Science.gov

Sample records for harmonic noise sources

  1. The Effects of Crosswind Flight on Rotor Harmonic Noise Radiation

    NASA Technical Reports Server (NTRS)

    Greenwood, Eric; Sim, Ben W.

    2013-01-01

    In order to develop recommendations for procedures for helicopter source noise characterization, the effects of crosswinds on main rotor harmonic noise radiation are assessed using a model of the Bell 430 helicopter. Crosswinds are found to have a significant effect on Blade-Vortex Interaction (BVI) noise radiation when the helicopter is trimmed with the fuselage oriented along the inertial flight path. However, the magnitude of BVI noise remains unchanged when the pilot orients the fuselage along the aerodynamic velocity vector, crabbing for zero aerodynamic sideslip. The effects of wind gradients on BVI noise are also investigated and found to be smaller in the crosswind direction than in the headwind direction. The effects of crosswinds on lower harmonic noise sources at higher flight speeds are also assessed. In all cases, the directivity of radiated noise is somewhat changed by the crosswind. The model predictions agree well with flight test data for the Bell 430 helicopter captured under various wind conditions. The results of this investigation would suggest that flight paths for future acoustic flight testing are best aligned across the prevailing wind direction to minimize the effects of winds on noise measurements when wind cannot otherwise be avoided.

  2. Community noise sources and noise control issues

    NASA Technical Reports Server (NTRS)

    Nihart, Gene L.

    1992-01-01

    The topics covered include the following: community noise sources and noise control issues; noise components for turbine bypass turbojet engine (TBE) turbojet; engine cycle selection and noise; nozzle development schedule; NACA nozzle design; NACA nozzle test results; nearly fully mixed (NFM) nozzle design; noise versus aspiration rate; peak noise test results; nozzle test in the Low Speed Aeroacoustic Facility (LSAF); and Schlieren pictures of NACA nozzle.

  3. Community noise sources and noise control issues

    NASA Astrophysics Data System (ADS)

    Nihart, Gene L.

    1992-04-01

    The topics covered include the following: community noise sources and noise control issues; noise components for turbine bypass turbojet engine (TBE) turbojet; engine cycle selection and noise; nozzle development schedule; NACA nozzle design; NACA nozzle test results; nearly fully mixed (NFM) nozzle design; noise versus aspiration rate; peak noise test results; nozzle test in the Low Speed Aeroacoustic Facility (LSAF); and Schlieren pictures of NACA nozzle.

  4. Temporal Characterization of Aircraft Noise Sources

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Sullivan, Brenda M.; Rizzi, Stephen A.

    2004-01-01

    Current aircraft source noise prediction tools yield time-independent frequency spectra as functions of directivity angle. Realistic evaluation and human assessment of aircraft fly-over noise require the temporal characteristics of the noise signature. The purpose of the current study is to analyze empirical data from broadband jet and tonal fan noise sources and to provide the temporal information required for prediction-based synthesis. Noise sources included a one-tenth-scale engine exhaust nozzle and a one-fifth scale scale turbofan engine. A methodology was developed to characterize the low frequency fluctuations employing the Short Time Fourier Transform in a MATLAB computing environment. It was shown that a trade-off is necessary between frequency and time resolution in the acoustic spectrogram. The procedure requires careful evaluation and selection of the data analysis parameters, including the data sampling frequency, Fourier Transform window size, associated time period and frequency resolution, and time period window overlap. Low frequency fluctuations were applied to the synthesis of broadband noise with the resulting records sounding virtually indistinguishable from the measured data in initial subjective evaluations. Amplitude fluctuations of blade passage frequency (BPF) harmonics were successfully characterized for conditions equivalent to take-off and approach. Data demonstrated that the fifth harmonic of the BPF varied more in frequency than the BPF itself and exhibited larger amplitude fluctuations over the duration of the time record. Frequency fluctuations were found to be not perceptible in the current characterization of tonal components.

  5. Stable low noise voltage source

    NASA Technical Reports Server (NTRS)

    Lutes, G. F.

    1978-01-01

    Hum and noise on power sources can have a significant effect on system noise. Filtering to achieve low hum and noise is accomplished at low current levels. The diode regulator circuit is described which is ideal for this type of filtering. Hum and noise rejection is achieved with good output voltage stability in a small, low-cost, reliable circuit.

  6. High speed helicopter noise sources

    NASA Technical Reports Server (NTRS)

    Lee, A.

    1977-01-01

    The state-of-the art of helicopter rotor impulsive noise is reviewed. A triangulation technique for locating impulsive noise sources is developed using once-per-rev index signals as time references. A computer program (INSL) was written implementing this technique. Applying triangulation to the full-scale UH-1 noise data of NASA/Ames Research Center 40- by 80-Foot Wind Tunnel, three different noise sources are found on the rotor disk. The primary sources of thickness noise are in the second quadrant and on the advancing side of rotor disk. Two aerodynamic sources due to blade/vortex interaction are found in the first quadrant.

  7. Speckle Noise Reduction by Superposing Many Higher Harmonic Images

    NASA Astrophysics Data System (ADS)

    Akiyama, Iwaki; Ohya, Akihisa; Saito, Shigemi

    2005-06-01

    A novel ultrasonic imaging method offering high resolution and high-quality images for clinical diagnosis has been developed. This method produces an image using many higher harmonic components contained in the echoes from the inside of a human body, generated due to ultrasonic nonlinear propagation through biological tissues. A new ultrasonic probe has been designed to detect higher harmonic components efficiently over a broad band produced by nonlinear propagation through biological tissues. This probe has a bilayer structure consisting of a lead zirconate titanate (PZT) transmitter and a polyvinylidene fluoride (PVDF) receiver. Experiments employing the new probe show that the receiving transducer easily detects higher harmonics from the fundamental through the tenth in the spectrum of reflected sound from an agar-gel phantom submerged in water. By scanning the probe, the harmonic images of the fundamental through the ninth harmonic component are successfully obtained. In addition, it is demonstrated that speckle noise can be reduced by averaging many harmonic images.

  8. SPEECH ENHANCEMENT IN CAR NOISE ENVIRONMENT BASED ON AN ANALYSIS-SYNTHESIS APPROACH USING HARMONIC NOISE MODEL

    E-print Network

    So, Hing-Cheung

    SPEECH ENHANCEMENT IN CAR NOISE ENVIRONMENT BASED ON AN ANALYSIS- SYNTHESIS APPROACH USING HARMONIC using harmonic noise model (HNM) in car noise environment. The major advantages of this method are effective suppression of car noise even in very low signal-to-noise ratio environments and mitigation

  9. Harmonics to noise ratio in vocal professional voices

    NASA Astrophysics Data System (ADS)

    Bonetti, Luka; Bonetti, Ana; Bolfan Stosic, Natalija

    2002-05-01

    There is no arguing about the importance of voice, especially in groups of vocal professional voices. The question is what characterizes, the most, normal or pathological voice in relation to aspects of human working life. Harmonics to noise ratio, according to findings from the field of voice disorders, is the most representative method to differ normal from pathological voice. In this research significant differences were found in harmonics to noise ratio in relation to the length of the working age of 29 teachers of primary schools in Zagreb. Teachers with the longest working age (40-yr.) showed the most distorted voices. The best quality of voice with great ratio of harmonics to noise was found in the group of teachers with 10 years of professional work. Acoustical analyses were made by EZVOICEPLUSTM version 2.0 and Gram. 2.3. Significant statistical differences were established by the T test of Statistica for Windows, version 4.5. [Work supported by Ministry of Science and Technology of Republic of Croatia.

  10. The harmonic-to-noise ratio applied to dog barks.

    PubMed

    Riede, T; Herzel, H; Hammerschmidt, K; Brunnberg, L; Tembrock, G

    2001-10-01

    Dog barks are typically a mixture of regular components and irregular (noisy) components. The regular part of the signal is given by a series of harmonics and is most probably due to regular vibrations of the vocal folds, whereas noise refers to any nonharmonic (irregular) energy in the spectrum of the bark signal. The noise components might be due to chaotic vibrations of the vocal-fold tissue or due to turbulence of the air. The ratio of harmonic to nonharmonic energy in dog barks is quantified by applying the harmonics-to-noise ratio (HNR). Barks of a single dog breed were recorded in the same behavioral context. Two groups of dogs were considered: a group of ten healthy dogs (the normal sample), and a group of ten unhealthy dogs, i.e., dogs treated in a veterinary clinic (the clinic sample). Although the unhealthy dogs had no voice disease, differences in emotion or pain or impacts of surgery might have influenced their barks. The barks of the dogs were recorded for a period of 6 months. The HNR computation is based on the Fourier spectrum of a 50-ms section from the middle of the bark. A 10-point moving average curve of the spectrum on a logarithmic scale is considered as estimator of the noise level in the bark, and the maximum difference of the original spectrum and the moving average is defined as the HNR measure. It is shown that a reasonable ranking of the voices is achievable based on the measurement of the HNR. The HNR-based classification is found to be consistent with perceptual evaluation of the barks. In addition, a multiparametric approach confirms the classification based on the HNR. Hence, it may be concluded that the HNR might be useful as a novel parameter in bioacoustics for quantifying the noise within a signal. PMID:11681395

  11. Observations of discrete harmonics emerging from equatorial noise.

    PubMed

    Balikhin, Michael A; Shprits, Yuri Y; Walker, Simon N; Chen, Lunjin; Cornilleau-Wehrlin, Nicole; Dandouras, Iannis; Santolik, Ondrej; Carr, Christopher; Yearby, Keith H; Weiss, Benjamin

    2015-01-01

    A number of modes of oscillations of particles and fields can exist in space plasmas. Since the early 1970s, space missions have observed noise-like plasma waves near the geomagnetic equator known as 'equatorial noise'. Several theories were suggested, but clear observational evidence supported by realistic modelling has not been provided. Here we report on observations by the Cluster mission that clearly show the highly structured and periodic pattern of these waves. Very narrow-banded emissions at frequencies corresponding to exact multiples of the proton gyrofrequency (frequency of gyration around the field line) from the 17th up to the 30th harmonic are observed, indicating that these waves are generated by the proton distributions. Simultaneously with these coherent periodic structures in waves, the Cluster spacecraft observes 'ring' distributions of protons in velocity space that provide the free energy for the waves. Calculated wave growth based on ion distributions shows a very similar pattern to the observations. PMID:26169360

  12. Observations of discrete harmonics emerging from equatorial noise

    PubMed Central

    Balikhin, Michael A.; Shprits, Yuri Y.; Walker, Simon N.; Chen, Lunjin; Cornilleau-Wehrlin, Nicole; Dandouras, Iannis; Santolik, Ondrej; Carr, Christopher; Yearby, Keith H.; Weiss, Benjamin

    2015-01-01

    A number of modes of oscillations of particles and fields can exist in space plasmas. Since the early 1970s, space missions have observed noise-like plasma waves near the geomagnetic equator known as ‘equatorial noise'. Several theories were suggested, but clear observational evidence supported by realistic modelling has not been provided. Here we report on observations by the Cluster mission that clearly show the highly structured and periodic pattern of these waves. Very narrow-banded emissions at frequencies corresponding to exact multiples of the proton gyrofrequency (frequency of gyration around the field line) from the 17th up to the 30th harmonic are observed, indicating that these waves are generated by the proton distributions. Simultaneously with these coherent periodic structures in waves, the Cluster spacecraft observes ‘ring' distributions of protons in velocity space that provide the free energy for the waves. Calculated wave growth based on ion distributions shows a very similar pattern to the observations. PMID:26169360

  13. Low noise constant current source for bias dependent noise measurements

    NASA Astrophysics Data System (ADS)

    Talukdar, D.; Chakraborty, R. K.; Bose, Suvendu; Bardhan, K. K.

    2011-01-01

    A low noise constant current source used for measuring the 1/f noise in disordered systems in ohmic as well as nonohmic regime is described. The source can supply low noise constant current starting from as low as 1 ?A to a few tens of milliampere with a high voltage compliance limit of around 20 V. The constant current source has several stages, which can work in a standalone manner or together to supply the desired value of load current. The noise contributed by the current source is very low in the entire current range. The fabrication of a low noise voltage preamplifier modified for bias dependent noise measurements and based on the existing design available in the MAT04 data sheet is also described.

  14. Low noise constant current source for bias dependent noise measurements.

    PubMed

    Talukdar, D; Chakraborty, R K; Bose, Suvendu; Bardhan, K K

    2011-01-01

    A low noise constant current source used for measuring the 1?f noise in disordered systems in ohmic as well as nonohmic regime is described. The source can supply low noise constant current starting from as low as 1 ?A to a few tens of milliampere with a high voltage compliance limit of around 20 V. The constant current source has several stages, which can work in a standalone manner or together to supply the desired value of load current. The noise contributed by the current source is very low in the entire current range. The fabrication of a low noise voltage preamplifier modified for bias dependent noise measurements and based on the existing design available in the MAT04 data sheet is also described. PMID:21280844

  15. Low noise constant current source for bias dependent noise measurements

    SciTech Connect

    Talukdar, D.; Bose, Suvendu; Bardhan, K. K.

    2011-01-15

    A low noise constant current source used for measuring the 1/f noise in disordered systems in ohmic as well as nonohmic regime is described. The source can supply low noise constant current starting from as low as 1 {mu}A to a few tens of milliampere with a high voltage compliance limit of around 20 V. The constant current source has several stages, which can work in a standalone manner or together to supply the desired value of load current. The noise contributed by the current source is very low in the entire current range. The fabrication of a low noise voltage preamplifier modified for bias dependent noise measurements and based on the existing design available in the MAT04 data sheet is also described.

  16. Low noise constant current source for bias dependent noise measurements

    E-print Network

    Talukdar, D; Bose, Suvendu; Bardhan, K K

    2010-01-01

    A low noise constant current source used for measuring the $1/f$ noise in disordered systems in ohmic as well as non-ohmic regime is described. The source can supply low noise constant current starting from as low as 1~$\\mu$A to a few tens of mA with a high voltage compliance limit of around 20~Volts. The constant current source has several stages which can work in a standalone manner or together to supply the desired value of load current. The noise contributed by the current source is very low in the entire current range. The fabrication of a low noise voltage preamplifier modified for bias dependent noise measurements and based on the existing design available in the MAT04 data sheet is also described.

  17. Flow noise source-resonator coupling

    SciTech Connect

    Pollack, M.L.

    1997-11-01

    This paper investigates the coupling mechanism between flow noise sources and acoustic resonators. Analytical solutions are developed for the classical cases of monopole and dipole types of flow noise sources. The effectiveness of the coupling between the acoustic resonator and the noise source is shown to be dependent on the type of noise source as well as its location on the acoustic pressure mode shape. For a monopole source, the maximum coupling occurs when the noise source is most intense near an acoustic pressure antinode (i.e., location of maximum acoustic pressure). A numerical study with the impedance method demonstrates this effect. A dipole source couples most effectively when located near an acoustic pressure node.

  18. En route noise: NASA propfan test aircraft (calculated source noise

    NASA Technical Reports Server (NTRS)

    Rickley, E. J.

    1990-01-01

    The second phase of a joint National Aeronautics and Space Administration (NASA) and Federal Aviation Administration (FAA) program to study the high-altitude, low-frequency acoustic noise propagation characteristics of the Advanced Turboprop (propfan) Aircraft was conducted on April 3-13, 1989 at the White Sands Missile Range (WSMR), New Mexico. The first phase was conducted on October 26-31, 1987 in Huntsville, Alabama. NASA (Lewis) measured the source noise of the test aircraft during both phases while NASA (Langley) measured surface noise only during the second phase. FAA/NASA designed a program to obtain noise level data from the propfan test bed aircraft, both in the near field and at ground level, during simulated en route flights (35,000 and 20,000 feet ASL), and to test low frequency atmospheric absorption algorithms and prediction technology to provide insight into the necessity for regulatory measures. The curves of calculated source noise versus emission angle are based on a second order best-fit curve of the peak envelope of the adjusted ground data. Centerline and sideline derived source noise levels are shown to be in good agreement. A comparison of the Alabama chase plane source data and the calculated source noise at centerline for both the Alabama and New Mexico data shows good agreement for the 35,000 and the 20,000 feet (ASL) overflights. With the availability of the New Mexico in-flight data, further in depth comparisons will be made.

  19. Source and processing effects on noise correlations

    NASA Astrophysics Data System (ADS)

    Fichtner, Andreas

    2014-05-01

    We quantify the effects of spatially heterogeneous noise sources and seismic processing on noise correlation measurements and their sensitivity to Earth structure. Our analysis is based on numerical wavefield simulations in heterogeneous media. This allows us to calculate inter-station correlations for arbitrarily distributed noise sources where - as in the real Earth - different frequencies are generated in different locations. Using adjoint methods, we compute the exact structural sensitivities for a given combination of source distribution, processing scheme, and measurement technique. The key results of our study are as follows: (1) Heterogeneous noise sources and subjective processing, such as the application of spectral whitening, have profound effects on noise correlation wave forms. (2) Nevertheless, narrow-band traveltime measurements are only weakly affected by heterogeneous noise sources and processing. This result is in accord with previous analytical studies, and it explains the similarity of noise and earthquake tomographies that only exploit traveltime information. (3) Spatially heterogeneous noise sources can lead to structural sensitivities that deviate strongly from the classical cigar-shaped sensitivities. Furthermore, the frequency dependence of sensitivity kernels can go far beyond the well-know dependence of the Fresnel zone width on frequency. Our results imply that a meaningful application of modern full waveform inversion methods to noise correlations is not possible unless both the noise source distribution and the processing scheme are properly taken into account. Failure to do so can lead to erroneous misfit quantifications, slow convergence of optimisation schemes, and to the appearance of tomographic artefacts that reflect the incorrect structural sensitivity. These aspects acquire special relevance in the monitoring of subtle changes of subsurface structure that may be polluted when the time dependence of heterogeneous noise sources is ignored.

  20. Investigation of hydraulic transmission noise sources

    NASA Astrophysics Data System (ADS)

    Klop, Richard J.

    Advanced hydrostatic transmissions and hydraulic hybrids show potential in new market segments such as commercial vehicles and passenger cars. Such new applications regard low noise generation as a high priority, thus, demanding new quiet hydrostatic transmission designs. In this thesis, the aim is to investigate noise sources of hydrostatic transmissions to discover strategies for designing compact and quiet solutions. A model has been developed to capture the interaction of a pump and motor working in a hydrostatic transmission and to predict overall noise sources. This model allows a designer to compare noise sources for various configurations and to design compact and inherently quiet solutions. The model describes dynamics of the system by coupling lumped parameter pump and motor models with a one-dimensional unsteady compressible transmission line model. The model has been verified with dynamic pressure measurements in the line over a wide operating range for several system structures. Simulation studies were performed illustrating sensitivities of several design variables and the potential of the model to design transmissions with minimal noise sources. A semi-anechoic chamber has been designed and constructed suitable for sound intensity measurements that can be used to derive sound power. Measurements proved the potential to reduce audible noise by predicting and reducing both noise sources. Sound power measurements were conducted on a series hybrid transmission test bench to validate the model and compare predicted noise sources with sound power.

  1. A Parameter Identification Method for Helicopter Noise Source Identification and Physics-Based Semi-Empirical Modeling

    NASA Technical Reports Server (NTRS)

    Greenwood, Eric, II; Schmitz, Fredric H.

    2010-01-01

    A new physics-based parameter identification method for rotor harmonic noise sources is developed using an acoustic inverse simulation technique. This new method allows for the identification of individual rotor harmonic noise sources and allows them to be characterized in terms of their individual non-dimensional governing parameters. This new method is applied to both wind tunnel measurements and ground noise measurements of two-bladed rotors. The method is shown to match the parametric trends of main rotor Blade-Vortex Interaction (BVI) noise, allowing accurate estimates of BVI noise to be made for operating conditions based on a small number of measurements taken at different operating conditions.

  2. Programmable, very low noise current source.

    PubMed

    Scandurra, G; Cannatà, G; Giusi, G; Ciofi, C

    2014-12-01

    We propose a new approach for the realization of very low noise programmable current sources mainly intended for application in the field of low frequency noise measurements. The design is based on a low noise Junction Field Effect Transistor (JFET) acting as a high impedance current source and programmability is obtained by resorting to a low noise, programmable floating voltage source that allows to set the sourced current at the desired value. The floating voltage source is obtained by exploiting the properties of a standard photovoltaic MOSFET driver. Proper filtering and a control network employing super-capacitors allow to reduce the low frequency output noise to that due to the low noise JFET down to frequencies as low as 100 mHz while allowing, at the same time, to set the desired current by means of a standard DA converter with an accuracy better than 1%. A prototype of the system capable of supplying currents from a few hundreds of ?A up to a few mA demonstrates the effectiveness of the approach we propose. When delivering a DC current of about 2 mA, the power spectral density of the current fluctuations at the output is found to be less than 25 pA/?Hz at 100 mHz and less than 6 pA/?Hz for f > 1 Hz, resulting in an RMS noise in the bandwidth from 0.1 to 10 Hz of less than 14 pA. PMID:25554328

  3. Phase noise mitigation of QPSK signal utilizing phase-locked multiplexing of signal harmonics

    E-print Network

    Touch, Joe

    Phase noise mitigation of QPSK signal utilizing phase-locked multiplexing of signal harmonics); published Month X, XXXX We demonstrate an all-optical phase noise mitigation scheme based on the generation, and their corresponding delayed variant conjugates create a staircase phase transfer function that quantizes the phase

  4. Sources of Noise in Three-Dimensional Microscopical Data Sets

    E-print Network

    Pawley, James

    . Intrinsic Noise B. Measurement Noise C. Image Noise A. Noise in Photomultiplier Tube B. Noise in Charge-Coupled Devices D. Image Noise in Cooled Charge-Coupled Devices E. Future Developments in ChargeCHAPTER 3 Sources of Noise in Three-Dimensional Microscopical Data Sets B. Department of Zoology

  5. The role of load harmonics in audible noise of electrical transformers

    NASA Astrophysics Data System (ADS)

    Ertl, Michael; Voss, Stephan

    2014-04-01

    Harmonic components in load currents have a larger impact on the load noise level of transformers than might be expected from their amplitude. There are several reasons for this larger impact: (a) the interaction of higher harmonics with the large fundamental load current at power frequency, (b) the increasing sound radiation efficiency with increasing frequency, and (c) the greater sensitivity of the human ear to higher frequencies, which is considered in sound measurements by applying the A-weighting filter. This paper describes the process of generation, transmission, and emission of load noise in the presence of load harmonics. A calculation scheme is presented that is able to estimate the noise increase and the noise spectrum of electrical transformers under non-sinusoidal load conditions. The proposed calculation scheme is applied to three practical examples.

  6. A continuous wavelet transform approach for harmonic parameters estimation in the presence of impulsive noise

    NASA Astrophysics Data System (ADS)

    Dai, Yu; Xue, Yuan; Zhang, Jianxun

    2016-01-01

    Impulsive noise caused by some random events has the main character of short rise-time and wide frequency spectrum range, so it has the potential to degrade the performance and reliability of the harmonic estimation. This paper focuses on the harmonic estimation procedure based on continuous wavelet transform (CWT) when the analyzed signal is corrupted by the impulsive noise. The digital CWT of both the time-varying sinusoidal signal and the impulsive noise are analyzed, and there are two cross ridges in the time-frequency plane of CWT, which are generated by the signal and the noise separately. In consideration of the amplitude of the noise and the number of the spike event, two inequalities are derived to provide limitations on the wavelet parameters. Based on the amplitude distribution of the noise, the optimal wavelet parameters determined by solving these inequalities are used to suppress the contamination of the noise, as well as increase the amplitude of the ridge corresponding to the signal, so the parameters of each harmonic component can be estimated accurately. The proposed procedure is applied to a numerical simulation and a bone vibration signal test giving satisfactory results of stationary and time-varying harmonic parameter estimation.

  7. Localized, Non-Harmonic Active Flap Motions for Low Frequency In-Plane Rotor Noise Reduction

    NASA Technical Reports Server (NTRS)

    Sim, Ben W.; Potsdam, Mark; Kitaplioglu, Cahit; LeMasurier, Philip; Lorber, Peter; Andrews, Joseph

    2012-01-01

    A first-of-its-kind demonstration of the use of localized, non-harmonic active flap motions, for suppressing low frequency, in-plane rotor noise, is reported in this paper. Operational feasibility is verified via testing of the full-scale AATD/Sikorsky/UTRC active flap demonstration rotor in the NFAC's 40- by 80-Foot anechoic wind tunnel. Effectiveness of using localized, non-harmonic active flap motions are compared to conventional four-per-rev harmonic flap motions, and also active flap motions derived from closed-loop acoustics implementations. All three approaches resulted in approximately the same noise reductions over an in-plane three-by-three microphone array installed forward and near in-plane of the rotor in the nearfield. It is also reported that using an active flap in this localized, non-harmonic manner, resulted in no more that 2% rotor performance penalty, but had the tendency to incur higher hub vibration levels.

  8. Energy Diffusion in Harmonic System with Conservative Noise

    E-print Network

    Giada Basile; Stefano Olla

    2013-06-29

    We prove diffusive behaviour of the energy fluctuations in a system of harmonic oscillators with a stochastic perturbation of the dynamics that conserves energy and momentum. The results concern pinned systems or lattice dimension $d\\ge 3$, where the thermal diffusivity is finite.

  9. Fan Noise Source Diagnostic Test: Vane Unsteady Pressure Results

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    2002-01-01

    To investigate the nature of fan outlet guide vane pressure fluctuations and their link to rotor-stator interaction noise, time histories of vane fluctuating pressures were digitally acquired as part of the Fan Noise Source Diagnostic Test. Vane unsteady pressures were measured at seven fan tip speeds for both a radial and a swept vane configuration. Using time-domain averaging and spectral analysis, the blade passing frequency (BPF) harmonic and broadband contents of the vane pressures were individually analyzed. Significant Sound Pressure Level (SPL) reductions were observed for the swept vane relative to the radial vane for the BPF harmonics of vane pressure, but vane broadband reductions due to sweep turned out to be much smaller especially on an average basis. Cross-correlation analysis was used to establish the level of spatial coherence of broadband pressures between different locations on the vane and integral length scales of pressure fluctuations were estimated from these correlations. Two main results of this work are: (1) the average broadband level on the vane (in dB) increases linearly with the fan tip speed for both the radial and swept vanes, and (2) the broadband pressure distribution on the vane is nearly homogeneous and its integral length scale is a monotonically decreasing function of fan tip speed.

  10. Effects of Gaussian colored noise on time evolution of information entropy in a damped harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Guo, Yong-Feng; Tan, Jian-Guo

    2015-02-01

    The effects of Gaussian colored noise on time evolution of information entropy in a damped harmonic oscillator are studied in this paper. The one-dimensional non-Markovian process with Gaussian colored noise is stochastically equivalent to two-dimensional Markovian process and the dimension of Fokker-Planck equation is reduced by the linear transformation. The exact expression of the time dependence of information entropy is derived on the basis of Fokker-Planck equation and the definition of Shannon's information entropy. The relationship between the properties of damping constant, the frequency of the oscillator and Gaussian colored noise and their effect on time evolution of information entropy is also discussed.

  11. Phase effects in masking by harmonic complexes: detection of bands of speech-shaped noise.

    PubMed

    Deroche, Mickael L D; Culling, John F; Chatterjee, Monita

    2014-11-01

    When phase relationships between partials of a complex masker produce highly modulated temporal envelopes on the basilar membrane, listeners may detect speech information from temporal dips in the within-channel masker envelopes. This source of masking release (MR) is however located in regions of unresolved masker partials and it is unclear how much of the speech information in these regions is really needed for intelligibility. Also, other sources of MR such as glimpsing in between resolved masker partials may provide sufficient information from regions that disregard phase relationships. This study simplified the problem of speech recognition to a masked detection task. Target bands of speech-shaped noise were restricted to frequency regions containing either only resolved or only unresolved masker partials, as a function of masker phase relationships (sine or random), masker fundamental frequency (F0) (50, 100, or 200?Hz), and masker spectral profile (flat-spectrum or speech-shaped). Although masker phase effects could be observed in unresolved regions at F0s of 50 and 100?Hz, it was only at 50-Hz F0 that detection thresholds were ever lower in unresolved than in resolved regions, suggesting little role of envelope modulations for harmonic complexes with F0s in the human voice range and at moderate level. PMID:25373972

  12. Phase effects in masking by harmonic complexes: Detection of bands of speech-shaped noise

    PubMed Central

    Deroche, Mickael L. D.; Culling, John F.; Chatterjee, Monita

    2014-01-01

    When phase relationships between partials of a complex masker produce highly modulated temporal envelopes on the basilar membrane, listeners may detect speech information from temporal dips in the within-channel masker envelopes. This source of masking release (MR) is however located in regions of unresolved masker partials and it is unclear how much of the speech information in these regions is really needed for intelligibility. Also, other sources of MR such as glimpsing in between resolved masker partials may provide sufficient information from regions that disregard phase relationships. This study simplified the problem of speech recognition to a masked detection task. Target bands of speech-shaped noise were restricted to frequency regions containing either only resolved or only unresolved masker partials, as a function of masker phase relationships (sine or random), masker fundamental frequency (F0) (50, 100, or 200?Hz), and masker spectral profile (flat-spectrum or speech-shaped). Although masker phase effects could be observed in unresolved regions at F0s of 50 and 100?Hz, it was only at 50-Hz F0 that detection thresholds were ever lower in unresolved than in resolved regions, suggesting little role of envelope modulations for harmonic complexes with F0s in the human voice range and at moderate level. PMID:25373972

  13. IMAGING OF DIRECTIONAL DISTRIBUTED NOISE SOURCES Dimitri Papamoschou

    E-print Network

    Papamoschou, Dimitri

    IMAGING OF DIRECTIONAL DISTRIBUTED NOISE SOURCES Dimitri Papamoschou University of California, Irvine, Irvine, California 92697-3975 This study relates to the imaging of noise sources the microphone array data were introduced by Humphreys et al.4 For the aforementioned noise source imaging

  14. Reduction of blade-vortex interaction noise through higher harmonic pitch control

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Booth, Earl R., Jr.; Jolly, J. Ralph, Jr.; Yeager, William T., Jr.; Wilbur, Matthew L.

    1990-01-01

    An acoustics test using an aeroelastically scaled rotor was conducted to examine the effectiveness of higher harmonic blade pitch control for the reduction of impulsive blade-vortex interaction (BVI) noise. A four-bladed, 110 in. diameter, articulated rotor model was tested in a heavy gas (Freon-12) medium in Langley's Transonic Dynamics Tunnel. Noise and vibration measurements were made for a range of matched flight conditions, where prescribed (open-loop) higher harmonic pitch was superimposed on the normal (baseline) collective and cyclic trim pitch. For the inflow-microphone noise measurements, advantage was taken of the reverberance in the hard walled tunnel by using a sound power determination approach. Initial findings from on-line data processing for three of the test microphones are reported for a 4/rev (4P) collective pitch control for a range of input amplitudes and phases. By comparing these results to corresponding baseline (no control) conditions, significant noise reductions (4 to 5 dB) were found for low-speed descent conditions, where helicopter BVI noise is most intense. For other rotor flight conditions, the overall noise was found to increase. All cases show increased vibration levels.

  15. Reduction of blade-vortex interaction noise using higher harmonic pitch control

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Booth, Earl R., Jr.; Jolly, J. Ralph, Jr.; Yeager, William T., Jr.; Wilbur, Matthew L.

    1989-01-01

    An acoustics test using an aeroelastically scaled rotor was conducted to examine the effectiveness of higher harmonic blade pitch control for the reduction of impulsive blade-vortex interaction (BVI) noise. A four-bladed, 110 in. diameter, articulated rotor model was tested in a heavy gas (Freon-12) medium in Langley's Transonic Dynamics Tunnel. Noise and vibration measurements were made for a range of matched flight conditions, where prescribed (open-loop) higher harmonic pitch was superimposed on the normal (baseline) collective and cyclic trim pitch. For the inflow-microphone noise measurements, advantage was taken of the reverberance in the hard walled tunnel by using a sound power determination approach. Initial findings from on-line data processing for three of the test microphones are reported for a 4/rev (4P) collective pitch control for a range of input amplitudes and phases. By comparing these results to corresponding baseline (no control) conditions, significant noise reductions (4 to 5 dB) were found for low-speed descent conditions, where helicopter BVI noise is most intense. For other rotor flight conditions, the overall noise was found to increase. All cases show increased vibration levels.

  16. Harmonic Generation from Solid Targets - Optmization of Source Parameters

    NASA Astrophysics Data System (ADS)

    Zepf, Matthew; Watts, I. F.; Dangor, A. E.; Norreys, P. A.; Chambers, D. M.; Machacek, A.; Wark, J. S.; Tsakiris, G. D.

    1998-11-01

    High harmonics from solid targets have received renewed interest over the last few years. Theoretical predictions using 1 1/2 D codes suggest that very high orders (>100 ) can be generated at conversion efficiencies in excess of 10-6 [1,2] at I?^2 > 10^19 W/cm^2. Experiments have since been performed with pulses varying from 100 fs to 2.5 ps in duration [3-6]. The steep density gradient necessary to generate the harmonics can be generated by either ponderomotive steepening or by using ultraclean pulses which preserve the initial solid vacuum boundary. The two regimes are compared in terms of their dependence on the laser parameters and the emitted harmonic radiation. Particular emphasis will be given to measurements of the holeboring velocity, the polarisation of the harmonics and the intensity scaling in the two regimes. This comparison enables us to find the ideal parameter range for the optimization of harmonic source. [1] R. Lichters et al., Physics of Plasmas 3, 3425, (1996). [2] P. Gibbon, IEEE J. of Q. Elec. 33, 1915 (1997). [3] S. Kohlweyer, et al., Optics Comm. 177, 431 (1995). [4] P. Norreys et al., Phys. Rev. Lett., 76, 1832 (1995). [5] D. von der Linde et al., Phys. Rev. A, 52, R25 (1995) [6] M. Zepf, et al., submitted for publication in Phys. Rev. Lett.

  17. Jet engine noise source and noise footprint computer programs

    NASA Technical Reports Server (NTRS)

    Dunn, D. G.; Peart, N. A.; Miller, D. L.; Crowley, K. C.

    1972-01-01

    Calculation procedures are presented for predicting maximum passby noise levels and contours (footprints) of conventional jet aircraft with or without noise suppression devices. The procedures have been computerized and a user's guide is presented for the computer programs to be used in predicting the noise characteristics during aircraft takeoffs, fly-over, and/or landing operations.

  18. Study of noise sources in a subsonic fan using measured blade pressures and acoustic theory

    NASA Technical Reports Server (NTRS)

    Hanson, D. B.

    1975-01-01

    Sources of noise in a 1.4 m (4.6 ft) diameter subsonic tip speed propulsive fan running statically outdoors are studied using a combination of techniques. Signals measured with pressure transducers on a rotor blade are plotted in a format showing the space-time history of inlet distortion. Study of these plots visually and with statistical correlation analysis confirms that the inlet flow contains long, thin eddies of turbulence. Turbulence generated in the boundary layer of the shroud upstream of the rotor tips was not found to be an important noise source. Fan noise is diagnosed by computing narrowband spectra of rotor and stator sound power and comparing these with measured sound power spectra. Rotor noise is computed from spectra of the measured blade pressures and stator noise is computed using the author's stator noise theory. It is concluded that the rotor and stator sources contribute about equally at frequencies in the vicinity of the first three harmonics of blade passing frequency. At higher frequencies, the stator contribution diminishes rapidly and the rotor/inlet turbulence mechanism dominates. Two parametric studies are performed by using the rotor noise calculation procedure which was correlated with test. In the first study, the effects on noise spectrum and directivity are calculated for changes in turbulence properties, rotational Mach number, number of blades, and stagger angle. In the second study the influences of design tip speed and blade number on noise are evaluated.

  19. Location of noise sources in fluid power machines.

    PubMed

    Fiebig, Wies?aw

    2007-01-01

    This paper discusses noise generation mechanisms and techniques for noise reduction in fluid power units. Major noise sources in fluid power units can be identified with a sound intensity method. It has been proved that components of power units with larger sound radiating surfaces such as an electric motor and an oil reservoir produce a major part of global noise radiation. PMID:18082026

  20. Sources of noise in magneto-optical readout

    NASA Technical Reports Server (NTRS)

    Mansuripur, M.

    1991-01-01

    The various sources of noise which are often encountered in magneto-optical readout systems are analyzed. Although the focus is on magneto-optics, most sources of noise are common among the various optical recording systems and one can easily adapt the results to other media and systems. A description of the magneto-optical readout system under consideration is given, and the standard methods and the relevant terminology of signal and noise measurement are described. The characteristics of thermal noise, which originates in the electronic circuitry of the readout system, are described. The most fundamental of all sources of noise, the shot noise, is considered, and a detailed account of its statistical properties is given. Shot noise, which is due to random fluctuations in photon arrival times, is an ever-present noise in optical detection. Since the performance of magneto-optical recording devices in use today is approaching the limit imposed by the shot noise, it is important that the reader have a good grasp of this particular source of noise. A model for the laser noise is described, and measurement results which yield numerical values for the strength of the laser power fluctuations are presented. Spatial variations of the disk reflectivity and random depolarization phenomena also contribute to the overall level of noise in readout; these and related issues are treated. Numerical simulation results describing some of the more frequently encountered sources of noise which accompany the recorded waveform itself, namely, jitter noise and signal-amplitude fluctuation noise are presented.

  1. A Robust Waveguide Millimeter-Wave Noise Source

    NASA Technical Reports Server (NTRS)

    Ehsan, Negar; Piepmeier, Jeffrey R.; Solly, Michael; Macmurphy, Shawn; Lucey, Jared; Wollack, Edward

    2015-01-01

    This paper presents the design, fabrication, and characterization of a millimeter-wave noise source for the 160- 210 GHz frequency range. The noise source has been implemented in an E-split-block waveguide package and the internal circuitry was developed on a quartz substrate. The measured excess noise ratio at 200 GHz is 9.6 dB.

  2. Procedure for Separating Noise Sources in Measurements of Turbofan Engine Core Noise

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton

    2006-01-01

    The study of core noise from turbofan engines has become more important as noise from other sources like the fan and jet have been reduced. A multiple microphone and acoustic source modeling method to separate correlated and uncorrelated sources has been developed. The auto and cross spectrum in the frequency range below 1000 Hz is fitted with a noise propagation model based on a source couplet consisting of a single incoherent source with a single coherent source or a source triplet consisting of a single incoherent source with two coherent point sources. Examples are presented using data from a Pratt & Whitney PW4098 turbofan engine. The method works well.

  3. The Effect of Non-Harmonic Active Twist Actuation on BVI Noise

    NASA Technical Reports Server (NTRS)

    Fogarty, David E.; Wilbur, Matthew L.; Sekula, Martin K.

    2011-01-01

    The results of a computational study examining the effects of non-harmonic active-twist control on blade-vortex interaction (BVI) noise for the Apache Active Twist Rotor are presented. Rotor aeroelastic behavior was modeled using the Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics code and the rotor noise was predicted using the acoustics code PSU-WOPWOP. The application of non-harmonic active-twist inputs to the main rotor blade system comprised three parameters: azimuthal location to start actuation, azimuthal duration of actuation, and magnitude of actuation. The acoustic analysis was conducted for a single low-speed flight condition of advance ratio mu=0.14 and shaft angle-of-attack, a(sub s)=+6deg. BVI noise levels were predicted on a flat plane of observers located 1.1 rotor diameters beneath the rotor. The results indicate significant reductions of up to 10dB in BVI noise using a starting azimuthal location for actuation of 90?, an azimuthal duration of actuation of 90deg, and an actuation magnitude of +1.5 ft-lb.

  4. Teaching Doppler Effect with a passing noise source

    NASA Astrophysics Data System (ADS)

    Costa, Ivan F.; Mocellin, Alexandra

    2010-07-01

    The noise pitch variation of a passing noise source allows a low cost experimental approach to calculate speed and, for the first time, distance. We adjusted the recorded noise pitch variation to the Doppler shift equation for sound. We did this by taking into account the frequency delay due to the sound source displacement and performing a Fast Fourier Transform (FFT) of the noise signal using free software. This experimental method was successfully applied to aircraft and automobiles.

  5. Source-structure trade-offs in ambient noise correlations

    NASA Astrophysics Data System (ADS)

    Fichtner, Andreas

    2015-07-01

    We analyse the physics and geometry of trade-offs between Earth structure and noise sources in interstation noise correlations. Our approach is based on the computation of off-diagonal Hessian elements that describe the extent to which variations in noise sources can compensate for variations in Earth structure without changing the misfit beyond the measurement uncertainty. Despite the fact that all ambient noise inverse problems are special in terms of their receiver configuration and data, some general statements concerning source-structure trade-offs can be made: (i) While source-structure trade-offs may be reduced to some extent by clever measurement design, there are inherent trade-offs that can generally not be avoided. These inherent trade-offs may lead to a mispositioning of structural heterogeneities when the noise source distribution is unknown. (ii) When attenuation is weak, source-structure trade-offs in ambient noise correlations are a global phenomenon, meaning that there is no noise source perturbation that does not trade-off with some Earth structure, and vice versa. (iii) The most significant source-structure trade-offs occur within two elliptically shaped regions connecting a potential noise source perturbation to each one of the receivers. (iv) Far from these elliptical regions, only small-scale structure can trade off against changes in the noise source. (v) While source-structure trade-offs mostly decay with increasing attenuation, they are nearly unaffected by attenuation when the noise source perturbation is located near the receiver-receiver line. This work is intended to contribute to the development of joint source-structure inversions of ambient noise correlations, and in particular to an understanding of the extent to which source-structure trade-offs may be reduced. It furthermore establishes the foundation of future resolution analyses that properly quantify trade-offs between noise sources and Earth structure.

  6. Experimental observation of excess noise in a detuned phase-modulation harmonic mode-locking laser

    SciTech Connect

    Yang Shiquan; Bao Xiaoyi

    2006-09-15

    The intracavity phase-modulated laser can work in two distinct stages: 1) phase mode-locking when the applied modulation frequency is equal to the cavity's fundamental frequency or one of its harmonics, and 2) the FM laser oscillation at a moderate detuned modulation frequency. In this paper, we experimentally studied the noise buildup process in the transition from FM laser oscillation to phase mode-locking in a phase-modulated laser. We found that the relaxation oscillation frequency varies with the modulation frequency detuning and the relaxation oscillation will occur twice in the transition region. Between these two relaxation oscillations, the supermode noise can be significantly enhanced, which is evidence of excess noise in laser systems. All of these results can be explained by the theory of Floquet modes in a phase-modulated laser cavity.

  7. Teaching about photodetection noise sources in the laboratory

    NASA Astrophysics Data System (ADS)

    Jacubowiez, Lionel; Roch, Jean-Francois; Poizat, Jean-Philippe; Grangier, Philippe

    1997-12-01

    We describe simple experiments that allow students to observe, identify, understand and measure different noise sources always present in photodetection systems: amplifier noise, thermal resistance noise (Johnson noise), and photon noise (shot-noise). With a suitable low noise amplifier and a commercial photodiode, students can verify the dependence of photon noise versus light level. This photon shot-noise is directly related to the quantum << nature >> of light and it has long been considered as a fundamental limitation of the optical photodetection systems. It is sometimes mistakenly described as due to the detector itself. We show that it is possible, with fairly affordable laboratory teaching equipment, to measure a photocurrent with a noise power below the shot-noise level using a suitable light source. More precisely, using a photodiode and a high-quantum-efficiency light-emitting diode driven by a constant current source, we can observe a reduction of the photon noise power of about 0.8 dB below the shot-noise level.

  8. Single source noise reduction of received HF audio: experimental study

    NASA Astrophysics Data System (ADS)

    Campbell, Eric C.; Alva, Carlos O.

    2014-05-01

    This paper visits the application of single-source noise reduction on received audio over a HF channel. The noise reduction algorithm is typically used in vocoder noise processing at the transmitter before encoding. This study presents the results of the algorithm effects by objectively measuring audio quality through the use of industry standard PESQ analysis.

  9. Review of Subcritical Source-Driven Noise Analysis Measurements

    SciTech Connect

    Valentine, T.E.

    1999-11-01

    Subcritical source-driven noise measurements are simultaneous Rossia and randomly pulsed neutron measurements that provide measured quantities that can be related to the subcritical neutron multiplication factor. In fact, subcritical source-driven noise measurements should be performed in lieu of Rossia measurements because of the additional information that is obtained from noise measurements such as the spectral ratio and the coherence functions. The basic understanding of source-driven noise analysis measurements can be developed from a point reactor kinetics model to demonstrate how the measured quantities relate to the subcritical neutron multiplication factor.

  10. Continuous-variable quantum key distribution with Gaussian source noise

    SciTech Connect

    Shen Yujie; Peng Xiang; Yang Jian; Guo Hong

    2011-05-15

    Source noise affects the security of continuous-variable quantum key distribution (CV QKD) and is difficult to analyze. We propose a model to characterize Gaussian source noise through introducing a neutral party (Fred) who induces the noise with a general unitary transformation. Without knowing Fred's exact state, we derive the security bounds for both reverse and direct reconciliations and show that the bound for reverse reconciliation is tight.

  11. Analysis and Synthesis of Tonal Aircraft Noise Sources

    NASA Technical Reports Server (NTRS)

    Allen, Matthew P.; Rizzi, Stephen A.; Burdisso, Ricardo; Okcu, Selen

    2012-01-01

    Fixed and rotary wing aircraft operations can have a significant impact on communities in proximity to airports. Simulation of predicted aircraft flyover noise, paired with listening tests, is useful to noise reduction efforts since it allows direct annoyance evaluation of aircraft or operations currently in the design phase. This paper describes efforts to improve the realism of synthesized source noise by including short term fluctuations, specifically for inlet-radiated tones resulting from the fan stage of turbomachinery. It details analysis performed on an existing set of recorded turbofan data to isolate inlet-radiated tonal fan noise, then extract and model short term tonal fluctuations using the analytic signal. Methodologies for synthesizing time-variant tonal and broadband turbofan noise sources using measured fluctuations are also described. Finally, subjective listening test results are discussed which indicate that time-variant synthesized source noise is perceived to be very similar to recordings.

  12. Aalborg Universitet Selective Harmonic Virtual Impedance for Voltage Source Inverters with LCL filter in

    E-print Network

    Vasquez, Juan Carlos

    ., & Lee, T-L. (2012). Selective Harmonic Virtual Impedance for Voltage Source Inverters with LCL filter for voltage source inverters with LCL filter in microgrids," Energy Conversion Congress and Exposition (ECCE://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6342572&isnumber=6342155 Selective Harmonic Virtual Impedance for Voltage Source Inverters with LCL filter

  13. Cross-correlation imaging of ambient noise sources

    NASA Astrophysics Data System (ADS)

    Ermert, Laura; Villaseñor, Antonio; Fichtner, Andreas

    2016-01-01

    We develop and apply a novel technique to image ambient seismic noise sources. It is based on measurements of cross-correlation asymmetry defined as the logarithmic energy ratio of the causal and anticausal branches of the cross-correlation function. A possible application of this technique is to account for the distribution of noise sources, a problem which currently poses obstacles to noise-based surface wave dispersion analysis and waveform inversion. The particular asymmetry measurement used is independent of absolute noise correlation amplitudes. It is shown how it can be forward-modelled and related to the noise source power-spectral density using adjoint methods. Simplified sensitivity kernels allow us to rapidly image variations in the power-spectral density of noise sources. This imaging method correctly accounts for viscoelastic attenuation and is to first order insensitive to unmodelled Earth structure. Furthermore, it operates directly on noise correlation data sets. No additional processing is required, which makes the method fast and computationally inexpensive. We apply the method to three vertical-component cross-correlation data sets of different spatial and temporal scales. Processing is deliberately minimal so as to keep observations consistent with the imaging concept. In accord with previous studies, we image seasonally changing sources of the Earth's hum in the Atlantic, Pacific and the Southern Ocean. The sources of noise in the microseismic band recorded at stations in Switzerland are predominantly located in the Atlantic and show a clear dependence on both season and frequency. Our developments are intended as a step towards full 3-D inversions for the sources of ambient noise in various frequency bands, which may ultimately lead to improvements of noise-based structural imaging.

  14. Aeroacoustic Codes For Rotor Harmonic and BVI Noise--CAMRAD.Mod1/HIRES

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Boyd, D. Douglas, Jr.; Burley, Casey L.; Jolly, J. Ralph, Jr.

    1996-01-01

    This paper presents a status of non-CFD aeroacoustic codes at NASA Langley Research Center for the prediction of helicopter harmonic and Blade-Vortex Interaction (BVI) noise. The prediction approach incorporates three primary components: CAMRAD.Mod1 - a substantially modified version of the performance/trim/wake code CAMRAD; HIRES - a high resolution blade loads post-processor; and WOPWOP - an acoustic code. The functional capabilities and physical modeling in CAMRAD.Mod1/HIRES will be summarized and illustrated. A new multi-core roll-up wake modeling approach is introduced and validated. Predictions of rotor wake and radiated noise are compared with to the results of the HART program, a model BO-105 windtunnel test at the DNW in Europe. Additional comparisons are made to results from a DNW test of a contemporary design four-bladed rotor, as well as from a Langley test of a single proprotor (tiltrotor) three-bladed model configuration. Because the method is shown to help eliminate the necessity of guesswork in setting code parameters between different rotor configurations, it should prove useful as a rotor noise design tool.

  15. Optimization of Extreme Ultraviolet Light Source from High Harmonic Generation for Condensed-Phase Core-Level Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lin, Ming-Fu; Verkamp, Max A.; Ryland, Elizabeth S.; Benke, Kristin; Zhang, Kaili; Carlson, Michaela; Vura-Weis, Josh

    2015-06-01

    Extreme ultraviolet (XUV) light source from high-order harmonic generation has been shown to be a powerful tool for core-level spectroscopy. In addition, this light source provides very high temporal resolution (10-18 s to 10-15 s) for time-resolved transient absorption spectroscopy. Most applications of the light source have been limited to the studies of atomic and molecular systems, with technique development focused on optimizing for shorter pulses (i.e. tens of attoseconds) or higher XUV energy (i.e. ~keV range). For the application to general molecular systems in solid and liquid forms, however, the XUV photon flux and stability are highly demanded due to the strong absorption by substrates and solvents. In this case, the main limitation is due to the stability of the high order generation process and the limited bandwidth of the XUV source that gives only discrete even/odd order peaks. Consequently, this results in harmonic artifact noise that overlaps with the resonant signal. In our current study, we utilize a semi-infinite cell for high harmonic generation from two quantum trajectories (i.e. short and long) at over-driven NIR power. This condition, produces broad XUV spectrum without using complicated optics (e.g. hollow-core fibers and double optical gating). This light source allows us to measure the static absorption spectrum of the iron M-edge from a Fe(acac)3 molecular solid film, which shows a resonant feature of 0.01 OD (~2.3% absorption). Moreover, we also investigate how sample roughness affects the static absorption spectrum. We are able to make smooth solar cell precursor materials (i.e. PbI2 and PbBr2) by spin casting and observe iodine (50 eV) and bromine (70 eV) absorption edges in the order of 0.05 OD with minimal harmonic artifact noise.

  16. A study of interior noise levels, noise sources and transmission paths in light aircraft

    NASA Technical Reports Server (NTRS)

    Hayden, R. E.; Murray, B. S.; Theobald, M. A.

    1983-01-01

    The interior noise levels and spectral characteristics of 18 single-and twin-engine propeller-driven light aircraft, and source-path diagnosis of a single-engine aircraft which was considered representative of a large part of the fleet were studied. The purpose of the flight surveys was to measure internal noise levels and identify principal noise sources and paths under a carefully controlled and standardized set of flight procedures. The diagnostic tests consisted of flights and ground tests in which various parts of the aircraft, such as engine mounts, the engine compartment, exhaust pipe, individual panels, and the wing strut were instrumented to determine source levels and transmission path strengths using the transfer function technique. Predominant source and path combinations are identified. Experimental techniques are described. Data, transfer function calculations to derive source-path contributions to the cabin acoustic environment, and implications of the findings for noise control design are analyzed.

  17. Optical linear algebra processors - Noise and error-source modeling

    NASA Technical Reports Server (NTRS)

    Casasent, D.; Ghosh, A.

    1985-01-01

    The modeling of system and component noise and error sources in optical linear algebra processors (OLAPs) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.

  18. Active noise control using noise source having adaptive resonant frequency tuning through stiffness variation

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G. (Inventor); Rajiyah, Harindra (Inventor); Renshaw, Anthony A. (Inventor); Hedeen, Robert A. (Inventor)

    1995-01-01

    A noise source for an aircraft engine active noise cancellation system in which the resonant frequency of a noise radiating element is tuned to permit noise cancellation over a wide range of frequencies. The resonant frequency of the noise radiating element is tuned by a plurality of force transmitting mechanisms which contact the noise radiating element. Each one of the force transmitting mechanisms includes an expandable element and a spring in contact with the noise radiating element so that excitation of the element varies the spring force applied to the noise radiating element. The elements are actuated by a controller which receives input of a signal proportional to displacement of the noise radiating element and a signal corresponding to the blade passage frequency of the engine's fan. In response, the controller determines a control signal which is sent to the elements and causes the spring force applied to the noise radiating element to be varied. The force transmitting mechanisms can be arranged to either produce bending or linear stiffness variations in the noise radiating element.

  19. Towards low-noise fiber sources for coherent Raman microscopy

    NASA Astrophysics Data System (ADS)

    Lamb, Erin S.; Pei, Hanzhang; Wise, Frank W.

    2015-03-01

    A compact, robust, and inexpensive fiber-based source for coherent Raman imaging would benefit both re-searchers and the clinical application of these imaging techniques. However, the relative intensity noise of fiber sources has precluded their use for stimulated Raman scattering microscopy without the use of electronic noise cancellation. A recently demonstrated fiber optical parametric oscillator was used to achieve high-quality images using coherent anti-Stokes Raman scattering microscopy, and demonstrated that the self-consistent nature of the oscillator aided low-noise frequency conversion. Thus, reducing the intensity noise on the fiber laser used to pump this device will be a critical step in creating a fiber-based source for stimulated Raman scattering microscopy. We will report the design and construction of high-energy dissipative soliton fiber lasers as a potential source of quiet picosecond pulses at 1 ?m, along with application to pumping the optical parametric oscillator.

  20. Annoyance and loudness of repetitive type noise sources: a review

    SciTech Connect

    Sutherland, L.C.

    1982-01-01

    Repetitive impulsive noises are a consistent and frequently annoying ingredient of outdoor and indoor noise environments. Examples of such noise sources are jack hammers, unmuffled two-cycle engines, and helicopter blade slap. To aid in the development of more consistent methods for quantifying annoyance from such noise sources, the Environmental Protection Agency funded a review of the literature on the topic. This is a very abbreviated summary of that review and the reader is referred to the original document for detailed references. The review specifically excluded consideration of non-repetitive high-level impulse sounds such as blast noise which has been recently addressed by CHABA Working Group 84(2). Helicopter blade slap was briefly included in the review in order to reflect some of the trends appearing in the very extensive current work in this area.

  1. Active noise control using noise source having adaptive resonant frequency tuning through stress variation

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G. (Inventor); Rajiyah, Harindra (Inventor); Renshaw, Anthony A. (Inventor); Hedeen, Robert A. (Inventor)

    1995-01-01

    A noise source for an aircraft engine active noise cancellation system in which the resonant frequency of a noise radiating element is tuned to permit noise cancellation over a wide range of frequencies. The resonant frequency of the noise radiating element is tuned by an expandable ring embedded in the noise radiating element. Excitation of the ring causes expansion or contraction of the ring, thereby varying the stress in the noise radiating element. The ring is actuated by a controller which receives input of a feedback signal proportional to displacement of the noise radiating element and a signal corresponding to the blade passage frequency of the engine's fan. In response, the controller determines a control signal which is sent to the ring, causing the ring to expand or contract. Instead of a single ring embedded in the noise radiating panel, a first expandable ring can be bonded to one side of the noise radiating element, and a second expandable ring can be bonded to the other side.

  2. Heat conduction in disordered harmonic lattices with energy-conserving noise

    NASA Astrophysics Data System (ADS)

    Dhar, Abhishek; Venkateshan, K.; Lebowitz, J. L.

    2011-02-01

    We study heat conduction in a harmonic crystal whose bulk dynamics is supplemented by random reversals (flips) of the velocity of each particle at a rate ?. The system is maintained in a nonequilibrium stationary state (NESS) by contacts with white-noise Langevin reservoirs at different temperatures. We show that the one-body and pair correlations in this system are the same (after an appropriate mapping of parameters) as those obtained for a model with self-consistent reservoirs. This is true both for the case of equal and random (quenched) masses. While the heat conductivity in the NESS of the ordered system is known explicitly, much less is known about the random mass case. Here we investigate the random system with velocity flips. We improve the bounds on the Green-Kubo conductivity obtained by Bernardin [J. Stat. Phys.JSTPBS0022-471510.1007/s10955-008-9620-1 133, 417 (2008)]. The conductivity of the one-dimensional system is then studied both numerically and analytically. This sheds some light on the effect of noise on the transport properties of systems with localized states caused by quenched disorder.

  3. Screech noise source structure of a supersonic rectangular jet

    NASA Technical Reports Server (NTRS)

    Rice, E. J.; Taghavi, R.

    1992-01-01

    The near-field of the screech noise source structure of an under-expanded supersonic rectangular jet was studied in detail. A miniature probe microphone was used along with a reference microphone to determine the amplitude and phase of the sound pressure near and in the high speed flow field. The transverse structure of the unsteady pressure field was investigated by moving the probe microphone sufficiently far into the jet so that pressure fall-off was observed. Five islands of high sound pressure level have been distinguished which may be associated with the actual local sources of sound production. These sources of screech noise are closely associated with the jet shock structure as would be expected, with the peak region of noise level being found slightly downstream of each of the five observed shocks. The third and fourth noise sources have the highest levels and are about equal in strength. All of the apparent noise sources have their peak levels in the subsonic flow region. Strong cancellations in the acoustic field are observed in the downstream and sideline directions which may account for the predominant upstream propagation of the fundamental tone noise.

  4. MEG source localization using invariance of noise space.

    PubMed

    Zhang, Junpeng; Raij, Tommi; Hämäläinen, Matti; Yao, Dezhong

    2013-01-01

    We propose INvariance of Noise (INN) space as a novel method for source localization of magnetoencephalography (MEG) data. The method is based on the fact that modulations of source strengths across time change the energy in signal subspace but leave the noise subspace invariant. We compare INN with classical MUSIC, RAP-MUSIC, and beamformer approaches using simulated data while varying signal-to-noise ratios as well as distance and temporal correlation between two sources. We also demonstrate the utility of INN with actual auditory evoked MEG responses in eight subjects. In all cases, INN performed well, especially when the sources were closely spaced, highly correlated, or one source was considerably stronger than the other. PMID:23505502

  5. Active control of aircraft engine inlet noise using compact sound sources and distributed error sensors

    NASA Technical Reports Server (NTRS)

    Burdisso, Ricardo (Inventor); Fuller, Chris R. (Inventor); O'Brien, Walter F. (Inventor); Thomas, Russell H. (Inventor); Dungan, Mary E. (Inventor)

    1996-01-01

    An active noise control system using a compact sound source is effective to reduce aircraft engine duct noise. The fan noise from a turbofan engine is controlled using an adaptive filtered-x LMS algorithm. Single multi channel control systems are used to control the fan blade passage frequency (BPF) tone and the BPF tone and the first harmonic of the BPF tone for a plane wave excitation. A multi channel control system is used to control any spinning mode. The multi channel control system to control both fan tones and a high pressure compressor BPF tone simultaneously. In order to make active control of turbofan inlet noise a viable technology, a compact sound source is employed to generate the control field. This control field sound source consists of an array of identical thin, cylindrically curved panels with an inner radius of curvature corresponding to that of the engine inlet. These panels are flush mounted inside the inlet duct and sealed on all edges to prevent leakage around the panel and to minimize the aerodynamic losses created by the addition of the panels. Each panel is driven by one or more piezoelectric force transducers mounted on the surface of the panel. The response of the panel to excitation is maximized when it is driven at its resonance; therefore, the panel is designed such that its fundamental frequency is near the tone to be canceled, typically 2000-4000 Hz.

  6. Active control of aircraft engine inlet noise using compact sound sources and distributed error sensors

    NASA Technical Reports Server (NTRS)

    Burdisso, Ricardo (Inventor); Fuller, Chris R. (Inventor); O'Brien, Walter F. (Inventor); Thomas, Russell H. (Inventor); Dungan, Mary E. (Inventor)

    1994-01-01

    An active noise control system using a compact sound source is effective to reduce aircraft engine duct noise. The fan noise from a turbofan engine is controlled using an adaptive filtered-x LMS algorithm. Single multi channel control systems are used to control the fan blade passage frequency (BPF) tone and the BPF tone and the first harmonic of the BPF tone for a plane wave excitation. A multi channel control system is used to control any spinning mode. The multi channel control system to control both fan tones and a high pressure compressor BPF tone simultaneously. In order to make active control of turbofan inlet noise a viable technology, a compact sound source is employed to generate the control field. This control field sound source consists of an array of identical thin, cylindrically curved panels with an inner radius of curvature corresponding to that of the engine inlet. These panels are flush mounted inside the inlet duct and sealed on all edges to prevent leakage around the panel and to minimize the aerodynamic losses created by the addition of the panels. Each panel is driven by one or more piezoelectric force transducers mounted on the surface of the panel. The response of the panel to excitation is maximized when it is driven at its resonance; therefore, the panel is designed such that its fundamental frequency is near the tone to be canceled, typically 2000-4000 Hz.

  7. Frequency-dependent noise sources in the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    sergeant, A.; Stutzmann, E.; Maggi, A.; Schimmel, M.; Ardhuin, F.; Obrebski, M. J.

    2013-12-01

    Secondary microseisms are the most energetic waves in the noise spectra between 3 and 10 sec. They are generated by ocean wave interactions and are predominantly Rayleigh waves. We study the associated noise sources in the North Atlantic Ocean by coupling noise polarization analysis and source-mapping using an ocean wave model that takes into account coastal reflections. From the Rayleigh wave polarization analysis we retrieve the back-azimuth to the noise sources in the time-frequency domain. With noise source modeling we locate the associated generation areas at different times and frequencies. We analyze the distribution of secondary microseism sources in the North Atlantic Ocean using 20 broadband stations located in the Arctic and around the ocean. To model the noise sources we adjust empirically the ocean wave coastal reflection coefficient as a function of frequency. We find that coastal reflections must be taken into account for accurately modeling 7-10 sec noise sources. These reflections can be neglected in the noise modeling for periods shorter than 7 sec. We find a strong variability of back-azimuths and source locations as a function of frequency. One direct cause of this time- and frequency-dependent noise sources is the presence of sea-ice that affects the amplitude and polarization of microseisms at stations in the Arctic only at periods shorter than 4 sec. Distributions of the secondary microseism sources in March and September in three different period bands: 7-10 sec (a, b), 4-7 sec (c, d) and 3-4 sec (e, f). The color maps show the corresponding modeled sources and the ice floe is represented by the white areas. The sources are modeled using a coastal reflection of 6.25% for 7-10 sec period band. At each station, the number of back-azimuths is compiled in angular histograms. The different scales show that less short period Rayleigh waves were detected than longer period waves. The red dotted lines show the great circle path from stations in Canada along the dominant back azimuth. Stations are plotted with triangles.

