Science.gov

Sample records for haw cactaceae propagation

  1. Phenolic content and antioxidant activity of Pereskia grandifolia Haw. (Cactaceae) extracts

    PubMed Central

    Sim, K. S.; Nurestri, A. M. Sri; Norhanom, A. W.

    2010-01-01

    The leaves of Pereskia grandifolia Haw. (Cactaceae), commonly known as “Jarum Tujuh Bilah” in Malaysia, have been traditionally used as natural remedy in folk medicine by the locals. In the present study, the antioxidant potential of P. grandifolia crude methanol and its fractionated extracts (hexane, ethyl acetate and water) have been investigated, employing three different established testing systems, such as scavenging activity on 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals, reducing power assay and β-carotene method. The total phenolic content of the P. grandifolia extracts was also assessed by the Folin-Ciocalteau’s method. The ethyl acetate extract showed significantly the highest total phenolic content, DPPH scavenging ability and antioxidant activity in β-carotene bleaching assay while the hexane extract possessed significantly strongest reducing power. The data obtained in these testing systems clearly establish the antioxidant potency of P. grandifolia. As such, this is the first report on the antioxidant activities of P. grandifolia. PMID:20931088

  2. Phenolic content and antioxidant activity of Pereskia grandifolia Haw. (Cactaceae) extracts.

    PubMed

    Sim, K S; Nurestri, A M Sri; Norhanom, A W

    2010-07-01

    The leaves of Pereskia grandifolia Haw. (Cactaceae), commonly known as "Jarum Tujuh Bilah" in Malaysia, have been traditionally used as natural remedy in folk medicine by the locals. In the present study, the antioxidant potential of P. grandifolia crude methanol and its fractionated extracts (hexane, ethyl acetate and water) have been investigated, employing three different established testing systems, such as scavenging activity on 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals, reducing power assay and β-carotene method. The total phenolic content of the P. grandifolia extracts was also assessed by the Folin-Ciocalteau's method. The ethyl acetate extract showed significantly the highest total phenolic content, DPPH scavenging ability and antioxidant activity in β-carotene bleaching assay while the hexane extract possessed significantly strongest reducing power. The data obtained in these testing systems clearly establish the antioxidant potency of P. grandifolia. As such, this is the first report on the antioxidant activities of P. grandifolia. PMID:20931088

  3. Use and knowledge of Cactaceae in Northeastern Brazil

    PubMed Central

    2013-01-01

    Background This study aimed to record the use, and knowledge that residents from São Francisco community (Paraiba, Brazil) have regarding the Cactaceae. Methods Semi-structured interviews were carried out with 118 informants; 50 men and 68 women. The cacti cited in this study were organised into use categories and use values were calculated. Differences in the values applied to species and use categories by men and women were compared via a G test (Williams). Results The nine species identified were: Cereus jamacaru DC., Melocactus bahiensis (Brtitton & Rose) Luetzelb., Nopalea cochenillifera (L.) Salm-Dyck., Opuntia ficus indica (L.) Mill, Opuntia stricta (Haw.) Haw., Pilosocereus gounellei (F.A.C. Weber) Byles & Rowley, Pilosocereus pachycladus F. Ritter, Tacinga inamoena (K. Schum) N.P. Taylor & Stuppy, Tacinga palmadora (Britton & Rose) N.P. Taylor & Stuppy. In total, 1,129 use citations were recorded, divided into 11 categories. The use value categories with the highest scores were forage (0.42), food (0.30) and construction (building) (0.25). P. pachycladus showed the greatest use value, versatility and number of plant parts used. Conclusion The survey showed that the Cactaceae is extremely important for several uses and categories attributed to different species. Apart from contributing to the ethnobotanical knowledge of the Cactaceae, another important focus of this study was to reinforce the necessity for further studies that record the traditional knowledge about this plant family, which has been lost in younger generations. PMID:23981911

  4. Dr William Hawes, MD (1736-1808).

    PubMed

    Scott, John Russell

    2006-08-01

    William Hawes was an apothecary in London who took up the cause of resuscitating the nearly drowned in the river, and founded the Royal Humane Society. He became a physician at the age of 45 years and was active in charitable works and literary societies. PMID:16845460

  5. 2. LOOKING SOUTHEAST FROM THE WEST BANK OF HAW CREEK. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. LOOKING SOUTHEAST FROM THE WEST BANK OF HAW CREEK. A CLOSE-UP PHOTO OF THE NORTH SIDE OF THE BRIDGE, ITS PARAPETS AND THE UTILITY PIPES SUSPENDED FROM ITS OVERHANG. - Seventh Street Bridge, Spanning Haw Creek at Seventh Street, Columbus, Bartholomew County, IN

  6. Technical Status Report: Preliminary Glass Formulation Report for INEEL HAW

    SciTech Connect

    Peeler, D.; Reamer, I.; Vienna, J.; Crum, J.A.

