the observer. The contribution of impulsive BVI noise during maneuvering flight was found to depend on the inflow through the main rotor and the orientation of the tip-path plane relative to the observer.

  19. Compressed air acoustic sources for active noise control

    NASA Astrophysics Data System (ADS)

    Blondel, Laurent Armand

    An analysis is presented of an acoustic source which operates by the release of compressed air through an aperture, the area of which is made to vary with time. A distinction is made between sonic and subsonic compressed air sources, and in both cases simple equations are derived that describe the acoustical behaviour of the devices. Sonic sources are linear but inefficient. Subsonic source are much more efficient than sonic sources but their output is generally no longer a linear function of aperture opening. A numeric comparison between the performance of compressed air sources and electrodynamic loudspeakers shows that the former appear to be well suited to active noise control applications. The design of a subsonic source is described, is which a sliding plate driven by an electrodynamic shaker modulates the air flow. An experimental analysis of the laboratory subsonic source is carried out. The acoustic pressure at the source output is measured for various conditions. The experimental results are found to be in good agreement with the theoretical predictions. Predistortion of the subsonic source to produce a sinusoidal output is considered. A predistortion processor is placed in series with the electrodynamic shaker, the output of which is computed on the basis of the fundamental equation of the subsonic source. This predistortion processor is shown to be quite successful in producing controlled acoustic waveforms. The measurement of the pneumatic efficiency of the laboratory source is also considered and the measured efficiencies are close to the predicted values. The possibility of using the subsonic source as a secondary actuator for active control of periodic primary sound fields in ducts is investigated. The nonlinear behaviour of the source is shown to be reduced when the acoustic pressure at a location close to its output is cancelled. An harmonic controller is discussed that accounts for the residual nonlinear behaviour of the subsonic source and such a controller is implemented on a signal processing board. A linear model for the plant under control is shown to be accurate enough for modelling the system under control, since the harmonic controller is found to converge. Experiments with the automatic controller reveal that the attenuations measured at the monitor microphone are around 25 dB, for sinusoidal primary sound fields.

  20. Sub-harmonic broadband humps and tip noise in low-speed ring fans.

    PubMed

    Moreau, Stphane; Sanjose, Marlne

    2016-01-01

    A joint experimental and numerical study has been achieved on a low-speed axial ring fan in clean inflow. Experimental evidence shows large periodic broadband humps at lower frequencies than the blade passing frequencies and harmonics even at design conditions. These sub-harmonic humps are also found to be sensitive to the fan process and consequently to its tip geometry. Softer fans yield more intense humps more shifted to lower frequencies with respect to the fan harmonics. Unsteady turbulent flow simulations of this ring fan mounted on a test plenum have been achieved by four different methods that have been validated by comparing with overall performances and detailed hot-wire velocity measurements in the wake. Noise predictions are either obtained directly or are obtained through Ffowcs Williams and Hawkings' analogy, and compared with narrowband and third-octave power spectra. All unsteady simulations correctly capture the low flow rates, the coherent vortex dynamics in the tip clearance and consequently the noise radiation dominated by the tip noise in the low- to mid-frequency range. Yet, only the scale-adaptive simulation and the lattice Boltzmann method simulations which can describe most of the turbulent structures accurately provide the proper spectral shape and levels, and consequently the overall sound power level. PMID:26827010

  1. The Effect of Non-Harmonic Active Twist Actuation on BVI Noise

    NASA Technical Reports Server (NTRS)

    Fogarty, David E.; Wilbur, Matthew L.; Sekula, Martin K.

    2011-01-01

    The results of a computational study examining the effects of non-harmonic active-twist control on blade-vortex interaction (BVI) noise for the Apache Active Twist Rotor are presented. Rotor aeroelastic behavior was modeled using the Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics code and the rotor noise was predicted using the acoustics code PSU-WOPWOP. The application of non-harmonic active-twist inputs to the main rotor blade system comprised three parameters: azimuthal location to start actuation, azimuthal duration of actuation, and magnitude of actuation. The acoustic analysis was conducted for a single low-speed flight condition of advance ratio mu=0.14 and shaft angle-of-attack, a(sub s)=+6deg. BVI noise levels were predicted on a flat plane of observers located 1.1 rotor diameters beneath the rotor. The results indicate significant reductions of up to 10dB in BVI noise using a starting azimuthal location for actuation of 90?, an azimuthal duration of actuation of 90deg, and an actuation magnitude of +1.5 ft-lb.

  2. Experimental observation of excess noise in a detuned phase-modulation harmonic mode-locking laser

    SciTech Connect

    Yang Shiquan; Bao Xiaoyi

    2006-09-15

    The intracavity phase-modulated laser can work in two distinct stages: 1) phase mode-locking when the applied modulation frequency is equal to the cavity's fundamental frequency or one of its harmonics, and 2) the FM laser oscillation at a moderate detuned modulation frequency. In this paper, we experimentally studied the noise buildup process in the transition from FM laser oscillation to phase mode-locking in a phase-modulated laser. We found that the relaxation oscillation frequency varies with the modulation frequency detuning and the relaxation oscillation will occur twice in the transition region. Between these two relaxation oscillations, the supermode noise can be significantly enhanced, which is evidence of excess noise in laser systems. All of these results can be explained by the theory of Floquet modes in a phase-modulated laser cavity.

  3. Identification and tracking of harmonic sources in a power system using a Kalman filter

    SciTech Connect

    Ma, H.; Girgis, A.A.

    1996-07-01

    In this paper, two problems have been addressed on harmonic sources identification: the optimal locations of a limited number of harmonic meters and the optimal dynamic estimates of harmonic source locations and their injections in unbalanced three-phase power systems. A Kalman filtering is used to attack these problems. System error covariance analysis by the Kalman filter associated with a harmonic injection estimate determines the optimal arrangement of limited harmonic meters. Based on the optimally-arranged harmonic metering locations, the Kalman filter then yields the optimal dynamic estimates of harmonic injections with a few noisy harmonic measurements. The method is dynamic and has the capability of identifying, analyzing and tracking each harmonic injection at all buses in unbalanced three-phase power systems. Actual recorded harmonic measurements and simulated data in a power distribution system are provided to prove the efficiency of this approach.

  4. Study of noise sources in a subsonic fan using measured blade pressures and acoustic theory

    NASA Technical Reports Server (NTRS)

    Hanson, D. B.

    1975-01-01

    Sources of noise in a 1.4 m (4.6 ft) diameter subsonic tip speed propulsive fan running statically outdoors are studied using a combination of techniques. Signals measured with pressure transducers on a rotor blade are plotted in a format showing the space-time history of inlet distortion. Study of these plots visually and with statistical correlation analysis confirms that the inlet flow contains long, thin eddies of turbulence. Turbulence generated in the boundary layer of the shroud upstream of the rotor tips was not found to be an important noise source. Fan noise is diagnosed by computing narrowband spectra of rotor and stator sound power and comparing these with measured sound power spectra. Rotor noise is computed from spectra of the measured blade pressures and stator noise is computed using the author's stator noise theory. It is concluded that the rotor and stator sources contribute about equally at frequencies in the vicinity of the first three harmonics of blade passing frequency. At higher frequencies, the stator contribution diminishes rapidly and the rotor/inlet turbulence mechanism dominates. Two parametric studies are performed by using the rotor noise calculation procedure which was correlated with test. In the first study, the effects on noise spectrum and directivity are calculated for changes in turbulence properties, rotational Mach number, number of blades, and stagger angle. In the second study the influences of design tip speed and blade number on noise are evaluated.

  5. Sources of noise in magneto-optical readout

    NASA Technical Reports Server (NTRS)

    Mansuripur, M.

    1991-01-01

    The various sources of noise which are often encountered in magneto-optical readout systems are analyzed. Although the focus is on magneto-optics, most sources of noise are common among the various optical recording systems and one can easily adapt the results to other media and systems. A description of the magneto-optical readout system under consideration is given, and the standard methods and the relevant terminology of signal and noise measurement are described. The characteristics of thermal noise, which originates in the electronic circuitry of the readout system, are described. The most fundamental of all sources of noise, the shot noise, is considered, and a detailed account of its statistical properties is given. Shot noise, which is due to random fluctuations in photon arrival times, is an ever-present noise in optical detection. Since the performance of magneto-optical recording devices in use today is approaching the limit imposed by the shot noise, it is important that the reader have a good grasp of this particular source of noise. A model for the laser noise is described, and measurement results which yield numerical values for the strength of the laser power fluctuations are presented. Spatial variations of the disk reflectivity and random depolarization phenomena also contribute to the overall level of noise in readout; these and related issues are treated. Numerical simulation results describing some of the more frequently encountered sources of noise which accompany the recorded waveform itself, namely, jitter noise and signal-amplitude fluctuation noise are presented.

  6. Ultrasound harmonic imaging with reducing speckle noise by spatial-frequency compounding approach

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Wang, Yuanyuan; Yu, Jinhua

    2015-12-01

    Speckle noise is a phenomenon inherent in any coherent imaging process and decreases the signal-to-noise ratio (SNR), which brings down the imaging quality. Speckle noise reduction is particularly important in the tissue harmonic imaging (THI) since it has the lower energy and the poorer SNR than the fundamental imaging (FI). Recently plane wave imaging (PWI) has been widely explored. Since the entire imaging region can be covered in one emission, the frame rate increases greatly. In PWI, speckle can be reduced by incoherently averaging images with different speckle patterns. Such images can be acquired by varying the angle from which a target is imaged (spatial compounding, SC) or by changing the spectrum of the pulse (frequency compounding, FC). In this paper we demonstrate here that each approach is only a partial solution and that combining them provides a better result than applying either approach separately. We propose a spatial-frequency compounding (SFC) method for THI. The new method brings a good speckle suppression result. To illustrate the performance of our method, experiments have been conducted on the simulated data. A nonlinear simulation platform based on the full-wave model is used in the harmonic imaging simulation. Results show that our method brings the SNR an improvement of up to 50% in comparison with the single frame HI while maintaining a far better performance in both terms of resolution and contrast than the FI. Similar results can be obtained from our further experiments.

  7. Assessing noise sources at synchrotron infrared ports

    PubMed Central

    Lerch, Ph.; Dumas, P.; Schilcher, T.; Nadji, A.; Luedeke, A.; Hubert, N.; Cassinari, L.; Boege, M.; Denard, J.-C.; Stingelin, L.; Nadolski, L.; Garvey, T.; Albert, S.; Gough, Ch.; Quack, M.; Wambach, J.; Dehler, M.; Filhol, J.-M.

    2012-01-01

    Today, the vast majority of electron storage rings delivering synchrotron radiation for general user operation offer a dedicated infrared port. There is growing interest expressed by various scientific communities to exploit the mid-IR emission in microspectroscopy, as well as the far infrared (also called THz) range for spectroscopy. Compared with a thermal (laboratory-based source), IR synchrotron radiation sources offer enhanced brilliance of about two to three orders of magnitude in the mid-IR energy range, and enhanced flux and brilliance in the far-IR energy range. Synchrotron radiation also has a unique combination of a broad wavelength band together with a well defined time structure. Thermal sources (globar, mercury filament) have excellent stability. Because the sampling rate of a typical IR Fourier-transform spectroscopy experiment is in the kHz range (depending on the bandwidth of the detector), instabilities of various origins present in synchrotron radiation sources play a crucial role. Noise recordings at two different IR ports located at the Swiss Light Source and SOLEIL (France), under conditions relevant to real experiments, are discussed. The lowest electron beam fluctuations detectable in IR spectra have been quantified and are shown to be much smaller than what is routinely recorded by beam-position monitors. PMID:22186638

  8. Feedback and harmonic locking of slot-type optomechanical oscillators to external low-noise reference clocks

    NASA Astrophysics Data System (ADS)

    Zheng, Jiangjun; Li, Ying; Goldberg, Noam; McDonald, Mickey; Luan, Xingsheng; Hati, Archita; Lu, Ming; Strauf, Stefan; Zelevinsky, Tanya; Howe, David A.; Wei Wong, Chee

    2013-04-01

    We demonstrate feedback and harmonic locking of chip-scale slot-type optomechanical oscillators to external low-noise reference clocks, with suppressed timing jitter by three orders of magnitude. The feedback and compensation techniques significantly reduce the close-to-carrier phase noise, especially within the locking bandwidth for the integral root-mean-square timing jitter. Harmonic locking via high-order carrier signals is also demonstrated with similar phase noise and integrated root-mean-square timing jitter reduction. The chip-scale optomechanical oscillators are tunable over an 80-kHz range by tracking the reference clock, with potential applications in tunable radio-frequency photonics platforms.

  9. A Robust Waveguide Millimeter-Wave Noise Source

    NASA Technical Reports Server (NTRS)

    Ehsan, Negar; Piepmeier, Jeffrey R.; Solly, Michael; Macmurphy, Shawn; Lucey, Jared; Wollack, Edward

    2015-01-01

    This paper presents the design, fabrication, and characterization of a millimeter-wave noise source for the 160- 210 GHz frequency range. The noise source has been implemented in an E-split-block waveguide package and the internal circuitry was developed on a quartz substrate. The measured excess noise ratio at 200 GHz is 9.6 dB.

  10. Evading surface and detector frequency noise in harmonic oscillator measurements of force gradients

    PubMed Central

    Moore, Eric W.; Lee, SangGap; Hickman, Steven A.; Harrell, Lee E.; Marohn, John A.

    2010-01-01

    We introduce and demonstrate a method of measuring small force gradients acting on a harmonic oscillator in which the force-gradient signal of interest is used to parametrically up-convert a forced oscillation below resonance into an amplitude signal at the oscillators resonance frequency. The approach, which we demonstrate in a mechanically detected electron spin resonance experiment, allows the force-gradient signal to evade detector frequency noise by converting a slowly modulated frequency signal into an amplitude signal. PMID:20733934

  11. Procedure for Separating Noise Sources in Measurements of Turbofan Engine Core Noise

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton

    2006-01-01

    The study of core noise from turbofan engines has become more important as noise from other sources like the fan and jet have been reduced. A multiple microphone and acoustic source modeling method to separate correlated and uncorrelated sources has been developed. The auto and cross spectrum in the frequency range below 1000 Hz is fitted with a noise propagation model based on a source couplet consisting of a single incoherent source with a single coherent source or a source triplet consisting of a single incoherent source with two coherent point sources. Examples are presented using data from a Pratt & Whitney PW4098 turbofan engine. The method works well.

  12. Fan noise source location from field measurements

    NASA Astrophysics Data System (ADS)

    Cargill, A. M.

    1980-06-01

    This paper follows on from previously published work on far-field duct mode detection/source location. It is split into four main parts. The first deals with theoretical developments, and the second with experimental measurements. In the former section, attention is focussed on the effects of the fan inlet ducting, on the far field sound, and various ways of compensating for it are discussed. Some of the other practical problems of source location, such as the design of appropriate microphone arrays, are also discussed. In the second half of the paper the results from some recent tests on a model aero-engine fan are described. It is shown that while source location techniques like this which utilize far field microphone arrays work well in principle, there are a number of serious problems, at present limiting their application to real fans. These are, principally, the difficulty of accounting for propagation along the duct, and the presence of highly coherent tones in the far-field fan noise signature.

  13. Source-structure trade-offs in ambient noise correlations

    NASA Astrophysics Data System (ADS)

    Fichtner, Andreas

    2015-07-01

    We analyse the physics and geometry of trade-offs between Earth structure and noise sources in interstation noise correlations. Our approach is based on the computation of off-diagonal Hessian elements that describe the extent to which variations in noise sources can compensate for variations in Earth structure without changing the misfit beyond the measurement uncertainty. Despite the fact that all ambient noise inverse problems are special in terms of their receiver configuration and data, some general statements concerning source-structure trade-offs can be made: (i) While source-structure trade-offs may be reduced to some extent by clever measurement design, there are inherent trade-offs that can generally not be avoided. These inherent trade-offs may lead to a mispositioning of structural heterogeneities when the noise source distribution is unknown. (ii) When attenuation is weak, source-structure trade-offs in ambient noise correlations are a global phenomenon, meaning that there is no noise source perturbation that does not trade-off with some Earth structure, and vice versa. (iii) The most significant source-structure trade-offs occur within two elliptically shaped regions connecting a potential noise source perturbation to each one of the receivers. (iv) Far from these elliptical regions, only small-scale structure can trade off against changes in the noise source. (v) While source-structure trade-offs mostly decay with increasing attenuation, they are nearly unaffected by attenuation when the noise source perturbation is located near the receiver-receiver line. This work is intended to contribute to the development of joint source-structure inversions of ambient noise correlations, and in particular to an understanding of the extent to which source-structure trade-offs may be reduced. It furthermore establishes the foundation of future resolution analyses that properly quantify trade-offs between noise sources and Earth structure.

  14. Aircraft noise source and contour estimation

    NASA Technical Reports Server (NTRS)

    Dunn, D. G.; Peart, N. A.

    1973-01-01

    Calculation procedures are presented for predicting the noise-time histories and noise contours (footprints) of five basic types of aircraft; turbojet, turofan, turboprop, V/STOL, and helicopter. The procedures have been computerized to facilitate prediction of the noise characteristics during takeoffs, flyovers, and/or landing operations.

  15. Localization of aerodynamic noise sources of Shinkansen trains

    NASA Astrophysics Data System (ADS)

    Nagakura, K.

    2006-06-01

    Shinkansen noise consists of various noise sources, such as the rolling noise, concrete bridge structure noise, aerodynamic noise and so on. Among these, the aerodynamic noise is the most important at speeds over 270 km/h in some cases because of its strong dependence on train speed. Thus it is necessary to clarify the characteristics of the aerodynamic noise generated by high speed trains for noise reduction. In this paper, wind tunnel tests using a 1/5 scale Shinkansen train model were performed. An acoustic mirror, which consists of an omni-directional microphone and a reflector, was chosen as a measuring device. First, the principle and characteristics of the acoustic mirror are discussed and a method of estimating quantitatively the aerodynamic noise generated by each part of the model is proposed on the basis of wind tunnel test data. Next, the distribution of aerodynamic noise sources generated by the 1/5 scale Shinkansen train model is shown, based on which the contribution of individual noise sources of Shinkansen trains to the wayside noise level is estimated. Finally, the noise source distribution of real Shinkansen trains was measured with the acoustic mirror in a field test. The results of the field test show a good agreement with those of the wind tunnel tests.

  16. Advances in automated noise data acquisition and noise source modeling for power reactors

    SciTech Connect

    Clapp, N.E. Jr.; Kryter, R.C.; Sweeney, F.J.; Renier, J.A.

    1981-01-01

    A newly expanded program, directed toward achieving a better appreciation of both the strengths and limitations of on-line, noise-based, long-term surveillance programs for nuclear reactors, is described. Initial results in the complementary experimental (acquisition and automated screening of noise signatures) and theoretical (stochastic modeling of likely noise sources) areas of investigation are given.

  17. Aeroacoustic Codes For Rotor Harmonic and BVI Noise--CAMRAD.Mod1/HIRES

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Boyd, D. Douglas, Jr.; Burley, Casey L.; Jolly, J. Ralph, Jr.

    1996-01-01

    This paper presents a status of non-CFD aeroacoustic codes at NASA Langley Research Center for the prediction of helicopter harmonic and Blade-Vortex Interaction (BVI) noise. The prediction approach incorporates three primary components: CAMRAD.Mod1 - a substantially modified version of the performance/trim/wake code CAMRAD; HIRES - a high resolution blade loads post-processor; and WOPWOP - an acoustic code. The functional capabilities and physical modeling in CAMRAD.Mod1/HIRES will be summarized and illustrated. A new multi-core roll-up wake modeling approach is introduced and validated. Predictions of rotor wake and radiated noise are compared with to the results of the HART program, a model BO-105 windtunnel test at the DNW in Europe. Additional comparisons are made to results from a DNW test of a contemporary design four-bladed rotor, as well as from a Langley test of a single proprotor (tiltrotor) three-bladed model configuration. Because the method is shown to help eliminate the necessity of guesswork in setting code parameters between different rotor configurations, it should prove useful as a rotor noise design tool.

  18. The Effects of Ambient Conditions on Helicopter Rotor Source Noise Modeling

    NASA Technical Reports Server (NTRS)

    Schmitz, Frederic H.; Greenwood, Eric

    2011-01-01

    A new physics-based method called Fundamental Rotorcraft Acoustic Modeling from Experiments (FRAME) is used to demonstrate the change in rotor harmonic noise of a helicopter operating at different ambient conditions. FRAME is based upon a non-dimensional representation of the governing acoustic and performance equations of a single rotor helicopter. Measured external noise is used together with parameter identification techniques to develop a model of helicopter external noise that is a hybrid between theory and experiment. The FRAME method is used to evaluate the main rotor harmonic noise of a Bell 206B3 helicopter operating at different altitudes. The variation with altitude of Blade-Vortex Interaction (BVI) noise, known to be a strong function of the helicopter s advance ratio, is dependent upon which definition of airspeed is flown by the pilot. If normal flight procedures are followed and indicated airspeed (IAS) is held constant, the true airspeed (TAS) of the helicopter increases with altitude. This causes an increase in advance ratio and a decrease in the speed of sound which results in large changes to BVI noise levels. Results also show that thickness noise on this helicopter becomes more intense at high altitudes where advancing tip Mach number increases because the speed of sound is decreasing and advance ratio increasing for the same indicated airspeed. These results suggest that existing measurement-based empirically derived helicopter rotor noise source models may give incorrect noise estimates when they are used at conditions where data were not measured and may need to be corrected for mission land-use planning purposes.

  19. Review of Subcritical Source-Driven Noise Analysis Measurements

    SciTech Connect

    Valentine, T.E.

    1999-11-01

    Subcritical source-driven noise measurements are simultaneous Rossia and randomly pulsed neutron measurements that provide measured quantities that can be related to the subcritical neutron multiplication factor. In fact, subcritical source-driven noise measurements should be performed in lieu of Rossia measurements because of the additional information that is obtained from noise measurements such as the spectral ratio and the coherence functions. The basic understanding of source-driven noise analysis measurements can be developed from a point reactor kinetics model to demonstrate how the measured quantities relate to the subcritical neutron multiplication factor.

  20. Continuous-variable quantum key distribution with Gaussian source noise

    SciTech Connect

    Shen Yujie; Peng Xiang; Yang Jian; Guo Hong

    2011-05-15

    Source noise affects the security of continuous-variable quantum key distribution (CV QKD) and is difficult to analyze. We propose a model to characterize Gaussian source noise through introducing a neutral party (Fred) who induces the noise with a general unitary transformation. Without knowing Fred's exact state, we derive the security bounds for both reverse and direct reconciliations and show that the bound for reverse reconciliation is tight.

  1. Harmony: EEG/MEG Linear Inverse Source Reconstruction in the Anatomical Basis of Spherical Harmonics

    PubMed Central

    Petrov, Yury

    2012-01-01

    EEG/MEG source localization based on a distributed solution is severely underdetermined, because the number of sources is much larger than the number of measurements. In particular, this makes the solution strongly affected by sensor noise. A new way to constrain the problem is presented. By using the anatomical basis of spherical harmonics (or spherical splines) instead of single dipoles the dimensionality of the inverse solution is greatly reduced without sacrificing the quality of the data fit. The smoothness of the resulting solution reduces the surface bias and scatter of the sources (incoherency) compared to the popular minimum-norm algorithms where single-dipole basis is used (MNE, depth-weighted MNE, dSPM, sLORETA, LORETA, IBF) and allows to efficiently reduce the effect of sensor noise. This approach, termed Harmony, performed well when applied to experimental data (two exemplars of early evoked potentials) and showed better localization precision and solution coherence than the other tested algorithms when applied to realistically simulated data. PMID:23071497

  2. Noise characterization of mode-locked lasers by comparing the power spectra of the fundamental and second-harmonic pulses

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Chen, L. P.; Liu, J. M.

    1995-10-01

    By comparing the noise power spectra of the fundamental pulses and those of the second-harmonic pulses, the peak intensity fluctuation, the pulse-width fluctuation, the pulse timing jitter, and the cross correlation between the pulse width and the peak intensity fluctuations of a mode-locked pulse train can be separately quantified. The noise characteristics of an actively mode-locked Nd:YLF laser are presented to demonstrate this technique.

  3. Noise Characterization of Supercontinuum Sources for Low Coherence Interferometry Applications

    PubMed Central

    Brown, William J.; Kim, Sanghoon; Wax, Adam

    2015-01-01

    We examine the noise properties of supercontinuum light sources when used in low coherence interferometry applications. The first application is a multiple-scattering low-coherence interferometry (ms2/LCI) system where high power and long image acquisition times are required to image deep into tissue. For this system we compare the noise characteristics of two supercontinuum sources from different suppliers. Both sources have long term drift that limits the amount of time over which signal averaging is advantageous for reducing noise. The second application is a high resolution optical coherence tomography system where broadband light is needed for high axial resolution. For this system we compare the noise performance of the two supercontinuum sources and a light source based on four superluminescent diodes (SLDs) using imaging contrast as a comparative metric. We find that the NKT SuperK has superior noise performance compared to the Fianium SC-450-4 but neither meets the performance of the SLDs. PMID:25606759

  4. Analysis and Synthesis of Tonal Aircraft Noise Sources

    NASA Technical Reports Server (NTRS)

    Allen, Matthew P.; Rizzi, Stephen A.; Burdisso, Ricardo; Okcu, Selen

    2012-01-01

    Fixed and rotary wing aircraft operations can have a significant impact on communities in proximity to airports. Simulation of predicted aircraft flyover noise, paired with listening tests, is useful to noise reduction efforts since it allows direct annoyance evaluation of aircraft or operations currently in the design phase. This paper describes efforts to improve the realism of synthesized source noise by including short term fluctuations, specifically for inlet-radiated tones resulting from the fan stage of turbomachinery. It details analysis performed on an existing set of recorded turbofan data to isolate inlet-radiated tonal fan noise, then extract and model short term tonal fluctuations using the analytic signal. Methodologies for synthesizing time-variant tonal and broadband turbofan noise sources using measured fluctuations are also described. Finally, subjective listening test results are discussed which indicate that time-variant synthesized source noise is perceived to be very similar to recordings.

  5. Heat conduction in disordered harmonic lattices with energy-conserving noise.

    PubMed

    Dhar, Abhishek; Venkateshan, K; Lebowitz, J L

    2011-02-01

    We study heat conduction in a harmonic crystal whose bulk dynamics is supplemented by random reversals (flips) of the velocity of each particle at a rate ?. The system is maintained in a nonequilibrium stationary state (NESS) by contacts with white-noise Langevin reservoirs at different temperatures. We show that the one-body and pair correlations in this system are the same (after an appropriate mapping of parameters) as those obtained for a model with self-consistent reservoirs. This is true both for the case of equal and random (quenched) masses. While the heat conductivity in the NESS of the ordered system is known explicitly, much less is known about the random mass case. Here we investigate the random system with velocity flips. We improve the bounds on the Green-Kubo conductivity obtained by Bernardin [J. Stat. Phys. 133, 417 (2008)]. The conductivity of the one-dimensional system is then studied both numerically and analytically. This sheds some light on the effect of noise on the transport properties of systems with localized states caused by quenched disorder. PMID:21405819

  6. Heat conduction in disordered harmonic lattices with energy-conserving noise

    NASA Astrophysics Data System (ADS)

    Dhar, Abhishek; Venkateshan, K.; Lebowitz, J. L.

    2011-02-01

    We study heat conduction in a harmonic crystal whose bulk dynamics is supplemented by random reversals (flips) of the velocity of each particle at a rate ?. The system is maintained in a nonequilibrium stationary state (NESS) by contacts with white-noise Langevin reservoirs at different temperatures. We show that the one-body and pair correlations in this system are the same (after an appropriate mapping of parameters) as those obtained for a model with self-consistent reservoirs. This is true both for the case of equal and random (quenched) masses. While the heat conductivity in the NESS of the ordered system is known explicitly, much less is known about the random mass case. Here we investigate the random system with velocity flips. We improve the bounds on the Green-Kubo conductivity obtained by Bernardin [J. Stat. Phys.JSTPBS0022-471510.1007/s10955-008-9620-1 133, 417 (2008)]. The conductivity of the one-dimensional system is then studied both numerically and analytically. This sheds some light on the effect of noise on the transport properties of systems with localized states caused by quenched disorder.

  7. Optimization of Extreme Ultraviolet Light Source from High Harmonic Generation for Condensed-Phase Core-Level Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lin, Ming-Fu; Verkamp, Max A.; Ryland, Elizabeth S.; Benke, Kristin; Zhang, Kaili; Carlson, Michaela; Vura-Weis, Josh

    2015-06-01

    Extreme ultraviolet (XUV) light source from high-order harmonic generation has been shown to be a powerful tool for core-level spectroscopy. In addition, this light source provides very high temporal resolution (10-18 s to 10-15 s) for time-resolved transient absorption spectroscopy. Most applications of the light source have been limited to the studies of atomic and molecular systems, with technique development focused on optimizing for shorter pulses (i.e. tens of attoseconds) or higher XUV energy (i.e. ~keV range). For the application to general molecular systems in solid and liquid forms, however, the XUV photon flux and stability are highly demanded due to the strong absorption by substrates and solvents. In this case, the main limitation is due to the stability of the high order generation process and the limited bandwidth of the XUV source that gives only discrete even/odd order peaks. Consequently, this results in harmonic artifact noise that overlaps with the resonant signal. In our current study, we utilize a semi-infinite cell for high harmonic generation from two quantum trajectories (i.e. short and long) at over-driven NIR power. This condition, produces broad XUV spectrum without using complicated optics (e.g. hollow-core fibers and double optical gating). This light source allows us to measure the static absorption spectrum of the iron M-edge from a Fe(acac)3 molecular solid film, which shows a resonant feature of 0.01 OD (~2.3% absorption). Moreover, we also investigate how sample roughness affects the static absorption spectrum. We are able to make smooth solar cell precursor materials (i.e. PbI2 and PbBr2) by spin casting and observe iodine (50 eV) and bromine (70 eV) absorption edges in the order of 0.05 OD with minimal harmonic artifact noise.

  8. Simulation of Series Active and Passive Power Filter Combination System to Mitigate Current Source Harmonics

    NASA Astrophysics Data System (ADS)

    Yusof, Yushaizad; Rahim, Nasrudin Abd.

    2009-08-01

    This paper discusses a combination three phase system of series active power filter and passive power filter used to mitigate current source harmonics produced by a three phase diode rectifier with capacitive loads. A control method based on synchronous reference frame (SRF) is implemented to compensate for the current harmonics. Computer simulation and modelling of the combined filter system is carried out using Matlab/Simulink Power System Blockset (PSB) software. The single tuned passive power filters suppress 5th and 7th order current harmonics, while the series active power filter acts as a harmonic isolator between the source and load. Hence, the proposed system performs very well in mitigating source current harmonics to the level that comply the harmonic standard such as IEEE 519-1992.

  9. Noise sources in silver halide volume diffuse-object holograms

    NASA Astrophysics Data System (ADS)

    Fimia, Antonio; Carretero, Luis; Fuentes, Rosa; Belendez, Augusto

    1995-04-01

    Dichromated gelatin has been established as the most frequently used recording material for the production of holographic optical elements. New applications are being found for photopolymers in previously unexplored areas such as holographic interconnect systems. However, photographic emulsion from the beginning has been and continues to be the most used holographic recording material. This is due to its relatively high sensitivity and ease of processing, the availability of improved processing chemistries and commercial films, and the repeatability of the results. We analyze different sources of noise in photographic emulsions (such as intermodulation noise, noise gratings, and nonlinear noise) and the influence of the photochemical process on those noise sources. Bleached emulsions using rehalogenating and solvent processes are considered, and silver-halide-sensitized gelatin is discussed as a medium for transmission holograms. New developers and new noise models are presented on the supposition that the nonlinear response of the recording material is due to the photochemical process.

  10. Cross-correlation imaging of ambient noise sources

    NASA Astrophysics Data System (ADS)

    Ermert, Laura; Villaseñor, Antonio; Fichtner, Andreas

    2016-01-01

    We develop and apply a novel technique to image ambient seismic noise sources. It is based on measurements of cross-correlation asymmetry defined as the logarithmic energy ratio of the causal and anticausal branches of the cross-correlation function. A possible application of this technique is to account for the distribution of noise sources, a problem which currently poses obstacles to noise-based surface wave dispersion analysis and waveform inversion. The particular asymmetry measurement used is independent of absolute noise correlation amplitudes. It is shown how it can be forward-modelled and related to the noise source power-spectral density using adjoint methods. Simplified sensitivity kernels allow us to rapidly image variations in the power-spectral density of noise sources. This imaging method correctly accounts for viscoelastic attenuation and is to first order insensitive to unmodelled Earth structure. Furthermore, it operates directly on noise correlation data sets. No additional processing is required, which makes the method fast and computationally inexpensive. We apply the method to three vertical-component cross-correlation data sets of different spatial and temporal scales. Processing is deliberately minimal so as to keep observations consistent with the imaging concept. In accord with previous studies, we image seasonally changing sources of the Earth's hum in the Atlantic, Pacific and the Southern Ocean. The sources of noise in the microseismic band recorded at stations in Switzerland are predominantly located in the Atlantic and show a clear dependence on both season and frequency. Our developments are intended as a step towards full 3-D inversions for the sources of ambient noise in various frequency bands, which may ultimately lead to improvements of noise-based structural imaging.

  11. A study of interior noise levels, noise sources and transmission paths in light aircraft

    NASA Technical Reports Server (NTRS)

    Hayden, R. E.; Murray, B. S.; Theobald, M. A.

    1983-01-01

    The interior noise levels and spectral characteristics of 18 single-and twin-engine propeller-driven light aircraft, and source-path diagnosis of a single-engine aircraft which was considered representative of a large part of the fleet were studied. The purpose of the flight surveys was to measure internal noise levels and identify principal noise sources and paths under a carefully controlled and standardized set of flight procedures. The diagnostic tests consisted of flights and ground tests in which various parts of the aircraft, such as engine mounts, the engine compartment, exhaust pipe, individual panels, and the wing strut were instrumented to determine source levels and transmission path strengths using the transfer function technique. Predominant source and path combinations are identified. Experimental techniques are described. Data, transfer function calculations to derive source-path contributions to the cabin acoustic environment, and implications of the findings for noise control design are analyzed.

  12. Initial results of a model rotor higher harmonic control (HHC) wind tunnel experiment on BVI impulsive noise reduction

    NASA Astrophysics Data System (ADS)

    Splettstoesser, W. R.; Lehmann, G.; van der Wall, B.

    1989-09-01

    Initial acoustic results are presented from a higher harmonic control (HHC) wind tunnel pilot experiment on helicopter rotor blade-vortex interaction (BVI) impulsive noise reduction, making use of the DFVLR 40-percent-scaled BO-105 research rotor in the DNW 6m by 8m closed test section. Considerable noise reduction (of several decibels) has been measured for particular HHC control settings, however, at the cost of increased vibration levels and vice versa. The apparently adverse results for noise and vibration reduction by HHC are explained. At optimum pitch control settings for BVI noise reduction, rotor simulation results demonstrate that blade loading at the outer tip region is decreased, vortex strength and blade vortex miss-distance are increased, resulting altogether in reduced BVI noise generation. At optimum pitch control settings for vibration reduction adverse effects on blade loading, vortex strength and blade vortex miss-distance are found.

  13. Active noise control using noise source having adaptive resonant frequency tuning through stiffness variation

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G. (Inventor); Rajiyah, Harindra (Inventor); Renshaw, Anthony A. (Inventor); Hedeen, Robert A. (Inventor)

    1995-01-01

    A noise source for an aircraft engine active noise cancellation system in which the resonant frequency of a noise radiating element is tuned to permit noise cancellation over a wide range of frequencies. The resonant frequency of the noise radiating element is tuned by a plurality of force transmitting mechanisms which contact the noise radiating element. Each one of the force transmitting mechanisms includes an expandable element and a spring in contact with the noise radiating element so that excitation of the element varies the spring force applied to the noise radiating element. The elements are actuated by a controller which receives input of a signal proportional to displacement of the noise radiating element and a signal corresponding to the blade passage frequency of the engine's fan. In response, the controller determines a control signal which is sent to the elements and causes the spring force applied to the noise radiating element to be varied. The force transmitting mechanisms can be arranged to either produce bending or linear stiffness variations in the noise radiating element.

  14. Identification of Noise Sources and Design of Noise Reduction Measures for a Pneumatic Nail Gun

    PubMed Central

    Jayakumar, Vignesh; Zechmann, Edward

    2015-01-01

    An experimental-analytical procedure was implemented to reduce the operating noise level of a nail gun, a commonly found power tool in a construction site. The procedure is comprised of preliminary measurements, identification and ranking of major noise sources and application of noise controls. Preliminary measurements show that the impact noise transmitted through the structure and the exhaust related noise were found to be the first and second major contributors. Applying a noise absorbing foam on the outside of the nail gun body was found to be an effective noise reduction technique. One and two-volume small mufflers were designed and applied to the exhaust side of the nail gun which reduced not only the exhaust noise but also the impact noise. It was shown that the overall noise level could be reduced by as much as 3.5 dB, suggesting that significant noise reduction is possible in construction power tools without any significant increase of the cost. PMID:26366038

  15. Optical linear algebra processors - Noise and error-source modeling

    NASA Technical Reports Server (NTRS)

    Casasent, D.; Ghosh, A.

    1985-01-01

    The modeling of system and component noise and error sources in optical linear algebra processors (OLAPs) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.

  16. Target enhancement and noise cancellation in the identification of a rudimentary sound source in noise

    PubMed Central

    Lutfi, Robert A.; Liu, Ching-Ju

    2011-01-01

    Perturbation analysis was used to determine the relative contribution of target enhancement and noise cancellation in the identification of rudimentary sound source in noise. In a two-interval, forced-choice procedure, listeners identified the impact sound produced by the larger of two stretched membranes as target. The noise on each presentation was the impact sound of a variable-sized plate. For four of five listeners, the relative weights on the noise were positive indicating enhancement, and for the remaining listeners, they were negative indicating cancellation. The results underscore the difficulty with evaluating models of masking solely in terms of measures of performance accuracy. PMID:21361412

  17. Computer software for identification of noise source and automatic noise measurement

    NASA Astrophysics Data System (ADS)

    Fujii, Kenji; Sakurai, Masatsugu; Ando, Yoichi

    2004-10-01

    A new computational system for the environmental noise measurement and analysis has been developed. The system consists of binaural microphones, a laptop PC, and analysing software. A target noise is recorded automatically depending on the specified background noise level, and the acoustical parameters are calculated simultaneously. These functions allow for precise field measurements. The system is equipped with a template-matching algorithm for the identification of noise source. This function was implemented to avoid the effect of an interrupting sound such as voice and wind blowing during a measurement. Noise analyses in this system are based on the model of human auditory system. In addition to the time-series data of sound level, the important acoustical parameters of noise source are extracted from the running autocorrelation function (ACF) and the inter-aural cross-correlation function (IACF). It has been found that those parameters are strongly related to the auditory primary sensations and spatial sensations. Evaluation of the environmental noise based on these functions is another feature of this system. This paper describes the effectiveness of the ACF and the IACF analysis for analysing acoustical properties of noise and for evaluating the subjective response to noise.

  18. Active noise control using noise source having adaptive resonant frequency tuning through stress variation

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G. (Inventor); Rajiyah, Harindra (Inventor); Renshaw, Anthony A. (Inventor); Hedeen, Robert A. (Inventor)

    1995-01-01

    A noise source for an aircraft engine active noise cancellation system in which the resonant frequency of a noise radiating element is tuned to permit noise cancellation over a wide range of frequencies. The resonant frequency of the noise radiating element is tuned by an expandable ring embedded in the noise radiating element. Excitation of the ring causes expansion or contraction of the ring, thereby varying the stress in the noise radiating element. The ring is actuated by a controller which receives input of a feedback signal proportional to displacement of the noise radiating element and a signal corresponding to the blade passage frequency of the engine's fan. In response, the controller determines a control signal which is sent to the ring, causing the ring to expand or contract. Instead of a single ring embedded in the noise radiating panel, a first expandable ring can be bonded to one side of the noise radiating element, and a second expandable ring can be bonded to the other side.

  19. Noise from high speed maglev systems: Noise sources, noise criteria, preliminary design guidelines for noise control, and recommendations for acoustical test facility for maglev research

    NASA Astrophysics Data System (ADS)

    Hanson, C. E.; Abbot, P.; Dyer, I.

    1993-01-01

    Noise levels from magnetically-levitated trains (maglev) at very high speed may be high enough to cause environmental noise impact in residential areas. Aeroacoustic sources dominate the sound at high speeds and guideway vibrations generate noticeable sound at low speed. In addition to high noise levels, the startle effect as a result of sudden onset of sound from a rapidly moving nearby maglev vehicle may lead to increased annoyance to neighbors of a maglev system. The report provides a base for determining the noise consequences and potential mitigation for a high speed maglev system in populated areas of the United States. Four areas are included in the study: (1) definition of noise sources; (2) development of noise criteria; (3) development of design guidelines; and (4) recommendations for a noise testing facility.

  20. An improved source model for aircraft interior noise studies

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.; Fuller, C. R.

    1985-01-01

    There is concern that advanced turboprop engines currently being developed may produce excessive aircraft cabin noise levels. This concern has stimulated renewed interest in developing aircraft interior noise reduction methods that do not significantly increase take off weight. An existing analytical model for noise transmission into aircraft cabins was utilized to investigate the behavior of an improved propeller source model for use in aircraft interior noise studies. The new source model, a virtually rotating dipole, is shown to adequately match measured fuselage sound pressure distributions, including the correct phase relationships, for published data. The virtually rotating dipole is used to study the sensitivity of synchrophasing effectiveness to the fuselage sound pressure trace velocity distribution. Results of calculations are presented which reveal the importance of correctly modeling the surface pressure phase relations in synchrophasing and other aircraft interior noise studies.

  1. Second and Third Harmonic Measurements at the Linac Coherent Light Source

    SciTech Connect

    Ratner, D.; Brachmann, A.; Decker, F.J.; Ding, Y.; Dowell, D.; Emma, P.; Fisher, A.; Frisch, J.; Gilevich, S.; Huang, Z.; Hering, P.; Iverson, R.; Krzywinski, J.; Loos, H.; Messerschmidt, M.; Nuhn, H.D.; Smith, T.; Turner, J.; Welch, J.; White, W.; Wu, J.; /SLAC

    2011-01-03

    The Linac Coherent Light Source (LCLS) started user commissioning in October of 2009, producing Free Electron Laser (FEL) radiation between 800 eV and 8 keV [1]. The fundamental wavelength of the FEL dominates radiation in the beamlines, but the beam also produces nonnegligible levels of radiation at higher harmonics. The harmonics may be desirable as a source of harder X-rays, but may also contribute backgrounds to user experiments. In this paper we present preliminary measurements of the second and third harmonic content in the FEL. We also measure the photon energy cutoff of the soft X-ray mirrors to determine the extent to which higher harmonics reach the experimental stations. We present preliminary second and third harmonic measurements for LCLS. At low energies (below 1 keV fundamental) we measure less than 0.1% second harmonic content. The second harmonic will be present in the soft X-ray beam line for fundamental photon energies below approximately 1.1 keV. At low and high energies, we measure third harmonic content ranging from 0.5% to 3%, which is consistent with expectations. For both second and third harmonics, experimental work is ongoing. More rigorous analysis of the data will be completed soon.

  2. Beamforming with a circular microphone array for localization of environmental noise sources.

    PubMed

    Tiana-Roig, Elisabet; Jacobsen, Finn; Grande, Efrn Fernndez

    2010-12-01

    It is often enough to localize environmental sources of noise from different directions in a plane. This can be accomplished with a circular microphone array, which can be designed to have practically the same resolution over 360. The microphones can be suspended in free space or they can be mounted on a solid cylinder. This investigation examines and compares two techniques based on such arrays, the classical delay-and-sum beamforming and an alternative method called circular harmonics beamforming. The latter is based on decomposing the sound field into a series of circular harmonics. The performance of the two signal processing techniques is examined using computer simulations, and the results are validated experimentally. PMID:21218886

  3. Screech noise source structure of a supersonic rectangular jet

    NASA Technical Reports Server (NTRS)

    Rice, E. J.; Taghavi, R.

    1992-01-01

    The near-field of the screech noise source structure of an under-expanded supersonic rectangular jet was studied in detail. A miniature probe microphone was used along with a reference microphone to determine the amplitude and phase of the sound pressure near and in the high speed flow field. The transverse structure of the unsteady pressure field was investigated by moving the probe microphone sufficiently far into the jet so that pressure fall-off was observed. Five islands of high sound pressure level have been distinguished which may be associated with the actual local sources of sound production. These sources of screech noise are closely associated with the jet shock structure as would be expected, with the peak region of noise level being found slightly downstream of each of the five observed shocks. The third and fourth noise sources have the highest levels and are about equal in strength. All of the apparent noise sources have their peak levels in the subsonic flow region. Strong cancellations in the acoustic field are observed in the downstream and sideline directions which may account for the predominant upstream propagation of the fundamental tone noise.

  4. Aeroacoustic Codes for Rotor Harmonic and BVI Noise. CAMRAD.Mod1/HIRES: Methodology and Users' Manual

    NASA Technical Reports Server (NTRS)

    Boyd, D. Douglas, Jr.; Brooks, Thomas F.; Burley, Casey L.; Jolly, J. Ralph, Jr.

    1998-01-01

    This document details the methodology and use of the CAMRAD.Mod1/HIRES codes, which were developed at NASA Langley Research Center for the prediction of helicopter harmonic and Blade-Vortex Interaction (BVI) noise. CANMAD.Mod1 is a substantially modified version of the performance/trim/wake code CANMAD. High resolution blade loading is determined in post-processing by HIRES and an associated indicial aerodynamics code. Extensive capabilities of importance to noise prediction accuracy are documented, including a new multi-core tip vortex roll-up wake model, higher harmonic and individual blade control, tunnel and fuselage correction input, diagnostic blade motion input, and interfaces for acoustic and CFD aerodynamics codes. Modifications and new code capabilities are documented with examples. A users' job preparation guide and listings of variables and namelists are given.

  5. Active noise control using noise source having adaptive resonant frequency tuning through variable ring loading

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G. (Inventor); Rajiyah, Harindra (Inventor); Renshaw, Anthony A. (Inventor); Hedeen, Robert A. (Inventor)

    1995-01-01

    A noise source for an aircraft engine active noise cancellation system in which the resonant frequency of noise radiating structure is tuned to permit noise cancellation over a wide range of frequencies. The resonant frequency of the noise radiating structure is tuned by a plurality of drivers arranged to contact the noise radiating structure. Excitation of the drivers causes expansion or contraction of the drivers, thereby varying the edge loading applied to the noise radiating structure. The drivers are actuated by a controller which receives input of a feedback signal proportional to displacement of the noise radiating element and a signal corresponding to the blade passage frequency of the engine's fan. In response, the controller determines a control signal which is sent to the drivers, causing them to expand or contract. The noise radiating structure may be either the outer shroud of the engine or a ring mounted flush with an inner wall of the shroud or disposed in the interior of the shroud.

  6. Improved perception of speech in noise and Mandarin tones with acoustic simulations of harmonic coding for cochlear implantsa

    PubMed Central

    Li, Xing; Nie, Kaibao; Imennov, Nikita S.; Won, Jong Ho; Drennan, Ward R.; Rubinstein, Jay T.; Atlas, Les E.

    2012-01-01

    Harmonic and temporal fine structure (TFS) information are important cues for speech perception in noise and music perception. However, due to the inherently coarse spectral and temporal resolution in electric hearing, the question of how to deliver harmonic and TFS information to cochlear implant (CI) users remains unresolved. A harmonic-single-sideband-encoder [(HSSE); Nie et al. (2008). Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing; Lie et al., (2010). Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing] strategy has been proposed that explicitly tracks the harmonics in speech and transforms them into modulators conveying both amplitude modulation and fundamental frequency information. For unvoiced speech, HSSE transforms the TFS into a slowly varying yet still noise-like signal. To investigate its potential, four- and eight-channel vocoder simulations of HSSE and the continuous-interleaved-sampling (CIS) strategy were implemented, respectively. Using these vocoders, five normal-hearing subjects speech recognition performance was evaluated under different masking conditions; another five normal-hearing subjects Mandarin tone identification performance was also evaluated. Additionally, the neural discharge patterns evoked by HSSE- and CIS-encoded Mandarin tone stimuli were simulated using an auditory nerve model. All subjects scored significantly higher with HSSE than with CIS vocoders. The modeling analysis demonstrated that HSSE can convey temporal pitch cues better than CIS. Overall, the results suggest that HSSE is a promising strategy to enhance speech perception with CIs. PMID:23145619

  7. Active control of aircraft engine inlet noise using compact sound sources and distributed error sensors

    NASA Technical Reports Server (NTRS)

    Burdisso, Ricardo (Inventor); Fuller, Chris R. (Inventor); O'Brien, Walter F. (Inventor); Thomas, Russell H. (Inventor); Dungan, Mary E. (Inventor)

    1996-01-01

    An active noise control system using a compact sound source is effective to reduce aircraft engine duct noise. The fan noise from a turbofan engine is controlled using an adaptive filtered-x LMS algorithm. Single multi channel control systems are used to control the fan blade passage frequency (BPF) tone and the BPF tone and the first harmonic of the BPF tone for a plane wave excitation. A multi channel control system is used to control any spinning mode. The multi channel control system to control both fan tones and a high pressure compressor BPF tone simultaneously. In order to make active control of turbofan inlet noise a viable technology, a compact sound source is employed to generate the control field. This control field sound source consists of an array of identical thin, cylindrically curved panels with an inner radius of curvature corresponding to that of the engine inlet. These panels are flush mounted inside the inlet duct and sealed on all edges to prevent leakage around the panel and to minimize the aerodynamic losses created by the addition of the panels. Each panel is driven by one or more piezoelectric force transducers mounted on the surface of the panel. The response of the panel to excitation is maximized when it is driven at its resonance; therefore, the panel is designed such that its fundamental frequency is near the tone to be canceled, typically 2000-4000 Hz.

  8. Active control of aircraft engine inlet noise using compact sound sources and distributed error sensors

    NASA Technical Reports Server (NTRS)

    Burdisso, Ricardo (Inventor); Fuller, Chris R. (Inventor); O'Brien, Walter F. (Inventor); Thomas, Russell H. (Inventor); Dungan, Mary E. (Inventor)

    1994-01-01

    An active noise control system using a compact sound source is effective to reduce aircraft engine duct noise. The fan noise from a turbofan engine is controlled using an adaptive filtered-x LMS algorithm. Single multi channel control systems are used to control the fan blade passage frequency (BPF) tone and the BPF tone and the first harmonic of the BPF tone for a plane wave excitation. A multi channel control system is used to control any spinning mode. The multi channel control system to control both fan tones and a high pressure compressor BPF tone simultaneously. In order to make active control of turbofan inlet noise a viable technology, a compact sound source is employed to generate the control field. This control field sound source consists of an array of identical thin, cylindrically curved panels with an inner radius of curvature corresponding to that of the engine inlet. These panels are flush mounted inside the inlet duct and sealed on all edges to prevent leakage around the panel and to minimize the aerodynamic losses created by the addition of the panels. Each panel is driven by one or more piezoelectric force transducers mounted on the surface of the panel. The response of the panel to excitation is maximized when it is driven at its resonance; therefore, the panel is designed such that its fundamental frequency is near the tone to be canceled, typically 2000-4000 Hz.

  9. Source levels and harmonic content of whistles in white-beaked dolphins (Lagenorhynchus albirostris).

    PubMed

    Rasmussen, M H; Lammers, M; Beedholm, K; Miller, L A

    2006-07-01

    Recordings of white-beaked dolphin whistles were made in Faxafl6i Bay (Iceland) using a three-hydrophone towed linear array. Signals from the hydrophones were routed through an amplifier to a lunch box computer on board the boat and digitized using a sample rate of 125 kHz per channel. Using this method more than 5000 whistles were recorded. All recordings were made in sea states 0-1 (Beaufort scale). Dolphins were located in a 2D horizontal plane by using the difference of arrival time to the three hydrophones, and source levels were estimated from these positions using two different methods (I and II). Forty-three whistles gave a reliable location for the vocalizing dolphin when using method II and of these 12 when using method I. Source level estimates on the center hydrophone were higher using method I [average source level 148 (rms) +/- 12 dB, n = 36] than for method II [average source level 139 (rms) +/- 12 dB, n = 36]. Using these rms values the maximum possible communication range for whistling dolphins given the local ambient noise conditions was then estimated. The maximum range was 10.5 km for a dolphin whistle with the highest source level (167 dB) and about 140 m for a whistle with the lowest source level (118 dB). Only two of the 43 whistles contained an unequal number of harmonics recorded at the three hydrophones judging from the spectrograms. Such signals could be used to calculate the directionality of whistles, but more recordings are necessary to describe the directionality of white-beaked dolphin whistles. PMID:16875247

  10. Sub-Shot Noise Power Source for Microelectronics

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry V.; Yu, Nan; Mansour, Kamjou

    2011-01-01

    Low-current, high-impedance microelectronic devices can be affected by electric current shot noise more than they are affected by Nyquist noise, even at room temperature. An approach to implementing a sub-shot noise current source for powering such devices is based on direct conversion of amplitude-squeezed light to photocurrent. The phenomenon of optical squeezing allows for the optical measurements below the fundamental shot noise limit, which would be impossible in the domain of classical optics. This becomes possible by affecting the statistical properties of photons in an optical mode, which can be considered as a case of information encoding. Once encoded, the information describing the photon (or any other elementary excitations) statistics can be also transmitted. In fact, it is such information transduction from optics to an electronics circuit, via photoelectric effect, that has allowed the observation of the optical squeezing. It is very difficult, if not technically impossible, to directly measure the statistical distribution of optical photons except at extremely low light level. The photoelectric current, on the other hand, can be easily analyzed using RF spectrum analyzers. Once it was observed that the photocurrent noise generated by a tested light source in question is below the shot noise limit (e.g. produced by a coherent light beam), it was concluded that the light source in question possess the property of amplitude squeezing. The main novelty of this technology is to turn this well-known information transduction approach around. Instead of studying the statistical property of an optical mode by measuring the photoelectron statistics, an amplitude-squeezed light source and a high-efficiency linear photodiode are used to generate photocurrent with sub-Poissonian electron statistics. By powering microelectronic devices with this current source, their performance can be improved, especially their noise parameters. Therefore, a room-temperature sub-shot noise current source can be built that will be beneficial for a very broad range of low-power, low-noise electronic instruments and applications, both cryogenic and room-temperature. Taking advantage of recent demonstrations of the squeezed light sources based on optical micro-disks, this sub-shot noise current source can be made compatible with the size/power requirements specific of the electronic devices it will support.

  11. Simultaneous spatial characterization of two independent sources of high harmonic radiation.

    PubMed

    Mang, Matthias M; Bourassin-Bouchet, Charles; Walmsley, Ian A

    2014-11-01

    We present the simultaneous spatial characterization of two independent sources of high harmonic radiation from a series of interferograms. Our technique transfers the necessity of replicating and shearing the test beam to a second, independent beam that may be easier to manipulate, and thus opens the possibility to characterize complex light sources. We demonstrate our technique by reconstructing the wavefronts of two high harmonic beams and use this information to study the spatial properties of different quantum paths. PMID:25361299

  12. Active source cancellation of the blade tone fundamental and harmonics in centrifugal fans

    NASA Astrophysics Data System (ADS)

    Koopmann, G. H.; Fox, D. J.; Neise, W.

    1988-10-01

    An active source method is shown to effectively cancel the blade tone fundamental and harmonics in centrifugal fans for a variety of fan loading conditions and duct terminations. The special case is considered where the frequency of the blade tone harmonics lies just above the cut-on frequency of the first higher order mode of the fan ducting. The results suggest that the present active control mechanism involves a local alteration of the aerodynamic source pressures.

  13. Noise in an acoustic-optic modulated laser source

    SciTech Connect

    Kachelmyer, A.L.; Eng, R.S.

    1989-01-01

    This paper considers the measurement of amplitude modulation (AM) and phase modulation (PM) noise in a tunable CO{sub 2} laser source. Theoretical and experimental heterodyned output power spectrums are used to evaluate the quality of the acousto-optically tuned source.

  14. Fan Noise Source Diagnostic Test Computation of Rotor Wake Turbulence Noise

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.; Envia, E.; Thorp, S. A.; Shabbir, A.

    2002-01-01

    An important source mechanism of fan broadband noise is the interaction of rotor wake turbulence with the fan outlet guide vanes. A broadband noise model that utilizes computed rotor flow turbulence from a RANS code is used to predict fan broadband noise spectra. The noise model is employed to examine the broadband noise characteristics of the 22-inch Source Diagnostic Test fan rig for which broadband noise data were obtained in wind tunnel tests at the NASA Glenn Research Center. A 9-case matrix of three outlet guide vane configurations at three representative fan tip speeds are considered. For all cases inlet and exhaust acoustic power spectra are computed and compared with the measured spectra where possible. In general, the acoustic power levels and shape of the predicted spectra are in good agreement with the measured data. The predicted spectra show the experimentally observed trends with fan tip speed, vane count, and vane sweep. The results also demonstrate the validity of using CFD-based turbulence information for fan broadband noise calculations.

  15. Fan Noise Source Diagnostic Test Computation of Rotor Wake Turbulence Noise

    NASA Astrophysics Data System (ADS)

    Nallasamy, M.; Envia, E.; Thorp, S. A.; Shabbir, A.

    2002-08-01

    An important source mechanism of fan broadband noise is the interaction of rotor wake turbulence with the fan outlet guide vanes. A broadband noise model that utilizes computed rotor flow turbulence from a RANS code is used to predict fan broadband noise spectra. The noise model is employed to examine the broadband noise characteristics of the 22-inch Source Diagnostic Test fan rig for which broadband noise data were obtained in wind tunnel tests at the NASA Glenn Research Center. A 9-case matrix of three outlet guide vane configurations at three representative fan tip speeds are considered. For all cases inlet and exhaust acoustic power spectra are computed and compared with the measured spectra where possible. In general, the acoustic power levels and shape of the predicted spectra are in good agreement with the measured data. The predicted spectra show the experimentally observed trends with fan tip speed, vane count, and vane sweep. The results also demonstrate the validity of using CFD-based turbulence information for fan broadband noise calculations.

  16. BVI impulsive noise reduction by higher harmonic pitch control - Results of a scaled model rotor experiment in the DNW

    NASA Technical Reports Server (NTRS)

    Splettstoesser, Wolf R.; Schultz, KLAUS-J.; Kube, Roland; Brooks, Thomas F.; Booth, Earl R., Jr.; Niesl, Georg; Streby, Olivier

    1991-01-01

    Results are presented of a model rotor acoustics test performed to examine the benefit of higher harmonic control (HHC) of blade pitch to reduce blade-vortex interaction (BVI) impulsive noise. A dynamically scaled, four-bladed, rigid rotor model, a 40-percent replica of the B0-105 main rotor, was tested in the German Dutch Wind Tunnel. Noise characteristics and noise directivity patterns as well as vibratory loads were measured and used to demonstrate the changes when different HHC schedules were applied. Dramatic changes of the acoustic signatures and the noise radiation directivity with the HHC phase variations are found. Compared to the baseline conditions (without HHC), significant mid-frequency noise reductions of locally 6 dB are obtained for low-speed descent conditions where GVI is most intense. For other rotor operating conditions with less intense BVI there is less or no benefit from the use of HHC. LF noise and vibratory loads, especially at optimum noise reduction control settings, are found to increase.

  17. Algorithm for astronomical, point source, signal to noise ratio calculations

    NASA Technical Reports Server (NTRS)

    Jayroe, R. R.; Schroeder, D. J.

    1984-01-01

    An algorithm was developed to simulate the expected signal to noise ratios as a function of observation time in the charge coupled device detector plane of an optical telescope located outside the Earth's atmosphere for a signal star, and an optional secondary star, embedded in a uniform cosmic background. By choosing the appropriate input values, the expected point source signal to noise ratio can be computed for the Hubble Space Telescope using the Wide Field/Planetary Camera science instrument.

  18. General Aviation Interior Noise. Part 1; Source/Path Identification

    NASA Technical Reports Server (NTRS)

    Unruh, James F.; Till, Paul D.; Palumbo, Daniel L. (Technical Monitor)

    2002-01-01

    There were two primary objectives of the research effort reported herein. The first objective was to identify and evaluate noise source/path identification technology applicable to single engine propeller driven aircraft that can be used to identify interior noise sources originating from structure-borne engine/propeller vibration, airborne propeller transmission, airborne engine exhaust noise, and engine case radiation. The approach taken to identify the contributions of each of these possible sources was first to conduct a Principal Component Analysis (PCA) of an in-flight noise and vibration database acquired on a Cessna Model 182E aircraft. The second objective was to develop and evaluate advanced technology for noise source ranking of interior panel groups such as the aircraft windshield, instrument panel, firewall, and door/window panels within the cabin of a single engine propeller driven aircraft. The technology employed was that of Acoustic Holography (AH). AH was applied to the test aircraft by acquiring a series of in-flight microphone array measurements within the aircraft cabin and correlating the measurements via PCA. The source contributions of the various panel groups leading to the array measurements were then synthesized by solving the inverse problem using the boundary element model.

  19. Using beamforming and binaural synthesis for the psychoacoustical evaluation of target sources in noise.

    PubMed

    Song, Wookeun; Ellermeier, Wolfgang; Hald, Jorgen

    2008-02-01

    The potential of spherical-harmonics beamforming (SHB) techniques for the auralization of target sound sources in a background noise was investigated and contrasted with traditional head-related transfer function (HRTF)-based binaural synthesis. A scaling of SHB was theoretically derived to estimate the free-field pressure at the center of a spherical microphone array and verified by comparing simulated frequency response functions with directly measured ones. The results show that there is good agreement in the frequency range of interest. A listening experiment was conducted to evaluate the auralization method subjectively. A set of ten environmental and product sounds were processed for headphone presentation in three different ways: (1) binaural synthesis using dummy head measurements, (2) the same with background noise, and (3) SHB of the noisy condition in combination with binaural synthesis. Two levels of background noise (62, 72 dB SPL) were used and two independent groups of subjects (N=14) evaluated either the loudness or annoyance of the processed sounds. The results indicate that SHB almost entirely restored the loudness (or annoyance) of the target sounds to unmasked levels, even when presented with background noise, and thus may be a useful tool to psychoacoustically analyze composite sources. PMID:18247894

  20. A ring-source model for jet noise

    NASA Technical Reports Server (NTRS)

    Maestrello, L.

    1978-01-01

    A model consisting of two ring sources was developed to study the direct radiation of jet noise in terms of correlation, coherence, and phase and also to aid in solving the inverse radiation problem of determining the noise source in terms of far-field measurements. The rings consist of discrete sources which are either monopoles or quadrupoles with Gaussian profiles. Only adjacent sources, both within the rings and between rings, are correlated. Results show that from the far-field information can be used to determine when the sources are compact or noncompact with respect to the acoustic wavelength and to distinguish between the types of sources. In addition, from the inverse radiation approach, the center of mass, the location and separation distance of the ring, and the diameters can be recovered.

  1. Protocols for discriminating sources of intrinsic noise in gene expression

    NASA Astrophysics Data System (ADS)

    Kumar, Niraj; Kulkarni, Rahul

    2013-03-01

    The intrinsic stochasticity of gene expression leads to heterogeneity of protein levels across a population of cells. Different molecular mechanisms have been proposed that contribute to this variability in protein levels. Among these are Poissonian fluctuations of mRNAs, promoter fluctuations based on a random telegraph process, and general waiting-time distributions (``gestation'') for the arrival of mRNAs. Given these different sources, an important problem in the field is the development of protocols for discriminating the dominant molecular mechanisms giving rise to the observed noise. Considering the ``burst'' limit (for which mRNA lifetimes are much shorter than protein lifetimes) we develop protocols for discriminating the sources of intrinsic noise based on accessible experimental measurements. Computational validation of these protocols indicates that they could lead to promising experimental approaches for discriminating the sources of intrinsic noise in gene expression.

  2. Determining the influence of age and diabetes on the second-harmonic generation strength of dermal collagen fibers in vivo by using electronic noises

    NASA Astrophysics Data System (ADS)

    Hung, Wei-Chun; Sun, Chi-Kuang; Chen, Argon

    2013-02-01

    It is commonly believed that intrinsic skin aging is associated with the change of the collagen structures. The influence of the diabetes on the skin collagen is also considered to be similar to aging. Moreover, second-harmonic-generation (SHG) in collagen fibers is known to reflect the detailed collagen structures. It is thus highly valuable to adopt the SHG intensity as a collagen structure indicator. With the help of SHG, recently one can achieve in vivo imaging which provides the information of what really happens beneath the human skin. However, when analyzing the images, the SHG brightness of each pixel highly depends on the illumination condition, the depth of the SHG source, and the voltage of PMT. Therefore, it is important to calibrate these factors before statistical analysis. In this paper, we present our recent development that calibrates the in vivo SHG images by using noises. We first determine the regions of signals and noises by setting a threshold relating to the standard deviation of the image. By using the assumption that the noise was amplified by PMT with an amplification ratio the same as the SHG signal, we can define the brightness of the noise region as a parameter representing the voltage of PMT, and use this parameter to calibrate all SHG images. After calibrating, we can then compare different images from volunteers and analyze the influence of aging and diabetes on the SHG intensity from collagen fibers, even if the voltage of PMT was not fixed.