  8. Active noise control using noise source having adaptive resonant frequency tuning through variable ring loading

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G. (Inventor); Rajiyah, Harindra (Inventor); Renshaw, Anthony A. (Inventor); Hedeen, Robert A. (Inventor)

    1995-01-01

    A noise source for an aircraft engine active noise cancellation system in which the resonant frequency of noise radiating structure is tuned to permit noise cancellation over a wide range of frequencies. The resonant frequency of the noise radiating structure is tuned by a plurality of drivers arranged to contact the noise radiating structure. Excitation of the drivers causes expansion or contraction of the drivers, thereby varying the edge loading applied to the noise radiating structure. The drivers are actuated by a controller which receives input of a feedback signal proportional to displacement of the noise radiating element and a signal corresponding to the blade passage frequency of the engine's fan. In response, the controller determines a control signal which is sent to the drivers, causing them to expand or contract. The noise radiating structure may be either the outer shroud of the engine or a ring mounted flush with an inner wall of the shroud or disposed in the interior of the shroud.

  9. Active control of environmental noise, VIII: increasing the response to primary source changes including unpredictable noise

    NASA Astrophysics Data System (ADS)

    Wright, S. E.; Atmoko, H.; Vuksanovic, B.

    2004-07-01

    Conventional adaptive cancellation systems using traditional transverse finite impulse response (FIR) filters, together with least mean square (LMS) adaptive algorithms, well known in active noise control, are slow to adapt to primary source changes. This makes them inappropriate for cancelling rapidly changing noise, including unpredictable noise such as speech and music. Secondly, the cancelling structures require considerable computational processing effort to adapt to primary source and plant changes, particularly for multi-channel systems. This paper describes methods to increase the adaptive speed to primary source changes in large enclosed spaces and outdoor environments. A method is described that increases the response to time varying periodic noise using traditional transverse FIR filters. Here a multi-passband filter, with individual variable adaptive step sizes for each passband is automatically adjusted according to the signal level in each band. This creates a similar adaptive response for all frequencies within the total pass-band, irrespective of amplitude, minimizing the signal distortion and increasing the combined adaptive speed. Unfortunately, there is a limit to the adaptive speed using the above method as classical transverse FIR filters have a finite adaptive speed given by the stability band zero bandwidth. For rapidly changing periodic noise and unpredictable non-stationary noise, a rapid to instantaneous response is required. In this case the on-line adaptive FIR filters are dispensed with and replaced by a time domain solution that gives virtually instantaneous cancellation response (infinite adaptive speed) to primary source changes, and is computationally efficient.

  10. Jet Noise Source Localization Using Linear Phased Array

    NASA Technical Reports Server (NTRS)

    Agboola, Ferni A.; Bridges, James

    2004-01-01

    A study was conducted to further clarify the interpretation and application of linear phased array microphone results, for localizing aeroacoustics sources in aircraft exhaust jet. Two model engine nozzles were tested at varying power cycles with the array setup parallel to the jet axis. The array position was varied as well to determine best location for the array. The results showed that it is possible to resolve jet noise sources with bypass and other components separation. The results also showed that a focused near field image provides more realistic noise source localization at low to mid frequencies.

  11. Optical noise induced by Gaussian sources in Stokes parameter measurements

    E-print Network

    Zadok, Avinoam

    channels in fiber- optic networks.7­9 These applications allow a number of users to simultaneously shareOptical noise induced by Gaussian sources in Stokes parameter measurements Avishay Eyal and Avi measurements is derived for sources with Gaussian statistics. The formalism is based on a concise expression

  12. General Aviation Interior Noise. Part 1; Source/Path Identification

    NASA Technical Reports Server (NTRS)

    Unruh, James F.; Till, Paul D.; Palumbo, Daniel L. (Technical Monitor)

    2002-01-01

    There were two primary objectives of the research effort reported herein. The first objective was to identify and evaluate noise source/path identification technology applicable to single engine propeller driven aircraft that can be used to identify interior noise sources originating from structure-borne engine/propeller vibration, airborne propeller transmission, airborne engine exhaust noise, and engine case radiation. The approach taken to identify the contributions of each of these possible sources was first to conduct a Principal Component Analysis (PCA) of an in-flight noise and vibration database acquired on a Cessna Model 182E aircraft. The second objective was to develop and evaluate advanced technology for noise source ranking of interior panel groups such as the aircraft windshield, instrument panel, firewall, and door/window panels within the cabin of a single engine propeller driven aircraft. The technology employed was that of Acoustic Holography (AH). AH was applied to the test aircraft by acquiring a series of in-flight microphone array measurements within the aircraft cabin and correlating the measurements via PCA. The source contributions of the various panel groups leading to the array measurements were then synthesized by solving the inverse problem using the boundary element model.

  13. Algorithm for astronomical, point source, signal to noise ratio calculations

    NASA Technical Reports Server (NTRS)

    Jayroe, R. R.; Schroeder, D. J.

    1984-01-01

    An algorithm was developed to simulate the expected signal to noise ratios as a function of observation time in the charge coupled device detector plane of an optical telescope located outside the Earth's atmosphere for a signal star, and an optional secondary star, embedded in a uniform cosmic background. By choosing the appropriate input values, the expected point source signal to noise ratio can be computed for the Hubble Space Telescope using the Wide Field/Planetary Camera science instrument.

  14. Fan Noise Source Diagnostic Test Computation of Rotor Wake Turbulence Noise

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.; Envia, E.; Thorp, S. A.; Shabbir, A.

    2002-01-01

    An important source mechanism of fan broadband noise is the interaction of rotor wake turbulence with the fan outlet guide vanes. A broadband noise model that utilizes computed rotor flow turbulence from a RANS code is used to predict fan broadband noise spectra. The noise model is employed to examine the broadband noise characteristics of the 22-inch Source Diagnostic Test fan rig for which broadband noise data were obtained in wind tunnel tests at the NASA Glenn Research Center. A 9-case matrix of three outlet guide vane configurations at three representative fan tip speeds are considered. For all cases inlet and exhaust acoustic power spectra are computed and compared with the measured spectra where possible. In general, the acoustic power levels and shape of the predicted spectra are in good agreement with the measured data. The predicted spectra show the experimentally observed trends with fan tip speed, vane count, and vane sweep. The results also demonstrate the validity of using CFD-based turbulence information for fan broadband noise calculations.

  15. Fan Noise Source Diagnostic Test Computation of Rotor Wake Turbulence Noise

    NASA Astrophysics Data System (ADS)

    Nallasamy, M.; Envia, E.; Thorp, S. A.; Shabbir, A.

    2002-08-01

    An important source mechanism of fan broadband noise is the interaction of rotor wake turbulence with the fan outlet guide vanes. A broadband noise model that utilizes computed rotor flow turbulence from a RANS code is used to predict fan broadband noise spectra. The noise model is employed to examine the broadband noise characteristics of the 22-inch Source Diagnostic Test fan rig for which broadband noise data were obtained in wind tunnel tests at the NASA Glenn Research Center. A 9-case matrix of three outlet guide vane configurations at three representative fan tip speeds are considered. For all cases inlet and exhaust acoustic power spectra are computed and compared with the measured spectra where possible. In general, the acoustic power levels and shape of the predicted spectra are in good agreement with the measured data. The predicted spectra show the experimentally observed trends with fan tip speed, vane count, and vane sweep. The results also demonstrate the validity of using CFD-based turbulence information for fan broadband noise calculations.

  16. Second and Third Harmonic Measurements at the Linac Coherent Light Source

    SciTech Connect

    Ratner, D.; Brachmann, A.; Decker, F.J.; Ding, Y.; Dowell, D.; Emma, P.; Fisher, A.; Frisch, J.; Gilevich, S.; Huang, Z.; Hering, P.; Iverson, R.; Krzywinski, J.; Loos, H.; Messerschmidt, M.; Nuhn, H.D.; Smith, T.; Turner, J.; Welch, J.; White, W.; Wu, J.; /SLAC

    2011-01-03

    The Linac Coherent Light Source (LCLS) started user commissioning in October of 2009, producing Free Electron Laser (FEL) radiation between 800 eV and 8 keV [1]. The fundamental wavelength of the FEL dominates radiation in the beamlines, but the beam also produces nonnegligible levels of radiation at higher harmonics. The harmonics may be desirable as a source of harder X-rays, but may also contribute backgrounds to user experiments. In this paper we present preliminary measurements of the second and third harmonic content in the FEL. We also measure the photon energy cutoff of the soft X-ray mirrors to determine the extent to which higher harmonics reach the experimental stations. We present preliminary second and third harmonic measurements for LCLS. At low energies (below 1 keV fundamental) we measure less than 0.1% second harmonic content. The second harmonic will be present in the soft X-ray beam line for fundamental photon energies below approximately 1.1 keV. At low and high energies, we measure third harmonic content ranging from 0.5% to 3%, which is consistent with expectations. For both second and third harmonics, experimental work is ongoing. More rigorous analysis of the data will be completed soon.

  17. Aeroacoustic Codes for Rotor Harmonic and BVI Noise. CAMRAD.Mod1/HIRES: Methodology and Users' Manual

    NASA Technical Reports Server (NTRS)

    Boyd, D. Douglas, Jr.; Brooks, Thomas F.; Burley, Casey L.; Jolly, J. Ralph, Jr.

    1998-01-01

    This document details the methodology and use of the CAMRAD.Mod1/HIRES codes, which were developed at NASA Langley Research Center for the prediction of helicopter harmonic and Blade-Vortex Interaction (BVI) noise. CANMAD.Mod1 is a substantially modified version of the performance/trim/wake code CANMAD. High resolution blade loading is determined in post-processing by HIRES and an associated indicial aerodynamics code. Extensive capabilities of importance to noise prediction accuracy are documented, including a new multi-core tip vortex roll-up wake model, higher harmonic and individual blade control, tunnel and fuselage correction input, diagnostic blade motion input, and interfaces for acoustic and CFD aerodynamics codes. Modifications and new code capabilities are documented with examples. A users' job preparation guide and listings of variables and namelists are given.

  18. Investigation of Volumetric Sources in Airframe Noise Simulations

    NASA Technical Reports Server (NTRS)

    Casper, Jay H.; Lockard, David P.; Khorrami, Mehdi R.; Streett, Craig L.

    2004-01-01

    Hybrid methods for the prediction of airframe noise involve a simulation of the near field flow that is used as input to an acoustic propagation formula. The acoustic formulations discussed herein are those based on the Ffowcs Williams and Hawkings equation. Some questions have arisen in the published literature in regard to an apparently significant dependence of radiated noise predictions on the location of the integration surface used in the solution of the Ffowcs Williams and Hawkings equation. These differences in radiated noise levels are most pronounced between solid-body surface integrals and off-body, permeable surface integrals. Such differences suggest that either a non-negligible volumetric source is contributing to the total radiation or the input flow simulation is suspect. The focus of the current work is the issue of internal consistency of the flow calculations that are currently used as input to airframe noise predictions. The case study for this research is a computer simulation for a three-element, high-lift wing profile during landing conditions. The noise radiated from this flow is predicted by a two-dimensional, frequency-domain formulation of the Ffowcs Williams and Hawkings equation. Radiated sound from volumetric sources is assessed by comparison of a permeable surface integration with the sum of a solid-body surface integral and a volume integral. The separate noise predictions are found in good agreement.

  19. Noise tube sources for the far IR and millimeter region

    NASA Technical Reports Server (NTRS)

    Moller, K. D.; Zoeller, R. G.; Ugras, N. G.; Zablocky, P.; Heaney, James B.; Stewart, K. P.; Boucarut, R. A.

    1988-01-01

    The radiant output of a noise tube designed for the 90-140-GHz (3.3-2.1-mm) frequency range has been compared with that from mercury lamps over the wavelength region from 0.4 to about 6 mm. Lamellar grating and Michelson Fourier transform spectrometers were used in conjunction with He cooled bolometers of NEP from 10 to the -12th to 10 to the -14th W/sq rt H2 to measure relative spectral irradiance. With this instrumental arrangement, the radiant power emitted by the noise tube was observed to be less than that from a mercury lamp, at least to a 3-mm wavelength, but it produced less source noise than an ac operated mercury lamp. When the noise tube operating current was reduced, the spectral irradiance peak shifted to longer wavelengths.

  20. Improved perception of speech in noise and Mandarin tones with acoustic simulations of harmonic coding for cochlear implantsa

    PubMed Central

    Li, Xing; Nie, Kaibao; Imennov, Nikita S.; Won, Jong Ho; Drennan, Ward R.; Rubinstein, Jay T.; Atlas, Les E.

    2012-01-01

    Harmonic and temporal fine structure (TFS) information are important cues for speech perception in noise and music perception. However, due to the inherently coarse spectral and temporal resolution in electric hearing, the question of how to deliver harmonic and TFS information to cochlear implant (CI) users remains unresolved. A harmonic-single-sideband-encoder [(HSSE); Nie et al. (2008). Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing; Lie et al., (2010). Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing] strategy has been proposed that explicitly tracks the harmonics in speech and transforms them into modulators conveying both amplitude modulation and fundamental frequency information. For unvoiced speech, HSSE transforms the TFS into a slowly varying yet still noise-like signal. To investigate its potential, four- and eight-channel vocoder simulations of HSSE and the continuous-interleaved-sampling (CIS) strategy were implemented, respectively. Using these vocoders, five normal-hearing subjects’ speech recognition performance was evaluated under different masking conditions; another five normal-hearing subjects’ Mandarin tone identification performance was also evaluated. Additionally, the neural discharge patterns evoked by HSSE- and CIS-encoded Mandarin tone stimuli were simulated using an auditory nerve model. All subjects scored significantly higher with HSSE than with CIS vocoders. The modeling analysis demonstrated that HSSE can convey temporal pitch cues better than CIS. Overall, the results suggest that HSSE is a promising strategy to enhance speech perception with CIs. PMID:23145619

  1. Propeller sheet cavitation noise source modeling and inversion

    NASA Astrophysics Data System (ADS)

    Lee, Keunhwa; Lee, Jaehyuk; Kim, Dongho; Kim, Kyungseop; Seong, Woojae

    2014-02-01

    Propeller sheet cavitation is the main contributor to high level of noise and vibration in the after body of a ship. Full measurement of the cavitation-induced hull pressure over the entire surface of the affected area is desired but not practical. Therefore, using a few measurements on the outer hull above the propeller in a cavitation tunnel, empirical or semi-empirical techniques based on physical model have been used to predict the hull-induced pressure (or hull-induced force). In this paper, with the analytic source model for sheet cavitation, a multi-parameter inversion scheme to find the positions of noise sources and their strengths is suggested. The inversion is posed as a nonlinear optimization problem, which is solved by the optimization algorithm based on the adaptive simplex simulated annealing algorithm. Then, the resulting hull pressure can be modeled with boundary element method from the inverted cavitation noise sources. The suggested approach is applied to the hull pressure data measured in a cavitation tunnel of the Samsung Heavy Industry. Two monopole sources are adequate to model the propeller sheet cavitation noise. The inverted source information is reasonable with the cavitation dynamics of the propeller and the modeled hull pressure shows good agreement with cavitation tunnel experimental data.

  2. Aircraft noise reduction technology. [to show impact on individuals and communities, component noise sources, and operational procedures to reduce impact

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Aircraft and airport noise reduction technology programs conducted by NASA are presented. The subjects discussed are: (1) effects of aircraft noise on individuals and communities, (2) status of aircraft source noise technology, (3) operational procedures to reduce the impact of aircraft noise, and (4) NASA relations with military services in aircraft noise problems. References to more detailed technical literature on the subjects discussed are included.

  3. A battery-based, low-noise voltage source

    NASA Astrophysics Data System (ADS)

    Wagner, Anke; Sturm, Sven; Schabinger, Birgit; Blaum, Klaus; Quint, Wolfgang

    2010-06-01

    A highly stable, low-noise voltage source was designed to improve the stability of the electrode bias voltages of a Penning trap. To avoid excess noise and ground loops, the voltage source is completely independent of the public electric network and uses a 12 V car battery to generate output voltages of ±15 and ±5 V. First, the dc supply voltage is converted into ac-voltage and gets amplified. Afterwards, the signal is rectified, filtered, and regulated to the desired output value. Each channel can deliver up to 1.5 A. The current as well as the battery voltage and the output voltages can be read out via a universal serial bus (USB) connection for monitoring purposes. With the presented design, a relative voltage stability of 7×10-7 over 6.5 h and a noise level equal or smaller than 30 nV/?Hz is achieved.

  4. Ocean wave sources of seismic noise Fabrice Ardhuin,1

    E-print Network

    Stutzmann, Eléonore

    Ocean wave sources of seismic noise Fabrice Ardhuin,1 Eleonore Stutzmann,2 Martin Schimmel,3 generated by pairs of ocean wave trains of opposing propagation directions with half the seismic frequency waves, including ocean wave reflections. Synthetic and observed seismic spectra are well correlated (r

  5. Optical Techniques for Low Noise Microwave Frequency Sources

    NASA Technical Reports Server (NTRS)

    Maleki, Lute

    2005-01-01

    Optical techniques and mathematical models are described for low noise microwave frequency sources. The contents include: 1) Why Optical Techniques; 2) Wavemixing: Advantages and Disadvantages; 3) Wavemixing with Feedback: The OEO; 4) Feedback in both loops: COEO; and 5) State of the Art and Future Prospects.

  6. Identification and classification of noise sources in a chain conveyor

    NASA Astrophysics Data System (ADS)

    Homer, John P.; Vipperman, Jeffrey S.; Reeves, Efrem R.

    2002-05-01

    Noise induced hearing loss (NIHL) is one of the most significant disabilities of workers in the mining industry. In response, the National Institute of Occupational Safety and Health (NIOSH) is conducting a study associated with mining equipment. This study outlines the analysis of a chain conveyor. Band-limited accelerometer, sound-intensity, far-field and near-field microphone measurements were taken along the conveyor section. The sound intensity measurements were used to identify areas with high noise as well as to calculate and 1/3-octave sound power levels. The total sound power results were used to classify the dominant noise sources where the 1/3-octave sound power results were used to identify the most contributive frequency bands to the overall noise of the system. Coherence analysis was performed between accelerometer and microphone measurements to identify structure-borne and air-borne noise paths of the system. Summary results from the analysis include recommendations for transmission control and damping devices and their ability to reduce noise to regulatory acceptable levels.

  7. Simple harmonic error cancellation in time of flight range imaging.

    PubMed

    Streeter, Lee; Dorrington, Adrian A

    2015-11-15

    Amplitude modulated continuous wave (AMCW) time of flight (ToF) range imaging provides a full field of distance measurement, but common hardware is implemented with digital technology which leads to unwanted harmonic content, a principle source of error in the distance measurements. Existing strategies for correction of harmonics require auxiliary measurements and amplify noise. A small modification of the data acquisition procedure is described which, intrinsically, is invariant to at least one harmonic. The third harmonic, the main cause of harmonic error, is targeted. Compared to traditional measurements the third harmonic is eliminated with no significant increase in noise variance observed. PMID:26565882

  8. Empirical source noise prediction method with application to subsonic coaxial jet mixing noise

    NASA Technical Reports Server (NTRS)

    Zorumski, W. E.; Weir, D. S.

    1982-01-01

    A general empirical method, developed for source noise predictions, uses tensor splines to represent the dependence of the acoustic field on frequency and direction and Taylor's series to represent the dependence on source state parameters. The method is applied to prediction of mixing noise from subsonic circular and coaxial jets. A noise data base of 1/3-octave-band sound pressure levels (SPL's) from 540 tests was gathered from three countries: United States, United Kingdom, and France. The SPL's depend on seven variables: frequency, polar direction angle, and five source state parameters: inner and outer nozzle pressure ratios, inner and outer stream total temperatures, and nozzle area ratio. A least-squares seven-dimensional curve fit defines a table of constants which is used for the prediction method. The resulting prediction has a mean error of 0 dB and a standard deviation of 1.2 dB. The prediction method is used to search for a coaxial jet which has the greatest coaxial noise benefit as compared with an equivalent single jet. It is found that benefits of about 6 dB are possible.

  9. Identification and modification of dominant noise sources in diesel engines

    NASA Astrophysics Data System (ADS)

    Hayward, Michael D.

    Determination of dominant noise sources in diesel engines is an integral step in the creation of quiet engines, but is a process which can involve an extensive series of expensive, time-consuming fired and motored tests. The goal of this research is to determine dominant noise source characteristics of a diesel engine in the near and far-fields with data from fewer tests than is currently required. Pre-conditioning and use of numerically robust methods to solve a set of cross-spectral density equations results in accurate calculation of the transfer paths between the near- and far-field measurement points. Application of singular value decomposition to an input cross-spectral matrix determines the spectral characteristics of a set of independent virtual sources, that, when scaled and added, result in the input cross spectral matrix. Each virtual source power spectral density is a singular value resulting from the decomposition performed over a range of frequencies. The complex relationship between virtual and physical sources is estimated through determination of virtual source contributions to each input measurement power spectral density. The method is made more user-friendly through use of a percentage contribution color plotting technique, where different normalizations can be used to help determine the presence of sources and the strengths of their contributions. Convolution of input measurements with the estimated path impulse responses results in a set of far-field components, to which the same singular value contribution plotting technique can be applied, thus allowing dominant noise source characteristics in the far-field to also be examined. Application of the methods presented results in determination of the spectral characteristics of dominant noise sources both in the near- and far-fields from one fired test, which significantly reduces the need for extensive fired and motored testing. Finally, it is shown that the far-field noise time history of a physically altered engine can be simulated through modification of singular values and recalculation of transfer paths between input and output measurements of previously recorded data.

  10. High-harmonic XUV source for time- and angle-resolved photoemission spectroscopy

    SciTech Connect

    Dakovski, Georgi L; Li, Yinwan; Durakiewicz, Tomasz; Rodriguez, George

    2009-01-01

    We present a laser-based apparatus for visible pump/XUV probe time- and angle-resolved photoemission spectroscopy (TRARPES) utilizing high-harmonic generation from a noble gas. Femtosecond temporal resolution for each selected harmonic is achieved by using a time-delay-compensated monochromator (TCM). The source has been used to obtain photoemission spectra from insulators (UO{sub 2}) and ultrafast pump/probe processes in semiconductors (GaAs).

  11. A Numerical Investigation of Turbine Noise Source Hierarchy and Its Acoustic Transmission Characteristics

    NASA Technical Reports Server (NTRS)

    VanZante, Dale; Envia, Edmane

    2008-01-01

    Understanding the relative importance of the various turbine noise generation mechanisms and the characteristics of the turbine acoustic transmission loss are essential ingredients in developing robust reduced-order models for predicting the turbine noise signature. A computationally based investigation has been undertaken to help guide the development of a turbine noise prediction capability that does not rely on empiricism. The investigation relies on highly detailed numerical simulations of the unsteady flowfield inside a modern high-pressure turbine (HPT). The simulations are developed using TURBO, which is an unsteady Reynolds-averaged Navier-Stokes (URANS) code capable of multi-stage simulations. The purpose of this study is twofold. First, to determine an estimate of the relative importance of the contributions to the coherent part of the acoustic signature of a turbine from the three potential sources of turbine noise generation, namely, blade-row viscous interaction, potential field interaction, and entropic source associated with the interaction of the blade rows with the temperature nonuniformities caused by the incomplete mixing of the hot fluid and the cooling flow. Second, to develop an understanding of the turbine acoustic transmission characteristics and to assess the applicability of existing empirical and analytical transmission loss models to realistic geometries and flow conditions for modern turbine designs. The investigation so far has concentrated on two simulations: (1) a single-stage HPT and (2) a two-stage HPT and the associated inter-turbine duct/strut segment. The simulations are designed to resolve up to the second harmonic of the blade passing frequency tone in accordance with accepted rules for second order solvers like TURBO. The calculations include blade and vane cooling flows and a radial profile of pressure and temperature at the turbine inlet. The calculation can be modified later to include the combustor pattern factor at the turbine inlet to include that contribution to turbine noise. We shall present preliminary analysis of the results obtained so far in order to assess the validity of such an approach and to seek feedback on improving the approach. This work addresses both Area 1 (Turbine Tone Noise) and Area 5 (Influence of the Turbine on Combustor Noise) topics.

  12. Global Analysis of Response in the Piezomagnetoelastic Energy Harvester System under Harmonic and Poisson White Noise Excitations

    NASA Astrophysics Data System (ADS)

    Yue, Xiao-Le; Xu, Wei; Zhang, Ying; Wang, Liang

    2015-10-01

    The piezomagnetoelastic energy harvester system subjected to harmonic and Poisson white noise excitations is studied by using the generalized cell mapping method. The transient and stationary probability density functions (PDFs) of response based on the global viewpoint are obtained by the matrix analysis method. Monte Carlo simulation results verify the accuracy of this method. It can be observed that evolutionary direction of transient and stationary PDFs is in accordance with the unstable manifold for this system, and a stochastic P-bifurcation occurs as the intensity of Poisson white noise increases. This study presents an efficient numerical tool to solve the stochastic response of a three-dimensional dynamical system and provides a new idea to analyze the energy harvester system. Supported by the National Natural Science Foundation of China under Grant Nos. 11302170, 11202160, 11302171, and the Fundamental Research Funds for the Central Universities under Grant No. 3102014JCQ01079

  13. Interface Mobilities for Low-Noise Design of Structure-Borne Sound Sources

    E-print Network

    Berlin,Technische Universität

    Interface Mobilities for Low-Noise Design of Structure-Borne Sound Sources Hannes A. Bonhoff to the source and receiver mobility mismatching for low-noise design, this approach allows for a mismatching a mismatch- ing of the source and receiver mobilities can be stud- ied directly for low-noise design [1

  14. Noise source identification and control of a contractor grade table saw

    NASA Astrophysics Data System (ADS)

    Bleedorn, Kristin; McKee, Matthew; Yarbough, Dale; Yu, Chen; Zechmann, Edward L.; Mann, J. Adin

    2002-05-01

    Sponsored by the National Institute for Occupational Safety and Health (NIOSH) as part of their initiative to explore noise reduction strategies for construction equipment, a team of engineering students at Iowa State University studied a contractor grade table saw. Based on standards, published work, and preliminary tests, a repeatable noise measurement procedure was developed for the table saw operation. The wood-feed rate and force were measured. With the saw operating in a standard and consistent manner, noise sources on the saw were identified using sound intensity measurement techniques and through the application of noise control strategies to individual sources. At this stage, noise control strategies, such as enclosing the motor, are effective for noise source identification but not practical. The effectiveness of both approaches to identifying the noise sources will be discussed. Based on rank ordering the contribution of each noise source to the overall sound levels, permanent noise control strategies are suggested.

  15. Adaptive Selective Harmonic Minimization Based on ANNs for Cascade Multilevel Inverters With Varying DC Sources

    SciTech Connect

    Filho, Faete; Maia, Helder Z; Mateus, Tiago Henrique D; Ozpineci, Burak; Tolbert, Leon M; Pinto, Joao Onofre P

    2013-01-01

    A new approach for modulation of an 11-level cascade multilevel inverter using selective harmonic elimination is presented in this paper. The dc sources feeding the multilevel inverter are considered to be varying in time, and the switching angles are adapted to the dc source variation. This method uses genetic algorithms to obtain switching angles offline for different dc source values. Then, artificial neural networks are used to determine the switching angles that correspond to the real-time values of the dc sources for each phase. This implies that each one of the dc sources of this topology can have different values at any time, but the output fundamental voltage will stay constant and the harmonic content will still meet the specifications. The modulating switching angles are updated at each cycle of the output fundamental voltage. This paper gives details on the method in addition to simulation and experimental results.

  16. Source of correlated noise in experiments using a /sup 252/Cf source

    SciTech Connect

    Difilippo, F.C.

    1987-01-01

    The /sup 252/Cf source method to measure reactivities is under intensive study, both theoretical and experimentally, at the Oak Ridge National Laboratory. The method was already applied to a large variety of multiplicative systems ranging from thermal to fast, homogeneous to heterogeneous and continuous to discrete. Potential applications to the measurement of very large subcriticalities require a careful analysis of the source of correlated noise. Still, /sup 252/Cf experiments are analyzed by applying the Schottky prescription of the source of noise without corrections due to the neutrons removed by the detector; this is equivalent to assuming that detectors' fluctuations are exactly proportional to the fluctuation of the neutron field. Sheff and Albrecht emphasized later that the Schottky source of noise has to be divided into two components related respectively to multiple neutrons per event (fission) and to a single neutron per event (absorption plus leakage), and that only the first component is the source of correlated noise for the detector. The differences between the two formalisms have very practical implications when the /sup 252/Cf method is applied to measure large subcriticalities. This paper analyzes systems without multiplication in order to emphasize the differences; also additional sources of correlations due to finite resolution time are individualized and quantified. Whenever possible, a master equation approach is used to avoid a posteriori cosmetic to the Langevin/Schottky approach. 5 refs., 1 fig.

  17. Source of a time-harmonic SH wave in a cylindrically orthotropic elastic solid

    NASA Astrophysics Data System (ADS)

    Watanabe, Kazumi; Payton, Robert G.

    2001-06-01

    The time harmonic response to a point SH-wave source in a cylindrically orthotropic elastic solid is considered and some closed-form Green functions are obtained for special values of the rigidity ratio (?(??/?r)). An integral representation formula, a key formula for the solution method, for a product of Bessel and Hankel functions with non-integer order is also presented.

  18. A higher harmonic control test in the DNW to reduce impulsive BVI noise

    NASA Technical Reports Server (NTRS)

    Splettstoesser, Wolf R.; Schultz, KLAUS-J.; Kube, Roland; Brooks, Thomas F.; Booth, Earl R., Jr.; Niesl, Georg; Streby, Olivier

    1994-01-01

    A model rotor acoustic test was performed to examine the benefit of higher control (HHC) of blade pitch to reduce blade-vortex interaction (BVI) impulse noise. A 40-percent dynamically scaled, four-bladed model of a BO-105 main rotor was tested in the German-Dutch Wind Tunnel (DNW). Acoustic measurements were made in a large plane underneath the rotor employing a traversing in-flow microphone array in the anechoic environment of the open test section. Noise characteristics and noise directivity patterns as well as vibratory loads were measured and used to demonstrate the changes when different HHC schedules (different modes, amplitudes, phases) were applied. Dramatic changes of the acoustic signatures and the noise radiation directivity with HHC phase variations are found. Compared to the baseline conditions (without HHD), significant mid-frequency noise reductions of as much as 6 dB are obtained for low speed descent conditions where BVI is most intensive. For other rotor operating conditions with less intense BVI there is less or no benefit from the use of HHC. Low frequency loading noise and vibratory loads, especially at optimum noise reduction control settings, are found to increase.

  19. Relationship between Spatial Distribution of Noise Sources and Target Scatterings Observed in the 2010 Sea Trial of Ambient Noise Imaging

    NASA Astrophysics Data System (ADS)

    Mori, Kazuyoshi; Ogasawara, Hanako; Nakamura, Toshiaki; Tsuchiya, Takenobu; Endoh, Nobuyuki

    2013-07-01

    An aspherical lens with an aperture diameter of 1.0 m has been designed and fabricated to develop a prototype system for ambient noise imaging (ANI). A sea trial of silent target detection using the prototype ANI system was conducted under only natural ocean ambient noise at Uchiura Bay, in November of 2010. It was verified that the targets are successfully detected under natural ocean ambient noise, mainly generated by snapping shrimps. In this study, we surveyed the relationship between the spatial distribution of noise sources and the target scattering captured by the ANI system. The observation using a pair of tetrahedron arrays was conducted at the same time as the sea trial. The estimated source positions were spread when the noises arrived from the sea bottom. Some of the sources were around the barge, and other sources were around fish preserves. On the other hand, the source positions were coincident with the barge when the noises arrived from the sea surface. The calculated scattering fields of the target showed sharp directivities. The locations of noise sources, where the ANI system can capture target scatterings with high intensities, were roughly determined at the barge around the sea surface.

  20. Source location of the 26 sec microseism from cross-correlations of ambient seismic noise

    E-print Network

    Shapiro, Nikolai

    ]. [3] A simple model of ambient seismic noise is a wave- field produced by sources that are randomlySource location of the 26 sec microseism from cross-correlations of ambient seismic noise N. M sec microseism from cross- correlations of ambient seismic noise, Geophys. Res. Lett., 33, L18310, doi

  1. Assessment of harmonic source correction for ultrasound medical imaging

    NASA Astrophysics Data System (ADS)

    Dianis, Scott W.; von Ramm, Olaf T.

    2010-03-01

    Tissue velocity and attenuation inhomogeneities reduce ultrasound image quality in many patients. Over the years a number of methods have been developed to estimate the corrective delays necessary for phase aberration correction. Past methods were based on assumptions of the target or required a separate transducer acting as a transponder point source. A method is proposed which creates a known acoustical source in the tissue suitable for wavefront correction without a priori assumptions of the target or requiring a point source transponder. This method was tested with multiple electronically produced aberrations with RMS focusing errors of 0.25? radians, 0.44? radians, and 0.87? radians at 4.17 MHz. These aberrators were corrected using excised pork kidneys and on the left kidney of human volunteers as targets. Waveform correction on pork kidney led to an improvement in imaging beam amplitude and side-lobe level. Waveform correction on human subjects for a 0.87? radians RMS error aberrator led to a 15.4 dB improvement in imaging beam amplitude and an 11.8 dB improvement in side-lobe level. This method shows promise of overcoming the limitations of previous phase correction methods.

  2. Superdiffusion of Energy in a Chain of Harmonic Oscillators with Noise

    NASA Astrophysics Data System (ADS)

    Jara, Milton; Komorowski, Tomasz; Olla, Stefano

    2015-10-01

    We consider a one dimensional infinite chain of harmonic oscillators whose dynamics is perturbed by a stochastic term conserving energy and momentum. We prove that in the unpinned case the macroscopic evolution of the energy converges to the solution of the fractional diffusion equation . For a pinned system we prove that its energy evolves diffusively, generalizing some results of Basile and Olla (J. Stat. Phys. 155(6):1126-1142, 2014).

  3. Source Methodology for Turbofan Noise Prediction (SOURCE3D Technical Documentation)

    NASA Technical Reports Server (NTRS)

    Meyer, Harold D.

    1999-01-01

    This report provides the analytical documentation for the SOURCE3D Rotor Wake/Stator Interaction Code. It derives the equations for the rotor scattering coefficients and stator source vector and scattering coefficients that are needed for use in the TFANS (Theoretical Fan Noise Design/Prediction System). SOURCE3D treats the rotor and stator as isolated source elements. TFANS uses this information, along with scattering coefficients for inlet and exit elements, and provides complete noise solutions for turbofan engines. SOURCE3D is composed of a collection of FORTRAN programs that have been obtained by extending the approach of the earlier V072 Rotor Wake/Stator Interaction Code. Similar to V072, it treats the rotor and stator as a collection of blades and vanes having zero thickness and camber contained in an infinite, hardwall annular duct. SOURCE3D adds important features to the V072 capability-a rotor element, swirl flow and vorticity waves, actuator disks for flow turning, and combined rotor/actuator disk and stator/actuator disk elements. These items allow reflections from the rotor, frequency scattering, and mode trapping, thus providing more complete noise predictions than previously. The code has been thoroughly verified through comparison with D.B. Hanson's CUP2D two- dimensional code using a narrow annulus test case.

  4. Fan Noise Source Diagnostic Test: Rotor Alone Aerodynamic Performance Results

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.; Jeracki, Robert J.; Woodward, Richard P.; Miller, Christopher J.

    2005-01-01

    The aerodynamic performance of an isolated fan or rotor alone model was measured in the NASA Glenn Research Center 9- by 15- Foot Low Speed Wind Tunnel as part of the Fan Broadband Source Diagnostic Test conducted at NASA Glenn. The Source Diagnostic Test was conducted to identify the noise sources within a wind tunnel scale model of a turbofan engine and quantify their contribution to the overall system noise level. The fan was part of a 1/5th scale model representation of the bypass stage of a current technology turbofan engine. For the rotor alone testing, the fan and nacelle, including the inlet, external cowl, and fixed area fan exit nozzle, were modeled in the test hardware; the internal outlet guide vanes located behind the fan were removed. Without the outlet guide vanes, the velocity at the nozzle exit changes significantly, thereby affecting the fan performance. As part of the investigation, variations in the fan nozzle area were tested in order to match as closely as possible the rotor alone performance with the fan performance obtained with the outlet guide vanes installed. The fan operating performance was determined using fixed pressure/temperature combination rakes and the corrected weight flow. The performance results indicate that a suitable nozzle exit was achieved to be able to closely match the rotor alone and fan/outlet guide vane configuration performance on the sea level operating line. A small shift in the slope of the sea level operating line was measured, which resulted in a slightly higher rotor alone fan pressure ratio at take-off conditions, matched fan performance at cutback conditions, and a slightly lower rotor alone fan pressure ratio at approach conditions. However, the small differences in fan performance at all fan conditions were considered too small to affect the fan acoustic performance.

  5. Optimization of structures undergoing harmonic or stochastic excitation. Ph.D. Thesis; [atmospheric turbulence and white noise

    NASA Technical Reports Server (NTRS)

    Johnson, E. H.

    1975-01-01

    The optimal design was investigated of simple structures subjected to dynamic loads, with constraints on the structures' responses. Optimal designs were examined for one dimensional structures excited by harmonically oscillating loads, similar structures excited by white noise, and a wing in the presence of continuous atmospheric turbulence. The first has constraints on the maximum allowable stress while the last two place bounds on the probability of failure of the structure. Approximations were made to replace the time parameter with a frequency parameter. For the first problem, this involved the steady state response, and in the remaining cases, power spectral techniques were employed to find the root mean square values of the responses. Optimal solutions were found by using computer algorithms which combined finite elements methods with optimization techniques based on mathematical programming. It was found that the inertial loads for these dynamic problems result in optimal structures that are radically different from those obtained for structures loaded statically by forces of comparable magnitude.

  6. Axonal Noise as a Source of Synaptic Variability

    PubMed Central

    Neishabouri, Ali; Faisal, A. Aldo

    2014-01-01

    Post-synaptic potential (PSP) variability is typically attributed to mechanisms inside synapses, yet recent advances in experimental methods and biophysical understanding have led us to reconsider the role of axons as highly reliable transmission channels. We show that in many thin axons of our brain, the action potential (AP) waveform and thus the Ca++ signal controlling vesicle release at synapses will be significantly affected by the inherent variability of ion channel gating. We investigate how and to what extent fluctuations in the AP waveform explain observed PSP variability. Using both biophysical theory and stochastic simulations of central and peripheral nervous system axons from vertebrates and invertebrates, we show that channel noise in thin axons (<1 µm diameter) causes random fluctuations in AP waveforms. AP height and width, both experimentally characterised parameters of post-synaptic response amplitude, vary e.g. by up to 20 mV and 0.5 ms while a single AP propagates in C-fibre axons. We show how AP height and width variabilities increase with a ¾ power-law as diameter decreases and translate these fluctuations into post-synaptic response variability using biophysical data and models of synaptic transmission. We find for example that for mammalian unmyelinated axons with 0.2 µm diameter (matching cerebellar parallel fibres) axonal noise alone can explain half of the PSP variability in cerebellar synapses. We conclude that axonal variability may have considerable impact on synaptic response variability. Thus, in many experimental frameworks investigating synaptic transmission through paired-cell recordings or extracellular stimulation of presynaptic neurons, causes of variability may have been confounded. We thereby show how bottom-up aggregation of molecular noise sources contributes to our understanding of variability observed at higher levels of biological organisation. PMID:24809823

  7. Separating Turbofan Engine Noise Sources Using Auto and Cross Spectra from Four Microphones

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton

    2008-01-01

    The study of core noise from turbofan engines has become more important as noise from other sources such as the fan and jet were reduced. A multiple-microphone and acoustic-source modeling method to separate correlated and uncorrelated sources is discussed. The auto- and cross spectra in the frequency range below 1000 Hz are fitted with a noise propagation model based on a source couplet consisting of a single incoherent monopole source with a single coherent monopole source or a source triplet consisting of a single incoherent monopole source with two coherent monopole point sources. Examples are presented using data from a Pratt& Whitney PW4098 turbofan engine. The method separates the low-frequency jet noise from the core noise at the nozzle exit. It is shown that at low power settings, the core noise is a major contributor to the noise. Even at higher power settings, it can be more important than jet noise. However, at low frequencies, uncorrelated broadband noise and jet noise become the important factors as the engine power setting is increased.

  8. Quadrupole source in prediction of the noise of rotating blades - A new source description

    NASA Technical Reports Server (NTRS)

    Farassat, F.

    1987-01-01

    The aim of this paper is to perform a theoretical study of the quadrupole term of the Ffowcs Williams-Hawkings (FW-H) equation to obtain practical results for applications to rotating blades. The quadrupole term of the FW-H equation is algebraically manipulated into volume, surface and line sources using generalized function theory and differential geometry. The volume source is of the type in Lighthill's jet noise theory. The surface sources are on the blade and shock surfaces and the line source is at the trailing edge. It is shown that contribution of volume sources in the boundary layer and wakes can be written in the form of surface integrals. It is argued that the surface and line sources and the part of the volume sources in the boundary layer, wakes and vortices near the blades should be sufficient in calculation of the noise of high speed rotating blades. The integrals correspoding to the various sources appearing in the formula for calculation of the acoustic pressure are briefly derived.

  9. Integrated quasi-phase-matched second-harmonic generator and electro-optic phase modulator for low-noise phase-sensitive amplification.

    PubMed

    Enbutsu, Koji; Umeki, Takeshi; Tadanaga, Osamu; Asobe, Masaki; Takenouchi, Hirokazu

    2015-07-15

    We propose a quasi-phase-matched second-harmonic generator integrated with an electro-optic phase modulator in a directly bonded LiNbO3 (DB-LN) waveguide to obtain high signal-to-noise ratio (SNR) pump light for a phase-sensitive amplifier (PSA). This integrated device exhibits 1-MHz modulation and 1-W second-harmonic-generation properties sufficient for phase-locking between the signal and pump and for PSA gain, respectively. A novel PSA configuration based on the high-input-power tolerance of the device helps to suppress the noise from the erbium-doped fiber amplifier used for pump-light generation and leads to an improvement of the SNR of the pump light. The SNR improvement was confirmed by comparing the noise figure of a PSA employing the DB-LN waveguide with that of a PSA using a Ti-diffused LN waveguide modulator. PMID:26176463

  10. Noise-induced annoyance from transportation noise: short-term responses to a single noise source in a laboratory.

    PubMed

    Kim, Jaehwan; Lim, Changwoo; Hong, Jiyoung; Lee, Soogab

    2010-02-01

    An experimental study was performed to compare the annoyances from civil-aircraft noise, military-aircraft noise, railway noise, and road-traffic noise. Two-way within-subjects designs were applied in this research. Fifty-two subjects, who were naive listeners, were given various stimuli with varying levels through a headphone in an anechoic chamber. Regardless of the frequency weighting network, even under the same average energy level, civil-aircraft noise was the most annoying, followed by military-aircraft noise, railway noise, and road-traffic noise. In particular, penalties in the time-averaged, A-weighted sound level (TAL) of about 8, 5, and 5 dB, respectively, were found in the civil-aircraft, military-aircraft, and railway noises. The reason could be clarified through the high-frequency component and the variability in the level. When people were exposed to sounds with the same maximum A-weighted level, a railway bonus of about 3 dB was found. However, transportation noise has been evaluated by the time-averaged A-weighted level in most countries. Therefore, in the present situation, the railway bonus is not acceptable for railway vehicles with diesel-electric engines. PMID:20136203

  11. Vehicle noise source heights and sub-source spectra. Final report

    SciTech Connect

    Coulson, R.K.

    1996-12-01

    This report describes a turn-key system that was developed and implemented to collect the vehicle source height database for incorporation into the new Traffic Noise Model; `TNM.` A total of 2500 individual vehicle pass-byes were measured with this system at 16 different sites around Florida and this data is presented in the form of averaged curves for each vehicle type. The dependence of source height on speed, pavement type, road grade and acceleration state is also shown for 10 different types of vehicles. The effect of these roadway conditions on the vehicle source heights is small compared to the typical variation in the whole data set. A recommendation is therefore made that the overall average of the date for each vehicle type be used in the TNM model and that variations with speed, pavement, grade and acceleration can be neglected. The data collection system and algorithm used to obtain the source heights is described and the accuracty is demonstrated experimentally with know sources. The measured vehicle source heights are further verified using an alternative Matched Field Processing algorithm which produced very similar results. It is also shown that the single equivalent source height model for a distribution of sources is more accurate that the two sub-source model when used in barrier attenuation calculations.

  12. Radially leaned outlet guide vanes for fan source noise reduction

    NASA Technical Reports Server (NTRS)

    Kazin, S. B.

    1973-01-01

    Two quiet engine program half scale fans one with a subsonic and the other with a supersonic fan tip speed at takeoff were run with 30 degree leaned and radial outlet guide vanes. Acoustic data at takeoff fan speed on the subsonic tip speed fan showed decreases in 200-foot sideline noise of from 1 to 2 PNdb. The supersonic tip speed fan a takeoff fan speed, however, showed noise increases of up 3 PNdb and a decrease in fan efficiency. At approach fan speed, the subsonic tip speed fan showed a noise decrease of 2.3 PNdb at the 200-foot sideline maximum angle and an increase in efficiency. The supersonic tip speed fan showed noise increase of 3.5 PNdb and no change in efficiency. The decrease in fan efficiency and the nature of the noise increase largely high frequency broadband noise lead to the speculation that an aerodynamic problem occurred.

  13. Candidate Source of Flux Noise in SQUIDs: Adsorbed Oxygen Molecules

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Shi, Chuntai; Hu, Jun; Han, Sungho; Yu, Clare C.; Wu, R. Q.

    2015-08-01

    A major obstacle to using superconducting quantum interference devices (SQUIDs) as qubits is flux noise. We propose that the heretofore mysterious spins producing flux noise could be O2 molecules adsorbed on the surface. Using density functional theory calculations, we find that an O2 molecule adsorbed on an ?-alumina surface has a magnetic moment of ˜1.8 ?B . The spin is oriented perpendicular to the axis of the O-O bond, the barrier to spin rotations is about 10 mK. Monte Carlo simulations of ferromagnetically coupled, anisotropic X Y spins on a square lattice find 1 /f magnetization noise, consistent with flux noise in Al SQUIDs.

  14. Auroral kilometric radiation: Wave modes, harmonic and source region electron density structures

    NASA Technical Reports Server (NTRS)

    Benson, R. F.

    1984-01-01

    A change from extraordinary (X) mode to ordinary (0) mode dominance is observed in the auroral kilometric radiation (AKR) detected on ISIS 1 topside sounder ionograms as the source region plasma to gyrofrequency ratio fN/fH varies from 0.1 to 1.3. The X and 0 mode AKR, Z (the slow branch of the X mode) and whistler (W) mode are also observed. The Z mode is typically slightly less intense than the 0-mode. Thw W-mode is confined to frequencies less than fH/2, suggesting that it is the result of field aligned ducted signals reaching the satellite from a source at lower altitudes. Harmonic AKR bands are commonly observed and the 2nd harmonic appears to be due to propagating signals. The deduced (fN/fH) at the bottom of the AKR source region is always less than 0.4 and is typically less than 0.2 during the generation of X-mode AKR, but approaches 0.9 for 0-mode AKR. No large density enhancements were observed within AKR source region density cavities. It is suggested that the observed INTENSE AKR IS cyclotron X-mode radiation rather than plasma frequency 0-mode radiation.

  15. Jet-Surface Interaction Test: Phased Array Noise Source Localization Results

    NASA Technical Reports Server (NTRS)

    Podboy, Gary

    2012-01-01

    Subsonic jets are relatively simple. The peak noise source location gradually moves upstream toward the nozzle as frequency increases. 2) Supersonic jets are more complicated. The peak noise source location moves downstream as frequency increases through a BBSN hump. 3) In both subsonic and supersonic jets the peak noise source location corresponding to a given frequency of noise moves downstream as jet Mach number increases. 4) The noise generated at a given frequency in a BBSN hump is generated by a small number of shocks, not from all the shocks at the same time. 5) Single microphone spectrum levels decrease when the noise source locations measured with the phased array are blocked by a shielding surface. This consistency validates the phased array data and the stationary monopole source model used to process it. 6) Reflecting surface data illustrate that the law of reflection must be satisfied for noise to reflect off a surface toward an observer. Depending on the relative locations of the jet, the surface and the observer only some of the jet noise sources may satisfy this requirement. 7) The low frequency noise created when a jet flow impinges on a surface comes primarily from the trailing edge regardless of the axial extent impacted by the flow.

  16. Embedded Acoustic Sensor Array for Engine Fan Noise Source Diagnostic Test: Feasibility of Noise Telemetry via Wireless Smart Sensors

    NASA Technical Reports Server (NTRS)

    Zaman, Afroz; Bauch, Matthew; Raible, Daniel

    2011-01-01

    Aircraft engines have evolved into a highly complex system to meet ever-increasing demands. The evolution of engine technologies has primarily been driven by fuel efficiency, reliability, as well as engine noise concerns. One of the sources of engine noise is pressure fluctuations that are induced on the stator vanes. These local pressure fluctuations, once produced, propagate and coalesce with the pressure waves originating elsewhere on the stator to form a spinning pressure pattern. Depending on the duct geometry, air flow, and frequency of fluctuations, these spinning pressure patterns are self-sustaining and result in noise which eventually radiate to the far-field from engine. To investigate the nature of vane pressure fluctuations and the resulting engine noise, unsteady pressure signatures from an array of embedded acoustic sensors are recorded as a part of vane noise source diagnostics. Output time signatures from these sensors are routed to a control and data processing station adding complexity to the system and cable loss to the measured signal. "Smart" wireless sensors have data processing capability at the sensor locations which further increases the potential of wireless sensors. Smart sensors can process measured data locally and transmit only the important information through wireless communication. The aim of this wireless noise telemetry task was to demonstrate a single acoustic sensor wireless link for unsteady pressure measurement, and thus, establish the feasibility of distributed smart sensors scheme for aircraft engine vane surface unsteady pressure data transmission and characterization.

  17. Advanced techniques for noise source identification on a large generator unit

    SciTech Connect

    Williams, R.G.D. ); Yang, S.J. )

    1993-03-01

    Power station acoustic noise assessment, which has experienced increased environmental awareness and subsequently more stringent legislation for a number of years, has received and added stimulus due to the recent advent of powerful measurement and analysis techniques including sound intensity and coherence. These experimental techniques are explained and results, for a generator unit, illustrate their value in providing a unique, correlated insight into noise problems. This includes noise quantification, full explanation of site sound pressure level in terms of the various influences and major noise source identification. These techniques are widely applicable and an invaluable aid to any industrial noise problem.

  18. Wavelength effect on atomic and molecular high harmonic generation driven by a tunable infrared parametric source.

    PubMed

    Wei, Pengfei; Zhang, Chunmei; Liu, Candong; Huang, Yansui; Leng, Yuxin; Liu, Peng; Zheng, Yinghui; Zeng, Zhinan; Li, Ruxin; Xu, Zhizhan

    2009-08-17

    We experimentally investigate the wavelength effect on high-order harmonic generation (HHG) in CH(4) molecules and Xe atoms driven by a tunable infrared parametric source, and observe that the molecular HHG around the vibrational resonance is more sensitive to the driver wavelength than HHG from an atomic gas with comparable ionization potential. The results can be attributed to the light nuclear motion induced by the driving laser field, and it becomes possible to control the proton vibration in the molecular HHG by tuning the infrared wavelength of the driving laser. PMID:19687984

  19. Waves produced from a harmonic point source in a supersonic boundary layer

    NASA Technical Reports Server (NTRS)

    Balakumar, P.; Malik, M. R.

    1991-01-01

    The disturbance wave pattern produced by a harmonic point source in a compressible flat-plate boundary layer is computed using linear stability theory and direct numerical integration approach. Receptivity coefficients are computed for the spectrum of spanwise modes generated at the source. The effect of boundary layer growth on the development of linear waves is determined by using the method of multiple scales. Results are presented for Mach numbers of 0, 2, 4.5, and 7. It is found that disturbances spread in wedge-shaped regions behind the source and the wedge angle decreases with Mach number. The lateral spreading angle for the instability waves turns out to be quite close to the angle found experimentally for turbulence lateral contamination.

  20. Source localization from seismic noise: a methodology applied to seismic exploration.

    NASA Astrophysics Data System (ADS)

    Corciulo, Margherita; Roux, Philippe; Campillo, Michel; Dubucq, Dominique

    2010-05-01

    The main objective of the present study is to develop a methodology for source localization in seismic exploration contexts, using seismic noise data, which integrates methodologies optimized from acoustics and seismology. Passive imaging from noise cross-correlation is now applied at continental and regional scale. Its use at local scale for seismic exploration purposes is still uncertain. The development of passive imaging using cross-correlated data classically consists in two different tasks, the first one being the extraction of the Green's function from seismic noise and the second one consisting in modelling the velocity field from these observations. All the correlation methods are based on the concept that seismic noise is randomly distributed in space, in other words noise sources are azimuthally distributed around the recording stations. In practice, however, this never happens, especially at local scale and frequency above 1 Hz. A consequence is that the shape of the causal and anti-causal part of noise correlation function differs, which makes ambiguous the extraction of travel times for imaging purposes. Another consequence is that a third task should be added to the first two presented above that consists in the localization of the noise sources when it appears that the noise source distribution is heterogeneous. In our work we used data acquired in Northern America (Canada) on a 1-km side square seismic network. Five days of seismic noise data were collected on a total of 397 stations. Since exploration purposes need to obtain high resolution images and since noise correlation vanishes as frequency increases, we introduce a multistep procedure permitting to start our analysis from low to high frequency content. The seismic noise correlation function performed on the seismic network at low frequency [2-5 Hz] shows a large spatial coherence but also reveals a difference in amplitude for the causal and anti-causal parts of noise-correlated traces. Capitalizing on the strong coherence between station pairs, a methodology was developed, using both linear and non-linear techniques, to localize the seismic noise source(s). The linear technique is based on the minimization, as L2 norm, of the travel-times information extracted from the correlation functions and synthetic travel-times obtained from a local source at depth. Matched-Field Processing (MFP) non-linear techniques developed in ocean acoustics (and analogous to Capon's algorithm used in seismic) were used to further constraint the localization of the noise source on sub-wavelength dimensions. MFP results show that noise sources are quite stable on the 5 days of recording and source localization is well constrained in the low frequency range of interest.

  1. A graphic method for predicting audibility of noise sources

    NASA Astrophysics Data System (ADS)

    Fidell, S.; Horonjeff, R.

    1982-10-01

    This report provides the technical rationale for revision of a chart developed by Fidell, Pearsons, and Bennett (1972). This chart expresses the relationships between signal-to-noise ratio and frequency that govern detectability of acoustic signals by human observers. The chart permits a user: (1) to predict the frequency region of a spectrum that is most detectable in any given ambient noise background; (2) to quantify the degree of detectability of the signal in question; and (3) to estimate reduction in signal-to-noise ratio necessary to render the signal undetectable.

  2. Sonic inlet noise attenuation and performance with a J-85 turbojet engine as a noise source

    NASA Technical Reports Server (NTRS)

    Groth, H. W.

    1974-01-01

    A static test program was conducted to investigate aerodynamic and acoustic performance of a sonic inlet used as a noise suppressor. A translating centerbody type inlet with radial vanes was tested ahead of a J85-GE-13 turbojet engine. The inlet when fully choked, maintained high recovery with low distortions while dramatically reducing noise emanating from the compressor. Recoveries of 98.1% at simulated takeoff and 95% at approach were attained with associated sound attenuation of 40 db and 38 db respectively. Inlet lip shape was found to have significant effects on noise attenuation at these static conditions.

  3. Jet-Surface Interaction Test: Phased Array Noise Source Localization Results

    NASA Technical Reports Server (NTRS)

    Podboy, Gary G.

    2012-01-01

    An experiment was conducted to investigate the effect that a planar surface located near a jet flow has on the noise radiated to the far-field. Two different configurations were tested: 1) a shielding configuration in which the surface was located between the jet and the far-field microphones, and 2) a reflecting configuration in which the surface was mounted on the opposite side of the jet, and thus the jet noise was free to reflect off the surface toward the microphones. Both conventional far-field microphone and phased array noise source localization measurements were obtained. This paper discusses phased array results, while a companion paper discusses far-field results. The phased array data show that the axial distribution of noise sources in a jet can vary greatly depending on the jet operating condition and suggests that it would first be necessary to know or be able to predict this distribution in order to be able to predict the amount of noise reduction to expect from a given shielding configuration. The data obtained on both subsonic and supersonic jets show that the noise sources associated with a given frequency of noise tend to move downstream, and therefore, would become more difficult to shield, as jet Mach number increases. The noise source localization data obtained on cold, shock-containing jets suggests that the constructive interference of sound waves that produces noise at a given frequency within a broadband shock noise hump comes primarily from a small number of shocks, rather than from all the shocks at the same time. The reflecting configuration data illustrates that the law of reflection must be satisfied in order for jet noise to reflect off of a surface to an observer, and depending on the relative locations of the jet, the surface, and the observer, only some of the jet noise sources may satisfy this requirement.

  4. The 8.4-GHz low-noise maser pump source assembly

    NASA Technical Reports Server (NTRS)

    Cardenas, R.

    1987-01-01

    Improved pump source assemblies and new 8.4-GHz low noise traveling-wave masers (TWMs) were installed at the same time at Deep Space Stations 14 and 43 as part of the Mark IVA DSCC Antenna Microwave Subsystems upgrade. The pump source assemblies are part of the new 8.4-GHz TWMs, which are identified as Block IIA Low-Noise TWMs. Improved reliability of the pump source assemblies was required to meet stress analysis criteria.

  5. Analytic derivation of pinhole collimation sensitivity for a general source model using spherical harmonics

    PubMed Central

    Li, Yu-Sheng; Oldendick, James E; Chang, Wei

    2013-01-01

    Pinhole collimators are widely used for SPECT imaging of small organs and animals. There also has been renewed interest in using pinhole arrays for clinical cardiac SPECT imaging to achieve high sensitivity and complete data sampling. Overall sensitivity of a pinhole array is critical in determining a system’s performance. Conventionally, a point source model has been used to evaluate the sensitivity and optimize the system design. This model is simple but far from realistic. This work addresses the use of more realistic source models to assess the sensitivity performance of pinhole collimation. We have derived an analytical formula for pinhole collimation sensitivity with a general source distribution model using spherical harmonics. As special cases of this general model, we provided the pinhole sensitivity formulae for line, disk and sphere sources. These results show that the point source model is just the zeroth-order approximation of the other source models. The point source model overestimates or underestimates the sensitivity relative to the more realistic model. The sphere source model yields the same sensitivity as a point source located at the center of the sphere when attenuation is not taken into account. In the presence of attenuation, the average path length of emitted gamma-rays is 3/4 of the radius of the sphere source. The calculated sensitivities based on these formulae show good agreement with separate Monte Carlo simulations in simple cases. The general and special sensitivity formulae derived here can be useful for the design and optimization of SPECT systems that utilize pinhole collimators. PMID:20400812

  6. High-speed helicopter rotor noise - Shock waves as a potent source of sound

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Lee, Yung-Jang; Tadghighi, H.; Holz, R.

    1991-01-01

    In this paper we discuss the problem of high speed rotor noise prediction. In particular, we propose that from the point of view of the acoustic analogy, shocks around rotating blades are sources of sound. We show that, although for a wing at uniform steady rectilinear motion with shocks the volume quadrupole and shock sources cancel in the far field to the order of 1/r, this cannot happen for rotating blades. In this case, some cancellation between volume quadrupoles and shock sources occurs, yet the remaining shock noise contribution is still potent. A formula for shock noise prediction is presented based on mapping the deformable shock surface to a time independent region. The resulting equation is similar to Formulation 1A of Langley. Shock noise prediction for a hovering model rotor for which experimental noise data exist is presented. The comparison of measured and predicted acoustic data shows good agreement.

  7. Biological Sources of Intrinsic and Extrinsic Noise in cI Expression of Lysogenic Phage Lambda.

    PubMed

    Lei, Xue; Tian, Wei; Zhu, Hongyuan; Chen, Tianqi; Ao, Ping

    2015-01-01

    Genetically identical cells exposed to homogeneous environment can show remarkable phenotypic difference. To predict how phenotype is shaped, understanding of how each factor contributes is required. During gene expression processes, noise could arise either intrinsically in biochemical processes of gene expression or extrinsically from other cellular processes such as cell growth. In this work, important noise sources in gene expression of phage ? lysogen are quantified using models described by stochastic differential equations (SDEs). Results show that DNA looping has sophisticated impacts on gene expression noise: When DNA looping provides autorepression, like in wild type, it reduces noise in the system; When the autorepression is defected as it is in certain mutants, DNA looping increases expression noise. We also study how each gene operator affects the expression noise by changing the binding affinity between the gene and the transcription factor systematically. We find that the system shows extraordinarily large noise when the binding affinity is in certain range, which changes the system from monostable to bistable. In addition, we find that cell growth causes non-negligible noise, which increases with gene expression level. Quantification of noise and identification of new noise sources will provide deeper understanding on how stochasticity impacts phenotype. PMID:26329725

  8. Characterization of the input noise sources of a dc SQUID Paolo Falferi and Michele Bonaldi

    E-print Network

    1 Characterization of the input noise sources of a dc SQUID Paolo Falferi and Michele Bonaldi in a dc SQUID by Tesche and Clarke, we derive the expressions of the current and voltage input noise spectral densities in a dc SQUID current amplifier operated in a flux locked mode. The expected current

  9. Nanoscale direct mapping of localized and induced noise sources on conducting polymer films.

    PubMed

    Shekhar, Shashank; Cho, Duckhyung; Lee, Hyungwoo; Cho, Dong-Guk; Hong, Seunghun

    2015-12-23

    The localized noise-sources and those induced by external-stimuli were directly mapped by using a conducting-AFM integrated with a custom-designed noise measurement set-up. In this method, current and noise images of a poly(9,9-dioctylfluorene)-polymer-film on a conducting-substrate were recorded simultaneously, enabling the mapping of the resistivity and noise source density (NT). The polymer-films exhibited separate regions with high or low resistivities, which were attributed to the ordered or disordered phases, respectively. A larger number of noise-sources were observed in the disordered-phase-regions than in the ordered-phase regions, due to structural disordering. Increased bias-voltages on the disordered-phase-regions resulted in increased NT, which is explained by the structural deformation at high bias-voltages. On photo-illumination, the ordered-phase-regions exhibited a rather large increase in the conductivity and NT. Presumably, the illumination released carriers from deep-traps which should work as additional noise-sources. These results show that our methods provide valuable insights into noise-sources and, thus, can be powerful tools for basic research and practical applications of conducting polymer films. PMID:26530520

  10. GIS-Based Noise Simulation Open Source Software: N-GNOIS

    NASA Astrophysics Data System (ADS)

    Vijay, Ritesh; Sharma, A.; Kumar, M.; Shende, V.; Chakrabarti, T.; Gupta, Rajesh

    2015-12-01

    Geographical information system (GIS)-based noise simulation software (N-GNOIS) has been developed to simulate the noise scenario due to point and mobile sources considering the impact of geographical features and meteorological parameters. These have been addressed in the software through attenuation modules of atmosphere, vegetation and barrier. N-GNOIS is a user friendly, platform-independent and open geospatial consortia (OGC) compliant software. It has been developed using open source technology (QGIS) and open source language (Python). N-GNOIS has unique features like cumulative impact of point and mobile sources, building structure and honking due to traffic. Honking is the most common phenomenon in developing countries and is frequently observed on any type of roads. N-GNOIS also helps in designing physical barrier and vegetation cover to check the propagation of noise and acts as a decision making tool for planning and management of noise component in environmental impact assessment (EIA) studies.