    1998-03-01

    This study was performed by a team comprising experts in glass chemistry, glass technology, and statistics at both SRTC and PNNL. This joint effort combined the strengths of each discipline and site to quickly develop a glass formulation for specific INEEL HAW.

  7. Characterization of calcium oxalate biominerals in Pereskia species (Cactaceae).

    PubMed

    Monje, Paula V; Baran, Enrique J

    2009-01-01

    Calcium oxalate druses were isolated from the stems and leaves of six Pereskioideae family members and investigated by infrared spectroscopy, showing that in all samples the biomineral was present in the form of whewellite, CaC2O4 x H2O. As Pereskia is thought to represent the "ancestral" condition of the leafless stem-succulent cacti, these results suggest that the biomineralization of calcium oxalate in Cactaceae represents a primitive characteristic of the group and also support a close genetic relationship between Pereskia and Opuntia. PMID:20158142

  8. The polymorphic weddellite crystals in three species of Cephalocereus (Cactaceae).

    PubMed

    Bárcenas-Argüello, María-Luisa; Gutiérrez-Castorena, Ma C-del-Carmen; Terrazas, Teresa

    2015-10-01

    Mineral inclusions in plant cells are genetically regulated, have an ecological function and are used as taxonomic characters. In Cactaceae, crystals in epidermal and cortical tissues have been reported; however, few studies have conducted chemical and morphological analyses on these crystals, and even fewer have reported non-mineral calcium to determine its systematic value. Cephalocereus apicicephalium, C. totolapensis and C. nizandensis are Cactaceae species endemic to the Isthmus of Tehuantepec, Mexico with abundant epidermal prismatic crystals. In the present study, we characterize the mineral cell inclusions, including their chemical composition and their morphology, for three species of Cephalocereus. Crystals of healthy branches of the three species were isolated and studied. The crystals were identified by X-ray diffraction (XRD), their morphology was described using a petrographic and scanning electron microscope (SEM), and their elemental composition was measured with Energy Dispersive X-ray (EDXAR). The three species synthesized weddellite with different degrees of hydration depending on the species. The optical properties of calcium oxalate crystals were different from the core, which was calcium carbonate. We observed a large diversity of predominantly spherical forms with SEM. EDXAR analysis detected different concentrations of Ca and significant amounts of elements, such as Si, Mg, Na, K, Cl, and Fe, which may be related to the edaphic environment of these cacti. The occurrence of weddellite is novel for the genus according to previous reports. The morphological diversity of the crystals may be related to their elemental composition and may be a source of phylogenetic characters. PMID:26070169

  9. Vocalization of Equus asinus: The hees and haws of donkey brays

    NASA Astrophysics Data System (ADS)

    Browning, David G.; Scheifele, Peter M.

    2001-05-01

    An understanding of the vocalizations of farm animals may provide an important key in the identification of animals under stress. Donkey vocalizations (brays) appear to be unique among the Equidae in that significant sound is produced during both air intake (the hee) and air outflow (the haw). Typically these vocalizations, primarily by males, consist of a series of brays, seemingly mechanically produced with little variation, terminating when the animal becomes short of breath-literally a burst of sound. The acoustic character, duration, and sequence (some hee-haw, while others haw-hee) are unique to each animal. As with other Perissodactyles (horses, zebras), and in contrast to the Artiodactyls (cows, sheep, and goats), there can be a significant frequency variation during a vocalization segment (particularly in the ``haw'' phase). It has not been determined what control (if any) the animal has over this. Further study is being made of possible braying variations for a given animal.