  3. Investigation of Volumetric Sources in Airframe Noise Simulations

    NASA Technical Reports Server (NTRS)

    Casper, Jay H.; Lockard, David P.; Khorrami, Mehdi R.; Streett, Craig L.

    2004-01-01

    Hybrid methods for the prediction of airframe noise involve a simulation of the near field flow that is used as input to an acoustic propagation formula. The acoustic formulations discussed herein are those based on the Ffowcs Williams and Hawkings equation. Some questions have arisen in the published literature in regard to an apparently significant dependence of radiated noise predictions on the location of the integration surface used in the solution of the Ffowcs Williams and Hawkings equation. These differences in radiated noise levels are most pronounced between solid-body surface integrals and off-body, permeable surface integrals. Such differences suggest that either a non-negligible volumetric source is contributing to the total radiation or the input flow simulation is suspect. The focus of the current work is the issue of internal consistency of the flow calculations that are currently used as input to airframe noise predictions. The case study for this research is a computer simulation for a three-element, high-lift wing profile during landing conditions. The noise radiated from this flow is predicted by a two-dimensional, frequency-domain formulation of the Ffowcs Williams and Hawkings equation. Radiated sound from volumetric sources is assessed by comparison of a permeable surface integration with the sum of a solid-body surface integral and a volume integral. The separate noise predictions are found in good agreement.

  4. Review of Subcritical Source-Driven Noise Analysis Measurements

    SciTech Connect

    Valentine, T.E.

    1999-11-24

    Subcritical source-driven noise measurements are simultaneous Rossi-{alpha} and randomly pulsed neutron measurements that provide measured quantities that can be related to the subcritical neutron multiplication factor. In fact, subcritical source-driven noise measurements should be performed in lieu of Rossi-{alpha} measurements because of the additional information that is obtained from noise measurements such as the spectral ratio and the coherence functions. The basic understanding of source-driven noise analysis measurements can be developed from a point reactor kinetics model to demonstrate how the measured quantities relate to the subcritical neutron multiplication factor. More elaborate models can also be developed using a generalized stochastic model. These measurements can be simulated using Monte Carlo codes to determine the subcritical neutron multiplication factor or to determine the sensitivity of calculations to nuclear cross section data. The interpretation of the measurement using a Monte Carlo method is based on a perturbation model for the relationship between the spectral ratio and the subcritical neutron multiplication factor. The subcritical source-driven noise measurement has advantages over other subcritical measurement methods in that reference measurements at delayed critical are not required for interpreting the measurements. Therefore, benchmark or in-situ subcritical measurements can be performed outside a critical experiment facility. Furthermore, a certain ratio of frequency spectra has been shown to be independent of detection efficiency thereby making the measurement more robust and unaffected by drifts or changes in instrumentation during the measurement. Criteria have been defined for application of this measurement method for benchmarks and in-situ subcritical measurements. An extension of the source-driven subcritical noise measurement has also been discussed that eliminates the few technical challenges for in-situ applications.

  5. Propeller sheet cavitation noise source modeling and inversion

    NASA Astrophysics Data System (ADS)

    Lee, Keunhwa; Lee, Jaehyuk; Kim, Dongho; Kim, Kyungseop; Seong, Woojae

    2014-02-01

    Propeller sheet cavitation is the main contributor to high level of noise and vibration in the after body of a ship. Full measurement of the cavitation-induced hull pressure over the entire surface of the affected area is desired but not practical. Therefore, using a few measurements on the outer hull above the propeller in a cavitation tunnel, empirical or semi-empirical techniques based on physical model have been used to predict the hull-induced pressure (or hull-induced force). In this paper, with the analytic source model for sheet cavitation, a multi-parameter inversion scheme to find the positions of noise sources and their strengths is suggested. The inversion is posed as a nonlinear optimization problem, which is solved by the optimization algorithm based on the adaptive simplex simulated annealing algorithm. Then, the resulting hull pressure can be modeled with boundary element method from the inverted cavitation noise sources. The suggested approach is applied to the hull pressure data measured in a cavitation tunnel of the Samsung Heavy Industry. Two monopole sources are adequate to model the propeller sheet cavitation noise. The inverted source information is reasonable with the cavitation dynamics of the propeller and the modeled hull pressure shows good agreement with cavitation tunnel experimental data.

  6. A battery-based, low-noise voltage source.

    PubMed

    Wagner, Anke; Sturm, Sven; Schabinger, Birgit; Blaum, Klaus; Quint, Wolfgang

    2010-06-01

    A highly stable, low-noise voltage source was designed to improve the stability of the electrode bias voltages of a Penning trap. To avoid excess noise and ground loops, the voltage source is completely independent of the public electric network and uses a 12 V car battery to generate output voltages of +/-15 and +/-5 V. First, the dc supply voltage is converted into ac-voltage and gets amplified. Afterwards, the signal is rectified, filtered, and regulated to the desired output value. Each channel can deliver up to 1.5 A. The current as well as the battery voltage and the output voltages can be read out via a universal serial bus (USB) connection for monitoring purposes. With the presented design, a relative voltage stability of 7 x 10(-7) over 6.5 h and a noise level equal or smaller than 30 nV/square root(Hz) is achieved. PMID:20590260

  7. Investigation of jet-installation noise sources under static conditions

    NASA Astrophysics Data System (ADS)

    Shearin, J. G.

    1983-08-01

    The acoustical effects of operating a 6-cm exit-diameter nozzle in the presence of a wing-flap model under static conditions are examined experimentally. The geometric parameters of the wing-flap model are chosen to represent a realistic jet-engine installation on a wide-body midrange transport airplane. The effects of varying the installation parameters and the noise sources associated with the engine-installation effects are discussed. The major noise sources are the flow interaction of the jet and wing undersurface, the flow interaction of the jet with the side edges of the flap cutout and flap trailing edge, and the reflection of the jet noise off the undersurface of the wing and flap.

  8. A battery-based, low-noise voltage source

    NASA Astrophysics Data System (ADS)

    Wagner, Anke; Sturm, Sven; Schabinger, Birgit; Blaum, Klaus; Quint, Wolfgang

    2010-06-01

    A highly stable, low-noise voltage source was designed to improve the stability of the electrode bias voltages of a Penning trap. To avoid excess noise and ground loops, the voltage source is completely independent of the public electric network and uses a 12 V car battery to generate output voltages of ±15 and ±5 V. First, the dc supply voltage is converted into ac-voltage and gets amplified. Afterwards, the signal is rectified, filtered, and regulated to the desired output value. Each channel can deliver up to 1.5 A. The current as well as the battery voltage and the output voltages can be read out via a universal serial bus (USB) connection for monitoring purposes. With the presented design, a relative voltage stability of 7×10-7 over 6.5 h and a noise level equal or smaller than 30 nV/√Hz is achieved.

  9. High-harmonic XUV source for time- and angle-resolved photoemission spectroscopy

    SciTech Connect

    Dakovski, Georgi L; Li, Yinwan; Durakiewicz, Tomasz; Rodriguez, George

    2009-01-01

    We present a laser-based apparatus for visible pump/XUV probe time- and angle-resolved photoemission spectroscopy (TRARPES) utilizing high-harmonic generation from a noble gas. Femtosecond temporal resolution for each selected harmonic is achieved by using a time-delay-compensated monochromator (TCM). The source has been used to obtain photoemission spectra from insulators (UO{sub 2}) and ultrafast pump/probe processes in semiconductors (GaAs).

  10. Aircraft noise reduction technology. [to show impact on individuals and communities, component noise sources, and operational procedures to reduce impact

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Aircraft and airport noise reduction technology programs conducted by NASA are presented. The subjects discussed are: (1) effects of aircraft noise on individuals and communities, (2) status of aircraft source noise technology, (3) operational procedures to reduce the impact of aircraft noise, and (4) NASA relations with military services in aircraft noise problems. References to more detailed technical literature on the subjects discussed are included.

  11. Identification and classification of noise sources in a chain conveyor

    NASA Astrophysics Data System (ADS)

    Homer, John P.; Vipperman, Jeffrey S.; Reeves, Efrem R.

    2002-05-01

    Noise induced hearing loss (NIHL) is one of the most significant disabilities of workers in the mining industry. In response, the National Institute of Occupational Safety and Health (NIOSH) is conducting a study associated with mining equipment. This study outlines the analysis of a chain conveyor. Band-limited accelerometer, sound-intensity, far-field and near-field microphone measurements were taken along the conveyor section. The sound intensity measurements were used to identify areas with high noise as well as to calculate and 1/3-octave sound power levels. The total sound power results were used to classify the dominant noise sources where the 1/3-octave sound power results were used to identify the most contributive frequency bands to the overall noise of the system. Coherence analysis was performed between accelerometer and microphone measurements to identify structure-borne and air-borne noise paths of the system. Summary results from the analysis include recommendations for transmission control and damping devices and their ability to reduce noise to regulatory acceptable levels.

  12. An investigation of rotor harmonic noise by the use of small scale wind tunnel models

    NASA Technical Reports Server (NTRS)

    Sternfeld, H., Jr.; Schaffer, E. G.

    1982-01-01

    Noise measurements of small scale helicopter rotor models were compared with noise measurements of full scale helicopters to determine what information about the full scale helicopters could be derived from noise measurements of small scale helicopter models. Comparisons were made of the discrete frequency (rotational) noise for 4 pairs of tests. Areas covered were tip speed effects, isolated rotor, tandem rotor, and main rotor/tail rotor interaction. Results show good comparison of noise trends with configuration and test condition changes, and good comparison of absolute noise measurements with the corrections used except for the isolated rotor case. Noise measurements of the isolated rotor show a great deal of scatter reflecting the fact that the rotor in hover is basically unstable.

  13. Empirical source noise prediction method with application to subsonic coaxial jet mixing noise

    NASA Technical Reports Server (NTRS)

    Zorumski, W. E.; Weir, D. S.

    1982-01-01

    A general empirical method, developed for source noise predictions, uses tensor splines to represent the dependence of the acoustic field on frequency and direction and Taylor's series to represent the dependence on source state parameters. The method is applied to prediction of mixing noise from subsonic circular and coaxial jets. A noise data base of 1/3-octave-band sound pressure levels (SPL's) from 540 tests was gathered from three countries: United States, United Kingdom, and France. The SPL's depend on seven variables: frequency, polar direction angle, and five source state parameters: inner and outer nozzle pressure ratios, inner and outer stream total temperatures, and nozzle area ratio. A least-squares seven-dimensional curve fit defines a table of constants which is used for the prediction method. The resulting prediction has a mean error of 0 dB and a standard deviation of 1.2 dB. The prediction method is used to search for a coaxial jet which has the greatest coaxial noise benefit as compared with an equivalent single jet. It is found that benefits of about 6 dB are possible.

  14. A power transformer as a source of noise.

    PubMed

    Zawieska, Wiktor Marek

    2007-01-01

    This article presents selected results of analyses and simulations carried out as part of research performed at the Central Institute of Labor Protection - the National Research Institute (CIOP-PIB) in connection with the development of a system for active reduction of noise emitted by high power electricity transformers. This analysis covers the transformer as a source of noise as well as a mathematical description of the phenomenon of radiation of vibroacoustic energy through a transformer enclosure modeled as a vibrating rectangular plate. Also described is an acoustic model of the transformer in the form of an array of loudspeakers. PMID:18082020

  15. Covariance-based approaches to aeroacoustic noise source analysis.

    PubMed

    Du, Lin; Xu, Luzhou; Li, Jian; Guo, Bin; Stoica, Petre; Bahr, Chris; Cattafesta, Louis N

    2010-11-01

    In this paper, several covariance-based approaches are proposed for aeroacoustic noise source analysis under the assumptions of a single dominant source and all observers contaminated solely by uncorrelated noise. The Cramér-Rao Bounds (CRB) of the unbiased source power estimates are also derived. The proposed methods are evaluated using both simulated data as well as data acquired from an airfoil trailing edge noise experiment in an open-jet aeroacoustic facility. The numerical examples show that the covariance-based algorithms significantly outperform an existing least-squares approach and provide accurate power estimates even under low signal-to-noise ratio (SNR) conditions. Furthermore, the mean-squared-errors (MSEs) of the so-obtained estimates are close to the corresponding CRB especially for a large number of data samples. The experimental results show that the power estimates of the proposed approaches are consistent with one another as long as the core analysis assumptions are obeyed. PMID:21110583

  16. Global Analysis of Response in the Piezomagnetoelastic Energy Harvester System under Harmonic and Poisson White Noise Excitations

    NASA Astrophysics Data System (ADS)

    Yue, Xiao-Le; Xu, Wei; Zhang, Ying; Wang, Liang

    2015-10-01

    The piezomagnetoelastic energy harvester system subjected to harmonic and Poisson white noise excitations is studied by using the generalized cell mapping method. The transient and stationary probability density functions (PDFs) of response based on the global viewpoint are obtained by the matrix analysis method. Monte Carlo simulation results verify the accuracy of this method. It can be observed that evolutionary direction of transient and stationary PDFs is in accordance with the unstable manifold for this system, and a stochastic P-bifurcation occurs as the intensity of Poisson white noise increases. This study presents an efficient numerical tool to solve the stochastic response of a three-dimensional dynamical system and provides a new idea to analyze the energy harvester system. Supported by the National Natural Science Foundation of China under Grant Nos. 11302170, 11202160, 11302171, and the Fundamental Research Funds for the Central Universities under Grant No. 3102014JCQ01079

  17. A simple-source model of military jet aircraft noise

    NASA Astrophysics Data System (ADS)

    Morgan, Jessica; Gee, Kent L.; Neilsen, Tracianne; Wall, Alan T.

    2010-10-01

    The jet plumes produced by military jet aircraft radiate significant amounts of noise. A need to better understand the characteristics of the turbulence-induced aeroacoustic sources has motivated the present study. The purpose of the study is to develop a simple-source model of jet noise that can be compared to the measured data. The study is based off of acoustic data collected near a tied-down F-22 Raptor. The simplest model consisted of adjusting the origin of a monopole above a rigid planar reflector until the locations of the predicted and measured interference nulls matched. The model has developed into an extended Rayleigh distribution of partially correlated monopoles which fits the measured data from the F-22 significantly better. The results and basis for the model match the current prevailing theory that jet noise consists of both correlated and uncorrelated sources. In addition, this simple-source model conforms to the theory that the peak source location moves upstream with increasing frequency and lower engine conditions.

  18. Volcanic jet noise: infrasonic source processes and atmospheric propagation

    NASA Astrophysics Data System (ADS)

    Matoza, R. S.; Fee, D.; Ogden, D. E.

    2011-12-01

    Volcanic eruption columns are complex flows consisting of (possibly supersonic) injections of ash-gas mixtures into the atmosphere. A volcanic eruption column can be modeled as a lower momentum-driven jet (the gas-thrust region), which transitions with altitude into a thermally buoyant plume. Matoza et al. [2009] proposed that broadband infrasonic signals recorded during this type of volcanic activity represent a low-frequency form of jet noise. Jet noise is produced at higher acoustic frequencies by smaller-scale man-made jet flows (e.g., turbulent jet flow from jet engines and rockets). Jet noise generation processes could operate at larger spatial scales and produce infrasonic frequencies in the lower gas-thrust portion of the eruption column. Jet-noise-like infrasonic signals have been observed at ranges of tens to thousands of kilometers from sustained volcanic explosions at Mount St. Helens, WA; Tungurahua, Ecuador; Redoubt, AK; and Sarychev Peak, Kuril Islands. Over such distances, the atmosphere cannot be considered homogeneous. Long-range infrasound propagation takes place primarily in waveguides formed by vertical gradients in temperature and horizontal winds, and exhibits strong spatiotemporal variability. The timing and location of volcanic explosions can be estimated from remote infrasonic data and could be used with ash cloud dispersion forecasts for hazard mitigation. Source studies of infrasonic volcanic jet noise, coupled with infrasound propagation modeling, hold promise for being able to constrain more detailed eruption jet parameters with remote, ground-based geophysical data. Here we present recent work on the generation and propagation of volcanic jet noise. Matoza, R. S., D. Fee, M. A. Garcés, J. M. Seiner, P. A. Ramón, and M. A. H. Hedlin (2009), Infrasonic jet noise from volcanic eruptions, Geophys. Res. Lett., 36, L08303, doi:10.1029/2008GL036486.

  19. ST-7 gravitational reference sensor: analysis of magnetic noise sources

    NASA Astrophysics Data System (ADS)

    Hanson, John; MacKeiser, G.; Buchman, Saps; Byer, Robert; Lauben, Dave; DeBra, Daniel; Williams, Scott; Gill, Dale; Shelef, Ben; Shelef, Gad

    2003-05-01

    A next generation gravitational reference sensor is being developed by Stanford University for the disturbance reduction system (DRS). The DRS will demonstrate the technology required for future gravity missions, including the planned LISA gravitational-wave observatory. The GRS consists of a freely floating test mass, a housing, sensing electrodes and associated electronics. Position measurements from the GRS are used to fly the spacecraft in a drag-free trajectory, where spacecraft position will be continuously adjusted to stay centred about the test mass, essentially flying in formation with it. Any departure of the test mass from a gravitational trajectory is characterized as acceleration noise, resulting from unwanted forces acting on the test mass. The GRS will have an inherent acceleration noise level more than four orders of magnitude lower than previously demonstrated in space. To achieve such a high level of performance, the interaction of the magnetized test mass with the magnetic fields produced by the spacecraft must be considered carefully. It is shown that a new noise source due to the interaction of the time-varying magnetic field gradient and the permanent dipole of the test mass must be added to the noise analysis. A simple current loop model shows that the design of the spacecraft and instrument electronics must be done with attention to the magnetic noise produced.

  20. Source localization and power estimation in aeroacoustic noise measurements

    NASA Astrophysics Data System (ADS)

    Yardibi, Tarik

    Using microphone arrays for noise source localization and power estimation has become common practice in aeroacoustic measurements, with the ultimate goal being the development of acoustic treatments to reduce overall airframe noise. This dissertation discusses the challenges involved in aeroacoustic testing with microphone arrays and develops a number of new signal processing techniques to overcome these challenges. The proposed algorithms are validated using both simulations and experimental data acquired at the University of Florida Aeroacoustic Flow Facility (UFAFF) with a 63-element microphone array. The standard delay-and-sum (DAS) beamformer is the most widely employed beamforming algorithm due to its simplicity and robustness, although it suffers from high sidelobe level and low resolution problems. Deconvolution can be used to eliminate the effects of the array response function from the DAS estimates. In this dissertation, the deconvolution problem is carried onto the sparse signal representation area and a sparsity constrained deconvolution approach (SC-DAMAS) as well as a sparsity preserving covariance matrix fitting approach (CMF) area presented. These algorithms are shown to offer better performance than several existing methods. Next, a systematic experimental analysis of DAS, deconvolution approach for the mapping of acoustic sources (DAMAS), SC-DAMAS, CMF, and CLEAN based on spatial source coherence (CLEAN-SC) is presented using uncorrelated and coherent sources as well as a NACA Mod 63-215 Mod B airfoil model. The source localization and absolute signal power estimation performance of the aforementioned algorithms are analyzed. To deal with correlated sources, the CMF-C algorithm, which is an extension to CMF, is proposed as an alternative to DAMAS-C, which is the extension of DAMAS to the correlated case. Since DAMAS-C and CMF-C are computationally impractical, an alternative algorithm, named mapping of acoustic correlated sources (MACS), is also presented. MACS is shown to work with simulated and experimental data containing correlated (or coherent) sources within a reasonable amount of time. Furthermore, a systematic uncertainty analysis of the DAS beamformer and a widely used array calibration procedure is presented. It is shown using experimental data that the uncertainties in the DAS beamformer integrated levels can be expected to be larger than about +/-1 dB. It is also shown that the array calibration procedure is essential when the assumed steering vectors are expected to contain errors. Most existing array processing algorithms for aeroacoustic noise measurement applications assume the presence of monopole sources. The last chapter of the dissertation addresses the problem of directive sources with unknown steering vectors. An algorithm for estimating non-diagonal measurement noise covariance matrices is also presented in this chapter as an alternative to diagonal removal.

  1. A higher harmonic control test in the DNW to reduce impulsive BVI noise

    NASA Technical Reports Server (NTRS)

    Splettstoesser, Wolf R.; Schultz, KLAUS-J.; Kube, Roland; Brooks, Thomas F.; Booth, Earl R., Jr.; Niesl, Georg; Streby, Olivier

    1994-01-01

    A model rotor acoustic test was performed to examine the benefit of higher control (HHC) of blade pitch to reduce blade-vortex interaction (BVI) impulse noise. A 40-percent dynamically scaled, four-bladed model of a BO-105 main rotor was tested in the German-Dutch Wind Tunnel (DNW). Acoustic measurements were made in a large plane underneath the rotor employing a traversing in-flow microphone array in the anechoic environment of the open test section. Noise characteristics and noise directivity patterns as well as vibratory loads were measured and used to demonstrate the changes when different HHC schedules (different modes, amplitudes, phases) were applied. Dramatic changes of the acoustic signatures and the noise radiation directivity with HHC phase variations are found. Compared to the baseline conditions (without HHD), significant mid-frequency noise reductions of as much as 6 dB are obtained for low speed descent conditions where BVI is most intensive. For other rotor operating conditions with less intense BVI there is less or no benefit from the use of HHC. Low frequency loading noise and vibratory loads, especially at optimum noise reduction control settings, are found to increase.

  2. Adaptive Selective Harmonic Minimization Based on ANNs for Cascade Multilevel Inverters With Varying DC Sources

    SciTech Connect

    Filho, Faete; Maia, Helder Z; Mateus, Tiago Henrique D; Ozpineci, Burak; Tolbert, Leon M; Pinto, Joao Onofre P

    2013-01-01

    A new approach for modulation of an 11-level cascade multilevel inverter using selective harmonic elimination is presented in this paper. The dc sources feeding the multilevel inverter are considered to be varying in time, and the switching angles are adapted to the dc source variation. This method uses genetic algorithms to obtain switching angles offline for different dc source values. Then, artificial neural networks are used to determine the switching angles that correspond to the real-time values of the dc sources for each phase. This implies that each one of the dc sources of this topology can have different values at any time, but the output fundamental voltage will stay constant and the harmonic content will still meet the specifications. The modulating switching angles are updated at each cycle of the output fundamental voltage. This paper gives details on the method in addition to simulation and experimental results.

  3. Source of a time-harmonic SH wave in a cylindrically orthotropic elastic solid

    NASA Astrophysics Data System (ADS)

    Watanabe, Kazumi; Payton, Robert G.

    2001-06-01

    The time harmonic response to a point SH-wave source in a cylindrically orthotropic elastic solid is considered and some closed-form Green functions are obtained for special values of the rigidity ratio (?(??/?r)). An integral representation formula, a key formula for the solution method, for a product of Bessel and Hankel functions with non-integer order is also presented.

  4. Observation of the second harmonic generation pumped by microscopic to extraterrestrial incoherent light sources

    NASA Astrophysics Data System (ADS)

    Tamoauskas, Gintaras

    2011-10-01

    I report on the experimental demonstration of the second harmonic generation in bulk nonlinear crystals excited by light emitting diode, halogen lamp and the Sun. Practical application for measurement of autocorrelation functions of incoherent non-laser driven sources via second order nonlinearity is demonstrated for the first time.

  5. A Numerical Investigation of Turbine Noise Source Hierarchy and Its Acoustic Transmission Characteristics

    NASA Technical Reports Server (NTRS)

    VanZante, Dale; Envia, Edmane

    2008-01-01

    Understanding the relative importance of the various turbine noise generation mechanisms and the characteristics of the turbine acoustic transmission loss are essential ingredients in developing robust reduced-order models for predicting the turbine noise signature. A computationally based investigation has been undertaken to help guide the development of a turbine noise prediction capability that does not rely on empiricism. The investigation relies on highly detailed numerical simulations of the unsteady flowfield inside a modern high-pressure turbine (HPT). The simulations are developed using TURBO, which is an unsteady Reynolds-averaged Navier-Stokes (URANS) code capable of multi-stage simulations. The purpose of this study is twofold. First, to determine an estimate of the relative importance of the contributions to the coherent part of the acoustic signature of a turbine from the three potential sources of turbine noise generation, namely, blade-row viscous interaction, potential field interaction, and entropic source associated with the interaction of the blade rows with the temperature nonuniformities caused by the incomplete mixing of the hot fluid and the cooling flow. Second, to develop an understanding of the turbine acoustic transmission characteristics and to assess the applicability of existing empirical and analytical transmission loss models to realistic geometries and flow conditions for modern turbine designs. The investigation so far has concentrated on two simulations: (1) a single-stage HPT and (2) a two-stage HPT and the associated inter-turbine duct/strut segment. The simulations are designed to resolve up to the second harmonic of the blade passing frequency tone in accordance with accepted rules for second order solvers like TURBO. The calculations include blade and vane cooling flows and a radial profile of pressure and temperature at the turbine inlet. The calculation can be modified later to include the combustor pattern factor at the turbine inlet to include that contribution to turbine noise. We shall present preliminary analysis of the results obtained so far in order to assess the validity of such an approach and to seek feedback on improving the approach. This work addresses both Area 1 (Turbine Tone Noise) and Area 5 (Influence of the Turbine on Combustor Noise) topics.

  6. Microseism Source Direction from Noise Cross-correlation

    NASA Astrophysics Data System (ADS)

    Chen, Zhao; Gerstoft, Peter; Bromirski, Peter D.

    2016-02-01

    Inhomogeneous noise sources surrounding stations produce asymmetric amplitudes in cross-correlation functions that yield preferential source directions. Here we show that preprocessing biases the dominant source direction estimate towards the source producing long-duration signals by down-weighting high-amplitude signals. Tests with both synthetic data and observations show that conventional preprocessing, where only earthquakes and local transients (e.g. trawling, fish impacts) are removed, is more sensitive to coherent energy, while one-bit preprocessing and running-absolute-mean (RAM) preprocessing are more influenced by signal duration. Comparisons between different preprocessing methods are made on data from the Cascadia Initiative (CI) ocean bottom seismometer (OBS) array, where we find that the total energy arriving from pelagic and coastal areas is similar. Moreover, pelagic-generated signals tend to be weaker but have longer duration, in contrast to coastal-generated signals that tend to be stronger but have shorter duration.

  7. Mapping the source distribution of microseisms using noise covariogram envelopes

    NASA Astrophysics Data System (ADS)

    Sadeghisorkhani, Hamzeh; Gudmundsson, Ólafur; Roberts, Roland; Tryggvason, Ari

    2016-03-01

    We introduce a method for mapping the noise-source distribution of microseisms which uses information from the full length of covariograms (cross-correlations). We derive a forward calculation based on the plane-wave assumption in 2D, to formulate an iterative, linearized inversion of covariogram envelopes in the time domain. The forward calculation involves bandpass filtering of the covariograms. The inversion exploits the well-known feature of noise cross-correlation, i.e., that an anomaly in the noise field that is oblique to the inter-station direction appears as cross-correlation amplitude at a smaller time lag than the in-line, surface-wave arrival. Therefore, the inversion extracts more information from the covariograms than that contained at the expected surface-wave arrival, and this allows us to work with few stations to find the propagation directions of incoming energy. The inversion is naturally applied to data that retain physical units, i.e., that are not amplitude normalized in any way. By dividing a network into groups of stations, we can constrain the source location by triangulation. We demonstrate results of the method with synthetic data and one year (2012) of data from the Swedish National Seismic Network (SNSN) and also look at the seasonal variation of source distribution around Scandinavia. After preprocessing and cross-correlation, the stations are divided into 5 groups of 9 to 12 stations. We invert the envelopes of each group in 8 period ranges between 2 to 25 sec. Results show that the noise sources at short periods (less than 12 sec) lie predominantly in the North Atlantic Ocean and the Barents Sea, and at longer periods the energy appears to have a broader distribution. The strongly anisotropic source distribution in this area is estimated to cause significant biases of velocity measurements compared to the level of heterogeneity in the region. The amplitude of the primary microseisms varies little over the year, but secondary microseisms are much weaker in summer than in winter. Furthermore, the peak period of the secondary microseisms shifts from 5-6 s in winter to 4-5 s during the summer.

  8. Optimization of structures undergoing harmonic or stochastic excitation. Ph.D. Thesis; [atmospheric turbulence and white noise

    NASA Technical Reports Server (NTRS)

    Johnson, E. H.

    1975-01-01

    The optimal design was investigated of simple structures subjected to dynamic loads, with constraints on the structures' responses. Optimal designs were examined for one dimensional structures excited by harmonically oscillating loads, similar structures excited by white noise, and a wing in the presence of continuous atmospheric turbulence. The first has constraints on the maximum allowable stress while the last two place bounds on the probability of failure of the structure. Approximations were made to replace the time parameter with a frequency parameter. For the first problem, this involved the steady state response, and in the remaining cases, power spectral techniques were employed to find the root mean square values of the responses. Optimal solutions were found by using computer algorithms which combined finite elements methods with optimization techniques based on mathematical programming. It was found that the inertial loads for these dynamic problems result in optimal structures that are radically different from those obtained for structures loaded statically by forces of comparable magnitude.

  9. Towards enabling femtosecond helicity-dependent spectroscopy with high-harmonic sources.

    PubMed

    Lambert, G; Vodungbo, B; Gautier, J; Mahieu, B; Malka, V; Sebban, S; Zeitoun, P; Luning, J; Perron, J; Andreev, A; Stremoukhov, S; Ardana-Lamas, F; Dax, A; Hauri, C P; Sardinha, A; Fajardo, M

    2015-01-01

    Recent advances in high-harmonic generation gave rise to soft X-ray pulses with higher intensity, shorter duration and higher photon energy. One of the remaining shortages of this source is its restriction to linear polarization, since the yield of generation of elliptically polarized high harmonics has been low so far. We here show how this limitation is overcome by using a cross-polarized two-colour laser field. With this simple technique, we reach high degrees of ellipticity (up to 75%) with efficiencies similar to classically generated linearly polarized harmonics. To demonstrate these features and to prove the capacity of our source for applications, we measure the X-ray magnetic circular dichroism (XMCD) effect of nickel at the M2,3 absorption edge around 67?eV. There results open up the way towards femtosecond time-resolved experiments using high harmonics exploiting the powerful element-sensitive XMCD effect and resolving the ultrafast magnetization dynamics of individual components in complex materials. PMID:25649329

  10. Limits on the prediction of helicopter rotor noise using thickness and loading sources: Validation of helicopter noise prediction techniques

    NASA Technical Reports Server (NTRS)

    Succi, G. P.

    1983-01-01

    The techniques of helicopter rotor noise prediction attempt to describe precisely the details of the noise field and remove the empiricisms and restrictions inherent in previous methods. These techniques require detailed inputs of the rotor geometry, operating conditions, and blade surface pressure distribution. The Farassat noise prediction techniques was studied, and high speed helicopter noise prediction using more detailed representations of the thickness and loading noise sources was investigated. These predictions were based on the measured blade surface pressures on an AH-1G rotor and compared to the measured sound field. Although refinements in the representation of the thickness and loading noise sources improve the calculation, there are still discrepancies between the measured and predicted sound field. Analysis of the blade surface pressure data indicates shocks on the blades, which are probably responsible for these discrepancies.

  11. Noise of combat aircraft in proximity to air bases: Review of the possibilities of noise reduction at the source

    NASA Astrophysics Data System (ADS)

    Collin, D.; Julliard, J.; Riou, G.

    1992-04-01

    The operations carried out by combat aircraft are a source of nuisance for the populations situated in proximity to air bases. The noise of jet aircraft constitutes the dominant source of noise in the operations in question. The authors propose to approach the question of the reduction of the corresponding sonic nuisances by utilizing experience acquired by SNECMA over the course of more than twenty years of research on the noise of civil jet turbine engines, and especially of the Concorde supersonic transport program. The important experimental database resulting from these studies has permitted the development and evaluation of preview methods and solutions in noise reduction. The different mechanisms and significant sources of noise will therefore be reviewed at the same time as the possibilities for current or future improvement.

  12. Advanced Control Strategy for Single-Phase Voltage-Source Active Rectifier with Low Harmonic Emission

    NASA Astrophysics Data System (ADS)

    Blahnk, Vojt?ch; Peroutka, Zden?k; Talla, Jakub

    2014-03-01

    This paper introduces the advanced control of single-phase voltage-source active rectifier. This control provide direct control of trolley-wire current and active damping of low-frequency disturbances at the converter ac side. Our proposed control strategy combines PR controller with feed-forward model and low-frequency harmonic compensator based on resonant controllers. Achieved experimental results show excellent converter behavior, where converter is fed by strongly distorted supply voltage.

  13. High repetition rate source of narrowband extreme-ultraviolet harmonics for time-resolved ARPES

    NASA Astrophysics Data System (ADS)

    Wang, He; Xu, Yiming; Ulonska, Stefan; Ranitovic, Predrag; Robinson, Joseph; Kaindl, Robert

    2015-03-01

    We present a highly efficient table-top source of extreme ultraviolet (XUV) femtosecond pulses operating at 50-kHz repetition rate. A bright XUV source flux of 3x1013 photons/s is generated at 22.3 eV by driving high-harmonic generation with the ultraviolet second-harmonic of a laser amplifier focused tightly into Kr gas. The conversion efficiency (5x10-5) is enhanced by two orders-of-magnitude in this cascaded scheme, exceeding dipole wavelength scaling and evidencing enhanced phase matching conditions as confirmed by simulations. Importantly, the spectral structure enables the direct, high-contrast isolation of a single, narrowband harmonic with 72 meV linewidth. The high repetition rate, narrow bandwidth, and high flux (1011-1012 ph/s at the sample) of this source is ideal for time-resolved photoemission or nanoscale imaging. First applications in time- and angle-resolved photoemission (trARPES) will be discussed. The work was supported by the DOE Office of Science, Materials Sciences and Engineering Division.

  14. Integrated quasi-phase-matched second-harmonic generator and electro-optic phase modulator for low-noise phase-sensitive amplification.

    PubMed

    Enbutsu, Koji; Umeki, Takeshi; Tadanaga, Osamu; Asobe, Masaki; Takenouchi, Hirokazu

    2015-07-15

    We propose a quasi-phase-matched second-harmonic generator integrated with an electro-optic phase modulator in a directly bonded LiNbO3 (DB-LN) waveguide to obtain high signal-to-noise ratio (SNR) pump light for a phase-sensitive amplifier (PSA). This integrated device exhibits 1-MHz modulation and 1-W second-harmonic-generation properties sufficient for phase-locking between the signal and pump and for PSA gain, respectively. A novel PSA configuration based on the high-input-power tolerance of the device helps to suppress the noise from the erbium-doped fiber amplifier used for pump-light generation and leads to an improvement of the SNR of the pump light. The SNR improvement was confirmed by comparing the noise figure of a PSA employing the DB-LN waveguide with that of a PSA using a Ti-diffused LN waveguide modulator. PMID:26176463

  15. Fan Noise Source Diagnostic Test: Rotor Alone Aerodynamic Performance Results

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.; Jeracki, Robert J.; Woodward, Richard P.; Miller, Christopher J.

    2005-01-01

    The aerodynamic performance of an isolated fan or rotor alone model was measured in the NASA Glenn Research Center 9- by 15- Foot Low Speed Wind Tunnel as part of the Fan Broadband Source Diagnostic Test conducted at NASA Glenn. The Source Diagnostic Test was conducted to identify the noise sources within a wind tunnel scale model of a turbofan engine and quantify their contribution to the overall system noise level. The fan was part of a 1/5th scale model representation of the bypass stage of a current technology turbofan engine. For the rotor alone testing, the fan and nacelle, including the inlet, external cowl, and fixed area fan exit nozzle, were modeled in the test hardware; the internal outlet guide vanes located behind the fan were removed. Without the outlet guide vanes, the velocity at the nozzle exit changes significantly, thereby affecting the fan performance. As part of the investigation, variations in the fan nozzle area were tested in order to match as closely as possible the rotor alone performance with the fan performance obtained with the outlet guide vanes installed. The fan operating performance was determined using fixed pressure/temperature combination rakes and the corrected weight flow. The performance results indicate that a suitable nozzle exit was achieved to be able to closely match the rotor alone and fan/outlet guide vane configuration performance on the sea level operating line. A small shift in the slope of the sea level operating line was measured, which resulted in a slightly higher rotor alone fan pressure ratio at take-off conditions, matched fan performance at cutback conditions, and a slightly lower rotor alone fan pressure ratio at approach conditions. However, the small differences in fan performance at all fan conditions were considered too small to affect the fan acoustic performance.

  16. Axonal Noise as a Source of Synaptic Variability

    PubMed Central

    Neishabouri, Ali; Faisal, A. Aldo

    2014-01-01

    Post-synaptic potential (PSP) variability is typically attributed to mechanisms inside synapses, yet recent advances in experimental methods and biophysical understanding have led us to reconsider the role of axons as highly reliable transmission channels. We show that in many thin axons of our brain, the action potential (AP) waveform and thus the Ca++ signal controlling vesicle release at synapses will be significantly affected by the inherent variability of ion channel gating. We investigate how and to what extent fluctuations in the AP waveform explain observed PSP variability. Using both biophysical theory and stochastic simulations of central and peripheral nervous system axons from vertebrates and invertebrates, we show that channel noise in thin axons (<1 m diameter) causes random fluctuations in AP waveforms. AP height and width, both experimentally characterised parameters of post-synaptic response amplitude, vary e.g. by up to 20 mV and 0.5 ms while a single AP propagates in C-fibre axons. We show how AP height and width variabilities increase with a power-law as diameter decreases and translate these fluctuations into post-synaptic response variability using biophysical data and models of synaptic transmission. We find for example that for mammalian unmyelinated axons with 0.2 m diameter (matching cerebellar parallel fibres) axonal noise alone can explain half of the PSP variability in cerebellar synapses. We conclude that axonal variability may have considerable impact on synaptic response variability. Thus, in many experimental frameworks investigating synaptic transmission through paired-cell recordings or extracellular stimulation of presynaptic neurons, causes of variability may have been confounded. We thereby show how bottom-up aggregation of molecular noise sources contributes to our understanding of variability observed at higher levels of biological organisation. PMID:24809823

  17. Fan Noise Source Diagnostic Test: LDV Measured Flow Field Results

    NASA Technical Reports Server (NTRS)

    Podboy, Gary C.; Krupar, Martin J.; Hughes, Christopher E.; Woodward, Richard P.

    2003-01-01

    Results are presented of an experiment conducted to investigate potential sources of noise in the flow developed by two 22-in. diameter turbofan models. The R4 and M5 rotors that were tested were designed to operate at nominal take-off speeds of 12,657 and 14,064 RPMC, respectively. Both fans were tested with a common set of swept stators installed downstream of the rotors. Detailed measurements of the flows generated by the two were made using a laser Doppler velocimeter system. The wake flows generated by the two rotors are illustrated through a series of contour plots. These show that the two wake flows are quite different, especially in the tip region. These data are used to explain some of the differences in the rotor/stator interaction noise generated by the two fan stages. In addition to these wake data, measurements were also made in the R4 rotor blade passages. These results illustrate the tip flow development within the blade passages, its migration downstream, and (at high rotor speeds) its merging with the blade wake of the adjacent (following) blade. Data also depict the variation of this tip flow with tip clearance. Data obtained within the rotor blade passages at high rotational speeds illustrate the variation of the mean shock position across the different blade passages.

  18. Separating Turbofan Engine Noise Sources Using Auto and Cross Spectra from Four Microphones

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton

    2008-01-01

    The study of core noise from turbofan engines has become more important as noise from other sources such as the fan and jet were reduced. A multiple-microphone and acoustic-source modeling method to separate correlated and uncorrelated sources is discussed. The auto- and cross spectra in the frequency range below 1000 Hz are fitted with a noise propagation model based on a source couplet consisting of a single incoherent monopole source with a single coherent monopole source or a source triplet consisting of a single incoherent monopole source with two coherent monopole point sources. Examples are presented using data from a Pratt& Whitney PW4098 turbofan engine. The method separates the low-frequency jet noise from the core noise at the nozzle exit. It is shown that at low power settings, the core noise is a major contributor to the noise. Even at higher power settings, it can be more important than jet noise. However, at low frequencies, uncorrelated broadband noise and jet noise become the important factors as the engine power setting is increased.

  19. Noise-induced annoyance from transportation noise: short-term responses to a single noise source in a laboratory.

    PubMed

    Kim, Jaehwan; Lim, Changwoo; Hong, Jiyoung; Lee, Soogab

    2010-02-01

    An experimental study was performed to compare the annoyances from civil-aircraft noise, military-aircraft noise, railway noise, and road-traffic noise. Two-way within-subjects designs were applied in this research. Fifty-two subjects, who were naive listeners, were given various stimuli with varying levels through a headphone in an anechoic chamber. Regardless of the frequency weighting network, even under the same average energy level, civil-aircraft noise was the most annoying, followed by military-aircraft noise, railway noise, and road-traffic noise. In particular, penalties in the time-averaged, A-weighted sound level (TAL) of about 8, 5, and 5 dB, respectively, were found in the civil-aircraft, military-aircraft, and railway noises. The reason could be clarified through the high-frequency component and the variability in the level. When people were exposed to sounds with the same maximum A-weighted level, a railway bonus of about 3 dB was found. However, transportation noise has been evaluated by the time-averaged A-weighted level in most countries. Therefore, in the present situation, the railway bonus is not acceptable for railway vehicles with diesel-electric engines. PMID:20136203

  20. Aircraft noise source and computer programs - User's guide

    NASA Technical Reports Server (NTRS)

    Crowley, K. C.; Jaeger, M. A.; Meldrum, D. F.

    1973-01-01

    The application of computer programs for predicting the noise-time histories and noise contours for five types of aircraft is reported. The aircraft considered are: (1) turbojet, (2) turbofan, (3) turboprop, (4) V/STOL, and (5) helicopter. Three principle considerations incorporated in the design of the noise prediction program are core effectiveness, limited input, and variable output reporting.

  1. Sources and levels of background noise in the NASA Ames 40- by 80-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.

    1988-01-01

    Background noise levels are measured in the NASA Ames Research Center 40- by 80-Foot Wind Tunnel following installation of a sound-absorbent lining on the test-section walls. Results show that the fan-drive noise dominated the empty test-section background noise at airspeeds below 120 knots. Above 120 knots, the test-section broadband background noise was dominated by wind-induced dipole noise (except at lower harmonics of fan blade-passage tones) most likely generated at the microphone or microphone support strut. Third-octave band and narrow-band spectra are presented for several fan operating conditions and test-section airspeeds. The background noise levels can be reduced by making improvements to the microphone wind screen or support strut. Empirical equations are presented relating variations of fan noise with fan speed or blade-pitch angle. An empirical expression for typical fan noise spectra is also presented. Fan motor electric power consumption is related to the noise generation. Preliminary measurements of sound absorption by the test-section lining indicate that the 152 mm thick lining will adequately absorb test-section model noise at frequencies above 300 Hz.

  2. Probing the sources of ambient seismic noise near the coasts of southern Italy

    NASA Astrophysics Data System (ADS)

    Gu, Yu Jeffrey; Dublanko, Curtis; Lerner-Lam, Arthur; Brzak, Keith; Steckler, Michael

    2007-11-01

    In this study we probe the source of ambient noise in the southern Apennines and the Calabrian Arc by cross-correlating two months of ambient seismic noise records collected during the Calabria-Apennine-Tyrrhenian/Subduction-Collision-Acretion Network (CAT/SCAN) project. Significant Rayleigh wave energy is observed on the vertical component of the noise correlation stacks and reveals multiple sources of ambient noise in southern Italy. The most dominant noise sources are found along (1) the Tyrrhenian coast of northern Calabria-southern Campania and (2) the Adriatic Sea near the Gargano Promontory. Enhanced ocean currents evident from buoy records during the study period could be responsible for the observed microseisms. We validate the source locations using earthquake records and the consistency between noise and earthquake correlation functions supports the observed dominant directions of ambient seismic noise.

  3. Saturated and subcooled hydrothermal boiling in groundwater flow channels as a source of harmonic tremor

    NASA Astrophysics Data System (ADS)

    Leet, Robert C.

    1988-05-01

    The potential of hydrothermal boiling in groundwater flow channels for generating harmonic tremor (a relatively monochromatic ground vibration associated with volcanic activity) is examined. We use simple "organ pipe" theory of normal-mode fluid vibration and fundamental energy considerations to develop a first-order analytical model of a hydrothermal-boiling source of harmonic tremor. We use this model to estimate order-of-magnitude groundwater flow channel lengths and boiling heat transfer rates required to produce harmonic tremor with dominant frequencies in the range 0.5-5 Hz and surface wave reduced displacements of up to 100 cm2. Depending on groundwater sound speed, flow channel lengths of the order of 1-1000 m are required to produce fluid vibration eigenfrequencies in the range 0.5-5 Hz. The boiling heat transfer rate required to produce tremor with a given surface wave reduced displacement depends on the tremor frequency and on whether saturated boiling or subcooled boiling is the cause of the tremor. Saturated boiling produces groundwater vibration via steam bubble growth, whereas subcooled boiling produces groundwater vibration via steam bubble collapse. We find that subcooled hydrothermal boiling is from 102 to 104 times more efficient than saturated boiling in converting boiling "thermal" power to seismic power. For example, the boiling heat transfer rates required to produce 1-Hz tremor with reduced displacements of up to 100 cm2 via subcooled boiling are generally less than a few thousand megawatts; for saturated boiling, the required boiling heat transfer rates are several orders of magnitude larger than this. The highest values of heat flow reported in the literature for volcanic crater lakes and terrestrial and ocean floor geothermal areas are of the order of 1000 MW. Taking this value as a first-order estimate of an upper limit on possible boiling heat transfer rates in volcanic hydrothermal systems, our results suggest that saturated hydrothermal boiling is capable of generating only low-amplitude harmonic tremor, with surface wave reduced displacements no higher than a few square centimeters. However, subcooled hydrothermal boiling could potentially generate high-amplitude harmonic tremor, with reduced displacements as large as several hundred square centimeters. As a specific application of our model, we evaluate the potential of hydrothermal boiling for generating harmonic tremor at recently active Mount St. Helens and Nevado Del Ruiz volcanoes. We conclude that subcooled boiling likely could have produced the tremor episodes considered at both volcanoes. Saturated boiling also could explain the Nevado Del Ruiz tremor but probably not the more powerful Mount St. Helens tremor.

  4. Farfield filtering and source imaging of subsonic jet noise

    NASA Astrophysics Data System (ADS)

    Kœnig, Maxime; Cavalieri, André V. G.; Jordan, Peter; Delville, Joël; Gervais, Yves; Papamoschou, Dimitri

    2013-09-01

    Jet noise is analysed using data-processing tools adapted to two particular structural traits of the far field: the strong polar dependence and the temporal intermittency. Proper Orthogonal Decomposition is used to probe the polar structure of the sound field, wavelet transform being used to interrogate the temporal signature. The far field is decomposed, using each of these approaches independently, into a component attributed to 'coherent structures', denoted CS, and a residuum, R. The criteria for the decomposition being different, spatial on one hand and temporal on the other, comparison of the resulting CS components is of considerable interest; both decompositions lead, for instance, to CS components that compare favourably with a wavepacket source Ansatz. Using the two techniques, an analysis methodology is established and applied to data from a Mach 0.9, isothermal jet; a series of metrics are thereby proposed by which to evaluate the data. The methodology and associated metrics are then used to explore the effect of varying Mach number on isothermal and heated jets. The following main results are obtained. Both the unfiltered low-angle sound spectrum and that of the CS component of the isothermal jets are found to scale best with Helmholtz number, indicating that the associated sound source is noncompact. In the heated jet, on the other hand, a Strouhal number scaling is observed, again for both the unfiltered low-angle spectrum and the CS spectrum, suggesting that the associated sources are in this case more compact. Where the intermittency of the farfield signature is concerned it is found that increasing the Mach number of isothermal jets has no discernible impact, whereas in the case of the heated jet this increase is accompanied by a decrease in the intermittency, indicating some kind of associated stabilisation of wavepacket source dynamics. Finally, the unfiltered data is used to perform source imaging, using a wavepacket Ansatz. This allows a more comprehensive eduction of the wavepacket parameters. The trends observed are consistent with known changes in the mean field and with linear stability theory. Finally, the directivity of the wavepackets obtained using the source imaging is compared with those educed from the data using the POD and wavelet filters. Good agreement between all three constitutes a strong evidence supporting the contention that such wavepackets underpin the said, polar and temporal, features of the farfield.

  5. A temporal and spatial analysis of anthropogenic noise sources affecting SNMR

    NASA Astrophysics Data System (ADS)

    Dalgaard, E.; Christiansen, P.; Larsen, J. J.; Auken, E.

    2014-11-01

    One of the biggest challenges when using the surface nuclear magnetic resonance (SNMR) method in urban areas is a relatively low signal level compared to a high level of background noise. To understand the temporal and spatial behavior of anthropogenic noise sources like powerlines and electric fences, we have developed a multichannel instrument, noiseCollector (nC), which measures the full noise spectrum up to 10 kHz. Combined with advanced signal processing we can interpret the noise as seen by a SNMR instrument and also obtain insight into the more fundamental behavior of the noise. To obtain a specified acceptable noise level for a SNMR sounding the stack size can be determined by quantifying the different noise sources. Two common noise sources, electromagnetic fields stemming from powerlines and fences are analyzed and show a 1/r2 dependency in agreement with theoretical relations. A typical noise map, obtained with the nC instrument prior to a SNMR field campaign, clearly shows the location of noise sources, and thus we can efficiently determine the optimal location for the SNMR sounding from a noise perspective.

  6. Double simple-harmonic-oscillator formulation of the thermal equilibrium of a fluid interacting with a coherent source of phonons

    NASA Technical Reports Server (NTRS)

    Defacio, B.; Vannevel, Alan; Brander, O.

    1993-01-01

    A formulation is given for a collection of phonons (sound) in a fluid at a non-zero temperature which uses the simple harmonic oscillator twice; one to give a stochastic thermal 'noise' process and the other which generates a coherent Glauber state of phonons. Simple thermodynamic observables are calculated and the acoustic two point function, 'contrast' is presented. The role of 'coherence' in an equilibrium system is clarified by these results and the simple harmonic oscillator is a key structure in both the formulation and the calculations.

  7. Radially leaned outlet guide vanes for fan source noise reduction

    NASA Technical Reports Server (NTRS)

    Kazin, S. B.

    1973-01-01

    Two quiet engine program half scale fans one with a subsonic and the other with a supersonic fan tip speed at takeoff were run with 30 degree leaned and radial outlet guide vanes. Acoustic data at takeoff fan speed on the subsonic tip speed fan showed decreases in 200-foot sideline noise of from 1 to 2 PNdb. The supersonic tip speed fan a takeoff fan speed, however, showed noise increases of up 3 PNdb and a decrease in fan efficiency. At approach fan speed, the subsonic tip speed fan showed a noise decrease of 2.3 PNdb at the 200-foot sideline maximum angle and an increase in efficiency. The supersonic tip speed fan showed noise increase of 3.5 PNdb and no change in efficiency. The decrease in fan efficiency and the nature of the noise increase largely high frequency broadband noise lead to the speculation that an aerodynamic problem occurred.

  8. HSCT nozzle source noise programs at Pratt and Whitney

    NASA Astrophysics Data System (ADS)

    Stern, Alfred M.

    1992-04-01

    The topics covered include the following: 20 dB jet noise suppression; ejector nozzle technology program - noise reduction vs. flow augmentation; mixer ejector nozzle technology challenges; 1989 High Speed Civil Transport (HSCT) 2-D ejector model test in NASA's 9 x 15 ft. tunnel; tertiary airflow 1989 2-D ejector test; shock noise dominates 2-D ejector test; lessons learned - 2-D mixer/ejector in 9 x 15 ft. tunnel; 1990 HSCT axisymmetric ejector model test in Boeing's Low Speed Aeroacoustic Facility (LSAF); axisymmetric mixer/ejector mach contours - peak and valley - NASTAR pre-test predictions; tertiary airflow objectives accomplished - 1990 AXI model; and HSCT low noise exhaust technology programs.

  9. /sup 252/Cf-source-driven neutron noise analysis method

    SciTech Connect

    Mihalczo, J.T.; King, W.T.; Blakeman, E.D.

    1985-01-01

    The /sup 252/Cf-source-driven neutron noise analysis method has been tested in a wide variety of experiments that have indicated the broad range of applicability of the method. The neutron multiplication factor k/sub eff/ has been satisfactorily detemined for a variety of materials including uranium metal, light water reactor fuel pins, fissile solutions, fuel plates in water, and interacting cylinders. For a uranyl nitrate solution tank which is typical of a fuel processing or reprocessing plant, the k/sub eff/ values were satisfactorily determined for values between 0.92 and 0.5 using a simple point kinetics interpretation of the experimental data. The short measurement times, in several cases as low as 1 min, have shown that the development of this method can lead to a practical subcriticality monitor for many in-plant applications. The further development of the method will require experiments oriented toward particular applications including dynamic experiments and the development of theoretical methods to predict the experimental observables.

  10. Noise from high speed maglev systems: Noise sources, noise criteria, preliminary design guidelines for noise control, recommendations for acoustical test facility for maglev research. Final report, July 1991-October 1992

    SciTech Connect

    Hanson, C.E.; Abbot, P.; Dyer, I.

    1993-01-01

    Noise levels from magnetically-levitated trains (maglev) at very high speed may be high enough to cause environmental noise impact in residential areas. Aeroacoustic sources dominate the sound at high speeds and guideway vibrations generate noticeable sound at low speed. In addition to high noise levels, the startle effect as a result of sudden onset of sound from a rapidly moving nearby maglev vehicle may lead to increased annoyance to neighbors of a maglev system. The report provides a base for determining the noise consequences and potential mitigation for a high speed maglev system in populated areas of the United States. Four areas are included in the study: (1) definition of noise sources; (2) development of noise criteria; (3) development of design guidelines; and (4) recommendations for a noise testing facility.

  11. Embedded Acoustic Sensor Array for Engine Fan Noise Source Diagnostic Test: Feasibility of Noise Telemetry via Wireless Smart Sensors

    NASA Technical Reports Server (NTRS)

    Zaman, Afroz; Bauch, Matthew; Raible, Daniel

    2011-01-01

    Aircraft engines have evolved into a highly complex system to meet ever-increasing demands. The evolution of engine technologies has primarily been driven by fuel efficiency, reliability, as well as engine noise concerns. One of the sources of engine noise is pressure fluctuations that are induced on the stator vanes. These local pressure fluctuations, once produced, propagate and coalesce with the pressure waves originating elsewhere on the stator to form a spinning pressure pattern. Depending on the duct geometry, air flow, and frequency of fluctuations, these spinning pressure patterns are self-sustaining and result in noise which eventually radiate to the far-field from engine. To investigate the nature of vane pressure fluctuations and the resulting engine noise, unsteady pressure signatures from an array of embedded acoustic sensors are recorded as a part of vane noise source diagnostics. Output time signatures from these sensors are routed to a control and data processing station adding complexity to the system and cable loss to the measured signal. "Smart" wireless sensors have data processing capability at the sensor locations which further increases the potential of wireless sensors. Smart sensors can process measured data locally and transmit only the important information through wireless communication. The aim of this wireless noise telemetry task was to demonstrate a single acoustic sensor wireless link for unsteady pressure measurement, and thus, establish the feasibility of distributed smart sensors scheme for aircraft engine vane surface unsteady pressure data transmission and characterization.

  12. A graphic method for predicting audibility of noise sources

    NASA Astrophysics Data System (ADS)

    Fidell, S.; Horonjeff, R.

    1982-10-01

    This report provides the technical rationale for revision of a chart developed by Fidell, Pearsons, and Bennett (1972). This chart expresses the relationships between signal-to-noise ratio and frequency that govern detectability of acoustic signals by human observers. The chart permits a user: (1) to predict the frequency region of a spectrum that is most detectable in any given ambient noise background; (2) to quantify the degree of detectability of the signal in question; and (3) to estimate reduction in signal-to-noise ratio necessary to render the signal undetectable.

  13. Candidate Source of Flux Noise in SQUIDs: Adsorbed Oxygen Molecules

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Shi, Chuntai; Hu, Jun; Han, Sungho; Yu, Clare C.; Wu, R. Q.

    2015-08-01

    A major obstacle to using superconducting quantum interference devices (SQUIDs) as qubits is flux noise. We propose that the heretofore mysterious spins producing flux noise could be O2 molecules adsorbed on the surface. Using density functional theory calculations, we find that an O2 molecule adsorbed on an α-alumina surface has a magnetic moment of ˜1.8 μB . The spin is oriented perpendicular to the axis of the O-O bond, the barrier to spin rotations is about 10 mK. Monte Carlo simulations of ferromagnetically coupled, anisotropic X Y spins on a square lattice find 1 /f magnetization noise, consistent with flux noise in Al SQUIDs.

  14. Source localization from seismic noise: a methodology applied to seismic exploration.

    NASA Astrophysics Data System (ADS)

    Corciulo, Margherita; Roux, Philippe; Campillo, Michel; Dubucq, Dominique

    2010-05-01

    The main objective of the present study is to develop a methodology for source localization in seismic exploration contexts, using seismic noise data, which integrates methodologies optimized from acoustics and seismology. Passive imaging from noise cross-correlation is now applied at continental and regional scale. Its use at local scale for seismic exploration purposes is still uncertain. The development of passive imaging using cross-correlated data classically consists in two different tasks, the first one being the extraction of the Green's function from seismic noise and the second one consisting in modelling the velocity field from these observations. All the correlation methods are based on the concept that seismic noise is randomly distributed in space, in other words noise sources are azimuthally distributed around the recording stations. In practice, however, this never happens, especially at local scale and frequency above 1 Hz. A consequence is that the shape of the causal and anti-causal part of noise correlation function differs, which makes ambiguous the extraction of travel times for imaging purposes. Another consequence is that a third task should be added to the first two presented above that consists in the localization of the noise sources when it appears that the noise source distribution is heterogeneous. In our work we used data acquired in Northern America (Canada) on a 1-km side square seismic network. Five days of seismic noise data were collected on a total of 397 stations. Since exploration purposes need to obtain high resolution images and since noise correlation vanishes as frequency increases, we introduce a multistep procedure permitting to start our analysis from low to high frequency content. The seismic noise correlation function performed on the seismic network at low frequency [2-5 Hz] shows a large spatial coherence but also reveals a difference in amplitude for the causal and anti-causal parts of noise-correlated traces. Capitalizing on the strong coherence between station pairs, a methodology was developed, using both linear and non-linear techniques, to localize the seismic noise source(s). The linear technique is based on the minimization, as L2 norm, of the travel-times information extracted from the correlation functions and synthetic travel-times obtained from a local source at depth. Matched-Field Processing (MFP) non-linear techniques developed in ocean acoustics (and analogous to Capon's algorithm used in seismic) were used to further constraint the localization of the noise source on sub-wavelength dimensions. MFP results show that noise sources are quite stable on the 5 days of recording and source localization is well constrained in the low frequency range of interest.

  15. Coupling CARS with multiphoton fluorescence and high harmonic generation imaging modalities using a femtosecond laser source

    NASA Astrophysics Data System (ADS)

    Chen, Hongtao; Slipchenko, Mikhail N.; Zhu, Jiabin; Buhman, Kimberly K.; Cheng, Ji-Xin

    2009-02-01

    Multimodal nonlinear optical imaging has opened new opportunities and becomes a powerful tool for imaging complex tissue samples with inherent 3D spatial resolution.. We present a robust and easy-to-operate approach to add the coherent anti-stokes Raman scattering (CARS) imaging modality to a widely used multiphoton microscope. The laser source composed of a Mai Tai femtosecond laser and an optical parametric oscillator (OPO) offers one-beam, two-beam and three-beam modalities. The Mai Tai output at 790 nm is split into two beams, with 80% of the power being used to pump the OPO. The idler output at 2036 nm from OPO is doubled using a periodically poled lithium niobate (PPLN) crystal. This frequency-doubled idler beam at 1018 nm is sent through a delay line and collinearly combined with the other Mai Tai beam for CARS imaging on a laser-scanning microscope. This Mai Tai beam is also used for multiphoton fluorescence and second harmonic generation (SHG) imaging. The signal output at 1290 nm from OPO is used for SHG and third-harmonic generation (THG) imaging. External detectors are installed for both forward and backward detection, whereas two internal lamda-scan detectors are employed for microspectroscopy analysis. This new system allows vibrationally resonant CARS imaging of lipid bodies, SHG imaging of collagen fibers, and multiphoton fluorescence analysis in fresh tissues. As a preliminary application, the effect of diacylglycerol acyltransferase 1 (DGAT1) deficiency on liver lipid metabolism in mice was investigated.

  16. EUV mask observations using a coherent EUV scatterometry microscope with a high-harmonic-generation source

    NASA Astrophysics Data System (ADS)

    Fujino, Takahiro; Tanaka, Yusuke; Harada, Tetsuo; Nagata, Yutaka; Watanabe, Takeo; Kinoshita, Hiroo

    2015-07-01

    In extreme ultraviolet (EUV) lithography, the three-dimensional (3D) structure of the EUV mask, which has an absorber layer and a Mo/Si multilayer on a glass substrate, strongly affects the EUV phase. EUV actinic metrology is required to evaluate the feature of defect printability and the critical dimension (CD) value. The 3D structure modulates the EUV phase, causing the pattern position and focus shift. A microscope that observes in phase contrast necessary. We have developed a coherent EUV scatterometry microscope (CSM) for observing EUV patterns with quantitative phase contrast. The exposure light is coherent EUV light. For the industrial use, we have developed a laboratory coherent source of high-harmonic-generation (HHG) EUV light. High harmonics is pumped by a scale of a Ti:Sapphire laser. In the previous study, a very long exposure time of 1000 s was necessary to detect We upgraded the relay optics. The detection performance of an absorber defect using the new relay optics is We observed the line-end oversize defect and the oversize defect in the 112 nm hole pattern and 180 nm hole pattern. The upgraded system has a detection size limit of a line-end 24-nm-oversize defect with 10 s exposure time, which is 2,688 nm2 (52 × 52 nm2) absorber defect. This result shows high performance capability of HHG-CSM for detecting small defect.

  17. Detection of quantum noise

    NASA Astrophysics Data System (ADS)

    Senitzky, I. R.

    1993-12-01

    Noise that can be attributed to vacuum fluctuations, usually referred to as quantum noise, is examined. It is shown that vacuum fluctuations of a single uncoupled mode do not constitute noise, in the sense of a random process, but the superposition of the fluctuations of a large number of modes does constitute, formally, noise. The effect of vacuum fluctuations of the free-space radiation field on a harmonic oscillator, a nondegenerate parametric amplifier, and a degenerate parametric amplifier, all driven by a prescribed sinusoidal field, is compared with the effect of classical noise. It is found that the coordinates of all systems respond in a formally similar manner to both vacuum fluctuations and classical noise. However, the resonance fluorescence spectrum-the evidence of ``detection''-is completely different for the two kinds of noise. The spectrum of the harmonic oscillator does not exhibit noise in response to vacuum fluctuations, but does so in response to classical noise. The spectra of the two types of parametric amplifiers do exhibit noise in response to vacuum fluctuations, but this noise differs from that in the classical case. An explanation for the difference is offered, based on the fact that the quantum fluctuations cannot do work, but can noise-modulate power from an outside source, which, for the parametric amplifiers, is the pump. In the analysis of noise from the degenerate parametric amplifier, it is shown that squeezed noise, viewed as an oscillation of the dispersion with a sufficiently low minimum, is generated in the same manner in the case of classical noise as in the case of quantum noise, and is due to phase conjugation.

  18. Jet-Surface Interaction Test: Phased Array Noise Source Localization Results

    NASA Technical Reports Server (NTRS)

    Podboy, Gary G.

    2012-01-01

    An experiment was conducted to investigate the effect that a planar surface located near a jet flow has on the noise radiated to the far-field. Two different configurations were tested: 1) a shielding configuration in which the surface was located between the jet and the far-field microphones, and 2) a reflecting configuration in which the surface was mounted on the opposite side of the jet, and thus the jet noise was free to reflect off the surface toward the microphones. Both conventional far-field microphone and phased array noise source localization measurements were obtained. This paper discusses phased array results, while a companion paper discusses far-field results. The phased array data show that the axial distribution of noise sources in a jet can vary greatly depending on the jet operating condition and suggests that it would first be necessary to know or be able to predict this distribution in order to be able to predict the amount of noise reduction to expect from a given shielding configuration. The data obtained on both subsonic and supersonic jets show that the noise sources associated with a given frequency of noise tend to move downstream, and therefore, would become more difficult to shield, as jet Mach number increases. The noise source localization data obtained on cold, shock-containing jets suggests that the constructive interference of sound waves that produces noise at a given frequency within a broadband shock noise hump comes primarily from a small number of shocks, rather than from all the shocks at the same time. The reflecting configuration data illustrates that the law of reflection must be satisfied in order for jet noise to reflect off of a surface to an observer, and depending on the relative locations of the jet, the surface, and the observer, only some of the jet noise sources may satisfy this requirement.