  11. EUV mask observations using a coherent EUV scatterometry microscope with a high-harmonic-generation source

    NASA Astrophysics Data System (ADS)

    Fujino, Takahiro; Tanaka, Yusuke; Harada, Tetsuo; Nagata, Yutaka; Watanabe, Takeo; Kinoshita, Hiroo

    2015-07-01

    In extreme ultraviolet (EUV) lithography, the three-dimensional (3D) structure of the EUV mask, which has an absorber layer and a Mo/Si multilayer on a glass substrate, strongly affects the EUV phase. EUV actinic metrology is required to evaluate the feature of defect printability and the critical dimension (CD) value. The 3D structure modulates the EUV phase, causing the pattern position and focus shift. A microscope that observes in phase contrast necessary. We have developed a coherent EUV scatterometry microscope (CSM) for observing EUV patterns with quantitative phase contrast. The exposure light is coherent EUV light. For the industrial use, we have developed a laboratory coherent source of high-harmonic-generation (HHG) EUV light. High harmonics is pumped by a scale of a Ti:Sapphire laser. In the previous study, a very long exposure time of 1000 s was necessary to detect We upgraded the relay optics. The detection performance of an absorber defect using the new relay optics is We observed the line-end oversize defect and the oversize defect in the 112 nm hole pattern and 180 nm hole pattern. The upgraded system has a detection size limit of a line-end 24-nm-oversize defect with 10 s exposure time, which is 2,688 nm2 (52 × 52 nm2) absorber defect. This result shows high performance capability of HHG-CSM for detecting small defect.

  12. Multi-target pitch tracking of vibrato sources in noise using the GM-PHD filter

    E-print Network

    Plumbley, Mark

    Multi-target pitch tracking of vibrato sources in noise using the GM-PHD filter Dan Stowell, UK Abstract Probabilistic approaches to tracking often use single-source Bayesian models; applying, the Gaussian mixture probability hypothesis density filter, to track multiple sources having fixed pitch plus

  13. Walk-away VSP using drill noise as a source

    SciTech Connect

    Haldorsen, J.B.U.; Miller, D.E.; Walsh, J.J.

    1995-07-01

    The authors describe a method for extracting and deconvolving a signal generated by a drill bit and collected by an array of surface geophones. The drill-noise signature is reduced to an effective impulse by means of a multichannel Wiener deconvolution technique, producing a walk-away reverse vertical seismic profile (VSP) sampled almost continuously in depth. They show how the multichannel technique accounts for noise and for internal drill-string reflections, automatically limiting the deconvolution technique, producing a walk-away reverse vertical seismic profile (VSP) sampled almost continuously in depth. They show how the multichannel technique accounts for noise and for internal drill-string reflections, automatically limiting the deconvolved data to frequencies containing significant energy. They have acquired and processed a data set from a well in Germany while drilling at a depth of almost 4,000 m. The subsurface image derived from these data compares well with corresponding images from a 3-d surface seismic survey, a zero-offset VSP survey, and a walk-away VSP survey acquired using conventional wireline techniques. The effective bandwidth of the deconvolved drill-noise data is comparable to the bandwidth of surface seismic data but significantly smaller than what can be achieved with wireline VSP techniques. Although the processing algorithm does not require the use of sensors mounted on the drill string, these sensors provide a very economic way to compress the data. The sensors on the drill string were also used for accurate timing of the deconvolved drill-noise data.

  14. Algorithm for astronomical, extended source, signal-to-noise radio calculations

    NASA Technical Reports Server (NTRS)

    Jayroe, R. R.

    1984-01-01

    An algorithm was developed to simulate the expected signal-to-noise ratio as a function of observation time in the charge coupled device detector plane of an optical telescope located outside the Earth's atmosphere for an extended, uniform astronomical source embedded in a uniform cosmic background. By choosing the appropriate input values, the expected extended source signal-to-noise ratios can be computed for the Hubble Space Telescope using the Wide Field/Planetary Camera science instrument.

  15. Diesel engine noise source identification based on EEMD, coherent power spectrum analysis and improved AHP

    NASA Astrophysics Data System (ADS)

    Zhang, Junhong; Wang, Jian; Lin, Jiewei; Bi, Fengrong; Guo, Qian; Chen, Kongwu; Ma, Liang

    2015-09-01

    As the essential foundation of noise reduction, many noise source identification methods have been developed and applied to engineering practice. To identify the noise source in the board-band frequency of different engine parts at various typical speeds, this paper presents an integrated noise source identification method based on the ensemble empirical mode decomposition (EEMD), the coherent power spectrum analysis, and the improved analytic hierarchy process (AHP). The measured noise is decomposed into several IMFs with physical meaning, which ensures the coherence analysis of the IMFs and the vibration signals are meaningful. An improved AHP is developed by introducing an objective weighting function to replace the traditional subjective evaluation, which makes the results no longer dependent on the subject performances and provides a better consistency in the meantime. The proposed noise identification model is applied to identifying a diesel engine surface radiated noise. As a result, the frequency-dependent contributions of different engine parts to different test points at different speeds are obtained, and an overall weight order is obtained as oil pan??>??left body??>??valve chamber cover??>??gear chamber casing??>??right body??>??flywheel housing, which provides an effectual guidance for the noise reduction.

  16. How Common are Noise Sources on the Crash Arc of Malaysian Flight 370

    SciTech Connect

    Fenimore, Edward E.; Kunkle, Thomas David; Stead, Richard J.

    2014-10-21

    Malaysian Flight 370 disappeared nearly without a trace. Besides some communication handshakes to the INMASAT satellite, the Comprehensive Test Ban Treaty monitoring system could have heard the aircraft crash into the southern Indian Ocean. One noise event from Cape Leeuwin has been suggested by Stead as the crash and occurs within the crash location suggested by Kunkle at el. We analyze the hydrophone data from Cape Leeuwin to understand how common such noise events are on the arc of possible locations where Malaysian Flight 370 might have crashed. Few other noise sources were found on the arc. The noise event found by Stead is the strongest. No noise events are seen within the Australian Transportation Safety Board (ATSB) new search location until the 10th strongest event, an event which is very close to the noise level.

  17. Can lightning be a noise source for a spherical gravitational wave antenna?

    E-print Network

    Nadja S. Magalhaes; Rubem M. Marinho Jr.; Odylio D. Aguiar; C. Frajuca

    2005-12-11

    The detection of gravitational waves is a very active research field at the moment. In Brazil the gravitational wave detector is called Mario SCHENBERG. Due to its high sensitivity it is necessary to model mathematically all known noise sources so that digital filters can be developed that maximize the signal-to-noise ratio. One of the noise sources that must be considered are the disturbances caused by electromagnetic pulses due to lightning close to the experiment. Such disturbances may influence the vibrations of the antenna's normal modes and mask possible gravitational wave signals. In this work we model the interaction between lightning and SCHENBERG antenna and calculate the intensity of the noise due to a close lightning stroke in the detected signal. We find that the noise generated does not disturb the experiment significantly.

  18. Can lightning be a noise source for a spherical gravitational wave antenna?

    SciTech Connect

    Magalhaes, Nadja Simao; Marinho, Rubens de Melo Jr.; Aguiar, Odylio Denys de; Frajuca, Carlos

    2005-11-15

    The detection of gravitational waves is a very active research field at the moment. In Brazil the gravitational wave detector is called Mario SCHENBERG. Because of its high sensitivity it is necessary to model mathematically all known noise sources so that digital filters can be developed that maximize the signal-to-noise ratio. One of the noise sources that must be considered are the disturbances caused by electromagnetic pulses due to lightnings close to the experiment. Such disturbances may influence the vibrations of the antenna's normal modes and mask possible gravitational wave signals. In this work we model the interaction between lightnings and SCHENBERG antenna and calculate the intensity of the noise due to a close lightning stroke in the detected signal. We find that the noise generated does not disturb the experiment significantly.

  19. Relaxation dynamics in the presence of pulse multiplicative noise sources with different correlation properties

    NASA Astrophysics Data System (ADS)

    Kargovsky, A. V.; Chichigina, O. A.; Anashkina, E. I.; Valenti, D.; Spagnolo, B.

    2015-10-01

    The relaxation dynamics of a system described by a Langevin equation with pulse multiplicative noise sources with different correlation properties is considered. The solution of the corresponding Fokker-Planck equation is derived for Gaussian white noise. Moreover, two pulse processes with regulated periodicity are considered as a noise source: the dead-time-distorted Poisson process and the process with fixed time intervals, which is characterized by an infinite correlation time. We find that the steady state of the system is dependent on the correlation properties of the pulse noise. An increase of the noise correlation causes the decrease of the mean value of the solution at the steady state. The analytical results are in good agreement with the numerical ones.

  20. Cortical Dipole Imaging for Multiple Signal Sources Considering Time-Varying Non-Uniform Noise

    NASA Astrophysics Data System (ADS)

    Hori, Junichi; Watanabe, Yoshiki

    Cortical dipole imaging is one of the spatial enhancement techniques from the scalp electroencephalogram. We investigated the dipole imaging for multiple signal sources under time-varying non-uniform noise conditions. The effects of incorporating statistical information of noise into the spatiotemporal inverse filter were examined by computer simulations and experimental studies in three sphere volume conductor model. The parametric projection filter that incorporated with noise covariance was applied to the inverse problem of EEG measurements. The noise covariance matrix was estimated by applying independent component analysis to the scalp potentials. The spatial filter was expanded to apply to the time-varying non-uniform noise conditions such as eye blink artifact. Moreover, multiple dipole distributions were introduced to extract and to visualize individual signal sources. The proposed imaging technique was applied to human experimental data of visual evoked potentials. We obtained reasonable results that coincide to physiological knowledge.

  1. Bright high-repetition-rate source of narrowband extreme-ultraviolet harmonics beyond 22?eV

    PubMed Central

    Wang, He; Xu, Yiming; Ulonska, Stefan; Robinson, Joseph S.; Ranitovic, Predrag; Kaindl, Robert A.

    2015-01-01

    Novel table-top sources of extreme-ultraviolet light based on high-harmonic generation yield unique insight into the fundamental properties of molecules, nanomaterials or correlated solids, and enable advanced applications in imaging or metrology. Extending high-harmonic generation to high repetition rates portends great experimental benefits, yet efficient extreme-ultraviolet conversion of correspondingly weak driving pulses is challenging. Here, we demonstrate a highly-efficient source of femtosecond extreme-ultraviolet pulses at 50-kHz repetition rate, utilizing the ultraviolet second-harmonic focused tightly into Kr gas. In this cascaded scheme, a photon flux beyond ?3 × 1013?s?1 is generated at 22.3?eV, with 5 × 10?5 conversion efficiency that surpasses similar harmonics directly driven by the fundamental by two orders-of-magnitude. The enhancement arises from both wavelength scaling of the atomic dipole and improved spatio-temporal phase matching, confirmed by simulations. Spectral isolation of a single 72-meV-wide harmonic renders this bright, 50-kHz extreme-ultraviolet source a powerful tool for ultrafast photoemission, nanoscale imaging and other applications. PMID:26067922

  2. A computer program for the identification of helicopter impulsive noise sources

    NASA Technical Reports Server (NTRS)

    Lee, A.

    1977-01-01

    A computer program is presented for calculating the source location of implusive noise in helicopters. The program (INSL) is written in FORTRAN for the CDC 7600 computer. Inputs are the rotor operating conditions and the time intervals (T) between rotor 1/rev index and impulsive noises as measured by different microphones. The outputs are the possible noise source locations in terms of rotor radial and azimuthal coordinates. Typical computer time for a run of six microphone measurements is 1.5 sec, and the cost is about 12 cents for the CDC 7600.

  3. Limitations of Phased Array Beamforming in Open Rotor Noise Source Imaging

    NASA Technical Reports Server (NTRS)

    Horvath, Csaba; Envia, Edmane; Podboy, Gary G.

    2013-01-01

    Phased array beamforming results of the F31/A31 historical baseline counter-rotating open rotor blade set were investigated for measurement data taken on the NASA Counter-Rotating Open Rotor Propulsion Rig in the 9- by 15-Foot Low-Speed Wind Tunnel of NASA Glenn Research Center as well as data produced using the LINPROP open rotor tone noise code. The planar microphone array was positioned broadside and parallel to the axis of the open rotor, roughly 2.3 rotor diameters away. The results provide insight as to why the apparent noise sources of the blade passing frequency tones and interaction tones appear at their nominal Mach radii instead of at the actual noise sources, even if those locations are not on the blades. Contour maps corresponding to the sound fields produced by the radiating sound waves, taken from the simulations, are used to illustrate how the interaction patterns of circumferential spinning modes of rotating coherent noise sources interact with the phased array, often giving misleading results, as the apparent sources do not always show where the actual noise sources are located. This suggests that a more sophisticated source model would be required to accurately locate the sources of each tone. The results of this study also have implications with regard to the shielding of open rotor sources by airframe empennages.

  4. Deconvolution for three-dimensional acoustic source identification based on spherical harmonics beamforming

    NASA Astrophysics Data System (ADS)

    Chu, Zhigang; Yang, Yang; He, Yansong

    2015-05-01

    Spherical Harmonics Beamforming (SHB) with solid spherical arrays has become a particularly attractive tool for doing acoustic sources identification in cabin environments. However, it presents some intrinsic limitations, specifically poor spatial resolution and severe sidelobe contaminations. This paper focuses on overcoming these limitations effectively by deconvolution. First and foremost, a new formulation is proposed, which expresses SHB's output as a convolution of the true source strength distribution and the point spread function (PSF) defined as SHB's response to a unit-strength point source. Additionally, the typical deconvolution methods initially suggested for planar arrays, deconvolution approach for the mapping of acoustic sources (DAMAS), nonnegative least-squares (NNLS), Richardson-Lucy (RL) and CLEAN, are adapted to SHB successfully, which are capable of giving rise to highly resolved and deblurred maps. Finally, the merits of the deconvolution methods are validated and the relationships of source strength and pressure contribution reconstructed by the deconvolution methods vs. focus distance are explored both with computer simulations and experimentally. Several interesting results have emerged from this study: (1) compared with SHB, DAMAS, NNLS, RL and CLEAN all can not only improve the spatial resolution dramatically but also reduce or even eliminate the sidelobes effectively, allowing clear and unambiguous identification of single source or incoherent sources. (2) The availability of RL for coherent sources is highest, then DAMAS and NNLS, and that of CLEAN is lowest due to its failure in suppressing sidelobes. (3) Whether or not the real distance from the source to the array center equals the assumed one that is referred to as focus distance, the previous two results hold. (4) The true source strength can be recovered by dividing the reconstructed one by a coefficient that is the square of the focus distance divided by the real distance from the source to the array center. (5) The reconstructed pressure contribution is almost not affected by the focus distance, always approximating to the true one. This study will be of great significance to the accurate localization and quantification of acoustic sources in cabin environments.

  5. Volterra dendritic stimulus processors and biophysical spike generators with intrinsic noise sources

    PubMed Central

    Lazar, Aurel A.; Zhou, Yiyin

    2014-01-01

    We consider a class of neural circuit models with internal noise sources arising in sensory systems. The basic neuron model in these circuits consists of a dendritic stimulus processor (DSP) cascaded with a biophysical spike generator (BSG). The dendritic stimulus processor is modeled as a set of nonlinear operators that are assumed to have a Volterra series representation. Biophysical point neuron models, such as the Hodgkin-Huxley neuron, are used to model the spike generator. We address the question of how intrinsic noise sources affect the precision in encoding and decoding of sensory stimuli and the functional identification of its sensory circuits. We investigate two intrinsic noise sources arising (i) in the active dendritic trees underlying the DSPs, and (ii) in the ion channels of the BSGs. Noise in dendritic stimulus processing arises from a combined effect of variability in synaptic transmission and dendritic interactions. Channel noise arises in the BSGs due to the fluctuation of the number of the active ion channels. Using a stochastic differential equations formalism we show that encoding with a neuron model consisting of a nonlinear DSP cascaded with a BSG with intrinsic noise sources can be treated as generalized sampling with noisy measurements. For single-input multi-output neural circuit models with feedforward, feedback and cross-feedback DSPs cascaded with BSGs we theoretically analyze the effect of noise sources on stimulus decoding. Building on a key duality property, the effect of noise parameters on the precision of the functional identification of the complete neural circuit with DSP/BSG neuron models is given. We demonstrate through extensive simulations the effects of noise on encoding stimuli with circuits that include neuron models that are akin to those commonly seen in sensory systems, e.g., complex cells in V1. PMID:25225477

  6. Suppression of fiber modal noise induced radial velocity errors for bright emission-line calibration sources

    SciTech Connect

    Mahadevan, Suvrath; Halverson, Samuel; Ramsey, Lawrence; Venditti, Nick

    2014-05-01

    Modal noise in optical fibers imposes limits on the signal-to-noise ratio (S/N) and velocity precision achievable with the next generation of astronomical spectrographs. This is an increasingly pressing problem for precision radial velocity spectrographs in the near-infrared (NIR) and optical that require both high stability of the observed line profiles and high S/N. Many of these spectrographs plan to use highly coherent emission-line calibration sources like laser frequency combs and Fabry-Perot etalons to achieve precision sufficient to detect terrestrial-mass planets. These high-precision calibration sources often use single-mode fibers or highly coherent sources. Coupling light from single-mode fibers to multi-mode fibers leads to only a very low number of modes being excited, thereby exacerbating the modal noise measured by the spectrograph. We present a commercial off-the-shelf solution that significantly mitigates modal noise at all optical and NIR wavelengths, and which can be applied to spectrograph calibration systems. Our solution uses an integrating sphere in conjunction with a diffuser that is moved rapidly using electrostrictive polymers, and is generally superior to most tested forms of mechanical fiber agitation. We demonstrate a high level of modal noise reduction with a narrow bandwidth 1550 nm laser. Our relatively inexpensive solution immediately enables spectrographs to take advantage of the innate precision of bright state-of-the art calibration sources by removing a major source of systematic noise.

  7. Examining alternatives to wavelet de-noising for astronomical source finding

    E-print Network

    Jurek, Russell

    2012-01-01

    The Square Kilometre Array and its pathfinders ASKAP and MeerKAT will produce prodigious amounts of data that necessitate automated source finding. The performance of automated source finders can be improved by pre-processing a dataset. In preparation for the WALLABY and DINGO surveys, we have used a test HI datacube constructed from actual Westerbork Telescope noise and WHISP HI galaxies to test the real world improvement of linear smoothing, the {\\sc Duchamp} source finder's wavelet de-noising, iterative median smoothing and mathematical morphology subtraction, on intensity threshold source finding of spectral line datasets. To compare these pre-processing methods we have generated completeness-reliability performance curves for each method and a range of input parameters. We find that iterative median smoothing produces the best source finding results for ASKAP HI spectral line observations, but wavelet de-noising is a safer pre-processing technique. In this paper we also present our implementations of ite...

  8. Jet-Surface Interaction Test: Phased Array Noise Source Localization Results

    NASA Technical Reports Server (NTRS)

    Podboy, Gary G.

    2013-01-01

    An experiment was conducted to investigate the effect that a planar surface located near a jet flow has on the noise radiated to the far-field. Two different configurations were tested: 1) a shielding configuration in which the surface was located between the jet and the far-field microphones, and 2) a reflecting configuration in which the surface was mounted on the opposite side of the jet, and thus the jet noise was free to reflect off the surface toward the microphones. Both conventional far-field microphone and phased array noise source localization measurements were obtained. This paper discusses phased array results, while a companion paper (Brown, C.A., "Jet-Surface Interaction Test: Far-Field Noise Results," ASME paper GT2012-69639, June 2012.) discusses far-field results. The phased array data show that the axial distribution of noise sources in a jet can vary greatly depending on the jet operating condition and suggests that it would first be necessary to know or be able to predict this distribution in order to be able to predict the amount of noise reduction to expect from a given shielding configuration. The data obtained on both subsonic and supersonic jets show that the noise sources associated with a given frequency of noise tend to move downstream, and therefore, would become more difficult to shield, as jet Mach number increases. The noise source localization data obtained on cold, shock-containing jets suggests that the constructive interference of sound waves that produces noise at a given frequency within a broadband shock noise hump comes primarily from a small number of shocks, rather than from all the shocks at the same time. The reflecting configuration data illustrates that the law of reflection must be satisfied in order for jet noise to reflect off of a surface to an observer, and depending on the relative locations of the jet, the surface, and the observer, only some of the jet noise sources may satisfy this requirement.

  9. Exposures to Transit and Other Sources of Noise among New York City Residents

    PubMed Central

    Neitzel, Richard L.; Gershon, Robyn R. M.; McAlexander, Tara P.; Magda, Lori A.; Pearson, Julie M.

    2015-01-01

    To evaluate the contributions of common noise sources to total annual noise exposures among urban residents and workers, we estimated exposures associated with five common sources (use of mass transit, occupational and non-occupational activities, MP3 player and stereo use, and time at home and doing other miscellaneous activities) among a sample of over 4500 individuals in New York City (NYC). We then evaluated the contributions of each source to total noise exposure and also compared our estimated exposures to the recommended 70 dBA annual exposure limit. We found that one in ten transit users had noise exposures in excess of the recommended exposure limit from their transit use alone. When we estimated total annual exposures, 90% of NYC transit users and 87% of nonusers exceeded the recommended limit. MP3 player and stereo use, which represented a small fraction of the total annual hours for each subject on average, was the primary source of exposure among the majority of urban dwellers we evaluated. Our results suggest that the vast majority of urban mass transit riders may be at risk of permanent, irreversible noise-induced hearing loss and that, for many individuals, this risk is driven primarily by exposures other than occupational noise. PMID:22088203

  10. A low phase noise microwave source for atomic spin squeezing experiments in {sup 87}Rb

    SciTech Connect

    Chen Zilong; Bohnet, Justin G.; Weiner, Joshua M.; Thompson, James K.

    2012-04-15

    We describe and characterize a simple, low cost, low phase noise microwave source that operates near 6.800 GHz for agile, coherent manipulation of ensembles of {sup 87}Rb. Low phase noise is achieved by directly multiplying a low phase noise 100 MHz crystal to 6.8 GHz using a nonlinear transmission line and filtering the output with custom band-pass filters. The fixed frequency signal is single sideband modulated with a direct digital synthesis frequency source to provide the desired phase, amplitude, and frequency control. Before modulation, the source has a single sideband phase noise near -140 dBc/Hz in the range of 10 kHz-1 MHz offset from the carrier frequency and -130 dBc/Hz after modulation. The resulting source is estimated to contribute added spin-noise variance 16 dB below the quantum projection noise level during quantum nondemolition measurements of the clock transition in an ensemble 7 x 10{sup 5} {sup 87}Rb atoms.

  11. Basic research in fan source noise: Inlet distortion and turbulence noise

    NASA Technical Reports Server (NTRS)

    Kantola, R. A.; Warren, R. E.

    1978-01-01

    A widely recognized problem in jet engine fan noise is the discrepancy between inflight and static tests. This discrepancy consists of blade passing frequency tones, caused by ingested turbulence that appear in the static tests but not in flight. To reduce the ingested distortions and turbulence in an anechoic chamber, a reverse cone inlet is used to guide the air into the fan. This inlet also has provisions for boundary layer suction and is used in conjunction with a turbulence control structure (TCS) to condition the air impinging on the fan. The program was very successful in reducing the ingested turbulence, to the point where reductions in the acoustic power at blade passing frequency are as high as 18 db for subsonic tip speeds. Even with this large subsonic tone suppression, the supersonic tip speed tonal content remains largely unchanged, indicating that the TCS did not appreciably attenuate the noise but effects the generation via turbulence reduction. Turbulence mapping of the inlet confirmed that the tone reductions are due to a reduction in turbulence, as the low frequency power spectra of the streamwise and transverse turbulence were reduced by up to ten times and 100 times, respectively.

  12. A SOUND SOURCE LOCALIZATION TECHNIQUE TO SUPPORT SEARCH AND RESCUE IN LOUD NOISE ENVIRONMENTS

    NASA Astrophysics Data System (ADS)

    Yoshinaga, Hiroshi; Mizutani, Koichi; Wakatsuki, Naoto

    At some sites of earthquakes and other disasters, rescuers search for people buried under rubble by listening for the sounds which they make. Thus developing a technique to localize sound sources amidst loud noise will support such search and rescue operations. In this paper, we discuss an experiment performed to test an array signal processing technique which searches for unperceivable sound in loud noise environments. Two speakers simultaneously played a noise of a generator and a voice decreased by 20 dB (= 1/100 of power) from the generator noise at an outdoor space where cicadas were making noise. The sound signal was received by a horizontally set linear microphone array 1.05 m in length and consisting of 15 microphones. The direction and the distance of the voice were computed and the sound of the voice was extracted and played back as an audible sound by array signal processing.

  13. Design and test of component circuits of an integrated quantum voltage noise source for Johnson noise thermometry

    NASA Astrophysics Data System (ADS)

    Yamada, Takahiro; Maezawa, Masaaki; Urano, Chiharu

    2015-11-01

    We present design and testing of a pseudo-random number generator (PRNG) and a variable pulse number multiplier (VPNM) which are digital circuit subsystems in an integrated quantum voltage noise source for Jonson noise thermometry. Well-defined, calculable pseudo-random patterns of single flux quantum pulses are synthesized with the PRNG and multiplied digitally with the VPNM. The circuit implementation on rapid single flux quantum technology required practical circuit scales and bias currents, 279 junctions and 33 mA for the PRNG, and 1677 junctions and 218 mA for the VPNM. We confirmed the circuit operation with sufficiently wide margins, 80-120%, with respect to the designed bias currents.

  14. Bright, Coherent, Ultrafast Soft X-Ray Harmonics Spanning the Water Window from a Tabletop Light Source

    SciTech Connect

    Chen, M.-C.; Arpin, P.; Popmintchev, T.; Gerrity, M.; Zhang, B.; Seaberg, M.; Popmintchev, D.; Murnane, M. M.; Kapteyn, H. C.

    2010-10-22

    We demonstrate fully phase-matched high harmonic emission spanning the water window spectral region important for nano- and bioimaging and a breadth of materials and molecular dynamics studies. We also generate the broadest bright coherent bandwidth ({approx_equal}300 eV) to date from any light source, small or large, that is consistent with a single subfemtosecond burst. The harmonic photon flux at 0.5 keV is 10{sup 3} higher than demonstrated previously. This work extends bright, spatially coherent, attosecond pulses into the soft x-ray region for the first time.

  15. Traveling-Wave Tube Amplifier Second Harmonic as Millimeter-Wave Beacon Source for Atmospheric Propagation Studies

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    This paper presents the design and test results of a CW millimeter-wave satellite beacon source, based on the second harmonic from a traveling-wave tube amplifier and utilizes a novel waveguide multimode directional coupler. A potential application of the beacon source is for investigating the atmospheric effects on Q-band (37-42 GHz) and V/W-band (71- 76 GHz) satellite-to-ground signals.

  16. Traveling-Wave Tube Amplifier Second Harmonic as Millimeter-Wave Beacon Source for Atmospheric Propagation Studies

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    This paper presents the design and test results of a CW millimeter-wave satellite beacon source, based on the second harmonic from a traveling-wave tube amplifier and utilizes a novel waveguide multimode directional coupler. A potential application of the beacon source is for investigating the atmospheric effects on Q-band (37 to 42 GHz) and V/W-band (71 to 76 GHz) satellite-to-ground signals.

  17. Traveling-Wave Tube Amplifier Second Harmonic as Millimeter-Wave Beacon Source for Atmospheric Propagation Studies

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    The design and test results of a novel waveguide multimode directional coupler for a CW millimeter-wave satellite beacon source are presented. The coupler separates the second harmonic power from the fundamental output power of a traveling-wave tube amplifier. A potential application of the beacon source is for investigating the atmospheric effects on Q-band (37 to 42 GHz) and VW-band (71 to 76 GHz) satellite-to-ground signals.

  18. Separation of Main and Tail Rotor Noise Sources from Ground-Based Acoustic Measurements Using Time-Domain De-Dopplerization

    NASA Technical Reports Server (NTRS)

    Greenwood, Eric II; Schmitz, Fredric H.

    2009-01-01

    A new method of separating the contributions of helicopter main and tail rotor noise sources is presented, making use of ground-based acoustic measurements. The method employs time-domain de-Dopplerization to transform the acoustic pressure time-history data collected from an array of ground-based microphones to the equivalent time-history signals observed by an array of virtual inflight microphones traveling with the helicopter. The now-stationary signals observed by the virtual microphones are then periodically averaged with the main and tail rotor once per revolution triggers. The averaging process suppresses noise which is not periodic with the respective rotor, allowing for the separation of main and tail rotor pressure time-histories. The averaged measurements are then interpolated across the range of directivity angles captured by the microphone array in order to generate separate acoustic hemispheres for the main and tail rotor noise sources. The new method is successfully applied to ground-based microphone measurements of a Bell 206B3 helicopter and demonstrates the strong directivity characteristics of harmonic noise radiation from both the main and tail rotors of that helicopter.

  19. Source localization for active control of turbofan rotor-stator broadband noise

    NASA Astrophysics Data System (ADS)

    Walker, Bruce E.

    2005-09-01

    In order to identify a reference signal source for an active noise cancellation system, cross-correlation techniques were used to localize broadband noise source regions on exit guide vanes of the NASA Glenn Research Center Advance Noise Control Fan (ANCF). Arrays of surface pressure sensors were imbedded in one guide vane and in the wall of the fan. Synchronous sampling was used with a multichannel data acquisition system to allow removal of periodic components from the signals. The signals were then cross-correlated to assess radiation directivity and the relationship between vane surface pressure and in-duct acoustic noise. The results of these measurements indicated that broadband unsteady pressures near the leading edge tip of the guide vane were well enough correlated with acoustic radiation that 2-3 dB active noise cancellation could be achieved using a simple gain-delay control algorithm and actuator array. After successful simulation in a wind tunnel environment the concept was incorporated on 15 guide vanes and tested in ANCF. Cross-correlation measurements were further used to evaluate system performance and to identify competing noises from rotating and stationary sources within the fan.

  20. Detecting and estimating signals in noisy cable structure, I: neuronal noise sources.

    PubMed

    Manwani, A; Koch, C

    1999-11-15

    In recent theoretical approaches addressing the problem of neural coding, tools from statistical estimation and information theory have been applied to quantify the ability of neurons to transmit information through their spike outputs. These techniques, though fairly general, ignore the specific nature of neuronal processing in terms of its known biophysical properties. However, a systematic study of processing at various stages in a biophysically faithful model of a single neuron can identify the role of each stage in information transfer. Toward this end, we carry out a theoretical analysis of the information loss of a synaptic signal propagating along a linear, one-dimensional, weakly active cable due to neuronal noise sources along the way, using both a signal reconstruction and a signal detection paradigm. Here we begin such an analysis by quantitatively characterizing three sources of membrane noise: (1) thermal noise due to the passive membrane resistance, (2) noise due to stochastic openings and closings of voltage-gated membrane channels (NA+ and K+), and (3) noise due to random, background synaptic activity. Using analytical expressions for the power spectral densities of these noise sources, we compare their magnitudes in the case of a patch of membrane from a cortical pyramidal cell and explore their dependence on different biophysical parameters. PMID:10578033

  1. (Investigation of subcooled hydrothermal boiling in ground water flow channels as a source of harmonic tremors)

    SciTech Connect

    Not Available

    1989-01-01

    As a first step toward assessing the ability of hydrothermal boiling to explain geothermal ground noise and volcanic tremor observations, we are investigating the acoustic power spectrum of boiling (the source'' spectrum in the above model). We simulate boiling in the lab by injecting high pressure steam from a boiler into a pressure vessel filled with water. The water pressure fluctuations that result from the repeated formation and collapse of steam bubbles at the steam inlet vents are recorded by a hydrophone whose output is digitized at 2 {times} 10{sup 4} samples/second by a computer. The range of pressure and temperature conditions attainable within the pressure vessel is limited to <3.5 bars, <139{degree}C, due to the finite strength of observation windows affixed to the pressure vessel. Therefore, dimensional analysis will be used to correlate the experimental results with the pertinent experimental variables. Besides the overall shape of the boiling power spectrum, we are investigating the absolute spectral levels in frequency bands typical of geothermal ground noise and volcanic tremor (0.5 Hz-10 Hz), and the ratio of acoustic power liberated to total available power. The values of these parameters are critical to hydrothermal boiling's ability to generate ground motion amplitudes in accordance with observation. If it can be shown that the range of observed ground noise/tremor amplitudes can be accounted for by hydrothermal boiling at reasonable heat transfer rates, this knowledge would be invaluable to designers of seismic monitoring experiments who are interested in geothermal resource exploration/evaluation and volcanic eruption prediction.

  2. Multi-MW 22.8 GHz Harmonic Multiplier - RF Power Source for High-Gradient Accelerator R&D

    SciTech Connect

    Jay L. Hirshfield

    2012-07-26

    Electrodynamic and particle simulation studies have been carried out to optimize design of a two-cavity harmonic frequency multiplier, in which a linear electron beam is energized by rotating fields near cyclotron resonance in a TE111 cavity in a uniform magnetic field, and in which the beam then radiates coherently at the nth harmonic into a TEn11 output cavity. Examples are worked out in detail for 7th and 2nd harmonic converters, showing RF-to-RF conversion efficiencies of 45% and 88%, respectively at 19.992 GHz (K-band) and 5.712 GHz (C-band), for a drive frequency of 2.856 GHz. Details are shown of RF infrastructure (S-band klystron, modulator) and harmonic converter components (drive cavity, output cavities, electron beam source and modulator, beam collector) for the two harmonic converters to be tested. Details are also given for the two-frequency (S- and C-band) coherent multi-MW test stand for RF breakdown and RF gun studies.

  3. An improved assessment approach for noise impacts from stationary point and traffic sources on humans and wildlife

    SciTech Connect

    Chang, Young-Soo; Chun, K.C.

    1994-04-01

    This paper presents an improved, efficient approach for assessing noise impacts associated with a complex set of noise sources at multiple receptor locations; noise impacts form typical remedial activities at a contaminated industrial site are used as an example. The noise sources associated with remedial activities at the site and surrounding areas are described, the noise-propagation modeling methods and results are presented, and an impact assessment of the contaminated site is discussed with regard to applicable regulatory standards and individual and community responses. Also discussed is the improved noise assessment approach. The improved features demonstrated are automate approaches for (1) inputting long-term hourly meterorological data (e.g., 8,760 hours for a one-year period) into a long-range noise-propagation model for computing noise-level increases at receptor locations and (2) analyzing potential individual and community responses to intrusive noises using the IAP and modified CNR.

  4. Detecting vocal fatigue in student singers using acoustic measures of mean fundamental frequency, jitter, shimmer, and harmonics-to-noise ratio

    NASA Astrophysics Data System (ADS)

    Sisakun, Siphan

    2000-12-01

    The purpose of this study is to explore the ability of four acoustic parameters, mean fundamental frequency, jitter, shimmer, and harmonics-to-noise ratio, to detect vocal fatigue in student singers. The participants are 15 voice students, who perform two distinct tasks, data collection task and vocal fatiguing task. The data collection task includes the sustained vowel /a/, reading a standard passage, and self-rate on a vocal fatigue form. The vocal fatiguing task is the vocal practice of musical scores for a total of 45 minutes. The four acoustic parameters are extracted using the software EZVoicePlus. The data analyses are performed to answer eight research questions. The first four questions relate to correlations of the self-rating scale and each of the four parameters. The next four research questions relate to differences in the parameters over time using one-factor repeated measures analysis of variance (ANOVA). The result yields a proposed acoustic profile of vocal fatigue in student singers. This profile is characterized by increased fundamental frequency; slightly decreased jitter; slightly decreased shimmer; and slightly increased harmonics-to-noise ratio. The proposed profile requires further investigation.

  5. Clutter isolation and cardiac monitoring using harmonic doppler radar with heterodyne receiver and passive RF tags.

    PubMed

    Singh, Aditya; Lubecke, Victor

    2010-01-01

    A harmonic radar employing the use of harmonic passive RF tags can be successfully used to isolate the human respiration from environmental clutter. This paper describes the successful use of heterodyne receiver architecture with Doppler radar to track the heart-rate of a human being using passive body-worn harmonic tags in presence of a controlled noise generator at distances up to 120 cm. The heterodyne system results have been compared with those of a conventional Doppler radar for cardiopulmonary monitoring that fails to isolate the noise from heart-rate in presence of a noise source. PMID:21096353

  6. A probabilistic algorithm integrating source localization and noise suppression for MEG and EEG data.

    PubMed

    Zumer, Johanna M; Attias, Hagai T; Sekihara, Kensuke; Nagarajan, Srikantan S

    2007-08-01

    We have developed a novel probabilistic model that estimates neural source activity measured by MEG and EEG data while suppressing the effect of interference and noise sources. The model estimates contributions to sensor data from evoked sources, interference sources and sensor noise using Bayesian methods and by exploiting knowledge about their timing and spatial covariance properties. Full posterior distributions are computed rather than just the MAP estimates. In simulation, the algorithm can accurately localize and estimate the time courses of several simultaneously active dipoles, with rotating or fixed orientation, at noise levels typical for averaged MEG data. The algorithm even performs reasonably at noise levels typical of an average of just a few trials. The algorithm is superior to beamforming techniques, which we show to be an approximation to our graphical model, in estimation of temporally correlated sources. Success of this algorithm using MEG data for localizing bilateral auditory cortex, low-SNR somatosensory activations, and for localizing an epileptic spike source are also demonstrated. PMID:17574444

  7. The effects of correlated noise in phased-array observations of radio sources

    NASA Technical Reports Server (NTRS)

    Dewey, Rachel J.

    1994-01-01

    Arrays of radio telescopes are now routinely used to provide increased signal-to-noise when observing faint point sources. However, calculation of the achievable sensitivity is complicated if there are sources in the field of view other than the target source. These additional sources not only increase the system temperatures of the individual antennas, but may also contribute significant 'correlated noise' to the effective system temperature of the array. This problem has been of particular interest in the context of tracking spacecraft in the vicinity of radio-bright planets (e.g., Galileo at Jupiter), but it has broader astronomical relevance as well. This paper presents a general formulation of the problem, for the case of a point-like target source in the presence of an additional radio source of arbitrary brightness distribution. We re-derive the well known result that, in the absence of any background sources, a phased array of N indentical antennas is a factor of N more sensitive than a single antenna. We also show that an unphased array of N identical antennas is, on average, no more sensitive than a single antenna if the signals from the individual antennas are combined prior to detection. In the case where a background source is present we show that the effects of correlated noise are highly geometry dependent, and for some astronomical observations may cause significant fluctuations in the array's effective system temperature.

  8. Powerline noise elimination in biomedical signals via blind source separation and wavelet analysis.

    PubMed

    Akwei-Sekyere, Samuel

    2015-01-01

    The distortion of biomedical signals by powerline noise from recording biomedical devices has the potential to reduce the quality and convolute the interpretations of the data. Usually, powerline noise in biomedical recordings are extinguished via band-stop filters. However, due to the instability of biomedical signals, the distribution of signals filtered out may not be centered at 50/60 Hz. As a result, self-correction methods are needed to optimize the performance of these filters. Since powerline noise is additive in nature, it is intuitive to model powerline noise in a raw recording and subtract it from the raw data in order to obtain a relatively clean signal. This paper proposes a method that utilizes this approach by decomposing the recorded signal and extracting powerline noise via blind source separation and wavelet analysis. The performance of this algorithm was compared with that of a 4th order band-stop Butterworth filter, empirical mode decomposition, independent component analysis and, a combination of empirical mode decomposition with independent component analysis. The proposed method was able to expel sinusoidal signals within powerline noise frequency range with higher fidelity in comparison with the mentioned techniques, especially at low signal-to-noise ratio. PMID:26157639

  9. Powerline noise elimination in biomedical signals via blind source separation and wavelet analysis

    PubMed Central

    2015-01-01

    The distortion of biomedical signals by powerline noise from recording biomedical devices has the potential to reduce the quality and convolute the interpretations of the data. Usually, powerline noise in biomedical recordings are extinguished via band-stop filters. However, due to the instability of biomedical signals, the distribution of signals filtered out may not be centered at 50/60 Hz. As a result, self-correction methods are needed to optimize the performance of these filters. Since powerline noise is additive in nature, it is intuitive to model powerline noise in a raw recording and subtract it from the raw data in order to obtain a relatively clean signal. This paper proposes a method that utilizes this approach by decomposing the recorded signal and extracting powerline noise via blind source separation and wavelet analysis. The performance of this algorithm was compared with that of a 4th order band-stop Butterworth filter, empirical mode decomposition, independent component analysis and, a combination of empirical mode decomposition with independent component analysis. The proposed method was able to expel sinusoidal signals within powerline noise frequency range with higher fidelity in comparison with the mentioned techniques, especially at low signal-to-noise ratio. PMID:26157639

  10. Noise power spectral density of a fibre scattered-light interferometer with a semiconductor laser source

    SciTech Connect

    Alekseev, A E; Potapov, V T

    2013-10-31

    Spectral characteristics of the noise intensity fluctuations at the output of a scattered-light interferometer, caused by phase fluctuations of semiconductor laser radiation are considered. This kind of noise is one of the main factors limiting sensitivity of interferometric sensors. For the first time, to our knowledge, the expression is obtained for the average noise power spectral density at the interferometer output versus the degree of a light source coherence and length of the scattering segment. Also, the approximate expressions are considered which determine the power spectral density in the low-frequency range (up to 200 kHz) and in the limiting case of extended scattering segments. The expression obtained for the noise power spectral density agrees with experimental normalised power spectra with a high accuracy. (interferometry of radiation)

  11. Phased Array Noise Source Localization Measurements Made on a Williams International FJ44 Engine

    NASA Technical Reports Server (NTRS)

    Podboy, Gary G.; Horvath, Csaba

    2010-01-01

    A 48-microphone planar phased array system was used to acquire noise source localization data on a full-scale Williams International FJ44 turbofan engine. Data were acquired with the array at three different locations relative to the engine, two on the side and one in front of the engine. At the two side locations the planar microphone array was parallel to the engine centerline; at the front location the array was perpendicular to the engine centerline. At each of the three locations, data were acquired at eleven different engine operating conditions ranging from engine idle to maximum (take off) speed. Data obtained with the array off to the side of the engine were spatially filtered to separate the inlet and nozzle noise. Tones occurring in the inlet and nozzle spectra were traced to the low and high speed spools within the engine. The phased array data indicate that the Inflow Control Device (ICD) used during this test was not acoustically transparent; instead, some of the noise emanating from the inlet reflected off of the inlet lip of the ICD. This reflection is a source of error for far field noise measurements made during the test. The data also indicate that a total temperature rake in the inlet of the engine is a source of fan noise.

  12. Noise sources and dissipation mechanisms of a 120 # SQUID amplifier Paolo Falferi, a) Michele Bonaldi, and Antonella Cavalleri

    E-print Network

    Noise sources and dissipation mechanisms of a 120 # SQUID amplifier Paolo Falferi, a) Michele device #SQUID#, based on a commercial sensor, is strongly coupled to an electrical resonator at 11 k of the noise generated by this system, the back action noise of the SQUID amplifier is estimated. The minimum

  13. On Acoustic Source Specification for Rotor-Stator Interaction Noise Prediction

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Envia, Edmane; Burley, Caesy L.

    2010-01-01

    This paper describes the use of measured source data to assess the effects of acoustic source specification on rotor-stator interaction noise predictions. Specifically, the acoustic propagation and radiation portions of a recently developed coupled computational approach are used to predict tonal rotor-stator interaction noise from a benchmark configuration. In addition to the use of full measured data, randomization of source mode relative phases is also considered for specification of the acoustic source within the computational approach. Comparisons with sideline noise measurements are performed to investigate the effects of various source descriptions on both inlet and exhaust predictions. The inclusion of additional modal source content is shown to have a much greater influence on the inlet results. Reasonable agreement between predicted and measured levels is achieved for the inlet, as well as the exhaust when shear layer effects are taken into account. For the number of trials considered, phase randomized predictions follow statistical distributions similar to those found in previous statistical source investigations. The shape of the predicted directivity pattern relative to measurements also improved with phase randomization, having predicted levels generally within one standard deviation of the measured levels.

  14. Erratum: Sources of Image Degradation in Fundamental and Harmonic Ultrasound Imaging: A Nonlinear, Full-Wave, Simulation Study

    PubMed Central

    Pinton, Gianmarco F.; Trahey, Gregg E.; Dahl, Jeremy J.

    2015-01-01

    A full-wave equation that describes nonlinear propagation in a heterogeneous attenuating medium is solved numerically with finite differences in the time domain. This numerical method is used to simulate propagation of a diagnostic ultrasound pulse through a measured representation of the human abdomen with heterogeneities in speed of sound, attenuation, density, and nonlinearity. Conventional delay-and-sum beamforming is used to generate point spread functions (PSFs) that display the effects of these heterogeneities. For the particular imaging configuration that is modeled, these PSFs reveal that the primary source of degradation in fundamental imaging is due to reverberation from near-field structures. Compared with fundamental imaging, reverberation clutter in harmonic imaging is 27.1 dB lower. Simulated tissue with uniform velocity but unchanged impedance characteristics indicates that for harmonic imaging, the primary source of degradation is phase aberration. PMID:21693410

  15. Analysis of a dense seismic array to determine sources of Newtonian gravitational noise at the LIGO sites

    NASA Astrophysics Data System (ADS)

    Driggers, Jennifer; Harms, Jan; Raymond, Vivien; Adhikari, Rana

    2013-04-01

    Newtonian gravitational noise will be an important noise contributor for Advanced LIGO and proposed upgrades to Advanced LIGO, between 5Hz and 30Hz. A major step toward subtracting this Newtonian noise and thus improving the astrophysical detection ability of ground-based gravitational wave observatories is determining the dominant sources of seismic noise, which contribute most strongly to the Newtonian noise. An array of 44 sensors was installed at the LIGO Hanford site for 8 months, including the duration of a commissioning test of a 4km Fabry-Perot cavity. We will show results from this array, including application of LIGO data analysis methods to seismic source localization, relative importance of locally generated versus far-field seismic disturbances, and estimates of residual seismic noise and Newtonian noise present in the cavity length data. We will discuss how this information will help improve noise subtraction algorithms, particularly in terms of optimal sensor placement.

  16. Identification of Noise Sources in High Speed Jets via Correlation Measurements: A Review

    NASA Technical Reports Server (NTRS)

    Bridges, James (Technical Monitor); Panda, Jayanta

    2005-01-01

    Significant advancement has been made in the last few years to identify noise sources in high speed jets via direct correlation measurements. In this technique turbulent fluctuations in the flow are correlated with far field acoustics signatures. In the 1970 s there was a surge of work using mostly intrusive probes, and a few using Laser Doppler Velocimetry, to measure turbulent fluctuations. The later experiments established "shear noise" as the primary source for the shallow angle noise. Various interpretations and criticisms from this time are described in the review. Recent progress in the molecular Rayleigh scattering based technique has provided a completely non-intrusive means of measuring density and velocity fluctuations. This has brought a renewed interest on correlation measurements. We have performed five different sets of experiments in single stream jets of different Mach number, temperature ratio and nozzle configurations. The present paper tries to summarize the correlation data from these works.

  17. Prospects for laser spectroscopy of highly charged ions with high-harmonic XUV and soft x-ray sources

    NASA Astrophysics Data System (ADS)

    Rothhardt, J.; Hädrich, S.; Demmler, S.; Krebs, M.; Winters, D. F. A.; Kühl, Th; Stöhlker, Th; Limpert, J.; Tünnermann, A.

    2015-11-01

    We present novel high photon flux XUV and soft x-ray sources based on high harmonic generation (HHG). The sources employ femtosecond fiber lasers, which can be operated at very high (MHz) repetition rate and average power (>100 W). HHG with such lasers results in ?1013 photons s?1 within a single harmonic line at ?40 nm (?30 eV) wavelength, a photon flux comparable to what is typically available at synchrotron beam lines. In addition, resonant enhancement of HHG can result in narrow-band harmonics with high spectral purity—well suited for precision spectroscopy. These novel light sources will enable seminal studies on electronic transitions in highly-charged ions. For example, at the experimental storage ring 2s1/2–2p1/2 transitions in Li-like ions can be excited up to Z = 47 (?100 eV transition energy), which provides unique sensitivity to quantum electro-dynamical effects and nuclear corrections. We estimate fluorescence count rates of the order of tens per second, which would enable studies on short-lived isotopes as well. In combination with the Doppler up-shift available in head-on excitation at future heavy-ion storage rings, such as the high energy storage ring, even multi-keV transitions can potentially be excited. Pump–probe experiments with femtosecond resolution could also be feasible and access the lifetime of short-lived excited states, thus providing novel benchmarks for atomic structure theory.

  18. Luminescence-induced noise in single photon sources based on BBO crystals

    NASA Astrophysics Data System (ADS)

    Machulka, Radek; Lemr, Karel; Haderka, Ond?ej; Lamperti, Marco; Allevi, Alessia; Bondani, Maria

    2014-11-01

    Single-photon sources based on the process of spontaneous parametric down-conversion play a key role in various applied disciplines of quantum optics. We characterize the intrinsic luminescence of BBO crystals as a source of non-removable noise in quantum-optics experiments. By analysing its spectral and temporal properties together with its intensity, we evaluate the impact of luminescence on single-photon state preparation using spontaneous parametric down-conversion.

  19. Use of a Microphone Phased Array to Determine Noise Sources in a Rocket Plume

    NASA Technical Reports Server (NTRS)

    Panda, J.; Mosher, R.

    2010-01-01

    A 70-element microphone phased array was used to identify noise sources in the plume of a solid rocket motor. An environment chamber was built and other precautions were taken to protect the sensitive condenser microphones from rain, thunderstorms and other environmental elements during prolonged stay in the outdoor test stand. A camera mounted at the center of the array was used to photograph the plume. In the first phase of the study the array was placed in an anechoic chamber for calibration, and validation of the indigenous Matlab(R) based beamform software. It was found that the "advanced" beamform methods, such as CLEAN-SC was partially successful in identifying speaker sources placed closer than the Rayleigh criteria. To participate in the field test all equipments were shipped to NASA Marshal Space Flight Center, where the elements of the array hardware were rebuilt around the test stand. The sensitive amplifiers and the data acquisition hardware were placed in a safe basement, and 100m long cables were used to connect the microphones, Kulites and the camera. The array chamber and the microphones were found to withstand the environmental elements as well as the shaking from the rocket plume generated noise. The beamform map was superimposed on a photo of the rocket plume to readily identify the source distribution. It was found that the plume made an exceptionally long, >30 diameter, noise source over a large frequency range. The shock pattern created spatial modulation of the noise source. Interestingly, the concrete pad of the horizontal test stand was found to be a good acoustic reflector: the beamform map showed two distinct source distributions- the plume and its reflection on the pad. The array was found to be most effective in the frequency range of 2kHz to 10kHz. As expected, the classical beamform method excessively smeared the noise sources at lower frequencies and produced excessive side-lobes at higher frequencies. The "advanced" beamform routine CLEAN-SC created a series of lumped sources which may be unphysical. We believe that the present effort is the first-ever attempt to directly measure noise source distribution in a rocket plume.

  20. Mapping underwater sound noise and assessing its sources by using a self-organizing maps method.

    PubMed

    Rako, Nikolina; Vilibi?, Ivica; Mihanovi?, Hrvoje

    2013-03-01

    This study aims to provide an objective mapping of the underwater noise and its sources over an Adriatic coastal marine habitat by applying the self-organizing maps (SOM) method. Systematic sampling of sea ambient noise (SAN) was carried out at ten predefined acoustic stations between 2007 and 2009. Analyses of noise levels were performed for 1/3 octave band standard centered frequencies in terms of instantaneous sound pressure levels averaged over 300 s to calculate the equivalent continuous sound pressure levels. Data on vessels' presence, type, and distance from the monitoring stations were also collected at each acoustic station during the acoustic sampling. Altogether 69 noise surveys were introduced to the SOM predefined 2 × 2 array. The overall results of the analysis distinguished two dominant underwater soundscapes, associating them mainly to the seasonal changes in the nautical tourism and fishing activities within the study area and to the wind and wave action. The analysis identified recreational vessels as the dominant anthropogenic source of underwater noise, particularly during the tourist season. The method demonstrated to be an efficient tool in predicting the SAN levels based on the vessel distribution, indicating also the possibility of its wider implication for marine conservation. PMID:23464008

  1. Objective approach for analysis of noise source characteristics and acoustic conditions in noisy computerized embroidery workrooms.

    PubMed

    Aliabadi, Mohsen; Golmohammadi, Rostam; Mansoorizadeh, Muharram

    2014-03-01

    It is highly important to analyze the acoustic properties of workrooms in order to identify best noise control measures from the standpoint of noise exposure limits. Due to the fact that sound pressure is dependent upon environments, it cannot be a suitable parameter for determining the share of workroom acoustic characteristics in producing noise pollution. This paper aims to empirically analyze noise source characteristics and acoustic properties of noisy embroidery workrooms based on special parameters. In this regard, reverberation time as the special room acoustic parameter in 30 workrooms was measured based on ISO 3382-2. Sound power quantity of embroidery machines was also determined based on ISO 9614-3. Multiple linear regression was employed for predicting reverberation time based on acoustic features of the workrooms using MATLAB software. The results showed that the measured reverberation times in most of the workrooms were approximately within the ranges recommended by ISO 11690-1. Similarity between reverberation time values calculated by the Sabine formula and measured values was relatively poor (R (2)?=?0.39). This can be due to the inaccurate estimation of the acoustic influence of furniture and formula preconditions. Therefore, this value cannot be considered representative of an actual acoustic room. However, the prediction performance of the regression method with root mean square error (RMSE)?=?0.23 s and R (2)?=?0.69 is relatively acceptable. Because the sound power of the embroidery machines was relatively high, these sources get the highest priority when it comes to applying noise controls. Finally, an objective approach for the determination of the share of workroom acoustic characteristics in producing noise could facilitate the identification of cost-effective noise controls. PMID:24214295

  2. Effective bandwidth extension by combined harmonics

    NASA Astrophysics Data System (ADS)

    Clement, Gregory T.; Nomura, Hideyuki; Adachi, Hideo; Kamakura, Tomoo

    2012-09-01

    Originating from signal compression techniques in radar, a wide range of ultrasound encoded excitation approaches have been developed for increasing signal strength. These techniques have been extended to nonlinear applications by isolating higher harmonic signal components, thus offering higher signal-to-noise ratios along with the harmonic's increased radial focusing abilities and a potentially broader bandwidth relative to the fundamental. Unfortunately, such techniques can suffer artifacts caused by overlap between the harmonics. We have been investigating an alternative approach to nonlinear compression that combines the fundamental and higher harmonics, effectively treating them as a single band. This extended bandwidth permits a significant increase in the ability to compress a signal. Successfully implemented, the method would permit enhanced image resolution while benefiting from the increased SNR offered by encoding. Pulse-inverted sum and difference signals are first used to isolate even and odd harmonics. Matched filters specific to the source geometry and the transmit signal are then separately applied to each harmonic band. Verification experiments are performed using up the third harmonic resulting from an underwater chirp excitation. Analysis of signal peaks after scattering indicates increased compression using the extended bandwidth as compared to standard fundamental and 2nd-harmonic chirp compression. Further optimization of the compression by altering the transmission signal is also investigated. Overall, results establish the feasibility of extended bandwidth signal compression for simultaneously increasing SNR and signal resolution.

  3. Development of EUV scatterometer with high-harmonic-generation EUV source for nano-scale grating measurement

    NASA Astrophysics Data System (ADS)

    Yeh, Chia-Liang; Ku, Yi-Sha; Hsieh, Yi-Chen; Cho, Chia-Hung

    2015-08-01

    We have developed a EUV scatterometer using a focused high-order harmonic generation (HHG) source for nano-scale grating measurement. The coherent light source with multiple discrete wavelengths of 25-35 nm was pumped by a tabletop Ti:sapphire laser system. A charge-couple-device (CCD) camera directly records the diffraction image of the zero and the first order diffraction information from the grating samples. The grating structure can be reconstructed base on the calculations from the location and the intensity distribution of diffraction pattern.

  4. Supersonic jet noise prediction and noise source investigation for realistic baseline and chevron nozzles based on hybrid RANS/LES simulations

    NASA Astrophysics Data System (ADS)

    Du, Yongle

    Jet noise simulations have been performed for a military-style baseline nozzle and a chevron nozzle with design Mach numbers of Md = 1:5 operating at several off-design conditions. The objective of the current numerical study is to provide insight into the noise generation mechanisms of shock-containing supersonic hot jets and the noise reduction mechanisms of chevron nozzles. A hybrid methodology combining advanced CFD technologies and the acoustic analogy is used for supersonic jet noise simulations. Unsteady Reynolds-averaged Navier-Stokes (URANS) equations are solved to predict the turbulent noise sources in the jet flows. A modified version of the Detached Eddy Simulation (DES) approach is used to avoid excessive damping of fine scale turbulent fluctuations. A multiblock structured mesh topology is used to represent complex nozzle geometries, including the faceted inner contours and finite nozzle thickness. A block interface condition is optimized for the complex multiblock mesh topology to avoid the centerline singularity. A fourth-order Dispersion-Relation-Preserving (DRP) scheme is used for spatial discretization. To enable efficient calculations, a dual time-stepping method is used in addition to parallel computation using MPI. Both multigrid and implicit residual smoothing are used to accelerate the convergence rate of sub-iterations in the fictitious time domain. Noise predictions are made with the permeable surface Ffowcs Williams and Hawkings (FWH) solution. All the numerical methods have been implemented in the jet flow simulation code "CHOPA" and the noise prediction code "PSJFWH". The computer codes have been validated with several benchmark cases. A preliminary study has been performed for an under-expanded baseline nozzle jet with Mj = 1:56 to validate the accuracy of the jet noise simulations. The results show that grid refinement around the jet potential core and the use of a lower artificial dissipation improve the resolution of the predicted high frequency noise spectra. The results also show that the predicted low frequency noise spectra are sensitive to the axial extent of the acoustic data surface, and the high frequency noise spectra are affected by the radial size of the acoustic data surface. The baseline nozzle has been studied at several off-design conditions with Mj = 1:36, 1.47 and 1.56. Although the noise levels at mid to high frequencies are over-predicted at several shallow polar angles, the predicted noise spectra in the peak noise radiation direction and upstream directions agree very well with the experimental measurements. More encouraging is that the frequencies and amplitudes of the broadband shock-associated noise (BBSAN) are captured accurately at all three operating conditions. Three techniques are used to examine the noise source characteristics. The two-point space-time correlation method is used to analyze the statistical characteristics of the turbulent eddies. The direct flow-acoustic correlation technique and the beamformed acoustic pressures are used to reveal the different noise generation mechanisms of the large-scale and fine-scale turbulent fluctuations. The chevron nozzle simulations have been performed at the same operating conditions to evaluate the noise reduction effects. Special treatments are proposed to address the numerical difficulties caused by the chevrons. The impact of chevrons on the near-field noise sources and far-field noise radiation is simulated using the immersed boundary method (IBM) to overcome the great difficulties in grid generation. A non-matching block interface condition is developed to allow the grids to be greatly refined around chevrons for a higher accuracy of simulations without increasing the mesh size significantly. The predicted noise spectra agree very well with the acoustic measurements of the baseline nozzle, considering the small noise reductions of the chevrons at the given operating conditions. No apparent over-prediction is observed. However, the noise reductions are over-predicted because of the over-pr

  5. Methods for designing treatments to reduce interior noise of predominant sources and paths in a single engine light aircraft

    NASA Technical Reports Server (NTRS)

    Hayden, Richard E.; Remington, Paul J.; Theobald, Mark A.; Wilby, John F.

    1985-01-01

    The sources and paths by which noise enters the cabin of a small single engine aircraft were determined through a combination of flight and laboratory tests. The primary sources of noise were found to be airborne noise from the propeller and engine casing, airborne noise from the engine exhaust, structureborne noise from the engine/propeller combination and noise associated with air flow over the fuselage. For the propeller, the primary airborne paths were through the firewall, windshield and roof. For the engine, the most important airborne path was through the firewall. Exhaust noise was found to enter the cabin primarily through the panels in the vicinity of the exhaust outlet although exhaust noise entering the cabin through the firewall is a distinct possibility. A number of noise control techniques were tried, including firewall stiffening to reduce engine and propeller airborne noise, to stage isolators and engine mounting spider stiffening to reduce structure-borne noise, and wheel well covers to reduce air flow noise.

  6. Green's function retrieval from the CCF of random waves and energy conservation for an obstacle of arbitrary shape: noise source distribution on a large surrounding shell

    NASA Astrophysics Data System (ADS)

    Sato, Haruo

    2013-05-01

    For imaging the earth structure, the cross-correlation function (CCF) of random waves as ambient noise or coda waves has been widely used for the estimation of the Green's function. We precisely study the condition for the Green's function retrieval in relation to the energy conservation for a single obstacle of arbitrary shape. When an obstacle is placed in a 2-D homogeneous medium, the Green's function is written by a double series expansion using Hankel functions of the first kind which represent outgoing waves. When two receivers and the scattering obstacle are illuminated by uncorrelated noise sources randomly and uniformly distributed on a closed circle of a large radius surrounding them, the lag-time derivative of the CCF of random waves at the two receivers can be written by a convolution of the antisymmetrized Green's function and the autocorrelation function of the noise source time function. We explicitly derive the constraint for the Hankel function expansion coefficients as the sufficient condition for the Green's function retrieval. We show that the constraint is equal to the generalized optical theorem derived from the energy conservation principle. Physical meaning of the generalized optical theorem becomes clear when the Hankel function expansion coefficients are transformed into scattering amplitudes in the framework of the conventional scattering theory. In the 3-D case, the Green's function is written by a double series expansion using spherical Hankel functions of the first kind and spherical harmonic functions. When two receivers and the scattering obstacle are illuminated by noise sources randomly and uniformly distributed on a closed spherical shell of a large radius surrounding them, we explicitly derive the constraint for the spherical Hankel function expansion coefficients for the Green's function retrieval and the energy conservation. We note that the derivation of the constraint does not assume that two receivers are in the far field of the scattering obstacle.