  10. A novel method of genomic DNA extraction for Cactaceae1

    PubMed Central

    Fehlberg, Shannon D.; Allen, Jessica M.; Church, Kathleen

    2013-01-01

    • Premise of the study: Genetic studies of Cactaceae can at times be impeded by difficult sampling logistics and/or high mucilage content in tissues. Simplifying sampling and DNA isolation through the use of cactus spines has not previously been investigated. • Methods and Results: Several protocols for extracting DNA from spines were tested and modified to maximize yield, amplification, and sequencing. Sampling of and extraction from spines resulted in a simplified protocol overall and complete avoidance of mucilage as compared to typical tissue extractions. Sequences from one nuclear and three plastid regions were obtained across eight genera and 20 species of cacti using DNA extracted from spines. • Conclusions: Genomic DNA useful for amplification and sequencing can be obtained from cactus spines. The protocols described here are valuable for any cactus species, but are particularly useful for investigators interested in sampling living collections, extensive field sampling, and/or conservation genetic studies. PMID:25202521

  11. The Preparation and Characterization of INTEC HAW Phase I Composition Variation Study Glasses

    SciTech Connect

    Musick, C. A.; Peeler, D. K.; Piepel, G. F.; Scholes, B. A.; Staples, B. A.; Vienna, J. D.

    1999-03-01

    A glass composition variation study (CVS) is in progress to define formulations for the vitrification of high activity waste (HAW) proposed to be separated from dissolved calcine stored at the Idaho National Engineering and Environmental Laboratory (INEEL). Estimates of calcine and HAW compositions prepared in FY97 were used to define test matrix glasses. The HAW composition is of particular interest because high aluminum, zirconium, phosphorous and potassium, and low iron and sodium content places it outside the realm of vitrification experience in the Department of Energy (DOE) complex. Through application of statistical techniques, a test matrix was defined for Phase 1 of the CVS. From this matrix, formulations were systematically selected for preparation and characterization with respect to homogeneity, viscosity, liquidus temperature (TL), and leaching response when subjected to the Product Consistency Test (PCT). Based on the properties determined, certain formulations appear suitable for further development including use in planning Phase 2 of the study. It is recommended that glasses to be investigated in Phase 2 be limited to 3-5 wt % phosphate. The results of characterizing the Phase 1 glasses are presented in this document. A full analysis of the composition-property relationships of glasses being developed for immobilizing HAWs will be performing at the completion of CVS phases. This analysis will be needed for the optimization of the glass formulations of vitrifying HAW. Contributions were made to this document by personnel working at the INEEL, Pacific Northwest National Laboratories (PNNL), and the Savannah River Technology Center (SRTC).

  12. Carbon Metabolism in Two Species of Pereskia (Cactaceae) 1

    PubMed Central

    Rayder, Lisa; Ting, Irwin P.

    1981-01-01

    The Pereskia are morphologically primitive, leafed members of the Cactaceae. Gas exchange characteristics using a dual isotope porometer to monitor 14CO2 and tritiated water uptake, diurnal malic acid fluctuations, phosphoenolpyruvate carboxylase, and malate dehydrogenase activities were examined in two species of the genus Pereskia, Pereskia grandifolia and Pereskia aculeata. Investigations were done on well watered (control) and water-stressed plants. Nonstressed plants showed a CO2 uptake pattern indicating C3 carbon metabolism. However, diurnal fluctuations in titratable acidity were observed similar to Crassulacean acid metabolism. Plants exposed to 10 days of water stress exhibited stomatal opening only during an early morning period. Titratable acidity, phosphoenolpyruvate carboxylase activity, and malate dehydrogenase activity fluctuations were magnified in the stressed plants, but showed the same diurnal pattern as controls. Water stress causes these cacti to shift to an internal CO2 recycling (“idling”) that has all attributes of Crassulacean acid metabolism except nocturnal stomata opening and CO2 uptake. The consequences of this shift, which has been observed in other succulents, are unknown, and some possibilities are suggested. PMID:16661857