  19. Nanoscale direct mapping of localized and induced noise sources on conducting polymer films

    NASA Astrophysics Data System (ADS)

    Shekhar, Shashank; Cho, Duckhyung; Lee, Hyungwoo; Cho, Dong-Guk; Hong, Seunghun

    2015-12-01

    The localized noise-sources and those induced by external-stimuli were directly mapped by using a conducting-AFM integrated with a custom-designed noise measurement set-up. In this method, current and noise images of a poly(9,9-dioctylfluorene)-polymer-film on a conducting-substrate were recorded simultaneously, enabling the mapping of the resistivity and noise source density (NT). The polymer-films exhibited separate regions with high or low resistivities, which were attributed to the ordered or disordered phases, respectively. A larger number of noise-sources were observed in the disordered-phase-regions than in the ordered-phase regions, due to structural disordering. Increased bias-voltages on the disordered-phase-regions resulted in increased NT, which is explained by the structural deformation at high bias-voltages. On photo-illumination, the ordered-phase-regions exhibited a rather large increase in the conductivity and NT. Presumably, the illumination released carriers from deep-traps which should work as additional noise-sources. These results show that our methods provide valuable insights into noise-sources and, thus, can be powerful tools for basic research and practical applications of conducting polymer films.The localized noise-sources and those induced by external-stimuli were directly mapped by using a conducting-AFM integrated with a custom-designed noise measurement set-up. In this method, current and noise images of a poly(9,9-dioctylfluorene)-polymer-film on a conducting-substrate were recorded simultaneously, enabling the mapping of the resistivity and noise source density (NT). The polymer-films exhibited separate regions with high or low resistivities, which were attributed to the ordered or disordered phases, respectively. A larger number of noise-sources were observed in the disordered-phase-regions than in the ordered-phase regions, due to structural disordering. Increased bias-voltages on the disordered-phase-regions resulted in increased NT, which is explained by the structural deformation at high bias-voltages. On photo-illumination, the ordered-phase-regions exhibited a rather large increase in the conductivity and NT. Presumably, the illumination released carriers from deep-traps which should work as additional noise-sources. These results show that our methods provide valuable insights into noise-sources and, thus, can be powerful tools for basic research and practical applications of conducting polymer films. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06896g

  20. Deconvolution for three-dimensional acoustic source identification based on spherical harmonics beamforming

    NASA Astrophysics Data System (ADS)

    Chu, Zhigang; Yang, Yang; He, Yansong

    2015-05-01

    Spherical Harmonics Beamforming (SHB) with solid spherical arrays has become a particularly attractive tool for doing acoustic sources identification in cabin environments. However, it presents some intrinsic limitations, specifically poor spatial resolution and severe sidelobe contaminations. This paper focuses on overcoming these limitations effectively by deconvolution. First and foremost, a new formulation is proposed, which expresses SHB's output as a convolution of the true source strength distribution and the point spread function (PSF) defined as SHB's response to a unit-strength point source. Additionally, the typical deconvolution methods initially suggested for planar arrays, deconvolution approach for the mapping of acoustic sources (DAMAS), nonnegative least-squares (NNLS), Richardson-Lucy (RL) and CLEAN, are adapted to SHB successfully, which are capable of giving rise to highly resolved and deblurred maps. Finally, the merits of the deconvolution methods are validated and the relationships of source strength and pressure contribution reconstructed by the deconvolution methods vs. focus distance are explored both with computer simulations and experimentally. Several interesting results have emerged from this study: (1) compared with SHB, DAMAS, NNLS, RL and CLEAN all can not only improve the spatial resolution dramatically but also reduce or even eliminate the sidelobes effectively, allowing clear and unambiguous identification of single source or incoherent sources. (2) The availability of RL for coherent sources is highest, then DAMAS and NNLS, and that of CLEAN is lowest due to its failure in suppressing sidelobes. (3) Whether or not the real distance from the source to the array center equals the assumed one that is referred to as focus distance, the previous two results hold. (4) The true source strength can be recovered by dividing the reconstructed one by a coefficient that is the square of the focus distance divided by the real distance from the source to the array center. (5) The reconstructed pressure contribution is almost not affected by the focus distance, always approximating to the true one. This study will be of great significance to the accurate localization and quantification of acoustic sources in cabin environments.

  1. Bright high-repetition-rate source of narrowband extreme-ultraviolet harmonics beyond 22?eV.

    PubMed

    Wang, He; Xu, Yiming; Ulonska, Stefan; Robinson, Joseph S; Ranitovic, Predrag; Kaindl, Robert A

    2015-01-01

    Novel table-top sources of extreme-ultraviolet light based on high-harmonic generation yield unique insight into the fundamental properties of molecules, nanomaterials or correlated solids, and enable advanced applications in imaging or metrology. Extending high-harmonic generation to high repetition rates portends great experimental benefits, yet efficient extreme-ultraviolet conversion of correspondingly weak driving pulses is challenging. Here, we demonstrate a highly-efficient source of femtosecond extreme-ultraviolet pulses at 50-kHz repetition rate, utilizing the ultraviolet second-harmonic focused tightly into Kr gas. In this cascaded scheme, a photon flux beyond ?3 10(13)?s(-1) is generated at 22.3?eV, with 5 10(-5) conversion efficiency that surpasses similar harmonics directly driven by the fundamental by two orders-of-magnitude. The enhancement arises from both wavelength scaling of the atomic dipole and improved spatio-temporal phase matching, confirmed by simulations. Spectral isolation of a single 72-meV-wide harmonic renders this bright, 50-kHz extreme-ultraviolet source a powerful tool for ultrafast photoemission, nanoscale imaging and other applications. PMID:26067922

  2. Bright high-repetition-rate source of narrowband extreme-ultraviolet harmonics beyond 22 eV

    NASA Astrophysics Data System (ADS)

    Wang, He; Xu, Yiming; Ulonska, Stefan; Robinson, Joseph S.; Ranitovic, Predrag; Kaindl, Robert A.

    2015-06-01

    Novel table-top sources of extreme-ultraviolet light based on high-harmonic generation yield unique insight into the fundamental properties of molecules, nanomaterials or correlated solids, and enable advanced applications in imaging or metrology. Extending high-harmonic generation to high repetition rates portends great experimental benefits, yet efficient extreme-ultraviolet conversion of correspondingly weak driving pulses is challenging. Here, we demonstrate a highly-efficient source of femtosecond extreme-ultraviolet pulses at 50-kHz repetition rate, utilizing the ultraviolet second-harmonic focused tightly into Kr gas. In this cascaded scheme, a photon flux beyond ~3 1013 s-1 is generated at 22.3 eV, with 5 10-5 conversion efficiency that surpasses similar harmonics directly driven by the fundamental by two orders-of-magnitude. The enhancement arises from both wavelength scaling of the atomic dipole and improved spatio-temporal phase matching, confirmed by simulations. Spectral isolation of a single 72-meV-wide harmonic renders this bright, 50-kHz extreme-ultraviolet source a powerful tool for ultrafast photoemission, nanoscale imaging and other applications.

  3. Bright high-repetition-rate source of narrowband extreme-ultraviolet harmonics beyond 22 eV

    PubMed Central

    Wang, He; Xu, Yiming; Ulonska, Stefan; Robinson, Joseph S.; Ranitovic, Predrag; Kaindl, Robert A.

    2015-01-01

    Novel table-top sources of extreme-ultraviolet light based on high-harmonic generation yield unique insight into the fundamental properties of molecules, nanomaterials or correlated solids, and enable advanced applications in imaging or metrology. Extending high-harmonic generation to high repetition rates portends great experimental benefits, yet efficient extreme-ultraviolet conversion of correspondingly weak driving pulses is challenging. Here, we demonstrate a highly-efficient source of femtosecond extreme-ultraviolet pulses at 50-kHz repetition rate, utilizing the ultraviolet second-harmonic focused tightly into Kr gas. In this cascaded scheme, a photon flux beyond ≈3 × 1013 s−1 is generated at 22.3 eV, with 5 × 10−5 conversion efficiency that surpasses similar harmonics directly driven by the fundamental by two orders-of-magnitude. The enhancement arises from both wavelength scaling of the atomic dipole and improved spatio-temporal phase matching, confirmed by simulations. Spectral isolation of a single 72-meV-wide harmonic renders this bright, 50-kHz extreme-ultraviolet source a powerful tool for ultrafast photoemission, nanoscale imaging and other applications. PMID:26067922

  4. Sources, control, and effects of noise from aircraft propellers and rotors

    NASA Technical Reports Server (NTRS)

    Mixson, J. S.; Greene, G. C.; Dempsey, T. K.

    1981-01-01

    Recent NASA and NASA sponsored research on the prediction and control of propeller and rotor source noise, on the analysis and design of fuselage sidewall noise control treatments, and on the measurement and quantification of the response of passengers to aircraft noise is described. Source noise predictions are compared with measurements for conventional low speed propellers, for new high speed propellers (propfans), and for a helicopter. Results from a light aircraft demonstration program are considered which indicates that about 5 dB reduction of flyover noise can be obtained without significant performance penalty. Sidewall design studies are examined for interior noise control in light general aviation aircraft and in large transports using propfan propulsion. The weight of the added acoustic treatment is estimated and tradeoffs between weight and noise reduction are discussed. A laboratory study of passenger response to combined broadband and tonal propeller-like noise is described. Subject discomfort ratings of combined tone broadband noises are compared with ratings of broadband (boundary layer) noise alone and the relative importance of the propeller tones is examined.

  5. Biological Sources of Intrinsic and Extrinsic Noise in cI Expression of Lysogenic Phage Lambda

    PubMed Central

    Lei, Xue; Tian, Wei; Zhu, Hongyuan; Chen, Tianqi; Ao, Ping

    2015-01-01

    Genetically identical cells exposed to homogeneous environment can show remarkable phenotypic difference. To predict how phenotype is shaped, understanding of how each factor contributes is required. During gene expression processes, noise could arise either intrinsically in biochemical processes of gene expression or extrinsically from other cellular processes such as cell growth. In this work, important noise sources in gene expression of phage ? lysogen are quantified using models described by stochastic differential equations (SDEs). Results show that DNA looping has sophisticated impacts on gene expression noise: When DNA looping provides autorepression, like in wild type, it reduces noise in the system; When the autorepression is defected as it is in certain mutants, DNA looping increases expression noise. We also study how each gene operator affects the expression noise by changing the binding affinity between the gene and the transcription factor systematically. We find that the system shows extraordinarily large noise when the binding affinity is in certain range, which changes the system from monostable to bistable. In addition, we find that cell growth causes non-negligible noise, which increases with gene expression level. Quantification of noise and identification of new noise sources will provide deeper understanding on how stochasticity impacts phenotype. PMID:26329725

  6. Biological Sources of Intrinsic and Extrinsic Noise in cI Expression of Lysogenic Phage Lambda.

    PubMed

    Lei, Xue; Tian, Wei; Zhu, Hongyuan; Chen, Tianqi; Ao, Ping

    2015-01-01

    Genetically identical cells exposed to homogeneous environment can show remarkable phenotypic difference. To predict how phenotype is shaped, understanding of how each factor contributes is required. During gene expression processes, noise could arise either intrinsically in biochemical processes of gene expression or extrinsically from other cellular processes such as cell growth. In this work, important noise sources in gene expression of phage ? lysogen are quantified using models described by stochastic differential equations (SDEs). Results show that DNA looping has sophisticated impacts on gene expression noise: When DNA looping provides autorepression, like in wild type, it reduces noise in the system; When the autorepression is defected as it is in certain mutants, DNA looping increases expression noise. We also study how each gene operator affects the expression noise by changing the binding affinity between the gene and the transcription factor systematically. We find that the system shows extraordinarily large noise when the binding affinity is in certain range, which changes the system from monostable to bistable. In addition, we find that cell growth causes non-negligible noise, which increases with gene expression level. Quantification of noise and identification of new noise sources will provide deeper understanding on how stochasticity impacts phenotype. PMID:26329725

  7. High-speed helicopter rotor noise - Shock waves as a potent source of sound

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Lee, Yung-Jang; Tadghighi, H.; Holz, R.

    1991-01-01

    In this paper we discuss the problem of high speed rotor noise prediction. In particular, we propose that from the point of view of the acoustic analogy, shocks around rotating blades are sources of sound. We show that, although for a wing at uniform steady rectilinear motion with shocks the volume quadrupole and shock sources cancel in the far field to the order of 1/r, this cannot happen for rotating blades. In this case, some cancellation between volume quadrupoles and shock sources occurs, yet the remaining shock noise contribution is still potent. A formula for shock noise prediction is presented based on mapping the deformable shock surface to a time independent region. The resulting equation is similar to Formulation 1A of Langley. Shock noise prediction for a hovering model rotor for which experimental noise data exist is presented. The comparison of measured and predicted acoustic data shows good agreement.

  8. Identification and proposed control of helicopter transmission noise at the source

    NASA Technical Reports Server (NTRS)

    Coy, John J.; Handschuh, Robert F.; Lewicki, David G.; Huff, Ronald G.; Krejsa, Eugene A.; Karchmer, Allan M.

    1987-01-01

    Helicopter cabin interiors require noise treatment which is expensive and adds weight. The gears inside the main power transmission are major sources of cabin noise. Work conducted by the NASA Lewis Research Center in measuring cabin interior noise and in relating the noise spectrum to the gear vibration of the Army OH-58 helicopter is described. Flight test data indicate that the planetary gear train is a major source of cabin noise and that other low frequency sources are present that could dominate the cabin noise. Companion vibration measurements were made in a transmission test stand, revealing that the single largest contributor to the transmission vibration was the spiral bevel gear mesh. The current understanding of the nature and causes of gear and transmission noise is discussed. It is believed that the kinematical errors of the gear mesh have a strong influence on that noise. The completed NASA/Army sponsored research that applies to transmission noise reduction is summarized. The continuing research program is also reviewed.

  9. Identification and proposed control of helicopter transmission noise at the source

    NASA Technical Reports Server (NTRS)

    Coy, John J.; Handschuh, Robert F.; Lewicki, David G.; Huff, Ronald G.; Krejsa, Eugene A.; Karchmer, Allan M.; Coy, John J.

    1988-01-01

    Helicopter cabin interiors require noise treatment which is expensive and adds weight. The gears inside the main power transmission are major sources of cabin noise. Work conducted by the NASA Lewis Research Center in measuring cabin interior noise and in relating the noise spectrum to the gear vibration of the Army OH-58 helicopter is described. Flight test data indicate that the planetary gear train is a major source of cabin noise and that other low frequency sources are present that could dominate the cabin noise. Companion vibration measurements were made in a transmission test stand, revealing that the single largest contributor to the transmission vibration was the spiral bevel gear mesh. The current understanding of the nature and causes of gear and transmission noise is discussed. It is believed that the kinematical errors of the gear mesh have a strong influence on that noise. The completed NASA/Army sponsored research that applies to transmission noise reduction is summarized. The continuing research program is also reviewed.

  10. Walk-away VSP using drill noise as a source

    SciTech Connect

    Haldorsen, J.B.U.; Miller, D.E.; Walsh, J.J.

    1995-07-01

    The authors describe a method for extracting and deconvolving a signal generated by a drill bit and collected by an array of surface geophones. The drill-noise signature is reduced to an effective impulse by means of a multichannel Wiener deconvolution technique, producing a walk-away reverse vertical seismic profile (VSP) sampled almost continuously in depth. They show how the multichannel technique accounts for noise and for internal drill-string reflections, automatically limiting the deconvolution technique, producing a walk-away reverse vertical seismic profile (VSP) sampled almost continuously in depth. They show how the multichannel technique accounts for noise and for internal drill-string reflections, automatically limiting the deconvolved data to frequencies containing significant energy. They have acquired and processed a data set from a well in Germany while drilling at a depth of almost 4,000 m. The subsurface image derived from these data compares well with corresponding images from a 3-d surface seismic survey, a zero-offset VSP survey, and a walk-away VSP survey acquired using conventional wireline techniques. The effective bandwidth of the deconvolved drill-noise data is comparable to the bandwidth of surface seismic data but significantly smaller than what can be achieved with wireline VSP techniques. Although the processing algorithm does not require the use of sensors mounted on the drill string, these sensors provide a very economic way to compress the data. The sensors on the drill string were also used for accurate timing of the deconvolved drill-noise data.

  11. Effects of noise radiated from convected ring sources in coaxial dual flow. Part 1: The noise from unheated jets

    NASA Technical Reports Server (NTRS)

    Dash, R.

    1982-01-01

    The effects of flight on sound radiated from embedded, uncorrelated ring sources convecting along the midst of the primary and the secondary streams of a coaxial dual flow which emerges from a moving nozzle into the ambience are studied. Cold jets are examined. The problem is posed as a double vortex-sheet flow model which involves deliberate suppression of inherent instabilities of the flow and is formulated, as a linear problem, in terms of the combined contributions of two independent uncorrelated quadrupole-type ring sources, the one convecting in the primary flow representing the sources generated due to the interaction at the primary/secondary interface and the other convecting in the secondary flow representing the sources generated due to the interaction at the secondary/ambient interface. The analysis shows that the effects of flight induce (1) amplication of noise in the forward quadrant, (2) reduction of noise in the aft quadrant and (3) absolutely no impact on radiation of noise at Theta = 90 deg to the jet axis.

  12. Initial-State Bremsstrahlung versus Final-State Hydrodynamic Sources of Azimuthal Harmonics at RHIC and LHC

    NASA Astrophysics Data System (ADS)

    Gyulassy, Miklos; Levai, Peter; Vitev, Ivan; Biro, Tamas

    2014-09-01

    Recent azimuthal correlation data from the Beam Energy Scan (BES) and d+Au runs at RHIC/BNL and, the surprising similarity of multiparticle cummulant azimuthal harmonics in p+Pb and Pb+Pb at LHC have challenged the uniqueness of local equilibrium ``perfect fluid'' interpretations of those data. We report results derived in arXiv:1405.7825 [hep-ph] on azimuthal harmonics arising from initial-state non-abelian ``wave interference'' effects predicted by perturbative QCD sourced by Color Scintillation Arrays (CSA) of color antennas associated with multiple projectile and target soft beam jets. We find a remarkable similarity between azimuthal harmonics sourced by initial state CSA and those predicted with final state perfect fluid models of high energy p+A reactions. Recent azimuthal correlation data from the Beam Energy Scan (BES) and d+Au runs at RHIC/BNL and, the surprising similarity of multiparticle cummulant azimuthal harmonics in p+Pb and Pb+Pb at LHC have challenged the uniqueness of local equilibrium ``perfect fluid'' interpretations of those data. We report results derived in arXiv:1405.7825 [hep-ph] on azimuthal harmonics arising from initial-state non-abelian ``wave interference'' effects predicted by perturbative QCD sourced by Color Scintillation Arrays (CSA) of color antennas associated with multiple projectile and target soft beam jets. We find a remarkable similarity between azimuthal harmonics sourced by initial state CSA and those predicted with final state perfect fluid models of high energy p+A reactions. Supported in part by the US Department of Energy, Office of Science, Office of Nuclear Physics.

  13. Phased Array Radiometer Calibration Using a Radiated Noise Source

    NASA Technical Reports Server (NTRS)

    Srinivasan, Karthik; Limaye, Ashutoch S.; Laymon, Charles A.; Meyer, Paul J.

    2010-01-01

    Electronic beam steering capability of phased array antenna systems offer significant advantages when used in real aperture imaging radiometers. The sensitivity of such systems is limited by the ability to accurately calibrate variations in the antenna circuit characteristics. Passive antenna systems, which require mechanical rotation to scan the beam, have stable characteristics and the noise figure of the antenna can be characterized with knowledge of its physical temperature [1],[2]. Phased array antenna systems provide the ability to electronically steer the beam in any desired direction. Such antennas make use of active components (amplifiers, phase shifters) to provide electronic scanning capability while maintaining a low antenna noise figure. The gain fluctuations in the active components can be significant, resulting in substantial calibration difficulties [3]. In this paper, we introduce two novel calibration techniques that provide an end-to-end calibration of a real-aperture, phased array radiometer system. Empirical data will be shown to illustrate the performance of both methods.

  14. Nanoscale direct mapping of localized and induced noise sources on conducting polymer films.

    PubMed

    Shekhar, Shashank; Cho, Duckhyung; Lee, Hyungwoo; Cho, Dong-Guk; Hong, Seunghun

    2015-12-23

    The localized noise-sources and those induced by external-stimuli were directly mapped by using a conducting-AFM integrated with a custom-designed noise measurement set-up. In this method, current and noise images of a poly(9,9-dioctylfluorene)-polymer-film on a conducting-substrate were recorded simultaneously, enabling the mapping of the resistivity and noise source density (NT). The polymer-films exhibited separate regions with high or low resistivities, which were attributed to the ordered or disordered phases, respectively. A larger number of noise-sources were observed in the disordered-phase-regions than in the ordered-phase regions, due to structural disordering. Increased bias-voltages on the disordered-phase-regions resulted in increased NT, which is explained by the structural deformation at high bias-voltages. On photo-illumination, the ordered-phase-regions exhibited a rather large increase in the conductivity and NT. Presumably, the illumination released carriers from deep-traps which should work as additional noise-sources. These results show that our methods provide valuable insights into noise-sources and, thus, can be powerful tools for basic research and practical applications of conducting polymer films. PMID:26530520

  15. Effects of noise levels and call types on the source levels of killer whale calls.

    PubMed

    Holt, Marla M; Noren, Dawn P; Emmons, Candice K

    2011-11-01

    Accurate parameter estimates relevant to the vocal behavior of marine mammals are needed to assess potential effects of anthropogenic sound exposure including how masking noise reduces the active space of sounds used for communication. Information about how these animals modify their vocal behavior in response to noise exposure is also needed for such assessment. Prior studies have reported variations in the source levels of killer whale sounds, and a more recent study reported that killer whales compensate for vessel masking noise by increasing their call amplitude. The objectives of the current study were to investigate the source levels of a variety of call types in southern resident killer whales while also considering background noise level as a likely factor related to call source level variability. The source levels of 763 discrete calls along with corresponding background noise were measured over three summer field seasons in the waters surrounding the San Juan Islands, WA. Both noise level and call type were significant factors on call source levels (1-40 kHz band, range of 135.0-175.7 dB(rms) re 1 [micro sign]Pa at 1 m). These factors should be considered in models that predict how anthropogenic masking noise reduces vocal communication space in marine mammals. PMID:22087938

  16. GIS-Based Noise Simulation Open Source Software: N-GNOIS

    NASA Astrophysics Data System (ADS)

    Vijay, Ritesh; Sharma, A.; Kumar, M.; Shende, V.; Chakrabarti, T.; Gupta, Rajesh

    2015-12-01

    Geographical information system (GIS)-based noise simulation software (N-GNOIS) has been developed to simulate the noise scenario due to point and mobile sources considering the impact of geographical features and meteorological parameters. These have been addressed in the software through attenuation modules of atmosphere, vegetation and barrier. N-GNOIS is a user friendly, platform-independent and open geospatial consortia (OGC) compliant software. It has been developed using open source technology (QGIS) and open source language (Python). N-GNOIS has unique features like cumulative impact of point and mobile sources, building structure and honking due to traffic. Honking is the most common phenomenon in developing countries and is frequently observed on any type of roads. N-GNOIS also helps in designing physical barrier and vegetation cover to check the propagation of noise and acts as a decision making tool for planning and management of noise component in environmental impact assessment (EIA) studies.

  17. Myosin rods are a source of second harmonic generation signals in skeletal muscle

    NASA Astrophysics Data System (ADS)

    Schrmann, Sebastian; Weber, Cornelia; Fink, Rainer H. A.; Vogel, Martin

    2007-02-01

    Intrinsic second harmonic generation (SHG) signals can be used to visualize the three-dimensional structure of cardiac and skeletal muscle with high spatial resolution. Fluorescence labeling of complementary sarcomeric proteins, e.g. actin, indicates that the observed SHG signals arise from the myosin filaments. Recently, the myosin rod domain or LMM - light meromyosin - has been reported to be the dominant source of this SHG signal. However, to date, mostly negative and indirect evidence has been presented to support this assumption. Here, we show, to our knowledge, the first direct evidences that strong SHG signals can be obtained from synthetic paracrystals. These rod shaped filaments are formed from purified LMM. SDS-PAGE protein analysis confirmed that the LMM crystals lack myosin head domains. Some regions of the LMM paracrystals produce a strong SHG signal whereas others did not. The SHG signals were recorded with a laser-scanning microscope (Leica SP2). A ps laser tuned to 880 nm was used to excite the sample through an 63x objective of 1.2 NA. In order to visualize the synthetic filaments - in addition to SHG imaging -, the LMM was labeled with the fluorescent marker 5-IAF. We were able to observe filaments of 1 to 50 ?m in length and of up to 5 ?m in diameter. In conclusion, we can show that the myosin rod domain (LMM) is a dominant source for intrinsic SHG signals. There seems, however, a signal dependence on the paracrystals' morphology. This dependence is being investigated.

  18. Experimental and analytical studies of shielding concepts for point sources and jet noise

    NASA Astrophysics Data System (ADS)

    Wong, R. L. M.

    1983-05-01

    Concepts for jet noise shielding were explored. Model experiments center on solid planar shields, simulating engine-over-wing installations and sugar scoop shields. Tradeoff on effective shielding length is set by interference "edge noise' as the shield trailing edge approaches the spreading jet. In general, shielding attentuation increases steadily with frequency, following low frequency enhancement by edge noise. Although broadband attenuation is typically only several decibels, the reduction of the subjectively weighted perceived noise levels is higher. Calculated ground contours of peak PN dB (perceived noise level) show a substantial contraction due to shielding: this reaches 66% for one of the sugar scoop shields for the 90 PN dB contour. The experiments are complemented by analytical predictions. They are divided into an engineering scheme for jet noise shielding and more rigorous analysis for point source shielding.

  19. How Common are Noise Sources on the Crash Arc of Malaysian Flight 370

    SciTech Connect

    Fenimore, Edward E.; Kunkle, Thomas David; Stead, Richard J.

    2014-10-21

    Malaysian Flight 370 disappeared nearly without a trace. Besides some communication handshakes to the INMASAT satellite, the Comprehensive Test Ban Treaty monitoring system could have heard the aircraft crash into the southern Indian Ocean. One noise event from Cape Leeuwin has been suggested by Stead as the crash and occurs within the crash location suggested by Kunkle at el. We analyze the hydrophone data from Cape Leeuwin to understand how common such noise events are on the arc of possible locations where Malaysian Flight 370 might have crashed. Few other noise sources were found on the arc. The noise event found by Stead is the strongest. No noise events are seen within the Australian Transportation Safety Board (ATSB) new search location until the 10th strongest event, an event which is very close to the noise level.

  20. Diesel engine noise source identification based on EEMD, coherent power spectrum analysis and improved AHP

    NASA Astrophysics Data System (ADS)

    Zhang, Junhong; Wang, Jian; Lin, Jiewei; Bi, Fengrong; Guo, Qian; Chen, Kongwu; Ma, Liang

    2015-09-01

    As the essential foundation of noise reduction, many noise source identification methods have been developed and applied to engineering practice. To identify the noise source in the board-band frequency of different engine parts at various typical speeds, this paper presents an integrated noise source identification method based on the ensemble empirical mode decomposition (EEMD), the coherent power spectrum analysis, and the improved analytic hierarchy process (AHP). The measured noise is decomposed into several IMFs with physical meaning, which ensures the coherence analysis of the IMFs and the vibration signals are meaningful. An improved AHP is developed by introducing an objective weighting function to replace the traditional subjective evaluation, which makes the results no longer dependent on the subject performances and provides a better consistency in the meantime. The proposed noise identification model is applied to identifying a diesel engine surface radiated noise. As a result, the frequency-dependent contributions of different engine parts to different test points at different speeds are obtained, and an overall weight order is obtained as oil pan  >  left body  >  valve chamber cover  >  gear chamber casing  >  right body  >  flywheel housing, which provides an effectual guidance for the noise reduction.

  1. Algorithm for astronomical, extended source, signal-to-noise radio calculations

    NASA Technical Reports Server (NTRS)

    Jayroe, R. R.

    1984-01-01

    An algorithm was developed to simulate the expected signal-to-noise ratio as a function of observation time in the charge coupled device detector plane of an optical telescope located outside the Earth's atmosphere for an extended, uniform astronomical source embedded in a uniform cosmic background. By choosing the appropriate input values, the expected extended source signal-to-noise ratios can be computed for the Hubble Space Telescope using the Wide Field/Planetary Camera science instrument.

  2. Relaxation dynamics in the presence of pulse multiplicative noise sources with different correlation properties

    NASA Astrophysics Data System (ADS)

    Kargovsky, A. V.; Chichigina, O. A.; Anashkina, E. I.; Valenti, D.; Spagnolo, B.

    2015-10-01

    The relaxation dynamics of a system described by a Langevin equation with pulse multiplicative noise sources with different correlation properties is considered. The solution of the corresponding Fokker-Planck equation is derived for Gaussian white noise. Moreover, two pulse processes with regulated periodicity are considered as a noise source: the dead-time-distorted Poisson process and the process with fixed time intervals, which is characterized by an infinite correlation time. We find that the steady state of the system is dependent on the correlation properties of the pulse noise. An increase of the noise correlation causes the decrease of the mean value of the solution at the steady state. The analytical results are in good agreement with the numerical ones.

  3. Cortical Dipole Imaging for Multiple Signal Sources Considering Time-Varying Non-Uniform Noise

    NASA Astrophysics Data System (ADS)

    Hori, Junichi; Watanabe, Yoshiki

    Cortical dipole imaging is one of the spatial enhancement techniques from the scalp electroencephalogram. We investigated the dipole imaging for multiple signal sources under time-varying non-uniform noise conditions. The effects of incorporating statistical information of noise into the spatiotemporal inverse filter were examined by computer simulations and experimental studies in three sphere volume conductor model. The parametric projection filter that incorporated with noise covariance was applied to the inverse problem of EEG measurements. The noise covariance matrix was estimated by applying independent component analysis to the scalp potentials. The spatial filter was expanded to apply to the time-varying non-uniform noise conditions such as eye blink artifact. Moreover, multiple dipole distributions were introduced to extract and to visualize individual signal sources. The proposed imaging technique was applied to human experimental data of visual evoked potentials. We obtained reasonable results that coincide to physiological knowledge.

  4. A computer program for the identification of helicopter impulsive noise sources

    NASA Technical Reports Server (NTRS)

    Lee, A.

    1977-01-01

    A computer program is presented for calculating the source location of implusive noise in helicopters. The program (INSL) is written in FORTRAN for the CDC 7600 computer. Inputs are the rotor operating conditions and the time intervals (T) between rotor 1/rev index and impulsive noises as measured by different microphones. The outputs are the possible noise source locations in terms of rotor radial and azimuthal coordinates. Typical computer time for a run of six microphone measurements is 1.5 sec, and the cost is about 12 cents for the CDC 7600.

  5. Limitations of Phased Array Beamforming in Open Rotor Noise Source Imaging

    NASA Technical Reports Server (NTRS)

    Horvath, Csaba; Envia, Edmane; Podboy, Gary G.

    2013-01-01

    Phased array beamforming results of the F31/A31 historical baseline counter-rotating open rotor blade set were investigated for measurement data taken on the NASA Counter-Rotating Open Rotor Propulsion Rig in the 9- by 15-Foot Low-Speed Wind Tunnel of NASA Glenn Research Center as well as data produced using the LINPROP open rotor tone noise code. The planar microphone array was positioned broadside and parallel to the axis of the open rotor, roughly 2.3 rotor diameters away. The results provide insight as to why the apparent noise sources of the blade passing frequency tones and interaction tones appear at their nominal Mach radii instead of at the actual noise sources, even if those locations are not on the blades. Contour maps corresponding to the sound fields produced by the radiating sound waves, taken from the simulations, are used to illustrate how the interaction patterns of circumferential spinning modes of rotating coherent noise sources interact with the phased array, often giving misleading results, as the apparent sources do not always show where the actual noise sources are located. This suggests that a more sophisticated source model would be required to accurately locate the sources of each tone. The results of this study also have implications with regard to the shielding of open rotor sources by airframe empennages.

  6. Detecting vocal fatigue in student singers using acoustic measures of mean fundamental frequency, jitter, shimmer, and harmonics-to-noise ratio

    NASA Astrophysics Data System (ADS)

    Sisakun, Siphan

    2000-12-01

    The purpose of this study is to explore the ability of four acoustic parameters, mean fundamental frequency, jitter, shimmer, and harmonics-to-noise ratio, to detect vocal fatigue in student singers. The participants are 15 voice students, who perform two distinct tasks, data collection task and vocal fatiguing task. The data collection task includes the sustained vowel /a/, reading a standard passage, and self-rate on a vocal fatigue form. The vocal fatiguing task is the vocal practice of musical scores for a total of 45 minutes. The four acoustic parameters are extracted using the software EZVoicePlus. The data analyses are performed to answer eight research questions. The first four questions relate to correlations of the self-rating scale and each of the four parameters. The next four research questions relate to differences in the parameters over time using one-factor repeated measures analysis of variance (ANOVA). The result yields a proposed acoustic profile of vocal fatigue in student singers. This profile is characterized by increased fundamental frequency; slightly decreased jitter; slightly decreased shimmer; and slightly increased harmonics-to-noise ratio. The proposed profile requires further investigation.

  7. Traveling-Wave Tube Amplifier Second Harmonic as Millimeter-Wave Beacon Source for Atmospheric Propagation Studies

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    The design and test results of a novel waveguide multimode directional coupler for a CW millimeter-wave satellite beacon source are presented. The coupler separates the second harmonic power from the fundamental output power of a traveling-wave tube amplifier. A potential application of the beacon source is for investigating the atmospheric effects on Q-band (37 to 42 GHz) and VW-band (71 to 76 GHz) satellite-to-ground signals.

  8. Traveling-Wave Tube Amplifier Second Harmonic as Millimeter-Wave Beacon Source for Atmospheric Propagation Studies

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    This paper presents the design and test results of a CW millimeter-wave satellite beacon source, based on the second harmonic from a traveling-wave tube amplifier and utilizes a novel waveguide multimode directional coupler. A potential application of the beacon source is for investigating the atmospheric effects on Q-band (37 to 42 GHz) and V/W-band (71 to 76 GHz) satellite-to-ground signals.

  9. Traveling-Wave Tube Amplifier Second Harmonic as Millimeter-Wave Beacon Source for Atmospheric Propagation Studies

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    This paper presents the design and test results of a CW millimeter-wave satellite beacon source, based on the second harmonic from a traveling-wave tube amplifier and utilizes a novel waveguide multimode directional coupler. A potential application of the beacon source is for investigating the atmospheric effects on Q-band (37-42 GHz) and V/W-band (71- 76 GHz) satellite-to-ground signals.

  10. Apparent changes in seismic wave velocity related to microseism noise source variations

    NASA Astrophysics Data System (ADS)

    Friderike Volk, Meike; Bean, Christopher; Lokmer, Ivan; Craig, David

    2014-05-01

    Currently there is a strong interest of using cross correlation of ambient noise for imaging of the subsurface or monitoring of various geological settings where we expect rapid changes (e.g. reservoirs or volcanoes). Through cross correlation retrieved Green's function is usually used to calculate seismic velocities of the subsurface. The assumption of this method is that the wavefields which are correlated must be diffuse. That means that the ambient noise sources are uniformly distributed around the receivers or the scattering in the medium is high enough to mitigate any source directivity. The location of the sources is usually unknown and it can change in time. These temporal and spatial variations of the microseism noise sources may lead to changes in the retrieved Green's functions. The changed Green's functions will then cause apparent changes in the calculated seismic velocity. We track the spatial and temporal distribution of the noise sources using seismic arrays, located in Ireland. It is a good location in which to study these effects, as it is tectonically very quiet and is relatively close to large microseism noise sources in the North Atlantic, allowing a quantification of noise source heterogeneity. Temporal variations in seismic wave velocity are calculated using data recorded in Ireland. The results are compared to the variations in microseism source locations. We also explore the minimum noise trace length required in Ireland for the Green's functions to converge. We quantify the degree to which apparent velocity variations using direct arrivals are caused by changes in the sources and assess if and at what frequencies the scattering of the medium in Ireland is high enough to homogenise the coda wavefield.

  11. Bright high-repetition-rate source of narrowband extreme-ultraviolet harmonics beyond 22 eV

    SciTech Connect

    Wang, He; Xu, Yiming; Ulonska, Stefan; Ranitovic, Predrag; Robinson, Joseph S.; Kaindl, Robert A.

    2014-06-01

    Table-top sources of extreme ultraviolet (XUV) light based on high-harmonic generation (HHG) provide novel insight into the fundamental properties of molecules, nanomaterials, or correlated solids and are of interest for advanced applications. Extending HHG to high repetition rates is important for experiments, yet efficient XUV conversion of correspondingly weak driving pulses is challenging. Here, we demonstrate an efficient source of femtosecond XUV pulses at 50-kHz repetition rate using ultraviolet second-harmonic pulses focused tightly into Kr. As a result, a photon flux of about 10^14 s^-1 is generated at 22.3 eV, corresponding to 2?10^-4 conversion efficiency which surpasses our similar, direct-driven harmonics by two orders-of-magnitude. This enhancement exceeds the expected dipole scaling, evidencing improved phase-matching for ultraviolet-driven HHG under tight focusing as corroborated by simulations. Spectral isolation of a single harmonic renders this efficient 50-kHz XUV source a highly valuable tool for ultrafast photoemission, nanoscale imaging and other experiments.

  12. Basic research in fan source noise: Inlet distortion and turbulence noise

    NASA Technical Reports Server (NTRS)

    Kantola, R. A.; Warren, R. E.

    1978-01-01

    A widely recognized problem in jet engine fan noise is the discrepancy between inflight and static tests. This discrepancy consists of blade passing frequency tones, caused by ingested turbulence that appear in the static tests but not in flight. To reduce the ingested distortions and turbulence in an anechoic chamber, a reverse cone inlet is used to guide the air into the fan. This inlet also has provisions for boundary layer suction and is used in conjunction with a turbulence control structure (TCS) to condition the air impinging on the fan. The program was very successful in reducing the ingested turbulence, to the point where reductions in the acoustic power at blade passing frequency are as high as 18 db for subsonic tip speeds. Even with this large subsonic tone suppression, the supersonic tip speed tonal content remains largely unchanged, indicating that the TCS did not appreciably attenuate the noise but effects the generation via turbulence reduction. Turbulence mapping of the inlet confirmed that the tone reductions are due to a reduction in turbulence, as the low frequency power spectra of the streamwise and transverse turbulence were reduced by up to ten times and 100 times, respectively.

  13. (Investigation of subcooled hydrothermal boiling in ground water flow channels as a source of harmonic tremors)

    SciTech Connect

    Not Available

    1989-01-01

    As a first step toward assessing the ability of hydrothermal boiling to explain geothermal ground noise and volcanic tremor observations, we are investigating the acoustic power spectrum of boiling (the source'' spectrum in the above model). We simulate boiling in the lab by injecting high pressure steam from a boiler into a pressure vessel filled with water. The water pressure fluctuations that result from the repeated formation and collapse of steam bubbles at the steam inlet vents are recorded by a hydrophone whose output is digitized at 2 {times} 10{sup 4} samples/second by a computer. The range of pressure and temperature conditions attainable within the pressure vessel is limited to <3.5 bars, <139{degree}C, due to the finite strength of observation windows affixed to the pressure vessel. Therefore, dimensional analysis will be used to correlate the experimental results with the pertinent experimental variables. Besides the overall shape of the boiling power spectrum, we are investigating the absolute spectral levels in frequency bands typical of geothermal ground noise and volcanic tremor (0.5 Hz-10 Hz), and the ratio of acoustic power liberated to total available power. The values of these parameters are critical to hydrothermal boiling's ability to generate ground motion amplitudes in accordance with observation. If it can be shown that the range of observed ground noise/tremor amplitudes can be accounted for by hydrothermal boiling at reasonable heat transfer rates, this knowledge would be invaluable to designers of seismic monitoring experiments who are interested in geothermal resource exploration/evaluation and volcanic eruption prediction.

  14. Volterra dendritic stimulus processors and biophysical spike generators with intrinsic noise sources

    PubMed Central

    Lazar, Aurel A.; Zhou, Yiyin

    2014-01-01

    We consider a class of neural circuit models with internal noise sources arising in sensory systems. The basic neuron model in these circuits consists of a dendritic stimulus processor (DSP) cascaded with a biophysical spike generator (BSG). The dendritic stimulus processor is modeled as a set of nonlinear operators that are assumed to have a Volterra series representation. Biophysical point neuron models, such as the Hodgkin-Huxley neuron, are used to model the spike generator. We address the question of how intrinsic noise sources affect the precision in encoding and decoding of sensory stimuli and the functional identification of its sensory circuits. We investigate two intrinsic noise sources arising (i) in the active dendritic trees underlying the DSPs, and (ii) in the ion channels of the BSGs. Noise in dendritic stimulus processing arises from a combined effect of variability in synaptic transmission and dendritic interactions. Channel noise arises in the BSGs due to the fluctuation of the number of the active ion channels. Using a stochastic differential equations formalism we show that encoding with a neuron model consisting of a nonlinear DSP cascaded with a BSG with intrinsic noise sources can be treated as generalized sampling with noisy measurements. For single-input multi-output neural circuit models with feedforward, feedback and cross-feedback DSPs cascaded with BSGs we theoretically analyze the effect of noise sources on stimulus decoding. Building on a key duality property, the effect of noise parameters on the precision of the functional identification of the complete neural circuit with DSP/BSG neuron models is given. We demonstrate through extensive simulations the effects of noise on encoding stimuli with circuits that include neuron models that are akin to those commonly seen in sensory systems, e.g., complex cells in V1. PMID:25225477

  15. Multi-MW 22.8 GHz Harmonic Multiplier - RF Power Source for High-Gradient Accelerator R&D

    SciTech Connect

    Jay L. Hirshfield

    2012-07-26

    Electrodynamic and particle simulation studies have been carried out to optimize design of a two-cavity harmonic frequency multiplier, in which a linear electron beam is energized by rotating fields near cyclotron resonance in a TE111 cavity in a uniform magnetic field, and in which the beam then radiates coherently at the nth harmonic into a TEn11 output cavity. Examples are worked out in detail for 7th and 2nd harmonic converters, showing RF-to-RF conversion efficiencies of 45% and 88%, respectively at 19.992 GHz (K-band) and 5.712 GHz (C-band), for a drive frequency of 2.856 GHz. Details are shown of RF infrastructure (S-band klystron, modulator) and harmonic converter components (drive cavity, output cavities, electron beam source and modulator, beam collector) for the two harmonic converters to be tested. Details are also given for the two-frequency (S- and C-band) coherent multi-MW test stand for RF breakdown and RF gun studies.

  16. Suppression of Fiber Modal Noise Induced Radial Velocity Errors for Bright Emission-line Calibration Sources

    NASA Astrophysics Data System (ADS)

    Mahadevan, Suvrath; Halverson, Samuel; Ramsey, Lawrence; Venditti, Nick

    2014-05-01

    Modal noise in optical fibers imposes limits on the signal-to-noise ratio (S/N) and velocity precision achievable with the next generation of astronomical spectrographs. This is an increasingly pressing problem for precision radial velocity spectrographs in the near-infrared (NIR) and optical that require both high stability of the observed line profiles and high S/N. Many of these spectrographs plan to use highly coherent emission-line calibration sources like laser frequency combs and Fabry-Perot etalons to achieve precision sufficient to detect terrestrial-mass planets. These high-precision calibration sources often use single-mode fibers or highly coherent sources. Coupling light from single-mode fibers to multi-mode fibers leads to only a very low number of modes being excited, thereby exacerbating the modal noise measured by the spectrograph. We present a commercial off-the-shelf solution that significantly mitigates modal noise at all optical and NIR wavelengths, and which can be applied to spectrograph calibration systems. Our solution uses an integrating sphere in conjunction with a diffuser that is moved rapidly using electrostrictive polymers, and is generally superior to most tested forms of mechanical fiber agitation. We demonstrate a high level of modal noise reduction with a narrow bandwidth 1550 nm laser. Our relatively inexpensive solution immediately enables spectrographs to take advantage of the innate precision of bright state-of-the art calibration sources by removing a major source of systematic noise.

  17. Suppression of fiber modal noise induced radial velocity errors for bright emission-line calibration sources

    SciTech Connect

    Mahadevan, Suvrath; Halverson, Samuel; Ramsey, Lawrence; Venditti, Nick

    2014-05-01

    Modal noise in optical fibers imposes limits on the signal-to-noise ratio (S/N) and velocity precision achievable with the next generation of astronomical spectrographs. This is an increasingly pressing problem for precision radial velocity spectrographs in the near-infrared (NIR) and optical that require both high stability of the observed line profiles and high S/N. Many of these spectrographs plan to use highly coherent emission-line calibration sources like laser frequency combs and Fabry-Perot etalons to achieve precision sufficient to detect terrestrial-mass planets. These high-precision calibration sources often use single-mode fibers or highly coherent sources. Coupling light from single-mode fibers to multi-mode fibers leads to only a very low number of modes being excited, thereby exacerbating the modal noise measured by the spectrograph. We present a commercial off-the-shelf solution that significantly mitigates modal noise at all optical and NIR wavelengths, and which can be applied to spectrograph calibration systems. Our solution uses an integrating sphere in conjunction with a diffuser that is moved rapidly using electrostrictive polymers, and is generally superior to most tested forms of mechanical fiber agitation. We demonstrate a high level of modal noise reduction with a narrow bandwidth 1550 nm laser. Our relatively inexpensive solution immediately enables spectrographs to take advantage of the innate precision of bright state-of-the art calibration sources by removing a major source of systematic noise.

  18. Algorithm based comparison between the integral method and harmonic analysis of the timing jitter of diode-based and solid-state pulsed laser sources

    NASA Astrophysics Data System (ADS)

    Metzger, N. K.; Su, C.-R.; Edwards, T. J.; Brown, C. T. A.

    2015-04-01

    A comparison between two methods of timing jitter calculation is presented. The integral method utilizes spectral area of the single side-band (SSB) phase noise spectrum to calculate root mean square (rms) timing jitter. In contrast the harmonic analysis exploits the uppermost noise power in high harmonics to retrieve timing fluctuation. The results obtained show that a consistent timing jitter of 1.2 ps is found by the integral method and harmonic analysis in gain-switched laser diodes with an external cavity scheme. A comparison of the two approaches in noise measurement of a diode-pumped Yb:KY(WO4)2 passively mode-locked laser is also shown in which both techniques give 2 ps rms timing jitter.

  19. Jet-Surface Interaction Test: Phased Array Noise Source Localization Results

    NASA Technical Reports Server (NTRS)

    Podboy, Gary G.

    2013-01-01

    An experiment was conducted to investigate the effect that a planar surface located near a jet flow has on the noise radiated to the far-field. Two different configurations were tested: 1) a shielding configuration in which the surface was located between the jet and the far-field microphones, and 2) a reflecting configuration in which the surface was mounted on the opposite side of the jet, and thus the jet noise was free to reflect off the surface toward the microphones. Both conventional far-field microphone and phased array noise source localization measurements were obtained. This paper discusses phased array results, while a companion paper (Brown, C.A., "Jet-Surface Interaction Test: Far-Field Noise Results," ASME paper GT2012-69639, June 2012.) discusses far-field results. The phased array data show that the axial distribution of noise sources in a jet can vary greatly depending on the jet operating condition and suggests that it would first be necessary to know or be able to predict this distribution in order to be able to predict the amount of noise reduction to expect from a given shielding configuration. The data obtained on both subsonic and supersonic jets show that the noise sources associated with a given frequency of noise tend to move downstream, and therefore, would become more difficult to shield, as jet Mach number increases. The noise source localization data obtained on cold, shock-containing jets suggests that the constructive interference of sound waves that produces noise at a given frequency within a broadband shock noise hump comes primarily from a small number of shocks, rather than from all the shocks at the same time. The reflecting configuration data illustrates that the law of reflection must be satisfied in order for jet noise to reflect off of a surface to an observer, and depending on the relative locations of the jet, the surface, and the observer, only some of the jet noise sources may satisfy this requirement.

  20. An extremely low-noise heralded single-photon source without temporal post-selection

    NASA Astrophysics Data System (ADS)

    Piacentini, F.; Traina, P.; Della Frera, A.; Tosi, A.; Scarcella, C.; Ruggeri, A.; Gulinatti, A.; Ghioni, M.; Polyakov, S. V.; Migdall, A.; Giudice, A.; Brida, G.; Degiovanni, I. P.; Genovese, M.

    2013-05-01

    With the recent progresses in quantum technologies, single photon sources have gained a primary relevance. Here we present a heralded single photon source characterized by an extremely low level of noise photons, realized by exploiting low-jitter electronics and detectors and fast custom-made electronics used to control an optical shutter (a LiNbO3 waveguide optical switch) at the output of the source. This single photon source showed a second-order autocorrelation function g(2)(0) = 0:005(7), and an Output Noise Factor (defined as the ratio of noise photons to total photons at the source output) of 0:25(1)%, among the best ever achieved.

  1. Helicopter main-rotor noise: Determination of source contributions using scaled model data

    NASA Astrophysics Data System (ADS)

    Brooks, Thomas F.; Jolly, J. Ralph, Jr.; Marcolini, Michael A.

    1988-08-01

    Acoustic data from a test of a 40 percent model MBB BO-105 helicopter main rotor are scaled to equivalent full-scale flyover cases. The test was conducted in the anechoic open test section of the German-Dutch Windtunnel (DNW). The measured data are in the form of acoustic pressure time histories and spectra from two out-of-flow microphones underneath and foward of the model. These are scaled to correspond to measurements made at locations 150 m below the flight path of a full-scale rotor. For the scaled data, a detailed analysis is given for the identification in the data of the noise contributions from different rotor noise sources. Key results include a component breakdown of the noise contributions, in terms of noise criteria calculations of a weighted sound pressure level (dBA) and perceived noise level (PNL), as functions of rotor advance ratio and descent angle. It is shown for the scaled rotor that, during descent, impulsive blade-vortex interaction (BVI) noise is the dominant contributor to the noise. In level flight and mild climb, broadband blade-turbulent wake interaction (BWI) noise is dominant due to the absence of BVI activity. At high climb angles, BWI is reduced and self-noise from blade boundary-layer turbulence becomes the most prominent.

  2. Helicopter main-rotor noise: Determination of source contributions using scaled model data

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Jolly, J. Ralph, Jr.; Marcolini, Michael A.

    1988-01-01

    Acoustic data from a test of a 40 percent model MBB BO-105 helicopter main rotor are scaled to equivalent full-scale flyover cases. The test was conducted in the anechoic open test section of the German-Dutch Windtunnel (DNW). The measured data are in the form of acoustic pressure time histories and spectra from two out-of-flow microphones underneath and foward of the model. These are scaled to correspond to measurements made at locations 150 m below the flight path of a full-scale rotor. For the scaled data, a detailed analysis is given for the identification in the data of the noise contributions from different rotor noise sources. Key results include a component breakdown of the noise contributions, in terms of noise criteria calculations of a weighted sound pressure level (dBA) and perceived noise level (PNL), as functions of rotor advance ratio and descent angle. It is shown for the scaled rotor that, during descent, impulsive blade-vortex interaction (BVI) noise is the dominant contributor to the noise. In level flight and mild climb, broadband blade-turbulent wake interaction (BWI) noise is dominant due to the absence of BVI activity. At high climb angles, BWI is reduced and self-noise from blade boundary-layer turbulence becomes the most prominent.

  3. Design and test of component circuits of an integrated quantum voltage noise source for Johnson noise thermometry

    NASA Astrophysics Data System (ADS)

    Yamada, Takahiro; Maezawa, Masaaki; Urano, Chiharu

    2015-11-01

    We present design and testing of a pseudo-random number generator (PRNG) and a variable pulse number multiplier (VPNM) which are digital circuit subsystems in an integrated quantum voltage noise source for Jonson noise thermometry. Well-defined, calculable pseudo-random patterns of single flux quantum pulses are synthesized with the PRNG and multiplied digitally with the VPNM. The circuit implementation on rapid single flux quantum technology required practical circuit scales and bias currents, 279 junctions and 33 mA for the PRNG, and 1677 junctions and 218 mA for the VPNM. We confirmed the circuit operation with sufficiently wide margins, 80-120%, with respect to the designed bias currents.

  4. Numerical and experimental investigation of noise from small scale axial fans focusing on inflow condition and acoustic source type

    NASA Astrophysics Data System (ADS)

    Shin, Yoon Shik

    The objective of this work was to conduct an experimental and numerical investigation of the noise radiated by a small-scale axial fan from two different points-of-view: the development of an inflow treatment to compensate for unfavorable inflow conditions that result in excessive noise, and a consideration of installation effects for the acoustic source type of small axial fans. The effect of disturbed inflow on axial fans was experimentally investigated by intentionally placing a blockage plate at four different locations upstream of a fan. The blocked inflow made the axial fan perform very poorly; the severely decreased pressure performance introduced an overly strong dependence of flow performance on pressure load condition. An inflow diffuser made from aluminum foam was suggested to improve the aerodynamic and acoustic performance of the axial fan under such unfavorable inflow conditions. The inflow diffuser improved the stability of flow performance and reduced the blade passing tone by a small amount, but the levels of the high frequency harmonics of the blade passing tone were increased. A corresponding numerical model was built to model the flow change due to the inflow foam treatment. The inflow foam diffuser was approximated as a homogeneous porous zone to make the computational cost affordable, and it was shown that the model can predict the foam's influence on the pressure and flow performance of the fan. The aeroacoustic analogy model was applied to the solid surfaces of the fan and its housing to simulate the tonal noise at the blade passing frequency. The validity of the homogeneous foam model in terms of aeroacoustic predictions was also confirmed. As for the second aspect of the axial fan noise source, the dipole-like source behavior of an axial fan at the blade passing frequency was verified by directivity measurements. Thus, dipole modeling of an axial fan was justified. This result is associated with the problem of overestimated fan source strength due to the installation effect when measurements are made using an ISO 10302 plenum. A suggestion was made to compensate for this discrepancy. Further, by using the point dipole assumption as suggested, a method for mapping the sound radiation resistance when a fan is placed within a system enclosure was developed to help guide the positioning of axial fans within an enclosure so that they radiate the minimum sound power.

  5. Determination of Secondary Sources in Noise Cancellation with Boundary Element Method

    NASA Astrophysics Data System (ADS)

    Chen, Guang-Hann

    The direct boundary element method is proposed in this thesis to solve acoustic radiation problems as well as to achieve regional noise cancellation in half space with uniform finite impedance over the surface. The boundary integral equation and half space Green's function were derived to accomplish these goals. Those formulations were verified by comparing numerical simulations with theoretical solutions as well as experimental results. In addition, the above formulations were extended to achieve regional noise cancellation in half space by applying the boundary element method. Two methods were investigated to obtain noise cancellation in desired regions. They are the iterative control method and the coupled equation method. A set of Fortran programs including discretizing of geometries, incorporating boundary integral equations, and accommodating the noise cancellation technique were developed. Various problems concerning ill-conditioned matrices in numerical simulation and practical application of noise cancellation technique were discussed as well. Finally, data banks for various configurations of sound sources were set up for quick reference of the locations and driving functions of secondary sources. Thus, noise reduction in a designated area is shown to be feasible. A 6" speaker was used to simulate a noise source with uniform surface velocity. In addition, a ribbed aluminum plate with the dimension 71.12cm x 60cm was used to simulate a noise source with variable surface velocity. Four 10" speakers were used as secondary sources to achieve noise reduction in desired regions at certain frequencies. A multi-channel digital/analog converter was used in order to control desired driving functions for each individual secondary sources. The computer-controlled scanning system including a 2-channel controller, 2-D scanner, and stepping motors was used to place a quarter-inch microphone at certain locations. The acoustic pressure on a 120cm by 120cm plane at various distances above the source plane was measured. A Bruel and Kjaer model 2032 FFT analyzer was used to acquire and process signals from the microphone. The experimental results agreed well with numerical simulations. This indicated that the proposed noise cancellation technique attenuated the acoustic noise level successfully.

  6. A low phase noise microwave source for atomic spin squeezing experiments in {sup 87}Rb

    SciTech Connect

    Chen Zilong; Bohnet, Justin G.; Weiner, Joshua M.; Thompson, James K.

    2012-04-15

    We describe and characterize a simple, low cost, low phase noise microwave source that operates near 6.800 GHz for agile, coherent manipulation of ensembles of {sup 87}Rb. Low phase noise is achieved by directly multiplying a low phase noise 100 MHz crystal to 6.8 GHz using a nonlinear transmission line and filtering the output with custom band-pass filters. The fixed frequency signal is single sideband modulated with a direct digital synthesis frequency source to provide the desired phase, amplitude, and frequency control. Before modulation, the source has a single sideband phase noise near -140 dBc/Hz in the range of 10 kHz-1 MHz offset from the carrier frequency and -130 dBc/Hz after modulation. The resulting source is estimated to contribute added spin-noise variance 16 dB below the quantum projection noise level during quantum nondemolition measurements of the clock transition in an ensemble 7 x 10{sup 5} {sup 87}Rb atoms.

  7. A low phase noise microwave source for atomic spin squeezing experiments in 87Rb.

    PubMed

    Chen, Zilong; Bohnet, Justin G; Weiner, Joshua M; Thompson, James K

    2012-04-01

    We describe and characterize a simple, low cost, low phase noise microwave source that operates near 6.800 GHz for agile, coherent manipulation of ensembles of (87)Rb. Low phase noise is achieved by directly multiplying a low phase noise 100 MHz crystal to 6.8 GHz using a nonlinear transmission line and filtering the output with custom band-pass filters. The fixed frequency signal is single sideband modulated with a direct digital synthesis frequency source to provide the desired phase, amplitude, and frequency control. Before modulation, the source has a single sideband phase noise near -140 dBc/Hz in the range of 10 kHz-1 MHz offset from the carrier frequency and -130 dBc/Hz after modulation. The resulting source is estimated to contribute added spin-noise variance 16 dB below the quantum projection noise level during quantum nondemolition measurements of the clock transition in an ensemble 7 10(5) (87)Rb atoms. PMID:22559559

  8. Exposures to Transit and Other Sources of Noise among New York City Residents

    PubMed Central

    Neitzel, Richard L.; Gershon, Robyn R. M.; McAlexander, Tara P.; Magda, Lori A.; Pearson, Julie M.

    2015-01-01

    To evaluate the contributions of common noise sources to total annual noise exposures among urban residents and workers, we estimated exposures associated with five common sources (use of mass transit, occupational and non-occupational activities, MP3 player and stereo use, and time at home and doing other miscellaneous activities) among a sample of over 4500 individuals in New York City (NYC). We then evaluated the contributions of each source to total noise exposure and also compared our estimated exposures to the recommended 70 dBA annual exposure limit. We found that one in ten transit users had noise exposures in excess of the recommended exposure limit from their transit use alone. When we estimated total annual exposures, 90% of NYC transit users and 87% of nonusers exceeded the recommended limit. MP3 player and stereo use, which represented a small fraction of the total annual hours for each subject on average, was the primary source of exposure among the majority of urban dwellers we evaluated. Our results suggest that the vast majority of urban mass transit riders may be at risk of permanent, irreversible noise-induced hearing loss and that, for many individuals, this risk is driven primarily by exposures other than occupational noise. PMID:22088203

  9. Signal-to-noise ratio of intensity interferometry experiments with highly asymmetric x-ray sources

    SciTech Connect

    Feng, Y.P.; McNulty, I.; Xu, Z.; Gluskin, E.

    1997-02-11

    We discuss the signal-to-noise ratio of an intensity interferometry experiment for a highly asymmetric x-ray source using different aperture shapes in front of the photodetectors. It is argued that, under ideal conditions using noiseless detectors and electronics, the use of slit-shaped apertures, whose widths are smaller but whose lengths are much greater than the transverse coherence widths of the beam in the corresponding directions, provides no signal-to-noise advantage over the use of pinhole apertures equal to or smaller than the coherence area. As with pinholes, the signal-to-noise ratio is determined solely by the count degeneracy parameter and the degree of coherence of the beam. This contrasts with the signal-to-noise ratio enhancement achievable using slit-shaped apertures with an asymmetric source in a Young`s experiment.

  10. Signal-to-noise ratio of intensity interferometry experiments with highly asymmetric x-ray sources

    SciTech Connect

    Feng, Y.P.; McNulty, I.; Xu, Z.; Gluskin, E.

    1995-06-23

    The authors discuss the signal-to-noise ratio of an intensity interferometry experiment for a highly asymmetric x-ray source using different aperture shapes in front of the photodetectors. It is argued that, under ideal conditions using noiseless detectors and electronics, the use of slit-shaped apertures, whose widths are smaller but whose lengths are much greater than the transverse coherence widths of the beam in the corresponding directions, provides no signal-to-noise advantage over the use of pinhole apertures equal to or smaller than the coherence area. As with pinholes, the signal-to-noise ratio is determined solely by the count degeneracy parameter and the degree of coherence of the beam. This contrasts with the signal-to-noise ratio enhancement achievable using slit-shaped apertures with an asymmetric source in a Young`s experiment.

  11. Additive Gaussian white noise modulated excitation kinetics of impurity doped quantum dots: Role of confinement sources

    NASA Astrophysics Data System (ADS)

    Ganguly, Jayanta; Pal, Suvajit; Ghosh, Manas

    2013-11-01

    We investigate the excitation kinetics of a repulsive impurity doped quantum dot initiated by the application of additive Gaussian white noise. The noise and the dot confinement sources of electric and magnetic origin have been found to fabricate the said kinetics in a delicate way. In addition to this the dopant location also plays some prominent role. The present study sheds light on how the individual or combined variation of different confinement sources could design the excitation kinetics in presence of noise. The investigation reveals emergence of maximization and saturation in the excitation kinetics as a result of complex interplay between various parameters that affect the kinetics. The phase space plots are often invoked and they lend credence to the findings. The present investigation is believed to provide some useful perceptions of the functioning of mesoscopic systems where noise plays some profound role.

  12. Velocity measurements in jets with application to noise source modeling

    NASA Astrophysics Data System (ADS)

    Morris, Philip J.; Zaman, K. B. M. Q.

    2010-02-01

    This paper describes an experimental investigation of the statistical properties of turbulent velocity fluctuations in an axisymmetric jet. The focus is on those properties that are relevant to the prediction of noise. Measurements are performed using two single hot-wire anemometers as well as a two-component anemometer. Two-point cross correlations of the axial velocity fluctuations and of the fluctuations in the square of the axial velocity fluctuations are presented. Several reference locations in the jet are used including points on the jet lip and centerline. The scales of the turbulence and the convection velocity are determined, both in an overall sense as well as a function of frequency. The relationship between the second and fourth order correlations is developed and compared with the experimental data. The implications of the use of dimensional as well as non-dimensional correlations are considered. Finally, a comparison is made between the length scales deduced from the flow measurements and a RANS CFD calculation.

  13. Source localization for active control of turbofan rotor-stator broadband noise

    NASA Astrophysics Data System (ADS)

    Walker, Bruce E.

    2005-09-01

    In order to identify a reference signal source for an active noise cancellation system, cross-correlation techniques were used to localize broadband noise source regions on exit guide vanes of the NASA Glenn Research Center Advance Noise Control Fan (ANCF). Arrays of surface pressure sensors were imbedded in one guide vane and in the wall of the fan. Synchronous sampling was used with a multichannel data acquisition system to allow removal of periodic components from the signals. The signals were then cross-correlated to assess radiation directivity and the relationship between vane surface pressure and in-duct acoustic noise. The results of these measurements indicated that broadband unsteady pressures near the leading edge tip of the guide vane were well enough correlated with acoustic radiation that 2-3 dB active noise cancellation could be achieved using a simple gain-delay control algorithm and actuator array. After successful simulation in a wind tunnel environment the concept was incorporated on 15 guide vanes and tested in ANCF. Cross-correlation measurements were further used to evaluate system performance and to identify competing noises from rotating and stationary sources within the fan.

  14. Erratum: Sources of Image Degradation in Fundamental and Harmonic Ultrasound Imaging: A Nonlinear, Full-Wave, Simulation Study

    PubMed Central

    Pinton, Gianmarco F.; Trahey, Gregg E.; Dahl, Jeremy J.

    2015-01-01

    A full-wave equation that describes nonlinear propagation in a heterogeneous attenuating medium is solved numerically with finite differences in the time domain. This numerical method is used to simulate propagation of a diagnostic ultrasound pulse through a measured representation of the human abdomen with heterogeneities in speed of sound, attenuation, density, and nonlinearity. Conventional delay-and-sum beamforming is used to generate point spread functions (PSFs) that display the effects of these heterogeneities. For the particular imaging configuration that is modeled, these PSFs reveal that the primary source of degradation in fundamental imaging is due to reverberation from near-field structures. Compared with fundamental imaging, reverberation clutter in harmonic imaging is 27.1 dB lower. Simulated tissue with uniform velocity but unchanged impedance characteristics indicates that for harmonic imaging, the primary source of degradation is phase aberration. PMID:21693410

  15. Separation of Main and Tail Rotor Noise Sources from Ground-Based Acoustic Measurements Using Time-Domain De-Dopplerization

    NASA Technical Reports Server (NTRS)

    Greenwood, Eric II; Schmitz, Fredric H.