  7. Further Progress in Noise Source Identification in High Speed Jets via Causality Principle

    NASA Technical Reports Server (NTRS)

    Panda, J.; Seasholtz, R. G.; Elam, K. A.

    2004-01-01

    To locate noise sources in high-speed jets, the sound pressure fluctuations p/, measured at far field locations, were correlated with each of density p, axial velocity u, radial velocity v, puu and pvv fluctuations measured from various points in fully expanded, unheated plumes of Mach number 0.95, 1.4 and 1.8. The velocity and density fluctuations were measured simultaneously using a recently developed, non-intrusive, point measurement technique based on molecular Rayleigh scattering (Seasholtz, Panda, and Elam, AIAA Paper 2002-0827). The technique uses a continuous wave, narrow line-width laser, Fabry-Perot interferometer and photon counting electronics. The far field sound pressure fluctuations at 30 to the jet axis provided the highest correlation coefficients with all flow variables. The correlation coefficients decreased sharply with increased microphone polar angle, and beyond about 60 all correlation mostly fell below the experimental noise floor. Among all correlations < puu; p/> showed the highest values. Interestingly, , in all respects, were very similar to . The and correlations with 90deg microphone fell below the noise floor. By moving the laser probe at various locations in the jet it was found that the strongest noise source lies downstream of the end of the potential core and extends many diameters beyond. Correlation measurement from the lip shear layer showed a Mach number dependency. While significant correlations were measured in Mach 1.8 jet, values were mostly below the noise floor for subsonic Mach 0.95 jet. Various additional analyses showed that fluctuations from large organized structures mostly contributed to the measured correlation, while that from small scale structures fell below the noise floor.

  8. Noise-Source Separation Using Internal and Far-Field Sensors for a Full-Scale Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Miles, Jeffrey H.

    2009-01-01

    Noise-source separation techniques for the extraction of the sub-dominant combustion noise from the total noise signatures obtained in static-engine tests are described. Three methods are applied to data from a static, full-scale engine test. Both 1/3-octave and narrow-band results are discussed. The results are used to assess the combustion-noise prediction capability of the Aircraft Noise Prediction Program (ANOPP). A new additional phase-angle-based discriminator for the three-signal method is also introduced.

  9. Optical system design of a speckle-free ultrafast Red-Green-Blue (RGB) source based on angularly multiplexed second harmonic generation from a TZDW source

    NASA Astrophysics Data System (ADS)

    Yao, Yuhong; Knox, Wayne H.

    2015-03-01

    We report the optical system design of a novel speckle-free ultrafast Red-Green-Blue (RGB) source based on angularly multiplexed simultaneous second harmonic generation from the efficiently generated Stokes and anti-Stokes pulses from a commercially available photonic crystal fiber (PCF) with two zero dispersion wavelengths (TZDW). We describe the optimized configuration of the TZDW fiber source which supports excitations of dual narrow-band pulses with peak wavelengths at 850 nm, 1260 nm and spectral bandwidths of 23 nm, 26 nm, respectively within 12 cm of commercially available TZDW PCF. The conversion efficiencies are as high as 44% and 33% from the pump source (a custom-built Yb:fiber master-oscillator-power-amplifier). As a result of the nonlinear dynamics of propagation, the dual pulses preserve their ultrashort pulse width (with measured autocorrelation traces of 200 fs and 227 fs,) which eliminates the need for dispersion compensation before harmonic generation. With proper optical design of the free-space harmonic generation system, we achieve milli-Watt power level red, green and blue pulses at 630 nm, 517 nm and 425 nm. Having much broader spectral bandwidths compared to picosecond RGB laser sources, the source is inherently speckle-free due to the ultra-short coherence length (<37 ?m) while still maintaining an excellent color rendering capability with >99.4% excitation purities of the three primaries, leading to the coverage of 192% NTSC color gamut (CIE 1976). The reported RGB source features a very simple system geometry, its potential for power scaling is discussed with currently available technologies.

  10. Source localization of turboshaft engine broadband noise using a three-sensor coherence method

    NASA Astrophysics Data System (ADS)

    Blacodon, Daniel; Lewy, Serge

    2015-03-01

    Turboshaft engines can become the main source of helicopter noise at takeoff. Inlet radiation mainly comes from the compressor tones, but aft radiation is more intricate: turbine tones usually are above the audible frequency range and do not contribute to the weighted sound levels; jet is secondary and radiates low noise levels. A broadband component is the most annoying but its sources are not well known (it is called internal or core noise). Present study was made in the framework of the European project TEENI (Turboshaft Engine Exhaust Noise Identification). Its main objective was to localize the broadband sources in order to better reduce them. Several diagnostic techniques were implemented by the various TEENI partners. As regards ONERA, a first attempt at separating sources was made in the past with Turbomeca using a three-signal coherence method (TSM) to reject background non-acoustic noise. The main difficulty when using TSM is the assessment of the frequency range where the results are valid. This drawback has been circumvented in the TSM implemented in TEENI. Measurements were made on a highly instrumented Ardiden turboshaft engine in the Turbomeca open-air test bench. Two engine powers (approach and takeoff) were selected to apply TSM. Two internal pressure probes were located in various cross-sections, either behind the combustion chamber (CC), the high-pressure turbine (HPT), the free-turbine first stage (TL), or in four nozzle sections. The third transducer was a far-field microphone located around the maximum of radiation, at 120° from the intake centerline. The key result is that coherence increases from CC to HPT and TL, then decreases in the nozzle up to the exit. Pressure fluctuations from HPT and TL are very coherent with the far-field acoustic spectra up to 700 Hz. They are thus the main acoustic source and can be attributed to indirect combustion noise (accuracy decreases above 700 Hz because coherence is lower, but far-field sound spectra also are much lower above 700 Hz).

  11. Spontaneous dynamics and response properties of a Hodgkin-Huxley-type neuron model driven by harmonic synaptic noise

    NASA Astrophysics Data System (ADS)

    Nguyen, H.; Neiman, A. B.

    2010-09-01

    We study statistical properties, response dynamics, and information transmission in a Hodgkin-Huxley-type neuron system, modeling peripheral electroreceptors in paddlefish. In addition to sodium and potassium currents, the neuron model includes fast calcium and slow afterhyperpolarization (AHP) potassium currents. The synaptic transmission from sensory epithelium is modeled by a Poission process with a rate modulated by narrow-band noise, mimicking stochastic epithelial oscillations observed experimentally. We study how the interplay of parameters of AHP current and synaptic noise affects the statistics of spontaneous dynamics and response properties of the system. In particular, we confirm predictions made earlier with perfect integrate and fire and phase neuron models that epithelial oscillations enhance stimulus-response coherence and thus information transmission in electroreceptor system. In addition, we consider a strong stimulus regime and show that coherent epithelial oscillations may reduce variability of electroreceptor responses to time-varying stimuli.

  12. Activation process in excitable systems with multiple noise sources: One and two interacting units

    E-print Network

    Igor Franovi?; Kristina Todorovi?; Matjaž Perc; Nebojša Vasovi?; Nikola Buri?

    2015-07-12

    We consider the coaction of two distinct noise sources on the activation process of a single or two interacting excitable units represented by the Fitzhugh-Nagumo model. The nonlocal approach involving Hamiltonian formalism is adapted to obtain the most probable activation paths around which the corresponding stochastic trajectories are clustered. The key point lies in introducing the boundary conditions relevant for a class II excitable unit, which further allow an immediate generalization to scenarios involving a couple of units. We also analyze the effects of two noise sources on the statistical features of the activation process, demonstrating how these are modified due to the linear/nonlinear form of interactions. Universal properties of activation process are qualitatively discussed in light of stochastic bifurcation, underlying transition from stochastically stable fixed point to continuous oscillations.

  13. A collection of formulas for calculation of rotating blade noise - Compact and noncompact source results

    NASA Technical Reports Server (NTRS)

    Farassat, F.

    1980-01-01

    A unified approach is used to derive many of the current formulations for calculation of discrete frequency noise for helicopter rotors and propellers. Both compact and noncompact source formulations are derived. The compact formulations are obtained as the limit of noncompact source results. In particular, the linearized acoustic equations by Hawkings and Lowson, Farassat, Hanson, Woan and Gregorek, Succi, and Jou are derived in this paper. An interesting thickness noise formula by Isom and its recent extension to the near field by Ffowcs Williams are also presented. The paper includes some comparisons of measured and calculated acoustic pressure signatures and spectra for an advanced propeller. The theoretical results are obtained using a computer program developed by the author and P. A. Nystrom.

  14. Three-Dimensional Application of DAMAS Methodology for Aeroacoustic Noise Source Definition

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Humphreys, William M., Jr.

    2005-01-01

    At the 2004 AIAA/CEAS Aeroacoustic Conference, a breakthrough in acoustic microphone array technology was reported by the authors. A Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) was developed which decouples the array design and processing influence from the noise being measured, using a simple and robust algorithm. For several prior airframe noise studies, it was shown to permit an unambiguous and accurate determination of acoustic source position and strength. As a follow-on effort, this paper examines the technique for three-dimensional (3D) applications. First, the beamforming ability for arrays, of different size and design, to focus longitudinally and laterally is examined for a range of source positions and frequency. Advantage is found for larger array designs with higher density microphone distributions towards the center. After defining a 3D grid generalized with respect to the array s beamforming characteristics, DAMAS is employed in simulated and experimental noise test cases. It is found that spatial resolution is much less sharp in the longitudinal direction in front of the array compared to side-to-side lateral resolution. 3D DAMAS becomes useful for sufficiently large arrays at sufficiently high frequency. But, such can be a challenge to computational capabilities, with regard to the required expanse and number of grid points. Also, larger arrays can strain basic physical modeling assumptions that DAMAS and all traditional array methodologies use. An important experimental result is that turbulent shear layers can negatively impact attainable beamforming resolution. Still, the usefulness of 3D DAMAS is demonstrated by the measurement of landing gear noise source distributions in a difficult hard-wall wind tunnel environment.

  15. Sound Source Identification Through Flow Density Measurement and Correlation With Far Field Noise

    NASA Technical Reports Server (NTRS)

    Panda, J.; Seasholtz, R. G.

    2001-01-01

    Sound sources in the plumes of unheated round jets, in the Mach number range 0.6 to 1.8, were investigated experimentally using "casuality" approach, where air density fluctuations in the plumes were correlated with the far field noise. The air density was measured using a newly developed Molecular Rayleigh scattering based technique, which did not require any seeding. The reference at the end provides a detailed description of the measurement technique.

  16. Multi-MW K-Band Harmonic Multiplier: RF Source For High-Gradient Accelerator R and D

    SciTech Connect

    Solyak, N. A.; Yakovlev, V. P.; Kazakov, S. Yu.; Hirshfield, J. L.

    2009-01-22

    A preliminary design is presented for a two-cavity harmonic multiplier, intended as a high-power RF source for use in experiments aimed at developing high-gradient structures for a future collider. The harmonic multiplier is to produce power at selected frequencies in K-band (18-26.5 GHz) using as an RF driver an XK-5 S-band klystron (2.856 GHz). The device is to be built with a TE{sub 111} rotating mode input cavity and interchangeable output cavities running in the TE{sub n11} rotating mode, with n = 7,8,9 at 19.992, 22.848, and 25.704 GHz. An example for a 7{sup th} harmonic multiplier is described, using a 250 kV, 20 A injected laminar electron beam; with 10 MW of S-band drive power, 4.7 MW of 20-GHz output power is predicted. Details are described of the magnetic circuit, cavities, and output coupler.

  17. Shot-to-shot and average absolute photon flux measurements of a femtosecond laser high-order harmonic photon source

    NASA Astrophysics Data System (ADS)

    Leitner, T.; Sorokin, A. A.; Gaudin, J.; Kaser, H.; Kroth, U.; Tiedtke, K.; Richter, M.; Wernet, Ph

    2011-09-01

    The absolute flux of a femtosecond vacuum-ultraviolet (VUV) photon source based on the high-order harmonic generation of a femtosecond Ti:sapphire laser and monochromatized with a grating monochromator is determined both on a shot-to-shot basis and averaged over seconds by a calibrated gas monitor detector. The average flux is compared with the average flux as determined with a calibrated GaAsP semiconductor photodiode. We found that the photodiode is a reliable and easy-to-use tool for estimating the order of magnitude of the average photon flux but that, due to saturation losses, it underestimates the average flux by up to -15%.

  18. Speckle noise reduction on a laser projection display via a broadband green light source.

    PubMed

    Yu, Nan Ei; Choi, Ju Won; Kang, Heejong; Ko, Do-Kyeong; Fu, Shih-Hao; Liou, Jiun-Wei; Kung, Andy H; Choi, Hee Joo; Kim, Byoung Joo; Cha, Myoungsik; Peng, Lung-Han

    2014-02-10

    A broadband green light source was demonstrated using a tandem-poled lithium niobate (TPLN) crystal. The measured wavelength and temperature bandwidth were 6.5 nm and 100 °C, respectively, spectral bandwidth was 36 times broader than the periodically poled case. Although the conversion efficiency was smaller than in the periodic case, the TPLN device had a good figure of merit owing to the extremely large bandwidth for wavelength and temperature. The developed broadband green light source exhibited speckle noise approximately one-seventh of that in the conventional approach for a laser projection display. PMID:24663644

  19. An equivalent-source model for simulating noise generation in turbofan engines

    NASA Astrophysics Data System (ADS)

    Polacsek, C.; Desquesnes, G.; Reboul, G.

    2009-06-01

    Nowadays, computational aeroacoustics (CAA) is used for simulating wave propagation in ducted turbofans, especially as computational fluid dynamics (CFD) is increasingly employed to model the identified noise sources. An efficient way to match the CFD and CAA domains is to make some assumptions on flow and duct geometry, so that disturbance fields can be expanded over incoming/outgoing acoustic modes. Based on this approach, this paper presents an original matching model in which the outgoing modes are generated by means of equivalent monopole distributions defined as source terms in the equations governing the acoustic propagation, instead of a conventional inflow boundary condition (BC). Advantages and limits of the method are discussed. The process to get back to the sources and its numerical implementing are described. Although initially focused on tones, an extension of the method to broadband noise generation is tackled too. The method then is validated on a simplified turbofan exhaust configuration. Numerical solutions obtained by implementing the source terms in a high-order time-domain Euler code are compared to analytical solutions, either in a uniform or in a radially shear mean flow (provided by RANS). The parallel shear flow solution is obtained by solving the Pridmore-Brown equation. The ability to accurately simulate the standing waves due to acoustic reflections at duct ends is also assessed by comparing the numerical solutions computed using both source-based and BC-based options in the Euler solver.

  20. Analysis of Different Harmonic and Intermodulation Distortions for CATV Systems

    NASA Astrophysics Data System (ADS)

    Singh, Sandeep; Kamaljit, Singh Bhatia; Anurag, Sharma; Kaur, Harsimrat

    2015-06-01

    In this paper, after examining all the basic design issues of CATV systems, prominent distortions like harmonic and intermodulation distortions are taken into account for different order. Besides outer distortions for CATV sources, inner distortion of relative intensity to noise is disabled for current analysis.

  1. CW, single-frequency 229nm laser source for Cd-cooling by harmonic conversion

    NASA Astrophysics Data System (ADS)

    Kaneda, Yushi; Yarborough, J. M.; Merzlyak, Yevgeny

    2015-02-01

    More than 200mW of CW 229nm for Cd atom cooling application was generated by the 4th harmonic of a single frequency optically pumped semiconductor laser using a 10-mm long, Brewster-cut BBO crystal in an external cavity. With 650mW of 458nm input, 216mW of 229nm power was observed. Conversion efficiency from 458nm to 229nm was more than 33%.

  2. Experimentation Toward the Analysis of Gear Noise Sources Controlled by Sliding Friction and Surface Roughness

    NASA Technical Reports Server (NTRS)

    Asnani, Vivake M.

    2004-01-01

    In helicopters and other rotorcraft, the gearbox is a major source of noise and vibration (N&V). The two N&V excitation mechanisms are the relative displacements between mating gears (transmission errors) and the friction associated with sliding between gear teeth. Historically, transmission errors have been minimized via improved manufacturing accuracies and tooth modifications. Yet, at high torque loads, noise levels are still relatively high though transmission errors might be somewhat minimal. This suggests that sliding friction is indeed a dominant noise source for high power density rotorcraft gearboxes. In reality, friction source mechanism is associated with surface roughness, lubrication regime properties, time-varying friction forces/torques and gear-mesh interface dynamics. Currently, the nature of these mechanisms is not well understood, while there is a definite need for analytical tools that incorporate sliding resistance and surface roughness, and predict their effects on the vibro- acoustic behavior of gears. Toward this end, an experiment was conducted to collect sound and vibration data on the NASA Glenn Gear-Noise Rig. Three iterations of the experiment were accomplished: Iteration 1 tested a baseline set of gears to establish a benchmark. Iteration 2 used a gear-set with low surface asperities to reduce the sliding friction excitation. Iteration 3 incorporated low viscosity oil with the baseline set of gears to examine the effect of lubrication. The results from this experiment will contribute to a two year project in collaboration with the Ohio State University to develop the necessary mathematical and computer models for analyzing geared systems and explain key physical phenomena seen in experiments. Given the importance of sliding friction in the gear dynamic and vibro-acoustic behavior of rotorcraft gearboxes, there is considerable potential for research & developmental activities. Better models and understanding will lead to quiet and reliable gear designs, as well as the selection of optimal manufacturing processes.

  3. A study of rotor broadband noise mechanisms and helicopter tail rotor noise

    NASA Technical Reports Server (NTRS)

    Chou, Shau-Tak Rudy

    1990-01-01

    The rotor broadband noise mechanisms considered are the following: (1) lift fluctuation due to turbulence ingestion; (2) boundary layer/trailing edge interaction; (3) tip vortex formation; and (4) turbulent vortex shedding from blunt trailing edge. Predictions show good agreement with available experimental data. The study shows that inflow turbulence is the most important broadband noise source for typical helicopters' main rotors at low- and mid-frequencies. Due to the size difference, isolated helicopter tail rotor broadband noise is not important compared to the much louder main rotor broadband noise. However, the inflow turbulence noise from a tail rotor can be very significant because it is operating in a highly turbulent environment, ingesting wakes from upstream components of the helicopter. The study indicates that the main rotor turbulent wake is the most important source of tail rotor broadband noise. The harmonic noise due to ingestion of main rotor tip vortices is studied.

  4. The effect of multimicrophone noise reduction systems on sound source localization by users of binaural hearing aids

    E-print Network

    of binaural hearing aids Tim Van den Bogaerta ExpORL, K.U.Leuven, O & N 2-Herestraat 49 bus 721, B-3000 Leuven on the ability to localize sound sources. Two recently developed noise reduction techniques for binaural hearing microphone ADM , which is a widely used noise reduction approach in commercial hearing aids. The influence

  5. Constraints on coronal turbulence models from source sizes of noise storms at 327 MHz

    E-print Network

    Subramanian, Prasad

    2010-01-01

    We seek to reconcile observations of small source sizes in the solar corona at 327 MHz with predictions of scattering models that incorporate refractive index effects, inner scale effects and a spherically diverging wavefront. We use an empirical prescription for the turbulence amplitude $C_{N}^{2}(R)$ based on VLBI observations by Spangler and coworkers of compact radio sources against the solar wind for heliocentric distances $R \\approx$ 10--50 $R_{\\odot}$. We use the Coles & Harmon model for the inner scale $l_{i}(R)$, that is presumed to arise from cyclotron damping. In view of the prevalent uncertainty in the power law index that characterizes solar wind turbulence at various heliocentric distances, we retain this index as a free parameter. We find that the inclusion of spherical divergence effects suppresses the predicted source size substantially. We also find that inner scale effects significantly reduce the predicted source size. An important general finding for solar sources is that the calculat...

  6. Tunable coherent soft X-ray source based on the generation of high-order harmonic of femtosecond laser radiation in gas-filled capillaries

    SciTech Connect

    Malkov, Yu A; Yashunin, D A; Kiselev, A M; Stepanov, A N; Andreev, N E

    2014-05-30

    We have carried out experimental and theoretical investigations of a tunable coherent soft X-ray radiation source in the 30 – 52 nm wavelength range based on the generation of high-order harmonics of femtosecond laser radiation propagating in a dielectric xenon-filled capillary. The long path of laser pulse propagation through the capillary permits tuning the generated harmonic wavelengths to almost completely span the range under consideration. (interaction of radiation with matter)

  7. A perspective on 30 years of progress in ambient noise: Source mechanisms and the characteristics of the sound field

    NASA Astrophysics Data System (ADS)

    Cato, Douglas H.

    2012-11-01

    The last 30 years has seen substantial progress in ocean ambient noise research, particularly in understanding the mechanisms of sound generation by the sources of ambient noise, the way in which the noise field is affected by sound propagation, and improvements in quantifying the relationship between noise and environmental parameters. This has led to significant improvements in noise prediction. Activity was probably strongest in the 1980s and 1990s, as evident, for example, in the Sea Surface Sound conferences and their published proceedings (four over 10 years). Although much of the application has been to sonar, there has also been interest in using ambient noise to measure properties of the environment and in its significance to marine life. There have been significant changes in the ambient noise itself over the last 30 years. The contribution from human activities appears to have increased, particularly that due to increases in shipping numbers. Biological noise has also increased with the significant increases in populations of some whale species following the cessation of broad scale whaling in the 1960s and early 1970s. Concern about the effects of noise on marine animals as well as the way they exploit the noise has led to renewed interest in ambient noise.

  8. Comparison of Noise Source Localization Data with Flow Field Data Obtained in Cold Supersonic Jets and Implications Regarding Broadband Shock Noise

    NASA Technical Reports Server (NTRS)

    Podboy, Gary; Wernet, Mark; Clem, Michelle; Fagan, Amy

    2013-01-01

    Phased array noise source localization have been compared with 2 types of flow field data (BOS and PIV). The data show that: 1) the higher frequency noise in a BBSN hump is generated further downstream than the lower frequency noise. This is due to a) the shock spacing decreasing and b) the turbulent structure size increasing with distance downstream. 2) BBSN can be created by very weak shocks. 3) BBSN is not created by the strong shocks just downstream of the nozzle because the turbulent structures have not grown large enough to match the shock spacing. 4) The point in the flow where the shock spacing equals the average size of the turbulent structures is a hot spot for shock noise. 5) Some of the shocks responsible for producing the first hump also produce the second hump.

  9. Method for experimental determination of the contribution of individual sources to total noise. [using bandpass filter for signal analysis

    NASA Technical Reports Server (NTRS)

    Rubichev, N. A.

    1973-01-01

    Multiple noise sources generating signals in a mechanical device are analyzed by considering the medium transmitting the sound as linear, and by using a band filter with bandpass for synchronous detection and signal transformation.

  10. Analysis on the frequency-domain numerical method to compute the noise radiated from rotating sources

    NASA Astrophysics Data System (ADS)

    Tang, Hongtao; Qi, Datong; Mao, Yijun

    2013-11-01

    A frequency-domain solution of the Ffowcs Williams-Hawkings equation with a penetrable data surface is presented for the thickness, loading and quadrupole noise to avoid the singularities that exist in the time-domain methods. Since this method is based on the numerical integration over source time, there is no need to solve the retarded-time equation or to perform the interpolation on time-domain data, and the time-domain source information obtained by modern CFD codes can be utilized directly. The acoustic pressure spectra of monopole, dipole and quadrupole point sources in subsonic and supersonic rotation are calculated with the presented method, and the results agree well with those obtained by the retarded-time method and frequency-domain analytical method.

  11. Low Speed, 2-D Rotor/Stator Active Noise Control at the Source Demonstration

    NASA Technical Reports Server (NTRS)

    Simonich, John C.; Kousen, Ken A.; Zander, Anthony C.; Bak, Michael; Topol, David A.

    1997-01-01

    Wake/blade-row interaction noise produced by the Annular Cascade Facility at Purdue University has been modeled using the LINFLO analysis. Actuator displacements needed for complete cancellation of the propagating acoustic response modes have been determined, along with the associated actuator power requirements. As an alternative, weighted least squares minimization of the total far-field sound power using individual actuators has also been examined. Attempts were made to translate the two-dimensional aerodynamic results into three-dimensional actuator requirements. The results lie near the limit of present actuator technology. In order to investigate the concept of noise control at the source for active rotor/stator noise control at the source, various techniques for embedding miniature actuators into vanes were examined. Numerous miniature speaker arrangements were tested and analyzed to determine their suitability as actuators for a demonstration test in the Annular Cascade Facility at Purdue. The best candidates demonstrated marginal performance. An alternative concept to using vane mounted speakers as control actuators was developed and tested. The concept uses compression drivers which are mounted externally to the stator vanes. Each compression driver is connected via a tube to an air cavity in the stator vane, from which the driver signal radiates into the working section of the experimental rig. The actual locations and dimensions of the actuators were used as input parameters for a LINFLO computational analysis of the actuator displacements required for complete cancellation of tones in the Purdue experimental rig. The actuators were designed and an arrangement determined which is compatible with the Purdue experimental rig and instrumentation. Experimental tests indicate that the actuators are capable of producing equivalent displacements greater than the requirements predicted by the LINFLO analysis. The acoustic output of the actuators was also found to be unaffected by the presence of air flow representative of the Purdue experimental rig. A test of the active noise control at the source concept for rotor/stator active noise control was demonstrated. This 2-D test demonstrated conclusively the simultaneous reduction of two acoustic modes. Reductions of over 10 dB were obtained over a wide operating range.

  12. Aeroacoustics of Flight Vehicles: Theory and Practice. Volume 1: Noise Sources

    NASA Technical Reports Server (NTRS)

    Hubbard, Harvey H. (editor)

    1991-01-01

    Methodology recommended to evaluate aeroacoustic related problems is provided, and approaches to their solutions are suggested without extensive tables, nomographs, and derivations. Orientation is toward flight vehicles and emphasis is on underlying physical concepts. Theoretical, experimental, and applied aspects are covered, including the main formulations and comparisons of theory and experiment. The topics covered include: propeller and propfan noise, rotor noise, turbomachinery noise, jet noise classical theory and experiments, noise from turbulent shear flows, jet noise generated by large-scale coherent motion, airframe noise, propulsive lift noise, combustion and core noise, and sonic booms.

  13. Time Delay Analysis of Turbofan Engine Direct and Indirect Combustion Noise Sources

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton

    2008-01-01

    The core noise components of a dual spool turbofan engine were separated by the use of a coherence function. A source location technique based on adjusting the time delay between the combustor pressure sensor signal and the far-field microphone signal to maximize the coherence and remove as much variation of the phase angle with frequency as possible was used. The discovery was made that for the 130o microphone a 90.027 ms time shift worked best for the frequency band from 0 to 200 Hz while a 86.975 ms time shift worked best for the frequency band from 200 to 400 Hz. Hence, the 0 to 200 Hz band signal took more time than the 200 to 400 Hz band signal to travel the same distance. This suggests the 0 to 200 Hz coherent cross spectral density band is partly due to indirect combustion noise attributed to entropy fluctuations, which travel at the flow velocity, interacting with the turbine. The signal in the 200 to 400 Hz frequency band is attributed mostly to direct combustion noise. Results are presented herein for engine power settings of 48, 54, and 60 percent of the maximum power setting

  14. Rotor blade-vortex interaction impulsive noise source identification and correlation with rotor wake predictions

    NASA Astrophysics Data System (ADS)

    Splettstoesser, W. R.; Schultz, K. J.; Martin, Ruth M.

    1987-10-01

    An acoustic source localization scheme applicable to noncompact moving sources is developed and applied to the blade-vortex interaction (BVI) noise data of a 40-percent scale BO-105 model rotor. A generalized rotor wake code is employed to predict possible VBI locations on the rotor disk and is found quite useful in interpreting the acoustic localization results. The highly varying directivity patterns of different BVI impulses generated at the same test condition are explained by both the localization results and predicted tip vortex trajectories. The effects of rotor tip-path-plane angle and advance ratio on the BVI source positions is studied. Decreasing tip-path-plane angle (at constant advance ratio) moves the general interaction region upwind on the rotor disk, significantly changing the interaction geometry. Increasing advance ratio (at constant tip-path-plane angle) shifts the general source region downwind on the rotor disk with the increased convection of the vortices until about 60 deg azimuth, where the BVI sources appear to become acoustically less effective. The region of strongest BVI sources lies between 60 and 70 deg azimuth and 80 and 90 percent radius for the moderate range of advance ratios studied.

  15. Identification of Noise Sources During Rocket Engine Test Firings and a Rocket Launch Using a Microphone Phased-Array

    NASA Technical Reports Server (NTRS)

    Panda, Jayanta; Mosher, Robert N.; Porter, Barry J.

    2013-01-01

    A 70 microphone, 10-foot by 10-foot, microphone phased array was built for use in the harsh environment of rocket launches. The array was setup at NASA Wallops launch pad 0A during a static test firing of Orbital Sciences' Antares engines, and again during the first launch of the Antares vehicle. It was placed 400 feet away from the pad, and was hoisted on a scissor lift 40 feet above ground. The data sets provided unprecedented insight into rocket noise sources. The duct exit was found to be the primary source during the static test firing; the large amount of water injected beneath the nozzle exit and inside the plume duct quenched all other sources. The maps of the noise sources during launch were found to be time-dependent. As the engines came to full power and became louder, the primary source switched from the duct inlet to the duct exit. Further elevation of the vehicle caused spilling of the hot plume, resulting in a distributed noise map covering most of the pad. As the entire plume emerged from the duct, and the ondeck water system came to full power, the plume itself became the loudest noise source. These maps of the noise sources provide vital insight for optimization of sound suppression systems for future Antares launches.

  16. Tracking Paths of Ocean Source Ambient Seismic Noise into, and through, the 3D Earth

    NASA Astrophysics Data System (ADS)

    Reading, A. M.; Gal, M.; Morse, P. E.; Koper, K. D.; Hemer, M. A.; Rawlinson, N.; Salmon, M.; De Kool, M.; Kennett, B. L. N.

    2014-12-01

    Array measurements of seismic noise (microseisms) are emerging as independent observables that inform our knowledge of ocean storms. Using an improved implementation of IAS Capon analysis, we can infer the location and amplitude of multiple sources of seismic noise over multiple decades. For the Southern Ocean, we can use seismic records to assist in identifying shifting patterns of ocean storms. Thus we can investigate topics such as the disparity between wave height trends identified using calibrated satellite records, which appear to be in increasing over multiple decades, and wave heights measured directly using a wave-rider buoy, which does not show a significant change over the same time frame. The passage of wave energy from the water column to the solid Earth, and through the 3D Earth to the seismic array must be tracked effectively. In this contribution, we focus on understanding the passage of seismic noise through the 3D Earth. In particular, we investigate path deviations from 1D Earth models for body waves sources from a variety of locations in the Southern Ocean recorded at Australian seismic arrays. We also investigate path deviations of surface waves travelling across the Australian continent, using the AusREM Earth model. We also appraise other factors affecting the interpretation of slowness, backazimuth and amplitude from seismic array records. These include the effect of the bathymetry-related transfer function controlling energy entering the solid Earth from the water column and the impact of local geology at the site of the seismic array. For a season of storms in the southern hemisphere winter, we simulate the path of energy from a representative range of locations to Australia seismic arrays. We employ a wavefront tracking technique, fast marching, that can support heterogeneous structure and the consideration of multiple arrivals. We find that storms in some locations are subject to a much larger deviation from the expected path of energy through a 1D Earth. We also find that, given the extended source characteristics of ocean storms, focusing and defocusing effects have a significant impact on the pattern of seismic noise observed at a given array. The interplay between these multiple factors results in 'sweet spots': locations in the ocean where storms are very well observed for a particular array.

  17. Extraction of the local phase velocity and the group velocity from surface noise source in microseismic monitoring.

    NASA Astrophysics Data System (ADS)

    Chmiel, Malgorzata; Roux, Philippe; Bardainne, Thomas

    2015-04-01

    The aim of this work is to demonstrate the extraction of the local phase velocity and the group velocity from surface noise source in microseismic monitoring. One of the biggest challenges in microseismic monitoring is surface seismic noise. Microseismic surface studies are often contaminated with instrumental and ambient seismic noise, originating from both natural (wind, rain) and anthropogenic sources (injection, pumps, infrastructure, traffic). The two primary ways to attenuate the undesired surface noise sources are via processing and acquisition strategies. At the acquisition stage, one solution is through the use of patch array. One patch is a group of 48 vertical sensors densely distributed on the area of~150m*150m, and one trace is the array of 12 vertical geophones. In the present work, 44 patches were sparsely distributed on a 41 square kilometer area. Benefitting from continuous recording, we used Matched Field Processing (MFP) methods to extract local phase and group velocities over the whole area. The aim of this technique is to detect and locate uncoherent noise sources while using array-processing methods. The method is based on the comparison between a recorded wave field per patch (the data vector) and a theoretical (or modeled) wave-field (the replica vector) in the frequency domain. The replica vector is a Green's function at a given frequency, which depends on the following parameters: position (x,y) in 2D-grid and a phase velocity. The noise source location is obtained by matching the data vector with the replica vector using a linear "low-resolution" algorithm or a nonlinear "high-resolution" adaptive processor. These algorithms are defined for each point in the 2D - grid and for each phase velocity. The phase velocity per patch is optimal if it maximizes the processor output. As a result, an ambiguity surface is produced which shows the probability of presence of primary noise sources per patch. The combination of all the maps per patch reveals the position of the strongest surface noise source. When properly identified and localized, the surface noise source provides information about a group velocity between each patch in the propagation medium. To do so, the data are cross-correlated between patches and a move-out is applied to cross-correlation functions using the phase velocity per patch. The remaining time shift between the envelopes of the cross-correlation functions gives a value of the group velocities between the patches. The technique can be generalized to every pair of patches depending on the number of surface noise source identified at the surface.

  18. Source impedance, transient response, and noise characterization of the TOPAZ 2 reactors

    SciTech Connect

    Kusnierkiewicz, D.Y.

    1995-01-20

    Electrical measurements have been performed on the TOPAZ 2 V-71 and Ya-21 Reactors, in order to characterize the source impedance as a function of DC operating point and frequency. The response of the reactor to step changes in load current, as well as the frequency content of the electrical noise generated by the reactor have also been measured. These parameters are important to know in order to design power regulation circuitry which maintains a constant load on the reactor during spacecraft operations for any flight application of the TOPAZ 2 reactors. Voltage spikes at the reactor interface induced by load transients must be limited; the power regulation circuitry must have adequate bandwidth to compensate for spacecraft load dynamics. The methods used to make these measurements will be discussed. Results of the measurements on the Ya-21 reactor indicate the source impedance is dominated by a series resistance and inductance. The equivalent DC leakage resistance from the reactor output to structure was also measured. The self generated noise of the reactor is benign; load induced transients will be sufficiently controlled with capacitive filtering and active regulation circuitry external to the reactor/power distribution system. {copyright} 1995 {ital American} {ital Institute} {ital of} {ital Physics}

  19. Empirical sensitivity kernels of noise correlations with respect to virtual sources

    NASA Astrophysics Data System (ADS)

    Boué, P.; Stehly, L.; Nakata, N.; Beroza, G. C.

    2014-12-01

    Cross-correlation of time-series, or interferometry, applied to the ambient seismic field is an established method to observe the propagation of waves between pairs of sensors without involving transient sources. These reconstructed waves are routinely used to develop high-resolution images of the crust and upper mantle, or in mapping the time-dependent velocity changes associated with tectonic events. Using similar methods, recent work have highlighted more challenging observations, such as higher mode surface wave propagation and body wave reconstruction at various scales of the Earth: from the industrial surveys at the reservoir scale to the global scale. Furthermore, the reconstruction of the correct amplitude information can be used to image the anelastic attenuation of the medium and has led to a new type of ground motion prediction using virtual earthquakes method. The dependability of such amplitude retrieval had been debated and represents a difficult challenge due to uneven source distribution. In this study, we discuss the possibility to use the correlation of ambient noise correlation (similar to C3 method) to map the contribution of different source locations for Rayleigh wave reconstruction between receiver pairs. These maps constructed in terms of traveltime or amplitude perturbations of the Green's function, can be considered as empirical sensitivity kernels with respect to the contribution of each virtual source. We propose for the first time to map these kernels using a dataset of continuous records from a dense array of about 2600 sensors deployed at the local-scale in Long Beach (CA, USA). Finally, these maps are used to analyze the impact of the original ambient noise directivity on the recovered Green's functions and discuss the effects of the velocity lateral heterogeneity within the array. We aim at understanding, and thereby reducing, the bias in ambient field measurements.

  20. Extreme ultraviolet mask observations using a coherent extreme ultraviolet scatterometry microscope with a high-harmonic-generation source

    NASA Astrophysics Data System (ADS)

    Fujino, Takahiro; Tanaka, Yusuke; Harada, Tetsuo; Nagata, Yutaka; Watanabe, Takeo; Kinoshita, Hiroo

    2015-06-01

    In extreme ultraviolet (EUV) lithography, the three-dimensional structure of an EUV mask, which has an absorber layer and a Mo/Si multilayer on a glass substrate, strongly affects the EUV phase. We have developed a coherent EUV scatterometry microscope (CSM) to observe EUV patterns with a quantitative phase contrast based on the coherent-diffraction-imaging method, which is a simple system without an objective. A coherent stand-alone high-harmonic-generation (HHG) EUV source has been developed for practical use. Although the throughput of the relay optics in the previous study was insufficient to compensate for the fluctuation of the beam position, herein the beam position is stabilized and the relay optics are upgraded, increasing the throughput of the EUV power 130-fold. Consequently, the detection time for the same defect size is markedly reduced from 1000 to 1 s. Furthermore, a 52 × 52 nm2 absorber defect is detected in 10 s.

  1. Two-Microphone Spatial Filtering Improves Speech Reception for Cochlear-Implant Users in Reverberant Conditions With Multiple Noise Sources

    PubMed Central

    2014-01-01

    This study evaluates a spatial-filtering algorithm as a method to improve speech reception for cochlear-implant (CI) users in reverberant environments with multiple noise sources. The algorithm was designed to filter sounds using phase differences between two microphones situated 1?cm apart in a behind-the-ear hearing-aid capsule. Speech reception thresholds (SRTs) were measured using a Coordinate Response Measure for six CI users in 27 listening conditions including each combination of reverberation level (T60?=?0, 270, and 540?ms), number of noise sources (1, 4, and 11), and signal-processing algorithm (omnidirectional response, dipole-directional response, and spatial-filtering algorithm). Noise sources were time-reversed speech segments randomly drawn from the Institute of Electrical and Electronics Engineers sentence recordings. Target speech and noise sources were processed using a room simulation method allowing precise control over reverberation times and sound-source locations. The spatial-filtering algorithm was found to provide improvements in SRTs on the order of 6.5 to 11.0?dB across listening conditions compared with the omnidirectional response. This result indicates that such phase-based spatial filtering can improve speech reception for CI users even in highly reverberant conditions with multiple noise sources. PMID:25330772

  2. Two-microphone spatial filtering improves speech reception for cochlear-implant users in reverberant conditions with multiple noise sources.

    PubMed

    Goldsworthy, Raymond L

    2014-01-01

    This study evaluates a spatial-filtering algorithm as a method to improve speech reception for cochlear-implant (CI) users in reverberant environments with multiple noise sources. The algorithm was designed to filter sounds using phase differences between two microphones situated 1?cm apart in a behind-the-ear hearing-aid capsule. Speech reception thresholds (SRTs) were measured using a Coordinate Response Measure for six CI users in 27 listening conditions including each combination of reverberation level (T60=0, 270, and 540?ms), number of noise sources (1, 4, and 11), and signal-processing algorithm (omnidirectional response, dipole-directional response, and spatial-filtering algorithm). Noise sources were time-reversed speech segments randomly drawn from the Institute of Electrical and Electronics Engineers sentence recordings. Target speech and noise sources were processed using a room simulation method allowing precise control over reverberation times and sound-source locations. The spatial-filtering algorithm was found to provide improvements in SRTs on the order of 6.5 to 11.0?dB across listening conditions compared with the omnidirectional response. This result indicates that such phase-based spatial filtering can improve speech reception for CI users even in highly reverberant conditions with multiple noise sources. PMID:25330772

  3. Evaluation of Online Information Sources on Alien Species in Europe: The Need of Harmonization and Integration

    NASA Astrophysics Data System (ADS)

    Gatto, Francesca; Katsanevakis, Stelios; Vandekerkhove, Jochen; Zenetos, Argyro; Cardoso, Ana Cristina

    2013-06-01

    Europe is severely affected by alien invasions, which impact biodiversity, ecosystem services, economy, and human health. A large number of national, regional, and global online databases provide information on the distribution, pathways of introduction, and impacts of alien species. The sufficiency and efficiency of the current online information systems to assist the European policy on alien species was investigated by a comparative analysis of occurrence data across 43 online databases. Large differences among databases were found which are partially explained by variations in their taxonomical, environmental, and geographical scopes but also by the variable efforts for continuous updates and by inconsistencies on the definition of "alien" or "invasive" species. No single database covered all European environments, countries, and taxonomic groups. In many European countries national databases do not exist, which greatly affects the quality of reported information. To be operational and useful to scientists, managers, and policy makers, online information systems need to be regularly updated through continuous monitoring on a country or regional level. We propose the creation of a network of online interoperable web services through which information in distributed resources can be accessed, aggregated and then used for reporting and further analysis at different geographical and political scales, as an efficient approach to increase the accessibility of information. Harmonization, standardization, conformity on international standards for nomenclature, and agreement on common definitions of alien and invasive species are among the necessary prerequisites.

  4. The differential Howland current source with high signal to noise ratio for bioimpedance measurement system

    SciTech Connect

    Liu, Jinzhen; Li, Gang; Lin, Ling; Qiao, Xiaoyan; Wang, Mengjun; Zhang, Weibo

    2014-05-15

    The stability and signal to noise ratio (SNR) of the current source circuit are the important factors contributing to enhance the accuracy and sensitivity in bioimpedance measurement system. In this paper we propose a new differential Howland topology current source and evaluate its output characters by simulation and actual measurement. The results include (1) the output current and impedance in high frequencies are stabilized after compensation methods. And the stability of output current in the differential current source circuit (DCSC) is 0.2%. (2) The output impedance of two current circuits below the frequency of 200 KHz is above 1 M?, and below 1 MHz the output impedance can arrive to 200 K?. Then in total the output impedance of the DCSC is higher than that of the Howland current source circuit (HCSC). (3) The SNR of the DCSC are 85.64 dB and 65 dB in the simulation and actual measurement with 10 KHz, which illustrates that the DCSC effectively eliminates the common mode interference. (4) The maximum load in the DCSC is twice as much as that of the HCSC. Lastly a two-dimensional phantom electrical impedance tomography is well reconstructed with the proposed HCSC. Therefore, the measured performance shows that the DCSC can significantly improve the output impedance, the stability, the maximum load, and the SNR of the measurement system.

  5. The MRI: A noise source of concern in the health care industry

    NASA Astrophysics Data System (ADS)

    Standlee, Kerrie G.; Begin, Joseph C.

    2003-10-01

    Two recent trends in the development and use of magnetic resonance imaging (MRI) equipment have created challenges for acoustical engineers: (1) the trend toward more powerful MRI machines with greater magnetic field strengths, and (2) the tendency of health care facilities to locate these machines, which were previously located in basements or on grade, on upper floors adjacent to (and in some cases above) other critical use areas. For newer, 3-T MRI machines, sound levels well over 100 dBA in the examination room are common. Along with these trends, some equipment manufacturers are now providing design recommendations to address the issues of airborne and structure-borne noise within hospitals and clinics. In addition, MRI manufacturers sometimes have strict requirements for acceptable levels of building vibration from other sources, to prevent potential image quality problems. This paper discusses experience gained during the course of addressing MRI-generated noise on several projects. Data for airborne sound levels measured inside MRI rooms and adjacent rooms and vibration levels measured below MRI units will be presented.

  6. Exploiting continuous scanning laser Doppler vibrometry (CSLDV) in time domain correlation methods for noise source identification

    NASA Astrophysics Data System (ADS)

    Chiariotti, Paolo; Martarelli, Milena; Revel, Gian Marco

    2014-07-01

    This paper proposes the use of continuous scanning laser Doppler vibrometry (CSLDV) in time domain correlation techniques that aim at characterizing the structure-borne contributions of the noise emission of a mechanical system. The time domain correlation technique presented in this paper is based on the use of FIR (finite impulse response) filters obtained from the vibro-acoustic transfer matrix when vibration data are collected by laser Doppler vibrometry (LDV) exploited in continuous scan mode (CSLDV). The advantages, especially in terms of source decorrelation capabilities, related to the use of CSLDV for such purpose, with respect to standard discrete scan (SLDV), are discussed throughout the paper. To validate this approach, vibro-acoustic measurements were performed on a planetary gear motor for home appliances. The analysis of results is also supported by a simulation.

  7. Reduction of beam current noise in the FNAL magnetron ion source

    SciTech Connect

    Bollinger, D. S. Karns, P. R. Tan, C. Y.

    2015-04-08

    The new FNAL Injector Line with a circular dimple magnetron ion source has been operational since December of 2012. Since the new injector came on line there have been variations in the H- beam current flattop observed near the downstream end of the Linac. Several different cathode geometries including a hollow cathode suggested by Dudnikov [1] were tried. Previous studies also showed that different mixtures of hydrogen and nitrogen had an effect on beam current noise [2]. We expanded on those studies by trying mixtures ranging from (0.25% nitrogen, 99.75% hydrogen) to (3% nitrogen, 97% hydrogen). The results of these studies in our test stand will be presented in this paper.

  8. Reduction of beam current noise in the FNAL magnetron ion source

    NASA Astrophysics Data System (ADS)

    Bollinger, D. S.; Karns, P. R.; Tan, C. Y.

    2015-04-01

    The new FNAL Injector Line with a circular dimple magnetron ion source has been operational since December of 2012. Since the new injector came on line there have been variations in the H- beam current flattop observed near the downstream end of the Linac. Several different cathode geometries including a hollow cathode suggested by Dudnikov [1] were tried. Previous studies also showed that different mixtures of hydrogen and nitrogen had an effect on beam current noise [2]. We expanded on those studies by trying mixtures ranging from (0.25% nitrogen, 99.75% hydrogen) to (3% nitrogen, 97% hydrogen). The results of these studies in our test stand will be presented in this paper.

  9. High photon flux XUV and soft x-ray sources enabled by high harmonic generation of high power fiber lasers

    NASA Astrophysics Data System (ADS)

    Rothhardt, Jan; Hädrich, Steffen; Krebs, Manuel; Limpert, Jens; Tünnermann, Andreas

    2015-07-01

    This contribution reports on the recent advances in high harmonic generation (HHG) with high power femtosecond fiber lasers at high repetition rates. The capabilities of high power fiber lasers, the challenges of phase matching in the tight-focusing regime and recent experimental results will be discussed. In particular, post compressed pules as short as 30 fs, with ~150 ?J pulse energy at 0.6 MHz repetition rate have been used for efficient HHG into the XUV. Despite the tight focusing phase matching is ensured by providing the target gas with adequately high density. A conversion efficiency in excess of 10-6 at ~30 eV has been achieved in xenon gas. This resulted in more than 100?W of average power (>1013 photons per second), which represents the highest photon flux achieved by any HHG source in this spectral region so far. In addition, further pulse compression yielded few-cycle pulses at high average power that have enabled efficient soft Xray generation in neon and helium. HHG in neon provided more than 3·109 photons/s within a 1% bandwidth at 120 eV and helium allowed for HHG up to the water window spectral region beyond 283 eV. These compact sources provide highest photon flux on a table-top and will enable exciting applications such as nanometer-resolution imaging or coincidence spectroscopy in the near future.

  10. Shipping noise in whale habitat: characteristics, sources, budget, and impact on belugas in Saguenay-St. Lawrence Marine Park hub.

    PubMed

    Gervaise, Cédric; Simard, Yvan; Roy, Nathalie; Kinda, Bazile; Ménard, Nadia

    2012-07-01

    A continuous car ferry line crossing the Saguenay Fjord mouth and traffic from the local whale-watching fleet introduce high levels of shipping noise in the heart of the Saguenay-St. Lawrence Marine Park. To characterize this noise and examine its potential impact on belugas, a 4-hydrophone array was deployed in the area and continuously recorded for five weeks in May-June 2009. The source levels of the different vessel types showed little dependence on vessel size or speed increase. Their spectral range covered 33 dB. Lowest noise levels occurred at night, when ferry crossing pace was reduced, and daytime noise peaked during whale-watching tour departures and arrivals. Natural ambient noise prevailed 9.4% of the time. Ferry traffic added 30-35 dB to ambient levels above 1 kHz during crossings, which contributed 8 to 14 dB to hourly averages. The whale-watching fleet added up to 5.6 dB during peak hours. Assuming no behavioral or auditory compensation, half of the time, beluga potential communication range was reduced to less than ~30% of its expected value under natural noise conditions, and to less than ~15% for one quarter of the time, with little dependence on call frequency. The echolocation band for this population of belugas was also affected by the shipping noise. PMID:22779457

  11. Sources, paths, and concepts for reduction of noise in the test section of the NASA Langley 4x7m wind tunnel

    NASA Technical Reports Server (NTRS)

    Hayden, R. E.; Wilby, J. F.

    1984-01-01

    NASA is investigating the feasibility of modifying the 4x7m Wind Tunnel at the Langley Research Center to make it suitable for a variety of aeroacoustic testing applications, most notably model helicopter rotors. The amount of noise reduction required to meet NASA's goal for test section background noise was determined, the predominant sources and paths causing the background noise were quantified, and trade-off studies between schemes to reduce fan noise at the source and those to attenuate the sound generated in the circuit between the sources and the test section were carried out. An extensive data base is also presented on circuit sources and paths.

  12. AIRUSE-LIFE+: a harmonized PM speciation and source apportionment in 5 Southern European cities

    NASA Astrophysics Data System (ADS)

    Amato, F.; Alastuey, A.; Karanasiou, A.; Lucarelli, F.; Nava, S.; Calzolai, G.; Severi, M.; Becagli, S.; Gianelle, V. L.; Colombi, C.; Alves, C.; Custódio, D.; Nunes, T.; Cerqueira, M.; Pio, C.; Eleftheriadis, K.; Diapouli, E.; Reche, C.; Minguillón, M. C.; Manousakas, M.; Maggos, T.; Vratolis, S.; Harrison, R. M.; Querol, X.

    2015-09-01

    The AIRUSE-LIFE+ project aims at characterising similarities and heterogeneities in PM sources and contributions in urban areas from the Southern Europe. Once the main PMx sources are identified, AIRUSE aims at developing and testing the efficiency of specific and non-specific measures to improve urban air quality. This article reports the results of the source apportionment of PM10 and PM2.5 conducted at three urban background sites (Barcelona, Florence and Milan, BCN-UB, FI-UB, MLN-UB) one sub-urban background site (Athens, ATH-SUB) and one traffic site (Porto, POR-TR). After collecting 1047 PM10 and 1116 PM2.5 24 h samples from January 2013 to February 2014 simultaneously at the 5 cities, these were analysed for the contents of OC, EC, anions, cations, major and trace elements and levoglucosan. The USEPA PMF5 receptor model was applied to these datasets in a harmonised way for each city. The sum of vehicle exhaust and non-exhaust contributes within 3.9-10.8 ?g m-3 (16-32 %) to PM10 and 2.3-9.4 ?g m-3 (15-36 %) to PM2.5, although a fraction of secondary nitrate is also traffic-related but could not be estimated. Important contributions arise from secondary particles (nitrate, sulphate and organics) in PM2.5 (37-82 %) but also in PM10 (40-71 %) mostly at background sites, revealing the importance of abating gaseous precursors in designing air quality plans. Biomass burning (BB) contributions vary widely, from 14-24 % of PM10 in POR-TR, MLN-UB and FI-UB, 7 % in ATH-SUB to < 2 % in BCN-UB. In PM2.5, BB is the second most important source in MLN-UB (21 %) and in POR-TR (18 %), the third one in FI-UB (21 %) and ATH-SUB (11 %), but again negligible (< 2 %) in BCN-UB. This large variability among cities is mostly due to the degree of penetration of biomass for residential heating. In Barcelona natural gas is very well supplied across the city and used as fuel in 96 % of homes, while, in other cities, PM levels increase on an annual basis by 1-9 ?g m-3 due to this source. Other significant sources are: - Local dust, 7-12 % of PM10 at SUB and UB sites and 19 % at the TR site, revealing a contribution from road dust resuspension. In PM2.5 percentages decrease to 2-7 % at SUB-UB sites and 15 % at the TR site. - Industries, mainly metallurgy, contributing 4-11 % of PM10 (5-12 % in PM2.5), but only at BCN-UB, POR-TR and MLN-UB. No clear impact of industrial emissions was found in FI-UB and ATH-SUB. - Natural contributions from sea salt (13 % of PM10 in POR-TR but only 2-7 % in the other cities) and Saharan dust (14 % in ATH-SUB), but less than 4 % in the other cities. During high pollution days, the largest specific source (i.e. excluding SSO and SNI) of PM10 and PM2.5 are: VEX+NEX in BCN-UB (27-22 %) and POR-TR (31-33 %), BB in FI-UB (30-33 %) and MLN-UB (35-26 %) and Saharan dust in ATH-SUB (52-45 %) During those days, there are also quite important Industrial contributions in BCN-UB (17-18 %) and Local dust in POR-TR (28-20 %).

  13. Semi-passive piezoelectric noise control in transmission by synchronized switching damping on voltage source

    NASA Astrophysics Data System (ADS)

    Faiz, A.; Guyomar, D.; Petit, L.; Buttay, C.

    2005-09-01

    This paper deals with the so called SSD (stands for Synchronized Switch Damping) technique that is a semi-passive approach developed to address the problem of structural vibration damping and noise reduction. Compared to standard passive piezoelectric damping, this technique offers the advantage of self-adaptation with environmental variations (e.g. temperature). On the contrary to the active damping systems, its implementation does not require any sophisticated signal processing or any bulk power. In the semi passive approach, the piezoelectric element is continuously switched from open circuit to short circuit synchronously to the strain. Due to this switching mechanism, a phase difference appears between the strain induced by an incident acoustic wave and the resulting voltage, thus creating energy dissipation. With the non-linear process, damping performances directly depend on the electromechanical coupling coefficient of the system. For the weakly coefficient coupling systems, the voltage amplitude of the piezoelectric elements can be artificially increased by switching on voltage sources. Using this new method SSDV (stands for Synchronized Switch Damping on Voltage source), 16.1?dB attenuation on the transmitted wave pressure in the tube is obtained whereas only 8?dB were achieved with the classical SSDI (stands for Synchronized Switch Damping on Inductor). Furthermore, as this method is adaptive, attenuation is observed over a 600?Hz-wide frequency band.

  14. Hybrid Wing Body Shielding Studies Using an Ultrasonic Configurable Fan Artificial Noise Source Generating Simple Modes

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel, L.; Brown, Clifford, A.; Walker, Bruce, E.

    2012-01-01

    An Ultrasonic Configurable Fan Artificial Noise Source (UCFANS) was designed, built, and tested in support of the Langley Research Center s 14- by 22-Foot wind tunnel test of the Hybrid Wing Body (HWB) full three-dimensional 5.8 percent scale model. The UCFANS is a 5.8 percent rapid prototype scale model of a high-bypass turbofan engine that can generate the tonal signature of candidate engines using artificial sources (no flow). The purpose of the test was to provide an estimate of the acoustic shielding benefits possible from mounting the engine on the upper surface of an HWB aircraft and to provide a database for shielding code validation. A range of frequencies, and a parametric study of modes were generated from exhaust and inlet nacelle configurations. Radiated acoustic data were acquired from a traversing linear array of 13 microphones, spanning 36 in. Two planes perpendicular to the axis of the nacelle (in its 0 orientation) and three planes parallel were acquired from the array sweep. In each plane the linear array traversed five sweeps, for a total span of 160 in. acquired. The resolution of the sweep is variable, so that points closer to the model are taken at a higher resolution. Contour plots of Sound Pressure Level, and integrated Power Levels are presented in this paper; as well as the in-duct modal structure.

  15. Analysis of approximations in the californium 252-source-driven noise analysis method

    SciTech Connect

    Stolle, A.M.; Mendelson, M.R. )

    1992-01-01

    The{sup 252}Cf-source-driven noise analysis method is an experimental technique developed at Oak Ridge National Laboratory (ORNL) for determining the subcritical multiplication factor k{sub eff} in various multiplying media. The method has been reported to be successful at measuring the reactivities of an unreflected cylindrical tank containing aqueous uranyl nitrate of varying solution heights to a k{sub eff} as low as 0.3. However, the analytical formulation applied by ORNL to the interpretation of the experiment is derived from an incorrect application of the Langevin method and differs from other formulations that have recently appeared in the literature. In a recent independent analysis of these solution tank experiments, the theoretical expression used to evaluate k{sub eff}, a formulation based on a set of approximations applied to the complete, transport-level interpretation of the method, did not lead to good agreement with the Monte Carlo calculation of k{sub eff} at low values of the multiplication factor. In fact, the analytical formulation applied by ORNL appears to be in close agreement with Monte Carlo. In this paper, an analysis of the approximations used to obtain this reduced theoretical expression for k{sub eff} was performed to better understand the source of discrepancy between these results and Monte Carlo calculations and to evaluate the limitations of the method for determining subcritical reactivity.

  16. Characterization of noise sources for two generations of computed radiography systems using powder and crystalline photostimulable phosphors

    SciTech Connect

    Mackenzie, Alistair; Honey, Ian D.

    2007-08-15

    The performances of two generations of computed radiography (CR) were tested and compared in terms of resolution and noise characteristics. The main aim was to characterize and quantify the noise sources in the images. The systems tested were (1) Agfa CR 25.0, a flying spot reader with powder phosphor image plates (MD 40.0); and (2) the Agfa DX-S, a line-scanning CR reader with needle crystal phosphor image plates (HD 5.0). For both systems, the standard metrics of presampled modulation transfer function (MTF), normalized noise power spectra (NNPS) and detective quantum efficiency (DQE) were measured using standard radiation quality RQA5 as defined by the International Electrotechnical Commission. The various noise sources contributing to the NNPS were separated by using knowledge of their relationship with air kerma, MTF, absorption efficiency and antialiasing filters. The DX-S MTF was superior compared with the CR 25.0. The maximum difference in MTF between the DX-S scan and CR 25.0 subscan directions was 0.13 at 1.3 mm{sup -1}. For a nominal detector air kerma of 4 {mu}Gy, the peak DQE of the DX-S was 43({+-}3)%, which was over double that of the CR 25.0 of 18({+-}2)%. The additive electronic noise was negligible on the CR 25.0 but calculated to be constant 3.4x10{sup -7} ({+-}0.4x10{sup -7}) mm{sup 2} at 3.9 {mu}Gy on the DX-S. The DX-S has improved image quality compared with a traditional flying spot reader. The separation of the noise sources indicates that the improvements in DQE of the DX-S are due not only to the higher quantum, efficiency and MTF, but also the lower structure, secondary quantum, and excess noise.

  17. Potential Uses of Anthropogenic Noise as a Source of Information in Animal Sensory and Communication Systems.

    PubMed

    Stansbury, Amanda; Deecke, Volker; Götz, Thomas; Janik, Vincent M

    2016-01-01

    Although current research on the impact of anthropogenic noise has focused on the detrimental effects, there is a range of ways by which animals could benefit from increased noise levels. Here we discuss two potential uses of anthropogenic noise. First, local variations in the ambient-noise field could be used to perceive objects and navigate within an environment. Second, introduced sound cues could be used as a signal for prey detection or orientation and navigation. Although the disadvantages of noise pollution will likely outweigh any positive effects, it is important to acknowledge that such changes may benefit some species. PMID:26611074

  18. Noise pollution resources compendium

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Abstracts of reports concerning noise pollution are presented. The abstracts are grouped in the following areas of activity: (1) sources of noise, (2) noise detection and measurement, (3) noise abatement and control, (4) physical effects of noise and (5) social effects of noise.

  19. Static and wind tunnel near-field/far-field jet noise measurements from model scale single-flow baseline and suppressor nozzles. Volume 1: Noise source locations and extrapolation of static free-field jet noise data

    NASA Technical Reports Server (NTRS)

    Jaeck, C. L.

    1976-01-01

    A test was conducted in the Boeing Large Anechoic Chamber to determine static jet noise source locations of six baseline and suppressor nozzle models, and establish a technique for extrapolating near field data into the far field. The test covered nozzle pressure ratios from 1.44 to 2.25 and jet velocities from 412 to 594 m/s at a total temperature of 844 K.

  20. A phantom road experiment reveals traffic noise is an invisible source of habitat degradation.

    PubMed

    Ware, Heidi E; McClure, Christopher J W; Carlisle, Jay D; Barber, Jesse R

    2015-09-29

    Decades of research demonstrate that roads impact wildlife and suggest traffic noise as a primary cause of population declines near roads. We created a "phantom road" using an array of speakers to apply traffic noise to a roadless landscape, directly testing the effect of noise alone on an entire songbird community during autumn migration. Thirty-one percent of the bird community avoided the phantom road. For individuals that stayed despite the noise, overall body condition decreased by a full SD and some species showed a change in ability to gain body condition when exposed to traffic noise during migratory stopover. We conducted complementary laboratory experiments that implicate foraging-vigilance behavior as one mechanism driving this pattern. Our results suggest that noise degrades habitat that is otherwise suitable, and that the presence of a species does not indicate the absence of an impact. PMID:26324924

  1. Active Control of Fan Noise: Feasibility Study. Volume 6; Theoretical Analysis for Coupling of Active Noise Control Actuator Ring Sources to an Annular Duct with Flow

    NASA Technical Reports Server (NTRS)

    Kraft, R. E.

    1996-01-01

    The objective of this effort is to develop an analytical model for the coupling of active noise control (ANC) piston-type actuators that are mounted flush to the inner and outer walls of an annular duct to the modes in the duct generated by the actuator motion. The analysis will be used to couple the ANC actuators to the modal analysis propagation computer program for the annular duct, to predict the effects of active suppression of fan-generated engine noise sources. This combined program will then be available to assist in the design or evaluation of ANC systems in fan engine annular exhaust ducts. An analysis has been developed to predict the modes generated in an annular duct due to the coupling of flush-mounted ring actuators on the inner and outer walls of the duct. The analysis has been combined with a previous analysis for the coupling of modes to a cylindrical duct in a FORTRAN computer program to perform the computations. The method includes the effects of uniform mean flow in the duct. The program can be used for design or evaluation purposes for active noise control hardware for turbofan engines. Predictions for some sample cases modeled after the geometry of the NASA Lewis ANC Fan indicate very efficient coupling in both the inlet and exhaust ducts for the m = 6 spinning mode at frequencies where only a single radial mode is cut-on. Radial mode content in higher order cut-off modes at the source plane and the required actuator displacement amplitude to achieve 110 dB SPL levels in the desired mode were predicted. Equivalent cases with and without flow were examined for the cylindrical and annular geometry, and little difference was found for a duct flow Mach number of 0.1. The actuator ring coupling program will be adapted as a subroutine to the cylindrical duct modal analysis and the exhaust duct modal analysis. This will allow the fan source to be defined in terms of characteristic modes at the fan source plane and predict the propagation to the arbitrarily-located ANC source plane. The actuator velocities can then be determined to generate the anti-phase mode. The resulting combined fan source/ANC pressure can then be calculated at any desired wall sensor position. The actuator velocities can be determined manually or using a simulation of a control system feedback loop. This will provide a very useful ANC system design and evaluation tool.