  13. Gynogenesis in the vine cacti Hylocereus and Selenicereus (Cactaceae).

    PubMed

    Garcia, Reinerio Benega; Cisneros, Aroldo; Schneider, Bert; Tel-Zur, Noemi

    2009-05-01

    Gynogenesis was investigated on the allotetraploid Selenicereus megalanthus and the diploid Hylocereus polyrhizus and Hylocereus undatus vine cactus species. Unpollinated ovules from developing flower buds containing microspores at middle uninucleate developmental stage were cultured on MS basal medium containing 2,4-D/TDZ with different sucrose concentrations. Ovule size increased under dark culture conditions in all the three species and the level of response was species and sucrose concentration dependent. The best responses were achieved in the two S. megalanthus accessions, E-123 and J-80, at 0.18 and 0.26 M sucrose. Only ovule enlargement was obtained in H. undatus and both ovule enlargement and callus were obtained in H. polyrhizus. Development in both species ceased and embryoids were not formed. Plant regeneration was directly and indirectly obtained in both S. megalanthus accessions. Ploidy level was determined for a total of 29 S. megalanthus gynogenic plants using flow cytometry: 15 were found to be dihaploid (plants with the gametophytic chromosome number) and the other 14 were found to have higher ploidy levels. This is the first report of successful gynogenesis in Cactaceae. The dihaploids of S. megalanthus successfully produced by ovule culture techniques opens new perspectives in vine cacti breeding. PMID:19266203

  14. Cytotoxic components of Pereskia bleo (Kunth) DC. (Cactaceae) leaves.

    PubMed

    Malek, Sri Nurestri Abdul; Shin, Sim Kae; Wahab, Norhanom Abdul; Yaacob, Hashim

    2009-01-01

    Dihydroactinidiolide (1) and a mixture of sterols [campesterol (2), stigmasterol (3) and beta-sitosterol (4)], together with the previously isolated individual compounds beta-sitosterol (4), 2,4-di-tert-butylphenol (5), alpha-tocopherol (6), phytol (7) were isolated from the active ethyl acetate fraction of Pereskia bleo (Kunth) DC. (Cactaceae) leaves. Cytotoxic activities of the above mentioned compounds against five human carcinoma cell lines, namely the human nasopharyngeal epidermoid carcinoma cell line (KB), human cervical carcinoma cell line (CasKi), human colon carcinoma cell line (HCT 116), human hormone-dependent breast carcinoma cell line (MCF7) and human lung carcinoma cell line (A549); and non-cancer human fibroblast cell line (MRC-5) were investigated. Compound 5 possessed very remarkable cytotoxic activity against KB cells, with an IC(50 )value of 0.81microg/mL. This is the first report on the cytotoxic activities of the compounds isolated from Pereskia bleo. PMID:19471192

  15. Carbon metabolism in two species of pereskia (cactaceae).

    PubMed

    Rayder, L; Ting, I P

    1981-07-01

    The Pereskia are morphologically primitive, leafed members of the Cactaceae. Gas exchange characteristics using a dual isotope porometer to monitor (14)CO(2) and tritiated water uptake, diurnal malic acid fluctuations, phosphoenolpyruvate carboxylase, and malate dehydrogenase activities were examined in two species of the genus Pereskia, Pereskia grandifolia and Pereskia aculeata. Investigations were done on well watered (control) and water-stressed plants. Nonstressed plants showed a CO(2) uptake pattern indicating C(3) carbon metabolism. However, diurnal fluctuations in titratable acidity were observed similar to Crassulacean acid metabolism. Plants exposed to 10 days of water stress exhibited stomatal opening only during an early morning period. Titratable acidity, phosphoenolpyruvate carboxylase activity, and malate dehydrogenase activity fluctuations were magnified in the stressed plants, but showed the same diurnal pattern as controls. Water stress causes these cacti to shift to an internal CO(2) recycling ("idling") that has all attributes of Crassulacean acid metabolism except nocturnal stomata opening and CO(2) uptake. The consequences of this shift, which has been observed in other succulents, are unknown, and some possibilities are suggested. PMID:16661857

  16. Basal cactus phylogeny: implications of Pereskia (Cactaceae) paraphyly for the transition to the cactus life form.

    PubMed

    Edwards, Erika J; Nyffeler, Reto; Donoghue, Michael J

    2005-07-01

    The cacti are well-known desert plants, widely recognized by their specialized growth form and essentially leafless condition. Pereskia, a group of 17 species with regular leaf development and function, is generally viewed as representing the "ancestral cactus," although its placement within Cactaceae has remained uncertain. Here we present a new hypothesis of phylogenetic relationships at the base of the Cactaceae, inferred from DNA sequence data from five gene regions representing all three plant genomes. Our data support a basal split in Cactaceae between a clade of eight Pereskia species, centered around the Caribbean basin, and all other cacti. Two other Pereskia clades, distributed mostly in the southern half of South America, are part of a major clade comprising Maihuenia plus Cactoideae, and Opuntioideae. This result highlights several events in the early evolution of the cacti. First, during the transition to stem-based photosynthesis, the evolution of stem stomata and delayed bark formation preceded the evolution of the stem cortex into a specialized photosynthetic tissue system. Second, the basal split in cacti separates a northern from an initially southern cactus clade, and the major cactus lineages probably originated in southern or west-central South America. PMID:21646140