    2009-01-01

    A new method of separating the contributions of helicopter main and tail rotor noise sources is presented, making use of ground-based acoustic measurements. The method employs time-domain de-Dopplerization to transform the acoustic pressure time-history data collected from an array of ground-based microphones to the equivalent time-history signals observed by an array of virtual inflight microphones traveling with the helicopter. The now-stationary signals observed by the virtual microphones are then periodically averaged with the main and tail rotor once per revolution triggers. The averaging process suppresses noise which is not periodic with the respective rotor, allowing for the separation of main and tail rotor pressure time-histories. The averaged measurements are then interpolated across the range of directivity angles captured by the microphone array in order to generate separate acoustic hemispheres for the main and tail rotor noise sources. The new method is successfully applied to ground-based microphone measurements of a Bell 206B3 helicopter and demonstrates the strong directivity characteristics of harmonic noise radiation from both the main and tail rotors of that helicopter.

  16. Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor.

    PubMed

    Chen, Jun; Zhu, Guang; Yang, Weiqing; Jing, Qingshen; Bai, Peng; Yang, Ya; Hou, Te-Chien; Wang, Zhong Lin

    2013-11-13

    A harmonic-resonator-based triboelectric nanogenerator (TENG) is presented as a sustainable power source and an active vibration sensor. It can effectively respond to vibration frequencies ranging from 2 to 200 Hz with a considerably wide working bandwidth of 13.4 Hz. This work not only presents a new principle in the field of vibration energy harvesting but also greatly expands the applicability of TENGs. PMID:23999798

  17. Clutter isolation and cardiac monitoring using harmonic doppler radar with heterodyne receiver and passive RF tags.

    PubMed

    Singh, Aditya; Lubecke, Victor

    2010-01-01

    A harmonic radar employing the use of harmonic passive RF tags can be successfully used to isolate the human respiration from environmental clutter. This paper describes the successful use of heterodyne receiver architecture with Doppler radar to track the heart-rate of a human being using passive body-worn harmonic tags in presence of a controlled noise generator at distances up to 120 cm. The heterodyne system results have been compared with those of a conventional Doppler radar for cardiopulmonary monitoring that fails to isolate the noise from heart-rate in presence of a noise source. PMID:21096353

  18. AIRUSE-LIFE+: a harmonized PM speciation and source apportionment in five southern European cities

    NASA Astrophysics Data System (ADS)

    Amato, Fulvio; Alastuey, Andrés; Karanasiou, Angeliki; Lucarelli, Franco; Nava, Silvia; Calzolai, Giulia; Severi, Mirko; Becagli, Silvia; Gianelle, Vorne L.; Colombi, Cristina; Alves, Celia; Custódio, Danilo; Nunes, Teresa; Cerqueira, Mario; Pio, Casimiro; Eleftheriadis, Konstantinos; Diapouli, Evangelia; Reche, Cristina; Cruz Minguillón, María; Manousakas, Manousos-Ioannis; Maggos, Thomas; Vratolis, Stergios; Harrison, Roy M.; Querol, Xavier

    2016-03-01

    The AIRUSE-LIFE+ project aims at characterizing similarities and heterogeneities in particulate matter (PM) sources and contributions in urban areas from southern Europe. Once the main PMx sources are identified, AIRUSE aims at developing and testing the efficiency of specific and non-specific measures to improve urban air quality. This article reports the results of the source apportionment of PM10 and PM2.5 conducted at three urban background sites (Barcelona, Florence and Milan, BCN-UB, FI-UB and MLN-UB), one suburban background site (Athens, ATH-SUB) and one traffic site (Porto, POR-TR). After collecting 1047 PM10 and 1116 PM2.5 24 h samples during 12 months (from January 2013 on) simultaneously at the five cities, these were analysed for the contents of OC, EC, anions, cations, major and trace elements and levoglucosan. The USEPA PMF5 receptor model was applied to these data sets in a harmonized way for each city. The sum of vehicle exhaust (VEX) and non-exhaust (NEX) contributes between 3.9 and 10.8 µg m-3 (16-32 %) to PM10 and 2.3 and 9.4 µg m-3 (15-36 %) to PM2.5, although a fraction of secondary nitrate is also traffic-related but could not be estimated. Important contributions arise from secondary particles (nitrate, sulfate and organics) in PM2.5 (37-82 %) but also in PM10 (40-71 %), mostly at background sites, revealing the importance of abating gaseous precursors in designing air quality plans. Biomass burning (BB) contributions vary widely, from 14-24 % of PM10 in POR-TR, MLN-UB and FI-UB, 7 % in ATH-SUB, to < 2 % in BCN-UB. In PM2.5, BB is the second most important source in MLN-UB (21 %) and in POR-TR (18 %), the third one in FI-UB (21 %) and ATH-SUB (11 %), but is again negligible (< 2 %) in BCN-UB. This large variability among cities is mostly due to the degree of penetration of biomass for residential heating. In Barcelona natural gas is very well supplied across the city and is used as fuel in 96 % of homes, while in other cities, PM levels increase on an annual basis by 1-9 µg m-3 due to biomass burning influence. Other significant sources are the following. - Local dust, 7-12 % of PM10 at SUB and UB sites and 19 % at the TR site, revealing a contribution from road dust resuspension. In PM2.5 percentages decrease to 2-7 % at SUB-UB sites and 15 % at the TR site. - Industry, mainly metallurgy, contributing 4-11 % of PM10 (5-12 % in PM2.5), but only at BCN-UB, POR-TR and MLN-UB. No clear impact of industrial emissions was found in FI-UB and ATH-SUB. - Natural contributions from sea salt (13 % of PM10 in POR-TR, but only 2-7 % in the other cities) and Saharan dust (14 % in ATH-SUB, but less than 4 % in the other cities). During high pollution days, the largest sources (i.e. excluding secondary aerosol factors) of PM10 and PM2.5 are VEX + NEX in BCN-UB (27-22 %) and POR-TR (31-33 %), BB in FI-UB (30-33 %) and MLN-UB (35-26 %) and Saharan dust in ATH-SUB (52-45 %). During those days, there are also quite important industrial contributions in BCN-UB (17-18 %) and local dust in POR-TR (28-20 %).

  19. Sources of Ambient Noise in the Ocean: AN Experimental Investigation.

    NASA Astrophysics Data System (ADS)

    Pumphrey, Hugh Charles

    The general characteristics of underwater sound produced at the ocean surface have been known for many years and recent measurements have also described the sound of rainfall. The mechanisms which produce these sounds have remained a mystery. This dissertation describes a series of laboratory experiments in which various simple mechanisms in the 0.5-100 kHz frequency range were examined. A large part of the work describes the sounds made by the impact of a drop of water on the water surface. It is found that two types of sound are emitted: first, a sharp spike radiated when the drop first strikes the surface, and second, a damped sinewave emitted when a bubble is entrained below the water surface. Previous authors thought that bubbles were unimportant because the initial impact sound occurs for every drop impact while bubbles are only entrained occasionally. This dissertation shows that for a certain range of drop sizes and velocities a bubble will always be entrained; this phenomenon has been named regular entrainment. The hydrodynamics of a drop impact are discussed in an attempt to show why regular entrainment occurs; a qualitative explanation is described but it was found that the process was too complicated to be explained in terms of simple analysis and that it would be necessary to use computer modelling. The sound of rainfall on water is studied in detail; an important feature of the acoustic spectrum is a peak at about 14 kHz. It is shown that this peak is caused by regular entrainment and not by initial impacts as one author has suggested. Experimental results enable us to predict the spectrum levels which rain of a given intensity would produce; the predictions compare reasonably well with real-rain data. Other experiments examined the sounds of a breaking wave and of bubbles interacting with a submerged jet of water. The results are helpful in selecting which of the many published theories of sea surface noise is the most likely. It is suggested that free oscillations of bubbles which have just been entrained or broken up cause most of the sound at frequencies above 500 Hz.

  20. Prospects for laser spectroscopy of highly charged ions with high-harmonic XUV and soft x-ray sources

    NASA Astrophysics Data System (ADS)

    Rothhardt, J.; Hdrich, S.; Demmler, S.; Krebs, M.; Winters, D. F. A.; Khl, Th; Sthlker, Th; Limpert, J.; Tnnermann, A.

    2015-11-01

    We present novel high photon flux XUV and soft x-ray sources based on high harmonic generation (HHG). The sources employ femtosecond fiber lasers, which can be operated at very high (MHz) repetition rate and average power (>100 W). HHG with such lasers results in ?1013 photons s?1 within a single harmonic line at ?40 nm (?30 eV) wavelength, a photon flux comparable to what is typically available at synchrotron beam lines. In addition, resonant enhancement of HHG can result in narrow-band harmonics with high spectral puritywell suited for precision spectroscopy. These novel light sources will enable seminal studies on electronic transitions in highly-charged ions. For example, at the experimental storage ring 2s1/22p1/2 transitions in Li-like ions can be excited up to Z = 47 (?100 eV transition energy), which provides unique sensitivity to quantum electro-dynamical effects and nuclear corrections. We estimate fluorescence count rates of the order of tens per second, which would enable studies on short-lived isotopes as well. In combination with the Doppler up-shift available in head-on excitation at future heavy-ion storage rings, such as the high energy storage ring, even multi-keV transitions can potentially be excited. Pumpprobe experiments with femtosecond resolution could also be feasible and access the lifetime of short-lived excited states, thus providing novel benchmarks for atomic structure theory.

  1. An improved assessment approach for noise impacts from stationary point and traffic sources on humans and wildlife

    SciTech Connect

    Chang, Young-Soo; Chun, K.C.

    1994-04-01

    This paper presents an improved, efficient approach for assessing noise impacts associated with a complex set of noise sources at multiple receptor locations; noise impacts form typical remedial activities at a contaminated industrial site are used as an example. The noise sources associated with remedial activities at the site and surrounding areas are described, the noise-propagation modeling methods and results are presented, and an impact assessment of the contaminated site is discussed with regard to applicable regulatory standards and individual and community responses. Also discussed is the improved noise assessment approach. The improved features demonstrated are automate approaches for (1) inputting long-term hourly meterorological data (e.g., 8,760 hours for a one-year period) into a long-range noise-propagation model for computing noise-level increases at receptor locations and (2) analyzing potential individual and community responses to intrusive noises using the IAP and modified CNR.

  2. A boundary element approach to optimization of active noise control sources on three-dimensional structures

    NASA Technical Reports Server (NTRS)

    Cunefare, K. A.; Koopmann, G. H.

    1991-01-01

    This paper presents the theoretical development of an approach to active noise control (ANC) applicable to three-dimensional radiators. The active noise control technique, termed ANC Optimization Analysis, is based on minimizing the total radiated power by adding secondary acoustic sources on the primary noise source. ANC Optimization Analysis determines the optimum magnitude and phase at which to drive the secondary control sources in order to achieve the best possible reduction in the total radiated power from the noise source/control source combination. For example, ANC Optimization Analysis predicts a 20 dB reduction in the total power radiated from a sphere of radius at a dimensionless wavenumber ka of 0.125, for a single control source representing 2.5 percent of the total area of the sphere. ANC Optimization Analysis is based on a boundary element formulation of the Helmholtz Integral Equation, and thus, the optimization analysis applies to a single frequency, while multiple frequencies can be treated through repeated analyses.

  3. Simulation of 100-300 GHz solid-state harmonic sources

    NASA Technical Reports Server (NTRS)

    Zybura, Michael F.; Jones, J. Robert; Jones, Stephen H.; Tait, Gregory B.

    1995-01-01

    Accurate and efficient simulations of the large-signal time-dependent characteristics of second-harmonic Transferred Electron Oscillators (TEO's) and Heterostructure Barrier Varactor (HBV) frequency triplers have been obtained. This is accomplished by using a novel and efficient harmonic-balance circuit analysis technique which facilitates the integration of physics-based hydrodynamic device simulators. The integrated hydrodynamic device/harmonic-balance circuit simulators allow TEO and HBV circuits to be co-designed from both a device and a circuit point of view. Comparisons have been made with published experimental data for both TEO's and HBV's. For TEO's, excellent correlation has been obtained at 140 GHz and 188 GHz in second-harmonic operation. Excellent correlation has also been obtained for HBV frequency triplers operating near 200 GHz. For HBV's, both a lumped quasi-static equivalent circuit model and the hydrodynamic device simulator have been linked to the harmonic-balance circuit simulator. This comparison illustrates the importance of representing active devices with physics-based numerical device models rather than analytical device models.

  4. Preliminary study of a hydrogen peroxide rocket for use in moving source jet noise tests

    NASA Technical Reports Server (NTRS)

    Plencner, R. M.

    1977-01-01

    A preliminary investigation was made of using a hydrogen peroxide rocket to obtain pure moving source jet noise data. The thermodynamic cycle of the rocket was analyzed. It was found that the thermodynamic exhaust properties of the rocket could be made to match those of typical advanced commercial supersonic transport engines. The rocket thruster was then considered in combination with a streamlined ground car for moving source jet noise experiments. When a nonthrottlable hydrogen peroxide rocket was used to accelerate the vehicle, propellant masses and/or acceleration distances became too large. However, when a throttlable rocket or an auxiliary system was used to accelerate the vehicle, reasonable propellant masses could be obtained.

  5. Further development of low noise MEVVA ion source

    SciTech Connect

    Oks, Efim; Yushkov, George; Litovko, Irina; Anders, Andre; Brown, Ian

    2001-08-28

    Based on the idea of a space-charge-limited mode of operation, the influence of a pair of electrostatic meshes on the beam parameters of the LBNL MEVVA-5 ion source was investigated. The meshes were placed in the expansion zone of the vacuum arc plasma. Apart from reducing the level of beam current fluctuations, this mode of operation provides significant control over the ion charge state distribution of the extracted beam. These effects can be understood taking not only space charge but also the high-directed ion drift velocities into account that are the same for different ion charge states of a material. The results of simulations of the processes involved are in good agreement with the experimental results.

  6. Powerline noise elimination in biomedical signals via blind source separation and wavelet analysis

    PubMed Central

    2015-01-01

    The distortion of biomedical signals by powerline noise from recording biomedical devices has the potential to reduce the quality and convolute the interpretations of the data. Usually, powerline noise in biomedical recordings are extinguished via band-stop filters. However, due to the instability of biomedical signals, the distribution of signals filtered out may not be centered at 50/60 Hz. As a result, self-correction methods are needed to optimize the performance of these filters. Since powerline noise is additive in nature, it is intuitive to model powerline noise in a raw recording and subtract it from the raw data in order to obtain a relatively clean signal. This paper proposes a method that utilizes this approach by decomposing the recorded signal and extracting powerline noise via blind source separation and wavelet analysis. The performance of this algorithm was compared with that of a 4th order band-stop Butterworth filter, empirical mode decomposition, independent component analysis and, a combination of empirical mode decomposition with independent component analysis. The proposed method was able to expel sinusoidal signals within powerline noise frequency range with higher fidelity in comparison with the mentioned techniques, especially at low signal-to-noise ratio. PMID:26157639

  7. Powerline noise elimination in biomedical signals via blind source separation and wavelet analysis.

    PubMed

    Akwei-Sekyere, Samuel

    2015-01-01

    The distortion of biomedical signals by powerline noise from recording biomedical devices has the potential to reduce the quality and convolute the interpretations of the data. Usually, powerline noise in biomedical recordings are extinguished via band-stop filters. However, due to the instability of biomedical signals, the distribution of signals filtered out may not be centered at 50/60 Hz. As a result, self-correction methods are needed to optimize the performance of these filters. Since powerline noise is additive in nature, it is intuitive to model powerline noise in a raw recording and subtract it from the raw data in order to obtain a relatively clean signal. This paper proposes a method that utilizes this approach by decomposing the recorded signal and extracting powerline noise via blind source separation and wavelet analysis. The performance of this algorithm was compared with that of a 4th order band-stop Butterworth filter, empirical mode decomposition, independent component analysis and, a combination of empirical mode decomposition with independent component analysis. The proposed method was able to expel sinusoidal signals within powerline noise frequency range with higher fidelity in comparison with the mentioned techniques, especially at low signal-to-noise ratio. PMID:26157639

  8. Noise power spectral density of a fibre scattered-light interferometer with a semiconductor laser source

    SciTech Connect

    Alekseev, A E; Potapov, V T

    2013-10-31

    Spectral characteristics of the noise intensity fluctuations at the output of a scattered-light interferometer, caused by phase fluctuations of semiconductor laser radiation are considered. This kind of noise is one of the main factors limiting sensitivity of interferometric sensors. For the first time, to our knowledge, the expression is obtained for the average noise power spectral density at the interferometer output versus the degree of a light source coherence and length of the scattering segment. Also, the approximate expressions are considered which determine the power spectral density in the low-frequency range (up to 200 kHz) and in the limiting case of extended scattering segments. The expression obtained for the noise power spectral density agrees with experimental normalised power spectra with a high accuracy. (interferometry of radiation)

  9. Development of EUV scatterometer with high-harmonic-generation EUV source for nano-scale grating measurement

    NASA Astrophysics Data System (ADS)

    Yeh, Chia-Liang; Ku, Yi-Sha; Hsieh, Yi-Chen; Cho, Chia-Hung

    2015-08-01

    We have developed a EUV scatterometer using a focused high-order harmonic generation (HHG) source for nano-scale grating measurement. The coherent light source with multiple discrete wavelengths of 25-35 nm was pumped by a tabletop Ti:sapphire laser system. A charge-couple-device (CCD) camera directly records the diffraction image of the zero and the first order diffraction information from the grating samples. The grating structure can be reconstructed base on the calculations from the location and the intensity distribution of diffraction pattern.

  10. Phased Array Noise Source Localization Measurements Made on a Williams International FJ44 Engine

    NASA Technical Reports Server (NTRS)

    Podboy, Gary G.; Horvath, Csaba

    2010-01-01

    A 48-microphone planar phased array system was used to acquire noise source localization data on a full-scale Williams International FJ44 turbofan engine. Data were acquired with the array at three different locations relative to the engine, two on the side and one in front of the engine. At the two side locations the planar microphone array was parallel to the engine centerline; at the front location the array was perpendicular to the engine centerline. At each of the three locations, data were acquired at eleven different engine operating conditions ranging from engine idle to maximum (take off) speed. Data obtained with the array off to the side of the engine were spatially filtered to separate the inlet and nozzle noise. Tones occurring in the inlet and nozzle spectra were traced to the low and high speed spools within the engine. The phased array data indicate that the Inflow Control Device (ICD) used during this test was not acoustically transparent; instead, some of the noise emanating from the inlet reflected off of the inlet lip of the ICD. This reflection is a source of error for far field noise measurements made during the test. The data also indicate that a total temperature rake in the inlet of the engine is a source of fan noise.

  11. Spontaneous dynamics and response properties of a Hodgkin-Huxley-type neuron model driven by harmonic synaptic noise

    NASA Astrophysics Data System (ADS)

    Nguyen, H.; Neiman, A. B.

    2010-09-01

    We study statistical properties, response dynamics, and information transmission in a Hodgkin-Huxley-type neuron system, modeling peripheral electroreceptors in paddlefish. In addition to sodium and potassium currents, the neuron model includes fast calcium and slow afterhyperpolarization (AHP) potassium currents. The synaptic transmission from sensory epithelium is modeled by a Poission process with a rate modulated by narrow-band noise, mimicking stochastic epithelial oscillations observed experimentally. We study how the interplay of parameters of AHP current and synaptic noise affects the statistics of spontaneous dynamics and response properties of the system. In particular, we confirm predictions made earlier with perfect integrate and fire and phase neuron models that epithelial oscillations enhance stimulus-response coherence and thus information transmission in electroreceptor system. In addition, we consider a strong stimulus regime and show that coherent epithelial oscillations may reduce variability of electroreceptor responses to time-varying stimuli.

  12. A directional array approach for the measurement of rotor noise source distributions with controlled spatial resolution

    NASA Technical Reports Server (NTRS)

    Brooks, T. F.; Marcolini, M. A.; Pope, D. S.

    1987-01-01

    A special array system has been designed to examine noise source distributions over a helicopter rotor model. The particular measurement environment is for a rotor operating in the open jet of an anechoic wind tunnel. An out-of-flow directional microphone element array is used with a directivity pattern whose major directional lobe projects on the rotor disk. If significant contributions from extraneous tunnel noise sources in the direction of the side lobes are excluded, the dominant output from the array would be that noise emitted from the projected area on the rotor disk. The design incorporates an array element signal blending features which serves to control the spatial resolution of the size of the directional lobes. (Without blending, the resolution and side lobe size are very strong functions of frequency, which severely limits the array's usefulness).

  13. Identification of Noise Sources in High Speed Jets via Correlation Measurements: A Review

    NASA Technical Reports Server (NTRS)

    Bridges, James (Technical Monitor); Panda, Jayanta

    2005-01-01

    Significant advancement has been made in the last few years to identify noise sources in high speed jets via direct correlation measurements. In this technique turbulent fluctuations in the flow are correlated with far field acoustics signatures. In the 1970 s there was a surge of work using mostly intrusive probes, and a few using Laser Doppler Velocimetry, to measure turbulent fluctuations. The later experiments established "shear noise" as the primary source for the shallow angle noise. Various interpretations and criticisms from this time are described in the review. Recent progress in the molecular Rayleigh scattering based technique has provided a completely non-intrusive means of measuring density and velocity fluctuations. This has brought a renewed interest on correlation measurements. We have performed five different sets of experiments in single stream jets of different Mach number, temperature ratio and nozzle configurations. The present paper tries to summarize the correlation data from these works.

  14. Variable Correlation Digital Noise Source on FPGA A Versatile Tool for Debugging Radio Telescope Backends

    NASA Astrophysics Data System (ADS)

    Buch, Kaushal D.; Gupta, Yashwant; Ajith Kumar, B.

    Contemporary wideband radio telescope backends are generally developed on Field Programmable Gate Arrays (FPGA) or hybrid (FPGA+GPU) platforms. One of the challenges faced while developing such instruments is the functional verification of the signal processing backend at various stages of development. In the case of an interferometer or pulsar backend, the typical requirement is for one independent noise source per input, with provision for a common, correlated signal component across all the inputs, with controllable level of correlation. This paper describes the design of a FPGA-based variable correlation Digital Noise Source (DNS), and its applications to built-in testing and debugging of correlators and beamformers. This DNS uses the Central Limit Theorem-based approach for generation of Gaussian noise, and the architecture is optimized for resource requirements and ease of integration with existing signal processing blocks on FPGA.

  15. On Acoustic Source Specification for Rotor-Stator Interaction Noise Prediction

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Envia, Edmane; Burley, Caesy L.

    2010-01-01

    This paper describes the use of measured source data to assess the effects of acoustic source specification on rotor-stator interaction noise predictions. Specifically, the acoustic propagation and radiation portions of a recently developed coupled computational approach are used to predict tonal rotor-stator interaction noise from a benchmark configuration. In addition to the use of full measured data, randomization of source mode relative phases is also considered for specification of the acoustic source within the computational approach. Comparisons with sideline noise measurements are performed to investigate the effects of various source descriptions on both inlet and exhaust predictions. The inclusion of additional modal source content is shown to have a much greater influence on the inlet results. Reasonable agreement between predicted and measured levels is achieved for the inlet, as well as the exhaust when shear layer effects are taken into account. For the number of trials considered, phase randomized predictions follow statistical distributions similar to those found in previous statistical source investigations. The shape of the predicted directivity pattern relative to measurements also improved with phase randomization, having predicted levels generally within one standard deviation of the measured levels.

  16. A study of partial coherence for identifying interior noise sources and paths on general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Howlett, J. T.

    1979-01-01

    The partial coherence analysis method for noise source/path determination is summarized and the application to a two input, single output system with coherence between the inputs is illustrated. The augmentation of the calculations on a digital computer interfaced with a two channel, real time analyzer is also discussed. The results indicate possible sources of error in the computations and suggest procedures for avoiding these errors.

  17. Luminescence-induced noise in single photon sources based on BBO crystals

    NASA Astrophysics Data System (ADS)

    Machulka, Radek; Lemr, Karel; Haderka, Ond?ej; Lamperti, Marco; Allevi, Alessia; Bondani, Maria

    2014-11-01

    Single-photon sources based on the process of spontaneous parametric down-conversion play a key role in various applied disciplines of quantum optics. We characterize the intrinsic luminescence of BBO crystals as a source of non-removable noise in quantum-optics experiments. By analysing its spectral and temporal properties together with its intensity, we evaluate the impact of luminescence on single-photon state preparation using spontaneous parametric down-conversion.

  18. Experimental and Analytical Studies of Shielding Concepts for Point Sources and Jet Noises.

    NASA Astrophysics Data System (ADS)

    Wong, Raymond Lee Man

    This analytical and experimental study explores concepts for jet noise shielding. Model experiments centre on solid planar shields, simulating engine-over-wing installations, and 'sugar scoop' shields. Tradeoff on effective shielding length is set by interference 'edge noise' as the shield trailing edge approaches the spreading jet. Edge noise is minimized by (i) hyperbolic cutouts which trim off the portions of most intense interference between the jet flow and the barrier and (ii) hybrid shields--a thermal refractive extension (a flame); for (ii) the tradeoff is combustion noise. In general, shielding attenuation increases steadily with frequency, following low frequency enhancement by edge noise. Although broadband attenuation is typically only several dB, the reduction of the subjectively weighted perceived noise levels is higher. In addition, calculated ground contours of peak PN dB show a substantial contraction due to shielding: this reaches 66% for one of the 'sugar scoop' shields for the 90 PN dB contour. The experiments are complemented by analytical predictions. They are divided into an engineering scheme for jet noise shielding and more rigorous analysis for point source shielding. The former approach combines point source shielding with a suitable jet source distribution. The results are synthesized into a predictive algorithm for jet noise shielding: the jet is modelled as a line distribution of incoherent sources with narrow band frequency (TURN)(axial distance)('-1). The predictive version agrees well with experiment (1 to 1.5 dB) up to moderate frequencies. The insertion loss deduced from the point source measurements for semi-infinite as well as finite rectangular shields agrees rather well with theoretical calculation based on the exact half plane solution and the superposition of asymptotic closed-form solutions. An approximate theory, the Maggi-Rubinowicz line integral, is found to yield reasonable predictions for thin barriers including cutouts if a certain correction is applied. The more exact integral equation approach (solved numerically) is applied to a more demanding geometry: a half round sugar scoop shield. It is found that the solutions of integral equation derived from Helmholtz formula in normal derivative form show satisfactory agreement with measurements.

  19. Use of a Microphone Phased Array to Determine Noise Sources in a Rocket Plume

    NASA Technical Reports Server (NTRS)

    Panda, J.; Mosher, R.

    2010-01-01

    A 70-element microphone phased array was used to identify noise sources in the plume of a solid rocket motor. An environment chamber was built and other precautions were taken to protect the sensitive condenser microphones from rain, thunderstorms and other environmental elements during prolonged stay in the outdoor test stand. A camera mounted at the center of the array was used to photograph the plume. In the first phase of the study the array was placed in an anechoic chamber for calibration, and validation of the indigenous Matlab(R) based beamform software. It was found that the "advanced" beamform methods, such as CLEAN-SC was partially successful in identifying speaker sources placed closer than the Rayleigh criteria. To participate in the field test all equipments were shipped to NASA Marshal Space Flight Center, where the elements of the array hardware were rebuilt around the test stand. The sensitive amplifiers and the data acquisition hardware were placed in a safe basement, and 100m long cables were used to connect the microphones, Kulites and the camera. The array chamber and the microphones were found to withstand the environmental elements as well as the shaking from the rocket plume generated noise. The beamform map was superimposed on a photo of the rocket plume to readily identify the source distribution. It was found that the plume made an exceptionally long, >30 diameter, noise source over a large frequency range. The shock pattern created spatial modulation of the noise source. Interestingly, the concrete pad of the horizontal test stand was found to be a good acoustic reflector: the beamform map showed two distinct source distributions- the plume and its reflection on the pad. The array was found to be most effective in the frequency range of 2kHz to 10kHz. As expected, the classical beamform method excessively smeared the noise sources at lower frequencies and produced excessive side-lobes at higher frequencies. The "advanced" beamform routine CLEAN-SC created a series of lumped sources which may be unphysical. We believe that the present effort is the first-ever attempt to directly measure noise source distribution in a rocket plume.

  20. Objective approach for analysis of noise source characteristics and acoustic conditions in noisy computerized embroidery workrooms.

    PubMed

    Aliabadi, Mohsen; Golmohammadi, Rostam; Mansoorizadeh, Muharram

    2014-03-01

    It is highly important to analyze the acoustic properties of workrooms in order to identify best noise control measures from the standpoint of noise exposure limits. Due to the fact that sound pressure is dependent upon environments, it cannot be a suitable parameter for determining the share of workroom acoustic characteristics in producing noise pollution. This paper aims to empirically analyze noise source characteristics and acoustic properties of noisy embroidery workrooms based on special parameters. In this regard, reverberation time as the special room acoustic parameter in 30 workrooms was measured based on ISO 3382-2. Sound power quantity of embroidery machines was also determined based on ISO 9614-3. Multiple linear regression was employed for predicting reverberation time based on acoustic features of the workrooms using MATLAB software. The results showed that the measured reverberation times in most of the workrooms were approximately within the ranges recommended by ISO 11690-1. Similarity between reverberation time values calculated by the Sabine formula and measured values was relatively poor (R (2) = 0.39). This can be due to the inaccurate estimation of the acoustic influence of furniture and formula preconditions. Therefore, this value cannot be considered representative of an actual acoustic room. However, the prediction performance of the regression method with root mean square error (RMSE) = 0.23 s and R (2) = 0.69 is relatively acceptable. Because the sound power of the embroidery machines was relatively high, these sources get the highest priority when it comes to applying noise controls. Finally, an objective approach for the determination of the share of workroom acoustic characteristics in producing noise could facilitate the identification of cost-effective noise controls. PMID:24214295

  1. Optical system design of a speckle-free ultrafast Red-Green-Blue (RGB) source based on angularly multiplexed second harmonic generation from a TZDW source

    NASA Astrophysics Data System (ADS)

    Yao, Yuhong; Knox, Wayne H.

    2015-03-01

    We report the optical system design of a novel speckle-free ultrafast Red-Green-Blue (RGB) source based on angularly multiplexed simultaneous second harmonic generation from the efficiently generated Stokes and anti-Stokes pulses from a commercially available photonic crystal fiber (PCF) with two zero dispersion wavelengths (TZDW). We describe the optimized configuration of the TZDW fiber source which supports excitations of dual narrow-band pulses with peak wavelengths at 850 nm, 1260 nm and spectral bandwidths of 23 nm, 26 nm, respectively within 12 cm of commercially available TZDW PCF. The conversion efficiencies are as high as 44% and 33% from the pump source (a custom-built Yb:fiber master-oscillator-power-amplifier). As a result of the nonlinear dynamics of propagation, the dual pulses preserve their ultrashort pulse width (with measured autocorrelation traces of 200 fs and 227 fs,) which eliminates the need for dispersion compensation before harmonic generation. With proper optical design of the free-space harmonic generation system, we achieve milli-Watt power level red, green and blue pulses at 630 nm, 517 nm and 425 nm. Having much broader spectral bandwidths compared to picosecond RGB laser sources, the source is inherently speckle-free due to the ultra-short coherence length (<37 μm) while still maintaining an excellent color rendering capability with >99.4% excitation purities of the three primaries, leading to the coverage of 192% NTSC color gamut (CIE 1976). The reported RGB source features a very simple system geometry, its potential for power scaling is discussed with currently available technologies.

  2. Multi-MW K-Band Harmonic Multiplier: RF Source For High-Gradient Accelerator R and D

    SciTech Connect

    Solyak, N. A.; Yakovlev, V. P.; Kazakov, S. Yu.; Hirshfield, J. L.

    2009-01-22

    A preliminary design is presented for a two-cavity harmonic multiplier, intended as a high-power RF source for use in experiments aimed at developing high-gradient structures for a future collider. The harmonic multiplier is to produce power at selected frequencies in K-band (18-26.5 GHz) using as an RF driver an XK-5 S-band klystron (2.856 GHz). The device is to be built with a TE{sub 111} rotating mode input cavity and interchangeable output cavities running in the TE{sub n11} rotating mode, with n = 7,8,9 at 19.992, 22.848, and 25.704 GHz. An example for a 7{sup th} harmonic multiplier is described, using a 250 kV, 20 A injected laminar electron beam; with 10 MW of S-band drive power, 4.7 MW of 20-GHz output power is predicted. Details are described of the magnetic circuit, cavities, and output coupler.

  3. Low-frequency noise sources in III-V semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Tzeng, Susie

    III-V semiconductor heterostructures have widespread interest in both electrical and optical applications. Their figure-of-merit low-frequency noise level directly sets the limits of the performance of devices and indirectly serves as the indicator of material properties and device reliability. In particular, generation-recombination noise signals in the low-frequency noise range directly indicate the dominant traps that impact device operation. In this dissertation, low-frequency noise source investigations of GaAs/buffer and AlxGa1-xN/GaN heterostructures in the applications of microwave power amplifiers will be presented. For GaAs/buffer heterostructures, low-frequency noise characteristics of GaAs-On-Insulator metal-semiconductor field effect transistors, for which the insulating buffer layer was produced by lateral wet-oxidation of AlAs, are studied. Devices with different gate widths were fabricated resulting in different over-oxidation times for the AlAs layer. Three characteristic generation-recombination noise signatures are observed depending on the measurement temperature and the gate bias. A generation-recombination noise signature with energy level at Ec-0.69 eV is found to increase with the amount of over-oxidation time. This near mid-gap trap shows an increase in concentration towards the oxide interface, and it is tentatively assigned to an arsenic-antisite related defect known from previous studies as EB4. A possible mechanism for the formation and the microscopic origin of this defect are discussed. 1/f interface noise model is applied to analyze the GaAs/buffer interfacial quality. The effective interface state density was found to be as high as 1015 cm-2 and increase with additional over-oxidation. A correlation between the amount of over-oxidation and the number of calculated interface states is observed. For AlxGa1-xN/GaN heterostructures, low-frequency noise characteristics of AlxGa1-xN/GaN HEMTs with Al composition of 28--35% in the barrier layer are studied. A generation-recombination noise signature is attributed to a trap in AlxGa1-x N barrier layer which increases in concentration towards the Al xGa1-xN/GaN interface. The origin and the location of low-frequency noise were differentiated by the drain current dependent measurement. When the long-channel device is operated with an open channel (e.g. VG = 0), the main noise source resides in the gated channel instead of in the ungated region. Hooge's parameter of the gated channel (alpha 10-4) is found to be independent of the Al composition but dependent on the AlxGa1-x N barrier thickness. This is proposed to correspond to the onset of barrier relaxation. Even though the AlxGa1-xN/GaN HEMT exhibits a low level of gate leakage current (<1% of drain current), the low-frequency noise is still heavily influenced by the gate leakage current at certain bias conditions. The effect of gate leakage current on the low-frequency noise properties is discussed. The surface leakage path appeared to dominate the low-frequency noise properties for devices operated at a high IG/ID ratio.

  4. Localizing the sources of two independent noises: Role of time varying amplitude differences

    PubMed Central

    Yost, William A.; Brown, Christopher A.

    2013-01-01

    Listeners localized the free-field sources of either one or two simultaneous and independently generated noise bursts. Listeners' localization performance was better when localizing one rather than two sound sources. With two sound sources, localization performance was better when the listener was provided prior information about the location of one of them. Listeners also localized two simultaneous noise bursts that had sinusoidal amplitude modulation (AM) applied, in which the modulation envelope was in-phase across the two source locations or was 180 out-of-phase. The AM was employed to investigate a hypothesis as to what process listeners might use to localize multiple sound sources. The results supported the hypothesis that localization of two sound sources might be based on temporal-spectral regions of the combined waveform in which the sound from one source was more intense than that from the other source. The interaural information extracted from such temporal-spectral regions might provide reliable estimates of the sound source location that produced the more intense sound in that temporal-spectral region. PMID:23556597

  5. Turbulence spectra in the noise source regions of the flow around complex surfaces

    NASA Technical Reports Server (NTRS)

    Olsen, W. A.; Boldman, D. R.

    1983-01-01

    The complex turbulent flow around three complex surfaces was measured in detail with a hot wire. The measured data include extensive spatial surveys of the mean velocity and turbulence intensity and measurements of the turbulence spectra and scale length at many locations. The publication of the turbulence data is completed by reporting a summary of the turbulence spectra that were measured within the noise source locations of the flow. The results suggest some useful simplifications in modeling the very complex turbulent flow around complex surfaces for aeroacoustic predictive models. The turbulence spectra also show that noise data from scale models of moderate size can be accurately scaled up to full size.

  6. CW, single-frequency 229nm laser source for Cd-cooling by harmonic conversion

    NASA Astrophysics Data System (ADS)

    Kaneda, Yushi; Yarborough, J. M.; Merzlyak, Yevgeny

    2015-02-01

    More than 200mW of CW 229nm for Cd atom cooling application was generated by the 4th harmonic of a single frequency optically pumped semiconductor laser using a 10-mm long, Brewster-cut BBO crystal in an external cavity. With 650mW of 458nm input, 216mW of 229nm power was observed. Conversion efficiency from 458nm to 229nm was more than 33%.

  7. Shot-to-shot and average absolute photon flux measurements of a femtosecond laser high-order harmonic photon source

    NASA Astrophysics Data System (ADS)

    Leitner, T.; Sorokin, A. A.; Gaudin, J.; Kaser, H.; Kroth, U.; Tiedtke, K.; Richter, M.; Wernet, Ph

    2011-09-01

    The absolute flux of a femtosecond vacuum-ultraviolet (VUV) photon source based on the high-order harmonic generation of a femtosecond Ti:sapphire laser and monochromatized with a grating monochromator is determined both on a shot-to-shot basis and averaged over seconds by a calibrated gas monitor detector. The average flux is compared with the average flux as determined with a calibrated GaAsP semiconductor photodiode. We found that the photodiode is a reliable and easy-to-use tool for estimating the order of magnitude of the average photon flux but that, due to saturation losses, it underestimates the average flux by up to -15%.

  8. Signal dependence and noise source in ultrasound-modulated optical tomography.

    PubMed

    Yao, Gang; Wang, Lihong V

    2004-02-20

    A Monte Carlo modeling technique was used to simulate ultrasound-modulated optical tomography in inhomogeneous scattering media. The contributions from two different modulation mechanisms were included in the simulation. Results indicate that ultrasound-modulated optical signals are much more sensitive to small embedded objects than unmodulated intensity signals. The differences between embedded absorption and scattering objects in the ultrasound-modulated optical signals were compared. The effects of neighboring inhomogeneity and background optical properties on the ultrasound-modulated optical signals were also studied. We analyzed the signal-to-noise ratio in the experiment and found that the major noise source is the speckle noise caused by small particle movement within the biological tissue sample. We studied this effect by incorporating a Brownian motion factor in the simulation. PMID:15008535

  9. Further Progress in Noise Source Identification in High Speed Jets via Causality Principle

    NASA Technical Reports Server (NTRS)

    Panda, J.; Seasholtz, R. G.; Elam, K. A.

    2004-01-01

    To locate noise sources in high-speed jets, the sound pressure fluctuations p/, measured at far field locations, were correlated with each of density p, axial velocity u, radial velocity v, puu and pvv fluctuations measured from various points in fully expanded, unheated plumes of Mach number 0.95, 1.4 and 1.8. The velocity and density fluctuations were measured simultaneously using a recently developed, non-intrusive, point measurement technique based on molecular Rayleigh scattering (Seasholtz, Panda, and Elam, AIAA Paper 2002-0827). The technique uses a continuous wave, narrow line-width laser, Fabry-Perot interferometer and photon counting electronics. The far field sound pressure fluctuations at 30 to the jet axis provided the highest correlation coefficients with all flow variables. The correlation coefficients decreased sharply with increased microphone polar angle, and beyond about 60 all correlation mostly fell below the experimental noise floor. Among all correlations < puu; p/> showed the highest values. Interestingly, , in all respects, were very similar to . The and correlations with 90deg microphone fell below the noise floor. By moving the laser probe at various locations in the jet it was found that the strongest noise source lies downstream of the end of the potential core and extends many diameters beyond. Correlation measurement from the lip shear layer showed a Mach number dependency. While significant correlations were measured in Mach 1.8 jet, values were mostly below the noise floor for subsonic Mach 0.95 jet. Various additional analyses showed that fluctuations from large organized structures mostly contributed to the measured correlation, while that from small scale structures fell below the noise floor.

  10. RF dynamic and noise performance of Metallic Source/Drain SOI n-MOSFETs

    NASA Astrophysics Data System (ADS)

    Martin, Maria J.; Pascual, Elena; Rengel, Ral

    2012-07-01

    This paper presents a detailed study of the RF and noise performance of n-type Schottky barrier (SB) MOSFETs with a particular focus on the influence of the Schottky barrier height (SBH) on the main dynamic and noise figures of merit. With this aim, a 2D Monte Carlo simulator including tunnelling transport across Schottky interfaces has been developed, with special care to consider quantum transmission coefficients and the influence of image charge effects at the Schottky junctions. Particular attention is paid to the microscopic transport features, including carrier mean free paths or number of scattering events along the channel for investigating the optimization of the device topology and the strategic concepts related to the noise performance of this new architecture. A more effective control of the gate electrode over drain current for low SBH (discussed in terms of internal physical quantities) is translated into an enhanced transconductance gm, cut-off frequency fT, and non-quasistatic dynamic parameters. The drain and gate intrinsic noise sources show a noteworthy degradation with the SBH reduction due to the increased current, influence of hot carriers and reduced number of phonon scatterings. However, the results evidence that this effect is counterbalanced by the extremely improved dynamic performance in terms of gm and fT. Therefore, the deterioration of the intrinsic noise performance of the SB-MOSFET has no significant impact on high-frequency noise FoMs as NFmin, Rn and Gass for low SBH and large gate overdrive conditions. The role of the SBH on ?opt, optimum noise reactance and susceptance has been also analyzed.

  11. Methods for designing treatments to reduce interior noise of predominant sources and paths in a single engine light aircraft

    NASA Technical Reports Server (NTRS)

    Hayden, Richard E.; Remington, Paul J.; Theobald, Mark A.; Wilby, John F.

    1985-01-01

    The sources and paths by which noise enters the cabin of a small single engine aircraft were determined through a combination of flight and laboratory tests. The primary sources of noise were found to be airborne noise from the propeller and engine casing, airborne noise from the engine exhaust, structureborne noise from the engine/propeller combination and noise associated with air flow over the fuselage. For the propeller, the primary airborne paths were through the firewall, windshield and roof. For the engine, the most important airborne path was through the firewall. Exhaust noise was found to enter the cabin primarily through the panels in the vicinity of the exhaust outlet although exhaust noise entering the cabin through the firewall is a distinct possibility. A number of noise control techniques were tried, including firewall stiffening to reduce engine and propeller airborne noise, to stage isolators and engine mounting spider stiffening to reduce structure-borne noise, and wheel well covers to reduce air flow noise.

  12. Maximum Likelihood DOA Estimation of Multiple Wideband Sources in the Presence of Nonuniform Sensor Noise

    NASA Astrophysics Data System (ADS)

    Chen, C. E.; Lorenzelli, F.; Hudson, R. E.; Yao, K.

    2007-12-01

    We investigate the maximum likelihood (ML) direction-of-arrival (DOA) estimation of multiple wideband sources in the presence of unknown nonuniform sensor noise. New closed-form expression for the direction estimation Cramér-Rao-Bound (CRB) has been derived. The performance of the conventional wideband uniform ML estimator under nonuniform noise has been studied. In order to mitigate the performance degradation caused by the nonuniformity of the noise, a new deterministic wideband nonuniform ML DOA estimator is derived and two associated processing algorithms are proposed. The first algorithm is based on an iterative procedure which stepwise concentrates the log-likelihood function with respect to the DOAs and the noise nuisance parameters, while the second is a noniterative algorithm that maximizes the derived approximately concentrated log-likelihood function. The performance of the proposed algorithms is tested through extensive computer simulations. Simulation results show the stepwise-concentrated ML algorithm (SC-ML) requires only a few iterations to converge and both the SC-ML and the approximately-concentrated ML algorithm (AC-ML) attain a solution close to the derived CRB at high signal-to-noise ratio.

  13. Application of sound intensity and partial coherence to identify interior noise sources on the high speed train

    NASA Astrophysics Data System (ADS)

    Fan, Rongping; Su, Zhongqing; Meng, Guang; He, Caichun

    2014-06-01

    In order to provide a quieter riding environment for passengers, sound quality refinement of rail vehicle is a hot issue. Identification of interior noise sources is the prerequisite condition to reduce the interior noise on high speed train. By considering contribution of noise sources such as rolling noise, mechanical equipment noise, structure-borne noise radiated by car body vibration to the interior noise, the synthesized measurement of sound intensity, sound pressure levels and vibration have been carried out in four different carriages on high speed train. The sound intensity and partial coherence methods have been used to identify the most significant interior noise sources. The statistical analysis results of sound intensity near window and floor on four carriages indicate that sound intensity near floor is higher than that near window at three traveling speeds. Ordinary and partial coherent analysis of vibro-acoustical signals show that the major internal noise source is structural-borne sound radiated by floor vibration. These findings can be utilized to facilitate the reduction of interior noise in the future.

  14. Green's function retrieval from the CCF of random waves and energy conservation for an obstacle of arbitrary shape: noise source distribution on a large surrounding shell

    NASA Astrophysics Data System (ADS)

    Sato, Haruo

    2013-05-01

    For imaging the earth structure, the cross-correlation function (CCF) of random waves as ambient noise or coda waves has been widely used for the estimation of the Green's function. We precisely study the condition for the Green's function retrieval in relation to the energy conservation for a single obstacle of arbitrary shape. When an obstacle is placed in a 2-D homogeneous medium, the Green's function is written by a double series expansion using Hankel functions of the first kind which represent outgoing waves. When two receivers and the scattering obstacle are illuminated by uncorrelated noise sources randomly and uniformly distributed on a closed circle of a large radius surrounding them, the lag-time derivative of the CCF of random waves at the two receivers can be written by a convolution of the antisymmetrized Green's function and the autocorrelation function of the noise source time function. We explicitly derive the constraint for the Hankel function expansion coefficients as the sufficient condition for the Green's function retrieval. We show that the constraint is equal to the generalized optical theorem derived from the energy conservation principle. Physical meaning of the generalized optical theorem becomes clear when the Hankel function expansion coefficients are transformed into scattering amplitudes in the framework of the conventional scattering theory. In the 3-D case, the Green's function is written by a double series expansion using spherical Hankel functions of the first kind and spherical harmonic functions. When two receivers and the scattering obstacle are illuminated by noise sources randomly and uniformly distributed on a closed spherical shell of a large radius surrounding them, we explicitly derive the constraint for the spherical Hankel function expansion coefficients for the Green's function retrieval and the energy conservation. We note that the derivation of the constraint does not assume that two receivers are in the far field of the scattering obstacle.

  15. Effects of geometric and flow-field variables on inverted-velocity-profile coaxial jet noise and source distributions

    NASA Technical Reports Server (NTRS)

    Stone, J. R.; Goodykoontz, J. H.; Gutierrez, O. A.

    1979-01-01

    This paper presents relationships between the noise generation characteristics and the flow-field characteristics for inverted-velocity-profile coaxial jets. Noise measurements were made at four different sideline distances in order to determine the apparent noise source locations, and flow-field characteristics were determined from jet plume pressure/temperature surveys. These relationships are based on a published NASA Lewis prediction model, the basic assumptions of which are shown to be consistent with the experimental data reported herein. Improvements to the noise prediction procedure, on the basis of the present study, are included, which increase the accuracy of the high-frequency noise prediction.

  16. Noise-Source Separation Using Internal and Far-Field Sensors for a Full-Scale Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Miles, Jeffrey H.

    2009-01-01

    Noise-source separation techniques for the extraction of the sub-dominant combustion noise from the total noise signatures obtained in static-engine tests are described. Three methods are applied to data from a static, full-scale engine test. Both 1/3-octave and narrow-band results are discussed. The results are used to assess the combustion-noise prediction capability of the Aircraft Noise Prediction Program (ANOPP). A new additional phase-angle-based discriminator for the three-signal method is also introduced.

  17. Maximum Likelihood Estimate of the Coordinates of Wideband Noise Sources in the Case of Unknown Spectral Densities of the Signal and the Noise

    NASA Astrophysics Data System (ADS)

    Turchin, V. I.

    2013-09-01

    We propose a method of obtaining the maximum likelihood estimate of the coordinates (the bearing, in a special case) of a wideband Gaussian noise source in the presence of background interference which is uncorrelated at the elements of the antenna array. The method is adapted to unknown spectral densities of the noise and the signal produced by the source. The CramerRao bound is constructed, which characterize the variance of the coordinate estimate. Empirical estimates of the variance are compared with the CramerRao boundary and the empirical variance estimates by the method of numerical simulation in the case of routine summation of the power values in the frequency channels. It is shown that when the spectral densities of the noise and the signal differ considerably, the proposed method ensures a much better accuracy. It is also shows that the influence of weak correlation of the noise at the receiver elements is insignificant.

  18. Source localization of turboshaft engine broadband noise using a three-sensor coherence method

    NASA Astrophysics Data System (ADS)

    Blacodon, Daniel; Lewy, Serge

    2015-03-01

    Turboshaft engines can become the main source of helicopter noise at takeoff. Inlet radiation mainly comes from the compressor tones, but aft radiation is more intricate: turbine tones usually are above the audible frequency range and do not contribute to the weighted sound levels; jet is secondary and radiates low noise levels. A broadband component is the most annoying but its sources are not well known (it is called internal or core noise). Present study was made in the framework of the European project TEENI (Turboshaft Engine Exhaust Noise Identification). Its main objective was to localize the broadband sources in order to better reduce them. Several diagnostic techniques were implemented by the various TEENI partners. As regards ONERA, a first attempt at separating sources was made in the past with Turbomeca using a three-signal coherence method (TSM) to reject background non-acoustic noise. The main difficulty when using TSM is the assessment of the frequency range where the results are valid. This drawback has been circumvented in the TSM implemented in TEENI. Measurements were made on a highly instrumented Ardiden turboshaft engine in the Turbomeca open-air test bench. Two engine powers (approach and takeoff) were selected to apply TSM. Two internal pressure probes were located in various cross-sections, either behind the combustion chamber (CC), the high-pressure turbine (HPT), the free-turbine first stage (TL), or in four nozzle sections. The third transducer was a far-field microphone located around the maximum of radiation, at 120° from the intake centerline. The key result is that coherence increases from CC to HPT and TL, then decreases in the nozzle up to the exit. Pressure fluctuations from HPT and TL are very coherent with the far-field acoustic spectra up to 700 Hz. They are thus the main acoustic source and can be attributed to indirect combustion noise (accuracy decreases above 700 Hz because coherence is lower, but far-field sound spectra also are much lower above 700 Hz).

  19. Geomagnetic field mapping from a satellite: Spatial power spectra of the geomagnetic field at various satellite altitudes relative to natural noise sources and instrument noise

    NASA Technical Reports Server (NTRS)

    Mcleod, M. G.; Coleman, P. J., Jr.

    1976-01-01

    The spectra for the field are presented together with power spectra of the natural magnetospheric and ionosheric noise and a power spectrum of instrumental noise for a typical fluxgate magnetometer. The source of these data is described. The implications of these data relative to desirable instrument frequency resonse, stability and resolution specification as well as the implications relative to desirable spacecraft position and orientation accuracy specifications and desirable environmental (temperature, magnetic noise) specifications are discussed. Implications of these power spectra relative to choice of a suitable magnetometer and relative to desirable methods of data processing are considered. Finally, implications for desirable orbit and mission duration are discussed.

  20. Activation process in excitable systems with multiple noise sources: One and two interacting units

    NASA Astrophysics Data System (ADS)

    Franović, Igor; Todorović, Kristina; Perc, Matjaž; Vasović, Nebojša; Burić, Nikola

    2015-12-01

    We consider the coaction of two distinct noise sources on the activation process of a single excitable unit and two interacting excitable units, which are mathematically described by the Fitzhugh-Nagumo equations. We determine the most probable activation paths around which the corresponding stochastic trajectories are clustered. The key point lies in introducing appropriate boundary conditions that are relevant for a class II excitable unit, which can be immediately generalized also to scenarios involving two coupled units. We analyze the effects of the two noise sources on the statistical features of the activation process, in particular demonstrating how these are modified due to the linear or nonlinear form of interactions. Universal properties of the activation process are qualitatively discussed in the light of a stochastic bifurcation that underlies the transition from a stochastically stable fixed point to continuous oscillations.

  1. A collection of formulas for calculation of rotating blade noise - Compact and noncompact source results

    NASA Astrophysics Data System (ADS)

    Farassat, F.

    1980-06-01

    A unified approach is used to derive many of the current formulations for calculation of discrete frequency noise for helicopter rotors and propellers. Both compact and noncompact source formulations are derived. The compact formulations are obtained as the limit of noncompact source results. In particular, the linearized acoustic equations by Hawkings and Lowson, Farassat, Hanson, Woan and Gregorek, Succi, and Jou are derived in this paper. An interesting thickness noise formula by Isom and its recent extension to the near field by Ffowcs Williams are also presented. The paper includes some comparisons of measured and calculated acoustic pressure signatures and spectra for an advanced propeller. The theoretical results are obtained using a computer program developed by the author and P. A. Nystrom.

  2. A collection of formulas for calculation of rotating blade noise - Compact and noncompact source results

    NASA Technical Reports Server (NTRS)

    Farassat, F.

    1980-01-01

    A unified approach is used to derive many of the current formulations for calculation of discrete frequency noise for helicopter rotors and propellers. Both compact and noncompact source formulations are derived. The compact formulations are obtained as the limit of noncompact source results. In particular, the linearized acoustic equations by Hawkings and Lowson, Farassat, Hanson, Woan and Gregorek, Succi, and Jou are derived in this paper. An interesting thickness noise formula by Isom and its recent extension to the near field by Ffowcs Williams are also presented. The paper includes some comparisons of measured and calculated acoustic pressure signatures and spectra for an advanced propeller. The theoretical results are obtained using a computer program developed by the author and P. A. Nystrom.

  3. Determining the depth of a sound source in shallow water against intense background noise

    NASA Astrophysics Data System (ADS)

    Besedina, T. N.; Kuznetsov, G. N.; Kuz'kin, V. M.; Pereselkov, S. A.

    2015-11-01

    We consider a method for estimating the depth of a sound source in a shallow water acoustic waveguide for a weak signal, based on information on the ratio of the amplitude of neighboring modes of the wave field. Results of a numerical experiment using a single receiver and a horizontal linear array in the lowfrequency region are given. We demonstrate the stability of the method to errors in measuring the amplitudes of filtered modes and variations of the waveguide model, as well as high noise immunity. It is established that the error in reconstructing the depth of a source with increasing noise tends to the established value. We give a qualitative and quantitative explanation of the simulation results.

  4. Tunable coherent soft X-ray source based on the generation of high-order harmonic of femtosecond laser radiation in gas-filled capillaries

    SciTech Connect

    Malkov, Yu A; Yashunin, D A; Kiselev, A M; Stepanov, A N; Andreev, N E

    2014-05-30

    We have carried out experimental and theoretical investigations of a tunable coherent soft X-ray radiation source in the 30 52 nm wavelength range based on the generation of high-order harmonics of femtosecond laser radiation propagating in a dielectric xenon-filled capillary. The long path of laser pulse propagation through the capillary permits tuning the generated harmonic wavelengths to almost completely span the range under consideration. (interaction of radiation with matter)

  5. Sound Source Identification Through Flow Density Measurement and Correlation With Far Field Noise

    NASA Technical Reports Server (NTRS)

    Panda, J.; Seasholtz, R. G.

    2001-01-01

    Sound sources in the plumes of unheated round jets, in the Mach number range 0.6 to 1.8, were investigated experimentally using "casuality" approach, where air density fluctuations in the plumes were correlated with the far field noise. The air density was measured using a newly developed Molecular Rayleigh scattering based technique, which did not require any seeding. The reference at the end provides a detailed description of the measurement technique.

  6. Three-Dimensional Application of DAMAS Methodology for Aeroacoustic Noise Source Definition

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Humphreys, William M., Jr.

    2005-01-01

    At the 2004 AIAA/CEAS Aeroacoustic Conference, a breakthrough in acoustic microphone array technology was reported by the authors. A Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) was developed which decouples the array design and processing influence from the noise being measured, using a simple and robust algorithm. For several prior airframe noise studies, it was shown to permit an unambiguous and accurate determination of acoustic source position and strength. As a follow-on effort, this paper examines the technique for three-dimensional (3D) applications. First, the beamforming ability for arrays, of different size and design, to focus longitudinally and laterally is examined for a range of source positions and frequency. Advantage is found for larger array designs with higher density microphone distributions towards the center. After defining a 3D grid generalized with respect to the array s beamforming characteristics, DAMAS is employed in simulated and experimental noise test cases. It is found that spatial resolution is much less sharp in the longitudinal direction in front of the array compared to side-to-side lateral resolution. 3D DAMAS becomes useful for sufficiently large arrays at sufficiently high frequency. But, such can be a challenge to computational capabilities, with regard to the required expanse and number of grid points. Also, larger arrays can strain basic physical modeling assumptions that DAMAS and all traditional array methodologies use. An important experimental result is that turbulent shear layers can negatively impact attainable beamforming resolution. Still, the usefulness of 3D DAMAS is demonstrated by the measurement of landing gear noise source distributions in a difficult hard-wall wind tunnel environment.

  7. Improved PHIP polarization using a precision, low noise, voltage controlled current source.

    PubMed

    Agraz, Jose; Grunfeld, Alexander; Cunningham, Karl; Li, Debiao; Wagner, Shawn

    2013-10-01

    Existing para-hydrogen induced polarization (PHIP) instrumentation relies on magnetic fields to hyperpolarize substances. These hyperpolarized substances have enhanced magnetic resonance imaging (MRI) signals over 10,000 fold, allowing for MRI at the molecular level. Required magnetic fields are generated by energizing a solenoid coil with current produced by a voltage controlled voltage source (VCVS), also known as a power supply. A VCVS lacks the current regulation necessary to keep magnetic field fluctuations to a minimum, which results in low PHIP polarization. A voltage controlled current source (VCCS) is an electric circuit that generates a steady flow of electrons proportional to an input voltage. A low noise VCCS provides the solenoid current flow regulation necessary to generate a stable static magnetic field (Bo). We discuss the design and implementation of a low noise, high stability, VCCS for magnetic field generation with minimum variations. We show that a precision, low noise, voltage reference driving a metal oxide semiconductor field effect transistor (MOSFET) based current sink, results in the current flow control necessary for generating a low noise and high stability Bo. In addition, this work: (1) compares current stability for ideal VCVS and VCCS models using transfer functions (TF), (2) develops our VCCS design's TF, (3) measures our VCCS design's thermal & 1/f noise, and (4) measures and compares hydroxyethyl-propionate (HEP) polarization obtained using a VCVS and our VCCS. The hyperpolarization of HEP was done using a PHIP instrument developed in our lab. Using our VCCS design, HEP polarization magnitude data show a statistically significant increase in polarization over using a VCVS. Circuit schematic, bill of materials, board layout, TF derivation, and Matlab simulations code are included as supplemental files. PMID:23988431

  8. Improved PHIP polarization using a precision, low noise, voltage controlled current source

    NASA Astrophysics Data System (ADS)

    Agraz, Jose; Grunfeld, Alexander; Cunningham, Karl; Li, Debiao; Wagner, Shawn

    2013-10-01

    Existing para-hydrogen induced polarization (PHIP) instrumentation relies on magnetic fields to hyperpolarize substances. These hyperpolarized substances have enhanced magnetic resonance imaging (MRI) signals over 10,000 fold, allowing for MRI at the molecular level. Required magnetic fields are generated by energizing a solenoid coil with current produced by a voltage controlled voltage source (VCVS), also known as a power supply. A VCVS lacks the current regulation necessary to keep magnetic field fluctuations to a minimum, which results in low PHIP polarization. A voltage controlled current source (VCCS) is an electric circuit that generates a steady flow of electrons proportional to an input voltage. A low noise VCCS provides the solenoid current flow regulation necessary to generate a stable static magnetic field (Bo). We discuss the design and implementation of a low noise, high stability, VCCS for magnetic field generation with minimum variations. We show that a precision, low noise, voltage reference driving a metal oxide semiconductor field effect transistor (MOSFET) based current sink, results in the current flow control necessary for generating a low noise and high stability Bo. In addition, this work: (1) compares current stability for ideal VCVS and VCCS models using transfer functions (TF), (2) develops our VCCS design's TF, (3) measures our VCCS design's thermal & 1/f noise, and (4) measures and compares hydroxyethyl-propionate (HEP) polarization obtained using a VCVS and our VCCS. The hyperpolarization of HEP was done using a PHIP instrument developed in our lab. Using our VCCS design, HEP polarization magnitude data show a statistically significant increase in polarization over using a VCVS. Circuit schematic, bill of materials, board layout, TF derivation, and Matlab simulations code are included as supplemental files.

  9. Closely Spaced MEG Source Localization and Functional Connectivity Analysis Using a New Prewhitening Invariance of Noise Space Algorithm.

    PubMed

    Zhang, Junpeng; Cui, Yuan; Deng, Lihua; He, Ling; Zhang, Junran; Zhang, Jing; Zhou, Qun; Liu, Qi; Zhang, Zhiguo

    2016-01-01

    This paper proposed a prewhitening invariance of noise space (PW-INN) as a new magnetoencephalography (MEG) source analysis method, which is particularly suitable for localizing closely spaced and highly correlated cortical sources under real MEG noise. Conventional source localization methods, such as sLORETA and beamformer, cannot distinguish closely spaced cortical sources, especially under strong intersource correlation. Our previous work proposed an invariance of noise space (INN) method to resolve closely spaced sources, but its performance is seriously degraded under correlated noise between MEG sensors. The proposed PW-INN method largely mitigates the adverse influence of correlated MEG noise by projecting MEG data to a new space defined by the orthogonal complement of dominant eigenvectors of correlated MEG noise. Simulation results showed that PW-INN is superior to INN, sLORETA, and beamformer in terms of localization accuracy for closely spaced and highly correlated sources. Lastly, source connectivity between closely spaced sources can be satisfactorily constructed from source time courses estimated by PW-INN but not from results of other conventional methods. Therefore, the proposed PW-INN method is a promising MEG source analysis to provide a high spatial-temporal characterization of cortical activity and connectivity, which is crucial for basic and clinical research of neural plasticity. PMID:26819768

  10. Closely Spaced MEG Source Localization and Functional Connectivity Analysis Using a New Prewhitening Invariance of Noise Space Algorithm

    PubMed Central

    Zhang, Junpeng; Cui, Yuan; Deng, Lihua; He, Ling; Zhang, Junran; Zhang, Jing; Zhou, Qun; Liu, Qi; Zhang, Zhiguo

    2016-01-01

    This paper proposed a prewhitening invariance of noise space (PW-INN) as a new magnetoencephalography (MEG) source analysis method, which is particularly suitable for localizing closely spaced and highly correlated cortical sources under real MEG noise. Conventional source localization methods, such as sLORETA and beamformer, cannot distinguish closely spaced cortical sources, especially under strong intersource correlation. Our previous work proposed an invariance of noise space (INN) method to resolve closely spaced sources, but its performance is seriously degraded under correlated noise between MEG sensors. The proposed PW-INN method largely mitigates the adverse influence of correlated MEG noise by projecting MEG data to a new space defined by the orthogonal complement of dominant eigenvectors of correlated MEG noise. Simulation results showed that PW-INN is superior to INN, sLORETA, and beamformer in terms of localization accuracy for closely spaced and highly correlated sources. Lastly, source connectivity between closely spaced sources can be satisfactorily constructed from source time courses estimated by PW-INN but not from results of other conventional methods. Therefore, the proposed PW-INN method is a promising MEG source analysis to provide a high spatial-temporal characterization of cortical activity and connectivity, which is crucial for basic and clinical research of neural plasticity. PMID:26819768

  11. Analysis of Different Harmonic and Intermodulation Distortions for CATV Systems

    NASA Astrophysics Data System (ADS)

    Singh, Sandeep; Kamaljit, Singh Bhatia; Anurag, Sharma; Kaur, Harsimrat

    2015-06-01

    In this paper, after examining all the basic design issues of CATV systems, prominent distortions like harmonic and intermodulation distortions are taken into account for different order. Besides outer distortions for CATV sources, inner distortion of relative intensity to noise is disabled for current analysis.