  2. Extraction of small boat harmonic signatures from passive sonar.

    PubMed

    Ogden, George L; Zurk, Lisa M; Jones, Mark E; Peterson, Mary E

    2011-06-01

    This paper investigates the extraction of acoustic signatures from small boats using a passive sonar system. Noise radiated from a small boats consists of broadband noise and harmonically related tones that correspond to engine and propeller specifications. A signal processing method to automatically extract the harmonic structure of noise radiated from small boats is developed. The Harmonic Extraction and Analysis Tool (HEAT) estimates the instantaneous fundamental frequency of the harmonic tones, refines the fundamental frequency estimate using a Kalman filter, and automatically extracts the amplitudes of the harmonic tonals to generate a harmonic signature for the boat. Results are presented that show the HEAT algorithms ability to extract these signatures. PMID:21682400

  3. Sound Sources Identified in High-Speed Jets by Correlating Flow Density Fluctuations With Far-Field Noise

    NASA Technical Reports Server (NTRS)

    Panda, Jayanta; Seasholtz, Richard G.

    2003-01-01

    Noise sources in high-speed jets were identified by directly correlating flow density fluctuation (cause) to far-field sound pressure fluctuation (effect). The experimental study was performed in a nozzle facility at the NASA Glenn Research Center in support of NASA s initiative to reduce the noise emitted by commercial airplanes. Previous efforts to use this correlation method have failed because the tools for measuring jet turbulence were intrusive. In the present experiment, a molecular Rayleigh-scattering technique was used that depended on laser light scattering by gas molecules in air. The technique allowed accurate measurement of air density fluctuations from different points in the plume. The study was conducted in shock-free, unheated jets of Mach numbers 0.95, 1.4, and 1.8. The turbulent motion, as evident from density fluctuation spectra was remarkably similar in all three jets, whereas the noise sources were significantly different. The correlation study was conducted by keeping a microphone at a fixed location (at the peak noise emission angle of 30 to the jet axis and 50 nozzle diameters away) while moving the laser probe volume from point to point in the flow. The following figure shows maps of the nondimensional coherence value measured at different Strouhal frequencies ([frequency diameter]/jet speed) in the supersonic Mach 1.8 and subsonic Mach 0.95 jets. The higher the coherence, the stronger the source was.

  4. Seismicity at Old Faithful Geyser: an isolated source of geothermal noise and possible analogue of volcanic seismicity

    USGS Publications Warehouse

    Kieffer, S.W.

    1984-01-01

    Old Faithful Geyser in Yellowstone National Park, U.S.A., is a relatively isolated source of seismic noise and exhibits seismic behavior similar to that observed at many volcanoes, including "bubblequakes" that resemble B-type "earthquakes", harmonic tremor before and during eruptions, and periods of seismic quiet prior to eruptions. Although Old Faithful differs from volcanoes in that the conduit is continuously open, that rock-fracturing is not a process responsible for seismicity, and that the erupting fluid is inviscid H2O rather than viscous magma, there are also remarkable similarities in the problems of heat and mass recharge to the system, in the eruption dynamics, and in the seismicity. Water rises irregularly into the immediate reservoir of Old Faithful as recharge occurs, a fact that suggests that there are two enlarged storage regions: one between 18 and 22 m (the base of the immediate reservoir) and one between about 10 and 12 m depth. Transport of heat from hot water or steam entering at the base of the recharging water column into cooler overlying water occurs by migration of steam bubbles upward and their collapse in the cooler water, and by episodes of convective overturn. An eruption occurs when the temperature of the near-surface water exceeds the boiling point if the entire water column is sufficiently close to the boiling curve that the propagation of pressure-release waves (rarefactions) down the column can bring the liquid water onto the boiling curve. The process of conversion of the liquid water in the conduit at the onset of an eruption into a two-phase liquid-vapor mixture takes on the order of 30 s. The seismicity is directly related to the sequence of filling and heating during the recharge cycle, and to the fluid mechanics of the eruption. Short (0.2-0.3 s), monochromatic, high-frequency events (20-60 Hz) resembling unsustained harmonic tremor and, in some instances, B-type volcanic earthquakes, occur when exploding or imploding bubbles of steam cause transient vibrations of the fluid column. The frequency of the events is determined by the length of the water column and the speed of sound of the fluid in the conduit when these events occur; damping is controlled by the characteristic and hydraulic impedances, which depend on the above parameters, as well as on the recharge rate of the fluid. Two periods of reduced seismicity (of a few tens of seconds to nearly a minute in duration) occur during the recharge cycle, apparently when the water rises rapidly through the narrow regions of the conduit, causing a sudden pressure increase that temporarily suppresses steam bubble formation. A period of decreased seismicity also precedes preplay or an eruption; this appears to be the time when rising steam bubbles move into a zone of boiling that is acoustically decoupled from the wall of the conduit because of the acoustic impedance mismatch between boiling water (??c ??? 103 g cm-2 s-1) and rock (??c ??? 3 ?? 105 g cm2 s-1). Sustained harmonic tremor occurs during the first one to one-and-a-half minutes of an eruption of Old Faithful, but is not detectable in the succeeding minutes of the eruption. The eruption tremor is caused by hydraulic transients propagating within a sublayer of unvesiculated water that underlies the erupting two-phase liquid-vapor mixture. The resonant frequencies of the fluid column decrease to about 1 Hz when all of the water in the conduit has been converted to a water-steam mixture. Surges are observed in the flow at this frequency, but the resonance has not been detected seismically, possibly because the two-phase erupting fluid is seismically decoupled from the rock on which seismometers are placed. If Old Faithful is an analogue for volcanic seismicity, this study shows that because the frequency of tremor depends on the acoustic properties of the fluid and on conduit dimensions, both properties must be considered in analysis of tremor in volcanic regions. Because magma sound

  5. Seismicity at Old Faithful Geyser: an isolated source of geothermal noise and possible analogue of volcanic seismicity

    NASA Astrophysics Data System (ADS)

    Kieffer, Susan Werner

    1984-09-01

    Old Faithful Geyser in Yellowstone National Park, U.S.A., is a relatively isolated source of seismic noise and exhibits seismic behavior similar to that observed at many volcanoes, including "bubblequakes" that resemble B-type "earthquakes", harmonic tremor before and during eruptions, and periods of seismic quiet prior to eruptions. Although Old Faithful differs from volcanoes in that the conduit is continuously open, that rock-fracturing is not a process responsible for seismicity, and that the erupting fluid is inviscid H 2O rather than viscous magma, there are also remarkable similarities in the problems of heat and mass recharge to the system, in the eruption dynamics, and in the seismicity. Water rises irregularly into the immediate reservoir of Old Faithful as recharge occurs, a fact that suggests that there are two enlarged storage regions: one between 18 and 22 m (the base of the immediate reservoir) and one between about 10 and 12 m depth. Transport of heat from hot water or steam entering at the base of the recharging water column into cooler overlying water occurs by migration of steam bubbles upward and their collapse in the cooler water, and by episodes of convective overturn. An eruption occurs when the temperature of the near-surface water exceeds the boiling point if the entire water column is sufficiently close to the boiling curve that the propagation of pressure-release waves (rarefactions) down the column can bring the liquid water onto the boiling curve. The process of conversion of the liquid water in the conduit at the onset of an eruption into a two-phase liquid-vapor mixture takes on the order of 30 s. The seismicity is directly related to the sequence of filling and heating during the recharge cycle, and to the fluid mechanics of the eruption. Short (0.2-0.3 s), monochromatic, high-frequency events (20-60 Hz) resembling unsustained harmonic tremor and, in some instances, B-type volcanic earthquakes, occur when exploding or imploding bubbles of steam cause transient vibrations of the fluid column. The frequency of the events is determined by the length of the water column and the speed of sound of the fluid in the conduit when these events occur; damping is controlled by the characteristic and hydraulic impedances, which depend on the above parameters, as well as on the recharge rate of the fluid. Two periods of reduced seismicity (of a few tens of seconds to nearly a minute in duration) occur during the recharge cycle, apparently when the water rises rapidly through the narrow regions of the conduit, causing a sudden pressure increase that temporarily suppresses steam bubble formation. A period of decreased seismicity also precedes preplay or an eruption; this appears to be the time when rising steam bubbles move into a zone of boiling that is acoustically decoupled from the wall of the conduit because of the acoustic impedance mismatch between boiling water ( ? c ˜ 10 3g cm -2 s -1) and rock ( ? c ˜ 3 × 10 5g cm 2 s -1). Sustained harmonic tremor occurs during the first one to one-and-a-half minutes of an eruption of Old Faithful, but is not detectable in the succeeding minutes of the eruption. The eruption tremor is caused by hydraulic transients propagating within a sublayer of unvesiculated water that underlies the erupting two-phase liquid—vapor mixture. The resonant frequencies of the fluid column decrease to about 1 Hz when all of the water in the conduit has been converted to a water—steam mixture. Surges are observed in the flow at this frequency, but the resonance has not been detected seismically, possibly because the two-phase erupting fluid is seismically decoupled from the rock on which seismometers are placed. If Old Faithful is an analogue for volcanic seismicity, this study shows that because the frequency of tremor depends on the acoustic properties of the fluid and on conduit dimensions, both properties must be considered in analysis of tremor in volcanic regions. Because magma sound speed can vary over nearly two orders of magnitude as it changes

  6. Comparison of the noise and jitter characteristics of harmonic injection-locked and mode-locked erbium-doped fiber lasers

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Chung; Chang, Yung-Cheng; Lin, Gong-Ru

    2005-01-01

    We compare the noise characteristics of optical pulses generated from an actively mode-locked (AML) erbium-doped fiber laser (EDFL) with a semiconductor optical amplifier and an injection-locked EDFL with a gain-switched Fabry-Perot laser diode (FPLD). The mode-locked EDFL pulse exhibits a phase noise of -110.1 dBc/Hz (at 1 MHz offset frequencies from the carrier), the timing jitter of 1.16 ps, and a supermode noise suppression ratio of 47.5 dB. The injection-locked EDFL pulse exhibits a phase noise of -121.1 dBc/Hz (at 1 MHz offset frequencies from the carrier), a timing jitter of 0.31 ps, and a supermode noise suppression ratio of 51 dB. It is demonstrated that the injection-locked EDFL with a gain-switched FPLD has lower noise characteristics than the AML-EDFL.

  7. An optimized kHz two-colour high harmonic source for seeding free-electron lasers and plasma-based soft x-ray lasers

    NASA Astrophysics Data System (ADS)

    Lambert, G.; Gautier, J.; Hauri, C. P.; Zeitoun, Ph; Valentin, C.; Marchenko, T.; Tissandier, F.; Goddet, J. Ph; Ribiere, M.; Rey, G.; Fajardo, M.; Sebban, S.

    2009-08-01

    Free-electron lasers (FEL) and plasma-based soft x-ray lasers (PSXL) have been recently evolving very fast from the vacuum ultraviolet to the soft x-ray region. Once seeded with high harmonics, these schemes are considered as the next generation soft x-ray light sources delivering ultrashort pulses with high temporal and spatial coherence. Here, we present a detailed experimental study of a kHz two-colour high harmonic generation performed in various gases and investigate its potential as a suitable evolution of the actual seeding sources. It turns out that this double harmonic content source is highly tuneable, controllable and delivers intense radiation (measured here with a calibrated photodiode) with only one order of magnitude difference in the photon yield from 65 to 13 nm. Then, first and foremost, injections could be achieved at wavelengths shorter than what was previously accessible in FEL and PSXL and/or additional energy could be extracted. Also, such a strong and handy seed could allow the saturation range of FEL devices to be greatly extended to shorter wavelengths and would bring higher spectral as well as intensity stabilities in this spectral zone.

  8. Competition of noise sources in systems with delay: the role of multiple time scales

    E-print Network

    Fournier, John J.F.

    (additive) noise can amplify vibrations via coherence resonance while random variation of delay can suppress, and experiments, with manufacturing issues and virtual machining via computational modeling discussed in detail in the context of randomness. Variation in material parameters leads to both additive and multiplicative noise

  9. Sources of high frequency seismic noise: insights from a dense network of ~250 stations in northern Alsace (France)

    NASA Astrophysics Data System (ADS)

    Vergne, Jerome; Blachet, Antoine; Lehujeur, Maximilien

    2015-04-01

    Monitoring local or regional seismic activity requires stations having a low level of background seismic noise at frequencies higher than few tenths of Hertz. Network operators are well aware that the seismic quality of a site depends on several aspects, among them its geological setting and the proximity of roads, railways, industries or trees. Often, the impact of each noise source is only qualitatively known which precludes estimating the quality of potential future sites before they are tested or installed. Here, we want to take advantage of a very dense temporary network deployed in Northern Alsace (France) to assess the effect of various kinds of potential sources on the level of seismic noise observed in the frequency range 0.2-50 Hz. In September 2014, more than 250 seismic stations (FairfieldNodal@ Zland nodes with 10Hz vertical geophone) have been installed every 1.5 km over a ~25km diameter disc centred on the deep geothermal sites of Soultz-sous-Forêts and Rittershoffen. This region exhibits variable degrees of human imprints from quite remote areas to sectors with high traffic roads and big villages. It also encompasses both the deep sedimentary basin of the Rhine graben and the piedmont of the Vosges massif with exposed bedrock. For each site we processed the continuous data to estimate probability density functions of the power spectral densities. At frequencies higher than 1 Hz most sites show a clear temporal modulation of seismic noise related to human activity with the well-known variations between day and night and between weekdays and weekends. Moreover we observe a clear evolution of the spatial distribution of seismic noise levels with frequency. Basically, between 0.5 and 4 Hz the geological setting modulates the level of seismic noise. At higher frequencies, the amplitude of seismic noise appears mostly related to the distance to nearby roads. Based on road maps and traffic estimation, a forward approach is performed to model the induced seismic noise. Effects of other types of seismic sources, such as industries or wind, are also observed but usually have a more limited spatial extension and a specific signature in the spectrograms.

  10. Phased Array Noise Source Localization Measurements of an F404 Nozzle Plume at Both Full and Model Scale

    NASA Technical Reports Server (NTRS)

    Podboy, Gary G.; Bridges, James E.; Henderson, Brenda S.

    2010-01-01

    A 48-microphone planar phased array system was used to acquire jet noise source localization data on both a full-scale F404-GE-F400 engine and on a 1/4th scale model of a F400 series nozzle. The full-scale engine test data show the location of the dominant noise sources in the jet plume as a function of frequency for the engine in both baseline (no chevron) and chevron configurations. Data are presented for the engine operating both with and without afterburners. Based on lessons learned during this test, a set of recommendations are provided regarding how the phased array measurement system could be modified in order to obtain more useful acoustic source localization data on high-performance military engines in the future. The data obtained on the 1/4th scale F400 series nozzle provide useful insights regarding the full-scale engine jet noise source mechanisms, and document some of the differences associated with testing at model-scale versus fullscale.

  11. Noise sources and competition between stimulated Brillouin and Raman scattering: A one-dimensional steady-state approach

    SciTech Connect

    Gong, Tao; Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900 ; Li, Zhichao; Zhao, Bin; Hu, Guang-yue; Zheng, Jian

    2013-09-15

    A 1D steady-state model is developed to deal with stimulated scattering processes. The volume and boundary noise sources for scattered light are discussed in detail. Our results indicate that the boundary noise sources may play a significant role in estimating the reflectivity of stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS). With the capability of our model to deal with broadband scattered light, we find that pump depletion could be the main reason to the anti-correlation between SBS and SRS versus electron density observed in experiments. A simple method is proposed to phenomenologically include the effect of nonlinear saturation mechanisms in our model and reasonable results are obtained.

  12. Active Control of Fan Noise-Feasibility Study. Volume 2: Canceling Noise Source-Design of an Acoustic Plate Radiator Using Piezoceramic Actuators

    NASA Technical Reports Server (NTRS)

    Pla, F. G.; Rajiyah, H.

    1995-01-01

    The feasibility of using acoustic plate radiators powered by piezoceramic thin sheets as canceling sources for active control of aircraft engine fan noise is demonstrated. Analytical and numerical models of actuated beams and plates are developed and validated. An optimization study is performed to identify the optimum combination of design parameters that maximizes the plate volume velocity for a given resonance frequency. Fifteen plates with various plate and actuator sizes, thicknesses, and bonding layers were fabricated and tested using results from the optimization study. A maximum equivalent piston displacement of 0.39 mm was achieved with the optimized plate samples tested with only one actuator powered, corresponding to a plate deflection at the center of over 1 millimeter. This is very close to the deflection required for a full size engine application and represents a 160-fold improvement over previous work. Experimental results further show that performance is limited by the critical stress of the piezoceramic actuator and bonding layer rather than by the maximum moment available from the actuator. Design enhancements are described in detail that will lead to a flight-worthy acoustic plate radiator by minimizing actuator tensile stresses and reducing nonlinear effects. Finally, several adaptive tuning methods designed to increase the bandwidth of acoustic plate radiators are analyzed including passive, active, and semi-active approaches. The back chamber pressurization and volume variation methods are investigated experimentally and shown to be simple and effective ways to obtain substantial control over the resonance frequency of a plate radiator. This study shows that piezoceramic-based plate radiators can be a viable acoustic source for active control of aircraft engine fan noise.

  13. Noise measurements in shunted, shorted, and fully electroded quartz gauges in the Saturn plasma radiation source x-ray simulator

    SciTech Connect

    Barrett, W.H.; Greenwoll, J.I.; Smith, C.W.; Johnson, D.E.; De La Cruz, C.F.

    1995-08-01

    This paper describes recent work to improve the measurement of the stress response of materials to intense, short pulses of radiation. When Saturn fires, large prompt electrical noise pulses are induced in stress measurement circuits. The conventional wisdom has been that the shorted guard ring quartz gauge was the only configuration with acceptable prompt signal-to-noise characteristics for stress measurements in this pulsed radiation environment. However, because of abnormal signal distortion, the shorted guard ring gauge is restricted to a maximum stress of about 8 kbars. Below this level, the normal, quantified signal distortion is correctable with analytical deconvolution techniques. The shunted guard ring gauge is acceptable for Egli fidelity measurements to about 25 kbars with negligible signal distortion. Experiments were conducted on the Saturn soft x-ray source which show that higher fidelity shunted guard ring gauges can successfully measure stress with acceptable induced noise. We also found that a 50-ohm impedance matching resistor at the gauge reduced the prompt noise amplitude and improved the baseline quality of the measurement prior to shock wave arrival.

  14. Noise measurements in shunted, shorted, and fully electroded quartz gauges in the saturn plasma radiation source x-ray simulator

    SciTech Connect

    Barrett, W.H.; Greenwoll, J.I.; Smith, C.W.; Johnson, D.E.; De La Cruz, C.F.

    1996-05-01

    This paper describes recent work to improve the measurement of the stress response of materials to intense, short pulses of radiation. When Saturn fires, large prompt electrical noise pulses are induced in stress measurement circuits. The conventional wisdom has been that the shorted guard ring quartz gauge was the only configuration with acceptable prompt signal-to-noise characteristics for stress measurements in this pulsed radiation environment. However, because of abnormal signal distortion, the shorted guard ring gauge is restricted to a maximum stress of about 8 kbars. Below this level, the normal, quantified signal distortion is correctable with analytical deconvolution techniques. The shunted guard ring gauge is acceptable for high fidelity measurements to about 25 kbars with negligible signal distortion. Experiments were conducted on the Saturn soft x-ray source which show that higher fidelity shunted guard ring gauges can successfully measure stress with acceptable induced noise. We also found that a 50-ohm impedance matching resistor at the gauge reduced the prompt noise amplitude and improved the baseline quality of the measurement prior to shock wave arrival. {copyright} {ital 1996 American Institute of Physics.}

  15. Community Response to Noise

    NASA Astrophysics Data System (ADS)

    Fidell, Sandy

    The primary effects of community noise on residential populations are speech interference, sleep disturbance, and annoyance. This chapter focuses on transportation noise in general and on aircraft noise in particular because aircraft noise is one of the most prominent community noise sources, because airport/community controversies are often the most contentious and widespread, and because industrial and other specialized formsofcommunitynoise generally posemorelocalized problems.

  16. Simultaneous ballistic deficit immunity and resilience to parallel noise sources: A new pulse shaping technique

    SciTech Connect

    Fabris, Lorenzo; Becker, John A.; Goulding, Frederick S.; Madden, Norman W.

    2000-10-11

    A new and different time variant pulse processing system has been developed based on a simple CR-RC filter and two analog switches. The new pulse processing technique combines both ballistic deficit immunity and resilience to parallel noise without a significant compromise to the low energy resolution, generally considered a mutually exclusive requirement. The filter is realized by combining two different pulse-shaping techniques. One of the techniques creates a low rate of curvature at the pulse peak, which reduces ballistic deficit, while the second technique increases the tolerance to low frequency noise by modifying the noise history. Several experimental measurements are presented, including tests on a co-planar grid CdZnTe detector. Improvements on both the resolution and line shape are shown for the 662 keV line of 137Cs.

  17. Study of noise and inflow distortion sources in the NASA QF-1B fan using measured blade and vane pressures

    NASA Technical Reports Server (NTRS)

    Hanson, D. B.

    1977-01-01

    Pressure transducers were installed on the blades and vanes of QF-1B, a transonic-tip-speed fan from the NASA Quiet Fan Program which was tested on the outdoor quiet fan test facility at NASA-Lewis. Signals from the transducers and from far field microphones were analyzed to determine sources of nonuniform inflow and noise. The nonuniform inflow was mostly unsteady with roughly equal contributions from atmospheric turbulence and rig interference. The rig interference was largest at the bottom and appeared to be generated by the support structure which was located behind the inlet lip under the fan. Interaction of this inflow distortion was the dominant source of noise at 1, 2, and 3 times blade passing frequency (BPF) at 60, 70, and 80 percent of design speed. At 90 percent speed, noise at BPF was dominated by the steady rotor field. A broadband spectrum peak centered at about 2.2 times BPF was identified as rotor/stator interaction stemming from a high frequency rotor exit flow component. The remaining broadband energy from 0.3 to 3.5 times BPF was attributed to the better known type of rotor/stator interaction associated with rotor wake turbulence.

  18. Resonance of a fluid-driven crack: radiation properties and implications for the source of long-period events and harmonic tremor.

    USGS Publications Warehouse

    Chouet, B.

    1988-01-01

    A dynamic source model is presented, in which a 3-D crack containing a viscous compressible fluid is excited into resonance by an impulsive pressure transient applied over a small area DELTA S of the crack surface. The crack excitation depends critically on two dimensionless parameters called the crack stiffness and viscous damping loss. According to the model, the long-period event and harmonic tremor share the same source but differ in the boundary conditions for fluid flow and in the triggering mechanism setting up the resonance of the source, the former being viewed as the impulse response of the tremor generating system and the later representing the excitation due to more complex forcing functions.-from Author

  19. Generalized wave envelope analysis of sound propagation in ducts with stepped noise source profiles and variable axial impedance

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1975-01-01

    A finite difference formulation is presented for sound propagation in a rectangular two-dimensional duct without steady flow. Before the difference equations are formulated, the governing Helmholtz equation is first transformed to a form whose solution tends not to oscillate along the length of the duct. This transformation reduces the required number of grid points by an order of magnitude. Example solutions indicate that stepped noise source profiles have much higher attenuation than plane waves in a uniform impedance liner. Also, multiple stepped impedance liners are shown to have higher attenuation than uniform ducts if the impedances are chosen properly. For optimum noise reduction with axial variations in impedance, the numerical analysis indicates that for a plane wave input the resistance should be near zero at the entrance of a suppressor duct, while the reactance should be near the optimum value associated with the least-attenuated mode in a uniform duct.

  20. The Alternative Low Noise Fan

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.; Elliott, David M.; Jeracki, Robert J.; Moore, Royce D.; Parrott, Tony L.

    2000-01-01

    A 106 bladed fan with a design takeoff tip speed of 1100 ft/sec was hypothesized as reducing perceived noise because of the shift of the blade passing harmonics to frequencies beyond the perceived noise rating range. A 22 in. model of this Alternative Low Noise Fan, ALNF, was tested in the NASA Glenn 9x 15 Wind Tunnel. 'Me fan was tested with a 7 vane long chord stator assembly and a 70 vane conventional stator assembly in both hard and acoustically treated configurations. In addition a partially treated 7 vane configuration was tested wherein the acoustic material between the 7 long chord stators was made inactive. The noise data from the 106 bladed fan with 7 long chord stators in a hard configuration was shown to be around 4 EPNdB quieter than a low tip speed Allison fan at takeoff and around 5 EPNdB quieter at approach. Although the tone noise behaved as hypothesized, the majority of this noise reduction was from reduced broadband noise related to the large number of rotor blades. This 106 bladed ALNF is a research fan designed to push the technology limits and as such is probably not a practical device with present materials technology. However, a low tip speed fan with around 50 blades would be a practical device and calculations indicate that it could be 2 to 3 EPNdB quieter at takeoff and 3 to 4 EPNdB quieter at approach than the Allison fan. 7 vane data compared with 70 vane data indicated that the tone noise was controlled by rotor wake-stator interaction but that the broadband noise is probably controlled by the interaction of the rotor with incoming flows. A possible multiple pure tone noise reduction technique for a fan/acoustic treatment system was identified. The data from the fully treated configuration showed significant noise reductions over a large frequency range thereby providing a real tribute to this bulk absorber treatment design. The tone noise data with the partially treated 7 vane configuration indicated that acoustic material in the source noise generation region may be more effective than similar material outside of the generation region.

  1. Fan Noise Prediction System Development: Source/Radiation Field Coupling and Workstation Conversion for the Acoustic Radiation Code

    NASA Technical Reports Server (NTRS)

    Meyer, H. D.

    1993-01-01

    The Acoustic Radiation Code (ARC) is a finite element program used on the IBM mainframe to predict far-field acoustic radiation from a turbofan engine inlet. In this report, requirements for developers of internal aerodynamic codes regarding use of their program output an input for the ARC are discussed. More specifically, the particular input needed from the Bolt, Beranek and Newman/Pratt and Whitney (turbofan source noise generation) Code (BBN/PWC) is described. In a separate analysis, a method of coupling the source and radiation models, that recognizes waves crossing the interface in both directions, has been derived. A preliminary version of the coupled code has been developed and used for initial evaluation of coupling issues. Results thus far have shown that reflection from the inlet is sufficient to indicate that full coupling of the source and radiation fields is needed for accurate noise predictions ' Also, for this contract, the ARC has been modified for use on the Sun and Silicon Graphics Iris UNIX workstations. Changes and additions involved in this effort are described in an appendix.

  2. Noise characterization of broadband fiber Cherenkov radiation as a visible-wavelength source for optical coherence tomography and two-photon fluorescence microscopy

    PubMed Central

    Tu, Haohua; Zhao, Youbo; Liu, Yuan; Liu, Yuan-Zhi; Boppart, Stephen

    2014-01-01

    Optical sources in the visible region immediately adjacent to the near-infrared biological optical window are preferred in imaging techniques such as spectroscopic optical coherence tomography of endogenous absorptive molecules and two-photon fluorescence microscopy of intrinsic fluorophores. However, existing sources based on fiber supercontinuum generation are known to have high relative intensity noise and low spectral coherence, which may degrade imaging performance. Here we compare the optical noise and pulse compressibility of three high-power fiber Cherenkov radiation sources developed recently, and evaluate their potential to replace the existing supercontinuum sources in these imaging techniques. PMID:25321223

  3. Noise characterization of broadband fiber Cherenkov radiation as a visible-wavelength source for optical coherence tomography and two-photon fluorescence microscopy.

    PubMed

    Tu, Haohua; Zhao, Youbo; Liu, Yuan; Liu, Yuan-Zhi; Boppart, Stephen

    2014-08-25

    Optical sources in the visible region immediately adjacent to the near-infrared biological optical window are preferred in imaging techniques such as spectroscopic optical coherence tomography of endogenous absorptive molecules and two-photon fluorescence microscopy of intrinsic fluorophores. However, existing sources based on fiber supercontinuum generation are known to have high relative intensity noise and low spectral coherence, which may degrade imaging performance. Here we compare the optical noise and pulse compressibility of three high-power fiber Cherenkov radiation sources developed recently, and evaluate their potential to replace the existing supercontinuum sources in these imaging techniques. PMID:25321223

  4. Auditory and Subjective Effects of Airborne Noise from Industrial Ultrasonic Sources

    PubMed Central

    Acton, W. I.; Carson, M. B.

    1967-01-01

    This investigation was undertaken primarily to examine the possibility of hearing damage from industrial ultrasonic equipment. In the factory concerned, ultrasonic washers and drills were used at a number of different locations, and girls working 12 ft (3·6 m.) away from one bank of three small washers complained of unpleasant subjective effects which included fatigue, persistent headaches, nausea, and tinnitus. As personnel working in the vicinity of similar washers in other parts of the factory did not complain of these effects, it seemed possible that the noise had been transmitted along a column of air in a bank of dryboxes. Enclosure of these washers by a sliding screen of Perspex had completely abated the trouble. Sound pressure level measurements taken in the positions occupied by the operators indicated that, when the effects occur, they are probably caused by high sound levels at the upper audio-frequencies present with the ultrasonic noise, and this was supported by a limited laboratory investigation. Audiometric investigation showed that hearing damage due to noise from these industrial ultrasonic devices is unlikely. However, extrapolations of currently accepted hearing damage risk criteria may be valid in predicting the occurrence of these subjective effects. Images PMID:6073088

  5. Three-dimensional simulations of harmonic radiation and harmonic lasing

    SciTech Connect

    Schmitt, M.J.; McVey, B.D.

    1990-01-01

    Characteristics of the harmonic emission from free-electron lasers (FELs) are examined in the spontaneous, coherent-spontaneous and stimulated emission regimes. The radiation at both odd and even harmonic frequencies is treated for electron beams with finite emittance and energy spread. In the spontaneous emission regime, the transverse radiation patterns including the transverse frequency dependences, are given. How this expression is modified to include energy spread and emittance is described. In the coherent-spontaneous emission and stimulated emission regimes, the interaction of the radiation fields with the electrons must be treated self-consistently. Here, a single-frequency distributed transverse source function for each electron is used in the harmonic version of the 3-D code FELEX to model the harmonic radiation. The code has recently been modified to simultaneously model the fundamental and harmonic interactions for multiple-pass oscillator simulations. These modifications facilitate the examination of FELs under various operating conditions. When the FEL is lasing at the fundamental, the evolution of the harmonic fields can be examined. This evolution is unique in the sense that the electron beam radiates at the harmonic frequencies in the presence of the harmonic radiation circulating in the cavity. As a result, enhancements of the harmonic emission can be observed. Finally, harmonic lasing can occur in cases where there is sufficient gain to overcome cavity losses and lasing at the fundamental can be suppressed. The characteristics and efficiency of these interactions are explored. 11 refs., 9 figs.

  6. Improved Shear Wave Motion Detection Using Pulse-Inversion Harmonic Imaging with a Phased Array Transducer.

    PubMed

    Song, Pengfei; Zhao, Heng; Urban, Matthew; Manduca, Armando; Pislaru, Sorin; Kinnick, Randall; Pislaru, Cristina; Greenleaf, James; Chen, Shigao

    2013-09-01

    Ultrasound tissue harmonic imaging is widely used to improve ultrasound B-mode imaging quality thanks to its effectiveness in suppressing imaging artifacts associated with ultrasound reverberation, phase aberration, and clutter noise. In ultrasound shear wave elastography (SWE), because the shear wave motion signal is extracted from the ultrasound signal, these noise sources can significantly deteriorate the shear wave motion tracking process and consequently result in noisy and biased shear wave motion detection. This situation is exacerbated in in vivo SWE applications such as heart, liver, and kidney. This paper, therefore, investigated the possibility of implementing harmonic imaging, specifically pulse-inversion harmonic imaging, in shear wave tracking, with the hypothesis that harmonic imaging can improve shear wave motion detection based on the same principles that apply to general harmonic B-mode imaging. We first designed an experiment with a gelatin phantom covered by an excised piece of pork belly and show that harmonic imaging can significantly improve shear wave motion detection by producing less underestimated shear wave motion and more consistent shear wave speed measurements than fundamental imaging. Then, a transthoracic heart experiment on a freshly sacrificed pig showed that harmonic imaging could robustly track the shear wave motion and give consistent shear wave speed measurements of the left ventricular myocardium while fundamental imaging could not. Finally, an in vivo transthoracic study of seven healthy volunteers showed that the proposed harmonic imaging tracking sequence could provide consistent estimates of the left ventricular myocardium stiffness in end-diastole with a general success rate of 80% and a success rate of 93.3% when excluding the subject with Body Mass Index (BMI) higher than 25. These promising results indicate that pulse-inversion harmonic imaging can significantly improve shear wave motion tracking and thus potentially facilitate more robust assessment of tissue elasticity by SWE. PMID:24021638

  7. Improved Shear Wave Motion Detection Using Pulse-Inversion Harmonic Imaging with a Phased Array Transducer

    PubMed Central

    Song, Pengfei; Zhao, Heng; Urban, Matthew W.; Manduca, Armando; Pislaru, Sorin V.; Kinnick, Randall R.; Pislaru, Cristina; Greenleaf, James F.; Chen, Shigao

    2013-01-01

    Ultrasound tissue harmonic imaging is widely used to improve ultrasound B-mode imaging quality thanks to its effectiveness in suppressing imaging artifacts associated with ultrasound reverberation, phase aberration, and clutter noise. In ultrasound shear wave elastography (SWE), because the shear wave motion signal is extracted from the ultrasound signal, these noise sources can significantly deteriorate the shear wave motion tracking process and consequently result in noisy and biased shear wave motion detection. This situation is exacerbated in in vivo SWE applications such as heart, liver, and kidney. This paper, therefore, investigated the possibility of implementing harmonic imaging, specifically pulse-inversion harmonic imaging, in shear wave tracking, with the hypothesis that harmonic imaging can improve shear wave motion detection based on the same principles that apply to general harmonic B-mode imaging. We first designed an experiment with a gelatin phantom covered by an excised piece of pork belly and show that harmonic imaging can significantly improve shear wave motion detection by producing less underestimated shear wave motion and more consistent shear wave speed measurements than fundamental imaging. Then, a transthoracic heart experiment on a freshly sacrificed pig showed that harmonic imaging could robustly track the shear wave motion and give consistent shear wave speed measurements while fundamental imaging could not. Finally, an in vivo transthoracic study of seven healthy volunteers showed that the proposed harmonic imaging tracking sequence could provide consistent estimates of the left ventricular myocardium stiffness in end-diastole with a general success rate of 80% and a success rate of 93.3% when excluding the subject with Body Mass Index (BMI) higher than 25. These promising results indicate that pulse-inversion harmonic imaging can significantly improve shear wave motion tracking and thus potentially facilitate more robust assessment of tissue elasticity by SWE. PMID:24021638

  8. Power Scaling and Stability of Intracavity High Order Harmonic Generation

    NASA Astrophysics Data System (ADS)

    Allison, Thomas; Yost, Dylan; Cingoz, Arman; Ruehl, Axel; Hartl, Ingmar; Fermann, Martin; Ye, Jun

    2011-05-01

    We generate high order harmonics of a femtosecond frequency comb at the focus of a high finesse optical cavity with 150 MHz repetition rate. The resulting table top high average brightness extreme ultraviolet (XUV) light source has promising applications in XUV frequency metrology, strong field and molecular physics studies, and more traditional XUV applications currently served by synchrotron light sources. We will discuss our recent technical achievements and detailed understandings of the intracavity extreme nonlinear processes that have led to XUV output power beyond the 10 ?W per harmonic level and reduced high frequency optical phase noise. We will also present the latest measurement on the coherence properties of VUV/XUV frequency combs.

  9. Discriminating harmonicity

    NASA Astrophysics Data System (ADS)

    Kidd, Gerald; Mason, Christine R.; Brughera, Andrew; Chiu, Chung-Yiu Peter

    2003-08-01

    Simultaneous tones that are harmonically related tend to be grouped perceptually to form a unitary auditory image. A partial that is mistuned stands out from the other tones, and harmonic complexes with different fundamental frequencies can readily be perceived as separate auditory objects. These phenomena are evidence for the strong role of harmonicity in perceptual grouping and segregation of sounds. This study measured the discriminability of harmonicity directly. In a two interval, two alternative forced-choice (2I2AFC) paradigm, the listener chose which of two sounds, signal or foil, was composed of tones that more closely matched an exact harmonic relationship. In one experiment, the signal was varied from perfectly harmonic to highly inharmonic by adding frequency perturbation to each component. The foil always had 100% perturbation. Group mean performance decreased from greater than 90% correct for 0% signal perturbation to near chance for 80% signal perturbation. In the second experiment, adding a masker presented simultaneously with the signals and foils disrupted harmonicity. Both monaural and dichotic conditions were tested. Signal level was varied relative to masker level to obtain psychometric functions from which slopes and midpoints were estimated. Dichotic presentation of these audible stimuli improved performance by 3-10 dB, due primarily to a release from ``informational masking'' by the perceptual segregation of the signal from the masker.

  10. Helicopter rotor noise due to ingestion of atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Simonich, J. C.; Amiet, R. K.; Schlinker, R. H.; Greitzer, E. M.

    1986-01-01

    A theoretical study was conducted to develop an analytical prediction method for helicopter main rotor noise due to the ingestion of atmospheric turbulence. This study incorporates an atmospheric turbulence model, a rotor mean flow contraction model and a rapid distortion turbulence model which together determine the statistics of the non-isotropic turbulence at the rotor plane. Inputs to the combined mean inflow and turbulence models are controlled by atmospheric wind characteristics and helicopter operating conditions. A generalized acoustic source model was used to predict the far field noise generated by the non-isotropic flow incident on the rotor. Absolute levels for acoustic spectra and directivity patterns were calculated for full scale helicopters, without the use of empirical or adjustable constants. Comparisons between isotropic and non-isotropic turbulence at the rotor face demonstrated pronounced differences in acoustic spectra. Turning and contraction of the flow for hover and low speed vertical ascent cases result in a 3 dB increase in the acoustic spectrum energy and a 10 dB increase in tone levels. Compared to trailing edge noise, turbulence ingestion noise is the dominant noise mechanism below approximately 30 rotor harmonics, while above 100 harmonics, trailing edge noise levels exceed turbulence ingestion noise by 25 dB.

  11. Activation process in excitable systems with multiple noise sources: Large number of units

    E-print Network

    Igor Franovi?; Matjaž Perc; Kristina Todorovi?; Srdjan Kosti?; Nikola Buri?

    2015-07-12

    We study the activation process in large assemblies of type II excitable units whose dynamics is influenced by two independent noise terms. The mean-field approach is applied to explicitly demonstrate that the assembly of excitable units can itself exhibit macroscopic excitable behavior. In order to facilitate the comparison between the excitable dynamics of a single unit and an assembly, we introduce three distinct formulations of the assembly activation event. Each formulation treats different aspects of the relevant phenomena, including the threshold-like behavior and the role of coherence of individual spikes. Statistical properties of the assembly activation process, such as the mean time-to-first pulse and the associated coefficient of variation, are found to be qualitatively analogous for all three formulations, as well as to resemble the results for a single unit. These analogies are shown to derive from the fact that global variables undergo stochastic bifurcation from the stochastically stable fixed point to continuous oscillations. Local activation processes are analyzed in light of competition between the noise-led and the relaxation-driven dynamics. We also briefly report on a system-size anti-resonant effect displayed by the mean time-to-first pulse.

  12. Activation process in excitable systems with multiple noise sources: Large number of units

    E-print Network

    Igor Franovi?; Matjaz Perc; Kristina Todorovi?; Sr?an Kosti?; Nikola Buri?

    2015-11-24

    We study the activation process in large assemblies of type II excitable units whose dynamics is influenced by two independent noise terms. The mean-field approach is applied to explicitly demonstrate that the assembly of excitable units can itself exhibit macroscopic excitable behavior. In order to facilitate the comparison between the excitable dynamics of a single unit and an assembly, we introduce three distinct formulations of the assembly activation event. Each formulation treats different aspects of the relevant phenomena, including the threshold-like behavior and the role of coherence of individual spikes. Statistical properties of the assembly activation process, such as the mean time-to-first pulse and the associated coefficient of variation, are found to be qualitatively analogous for all three formulations, as well as to resemble the results for a single unit. These analogies are shown to derive from the fact that global variables undergo a stochastic bifurcation from the stochastically stable fixed point to continuous oscillations. Local activation processes are analyzed in the light of the competition between the noise-led and the relaxation-driven dynamics. We also briefly report on a system-size anti-resonant effect displayed by the mean time-to-first pulse.

  13. Effects of seasonal changes in ambient noise sources on monitoring temporal variations in crustal properties

    NASA Astrophysics Data System (ADS)

    Gong, Meng; Shen, Yang; Li, Hongyi; Li, Xinfu; Jia, Jinsheng

    2015-07-01

    Continuous data recorded at 39 broadband stations near the Longmen Shan Fault operated by the China Earthquake Administration from 1 January 2008 to 30 September 2010 are used to study temporal variability in direct surface wave arrivals extracted from ambient noise. We use a cross-correlation technique to compute Empirical green functions (EGFs) for all available station pairs at the frequency range of 0.1 to 0.5Hz. Delay times are measured by cross-correlating reference empirical green functions and moving 60-day stacks of EGFs. By comparing the temporal changes with and without the correction for seasonal variations, our results show that for some station pairs temporal variations were strongly affected by the seasonal variation. After correction for seasonal variations, we measure a 0.5-% maximum velocity drop after the 2008 Ms8.0 earthquake in Sichuan, China. We find that the Sichuan Basin exhibited a larger relative velocity drop than the Tibetan plateau area. Our results suggest that correction for seasonal variation is an important procedure for monitoring temporal variations in crustal properties using the direct arrival surface waves extracted from ambient noise.

  14. Feasibility Study for a Seeded Hard X-ray Source Based on a Two-Stage Echo-Enabled Harmonic Generation FEL

    SciTech Connect

    Xiang, Dao; Huang, Z.; Ratner, D.; Stupakov, G.; /SLAC

    2009-12-11

    We propose and analyze a scheme to achieve a seeded hard x-ray source based on a two-stage echo-enabled harmonic generation (EEHG) FEL. In the scheme an 180 nm seed laser covering the whole bunch is first used to modulate the beam when beam energy is 2 GeV. After passing through a strong chicane complicated fine structures are introduced into the phase space. The beam is again modulated by a short 180 nm laser that only interacts with the rear part of the beam and accelerated to 6 GeV. A chicane is then used to convert the energy modulation imparted to the rear part of the beam into density modulation. The density-modulated beam is sent through a radiator to generate intense 6 nm radiation which will be used to interact with the front fresh part of the bunch. Finally we generate in the front part of the beam density modulation at the 1199th harmonic of the seed laser. We will discuss the issues related to the realization of the seeded hard x-ray FEL.

  15. EUV Microscopy with a Tabletop High Harmonic Generation Source: Generalizing Coherent Diffractive Imaging to Extended Samples in Transmission, Reection, and Hyperspectral Modalities

    NASA Astrophysics Data System (ADS)

    Zhang, Bosheng

    Imaging at the nanoscale is of great interest for applications in materials science, nanoscience and biology. The microscopy method developed in this thesis combines a tabletop coherent EUV/X- ray source based on high harmonic generation, and an image-forming method based on coherent diffractive imaging. This microscopy method offers truly diffraction-limited resolution; however, previous work has been limited to thin, isolated samples in transmission mode. This thesis work extends this tool for imaging non-isolated samples, and for working in reflection mode to image surface features of thick samples. The quantitative phase information of the reflection image enables surface profilometry capability with sub-nanometer precision. The microscope developed in this work is also demonstrated to have hyperspectral capability with simultaneous multi-wavelength illumination, without the need for wavelength scanning or energy-resolved detectors. In the future, by taking advantage of the short-pulse nature of the high harmonic illumination, this microscope will be able to image nanoscale ultrafast dynamics with 10 femtosecond temporal resolution, opening the door for imaging at the space-time limits.

  16. An evaluation of HEMT potential for millimeter-wave signal sources using interpolation and harmonic balance techniques

    NASA Technical Reports Server (NTRS)

    Kwon, Youngwoo; Pavlidis, Dimitris; Tutt, Marcel N.

    1991-01-01

    A large-signal analysis method based on an harmonic balance technique and a 2-D cubic spline interpolation function has been developed and applied to the prediction of InP-based HEMT oscillator performance for frequencies extending up to the submillimeter-wave range. The large-signal analysis method uses a limited number of DC and small-signal S-parameter data and allows the accurate characterization of HEMT large-signal behavior. The method has been validated experimentally using load-pull measurement. Oscillation frequency, power performance, and load requirements are discussed, with an operation capability of 300 GHz predicted using state-of-the-art devices (fmax is approximately equal to 450 GHz).

  17. The effects of cultural noise on controlled source electromagnetic resonses of subsurface fractures in resistive terrain 

    E-print Network

    Fernandes, Roland Anthony Savio

    2009-05-15

    Controlled source electromagnetic (CSEM) geophysics has been used with a fair amount of success in near surface hydrogeological studies. Recently, these investigations have been conducted frequently in human impacted field sites containing cultural...

  18. CORRELATION MATCHING APPROACH TO SOURCE SEPARATION IN THE PRESENCE OF SPATIALLY CORRELATED NOISE

    E-print Network

    Cichocki, Andrzej

    , Japan cia@brain.riken.go.jp ABSTRACT This paper addresses a new method of source separation that is ro to be gener- ated by ܴص ״ص · ڴص (1) where ¾ ÁÊ Ñ¢Ò is the mixing matrix, ״ص is the Ò of source is to estimate the mixing matrix (or its pseudo-inverse that is referred to as the demixing matrix

  19. Evaluation of the interim measurement protocol for railway noise source description

    NASA Astrophysics Data System (ADS)

    Janssens, M. H. A.; Jansen, H. W.; Dittrich, M. G.

    2006-06-01

    The Dutch national calculation scheme for railway noise has been declared the default interim method for railway noise calculation by the EU, until the introduction of results from the Harmonoise project. It includes a measurement protocol for determining emission input data in the format suitable for the present calculation scheme. The calculation scheme contains a fixed database of emission data for common Dutch rolling stock. The measurement protocol provides for the addition of emission data of new or foreign rolling stock. This is relevant for the Netherlands, as such rolling stock increasingly appears on the network, but also for other European countries that are going to use the interim method, since emission data for their rolling stock have to be established. The protocol features two procedures. Procedure A allows using the existing fixed database of emission data. Selection of a particular dataset (or 'category') can be based on external appearance of rolling stock (without measurements) or pass-by sound pressure level measurements at a site with known rail roughness. If a user finds that none of the existing data sets properly represent its rolling stock, the optional procedure B is available. This procedure assesses pass-by levels, track and wheel roughness levels. The measurement protocol is based on a type-test-like procedure requiring controlled conditions for the vehicle and track. A measurement campaign has been undertaken to test procedures A and B. This campaign coincided with a Swiss campaign to establish the sound emission of freight vehicles equipped with composite block brakes. The test of the protocol was focussed both on the practicability of the required measurements and on the unambiguity and comprehensiveness of the test. Open questions, findings, resulting conclusions and recommendations regarding the protocol are discussed here.

  20. Rayleigh and Love Wave imaging of Iceland using ambient noise and teleseismic sources

    NASA Astrophysics Data System (ADS)

    Harmon, Nicholas

    2015-04-01

    Iceland is one of the few regions where ridge-plume interaction can be examined with a terrestrial seismic array. Velocity structure from broadband surface wave dispersion measurements can be used to constrain the complicated crustal and upper mantle structure caused by the plume enhanced rifting activity. Here I use data from the ICEMELT and HOTSPOT arrays on Iceland to generate phase velocity dispersion maps of both Rayleigh and Love waves from ambient noise cross correlation and teleseismic events. I invert Rayleigh and Love wave dispersion observed from ambient noise for tomographic velocity structure. For teleseismic Rayleigh waves I use the two-plane wave approximation array-based method of Forsyth and Li [2005]. I also develop and adapt this method for teleseismic Love waves. This requires additional preprocessing of the data to estimate the amplitude and phase for teleseismic Love waves. Specifically, for each station, the vertical component phase observation of the fundamental mode Rayleigh is used to predict and remove the horizontal components of Rayleigh waves. Then I invert for the maximum amplitude and apparent back azimuth at each period of interest of the Love wave from the transverse and radial components. The amplitude and phase measurement is then inverted for phase velocity structure using a modified version of the two plane-wave approximation. Preliminary results indicate a low velocity region at short periods (8-15 s) in both the Rayleigh and Love wave phase velocity maps beneath the active volcanic centers in the middle of the island. At longer periods (20-125 s) a low velocity region is visible beneath central Iceland. The velocity minimum is located to the north of Iceland in the Rayleigh wave maps. These observations are consistent with previous studies in the region.

  1. An online cross-scatter correction algorithm for dual-source CT: effects on CT number accuracy and noise

    NASA Astrophysics Data System (ADS)

    Eusemann, Christian D.; Apel, Anja; Schmidt, Bernhard; Walz-Flannigan, Alisa I.; Jacobsen, Megan C.; Stierstorfer, Karl; Flohr, Thomas G.; McCollough, Cynthia H.

    2009-02-01

    Dual-source computed tomography (CT) utilizes two x-ray tubes and two detectors simultaneously for the purpose of obtaining 83 msec temporal resolution, 160 kW of x-ray power reserve, or dual-kV (dual-energy) scan capabilities. One inherent constraint of such a design is cross-scatter radiation, which occurs when x-rays from tube A are scattered by the patient and detected by detector B, or vice versa. In the evaluated dual-source CT scanner, an on-line cross-scatter correction technique is used to address this limitation. The technique, available using the 14×1.2-mm collimation, measures scattered radiation along the z axis using detector rows beyond those corresponding to the 16.8 mm nominal total beam width. These direct measurements of scattered radiation are used to correct the measured projection data (scattered and primary radiation) for cross-scatter. A semi-anthropomorphic thorax phantom was used with increasing thicknesses of tissue-equivalent material to simulate small, medium, large and extra-large patients. Phantoms were scanned using single-source and dual-source protocols at 80, 100, 120 and 140 kV, and the mean and standard deviation of the CT numbers in a water-equivalent cylinder located centrally within the phantom measured. For this comparison, images reconstructed using only tube A data from the dual-source acquisition were compared to the single-source images, also obtained using tube A. The differences in the mean and standard deviation of the measured CT numbers between the dual-source tube A images, which were corrected for cross-scatter, and the single-source images, where no cross-scatter existed, were determined for all tube energies and phantom sizes. The differences in mean CT number ranged from -5.2 to 1.3 HU, and the differences in standard deviations ranged from -4.5 to 3.0 HU. We conclude, therefore, that use of the evaluated on-line cross-scatter correction algorithm results in negligible differences in CT number and image noise between single-source and dual-source image data, independent of phantom size and tube potential.

  2. Seismic Noise Sources and Storm Severity in the Southern Ocean, Insights from the Warramunga Array (WRA), Northern Territory, Australia

    NASA Astrophysics Data System (ADS)

    Reading, A. M.; Graham, L.; Koper, K. D.; Hemer, M. A.; Tkalcic, H.

    2012-12-01

    Seismic array recordings of ambient energy (background seismic noise) represent an archive of the activity of distant and near-shore ocean waves. Storm events are evident from body wave and surface wave arrivals. High profile meteorological studies, using calibrated satellite observations, have highlighted a disparity between increasing wind speeds and measured wave heights during storm events in the southern ocean. This has profound implications for the global climate system, including the incorporation of atmospheric carbon dioxide into the ocean. Seismic data, in particular, seismic arrays, allow an independent measurement of ocean wave activity back through several decades. We analyse two decades (1990-2009) of data from the Warramunga Seismic Array, located in inland mainland Australia using array techniques, in particular the 'Capon' method which highlights backazimuth and slowness of incoming seismic energy. The inland location allows the nature and location body wave energy to be identified for 3 hourly intervals, throughout this time interval. We find distinct patterns of far field seismic energy sources, mostly associated with deep ocean plateau, with implications for the coupling of seismic energy between the ocean and the solid earth. The relationship between storm severity and seismic noise amplitude is not linear, however, seismic array recordings represent an important independent observable in the understanding of the complex Southern Ocean system.

  3. Acoustic Database for Turbofan Engine Core-Noise Sources. I; Volume

    NASA Technical Reports Server (NTRS)

    Gordon, Grant

    2015-01-01

    In this program, a database of dynamic temperature and dynamic pressure measurements were acquired inside the core of a TECH977 turbofan engine to support investigations of indirect combustion noise. Dynamic temperature and pressure measurements were recorded for engine gas dynamics up to temperatures of 3100 degrees Fahrenheit and transient responses as high as 1000 hertz. These measurements were made at the entrance of the high pressure turbine (HPT) and at the entrance and exit of the low pressure turbine (LPT). Measurements were made at two circumferential clocking positions. In the combustor and inter-turbine duct (ITD), measurements were made at two axial locations to enable the exploration of time delays. The dynamic temperature measurements were made using dual thin-wire thermocouple probes. The dynamic pressure measurements were made using semi-infinite probes. Prior to the engine test, a series of bench, oven, and combustor rig tests were conducted to characterize the performance of the dual wire temperature probes and to define and characterize the data acquisition systems. A measurement solution for acquiring dynamic temperature and pressure data on the engine was defined. A suite of hardware modifications were designed to incorporate the dynamic temperature and pressure instrumentation into the TECH977 engine. In particular, a probe actuation system was developed to protect the delicate temperature probes during engine startup and transients in order to maximize sensor life. A set of temperature probes was procured and the TECH977 engine was assembled with the suite of new and modified hardware. The engine was tested at four steady state operating speeds, with repeats. Dynamic pressure and temperature data were acquired at each condition for at least one minute. At the two highest power settings, temperature data could not be obtained at the forward probe locations since the mean temperatures exceeded the capability of the probes. The temperature data were processed using software that accounts for the effects of convective and conductive heat transfer. The software was developed under previous NASA sponsored programs. Compensated temperature spectra and compensated time histories corresponding to the dynamic temperature of the gas stream were generated. Auto-spectral and cross-spectral analyses of the data were performed to investigate spectral features, acoustic circumferential mode content, signal coherence, and time delays. The dynamic temperature data exhibit a wideband and fairly flat spectral content. The temperature spectra do not change substantially with operating speed. The pressure spectra in the combustor and ITD exhibit generally similar shapes and amplitudes, making it difficult to identify any features that suggest the presence of indirect combustion noise. Cross-spectral analysis reveal a strong correlation between pressure and temperature fluctuations in the ITD, but little correlation between temperature fluctuations at the entrance of the HPT and pressure fluctuations downstream of it. Temperature fluctuations at the entrance of the low pressure turbine were an order of magnitude smaller than those at the entrance to the high pressure turbine. Time delay analysis of the temperature fluctuations in the combustor was inconclusive, perhaps due to the substantial mixing that occurs between the upstream and downstream locations. Time delay analysis of the temperature fluctuations in the ITD indicate that they convect at the mean flow speed. Analysis of the data did not reveal any convincing indications of the presence of indirect combustion noise. However, this analysis has been preliminary and additional exploration of the data is recommended including the use of more sophisticated signal processing to explore subtle issues that have been revealed but which are not yet fully understood or explained.

  4. Effects of background noise on total noise annoyance

    NASA Technical Reports Server (NTRS)

    Willshire, K. F.

    1987-01-01

    Two experiments were conducted to assess the effects of combined community noise sources on annoyance. The first experiment baseline relationships between annoyance and noise level for three community noise sources (jet aircraft flyovers, traffic and air conditioners) presented individually. Forty eight subjects evaluated the annoyance of each noise source presented at four different noise levels. Results indicated the slope of the linear relationship between annoyance and noise level for the traffic noise was significantly different from that of aircraft and of air conditioner noise, which had equal slopes. The second experiment investigated annoyance response to combined noise sources, with aircraft noise defined as the major noise source and traffic and air conditioner noise as background noise sources. Effects on annoyance of noise level differences between aircraft and background noise for three total noise levels and for both background noise sources were determined. A total of 216 subjects were required to make either total or source specific annoyance judgements, or a combination of the two, for a wide range of combined noise conditions.

  5. Organizational Communication in Emergencies: Using Multiple Channels and Sources to Combat Noise and Capture Attention

    ERIC Educational Resources Information Center

    Stephens, Keri K.; Barrett, Ashley K.; Mahometa, Michael J.

    2013-01-01

    This study relies on information theory, social presence, and source credibility to uncover what best helps people grasp the urgency of an emergency. We surveyed a random sample of 1,318 organizational members who received multiple notifications about a large-scale emergency. We found that people who received 3 redundant messages coming through at…

  6. Photon noise from chaotic and coherent millimeter-wave sources measured with horn-coupled, aluminum lumped-element kinetic inductance detectors

    E-print Network

    Flanigan, Daniel; Jones, Glenn; Johnson, Bradley R; Ade, Peter; Araujo, Derek; Bradford, Kristi; Cantor, Robin; Che, George; Day, Peter K; Doyle, Simon; Kjellstrand, Carl Bjorn; LeDuc, Henry G; Limon, Michele; Luu, Vy; Mauskopf, Philip; Miller, Amber; Mroczkowski, Tony; Tucker, Carole; Zmuidzinas, Jonas

    2015-01-01

    We report photon-noise limited performance of horn-coupled, aluminum lumped-element kinetic inductance detectors at millimeter wavelengths. The detectors are illuminated by a millimeter-wave source that uses an active multiplier chain to produce radiation between 140 and 160 GHz. We feed the multiplier with either amplified broadband noise or a continuous-wave tone from a microwave signal generator. We demonstrate that the detector response over a 40 dB range of source power is well-described by a simple model that considers the number of quasiparticles. The detector noise-equivalent power (NEP) is dominated by photon noise when the absorbed power is greater than approximately 1 pW, which corresponds to $\\mathrm{NEP} \\approx 2 \\times 10^{-17} \\; \\mathrm{W} \\; \\mathrm{Hz}^{-1/2}$, referenced to absorbed power. At higher source power levels we observe the relationships between noise and power expected from the photon statistics of the source signal: $\\mathrm{NEP} \\propto P$ for broadband (chaotic) illumination ...

  7. Shielding Characteristics Using an Ultrasonic Configurable Fan Artificial Noise Source to Generate Modes - Experimental Measurements and Analytical Predictions

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Walker, Bruce E.

    2014-01-01

    An Ultrasonic Configurable Fan Artificial Noise Source (UCFANS) was designed, built, and tested in support of the NASA Langley Research Center's 14x22 wind tunnel test of the Hybrid Wing Body (HWB) full 3-D 5.8% scale model. The UCFANS is a 5.8% rapid prototype scale model of a high-bypass turbofan engine that can generate the tonal signature of proposed engines using artificial sources (no flow). The purpose of the program was to provide an estimate of the acoustic shielding benefits possible from mounting an engine on the upper surface of a wing; a flat plate model was used as the shielding surface. Simple analytical simulations were used to preview the radiation patterns - Fresnel knife-edge diffraction was coupled with a dense phased array of point sources to compute shielded and unshielded sound pressure distributions for potential test geometries and excitation modes. Contour plots of sound pressure levels, and integrated power levels, from nacelle alone and shielded configurations for both the experimental measurements and the analytical predictions are presented in this paper.

  8. Harmonic generation at high intensities

    SciTech Connect

    Schafer, K.J.; Krause, J.L.; Kulander, K.C.

    1993-06-01

    Atomic electrons subject to intense laser fields can absorb many photons, leading either to multiphoton ionization or the emission of a single, energetic photon which can be a high multiple of the laser frequency. The latter process, high-order harmonic generation, has been observed experimentally using a range of laser wavelengths and intensities over the past several years. Harmonic generation spectra have a generic form: a steep decline for the low order harmonics, followed by a plateau extending to high harmonic order, and finally an abrupt cutoff beyond which no harmonics are discernible. During the plateau the harmonic production is a very weak function of the process order. Harmonic generation is a promising source of coherent, tunable radiation in the XUV to soft X-ray range which could have a variety of scientific and possibly technological applications. Its conversion from an interesting multiphoton phenomenon to a useful laboratory radiation source requires a complete understanding of both its microscopic and macroscopic aspects. We present some recent results on the response of single atoms at intensities relevant to the short pulse experiments. The calculations employ time-dependent methods, which we briefly review in the next section. Following that we discuss the behavior of the harmonics as a function of laser intensity. Two features are notable: the slow scaling of the harmonic intensities with laser intensity, and the rapid variation in the phase of the individual harmonics with respect to harmonic order. We then give a simple empirical formula that predicts the extent of the plateau for a given ionization potential, wavelength and intensity.

  9. Computation of Large-Scale Structure Jet Noise Sources With Weak Nonlinear Effects Using Linear Euler

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Hixon, Ray; Mankbadi, Reda R.

    2003-01-01

    An approximate technique is presented for the prediction of the large-scale turbulent structure sound source in a supersonic jet. A linearized Euler equations code is used to solve for the flow disturbances within and near a jet with a given mean flow. Assuming a normal mode composition for the wave-like disturbances, the linear radial profiles are used in an integration of the Navier-Stokes equations. This results in a set of ordinary differential equations representing the weakly nonlinear self-interactions of the modes along with their interaction with the mean flow. Solutions are then used to correct the amplitude of the disturbances that represent the source of large-scale turbulent structure sound in the jet.

  10. Predicting Aircraft Noise Levels

    NASA Technical Reports Server (NTRS)

    Clark, B. J.

    1983-01-01

    Computer program developed for predicting aircraft noise levels either in flight or in ground tests. Noise sources include fan inlet and exhaust jet flap (for powered lift), core (combustor), turbine and airframe. Program written in FORTRAN IV.

  11. Proceedings of Noise-con 81: Applied noise control technology

    SciTech Connect

    Royster, L.H.; Hart, F.D.; Stewart, N.D.

    1981-01-01

    The conference was divided into sessions covering noise control regulations and benefits; noise source identification; barriers and enclosures; mufflers; hearing protection devices; textile and fibre industries; metal fabrication industry; transportation and aircraft noise control; punch-press noise control and miscellaneous topics; woodworking industry; tobacco and packaging industries; community noise; and applications of damping materials. One paper has been abstracted separately.

  12. Reduction of propeller noise by a reflecting rubber layer

    NASA Astrophysics Data System (ADS)

    Soederqvist, R.; Soederqvist, S.

    1983-08-01

    The pressure pulses from ship propeller blades were reflected by a soft layer of cellrubber coating applied on the underwater part of the stern. The ship treated was a 5000 ton dwt asphalt tanker. The soft layer works in the near field of the propeller blades, which are assumed to be simple acoustic sources with harmonics. Because of the mechanical nonlinearity of the rubber material, useful reflection is obtained only from the second harmonic and upwards. Measured noise reduction is 15 dB at 100 Hz, 5 dB at 45 Hz, and the damping of motor vibrations is 3.5 dB. The first harmonic, at 20 Hz, increases by 5 dB.