  17. The biological activities and chemical composition of Pereskia species (Cactaceae)--a review.

    PubMed

    Pinto, Nícolas de Castro Campos; Scio, Elita

    2014-09-01

    The exploration of nature as a source of sustainable, novel bioactive substances continues to grow as natural products play a significant role in the search for new therapeutic and agricultural agents. In this context, plants of the genus Pereskia (Cactaceae) have been studied for their biological activities, and are evolving as an interesting subject in the search for new, bioactive compounds. These species are commonly used as human foodstuffs and in traditional medicine to treat a variety of diseases. This review focuses on the bioactivity and chemical composition of the genus Pereskia, and aims to stimulate further studies on the chemistry and biological potential of the genus. PMID:24862084

  18. Anatomical variation in Cactaceae and relatives: Trait lability and evolutionary innovation.

    PubMed

    Ogburn, R Matthew; Edwards, Erika J

    2009-02-01

    The cacti have undergone extensive specialization in their evolutionary history, providing an excellent system in which to address large-scale questions of morphological and physiological adaptation. Recent molecular phylogenetic studies suggest that (1) Pereskia, the leafy genus long interpreted as the sister group of all other cacti, is likely paraphyletic, and (2) Cactaceae are nested within a paraphyletic Portulacaceae as a member of the "ACPT" clade (Anacampseroteae, Cactaceae, Portulaca, and Talinum). We collected new data on the vegetative anatomy of the ACPT clade and relatives to evaluate whether patterns in the distributions of traits may provide insight into early events in the evolutionary transition to the cactus life form. Many traits had high levels of homoplasy and were mostly equivocal with regard to infraclade relationships of ACPT, although several characters do lend further support to a paraphyletic Pereskia. These include a thick stem cuticle, prominent stem mucilage cells, and hypodermal calcium oxalate druses, all of which are likely to be important traits for stem water storage and photosynthesis. We hypothesize that high lability of many putative "precursor" traits may have been critical in generating the organismal context necessary for the evolution of an efficient and integrated photosynthetic stem. PMID:21628195

  19. Protective effect of polysaccharides from Opuntia dillenii Haw. fruits on streptozotocin-induced diabetic rats.

    PubMed

    Gao, Jie; Han, Yu-Lu; Jin, Zheng-Yu; Xu, Xue-Ming; Zha, Xue-Qiang; Chen, Han-Qing; Yin, Yan-Yan

    2015-06-25

    In this study, a novel water-soluble polysaccharide fraction with molecular weight of 6479.1kDa was isolated from the fruits of Opuntia dillenii Haw., which consisted of rhamnose, xylose, mannose and glucose in the molar ratio of 14.99:1.14:1.00:6.47. The protective effect of O. dillenii Haw. fruits polysaccharide (ODFP) against oxidative damage in streptozotocin (STZ)-induced diabetic rats was investigated. The results showed that oral administration of ODFP significantly decreased food intake, water intake, urine production, organ weights and blood glucose level, and increased body weight in STZ-induced diabetic rats. ODFP also significantly increased the activities of SOD, GPx and CAT, and decreased malondialdehyde level in serum, liver, kidney, and pancreas in STZ-induced diabetic rats. Moreover, histopathological examination showed that ODFP could markedly improve the structure integrity of pancreatic islet tissue in STZ-induced diabetic rats. These results suggest that ODFP have hypoglycemic and antioxidant properties and can protect rats from STZ-induced oxidative damage. PMID:25839790

  20. Anti-inflammatory activity of copao (Eulychnia acida Phil., Cactaceae) fruits.

    PubMed

    Jiménez-Aspee, Felipe; Alberto, Maria Rosa; Quispe, Cristina; Soriano, Maria del Pilar Caramantin; Theoduloz, Cristina; Zampini, Iris Catiana; Isla, Maria Ines; Schmeda-Hirschmann, Guillermo