  12. Speckle noise reduction on a laser projection display via a broadband green light source.

    PubMed

    Yu, Nan Ei; Choi, Ju Won; Kang, Heejong; Ko, Do-Kyeong; Fu, Shih-Hao; Liou, Jiun-Wei; Kung, Andy H; Choi, Hee Joo; Kim, Byoung Joo; Cha, Myoungsik; Peng, Lung-Han

    2014-02-10

    A broadband green light source was demonstrated using a tandem-poled lithium niobate (TPLN) crystal. The measured wavelength and temperature bandwidth were 6.5 nm and 100 C, respectively, spectral bandwidth was 36 times broader than the periodically poled case. Although the conversion efficiency was smaller than in the periodic case, the TPLN device had a good figure of merit owing to the extremely large bandwidth for wavelength and temperature. The developed broadband green light source exhibited speckle noise approximately one-seventh of that in the conventional approach for a laser projection display. PMID:24663644

  13. Supersonic jet noise prediction and noise source investigation for realistic baseline and chevron nozzles based on hybrid RANS/LES simulations

    NASA Astrophysics Data System (ADS)

    Du, Yongle

    Jet noise simulations have been performed for a military-style baseline nozzle and a chevron nozzle with design Mach numbers of Md = 1:5 operating at several off-design conditions. The objective of the current numerical study is to provide insight into the noise generation mechanisms of shock-containing supersonic hot jets and the noise reduction mechanisms of chevron nozzles. A hybrid methodology combining advanced CFD technologies and the acoustic analogy is used for supersonic jet noise simulations. Unsteady Reynolds-averaged Navier-Stokes (URANS) equations are solved to predict the turbulent noise sources in the jet flows. A modified version of the Detached Eddy Simulation (DES) approach is used to avoid excessive damping of fine scale turbulent fluctuations. A multiblock structured mesh topology is used to represent complex nozzle geometries, including the faceted inner contours and finite nozzle thickness. A block interface condition is optimized for the complex multiblock mesh topology to avoid the centerline singularity. A fourth-order Dispersion-Relation-Preserving (DRP) scheme is used for spatial discretization. To enable efficient calculations, a dual time-stepping method is used in addition to parallel computation using MPI. Both multigrid and implicit residual smoothing are used to accelerate the convergence rate of sub-iterations in the fictitious time domain. Noise predictions are made with the permeable surface Ffowcs Williams and Hawkings (FWH) solution. All the numerical methods have been implemented in the jet flow simulation code "CHOPA" and the noise prediction code "PSJFWH". The computer codes have been validated with several benchmark cases. A preliminary study has been performed for an under-expanded baseline nozzle jet with Mj = 1:56 to validate the accuracy of the jet noise simulations. The results show that grid refinement around the jet potential core and the use of a lower artificial dissipation improve the resolution of the predicted high frequency noise spectra. The results also show that the predicted low frequency noise spectra are sensitive to the axial extent of the acoustic data surface, and the high frequency noise spectra are affected by the radial size of the acoustic data surface. The baseline nozzle has been studied at several off-design conditions with Mj = 1:36, 1.47 and 1.56. Although the noise levels at mid to high frequencies are over-predicted at several shallow polar angles, the predicted noise spectra in the peak noise radiation direction and upstream directions agree very well with the experimental measurements. More encouraging is that the frequencies and amplitudes of the broadband shock-associated noise (BBSAN) are captured accurately at all three operating conditions. Three techniques are used to examine the noise source characteristics. The two-point space-time correlation method is used to analyze the statistical characteristics of the turbulent eddies. The direct flow-acoustic correlation technique and the beamformed acoustic pressures are used to reveal the different noise generation mechanisms of the large-scale and fine-scale turbulent fluctuations. The chevron nozzle simulations have been performed at the same operating conditions to evaluate the noise reduction effects. Special treatments are proposed to address the numerical difficulties caused by the chevrons. The impact of chevrons on the near-field noise sources and far-field noise radiation is simulated using the immersed boundary method (IBM) to overcome the great difficulties in grid generation. A non-matching block interface condition is developed to allow the grids to be greatly refined around chevrons for a higher accuracy of simulations without increasing the mesh size significantly. The predicted noise spectra agree very well with the acoustic measurements of the baseline nozzle, considering the small noise reductions of the chevrons at the given operating conditions. No apparent over-prediction is observed. However, the noise reductions are over-predicted because of the over-prediction of the baseline nozzle noise level at some polar angles. Analysis shows that the chevrons generate strong streamwise vorticies and induce strong lateral secondary flows near the nozzle exit. The enhanced turbulent mixing increases the noise source intensity and efficiency near the nozzle exit, and creates a high frequency noise penalty. But it reduces the turbulence intensity in the main jet potential core, and decreases the low frequency noise level. Both the flow and noise results show that the effects of chevrons on the jet flow and noise reduction depend highly on the operating conditions.

  14. An equivalent-source model for simulating noise generation in turbofan engines

    NASA Astrophysics Data System (ADS)

    Polacsek, C.; Desquesnes, G.; Reboul, G.

    2009-06-01

    Nowadays, computational aeroacoustics (CAA) is used for simulating wave propagation in ducted turbofans, especially as computational fluid dynamics (CFD) is increasingly employed to model the identified noise sources. An efficient way to match the CFD and CAA domains is to make some assumptions on flow and duct geometry, so that disturbance fields can be expanded over incoming/outgoing acoustic modes. Based on this approach, this paper presents an original matching model in which the outgoing modes are generated by means of equivalent monopole distributions defined as source terms in the equations governing the acoustic propagation, instead of a conventional inflow boundary condition (BC). Advantages and limits of the method are discussed. The process to get back to the sources and its numerical implementing are described. Although initially focused on tones, an extension of the method to broadband noise generation is tackled too. The method then is validated on a simplified turbofan exhaust configuration. Numerical solutions obtained by implementing the source terms in a high-order time-domain Euler code are compared to analytical solutions, either in a uniform or in a radially shear mean flow (provided by RANS). The parallel shear flow solution is obtained by solving the Pridmore-Brown equation. The ability to accurately simulate the standing waves due to acoustic reflections at duct ends is also assessed by comparing the numerical solutions computed using both source-based and BC-based options in the Euler solver.

  15. Non-Uniform Contrast and Noise Correction for Coded Source Neutron Imaging

    SciTech Connect

    Santos-Villalobos, Hector J; Bingham, Philip R

    2012-01-01

    Since the first application of neutron radiography in the 1930s, the field of neutron radiography has matured enough to develop several applications. However, advances in the technology are far from concluded. In general, the resolution of scintillator-based detection systems is limited to the $10\\mu m$ range, and the relatively low neutron count rate of neutron sources compared to other illumination sources restricts time resolved measurement. One path toward improved resolution is the use of magnification; however, to date neutron optics are inefficient, expensive, and difficult to develop. There is a clear demand for cost-effective scintillator-based neutron imaging systems that achieve resolutions of $1 \\mu m$ or less. Such imaging system would dramatically extend the application of neutron imaging. For such purposes a coded source imaging system is under development. The current challenge is to reduce artifacts in the reconstructed coded source images. Artifacts are generated by non-uniform illumination of the source, gamma rays, dark current at the imaging sensor, and system noise from the reconstruction kernel. In this paper, we describe how to pre-process the coded signal to reduce noise and non-uniform illumination, and how to reconstruct the coded signal with three reconstruction methods correlation, maximum likelihood estimation, and algebraic reconstruction technique. We illustrates our results with experimental examples.

  16. Experimentation Toward the Analysis of Gear Noise Sources Controlled by Sliding Friction and Surface Roughness

    NASA Technical Reports Server (NTRS)

    Asnani, Vivake M.

    2004-01-01

    In helicopters and other rotorcraft, the gearbox is a major source of noise and vibration (N&V). The two N&V excitation mechanisms are the relative displacements between mating gears (transmission errors) and the friction associated with sliding between gear teeth. Historically, transmission errors have been minimized via improved manufacturing accuracies and tooth modifications. Yet, at high torque loads, noise levels are still relatively high though transmission errors might be somewhat minimal. This suggests that sliding friction is indeed a dominant noise source for high power density rotorcraft gearboxes. In reality, friction source mechanism is associated with surface roughness, lubrication regime properties, time-varying friction forces/torques and gear-mesh interface dynamics. Currently, the nature of these mechanisms is not well understood, while there is a definite need for analytical tools that incorporate sliding resistance and surface roughness, and predict their effects on the vibro- acoustic behavior of gears. Toward this end, an experiment was conducted to collect sound and vibration data on the NASA Glenn Gear-Noise Rig. Three iterations of the experiment were accomplished: Iteration 1 tested a baseline set of gears to establish a benchmark. Iteration 2 used a gear-set with low surface asperities to reduce the sliding friction excitation. Iteration 3 incorporated low viscosity oil with the baseline set of gears to examine the effect of lubrication. The results from this experiment will contribute to a two year project in collaboration with the Ohio State University to develop the necessary mathematical and computer models for analyzing geared systems and explain key physical phenomena seen in experiments. Given the importance of sliding friction in the gear dynamic and vibro-acoustic behavior of rotorcraft gearboxes, there is considerable potential for research & developmental activities. Better models and understanding will lead to quiet and reliable gear designs, as well as the selection of optimal manufacturing processes.

  17. Noise suppression of a dipole source by tensioned membrane with side-branch cavities

    PubMed Central

    Liu, Y.; Choy, Y. S.; Huang, L.; Cheng, L.

    2012-01-01

    Reducing the ducted-fan noise at the low frequency range remains a big technical challenge. This study presents a passive approach to directly suppress the dipole sound radiation from an axial-flow fan housed by a tensioned membrane with cavity backing. The method aims at achieving control of low frequency noise with an appreciable bandwidth. The use of the membrane not only eliminates the aerodynamic loss of flow, but also provides flexibility in controlling the range of the stopband with high insertion loss by varying its tension and mass. A three-dimensional model is presented which allows the performance of the proposed device to be explored analytically. With the proper design, this device can achieve a noise reduction of 5?dB higher than the empty expansion cavity recently proposed by Huang et al. [J. Acoust. Soc. Am. 128, 152163 (2010)]. Through the detailed modal analysis, even in vacuo modes of the membrane vibration are found to play an important role in the suppression of sound radiation from the dipole source. Experimental validation is conducted with a loudspeaker as the dipole source and good agreement between the predicted and measured insertion loss is achieved. PMID:22978868

  18. Noise suppression of a dipole source by tensioned membrane with side-branch cavities.

    PubMed

    Liu, Y; Choy, Y S; Huang, L; Cheng, L

    2012-09-01

    Reducing the ducted-fan noise at the low frequency range remains a big technical challenge. This study presents a passive approach to directly suppress the dipole sound radiation from an axial-flow fan housed by a tensioned membrane with cavity backing. The method aims at achieving control of low frequency noise with an appreciable bandwidth. The use of the membrane not only eliminates the aerodynamic loss of flow, but also provides flexibility in controlling the range of the stopband with high insertion loss by varying its tension and mass. A three-dimensional model is presented which allows the performance of the proposed device to be explored analytically. With the proper design, this device can achieve a noise reduction of 5 dB higher than the empty expansion cavity recently proposed by Huang et al. [J. Acoust. Soc. Am. 128, 152-163 (2010)]. Through the detailed modal analysis, even in vacuo modes of the membrane vibration are found to play an important role in the suppression of sound radiation from the dipole source. Experimental validation is conducted with a loudspeaker as the dipole source and good agreement between the predicted and measured insertion loss is achieved. PMID:22978868

  19. Comparison of Noise Source Localization Data with Flow Field Data Obtained in Cold Supersonic Jets and Implications Regarding Broadband Shock Noise

    NASA Technical Reports Server (NTRS)

    Podboy, Gary; Wernet, Mark; Clem, Michelle; Fagan, Amy

    2013-01-01

    Phased array noise source localization have been compared with 2 types of flow field data (BOS and PIV). The data show that: 1) the higher frequency noise in a BBSN hump is generated further downstream than the lower frequency noise. This is due to a) the shock spacing decreasing and b) the turbulent structure size increasing with distance downstream. 2) BBSN can be created by very weak shocks. 3) BBSN is not created by the strong shocks just downstream of the nozzle because the turbulent structures have not grown large enough to match the shock spacing. 4) The point in the flow where the shock spacing equals the average size of the turbulent structures is a hot spot for shock noise. 5) Some of the shocks responsible for producing the first hump also produce the second hump.

  20. A perspective on 30 years of progress in ambient noise: Source mechanisms and the characteristics of the sound field

    NASA Astrophysics Data System (ADS)

    Cato, Douglas H.

    2012-11-01

    The last 30 years has seen substantial progress in ocean ambient noise research, particularly in understanding the mechanisms of sound generation by the sources of ambient noise, the way in which the noise field is affected by sound propagation, and improvements in quantifying the relationship between noise and environmental parameters. This has led to significant improvements in noise prediction. Activity was probably strongest in the 1980s and 1990s, as evident, for example, in the Sea Surface Sound conferences and their published proceedings (four over 10 years). Although much of the application has been to sonar, there has also been interest in using ambient noise to measure properties of the environment and in its significance to marine life. There have been significant changes in the ambient noise itself over the last 30 years. The contribution from human activities appears to have increased, particularly that due to increases in shipping numbers. Biological noise has also increased with the significant increases in populations of some whale species following the cessation of broad scale whaling in the 1960s and early 1970s. Concern about the effects of noise on marine animals as well as the way they exploit the noise has led to renewed interest in ambient noise.

  1. In-situ source path contribution analysis of structure borne road noise

    NASA Astrophysics Data System (ADS)

    Elliott, A. S.; Moorhouse, A. T.; Huntley, T.; Tate, S.

    2013-11-01

    Source-path-contribution (SPC) analysis, also known as transfer path analysis (TPA), is a technique widely used in the automotive industry for rank ordering noise and vibration sources. The SPC approach is known to provide reliable diagnostic information but is time consuming to apply. In this paper, a faster SPC approach that allows all measurements to be performed in-situ is outlined and tested. For validation purposes a classic example consisting of a vehicle's suspension system (considered a vibration source) attached to a vehicle body (receiver) is analysed. It is found that structure borne noise inside the vehicle can be predicted well by either the conventional or the novel in-situ SPC approaches and that both methods give the same diagnostic information in terms of the rank ordering of path contributions. Thus, the new in-situ approach provides results at least as reliable as the conventional inverse SPC approach but has significant practical advantages in terms of reduced test time, transferability of data and flexibility in the location of the source-receiver interface. An additional investigation also demonstrates the feasibility of including rotational motions and moments in the analysis and it is shown that improved accuracy can be achieved as a result.

  2. Experimental study of source of background noise in muon radiography using emulsion film detectors

    NASA Astrophysics Data System (ADS)

    Nishiyama, R.; Miyamoto, S.; Naganawa, N.

    2013-12-01

    We study the source of background noise in cosmic-ray muon radiography (muography) using emulsion film detectors. We claim that muography detectors should have a momentum separation function to reduce systematic errors due to non-signal particles with momenta less than 2 GeV c-1. The origin of noise is expected to be electromagnetic components of air-showers or cosmic-ray muons scattered in topographic material. As a demonstration, we construct two types of detectors with different momentum thresholds and perform test measurements of an actual geoscientific target. The analysis of emulsion data is explained in detail, including film inefficiency compensation and momentum selection by applying an upper bound to the chi-square distribution to the data.

  3. A study of rotor broadband noise mechanisms and helicopter tail rotor noise

    NASA Technical Reports Server (NTRS)

    Chou, Shau-Tak Rudy

    1990-01-01

    The rotor broadband noise mechanisms considered are the following: (1) lift fluctuation due to turbulence ingestion; (2) boundary layer/trailing edge interaction; (3) tip vortex formation; and (4) turbulent vortex shedding from blunt trailing edge. Predictions show good agreement with available experimental data. The study shows that inflow turbulence is the most important broadband noise source for typical helicopters' main rotors at low- and mid-frequencies. Due to the size difference, isolated helicopter tail rotor broadband noise is not important compared to the much louder main rotor broadband noise. However, the inflow turbulence noise from a tail rotor can be very significant because it is operating in a highly turbulent environment, ingesting wakes from upstream components of the helicopter. The study indicates that the main rotor turbulent wake is the most important source of tail rotor broadband noise. The harmonic noise due to ingestion of main rotor tip vortices is studied.

  4. Extreme ultraviolet mask observations using a coherent extreme ultraviolet scatterometry microscope with a high-harmonic-generation source

    NASA Astrophysics Data System (ADS)

    Fujino, Takahiro; Tanaka, Yusuke; Harada, Tetsuo; Nagata, Yutaka; Watanabe, Takeo; Kinoshita, Hiroo

    2015-06-01

    In extreme ultraviolet (EUV) lithography, the three-dimensional structure of an EUV mask, which has an absorber layer and a Mo/Si multilayer on a glass substrate, strongly affects the EUV phase. We have developed a coherent EUV scatterometry microscope (CSM) to observe EUV patterns with a quantitative phase contrast based on the coherent-diffraction-imaging method, which is a simple system without an objective. A coherent stand-alone high-harmonic-generation (HHG) EUV source has been developed for practical use. Although the throughput of the relay optics in the previous study was insufficient to compensate for the fluctuation of the beam position, herein the beam position is stabilized and the relay optics are upgraded, increasing the throughput of the EUV power 130-fold. Consequently, the detection time for the same defect size is markedly reduced from 1000 to 1 s. Furthermore, a 52 × 52 nm2 absorber defect is detected in 10 s.

  5. Evaluation of Online Information Sources on Alien Species in Europe: The Need of Harmonization and Integration

    NASA Astrophysics Data System (ADS)

    Gatto, Francesca; Katsanevakis, Stelios; Vandekerkhove, Jochen; Zenetos, Argyro; Cardoso, Ana Cristina

    2013-06-01

    Europe is severely affected by alien invasions, which impact biodiversity, ecosystem services, economy, and human health. A large number of national, regional, and global online databases provide information on the distribution, pathways of introduction, and impacts of alien species. The sufficiency and efficiency of the current online information systems to assist the European policy on alien species was investigated by a comparative analysis of occurrence data across 43 online databases. Large differences among databases were found which are partially explained by variations in their taxonomical, environmental, and geographical scopes but also by the variable efforts for continuous updates and by inconsistencies on the definition of "alien" or "invasive" species. No single database covered all European environments, countries, and taxonomic groups. In many European countries national databases do not exist, which greatly affects the quality of reported information. To be operational and useful to scientists, managers, and policy makers, online information systems need to be regularly updated through continuous monitoring on a country or regional level. We propose the creation of a network of online interoperable web services through which information in distributed resources can be accessed, aggregated and then used for reporting and further analysis at different geographical and political scales, as an efficient approach to increase the accessibility of information. Harmonization, standardization, conformity on international standards for nomenclature, and agreement on common definitions of alien and invasive species are among the necessary prerequisites.

  6. Evaluation of online information sources on alien species in Europe: the need of harmonization and integration.

    PubMed

    Gatto, Francesca; Katsanevakis, Stelios; Vandekerkhove, Jochen; Zenetos, Argyro; Cardoso, Ana Cristina

    2013-06-01

    Europe is severely affected by alien invasions, which impact biodiversity, ecosystem services, economy, and human health. A large number of national, regional, and global online databases provide information on the distribution, pathways of introduction, and impacts of alien species. The sufficiency and efficiency of the current online information systems to assist the European policy on alien species was investigated by a comparative analysis of occurrence data across 43 online databases. Large differences among databases were found which are partially explained by variations in their taxonomical, environmental, and geographical scopes but also by the variable efforts for continuous updates and by inconsistencies on the definition of "alien" or "invasive" species. No single database covered all European environments, countries, and taxonomic groups. In many European countries national databases do not exist, which greatly affects the quality of reported information. To be operational and useful to scientists, managers, and policy makers, online information systems need to be regularly updated through continuous monitoring on a country or regional level. We propose the creation of a network of online interoperable web services through which information in distributed resources can be accessed, aggregated and then used for reporting and further analysis at different geographical and political scales, as an efficient approach to increase the accessibility of information. Harmonization, standardization, conformity on international standards for nomenclature, and agreement on common definitions of alien and invasive species are among the necessary prerequisites. PMID:23609303

  7. Low Speed, 2-D Rotor/Stator Active Noise Control at the Source Demonstration

    NASA Technical Reports Server (NTRS)

    Simonich, John C.; Kousen, Ken A.; Zander, Anthony C.; Bak, Michael; Topol, David A.

    1997-01-01

    Wake/blade-row interaction noise produced by the Annular Cascade Facility at Purdue University has been modeled using the LINFLO analysis. Actuator displacements needed for complete cancellation of the propagating acoustic response modes have been determined, along with the associated actuator power requirements. As an alternative, weighted least squares minimization of the total far-field sound power using individual actuators has also been examined. Attempts were made to translate the two-dimensional aerodynamic results into three-dimensional actuator requirements. The results lie near the limit of present actuator technology. In order to investigate the concept of noise control at the source for active rotor/stator noise control at the source, various techniques for embedding miniature actuators into vanes were examined. Numerous miniature speaker arrangements were tested and analyzed to determine their suitability as actuators for a demonstration test in the Annular Cascade Facility at Purdue. The best candidates demonstrated marginal performance. An alternative concept to using vane mounted speakers as control actuators was developed and tested. The concept uses compression drivers which are mounted externally to the stator vanes. Each compression driver is connected via a tube to an air cavity in the stator vane, from which the driver signal radiates into the working section of the experimental rig. The actual locations and dimensions of the actuators were used as input parameters for a LINFLO computational analysis of the actuator displacements required for complete cancellation of tones in the Purdue experimental rig. The actuators were designed and an arrangement determined which is compatible with the Purdue experimental rig and instrumentation. Experimental tests indicate that the actuators are capable of producing equivalent displacements greater than the requirements predicted by the LINFLO analysis. The acoustic output of the actuators was also found to be unaffected by the presence of air flow representative of the Purdue experimental rig. A test of the active noise control at the source concept for rotor/stator active noise control was demonstrated. This 2-D test demonstrated conclusively the simultaneous reduction of two acoustic modes. Reductions of over 10 dB were obtained over a wide operating range.

  8. Analysis on the frequency-domain numerical method to compute the noise radiated from rotating sources

    NASA Astrophysics Data System (ADS)

    Tang, Hongtao; Qi, Datong; Mao, Yijun

    2013-11-01

    A frequency-domain solution of the Ffowcs Williams-Hawkings equation with a penetrable data surface is presented for the thickness, loading and quadrupole noise to avoid the singularities that exist in the time-domain methods. Since this method is based on the numerical integration over source time, there is no need to solve the retarded-time equation or to perform the interpolation on time-domain data, and the time-domain source information obtained by modern CFD codes can be utilized directly. The acoustic pressure spectra of monopole, dipole and quadrupole point sources in subsonic and supersonic rotation are calculated with the presented method, and the results agree well with those obtained by the retarded-time method and frequency-domain analytical method.

  9. Aeroacoustics of Flight Vehicles: Theory and Practice. Volume 1: Noise Sources

    NASA Technical Reports Server (NTRS)

    Hubbard, Harvey H. (Editor)

    1991-01-01

    Methodology recommended to evaluate aeroacoustic related problems is provided, and approaches to their solutions are suggested without extensive tables, nomographs, and derivations. Orientation is toward flight vehicles and emphasis is on underlying physical concepts. Theoretical, experimental, and applied aspects are covered, including the main formulations and comparisons of theory and experiment. The topics covered include: propeller and propfan noise, rotor noise, turbomachinery noise, jet noise classical theory and experiments, noise from turbulent shear flows, jet noise generated by large-scale coherent motion, airframe noise, propulsive lift noise, combustion and core noise, and sonic booms.

  10. Control of Environmental Noise

    ERIC Educational Resources Information Center

    Jensen, Paul

    1973-01-01

    Discusses the physical properties, sources, physiological effects, and legislation pertaining to noise, especially noise characteristics in the community. Indicates that noise reduction steps can be taken more intelligently after determination of the true noise sources and paths. (CC)

  11. Subcritical measurements using the /sup 252/Cf source-driven neutron noise analysis method

    SciTech Connect

    Mihalczo, J.T.; Blakeman, E.D.; Ragan, G.E.; Kryter, R.C.

    1985-01-01

    This paper describes recent measurements of the subcritical neutron multiplication factor using the /sup 252/Cf source-driven neutron noise analysis method. This work was supported by a program of collaboration between the United States Department of Energy and the Power Reactor and Nuclear Fuel Development Corporation of Japan related to the development of fast breeder technology. The experiment reported consists of a configuration of two interacting tanks of uranyl nitrate aqueous solution with different uranium concentrations in each tank. The /sup 252/Cf-source-driven neutron noise analysis method obtains the subcriticality from the signals of three detectors: the first, a parallel plate ionization chamber with /sup 252/Cf electroplated on one of its plates that is located in or near the system containing the fissile material, and produces an electrical pulse for every spontaneous fission that occurs and thereby serves as a timed source of fission neutrons; and the second and third detectors that are placed in or near the system containing fissile material and serve to detect particles from the fission chain multiplication process. 9 refs.

  12. Noise control of dipole source by using micro-perforated panel housing

    NASA Astrophysics Data System (ADS)

    Xi, Q.; Choy, Y. S.; Cheng, L.; Tang, S. K.

    2016-02-01

    Mitigating low-frequency noise in a small ducted fan system such as hairdryer is still a technical challenge. Traditional duct lining with porous materials work ineffectively due to the limitation of its thickness and length of small domestic product with ducted fans. This study presents a passive approach to directly suppress the sound radiation from the fan housed by a short microperforated panel covered with a shallow cavity backing. The noise suppression is achieved by the sound cancellation between sound fields from a fan of a dipole nature and sound radiation from a vibrating panel via vibro-acoustic coupling and by sound absorption in micro-perforations to widen the stopband. A two-dimensional theoretical model, capable of dealing with strong coupling among the vibrating micro-perforated panel, sound radiation from the dipole source, sound fields inside the cavity and the duct is developed. Through modal analysis, it is found that the even modes of the panel vibration are very important to cancel the sound radiation from the dipole source. Experimental validation is conducted with a loudspeaker to simulate the dipole source, and good agreement between the predicted and measured insertion loss (IL) is achieved.

  13. Investigation of Automotive Creep Groan Noise with a Distributed-Source Excitation Technique

    NASA Astrophysics Data System (ADS)

    Bettella, M.; Harrison, M. F.; Sharp, R. S.

    2002-08-01

    Creep groan is a high-intensity, low-frequency noise and vibration problem that affects road vehicles at very low speeds. It usually persists for short periods of time, but a "skilled" driver can deliberately make it last several seconds by tuning the force exerted on the brake pedal. The original cause is considered to be a self-induced vibration of the brake components, due to the friction material characteristics that make the system prone to a stick-slip behaviour. No clear evidence upon the creep groan and how it is perceived inside the passenger cockpit has yet been analyzed in the literature and no formal methods are yet available for its analysis. The present study focuses on the transmission of the vibration from the brake component regions to the ears of the vehicle occupants. Characterization of the calliper acceleration and noise inside the cockpit are described for a test vehicle. Distributed-source noise excitation via the standard vehicle hi-fi system is proposed as a practical but less rigorous particular application of the exact reciprocity method. Virtual groan (in which sound power is delivered by means of a loudspeaker) dismisses the airbone path and shows that the phenomenon is structure-borne. On the examined vehicle, front brakes contribute more strongly than rear. Groan frequency close to cavity acoustic resonance constitutes the worst case scenario, and has to be avoided.

  14. Time Delay Analysis of Turbofan Engine Direct and Indirect Combustion Noise Sources

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton

    2008-01-01

    The core noise components of a dual spool turbofan engine were separated by the use of a coherence function. A source location technique based on adjusting the time delay between the combustor pressure sensor signal and the far-field microphone signal to maximize the coherence and remove as much variation of the phase angle with frequency as possible was used. The discovery was made that for the 130o microphone a 90.027 ms time shift worked best for the frequency band from 0 to 200 Hz while a 86.975 ms time shift worked best for the frequency band from 200 to 400 Hz. Hence, the 0 to 200 Hz band signal took more time than the 200 to 400 Hz band signal to travel the same distance. This suggests the 0 to 200 Hz coherent cross spectral density band is partly due to indirect combustion noise attributed to entropy fluctuations, which travel at the flow velocity, interacting with the turbine. The signal in the 200 to 400 Hz frequency band is attributed mostly to direct combustion noise. Results are presented herein for engine power settings of 48, 54, and 60 percent of the maximum power setting

  15. Rotor blade-vortex interaction impulsive noise source identification and correlation with rotor wake predictions

    NASA Astrophysics Data System (ADS)

    Splettstoesser, W. R.; Schultz, K. J.; Martin, Ruth M.

    1987-10-01

    An acoustic source localization scheme applicable to noncompact moving sources is developed and applied to the blade-vortex interaction (BVI) noise data of a 40-percent scale BO-105 model rotor. A generalized rotor wake code is employed to predict possible VBI locations on the rotor disk and is found quite useful in interpreting the acoustic localization results. The highly varying directivity patterns of different BVI impulses generated at the same test condition are explained by both the localization results and predicted tip vortex trajectories. The effects of rotor tip-path-plane angle and advance ratio on the BVI source positions is studied. Decreasing tip-path-plane angle (at constant advance ratio) moves the general interaction region upwind on the rotor disk, significantly changing the interaction geometry. Increasing advance ratio (at constant tip-path-plane angle) shifts the general source region downwind on the rotor disk with the increased convection of the vortices until about 60 deg azimuth, where the BVI sources appear to become acoustically less effective. The region of strongest BVI sources lies between 60 and 70 deg azimuth and 80 and 90 percent radius for the moderate range of advance ratios studied.

  16. Interferometric coherence measurement and radio frequency noise characterization of the 1.3 ?m femtosecond intense Stokes continuum from a TZDW source

    NASA Astrophysics Data System (ADS)

    Yao, Yuhong; Knox, Wayne H.

    2015-02-01

    Photonic crystal fiber (PCF) with two closely spaced zero dispersion wavelengths (TZDW) offers a unique route to efficient energy transfer to two spectrally localized continua beyond either side of the ZDWs, which we have employed in previous work for mid-IR difference frequency generation and speckle-free red-green-blue generation. In this manuscript, we report the interferometric coherence characterization and radio frequency (RF) noise measurements of the Stokes side TZDW component. With a custom-built 1.3 W, 1035 nm, 40 MHz, 240 fs Yb:fiber chirped pulse amplifier as the pump source, we use 12 cm of commercially available TZDW PCF to excite the dual narrow-band continua from which the Stokes pulse is filtered out with a 1180 nm long wave pass filter. We achieve 0.8 to 3 nJ of narrow-band pulses within the spectral range of 1200 - 1315 nm at an average power conversion efficiency of 33%. Employing an un-balanced Michelson interferometer, measured mutual spectral coherence of the Stokes pulse is in excess of 0.76 with pump Soliton order as high as N ~70. Its measured RF noise spectrum at the first harmonic of the laser repetition rate shows less than 8 dBc/Hz increase in relative intensity noise (RIN) compared to that of the power amplifier, which is consistent with reported studies employing sub-100 fs pulses from relatively low noise oscillators. In contrast to the broadband continuum from a single ZDW PCF wherein severe de-coherence is found with pumping at high soliton order and longer pump pulse width, the reported TZDW fiber source shows preservation of intensity stability and phase coherence against variation in pump pulse parameters, which not only attests to the stability of our reported method for mid-IR generation, but also shows promising potential towards an all-fiber, efficient and low noise ultrafast source that can be helpful for applications such as biomedical deep-tissue imaging.

  17. Direction-of-arrival estimation for narrow band coherent and incoherent sources in the presence of unknown noise fields

    NASA Astrophysics Data System (ADS)

    Wang, Fengzhen

    A solution is presented to the general multiple source location problem in which the sources are incoherent, partially coherent, or coherent narrowband plane waves contaminated by unknown noise at the sensor terminal. The method provides the required source azimuth and elevation angle estimates, and the array's geometry is diversified. The method is based on computing the difference of the subarray covariances, thus subtracting the unknown noise covariance and leaving only the difference matrix of the signal covariances with respect to two subarrays. Arranging the main array appropriately could compensate for the deficiency of rank of covariance due to the coherent sources (which makes the MUSIC method invalid).

  18. An ensemble source spectra model for merchant ship-radiated noise.

    PubMed

    Wales, Stephen C; Heitmeyer, Richard M

    2002-03-01

    This paper presents an evaluation of the classical model for determining an ensemble of the broadband source spectra of the sound generated by individual ships and proposes an alternate model to overcome the deficiencies in the classical model. The classical model, proposed by Ross [Mechanics of Underwater Noise (Pergamon, New York, 1976)] postulates that the source spectrum for an individual ship is proportional to a baseline spectrum with the constant of proportionality determined by a power-law relationship on the ship speed and length. The model evaluation, conducted on an ensemble of 54 source spectra over a 30-1200-Hz to 1200-Hz frequency band, shows that this assumption yields large rms errors in the broadband source level for the individual ships and significantly overestimates the variability in the source level across the ensemble of source spectra. These deficiencies are a consequence of the negligible correlation between the source level and the ship speed and the source level and the ship length. The alternate model proposed here represents the individual ship spectra by a modified rational spectrum where the poles and zeros are restricted to the real axis and the exponents of the terms are not restricted to integer values. An evaluation of this model on the source spectra ensemble indicates that the rms errors are significantly less than those obtained with any model where the frequency dependence is represented by a single baseline spectrum. Furthermore, at high frequencies (400 to 1200 Hz), a single-term rational spectrum model is sufficient to describe the frequency dependence and, at the low frequencies (30 to 400 Hz), there is only a modest reduction in the rms error for a higher order model. Finally, a joint probability density on the two parameters of the single term model based on the measured histograms of these parameters is proposed. This probability density provides a mechanism for generating an ensemble of ship spectra. PMID:11931298

  19. Tracking Paths of Ocean Source Ambient Seismic Noise into, and through, the 3D Earth

    NASA Astrophysics Data System (ADS)

    Reading, A. M.; Gal, M.; Morse, P. E.; Koper, K. D.; Hemer, M. A.; Rawlinson, N.; Salmon, M.; De Kool, M.; Kennett, B. L. N.

    2014-12-01

    Array measurements of seismic noise (microseisms) are emerging as independent observables that inform our knowledge of ocean storms. Using an improved implementation of IAS Capon analysis, we can infer the location and amplitude of multiple sources of seismic noise over multiple decades. For the Southern Ocean, we can use seismic records to assist in identifying shifting patterns of ocean storms. Thus we can investigate topics such as the disparity between wave height trends identified using calibrated satellite records, which appear to be in increasing over multiple decades, and wave heights measured directly using a wave-rider buoy, which does not show a significant change over the same time frame. The passage of wave energy from the water column to the solid Earth, and through the 3D Earth to the seismic array must be tracked effectively. In this contribution, we focus on understanding the passage of seismic noise through the 3D Earth. In particular, we investigate path deviations from 1D Earth models for body waves sources from a variety of locations in the Southern Ocean recorded at Australian seismic arrays. We also investigate path deviations of surface waves travelling across the Australian continent, using the AusREM Earth model. We also appraise other factors affecting the interpretation of slowness, backazimuth and amplitude from seismic array records. These include the effect of the bathymetry-related transfer function controlling energy entering the solid Earth from the water column and the impact of local geology at the site of the seismic array. For a season of storms in the southern hemisphere winter, we simulate the path of energy from a representative range of locations to Australia seismic arrays. We employ a wavefront tracking technique, fast marching, that can support heterogeneous structure and the consideration of multiple arrivals. We find that storms in some locations are subject to a much larger deviation from the expected path of energy through a 1D Earth. We also find that, given the extended source characteristics of ocean storms, focusing and defocusing effects have a significant impact on the pattern of seismic noise observed at a given array. The interplay between these multiple factors results in 'sweet spots': locations in the ocean where storms are very well observed for a particular array.

  20. Methods for addressing noise and error in controlled source electromagnetic data

    NASA Astrophysics Data System (ADS)

    MacLennan, Kristopher

    Controlled source electromagnetic geophysical surveys are excellent ways to obtain information about the conductivity structure of the earth, with applications including hydrocarbon and mining prospecting, hydrogeophysical detection and monitoring, and civil and archaeological studies. Invariably, however, various types of noise and errors obscure signal for desired targets, making interpretation difficult. In the case of time-lapse surveys, the magnitude of the measured difference is often on the order of the noise. Complex conductivity effects distort the measurements, leading to incorrect inversion results. This work develops a method for extracting signal from noisy electromagnetic data sets from both time- and frequency-domain surveys using a novel application of the equivalent source technique. It improves data contaminated by uncorrelated random noise, such as that due to receiver coil misalignment and location errors in time-domain EM surveys, and can remove static shifts in the observed electric field amplitude data due to near-surface geologic features in frequency-domain EM surveys. The equivalent source method can either be applied individually to data from each measured time-gate or frequency, or simultaneously to data from all times or frequencies measured. The method can be used in addition to traditional processing techniques and requires little user input. The effectiveness of the method is demonstrated through application to single-survey and time-lapsed noisy time- and frequency-domain EM data, both synthetically generated and collected in the field. The presence of low-frequency (? 1 kHz) polarization effects in earth porous materials noticeably increases the amplitude and decreases the phase of measured electromagnetic fields in frequency-domain surveys. By analyzing the sensitivity of cross-well EM measurements to the in-phase and quadrature conductivities, the contribution of the quadrature conductivity (directly associated with the low-frequency polarization effect) can be quantified. Using an integral equation approach for the forward modeling and a gradient-based approach with Tikhonov regularization for the inverse problem, this work shows that with a reasonable amount of noise, the distribution of both the in-phase and quadrature conductivities can be recovered in cross-well tomography. This information may be used in turn to improve the ability to, for instance, monitor saturation changes in oil reservoir production or in geothermal fields.

  1. Do tidal peaks help to discriminate the oceanic microseismic noise sources?

    NASA Astrophysics Data System (ADS)

    Beucler, E.; Mocquet, A.; Schimmel, M.; Chevrot, S.; Vergne, J.; Sylvander, M.; Quillard, O.

    2013-12-01

    Since the pioneer years of the seismology, the ubiquitous high-level of seismic energy in the period range 1-20 s, namely microseismic noise, has been clearly associated with the ocean wave activity. This noise bandwidth of the seismic spectrum defines the frontier between long-period and high-frequency transient seismology. The ``transient seismology'' terms comprise all research based on signals due to known sources such as earthquakes or volcano eruptions. Recently, many studies used the noisy unexploited part of the signal and revealed strong features for the seismic tomography and monitoring. One of the main hypothesis for noise cross-correlation techniques resides however in the assumption that the source distribution provides a random wave field between two stations. Due to the highly non-linear process of oceanic-to-seismic wave conversion, the characterization of a given source contribution is not unique. The Longuet-Higgins theory (later generalized for random waves by Hasselman) explains the existence of a primary peak around 14 s and a secondary microseismic peak (SMP) around 7 s, both. The latter, often named double-frequency peak, is much more energetic and lay between periods of 1 to 10 s; its origin (coastal or deep-ocean) is still under debate. In this study we use a few seismic broadband stations of the temporary PYROPE deployement, located on the French Atlantic coast, to analyze the seismic energy. For each component, high resolution Power Spectral Densities (PSD) are computed for time windows of 6 min. with a 60 s overlapping window; the median of four PSD is finally retained for each 20 minutes of the signal. PSD are computed between 0.01 and 10 Hz. Using the spectacular strong tidal effects on this coast as proxies, it is obvious that the behaviour of the short period range of the SMP is different from the energy observed at the frequency value corresponding to the double of the primary peak. This suggest that the SMP may be split into (at least) two parts: a near field contribution between 6 and 10 s, linked to the oceanic wave interactions on the local coast, and a far field source between 2.5 and 5.5 s. The far field source does not necessarily imply a unique deep ocean signature, since the oceanic wave reflections on distant coasts are also associated of high levels of energy in the SMP range, as previously shown. Probability Density Function of PSD for the E-W component as a function of tide (red: high tide, green: low tide)

  2. Inflight source noise of an advanced full-scale single-rotation propeller

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Loeffler, Irvin J.

    1991-01-01

    Flight tests to define the far field tone source at cruise conditions were completed on the full scale SR-7L advanced turboprop which was installed on the left wing of a Gulfstream II aircraft. This program, designated Propfan Test Assessment (PTA), involved aeroacoustic testing of the propeller over a range of test conditions. These measurements defined source levels for input into long distance propagation models to predict en route noise. Inflight data were taken for 7 test cases. The sideline directivities measured by the Learjet showed expected maximum levels near 105 degrees from the propeller upstream axis. However, azimuthal directivities based on the maximum observed sideline tone levels showed highest levels below the aircraft. An investigation of the effect of propeller tip speed showed that the tone level of reduction associated with reductions in propeller tip speed is more significant in the horizontal plane than below the aircraft.

  3. Source impedance, transient response, and noise characterization of the TOPAZ 2 reactors

    SciTech Connect

    Kusnierkiewicz, D.Y.

    1995-01-20

    Electrical measurements have been performed on the TOPAZ 2 V-71 and Ya-21 Reactors, in order to characterize the source impedance as a function of DC operating point and frequency. The response of the reactor to step changes in load current, as well as the frequency content of the electrical noise generated by the reactor have also been measured. These parameters are important to know in order to design power regulation circuitry which maintains a constant load on the reactor during spacecraft operations for any flight application of the TOPAZ 2 reactors. Voltage spikes at the reactor interface induced by load transients must be limited; the power regulation circuitry must have adequate bandwidth to compensate for spacecraft load dynamics. The methods used to make these measurements will be discussed. Results of the measurements on the Ya-21 reactor indicate the source impedance is dominated by a series resistance and inductance. The equivalent DC leakage resistance from the reactor output to structure was also measured. The self generated noise of the reactor is benign; load induced transients will be sufficiently controlled with capacitive filtering and active regulation circuitry external to the reactor/power distribution system. {copyright} 1995 {ital American} {ital Institute} {ital of} {ital Physics}

  4. Identification of Noise Sources During Rocket Engine Test Firings and a Rocket Launch Using a Microphone Phased-Array

    NASA Technical Reports Server (NTRS)

    Panda, Jayanta; Mosher, Robert N.; Porter, Barry J.

    2013-01-01

    A 70 microphone, 10-foot by 10-foot, microphone phased array was built for use in the harsh environment of rocket launches. The array was setup at NASA Wallops launch pad 0A during a static test firing of Orbital Sciences' Antares engines, and again during the first launch of the Antares vehicle. It was placed 400 feet away from the pad, and was hoisted on a scissor lift 40 feet above ground. The data sets provided unprecedented insight into rocket noise sources. The duct exit was found to be the primary source during the static test firing; the large amount of water injected beneath the nozzle exit and inside the plume duct quenched all other sources. The maps of the noise sources during launch were found to be time-dependent. As the engines came to full power and became louder, the primary source switched from the duct inlet to the duct exit. Further elevation of the vehicle caused spilling of the hot plume, resulting in a distributed noise map covering most of the pad. As the entire plume emerged from the duct, and the ondeck water system came to full power, the plume itself became the loudest noise source. These maps of the noise sources provide vital insight for optimization of sound suppression systems for future Antares launches.

  5. Empirical sensitivity kernels of noise correlations with respect to virtual sources

    NASA Astrophysics Data System (ADS)

    Boué, P.; Stehly, L.; Nakata, N.; Beroza, G. C.

    2014-12-01

    Cross-correlation of time-series, or interferometry, applied to the ambient seismic field is an established method to observe the propagation of waves between pairs of sensors without involving transient sources. These reconstructed waves are routinely used to develop high-resolution images of the crust and upper mantle, or in mapping the time-dependent velocity changes associated with tectonic events. Using similar methods, recent work have highlighted more challenging observations, such as higher mode surface wave propagation and body wave reconstruction at various scales of the Earth: from the industrial surveys at the reservoir scale to the global scale. Furthermore, the reconstruction of the correct amplitude information can be used to image the anelastic attenuation of the medium and has led to a new type of ground motion prediction using virtual earthquakes method. The dependability of such amplitude retrieval had been debated and represents a difficult challenge due to uneven source distribution. In this study, we discuss the possibility to use the correlation of ambient noise correlation (similar to C3 method) to map the contribution of different source locations for Rayleigh wave reconstruction between receiver pairs. These maps constructed in terms of traveltime or amplitude perturbations of the Green's function, can be considered as empirical sensitivity kernels with respect to the contribution of each virtual source. We propose for the first time to map these kernels using a dataset of continuous records from a dense array of about 2600 sensors deployed at the local-scale in Long Beach (CA, USA). Finally, these maps are used to analyze the impact of the original ambient noise directivity on the recovered Green's functions and discuss the effects of the velocity lateral heterogeneity within the array. We aim at understanding, and thereby reducing, the bias in ambient field measurements.

  6. High photon flux XUV and soft x-ray sources enabled by high harmonic generation of high power fiber lasers

    NASA Astrophysics Data System (ADS)

    Rothhardt, Jan; Hdrich, Steffen; Krebs, Manuel; Limpert, Jens; Tnnermann, Andreas

    2015-07-01

    This contribution reports on the recent advances in high harmonic generation (HHG) with high power femtosecond fiber lasers at high repetition rates. The capabilities of high power fiber lasers, the challenges of phase matching in the tight-focusing regime and recent experimental results will be discussed. In particular, post compressed pules as short as 30 fs, with ~150 ?J pulse energy at 0.6 MHz repetition rate have been used for efficient HHG into the XUV. Despite the tight focusing phase matching is ensured by providing the target gas with adequately high density. A conversion efficiency in excess of 10-6 at ~30 eV has been achieved in xenon gas. This resulted in more than 100?W of average power (>1013 photons per second), which represents the highest photon flux achieved by any HHG source in this spectral region so far. In addition, further pulse compression yielded few-cycle pulses at high average power that have enabled efficient soft Xray generation in neon and helium. HHG in neon provided more than 3109 photons/s within a 1% bandwidth at 120 eV and helium allowed for HHG up to the water window spectral region beyond 283 eV. These compact sources provide highest photon flux on a table-top and will enable exciting applications such as nanometer-resolution imaging or coincidence spectroscopy in the near future.

  7. Combustion noise

    NASA Technical Reports Server (NTRS)

    Strahle, W. C.

    1977-01-01

    A review of the subject of combustion generated noise is presented. Combustion noise is an important noise source in industrial furnaces and process heaters, turbopropulsion and gas turbine systems, flaring operations, Diesel engines, and rocket engines. The state-of-the-art in combustion noise importance, understanding, prediction and scaling is presented for these systems. The fundamentals and available theories of combustion noise are given. Controversies in the field are discussed and recommendations for future research are made.

  8. Extraction of the local phase velocity and the group velocity from surface noise source in microseismic monitoring.

    NASA Astrophysics Data System (ADS)

    Chmiel, Malgorzata; Roux, Philippe; Bardainne, Thomas

    2015-04-01

    The aim of this work is to demonstrate the extraction of the local phase velocity and the group velocity from surface noise source in microseismic monitoring. One of the biggest challenges in microseismic monitoring is surface seismic noise. Microseismic surface studies are often contaminated with instrumental and ambient seismic noise, originating from both natural (wind, rain) and anthropogenic sources (injection, pumps, infrastructure, traffic). The two primary ways to attenuate the undesired surface noise sources are via processing and acquisition strategies. At the acquisition stage, one solution is through the use of patch array. One patch is a group of 48 vertical sensors densely distributed on the area of~150m*150m, and one trace is the array of 12 vertical geophones. In the present work, 44 patches were sparsely distributed on a 41 square kilometer area. Benefitting from continuous recording, we used Matched Field Processing (MFP) methods to extract local phase and group velocities over the whole area. The aim of this technique is to detect and locate uncoherent noise sources while using array-processing methods. The method is based on the comparison between a recorded wave field per patch (the data vector) and a theoretical (or modeled) wave-field (the replica vector) in the frequency domain. The replica vector is a Green's function at a given frequency, which depends on the following parameters: position (x,y) in 2D-grid and a phase velocity. The noise source location is obtained by matching the data vector with the replica vector using a linear "low-resolution" algorithm or a nonlinear "high-resolution" adaptive processor. These algorithms are defined for each point in the 2D - grid and for each phase velocity. The phase velocity per patch is optimal if it maximizes the processor output. As a result, an ambiguity surface is produced which shows the probability of presence of primary noise sources per patch. The combination of all the maps per patch reveals the position of the strongest surface noise source. When properly identified and localized, the surface noise source provides information about a group velocity between each patch in the propagation medium. To do so, the data are cross-correlated between patches and a move-out is applied to cross-correlation functions using the phase velocity per patch. The remaining time shift between the envelopes of the cross-correlation functions gives a value of the group velocities between the patches. The technique can be generalized to every pair of patches depending on the number of surface noise source identified at the surface.

  9. AIRUSE-LIFE+: a harmonized PM speciation and source apportionment in 5 Southern European cities

    NASA Astrophysics Data System (ADS)

    Amato, F.; Alastuey, A.; Karanasiou, A.; Lucarelli, F.; Nava, S.; Calzolai, G.; Severi, M.; Becagli, S.; Gianelle, V. L.; Colombi, C.; Alves, C.; Custódio, D.; Nunes, T.; Cerqueira, M.; Pio, C.; Eleftheriadis, K.; Diapouli, E.; Reche, C.; Minguillón, M. C.; Manousakas, M.; Maggos, T.; Vratolis, S.; Harrison, R. M.; Querol, X.

    2015-09-01

    The AIRUSE-LIFE+ project aims at characterising similarities and heterogeneities in PM sources and contributions in urban areas from the Southern Europe. Once the main PMx sources are identified, AIRUSE aims at developing and testing the efficiency of specific and non-specific measures to improve urban air quality. This article reports the results of the source apportionment of PM10 and PM2.5 conducted at three urban background sites (Barcelona, Florence and Milan, BCN-UB, FI-UB, MLN-UB) one sub-urban background site (Athens, ATH-SUB) and one traffic site (Porto, POR-TR). After collecting 1047 PM10 and 1116 PM2.5 24 h samples from January 2013 to February 2014 simultaneously at the 5 cities, these were analysed for the contents of OC, EC, anions, cations, major and trace elements and levoglucosan. The USEPA PMF5 receptor model was applied to these datasets in a harmonised way for each city. The sum of vehicle exhaust and non-exhaust contributes within 3.9-10.8 μg m-3 (16-32 %) to PM10 and 2.3-9.4 μg m-3 (15-36 %) to PM2.5, although a fraction of secondary nitrate is also traffic-related but could not be estimated. Important contributions arise from secondary particles (nitrate, sulphate and organics) in PM2.5 (37-82 %) but also in PM10 (40-71 %) mostly at background sites, revealing the importance of abating gaseous precursors in designing air quality plans. Biomass burning (BB) contributions vary widely, from 14-24 % of PM10 in POR-TR, MLN-UB and FI-UB, 7 % in ATH-SUB to < 2 % in BCN-UB. In PM2.5, BB is the second most important source in MLN-UB (21 %) and in POR-TR (18 %), the third one in FI-UB (21 %) and ATH-SUB (11 %), but again negligible (< 2 %) in BCN-UB. This large variability among cities is mostly due to the degree of penetration of biomass for residential heating. In Barcelona natural gas is very well supplied across the city and used as fuel in 96 % of homes, while, in other cities, PM levels increase on an annual basis by 1-9 μg m-3 due to this source. Other significant sources are: - Local dust, 7-12 % of PM10 at SUB and UB sites and 19 % at the TR site, revealing a contribution from road dust resuspension. In PM2.5 percentages decrease to 2-7 % at SUB-UB sites and 15 % at the TR site. - Industries, mainly metallurgy, contributing 4-11 % of PM10 (5-12 % in PM2.5), but only at BCN-UB, POR-TR and MLN-UB. No clear impact of industrial emissions was found in FI-UB and ATH-SUB. - Natural contributions from sea salt (13 % of PM10 in POR-TR but only 2-7 % in the other cities) and Saharan dust (14 % in ATH-SUB), but less than 4 % in the other cities. During high pollution days, the largest specific source (i.e. excluding SSO and SNI) of PM10 and PM2.5 are: VEX+NEX in BCN-UB (27-22 %) and POR-TR (31-33 %), BB in FI-UB (30-33 %) and MLN-UB (35-26 %) and Saharan dust in ATH-SUB (52-45 %) During those days, there are also quite important Industrial contributions in BCN-UB (17-18 %) and Local dust in POR-TR (28-20 %).

  10. Two-Microphone Spatial Filtering Improves Speech Reception for Cochlear-Implant Users in Reverberant Conditions With Multiple Noise Sources

    PubMed Central

    2014-01-01

    This study evaluates a spatial-filtering algorithm as a method to improve speech reception for cochlear-implant (CI) users in reverberant environments with multiple noise sources. The algorithm was designed to filter sounds using phase differences between two microphones situated 1?cm apart in a behind-the-ear hearing-aid capsule. Speech reception thresholds (SRTs) were measured using a Coordinate Response Measure for six CI users in 27 listening conditions including each combination of reverberation level (T60?=?0, 270, and 540?ms), number of noise sources (1, 4, and 11), and signal-processing algorithm (omnidirectional response, dipole-directional response, and spatial-filtering algorithm). Noise sources were time-reversed speech segments randomly drawn from the Institute of Electrical and Electronics Engineers sentence recordings. Target speech and noise sources were processed using a room simulation method allowing precise control over reverberation times and sound-source locations. The spatial-filtering algorithm was found to provide improvements in SRTs on the order of 6.5 to 11.0?dB across listening conditions compared with the omnidirectional response. This result indicates that such phase-based spatial filtering can improve speech reception for CI users even in highly reverberant conditions with multiple noise sources. PMID:25330772

  11. Two-microphone spatial filtering improves speech reception for cochlear-implant users in reverberant conditions with multiple noise sources.

    PubMed

    Goldsworthy, Raymond L

    2014-01-01

    This study evaluates a spatial-filtering algorithm as a method to improve speech reception for cochlear-implant (CI) users in reverberant environments with multiple noise sources. The algorithm was designed to filter sounds using phase differences between two microphones situated 1 cm apart in a behind-the-ear hearing-aid capsule. Speech reception thresholds (SRTs) were measured using a Coordinate Response Measure for six CI users in 27 listening conditions including each combination of reverberation level (T60=0, 270, and 540 ms), number of noise sources (1, 4, and 11), and signal-processing algorithm (omnidirectional response, dipole-directional response, and spatial-filtering algorithm). Noise sources were time-reversed speech segments randomly drawn from the Institute of Electrical and Electronics Engineers sentence recordings. Target speech and noise sources were processed using a room simulation method allowing precise control over reverberation times and sound-source locations. The spatial-filtering algorithm was found to provide improvements in SRTs on the order of 6.5 to 11.0 dB across listening conditions compared with the omnidirectional response. This result indicates that such phase-based spatial filtering can improve speech reception for CI users even in highly reverberant conditions with multiple noise sources. PMID:25330772

  12. Effects of noise from non-traffic-related ambient sources on sleep: review of the literature of 1990-2010.

    PubMed

    Omlin, Sarah; Bauer, Georg F; Brink, Mark

    2011-01-01

    This article reviews the literature about the effects of specific non-traffic-related ambient noise sources on sleep that appeared in the last two decades. Although everybody is faced with noise of non-traffic and non-industry origin (e.g. sounds made by neighbors, talk, laughter, music, slamming doors, structural equipment, ventilation, heat pumps, noise from animals, barking dogs, outdoor events etc.), little scientific knowledge exists about its effects on sleep. The findings of the present extensive literature search and review are as follows: Only a small number of surveys, laboratory and field studies about mainly neighborhood, leisure and animal noise have been carried out. Most of them indicate that ambient noise has some effect on human sleep. However, a quantitative meta-analysis and comparison is not possible due to the small number of studies available and at times large differences in quality. PMID:21768734

  13. Proposed second harmonic acceleration system for the intense pulsed neutron source rapid cycling synchrotron

    SciTech Connect

    Norem, J.; Brandeberry, F.; Rauchas, A.

    1983-01-01

    The Rapid Cycling Synchrotron (RCS) of the Intense Pulsed Neutron Source (IPNS) operating at Argonne National Laboratory is presently producing intensities of 2 to 2.5 x 10/sup 12/ protons per pulse (ppp) with the addition of a new ion source. This intensity is close to the space charge limit of the machine, estimated at approx.3 x 10/sup 12/ ppp, depending somewhat on the available aperture. With the present good performance in mind, accelerator improvements are being directed at: (1) increasing beam intensities for neutron science; (2) lowering acceleration losses to minimize activation; and (3) gaining better control of the beam so that losses can be made to occur when and where they can be most easily controlled. On the basis of preliminary measurements, we are now proposing a third cavity for the RF systems which would provide control of the longitudinal bunch shape during the cycle which would permit raising the effective space charge limit of the accelerator and reducing losses.

  14. The differential Howland current source with high signal to noise ratio for bioimpedance measurement system

    SciTech Connect

    Liu, Jinzhen; Li, Gang; Lin, Ling; Qiao, Xiaoyan; Wang, Mengjun; Zhang, Weibo

    2014-05-15

    The stability and signal to noise ratio (SNR) of the current source circuit are the important factors contributing to enhance the accuracy and sensitivity in bioimpedance measurement system. In this paper we propose a new differential Howland topology current source and evaluate its output characters by simulation and actual measurement. The results include (1) the output current and impedance in high frequencies are stabilized after compensation methods. And the stability of output current in the differential current source circuit (DCSC) is 0.2%. (2) The output impedance of two current circuits below the frequency of 200 KHz is above 1 MΩ, and below 1 MHz the output impedance can arrive to 200 KΩ. Then in total the output impedance of the DCSC is higher than that of the Howland current source circuit (HCSC). (3) The SNR of the DCSC are 85.64 dB and 65 dB in the simulation and actual measurement with 10 KHz, which illustrates that the DCSC effectively eliminates the common mode interference. (4) The maximum load in the DCSC is twice as much as that of the HCSC. Lastly a two-dimensional phantom electrical impedance tomography is well reconstructed with the proposed HCSC. Therefore, the measured performance shows that the DCSC can significantly improve the output impedance, the stability, the maximum load, and the SNR of the measurement system.

  15. Seismic noise sources inferred from dense onshore and offshore deployments in Portugal

    NASA Astrophysics Data System (ADS)

    Corela, Carlos; Custdio, Susana; Silveira, Graa; Matias, Luis

    2014-05-01

    Two dense deployments of broadband seismic stations covered onshore and offshore Portugal in recent years. Project NEAREST deployed a total of 24 ocean bottom seismometers (OBSs) offshore southwest Portugal, in the Gulf of Cadiz, for 11 months (2007-2008). Project WILAS collected data from a total of 52 stations, both permanent and temporary, in mainland Portugal for 2 years (2010-2012). Both deployments have inter-station spacings on the order of 50 km. Although the two deployments did not overlap on time, both contain clear oceanic and atmospheric signatures. We use the two datasets to characterize the seismic noise recorded in Portugal and to infer information on their sources. OBS data shows very clear correlations with local atmospheric and oceanic conditions, as well as with distant oceanic disturbances. Noise in the band 3-4 sec is strongly correlated with atmospheric disturbances, particularly with pressure drops. The primary and secondary microseisms are correlated with both local and distant storms. Some north Atlantic storms end at the Portuguese coast, causing the highest levels of microseismic noise recorded on our OBSs. We will present the signature on seismic records of one of these storms as it evolves from its origin to the Portuguese coast. Land data shows a strong correlation with oceanic conditions, particularly in the microseismic passband. During particularly quiet periods (i.e. northern summer) a strong atmospheric signal can be seen in the long periods, including a clear bi-diurnal periodicity. This work is funded by FCT -- Portuguese Foundation for Science and Technology (PTDC/CTE-GIX/116819/2010; PTDC/GEO-FIQ/3522/2012).

  16. Comparison of Methods for Identifying Noise Sources in Far-Field Acoustic Signals

    NASA Astrophysics Data System (ADS)

    Tenney, Andrew; Lewalle, Jacques

    2013-11-01

    Three different methods of extracting intermittent wave packets from unstructured background within complex time series signals were analyzed and compared. The algorithms are denoted ``cross correlation,'' ``denoising,'' and ``TFLE (Time-Frequency-Lag event)'' methods respectively. All three methods utilize Mexican Hat or Morlet wavelets for the transformation of time domain signals into time-frequency domain signals. Within the denoising and cross correlation algorithms, events are identified through comparison of high energy excerpts of each signal captured by individual far-field microphones, while the TFLE algorithm simply defines events by their contributions to positive correlation values. The goal of this analysis is to quantify the advantages and disadvantages of each of these methods. The results lend themselves to determining the validity of these methods as noise source identification algorithms to be used in jet noise characterization. This work is supported in part by Spectral Energies LLC, under an SBIR grant from AFRL; and by the Department of Mechanical and Aerospace Engineering REU Program at SU.

  17. Ambient noise as the new source for urban engineering seismology and earthquake engineering: a case study from Beijing metropolitan area

    NASA Astrophysics Data System (ADS)

    Liu, Lanbo; Chen, Qi-fu; Wang, Weijun; Rohrbach, Eric

    2014-02-01

    In highly populated urban centers, traditional seismic survey sources can no longer be properly applied due to restrictions in modern civilian life styles. The ambient vibration noise, including both microseisms and microtremor, though are generally weak but available anywhere and anytime, can be an ideal supplementary source for conducting seismic surveys for engineering seismology and earthquake engineering. This is fundamentally supported by advanced digital signal processing techniques for effectively extracting the useful information out from the noise. Thus, it can be essentially regarded as a passive seismic method. In this paper we first make a brief survey of the ambient vibration noise, followed by a quick summary of digital signal processing for passive seismic surveys. Then the applications of ambient noise in engineering seismology and earthquake engineering for urban settings are illustrated with examples from Beijing metropolitan area. For engineering seismology the example is the assessment of site effect in a large area via microtremor observations. For earthquake engineering the example is for structural characterization of a typical reinforced concrete high-rise building using background vibration noise. By showing these examples we argue that the ambient noise can be treated as a new source that is economical, practical, and particularly valuable to engineering seismology and earthquake engineering projects for seismic hazard mitigation in urban areas.

  18. A miniaturized electron source based on dielectric laser accelerator operation at higher spatial harmonics and a nanotip photoemitter

    NASA Astrophysics Data System (ADS)

    McNeur, Joshua; Kozak, Martin; Ehberger, Dominik; Schönenberger, Norbert; Tafel, Alexander; Li, Ang; Hommelhoff, Peter

    2016-02-01

    Here we propose a miniaturized electron source driven by recent experimental results of laser-triggered electron emission from tungsten nanotips and dielectric laser acceleration of sub relativistic electrons with velocities as low as 5.7× {10}7 {{m}} {{{s}}}-1 or energies as low as 9.6 keV, less than 20% of the speed of light. The recently observed laser-triggered emission of coherent low-emittance electron pulses from tungsten nanotips naturally lends itself towards incorporation with subrelativistic dielectric laser accelerators (DLAs). These structures have previously been shown to accelerate 28 keV electrons and here we report on the utilization of the 4th and 5th spatial harmonics of near fields in the single grating DLA to achieve acceleration of electrons with kinetic energies of 15.2 and 9.6 keV. We then propose the combination of needle tip emitters with subrelativistic accelerators to form a mm-scale device capable of producing electrons with arbitrary energies.

  19. Reduction of beam current noise in the FNAL magnetron ion source

    SciTech Connect

    Bollinger, D. S. Karns, P. R. Tan, C. Y.

    2015-04-08

    The new FNAL Injector Line with a circular dimple magnetron ion source has been operational since December of 2012. Since the new injector came on line there have been variations in the H- beam current flattop observed near the downstream end of the Linac. Several different cathode geometries including a hollow cathode suggested by Dudnikov [1] were tried. Previous studies also showed that different mixtures of hydrogen and nitrogen had an effect on beam current noise [2]. We expanded on those studies by trying mixtures ranging from (0.25% nitrogen, 99.75% hydrogen) to (3% nitrogen, 97% hydrogen). The results of these studies in our test stand will be presented in this paper.

  20. Experimental study of source of background noise in muon radiography using emulsion film detectors

    NASA Astrophysics Data System (ADS)

    Nishiyama, R.; Miyamoto, S.; Naganawa, N.

    2014-04-01

    The aim of this study is to ascertain and confirm the source of background noise in cosmic-ray muon radiography (muography) using emulsion film detectors. For this, we build two types of emulsion detectors with different momentum thresholds and perform test measurements of an actual geoscientific target. This experiment reveals that contamination of nonsignal particles with momenta of less than 2 GeV c-1 cause significant systematic errors for the density estimation of muography. Utilizing the results of precedent studies, we conclude that the origin of these low-momentum particles is either electromagnetic components of air showers or cosmic-ray muons scattered in topographic material. In this paper, we analyze the emulsion data in detail, including the film-inefficiency compensation and momentum selection by applying an upper bound to the chi-square distribution for the data.

  1. Exploiting continuous scanning laser Doppler vibrometry (CSLDV) in time domain correlation methods for noise source identification

    NASA Astrophysics Data System (ADS)

    Chiariotti, Paolo; Martarelli, Milena; Revel, Gian Marco

    2014-07-01

    This paper proposes the use of continuous scanning laser Doppler vibrometry (CSLDV) in time domain correlation techniques that aim at characterizing the structure-borne contributions of the noise emission of a mechanical system. The time domain correlation technique presented in this paper is based on the use of FIR (finite impulse response) filters obtained from the vibro-acoustic transfer matrix when vibration data are collected by laser Doppler vibrometry (LDV) exploited in continuous scan mode (CSLDV). The advantages, especially in terms of source decorrelation capabilities, related to the use of CSLDV for such purpose, with respect to standard discrete scan (SLDV), are discussed throughout the paper. To validate this approach, vibro-acoustic measurements were performed on a planetary gear motor for home appliances. The analysis of results is also supported by a simulation.