  13. Nanograting-based compact VUV spectrometer and beam profiler for in-situ characterization of high-order harmonic generation light sources

    SciTech Connect

    Kornilov, Oleg; Wilcox, Russell; Gessner, Oliver

    2010-07-09

    A compact, versatile device for VUV beam characterization is presented. It combines the functionalities of a VUV spectrometer and a VUV beam profiler in one unit and is entirely supported by a standard DN200 CF flange. The spectrometer employs a silicon nitride transmission nanograting in combination with a micro-channel plate based imaging detector. This enables the simultaneous recording of wavelengths ranging from 10 nm to 80 nm with a resolution of 0.25 nm to 0.13 nm. Spatial beam profiles with diameters up to 10 mm are imaged with 0.1 mm resolution. The setup is equipped with an in-vacuum translation stage that allows for in situ switching between the spectrometer and beam profiler modes and for moving the setup out of the beam. The simple, robust design of the device is well suited for non-intrusive routine characterization of emerging laboratory- and accelerator-based VUV light sources. Operation of the device is demonstrated by characterizing the output of a femtosecond high-order harmonic generation light source.

  14. Acoustic noise associated with the MOD-1 wind turbine: its source, impact, and control

    SciTech Connect

    Kelley, N.D.; McKenna, H.E.; Hemphill, R.R.; Etter, C.L.; Garrelts, R.L.; Linn, N.C.

    1985-02-01

    This report summarizes extensive research by staff of the Solar Energy Research Institute and its subcontractors conducted to establish the origin and possible amelioration of acoustic disturbances associated with the operation of the DOE/NASA MOD-1 wind turbine installed in 1979 near Boone, North Carolina. Results have shown that the source of this acoustic annoyance was the transient, unsteady aerodynamic lift imparted to the turbine blades as they passed through the lee wakes of the large, cylindrical tower supports. Nearby residents were annoyed by the low-frequency, acoustic impulses propagated into the structures in which the complainants lived. The situation was aggravated further by a complex sound propagation process controlled by terrain and atmospheric focusing. Several techniques for reducing the abrupt, unsteady blade load transients were researched and are discussed in the report.

  15. Infrared sky noise study

    NASA Technical Reports Server (NTRS)

    Westphal, J. A.

    1972-01-01

    The hardware and techniques to measure and compare sky noise at several sites were studied, and a device was developed that would maximize its output and minimize its output for modulation. The instrument and its functions are described. The nature of sky emissions and the fluctuation, gaseous sources of sky noise, and aerosol sources are discussed. It is concluded that sky noise really exists, and the spatial distribution of the sky noise sources are such that observed noise values are linear functions of chopping stroke.

  16. Next generation data harmonization

    NASA Astrophysics Data System (ADS)

    Armstrong, Chandler; Brown, Ryan M.; Chaves, Jillian; Czerniejewski, Adam; Del Vecchio, Justin; Perkins, Timothy K.; Rudnicki, Ron; Tauer, Greg

    2015-05-01

    Analysts are presented with a never ending stream of data sources. Often, subsets of data sources to solve problems are easily identified but the process to align data sets is time consuming. However, many semantic technologies do allow for fast harmonization of data to overcome these problems. These include ontologies that serve as alignment targets, visual tools and natural language processing that generate semantic graphs in terms of the ontologies, and analytics that leverage these graphs. This research reviews a developed prototype that employs all these approaches to perform analysis across disparate data sources documenting violent, extremist events.

  17. Feedback-based mitigation of torque harmonics in interior permanent magnet synchronous machines

    NASA Astrophysics Data System (ADS)

    Vaks, Nir

    Harmonics in the electromagnetic torque are a source of concern in permanent magnet synchronous machine (PMSM) drives. The harmonics are created by non-idealities in the electromagnetic fields produced by the magnets and the stator excitation. They lead to vibration that can cause premature wear of the drivetrain components as well as acoustic noise that may be bothersome to users. In this research, current- and voltage-based control schemes have been developed to mitigate the harmonics in a class of PMSMs in which the magnets are placed interior to the rotor iron. Interior permanent magnet synchronous machines (IPMSMs) have recently gained popularity for applications including hybrid electric vehicles and robot joint control. In the current-based control, a low-cost piezoelectric sensor is used to measure torque harmonics. A conjugate gradient algorithm is then applied to search for harmonics in the stator current that produce a commanded average torque while eliminating the measured torque harmonics. The algorithm is based upon analytical closed-form expressions for the average and harmonic components of torque that have been derived for IPMSMS with arbitrary back-emf waveforms. In the voltage-based control, a time-domain model of the machine is used to map the outputs of the conjugate gradient algorithm to commanded stator voltages. Since both utilize feedback, the controls are insensitive to changes in machine parameters that result from magnetic saturation, temperature, or parameter drift. In addition, the user has flexibility to select the harmonic(s) of torque to be eliminated.

  18. Harmonic engine

    DOEpatents

    Bennett, Charles L. (Livermore, CA)

    2009-10-20

    A high efficiency harmonic engine based on a resonantly reciprocating piston expander that extracts work from heat and pressurizes working fluid in a reciprocating piston compressor. The engine preferably includes harmonic oscillator valves capable of oscillating at a resonant frequency for controlling the flow of working fluid into and out of the expander, and also preferably includes a shunt line connecting an expansion chamber of the expander to a buffer chamber of the expander for minimizing pressure variations in the fluidic circuit of the engine. The engine is especially designed to operate with very high temperature input to the expander and very low temperature input to the compressor, to produce very high thermal conversion efficiency.

  19. Impact of Source/Drain Junction and Cell Shape on Random Telegraph Noise in NAND Flash Memory

    NASA Astrophysics Data System (ADS)

    Li, Fu-Hai; Shirota, Riichiro

    2013-07-01

    A comprehensive numerical study of threshold voltage fluctuation (?VT) in scaled NAND flash memory caused by random telegraph noise (RTN) and discrete dopant fluctuation (RDF) in both the channel and the cell-to-cell space [source/drain (S/D)] region was carried out. Following a three-dimensional (3D) Monte Carlo (MC) procedure, the statistical distribution of ?VT is estimated, considering the effects of both the random placement of discrete doping atoms and a discrete single trap at the tunnel oxide/substrate interface. The result demonstrates the significant influence of the doping in the S/D regions. For the cells with and without an S/D junction, the electron concentration in the S/D region is determined by the pass voltage of the unselected cell (Vpass) and the neighboring cell VT (VT(n)), owing to the fringing fields of neighboring floating gates (FGs). As a result, ?VT increases in the S/D region as Vpass - VT(n) decreases. The fluctuation amplitude strongly depends on the [single-trap RTN] position along the cell length (L) and width (W) directions. For the cell shape with rounding of the active area (AA) at the shallow trench isolation (STI) edge, the results indicate that the high ?VT area moves from the AA edge towards the center area along the W-direction.

  20. Hybrid Wing Body Shielding Studies Using an Ultrasonic Configurable Fan Artificial Noise Source Generating Typical Turbofan Modes

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Brown, Cliff; Walker, Bruce E.

    2014-01-01

    An Ultrasonic Configurable Fan Artificial Noise Source (UCFANS) was designed, built, and tested in support of the NASA Langley Research Center's 14x22 wind tunnel test of the Hybrid Wing Body (HWB) full 3-D 5.8% scale model. The UCFANS is a 5.8% rapid prototype scale model of a high-bypass turbofan engine that can generate the tonal signature of proposed engines using artificial sources (no flow). The purpose of the test was to provide an estimate of the acoustic shielding benefits possible from mounting the engine on the upper surface of an HWB aircraft using the projected signature of the engine currently proposed for the HWB. The modal structures at the rating points were generated from inlet and exhaust nacelle configurations - a flat plate model was used as the shielding surface and vertical control surfaces with correct plan form shapes were also tested to determine their additional impact on shielding. Radiated acoustic data were acquired from a traversing linear array of 13 microphones, spanning 36 inches. Two planes perpendicular, and two planes parallel, to the axis of the nacelle were acquired from the array sweep. In each plane the linear array traversed 4 sweeps, for a total span of 168 inches acquired. The resolution of the sweep is variable, so that points closer to the model are taken at a higher resolution. Contour plots of Sound Pressure Levels, and integrated Power Levels, from nacelle alone and shielded configurations are presented in this paper; as well as the in-duct mode power levels.

  1. Hybrid Wing Body Shielding Studies Using an Ultrasonic Configurable Fan Artificial Noise Source Generating Typical Turbofan Modes

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel l.; Brown, Clifford A.; Walker, Bruce E.

    2014-01-01

    An Ultrasonic Configurable Fan Artificial Noise Source (UCFANS) was designed, built, and tested in support of the NASA Langley Research Center's 14- by 22-ft wind tunnel test of the Hybrid Wing Body (HWB) full 3-D 5.8 percent scale model. The UCFANS is a 5.8 percent rapid prototype scale model of a high-bypass turbofan engine that can generate the tonal signature of proposed engines using artificial sources (no flow). The purpose of the test was to provide an estimate of the acoustic shielding benefits possible from mounting the engine on the upper surface of an HWB aircraft using the projected signature of the engine currently proposed for the HWB. The modal structures at the rating points were generated from inlet and exhaust nacelle configurations--a flat plate model was used as the shielding surface and vertical control surfaces with correct plan form shapes were also tested to determine their additional impact on shielding. Radiated acoustic data were acquired from a traversing linear array of 13 microphones, spanning 36 in. Two planes perpendicular, and two planes parallel, to the axis of the nacelle were acquired from the array sweep. In each plane the linear array traversed four sweeps, for a total span of 168 in. acquired. The resolution of the sweep is variable, so that points closer to the model are taken at a higher resolution. Contour plots of Sound Pressure Levels, and integrated Power Levels, from nacelle alone and shielded configurations are presented in this paper; as well as the in-duct mode power levels

  2. Interior noise reduction by alternate resonance tuning

    NASA Technical Reports Server (NTRS)

    Bliss, Donald B.; Gottwald, James A.; Bryce, Jeffrey W.

    1987-01-01

    Existing interior noise reduction techniques for aircraft fuselages perform reasonably well at higher frequencies, but are inadequate at low frequencies, particularly with respect to the low blade passage harmonics with high forcing levels found in propeller aircraft. A method is studied which considers aircraft fuselages lined with panels alternately tuned to frequencies above and below the frequency that must be attenuated. Adjacent panel would oscillate at equal amplitude, to give equal acoustic source strength, but with opposite phase. Provided these adjacent panels are acoustically compact, the resulting cancellation causes the interior acoustic modes to be cut off, and therefore be nonpropagating and evanescent. This interior noise reduction method, called Alternate Resonance Tuning (ART), is being investigated theoretically and experimentally. Progress to date is discussed.

  3. Transcriptional Bursting from the HIV-1 Promoter is a Significant Source of Stochastic Noise in HIV-1 Gene Expression

    SciTech Connect

    Singh, A; Razooky, B; Cox, Chris D.; Simpson, Michael L; Weinberger, Leor S.

    2010-01-01

    Analysis of noise in gene expression has proven a powerful approach for analyzing gene regulatory architecture. To probe the regulatory mechanisms controlling expression of HIV-1, we analyze noise in gene-expression from HIV-1 s long terminal repeat (LTR) promoter at different HIV-1 integration sites across the human genome. Flow cytometry analysis of GFP expression from the HIV-1 LTR shows high variability (noise) at each integration site. Notably, the measured noise levels are inconsistent with constitutive gene expression models. Instead, quantification of expression noise indicates that HIV-1 gene expression occurs through randomly timed bursts of activity from the LTR and that each burst generates an average of 2 10 mRNA transcripts before the promoter returns to an inactive state. These data indicate that transcriptional bursting can generate high variability in HIV-1 early gene products, which may critically influence the viral fate-decision between active replication and proviral latency.

  4. Underwater noise of small personal watercraft (jet skis).

    PubMed

    Erbe, Christine

    2013-04-01

    Personal watercraft (water scooters, jet skis) were recorded under water in Bramble Bay, Queensland, Australia. Underwater noise emissions consisted of broadband energy between 100 Hz and 10 kHz due to the vibrating bubble cloud generated by the jet stream, overlain with frequency-modulated tonals corresponding to impeller blade rates and harmonics. Broadband monopole source levels were 149, 137, and 122 dB re 1 ?Pa @ 1 m (5th, 50th, and 95th percentiles). Even though these are lower than those of small propeller-driven boats, it is not necessarily the broadband source level that correlates with the bioacoustic impact on marine fauna. PMID:23556699

  5. Inductively coupled plasma spectrometry: Noise characteristics of aerosols, application of generalized standard additions method, and Mach disk as an emission source

    SciTech Connect

    Shen, Luan

    1995-10-06

    This dissertation is focused on three problem areas in the performance of inductively coupled plasma (ICP) source. The noise characteristics of aerosols produced by ICP nebulizers are investigated. A laser beam is scattered by aerosol and detected by a photomultiplier tube and the noise amplitude spectrum of the scattered radiation is measured by a spectrum analyzer. Discrete frequency noise in the aerosol generated by a Meinhard nebulizer or a direct injection nebulizer is primarily caused by pulsation in the liquid flow from the pump. A Scott-type spray chamber suppresses white noise, while a conical, straight-pass spray chamber enhances white noise, relative to the noise seen from the primary aerosol. Simultaneous correction for both spectral interferences and matrix effects in ICP atomic emission spectrometry (AES) can be accomplished by using the generalized standard additions method (GSAM). Results obtained with the application of the GSAM to the Perkin-Elmer Optima 3000 ICP atomic emission spectrometer are presented. The echelle-based polychromator with segmented-array charge-coupled device detectors enables the direct, visual examination of the overlapping lines Cd (1) 228.802 nm and As (1) 228.812 nm. The slit translation capability allows a large number of data points to be sampled, therefore, the advantage of noise averaging is gained. An ICP is extracted into a small quartz vacuum chamber through a sampling orifice in a water-cooled copper plate. Optical emission from the Mach disk region is measured with a new type of echelle spectrometer equipped with two segmented-array charge-coupled-device detectors, with an effort to improve the detection limits for simultaneous multielement analysis by ICP-AES.

  6. Strongly Dispersive Transient Bragg Grating for High Harmonics

    SciTech Connect

    Farrell, J.; Spector, L.S.; Gaarde, M.B.; McFarland, B.K.; Bucksbaum, P.H.; Guhr, Markus

    2010-06-04

    We create a transient Bragg grating in a high harmonic generation medium using two counterpropagating pulses. The Bragg grating disperses the harmonics in angle and can diffract a large bandwidth with temporal resolution limited only by the source size.

  7. Fourth Aircraft Interior Noise Workshop

    NASA Technical Reports Server (NTRS)

    Stephens, David G. (compiler)

    1992-01-01

    The fourth in a series of NASA/SAE Interior Noise Workshops was held on May 19 and 20, 1992. The theme of the workshop was new technology and applications for aircraft noise with emphasis on source noise prediction; cabin noise prediction; cabin noise control, including active and passive methods; and cabin interior noise procedures. This report is a compilation of the presentations made at the meeting which addressed the above issues.

  8. Reduction of Helicopter Blade-Vortex Interaction Noise by Active Rotor Control Technology

    NASA Technical Reports Server (NTRS)

    Yu, Yung H.; Gmelin, Bernd; Splettstoesser, Wolf; Brooks, Thomas F.; Philippe, Jean J.; Prieur, Jean

    1997-01-01

    Helicopter blade-vortex interaction noise is one of the most severe noise sources and is very important both in community annoyance and military detection. Research over the decades has substantially improved basic physical understanding of the mechanisms generating rotor blade-vortex interaction noise and also of controlling techniques, particularly using active rotor control technology. This paper reviews active rotor control techniques currently available for rotor blade vortex interaction noise reduction, including higher harmonic pitch control, individual blade control, and on-blade control technologies. Basic physical mechanisms of each active control technique are reviewed in terms of noise reduction mechanism and controlling aerodynamic or structural parameters of a blade. Active rotor control techniques using smart structures/materials are discussed, including distributed smart actuators to induce local torsional or flapping deformations, Published by Elsevier Science Ltd.

  9. Semiconductor-based low-noise 100 MHz chirped pulse laser source based on a theta cavity design with an intra-cavity etalon and long-term stabilization

    NASA Astrophysics Data System (ADS)

    Mandridis, Dimitrios; Williams, Charles; Ozdur, Ibrahim; Klee, Anthony; Delfyett, Peter J.

    2011-06-01

    This work discusses the development of a frequency chirped, low repetition rate, semiconductor based mode-locked laser having reduced noise over previous demonstrations. Specifically, we present a major upgrade on the 100 MHz harmonically mode-locked Theta (?) laser cavity design in the form of the introduction of an intra-cavity fiberized Fabry-Perot etalon. The initial demonstration of the Theta cavity design offered improved energy per pulse and a linearly chirped pulse output compared to conventional cavity designs. Nonetheless, it suffered from pulse-to-pulse timing and energy noise. The noisy operation arises from the harmonic nature of the laser. To mitigate this effect we have inserted a fiberized etalon within the laser cavity. The intra-cavity etalon stores and inter-mixes the pulses of the harmonically mode-locked laser, as well as enforces lasing on a single optical mode-set from the multiple interleaved sets supported by the mode-locked laser due to its harmonic nature. This leads to the generation of a stable optical frequency comb with 100 MHz spacing and the suppression of the RF super-mode noise spurs, which results in a reduction of the laser noise. Due to fiber length drift in both the fiberized laser cavity and the fiberized etalon, a long-term stabilization scheme is necessary. An intra-cavity Hansch - Couillaud scheme is employed. The laser outputs chirped pulses with 10 nm of bandwidth. This work provides an in depth analysis of both the development of the Theta cavity with the intra-cavity etalon and the performance of the developed laser system.

  10. Proceedings, inter-noise 84 - international cooperation for noise control. 2 Vols

    SciTech Connect

    Maling, G.C. Jr.

    1984-01-01

    A total of 199 papers were presented on noise control engineering, especially in the areas of community noise control, sound intensity, noise emission sources, active sound attenuation and noise reduction by barriers. 4 papers have been abstracted separately.

  11. Phobos mass estimations from MEX and Viking 1 data: influence of different noise sources and estimation strategies

    NASA Astrophysics Data System (ADS)

    Kudryashova, M.; Rosenblatt, P.; Marty, J.-C.

    2015-08-01

    The mass of Phobos is an important parameter which, together with second-order gravity field coefficients and libration amplitude, constrains internal structure and nature of the moon. And thus, it needs to be known with high precision. Nevertheless, Phobos mass (GM, more precisely) estimated by different authors based on diverse data-sets and methods, varies by more than their 1-sigma error. The most complete lists of GM values are presented in the works of R. Jacobson (2010) and M. Paetzold et al. (2014) and include the estimations in the interval from (5.39 ± 0:03).10^5 (Smith et al., 1995) till (8.5 ± 0.7).10^5[m^3/s^2] (Williams et al., 1988). Furthermore, even the comparison of the estimations coming from the same estimation procedure applied to the consecutive flybys of the same spacecraft (s/c) shows big variations in GMs. The indicated behavior is very pronounced in the GM estimations stemming from the Viking1 flybys in February 1977 (as well as from MEX flybys, though in a smaller amplitude) and in this work we made an attempt to figure out its roots. The errors of Phobos GM estimations depend on the precision of the model (e.g. accuracy of Phobos a priori ephemeris and its a priori GM value) as well as on the radio-tracking measurements quality (noise, coverage, flyby distance). In the present work we are testing the impact of mentioned above error sources by means of simulations. We also consider the effect of the uncertainties in a priori Phobos positions on the GM estimations from real observations. Apparently, the strategy (i.e. splitting real observations in data-arcs, whether they stem from the close approaches of Phobos by spacecraft or from analysis of the s/c orbit evolution around Mars) of the estimations has an impact on the Phobos GM estimation.

  12. Harmonic engine

    DOEpatents

    Bennett, Charles L.; Sewall, Noel; Boroa, Carl

    2014-08-19

    An engine based on a reciprocating piston engine that extracts work from pressurized working fluid. The engine includes a harmonic oscillator inlet valve capable of oscillating at a resonant frequency for controlling the flow of working fluid into of the engine. In particular, the inlet valve includes an inlet valve head and a spring arranged together as a harmonic oscillator so that the inlet valve head is moveable from an unbiased equilibrium position to a biased closed position occluding an inlet. Upon releasing the inlet valve the inlet valve head undergoes a single oscillation past the equilibrium positio to a maximum open position and returns to a biased return position close to the closed position to choke the flow and produce a pressure drop across the inlet valve causing the inlet valve to close. Protrusions carried either by the inlet valve head or piston head are used to bump open the inlet valve from the closed position and initiate the single oscillation of the inlet valve head, and protrusions carried either by the outlet valve head or piston head are used to close the outlet valve ahead of the bump opening of the inlet valve.

  13. Aircraft noise prediction program theoretical manual, part 2

    NASA Technical Reports Server (NTRS)

    Zorumski, W. E.

    1982-01-01

    Detailed prediction methods for specific aircraft noise sources are given. These sources are airframe noise, combustion noise, fan noise, single and dual stream jet noise, and turbine noise. Modifications to the NASA methods which comply with the International Civil Aviation Organization standard method for aircraft noise prediction are given.

  14. Aircraft interior noise reduction by alternate resonance tuning

    NASA Technical Reports Server (NTRS)

    Bliss, Donald B.; Gottwald, James A.; Srinivasan, Ramakrishna; Gustaveson, Mark B.

    1990-01-01

    Existing interior noise reduction techniques for aircraft fuselages perform reasonably well at higher frequencies, but are inadequate at lower frequencies, particularly with respect to the low blade passage harmonics with high forcing levels found in propeller aircraft. A method is being studied which considers aircraft fuselage lined with panels alternately tuned to frequencies above and below the frequency that must be attenuated. Adjacent panels would oscillate at equal amplitude, to give equal source strength, but with opposite phase. Provided these adjacent panels are acoustically compact, the resulting cancellation causes the interior acoustic modes to become cutoff, and therefore be non-propagating and evanescent. This interior noise reduction method, called Alternate Resonance Tuning (ART), is currently being investigated both theoretically and experimentally. This new concept has potential application to reducing interior noise due to the propellers in advanced turboprop aircraft as well as for existing aircraft configurations.

  15. Enhancing tidal harmonic analysis: Robust (hybrid L1 ) solutions

    E-print Network

    Hickey, Barbara

    Enhancing tidal harmonic analysis: Robust (hybrid L1 =L2 ) solutions Keith E. Leffler Ã, David A 24 February 2008 Accepted 28 April 2008 Keywords: Tides Tidal analysis Harmonic analysis Robust is calculated from the power spectrum of the residual, a calculation that filters broad spectrum noise

  16. Active Interior Noise Control Studies

    NASA Technical Reports Server (NTRS)

    Park, J.; Veeramani, S.; Sampath, A.; Balachandran, B.; Wereley, N.

    1996-01-01

    Analytical and experimental investigations into the control of noise in the interior of a three-dimensional enclosure with a flexible boundary are presented. The rigid boundaries are constructed from acrylic material, and in the different cases considered the flexible boundary is constructed from either aluminum or composite material. Noise generated by an external speaker is transmitted into the enclosure through the flexible boundary and active control is realized by using Lead Zirconate Titanate (PZT) piezoelectric actuators bonded to the flexible boundary. Condenser microphones are used for noise measurements inside and outside the enclosure. Minimization schemes for global and local noise control in the presence of a harmonic disturbance are developed and discussed. In the experiments, analog feedforward control is implemented by using the harmonic disturbance as a reference signal.

  17. West Texas array experiment: Noise and source characterization of short-range infrasound and acoustic signals, along with lab and field evaluation of Intermountain Laboratories infrasound microphones

    NASA Astrophysics Data System (ADS)

    Fisher, Aileen

    The term infrasound describes atmospheric sound waves with frequencies below 20 Hz, while acoustics are classified within the audible range of 20 Hz to 20 kHz. Infrasound and acoustic monitoring in the scientific community is hampered by low signal-to-noise ratios and a limited number of studies on regional and short-range noise and source characterization. The JASON Report (2005) suggests the infrasound community focus on more broad-frequency, observational studies within a tactical distance of 10 km. In keeping with that recommendation, this paper presents a study of regional and short-range atmospheric acoustic and infrasonic noise characterization, at a desert site in West Texas, covering a broad frequency range of 0.2 to 100 Hz. To spatially sample the band, a large number of infrasound gauges was needed. A laboratory instrument analysis is presented of the set of low-cost infrasound sensors used in this study, manufactured by Inter-Mountain Laboratories (IML). Analysis includes spectra, transfer functions and coherences to assess the stability and range of the gauges, and complements additional instrument testing by Sandia National Laboratories. The IMLs documented here have been found reliably coherent from 0.1 to 7 Hz without instrument correction. Corrections were built using corresponding time series from the commercially available and more expensive Chaparral infrasound gauge, so that the corrected IML outputs were able to closely mimic the Chaparral output. Arrays of gauges are needed for atmospheric sound signal processing. Our West Texas experiment consisted of a 1.5 km aperture, 23-gauge infrasound/acoustic array of IMLs, with a compact, 12 m diameter grid-array of rented IMLs at the center. To optimize signal recording, signal-to-noise ratio needs to be quantified with respect to both frequency band and coherence length. The higher-frequency grid array consisted of 25 microphones arranged in a five by five pattern with 3 meter spacing, without spatial wind noise filtering hoses or pipes. The grid was within the distance limits of a single gauge's normal hose array, and data were used to perform a spatial noise correlation study. The highest correlation values were not found in the lower frequencies as anticipated, owing to a lack of sources in the lower range and the uncorrelated nature of wind noise. The highest values, with cross-correlation averages between 0.4 and 0.7 from 3 to 17 m between gauges, were found at night from 10 and 20 Hz due to a continuous local noise source and low wind. Data from the larger array were used to identify continuous and impulsive signals in the area that comprise the ambient noise field. Ground truth infrasound and acoustic, time and location data were taken for a highway site, a wind farm, and a natural gas compressor. Close-range sound data were taken with a single IML "traveler" gauge. Spectrograms and spectrum peaks were used to identify their source signatures. Two regional location techniques were also tested with data from the large array by using a propane cannon as a controlled, impulsive source. A comparison is presented of the Multiple Signal Classification Algorithm (MUSIC) to a simple, quadratic, circular wavefront algorithm. MUSIC was unable to effectively separate noise and source eignenvalues and eigenvectors due to spatial aliasing of the propane cannon signal and a lack of incoherent noise. Only 33 out of 80 usable shots were located by MUSIC within 100 m. Future work with the algorithm should focus on location of impulsive and continuous signals with development of methods for accurate separation of signal and noise eigenvectors in the presence of coherent noise and possible spatial aliasing. The circular wavefront algorithm performed better with our specific dataset and successfully located 70 out of 80 propane cannon shots within 100 m of the original location, 66 of which were within 20 m. This method has low computation requirements, making it well suited for real-time automated processing and smaller computers. Future research could focu

  18. Degradation in finite-harmonic subcarrier demodulation

    NASA Technical Reports Server (NTRS)

    Feria, Y.; Townes, S.; Pham, T.

    1995-01-01

    Previous estimates on the degradations due to a subcarrier loop assume a square-wave subcarrier. This article provides a closed-form expression for the degradations due to the subcarrier loop when a finite number of harmonics are used to demodulate the subcarrier, as in the case of the buffered telemetry demodulator. We compared the degradations using a square wave and using finite harmonics in the subcarrier demodulation and found that, for a low loop signal-to-noise ratio, using finite harmonics leads to a lower degradation. The analysis is under the assumption that the phase noise in the subcarrier (SC) loop has a Tikhonov distribution. This assumption is valid for first-order loops.

  19. DGZfP-Proceedings BB 90-CD Lecture 20 EWGAE 2004 Localization of Noise Sources in Large Structures Using AE

    E-print Network

    . These noises occur during operation of moveable portions of a structure in such things as lift bridges in several steel bridges by applying AE to localize the sound. The AE technique uses high frequency contact of roof truss Channel 3 Bearing support st

  20. Voltage harmonic elimination with RLC based interface smoothing filter

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, K.; Ramachandaramurthy, V. K.

    2015-04-01

    A method is proposed for designing a Dynamic Voltage Restorer (DVR) with RLC interface smoothing filter. The RLC filter connected between the IGBT based Voltage Source Inverter (VSI) is attempted to eliminate voltage harmonics in the busbar voltage and switching harmonics from VSI by producing a PWM controlled harmonic voltage. In this method, the DVR or series active filter produces PWM voltage that cancels the existing harmonic voltage due to any harmonic voltage source. The proposed method is valid for any distorted busbar voltage. The operating VSI handles no active power but only harmonic power. The DVR is able to suppress the lower order switching harmonics generated by the IGBT based VSI. Good dynamic and transient results obtained. The Total Harmonic Distortion (THD) is minimized to zero at the sensitive load end. Digital simulations are carried out using PSCAD/EMTDC to validate the performance of RLC filter. Simulated results are presented.

  1. High noise immunity one shot

    NASA Technical Reports Server (NTRS)

    Schaffer, G. L.

    1972-01-01

    Multivibrator circuit, which includes constant current source, isolates line noise from timing circuitry and field effect transistor controls circuit's operational modes. Circuit has high immunity to supply line noise.

  2. Anatomy of a controversy: Application of the Langevin technique to the analysis of the Californium-252 Source-Driven Noise Analysis method for subcriticality determination

    SciTech Connect

    Stolle, A.M.

    1991-01-01

    The expressions for the power spectral density of the noise equivalent sources have been calculated explicitly for the (a) stochastic transport equation, (b) the one-speed transport equaton, (c) the one-speed P{sub 1} equations, (d) the one-speed diffusion equation and (e) the point kinetic equation. The stochastic nature of Fick's law in (d) has been emphasized. The Langevin technique has been applied at various levels of approximation to the interpretation of the Californium-252 Source-Driven Noise Analysis (CSDNA) experiment for determining the reactivity in subcritical media. The origin of the controversy surrounding this method has been explained. The foundations of the CSDNA method as a viable experimental technique to infer subcriticality from a measured ratio of power spectral densities of the outputs of two neutron detectors and a third external source detector has been examined by solving the one-speed stochastic diffusion equation for a point external Californium-252 source and two detectors in an infinite medium. The expression relating reactivity to the measured ratio of PSDs was found to depend implicitly on k itself. Through a numerical analysis fo this expression, the authors have demonstrated that for a colinear detector-source-detector configuration for neutron detectors far from the source, the expression for the subcritical multiplication factor becomes essentially insensitive to k, hence, demonstrating some possibility for the viability of this technique. However, under more realistic experimental conditions, i.e., for finite systems in which diffusion theroy is not applicable, the measurement of the subcritical multiplication factor from a single measured ratio of PSDs, without extensive transport calculations, remains doubtful.

  3. Core-Noise Research

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2012-01-01

    This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015 (N+1), 2020 (N+2), and 2025 (N+3) timeframes; SFW strategic thrusts and technical challenges; SFW advanced subsystems that are broadly applicable to N+3 vehicle concepts, with an indication where further noise research is needed; the components of core noise (compressor, combustor and turbine noise) and a rationale for NASA's current emphasis on the combustor-noise component; the increase in the relative importance of core noise due to turbofan design trends; the need to understand and mitigate core-noise sources for high-efficiency small gas generators; and the current research activities in the core-noise area, with additional details given about forthcoming updates to NASA's Aircraft Noise Prediction Program (ANOPP) core-noise prediction capabilities, two NRA efforts (Honeywell International, Phoenix, AZ and University of Illinois at Urbana-Champaign, respectively) to improve the understanding of core-noise sources and noise propagation through the engine core, and an effort to develop oxide/oxide ceramic-matrix-composite (CMC) liners for broadband noise attenuation suitable for turbofan-core application. Core noise must be addressed to ensure that the N+3 noise goals are met. Focused, but long-term, core-noise research is carried out to enable the advanced high-efficiency small gas-generator subsystem, common to several N+3 conceptual designs, needed to meet NASA's technical challenges. Intermediate updates to prediction tools are implemented as the understanding of the source structure and engine-internal propagation effects is improved. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Quiet-Aircraft Subproject aims to develop concepts and technologies to reduce perceived community noise attributable to aircraft with minimal impact on weight and performance. This reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic.

  4. Thermal Noise of Epoxies

    NASA Astrophysics Data System (ADS)

    Fair, Hannah; Harry, Gregory; Newport, Jonathan; Penn, Steve

    2015-04-01

    Interferometric precision optical measurement is a powerful tool for investigating the smallest of physical phenomena. Examples of this include gravitational wave detection, precision spectroscopy, and laser ring gyroscopes. The limiting noises sources include thermal fluctuations from optical materials and structures. Epoxies can be used to construct hardware for these experiments, which can significantly contribute to the thermal noise. At American University, we are investigating the elastic properties of various epoxies to better predict thermal noise.

  5. Prediction of airframe noise

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.; Fratello, D. J.; Hayden, R. E.; Kadman, Y.; Africk, S.

    1975-01-01

    Methods of predicting airframe noise generated by aircraft in flight under nonpowered conditions are discussed. Approaches to predictions relying on flyover data and component theoretical analyses are developed. A nondimensional airframe noise spectrum of various aircraft is presented. The spectrum was obtained by smoothing all the measured spectra to remove any peculiarities due to airframe protrusions, normalizing each spectra by its overall sound pressure level and a characteristics frequency, and averaging the spectra together. A chart of airframe noise sources is included.

  6. A statistical evaluation of effective time constants of random telegraph noise with various operation timings of in-pixel source follower transistors

    NASA Astrophysics Data System (ADS)

    Yonezawa, A.; Kuroda, R.; Teramoto, A.; Obara, T.; Sugawa, S.

    2014-03-01

    We evaluated effective time constants of random telegraph noise (RTN) with various operation timings of in-pixel source follower transistors statistically, and discuss the dependency of RTN time constants on the duty ratio (on/off ratio) of MOSFET which is controlled by the gate to source voltage (VGS). Under a general readout operation of CMOS image sensor (CIS), the row selected pixel-source followers (SFs) turn on and not selected pixel-SFs operate at different bias conditions depending on the select switch position; when select switch locate in between the SF driver and column output line, SF drivers nearly turn off. The duty ratio and cyclic period of selected time of SF driver depends on the operation timing determined by the column read out sequence. By changing the duty ratio from 1 to 7.6 x 10-3, time constant ratio of RTN (time to capture noise reduction, detection and analysis of in pixel-SF with RTN.

  7. Core-Noise

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2010-01-01

    This presentation is a technical progress report and near-term outlook for NASA-internal and NASA-sponsored external work on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system level noise metrics for the 2015, 2020, and 2025 timeframes; the emerging importance of core noise and its relevance to the SFW Reduced-Noise-Aircraft Technical Challenge; the current research activities in the core-noise area, with some additional details given about the development of a high-fidelity combustion-noise prediction capability; the need for a core-noise diagnostic capability to generate benchmark data for validation of both high-fidelity work and improved models, as well as testing of future noise-reduction technologies; relevant existing core-noise tests using real engines and auxiliary power units; and examples of possible scenarios for a future diagnostic facility. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Reduced-Noise-Aircraft Technical Challenge aims to enable concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries. This reduction of aircraft noise is critical for enabling the anticipated large increase in future air traffic. Noise generated in the jet engine core, by sources such as the compressor, combustor, and turbine, can be a significant contribution to the overall noise signature at low-power conditions, typical of approach flight. At high engine power during takeoff, jet and fan noise have traditionally dominated over core noise. However, current design trends and expected technological advances in engine-cycle design as well as noise-reduction methods are likely to reduce non-core noise even at engine-power points higher than approach. In addition, future low-emission combustor designs could increase the combustion-noise component. The trend towards high-power-density cores also means that the noise generated in the low-pressure turbine will likely increase. Consequently, the combined result from these emerging changes will be to elevate the overall importance of turbomachinery core noise, which will need to be addressed in order to meet future noise goals.

  8. Rotorcraft noise

    NASA Technical Reports Server (NTRS)

    Huston, R. J. (compiler)

    1982-01-01

    The establishment of a realistic plan for NASA and the U.S. helicopter industry to develop a design-for-noise methodology, including plans for the identification and development of promising noise reduction technology was discussed. Topics included: noise reduction techniques, scaling laws, empirical noise prediction, psychoacoustics, and methods of developing and validing noise prediction methods.

  9. PREDOMINANT-F0 ESTIMATION USING BAYESIAN HARMONIC WAVEFORM MODELS

    E-print Network

    Plumbley, Mark

    of the observed signal as a sum of harmonic partials and a resid- ual noise. The amplitudes of the partials of auditory objects (notes from instruments or singers, natural or electronic sounds, background noise) with various char- acteristics (instrument class, singer identity, playing style, pitch, loudness, onset

  10. A Mode Propagation Database Suitable for Code Validation Utilizing the NASA Glenn Advanced Noise Control Fan and Artificial Sources

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.

    2014-01-01

    The NASA Glenn Research Center's Advanced Noise Control Fan (ANCF) was developed in the early 1990s to provide a convenient test bed to measure and understand fan-generated acoustics, duct propagation, and radiation to the farfield. A series of tests were performed primarily for the use of code validation and tool validation. Rotating Rake mode measurements were acquired for parametric sets of: (i) mode blockage, (ii) liner insertion loss, (iii) short ducts, and (iv) mode reflection.

  11. A Mode Propagation Database Suitable for Code Validation Utilizing the NASA Glenn Advanced Noise Control Fan and Artificial Sources

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.

    2014-01-01

    The NASA Glenn Research Center's Advanced Noise Control Fan (ANCF) was developed in the early 1990s to provide a convenient test bed to measure and understand fan-generated acoustics, duct propagation, and radiation to the farfield. A series of tests were performed primarily for the use of code validation and tool validation. Rotating Rake mode measurements were acquired for parametric sets of: (1) mode blockage, (2) liner insertion loss, (3) short ducts, and (4) mode reflection.

  12. Noise Pollution

    MedlinePLUS

    ... EPA Home Air and Radiation Noise Pollution Noise Pollution This page has moved. You should be immediately ... gov/clean-air-act-overview/title-iv-noise-pollution Local Navigation Air & Radiation Home Basic Information Where ...

  13. Core Noise - Increasing Importance

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2011-01-01

    This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015, 2020, and 2025 timeframes; turbofan design trends and their aeroacoustic implications; the emerging importance of core noise and its relevance to the SFW Reduced-Perceived-Noise Technical Challenge; and the current research activities in the core-noise area, with additional details given about the development of a high-fidelity combustor-noise prediction capability as well as activities supporting the development of improved reduced-order, physics-based models for combustor-noise prediction. The need for benchmark data for validation of high-fidelity and modeling work and the value of a potential future diagnostic facility for testing of core-noise-reduction concepts are indicated. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Reduced-Perceived-Noise Technical Challenge aims to develop concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries. This reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic. Noise generated in the jet engine core, by sources such as the compressor, combustor, and turbine, can be a significant contribution to the overall noise signature at low-power conditions, typical of approach flight. At high engine power during takeoff, jet and fan noise have traditionally dominated over core noise. However, current design trends and expected technological advances in engine-cycle design as well as noise-reduction methods are likely to reduce non-core noise even at engine-power points higher than approach. In addition, future low-emission combustor designs could increase the combustion-noise component. The trend towards high-power-density cores also means that the noise generated in the low-pressure turbine will likely increase. Consequently, the combined result from these emerging changes will be to elevate the overall importance of turbomachinery core noise, which will need to be addressed in order to meet future noise goals.

  14. High-Speed Full-Range Imaging with Harmonic Detection Swept-Source Optical Coherence Tomography Chuanyong Huang, Steven M. Massick, Kristen A. Peterson and Andrei B. Vakhtin

    E-print Network

    sensitivity and dynamic range in a real- time, video rate system. The complex conjugate rejection ratio of 50 K. A. and Kane D. J., "Real-time video-rate harmonically detected Fourier domain optical coherence at the output of a phase modulated interferometer is: ISI(k, t) = IR(k) + IS(k) + 2 [IR(k) IS(k)]1/2 cos

  15. Higher-Order Harmonic Generation from Fullerene by Means of the Plasma Harmonic Method

    SciTech Connect

    Ganeev, R. A.; Bom, L. B. Elouga; Abdul-Hadi, J.; Ozaki, T.; Wong, M. C. H.; Brichta, J. P.; Bhardwaj, V. R.

    2009-01-09

    We demonstrate, for the first time, high-order harmonic generation from C{sub 60} by an intense femtosecond Ti:sapphire laser. Laser-produced plasmas from C{sub 60}-rich epoxy and C{sub 60} films were used as the nonlinear media. Harmonics up to the 19th order were observed. The harmonic yield from fullerene-rich plasma is about 25 times larger compared with those produced from a bulk carbon target. Structural studies of plasma debris confirm the presence and integrity of fullerenes within the plasma plume, indicating fullerenes as the source of high-order harmonics.

  16. Proceedings of the 1986 international conference on noise control engineering. Volume 1

    SciTech Connect

    Lotz, R.

    1986-01-01

    These proceedings collect papers on noise pollution. Topics include: noise sources, noise of chain conveyors in mining, control of noise sources in power plants, noise control elements, vibration, a method of noise control in a nuclear power plant, biological effects of noise, statistical audio dosimetry, and power house noise control.

  17. Free Electron Lasers Seeded by ir Laser Driven High-order Harmonic Generation

    SciTech Connect

    Wu, Juhao; Bolton, Paul R.; Murphy, James B.; Zhong, Xinming; /Beijing Normal U.

    2007-03-12

    Coherent x-ray production by a seeded free electron laser (FEL) is important for next generation synchrotron light sources. We examine the feasibility and features of FEL emission seeded by a high-order harmonic of an infrared laser (HHG). In addition to the intrinsic FEL chirp, the longitudinal profile and spectral bandwidth of the HHG seed are modified significantly by the FEL interaction well before saturation. This smears out the original attosecond pulselet structure. We introduce criteria for this smearing effect on the pulselet and the stretching effect on the entire pulse. We discuss the noise issue in such a seeded FEL.

  18. The influence of quadrupole sources in the boundary layer and wake of a blade on helicopter rotor noise

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Brentner, Kenneth S.

    1991-01-01

    It is presently noted that, for an observer in or near the plane containing a helicopter rotor disk, and in the far field, part of the volume quadrupole sources, and the blade and wake surface quadrupole sources, completely cancel out. This suggests a novel quadrupole source description for the Ffowcs Williams-Hawkings equation which retain quadrupoles with axes parallel to the rotor disk; in this case, the volume and shock surface sourse terms are dominant.

  19. Simple Harmonic Motion in Harmonic Plane Waves.

    ERIC Educational Resources Information Center

    Benumof, Reuben

    1980-01-01

    Discusses the distribution of kinetic and potential energy in transverse and longitudinal waves and examines the transmission of power and momentum. This discussion is intended to aid in understanding the simple harmonic motion of a particle involved in the propagation of a harmonic mechanical plane wave. (HM)

  20. Harmonization of Biodiesel Specifications

    SciTech Connect

    Alleman, T. L.

    2008-02-01

    Worldwide biodiesel production has grown dramatically over the last several years. Biodiesel standards vary across countries and regions, and there is a call for harmonization. For harmonization to become a reality, standards have to be adapted to cover all feedstocks. Additionally, all feedstocks cannot meet all specifications, so harmonization will require standards to either tighten or relax. For harmonization to succeed, the biodiesel market must be expanded with the alignment of test methods and specification limits, not contracted.

  1. Rotorcraft Noise Model

    NASA Technical Reports Server (NTRS)

    Lucas, Michael J.; Marcolini, Michael A.

    1997-01-01

    The Rotorcraft Noise Model (RNM) is an aircraft noise impact modeling computer program being developed for NASA-Langley Research Center which calculates sound levels at receiver positions either on a uniform grid or at specific defined locations. The basic computational model calculates a variety of metria. Acoustic properties of the noise source are defined by two sets of sound pressure hemispheres, each hemisphere being centered on a noise source of the aircraft. One set of sound hemispheres provides the broadband data in the form of one-third octave band sound levels. The other set of sound hemispheres provides narrowband data in the form of pure-tone sound pressure levels and phase. Noise contours on the ground are output graphically or in tabular format, and are suitable for inclusion in Environmental Impact Statements or Environmental Assessments.

  2. Fan Noise Prediction

    NASA Technical Reports Server (NTRS)

    France, Joshua I.

    2004-01-01

    Aircraft noise emission level restrictions in and around airports continue to grow more stringent every few years. Thus, it is important to predict noise emissions from aircraft accurately. Predicting noise from the engine(s) is an integral part of the efforts to characterize the noise signature of an aircraft. An important source of engine noise is the rotor-stator interaction noise produced as a result of impingement of fan rotor wakes on the fan exit guide vanes. Interaction noise propagates through the inlet and exhaust ducts of the engine and radiates to the far field. noise levels for a range of model fans stages that represent current aircraft engine designs. Eversman's radiation codes calculate both the inlet and exhaust noise radiation by propagating the internally measured rotor-stator interaction noise to the far field. Predicted far field sound pressure levels are then compared to the measured levels from wind tunnel tests. This effort's objective is to prove that the predicted levels actually describe the measured levels.

  3. Suppression of tonal noise in a centrifugal fan using guide vanes

    NASA Astrophysics Data System (ADS)

    Paramasivam, Kishokanna; Rajoo, Srithar; Romagnoli, Alessandro

    2015-11-01

    This paper presents the work aiming for tonal noise reduction in a centrifugal fan. In previous studies, it is well documented that tonal noise is the dominant noise source generated in centrifugal fans. Tonal noise is generated due to the aerodynamic interaction between the rotating impeller and stationary diffuser vanes. The generation of tonal noise is related to the pressure fluctuation at the leading edge of the stationary vane. The tonal noise is periodic in time which occurs at the blade passing frequency (BPF) and its harmonics. Much of previous studies, have shown that the stationary vane causes the tonal noise and generation of non-rotational turbulent noise. However, omitting stationary vanes will lead to the increase of non-rotational turbulent noise resulted from the high velocity of the flow leaving the impeller. Hence in order to reduce the tonal noise and the non-rotational noise, guide vanes were designed as part of this study to replace the diffuser vanes, which were originally used in the chosen centrifugal fan. The leading edge of the guide vane is tapered. This modification reduces the strength of pressure fluctuation resulting from the interaction between the impeller outflow and stationary vane. The sound pressure level at blade passing frequency (BPF) is reduced by 6.8 dB, the 2nd BPF is reduced by 4.1 dB and the 3rd BPF reduced by about 17.5 dB. The overall reduction was 0.9 dB. The centrifugal fan with tapered guide vanes radiates lower tonal noise compared to the existing diffuser vanes. These reductions are achieved without compromising the performance of the centrifugal fan. The behavior of the fluid flow was studied using computational fluid dynamics (CFD) tools and the acoustics characteristics were determined through experiments in an anechoic chamber.

  4. The effects of noise on man

    SciTech Connect

    Kryter, K.D.

    1985-01-01

    As a reference source of research concerning effects of noise on people, this book reports and analyzes procedures used in regulation and control of noise. Quantitative relations are formed between physical measures of environmental noise and the reactions of people and communities to noise. The author reviews scientific and engineering research published from 1970 to the present. The Effects of Noise on Man, Second Edition discusses: adverse effects of noise and noise-induced hearing loss on speech communications; damage to hearing from ''everyday'' noise; damage to hearing from industrial noise and gunfire; work performance in noise; effects of noise on non-auditory systems of the body and sleep; aircraft and street traffic noise and its effects on health, annoyance, and house depreciation; physical measurements used for the assessment and control of environmental noise; federal standards and guidelines for community noise and proposed modification based on recent research findings.

  5. School Noise and Its Control

    ERIC Educational Resources Information Center

    Ikenberrgy, Larry D.

    1974-01-01

    Sources of noises affecting schools and their hindrance of learning are presented. Noise levels for different activities are tabled and possible methods for controlling such noises are suggested. Internal to the school, shop and music levels are the most severe. More care in site selection and design considerations are recommended. (LS)

  6. Harmonic considerations for electrical distribution feeders

    NASA Astrophysics Data System (ADS)

    1988-03-01

    Harmonics on the electric power distribution system can cause motor overheating, capacitor failures,watt-hour meter error, and relay malfunctions. The degree of problems caused by harmonics is greatly dependent on the characteristics of the distribution feeder, which can absorb a considerable percentage of its capacity in harmonic currents without ill effects. However, power factor correction capacitors can cause resonances near harmonic voltages that can result in intolerable distortion. Both motor loads and resistive loads can decrease the effect of resonance significantly. This report describes useful techniques to analyze, suppress, and measure harmonics on distribution feeders. Applicable areas for manual analysis and computer analysis are explained. The basic formulae are presented as well as sophisticated computer methods. Emphasis is placed on the fundamental principle. Models of harmonic-producing devices are presented and their limitations discussed. Most distribution feeder harmonics analyses can be performed using simple current source models. Filtering of specific loads and general, dispersed load is discussed. The fundamental principle in filtering distribution feeders is to shorten the harmonic current path. 3-dimensional plots enhance the understanding of the filtering action. Equipment and procedures for making measurements are described.

  7. Spherical Harmonic Analysis via Bayesian Inference

    NASA Astrophysics Data System (ADS)

    Muir, J. B.; Tkalcic, H.

    2014-12-01

    The real spherical harmonics form a compact, simple and commonly used set of basis functions for describing fields in tomographic inverse problems. It is therefore often useful to perform spherical harmonic analysis on data to represent it in the spherical harmonic parametrisation. Most existing algorithms, based on Fourier transforms, require that data be interpolated to a regular grid; this is not appropriate for the sparse, irregularly distributed data found in many geophysical applications. Instead, this work casts the problem of spherical harmonic analysis as an inverse problem, and applies the methods of Bayesian inference to overcome regularization problems in the inversion. This allows irregular data to be easily handled, and directly provides error estimates for the inverted spherical harmonic parameters. Synthetic tests have shown that this method easily handles relatively large amounts of added Gaussian noise. So far, this method has been applied to estimate the power in each harmonic degree for tomographic maps of the deep mantle based on PKP-PKIKP and PcP-P differential travel times, showing that they agree at global length scales despite local heterogeneity results being heavily influenced by data coverage. This potentially allows for simple heuristic arguments to constrain the global variation in core-mantle boundary topography based on the similarity between PKP and PcP derived tomographic maps.

  8. Playback Experiments for Noise Exposure.

    PubMed

    Holles, Sophie; Simpson, Stephen D; Lecchini, David; Radford, Andrew N

    2016-01-01

    Playbacks are a useful tool for conducting well-controlled and replicated experiments on the effects of anthropogenic noise, particularly for repeated exposures. However, playbacks are unlikely to fully reproduce original sources of anthropogenic noise. Here we examined the sound pressure and particle acceleration of boat noise playbacks in a field experiment and reveal that although there remain recognized limitations, the signal-to-noise ratios of boat playbacks to ambient noise do not exceed those of a real boat. The experimental setup tested is therefore of value for use in experiments on the effects of repeated exposure of aquatic animals to boat noise. PMID:26610992

  9. Noise in the nervous system

    PubMed Central

    Faisal, A. Aldo; Selen, Luc P. J.; Wolpert, Daniel M.

    2009-01-01

    Random disturbances of signals, termed ‘noise’, pose a fundamental problem for information processing and affect all aspects of nervous-system function. However, the nature, amount and impact of noise in the nervous system have only recently been addressed in a quantitative manner. Experimental and computational methods have shown that multiple noise sources contribute to cellular and behavioural trial-to-trial variability. We review the sources of noise in the nervous system, from the molecular to the behavioural level, and show how noise contributes to trial-to-trial variability. We highlight how noise affects neuronal networks and the principles the nervous system applies to counter detrimental effects of noise, and briefly discuss noise's potential benefits. PMID:18319728

  10. SEVENTH HARMONIC 20 GHz CO-GENERATOR

    SciTech Connect

    Hirshfield, Jay L

    2014-04-08

    To satisfy the need for multi-MW rf sources in frequency ranges where commercial sources do not exist, a study was undertaken on a class of devices based on gyro-harmonic frequency multiplication. This mechanism relies upon adding energy in gyrating motion to a linear electron beam that traverses a rotating-mode TE111-mode drive cavity in a dc magnetic field. The beam then drifts along the magnetic field into a second cavity, operating in the TEn11-mode tuned to the nth harmonic of the drive cavity. Studies of this configuration have been carried out for 2 < n < 7. Results are given for multi-MW, efficient operation of a 7th harmonic device operating at 20 GHz, and a 2nd harmonic device operating at 22.4 GHz.

  11. On the uniqueness of harmonic coordinates

    E-print Network

    Jiri Bicak; Joseph Katz

    2005-03-04

    Harmonic coordinate conditions in stationary asymptotically flat spacetimes with matter sources have more than one solution. The solutions depend on the degree of smoothness of the metric and its first derivatives, which we wish to impose across the material boundary, and on the conditions at infinity and at a suitable point inside the matter. This is illustrated in detail by simple fully solvable examples of static spherically symmetric spacetimes in global harmonic coordinates. Examples of stationary electrovacuum spacetimes described simply in harmonic coordinates are also given. They can represent the exterior fields of material discs. The use of an appropriate background metric considerably simplifies the calculations.

  12. New constraints on the magmatic system beneath Newberry Volcano from the analysis of active and passive source seismic data, and ambient noise

    NASA Astrophysics Data System (ADS)

    Heath, B.; Toomey, D. R.; Hooft, E. E. E.

    2014-12-01

    Magmatic systems beneath arc-volcanoes are often poorly resolved by seismic imaging due to the small spatial scale and large magnitude of crustal heterogeneity in combination with field experiments that sparsely sample the wavefield. Here we report on our continued analysis of seismic data from a line of densely-spaced (~300 m), three-component seismometers installed on Newberry Volcano in central Oregon for ~3 weeks; the array recorded an explosive shot, ~20 teleseismic events, and ambient noise. By jointly inverting both active and passive-source travel time data, the resulting tomographic image reveals a more detailed view of the presumed rhyolitic magma chamber at ~3-5 km depth, previously imaged by Achauer et al. (1988) and Beachly et al. (2012). The magma chamber is elongated perpendicular to the trend of extensional faulting and encircled by hypocenters of small (M < 2) earthquakes located by PNSN. We also model teleseismic waveforms using a 2-D synthetic seismogram code to recreate anomalous amplitudes observed in the P-wave coda for sites within the caldera. Autocorrelation of ambient noise data also reveals large amplitude waveforms for a small but spatially grouped set of stations, also located within the caldera. On the basis of these noise observations and 2-D synthetic models, which both require slow seismic speeds at depth, we conclude that our tomographic model underestimates low-velocity anomalies associated with the inferred crustal magma chamber; this is due in large part to wavefront healing, which reduces observed travel time anomalies, and regularization constraints, which minimize model perturbations. Only by using various methods that interrogate different aspects of the seismic data are we able to more realistically constrain the complicated, heterogeneous volcanic system. In particular, modeling of waveform characteristics provides a better measure of the spatial scale and magnitude of crustal velocities near magmatic systems.

  13. Investigations on the effect of frequency and noise in a localization technique based on microwave imaging for an in-body RF source

    NASA Astrophysics Data System (ADS)

    Chandra, Rohit; Balasingham, Ilangko

    2015-05-01

    Localization of a wireless capsule endoscope finds many clinical applications from diagnostics to therapy. There are potentially two approaches of the electromagnetic waves based localization: a) signal propagation model based localization using a priori information about the persons dielectric channels, and b) recently developed microwave imaging based localization without using any a priori information about the persons dielectric channels. In this paper, we study the second approach in terms of a variety of frequencies and signal-to-noise ratios for localization accuracy. To this end, we select a 2-D anatomically realistic numerical phantom for microwave imaging at different frequencies. The selected frequencies are 13:56 MHz, 431:5 MHz, 920 MHz, and 2380 MHz that are typically considered for medical applications. Microwave imaging of a phantom will provide us with an electromagnetic model with electrical properties (relative permittivity and conductivity) of the internal parts of the body and can be useful as a foundation for localization of an in-body RF source. Low frequency imaging at 13:56 MHz provides a low resolution image with high contrast in the dielectric properties. However, at high frequencies, the imaging algorithm is able to image only the outer boundaries of the tissues due to low penetration depth as higher frequency means higher attenuation. Furthermore, recently developed localization method based on microwave imaging is used for estimating the localization accuracy at different frequencies and signal-to-noise ratios. Statistical evaluation of the localization error is performed using the cumulative distribution function (CDF). Based on our results, we conclude that the localization accuracy is minimally affected by the frequency or the noise. However, the choice of the frequency will become critical if the purpose of the method is to image the internal parts of the body for tumor and/or cancer detection.

  14. Observation of bias-dependent noise sources in a TiO{sub x}/TiO{sub y} bipolar resistive switching frame

    SciTech Connect

    Hyung Kim, Joo; Rahm Lee, Ah; Cheol Bae, Yoon; Ho Baek, Kwang; Sik Im, Hyun; Pyo Hong, Jin

    2014-02-24

    We report the conduction features associated with the evolution of oxygen ions (or vacancies) under bias for a TiO{sub x} (oxygen ion-rich)/TiO{sub y} (oxygen ion-deficient) bi-layer cell by identifying low-frequency noise sources. It is believed that a low resistance state enhances the formation of conductive filaments exchanging electrons through a nearest-neighbor hopping process, while a high resistance state (HRS) emphasizes the rupture of conductive filaments inside the insulating TiO{sub x} layer and a reduction/oxidation reaction at the oxide interfaces. The high resolution transmission electron microscope images of as-grown and HRS cells are also discussed.

  15. Stochastic Regulation of her1/7 Gene Expression Is the Source of Noise in the Zebrafish Somite Clock Counteracted by Notch Signalling

    PubMed Central

    Jenkins, Robert P.; Hanisch, Anja; Soza-Ried, Cristian; Sahai, Erik

    2015-01-01

    The somite segmentation clock is a robust oscillator used to generate regularly-sized segments during early vertebrate embryogenesis. It has been proposed that the clocks of neighbouring cells are synchronised via inter-cellular Notch signalling, in order to overcome the effects of noisy gene expression. When Notch-dependent communication between cells fails, the clocks of individual cells operate erratically and lose synchrony over a period of about 5 to 8 segmentation clock cycles (2–3 hours in the zebrafish). Here, we quantitatively investigate the effects of stochasticity on cell synchrony, using mathematical modelling, to investigate the likely source of such noise. We find that variations in the transcription, translation and degradation rate of key Notch signalling regulators do not explain the in vivo kinetics of desynchronisation. Rather, the analysis predicts that clock desynchronisation, in the absence of Notch signalling, is due to the stochastic dissociation of Her1/7 repressor proteins from the oscillating her1/7 autorepressed target genes. Using in situ hybridisation to visualise sites of active her1 transcription, we measure an average delay of approximately three minutes between the times of activation of the two her1 alleles in a cell. Our model shows that such a delay is sufficient to explain the in vivo rate of clock desynchronisation in Notch pathway mutant embryos and also that Notch-mediated synchronisation is sufficient to overcome this stochastic variation. This suggests that the stochastic nature of repressor/DNA dissociation is the major source of noise in the segmentation clock. PMID:26588097

  16. Stochastic Regulation of her1/7 Gene Expression Is the Source of Noise in the Zebrafish Somite Clock Counteracted by Notch Signalling.

    PubMed

    Jenkins, Robert P; Hanisch, Anja; Soza-Ried, Cristian; Sahai, Erik; Lewis, Julian

    2015-11-01

    The somite segmentation clock is a robust oscillator used to generate regularly-sized segments during early vertebrate embryogenesis. It has been proposed that the clocks of neighbouring cells are synchronised via inter-cellular Notch signalling, in order to overcome the effects of noisy gene expression. When Notch-dependent communication between cells fails, the clocks of individual cells operate erratically and lose synchrony over a period of about 5 to 8 segmentation clock cycles (2-3 hours in the zebrafish). Here, we quantitatively investigate the effects of stochasticity on cell synchrony, using mathematical modelling, to investigate the likely source of such noise. We find that variations in the transcription, translation and degradation rate of key Notch signalling regulators do not explain the in vivo kinetics of desynchronisation. Rather, the analysis predicts that clock desynchronisation, in the absence of Notch signalling, is due to the stochastic dissociation of Her1/7 repressor proteins from the oscillating her1/7 autorepressed target genes. Using in situ hybridisation to visualise sites of active her1 transcription, we measure an average delay of approximately three minutes between the times of activation of the two her1 alleles in a cell. Our model shows that such a delay is sufficient to explain the in vivo rate of clock desynchronisation in Notch pathway mutant embryos and also that Notch-mediated synchronisation is sufficient to overcome this stochastic variation. This suggests that the stochastic nature of repressor/DNA dissociation is the major source of noise in the segmentation clock. PMID:26588097

  17. Joint source channel coding for non-ergodic channels: the distortion signal-to-noise ratio (SNR) exponent perspective 

    E-print Network

    Bhattad, Kapil

    2008-10-10

    the probability of outage is low. 28 However, the corresponding quantization error is large. When the multiplexing rate is increased quantization error decreases but outage probability increases. For these schemes, the optimal multiplexing rate is chosen... and channel coding is optimal. In this work we study this problem for non-ergodic channels. Although not much can be said about the general problem of transmitting any analog sources over any non-ergodic channels with any distortion metric, for many practical...

  18. Prediction of XV-15 tilt rotor discrete frequency aeroacoustic noise with WOPWOP

    NASA Technical Reports Server (NTRS)

    Coffen, Charles D.; George, Albert R.

    1990-01-01

    The results, methodology, and conclusions of noise prediction calculations carried out to study several possible discrete frequency harmonic noise mechanisms of the XV-15 Tilt Rotor Aircraft in hover and helicopter mode forward flight are presented. The mechanisms studied were thickness and loading noise. In particular, the loading noise caused by flow separation and the fountain/ground plane effect were predicted with calculations made using WOPWOP, a noise prediction program developed by NASA Langley. The methodology was to model the geometry and aerodynamics of the XV-15 rotor blades in hover and steady level flight and then create corresponding FORTRAN subroutines which were used an input for WOPWOP. The models are described and the simplifying assumptions made in creating them are evaluated, and the results of the computations are presented. The computations lead to the following conclusions: The fountain/ground plane effect is an important source of aerodynamic noise for the XV-15 in hover. Unsteady flow separation from the airfoil passing through the fountain at high angles of attack significantly affects the predicted sound spectra and may be an important noise mechanism for the XV-15 in hover mode. The various models developed did not predict the sound spectra in helicopter forward flight. The experimental spectra indicate the presence of blade vortex interactions which were not modeled in these calculations. A need for further study and development of more accurate aerodynamic models, including unsteady stall in hover and blade vortex interactions in forward flight.