    2015-06-01

    Copao (Eulychnia acida Phil., Cactaceae) is an endemic species occurring in northern Chile. The edible fruits of this plant are valued for its acidic and refreshing taste. Phenolic-enriched extracts from copao fruit pulp and epicarp, collected in the Elqui and Limari river valleys, were assessed by its in vitro ability to inhibit the pro-inflammatory enzymes lipoxygenase (LOX) and cyclooxygenases (COX-1 and COX-2). At 100 μg/mL, pulp extracts showed better effect towards LOX than epicarp extract, while COX-2 inhibition was observed for both epicarp and pulp samples. In general, the extracts were inactive towards COX-1. A positive correlation was observed between the anti-inflammatory activity and the main phenolic compounds found in this fruit. Copao fruits from the Limari valley, a main place of collection and commercialization, showed major activity, adding evidence on the possible health-beneficial effects of this native Chilean fruit. PMID:25682221

  1. Amylase production by endophytic fungi Cylindrocephalumsp. isolated from medicinal plant Alpinia calcarata (Haw.) Roscoe

    PubMed Central

    Sunitha, V. H.; Ramesha, A.; Savitha, J.; Srinivas, C

    2012-01-01

    Amylases are among the most important enzymes used in modern biotechnology particularly in the process involving starch hydrolysis. Fungal amylase has large applications in food and pharmaceutical industries. Considering these facts, endophytic fungi isolated from the plant Alpinia calcarata (Haw.) Roscoe were screened for amylolytic activity on glucose yeast extract peptone agar (GYP) medium. Among thirty isolates of endophytic fungi, isolate number seven identified as Cylindrocephalum sp. (Ac-7) showed highest amylolytic activity and was taken for further study. Influence of various physical and chemical factors such as pH, temperature, carbon and nitrogen sources on amylase production in liquid media were studied. The maximal amylase production was found to be at 30ºC and at pH 7.0 of the growth medium. Among the various carbon and nitrogen sources tested, maltose at 1.5% and Sodium nitrate at 0.3% respectively gave optimum amylase production. PMID:24031946

  2. Seed Anatomy and Water Uptake in Relation to Seed Dormancy in Opuntia tomentosa (Cactaceae, Opuntioideae)

    PubMed Central

    Orozco-Segovia, A.; Márquez-Guzmán, J.; Sánchez-Coronado, M. E.; Gamboa de Buen, A.; Baskin, J. M.; Baskin, C. C.

    2007-01-01

    Background and Aims There is considerable confusion in the literature concerning impermeability of seeds with ‘hard’ seed coats, because the ability to take up (imbibe) water has not been tested in most of them. Seeds of Opuntia tomentosa were reported recently to have a water-impermeable seed coat sensu lato (i.e. physical dormancy), in combination with physiological dormancy. However, physical dormancy is not known to occur in Cactaceae. Therefore, the aim of this study was to determine if seeds of O. tomentosa are water-permeable or water-impermeable, i.e. if they have physical dormancy. Methods The micromorphology of the seed coat and associated structures were characterized by SEM and light microscopy. Permeability of the seed-covering layers was assessed by an increase in mass of seeds on a wet substrate and by dye-tracking and uptake of tritiated water by intact versus scarified seeds. Key Results A germination valve and a water channel are formed in the hilum–micropyle region during dehydration and ageing in seeds of O. tomentosa. The funicular envelope undoubtedly plays a role in germination of Opuntia seeds via restriction of water uptake and mechanical resistance to expansion of the embryo. However, seeds do not exhibit any of three features characteristic of those with physical dormancy. Thus, they do not have a water-impermeable layer(s) of palisade cells (macrosclereids) or a water gap sensu stricto and they imbibe water without the seed coat being disrupted. Conclusions Although dormancy in seeds of this species can be broken by scarification, they have physiological dormancy only. Further, based on information in the literature, it is concluded that it is unlikely that any species of Opuntia has physical dormancy. This is the first integrative study of the anatomy, dynamics of water uptake and dormancy in seeds of Cactaceae subfamily Opuntioideae. PMID:17298989

  3. Spatial variation in the community of insects associated with the flowers of Pachycereus weberi (Caryophyllales: Cactaceae).