  2. Reduction of beam current noise in the FNAL magnetron ion source

    NASA Astrophysics Data System (ADS)

    Bollinger, D. S.; Karns, P. R.; Tan, C. Y.

    2015-04-01

    The new FNAL Injector Line with a circular dimple magnetron ion source has been operational since December of 2012. Since the new injector came on line there have been variations in the H- beam current flattop observed near the downstream end of the Linac. Several different cathode geometries including a hollow cathode suggested by Dudnikov [1] were tried. Previous studies also showed that different mixtures of hydrogen and nitrogen had an effect on beam current noise [2]. We expanded on those studies by trying mixtures ranging from (0.25% nitrogen, 99.75% hydrogen) to (3% nitrogen, 97% hydrogen). The results of these studies in our test stand will be presented in this paper.

  3. 7.9 Wenchuan Earthquake fault zone revealed by ambient noise and ACROSS active source data

    NASA Astrophysics Data System (ADS)

    Chen, Haichao; Ge, Hongkui; Niu, Fenglin

    2014-10-01

    We continuously monitor the long-term seismic velocity variation of one of the major ruptured faults of the devastating 2008 M w 7.9 Wenchuan earthquake in China from July 2009 to January 2012, jointly using accurately controlled routinely operated signal system active source and seismic noise-based monitoring technique. Our measurements show that the temporal velocity change is not homogeneous and highly localized in the damaged fault zone and the adjacent areas. Velocity variations from the active and passive methods are quite consistent, which both are characterized by 0.2 % seasonal variation, with peak and trough at winter and summer, respectively. The periodic velocity variation within fault zone exhibits remarkably positive correlation with barometric pressure with stress sensitivity in the order of 10-6 Pa-1, suggesting that the plausible mechanism might be the crack density variation of the shallow subsurface medium of the damaged fault zone in response to the cyclic barometric pressure loading.

  4. Comparison of the noise and jitter characteristics of harmonic injection-locked and mode-locked erbium-doped fiber lasers

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Chung; Chang, Yung-Cheng; Lin, Gong-Ru

    2005-01-01

    We compare the noise characteristics of optical pulses generated from an actively mode-locked (AML) erbium-doped fiber laser (EDFL) with a semiconductor optical amplifier and an injection-locked EDFL with a gain-switched Fabry-Perot laser diode (FPLD). The mode-locked EDFL pulse exhibits a phase noise of -110.1 dBc/Hz (at 1 MHz offset frequencies from the carrier), the timing jitter of 1.16 ps, and a supermode noise suppression ratio of 47.5 dB. The injection-locked EDFL pulse exhibits a phase noise of -121.1 dBc/Hz (at 1 MHz offset frequencies from the carrier), a timing jitter of 0.31 ps, and a supermode noise suppression ratio of 51 dB. It is demonstrated that the injection-locked EDFL with a gain-switched FPLD has lower noise characteristics than the AML-EDFL.

  5. Analysis of the effect of heated jet flow on the far field radiation from a noise source

    NASA Technical Reports Server (NTRS)

    Gerhold, C.

    1982-01-01

    The influence on jet noise radiation of the interaction with the heated moving flow of a parallel twin jet is investigated. An analytical model of jet shielding is developed which consists of the sound field emitted from a stationary, discrete frequency point source impinging on a cylinder of locally parallel flow. The zones in which the various shielding mechanisms dominate are analyzed using the model. The effects of parameters such as jet temperature and flow speed are examined. It is found that the results obtained using the model are comparable to the experimental results for a point noise source impinging on a subsonic isothermal air jet.

  6. Shipping noise in whale habitat: characteristics, sources, budget, and impact on belugas in Saguenay-St. Lawrence Marine Park hub.

    PubMed

    Gervaise, Cdric; Simard, Yvan; Roy, Nathalie; Kinda, Bazile; Mnard, Nadia

    2012-07-01

    A continuous car ferry line crossing the Saguenay Fjord mouth and traffic from the local whale-watching fleet introduce high levels of shipping noise in the heart of the Saguenay-St. Lawrence Marine Park. To characterize this noise and examine its potential impact on belugas, a 4-hydrophone array was deployed in the area and continuously recorded for five weeks in May-June 2009. The source levels of the different vessel types showed little dependence on vessel size or speed increase. Their spectral range covered 33 dB. Lowest noise levels occurred at night, when ferry crossing pace was reduced, and daytime noise peaked during whale-watching tour departures and arrivals. Natural ambient noise prevailed 9.4% of the time. Ferry traffic added 30-35 dB to ambient levels above 1 kHz during crossings, which contributed 8 to 14 dB to hourly averages. The whale-watching fleet added up to 5.6 dB during peak hours. Assuming no behavioral or auditory compensation, half of the time, beluga potential communication range was reduced to less than ~30% of its expected value under natural noise conditions, and to less than ~15% for one quarter of the time, with little dependence on call frequency. The echolocation band for this population of belugas was also affected by the shipping noise. PMID:22779457

  7. Noise characteristic design of CMOS source follower and voltage amplifier for active semiconductor micro-electrodes for neural signal recording.

    PubMed

    Kim, K H; Kim, S J

    2000-07-01

    A noise performance design method for the pre-amplifiers of an active neural probe is given. The on-chip circuitry of the active neural probe consists of CMOS devices that show high-/low-frequency noise, so that the device noise can become dominant. Analysis of the signal-to-device-noise ratio (SDNR) for the CMOS source follower buffer and two-stage differential voltage amplifier is given. Closed-form expressions for the output noise power are derived and exploited to tailor the parameters that are controllable during circuit design. The output SDNR is calculated considering the real extracellular action potentials, the electrode-electrolyte interface and the noise spectrum of CMOS devices from typical foundries. It is shown that the output device noise power can be much higher than the output signal power if the devices at the input stage of the pre-amplifier are made as small as given fabrication technology permits. Quantitative information of the circuit parameters to achieve an SDNR higher than 5 for neural spikes with 60 microV amplitude are provided for both pre-amplifier types. PMID:10984947

  8. Further studies of static to flight effects on fan tone noise using inlet distortion control for source identification

    NASA Technical Reports Server (NTRS)

    Hodder, B. K.

    1976-01-01

    Current experimental investigations have linked static inflow distortion phenomena such as the ground vortex, atmospheric turbulence, and teststand structure interference to the generation of fan tone noise at the blade passing frequency. Since such distortions do not exist in flight, it is important to remove them from the static test environment and thereby improve the static-to-flight tone-noise correlation. In the course of providing evidence for this position, a recent investigation used a distortion control inlet with a modern day turbofan engine to assess atmospheric turbulence effects. Although the initial results were encouraging, they were incomplete. The present investigation continues this work and shows more completely the effect of atmospheric turbulence on tone-noise generation. Further, use is made of the distortion control inlet to identify other competing tone-noise sources in the test engine such as a rotor-core stator interaction which was confirmed by engine modifications.

  9. Potential Uses of Anthropogenic Noise as a Source of Information in Animal Sensory and Communication Systems.

    PubMed

    Stansbury, Amanda; Deecke, Volker; Gtz, Thomas; Janik, Vincent M

    2016-01-01

    Although current research on the impact of anthropogenic noise has focused on the detrimental effects, there is a range of ways by which animals could benefit from increased noise levels. Here we discuss two potential uses of anthropogenic noise. First, local variations in the ambient-noise field could be used to perceive objects and navigate within an environment. Second, introduced sound cues could be used as a signal for prey detection or orientation and navigation. Although the disadvantages of noise pollution will likely outweigh any positive effects, it is important to acknowledge that such changes may benefit some species. PMID:26611074

  10. Ground motion in the presence of complex topography: Earthquake and ambient noise sources

    USGS Publications Warehouse

    Hartzell, Stephen; Meremonte, Mark; Ramírez-Guzmán, Leonardo; McNamara, Daniel

    2014-01-01

    To study the influence of topography on ground motion, eight seismic recorders were deployed for a period of one year over Poverty Ridge on the east side of the San Francisco Bay Area, California. This location is desirable because of its proximity to local earthquake sources and the significant topographic relief of the array (439 m). Topographic amplification is evaluated as a function of frequency using a variety of methods, including reference‐site‐based spectral ratios and single‐station horizontal‐to‐vertical spectral ratios using both shear waves from earthquakes and ambient noise. Field observations are compared with the predicted ground motion from an accurate digital model of the topography and a 3D local velocity model. Amplification factors from the theoretical calculations are consistent with observations. The fundamental resonance of the ridge is prominently observed in the spectra of data and synthetics; however, higher‐frequency peaks are also seen primarily for sources in line with the major axis of the ridge, perhaps indicating higher resonant modes. Excitations of lateral ribs off of the main ridge are also seen at frequencies consistent with their dimensions. The favored directions of resonance are shown to be transverse to the major axes of the topographic features.

  11. Analysis of approximations in the californium 252-source-driven noise analysis method

    SciTech Connect

    Stolle, A.M.; Mendelson, M.R. )

    1992-01-01

    The{sup 252}Cf-source-driven noise analysis method is an experimental technique developed at Oak Ridge National Laboratory (ORNL) for determining the subcritical multiplication factor k{sub eff} in various multiplying media. The method has been reported to be successful at measuring the reactivities of an unreflected cylindrical tank containing aqueous uranyl nitrate of varying solution heights to a k{sub eff} as low as 0.3. However, the analytical formulation applied by ORNL to the interpretation of the experiment is derived from an incorrect application of the Langevin method and differs from other formulations that have recently appeared in the literature. In a recent independent analysis of these solution tank experiments, the theoretical expression used to evaluate k{sub eff}, a formulation based on a set of approximations applied to the complete, transport-level interpretation of the method, did not lead to good agreement with the Monte Carlo calculation of k{sub eff} at low values of the multiplication factor. In fact, the analytical formulation applied by ORNL appears to be in close agreement with Monte Carlo. In this paper, an analysis of the approximations used to obtain this reduced theoretical expression for k{sub eff} was performed to better understand the source of discrepancy between these results and Monte Carlo calculations and to evaluate the limitations of the method for determining subcritical reactivity.

  12. Hybrid Wing Body Shielding Studies Using an Ultrasonic Configurable Fan Artificial Noise Source Generating Simple Modes

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel, L.; Brown, Clifford, A.; Walker, Bruce, E.

    2012-01-01

    An Ultrasonic Configurable Fan Artificial Noise Source (UCFANS) was designed, built, and tested in support of the Langley Research Center s 14- by 22-Foot wind tunnel test of the Hybrid Wing Body (HWB) full three-dimensional 5.8 percent scale model. The UCFANS is a 5.8 percent rapid prototype scale model of a high-bypass turbofan engine that can generate the tonal signature of candidate engines using artificial sources (no flow). The purpose of the test was to provide an estimate of the acoustic shielding benefits possible from mounting the engine on the upper surface of an HWB aircraft and to provide a database for shielding code validation. A range of frequencies, and a parametric study of modes were generated from exhaust and inlet nacelle configurations. Radiated acoustic data were acquired from a traversing linear array of 13 microphones, spanning 36 in. Two planes perpendicular to the axis of the nacelle (in its 0 orientation) and three planes parallel were acquired from the array sweep. In each plane the linear array traversed five sweeps, for a total span of 160 in. acquired. The resolution of the sweep is variable, so that points closer to the model are taken at a higher resolution. Contour plots of Sound Pressure Level, and integrated Power Levels are presented in this paper; as well as the in-duct modal structure.

  13. Noise emission of civil and military aero-engines. Sources of generation and measures for attenuation

    NASA Astrophysics Data System (ADS)

    Grieb, H.; Heinig, K.

    1986-09-01

    It is shown that noise reduction on high bypass ratio turbofans for civil airliners is well established. The noise levels achieved meet the internationally agreed regulations (FAR 36). The same holds true for large military transport aircraft. Helicopter noise is caused essentially by the main and tail rotors. Noise reduction on afterburner and dry engines for combat and strike aircraft, which represent the major noise annoyance to the public, is very difficult because: high specific thrust is mandatory for aircraft performance and effectiveness; jet noise with and without afterburning is predominant; and the design of the reheat section and final (variable) nozzle in practice precludes the application of known concepts for jet noise attenuation in dry and reheated operation.

  14. Noise sources and improved performance of a mid-wave infrared uncooled silicon carbide optical photodetector.

    PubMed

    Lim, Geunsik; Manzur, Tariq; Kar, Aravinda

    2014-12-20

    An uncooled photon detector is fabricated for the mid-wave infrared (MWIR) wavelength of 4.21 μm by doping an n-type 4H-SiC substrate with gallium using a laser doping technique. The dopant creates a p-type energy level of 0.3 eV, which is the energy of a photon corresponding to the MWIR wavelength 4.21 μm. This energy level was confirmed by optical absorption spectroscopy. The detection mechanism involves photoexcitation of carriers by the photons of this wavelength absorbed in the semiconductor. The resulting changes in the carrier densities at different energy levels modify the refractive index and, therefore, the reflectance of the semiconductor. This change in the reflectance constitutes the optical response of the detector, which can be probed remotely with a laser beam such as a He-Ne laser and the power of the reflected probe beam can be measured with a conventional laser power meter. The noise mechanisms in the probe laser, silicon carbide MWIR detector, and laser power meter affect the performance of the detector in regards to aspects such as the responsivity, noise equivalent temperature difference (NETD), and detectivity. For the MWIR wavelengths of 4.21 and 4.63 μm, the experimental detectivity of the optical photodetector of this study was found to be 1.07×10(10)  cm·Hz(1/2)/W, while the theoretical value was 1.11×10(10)  cm·Hz(1/2)/W. The values of NETD are 404 and 15.5 mK based on experimental data for an MWIR radiation source with a temperature of 25°C and theoretical calculations, respectively. PMID:25608189

  15. Characterization of noise sources for two generations of computed radiography systems using powder and crystalline photostimulable phosphors

    SciTech Connect

    Mackenzie, Alistair; Honey, Ian D.

    2007-08-15

    The performances of two generations of computed radiography (CR) were tested and compared in terms of resolution and noise characteristics. The main aim was to characterize and quantify the noise sources in the images. The systems tested were (1) Agfa CR 25.0, a flying spot reader with powder phosphor image plates (MD 40.0); and (2) the Agfa DX-S, a line-scanning CR reader with needle crystal phosphor image plates (HD 5.0). For both systems, the standard metrics of presampled modulation transfer function (MTF), normalized noise power spectra (NNPS) and detective quantum efficiency (DQE) were measured using standard radiation quality RQA5 as defined by the International Electrotechnical Commission. The various noise sources contributing to the NNPS were separated by using knowledge of their relationship with air kerma, MTF, absorption efficiency and antialiasing filters. The DX-S MTF was superior compared with the CR 25.0. The maximum difference in MTF between the DX-S scan and CR 25.0 subscan directions was 0.13 at 1.3 mm{sup -1}. For a nominal detector air kerma of 4 {mu}Gy, the peak DQE of the DX-S was 43({+-}3)%, which was over double that of the CR 25.0 of 18({+-}2)%. The additive electronic noise was negligible on the CR 25.0 but calculated to be constant 3.4x10{sup -7} ({+-}0.4x10{sup -7}) mm{sup 2} at 3.9 {mu}Gy on the DX-S. The DX-S has improved image quality compared with a traditional flying spot reader. The separation of the noise sources indicates that the improvements in DQE of the DX-S are due not only to the higher quantum, efficiency and MTF, but also the lower structure, secondary quantum, and excess noise.

  16. Characterization of noise sources for two generations of computed radiography systems using powder and crystalline photostimulable phosphors.

    PubMed

    Mackenzie, Alistair; Honey, Ian D

    2007-08-01

    The performances of two generations of computed radiography (CR) were tested and compared in terms of resolution and noise characteristics. The main aim was to characterize and quantify the noise sources in the images. The systems tested were (1) Agfa CR 25.0, a flying spot reader with powder phosphor image plates (MD 40.0); and (2) the Agfa DX-S, a line-scanning CR reader with needle crystal phosphor image plates (HD 5.0). For both systems, the standard metrics of presampled modulation transfer function (MTF), normalized noise power spectra (NNPS) and detective quantum efficiency (DQE) were measured using standard radiation quality RQA5 as defined by the International Electrotechnical Commission. The various noise sources contributing to the NNPS were separated by using knowledge of their relationship with air kerma, MTF, absorption efficiency and antialiasing filters. The DX-S MTF was superior compared with the CR 25.0. The maximum difference in MTF between the DX-S scan and CR 25.0 subscan directions was 0.13 at 1.3 mm(-1). For a nominal detector air kerma of 4 microGy, the peak DQE of the DX-S was 43 (+/-3)%, which was over double that of the CR 25.0 of 18 (+/-2)%. The additive electronic noise was negligible on the CR 25.0 but calculated to be constant 3.4 x 10(-7) (+/-0.4 x 10(-7)) mm2 at 3.9 microGy on the DX-S. The DX-S has improved image quality compared with a traditional flying spot reader. The separation of the noise sources indicates that the improvements in DQE of the DX-S are due not only to the higher quantum, efficiency and MTF, but also the lower structure, secondary quantum, and excess noise. PMID:17879798

  17. Extraction of small boat harmonic signatures from passive sonar.

    PubMed

    Ogden, George L; Zurk, Lisa M; Jones, Mark E; Peterson, Mary E

    2011-06-01

    This paper investigates the extraction of acoustic signatures from small boats using a passive sonar system. Noise radiated from a small boats consists of broadband noise and harmonically related tones that correspond to engine and propeller specifications. A signal processing method to automatically extract the harmonic structure of noise radiated from small boats is developed. The Harmonic Extraction and Analysis Tool (HEAT) estimates the instantaneous fundamental frequency of the harmonic tones, refines the fundamental frequency estimate using a Kalman filter, and automatically extracts the amplitudes of the harmonic tonals to generate a harmonic signature for the boat. Results are presented that show the HEAT algorithms ability to extract these signatures. PMID:21682400

  18. Sources, paths, and concepts for reduction of noise in the test section of the NASA Langley 4x7m wind tunnel

    NASA Technical Reports Server (NTRS)

    Hayden, R. E.; Wilby, J. F.

    1984-01-01

    NASA is investigating the feasibility of modifying the 4x7m Wind Tunnel at the Langley Research Center to make it suitable for a variety of aeroacoustic testing applications, most notably model helicopter rotors. The amount of noise reduction required to meet NASA's goal for test section background noise was determined, the predominant sources and paths causing the background noise were quantified, and trade-off studies between schemes to reduce fan noise at the source and those to attenuate the sound generated in the circuit between the sources and the test section were carried out. An extensive data base is also presented on circuit sources and paths.

  19. Prediction of nonlinear acoustic propagation effects for high-intensity aerospace noise sources in the natural far-field environment

    NASA Astrophysics Data System (ADS)

    Lundberg, Wayne Randolph

    A semi-empirical nonlinear aeroacoustic propagation theory was developed for the prediction of high-intensity flight/launch noise produced by full-scale aerospace operations. The resulting nonlinear aeroacoustic propagation model was verified by analysis of environmental noise propagation measurements on the Concorde, United States Air Force F-4C and F-16A aircraft and the Peacekeeper rocket. Propagation modeling of both aeroacoustic directivity and nonlinear attenuation effects were separately verified to be accurate. Model parameters were derived to document the extent of each physical acoustic effect. The parameters of nonlinear acoustic propagation were empirically demonstrated to be linearly related through analysis of multiple sources. These results verified the formulation of a Simplified Nonlinear Aeroacoustic Propagation (SNAP) model. Such verification supports the potential for application of SNAP to broadband aeroacoustic noise source propagation calculations.

  20. An optimized kHz two-colour high harmonic source for seeding free-electron lasers and plasma-based soft x-ray lasers

    NASA Astrophysics Data System (ADS)

    Lambert, G.; Gautier, J.; Hauri, C. P.; Zeitoun, Ph; Valentin, C.; Marchenko, T.; Tissandier, F.; Goddet, J. Ph; Ribiere, M.; Rey, G.; Fajardo, M.; Sebban, S.

    2009-08-01

    Free-electron lasers (FEL) and plasma-based soft x-ray lasers (PSXL) have been recently evolving very fast from the vacuum ultraviolet to the soft x-ray region. Once seeded with high harmonics, these schemes are considered as the next generation soft x-ray light sources delivering ultrashort pulses with high temporal and spatial coherence. Here, we present a detailed experimental study of a kHz two-colour high harmonic generation performed in various gases and investigate its potential as a suitable evolution of the actual seeding sources. It turns out that this double harmonic content source is highly tuneable, controllable and delivers intense radiation (measured here with a calibrated photodiode) with only one order of magnitude difference in the photon yield from 65 to 13 nm. Then, first and foremost, injections could be achieved at wavelengths shorter than what was previously accessible in FEL and PSXL and/or additional energy could be extracted. Also, such a strong and handy seed could allow the saturation range of FEL devices to be greatly extended to shorter wavelengths and would bring higher spectral as well as intensity stabilities in this spectral zone.

  1. A synthesis procedure for pass-by noise of automotive vehicles employing numerically evaluated source-receiver transfer functions

    NASA Astrophysics Data System (ADS)

    Huijssen, Jacobus; Hallez, Raphael; Pluymers, Bert; Desmet, Wim

    2013-07-01

    A synthesis procedure is presented for the prediction of the sound pressure level (SPL) of passenger vehicles in a pass-by noise test. The proposed synthesis procedure translates the noise from the sources in the moving vehicle to the receivers in two steps. Firstly, the steady-state receiver contributions of the sources are computed as they would arise from a number of static vehicle positions along the drive path. Secondly, these contributions are then combined into a single transient signal from a moving vehicle for each source-receiver pair by means of a travel time correction. The multiple source-receiver transfer functions are numerically evaluated by employing the Fast Multipole Boundary Element Method (FMBEM), which allows for pass-by noise SPL estimation on the basis of the CAD/CAE computer models that are available early in the design stage. Results are presented that show the accuracy of the synthesis procedure and that show the ability of the combination of the synthesis procedure and numerically evaluated transfer functions to predict pass-by noise SPL for a realistic case in an evaluation time of less than a day.

  2. A phantom road experiment reveals traffic noise is an invisible source of habitat degradation.

    PubMed

    Ware, Heidi E; McClure, Christopher J W; Carlisle, Jay D; Barber, Jesse R

    2015-09-29

    Decades of research demonstrate that roads impact wildlife and suggest traffic noise as a primary cause of population declines near roads. We created a "phantom road" using an array of speakers to apply traffic noise to a roadless landscape, directly testing the effect of noise alone on an entire songbird community during autumn migration. Thirty-one percent of the bird community avoided the phantom road. For individuals that stayed despite the noise, overall body condition decreased by a full SD and some species showed a change in ability to gain body condition when exposed to traffic noise during migratory stopover. We conducted complementary laboratory experiments that implicate foraging-vigilance behavior as one mechanism driving this pattern. Our results suggest that noise degrades habitat that is otherwise suitable, and that the presence of a species does not indicate the absence of an impact. PMID:26324924

  3. Effects of flight on noise radiated from convected ring sources in coaxial dual flow. Part 2: The noise from heated jets

    NASA Technical Reports Server (NTRS)

    Dash, R.

    1982-01-01

    The effects of flight on noise from heated jets are discussed. The effects of the additionally, extraneously-generated dipole and simple source terms which arise as a result of the density gradients across the fluid interfaces were incorporated. The coaxial flows with inverted profiles are shown to be quieter than the conventional profiles; however, the benefit of noise reduction at higher outer-to-inner area ratios is totally offset as the inverted profile incurs a significant massloss and thrust-loss. Amongst all the possible coaxial configurations when on of the coaxial streams is heated-conventional profile (CP), inverted profile (IP) and the variable stream control engine (VSCE) cycle-and at constant massflow and thrust, a VSCE-cycle is the most desirable and the best possible engine cycle inasmuch as it provides over more than 18.0 dB reduction in SPL (as compared against noise from a CP-cycle) at all angles, both statically and in flight, for area ratios Sigma 0.25.

  4. Advances in tilt rotor noise prediction

    NASA Technical Reports Server (NTRS)

    George, A. R.; Coffen, C. D.; Ringler, T. D.

    1992-01-01

    The two most serious tilt rotor external noise problems, hover noise and blade-vortex interaction noise, are studied. The results of flow visualization and inflow velocity measurements document a complex, recirculating highly unsteady and turbulent flow due to the rotor-wing-body interactions characteristic of tilt rotors. The wing under the rotor is found to obstruct the inflow, causing a deficit in the inflow velocities over the inboard region of the rotor. Discrete frequency harmonic thickness and loading noise mechanisms in hover are examined by first modeling tilt rotor hover aerodynamics and then applying various noise prediction methods using the WOPWOP code. The analysis indicates that the partial ground plane created by the wing below the rotor results in a primary sound source for hover.

  5. Static and wind tunnel near-field/far-field jet noise measurements from model scale single-flow baseline and suppressor nozzles. Volume 1: Noise source locations and extrapolation of static free-field jet noise data

    NASA Technical Reports Server (NTRS)

    Jaeck, C. L.

    1976-01-01

    A test was conducted in the Boeing Large Anechoic Chamber to determine static jet noise source locations of six baseline and suppressor nozzle models, and establish a technique for extrapolating near field data into the far field. The test covered nozzle pressure ratios from 1.44 to 2.25 and jet velocities from 412 to 594 m/s at a total temperature of 844 K.

  6. Active Control of Fan Noise: Feasibility Study. Volume 6; Theoretical Analysis for Coupling of Active Noise Control Actuator Ring Sources to an Annular Duct with Flow

    NASA Technical Reports Server (NTRS)

    Kraft, R. E.

    1996-01-01

    The objective of this effort is to develop an analytical model for the coupling of active noise control (ANC) piston-type actuators that are mounted flush to the inner and outer walls of an annular duct to the modes in the duct generated by the actuator motion. The analysis will be used to couple the ANC actuators to the modal analysis propagation computer program for the annular duct, to predict the effects of active suppression of fan-generated engine noise sources. This combined program will then be available to assist in the design or evaluation of ANC systems in fan engine annular exhaust ducts. An analysis has been developed to predict the modes generated in an annular duct due to the coupling of flush-mounted ring actuators on the inner and outer walls of the duct. The analysis has been combined with a previous analysis for the coupling of modes to a cylindrical duct in a FORTRAN computer program to perform the computations. The method includes the effects of uniform mean flow in the duct. The program can be used for design or evaluation purposes for active noise control hardware for turbofan engines. Predictions for some sample cases modeled after the geometry of the NASA Lewis ANC Fan indicate very efficient coupling in both the inlet and exhaust ducts for the m = 6 spinning mode at frequencies where only a single radial mode is cut-on. Radial mode content in higher order cut-off modes at the source plane and the required actuator displacement amplitude to achieve 110 dB SPL levels in the desired mode were predicted. Equivalent cases with and without flow were examined for the cylindrical and annular geometry, and little difference was found for a duct flow Mach number of 0.1. The actuator ring coupling program will be adapted as a subroutine to the cylindrical duct modal analysis and the exhaust duct modal analysis. This will allow the fan source to be defined in terms of characteristic modes at the fan source plane and predict the propagation to the arbitrarily-located ANC source plane. The actuator velocities can then be determined to generate the anti-phase mode. The resulting combined fan source/ANC pressure can then be calculated at any desired wall sensor position. The actuator velocities can be determined manually or using a simulation of a control system feedback loop. This will provide a very useful ANC system design and evaluation tool.

  7. CaF{sub 2} ablation plumes as a source of CaF molecules for harmonic generation

    SciTech Connect

    Oujja, M.; Nalda, R. de; Castillejo, M.; Lopez-Arias, M.; Torres, R.; Marangos, J. P.

    2010-04-15

    Generation of low-order harmonics (third and fifth) of the fundamental radiation of a Q-switched Nd:YAG laser (1064 nm, pulse 15 ns) was observed in a CaF{sub 2} laser ablation plume. The ablation process is triggered by a second Q-switched Nd:YAG laser operating at 532 or 266 nm. In the scheme employed, the fundamental laser beam propagates parallel to the target surface at controllable distance and temporal delay, allowing to the probing of different regions of the freely expanding plume. The intensity of the harmonics is shown to decrease rapidly as the distance to the target is increased, and for each distance, an optimum time delay between the ablating laser pulse and the fundamental beam is found. In situ diagnosis of the plume by optical emission spectroscopy and laser-induced fluorescence serves to correlate the observed harmonic behavior with the temporally and spatially resolved composition and velocity of flight of species in the plume. It is concluded that harmonics are selectively generated by CaF species through a two-photon resonantly enhanced sum-mixing process exploiting the (B {sup 2{Sigma}+}-X {sup 2{Sigma}+}, {Delta}{nu}=0) transition of the molecule in the region of 530 nm. In this work polar molecules have been shown to be the dominating species for harmonic generation in an ablation plume. Implications of these results for the generation of high harmonics in strongly polar molecules which can be aligned in the ablation plasma are discussed.

  8. Seismicity at Old Faithful Geyser: an isolated source of geothermal noise and possible analogue of volcanic seismicity

    USGS Publications Warehouse

    Kieffer, S.W.

    1984-01-01

    Old Faithful Geyser in Yellowstone National Park, U.S.A., is a relatively isolated source of seismic noise and exhibits seismic behavior similar to that observed at many volcanoes, including "bubblequakes" that resemble B-type "earthquakes", harmonic tremor before and during eruptions, and periods of seismic quiet prior to eruptions. Although Old Faithful differs from volcanoes in that the conduit is continuously open, that rock-fracturing is not a process responsible for seismicity, and that the erupting fluid is inviscid H2O rather than viscous magma, there are also remarkable similarities in the problems of heat and mass recharge to the system, in the eruption dynamics, and in the seismicity. Water rises irregularly into the immediate reservoir of Old Faithful as recharge occurs, a fact that suggests that there are two enlarged storage regions: one between 18 and 22 m (the base of the immediate reservoir) and one between about 10 and 12 m depth. Transport of heat from hot water or steam entering at the base of the recharging water column into cooler overlying water occurs by migration of steam bubbles upward and their collapse in the cooler water, and by episodes of convective overturn. An eruption occurs when the temperature of the near-surface water exceeds the boiling point if the entire water column is sufficiently close to the boiling curve that the propagation of pressure-release waves (rarefactions) down the column can bring the liquid water onto the boiling curve. The process of conversion of the liquid water in the conduit at the onset of an eruption into a two-phase liquid-vapor mixture takes on the order of 30 s. The seismicity is directly related to the sequence of filling and heating during the recharge cycle, and to the fluid mechanics of the eruption. Short (0.2-0.3 s), monochromatic, high-frequency events (20-60 Hz) resembling unsustained harmonic tremor and, in some instances, B-type volcanic earthquakes, occur when exploding or imploding bubbles of steam cause transient vibrations of the fluid column. The frequency of the events is determined by the length of the water column and the speed of sound of the fluid in the conduit when these events occur; damping is controlled by the characteristic and hydraulic impedances, which depend on the above parameters, as well as on the recharge rate of the fluid. Two periods of reduced seismicity (of a few tens of seconds to nearly a minute in duration) occur during the recharge cycle, apparently when the water rises rapidly through the narrow regions of the conduit, causing a sudden pressure increase that temporarily suppresses steam bubble formation. A period of decreased seismicity also precedes preplay or an eruption; this appears to be the time when rising steam bubbles move into a zone of boiling that is acoustically decoupled from the wall of the conduit because of the acoustic impedance mismatch between boiling water (??c ??? 103 g cm-2 s-1) and rock (??c ??? 3 ?? 105 g cm2 s-1). Sustained harmonic tremor occurs during the first one to one-and-a-half minutes of an eruption of Old Faithful, but is not detectable in the succeeding minutes of the eruption. The eruption tremor is caused by hydraulic transients propagating within a sublayer of unvesiculated water that underlies the erupting two-phase liquid-vapor mixture. The resonant frequencies of the fluid column decrease to about 1 Hz when all of the water in the conduit has been converted to a water-steam mixture. Surges are observed in the flow at this frequency, but the resonance has not been detected seismically, possibly because the two-phase erupting fluid is seismically decoupled from the rock on which seismometers are placed. If Old Faithful is an analogue for volcanic seismicity, this study shows that because the frequency of tremor depends on the acoustic properties of the fluid and on conduit dimensions, both properties must be considered in analysis of tremor in volcanic regions. Because magma sound

  9. Seismicity at Old Faithful Geyser: an isolated source of geothermal noise and possible analogue of volcanic seismicity

    NASA Astrophysics Data System (ADS)

    Kieffer, Susan Werner

    1984-09-01

    Old Faithful Geyser in Yellowstone National Park, U.S.A., is a relatively isolated source of seismic noise and exhibits seismic behavior similar to that observed at many volcanoes, including "bubblequakes" that resemble B-type "earthquakes", harmonic tremor before and during eruptions, and periods of seismic quiet prior to eruptions. Although Old Faithful differs from volcanoes in that the conduit is continuously open, that rock-fracturing is not a process responsible for seismicity, and that the erupting fluid is inviscid H 2O rather than viscous magma, there are also remarkable similarities in the problems of heat and mass recharge to the system, in the eruption dynamics, and in the seismicity. Water rises irregularly into the immediate reservoir of Old Faithful as recharge occurs, a fact that suggests that there are two enlarged storage regions: one between 18 and 22 m (the base of the immediate reservoir) and one between about 10 and 12 m depth. Transport of heat from hot water or steam entering at the base of the recharging water column into cooler overlying water occurs by migration of steam bubbles upward and their collapse in the cooler water, and by episodes of convective overturn. An eruption occurs when the temperature of the near-surface water exceeds the boiling point if the entire water column is sufficiently close to the boiling curve that the propagation of pressure-release waves (rarefactions) down the column can bring the liquid water onto the boiling curve. The process of conversion of the liquid water in the conduit at the onset of an eruption into a two-phase liquid-vapor mixture takes on the order of 30 s. The seismicity is directly related to the sequence of filling and heating during the recharge cycle, and to the fluid mechanics of the eruption. Short (0.2-0.3 s), monochromatic, high-frequency events (20-60 Hz) resembling unsustained harmonic tremor and, in some instances, B-type volcanic earthquakes, occur when exploding or imploding bubbles of steam cause transient vibrations of the fluid column. The frequency of the events is determined by the length of the water column and the speed of sound of the fluid in the conduit when these events occur; damping is controlled by the characteristic and hydraulic impedances, which depend on the above parameters, as well as on the recharge rate of the fluid. Two periods of reduced seismicity (of a few tens of seconds to nearly a minute in duration) occur during the recharge cycle, apparently when the water rises rapidly through the narrow regions of the conduit, causing a sudden pressure increase that temporarily suppresses steam bubble formation. A period of decreased seismicity also precedes preplay or an eruption; this appears to be the time when rising steam bubbles move into a zone of boiling that is acoustically decoupled from the wall of the conduit because of the acoustic impedance mismatch between boiling water ( ? c 10 3g cm -2 s -1) and rock ( ? c 3 10 5g cm 2 s -1). Sustained harmonic tremor occurs during the first one to one-and-a-half minutes of an eruption of Old Faithful, but is not detectable in the succeeding minutes of the eruption. The eruption tremor is caused by hydraulic transients propagating within a sublayer of unvesiculated water that underlies the erupting two-phase liquidvapor mixture. The resonant frequencies of the fluid column decrease to about 1 Hz when all of the water in the conduit has been converted to a watersteam mixture. Surges are observed in the flow at this frequency, but the resonance has not been detected seismically, possibly because the two-phase erupting fluid is seismically decoupled from the rock on which seismometers are placed. If Old Faithful is an analogue for volcanic seismicity, this study shows that because the frequency of tremor depends on the acoustic properties of the fluid and on conduit dimensions, both properties must be considered in analysis of tremor in volcanic regions. Because magma sound speed can vary over nearly two orders of magnitude as it changes

  10. Noise pollution resources compendium

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Abstracts of reports concerning noise pollution are presented. The abstracts are grouped in the following areas of activity: (1) sources of noise, (2) noise detection and measurement, (3) noise abatement and control, (4) physical effects of noise and (5) social effects of noise.

  11. Sound Sources Identified in High-Speed Jets by Correlating Flow Density Fluctuations With Far-Field Noise

    NASA Technical Reports Server (NTRS)

    Panda, Jayanta; Seasholtz, Richard G.

    2003-01-01

    Noise sources in high-speed jets were identified by directly correlating flow density fluctuation (cause) to far-field sound pressure fluctuation (effect). The experimental study was performed in a nozzle facility at the NASA Glenn Research Center in support of NASA s initiative to reduce the noise emitted by commercial airplanes. Previous efforts to use this correlation method have failed because the tools for measuring jet turbulence were intrusive. In the present experiment, a molecular Rayleigh-scattering technique was used that depended on laser light scattering by gas molecules in air. The technique allowed accurate measurement of air density fluctuations from different points in the plume. The study was conducted in shock-free, unheated jets of Mach numbers 0.95, 1.4, and 1.8. The turbulent motion, as evident from density fluctuation spectra was remarkably similar in all three jets, whereas the noise sources were significantly different. The correlation study was conducted by keeping a microphone at a fixed location (at the peak noise emission angle of 30 to the jet axis and 50 nozzle diameters away) while moving the laser probe volume from point to point in the flow. The following figure shows maps of the nondimensional coherence value measured at different Strouhal frequencies ([frequency diameter]/jet speed) in the supersonic Mach 1.8 and subsonic Mach 0.95 jets. The higher the coherence, the stronger the source was.

  12. Detailed study of an efficient blue laser source by second-harmonic generation in a semimonolithic cavity for the cooling of strontium atoms.

    PubMed

    Klappauf, Bruce G; Bidel, Yannick; Wilkowski, David; Chanelière, Thierry; Kaiser, Robin

    2004-04-20

    We have constructed a blue laser source consisting of an amplified, grating tuned diode laser that is frequency doubled by a KNbO3 crystal in a compact standing wave cavity and produces as much as 200 mW of internal second-harmonic power. We have analyzed the unusual characteristics of this standing wave cavity to clarify the advantages and disadvantages of this configuration as an alternative to a ring cavity for second-harmonic generation. We emphasize its efficiency and stability and the fact that it has an inherent walk-off compensation, similar to twin crystal configurations. We demonstrate its utility for laser cooling and trapping of earth alkalis by stabilizing the laser to the 461-nm transition of strontium, using a heat pipe, and then forming a magneto-optic trap of strontium from a Zeeman-slowed atomic beam. PMID:15119621

  13. Analytic models of ducted turbomachinery tone noise sources. Volume 1: Analysis

    NASA Technical Reports Server (NTRS)

    Clark, T. L.; Ganz, U. W.; Graf, G. A.; Westall, J. S.

    1974-01-01

    The analytic models developed for computing the periodic sound pressure of subsonic fans and compressors in an infinite, hardwall annular duct with uniform flow are described. The basic sound-generating mechanism is the scattering into sound waves of velocity disturbances appearing to the rotor or stator blades as a series of harmonic gusts. The models include component interactions and rotor alone.

  14. Calculation of far-field jet noise spectra from near-field measurements using true source location

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Tester, B. J.; Tanna, H. K.

    1978-01-01

    Jet mixing noise data at different measurement distances are compared with values calculated from the Lockheed prediction method. Although the method does not include any acoustic near-field effects, the measured and predicted results agree well where the measured data deviates from the inverse square law. It is therefore suggested that departures from the inverse square law are primarily the result of (1) the non-negligible distance between the nozzle exit plane and the true axial source location and (2) the jet mixing noise directionality, as modeled in the prediction method. Allowing for these effects, jet noise data at 8 and 96 diameters over a wide range of frequencies, angles and jet conditions are shown to collapse with reasonable accuracy.

  15. Sources of high frequency seismic noise: insights from a dense network of ~250 stations in northern Alsace (France)

    NASA Astrophysics Data System (ADS)

    Vergne, Jerome; Blachet, Antoine; Lehujeur, Maximilien

    2015-04-01

    Monitoring local or regional seismic activity requires stations having a low level of background seismic noise at frequencies higher than few tenths of Hertz. Network operators are well aware that the seismic quality of a site depends on several aspects, among them its geological setting and the proximity of roads, railways, industries or trees. Often, the impact of each noise source is only qualitatively known which precludes estimating the quality of potential future sites before they are tested or installed. Here, we want to take advantage of a very dense temporary network deployed in Northern Alsace (France) to assess the effect of various kinds of potential sources on the level of seismic noise observed in the frequency range 0.2-50 Hz. In September 2014, more than 250 seismic stations (FairfieldNodal@ Zland nodes with 10Hz vertical geophone) have been installed every 1.5 km over a ~25km diameter disc centred on the deep geothermal sites of Soultz-sous-Forêts and Rittershoffen. This region exhibits variable degrees of human imprints from quite remote areas to sectors with high traffic roads and big villages. It also encompasses both the deep sedimentary basin of the Rhine graben and the piedmont of the Vosges massif with exposed bedrock. For each site we processed the continuous data to estimate probability density functions of the power spectral densities. At frequencies higher than 1 Hz most sites show a clear temporal modulation of seismic noise related to human activity with the well-known variations between day and night and between weekdays and weekends. Moreover we observe a clear evolution of the spatial distribution of seismic noise levels with frequency. Basically, between 0.5 and 4 Hz the geological setting modulates the level of seismic noise. At higher frequencies, the amplitude of seismic noise appears mostly related to the distance to nearby roads. Based on road maps and traffic estimation, a forward approach is performed to model the induced seismic noise. Effects of other types of seismic sources, such as industries or wind, are also observed but usually have a more limited spatial extension and a specific signature in the spectrograms.

  16. Dislocations as a Noise Source in LWIR HgCdTe Photodiodes

    NASA Astrophysics Data System (ADS)

    Jóźwikowski, Krzysztof; Jóźwikowska, Alina; Martyniuk, Andrzej

    2016-02-01

    The effect of dislocation on the 1/f noise current in long-wavelength infrared (LWIR) reverse biased HgCdTe photodiodes working at liquid nitrogen (LN) temperature was analyzed theoretically by using a phenomenological model of dislocations as an additional Shockley-Read-Hall (SRH) generation-recombination (G-R) channel in heterostructure. Numerical analysis was involved to solve the set of transport equations in order to find a steady state values of physical parameters of the heterostructure. Next, the set of transport equations for fluctuations (TEFF) was formulated and solved to obtain the spectral densities (SD) of the fluctuations of electrical potential, quasi-Fermi levels, and temperature. The SD of mobility fluctuations, shot G-R noise, and thermal noise were also taken into account in TEFF. Additional expressions for SD of 1/f fluctuations of the G-R processes were derived. Numerical values of the SD of noise current were compared with the experimental results of Johnson et al. Theoretical analysis has shown that the dislocations increase the G-R processes and this way cause the growth of G-R dark current. Despite the fact that dislocations increase both shot G-R noise and 1/f G-R noise, the main cause of 1/f current noise in LN cooled LWIR photodiodes are fluctuations of the carriers mobility determined by 1/f fluctuations of relaxation times. As the noise current is proportional to the total diode current, growth of G-R dark current caused by dislocations leads to the growth of noise current.

  17. Phased Array Noise Source Localization Measurements of an F404 Nozzle Plume at Both Full and Model Scale

    NASA Technical Reports Server (NTRS)

    Podboy, Gary G.; Bridges, James E.; Henderson, Brenda S.

    2010-01-01

    A 48-microphone planar phased array system was used to acquire jet noise source localization data on both a full-scale F404-GE-F400 engine and on a 1/4th scale model of a F400 series nozzle. The full-scale engine test data show the location of the dominant noise sources in the jet plume as a function of frequency for the engine in both baseline (no chevron) and chevron configurations. Data are presented for the engine operating both with and without afterburners. Based on lessons learned during this test, a set of recommendations are provided regarding how the phased array measurement system could be modified in order to obtain more useful acoustic source localization data on high-performance military engines in the future. The data obtained on the 1/4th scale F400 series nozzle provide useful insights regarding the full-scale engine jet noise source mechanisms, and document some of the differences associated with testing at model-scale versus fullscale.

  18. Can shock waves on helicopter rotors generate noise? - A study of the quadrupole source

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Tadghighi, H.

    1990-01-01

    An analysis has previously established that local shock surfaces attached to helicopter rotor blades moving at high subsonic speeds are potent noise generators; in pursuit of this insight, a novel formulation is presented for the prediction of the noise of a deformable shock, whose area changes as a function of the azimuthal position of the blade. The derivation of this formulation has its basis in a mapping of the moving shock to a time-independent region. In virtue of this mapping, the implementation of the main result on a computer becomes straightforward enough for incorporation into the available rotor-noise prediction code. A problem illustrating the importance of rotor shocks in the generation of high-intensity noise is presented.

  19. MEG Source Imaging Method using Fast L1 Minimum-norm and its Applications to Signals with Brain Noise and Human Resting-state Source Amplitude Images

    PubMed Central

    Huang, Ming-Xiong; Huang, Charles W.; Robb, Ashley; Angeles, AnneMarie; Nichols, Sharon L.; Baker, Dewleen G.; Song, Tao; Harrington, Deborah L.; Theilmann, Rebecca J.; Srinivasan, Ramesh; Heister, David; Diwakar, Mithun; Canive, Jose M.; Edgar, J. Christopher; Chen, Yu-Han; Ji, Zhengwei; Shen, Max; El-Gabalawy, Fady; Levy, Michael; McLay, Robert; Webb-Murphy, Jennifer; Liu, Thomas T.; Drake, Angela; Lee, Roland R.

    2014-01-01

    The present study developed a fast MEG source imaging technique based on Fast Vector-based Spatio-Temporal Analysis using a L1-minimum-norm (Fast-VESTAL) and then used the method to obtain the source amplitude images of resting-state magnetoencephalography (MEG) signals for different frequency bands. The Fast-VESTAL technique consists of two steps. First, L1-minimum-norm MEG source images were obtained for the dominant spatial modes of sensor-waveform covariance matrix. Next, accurate source time-courses with millisecond temporal resolution were obtained using an inverse operator constructed from the spatial source images of Step 1. Using simulations, Fast-VESTALs performance of was assessed for its 1) ability to localize multiple correlated sources; 2) ability to faithfully recover source time-courses; 3) robustness to different SNR conditions including SNR with negative dB levels; 4) capability to handle correlated brain noise; and 5) statistical maps of MEG source images. An objective pre-whitening method was also developed and integrated with Fast-VESTAL to remove correlated brain noise. Fast-VESTALs performance was then examined in the analysis of human mediannerve MEG responses. The results demonstrated that this method easily distinguished sources in the entire somatosensory network. Next, Fast-VESTAL was applied to obtain the first whole-head MEG source-amplitude images from resting-state signals in 41 healthy control subjects, for all standard frequency bands. Comparisons between resting-state MEG sources images and known neurophysiology were provided. Additionally, in simulations and cases with MEG human responses, the results obtained from using conventional beamformer technique were compared with those from Fast-VESTAL, which highlighted the beamformers problems of signal leaking and distorted source time-courses. PMID:24055704

  20. Noise sources and competition between stimulated Brillouin and Raman scattering: A one-dimensional steady-state approach

    SciTech Connect

    Gong, Tao; Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900 ; Li, Zhichao; Zhao, Bin; Hu, Guang-yue; Zheng, Jian

    2013-09-15

    A 1D steady-state model is developed to deal with stimulated scattering processes. The volume and boundary noise sources for scattered light are discussed in detail. Our results indicate that the boundary noise sources may play a significant role in estimating the reflectivity of stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS). With the capability of our model to deal with broadband scattered light, we find that pump depletion could be the main reason to the anti-correlation between SBS and SRS versus electron density observed in experiments. A simple method is proposed to phenomenologically include the effect of nonlinear saturation mechanisms in our model and reasonable results are obtained.

  1. Active Control of Fan Noise-Feasibility Study. Volume 2: Canceling Noise Source-Design of an Acoustic Plate Radiator Using Piezoceramic Actuators

    NASA Technical Reports Server (NTRS)

    Pla, F. G.; Rajiyah, H.

    1995-01-01

    The feasibility of using acoustic plate radiators powered by piezoceramic thin sheets as canceling sources for active control of aircraft engine fan noise is demonstrated. Analytical and numerical models of actuated beams and plates are developed and validated. An optimization study is performed to identify the optimum combination of design parameters that maximizes the plate volume velocity for a given resonance frequency. Fifteen plates with various plate and actuator sizes, thicknesses, and bonding layers were fabricated and tested using results from the optimization study. A maximum equivalent piston displacement of 0.39 mm was achieved with the optimized plate samples tested with only one actuator powered, corresponding to a plate deflection at the center of over 1 millimeter. This is very close to the deflection required for a full size engine application and represents a 160-fold improvement over previous work. Experimental results further show that performance is limited by the critical stress of the piezoceramic actuator and bonding layer rather than by the maximum moment available from the actuator. Design enhancements are described in detail that will lead to a flight-worthy acoustic plate radiator by minimizing actuator tensile stresses and reducing nonlinear effects. Finally, several adaptive tuning methods designed to increase the bandwidth of acoustic plate radiators are analyzed including passive, active, and semi-active approaches. The back chamber pressurization and volume variation methods are investigated experimentally and shown to be simple and effective ways to obtain substantial control over the resonance frequency of a plate radiator. This study shows that piezoceramic-based plate radiators can be a viable acoustic source for active control of aircraft engine fan noise.

  2. Discriminating harmonicity

    NASA Astrophysics Data System (ADS)

    Kidd, Gerald; Mason, Christine R.; Brughera, Andrew; Chiu, Chung-Yiu Peter

    2003-08-01

    Simultaneous tones that are harmonically related tend to be grouped perceptually to form a unitary auditory image. A partial that is mistuned stands out from the other tones, and harmonic complexes with different fundamental frequencies can readily be perceived as separate auditory objects. These phenomena are evidence for the strong role of harmonicity in perceptual grouping and segregation of sounds. This study measured the discriminability of harmonicity directly. In a two interval, two alternative forced-choice (2I2AFC) paradigm, the listener chose which of two sounds, signal or foil, was composed of tones that more closely matched an exact harmonic relationship. In one experiment, the signal was varied from perfectly harmonic to highly inharmonic by adding frequency perturbation to each component. The foil always had 100% perturbation. Group mean performance decreased from greater than 90% correct for 0% signal perturbation to near chance for 80% signal perturbation. In the second experiment, adding a masker presented simultaneously with the signals and foils disrupted harmonicity. Both monaural and dichotic conditions were tested. Signal level was varied relative to masker level to obtain psychometric functions from which slopes and midpoints were estimated. Dichotic presentation of these audible stimuli improved performance by 3-10 dB, due primarily to a release from ``informational masking'' by the perceptual segregation of the signal from the masker.

  3. Resonance of a fluid-driven crack: radiation properties and implications for the source of long-period events and harmonic tremor.

    USGS Publications Warehouse

    Chouet, B.

    1988-01-01

    A dynamic source model is presented, in which a 3-D crack containing a viscous compressible fluid is excited into resonance by an impulsive pressure transient applied over a small area DELTA S of the crack surface. The crack excitation depends critically on two dimensionless parameters called the crack stiffness and viscous damping loss. According to the model, the long-period event and harmonic tremor share the same source but differ in the boundary conditions for fluid flow and in the triggering mechanism setting up the resonance of the source, the former being viewed as the impulse response of the tremor generating system and the later representing the excitation due to more complex forcing functions.-from Author

  4. Simultaneous ballistic deficit immunity and resilience to parallel noise sources: A new pulse shaping technique

    SciTech Connect

    Fabris, Lorenzo; Becker, John A.; Goulding, Frederick S.; Madden, Norman W.

    2000-10-11

    A new and different time variant pulse processing system has been developed based on a simple CR-RC filter and two analog switches. The new pulse processing technique combines both ballistic deficit immunity and resilience to parallel noise without a significant compromise to the low energy resolution, generally considered a mutually exclusive requirement. The filter is realized by combining two different pulse-shaping techniques. One of the techniques creates a low rate of curvature at the pulse peak, which reduces ballistic deficit, while the second technique increases the tolerance to low frequency noise by modifying the noise history. Several experimental measurements are presented, including tests on a co-planar grid CdZnTe detector. Improvements on both the resolution and line shape are shown for the 662 keV line of 137Cs.

  5. Noise measurements in shunted, shorted, and fully electroded quartz gauges in the Saturn plasma radiation source x-ray simulator

    SciTech Connect

    Barrett, W.H.; Greenwoll, J.I.; Smith, C.W.; Johnson, D.E.; De La Cruz, C.F.

    1995-08-01

    This paper describes recent work to improve the measurement of the stress response of materials to intense, short pulses of radiation. When Saturn fires, large prompt electrical noise pulses are induced in stress measurement circuits. The conventional wisdom has been that the shorted guard ring quartz gauge was the only configuration with acceptable prompt signal-to-noise characteristics for stress measurements in this pulsed radiation environment. However, because of abnormal signal distortion, the shorted guard ring gauge is restricted to a maximum stress of about 8 kbars. Below this level, the normal, quantified signal distortion is correctable with analytical deconvolution techniques. The shunted guard ring gauge is acceptable for Egli fidelity measurements to about 25 kbars with negligible signal distortion. Experiments were conducted on the Saturn soft x-ray source which show that higher fidelity shunted guard ring gauges can successfully measure stress with acceptable induced noise. We also found that a 50-ohm impedance matching resistor at the gauge reduced the prompt noise amplitude and improved the baseline quality of the measurement prior to shock wave arrival.

  6. Sources of non-physiologic noise in simultaneous EEG-fMRI data: a phantom study.

    PubMed

    Politte, David; Prior, Fred; Ponton, Curtis; Nolan, Tracy; Larson-Prior, Linda

    2010-01-01

    Simultaneous EEG-fMRI studies require an understanding of the noise characteristics of the acquisition environment so that appropriate pre-processing steps may be taken to remove known artifacts from the data stream. Using a phantom approach, we have developed a general methodology for characterizing non-physiologic noise in EEG signal and demonstrate the use of this methodology for a specific MR scanner and EEG data acquisition system configuration. Our results show the ? frequency band is significantly impacted by baseline drift or baseline correction algorithms while the ? and ? bands are impacted by residual gradient artifact and gradient corrections. PMID:21095809

  7. Modeling and simulation of VCSELs noise and its influence on noise performance of RF fiber links

    NASA Astrophysics Data System (ADS)

    Ahmed, Moustafa; Mahmoud, Safwat W. Z.; Hassan, Ahmed M. A.

    2014-03-01

    In this paper, we present numerical simulations of the dynamics and noise of directly modulated vertical-cavity surface-emitting lasers (VCSELs) as primary light sources in RF links. Contribution of the VCSEL noise to the noise performance of the RF link is evaluated in terms of the noise figure. The VCSEL characteristics are investigated under a variety of conditions, including CW operation and sinusoidal modulation. Both single and two transverse-mode oscillations of VCSELs are studied. The obtained results show that the frequency spectra of the relative intensity noise exhibit peaks at the mode-competition frequency, the modulation frequency and the higher harmonics. The low-frequency level of relative intensity noise is minimum when the modulated VCSEL signal is continuous and uniform, but is pronounced when the signal is pulsing and non-uniform. The noise level of the two-mode VCSELs is almost 20 dB/Hz higher than that of the single-mode VCSEL. The noise factor of the fiber link decreases with the increase of both the modulation frequency and the depth. The contribution of the VCSEL noise to the noise factor of the fiber link is much greater than that of the photodiode.

  8. Three-dimensional simulations of harmonic radiation and harmonic lasing

    SciTech Connect

    Schmitt, M.J.; McVey, B.D.

    1990-01-01

    Characteristics of the harmonic emission from free-electron lasers (FELs) are examined in the spontaneous, coherent-spontaneous and stimulated emission regimes. The radiation at both odd and even harmonic frequencies is treated for electron beams with finite emittance and energy spread. In the spontaneous emission regime, the transverse radiation patterns including the transverse frequency dependences, are given. How this expression is modified to include energy spread and emittance is described. In the coherent-spontaneous emission and stimulated emission regimes, the interaction of the radiation fields with the electrons must be treated self-consistently. Here, a single-frequency distributed transverse source function for each electron is used in the harmonic version of the 3-D code FELEX to model the harmonic radiation. The code has recently been modified to simultaneously model the fundamental and harmonic interactions for multiple-pass oscillator simulations. These modifications facilitate the examination of FELs under various operating conditions. When the FEL is lasing at the fundamental, the evolution of the harmonic fields can be examined. This evolution is unique in the sense that the electron beam radiates at the harmonic frequencies in the presence of the harmonic radiation circulating in the cavity. As a result, enhancements of the harmonic emission can be observed. Finally, harmonic lasing can occur in cases where there is sufficient gain to overcome cavity losses and lasing at the fundamental can be suppressed. The characteristics and efficiency of these interactions are explored. 11 refs., 9 figs.

  9. Development of Coherent Extreme-Ultraviolet Scatterometry Microscope with High-Order Harmonic Generation Source for Extreme-Ultraviolet Mask Inspection and Metrology

    NASA Astrophysics Data System (ADS)

    Nakasuji, Masato; Tokimasa, Akifumi; Harada, Tetsuo; Nagata, Yutaka; Watanabe, Takeo; Midorikawa, Katsumi; Kinoshita, Hiroo

    2012-06-01

    In extreme-ultraviolet (EUV) lithography, defect-free mask production is one of the critical issues for the high-volume manufacturing of semiconductor devices. We developed a coherent EUV scatterometry microscope (CSM), which is a simple lensless system. The CSM records diffraction from mask patterns with a charge-coupled-device (CCD) camera directly, which is illuminated with a coherent EUV light. Since a practical standalone system is required by the industry, we developed a standalone CSM system employing a high-order harmonic generation (HHG) EUV source. The 59th high-order harmonic generation of 13.5 nm wavelength is pumped by a tabletop, 6 mJ, 32 fs, Ti:sapphire laser system. The EUV output energy of 1 W is successfully achieved. We performed the observation of an EUV mask using the HHG-CSM system. The detection limit of the line defect size is improved to 2 nm for the high output power of the HHG EUV source.

  10. Study of noise and inflow distortion sources in the NASA QF-1B fan using measured blade and vane pressures

    NASA Technical Reports Server (NTRS)

    Hanson, D. B.

    1977-01-01

    Pressure transducers were installed on the blades and vanes of QF-1B, a transonic-tip-speed fan from the NASA Quiet Fan Program which was tested on the outdoor quiet fan test facility at NASA-Lewis. Signals from the transducers and from far field microphones were analyzed to determine sources of nonuniform inflow and noise. The nonuniform inflow was mostly unsteady with roughly equal contributions from atmospheric turbulence and rig interference. The rig interference was largest at the bottom and appeared to be generated by the support structure which was located behind the inlet lip under the fan. Interaction of this inflow distortion was the dominant source of noise at 1, 2, and 3 times blade passing frequency (BPF) at 60, 70, and 80 percent of design speed. At 90 percent speed, noise at BPF was dominated by the steady rotor field. A broadband spectrum peak centered at about 2.2 times BPF was identified as rotor/stator interaction stemming from a high frequency rotor exit flow component. The remaining broadband energy from 0.3 to 3.5 times BPF was attributed to the better known type of rotor/stator interaction associated with rotor wake turbulence.

  11. Benefits of Localization and Speech Perception with Multiple Noise Sources in Listeners with a Short-electrode Cochlear Implant

    PubMed Central

    Dunn, Camille C.; Perreau, Ann; Gantz, Bruce; Tyler, Richard

    2009-01-01

    Background Research suggests that for individuals with significant low-frequency hearing, implantation of a short-electrode cochlear implant may provide benefits of improved speech perception abilities. Because this strategy combines acoustic and electrical hearing within the same ear while at the same time preserving low-frequency residual acoustic hearing in both ears, localization abilities may also be improved. However, very little research has focused on the localization and spatial hearing abilities of users with a short-electrode cochlear implant. Purpose The purpose of this study was to evaluate localization abilities for listeners with a short-electrode cochlear implant who continue to wear hearing aids in both ears. A secondary purpose was to document speech perception abilities using a speech in noise test with spatially-separate noise sources. Research Design Eleven subjects that utilized a short-electrode cochlear implant and bilateral hearing aids were tested on localization and speech perception with multiple noise locations using an eight-loudspeaker array. Performance was assessed across four listening conditions using various combinations of cochlear implant and/or hearing aid use. Results Results for localization showed no significant difference between using bilateral hearing aids and bilateral hearing aids plus the cochlear implant. However, there was a significant difference between the bilateral hearing aid condition and the implant plus use of a contralateral hearing aid for all eleven subjects. Results for speech perception showed a significant benefit when using bilateral hearing aids plus the cochlear implant over use of the implant plus only one hearing aid. Conclusion Combined use of both hearing aids and the cochlear implant show significant benefits for both localization and speech perception in noise for users with a short-electrode cochlear implant. These results emphasize the importance of low-frequency information in two ears for the purpose of localization and speech perception in noise. PMID:20085199

  12. Generalized wave envelope analysis of sound propagation in ducts with stepped noise source profiles and variable axial impedance

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1975-01-01

    A finite difference formulation is presented for sound propagation in a rectangular two-dimensional duct without steady flow. Before the difference equations are formulated, the governing Helmholtz equation is first transformed to a form whose solution tends not to oscillate along the length of the duct. This transformation reduces the required number of grid points by an order of magnitude. Example solutions indicate that stepped noise source profiles have much higher attenuation than plane waves in a uniform impedance liner. Also, multiple stepped impedance liners are shown to have higher attenuation than uniform ducts if the impedances are chosen properly. For optimum noise reduction with axial variations in impedance, the numerical analysis indicates that for a plane wave input the resistance should be near zero at the entrance of a suppressor duct, while the reactance should be near the optimum value associated with the least-attenuated mode in a uniform duct.

  13. [Perception of approaching and withdrawing sound sources following exposure to broadband noise. The effect of spatial domain].

    PubMed

    Malinina, E S

    2014-01-01

    The spatial specificity of auditory aftereffect was studied after a short-time adaptation (5 s) to the broadband noise (20-20000 Hz). Adapting stimuli were sequences of noise impulses with the constant amplitude, test stimuli--with the constant and changing amplitude: an increase of amplitude of impulses in sequence was perceived by listeners as approach of the sound source, while a decrease of amplitude--as its withdrawal. The experiments were performed in an anechoic chamber. The auditory aftereffect was estimated under the following conditions: the adapting and test stimuli were presented from the loudspeaker located at a distance of 1.1 m from the listeners (the subjectively near spatial domain) or 4.5 m from the listeners (the subjectively near spatial domain) or 4.5 m from the listeners (the subjectively far spatial domain); the adapting and test stimuli were presented from different distances. The obtained data showed that perception of the imitated movement of the sound source in both spatial domains had the common characteristic peculiarities that manifested themselves both under control conditions without adaptation and after adaptation to noise. In the absence of adaptation for both distances, an asymmetry of psychophysical curves was observed: the listeners estimated the test stimuli more often as approaching. The overestimation by listeners of test stimuli as the approaching ones was more pronounced at their presentation from the distance of 1.1 m, i. e., from the subjectively near spatial domain. After adaptation to noise the aftereffects showed spatial specificity in both spatial domains: they were observed only at the spatial coincidence of adapting and test stimuli and were absent at their separation. The aftereffects observed in two spatial domains were similar in direction and value: the listeners estimated the test stimuli more often as withdrawing as compared to control. The result of such aftereffect was restoration of the symmetry of psychometric curves and of the equiprobable estimation of direction of movement of test signals. PMID:25486807

  14. [Perception of approaching and withdrawing sound sources following exposure to broadband noise. The effect of spatial domain].

    PubMed

    2014-01-01

    The spatial specificity of auditory aftereffect was studied after a short-time adaptation (5 s) to the broadband noise (20-20000 Hz). Adapting stimuli were sequences of noise impulses with the constant amplitude, test stimuli--with the constant and changing amplitude: an increase of amplitude of impulses in sequence was perceived by listeners as approach of the sound source, while a decrease of amplitude--as its withdrawal. The experiments were performed in an anechoic chamber. The auditory aftereffect was estimated under the following conditions: the adapting and test stimuli were presented from the loudspeaker located at a distance of 1.1 m from the listeners (the subjectively near spatial domain) or 4.5 m from the listeners (the subjectively near spatial domain) or 4.5 m from the listeners (the subjectively far spatial domain); the adapting and test stimuli were presented from different distances. The obtained data showed that perception of the imitated movement of the sound source in both spatial domains had the common characteristic peculiarities that manifested themselves both under control conditions without adaptation and after adaptation to noise. In the absence of adaptation for both distances, an asymmetry of psychophysical curves was observed: the listeners estimated the test stimuli more often as approaching. The overestimation by listeners of test stimuli as the approaching ones was more pronounced at their presentation from the distance of 1.1 m, i. e., from the subjectively near spatial domain. After adaptation to noise the aftereffects showed spatial specificity in both spatial domains: they were observed only at the spatial coincidence of adapting and test stimuli and were absent at their separation. The aftereffects observed in two spatial domains were similar in direction and value: the listeners estimated the test stimuli more often as withdrawing as compared to control. The result of such aftereffect was restoration of the symmetry of psychometric curves and of the equiprobable estimation of direction of movement of test signals. PMID:25508938

  15. On the characterization of noise sources in supersonic shock containing jets

    NASA Astrophysics Data System (ADS)

    Veltin, Jeremy

    Research on the noise produced by military aircraft has seen a renewed interest due to the increasing concerns of communities around airbases and airports. Radiated noise associated with high-speed military style engines is the main contributor of the overall noise produced by modern aircraft, especially in military applications where the jets typically are at very high velocity and temperature, and have low bypass ratios. The acoustic and aerodynamic properties of high-speed jets are investigated experimentally in this thesis. Measurements are conducted in the Penn State high speed jet noise facility, after the validation of the newly upgraded rig. Axisymmetric Nozzles are investigated as well as nozzles with a military style shape. The database of flow measurements in supersonic shock containing jets is very scarce. This research focuses on performing flow measurements in shock containing jets in an effort to obtain valuable parameters for the modeling of the noise propagated by such flows. Mean flow measurements of the jets are performed with pitot probes traversing the flow. These measurements are used as a qualification tool for a CFD simulation of the flow field with good overall agreement. Measurements in supersonic rectangular jets also uncover the presence of axes switching in fully, over- and under-expanded cases, with the location of this axes switch being further downstream in the fully expanded case. Acoustic data are gathered in shock containing screeching jets. Different techniques are investigated in order to provide some reduction of the screech tones. Optical Deflectometry measurements are performed in shock containing jets and show that the screech tones have no effect on the properties of the convecting structures. On the other hand, the strength of the shock present in the flow seems to have an effect on the convection velocity. Finally, the simultaneous correlation between the flow field fluctuations and the acoustic far field is measured. This suggests that the OD sensors can be used for localizing the noise generation in the jet. Preliminary results of this kind show that the highest frequencies are generated close to the exit plane of the nozzle.