  19. Lab 5: Damped simple harmonic motion Simple harmonic oscillation

    E-print Network

    Gustafsson, Torgny

    Lab 5: Damped simple harmonic motion · Simple harmonic oscillation · Damped harmonic oscillation;Friction: retarding motion (energy dissipation) Damped simple harmonic oscillation 1 2 Hooke's law: Damping 381 Mechanics #12;Ideal case: no friction Simple harmonic oscillation Hooke's law: Newton's 2nd law: F

  20. Power System Harmonic Elimination to Improve Power Quality

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, K.; Ramachandaramurthy, V. K.

    2015-06-01

    An improvised RLC interface filter for a Dynamic Voltage Restorer (DVR) is proposed. The RLC filter is connected in the front end between the IGBT based Voltage Source Inverter (VSI) and the injection transformer and is able to eliminate voltage harmonics in the system and also switching harmonics generated from VSI. The voltage at the sensitive load end is pure sinusoidal. In this method, the DVR produced Pulse Width Modulation (PWM) voltage with voltage harmonic canceling the voltage harmonic generated from the supply main. The VSI handles harmonic power. The low order switching harmonics generated by the IGBT based VSI is suppressed. The DVR has greater voltage injection capability. Good dynamic and transient results recorded and Total Harmonic Distortion (THD) at the sensitive load end is minimized. The voltage at the sensitive load is sinusoidal and at 1.0 pu. PSCAD/EMTDC is used to validate the performance of the interface filter and the DVR. Simulated results are presented.

  1. Noise sensitivity as a factor influencing human reaction to noise.

    PubMed

    Job, R.F. Soames

    1999-01-01

    Reaction (annoyance, dissatisfaction) to noise is itself an important health effect, as well as possibly contributing to other putative health effects of noise. Thus, factors such as noise sensitivity, which influence reaction, are of considerable importance. However, noise sensitivity is rarely clearly defined. This paper offers a formal definition of noise sensitivity, and reviews evidence relating to it. Noise sensitivity has been measured in various ways, but may be measured most directly by assessing reaction to many noise situations (other than those involving the noise source(s) which are the focus of the particular study). When noise sensitivity is measured in this way, factor analysis consistently reveals that noise sensitivity is not a unitary concept. Rather, two distinct factors appear: one related to loud noises (road traffic, lawn mower), and the other related to quieter noise situations which are nonetheless distracting (rustling papers at the movies, people talking while watching television). More research is needed to address the relationships between these factors, reaction and other health effects. PMID:12689500

  2. Workshop on Harmonic Oscillators

    NASA Technical Reports Server (NTRS)

    Han, D. (editor); Kim, Y. S. (editor); Zachary, W. W. (editor)

    1993-01-01

    Proceedings of a workshop on Harmonic Oscillators held at the College Park Campus of the University of Maryland on March 25 - 28, 1992 are presented. The harmonic oscillator formalism is playing an important role in many branches of physics. This is the simplest mathematical device which can connect the basic principle of physics with what is observed in the real world. The harmonic oscillator is the bridge between pure and applied physics.

  3. External noise yields a What template?

    E-print Network

    Klein, Stanley

    1st+3rd) Rating scale methods for isolating sources of noise A faster classification image methodExternal noise yields a surprise: What template? Stanley Klein, Dennis Levi, Suko Toyofuku Vision Science University of California, Berkeley #12;Overview Detection of patterns in noise Why noise masking

  4. Noise. Ag Ed Environmental Education Series.

    ERIC Educational Resources Information Center

    Tulloch, Rodney W.

    Noise is the subject of the student resource unit to be used with high school vocational agriculture students. The nature of noise as a phenomenon and as a problem is clarified. Sources of noise pollution and the decibel levels they produce are described. Among the effects of noise pollution discussed are hearing loss, annoyance, and accidental…

  5. Axisymmetric generalized harmonic evolution code

    SciTech Connect

    Sorkin, Evgeny

    2010-04-15

    We describe the first axisymmetric numerical code based on the generalized harmonic formulation of the Einstein equations, which is regular at the axis. We test the code by investigating gravitational collapse of distributions of complex scalar field in a Kaluza-Klein spacetime. One of the key issues of the harmonic formulation is the choice of the gauge source functions, and we conclude that a damped-wave gauge is remarkably robust in this case. Our preliminary study indicates that evolution of regular initial data leads to formation both of black holes with spherical and cylindrical horizon topologies. Intriguingly, we find evidence that near threshold for black hole formation the number of outcomes proliferates. Specifically, the collapsing matter splits into individual pulses, two of which travel in the opposite directions along the compact dimension and one which is ejected radially from the axis. Depending on the initial conditions, a curvature singularity develops inside the pulses.

  6. Analysis of Dual Rotating Rake Data from the NASA Glenn Advanced Noise Control Fan Duct with Artificial Sources

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Sutliff, Daniel L.

    2014-01-01

    The Rotating Rake mode measurement system was designed to measure acoustic duct modes generated by a fan stage. Initially, the mode amplitudes and phases were quantified from a single rake measurement at one axial location. To directly measure the modes propagating in both directions within a duct, a second rake was mounted to the rotating system with an offset in both the axial and the azimuthal directions. The rotating rake data analysis technique was then extended to include the data measured by the second rake. The analysis resulted in a set of circumferential mode levels at each of the two rake microphone locations. Radial basis functions were then least-squares fit to this data to obtain the radial mode amplitudes for the modes propagating in both directions within the duct. Validation experiments have been conducted using artificial acoustic sources. Results are shown for the measurement of the standing waves in the duct from sound generated by one and two acoustic sources that are separated into the component modes propagating in both directions within the duct. Measured reflection coefficients from the open end of the duct are compared to analytical predictions.

  7. Jet noise control by adjoint-based optimization

    NASA Astrophysics Data System (ADS)

    Wei, Mingjun

    The adjoint of the perturbed and linearized compressible viscous flow equations is formulated in such a way that its solution can be used to optimize control actuation in order to reduce the noise radiated by a randomly excited two-dimensional mixing layer, which serves as near-nozzle model of a jet. The initial-vorticity-thickness Reynolds number is 500, and the free stream Mach numbers are 0.9 and 0.2. Controls are implemented into flow equations as general source terms (body forces, mass sources, and internal energy sources) with compact support near the "splitter plate." The noise to be reduced is defined by a space-time integral of the mean square pressure fluctuations on a line parallel to the mixing layer in the acoustic field of the low-speed stream. Both the adjoint and flow equations are solved numerically and without modeling approximations. The objective is to study the mechanics of the noise generation and its control. All controls effectively reduce noise requiring very little input power, with the most effective (internal energy control) reducing the noise intensity by 11 dB. Numerical tests show that the control is not by a simple acoustic cancellation ("anti-sound") mechanism, but results from a genuine change of the noise source. The comparison of otherwise identical flows without and with control applied shows little change of the flow's gross features: the evolution pairings of the energetic structures, turbulence kinetic energy, spreading rate, and so on, are superficially unchanged. However, decomposition of the flow into empirical eigenfunctions, as surrogates for Fourier modes in the nonperiodic streamwise direction, shows that the turbulence structures advect downstream more uniformly. This change appears to be the key to minimizing their acoustic efficiency. This perspective is clarified by contrasting it with a harmonically excited mixing layer. The noise in this case is not reduced by our control procedure, but is already at the low level achieved by the controller applied to the randomly excited mixing layers. The underlying empirical eigenfunctions in this case show a similar regular structure and behavior as achieved by the control in the randomly excited case. Unfortunately, from the perspective of any practical implementation with actuators, the control identified has a complex spatial and temporal structure. Two empirical eigenmodes were required to represent it sufficiently to reduce the noise about 50%, and their form was complex. Optimization of a single-degree-of-freedom control yielded only a 44% reduction by x-direction body-force control and less than 20% by others.

  8. Measuring noise equivalent irradiance of a digital short-wave infrared imaging system using a broadband source to simulate the night spectrum

    NASA Astrophysics Data System (ADS)

    Green, John R.; Robinson, Timothy

    2015-05-01

    There is a growing interest in developing helmet-mounted digital imaging systems (HMDIS) for integration into military aircraft cockpits. This interest stems from the multiple advantages of digital vs. analog imaging such as image fusion from multiple sensors, data processing to enhance the image contrast, superposition of non-imaging data over the image, and sending images to remote location for analysis. There are several properties an HMDIS must have in order to aid the pilot during night operations. In addition to the resolution, image refresh rate, dynamic range, and sensor uniformity over the entire Focal Plane Array (FPA); the imaging system must have the sensitivity to detect the limited night light available filtered through cockpit transparencies. Digital sensor sensitivity is generally measured monochromatically using a laser with a wavelength near the peak detector quantum efficiency, and is generally reported as either the Noise Equivalent Power (NEP) or Noise Equivalent Irradiance (NEI). This paper proposes a test system that measures NEI of Short-Wave Infrared (SWIR) digital imaging systems using a broadband source that simulates the night spectrum. This method has a few advantages over a monochromatic method. Namely, the test conditions provide spectrum closer to what is experienced by the end-user, and the resulting NEI may be compared directly to modeled night glow irradiance calculation. This comparison may be used to assess the Technology Readiness Level of the imaging system for the application. The test system is being developed under a Cooperative Research and Development Agreement (CRADA) with the Air Force Research Laboratory.

  9. Handbook for industrial noise control

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The basic principles of sound, measuring techniques, and instrumentation associated with general purpose noise control are discussed. Means for identifying and characterizing a noise problem so that subsequent work may provide the most efficient and cost effective solution are outlined. A methodology for choosing appropriate noise control materials and the proper implementation of control procedures is detailed. The most significant NASA sponsored contributions to the state of the art development of optimum noise control technologies are described including cases in which aeroacoustics and related research have shed some light on ways of reducing noise generation at its source.

  10. Covariant harmonic oscillators and coupled harmonic oscillators

    NASA Technical Reports Server (NTRS)

    Han, Daesoo; Kim, Young S.; Noz, Marilyn E.

    1995-01-01

    It is shown that the system of two coupled harmonic oscillators shares the basic symmetry properties with the covariant harmonic oscillator formalism which provides a concise description of the basic features of relativistic hadronic features observed in high-energy laboratories. It is shown also that the coupled oscillator system has the SL(4,r) symmetry in classical mechanics, while the present formulation of quantum mechanics can accommodate only the Sp(4,r) portion of the SL(4,r) symmetry. The possible role of the SL(4,r) symmetry in quantum mechanics is discussed.

  11. Harmonic spheres conjecture

    NASA Astrophysics Data System (ADS)

    Sergeev, A. G.

    2010-09-01

    We discuss the harmonic spheres conjecture that the space of harmonic maps of the Riemann sphere into the loop space of a compact Lie group G are related to the moduli space of Yang-Mills G-fields on the four-dimensional Euclidean space.

  12. A gimbaled low noise momentum wheel

    NASA Technical Reports Server (NTRS)

    Bichler, U.; Eckardt, T.

    1993-01-01

    The bus actuators are the heart and at the same time the Achilles' heel of accurate spacecraft stabilization systems, because both their performance and their perturbations can have a deciding influence on the achievable pointing accuracy of the mission. The main task of the attitude actuators, which are mostly wheels, is the generation of useful torques with sufficiently high bandwidth, resolution and accuracy. This is because the bandwidth of the whole attitude control loop and its disturbance rejection capability is dependent upon these factors. These useful torques shall be provided, without - as far as possible - parasitic noise like unbalance forces and torques and harmonics. This is because such variable frequency perturbations excite structural resonances which in turn disturb the operation of sensors and scientific instruments. High accuracy spacecraft will further require bus actuators for the three linear degrees of freedom (DOF) to damp structural oscillations excited by various sources. These actuators have to cover the dynamic range of these disturbances. Another interesting feature, which is not necessarily related to low noise performance, is a gimballing capability which enables, in a certain angular range, a three axis attitude control with only one wheel. The herein presented Teldix MWX, a five degree of freedom Magnetic Bearing Momentum Wheel, incorporates all the above required features. It is ideally suited to support, as a gyroscopic actuator in the attitude control system, all High Pointing Accuracy and Vibration Sensitive space missions.

  13. A gimbaled low noise momentum wheel

    NASA Astrophysics Data System (ADS)

    Bichler, U.; Eckardt, T.

    1993-05-01

    The bus actuators are the heart and at the same time the Achilles' heel of accurate spacecraft stabilization systems, because both their performance and their perturbations can have a deciding influence on the achievable pointing accuracy of the mission. The main task of the attitude actuators, which are mostly wheels, is the generation of useful torques with sufficiently high bandwidth, resolution and accuracy. This is because the bandwidth of the whole attitude control loop and its disturbance rejection capability is dependent upon these factors. These useful torques shall be provided, without - as far as possible - parasitic noise like unbalance forces and torques and harmonics. This is because such variable frequency perturbations excite structural resonances which in turn disturb the operation of sensors and scientific instruments. High accuracy spacecraft will further require bus actuators for the three linear degrees of freedom (DOF) to damp structural oscillations excited by various sources. These actuators have to cover the dynamic range of these disturbances. Another interesting feature, which is not necessarily related to low noise performance, is a gimballing capability which enables, in a certain angular range, a three axis attitude control with only one wheel. The herein presented Teldix MWX, a five degree of freedom Magnetic Bearing Momentum Wheel, incorporates all the above required features. It is ideally suited to support, as a gyroscopic actuator in the attitude control system, all High Pointing Accuracy and Vibration Sensitive space missions.

  14. Technologies for Turbofan Noise Reduction

    NASA Technical Reports Server (NTRS)

    Huff, Dennis

    2005-01-01

    An overview presentation of NASA's engine noise research since 1992 is given for subsonic commercial aircraft applications. Highlights are included from the Advanced Subsonic Technology (AST) Noise Reduction Program and the Quiet Aircraft Technology (QAT) project with emphasis on engine source noise reduction. Noise reduction goals for 10 EPNdB by 207 and 20 EPNdB by 2022 are reviewed. Fan and jet noise technologies are highlighted from the AST program including higher bypass ratio propulsion, scarf inlets, forward-swept fans, swept/leaned stators, chevron nozzles, noise prediction methods, and active noise control for fans. Source diagnostic tests for fans and jets that have been completed over the past few years are presented showing how new flow measurement methods such as Particle Image Velocimetry (PIV) have played a key role in understanding turbulence, the noise generation process, and how to improve noise prediction methods. Tests focused on source decomposition have helped identify which engine components need further noise reduction. The role of Computational AeroAcoustics (CAA) for fan noise prediction is presented. Advanced noise reduction methods such as Hershel-Quincke tubes and trailing edge blowing for fan noise that are currently being pursued n the QAT program are also presented. Highlights are shown form engine validation and flight demonstrations that were done in the late 1990's with Pratt & Whitney on their PW4098 engine and Honeywell on their TFE-731-60 engine. Finally, future propulsion configurations currently being studied that show promise towards meeting NASA's long term goal of 20 dB noise reduction are shown including a Dual Fan Engine concept on a Blended Wing Body aircraft.

  15. Computer program to predict aircraft noise levels

    NASA Technical Reports Server (NTRS)

    Clark, B. J.

    1981-01-01

    Methods developed at the NASA Lewis Research Center for predicting the noise contributions from various aircraft noise sources were programmed to predict aircraft noise levels either in flight or in ground tests. The noise sources include fan inlet and exhaust, jet, flap (for powered lift), core (combustor), turbine, and airframe. Noise propagation corrections are available for atmospheric attenuation, ground reflections, extra ground attenuation, and shielding. Outputs can include spectra, overall sound pressure level, perceived noise level, tone-weighted perceived noise level, and effective perceived noise level at locations specified by the user. Footprint contour coordinates and approximate footprint areas can also be calculated. Inputs and outputs can be in either System International or U.S. customary units. The subroutines for each noise source and propagation correction are described. A complete listing is given.

  16. New aspects of subsonic aerodynamic noise theory

    NASA Technical Reports Server (NTRS)

    Goldstein, M. E.; Howes, W. L.

    1973-01-01

    A theory of aerodynamic noise is presented which differs from Lighthill's theory primarily in the way in which convection of the noise sources is treated. The sound directivity pattern obtained from the present theory agrees better with jet-noise directivity data than does that obtained from Lighthill's theory. The results imply that the shear-noise contribution to jet noise is smaller than previously expected.

  17. Effect of Harmonicity on the Detection of a Signal in a Complex Masker and on Spatial Release from Masking

    PubMed Central

    Klinge, Astrid; Beutelmann, Rainer; Klump, Georg M.

    2011-01-01

    The amount of masking of sounds from one source (signals) by sounds from a competing source (maskers) heavily depends on the sound characteristics of the masker and the signal and on their relative spatial location. Numerous studies investigated the ability to detect a signal in a speech or a noise masker or the effect of spatial separation of signal and masker on the amount of masking, but there is a lack of studies investigating the combined effects of many cues on the masking as is typical for natural listening situations. The current study using free-field listening systematically evaluates the combined effects of harmonicity and inharmonicity cues in multi-tone maskers and cues resulting from spatial separation of target signal and masker on the detection of a pure tone in a multi-tone or a noise masker. A linear binaural processing model was implemented to predict the masked thresholds in order to estimate whether the observed thresholds can be accounted for by energetic masking in the auditory periphery or whether other effects are involved. Thresholds were determined for combinations of two target frequencies (1 and 8 kHz), two spatial configurations (masker and target either co-located or spatially separated by 90 degrees azimuth), and five different masker types (four complex multi-tone stimuli, one noise masker). A spatial separation of target and masker resulted in a release from masking for all masker types. The amount of masking significantly depended on the masker type and frequency range. The various harmonic and inharmonic relations between target and masker or between components of the masker resulted in a complex pattern of increased or decreased masked thresholds in comparison to the predicted energetic masking. The results indicate that harmonicity cues affect the detectability of a tonal target in a complex masker. PMID:22028814

  18. Lab 6: Forced Harmonic Motion Driven harmonic oscillation

    E-print Network

    Gustafsson, Torgny

    Lab 6: Forced Harmonic Motion Driven harmonic oscillation Example: Atomic force microscope watch;Lab 6: Forced Harmonic Motion · For each measurement allow enough time for the system to reach steady, circuit, ... #12;A constant energy flow at steady state ( )F t dF Rx= - 0oin ut PP + = #12;Forced harmonic

  19. Noise reduction of a table saw

    NASA Astrophysics Data System (ADS)

    Carlson, John

    2002-05-01

    The National Institute for Occupational Safety and Health (NIOSH) is sponsoring a design project to address the noise levels that commonly exist at construction worksites. Through engineering control, the problem of noise emission from a table saw will be addressed. The noise emitting sources will be pinpointed using a sound pressure level meter. With this knowledge, the next step will be to reduce the sound pressure levels at the noise sources. This will be done by using noise reduction techniques such as insulation, and vibration dampening. The goal is to reduce the noise emission to a level between 85 and 90 dB(A).

  20. Proceedings of the 1987 national conference on noise control engineering: High technology for noise control

    SciTech Connect

    Tichy, J.; Hayek, S.

    1987-01-01

    This book consists of nine sections, each containing several papers. The section titles are: Emission: Noise Sources; Physical Phenomena; Noise Control Elements; Vibration: Generation, Transmission, Isolation and Reduction; Immission: Physical Aspects of Environmental Noise; Immission: Effects of Noise; Analysis; Requirements; and Biomedical Uses of Acoustics.

  1. Noise properties in an rf-biased Josephson junction noise thermometer

    SciTech Connect

    Seppae, H.

    1984-03-15

    Frequency fluctuation in an rf-biased R-SQUID noise thermometer operating in an nonhysteretic mode is examined. The noise sources caused by the shunt resistor and by the dissipative elements in the tank circuit are included in the model. The results demonstrate that the noise in the tank circuit has a significant influence on the accuracy of the Josephson junction noise thermometer.

  2. The Problems with "Noise Numbers" for Wind Farm Noise Assessment

    ERIC Educational Resources Information Center

    Thorne, Bob

    2011-01-01

    Human perception responds primarily to sound character rather than sound level. Wind farms are unique sound sources and exhibit special audible and inaudible characteristics that can be described as modulating sound or as a tonal complex. Wind farm compliance measures based on a specified noise number alone will fail to address problems with noise

  3. Noise and soundscape in Rome

    NASA Astrophysics Data System (ADS)

    Brambilla, Giovanni

    2001-05-01

    Noise pollution is an old problem in Rome. In 45 B.C. the Lex Julia Municipalis limited carriage traffic in the city center to specific times. Road traffic constitutes the most important and widespread noise source, and several investigations have been conducted since 1972, some aimed at developing a numerical model for predicting the hourly LAeq level. In order to reduce the large impact of this type of noise some measures have been carried out, including surfacing with porous asphalt, erection of noise barriers, limitation in time and spacing of private traffic, etc. However, most of the public complaints deal with noise from equipment operation and recreational activities rather than transportation systems. Moreover, the most famous tourist areas opened to pedestrians only are not as quiet as expected but their sound environment is usually rated more acceptable than noise from other sources at the same level. In compliance with the Italian legislation on noise, the Municipality of Rome issued a noise zoning code for its own territory, and a noise mapping is in progress, pursuant to the requirements of the 2002/49/EC European directive. A Geographical Information System has been also developed to manage all the aspects of noise pollution.

  4. Thermal Conductivity for a Noisy Disordered Harmonic Chain

    E-print Network

    Cedric Bernardin

    2008-08-05

    We consider a $d$-dimensional disordered harmonic chain (DHC) perturbed by an energy conservative noise. We obtain uniform in the volume upper and lower bounds for the thermal conductivity defined through the Green-Kubo formula. These bounds indicate a positive finite conductivity. We prove also that the infinite volume homogenized Green-Kubo formula converges.

  5. Simple harmonic motion displacement x

    E-print Network

    Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University

    1 Simple harmonic motion time (s) displacement x 5cm -5cm 2 4 6 8 10 a) what is the amplitude () of the corresponding circular motion? b) What is the period (T) of the harmonic motion? c) What is the frequency (f)? d of the harmonic oscillation? b) what is the period of the harmonic oscillation? c) what is the frequency

  6. Analysis of Background Seismic Noise Recorded at the Amundsen-Scott South Pole Station, Antarctica

    NASA Astrophysics Data System (ADS)

    Anderson, K. R.; Aster, R.; Beaudoin, B. C.; Butler, R.

    2006-12-01

    A small array of high frequency seismometers was recently placed around the Amundsen-Scott South Pole Station in order to characterize seismic noise generated by the station during operations. This week long experiment, titled, "South Pole Analysis of Machines" or SPAM was conducted in January of 2006 using equipment provided by IRIS PASSCAL to sample the high frequency noise sources generated at the NSF's research base. These data will be correlated to those observed at the ultra quiet GSN seismic station (QSPA) located 5 miles from the base. The purpose of the experiment is to show that although the QSPA sensors are 5 miles away and nearly 1000 feet deep in the ice, there is still a risk of contamination of the signals by cultural noise from the South Pole research base. A Quiet Sector was established around the QSPA station in order to minimize vibrational noise sources, but there is interest in moving some experiments out into the Quiet Sector. Characterizing the noise sources will help us determine the potential reduction in data quality expected at the QSPA station as experiments move closer to the site. Sensors were placed next to the power generators, aircraft taxiway, large antenna towers, as well as at the base of the new station itself. Sensors were also placed between the research base and the QSPA station to get an idea of the propagation of the noise toward the QSPA station. Several high frequency noise sources are clearly seen on all array elements with a number of very clear spectral lines above 1 Hz. These are primarily associated with snow moving tractors and power generators. Smaller signals are seen that may be related to wind loading on the new South Pole elevated station along with harmonics that appear to be correlated with large air handling equipment in the station. Also evident are air operations with landings, takeoffs, taxi and idling C-130's evident. Although greatly attenuated, almost all of these signals are observed at the QSPA station. Therefore, encroachment of any of these noise sources into the Quiet Sector will adversely affect the signal-to-noise ratio in the frequencies above 1 Hz for seismograms recorded at QSPA. At this point, QSPA is by far the quietest seismic station in the world at these high frequencies. We hope that we can preserve these low background noise levels and keep the QSPA one of the quietest places on Earth.

  7. Multidimensional high harmonic spectroscopy

    NASA Astrophysics Data System (ADS)

    Bruner, Barry D.; Soifer, Hadas; Shafir, Dror; Serbinenko, Valeria; Smirnova, Olga; Dudovich, Nirit

    2015-09-01

    High harmonic generation (HHG) has opened up a new frontier in ultrafast science where attosecond time resolution and Angstrom spatial resolution are accessible in a single measurement. However, reconstructing the dynamics under study is limited by the multiple degrees of freedom involved in strong field interactions. In this paper we describe a new class of measurement schemes for resolving attosecond dynamics, integrating perturbative nonlinear optics with strong-field physics. These approaches serve as a basis for multidimensional high harmonic spectroscopy. Specifically, we show that multidimensional high harmonic spectroscopy can measure tunnel ionization dynamics with high precision, and resolves the interference between multiple ionization channels. In addition, we show how multidimensional HHG can function as a type of lock-in amplifier measurement. Similar to multi-dimensional approaches in nonlinear optical spectroscopy that have resolved correlated femtosecond dynamics, multi-dimensional high harmonic spectroscopy reveals the underlying complex dynamics behind attosecond scale phenomena.

  8. The Airframe Noise Reduction Challenge

    NASA Technical Reports Server (NTRS)

    Lockhard, David P.; Lilley, Geoffrey M.

    2004-01-01

    The NASA goal of reducing external aircraft noise by 10 dB in the near-term presents the acoustics community with an enormous challenge. This report identifies technologies with the greatest potential to reduce airframe noise. Acoustic and aerodynamic effects will be discussed, along with the likelihood of industry accepting and implementing the different technologies. We investigate the lower bound, defined as noise generated by an aircraft modified with a virtual retrofit capable of eliminating all noise associated with the high lift system and landing gear. However, the airframe noise of an aircraft in this 'clean' configuration would only be about 8 dB quieter on approach than current civil transports. To achieve the NASA goal of 10 dB noise reduction will require that additional noise sources be addressed. Research shows that energy in the turbulent boundary layer of a wing is scattered as it crosses trailing edge. Noise generated by scattering is the dominant noise mechanism on an aircraft flying in the clean configuration. Eliminating scattering would require changes to much of the aircraft, and practical reduction devices have yet to receive serious attention. Evidence suggests that to meet NASA goals in civil aviation noise reduction, we need to employ emerging technologies and improve landing procedures; modified landing patterns and zoning restrictions could help alleviate aircraft noise in communities close to airports.

  9. NASA progress in aircraft noise prediction

    NASA Technical Reports Server (NTRS)

    Raney, J. P.; Padula, S. L.; Zorumski, W. E.

    1981-01-01

    Langley Research Center efforts to develop a methodology for predicting the effective perceived noise level (EPNL) produced by jet-powered CTOL aircraft to an accuracy of + or - 1.5 dB are summarized with emphasis on the aircraft noise prediction program (ANOPP) which contains a complete set of prediction methods for CTOL aircraft including propulsion system noise sources, aerodynamic or airframe noise sources, forward speed effects, a layered atmospheric model with molecular absorption, ground impedance effects including excess ground attenuation, and a received noise contouring capability. The present state of ANOPP is described and its accuracy and applicability to the preliminary aircraft design process is assessed. Areas are indicated where further theoretical and experimental research on noise prediction are needed. Topics covered include the elements of the noise prediction problem which are incorporated in ANOPP, results of comparisons of ANOPP calculations with measured noise levels, and progress toward treating noise as a design constraint in aircraft system studies.

  10. Survey of noise in coal preparation plants.

    PubMed

    Vipperman, Jeffrey S; Bauer, Eric R; Babich, Daniel R

    2007-01-01

    In response to the continuing problem of noise induced hearing loss (NIHL) among mine workers, the National Institute for Occupational Safety and Health (NIOSH) has conducted numerous noise surveys in coal preparation plants. The research, consisting of worker dose monitoring, task observations, and equipment noise profiling, was completed in eight separate preparation plants. Worker dose monitoring was conducted for three shifts in most cases. Workers experiencing higher than allowable doses were task-observed for one full shift to correlate dose to noise source(s). Finally, noise levels on all floors, and in lunch rooms and control rooms, were characterized. Results indicate that only workers who routinely spend a significant portion of their shift in the plants (away from the control rooms) are susceptible to overexposure from noise. Certain pieces of equipment (screens, centrifuges, sieve bends) are the loudest primary noise sources responsible for the worker noise exposures. PMID:17297775

  11. Survey of noise in coal preparation plants

    SciTech Connect

    Vipperman, J.S.; Bauer, E.R.; Babich, D.R.

    2007-01-15

    In response to the continuing problem of noise induced hearing loss (NIHL) among mine workers, the National Institute for Occupational Safety and Health (NIOSH) has conducted numerous noise surveys in coal preparation plants. The research, consisting of worker dose monitoring, task observations, and equipment noise profiling, was completed in eight separate preparation plants. Worker dose monitoring was conducted for three shifts in most cases. Workers experiencing higher than allowable doses were task-observed for one full shift to correlate dose to noise source(s). Finally, noise levels on all floors, and in lunch rooms and control rooms, were characterized. Results indicate that only workers who routinely spend a significant portion of their shift in the plants (away from the control rooms) are susceptible to overexposure from noise. Certain pieces of equipment (screens, centrifuges, sieve bends) are the loudest primary noise sources responsible for the worker noise exposures.

  12. Second-harmonic generation from complementary split-ring resonators

    E-print Network

    classical theory that leads to good agreement regarding the relative and the absolute nonlinear signal strengths. The hydrodynamic convective contribution is found to be the dominant source of second- harmonic

  13. Reduction of ground noise in the transmitter crowbar instrumentation system by the use of baluns and other noise rejection methods

    NASA Technical Reports Server (NTRS)

    Daeges, J.; Bhanji, A.

    1987-01-01

    Electrical noise interference in the transmitter crowbar monitoring instrumentation system creates false sensing of crowbar faults during a crowbar firing. One predominant source of noise interference is the conduction of currents in the instrumentation cable shields. Since these circulating ground noise currents produce noise that is similar to the crowbar fault sensing signals, such noise interference reduces the ability to determine true crowbar faults.

  14. Impact of harmonics on the interpolated DFT frequency estimator

    NASA Astrophysics Data System (ADS)

    Belega, Daniel; Petri, Dario; Dallet, Dominique

    2016-01-01

    The paper investigates the effect of the interference due to spectral leakage on the frequency estimates returned by the Interpolated Discrete Fourier Transform (IpDFT) method based on the Maximum Sidelobe Decay (MSD) windows when harmonically distorted sine-waves are analyzed. The expressions for the frequency estimation error due to both the image of the fundamental tone and harmonics, and the frequency estimator variance due to the combined effect of both the above disturbances and wideband noise are derived. The achieved expressions allow us to identify which harmonics significantly contribute to frequency estimation uncertainty. A new IpDFT-based procedure capable to compensate all the significant effects of harmonics on the frequency estimation accuracy is then proposed. The derived theoretical results are verified through computer simulations. Moreover, the accuracy of the proposed procedure is compared with those of other state-of-the-art frequency estimation methods by means of both computer simulations and experimental results.

  15. Langevin equation approach to reactor noise analysis: stochastic transport equation

    SciTech Connect

    Akcasu, A.Z. ); Stolle, A.M. )

    1993-01-01

    The application of the Langevin equation method to the study of fluctuations in the space- and velocity-dependent neutron density as well as in the detector outputs in nuclear reactors is presented. In this case, the Langevin equation is the stochastic linear neutron transport equation with a space- and velocity-dependent random neutron source, often referred to as the noise equivalent source (NES). The power spectral densities (PSDs) of the NESs in the transport equation, as well as in the accompanying detection rate equations, are obtained, and the cross- and auto-power spectral densities of the outputs of pairs of detectors are explicitly calculated. The transport-level expression for the R([omega]) ratio measured in the [sup 252]Cf source-driven noise analysis method is also derived. Finally, the implementation of the Langevin equation approach at different levels of approximation is discussed, and the stochastic one-speed transport and one-group P[sub 1] equations are derived by first integrating the stochastic transport equation over speed and then eliminating the angular dependence by a spherical harmonics expansion. By taking the large transport rate limit in the P[sub 1] description, the stochastic diffusion equation is obtained as well as the PSD of the NES in it. This procedure also leads directly to the stochastic Fick's law.

  16. The behavior of quantization spectra as a function of signal-to-noise ratio

    NASA Technical Reports Server (NTRS)

    Flanagan, M. J.

    1991-01-01

    An expression for the spectrum of quantization error in a discrete-time system whose input is a sinusoid plus white Gaussian noise is derived. This quantization spectrum consists of two components: a white-noise floor and spurious harmonics. The dithering effect of the input Gaussian noise in both components of the spectrum is considered. Quantitative results in a discrete Fourier transform (DFT) example show the behavior of spurious harmonics as a function of the signal-to-noise ratio (SNR). These results have strong implications for digital reception and signal analysis systems. At low SNRs, spurious harmonics decay exponentially on a log-log scale, and the resulting spectrum is white. As the SNR increases, the spurious harmonics figure prominently in the output spectrum. A useful expression is given that roughly bounds the magnitude of a spurious harmonic as a function of the SNR.

  17. Fan and pump noise control

    NASA Technical Reports Server (NTRS)

    Misoda, J.; Magliozzi, B.

    1973-01-01

    The development is described of improved, low noise level fan and pump concepts for the space shuttle. In addition, a set of noise design criteria for small fans and pumps was derived. The concepts and criteria were created by obtaining Apollo hardware test data to correlate and modify existing noise estimating procedures. A set of space shuttle selection criteria was used to determine preliminary fan and pump concepts. These concepts were tested and modified to obtain noise sources and characteristics which yield the design criteria and quiet, efficient space shuttle fan and pump concepts.

  18. Enhanced Harmonic Up-Conversion Using a Hybrid HGHG-EEHG Scheme

    SciTech Connect

    Marksteiner, Quinn R.; Bishofberger, Kip A.; Carlsten, Bruce E.; Freund, Henry P.; Yampolsky, Nikolai A.

    2012-04-30

    We introduce a novel harmonic generation scheme which can be used, for a given desired harmonic, to achieve higher bunching factors, weaker chicanes, and/or less final energy spread than can be achieved using Echo-Enabled Harmonic Generation. This scheme only requires a single laser with relatively low power, and is a hybrid of High-Gain Harmonic Generation and EEHG. We present a design of this scheme applied to the Next Generation Light Source (NGLS).

  19. A Primer on the Physical Principles of Tissue Harmonic Imaging.

    PubMed

    Anvari, Arash; Forsberg, Flemming; Samir, Anthony E

    2015-01-01

    Tissue harmonic imaging (THI) is a routinely used component of diagnostic ultrasonography (US). In this method, higher-frequency harmonic waves produced by nonlinear fundamental US wave propagation are used to generate images that contain fewer artifacts than those seen on conventional fundamental wave US tissue imaging. Harmonic frequencies are integer multiples of the fundamental frequency. The majority of current clinical US systems use second harmonic echoes for THI image formation. Image processing techniques (ie, bandwidth receive filtering, pulse inversion, side-by-side phase cancellation, and pulse-coded harmonics) are used to eliminate the fundamental frequency echoes, and the remaining harmonic frequency data are used to generate the diagnostic image. Advantages of THI include improved signal-to-noise ratio and reduced artifacts produced by side lobes, grating lobes, and reverberation. THI has been accepted in US practice, and variations of the technology are available on most US systems typically used for diagnostic imaging in radiologic practice. Differential THI is a further improvement that combines the advantages of THI, including superior tissue definition and reduced speckle artifact, with the greater penetration of lower frequency US, which permits high-quality harmonic imaging at greater depth than could previously be performed with conventional THI. (©)RSNA, 2015. PMID:26562232

  20. Landing gear and cavity noise prediction

    NASA Technical Reports Server (NTRS)

    Bliss, D. B.; Hayden, R. E.

    1976-01-01

    Prediction of airframe noise radiation from the landing gear and wheel wells of commercial aircraft is examined. Measurements of these components on typical aircraft are presented and potential noise sources identified. Semiempirical expressions for the sound generation by these sources are developed from available experimental data and theoretical analyses. These expressions are employed to estimate the noise radiation from the landing gear and wheel wells for a typical aircraft and to rank order the component sources.

  1. General Aviation Interior Noise. Part 3; Noise Control Measure Evaluation

    NASA Technical Reports Server (NTRS)

    Unruh, James F.; Till, Paul D.; Palumbo, Daniel L. (Technical Monitor)

    2002-01-01

    The work reported herein is an extension to the work accomplished under NASA Grant NAG1-2091 on the development of noise/source/path identification techniques for single engine propeller driven General Aviation aircraft. The previous work developed a Conditioned Response Analysis (CRA) technique to identify potential noise sources that contributed to the dominating tonal responses within the aircraft cabin. The objective of the present effort was to improve and verify the findings of the CRA and develop and demonstrate noise control measures for single engine propeller driven General Aviation aircraft.

  2. Harmonic signal extraction from noisy chaotic interferencebased on synchrosqueezed wavelet transform

    NASA Astrophysics Data System (ADS)

    Wang, Xiang-Li; Wang, Wen-Bo

    2015-08-01

    For the harmonic signal extraction from chaotic interference, a harmonic signal extraction method is proposed based on synchrosqueezed wavelet transform (SWT). First, the mixed signal of chaotic signal, harmonic signal, and noise is decomposed into a series of intrinsic mode-type functions by synchrosqueezed wavelet transform (SWT) then the instantaneous frequency of intrinsic mode-type functions is analyzed by using of Hilbert transform, and the harmonic extraction is realized. In experiments of harmonic signal extraction, the Duffing and Lorenz chaotic signals are selected as interference signal, and the mixed signal of chaotic signal and harmonic signal is added by Gauss white noises of different intensities. The experimental results show that when the white noise intensity is in a certain range, the extracting harmonic signals measured by the proposed SWT method have higher precision, the harmonic signal extraction effect is obviously superior to the classical empirical mode decomposition method. Project supported by the National Natural Science Foundation of China (Grant No. 61171075), the Natural Science Foundation of Hubei Province, China (Grant No. 2015CFB424), the State Key Laboratory Foundation of Satellite Ocean Environment Dynamics, China (Grant No. SOED1405), the Hubei Provincial Key Laboratory Foundation of Metallurgical Industry Process System Science, China (Grant No. Z201303).

  3. Second Harmonic Hectometric Radio Emission at Jupiter

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Gurnett, D. A.; Groene, J. B.

    1998-01-01

    Galileo has been in orbit around Jupiter since December 1995. The plasma wave instrument on board the spacecraft has occasionally detected a rotationally modulated attenuation band in the hectometric (HOM) emission that most likely is due to scattering of the radiation from density fluctuations along the Io L-shell, as reported earlier. The occurrence of the attenuation band is likely to be dependent on Io activity and the presence of density scattering centers along the Io-L-shell as well as the location of the source region. Some of the attenuation bands show clear indications of second harmonic emission. Without polarization measurements, it is difficult to place constraints on the local generation conditions based on the cyclotron maser instability, but the results imply that second harmonic emission could be present in the decametric (DAM) radiation as well. A survey of the data has revealed about 30 examples of second harmonic HOM.

  4. Second Harmonic Hectometric Radio Emission at Jupiter

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Gurnett, D. A.; Groene, J. B.

    1998-01-01

    Galileo has been in orbit around Jupiter since December 1995. The plasma wave instrument on board the spacecraft has occasionally detected a rotationally modulated attenuation band in the hectometric (HOM) emission that most likely is due to scattering of the radiation from density fluctuations along the Io L-shell, as reported earlier. The occurrence of the attenuation band is likely to be dependent on Io activity and the presence of density scattering centers along the Io L-shell as well as the location of the source region. Some of the attenuation bands show clear indications of second harmonic emission. Without polarization measurements, it is difficult to place constraints on the local generation conditions based on the cyclotron maser instability, but the results imply that second harmonic emission could be present in the decametric (DAM) radiation as well. A survey of the data has revealed about 30 examples of second harmonic HOM.

  5. Aircraft interior noise reduction by alternate resonance tuning

    NASA Technical Reports Server (NTRS)

    Bliss, Donald B.; Gottwald, James A.; Gustaveson, Mark B.; Burton, James R., III; Castellino, Craig

    1989-01-01

    Existing interior noise reduction techniques for aircraft fuselages perform reasonably well at higher frequencies, but are inadequate at lower, particularly with respect to the low blade passage harmonics with high forcing levels found in propeller aircraft. A method is being studied which considers aircraft fuselages lines with panels alternately tuned to frequencies above and below the frequency to be attenuated. Adjacent panels would oscillate at equal amplitude, to give equal source strength, but with opposite phase. Provided these adjacent panels are acoustically compact, the resulting cancellation causes the interior acoustic modes to become cut off and therefore be non-propagating and evanescent. This interior noise reduction method, called Alternate Resonance Tuning (ART), is currently being investigated both theoretically and experimentally. This new concept has potential application to reducing interior noise due to the propellers in advanced turboprop aircraft as well as for existing aircraft configurations. This program summarizes the work carried out at Duke University during the third semester of a contract supported by the Structural Acoustics Branch at NASA Langley Research Center.

  6. The effect of towed array orientation on the 3D acoustic picture for sound sources and the vertical ambient noise profile

    E-print Network

    Anderson, Arthur D., III (Arthur Douglas)

    2015-01-01

    The three dimensional (3D) acoustic arrival structure of the undersea ambient noise field is important for many reasons, and can give us significant insights into the Arctic environment. For example, the anthropomorphic ...

  7. Jet shielding of jet noise

    NASA Technical Reports Server (NTRS)

    Simonich, J. C.; Amiet, R. K.; Schlinker, R. H.

    1986-01-01

    An experimental and theoretical study was conducted to develop a validated first principle analysis for predicting the jet noise reduction achieved by shielding one jet exhaust flow with a second, closely spaced, identical jet flow. A generalized fuel jet noise analytical model was formulated in which the acoustic radiation from a source jet propagates through the velocity and temperature discontinuity of the adjacent shielding jet. Input variables to the prediction procedure include jet Mach number, spacing, temperature, diameter, and source frequency. Refraction, diffraction, and reflection effects, which control the dual jet directivity pattern, are incorporated in the theory. The analysis calculates the difference in sound pressure level between the dual jet configuration and the radiation field based on superimposing two independent jet noise directivity patterns. Jet shielding was found experimentally to reduce noise levels in the common plane of the dual jet system relative to the noise generated by two independent jets.

  8. Nonlinear harmonic generation in the STARS FEL

    NASA Astrophysics Data System (ADS)

    Abo-Bakr, M.; Goldammer, K.; Kamps, T.; Knobloch, J.; Kuske, B.; Leitner, T.; Meseck, A.

    2008-08-01

    BESSY proposes to build STARS, an FEL to demonstrate cascaded High Gain Harmonic Generation (HGHG). In two HGHG stages, a laser source of 700-900 nm is converted down to a wavelength of 40-70 nm. The STARS facility consists of a normal-conducting RF photoinjector, three superconducting TESLA-type acceleration modules, a magnetic bunch compressor and two stages of HGHG, each consisting of a modulator, dispersive chicane and a radiator. At the entrance of the undulator section, the beam energy is 325 MeV and the peak current is about 500 A. With these parameters, the STARS FEL reaches saturation with a peak power of 100-350 MW. A superradiant mode is also foreseen which boosts the radiation power to the GW-level. Due to nonlinear harmonic generation (NHG), free electron lasers also radiate coherently at higher harmonics of the FEL resonant frequency. STARS can hence extend its output range to even shorter wavelengths. This paper presents studies of the STARS harmonic content in the wavelength range of 6-20 nm. Seeding with high harmonic generation pulses at 32 nm is also discussed.

  9. Optical harmonic generator

    DOEpatents

    Summers, M.A.; Eimerl, D.; Boyd, R.D.

    1982-06-10

    A pair of uniaxial birefringent crystal elements are fixed together to form a serially arranged, integral assembly which, alternatively, provides either a linearly or elliptically polarized second-harmonic output wave or a linearly polarized third-harmonic output wave. The extraordinary or e directions of the crystal elements are oriented in the integral assembly to be in quadrature (90/sup 0/). For a second-harmonic generation in the Type-II-Type-II angle tuned case, the input fundamental wave has equal amplitude o and e components. For a third-harmonic generation, the input fundamental wave has o and e components whose amplitudes are in a ratio of 2:1 (o:e reference first crystal). In the typical case of a linearly polarized input fundamental wave this can be accomplished by simply rotating the crystal assembly about the input beam direction by 10/sup 0/. For both second and third harmonic generation input precise phase-matching is achieved by tilting the crystal assembly about its two sensitive axeses (o).

  10. Using rapid assessment to evaluate noise on an in-patient unit.

    PubMed

    Deitrick, Lynn M; Kennedy, Paulette; Cyriax, Carol; Davies-Hathen, Nancy

    2009-01-01

    Rapid assessment was used to evaluate a noise problem on a busy, high-traffic, high-acuity medical/surgical telemetry unit over a 4-week period. Six sources of environmental noise were identified including conversational noise, noise from doors, noise from housekeeping activities, noise from the pneumatic message tube station, hallway noise, and miscellaneous noise. Our study also demonstrates the value of rapid-assessment methodology for the evaluation of clinical problems such as noise. PMID:19092476

  11. System Measures Thermal Noise In A Microphone

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J.; Ngo, Kim Chi T.

    1994-01-01

    Vacuum provides acoustic isolation from environment. System for measuring thermal noise of microphone and its preamplifier eliminates some sources of error found in older systems. Includes isolation vessel and exterior suspension, acting together, enables measurement of thermal noise under realistic conditions while providing superior vibrational and accoustical isolation. System yields more accurate measurements of thermal noise.

  12. Fan Broadband Interaction Noise Modeling Sheryl Grace

    E-print Network

    Grace, Sheryl M.

    with the RSI method to compute broadband interaction noise downstream of a turbofan engine's fan stage of broadband turbofan, fan-stage, interaction noise is considered. The RSI code for broadband noise prediction code.1 Predictions from the RSI method for the scaled turbofan used in the source diagnostic test (SDT

  13. INFERRING OCEAN TEMPERATURE VARIATIONS FROM SHIPPING NOISE

    E-print Network

    Jesus, Sérgio M.

    INFERRING OCEAN TEMPERATURE VARIATIONS FROM SHIPPING NOISE Ana Bela Santosa , Paulo Felisbertoa we consider distant ship noise as an opportunity source characterized by a few low fre- quency to be applied for long periods of time. Predominant acoustic noise in the ocean is due to shipping, which

  14. Booster double harmonic setup notes

    SciTech Connect

    Gardner, C. J.

    2015-02-17

    The motivation behind implementing a booster double harmonic include the reduced transverse space charge force from a reduced peak beam current and reduced momentum spread of the beam, both of which can be achieved from flattening the RF bucket. RF capture and acceleration of polarized protons (PP) is first set up in the single harmonic mode with RF harmonic h=1. Once capture and acceleration have been set up in the single harmonic mode, the second harmonic system is brought on and programmed to operate in concert with the single harmonic system.

  15. Harmonic Spatial Coherence Imaging: An Ultrasonic Imaging Method Based on Backscatter Coherence

    PubMed Central

    Dahl, Jeremy J; Jakovljevic, Marko; Pinton, Gianmarco F.; Trahey, Gregg E.

    2012-01-01

    HSCI and SLSC imaging less sensitive to clutter because it has low spatial coherence. The method is based on the coherence of the second harmonic backscatter. Because the same signals that are used to construct harmonic B-mode images are also used to construct HSCI images, the benefits obtained with harmonic imaging are also applicable to HSCI. Harmonic imaging has been the primary tool for suppressing clutter in diagnostic ultrasound imaging, however second harmonic echoes are not necessarily immune to the effects of clutter. HSCI and SLSC imaging are less sensitive to clutter because it has low spatial coherence. Harmonic Spatial Coherence Imaging shows favorable imaging characteristics such as improved contrast-to-noise ratio (CNR), improved speckle signal-to-noise ratio (SNR), and better delineation of borders and other structures compared to fundamental and harmonic B-mode imaging. CNRs of up to 1.9 were obtained from in vivo imaging of human cardiac tissue with HSCI, compared to 0.6, 0.9, and 1.5 in fundamental B-mode, harmonic B-mode, and SLSC imaging, respectively. In vivo experiments in human liver tissue demonstrated SNRs of up to 3.4 for HSCI compared to 1.9 for harmonic B-mode. Nonlinear simulations of a heart chamber model were consistent with the in vivo experiments. PMID:22547276

  16. Aircraft turbofan noise

    NASA Technical Reports Server (NTRS)

    Groeneweg, J. F.; Rice, E. J.

    1983-01-01

    Turbofan noise generation and suppression in aircraft engines are reviewed. The chain of physical processes which connect unsteady flow interactions with fan blades to far field noise is addressed. Mechanism identification and description, duct propagation, radiation and acoustic suppression are discussed. The experimental technique of fan inflow static tests are discussed. Rotor blade surface pressure and wake velocity measurements aid in the determination of the types and strengths of the generation mechanisms. Approaches to predicting or measuring acoustic mode content, optimizing treatment impedance to maximize attenuation, translating impedance into porous wall structure and interpreting far field directivity patterns are illustrated by comparisons of analytical and experimental results. The interdependence of source and acoustic treatment design to minimize far field noise is emphasized. Area requiring further research are discussed and the relevance of aircraft turbofan results to quieting other turbomachinery installations is addressed.

  17. Road Traffic Noise

    NASA Astrophysics Data System (ADS)

    Beckenbauer, Thomas

    Road traffic is the most interfering noise source in developed countries. According to a publication of the European Union (EU) at the end of the twentieth century [1], about 40% of the population in 15 EU member states is exposed to road traffic noise at mean levels exceeding 55 dB(A). Nearly 80 million people, 20% of the population, are exposed to levels exceeding 65 dB(A) during daytime and more than 30% of the population is exposed to levels exceeding 55 dB(A) during night time. Such high noise levels cause health risks and social disorders (aggressiveness, protest, and helplessness), interference of communication and disturbance of sleep; the long- and short-term consequences cause adverse cardiovascular effects, detrimental hormonal responses (stress hormones), and possible disturbance of the human metabolism (nutrition) and the immune system. Even performance at work and school could be impaired.

  18. Semiconductor Laser Low Frequency Noise Characterization

    NASA Technical Reports Server (NTRS)

    Maleki, Lute; Logan, Ronald T.

    1996-01-01

    This work summarizes the efforts in identifying the fundamental noise limit in semiconductor optical sources (lasers) to determine the source of 1/F noise and it's associated behavior. In addition, the study also addresses the effects of this 1/F noise on RF phased arrays. The study showed that the 1/F noise in semiconductor lasers has an ultimate physical limit based upon similar factors to fundamental noise generated in other semiconductor and solid state devices. The study also showed that both additive and multiplicative noise can be a significant detriment to the performance of RF phased arrays especially in regard to very low sidelobe performance and ultimate beam steering accuracy. The final result is that a noise power related term must be included in a complete analysis of the noise spectrum of any semiconductor device including semiconductor lasers.

  19. Harmonic prime movers

    NASA Astrophysics Data System (ADS)

    Rice, Ian; Smith, Gordon

    2005-09-01

    Western Kentucky University is undertaking the development of a thermoacoustically powered acoustic agglomerator as a means of pretreating exhaust from coal generators before entering standard industrial electrostatic precipitators. In order to fulfill the design requirement of maintaining a clean, isolated environment for the thermoacoustic components, it will be necessary to operate a thermoacoustic prime mover in a harmonic mode, which normally is not a desirable feature in typical devices. Details of a harmonic-mode prime mover will be presented. [Work supported by KY EPSCoR and the Western Kentucky Office of Sponsored Programs.

  20. The development of experimental techniques for the study of helicopter rotor noise

    NASA Technical Reports Server (NTRS)

    Widnall, S. E.; Harris, W. L.; Lee, Y. C. A.; Drees, H. M.

    1974-01-01

    The features of existing wind tunnels involved in noise studies are discussed. The acoustic characteristics of the MIT low noise open jet wind tunnel are obtained by employing calibration techniques: one technique is to measure the decay of sound pressure with distance in the far field; the other technique is to utilize a speaker, which was calibrated, as a sound source. The sound pressure level versus frequency was obtained in the wind tunnel chamber and compared with the corresponding calibrated values. Fiberglas board-block units were installed on the chamber interior. The free field was increased significantly after this treatment and the chamber cut-off frequency was reduced to 160 Hz from the original designed 250 Hz. The flow field characteristics of the rotor-tunnel configuration were studied by using flow visualization techniques. The influence of open-jet shear layer on the sound transmission was studied by using an Aeolian tone as the sound source. A dynamometer system was designed to measure the steady and low harmonics of the rotor thrust. A theoretical Mach number scaling formula was developed to scale the rotational noise and blade slap noise data of model rotors to full scale helicopter rotors.

  1. Interior noise prediction methodology: ATDAC theory and validation

    NASA Technical Reports Server (NTRS)

    Mathur, Gopal P.; Gardner, Bryce K.

    1992-01-01

    The Acoustical Theory for Design of Aircraft Cabins (ATDAC) is a computer program developed to predict interior noise levels inside aircraft and to evaluate the effects of different aircraft configurations on the aircraft acoustical environment. The primary motivation for development of this program is the special interior noise problems associated with advanced turboprop (ATP) aircraft where there is a tonal, low frequency noise problem. Prediction of interior noise levels requires knowledge of the energy sources, the transmission paths, and the relationship between the energy variable and the sound pressure level. The energy sources include engine noise, both airborne and structure-borne; turbulent boundary layer noise; and interior noise sources such as air conditioner noise and auxiliary power unit noise. Since propeller and engine noise prediction programs are widely available, they are not included in ATDAC. Airborne engine noise from any prediction or measurement may be input to this program. This report describes the theory and equations implemented in the ATDAC program.

  2. Noise research of microbolometer array under temperature environment

    NASA Astrophysics Data System (ADS)

    Gao, You-tang; Chen, Hua-min; Xu, Yuan; Sun, Xia-nan; Chang, Ben-kang

    2011-08-01

    Thermal noise and steady performance of infrared sight has always been the concern of military production under temperature test conditions. According to military optical instrument environmental test standard of GJB1788-93 and MIL-STD-810F in infrared detector test method, the test procedure and test method of 320×240 ?-Si micro-bolometer array of UL01011-type were given in detail. By using thermal noise theory and mathematical model analysis method, the noise models of Johnson noise, 1/ f noise, noise caused by electrothermal effect in temperature shock test condition, preamplifier noise and other noise models of micro-bolometer array were established and analyzed. Noise models under temperature environment were analyzed. The results are as follows: the basic noise of micro-bolometer array is the temperature fluctuating noise (thermal noise) which consists of background radiation fluctuation noise and thermal conductivity noise. In addition, there is Johnson noise, 1/ f noise, noise caused by electrothermal effect and preamplifier noise etc. Among them thermal noise, Johnson noise and 1/ f noise is the main noise source which determines the limited performances of micro-bolometer array.

  3. Pulse-modulated second harmonic imaging microscope quantitatively demonstrates marked increase of collagen in tumor after chemotherapy

    E-print Network

    Raja, Anju M.

    Pulse-modulated second harmonic imaging microscopes (PM-SHIMs) exhibit improved signal-to-noise ratio (SNR) over conventional SHIMs on sensitive imaging and quantification of weak collagen signals inside tissues. We quantify ...

  4. Circular current loops, magnetic dipoles and spherical harmonic analysis.

    USGS Publications Warehouse

    Alldredge, L.R.

    1980-01-01

    Spherical harmonic analysis (SHA) is the most used method of describing the Earth's magnetic field, even though spherical harmonic coefficients (SHC) almost completely defy interpretation in terms of real sources. Some moderately successful efforts have been made to represent the field in terms of dipoles placed in the core in an effort to have the model come closer to representing real sources. Dipole sources are only a first approximation to the real sources which are thought to be a very complicated network of electrical currents in the core of the Earth. -Author

  5. Experimental testing of the noise-canceling processor.

    PubMed

    Collins, Michael D; Baer, Ralph N; Simpson, Harry J

    2011-09-01

    Signal-processing techniques for localizing an acoustic source buried in noise are tested in a tank experiment. Noise is generated using a discrete source, a bubble generator, and a sprinkler. The experiment has essential elements of a realistic scenario in matched-field processing, including complex source and noise time series in a waveguide with water, sediment, and multipath propagation. The noise-canceling processor is found to outperform the Bartlett processor and provide the correct source range for signal-to-noise ratios below -10 dB. The multivalued Bartlett processor is found to outperform the Bartlett processor but not the noise-canceling processor. PMID:21895064

  6. Quaternionic Harmonic Analysis of Texture

    Energy Science and Technology Software Center (ESTSC)

    2012-10-01

    QHAT uses various functions and data structures native to MATLAB to analyze crystallographic texture information using harmonic functions on the space of rotations represented as normalized quaternions. These harmonic functions generalize the spherical harmonics in three dimensions, and form the basis for the irreducible representations of the four-dimensional rotation group. This allows the basis of harmonic functions to be reduced to linearly independent combinations that satisfy the crystal and sample symmetry point groups.

  7. Noise absorbing composite materials applied in domestic trucks

    NASA Astrophysics Data System (ADS)

    Gumerov, I. F.; Shafigullin, L. N.; Vakhitova, S. M.; Shaekhova, I. F.

    2014-12-01

    One of the basic indicators of the modern automobile is the low noise level. Noise level decrease is reached due to: 1) sources of noise elimination due to change of a design of elements and automobile systems; 2) application of modern noise insulation and noise absorption materials. The following noise absorption materials in domestic trucks are applied: fiberglass plastic, basaltic fireproof roll material (BFRM), AA SMT, AL-aralamino, isomat.

  8. HARMONIC FUNCTIONS TSOGTGEREL GANTUMUR

    E-print Network

    Tsogtgerel, Gantumur

    properties of harmonic functions, by using relatively elementary methods. Contents 1. Introduction 1 2. Green 7. Green's function approach 9 8. Poisson's formula 12 9. Converse to the mean value property 15 10 law of interaction between point charges was discovered experimentally by Charles Augustin de Coulomb

  9. Harmonic Maps with Potentials

    E-print Network

    Volker Branding

    2015-10-29

    We study harmonic maps from surfaces coupled to a scalar and a two-form potential, which arise as critical points of the action of the full bosonic string. We investigate several analytic and geometric properties of these maps and prove an existence result by the heat flow method.

  10. Harmonically excited orbital variations

    SciTech Connect

    Morgan, T.

    1985-08-06

    Rephrasing the equations of motion for orbital maneuvers in terms of Lagrangian generalized coordinates instead of Newtonian rectangular cartesian coordinates can make certain harmonic terms in the orbital angular momentum vector more readily apparent. In this formulation the equations of motion adopt the form of a damped harmonic oscillator when torques are applied to the orbit in a variationally prescribed manner. The frequencies of the oscillator equation are in some ways unexpected but can nonetheless be exploited through resonant forcing functions to achieve large secular variations in the orbital elements. Two cases are discussed using a circular orbit as the control case: (1) large changes in orbital inclination achieved by harmonic excitation rather than one impulsive velocity change, and (2) periodic and secular changes to the longitude of the ascending node using both stable and unstable excitation strategies. The implications of these equations are also discussed for both artificial satellites and natural satellites. For the former, two utilitarian orbits are suggested, each exploiting a form of harmonic excitation. 5 refs.

  11. Extended range harmonic filter

    NASA Technical Reports Server (NTRS)

    Jankowski, H.; Geia, A. J.; Allen, C. C.

    1973-01-01

    Two types of filters, leaky-wall and open-guide, are combined into single component. Combination gives 10 db or greater additional attenuation to fourth and higher harmonics, at expense of increasing loss of fundamental frequency by perhaps 0.05 to 0.08 db. Filter is applicable to all high power microwave transmitters, but is especially desirable for satellite transmitters.

  12. A Harmonic Motion Experiment

    ERIC Educational Resources Information Center

    Gluck, P.; Krakower, Zeev

    2010-01-01

    We present a unit comprising theory, simulation and experiment for a body oscillating on a vertical spring, in which the simultaneous use of a force probe and an ultrasonic range finder enables one to explore quantitatively and understand many aspects of simple and damped harmonic motions. (Contains 14 figures.)

  13. Introducing Simple Harmonic Motion.

    ERIC Educational Resources Information Center

    Roche, John

    2002-01-01

    Explains the origin and significance of harmonic motion which is an important topic that has wide application in the world. Describes the phenomenon by using an auxiliary circle to help illustrate the key relationships between acceleration, displacement, time, velocity, and phase. (Contains 16 references.) (Author/YDS)

  14. Stress in Harmonic Serialism

    ERIC Educational Resources Information Center

    Pruitt, Kathryn Ringler

    2012-01-01

    This dissertation proposes a model of word stress in a derivational version of Optimality Theory (OT) called Harmonic Serialism (HS; Prince and Smolensky 1993/2004, McCarthy 2000, 2006, 2010a). In this model, the metrical structure of a word is derived through a series of optimizations in which the "best" metrical foot is chosen…

  15. Physics 116 Simple Harmonic Motion

    E-print Network

    Gustafsson, Torgny

    Physics 116 Simple Harmonic Motion Any Simple Harmonic Oscillator (SHO) has the following features Harmonic Motion (SHM). If the system is a SHO, then the following is true: MASS-SPRING system of the motion. Because of (3) above, we characterize SH oscillators based on their oscillation frequencies

  16. Correlative analysis of conducting filament distribution at interfaces and bias-dependent noise sources in TiN/TiOx/Pt and Pt/TiOx/TiOy/Pt bipolar resistive switching frames

    NASA Astrophysics Data System (ADS)

    Kim, Joo Hyung; Bae, Yoon Cheol; Lee, Ah Rahm; Baek, Kwang Ho; Hong, Jin Pyo

    2015-01-01

    We evaluated conducting filament distributions occurring at interfaces of TiN/TiOx/Pt and Pt/TiOx/TiOy/Pt bipolar resistive switching elements after electroforming by identifying bias-dependent low-frequency noise sources. The TiN/TiOx/Pt switching element showed higher noise features at low and high resistance states (LRS and HRS) than the Pt/TiOx/TiOy/Pt one. These behaviors are predominantly associated with the presence of different resistance distributions at LRS and HRS observed in both switching I-V curves. We propose a possible mechanism to explain the unique observed features by employing the role of the oxygen reservoir and conducting filament stability at interfaces of the two switching elements.

  17. Effect of individual blade control on noise radiation

    NASA Technical Reports Server (NTRS)

    Swanson, S. M.; Jacklin, Stephen A.; Niesl, G.; Blaas, Achim; Kube, R.

    1995-01-01

    In a joint research program of NASA Ames Research Center, ZF Luftfahrttechnik, the German Aerospace Research Establishment (DLR), and EUROCOPTER Deutschland, a wind tunnel test was performed to evaluate the effects of Individual Blade Control (IBC) on rotor noise. This test was conducted in the 40x80 ft wind tunnel at NASA Ames Research Center, utilizing a full scale MBB-BO 105 four-bladed rotor system. Three microphones were installed for determination of the radiated noise, two of them on a moveable traverse below the advancing blade side and one in a fixed location below the retreating side. Acoustic results are presented for flight conditions with Blade-Vortex-Interaction (BVI) noise radiation. High noise level reductions were measured for single harmonic control inputs. In addition to the single harmonic inputs, multi-harmonic inputs were evaluated by superimposing 2/rev to 6/rev harmonics. For the first time the efficiency of sharp wavelets (60 deg and 90 deg width) on acoustic noise were measured. In order to achieve an adequate wavelet shape at the blade tip, corrections were made to account for the blade torsional behavior. In parallel with the acoustic measurements, vibratory loads were measured during the BVI flight condition to correlate the effects of IBC on noise and vibrations. It is shown how noise levels and vibrations are affected by specific IBC control inputs. In addition, correlations are made between noise levels and acoustic time histories with IBC phase and amplitude variations. For one IBC input mode with high noise reducing efficiency, a sweep of the moveable microphone traverse below the advancing side shows the effect on BVI noise directivity.