    PubMed

    Figueroa-Castro, Dulce María; Valverde, Pedro Luis; Vite, Fernando; Carrillo-Ruiz, Hortensia

    2014-08-01

    The positive relationship between productivity and species diversity is well-known. Insect communities associated with the flowers of Cactaceae species represent an interesting system to explore the productivity-diversity relationship because branches facing the equator receive more photosynthetically active radiation and have higher productivity. Thus, flowers with contrasting orientations within an individual, and even within a single branch, might differ in productivity. Therefore, higher abundance, species richness, and diversity are expected for the insect communities associated with south-facing flowers. This hypothesis was tested in Pachycereus weberi (J.M. Coulter) Backeberg (Cactaceae). Insects within flowers with contrasting orientations were collected and its abundance, richness, and diversity were estimated. We also asked if insects prefer big flowers. Thus, flower volume was estimated and regression analyses were conducted to test if there is a positive relationship between flower size and insect abundance. Flower orientation did not affect species richness. However, species abundance and diversity were different in flowers with contrasting orientations. In general, species abundance was higher in flowers facing southwards than in north-facing flowers. On the contrary, species diversity was higher in north-facing flowers. Abundance of Coleoptera was explained by flower volume in south-facing flowers. Contrary to our hypothesis, total diversity was greater in the less productive oriented flowers. Three possible explanations are discussed to explain the low diversity found in the highly productive, south-facing flowers. Our study provides evidence for the effects of productivity on the structure of insect communities at a very small-scale. PMID:25003959

  4. Wood Chemical Composition in Species of Cactaceae: The Relationship between Lignification and Stem Morphology

    PubMed Central

    Canché-Escamilla, Gonzalo; Soto-Hernández, Marcos

    2015-01-01

    In Cactaceae, wood anatomy is related to stem morphology in terms of the conferred support. In species of cacti with dimorphic wood, a unique process occurs in which the cambium stops producing wide-band tracheids (WBTs) and produces fibers; this is associated with the aging of individuals and increases in size. Stem support and lignification have only been studied in fibrous tree-like species, and studies in species with WBTs or dimorphic wood are lacking. In this study, we approach this process with a chemical focus, emphasizing the role of wood lignification. We hypothesized that the degree of wood lignification in Cactaceae increases with height of the species and that its chemical composition varies with wood anatomy. To test this, we studied the chemical composition (cellulose, hemicellulose, and lignin content) in 13 species (2 WBTs wood, 3 dimorphic, and 8 fibrous) with contrasting growth forms. We also analyzed lignification in dimorphic and fibrous species to determine the chemical features of WBTs and fibers and their relationship with stem support. The lignin contents were characterized by Fourier transform infrared spectroscopy and high performance liquid chromatography. We found that 11 species have a higher percentage (>35%) of lignin in their wood than other angiosperms or gymnosperms. The lignin chemical composition in fibrous species is similar to that of other dicots, but it is markedly heterogeneous in non-fibrous species where WBTs are abundant. The lignification in WBTs is associated with the resistance to high water pressure within cells rather than the contribution to mechanical support. Dimorphic wood species are usually richer in syringyl lignin, and tree-like species with lignified rays have more guaiacyl lignin. The results suggest that wood anatomy and lignin distribution play an important role in the chemical composition of wood, and further research is needed at the cellular level. PMID:25880223

  5. Factors Influencing Bank Geomorphology and Erosion of the Haw River, a High Order River in North Carolina, since European Settlement

    PubMed Central

    Macfall, Janet; Robinette, Paul; Welch, David

    2014-01-01

    The Haw River, a high order river in the southeastern United States, is characterized by severe bank erosion and geomorphic change from historical conditions of clear waters and connected floodplains. In 2014 it was named one of the 10 most threatened rivers in the United States by American Rivers. Like many developed areas, the region has a history of disturbance including extensive upland soil loss from agriculture, dams, and upstream urbanization. The primary objective of this study was to identify the mechanisms controlling channel form and erosion of the Haw River. Field measurements including bank height, bankfull height, bank angle, root depth and density, riparian land cover and slope, surface protection, river width, and bank retreat were collected at 87 sites along 43.5 km of river. A Bank Erosion Hazard Index (BEHI) was calculated for each study site. Mean bank height was 11.8 m, mean width was 84.3 m, and bank retreat for 2005/2007-2011/2013 was 2.3 m. The greatest bank heights, BEHI values, and bank retreat were adjacent to riparian areas with low slope (<2). This is in contrast to previous studies which identify high slope as a risk factor for erosion. Most of the soils in low slope riparian areas were alluvial, suggesting sediment deposition from upland row crop agriculture and/or flooding. Bank retreat was not correlated to bank heights or BEHI values. Historical dams (1.2–3 m height) were not a significant factor. Erosion of the Haw River in the study section of the river (25% of the river length) contributed 205,320 m3 of sediment and 3759 kg of P annually. Concentration of suspended solids in the river increased with discharge. In conclusion, the Haw River is an unstable system, with river bank erosion and geomodification potential influenced by riparian slope and varied flows. PMID:25302956

  6. Factors influencing bank geomorphology and erosion of the Haw River, a high order river in North Carolina, since European settlement.