  16. Comparative Analyses of Phase Noise in 28 nm CMOS LC Oscillator Circuit Topologies: Hartley, Colpitts, and Common-Source Cross-Coupled Differential Pair

    PubMed Central

    Chlis, Ilias

    2014-01-01

    This paper reports comparative analyses of phase noise in Hartley, Colpitts, and common-source cross-coupled differential pair LC oscillator topologies in 28 nm CMOS technology. The impulse sensitivity function is used to carry out both qualitative and quantitative analyses of the phase noise exhibited by each circuit component in each circuit topology with oscillation frequency ranging from 1 to 100 GHz. The comparative analyses show the existence of four distinct frequency regions in which the three oscillator topologies rank unevenly in terms of best phase noise performance, due to the combined effects of device noise and circuit node sensitivity. PMID:24683340

  17. Auditory and Subjective Effects of Airborne Noise from Industrial Ultrasonic Sources

    PubMed Central

    Acton, W. I.; Carson, M. B.

    1967-01-01

    This investigation was undertaken primarily to examine the possibility of hearing damage from industrial ultrasonic equipment. In the factory concerned, ultrasonic washers and drills were used at a number of different locations, and girls working 12 ft (36 m.) away from one bank of three small washers complained of unpleasant subjective effects which included fatigue, persistent headaches, nausea, and tinnitus. As personnel working in the vicinity of similar washers in other parts of the factory did not complain of these effects, it seemed possible that the noise had been transmitted along a column of air in a bank of dryboxes. Enclosure of these washers by a sliding screen of Perspex had completely abated the trouble. Sound pressure level measurements taken in the positions occupied by the operators indicated that, when the effects occur, they are probably caused by high sound levels at the upper audio-frequencies present with the ultrasonic noise, and this was supported by a limited laboratory investigation. Audiometric investigation showed that hearing damage due to noise from these industrial ultrasonic devices is unlikely. However, extrapolations of currently accepted hearing damage risk criteria may be valid in predicting the occurrence of these subjective effects. Images PMID:6073088

  18. Detection of fundamental and harmonic type III radio emission and the associated Langmuir waves at the source region

    NASA Technical Reports Server (NTRS)

    Reiner, M. J.; Stone, R. G.; Fainberg, J.

    1992-01-01

    Type III radio emission generated in the vicinity of the Ulysses spacecraft has been detected at both the fundamental and harmonic of the local plasma frequency. The observations represent the first clear evidence of locally generated type III radio emission. This local emission shows no evidence of frequency drift, exhibits a relatively short rise time, is less intense than the observed remotely generated radio emission, and is temporally correlated with observed in situ Langmuir waves. The observations were made with the unified radio astronomy and wave (URAP) experiment on the Ulysses spacecraft between 1990 November 4 and 1991 April 30, as it traveled from 1 to 3 AU from the sun. During this time period many thousands of bursts were observed. However, only three examples of local emission and associated Langmuir waves were identified. This supports previous suggestions that type III radio emission is generated in localized regions of the interplanetary medium, rather than uniformly along the extent of the electron exciter beam.

  19. An evaluation of HEMT potential for millimeter-wave signal sources using interpolation and harmonic balance techniques

    NASA Technical Reports Server (NTRS)

    Kwon, Youngwoo; Pavlidis, Dimitris; Tutt, Marcel N.

    1991-01-01

    A large-signal analysis method based on an harmonic balance technique and a 2-D cubic spline interpolation function has been developed and applied to the prediction of InP-based HEMT oscillator performance for frequencies extending up to the submillimeter-wave range. The large-signal analysis method uses a limited number of DC and small-signal S-parameter data and allows the accurate characterization of HEMT large-signal behavior. The method has been validated experimentally using load-pull measurement. Oscillation frequency, power performance, and load requirements are discussed, with an operation capability of 300 GHz predicted using state-of-the-art devices (fmax is approximately equal to 450 GHz).

  20. Fan Noise Prediction System Development: Source/Radiation Field Coupling and Workstation Conversion for the Acoustic Radiation Code

    NASA Technical Reports Server (NTRS)

    Meyer, H. D.

    1993-01-01

    The Acoustic Radiation Code (ARC) is a finite element program used on the IBM mainframe to predict far-field acoustic radiation from a turbofan engine inlet. In this report, requirements for developers of internal aerodynamic codes regarding use of their program output an input for the ARC are discussed. More specifically, the particular input needed from the Bolt, Beranek and Newman/Pratt and Whitney (turbofan source noise generation) Code (BBN/PWC) is described. In a separate analysis, a method of coupling the source and radiation models, that recognizes waves crossing the interface in both directions, has been derived. A preliminary version of the coupled code has been developed and used for initial evaluation of coupling issues. Results thus far have shown that reflection from the inlet is sufficient to indicate that full coupling of the source and radiation fields is needed for accurate noise predictions ' Also, for this contract, the ARC has been modified for use on the Sun and Silicon Graphics Iris UNIX workstations. Changes and additions involved in this effort are described in an appendix.

  1. Compensation of optical source phase noise in long-range OFDR by using an optical fiber delay loop

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Fan, Xinyu; Liu, Qingwen; He, Zuyuan

    2015-09-01

    We demonstrate a novel method to compensate the optical source phase noise in long-range OFDR by using an optical fiber delay loop (OFDL). In this method, a 10 km OFDL is incorporated in the reference interferometer of the reflectometry. A frequency shifter is used to count the circulation rounds of the light traveling in OFDL. The preliminary "proof-of-concept" experiment shows a successful compensation effect and an 11 cm spatial resolution over 20 km measurement range is realized by this method.

  2. Observation of bias-dependent noise sources in a TiOx/TiOy bipolar resistive switching frame

    NASA Astrophysics Data System (ADS)

    Hyung Kim, Joo; Rahm Lee, Ah; Cheol Bae, Yoon; Ho Baek, Kwang; Sik Im, Hyun; Pyo Hong, Jin

    2014-02-01

    We report the conduction features associated with the evolution of oxygen ions (or vacancies) under bias for a TiOx (oxygen ion-rich)/TiOy (oxygen ion-deficient) bi-layer cell by identifying low-frequency noise sources. It is believed that a low resistance state enhances the formation of conductive filaments exchanging electrons through a nearest-neighbor hopping process, while a high resistance state (HRS) emphasizes the rupture of conductive filaments inside the insulating TiOx layer and a reduction/oxidation reaction at the oxide interfaces. The high resolution transmission electron microscope images of as-grown and HRS cells are also discussed.

  3. Feasibility Study for a Seeded Hard X-ray Source Based on a Two-Stage Echo-Enabled Harmonic Generation FEL

    SciTech Connect

    Xiang, Dao; Huang, Z.; Ratner, D.; Stupakov, G.; /SLAC

    2009-12-11

    We propose and analyze a scheme to achieve a seeded hard x-ray source based on a two-stage echo-enabled harmonic generation (EEHG) FEL. In the scheme an 180 nm seed laser covering the whole bunch is first used to modulate the beam when beam energy is 2 GeV. After passing through a strong chicane complicated fine structures are introduced into the phase space. The beam is again modulated by a short 180 nm laser that only interacts with the rear part of the beam and accelerated to 6 GeV. A chicane is then used to convert the energy modulation imparted to the rear part of the beam into density modulation. The density-modulated beam is sent through a radiator to generate intense 6 nm radiation which will be used to interact with the front fresh part of the bunch. Finally we generate in the front part of the beam density modulation at the 1199th harmonic of the seed laser. We will discuss the issues related to the realization of the seeded hard x-ray FEL.

  4. Field and laboratory studies of moving and temporally variable noise sources (aircraft); perception of location, movement, and direction.

    PubMed

    Gunn, W J; Shigehisa, T; Shepherd, W T

    1979-10-01

    The conditions were examined under which more valid and reliable estimates could be made of the effects of aircraft noise on people. In Exper. 1, 12 Ss in 2 different houses directly under the flight path of a major airport (JFK) indicated 1 of 12 possible flight paths (4 directly overhead and 8 to one side) for each of 3 jet aircraft flyovers: 3% of cases in House A and 56% in House B (which had open windows) were correctly identified. Despite judgment inaccuracy, Ss were more than moderately certain of the correctness of their judgments. In Exper. II. Ss either inside or outside of 2 houses in Wallops Station, Virginia, indicated on diagrams the direction of flyovers. Each of 4 aircraft (Boeing 737, C-54, UE-1 helicopter, Queenaire) made 8 flyovers directly over the houses and 8 to one side. Windows were either open or closed. All flyovers and conditions were counterbalanced. All sound sources under all conditions were usually judged to be overhead and moving, but for Ss indoors with windows closed the to-the-side flyovers were judged to be off to the side in 24% of cases. Outdoor Ss reported correct direction in 75% of cases while indoor Ss were correct in only 25% (windows open) or 18% (windows closed). Judgments "to the side" were significantly better (p = less than .02) with windows open vs closed, while with windows closed judgments were significantly better (p = less than .05) for flyovers overhead vs to the side. In Exper. III, Ss localized in azimuth and in the vertical plane recorded noises (10 1-oct noise bands of CF = 28.12 c/s - 14.4kc/s, spoken voice, and jet aircraft takeoffs and landings), presented through 1, 2, or 4 floor-level loudspeakers at each corner of a simulated living room (4.2 x 5.4m)built inside an IAC soundproof room. Aircraft noises presented by 4 loudspeakers were localized as "directly" overhead 80% of the time and "generally overhead" about 90% of the time; other sounds were so localized about 50% and 75% of the time respectively. Through only 2 loudspeakers, aircraft noises were localized 25-36 degrees above horizontal. Implications are that acoustic realism can be achieved in simulated aircraft overflights and that future laboratory noise-effects research should incorporate the required conditions. PMID:262465

  5. Noise characterization of broadband fiber Cherenkov radiation as a visible-wavelength source for optical coherence tomography and two-photon fluorescence microscopy

    PubMed Central

    Tu, Haohua; Zhao, Youbo; Liu, Yuan; Liu, Yuan-Zhi; Boppart, Stephen

    2014-01-01

    Optical sources in the visible region immediately adjacent to the near-infrared biological optical window are preferred in imaging techniques such as spectroscopic optical coherence tomography of endogenous absorptive molecules and two-photon fluorescence microscopy of intrinsic fluorophores. However, existing sources based on fiber supercontinuum generation are known to have high relative intensity noise and low spectral coherence, which may degrade imaging performance. Here we compare the optical noise and pulse compressibility of three high-power fiber Cherenkov radiation sources developed recently, and evaluate their potential to replace the existing supercontinuum sources in these imaging techniques. PMID:25321223

  6. Activation process in excitable systems with multiple noise sources: Large number of units

    NASA Astrophysics Data System (ADS)

    Franović, Igor; Perc, Matjaž; Todorović, Kristina; Kostić, Srdjan; Burić, Nikola

    2015-12-01

    We study the activation process in large assemblies of type II excitable units whose dynamics is influenced by two independent noise terms. The mean-field approach is applied to explicitly demonstrate that the assembly of excitable units can itself exhibit macroscopic excitable behavior. In order to facilitate the comparison between the excitable dynamics of a single unit and an assembly, we introduce three distinct formulations of the assembly activation event. Each formulation treats different aspects of the relevant phenomena, including the thresholdlike behavior and the role of coherence of individual spikes. Statistical properties of the assembly activation process, such as the mean time-to-first pulse and the associated coefficient of variation, are found to be qualitatively analogous for all three formulations, as well as to resemble the results for a single unit. These analogies are shown to derive from the fact that global variables undergo a stochastic bifurcation from the stochastically stable fixed point to continuous oscillations. Local activation processes are analyzed in the light of the competition between the noise-led and the relaxation-driven dynamics. We also briefly report on a system-size antiresonant effect displayed by the mean time-to-first pulse.

  7. Effects of seasonal changes in ambient noise sources on monitoring temporal variations in crustal properties

    NASA Astrophysics Data System (ADS)

    Gong, Meng; Shen, Yang; Li, Hongyi; Li, Xinfu; Jia, Jinsheng

    2015-07-01

    Continuous data recorded at 39 broadband stations near the Longmen Shan Fault operated by the China Earthquake Administration from 1 January 2008 to 30 September 2010 are used to study temporal variability in direct surface wave arrivals extracted from ambient noise. We use a cross-correlation technique to compute Empirical green functions (EGFs) for all available station pairs at the frequency range of 0.1 to 0.5Hz. Delay times are measured by cross-correlating reference empirical green functions and moving 60-day stacks of EGFs. By comparing the temporal changes with and without the correction for seasonal variations, our results show that for some station pairs temporal variations were strongly affected by the seasonal variation. After correction for seasonal variations, we measure a 0.5-% maximum velocity drop after the 2008 Ms8.0 earthquake in Sichuan, China. We find that the Sichuan Basin exhibited a larger relative velocity drop than the Tibetan plateau area. Our results suggest that correction for seasonal variation is an important procedure for monitoring temporal variations in crustal properties using the direct arrival surface waves extracted from ambient noise.

  8. Performance of a ruthenium beam separator used to separate soft x rays from light generated by a high-order harmonic light source.

    PubMed

    Ichimaru, Satoshi; Hatayama, Masatoshi; Ohchi, Tadayuki; Gullikson, Eric M; Oku, Satoshi

    2016-02-10

    We describe the design and fabrication of a ruthenium beam separator used to simultaneously attenuate infrared light and reflect soft x rays. Measurements in the infrared and soft x-ray regions showed the beam separator to have a reflectivity of 50%-85% in the wavelength region from 6 to 10 nm at a grazing incidence angle of 7.5 deg and 4.3% at 800 nm and the same angle of grazing incidence, indicating that the amount of attenuation is 0.05-0.09. These results show that this beam separator could provide an effective means for separating IR light from soft x rays in light generated by high-order harmonic generation sources. PMID:26906363

  9. An experimental investigation of the sources of propeller noise due to turbulence ingestion

    NASA Astrophysics Data System (ADS)

    Scharpf, Daniel Francis

    Experimental measurements were performed on a four-bladed, 10-inch diameter marine propeller operating in a new open-jet, anechoic wind tunnel. A significant portion of the work consisted of the design, construction, and calibration of the wind tunnel facility. The wind tunnel could be operated from 5-100 ft/s with open-jet lengths from 2-7 feet. When the wind tunnel was installed the majority of the chamber had a low-frequency cut-off of 150 Hz. The freestream velocity and propeller rotational speed were 33 ft/s and 3000 RPM, respectively. Turbulence was generated at the exit plane of the wind tunnel inlet by square-mesh grids composed of cylindrical rods which resulted in turbulence levels at the propeller location from 0.2-5.5 percent. Measurements included steady thrust and torque, detailed hot wire surveys of the incoming flow and propeller wake, and sound pressure levels detailing the acoustic spectra and directivity. Bicoherence measurements in the propeller wake showed high coherence between the blade passage harmonics and the broadband frequencies near the hub and tip regions of the blades which indicated that the wake interactions were primarily non-linear. Inflow turbulence reduced this coherence. The integrated broad-band sound pressure level increased by approximately 2 dB for every 1 percent increase in the turbulence. These increases were decomposed into smaller frequency bandwidths and related to the inflow turbulence spectrum.

  10. Harmonic generation at high intensities

    SciTech Connect

    Schafer, K.J.; Krause, J.L.; Kulander, K.C.

    1993-06-01

    Atomic electrons subject to intense laser fields can absorb many photons, leading either to multiphoton ionization or the emission of a single, energetic photon which can be a high multiple of the laser frequency. The latter process, high-order harmonic generation, has been observed experimentally using a range of laser wavelengths and intensities over the past several years. Harmonic generation spectra have a generic form: a steep decline for the low order harmonics, followed by a plateau extending to high harmonic order, and finally an abrupt cutoff beyond which no harmonics are discernible. During the plateau the harmonic production is a very weak function of the process order. Harmonic generation is a promising source of coherent, tunable radiation in the XUV to soft X-ray range which could have a variety of scientific and possibly technological applications. Its conversion from an interesting multiphoton phenomenon to a useful laboratory radiation source requires a complete understanding of both its microscopic and macroscopic aspects. We present some recent results on the response of single atoms at intensities relevant to the short pulse experiments. The calculations employ time-dependent methods, which we briefly review in the next section. Following that we discuss the behavior of the harmonics as a function of laser intensity. Two features are notable: the slow scaling of the harmonic intensities with laser intensity, and the rapid variation in the phase of the individual harmonics with respect to harmonic order. We then give a simple empirical formula that predicts the extent of the plateau for a given ionization potential, wavelength and intensity.

  11. Demonstration of short-haul aircraft aft noise reduction techniques on a twenty inch (50.8) diameter fan, volume 2

    NASA Technical Reports Server (NTRS)

    Stimpert, D. L.

    1975-01-01

    Aft fan noise reduction techniques were investigated. The 1/3 octave band sound data were plotted with the following plots included: perceived noise level vs acoustic angle at 2 fan speeds; PWL vs frequency at 2 fan speeds; and sound pressure level vs frequency at 2 aft angles and 2 fan speeds. The source noise plots included: band pass filter sound pressure level vs acoustic angle at 2 fan speeds; and 2nd harmonic SPL acoustic angle at 2 fan speeds.

  12. Rayleigh and Love Wave imaging of Iceland using ambient noise and teleseismic sources

    NASA Astrophysics Data System (ADS)

    Harmon, Nicholas

    2015-04-01

    Iceland is one of the few regions where ridge-plume interaction can be examined with a terrestrial seismic array. Velocity structure from broadband surface wave dispersion measurements can be used to constrain the complicated crustal and upper mantle structure caused by the plume enhanced rifting activity. Here I use data from the ICEMELT and HOTSPOT arrays on Iceland to generate phase velocity dispersion maps of both Rayleigh and Love waves from ambient noise cross correlation and teleseismic events. I invert Rayleigh and Love wave dispersion observed from ambient noise for tomographic velocity structure. For teleseismic Rayleigh waves I use the two-plane wave approximation array-based method of Forsyth and Li [2005]. I also develop and adapt this method for teleseismic Love waves. This requires additional preprocessing of the data to estimate the amplitude and phase for teleseismic Love waves. Specifically, for each station, the vertical component phase observation of the fundamental mode Rayleigh is used to predict and remove the horizontal components of Rayleigh waves. Then I invert for the maximum amplitude and apparent back azimuth at each period of interest of the Love wave from the transverse and radial components. The amplitude and phase measurement is then inverted for phase velocity structure using a modified version of the two plane-wave approximation. Preliminary results indicate a low velocity region at short periods (8-15 s) in both the Rayleigh and Love wave phase velocity maps beneath the active volcanic centers in the middle of the island. At longer periods (20-125 s) a low velocity region is visible beneath central Iceland. The velocity minimum is located to the north of Iceland in the Rayleigh wave maps. These observations are consistent with previous studies in the region.

  13. Evaluation of the interim measurement protocol for railway noise source description

    NASA Astrophysics Data System (ADS)

    Janssens, M. H. A.; Jansen, H. W.; Dittrich, M. G.

    2006-06-01

    The Dutch national calculation scheme for railway noise has been declared the default interim method for railway noise calculation by the EU, until the introduction of results from the Harmonoise project. It includes a measurement protocol for determining emission input data in the format suitable for the present calculation scheme. The calculation scheme contains a fixed database of emission data for common Dutch rolling stock. The measurement protocol provides for the addition of emission data of new or foreign rolling stock. This is relevant for the Netherlands, as such rolling stock increasingly appears on the network, but also for other European countries that are going to use the interim method, since emission data for their rolling stock have to be established. The protocol features two procedures. Procedure A allows using the existing fixed database of emission data. Selection of a particular dataset (or 'category') can be based on external appearance of rolling stock (without measurements) or pass-by sound pressure level measurements at a site with known rail roughness. If a user finds that none of the existing data sets properly represent its rolling stock, the optional procedure B is available. This procedure assesses pass-by levels, track and wheel roughness levels. The measurement protocol is based on a type-test-like procedure requiring controlled conditions for the vehicle and track. A measurement campaign has been undertaken to test procedures A and B. This campaign coincided with a Swiss campaign to establish the sound emission of freight vehicles equipped with composite block brakes. The test of the protocol was focussed both on the practicability of the required measurements and on the unambiguity and comprehensiveness of the test. Open questions, findings, resulting conclusions and recommendations regarding the protocol are discussed here.

  14. The low frequency sound from multipole sources in axisymmetric shear flows, with applications to jet noise

    NASA Technical Reports Server (NTRS)

    Goldstein, M. E.

    1975-01-01

    A closed-form solution for the sound radiation from multipole sources imbedded in an infinite cylindrical jet with an arbitrary velocity profile is obtained. It is valid in the limit where the wavelength is large compared with the jet radius. Simple formulae for the acoustic pressure field due to convected point sources are also obtained. The results show (in a simple way) how the mean flow affects the radiation pattern from the sources. For convected lateral quadrupoles it causes the exponent of the Doppler factor multiplying the far-field pressure signal to be increased from the value of 3 used by Lighthill to 5.

  15. Acoustic Database for Turbofan Engine Core-Noise Sources. I; Volume

    NASA Technical Reports Server (NTRS)

    Gordon, Grant

    2015-01-01

    In this program, a database of dynamic temperature and dynamic pressure measurements were acquired inside the core of a TECH977 turbofan engine to support investigations of indirect combustion noise. Dynamic temperature and pressure measurements were recorded for engine gas dynamics up to temperatures of 3100 degrees Fahrenheit and transient responses as high as 1000 hertz. These measurements were made at the entrance of the high pressure turbine (HPT) and at the entrance and exit of the low pressure turbine (LPT). Measurements were made at two circumferential clocking positions. In the combustor and inter-turbine duct (ITD), measurements were made at two axial locations to enable the exploration of time delays. The dynamic temperature measurements were made using dual thin-wire thermocouple probes. The dynamic pressure measurements were made using semi-infinite probes. Prior to the engine test, a series of bench, oven, and combustor rig tests were conducted to characterize the performance of the dual wire temperature probes and to define and characterize the data acquisition systems. A measurement solution for acquiring dynamic temperature and pressure data on the engine was defined. A suite of hardware modifications were designed to incorporate the dynamic temperature and pressure instrumentation into the TECH977 engine. In particular, a probe actuation system was developed to protect the delicate temperature probes during engine startup and transients in order to maximize sensor life. A set of temperature probes was procured and the TECH977 engine was assembled with the suite of new and modified hardware. The engine was tested at four steady state operating speeds, with repeats. Dynamic pressure and temperature data were acquired at each condition for at least one minute. At the two highest power settings, temperature data could not be obtained at the forward probe locations since the mean temperatures exceeded the capability of the probes. The temperature data were processed using software that accounts for the effects of convective and conductive heat transfer. The software was developed under previous NASA sponsored programs. Compensated temperature spectra and compensated time histories corresponding to the dynamic temperature of the gas stream were generated. Auto-spectral and cross-spectral analyses of the data were performed to investigate spectral features, acoustic circumferential mode content, signal coherence, and time delays. The dynamic temperature data exhibit a wideband and fairly flat spectral content. The temperature spectra do not change substantially with operating speed. The pressure spectra in the combustor and ITD exhibit generally similar shapes and amplitudes, making it difficult to identify any features that suggest the presence of indirect combustion noise. Cross-spectral analysis reveal a strong correlation between pressure and temperature fluctuations in the ITD, but little correlation between temperature fluctuations at the entrance of the HPT and pressure fluctuations downstream of it. Temperature fluctuations at the entrance of the low pressure turbine were an order of magnitude smaller than those at the entrance to the high pressure turbine. Time delay analysis of the temperature fluctuations in the combustor was inconclusive, perhaps due to the substantial mixing that occurs between the upstream and downstream locations. Time delay analysis of the temperature fluctuations in the ITD indicate that they convect at the mean flow speed. Analysis of the data did not reveal any convincing indications of the presence of indirect combustion noise. However, this analysis has been preliminary and additional exploration of the data is recommended including the use of more sophisticated signal processing to explore subtle issues that have been revealed but which are not yet fully understood or explained.

  16. Harmonic engine

    DOEpatents

    Bennett, Charles L.

    2009-10-20

    A high efficiency harmonic engine based on a resonantly reciprocating piston expander that extracts work from heat and pressurizes working fluid in a reciprocating piston compressor. The engine preferably includes harmonic oscillator valves capable of oscillating at a resonant frequency for controlling the flow of working fluid into and out of the expander, and also preferably includes a shunt line connecting an expansion chamber of the expander to a buffer chamber of the expander for minimizing pressure variations in the fluidic circuit of the engine. The engine is especially designed to operate with very high temperature input to the expander and very low temperature input to the compressor, to produce very high thermal conversion efficiency.

  17. Core noise source diagnostics on a turbofan engine using correlation and coherence techniques

    NASA Technical Reports Server (NTRS)

    Karchmer, A. M.; Reshotko, M.

    1976-01-01

    Fluctuating pressure measurements at several locations within the core of a turbofan engine were made simultaneously with far field acoustic measurements. Correlation and coherence techniques were used to determine the relative amplitude and phase relationships between core pressures at these various locations and between the core pressures and far field acoustic pressure. The combustor is a low frequency source region for acoustic propagation through the core nozzle and out to the far field. The relation between source pressure and the resulting sound pressure involves a 180 degree phase shift and an amplitude transfer function which varies approximately as frequency squared. This is consistent with a simplified model using fluctuating entropy as a source term.

  18. Acoustic emissions of digital data video projectors- Investigating noise sources and their change during product aging

    NASA Astrophysics Data System (ADS)

    White, Michael Shane

    2005-09-01

    Acoustic emission testing continues to be a growing part of IT and telecommunication product design, as product noise is increasingly becoming a differentiator in the marketplace. This is especially true for digital/video display companies, such as InFocus Corporation, considering the market shift of these products to the home entertainment consumer as retail prices drop and performance factors increase. Projectors and displays using Digital Light Processing(tm) [DLP(tm)] technology incorporate a device known as a ColorWheel(tm) to generate the colors displayed at each pixel in the image. These ColorWheel(tm) devices spin at very high speeds and can generate high-frequency tones not typically heard in liquid crystal displays and other display technologies. Also, acoustic emission testing typically occurs at the beginning of product life and is a measure of acoustic energy emitted at this point in the lifecycle. Since the product is designed to be used over a long period of time, there is concern as to whether the acoustic emissions change over the lifecycle of the product, whether these changes will result in a level of nuisance to the average customer, and does this nuisance begin to develop prior to the intended lifetime of the product.

  19. Investigation of the aerodynamic noise generating region of a jet engine by means of the simple source fluid dilatation model

    NASA Technical Reports Server (NTRS)

    Hurdle, P. M.; Meecham, W. C.; Hodder, B. K.

    1974-01-01

    An experiment was conducted on a full-scale jet engine to investigate the aerodynamic noise generating regions in the free jet. Cross-correlation measurements were made between the static pressure fluctuations and the farfield radiated sound. These measurements were made for two different static pressure probe positions and a large number of farfield positions (at various angles). In addition, each test geometry was run for four different jet exit velocities. The measured, normalized cross-correlation functions varied between 0.004 and 0.155. A new Q-function, based on the above normalized cross correlation is defined and plotted. This function represents the source strength per unit volume within the jet region. This Q-function shows dependence on the probe position, the angular position of the farfield microphone, and the jet exit Mach number. Third-octave analyses of both the probe signal and the farfield radiated sound were made. The results show that cross-correlation techniques are a valuable tool in the investigation of the aerodynamic noise generating regions of an actual jet engine.

  20. Organizational Communication in Emergencies: Using Multiple Channels and Sources to Combat Noise and Capture Attention

    ERIC Educational Resources Information Center

    Stephens, Keri K.; Barrett, Ashley K.; Mahometa, Michael J.

    2013-01-01

    This study relies on information theory, social presence, and source credibility to uncover what best helps people grasp the urgency of an emergency. We surveyed a random sample of 1,318 organizational members who received multiple notifications about a large-scale emergency. We found that people who received 3 redundant messages coming through at…

  1. Organizational Communication in Emergencies: Using Multiple Channels and Sources to Combat Noise and Capture Attention

    ERIC Educational Resources Information Center

    Stephens, Keri K.; Barrett, Ashley K.; Mahometa, Michael J.

    2013-01-01

    This study relies on information theory, social presence, and source credibility to uncover what best helps people grasp the urgency of an emergency. We surveyed a random sample of 1,318 organizational members who received multiple notifications about a large-scale emergency. We found that people who received 3 redundant messages coming through at

  2. Next generation data harmonization

    NASA Astrophysics Data System (ADS)

    Armstrong, Chandler; Brown, Ryan M.; Chaves, Jillian; Czerniejewski, Adam; Del Vecchio, Justin; Perkins, Timothy K.; Rudnicki, Ron; Tauer, Greg

    2015-05-01

    Analysts are presented with a never ending stream of data sources. Often, subsets of data sources to solve problems are easily identified but the process to align data sets is time consuming. However, many semantic technologies do allow for fast harmonization of data to overcome these problems. These include ontologies that serve as alignment targets, visual tools and natural language processing that generate semantic graphs in terms of the ontologies, and analytics that leverage these graphs. This research reviews a developed prototype that employs all these approaches to perform analysis across disparate data sources documenting violent, extremist events.

  3. Nanograting-based compact VUV spectrometer and beam profiler for in-situ characterization of high-order harmonic generation light sources

    SciTech Connect

    Kornilov, Oleg; Wilcox, Russell; Gessner, Oliver

    2010-07-09

    A compact, versatile device for VUV beam characterization is presented. It combines the functionalities of a VUV spectrometer and a VUV beam profiler in one unit and is entirely supported by a standard DN200 CF flange. The spectrometer employs a silicon nitride transmission nanograting in combination with a micro-channel plate based imaging detector. This enables the simultaneous recording of wavelengths ranging from 10 nm to 80 nm with a resolution of 0.25 nm to 0.13 nm. Spatial beam profiles with diameters up to 10 mm are imaged with 0.1 mm resolution. The setup is equipped with an in-vacuum translation stage that allows for in situ switching between the spectrometer and beam profiler modes and for moving the setup out of the beam. The simple, robust design of the device is well suited for non-intrusive routine characterization of emerging laboratory- and accelerator-based VUV light sources. Operation of the device is demonstrated by characterizing the output of a femtosecond high-order harmonic generation light source.

  4. A generalized method for optimization of active noise controllers in three-dimensional spaces

    NASA Astrophysics Data System (ADS)

    Mollo, C. G.; Bernhard, R. J.

    1987-10-01

    In this investigation, the formulation of an optimal active noise controller for harmonic, enclosed sound fields is derived using an indirect boundary element method. The optimal active noise controller is defined as the volume velocity secondary source strengths which minimize the sound pressure level at a number of discrete interior locations. In addition, the formulation of an optimal active noise controller which minimizes the free field power radiated from a generalized, distributed noise source is presented. Representative results are provided for each formulation. For the enclosure problem, results are given for global control, local control, and passive wall treatments using a rectangular cavity. For the free field radiation problem, the effects of secondary source location and quantity on active noise controller performance are investigated. The relative merits of each formulation are discussed.

  5. Dual source CT (DSCT) imaging of obese patients: evaluation of CT number accuracy, uniformity, and noise

    NASA Astrophysics Data System (ADS)

    Walz-Flannigan, A.; Schmidt, B.,; Apel, A.; Eusemann, C.; Yu, L.; McCollough, C. H.

    2009-02-01

    Obese patients present challenges in obtaining sufficient x-ray exposure over reasonable time periods for acceptable CT image quality. To overcome this limitation, the exposure can be divided between two x-ray sources using a dualsource (DS) CT system. However, cross-scatter issues in DS CT may also compromise image quality. We evaluated a DS CT system optimized for imaging obese patients, comparing the CT number accuracy and uniformity to the same images obtained with a single-source (SS) acquisition. The imaging modes were compared using both solid cylindrical PMMA phantoms and a semi-anthropomorphic thorax phantom fitted with extension rings to simulate different size patients. Clinical protocols were used and CTDIvol and kVp were held constant between SS and DS modes. Results demonstrated good agreement in CT number between SS and DS modes in CT number, with the DS mode showing better axial uniformity for the largest phantoms.

  6. Computation of Large-Scale Structure Jet Noise Sources With Weak Nonlinear Effects Using Linear Euler

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Hixon, Ray; Mankbadi, Reda R.

    2003-01-01

    An approximate technique is presented for the prediction of the large-scale turbulent structure sound source in a supersonic jet. A linearized Euler equations code is used to solve for the flow disturbances within and near a jet with a given mean flow. Assuming a normal mode composition for the wave-like disturbances, the linear radial profiles are used in an integration of the Navier-Stokes equations. This results in a set of ordinary differential equations representing the weakly nonlinear self-interactions of the modes along with their interaction with the mean flow. Solutions are then used to correct the amplitude of the disturbances that represent the source of large-scale turbulent structure sound in the jet.

  7. Velocity analysis of simultaneous-source data using high-resolution semblance—coping with the strong noise

    NASA Astrophysics Data System (ADS)

    Gan, Shuwei; Wang, Shoudong; Chen, Yangkang; Qu, Shan; Zu, Shaohuan

    2016-02-01

    Direct imaging of simultaneous-source (or blended) data, without the need of deblending, requires a precise subsurface velocity model. In this paper, we focus on the velocity analysis of simultaneous-source data using the normal moveout-based velocity picking approach.We demonstrate that it is possible to obtain a precise velocity model directly from the blended data in the common-midpoint domain. The similarity-weighted semblance can help us obtain much better velocity spectrum with higher resolution and higher reliability compared with the traditional semblance. The similarity-weighted semblance enforces an inherent noise attenuation solely in the semblance calculation stage, thus it is not sensitive to the intense interference. We use both simulated synthetic and field data examples to demonstrate the performance of the similarity-weighted semblance in obtaining reliable subsurface velocity model for direct migration of simultaneous-source data. The migrated image of blended field data using prestack Kirchhoff time migration approach based on the picked velocity from the similarity-weighted semblance is very close to the migrated image of unblended data.

  8. Shielding Characteristics Using an Ultrasonic Configurable Fan Artificial Noise Source to Generate Modes - Experimental Measurements and Analytical Predictions

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Walker, Bruce E.

    2014-01-01

    An Ultrasonic Configurable Fan Artificial Noise Source (UCFANS) was designed, built, and tested in support of the NASA Langley Research Center's 14x22 wind tunnel test of the Hybrid Wing Body (HWB) full 3-D 5.8% scale model. The UCFANS is a 5.8% rapid prototype scale model of a high-bypass turbofan engine that can generate the tonal signature of proposed engines using artificial sources (no flow). The purpose of the program was to provide an estimate of the acoustic shielding benefits possible from mounting an engine on the upper surface of a wing; a flat plate model was used as the shielding surface. Simple analytical simulations were used to preview the radiation patterns - Fresnel knife-edge diffraction was coupled with a dense phased array of point sources to compute shielded and unshielded sound pressure distributions for potential test geometries and excitation modes. Contour plots of sound pressure levels, and integrated power levels, from nacelle alone and shielded configurations for both the experimental measurements and the analytical predictions are presented in this paper.

  9. Photon noise from chaotic and coherent millimeter-wave sources measured with horn-coupled, aluminum lumped-element kinetic inductance detectors

    NASA Astrophysics Data System (ADS)

    Flanigan, D.; McCarrick, H.; Jones, G.; Johnson, B. R.; Abitbol, M. H.; Ade, P.; Araujo, D.; Bradford, K.; Cantor, R.; Che, G.; Day, P.; Doyle, S.; Kjellstrand, C. B.; Leduc, H.; Limon, M.; Luu, V.; Mauskopf, P.; Miller, A.; Mroczkowski, T.; Tucker, C.; Zmuidzinas, J.

    2016-02-01

    We report photon-noise limited performance of horn-coupled, aluminum lumped-element kinetic inductance detectors at millimeter wavelengths. The detectors are illuminated by a millimeter-wave source that uses an active multiplier chain to produce radiation between 140 and 160 GHz. We feed the multiplier with either amplified broadband noise or a continuous-wave tone from a microwave signal generator. We demonstrate that the detector response over a 40 dB range of source power is well-described by a simple model that considers the number of quasiparticles. The detector noise-equivalent power (NEP) is dominated by photon noise when the absorbed power is greater than approximately 1 pW, which corresponds to NEP≈2 ×10-17 W Hz-1 /2 , referenced to absorbed power. At higher source power levels, we observe the relationships between noise and power expected from the photon statistics of the source signal: NEP∝P for broadband (chaotic) illumination and NEP∝P1 /2 for continuous-wave (coherent) illumination.

  10. Effects of background noise on total noise annoyance

    NASA Technical Reports Server (NTRS)

    Willshire, K. F.

    1987-01-01

    Two experiments were conducted to assess the effects of combined community noise sources on annoyance. The first experiment baseline relationships between annoyance and noise level for three community noise sources (jet aircraft flyovers, traffic and air conditioners) presented individually. Forty eight subjects evaluated the annoyance of each noise source presented at four different noise levels. Results indicated the slope of the linear relationship between annoyance and noise level for the traffic noise was significantly different from that of aircraft and of air conditioner noise, which had equal slopes. The second experiment investigated annoyance response to combined noise sources, with aircraft noise defined as the major noise source and traffic and air conditioner noise as background noise sources. Effects on annoyance of noise level differences between aircraft and background noise for three total noise levels and for both background noise sources were determined. A total of 216 subjects were required to make either total or source specific annoyance judgements, or a combination of the two, for a wide range of combined noise conditions.

  11. Flight effects on jet noise sources investigated by model experiments in the DNW

    NASA Astrophysics Data System (ADS)

    Grosche, F.-R.; Stiewitt, H.

    1983-04-01

    The axial sound source distribution of a subsonic model jet in a windtunnel flow was investigated at several ratios of tunnel velocity to jet velocity (0-0.25) by means of a highly directional microphone system. The tests were conducted in the anechoic testing hall of the German-Dutch Windtunnel (DNW), using its 8m x 6m open test section. The results of these acoustic measurements verify the assumed stretching of the sound-producing region of the jet due to the ambient flow. The observed stretching factors agree well with those deduced from aerodynamic experiments.

  12. Acoustic noise associated with the MOD-1 wind turbine: its source, impact, and control

    SciTech Connect

    Kelley, N.D.; McKenna, H.E.; Hemphill, R.R.; Etter, C.L.; Garrelts, R.L.; Linn, N.C.

    1985-02-01

    This report summarizes extensive research by staff of the Solar Energy Research Institute and its subcontractors conducted to establish the origin and possible amelioration of acoustic disturbances associated with the operation of the DOE/NASA MOD-1 wind turbine installed in 1979 near Boone, North Carolina. Results have shown that the source of this acoustic annoyance was the transient, unsteady aerodynamic lift imparted to the turbine blades as they passed through the lee wakes of the large, cylindrical tower supports. Nearby residents were annoyed by the low-frequency, acoustic impulses propagated into the structures in which the complainants lived. The situation was aggravated further by a complex sound propagation process controlled by terrain and atmospheric focusing. Several techniques for reducing the abrupt, unsteady blade load transients were researched and are discussed in the report.

  13. Glacial Isostatic Adjustment as a Source of Noise for the Interpretation of GRACE Data

    NASA Astrophysics Data System (ADS)

    Wahr, J.; Velicogna, I.; Paulson, A.

    2009-05-01

    Viscoelastic relaxation in the Earth's mantle caused by wide-spread deglaciation following the last glacial maximum (LGM), can appear as a secular trend in measurements of the Earth's time-variable gravity field. The presence of this trend can provide an opportunity to use gravity observations to constrain models of the glacial isostatic adjustment (GIA) process. But it can also be a nuisance for people who are using the gravity observations to learn about other things. Gravity observations, whether from satellites or from ground-based gravimeters, can not distinguish between the gravitational effects of water/snow/ice variations on or near the surface, and those caused by density variations deep within the mantle. Unmodeled or mismodeled GIA signals can sometimes make it difficult to use gravity observations to learn about secular changes in water/snow/ice from such places as northern Canada, Scandinavia, Antarctica, and Greenland: places where there was considerable long-term deglaciation following the LGM. These issues have become particularly important since the 2002 launch of the GRACE gravity satellite mission. GIA signals in northern Canada and Scandinavia are clearly evident in the GRACE data. But the presence of GIA signals in these and other regions has sometimes caused problems for long-term hydrological and, especially, cryospheric studies with GRACE. GIA model errors, for example, are by far the largest source of uncertainty when using GRACE to estimate present-day thinning rates of the Antarctic ice sheet. This talk will discuss the contributions of the GIA signal to GRACE time-variable gravity measurements; partly as an opportunity to study the GIA process, but mostly as a source of uncertainty for other applications.

  14. Harmonic engine

    DOEpatents

    Bennett, Charles L.; Sewall, Noel; Boroa, Carl

    2014-08-19

    An engine based on a reciprocating piston engine that extracts work from pressurized working fluid. The engine includes a harmonic oscillator inlet valve capable of oscillating at a resonant frequency for controlling the flow of working fluid into of the engine. In particular, the inlet valve includes an inlet valve head and a spring arranged together as a harmonic oscillator so that the inlet valve head is moveable from an unbiased equilibrium position to a biased closed position occluding an inlet. Upon releasing the inlet valve the inlet valve head undergoes a single oscillation past the equilibrium positio to a maximum open position and returns to a biased return position close to the closed position to choke the flow and produce a pressure drop across the inlet valve causing the inlet valve to close. Protrusions carried either by the inlet valve head or piston head are used to bump open the inlet valve from the closed position and initiate the single oscillation of the inlet valve head, and protrusions carried either by the outlet valve head or piston head are used to close the outlet valve ahead of the bump opening of the inlet valve.

  15. Determination of sound power levels of external noise sources. Part 1: Measurement methods. Part 2: Some Measurements

    NASA Astrophysics Data System (ADS)

    Jonasson, H. G.; Eslon, L.

    A general frame standard for determining sound power levels of external noise sources by in situ measurements is proposed. Suitable ISO standards, a long distance method which permits directivity measurement and a short distance method are incorporated. Measurements can be made in front of walls and in corners. The short distance method uses a parallelepipedical measurement surface, omitting the top microphone position. Recommended measurement distance is or = 5 m. The microphone height h = (height of reference box) + d may be exchanged for height 10 m, giving highest sound pressure level whenever h 10 m. For very large sources, near field corrections are introduced to cancel the effect to sound energy not passing at right angles to the measurement surface. The long distance method uses a 1/2, 1/4 or 1/8 spherical measurement surface. When directivity measurements are made, the number of microphone positions are doubled relative to those of ISO 3746. The directivity index is then calculated as in ISO 3744. Measurements confirm the validity of the methods.

  16. Feedback-based mitigation of torque harmonics in interior permanent magnet synchronous machines

    NASA Astrophysics Data System (ADS)

    Vaks, Nir

    Harmonics in the electromagnetic torque are a source of concern in permanent magnet synchronous machine (PMSM) drives. The harmonics are created by non-idealities in the electromagnetic fields produced by the magnets and the stator excitation. They lead to vibration that can cause premature wear of the drivetrain components as well as acoustic noise that may be bothersome to users. In this research, current- and voltage-based control schemes have been developed to mitigate the harmonics in a class of PMSMs in which the magnets are placed interior to the rotor iron. Interior permanent magnet synchronous machines (IPMSMs) have recently gained popularity for applications including hybrid electric vehicles and robot joint control. In the current-based control, a low-cost piezoelectric sensor is used to measure torque harmonics. A conjugate gradient algorithm is then applied to search for harmonics in the stator current that produce a commanded average torque while eliminating the measured torque harmonics. The algorithm is based upon analytical closed-form expressions for the average and harmonic components of torque that have been derived for IPMSMS with arbitrary back-emf waveforms. In the voltage-based control, a time-domain model of the machine is used to map the outputs of the conjugate gradient algorithm to commanded stator voltages. Since both utilize feedback, the controls are insensitive to changes in machine parameters that result from magnetic saturation, temperature, or parameter drift. In addition, the user has flexibility to select the harmonic(s) of torque to be eliminated.

  17. Directionality of ambient noise on the Juan de Fuca plate: implications for source locations of the primary and secondary microseisms

    NASA Astrophysics Data System (ADS)

    Tian, Ye; Ritzwoller, Michael H.

    2015-04-01

    Based on cross-correlations of ambient seismic noise computed using 61 ocean bottom seismometers (OBSs) within the Juan de Fuca (JdF) plate from the Cascadia Initiative experiment and 42 continental stations near the coast of the western United States, we investigate the locations of generation of the primary (11-20 s period) and secondary (5-10 s period) microseisms in the northern Pacific Ocean by analysing the directionality and seasonality of the microseism (Rayleigh wave) signals received in this region. We conclude that (1) the ambient noise observed across the array is much different in the primary and secondary microseism bands, both in its azimuthal content and seasonal variation. (2) The principal secondary microseism signals propagate towards the east, consistent with their generation in deep waters of the North Pacific, perhaps coincident both with the region of observed body wave excitation and the predicted wave-wave interaction region from recent studies. (3) The primary microseism, as indicated by observations of the azimuthal dependence of the fundamental mode Rayleigh wave as well as observations of precursory arrivals, derives significantly from the shallow waters of the eastern Pacific near to the JdF plate but also has a component generated at greater distance of unknown origin. (4) These observations suggest different physical mechanisms for generating the two microseisms: the secondary microseisms are likely to be generated by non-linear wave-wave interaction over the deep Pacific Ocean, while the primary microseism may couple directly into the solid earth locally in shallow waters from ocean gravity waves. (5) Above 5 s period, high quality empirical Green's functions are observed from cross-correlations between deep water OBSs and continental stations, which illustrates that microseisms propagate efficiently from either deep or shallow water source regions onto the continent and are well recorded by continental seismic stations.

  18. A Pipelining Implementation for Parsing X-ray Diffraction Source Data and Removing the Background Noise

    NASA Astrophysics Data System (ADS)

    Bauer, Michael A.; Biem, Alain; McIntyre, Stewart; Xie, Yuzhen

    2010-11-01

    Synchrotrons can be used to generate X-rays in order to probe materials at the atomic level. One approach is to use X-ray diffraction (XRD) to do this. The data from an XRD experiment consists of a sequence of digital image files which for a single scan could consist of hundreds or even thousands of digital images. Existing analysis software processes these images individually sequentially and is usually used after the experiment is completed. The results from an XRD detector can be thought of as a sequence of images, generated during the scan by the X-ray beam. If these images could be analyzed in near real-time, the results could be sent to the researcher running the experiment and used to improve the overall experimental process and results. In this paper, we report on a stream processing application to remove background from XRD images using a pipelining implementation. We describe our implementation techniques of using IBM Infosphere Streams for parsing XRD source data and removing the background. We present experimental results showing the super-linear speedup attained over a purely sequential version of the algorithm on a quad-core machine. These results demonstrate the potential of making good use of multi-cores for high-performance stream processing of XRD images.

  19. Harmonic auroral kilometric radiation of natural origin

    NASA Technical Reports Server (NTRS)

    Benson, R. F.

    1982-01-01

    When the ISIS 1 satellite passes through the auroral kilometric radiation (AKR) source region the sounder receiver often detects harmonic bands of radiation associated with the fundamental AKR band. These harmonic components were earlier attributed to a nonlinear instrumental response to the strong wide-band bursty AKR fundamental signal. Evidence is here presented that indicates that these harmonics are of natural origin, namely: (1) all the harmonic signals are sometimes observed to have nearly the same bandwidth, (2) when the fundamental signal has two components the harmonic signal sometimes corresponds to the weaker rather than the stronger component, (3) a weak harmonic can be observed to be associated with a weak fundamental, and (4) a 'harmonic' signal can be observed when there is no fundamental.

  20. Time-lapse imaging of fault properties at seismogenic depth using repeating earthquakes, active sources and seismic ambient noise

    NASA Astrophysics Data System (ADS)

    Cheng, Xin

    2009-12-01

    The time-varying stress field of fault systems at seismogenic depths plays the mort important role in controlling the sequencing and nucleation of seismic events. Using seismic observations from repeating earthquakes, controlled active sources and seismic ambient noise, five studies at four different fault systems across North America, Central Japan, North and mid-West China are presented to describe our efforts to measure such time dependent structural properties. Repeating and similar earthquakes are hunted and analyzed to study the post-seismic fault relaxation at the aftershock zone of the 1984 M 6.8 western Nagano and the 1976 M 7.8 Tangshan earthquakes. The lack of observed repeating earthquakes at western Nagano is attributed to the absence of a well developed weak fault zone, suggesting that the fault damage zone has been almost completely healed. In contrast, the high percentage of similar and repeating events found at Tangshan suggest the existence of mature fault zones characterized by stable creep under steady tectonic loading. At the Parkfield region of the San Andreas Fault, repeating earthquake clusters and chemical explosions are used to construct a scatterer migration image based on the observation of systematic temporal variations in the seismic waveforms across the occurrence time of the 2004 M 6 Parkfield earthquake. Coseismic fluid charge or discharge in fractures caused by the Parkfield earthquake is used to explain the observed seismic scattering properties change at depth. In the same region, a controlled source cross-well experiment conducted at SAFOD pilot and main holes documents two large excursions in the travel time required for a shear wave to travel through the rock along a fixed pathway shortly before two rupture events, suggesting that they may be related to pre-rupture stress induced changes in crack properties. At central China, a tomographic inversion based on the theory of seismic ambient noise and coda wave interferometry clearly reveals a coseismic velocity decrease region with the strike and length strikingly matching the fault zone of the 2008 M 7.9 Wenchuan earthquake at depth. We speculate the imaged decrease velocity region resulted from decreased crustal stress around the fault zone at upper crust.

  1. Jet aircraft engine noise reduction

    NASA Technical Reports Server (NTRS)

    Conrad, E. W.; Ciepluch, C. C.

    1972-01-01

    The development of advanced technology to reduce the effects of aircraft flyover noise is described. The procedures are directed toward identifying and minimizing the noise sources in aircraft engines and to absorbing noises which cannot be eliminated. The economic impact resulting from reducing noise levels is examined. Improvements in engine noise reduction technology are discussed.

  2. Effect of external pressure environment on the internal noise level due to a source inside a cylindrical tank

    NASA Technical Reports Server (NTRS)

    Clevenson, S. A.; Roussos, L. A.

    1984-01-01

    A small cylindrical tank was used to study the effect on the noise environment within a tank of conditions of atmospheric (sea level) pressure or vacuum environments on the exterior. Experimentally determined absorption coefficients were used to calculate transmission loss, transmissibility coefficients and the sound pressure (noise) level differences in the interior. The noise level differences were also measured directly for the two exterior environments and compared to various analytical approximations with limited agreement. Trend study curves indicated that if the tank transmission loss is above 25 dB, the difference in interior noise level between the vacuum and ambient pressure conditions are less than 2 dB.

  3. Harmonics and Resonance Issues with Wind Plants

    SciTech Connect

    Bradt, M.; Badrzadeh, Babak; Camm, E H; Castillo, Nestor; Mueller, David; Siebert, T.; Schoene, Jens; Smith, Travis M; Starke, Michael R; Walling, R.

    2011-01-01

    Wind plants are susceptible to lightly-damped resonances which can attract and amplify ambient grid harmonic distortion and magnify wind turbine harmonic generation. Long-accepted harmonic modeling assumptions and practices are not appropriate for wind plants. VSCs are not ideal current sources and grid impedance is important. Attention to modeling detail and thorough evaluation over range of conditions is critical to meaningful analysis. In general, wind turbines are very slight sources of harmonics. Most harmonic issues are a result of resonance, caused by capacitor banks (for reactive power compensation) or from the extensive underground cabling in a collector system. Converter controls instability can be exacerbated by power system resonances. In some cases this has caused severe voltage distorDon and other problems. The IEEE 519 recommended guidelines are very restrictive. I recommend that they are used to resolve serious harmonic issues, and not to create petty problems.

  4. STELLAR SURFACE MAGNETO-CONVECTION AS A SOURCE OF ASTROPHYSICAL NOISE. I. MULTI-COMPONENT PARAMETERIZATION OF ABSORPTION LINE PROFILES

    SciTech Connect

    Cegla, H. M.; Shelyag, S.; Watson, C. A.; Mathioudakis, M.

    2013-02-15

    We outline our techniques to characterize photospheric granulation as an astrophysical noise source. A four-component parameterization of granulation is developed that can be used to reconstruct stellar line asymmetries and radial velocity shifts due to photospheric convective motions. The four components are made up of absorption line profiles calculated for granules, magnetic intergranular lanes, non-magnetic intergranular lanes, and magnetic bright points at disk center. These components are constructed by averaging Fe I 6302 A magnetically sensitive absorption line profiles output from detailed radiative transport calculations of the solar photosphere. Each of the four categories adopted is based on magnetic field and continuum intensity limits determined from examining three-dimensional magnetohydrodynamic simulations with an average magnetic flux of 200 G. Using these four-component line profiles we accurately reconstruct granulation profiles, produced from modeling 12 Multiplication-Sign 12 Mm{sup 2} areas on the solar surface, to within {approx} {+-}20 cm s{sup -1} on a {approx}100 m s{sup -1} granulation signal. We have also successfully reconstructed granulation profiles from a 50 G simulation using the parameterized line profiles from the 200 G average magnetic field simulation. This test demonstrates applicability of the characterization to a range of magnetic stellar activity levels.

  5. Hybrid Wing Body Shielding Studies Using an Ultrasonic Configurable Fan Artificial Noise Source Generating Typical Turbofan Modes

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel l.; Brown, Clifford A.; Walker, Bruce E.

    2014-01-01

    An Ultrasonic Configurable Fan Artificial Noise Source (UCFANS) was designed, built, and tested in support of the NASA Langley Research Center's 14- by 22-ft wind tunnel test of the Hybrid Wing Body (HWB) full 3-D 5.8 percent scale model. The UCFANS is a 5.8 percent rapid prototype scale model of a high-bypass turbofan engine that can generate the tonal signature of proposed engines using artificial sources (no flow). The purpose of the test was to provide an estimate of the acoustic shielding benefits possible from mounting the engine on the upper surface of an HWB aircraft using the projected signature of the engine currently proposed for the HWB. The modal structures at the rating points were generated from inlet and exhaust nacelle configurations--a flat plate model was used as the shielding surface and vertical control surfaces with correct plan form shapes were also tested to determine their additional impact on shielding. Radiated acoustic data were acquired from a traversing linear array of 13 microphones, spanning 36 in. Two planes perpendicular, and two planes parallel, to the axis of the nacelle were acquired from the array sweep. In each plane the linear array traversed four sweeps, for a total span of 168 in. acquired. The resolution of the sweep is variable, so that points closer to the model are taken at a higher resolution. Contour plots of Sound Pressure Levels, and integrated Power Levels, from nacelle alone and shielded configurations are presented in this paper; as well as the in-duct mode power levels

  6. Hybrid Wing Body Shielding Studies Using an Ultrasonic Configurable Fan Artificial Noise Source Generating Typical Turbofan Modes

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Brown, Cliff; Walker, Bruce E.

    2014-01-01

    An Ultrasonic Configurable Fan Artificial Noise Source (UCFANS) was designed, built, and tested in support of the NASA Langley Research Center's 14x22 wind tunnel test of the Hybrid Wing Body (HWB) full 3-D 5.8% scale model. The UCFANS is a 5.8% rapid prototype scale model of a high-bypass turbofan engine that can generate the tonal signature of proposed engines using artificial sources (no flow). The purpose of the test was to provide an estimate of the acoustic shielding benefits possible from mounting the engine on the upper surface of an HWB aircraft using the projected signature of the engine currently proposed for the HWB. The modal structures at the rating points were generated from inlet and exhaust nacelle configurations - a flat plate model was used as the shielding surface and vertical control surfaces with correct plan form shapes were also tested to determine their additional impact on shielding. Radiated acoustic data were acquired from a traversing linear array of 13 microphones, spanning 36 inches. Two planes perpendicular, and two planes parallel, to the axis of the nacelle were acquired from the array sweep. In each plane the linear array traversed 4 sweeps, for a total span of 168 inches acquired. The resolution of the sweep is variable, so that points closer to the model are taken at a higher resolution. Contour plots of Sound Pressure Levels, and integrated Power Levels, from nacelle alone and shielded configurations are presented in this paper; as well as the in-duct mode power levels.

  7. Strongly Dispersive Transient Bragg Grating for High Harmonics

    SciTech Connect

    Farrell, J.; Spector, L.S.; Gaarde, M.B.; McFarland, B.K.; Bucksbaum, P.H.; Guhr, Markus

    2010-06-04

    We create a transient Bragg grating in a high harmonic generation medium using two counterpropagating pulses. The Bragg grating disperses the harmonics in angle and can diffract a large bandwidth with temporal resolution limited only by the source size.

  8. Transcriptional Bursting from the HIV-1 Promoter is a Significant Source of Stochastic Noise in HIV-1 Gene Expression

    SciTech Connect

    Singh, A; Razooky, B; Cox, Chris D.; Simpson, Michael L; Weinberger, Leor S.

    2010-01-01

    Analysis of noise in gene expression has proven a powerful approach for analyzing gene regulatory architecture. To probe the regulatory mechanisms controlling expression of HIV-1, we analyze noise in gene-expression from HIV-1 s long terminal repeat (LTR) promoter at different HIV-1 integration sites across the human genome. Flow cytometry analysis of GFP expression from the HIV-1 LTR shows high variability (noise) at each integration site. Notably, the measured noise levels are inconsistent with constitutive gene expression models. Instead, quantification of expression noise indicates that HIV-1 gene expression occurs through randomly timed bursts of activity from the LTR and that each burst generates an average of 2 10 mRNA transcripts before the promoter returns to an inactive state. These data indicate that transcriptional bursting can generate high variability in HIV-1 early gene products, which may critically influence the viral fate-decision between active replication and proviral latency.

  9. Laboratory study of the effects of sidewall treatment, source directivity and temperature on the interior noise of a light aircraft fuselage

    NASA Technical Reports Server (NTRS)

    Heitman, K. E.; Mixson, J. S.

    1986-01-01

    This paper describes a laboratory study of add-on {coustic treatments for a twin-engine, propeller-driven aircraft fuselage. The sound source was a pneumatic-driver, with attached horn to simulate propeller noise distribution, powered by a white noise signal. Treatments included a double-wall, production-line treatment and various fiberglass and lead-vinyl treatments. Insertion losses, space-averaged across six interior microphone positions, were used to evaluate the treatments. In addition, the effects of sound source angle and ambient temperature on interior sound pressure level are presented. The sound source angle is shown to have a significant effect on one-third octave band localized sound pressure level. While changes in ambient temperature are shown to have little effect on one-third octave band localized sound pressure level, the change in narrowband localized sound pressure level may be dramatic.

  10. Radiated noise characteristics of a modern cargo ship

    PubMed

    Arveson; Vendittis

    2000-01-01

    Extensive measurements were made of the radiated noise of M/V OVERSEAS HARRIETTE, a bulk cargo ship (length 173 m, displacement 25 515 tons) powered by a direct-drive low-speed diesel engine-a design representative of many modern merchant ships. The radiated noise data show high-level tonal frequencies from the ship's service diesel generator, main engine firing rate, and blade rate harmonics due to propeller cavitation. Radiated noise directionality measurements indicate that the radiation is generally dipole in form at lower frequencies, as expected. There are some departures from this pattern that may indicate hull interactions. Blade rate source level (174 dB re 1 microPa/m at 9 Hz, 16 knots) agrees reasonably well with a model of fundamental blade rate radiation previously reported by Gray and Greeley, but agreement for blade rate harmonics is not as good. Noise from merchant ships elevates the natural ambient by 20-30 dB in many areas; the effects of this noise on the biological environment have not been widely investigated. PMID:10641625

  11. Inductively coupled plasma spectrometry: Noise characteristics of aerosols, application of generalized standard additions method, and Mach disk as an emission source

    SciTech Connect

    Shen, Luan

    1995-10-06

    This dissertation is focused on three problem areas in the performance of inductively coupled plasma (ICP) source. The noise characteristics of aerosols produced by ICP nebulizers are investigated. A laser beam is scattered by aerosol and detected by a photomultiplier tube and the noise amplitude spectrum of the scattered radiation is measured by a spectrum analyzer. Discrete frequency noise in the aerosol generated by a Meinhard nebulizer or a direct injection nebulizer is primarily caused by pulsation in the liquid flow from the pump. A Scott-type spray chamber suppresses white noise, while a conical, straight-pass spray chamber enhances white noise, relative to the noise seen from the primary aerosol. Simultaneous correction for both spectral interferences and matrix effects in ICP atomic emission spectrometry (AES) can be accomplished by using the generalized standard additions method (GSAM). Results obtained with the application of the GSAM to the Perkin-Elmer Optima 3000 ICP atomic emission spectrometer are presented. The echelle-based polychromator with segmented-array charge-coupled device detectors enables the direct, visual examination of the overlapping lines Cd (1) 228.802 nm and As (1) 228.812 nm. The slit translation capability allows a large number of data points to be sampled, therefore, the advantage of noise averaging is gained. An ICP is extracted into a small quartz vacuum chamber through a sampling orifice in a water-cooled copper plate. Optical emission from the Mach disk region is measured with a new type of echelle spectrometer equipped with two segmented-array charge-coupled-device detectors, with an effort to improve the detection limits for simultaneous multielement analysis by ICP-AES.

  12. Semiconductor-based low-noise 100 MHz chirped pulse laser source based on a theta cavity design with an intra-cavity etalon and long-term stabilization

    NASA Astrophysics Data System (ADS)

    Mandridis, Dimitrios; Williams, Charles; Ozdur, Ibrahim; Klee, Anthony; Delfyett, Peter J.

    2011-06-01

    This work discusses the development of a frequency chirped, low repetition rate, semiconductor based mode-locked laser having reduced noise over previous demonstrations. Specifically, we present a major upgrade on the 100 MHz harmonically mode-locked Theta (?) laser cavity design in the form of the introduction of an intra-cavity fiberized Fabry-Perot etalon. The initial demonstration of the Theta cavity design offered improved energy per pulse and a linearly chirped pulse output compared to conventional cavity designs. Nonetheless, it suffered from pulse-to-pulse timing and energy noise. The noisy operation arises from the harmonic nature of the laser. To mitigate this effect we have inserted a fiberized etalon within the laser cavity. The intra-cavity etalon stores and inter-mixes the pulses of the harmonically mode-locked laser, as well as enforces lasing on a single optical mode-set from the multiple interleaved sets supported by the mode-locked laser due to its harmonic nature. This leads to the generation of a stable optical frequency comb with 100 MHz spacing and the suppression of the RF super-mode noise spurs, which results in a reduction of the laser noise. Due to fiber length drift in both the fiberized laser cavity and the fiberized etalon, a long-term stabilization scheme is necessary. An intra-cavity Hansch - Couillaud scheme is employed. The laser outputs chirped pulses with 10 nm of bandwidth. This work provides an in depth analysis of both the development of the Theta cavity with the intra-cavity etalon and the performance of the developed laser system.

  13. Phobos mass estimations from MEX and Viking 1 data: influence of different noise sources and estimation strategies

    NASA Astrophysics Data System (ADS)

    Kudryashova, M.; Rosenblatt, P.; Marty, J.-C.