  18. Possible second harmonic gyroemission at Uranus

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Curran, D. B.

    1990-01-01

    During the inbound trajectory toward Uranus, the Planetary Radio Astronomy Instrument on board the Voyager 2 spacecraft observed narrow-band smooth (n-smooth) emission at frequencies centered near 60 kHz. By assuming models of the plasma density for the dayside magnetosphere of Uranus and by using cold plasma theory together with stringent observational constraints, ray-tracing calculations were performed to determine the source location and mode of the n-smooth emission. Ray-tracing calculations suggest that the n-smooth emission with sources near the magnetic equator may be fundamental X mode for certain conditions or second harmonic gyroemission. If the emission is second harmonic gyroemission, the fundamental emission at 30 kHz is expected but apparently not observed. These findings are discussed in the context of the most recent developments in the theory of the cyclotron maser instability.

  19. Modular Engine Noise Component Prediction System (MCP) Technical Description and Assessment Document

    NASA Technical Reports Server (NTRS)

    Herkes, William H.; Reed, David H.

    2005-01-01

    This report describes an empirical prediction procedure for turbofan engine noise. The procedure generates predicted noise levels for several noise components, including inlet- and aft-radiated fan noise, and jet-mixing noise. This report discusses the noise source mechanisms, the development of the prediction procedures, and the assessment of the accuracy of these predictions. Finally, some recommendations for future work are presented.

  20. Background noise spectra of global seismic stations

    SciTech Connect

    Wada, M.M.; Claassen, J.P.

    1996-08-01

    Over an extended period of time station noise spectra were collected from various sources for use in estimating the detection and location performance of global networks of seismic stations. As the database of noise spectra enlarged and duplicate entries became available, an effort was mounted to more carefully select station noise spectra while discarding others. This report discusses the methodology and criteria by which the noise spectra were selected. It also identifies and illustrates the station noise spectra which survived the selection process and which currently contribute to the modeling efforts. The resulting catalog of noise statistics not only benefits those who model network performance but also those who wish to select stations on the basis of their noise level as may occur in designing networks or in selecting seismological data for analysis on the basis of station noise level. In view of the various ways by which station noise were estimated by the different contributors, it is advisable that future efforts which predict network performance have available station noise data and spectral estimation methods which are compatible with the statistics underlying seismic noise. This appropriately requires (1) averaging noise over seasonal and/or diurnal cycles, (2) averaging noise over time intervals comparable to those employed by actual detectors, and (3) using logarithmic measures of the noise.

  1. Second-harmonic generation from complementary split-ring resonators.

    PubMed

    Feth, N; Linden, S; Klein, M W; Decker, M; Niesler, F B P; Zeng, Y; Hoyer, W; Liu, J; Koch, S W; Moloney, J V; Wegener, M

    2008-09-01

    We present experiments on second-harmonic generation from arrays of magnetic split-ring resonators and arrays of complementary split-ring resonators. In both cases, the fundamental resonance is excited by the incident femtosecond laser pulses under normal incidence, leading to comparably strong second-harmonic signals. These findings are discussed in terms of Babinet's principle and in terms of a recently developed microscopic classical theory that leads to good agreement regarding the relative and the absolute nonlinear signal strengths. The hydrodynamic convective contribution is found to be the dominant source of second-harmonic generation--in contrast to a previous assignment [Science 313, 502 (2006)]. PMID:18758583

  2. Signal-noise separation based on self-similarity testing in 1D-timeseries data

    NASA Astrophysics Data System (ADS)

    Bourdin, Philippe A.

    2015-08-01

    The continuous improvement of the resolution delivered by modern instrumentation is a cost-intensive part of any new space- or ground-based observatory. Typically, scientists later reduce the resolution of the obtained raw-data, for example in the spatial, spectral, or temporal domain, in order to suppress the effects of noise in the measurements. In practice, only simple methods are used that just smear out the noise, instead of trying to remove it, so that the noise can nomore be seen. In high-precision 1D-timeseries data, this usually results in an unwanted quality-loss and corruption of power spectra at selected frequency ranges. Novel methods exist that are based on non-local averaging, which would conserve much of the initial resolution, but these methods are so far focusing on 2D or 3D data. We present here a method specialized for 1D-timeseries, e.g. as obtained by magnetic field measurements from the recently launched MMS satellites. To identify the noise, we use a self-similarity testing and non-local averaging method in order to separate different types of noise and signals, like the instrument noise, non-correlated fluctuations in the signal from heliospheric sources, and correlated fluctuations such as harmonic waves or shock fronts. In power spectra of test data, we are able to restore significant parts of a previously know signal from a noisy measurement. This method also works for high frequencies, where the background noise may have a larger contribution to the spectral power than the signal itself. We offer an easy-to-use software tools set, which enables scientists to use this novel technique on their own noisy data. This allows to use the maximum possible capacity of the instrumental hardware and helps to enhance the quality of the obtained scientific results.

  3. Attosecond laser pulse synthesis using bichromatic high-order harmonic generation Avner Fleischer and Nimrod Moiseyev

    E-print Network

    Moiseyev, Nimrod

    Attosecond laser pulse synthesis using bichromatic high-order harmonic generation Avner Fleischer spectrum of harmonics could be a source for the production of attosecond light pulses. We demonstrate our or even as pulses attosecond pulses 1 but is not a sufficient source for the production of isolated short

  4. Action principle for the generalized harmonic formulation of general relativity

    SciTech Connect

    Brown, J. David

    2011-10-15

    An action principle for the generalized harmonic formulation of general relativity is presented. The action is a functional of the spacetime metric and the gauge source vector. An action principle for the Z4 formulation of general relativity has been proposed recently by Bona, Bona-Casas, and Palenzuela. The relationship between the generalized harmonic action and the Bona, Bona-Casas, and Palenzuela action is discussed in detail.

  5. Active{sup 3} noise reduction

    SciTech Connect

    Holzfuss, J.

    1996-06-01

    Noise reduction is a problem being encountered in a variety of applications, such as environmental noise cancellation, signal recovery and separation. Passive noise reduction is done with the help of absorbers. Active noise reduction includes the transmission of phase inverted signals for the cancellation. This paper is about a threefold active approach to noise reduction. It includes the separation of a combined source, which consists of both a noise and a signal part. With the help of interaction with the source by scanning it and recording its response, modeling as a nonlinear dynamical system is achieved. The analysis includes phase space analysis and global radial basis functions as tools for the prediction used in a subsequent cancellation procedure. Examples are given which include noise reduction of speech. {copyright} {ital 1996 American Institute of Physics.}

  6. Efficient high-order harmonic generation boosted by below-threshold harmonics

    PubMed Central

    Brizuela, F.; Heyl, C. M.; Rudawski, P.; Kroon, D.; Rading, L.; Dahlström, J. M.; Mauritsson, J.; Johnsson, P.; Arnold, C. L.; L'Huillier, A.

    2013-01-01

    High-order harmonic generation (HHG) in gases has been established as an important technique for the generation of coherent extreme ultraviolet (XUV) pulses at ultrashort time scales. Its main drawback, however, is the low conversion efficiency, setting limits for many applications, such as ultrafast coherent imaging, nonlinear processes in the XUV range, or seeded free electron lasers. Here we introduce a novel scheme based on using below-threshold harmonics, generated in a “seeding cell”, to boost the HHG process in a “generation cell”, placed further downstream in the focused laser beam. By modifying the fundamental driving field, these low-order harmonics alter the ionization step of the nonlinear HHG process. Our dual-cell scheme enhances the conversion efficiency of HHG, opening the path for the realization of robust intense attosecond XUV sources. PMID:23475106

  7. Harmonic cascade FEL designs for LUX

    SciTech Connect

    Penn, G.; Reinsch, M.; Wurtele, J.; Corlett, J.N.; Fawley, W.M.; Zholents, A.; Wan, W.

    2004-07-16

    LUX is a design concept for an ultrafast X-ray science facility, based on an electron beam accelerated to GeV energies in are circulating linac. Included in the design are short duration (200 fs or shorter FWHM) light sources using multiple stages of higher harmonic generation, seeded by a 200-250 nm laser of similar duration. This laser modulates the energy of a group of electrons within the electron bunch; this section of the electron bunch then produces radiation at a higher harmonic after entering a second, differently tuned undulator. Repeated stages in a cascade yield increasing photon energies up to 1 keV. Most of the undulators in the cascade operate in the low-gain FEL regime. Harmonic cascades have been designed for each pass of the recirculating linac up to a final electron beam energy of 3.1 GeV. For a given cascade, the photon energy can be selected over a wide range by varying the seed laser frequency and the field strength in the undulators. We present simulation results using the codes GENESIS and GINGER, as well as the results of analytical models which predict FEL performance. We discuss lattice considerations pertinent for harmonic cascade FELs, as well as sensitivity studies and requirements on the electron beam.

  8. B1 magnet harmonics

    SciTech Connect

    Barnes, P D

    2000-05-30

    During the B0 Overpass construction for the CDF detector at Fermilab, 33 B1 magnets were measured using a bucked tangential coil. Measurements were made on the midplane, at the centerline and at {+-} 1 inch horizontal displacement. Since the coil was only 62 inches long, measurements were made at four longitudinal positions. Because of the design of the Main Ring, it was sufficient to combine data from all positions and report the harmonic spectrum for the magnet as a whole. For modeling the Scrounge-atron, it is more useful to treat each measurement position separately. The author reports here an analysis of the harmonic spectra at each probe position, based on the original data.

  9. Superradiance of Harmonic Oscillators

    E-print Network

    Delanty, Michael; Twamley, Jason

    2011-01-01

    Superradiance, the enhanced collective emission of light from a coherent ensemble of quantum systems, has been typically studied in atomic ensembles. In this work we study the enhanced emission of energy from coherent ensembles of harmonic oscillators. We show that it should be possible to observe harmonic oscillator superradiance in a variety of physical platforms such as waveguide arrays in integrated photonics and resonator arrays in circuit QED. We find general conditions specifying when emission is superradiant and subradiant and find that superradiant, subradiant and dark states take the form of multimode squeezed coherent states and highly entangled multimode Fock states. The intensity, two-mode correlations and fraction of quanta trapped in the system after decay are calculated for a range of initial states including multimode Fock, squeezed, coherent and thermal states. In order to explore these effects, the Law and Eberly protocol [C. K. Law and J. H. Eberly, Phys. Rev. Lett. 76, 1055 (1996)] is gen...

  10. A Study of Additive Noise Model for Robust Speech Recognition

    NASA Astrophysics Data System (ADS)

    Awatade, Manisha H.

    2011-12-01

    A model of how speech amplitude spectra are affected by additive noise is studied. Acoustic features are extracted based on the noise robust parts of speech spectra without losing discriminative information. An existing two non-linear processing methods, harmonic demodulation and spectral peak-to-valley ratio locking, are designed to minimize mismatch between clean and noisy speech features. Previously studied methods, including peak isolation [1], do not require noise estimation and are effective in dealing with both stationary and non-stationary noise.

  11. Noise Effects on Human Performance: A Meta-Analytic Synthesis

    ERIC Educational Resources Information Center

    Szalma, James L.; Hancock, Peter A.

    2011-01-01

    Noise is a pervasive and influential source of stress. Whether through the acute effects of impulse noise or the chronic influence of prolonged exposure, the challenge of noise confronts many who must accomplish vital performance duties in its presence. Although noise has diffuse effects, which are shared in common with many other chronic forms of…

  12. Quantum Damped Harmonic Oscillator

    E-print Network

    Kazuyuki Fujii

    2012-09-07

    In this chapter we treat the quantum damped harmonic oscillator, and study mathematical structure of the model, and construct general solution with any initial condition, and give a quantum counterpart in the case of taking coherent state as an initial condition. This is a simple and good model of Quantum Mechanics with dissipation which is important to understand real world, and readers will get a powerful weapon for Quantum Physics.

  13. Radiated noise of ducted fans

    NASA Astrophysics Data System (ADS)

    Eversman, Walter

    The differences in the radiated acoustic fields of ducted and unducted propellers of the same thrust operating under similar conditions are investigated. An FEM model is created for the generation, propagation, and radiation of steady, rotor alone noise and exit guide vane interaction noise of a ducted fan. For a specified number of blades, angular mode harmonic, and rotor angular velocity, the acoustic field is described in a cylindrical coordinate system reduced to only the axial and radial directions. It is found that, contrary to the usual understanding of the Tyler and Sofrin (1962) result, supersonic tip speed rotor noise can be cut off if the tip Mach number is only slightly in excess of unity and if the number of blades is relatively small. If there are many blades, the fundamental angular mode number is large, and the Tyler and Sofrin result for thin annuli becomes more relevant. Shrouding of subsonic tip speed propellers is a very effective means of controlling rotor alone noise.

  14. Radiated noise of ducted fans

    NASA Technical Reports Server (NTRS)

    Eversman, Walter

    1992-01-01

    The differences in the radiated acoustic fields of ducted and unducted propellers of the same thrust operating under similar conditions are investigated. An FEM model is created for the generation, propagation, and radiation of steady, rotor alone noise and exit guide vane interaction noise of a ducted fan. For a specified number of blades, angular mode harmonic, and rotor angular velocity, the acoustic field is described in a cylindrical coordinate system reduced to only the axial and radial directions. It is found that, contrary to the usual understanding of the Tyler and Sofrin (1962) result, supersonic tip speed rotor noise can be cut off if the tip Mach number is only slightly in excess of unity and if the number of blades is relatively small. If there are many blades, the fundamental angular mode number is large, and the Tyler and Sofrin result for thin annuli becomes more relevant. Shrouding of subsonic tip speed propellers is a very effective means of controlling rotor alone noise.

  15. The origin of harmonic tremor at Old Faithful geyser

    NASA Astrophysics Data System (ADS)

    Kedar, Sharon; Sturtevant, Bradford; Kanamori, Hiroo

    1996-02-01

    VOLCANIC eruptions are sometimes accompanied by a characteristic type of seismicity known as harmonic tremor, in which the signal is dominated by discrete vibration frequencies1-4. This harmonic structure could reflect resonance behaviour in the excitation source4-6 or filtering of the seismic waves as they propagate through the surrounding rocks7-10 but complexity and variability in the properties of volcanic systems make it difficult to discriminate between such mechanisms. To address this question, we have analysed the source and propagation characteristics of seismicity at Old Faithful geyser (Yellowstone National Park), the cyclic behaviour and accessibility of which make it an ideal natural laboratory for studying harmonic tremor associated with near-surface sources. We find that sharp pressure pulses inside the water column trigger distinct seismic events that give rise to a harmonic ground response whose frequency varies spatially but not temporally. A superposition of these seismic events creates the appearance of continuous harmonic tremor. The absence of resonance within the water column suggests that the harmonic motion must arise from the interaction of the seismic waves with heterogeneities in the surrounding elastic medium-most probably a near-surface soft layer.

  16. Vibration and noise analysis of a gear transmission system

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Qian, W.; Zakrajsek, J. J.; Oswald, F. B.

    1993-01-01

    This paper presents a comprehensive procedure to predict both the vibration and noise generated by a gear transmission system under normal operating conditions. The gearbox vibrations were obtained from both numerical simulation and experimental studies using a gear noise test rig. In addition, the noise generated by the gearbox vibrations was recorded during the experimental testing. A numerical method was used to develop linear relationships between the gearbox vibration and the generated noise. The hypercoherence function is introduced to correlate the nonlinear relationship between the fundamental noise frequency and its harmonics. A numerical procedure was developed using both the linear and nonlinear relationships generated from the experimental data to predict noise resulting from the gearbox vibrations. The application of this methodology is demonstrated by comparing the numerical and experimental results from the gear noise test rig.

  17. Noise control using a plate radiator and an acoustic resonator

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G. (Inventor)

    1996-01-01

    An active noise control subassembly for reducing noise caused by a source (such as an aircraft engine) independent of the subassembly. A noise radiating panel is bendably vibratable to generate a panel noise canceling at least a portion of the source noise. A piezoceramic actuator plate is connected to the panel. A front plate is spaced apart from the panel and the first plate, is positioned generally between the source noise and the panel, and has a sound exit port. A first pair of spaced-apart side walls each generally abut the panel and the front plate so as to generally enclose a front cavity to define a resonator.

  18. Generalized energy equipartition in harmonic oscillators driven by active baths

    E-print Network

    Claudio Maggi; Matteo Paoluzzi; Nicola Pellicciotta; Alessia Lepore; Luca Angelani; Roberto Di Leonardo

    2015-06-26

    We study experimentally and numerically the dynamics of colloidal beads confined by a harmonic potential in a bath of swimming E. coli bacteria. The resulting dynamics is well approximated by a Langevin equation for an overdamped oscillator driven by the combination of a white thermal noise and an exponentially correlated active noise. This scenario leads to a simple generalization of the equipartition theorem resulting in the coexistence of two different effective temperatures that govern dynamics along the flat and the curved directions in the potential landscape.

  19. Generalized Energy Equipartition in Harmonic Oscillators Driven by Active Baths

    NASA Astrophysics Data System (ADS)

    Maggi, Claudio; Paoluzzi, Matteo; Pellicciotta, Nicola; Lepore, Alessia; Angelani, Luca; Di Leonardo, Roberto

    2014-12-01

    We study experimentally and numerically the dynamics of colloidal beads confined by a harmonic potential in a bath of swimming E. coli bacteria. The resulting dynamics is well approximated by a Langevin equation for an overdamped oscillator driven by the combination of a white thermal noise and an exponentially correlated active noise. This scenario leads to a simple generalization of the equipartition theorem resulting in the coexistence of two different effective temperatures that govern dynamics along the flat and the curved directions in the potential landscape.

  20. Noise control in aeroacoustics; Proceedings of the 1993 National Conference on Noise Control Engineering, NOISE-CON 93, Williamsburg, VA, May 2-5, 1993

    NASA Technical Reports Server (NTRS)

    Hubbard, Harvey H. (editor)

    1993-01-01

    In the conference over 100 papers were presented in eight sessions: (1) Emission: Noise Sources; (2) Physical Phenomena; (3) Noise ControlElements; (4) Vibration and Shock: Generation, Transmission, Isolation, and Reduction; (5) Immission: Physical Aspects of Environmental Noise; (6) Immission: Effects of Noise; (7) Analysis; and (8) Requirements. In addition, the distinguished lecture series included presentations on the High Speed Civil Transport and on research from the United Kingdom on aircraft noise effects.

  1. Acoustic noise during functional magnetic resonance imaginga)

    PubMed Central

    Ravicz, Michael E.; Melcher, Jennifer R.; Kiang, Nelson Y.-S.

    2007-01-01

    Functional magnetic resonance imaging (fMRI) enables sites of brain activation to be localized in human subjects. For studies of the auditory system, acoustic noise generated during fMRI can interfere with assessments of this activation by introducing uncontrolled extraneous sounds. As a first step toward reducing the noise during fMRI, this paper describes the temporal and spectral characteristics of the noise present under typical fMRI study conditions for two imagers with different static magnetic field strengths. Peak noise levels were 123 and 138 dB re 20 ?Pa in a 1.5-tesla (T) and a 3-T imager, respectively. The noise spectrum (calculated over a 10-ms window coinciding with the highest-amplitude noise) showed a prominent maximum at 1 kHz for the 1.5-T imager (115 dB SPL) and at 1.4 kHz for the 3-T imager (131 dB SPL). The frequency content and timing of the most intense noise components indicated that the noise was primarily attributable to the readout gradients in the imaging pulse sequence. The noise persisted above background levels for 300-500 ms after gradient activity ceased, indicating that resonating structures in the imager or noise reverberating in the imager room were also factors. The gradient noise waveform was highly repeatable. In addition, the coolant pump for the imager’s permanent magnet and the room air handling system were sources of ongoing noise lower in both level and frequency than gradient coil noise. Knowledge of the sources and characteristics of the noise enabled the examination of general approaches to noise control that could be applied to reduce the unwanted noise during fMRI sessions. PMID:11051496

  2. Analysis and measurement of the modulation transfer function of harmonic shear wave induced phase encoding imaging

    PubMed Central

    McAleavey, Stephen A.

    2014-01-01

    Shear wave induced phase encoding (SWIPE) imaging generates ultrasound backscatter images of tissue-like elastic materials by using traveling shear waves to encode the lateral position of the scatters in the phase of the received echo. In contrast to conventional ultrasound B-scan imaging, SWIPE offers the potential advantages of image formation without beam focusing or steering from a single transducer element, lateral resolution independent of aperture size, and the potential to achieve relatively high lateral resolution with low frequency ultrasound. Here a Fourier series description of the phase modulated echo signal is developed, demonstrating that echo harmonics at multiples of the shear wave frequency reveal target k-space data at identical multiples of the shear wavenumber. Modulation transfer functions of SWIPE imaging systems are calculated for maximum shear wave acceleration and maximum shear constraints, and compared with a conventionally focused aperture. The relative signal-to-noise ratio of the SWIPE method versus a conventionally focused aperture is found through these calculations. Reconstructions of wire targets in a gelatin phantom using 1 and 3.5?MHz ultrasound and a cylindrical shear wave source are presented, generated from the fundamental and second harmonic of the shear wave modulation frequency, demonstrating weak dependence of lateral resolution with ultrasound frequency. PMID:24815265

  3. Transducer profile effect on the second harmonic level

    NASA Astrophysics Data System (ADS)

    Jakjoud, H.; Chitnalah, A.; Aouzale, N.

    2014-05-01

    The measurement of nonlinear parameter of the propagating medium using finite amplitude techniques is based on the detection of the second harmonic generated nonlinearly in the investigated medium. This method requires an analytical expression for the second harmonic. Analytical expressions have been derived for the Gaussian source. For other shapes than Gaussian, a set of Gaussian beams can be used to approximate the pressure distribution at the source. Gaussian coefficients, in the literature, are provided for a uniform source. However, the sources used in many applications radiate non-uniformly because of the manner the piezoelectric element is fixed and because of Lamb waves generated in transducer's active element. This is of a great importance to derive an analytical expression for the second harmonic for different profile "excitation" of the transducer. Our model is based on the quasilinear theory and a set of Gaussian beams. We used the K-Prony method in order to compute the Gaussian coefficients for each of the uniform, exponential, elliptic and Bessel sources. Using the obtained Gaussian coefficients we showed that the second harmonic magnitude is varying respectively to the used source's profile. For the measurement of the nonlinear parameter one needs to compute the appropriate values of the Gaussian parameters according to the profile of the used source. One can also use the Gaussian parameters for the uniform source with a correction.

  4. Reducing environmental noise impacts: A USAREUR noise-management program handbook. Final report

    SciTech Connect

    Feather, T.D.; Shekell, T.K.

    1991-06-01

    Noise pollution is a major environmental problem faced by the U.S. Army in Europe. Noise-related complaints from German citizens can escalate into intense political issues in German communities. This in turn hampers efficient operation of military training and often times threatens the Army's mission. In order to remedy these problems, USAREUR has developed a noise management program. A successful noise management program will limit the impact of unavoidable noise on the populace. This report, a component of the noise management program, is a reference document for noise management planning. It contains guidelines and rules-of-thumb for noise management. This document contains procedures which operation and training level personnel can understand and apply in their day to day noise management planning. Noise mitigation tips are given. Basic technical information that will aid in understanding noise mitigation is provided along with noise management through land use planning. Noise management for specific components of the military community, (airfields, base operations, training areas, and housing and recreation areas) are addressed. The nature of noise generated, means of noise abatement at the source, path, and receiver (both physical and organizational/public relations methods), and a case study example are described.

  5. Orbiter CCTV video signal noise analysis

    NASA Technical Reports Server (NTRS)

    Lawton, R. M.; Blanke, L. R.; Pannett, R. F.

    1977-01-01

    The amount of steady state and transient noise which will couple to orbiter CCTV video signal wiring is predicted. The primary emphasis is on the interim system, however, some predictions are made concerning the operational system wiring in the cabin area. Noise sources considered are RF fields from on board transmitters, precipitation static, induced lightning currents, and induced noise from adjacent wiring. The most significant source is noise coupled to video circuits from associated circuits in common connectors. Video signal crosstalk is the primary cause of steady state interference, and mechanically switched control functions cause the largest induced transients.

  6. Use of a beat effect for the automatic positioning of flow obstructions to control tonal fan noise: Theory and experiments

    NASA Astrophysics Data System (ADS)

    Gérard, A.; Berry, A.; Masson, P.; Moreau, S.

    2013-09-01

    Tonal noise generated by axial fans at the Blade Passage Frequency and its harmonics is a source of discomfort for low-speed fans used in many cooling and ventilation applications. The noise control approach presented here is based on the interference between the unsteady aerodynamic blade loads responsible for tonal noise generation and secondary aerodynamic loads generated in the rotor plane by fixed, carefully positioned, small obstructions in the upstream flow. Although not strictly active control, the magnitude and phase of the secondary tonal noise can be adjusted by varying the axial distance between the rotor and the obstruction, and the circumferential position of the obstruction, respectively. An optimal position of the obstruction generally exists, that minimizes the total noise at a given frequency. This paper establishes a practical method for automatic positioning of such control obstructions. In a first step, the method searches for the optimal axial distance between the rotor and the obstruction using a slowly rotating control obstruction. The modulation created by the rotation of the obstruction allows for the primary and secondary noises to be distinguished in the frequency response of the sound field. The steepest descent algorithm is used to find the optimal axial distance, for which the magnitudes of the primary and secondary tonal noise are equal at the error microphone. Then, the optimal angular position of the obstruction is obtained by slowly rotating the obstruction until minimal total noise is achieved. Finally, it is shown that at the optimal axial and angular position, the BPF tone, which produced the largest area in the loudness pattern, has been greatly reduced.

  7. Multi-harmonic electron cyclotron instabilities. [diffuse electron aurora

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, M.; Kennel, C. F.

    1978-01-01

    The reported investigation constitutes an extension of studies conducted by Ashour-Abdalla and Kennel (1975, 1976, 1978) with respect to a basic plasma model of Young et al. (1973). The model involves a combination of a cold Maxwellian background plasma, a hot plasma, and a 'loss cone' type of free energy source. Previous results on the first cyclotron harmonic bands are extended to multiharmonics. The significance of the obtained relations is discussed and tentative conclusions are presented. Given that the spatial growth rates of the convective modes are comparable, and that simultaneous nonconvective instability (NCI) is possible, it is concluded that multiharmonic emissions ought to be a common feature of the magnetospheric electrostatic wave observations. Since the volume of parameter space for which the first harmonic is NCI, and the volume for which the convective first harmonic mode has significant spatial growth rates, exceed those for the higher harmonics, first harmonic waves should be the most commonly observed and the higher harmonics should usually be accompanied by the first harmonic.

  8. Noise Abatement

    NASA Technical Reports Server (NTRS)

    1983-01-01

    SMART, Sound Modification and Regulated Temperature compound, is a liquid plastic mixture with exceptional energy and sound absorbing qualities. It is derived from a very elastic plastic which was an effective noise abatement material in the Apollo Guidance System. Discovered by a NASA employee, it is marketed by Environmental Health Systems, Inc. (EHS). The product has been successfully employed by a diaper company with noisy dryers and a sugar company with noisy blowers. The company also manufactures an audiometric test booth and acoustical office partitions.

  9. Tandem Cylinder Noise Predictions

    NASA Technical Reports Server (NTRS)

    Lockhard, David P.; Khorrami, Mehdi R.; CHoudhari, Meelan M.; Hutcheson, Florence V.; Brooks, Thomas F.; Stead, Daniel J.

    2007-01-01

    In an effort to better understand landing-gear noise sources, we have been examining a simplified configuration that still maintains some of the salient features of landing-gear flow fields. In particular, tandem cylinders have been studied because they model a variety of component level interactions. The present effort is directed at the case of two identical cylinders spatially separated in the streamwise direction by 3.7 diameters. Experimental measurements from the Basic Aerodynamic Research Tunnel (BART) and Quiet Flow Facility (QFF) at NASA Langley Research Center (LaRC) have provided steady surface pressures, detailed off-surface measurements of the flow field using Particle Image Velocimetry (PIV), hot-wire measurements in the wake of the rear cylinder, unsteady surface pressure data, and the radiated noise. The experiments were conducted at a Reynolds number of 166 105 based on the cylinder diameter. A trip was used on the upstream cylinder to insure a fully turbulent shedding process and simulate the effects of a high Reynolds number flow. The parallel computational effort uses the three-dimensional Navier-Stokes solver CFL3D with a hybrid, zonal turbulence model that turns off the turbulence production term everywhere except in a narrow ring surrounding solid surfaces. The current calculations further explore the influence of the grid resolution and spanwise extent on the flow and associated radiated noise. Extensive comparisons with the experimental data are used to assess the ability of the computations to simulate the details of the flow. The results show that the pressure fluctuations on the upstream cylinder, caused by vortex shedding, are smaller than those generated on the downstream cylinder by wake interaction. Consequently, the downstream cylinder dominates the noise radiation, producing an overall directivity pattern that is similar to that of an isolated cylinder. Only calculations based on the full length of the model span were able to capture the complete decay in the spanwise correlation, thereby producing reasonable noise radiation levels.

  10. Noise exposure in oil mills

    PubMed Central

    Kumar, G. V. Prasanna; Dewangan, K. N.; Sarkar, Amaresh

    2008-01-01

    Context: Noise of machines in various agro-based industries was found to be the major occupational hazard for the workers of industries. The predominant noise sources need to be identified and the causes of high noise need to be studied to undertake the appropriate measures to reduce the noise level in one of the major agro-based industries, oil mills. Aims: To identify the predominant noise sources in the workrooms of oil mills. To study the causes of noise in oil mills. To measure the extent of noise exposure of oil mill workers. To examine the response of workers towards noise, so that appropriate measures can be undertaken to minimize the noise exposure. Settings and Design: A noise survey was conducted in the three renowned oil mills of north-eastern region of India. Materials and Methods: Information like output capacity, size of power source, maintenance condition of the machines and workroom configurations of the oil mills was collected by personal observations and enquiry with the owner of the mill. Using a Sound Level Meter (SLM) (Model-824, Larson and Davis, USA), equivalent SPL was measured at operator's ear level in the working zone of the workers near each machine of the mills. In order to study the variation of SPL in the workrooms of the oil mill throughout its operation, equivalent SPL was measured at two appropriate locations of working zone of the workers in each mill. For conducting the noise survey, the guidelines of Canadian Centre for Occupational Health and Safety (CCOHS) were followed. Grid points were marked on the floor of the workroom of the oil mill at a spacing of 1 m × 1 m. SPL at grid points were measured at about 1.5 m above the floor. The direction of the SLM was towards the nearby noisy source. To increase accuracy, two replications were taken at each grid point. All the data were recorded for 30 sec. At the end of the experiment, data were downloaded to a personal computer. With the help of utility software of Larson and Davis, USA, equivalent SPL and noise spectrum at each reading was obtained. Noise survey map of equivalent SPL was drawn for each oil mill by drawing contour lines on the sketch of the oil mill between the points of equal SPL. The floor area in the oil mill where SPL exceeded 85 dBA was identified from the noise survey map of each oil mill to determine the causes of high level of noise. Subjective assessment was done during the rest period of workers and it was assessed with personal interview with each worker separately. Demographic information, nature of work, working hours, rest period, experience of working in the mill, degree of noise annoyance, activity interference, and psychological and physiological effects of machine noise on the worker were asked during the interview. These details were noted in a structured form. Statistical Analysis Used: Nil. Results: The noise survey conducted in three renowned oil mills of north-eastern region of India revealed that about 26% of the total workers were exposed to noise level of more than 85 dBA. Further, 10% to 30% floor areas of workrooms, where oil expellers are provided have the SPL of more than 85 dBA. The noise in the oil mills was dominated by low frequency noise. The predominant noise sources in the oil mills were seed cleaner and power transmission system to oil expellers. Poor maintenance of machines and use of bamboo stick to prevent the fall of belt from misaligned pulleys were the main reason of high noise. Noise emitted by the electric motor, table ghani and oil expellers in all the oil mills was well within 85 dBA. Subjective response indicated that about 63% of the total workers felt that noise interfered with their conversation. About 16% each were of the opinion that noise interfered in their work and harmed their hearing. About 5% of workers stated that the workroom noise gave them headaches. Conclusions: The workers engaged in the workrooms of the oil mills are exposed to high noise, which will have detrimental effect on their health. The poor maintenance of drive system was found to be the main r

  11. UHB Engine Fan Broadband Noise Reduction Study

    NASA Technical Reports Server (NTRS)

    Gliebe, Philip R.; Ho, Patrick Y.; Mani, Ramani

    1995-01-01

    A study has been completed to quantify the contribution of fan broadband noise to advanced high bypass turbofan engine system noise levels. The result suggests that reducing fan broadband noise can produce 3 to 4 EPNdB in engine system noise reduction, once the fan tones are eliminated. Further, in conjunction with the elimination of fan tones and an increase in bypass ratio, a potential reduction of 7 to 10 EPNdB in system noise can be achieved. In addition, an initial assessment of engine broadband noise source mechanisms has been made, concluding that the dominant source of fan broadband noise is the interaction of incident inlet boundary layer turbulence with the fan rotor. This source has two contributors, i.e., unsteady life dipole response and steady loading quadrupole response. The quadrupole contribution was found to be the most important component, suggesting that broadband noise reduction can be achieved by the reduction of steady loading field-turbulence field quadrupole interaction. Finally, for a controlled experimental quantification and verification, the study recommends that further broadband noise tests be done on a simulated engine rig, such as the GE Aircraft Engine Universal Propulsion Simulator, rather than testing on an engine statically in an outdoor arena The rig should be capable of generating forward and aft propagating fan noise, and it needs to be tested in a large freejet or a wind tunnel.

  12. Ultra-High Bypass Ratio Jet Noise

    NASA Technical Reports Server (NTRS)

    Low, John K. C.

    1994-01-01

    The jet noise from a 1/15 scale model of a Pratt and Whitney Advanced Ducted Propulsor (ADP) was measured in the United Technology Research Center anechoic research tunnel (ART) under a range of operating conditions. Conditions were chosen to match engine operating conditions. Data were obtained at static conditions and at wind tunnel Mach numbers of 0.2, 0.27, and 0.35 to simulate inflight effects on jet noise. Due to a temperature dependence of the secondary nozzle area, the model nozzle secondary to primary area ratio varied from 7.12 at 100 percent thrust to 7.39 at 30 percent thrust. The bypass ratio varied from 10.2 to 11.8 respectively. Comparison of the data with predictions using the current Society of Automotive Engineers (SAE) Jet Noise Prediction Method showed that the current prediction method overpredicted the ADP jet noise by 6 decibels. The data suggest that a simple method of subtracting 6 decibels from the SAE Coaxial Jet Noise Prediction for the merged and secondary flow source components would result in good agreement between predicted and measured levels. The simulated jet noise flight effects with wind tunnel Mach numbers up to 0.35 produced jet noise inflight noise reductions up to 12 decibels. The reductions in jet noise levels were across the entire jet noise spectra, suggesting that the inflight effects affected all source noise components.

  13. Tunable passively harmonic mode-locked Yb-doped fiber laser with Lyot-Sagnac filter.

    PubMed

    Li, Ming; Zou, Xin; Wu, Jian; Shi, Jindan; Qiu, Jifang; Hong, Xiaobin

    2015-10-10

    A novel passively harmonic mode-locked dissipative soliton Yb-doped fiber laser with all normal dispersion is proposed and experimentally demonstrated based on a semiconductor saturable absorption mirror and tunable Lyot-Sagnac filter. By only tuning the bandwidth of the filter at fixed pump power, the repetition rate of 9.87 to 167.8 MHz (corresponding to 17th-order harmonic) is obtained. This is the highest repetition rate and harmonic order for a passively harmonic mode-locked dissipative soliton Yb-doped fiber laser with all-normal dispersion to the best of our knowledge. The signal-to-noise ratio and super-mode suppression ratio for all harmonic orders are higher than 65 and 35 dB, respectively, which shows the high stability of the fiber laser. PMID:26479821

  14. Why plasma harmonics?

    NASA Astrophysics Data System (ADS)

    Ganeev, R. A.

    2015-09-01

    We discuss the emergence of interest in the high-order harmonic generation (HHG) of ultrashort pulses propagated through laser-produced plasmas. It is shown that, during the last few years, substantial amendments of plasma HHG allowed in some cases the characteristics of gas HHG to be surpassed. The attractiveness of a new approach in coherent extreme ultraviolet radiation generation is demonstrated, which can also be used as a tool for laser-ablation-induced HHG spectroscopy of a giant class of solids. We present general ideas and prospects for this relatively new field of nonlinear optics.

  15. Hyperincursive discrete harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Antippa, Adel F.; Dubois, Daniel M.

    2008-03-01

    The hyperincursive algorithm for the discrete harmonic oscillator is perfectly stable and energy conserving. By identifying the natural parameters of the system, we transform the algorithm into a normal formalism based on dynamic equations of motion. We find that the simultaneous difference equations of motion are complex, that the natural parameters are classical analogs of the quantum mechanical creation and annihilation operators, and that the solution is of utmost simplicity. The methodology is applicable to any dynamical system, has conceptual importance for discrete physics, and practical utility for numerical simulations.

  16. Inter-noise 80: Noise control for the 80's; Proceedings of the Ninth International Conference on Noise Control Engineering, Miami, FL, December 8-10, 1980. Volumes 1 & 2

    NASA Astrophysics Data System (ADS)

    Maling, G. C., Jr.

    Noise sources are considered along with physical phenomena, noise control elements, vibration generation and reduction, the physical aspects of environmental noise, the effects of noise, analysis, and requirements. Attention is given to noise-generating devices, stationary noise sources, moving noise sources, specialized industrial machinery and equipment, physical mechanisms of noise generation, natural sources of noise, sound propagation in the atmosphere, enclosures for noise sources, absorptive materials, ear protective devices, noise attenuation in ducts, characteristics of vibration and shock, noise generated by vibrating surfaces and structures, propagation in structures, balancing of rotating and reciprocating machines, vibration isolation and isolators, vibration-damping materials and structures, sonic fatigue, a design to withstand intense noise loads, building noise control, community noise control, in-plant noise control, noise surveys, the perception of sound, effects of vibration and mechanical shock, community reaction to noise, instrumentation systems, measurement techniques, test facilities, signal processing, analytical methods, modeling and simulation, sampling and quality control procedures, audiometry, psychoacoustical evaluations and testing, Federal legislation and regulations, state legislation and regulations, building codes, auditing and enforcement, and labeling.

  17. Rotor Broadband Noise Prediction with Comparison to Model Data

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Burley, Casey L.

    2001-01-01

    This paper reports an analysis and prediction development of rotor broadband noise. The two primary components of this noise are Blade-Wake Interaction (BWI) noise, due to the blades' interaction with the turbulent wakes of the preceding blades, and "Self" noise, due to the development and shedding of turbulence within the blades' boundary layers. Emphasized in this report is the new code development for Self noise. The analysis and validation employs data from the HART program, a model BO-105 rotor wind tunnel test conducted in the German-Dutch Wind Tunnel (DNW). The BWI noise predictions are based on measured pressure response coherence functions using cross-spectral methods. The Self noise predictions are based on previously reported semiempirical modeling of Self noise obtained from isolated airfoil sections and the use of CAMRAD.Modl to define rotor performance and local blade segment flow conditions. Both BWI and Self noise from individual blade segments are Doppler shifted and summed at the observer positions. Prediction comparisons with measurements show good agreement for a range of rotor operating conditions from climb to steep descent. The broadband noise predictions, along with those of harmonic and impulsive Blade-Vortex Interaction (BVI) noise predictions, demonstrate a significant advance in predictive capability for main rotor noise.

  18. Recognition of Non-Harmonic Natural Sounds by Small Mammals Using Competitive Training

    PubMed Central

    Ojima, Hisayuki; Taira, Masato; Kubota, Michinori; Horikawa, Junsei

    2012-01-01

    Animals recognize biologically relevant sounds, such as the non-harmonic sounds made by some predators, and respond with adaptive behaviors, such as escaping. To clarify which acoustic parameters are used for identifying non-harmonic, noise-like, broadband sounds, guinea pigs were conditioned to a natural target sound by introducing a novel training procedure in which 2 or 3 guinea pigs in a group competed for food. A set of distinct behavioral reactions was reliably induced almost exclusively to the target sound in a 2-week operant training. When fully conditioned, individual animals were separately tested for recognition of a set of target-like sounds that had been modified from the target sound, with spectral ranges eliminated or with fine or coarse temporal structures altered. The results show that guinea pigs are able to identify the noise-like non-harmonic natural sounds by relying on gross spectral compositions and/or fine temporal structures, just as birds are thought to do in the recognition of harmonic birdsongs. These findings are discussed with regard to similarities and dissimilarities to harmonic sound recognition. The results suggest that similar but not identical processing that requires different time scales might be used to recognize harmonic and non-harmonic sounds, at least in small mammals. PMID:23251497

  19. Damped quantum harmonic oscillator

    E-print Network

    A. Isar; A. Sandulescu

    2006-02-17

    In the framework of the Lindblad theory for open quantum systems the damping of the harmonic oscillator is studied. A generalization of the fundamental constraints on quantum mechanical diffusion coefficients which appear in the master equation for the damped quantum oscillator is presented; the Schr\\"odinger and Heisenberg representations of the Lindblad equation are given explicitly. On the basis of these representations it is shown that various master equations for the damped quantum oscillator used in the literature are particular cases of the Lindblad equation and that the majority of these equations are not satisfying the constraints on quantum mechanical diffusion coefficients. Analytical expressions for the first two moments of coordinate and momentum are also obtained by using the characteristic function of the Lindblad master equation. The master equation is transformed into Fokker-Planck equations for quasiprobability distributions. A comparative study is made for the Glauber $P$ representation, the antinormal ordering $Q$ representation and the Wigner $W$ representation. It is proven that the variances for the damped harmonic oscillator found with these representations are the same. By solving the Fokker-Planck equations in the steady state, it is shown that the quasiprobability distributions are two-dimensional Gaussians with widths determined by the diffusion coefficients. The density matrix is represented via a generating function, which is obtained by solving a time-dependent linear partial differential equation derived from the master equation. Illustrative examples for specific initial conditions of the density matrix are provided.

  20. Aspects of annoyance due to noise of road traffic. Survey results at 10 sites

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Results of surveys per highway site are given. A discussion is given of factors studied such as contribution of various noise sources, variation of noise levels at different sites, times and activities disturbed, and noise level and annoyance.

  1. Suppressing Rayleigh backscatter and code noise from all-fiber digital interferometers.

    PubMed

    Ngo, Silvie; Shaddock, Daniel A; McRae, Terry G; Lam, Timothy T-Y; Chow, Jong H; Gray, Malcolm B

    2016-01-01

    We configure an all-fiber digital interferometer to eliminate both code noise and Rayleigh backscatter noise from bidirectional measurements. We utilize a sawtooth phase ramp to upconvert code noise beyond our signal bandwidth, demonstrating an in-band noise reduction of approximately two orders of magnitude. In addition, we demonstrate, for the first time to our knowledge, the use of relative code delays within a digital-interferometer system to eliminate Rayleigh-backscatter noise, resulting in a noise reduction of a factor of 50. Finally, we identify double Rayleigh-backscatter noise as our limiting noise source and suggest two methods to minimize this noise source. PMID:26696164

  2. Direct computation of turbulence and noise

    NASA Technical Reports Server (NTRS)

    Berman, C.; Gordon, G.; Karniadakis, G.; Batcho, P.; Jackson, E.; Orszag, S.

    1991-01-01

    Jet exhaust turbulence noise is computed using a time dependent solution of the three dimensional Navier-Stokes equations to supply the source terms for an acoustic computation based on the Phillips convected wave equation. An extrapolation procedure is then used to determine the far field noise spectrum in terms of the near field sound. This will lay the groundwork for studies of more complex flows typical of noise suppression nozzles.

  3. Imaging with ambient noise

    SciTech Connect

    Snieder, Roel; Wapenaar, Kees

    2010-09-15

    Recent developments in seismology, ultrasonics, and underwater acoustics have led to a radical change in the way scientists think about ambient noise--the diffuse waves generated by pressure fluctuations in the atmosphere, the scattering of water waves in the ocean, and any number of other sources that pervade our world. Because diffuse waves consist of the superposition of waves propagating in all directions, they appear to be chaotic and random. That appearance notwithstanding, diffuse waves carry information about the medium through which they propagate.

  4. Measured and calculated characteristics of wind turbine noise

    NASA Technical Reports Server (NTRS)

    Greene, G. C.

    1981-01-01

    The results of an analytical and experimental investigation of wind turbine noise are presented. Noise calculations indicate that for configurations with the rotor downwind of the support tower, the primary source of noise is the rapid change in rotor loadings which occurs as the rotor passes through the tower wake. Noise measurements are presented for solid and truss type tower models with both upwind and downwind rotors. Upwind rotor configurations are shown to be significantly quieter than downwind configurations. The model data suggest that averaged noise measurements and noise calculations based on averaged tower wake characteristics may not accurately represent the impulsive noise characteristics of downwind rotor configurations.

  5. MODEL HARMONIZATION POTENTIAL AND BENEFITS

    EPA Science Inventory

    The IPCS Harmonization Project, which is currently ongoing under the auspices of the WHO, in the context of chemical risk assessment or exposure modeling, does not imply global standardization. Instead, harmonization is thought of as an effort to strive for consistency among appr...

  6. Harmonic Series Meets Fibonacci Sequence

    ERIC Educational Resources Information Center

    Chen, Hongwei; Kennedy, Chris

    2012-01-01

    The terms of a conditionally convergent series may be rearranged to converge to any prescribed real value. What if the harmonic series is grouped into Fibonacci length blocks? Or the harmonic series is arranged in alternating Fibonacci length blocks? Or rearranged and alternated into separate blocks of even and odd terms of Fibonacci length?

  7. Noise Pollution in Irbid City — Jordan

    NASA Astrophysics Data System (ADS)

    Odat, Sana’A.

    2015-09-01

    Noise defined as any sound that annoys or disturbs humans or that causes or tends to cause an adverse psychological and physiological effect on humans. Irbid is one of the most populated cities in Jordan. It is environmentally noise polluted due to the rapid and widespread introduction of mechanical methods for production and for their transportation. L10, L50, L90 and LAeq noise levels were measured during the day time and night time to assess and evaluate the noise levels from mosques, schools, celebration halls, streets, building works, industrial areas and commercial areas. The results of the investigation showed that the measured noise levels from all the selected sources were high during the day time and the noise problem is not only limited to day time, but continues in night time in this city. These noise levels were higher than those set by Jordanian limits during day time and night time. A significant correlation between the measured statistical noise levels L10, L50 and L90 and equivalent continuous noise level LAeq were also detected. The mean value of industrial noise source was motors of large vehicles and engines. Whereas the presence of slow moving vehicles, low speed and honking of horns during traffic ingestion periods lead to an increase in noise levels in commercial areas. The noise from building machines and equipment (dredges, concrete mixers, concrete pumps and jackhammers) is quite different from that of traditional equipment. The construction machines have engines that produce a loud, fluctuating noise with varying frequencies that can propagate the sound for a long distance. The noise produced by these engines is particularly disturbing due to the wide variations in frequency and volume.

  8. Active Shielding and Control of Environmental Noise

    NASA Technical Reports Server (NTRS)

    Tsynkov, S. V.

    2001-01-01

    In the framework of the research project supported by NASA under grant # NAG-1-01064, we have studied the mathematical aspects of the problem of active control of sound, i.e., time-harmonic acoustic disturbances. The foundations of the methodology are described in our paper [1]. Unlike. many other existing techniques, the approach of [1] provides for the exact volumetric cancellation of the unwanted noise on a given predetermined region airspace, while leaving unaltered those components of the total acoustic field that are deemed as friendly. The key finding of the work is that for eliminating the unwanted component of the acoustic field in a given area, one needs to know relatively little; in particular, neither the locations nor structure nor strength of the exterior noise sources need to be known. Likewise, there is no need to know the volumetric properties of the supporting medium across which the acoustic signals propagate, except, maybe, in a narrow area of space near the perimeter of the protected region. The controls are built based solely on the measurements performed on the perimeter of the domain to be shielded; moreover, the controls themselves (i.e., additional sources) are concentrated also only on or near this perimeter. Perhaps as important, the measured quantities can refer to the total acoustic field rather than to its unwanted component only, and the methodology can automatically distinguish between the two. In [1], we have constructed the general solution for controls. The apparatus used for deriving this general solution is closely connected to the concepts of generalized potentials and boundary projections of Calderon's type. For a given total wave field, the application of a Calderon's projection allows one to definitively tell between its incoming and outgoing components with respect to a particular domain of interest, which may have arbitrary shape. Then, the controls are designed so that they suppress the incoming component for the domain to be shielded or alternatively, the outgoing component for the domain, which is complementary to the one to be shielded.

  9. Indirect combustion noise of auxiliary power units

    NASA Astrophysics Data System (ADS)

    Tam, Christopher K. W.; Parrish, Sarah A.; Xu, Jun; Schuster, Bill

    2013-08-01

    Recent advances in noise suppression technology have significantly reduced jet and fan noise from commercial jet engines. This leads many investigators in the aeroacoustics community to suggest that core noise could well be the next aircraft noise barrier. Core noise consists of turbine noise and combustion noise. There is direct combustion noise generated by the combustion processes, and there is indirect combustion noise generated by the passage of combustion hot spots, or entropy waves, through constrictions in an engine. The present work focuses on indirect combustion noise. Indirect combustion noise has now been found in laboratory experiments. The primary objective of this work is to investigate whether indirect combustion noise is also generated in jet and other engines. In a jet engine, there are numerous noise sources. This makes the identification of indirect combustion noise a formidable task. Here, our effort concentrates exclusively on auxiliary power units (APUs). This choice is motivated by the fact that APUs are relatively simple engines with only a few noise sources. It is, therefore, expected that the chance of success is higher. Accordingly, a theoretical model study of the generation of indirect combustion noise in an Auxiliary Power Unit (APU) is carried out. The cross-sectional areas of an APU from the combustor to the turbine exit are scaled off to form an equivalent nozzle. A principal function of a turbine in an APU is to extract mechanical energy from the flow stream through the exertion of a resistive force. Therefore, the turbine is modeled by adding a negative body force to the momentum equation. This model is used to predict the ranges of frequencies over which there is a high probability for indirect combustion noise generation. Experimental spectra of internal pressure fluctuations and far-field noise of an RE220 APU are examined to identify anomalous peaks. These peaks are possible indirection combustion noise. In the case of the APU RE220, such peaks are identified. The frequency ranges of these peaks are found to overlap those predicted by the model theory. Based on this agreement, a tentative conclusion is drawn that there is good reason to believe that APUs do generate measurable indirect combustion noise. This paper is dedicated to the memory of Prof. Phil Doak for his numerous contributions to Aeroacoustics and the Journal of Sound and Vibration.

  10. Aircraft noise prediction

    NASA Astrophysics Data System (ADS)

    Filippone, Antonio

    2014-07-01

    This contribution addresses the state-of-the-art in the field of aircraft noise prediction, simulation and minimisation. The point of view taken in this context is that of comprehensive models that couple the various aircraft systems with the acoustic sources, the propagation and the flight trajectories. After an exhaustive review of the present predictive technologies in the relevant fields (airframe, propulsion, propagation, aircraft operations, trajectory optimisation), the paper addresses items for further research and development. Examples are shown for several airplanes, including the Airbus A319-100 (CFM engines), the Bombardier Dash8-Q400 (PW150 engines, Dowty R408 propellers) and the Boeing B737-800 (CFM engines). Predictions are done with the flight mechanics code FLIGHT. The transfer function between flight mechanics and the noise prediction is discussed in some details, along with the numerical procedures for validation and verification. Some code-to-code comparisons are shown. It is contended that the field of aircraft noise prediction has not yet reached a sufficient level of maturity. In particular, some parametric effects cannot be investigated, issues of accuracy are not currently addressed, and validation standards are still lacking.

  11. Control of jet noise

    NASA Technical Reports Server (NTRS)

    Schreck, Stefan

    1993-01-01

    This reports describes experiments conducted at the High-Speed Jet Facility at the University of Southern California on supersonic jets. The goal of the study was to develop methods for controlling the noise emitted from supersonic jets by passive and/or active means. Work by Seiner et al (1991) indicates that eddy Mach wave radiation is the dominant noise source in a heated high speed jet. Eddy Mach radiation is caused by turbulent eddies traveling at supersonic speed in the shear layer of the jet. The convection velocity of the eddies decays with increasing distance from the nozzle exit due to the mixing of the jet stream with the ambient fluid. Once the convection speed reaches subsonic velocities, eddy Mach wave radiation ceases. To control noise, a rapid decay of the convection velocity is desired. This may be accomplished by enhanced mixing in the jet. In this study, small aspect ratio rectangular jet nozzles were tested. A flapping mode was noticed in the jets. By amplifying screech components of the jets and destabilizing the jet columns with a collar device, the flapping mode was excited. The result was a rapid decay of the jet velocity. A reduction in eddy Mach radiation in rectangular supersonic jets may be achieved with this device.

  12. Parameter estimation of gravitational waves from nonprecessing black hole-neutron star inspirals with higher harmonics: Comparing Markov-chain Monte Carlo posteriors to an effective Fisher matrix

    NASA Astrophysics Data System (ADS)

    O'Shaughnessy, Richard; Farr, Ben; Ochsner, Evan; Cho, Hee-Suk; Kim, Chunglee; Lee, Chang-Hwan

    2014-03-01

    Most calculations of the gravitational wave signal from merging compact binaries limit attention to the leading-order quadrupole when constructing models for detection or parameter estimation. Some studies have claimed that if additional "higher harmonics" are included consistently in the gravitational wave signal and search model, binary parameters can be measured much more precisely. Using the lalinference Markov-chain Monte Carlo parameter estimation code, we construct posterior parameter constraints associated with two distinct nonprecessing black hole-neutron star (BH-NS) binaries, each with and without higher-order harmonics. All simulations place a plausible signal into a three-detector network with Gaussian noise. Our simulations suggest that higher harmonics provide little information, principally allowing us to measure a previously unconstrained angle associated with the source geometry well but otherwise improving knowledge of all other parameters by a few percent for our loud fiducial signal (? =20). Even at this optimistic signal amplitude, different noise realizations have a more significant impact on parameter accuracy than higher harmonics. We compare our results with the "effective Fisher matrix" introduced previously as a method to obtain robust analytic predictions for complicated signals with multiple significant harmonics. We find generally good agreement with these predictions, confirm that intrinsic parameter measurement accuracy is nearly independent of detector network geometry, and show that uncertainties in extrinsic and intrinsic parameters can, to a good approximation, be separated. For our fiducial example, the individual masses can be determined to lie between 7.11-11.48M? and 1.77-1.276M? at greater than 99% confidence level, accounting for unknown BH spin. Assuming comparable control over waveform systematics, measurements of BH-NS binaries can constrain the BH and perhaps NS mass distributions. Using analytic arguments to guide extrapolation, we anticipate that higher harmonics should provide little new information about nonprecessing BH-NS binaries, for the signal amplitudes expected for the first few detections. Though our study focused on one particular example—higher harmomics—any study of subdominant degrees of freedom in gravitational wave astronomy can adopt the tools presented here (V /Vprior and DKL) to assess whether new physics is accessible (e.g., modifications of gravity, spin-orbit misalignment) and if so precisely what information those new parameters provide.

  13. Detiding DART® Buoy Data for Real-Time Extraction of Source Coefficients for Operational Tsunami Forecasting

    NASA Astrophysics Data System (ADS)

    Percival, Donald B.; Denbo, Donald W.; Eblé, Marie C.; Gica, Edison; Huang, Paul Y.; Mofjeld, Harold O.; Spillane, Michael C.; Titov, Vasily V.; Tolkova, Elena I.

    2015-06-01

    US Tsunami Warning Centers use real-time bottom pressure (BP) data transmitted from a network of buoys deployed in the Pacific and Atlantic Oceans to tune source coefficients of tsunami forecast models. For accurate coefficients and therefore forecasts, tides and background noise at the buoys must be accounted for through detiding. In this study, five methods for coefficient estimation are compared, each of which handles detiding differently. The first three subtract off a tidal prediction based on (1) a localized harmonic analysis involving 29 days of data immediately preceding the tsunami event, (2) 68 preexisting harmonic constituents specific to each buoy, and (3) an empirical orthogonal function fit to the previous 25 h of data. Method (4) is a Kalman smoother that uses method (1) as its input. These four methods estimate source coefficients after detiding. Method (5) estimates the coefficients simultaneously with a two-component harmonic model that accounts for the tides. The five methods are evaluated using archived data from 11 DART® buoys, to which selected artificial tsunami signals are superimposed. These buoys represent a full range of observed tidal conditions and background BP noise in the Pacific and Atlantic, and the artificial signals have a variety of patterns and induce varying signal-to-noise ratios. The root-mean-square errors (RMSEs) of least squares estimates of source coefficients using varying amounts of data are used to compare the five detiding methods. The RMSE varies over two orders of magnitude among detiding methods, generally decreasing in the order listed, with method (5) yielding the most accurate estimate of the source coefficient. The RMSE is substantially reduced by waiting for the first full wave of the tsunami signal to arrive. As a case study, the five methods are compared using data recorded from the devastating 2011 Japan tsunami.

  14. Simulation of stationary Gaussian noise with regard to the Langevin equation with memory effect

    E-print Network

    Julian Schmidt; Alex Meistrenko; Hendrik van Hees; Carsten Greiner

    2015-11-06

    We present an efficient method for simulating a stationary Gaussian noise with an arbitrary covariance function and then study numerically the impact of time-correlated noise on the time evolution of a 1 + 1 dimensional generalized Langevin equation by comparing also to analytical results. Finally, we apply our method to the generalized Langevin equation with an external harmonic and double-well potential.

  15. Noise reduction for model counterrotation propeller at cruise by reducing aft-propeller diameter

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.; Stang, David B.

    1987-01-01

    The forward propeller of a model counterrotation propeller was tested with its original aft propeller and with a reduced diameter aft propeller. Noise reductions with the reduced diameter aft propeller were measured at simulated cruise conditions. Reductions were as large as 7.5 dB for the aft-propeller passing tone and 15 dB in the harmonics at specific angles. The interaction tones, mostly the first, were reduced probably because the reduced-diameter aft-propeller blades no longer interacted with the forward propeller tip vortex. The total noise (sum of primary and interaction noise) at each harmonic was significantly reduced. The chief noise reduction at each harmonic came from reduced aft-propeller-alone noise, with the interaction tones contributing little to the totals at cruise. Total cruise noise reductions were as much as 3 dB at given angles for the blade passing tone and 10 dB for some of the harmonics. These reductions would measurably improve the fuselage interior noise levels and represent a definite cruise noise benefit from using a reduced diameter aft propeller.

  16. Estimating site amplification factors from ambient noise Steven R. Taylor,1

    E-print Network

    Gerstoft, Peter

    of the ambient seismic field, submitted to Journal of Geophysical Research, 2008) have begun to address factors using ambient seismic noise. We treat a seismic network or array as a forced damped harmonic of the ambient noise field. A network or array beam is necessary to estimate the forcing function. Taken over

  17. Analysis of bilinear stochastic systems. [involving multiplicative noise processes

    NASA Technical Reports Server (NTRS)

    Willsky, A. S.; Marcus, S. I.; Martin, D. N.

    1974-01-01

    Analysis of stochastic dynamical systems that involve multiplicative (bilinear) noise processes is considered. After defining the systems of interest, the evolution of the moments of such systems, the question of stochastic stability, and estimation for bilinear stochastic systems are discussed. Both exact and approximate methods of analysis are introduced, and, in particular, the uses of Lie-theoretic concepts and harmonic analysis are discussed.

  18. Noise Generation in Hot Jets

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Kenzakowski, Donald C.

    2007-01-01

    A prediction method based on the generalized acoustic analogy is presented, and used to evaluate aerodynamic noise radiated from high speed hot jets. The set of Euler equations are split into their respective non-radiating and residual components. Under certain conditions, the residual equations are rearranged to form a wave equation. This equation consists of a third-order wave operator, plus a number of nonlinear terms that are identified with the equivalent sources of sound and their statistical characteristics are modeled. A specialized RANS solver provides the base flow as well as turbulence quantities and temperature fluctuations that determine the source strength. The main objective here is to evaluate the relative contribution from various source elements to the far-field spectra and to show the significance of temperature fluctuations as a source of aerodynamic noise in hot jets.

  19. Galilean covariant harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Horzela, Andrzej; Kapuscik, Edward

    1993-01-01

    A Galilean covariant approach to classical mechanics of a single particle is described. Within the proposed formalism, all non-covariant force laws defining acting forces which become to be defined covariantly by some differential equations are rejected. Such an approach leads out of the standard classical mechanics and gives an example of non-Newtonian mechanics. It is shown that the exactly solvable linear system of differential equations defining forces contains the Galilean covariant description of harmonic oscillator as its particular case. Additionally, it is demonstrated that in Galilean covariant classical mechanics the validity of the second Newton law of dynamics implies the Hooke law and vice versa. It is shown that the kinetic and total energies transform differently with respect to the Galilean transformations.

  20. Synchronous Discrete Harmonic Oscillator

    SciTech Connect

    Antippa, Adel F.; Dubois, Daniel M.

    2008-10-17

    We introduce the synchronous discrete harmonic oscillator, and present an analytical, numerical and graphical study of its characteristics. The oscillator is synchronous when the time T for one revolution covering an angle of 2{pi} in phase space, is an integral multiple N of the discrete time step {delta}t. It is fully synchronous when N is even. It is pseudo-synchronous when T/{delta}t is rational. In the energy conserving hyperincursive representation, the phase space trajectories are perfectly stable at all time scales, and in both synchronous and pseudo-synchronous modes they cycle through a finite number of phase space points. Consequently, both the synchronous and the pseudo-synchronous hyperincursive modes of time-discretization provide a physically realistic and mathematically coherent, procedure for dynamic, background independent, discretization of spacetime. The procedure is applicable to any stable periodic dynamical system, and provokes an intrinsic correlation between space and time, whereby space-discretization is a direct consequence of background-independent time-discretization. Hence, synchronous discretization moves the formalism of classical mechanics towards that of special relativity. The frequency of the hyperincursive discrete harmonic oscillator is ''blue shifted'' relative to its continuum counterpart. The frequency shift has the precise value needed to make the speed of the system point in phase space independent of the discretizing time interval {delta}t. That is the speed of the system point is the same on the polygonal (in the discrete case) and the circular (in the continuum case) phase space trajectories.