    2015-08-01

    The mass of Phobos is an important parameter which, together with second-order gravity field coefficients and libration amplitude, constrains internal structure and nature of the moon. And thus, it needs to be known with high precision. Nevertheless, Phobos mass (GM, more precisely) estimated by different authors based on diverse data-sets and methods, varies by more than their 1-sigma error. The most complete lists of GM values are presented in the works of R. Jacobson (2010) and M. Paetzold et al. (2014) and include the estimations in the interval from (5.39 ± 0:03).10^5 (Smith et al., 1995) till (8.5 ± 0.7).10^5[m^3/s^2] (Williams et al., 1988). Furthermore, even the comparison of the estimations coming from the same estimation procedure applied to the consecutive flybys of the same spacecraft (s/c) shows big variations in GMs. The indicated behavior is very pronounced in the GM estimations stemming from the Viking1 flybys in February 1977 (as well as from MEX flybys, though in a smaller amplitude) and in this work we made an attempt to figure out its roots. The errors of Phobos GM estimations depend on the precision of the model (e.g. accuracy of Phobos a priori ephemeris and its a priori GM value) as well as on the radio-tracking measurements quality (noise, coverage, flyby distance). In the present work we are testing the impact of mentioned above error sources by means of simulations. We also consider the effect of the uncertainties in a priori Phobos positions on the GM estimations from real observations. Apparently, the strategy (i.e. splitting real observations in data-arcs, whether they stem from the close approaches of Phobos by spacecraft or from analysis of the s/c orbit evolution around Mars) of the estimations has an impact on the Phobos GM estimation.

  14. A Low-Noise CMOS THz Imager Based on Source Modulation and an In-Pixel High-Q Passive Switched-Capacitor N-Path Filter.

    PubMed

    Boukhayma, Assim; Dupret, Antoine; Rostaing, Jean-Pierre; Enz, Christian

    2016-01-01

    This paper presents the first low noise complementary metal oxide semiconductor (CMOS) deletedCMOS terahertz (THz) imager based on source modulation and in-pixel high-Q filtering. The 31 × 31 focal plane array has been fully integrated in a 0 . 13 μ m standard CMOS process. The sensitivity has been improved significantly by modulating the active THz source that lights the scene and performing on-chip high-Q filtering. Each pixel encompass a broadband bow tie antenna coupled to an N-type metal-oxide-semiconductor (NMOS) detector that shifts the THz radiation, a low noise adjustable gain amplifier and a high-Q filter centered at the modulation frequency. The filter is based on a passive switched-capacitor (SC) N-path filter combined with a continuous-time broad-band Gm-C filter. A simplified analysis that helps in designing and tuning the passive SC N-path filter is provided. The characterization of the readout chain shows that a Q factor of 100 has been achieved for the filter with a good matching between the analytical calculation and the measurement results. An input-referred noise of 0 . 2 μ V RMS has been measured. Characterization of the chip with different THz wavelengths confirms the broadband feature of the antenna and shows that this THz imager reaches a total noise equivalent power of 0 . 6 nW at 270 GHz and 0 . 8 nW at 600 GHz. PMID:26950131

  15. A source of illumination for low-noise Violin-Mode shadow sensors, intended for use in interferometric gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Lockerbie, N. A.; Tokmakov, K. V.; Strain, K. A.

    2014-12-01

    A low-noise source of illumination is described for shadow sensors having a displacement sensitivity of (69? ?13) picometres (rms)/?Hz, at 500?Hz, over a measuring span of 0.1?mm. These sensors were designed to detect Violin-Mode resonances in the suspension fibres of the test-masses/mirrors for the Advanced LIGO (Laser Interferometer Gravitational wave Observatory) gravitational wave detectors. The source of illumination (emitter) described here used a single column of 8 miniature near infrared LEDs (? = 890?nm). These emitters cast the shadows of 400??m diameter fused silica suspension fibres onto their complementary shadow-displacement detectors, located at a distance of 74 fibre diameters (29.6?mm) behind the axes of the fibres themselves. Violin-Mode vibrations of each fibre were sensed as differential ac photocurrents in the corresponding split-photodiode detector. This paper describes the design, construction, noise analysis, and measures that were taken in the conception of the emitters, in order to produce high-contrast shadows at such distant detectors. In this way it proved possible to obtain, simultaneously, a very high transfer sensitivity to Violin-Mode vibration of the fibres, and a very low level of detection noiseclose to the fundamental shot noise limitwhilst remaining within the constraints of this simple design of emitter. The shadow detector is described in an accompanying paper.

  16. Analysis of SNR penalty in Brillouin optical time-domain analysis sensors induced by laser source phase noise

    NASA Astrophysics Data System (ADS)

    Minardo, A.; Bernini, R.; Zeni, L.

    2016-02-01

    In this paper, we analyze numerically the effect of phase noise from the laser in Brillouin optical time-domain analysis (BOTDA) sensors. Due to laser phase noise, the phase shift between pump and probe beams is a stochastic variable with zero mean and variance changing with the position along the fiber. The numerical results, carried out for various fiber lengths and pump pulse durations, show that laser phase noise induces a reduction of the average Brillouin gain, as well as an increase of the overall system noise. Preliminary experimental results, carried out by use of a conventional BOTDA system and two DFB diode lasers having different linewidth (63 and 900 kHz), support the numerical analysis.

  17. Fourth Aircraft Interior Noise Workshop

    NASA Technical Reports Server (NTRS)

    Stephens, David G. (Compiler)

    1992-01-01

    The fourth in a series of NASA/SAE Interior Noise Workshops was held on May 19 and 20, 1992. The theme of the workshop was new technology and applications for aircraft noise with emphasis on source noise prediction; cabin noise prediction; cabin noise control, including active and passive methods; and cabin interior noise procedures. This report is a compilation of the presentations made at the meeting which addressed the above issues.

  18. Underwater noise of small personal watercraft (jet skis).

    PubMed

    Erbe, Christine

    2013-04-01

    Personal watercraft (water scooters, jet skis) were recorded under water in Bramble Bay, Queensland, Australia. Underwater noise emissions consisted of broadband energy between 100 Hz and 10 kHz due to the vibrating bubble cloud generated by the jet stream, overlain with frequency-modulated tonals corresponding to impeller blade rates and harmonics. Broadband monopole source levels were 149, 137, and 122 dB re 1 μPa @ 1 m (5th, 50th, and 95th percentiles). Even though these are lower than those of small propeller-driven boats, it is not necessarily the broadband source level that correlates with the bioacoustic impact on marine fauna. PMID:23556699

  19. Reduction of Helicopter Blade-Vortex Interaction Noise by Active Rotor Control Technology

    NASA Technical Reports Server (NTRS)

    Yu, Yung H.; Gmelin, Bernd; Splettstoesser, Wolf; Brooks, Thomas F.; Philippe, Jean J.; Prieur, Jean

    1997-01-01

    Helicopter blade-vortex interaction noise is one of the most severe noise sources and is very important both in community annoyance and military detection. Research over the decades has substantially improved basic physical understanding of the mechanisms generating rotor blade-vortex interaction noise and also of controlling techniques, particularly using active rotor control technology. This paper reviews active rotor control techniques currently available for rotor blade vortex interaction noise reduction, including higher harmonic pitch control, individual blade control, and on-blade control technologies. Basic physical mechanisms of each active control technique are reviewed in terms of noise reduction mechanism and controlling aerodynamic or structural parameters of a blade. Active rotor control techniques using smart structures/materials are discussed, including distributed smart actuators to induce local torsional or flapping deformations, Published by Elsevier Science Ltd.

  20. Unlocking higher harmonics in atomic force microscopy with gentle interactions

    PubMed Central

    Font, Josep; Verdaguer, Albert

    2014-01-01

    Summary In dynamic atomic force microscopy, nanoscale properties are encoded in the higher harmonics. Nevertheless, when gentle interactions and minimal invasiveness are required, these harmonics are typically undetectable. Here, we propose to externally drive an arbitrary number of exact higher harmonics above the noise level. In this way, multiple contrast channels that are sensitive to compositional variations are made accessible. Numerical integration of the equation of motion shows that the external introduction of exact harmonic frequencies does not compromise the fundamental frequency. Thermal fluctuations are also considered within the detection bandwidth of interest and discussed in terms of higher-harmonic phase contrast in the presence and absence of an external excitation of higher harmonics. Higher harmonic phase shifts further provide the means to directly decouple the true topography from that induced by compositional heterogeneity. PMID:24778948

  1. Color harmonization for images

    NASA Astrophysics Data System (ADS)

    Tang, Zhen; Miao, Zhenjiang; Wan, Yanli; Wang, Zhifei

    2011-04-01

    Color harmonization is an artistic technique to adjust a set of colors in order to enhance their visual harmony so that they are aesthetically pleasing in terms of human visual perception. We present a new color harmonization method that treats the harmonization as a function optimization. For a given image, we derive a cost function based on the observation that pixels in a small window that have similar unharmonic hues should be harmonized with similar harmonic hues. By minimizing the cost function, we get a harmonized image in which the spatial coherence is preserved. A new matching function is proposed to select the best matching harmonic schemes, and a new component-based preharmonization strategy is proposed to preserve the hue distribution of the harmonized images. Our approach overcomes several shortcomings of the existing color harmonization methods. We test our algorithm with a variety of images to demonstrate the effectiveness of our approach.

  2. Noise, A bibliography

    NASA Astrophysics Data System (ADS)

    Miller, L. L., Jr.

    1984-03-01

    Noise is the subject of this bibliography which has been developed from the military point-of-view. Operationally it may be defined as sound which lacks musical quality due to its discordant harmonic features. Selection of material coverage has been drawn from the unclassified book, document, and military periodicals holdings of the Morris Swet Technical Library, USAFAS. Inclusion of an item, or omission, neither implies USAFAS indorsement or sanction of the compiler's approach.

  3. Dragline noise survey

    NASA Astrophysics Data System (ADS)

    Vipperman, Jeffrey S.; Bauer, Eric R.

    2002-05-01

    It is estimated that 70%-90% of miners have enough noise induced hearing loss (NIHL) to be classified as a disability (NIOSH, Publication No. 76-172, 1976; Franks, NIOSH Internal Report, 1996). In response, NIOSH is conducting a cross-sectional survey of the mining industry in order to determine the sources of mining noise and offer recommendations on how to mitigate high noise levels, and bring mining operations into compliance with the recent mining noise regulation: 30CFR, Part 62. This paper will outline the results from noise surveys of eight draglines which operate in above-ground coal mining operations. The data recorded include noise dosimetry in conjunction with time-at-task studies and 1/3-octave sound level (Leq, Lmin, and Lmax) measurements. The 1/3-octave band readings were used to create noise contour maps which allowed the spatial and frequency information of the noise to be considered. Comparison of Lmin and Lmax levels offer insight into the variability of the noise levels inside the dragline. The potential for administrative controls is limited due to consistently high noise levels throughout the deck. Implementation of engineering controls is also hindered by the size and number of the noise sources and the frequency content of the noise.

  4. Aircraft interior noise reduction by alternate resonance tuning

    NASA Technical Reports Server (NTRS)

    Bliss, Donald B.; Gottwald, James A.; Srinivasan, Ramakrishna; Gustaveson, Mark B.

    1990-01-01

    Existing interior noise reduction techniques for aircraft fuselages perform reasonably well at higher frequencies, but are inadequate at lower frequencies, particularly with respect to the low blade passage harmonics with high forcing levels found in propeller aircraft. A method is being studied which considers aircraft fuselage lined with panels alternately tuned to frequencies above and below the frequency that must be attenuated. Adjacent panels would oscillate at equal amplitude, to give equal source strength, but with opposite phase. Provided these adjacent panels are acoustically compact, the resulting cancellation causes the interior acoustic modes to become cutoff, and therefore be non-propagating and evanescent. This interior noise reduction method, called Alternate Resonance Tuning (ART), is currently being investigated both theoretically and experimentally. This new concept has potential application to reducing interior noise due to the propellers in advanced turboprop aircraft as well as for existing aircraft configurations.

  5. Ultrahigh-resolution optical coherence tomography at 1.3 μm central wavelength by using a supercontinuum source pumped by noise-like pulses

    NASA Astrophysics Data System (ADS)

    You, Yi-Jing; Wang, Chengming; Lin, Yi-Lun; Zaytsev, Alexey; Xue, Ping; Pan, Ci-Ling

    2016-02-01

    We report on the ultrahigh-resolution optical coherence tomography (OCT) with a novel high-power supercontinuum (SC) light source generated by noise-like pulses from an Yb-doped fiber laser. The SC spectrum is flat with a bandwidth of 420 nm centered around ~1.3 μm. The light source is successfully employed in a time-domain OCT (TD-OCT), achieving an axial resolution of 2.3 μm. High resolution fiber-based spectral-domain OCT (SD-OCT) imaging of bio-tissue was also demonstrated.

  6. Acoustic analysis of aft noise reduction techniques measured on a subsonic tip speed 50.8 cm (twenty inch) diameter fan. [quiet engine program

    NASA Technical Reports Server (NTRS)

    Stimpert, D. L.; Clemons, A.

    1977-01-01

    Sound data which were obtained during tests of a 50.8 cm diameter, subsonic tip speed, low pressure ratio fan were analyzed. The test matrix was divided into two major investigations: (1) source noise reduction techniques; and (2) aft duct noise reduction with acoustic treatment. Source noise reduction techniques were investigated which include minimizing second harmonic noise by varying vane/blade ratio, variation in spacing, and lowering the Mach number through the vane row to lower fan broadband noise. Treatment in the aft duct which includes flow noise effects, faceplate porosity, rotor OGV treatment, slant cell treatment, and splitter simulation with variable depth on the outer wall and constant thickness treatment on the inner wall was investigated. Variable boundary conditions such as variation in treatment panel thickness and orientation, and mixed porosity combined with variable thickness were examined. Significant results are reported.

  7. Voltage harmonic elimination with RLC based interface smoothing filter

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, K.; Ramachandaramurthy, V. K.

    2015-04-01

    A method is proposed for designing a Dynamic Voltage Restorer (DVR) with RLC interface smoothing filter. The RLC filter connected between the IGBT based Voltage Source Inverter (VSI) is attempted to eliminate voltage harmonics in the busbar voltage and switching harmonics from VSI by producing a PWM controlled harmonic voltage. In this method, the DVR or series active filter produces PWM voltage that cancels the existing harmonic voltage due to any harmonic voltage source. The proposed method is valid for any distorted busbar voltage. The operating VSI handles no active power but only harmonic power. The DVR is able to suppress the lower order switching harmonics generated by the IGBT based VSI. Good dynamic and transient results obtained. The Total Harmonic Distortion (THD) is minimized to zero at the sensitive load end. Digital simulations are carried out using PSCAD/EMTDC to validate the performance of RLC filter. Simulated results are presented.

  8. Ultra-compact Watt-level flat supercontinuum source pumped by noise-like pulse from an all-fiber oscillator.

    PubMed

    Chen, He; Zhou, Xuanfeng; Chen, Sheng-Ping; Jiang, Zong-Fu; Hou, Jing

    2015-12-28

    We demonstrate Watt-level flat visible supercontinuum (SC) generation in photonic crystal fibers, which is directly pumped by broadband noise-like pulses from an Yb-doped all-fiber oscillator. The novel SC generator is featured with elegant all-fiber-integrated architecture, high spectral flatness and high efficiency. Wide optical spectrum spanning from 500 nm to 2300 nm with 1.02 W optical power is obtained under the pump of 1.4 W noise-like pulse. The flatness of the spectrum in the range of 700 nm~1600 nm is less than 5 dB (including the pump residue). The exceptional simplicity, economical efficiency and the comparable performances make the noise-like pulse oscillator a competitive candidate to the widely used cascade amplified coherent pulse as the pump source of broadband SC. To the best of our knowledge, this is the first demonstration of SC generation which is directly pumped by an all-fiber noise-like pulse oscillator. PMID:26831958

  9. Simple Harmonic Motion in Harmonic Plane Waves.

    ERIC Educational Resources Information Center

    Benumof, Reuben

    1980-01-01

    Discusses the distribution of kinetic and potential energy in transverse and longitudinal waves and examines the transmission of power and momentum. This discussion is intended to aid in understanding the simple harmonic motion of a particle involved in the propagation of a harmonic mechanical plane wave. (HM)

  10. Combustion and core noise

    NASA Astrophysics Data System (ADS)

    Mahan, J. Robert; Karchmer, Allen

    1991-08-01

    Two types of aircraft power plant are considered: the gas turbine and the reciprocating engine. The engine types considered are: the reciprocating engine, the turbojet engine, the turboprop engine, and the turbofan engine. Combustion noise in gas turbine engines is discussed, and reciprocating-engine combustion noise is also briefly described. The following subject areas are covered: configuration variables, operational variables, characteristics of combustion and core noise, sources of combustion noise, combustion noise theory and comparison with experiment, available prediction methods, diagnostic techniques, measurement techniques, data interpretation, and example applications.

  11. West Texas array experiment: Noise and source characterization of short-range infrasound and acoustic signals, along with lab and field evaluation of Intermountain Laboratories infrasound microphones

    NASA Astrophysics Data System (ADS)

    Fisher, Aileen

    The term infrasound describes atmospheric sound waves with frequencies below 20 Hz, while acoustics are classified within the audible range of 20 Hz to 20 kHz. Infrasound and acoustic monitoring in the scientific community is hampered by low signal-to-noise ratios and a limited number of studies on regional and short-range noise and source characterization. The JASON Report (2005) suggests the infrasound community focus on more broad-frequency, observational studies within a tactical distance of 10 km. In keeping with that recommendation, this paper presents a study of regional and short-range atmospheric acoustic and infrasonic noise characterization, at a desert site in West Texas, covering a broad frequency range of 0.2 to 100 Hz. To spatially sample the band, a large number of infrasound gauges was needed. A laboratory instrument analysis is presented of the set of low-cost infrasound sensors used in this study, manufactured by Inter-Mountain Laboratories (IML). Analysis includes spectra, transfer functions and coherences to assess the stability and range of the gauges, and complements additional instrument testing by Sandia National Laboratories. The IMLs documented here have been found reliably coherent from 0.1 to 7 Hz without instrument correction. Corrections were built using corresponding time series from the commercially available and more expensive Chaparral infrasound gauge, so that the corrected IML outputs were able to closely mimic the Chaparral output. Arrays of gauges are needed for atmospheric sound signal processing. Our West Texas experiment consisted of a 1.5 km aperture, 23-gauge infrasound/acoustic array of IMLs, with a compact, 12 m diameter grid-array of rented IMLs at the center. To optimize signal recording, signal-to-noise ratio needs to be quantified with respect to both frequency band and coherence length. The higher-frequency grid array consisted of 25 microphones arranged in a five by five pattern with 3 meter spacing, without spatial wind noise filtering hoses or pipes. The grid was within the distance limits of a single gauge's normal hose array, and data were used to perform a spatial noise correlation study. The highest correlation values were not found in the lower frequencies as anticipated, owing to a lack of sources in the lower range and the uncorrelated nature of wind noise. The highest values, with cross-correlation averages between 0.4 and 0.7 from 3 to 17 m between gauges, were found at night from 10 and 20 Hz due to a continuous local noise source and low wind. Data from the larger array were used to identify continuous and impulsive signals in the area that comprise the ambient noise field. Ground truth infrasound and acoustic, time and location data were taken for a highway site, a wind farm, and a natural gas compressor. Close-range sound data were taken with a single IML "traveler" gauge. Spectrograms and spectrum peaks were used to identify their source signatures. Two regional location techniques were also tested with data from the large array by using a propane cannon as a controlled, impulsive source. A comparison is presented of the Multiple Signal Classification Algorithm (MUSIC) to a simple, quadratic, circular wavefront algorithm. MUSIC was unable to effectively separate noise and source eignenvalues and eigenvectors due to spatial aliasing of the propane cannon signal and a lack of incoherent noise. Only 33 out of 80 usable shots were located by MUSIC within 100 m. Future work with the algorithm should focus on location of impulsive and continuous signals with development of methods for accurate separation of signal and noise eigenvectors in the presence of coherent noise and possible spatial aliasing. The circular wavefront algorithm performed better with our specific dataset and successfully located 70 out of 80 propane cannon shots within 100 m of the original location, 66 of which were within 20 m. This method has low computation requirements, making it well suited for real-time automated processing and smaller computers. Future research could focus on development of the method for an automated system and statistical impulsive noise filtering for higher accuracy.

  12. Aircraft noise prediction program theoretical manual, part 2

    NASA Technical Reports Server (NTRS)

    Zorumski, W. E.

    1982-01-01

    Detailed prediction methods for specific aircraft noise sources are given. These sources are airframe noise, combustion noise, fan noise, single and dual stream jet noise, and turbine noise. Modifications to the NASA methods which comply with the International Civil Aviation Organization standard method for aircraft noise prediction are given.

  13. Active Interior Noise Control Studies

    NASA Technical Reports Server (NTRS)

    Park, J.; Veeramani, S.; Sampath, A.; Balachandran, B.; Wereley, N.

    1996-01-01

    Analytical and experimental investigations into the control of noise in the interior of a three-dimensional enclosure with a flexible boundary are presented. The rigid boundaries are constructed from acrylic material, and in the different cases considered the flexible boundary is constructed from either aluminum or composite material. Noise generated by an external speaker is transmitted into the enclosure through the flexible boundary and active control is realized by using Lead Zirconate Titanate (PZT) piezoelectric actuators bonded to the flexible boundary. Condenser microphones are used for noise measurements inside and outside the enclosure. Minimization schemes for global and local noise control in the presence of a harmonic disturbance are developed and discussed. In the experiments, analog feedforward control is implemented by using the harmonic disturbance as a reference signal.

  14. Harmonization of Biodiesel Specifications

    SciTech Connect

    Alleman, T. L.

    2008-02-01

    Worldwide biodiesel production has grown dramatically over the last several years. Biodiesel standards vary across countries and regions, and there is a call for harmonization. For harmonization to become a reality, standards have to be adapted to cover all feedstocks. Additionally, all feedstocks cannot meet all specifications, so harmonization will require standards to either tighten or relax. For harmonization to succeed, the biodiesel market must be expanded with the alignment of test methods and specification limits, not contracted.

  15. High order harmonic generation in rare gases

    SciTech Connect

    Budil, K.S.

    1994-05-01

    The process of high order harmonic generation in atomic gases has shown great promise as a method of generating extremely short wavelength radiation, extending far into the extreme ultraviolet (XUV). The process is conceptually simple. A very intense laser pulse (I {approximately}10{sup 13}-10{sup 14} W/cm{sup 2}) is focused into a dense ({approximately}10{sup l7} particles/cm{sup 3}) atomic medium, causing the atoms to become polarized. These atomic dipoles are then coherently driven by the laser field and begin to radiate at odd harmonics of the laser field. This dissertation is a study of both the physical mechanism of harmonic generation as well as its development as a source of coherent XUV radiation. Recently, a semiclassical theory has been proposed which provides a simple, intuitive description of harmonic generation. In this picture the process is treated in two steps. The atom ionizes via tunneling after which its classical motion in the laser field is studied. Electron trajectories which return to the vicinity of the nucleus may recombine and emit a harmonic photon, while those which do not return will ionize. An experiment was performed to test the validity of this model wherein the trajectory of the electron as it orbits the nucleus or ion core is perturbed by driving the process with elliptically, rather than linearly, polarized laser radiation. The semiclassical theory predicts a rapid turn-off of harmonic production as the ellipticity of the driving field is increased. This decrease in harmonic production is observed experimentally and a simple quantum mechanical theory is used to model the data. The second major focus of this work was on development of the harmonic {open_quotes}source{close_quotes}. A series of experiments were performed examining the spatial profiles of the harmonics. The quality of the spatial profile is crucial if the harmonics are to be used as the source for experiments, particularly if they must be refocused.

  16. Modulating nonlinear optical properties of impurity doped quantum dots via the interplay between anisotropy and Gaussian white noise

    NASA Astrophysics Data System (ADS)

    Sarkar, Sucharita; Ghosh, Arghya Pratim; Mandal, Arkajit; Ghosh, Manas

    2016-02-01

    The influence of anisotropy on various nonlinear optical (NLO) properties such as total optical absorption coefficient (TOAC), nonlinear optical rectification (NOR), second harmonic generation (SHG) and third harmonic generation (THG) of impurity doped quantum dots (QDs) have been investigated in presence and absence of noise. Noise has been applied to the system additively and multiplicatively. The impurity potential is modeled by a Gaussian function and the noise applied being Gaussian white noise. A perpendicular magnetic field emerges out as a confinement source and a static external electric field has been applied. Profiles of the optical properties have been monitored as a function of incident photon energy for different values of anisotropy. In this connection the role of mode of application of noise (additive/multiplicative) has also been analysed. The interplay between noise and anisotropy has been found to profoundly affect the NLO properties. The investigation reveals that there are only one or two anisotropy regimes (depending on the particular NLO property under consideration) where noise-induced enhancement of the NLO property can be realized. Thus, anisotropy appears to be the central parameter by which the noise-induced enhancement of NLO properties of doped QD systems can be tailored.

  17. Discrete-frequency radiated noise and unsteady rotor force from a subsonic axial flow fan

    NASA Astrophysics Data System (ADS)

    Chiu, Wen-Shyang; Lauchle, G. C.; Thompson, D. E.

    1988-07-01

    Noise radiated by a subsonic, axial-flow fan at its rotational frequency and harmonics is related to the non-steady force field created at the rotor blade/fluid interface. This unsteady field is highly dependent on the time-invariant flow distortions that enter the fan. In this study, a typical cooling fan used in the electronic industry was instrumented with a shaft unsteady axial force sensor. Its output is proportional to the total unsteady axial force created by the rotor. On-axis sound pressure levels were measured and compared to coherent output power spectra involving the unsteady force sensor and the microphone. Very good coherence at the discrete tones is observed. The fan's inflow field was systematically distorted by placing a small cylinder at various positions in the inlet plane. The non-uniform, 3-D flow field entering the rotor was measured by traversing a set of miniature five-hole pressure probes. The total pressure outputs from this probe can be related to the axial, tangential, and radial velocity vectors. Fourier decomposition of the inflow velocity data is coupled with analysis to give information on the unsteady rotor force harmonic content. A simplified Curle's equation was then used to compute the discrete-frequency radiated noise at the Blade Passage Frequency (BPF) and its harmonics. The predicted and measured noise levels are in close agreement at the BPF and the first harmonic when the fan is a compact source.

  18. Rotorcraft noise

    NASA Technical Reports Server (NTRS)

    Huston, R. J. (Compiler)

    1982-01-01

    The establishment of a realistic plan for NASA and the U.S. helicopter industry to develop a design-for-noise methodology, including plans for the identification and development of promising noise reduction technology was discussed. Topics included: noise reduction techniques, scaling laws, empirical noise prediction, psychoacoustics, and methods of developing and validing noise prediction methods.

  19. Environmental issues: noise, rail noise, and high-speed rail

    SciTech Connect

    Hall, F.L.; Welland, J.D.; Bragdon, C.R.; Houtman, J.W.; Immers, B.H.

    1987-01-01

    The six papers in the report deal with the following areas: the effect of noise barriers on the market value of adjacent residential properties; control of airport- and aircraft-related noise in the United States; a traffic-assignment model to reduce noise annoyance in urban networks; a survey of railroad occupational noise sources; a prediction procedure for rail transportation ground-borne noise and vibration; and high-speed rail in California: the dream, the process, and the reality.

  20. Higher-Order Harmonic Generation from Fullerene by Means of the Plasma Harmonic Method

    SciTech Connect

    Ganeev, R. A.; Bom, L. B. Elouga; Abdul-Hadi, J.; Ozaki, T.; Wong, M. C. H.; Brichta, J. P.; Bhardwaj, V. R.

    2009-01-09

    We demonstrate, for the first time, high-order harmonic generation from C{sub 60} by an intense femtosecond Ti:sapphire laser. Laser-produced plasmas from C{sub 60}-rich epoxy and C{sub 60} films were used as the nonlinear media. Harmonics up to the 19th order were observed. The harmonic yield from fullerene-rich plasma is about 25 times larger compared with those produced from a bulk carbon target. Structural studies of plasma debris confirm the presence and integrity of fullerenes within the plasma plume, indicating fullerenes as the source of high-order harmonics.

  1. A Mode Propagation Database Suitable for Code Validation Utilizing the NASA Glenn Advanced Noise Control Fan and Artificial Sources

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.

    2014-01-01

    The NASA Glenn Research Center's Advanced Noise Control Fan (ANCF) was developed in the early 1990s to provide a convenient test bed to measure and understand fan-generated acoustics, duct propagation, and radiation to the farfield. A series of tests were performed primarily for the use of code validation and tool validation. Rotating Rake mode measurements were acquired for parametric sets of: (i) mode blockage, (ii) liner insertion loss, (iii) short ducts, and (iv) mode reflection.

  2. A Mode Propagation Database Suitable for Code Validation Utilizing the NASA Glenn Advanced Noise Control Fan and Artificial Sources

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.

    2014-01-01

    The NASA Glenn Research Center's Advanced Noise Control Fan (ANCF) was developed in the early 1990s to provide a convenient test bed to measure and understand fan-generated acoustics, duct propagation, and radiation to the farfield. A series of tests were performed primarily for the use of code validation and tool validation. Rotating Rake mode measurements were acquired for parametric sets of: (1) mode blockage, (2) liner insertion loss, (3) short ducts, and (4) mode reflection.

  3. Core-Noise Research

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2012-01-01

    This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015 (N+1), 2020 (N+2), and 2025 (N+3) timeframes; SFW strategic thrusts and technical challenges; SFW advanced subsystems that are broadly applicable to N+3 vehicle concepts, with an indication where further noise research is needed; the components of core noise (compressor, combustor and turbine noise) and a rationale for NASA's current emphasis on the combustor-noise component; the increase in the relative importance of core noise due to turbofan design trends; the need to understand and mitigate core-noise sources for high-efficiency small gas generators; and the current research activities in the core-noise area, with additional details given about forthcoming updates to NASA's Aircraft Noise Prediction Program (ANOPP) core-noise prediction capabilities, two NRA efforts (Honeywell International, Phoenix, AZ and University of Illinois at Urbana-Champaign, respectively) to improve the understanding of core-noise sources and noise propagation through the engine core, and an effort to develop oxide/oxide ceramic-matrix-composite (CMC) liners for broadband noise attenuation suitable for turbofan-core application. Core noise must be addressed to ensure that the N+3 noise goals are met. Focused, but long-term, core-noise research is carried out to enable the advanced high-efficiency small gas-generator subsystem, common to several N+3 conceptual designs, needed to meet NASA's technical challenges. Intermediate updates to prediction tools are implemented as the understanding of the source structure and engine-internal propagation effects is improved. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Quiet-Aircraft Subproject aims to develop concepts and technologies to reduce perceived community noise attributable to aircraft with minimal impact on weight and performance. This reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic.

  4. Noise Pollution

    MedlinePLUS

    ... here: EPA Home Air and Radiation Noise Pollution Noise Pollution This page has moved. You should be ... epa.gov/clean-air-act-overview/title-iv-noise-pollution Local Navigation Air & Radiation Home Basic Information ...

  5. Noise source detection and measurement in a supersonic air jet using Ultra-high Speed Rainbow Schlieren Deflectometry

    NASA Astrophysics Data System (ADS)

    Rajora, Manik; Agrawal, Ajay; Mitchell, William; Kolhe, Pankaj

    2012-11-01

    Supersonic jets emit noise from various regions including the shear layer containing vortical structures, various shock cell structures in the near field and the downstream jet core breakdown region. Sound waves emitted from these various regions interact with each other and produce distinct noise spectra away from the jet, which depends upon the measurement location. Typically sound is detected by intrusive probes that provide measurements at a specific location, which makes it difficult to identify the origination point of such noise in a supersonic jet. In this study, an ultra-high speed Rainbow Schlieren Deflectometry (RSD) technique has been developed to optically visualize not only the supersonic jet flow but also the sound waves emanating from it in real time. Color schlieren images are acquired at up to 250,000 frames per second to capture the sound wave propagation with adequate spatial resolution. Optical components of the system were optimized to improve the spatial and temporal resolutions and hence, the schlieren video quality. To the best of our knowledge, this is the first time sound wave propagation from supersonic jets has been recorded in real time on a schlieren video. Acquired color schlieren images are amenable to quantitative analysis, and can provide data on sound power and sound wave frequency across the whole field. This project was funded by NSF REU 1062611 and Department of Energy for Institue for Sustainable Energy EE003134.

  6. Propeller modelling effects on interior noise in cylindrical cavities with application to active control

    NASA Technical Reports Server (NTRS)

    Silcox, R. J.; Lester, H. C.

    1989-01-01

    The coupling of a vibrating finite elastic cylinder and its interior cavity, closed with rigid end caps, is examined. Results are presented for several types of excitation including a point force, a single external acoustic monopole, and an array of external monopoles. Modal spectra are examined for a frequency range typical of the harmonic noise produced by advanced turbo-props. The effect of frequency and source distribution on modal content is presented. Significant interface modal filtering, which would have a beneficial impact on an active system for reducing interior noise, was found to occur for all cases. Some preliminary experimental data for a stiffened, composite cylinder are presented and discussed.

  7. Core-Noise

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2010-01-01

    This presentation is a technical progress report and near-term outlook for NASA-internal and NASA-sponsored external work on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system level noise metrics for the 2015, 2020, and 2025 timeframes; the emerging importance of core noise and its relevance to the SFW Reduced-Noise-Aircraft Technical Challenge; the current research activities in the core-noise area, with some additional details given about the development of a high-fidelity combustion-noise prediction capability; the need for a core-noise diagnostic capability to generate benchmark data for validation of both high-fidelity work and improved models, as well as testing of future noise-reduction technologies; relevant existing core-noise tests using real engines and auxiliary power units; and examples of possible scenarios for a future diagnostic facility. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Reduced-Noise-Aircraft Technical Challenge aims to enable concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries. This reduction of aircraft noise is critical for enabling the anticipated large increase in future air traffic. Noise generated in the jet engine core, by sources such as the compressor, combustor, and turbine, can be a significant contribution to the overall noise signature at low-power conditions, typical of approach flight. At high engine power during takeoff, jet and fan noise have traditionally dominated over core noise. However, current design trends and expected technological advances in engine-cycle design as well as noise-reduction methods are likely to reduce non-core noise even at engine-power points higher than approach. In addition, future low-emission combustor designs could increase the combustion-noise component. The trend towards high-power-density cores also means that the noise generated in the low-pressure turbine will likely increase. Consequently, the combined result from these emerging changes will be to elevate the overall importance of turbomachinery core noise, which will need to be addressed in order to meet future noise goals.

  8. Noise Control of High Speed Shinkansen

    NASA Astrophysics Data System (ADS)

    Moritoh, Y.; Zenda, Y.; Nagakura, K.

    1996-05-01

    A review of Shinkansen noise and methods for its control is given. In the process of controlling the noise, it has been found that many types of noise are generated from various parts of cars and other installations. These include rolling noise, bridge structure noise, pantograph spark noise, pantograph aerodynamic noise, other aerodynamic noise and gear noise. The countermeasures to reduce the individual noise are described. In order to control wayside noise, we must know the contribution of each noise element. For this purpose, "microphone array" and "parabola microphone" measurements are made. The methods of treatment of the data obtained by this measuring equipment are shown, and the amount of noise generated from the individual noise source is estimated. When the train speed increases, the contribution of aerodynamic noise becomes large. It will be considerably reduced if the surface of cars is smooth. Finally, we deduce the least possible noise values of Shinkansen, on the basis of the results obtained so far.

  9. High noise immunity one shot

    NASA Technical Reports Server (NTRS)

    Schaffer, G. L.

    1972-01-01

    Multivibrator circuit, which includes constant current source, isolates line noise from timing circuitry and field effect transistor controls circuit's operational modes. Circuit has high immunity to supply line noise.

  10. Thermal Noise of Epoxies

    NASA Astrophysics Data System (ADS)

    Fair, Hannah; Harry, Gregory; Newport, Jonathan; Penn, Steve

    2015-04-01

    Interferometric precision optical measurement is a powerful tool for investigating the smallest of physical phenomena. Examples of this include gravitational wave detection, precision spectroscopy, and laser ring gyroscopes. The limiting noises sources include thermal fluctuations from optical materials and structures. Epoxies can be used to construct hardware for these experiments, which can significantly contribute to the thermal noise. At American University, we are investigating the elastic properties of various epoxies to better predict thermal noise.

  11. Prediction of airframe noise

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.; Fratello, D. J.; Hayden, R. E.; Kadman, Y.; Africk, S.

    1975-01-01

    Methods of predicting airframe noise generated by aircraft in flight under nonpowered conditions are discussed. Approaches to predictions relying on flyover data and component theoretical analyses are developed. A nondimensional airframe noise spectrum of various aircraft is presented. The spectrum was obtained by smoothing all the measured spectra to remove any peculiarities due to airframe protrusions, normalizing each spectra by its overall sound pressure level and a characteristics frequency, and averaging the spectra together. A chart of airframe noise sources is included.

  12. Anatomy of a controversy: Application of the Langevin technique to the analysis of the Californium-252 Source-Driven Noise Analysis method for subcriticality determination

    SciTech Connect

    Stolle, A.M.

    1991-01-01

    The expressions for the power spectral density of the noise equivalent sources have been calculated explicitly for the (a) stochastic transport equation, (b) the one-speed transport equaton, (c) the one-speed P{sub 1} equations, (d) the one-speed diffusion equation and (e) the point kinetic equation. The stochastic nature of Fick's law in (d) has been emphasized. The Langevin technique has been applied at various levels of approximation to the interpretation of the Californium-252 Source-Driven Noise Analysis (CSDNA) experiment for determining the reactivity in subcritical media. The origin of the controversy surrounding this method has been explained. The foundations of the CSDNA method as a viable experimental technique to infer subcriticality from a measured ratio of power spectral densities of the outputs of two neutron detectors and a third external source detector has been examined by solving the one-speed stochastic diffusion equation for a point external Californium-252 source and two detectors in an infinite medium. The expression relating reactivity to the measured ratio of PSDs was found to depend implicitly on k itself. Through a numerical analysis fo this expression, the authors have demonstrated that for a colinear detector-source-detector configuration for neutron detectors far from the source, the expression for the subcritical multiplication factor becomes essentially insensitive to k, hence, demonstrating some possibility for the viability of this technique. However, under more realistic experimental conditions, i.e., for finite systems in which diffusion theroy is not applicable, the measurement of the subcritical multiplication factor from a single measured ratio of PSDs, without extensive transport calculations, remains doubtful.

  13. A statistical evaluation of effective time constants of random telegraph noise with various operation timings of in-pixel source follower transistors

    NASA Astrophysics Data System (ADS)

    Yonezawa, A.; Kuroda, R.; Teramoto, A.; Obara, T.; Sugawa, S.

    2014-03-01

    We evaluated effective time constants of random telegraph noise (RTN) with various operation timings of in-pixel source follower transistors statistically, and discuss the dependency of RTN time constants on the duty ratio (on/off ratio) of MOSFET which is controlled by the gate to source voltage (VGS). Under a general readout operation of CMOS image sensor (CIS), the row selected pixel-source followers (SFs) turn on and not selected pixel-SFs operate at different bias conditions depending on the select switch position; when select switch locate in between the SF driver and column output line, SF drivers nearly turn off. The duty ratio and cyclic period of selected time of SF driver depends on the operation timing determined by the column read out sequence. By changing the duty ratio from 1 to 7.6 x 10-3, time constant ratio of RTN (time to capture noise reduction, detection and analysis of in pixel-SF with RTN.

  14. Spherical Harmonic Analysis via Bayesian Inference

    NASA Astrophysics Data System (ADS)

    Muir, J. B.; Tkalcic, H.

    2014-12-01

    The real spherical harmonics form a compact, simple and commonly used set of basis functions for describing fields in tomographic inverse problems. It is therefore often useful to perform spherical harmonic analysis on data to represent it in the spherical harmonic parametrisation. Most existing algorithms, based on Fourier transforms, require that data be interpolated to a regular grid; this is not appropriate for the sparse, irregularly distributed data found in many geophysical applications. Instead, this work casts the problem of spherical harmonic analysis as an inverse problem, and applies the methods of Bayesian inference to overcome regularization problems in the inversion. This allows irregular data to be easily handled, and directly provides error estimates for the inverted spherical harmonic parameters. Synthetic tests have shown that this method easily handles relatively large amounts of added Gaussian noise. So far, this method has been applied to estimate the power in each harmonic degree for tomographic maps of the deep mantle based on PKP-PKIKP and PcP-P differential travel times, showing that they agree at global length scales despite local heterogeneity results being heavily influenced by data coverage. This potentially allows for simple heuristic arguments to constrain the global variation in core-mantle boundary topography based on the similarity between PKP and PcP derived tomographic maps.

  15. Harmonic considerations for electrical distribution feeders

    NASA Astrophysics Data System (ADS)

    1988-03-01

    Harmonics on the electric power distribution system can cause motor overheating, capacitor failures,watt-hour meter error, and relay malfunctions. The degree of problems caused by harmonics is greatly dependent on the characteristics of the distribution feeder, which can absorb a considerable percentage of its capacity in harmonic currents without ill effects. However, power factor correction capacitors can cause resonances near harmonic voltages that can result in intolerable distortion. Both motor loads and resistive loads can decrease the effect of resonance significantly. This report describes useful techniques to analyze, suppress, and measure harmonics on distribution feeders. Applicable areas for manual analysis and computer analysis are explained. The basic formulae are presented as well as sophisticated computer methods. Emphasis is placed on the fundamental principle. Models of harmonic-producing devices are presented and their limitations discussed. Most distribution feeder harmonics analyses can be performed using simple current source models. Filtering of specific loads and general, dispersed load is discussed. The fundamental principle in filtering distribution feeders is to shorten the harmonic current path. 3-dimensional plots enhance the understanding of the filtering action. Equipment and procedures for making measurements are described.

  16. Core Noise - Increasing Importance

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2011-01-01

    This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015, 2020, and 2025 timeframes; turbofan design trends and their aeroacoustic implications; the emerging importance of core noise and its relevance to the SFW Reduced-Perceived-Noise Technical Challenge; and the current research activities in the core-noise area, with additional details given about the development of a high-fidelity combustor-noise prediction capability as well as activities supporting the development of improved reduced-order, physics-based models for combustor-noise prediction. The need for benchmark data for validation of high-fidelity and modeling work and the value of a potential future diagnostic facility for testing of core-noise-reduction concepts are indicated. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Reduced-Perceived-Noise Technical Challenge aims to develop concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries. This reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic. Noise generated in the jet engine core, by sources such as the compressor, combustor, and turbine, can be a significant contribution to the overall noise signature at low-power conditions, typical of approach flight. At high engine power during takeoff, jet and fan noise have traditionally dominated over core noise. However, current design trends and expected technological advances in engine-cycle design as well as noise-reduction methods are likely to reduce non-core noise even at engine-power points higher than approach. In addition, future low-emission combustor designs could increase the combustion-noise component. The trend towards high-power-density cores also means that the noise generated in the low-pressure turbine will likely increase. Consequently, the combined result from these emerging changes will be to elevate the overall importance of turbomachinery core noise, which will need to be addressed in order to meet future noise goals.

  17. Simulated flight effects on noise characteristics of a fan inlet with high throat Mach number

    NASA Technical Reports Server (NTRS)

    Wesoky, H. L.; Dietrich, D. A.; Abbott, J. M.

    1978-01-01

    An anechoic wind tunnel experiment was conducted to determine the effects of simulated flight on the noise characteristics of a high throat Mach number fan inlet. Comparisons were made with the performance of a conventional low throat Mach number inlet with the same 50.8 cm fan noise source. Simulated forward velocity of 41 m/sec reduced perceived noise levels for both inlets, the largest effect being more than 3 db for the high throat Mach number inlet. The high throat Mach number inlet was as much as 7.5 db quieter than the low throat Mach number inlet with tunnel airflow and about 6 db quieter without tunnel airflow. Effects of inlet flow angles up to 30 deg were seemingly irregular and difficult to characterize because of the complex flow fields and generally small noise variations. Some modifications of tones and directivity at blade passage harmonics resulting from inlet flow angle variation were noted.

  18. Harmonics generated from a DC biased transformer

    SciTech Connect

    Shu Lu; Yilu Liu; Ree, J. De La . The Bradley Dept. of Electrical Engineering)

    1993-04-01

    The paper presents harmonic characteristics of transformer excitation currents under DC bias caused by geomagnetically induced currents (GIC). A newly developed saturation model of a single phase shell form transformer based on 3D finite element analysis is used to calculate the excitation currents. As a consequence, the complete variations of excitation current harmonics with respect to an extended range of GIC bias are revealed. The results of this study are useful in understanding transformers as harmonic sources and the impact on power systems during a solar magnetic disturbance.

  19. SEVENTH HARMONIC 20 GHz CO-GENERATOR

    SciTech Connect

    Hirshfield, Jay L

    2014-04-08

    To satisfy the need for multi-MW rf sources in frequency ranges where commercial sources do not exist, a study was undertaken on a class of devices based on gyro-harmonic frequency multiplication. This mechanism relies upon adding energy in gyrating motion to a linear electron beam that traverses a rotating-mode TE111-mode drive cavity in a dc magnetic field. The beam then drifts along the magnetic field into a second cavity, operating in the TEn11-mode tuned to the nth harmonic of the drive cavity. Studies of this configuration have been carried out for 2 < n < 7. Results are given for multi-MW, efficient operation of a 7th harmonic device operating at 20 GHz, and a 2nd harmonic device operating at 22.4 GHz.

  20. Third Harmonic Mechanism in Complex Plasmonic Fano Structures

    PubMed Central

    2014-01-01

    We perform third harmonic spectroscopy of dolmen-type nanostructures, which exhibit plasmonic Fano resonances in the near-infrared. Strong third harmonic emission is predominantly radiated close to the low energy peak of the Fano resonance. Furthermore, we find that the third harmonic polarization of the subradiant mode interferes destructively and diminishes the nonlinear signal in the far-field. By comparing the experimental third harmonic spectra with finite element simulations and an anharmonic oscillator model, we find strong indications that the source of the third harmonic is the optical nonlinearity of the bare gold enhanced by the resonant plasmonic polarization. PMID:25540812

  1. GRACE Harmonic and Mascon Solutions at JPL

    NASA Astrophysics Data System (ADS)

    Watkins, M. M.; Yuan, D.; Kuang, D.; Bertiger, W.; Kim, M.; Kruizinga, G. L.

    2005-12-01

    Gravity field solutions at JPL over the past few years have explored use of range, range-rate, and range-acceleration K/Ka-band satellite-satellite data types (with and without GPS), and with both spherical harmonic and mascon-type local mass representations. Until recently, resource and computing limitations have limited the scope of our mascon and other local solutions to a few months and/or small spatial regions and the standard GRACE products have remained spherical harmonic fields. The use of a new very large (~500 node) beowulf machine at JPL is now enabling a wider range of solutions over longer time spans and deeper understanding of their characteristics. These include much higher spherical harmonic degrees, mascons, and hybrids of the two. We will present the current status for several solution types, strengths and weaknesses of each, and our assessments of limiting errors including data noise and aliasing sensitivity.

  2. Workshop on Harmonic Oscillators

    NASA Technical Reports Server (NTRS)

    Han, D. (Editor); Kim, Y. S. (Editor); Zachary, W. W. (Editor)

    1993-01-01

    Proceedings of a workshop on Harmonic Oscillators held at the College Park Campus of the University of Maryland on March 25 - 28, 1992 are presented. The harmonic oscillator formalism is playing an important role in many branches of physics. This is the simplest mathematical device which can connect the basic principle of physics with what is observed in the real world. The harmonic oscillator is the bridge between pure and applied physics.

  3. Detection of volatile and soluble general anesthetics using a fluorescence-based fiber optic sensor: recent progress in chemical sensitivity and noise sources

    NASA Astrophysics Data System (ADS)

    Yager, Paul; Abrams, Susan B.

    1992-04-01

    A fiber optic sensor for general anesthetics based on the phase transition of immobilized phospholipid vesicles is under development. Current work centers on evaluating the sensor response to different anesthetics and instrumentation design. The fluorescence of laurdan- doped liposomes is found to respond linearly to the infusible anesthetics thiopental sodium and Propofol. Preliminary experiments have been performed to determine sources of noise in the optical and electronic components of the sensor as it is now configured. One potential noise source is the liposome sample at the fiber tip; photobleaching and thermal fluctuations due to heating by the illuminating 360 nm radiation can affect measurement of the anesthetic level. Heating of the sample is a factor at high illumination levels, but photobleaching, which reduces the signal intensity, does not alter the intensity ratio upon which the anesthetic concentration measurement is based. Optical microscopy of fiber tips embedded in liposomes allows direct observation of the light intensity near the tip of the fiber despite the extreme turbidity of the suspension. Light intensity drops to less than 10% of its maximum intensity at the fiber tip within 300 micrometers . Further use of this technique should allow monitoring the effects of photobleaching on the spatial distribution of the liposomes responsible for the measured optical signal.

  4. Evaluation of the annoyance due to helicopter rotor noise

    NASA Technical Reports Server (NTRS)

    Sternfeld, H., Jr.; Doyle, L. B.

    1978-01-01

    A program was conducted in which 25 test subjects adjusted the levels of various helicopter rotor spectra until the combination of the harmonic noise and a broadband background noise was judged equally annoying as a higher level of the same broadband noise spectrum. The subjective measure of added harmonic noise was equated to the difference in the two levels of broadband noise. The test participants also made subjective evaluations of the rotor noise signatures which they created. The test stimuli consisted of three degrees of rotor impulsiveness, each presented at four blade passage rates. Each of these 12 harmonic sounds was combined with three broadband spectra and was adjusted to match the annoyance of three different sound pressure levels of broadband noise. Analysis of variance indicated that the important variables were level and impulsiveness. Regression analyses indicated that inclusion of crest factor improved correlation between the subjective measures and various objective or physical measures.

  5. Nonlinear Time Series Analysis in the Absence of Strong Harmonics

    NASA Astrophysics Data System (ADS)

    Stine, Peter; Jevtic, N.

    2010-05-01

    Nonlinear time series analysis has successfully been used for noise reduction and for identifying long term periodicities in variable star light curves. It was thought that good noise reduction could be obtained when a strong fundamental and second harmonic are present. We show that, quite unexpectedly, this methodology for noise reduction can be efficient for data with very noisy power spectra without a strong fundamental and second harmonic. Not only can one obtain almost two orders of magnitude noise reduction of the white noise tail, insight can also be gained into the short time scale of organized behavior. Thus, we are able to obtain an estimate of this short time scale, which is on the order of 1.5 hours in the case of a variable white dwarf.

  6. Urban Noise Protection

    NASA Astrophysics Data System (ADS)

    Jcker-Cppers, Michael

    Noise belongs to the severest environmental impairments in towns, with road traffic being the most annoying noise source. The reduction of these impairments and the precaution against new noise impacts is an important task of the communities. However, many of the potential abatement measures are not in the responsibility of the communities. In most European countries, noise emission regulations for road and rail vehicles and outdoor machinery are nowadays enforced by the European Union. Noise reception limits are generally enforced by national laws. Therefore, efficient noise abatement in towns has to be coordinated with the regional, national and supranational, i.e. European noise policy. The most important fields of action for the urban noise abatement are the roads, railways and airports with heavy traffic. For the avoidance of health risks due to noise here short-term reductions are needed, which can generally be achieved only by a combination of measures for which different stakeholders are responsible. This underlines the importance of integrated and coordinated noise abatement concepts.

  7. Rotorcraft Noise Model

    NASA Technical Reports Server (NTRS)

    Lucas, Michael J.; Marcolini, Michael A.

    1997-01-01

    The Rotorcraft Noise Model (RNM) is an aircraft noise impact modeling computer program being developed for NASA-Langley Research Center which calculates sound levels at receiver positions either on a uniform grid or at specific defined locations. The basic computational model calculates a variety of metria. Acoustic properties of the noise source are defined by two sets of sound pressure hemispheres, each hemisphere being centered on a noise source of the aircraft. One set of sound hemispheres provides the broadband data in the form of one-third octave band sound levels. The other set of sound hemispheres provides narrowband data in the form of pure-tone sound pressure levels and phase. Noise contours on the ground are output graphically or in tabular format, and are suitable for inclusion in Environmental Impact Statements or Environmental Assessments.

  8. Development of an impulsive noise source to study the acoustic reflection characteristics of hard-walled wind tunnels

    NASA Technical Reports Server (NTRS)

    Salikuddin, M.; Burrin, R. H.; Ahuja, K. K.; Bartel, H. W.

    1986-01-01

    Two impulsive sound sources, one using multiple acoustic drivers and the other using a spark discharge were developed to study the acoustic reflection characteristics of hard-walled wind tunnels, and the results of laboratory tests are presented. The analysis indicates that though the intensity of the pulse generated by the spark source was higher than that obtained from the acoustic source, the number of averages needed for a particular test may require an unacceptibly long tunnel-run time due to the low spark generation repeat rate because of capacitor charging time. The additional hardware problems associated with the longevity of electrodes and electrode holders in sustaining the impact of repetitive spark discharges, show the multidriver acoustic source to be more suitable for this application.

  9. Covariant harmonic oscillators and coupled harmonic oscillators

    NASA Technical Reports Server (NTRS)

    Han, Daesoo; Kim, Young S.; Noz, Marilyn E.

    1995-01-01

    It is shown that the system of two coupled harmonic oscillators shares the basic symmetry properties with the covariant harmonic oscillator formalism which provides a concise description of the basic features of relativistic hadronic features observed in high-energy laboratories. It is shown also that the coupled oscillator system has the SL(4,r) symmetry in classical mechanics, while the present formulation of quantum mechanics can accommodate only the Sp(4,r) portion of the SL(4,r) symmetry. The possible role of the SL(4,r) symmetry in quantum mechanics is discussed.

  10. Axisymmetric generalized harmonic evolution code

    NASA Astrophysics Data System (ADS)

    Sorkin, Evgeny

    2010-04-01

    We describe the first axisymmetric numerical code based on the generalized harmonic formulation of the Einstein equations, which is regular at the axis. We test the code by investigating gravitational collapse of distributions of complex scalar field in a Kaluza-Klein spacetime. One of the key issues of the harmonic formulation is the choice of the gauge source functions, and we conclude that a damped-wave gauge is remarkably robust in this case. Our preliminary study indicates that evolution of regular initial data leads to formation both of black holes with spherical and cylindrical horizon topologies. Intriguingly, we find evidence that near threshold for black hole formation the number of outcomes proliferates. Specifically, the collapsing matter splits into individual pulses, two of which travel in the opposite directions along the compact dimension and one which is ejected radially from the axis. Depending on the initial conditions, a curvature singularity develops inside the pulses.

  11. Axisymmetric generalized harmonic evolution code

    SciTech Connect

    Sorkin, Evgeny

    2010-04-15

    We describe the first axisymmetric numerical code based on the generalized harmonic formulation of the Einstein equations, which is regular at the axis. We test the code by investigating gravitational collapse of distributions of complex scalar field in a Kaluza-Klein spacetime. One of the key issues of the harmonic formulation is the choice of the gauge source functions, and we conclude that a damped-wave gauge is remarkably robust in this case. Our preliminary study indicates that evolution of regular initial data leads to formation both of black holes with spherical and cylindrical horizon topologies. Intriguingly, we find evidence that near threshold for black hole formation the number of outcomes proliferates. Specifically, the collapsing matter splits into individual pulses, two of which travel in the opposite directions along the compact dimension and one which is ejected radially from the axis. Depending on the initial conditions, a curvature singularity develops inside the pulses.

  12. Amplitude-noise reduction in lasers with intracavity nonlinear elements

    SciTech Connect

    Walls, D.F.; Collett, M.J. ); Lane, A.S. )

    1990-10-01

    We consider lasers with intracavity nonlinear elements, e.g., two-photon absorption, second-harmonic generation, as a possible means to reduce the amplitude fluctuations in a laser. While amplitude squeezing up to 37% may be obtained for the internal field, only a modest amount of noise reduction (10% for two-photon absorption, effectively zero for second-harmonic generation) is found in the output field at the laser frequency. In the second-harmonic field an amplitude-noise reduction of 50% below the shot-noise level may be achieved.

  13. Small- and large-signal trap-assisted GR noise modeling in semiconductor devices

    NASA Astrophysics Data System (ADS)

    Donati Guerrieri, Simona; Conte, Gabriele; Bonani, Fabrizio; Ghione, Giovanni

    2004-05-01

    This contribution is aimed at describing the available techniques for simulating trap-assisted generation recombination noise in electron devices. We consider physics-based models, where carrier transport equations are complemented by a set of rate equations, one for each trap energy level included in the model, expressing charge conservation. To the aim of noise analysis, such rate equations include stochastic Langevin sources representing level occupancy fluctuations, whose statistical properties are known from basic physical analysis. A generalization of the standard Green's function technique to the physics-based noise analysis can be then exploited to propagate the internal fluctuations to the device terminals, in order to evaluate the correlation matrix of the external noise generators. With reference to a simple device, a superposition of noninteracting trap levels with a proper distribution of timeconstants is shown to yield a 1/f spectrum on a prescribed frequency range. In large-signal operation the fundamental white noise fluctuations are amplitude modulated by the periodic device working point and converted into cyclostationary fluctuations. The cyclostationary internal noise is then propagated to the device terminals by means of proper Green's functions that also involve noise frequency conversion. The same device discussed in small-signal operation is simulated in cyclostationary conditions, therefore demonstrating the upconversion of 1/f noise from baseband to the steady-state harmonics.

  14. The effects of noise on man

    SciTech Connect

    Kryter, K.D.

    1985-01-01

    As a reference source of research concerning effects of noise on people, this book reports and analyzes procedures used in regulation and control of noise. Quantitative relations are formed between physical measures of environmental noise and the reactions of people and communities to noise. The author reviews scientific and engineering research published from 1970 to the present. The Effects of Noise on Man, Second Edition discusses: adverse effects of noise and noise-induced hearing loss on speech communications; damage to hearing from ''everyday'' noise; damage to hearing from industrial noise and gunfire; work performance in noise; effects of noise on non-auditory systems of the body and sleep; aircraft and street traffic noise and its effects on health, annoyance, and house depreciation; physical measurements used for the assessment and control of environmental noise; federal standards and guidelines for community noise and proposed modification based on recent research findings.

  15. Power System Harmonic Elimination to Improve Power Quality

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, K.; Ramachandaramurthy, V. K.

    2015-06-01

    An improvised RLC interface filter for a Dynamic Voltage Restorer (DVR) is proposed. The RLC filter is connected in the front end between the IGBT based Voltage Source Inverter (VSI) and the injection transformer and is able to eliminate voltage harmonics in the system and also switching harmonics generated from VSI. The voltage at the sensitive load end is pure sinusoidal. In this method, the DVR produced Pulse Width Modulation (PWM) voltage with voltage harmonic canceling the voltage harmonic generated from the supply main. The VSI handles harmonic power. The low order switching harmonics generated by the IGBT based VSI is suppressed. The DVR has greater voltage injection capability. Good dynamic and transient results recorded and Total Harmonic Distortion (THD) at the sensitive load end is minimized. The voltage at the sensitive load is sinusoidal and at 1.0 pu. PSCAD/EMTDC is used to validate the performance of the interface filter and the DVR. Simulated results are presented.

  16. New constraints on the magmatic system beneath Newberry Volcano from the analysis of active and passive source seismic data, and ambient noise

    NASA Astrophysics Data System (ADS)

    Heath, B.; Toomey, D. R.; Hooft, E. E. E.

    2014-12-01

    Magmatic systems beneath arc-volcanoes are often poorly resolved by seismic imaging due to the small spatial scale and large magnitude of crustal heterogeneity in combination with field experiments that sparsely sample the wavefield. Here we report on our continued analysis of seismic data from a line of densely-spaced (~300 m), three-component seismometers installed on Newberry Volcano in central Oregon for ~3 weeks; the array recorded an explosive shot, ~20 teleseismic events, and ambient noise. By jointly inverting both active and passive-source travel time data, the resulting tomographic image reveals a more detailed view of the presumed rhyolitic magma chamber at ~3-5 km depth, previously imaged by Achauer et al. (1988) and Beachly et al. (2012). The magma chamber is elongated perpendicular to the trend of extensional faulting and encircled by hypocenters of small (M < 2) earthquakes located by PNSN. We also model teleseismic waveforms using a 2-D synthetic seismogram code to recreate anomalous amplitudes observed in the P-wave coda for sites within the caldera. Autocorrelation of ambient noise data also reveals large amplitude waveforms for a small but spatially grouped set of stations, also located within the caldera. On the basis of these noise observations and 2-D synthetic models, which both require slow seismic speeds at depth, we conclude that our tomographic model underestimates low-velocity anomalies associated with the inferred crustal magma chamber; this is due in large part to wavefront healing, which reduces observed travel time anomalies, and regularization constraints, which minimize model perturbations. Only by using various methods that interrogate different aspects of the seismic data are we able to more realistically constrain the complicated, heterogeneous volcanic system. In particular, modeling of waveform characteristics provides a better measure of the spatial scale and magnitude of crustal velocities near magmatic systems.

  17. Investigations on the effect of frequency and noise in a localization technique based on microwave imaging for an in-body RF source

    NASA Astrophysics Data System (ADS)

    Chandra, Rohit; Balasingham, Ilangko

    2015-05-01

    Localization of a wireless capsule endoscope finds many clinical applications from diagnostics to therapy. There are potentially two approaches of the electromagnetic waves based localization: a) signal propagation model based localization using a priori information about the persons dielectric channels, and b) recently developed microwave imaging based localization without using any a priori information about the persons dielectric channels. In this paper, we study the second approach in terms of a variety of frequencies and signal-to-noise ratios for localization accuracy. To this end, we select a 2-D anatomically realistic numerical phantom for microwave imaging at different frequencies. The selected frequencies are 13:56 MHz, 431:5 MHz, 920 MHz, and 2380 MHz that are typically considered for medical applications. Microwave imaging of a phantom will provide us with an electromagnetic model with electrical properties (relative permittivity and conductivity) of the internal parts of the body and can be useful as a foundation for localization of an in-body RF source. Low frequency imaging at 13:56 MHz provides a low resolution image with high contrast in the dielectric properties. However, at high frequencies, the imaging algorithm is able to image only the outer boundaries of the tissues due to low penetration depth as higher frequency means higher attenuation. Furthermore, recently developed localization method based on microwave imaging is used for estimating the localization accuracy at different frequencies and signal-to-noise ratios. Statistical evaluation of the localization error is performed using the cumulative distribution function (CDF). Based on our results, we conclude that the localization accuracy is minimally affected by the frequency or the noise. However, the choice of the frequency will become critical if the purpose of the method is to image the internal parts of the body for tumor and/or cancer detection.

  18. Playback Experiments for Noise Exposure.

    PubMed

    Holles, Sophie; Simpson, Stephen D; Lecchini, David; Radford, Andrew N

    2016-01-01

    Playbacks are a useful tool for conducting well-controlled and replicated experiments on the effects of anthropogenic noise, particularly for repeated exposures. However, playbacks are unlikely to fully reproduce original sources of anthropogenic noise. Here we examined the sound pressure and particle acceleration of boat noise playbacks in a field experiment and reveal that although there remain recognized limitations, the signal-to-noise ratios of boat playbacks to ambient noise do not exceed those of a real boat. The experimental setup tested is therefore of value for use in experiments on the effects of repeated exposure of aquatic animals to boat noise. PMID:26610992

  19. Jet aircraft engine noise reduction.

    NASA Technical Reports Server (NTRS)

    Conrad, E. W.; Ciepluch, C. C.

    1972-01-01

    The major noise sources are considered together with the noise generation mechanisms involved and approaches for reducing or suppressing the generated noise. Important basic advances in engine noise reduction technology were made in connection with the NASA Quiet Engine program. The prospect for reducing the noise levels of future aircraft below that of the new wide-body jets is good. However, a significant penalty in the form of increased cost to the traveler is also to be expected as the aircraft noise levels are gradually decreased.

  20. Suppression of tonal noise in a centrifugal fan using guide vanes

    NASA Astrophysics Data System (ADS)

    Paramasivam, Kishokanna; Rajoo, Srithar; Romagnoli, Alessandro

    2015-11-01

    This paper presents the work aiming for tonal noise reduction in a centrifugal fan. In previous studies, it is well documented that tonal noise is the dominant noise source generated in centrifugal fans. Tonal noise is generated due to the aerodynamic interaction between the rotating impeller and stationary diffuser vanes. The generation of tonal noise is related to the pressure fluctuation at the leading edge of the stationary vane. The tonal noise is periodic in time which occurs at the blade passing frequency (BPF) and its harmonics. Much of previous studies, have shown that the stationary vane causes the tonal noise and generation of non-rotational turbulent noise. However, omitting stationary vanes will lead to the increase of non-rotational turbulent noise resulted from the high velocity of the flow leaving the impeller. Hence in order to reduce the tonal noise and the non-rotational noise, guide vanes were designed as part of this study to replace the diffuser vanes, which were originally used in the chosen centrifugal fan. The leading edge of the guide vane is tapered. This modification reduces the strength of pressure fluctuation resulting from the interaction between the impeller outflow and stationary vane. The sound pressure level at blade passing frequency (BPF) is reduced by 6.8 dB, the 2nd BPF is reduced by 4.1 dB and the 3rd BPF reduced by about 17.5 dB. The overall reduction was 0.9 dB. The centrifugal fan with tapered guide vanes radiates lower tonal noise compared to the existing diffuser vanes. These reductions are achieved without compromising the performance of the centrifugal fan. The behavior of the fluid flow was studied using computational fluid dynamics (CFD) tools and the acoustics characteristics were determined through experiments in an anechoic chamber.