    PubMed

    Macfall, Janet; Robinette, Paul; Welch, David

    2014-01-01

    The Haw River, a high order river in the southeastern United States, is characterized by severe bank erosion and geomorphic change from historical conditions of clear waters and connected floodplains. In 2014 it was named one of the 10 most threatened rivers in the United States by American Rivers. Like many developed areas, the region has a history of disturbance including extensive upland soil loss from agriculture, dams, and upstream urbanization. The primary objective of this study was to identify the mechanisms controlling channel form and erosion of the Haw River. Field measurements including bank height, bankfull height, bank angle, root depth and density, riparian land cover and slope, surface protection, river width, and bank retreat were collected at 87 sites along 43.5 km of river. A Bank Erosion Hazard Index (BEHI) was calculated for each study site. Mean bank height was 11.8 m, mean width was 84.3 m, and bank retreat for 2005/2007-2011/2013 was 2.3 m. The greatest bank heights, BEHI values, and bank retreat were adjacent to riparian areas with low slope (<2). This is in contrast to previous studies which identify high slope as a risk factor for erosion. Most of the soils in low slope riparian areas were alluvial, suggesting sediment deposition from upland row crop agriculture and/or flooding. Bank retreat was not correlated to bank heights or BEHI values. Historical dams (1.2-3 m height) were not a significant factor. Erosion of the Haw River in the study section of the river (25% of the river length) contributed 205,320 m3 of sediment and 3759 kg of P annually. Concentration of suspended solids in the river increased with discharge. In conclusion, the Haw River is an unstable system, with river bank erosion and geomodification potential influenced by riparian slope and varied flows. PMID:25302956

  7. Prebiotic potential of Agave angustifolia Haw fructans with different degrees of polymerization.

    PubMed

    Velázquez-Martínez, José Rodolfo; González-Cervantes, Rina M; Hernández-Gallegos, Minerva Aurora; Mendiola, Roberto Campos; Aparicio, Antonio R Jiménez; Ocampo, Martha L Arenas

    2014-01-01

    Inulin-type fructans are the most studied prebiotic compounds because of their broad range of health benefits. In particular, plants of the Agave genus are rich in fructans. Agave-derived fructans have a branched structure with both β-(2→1) and β-(2→6) linked fructosyl chains attached to the sucrose start unit with a degree of polymerization (DP) of up to 80 fructose units. The objective of this work was to assess the prebiotic potential of three Agave angustifolia Haw fructan fractions (AFF) with different degrees of polymerization. The three fructan fractions were extracted from the agave stem by lixiviation and then purified by ultrafiltration and ion exchange chromatography: AFF1, AFF2 and AFF3 with high (3-60 fructose units), medium (2-40) and low (2-22) DP, respectively. The fructan profile was determined with high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD), which confirmed a branched fructan structure. Structural elucidation was performed by Fourier Transform Infra-Red Spectroscopy. The AFF spectrum shows characteristic fructan bands. The prebiotic effect of these fractions was assessed in vitro through fermentation by Bifidobacterium and Lactobacillus strains. Four growth patterns were observed. Some bacteria did not grow with any of the AFF, while other strains grew with only AFF3. Some bacteria grew according to the molecular weight of the AFF and some grew indistinctly with the three fructan fractions. PMID:25153877

  8. Studies on betaxanthin profiles of vegetables and fruits from the Chenopodiaceae and Cactaceae.

    PubMed

    Kugler, Florian; Graneis, Stephan; Stintzing, Florian C; Carle, Reinhold

    2007-01-01

    The present study provides an update on the betaxanthin (bx) compositions of red and yellow beetroots, yellow-coloured Swiss chard petioles, and yellow-orange cactus pear. Applying RP-HPLC coupled with positive ion electrospray mass spectrometry and by comparison with UV-vis and mass spectrometric characteristics as well as retention times of semi-synthesized reference compounds, 24 betaxanthins were identified in red and yellow beetroot hypocotyls. Twenty-five and thirteen betaxanthins were present in yellow Swiss chard petioles and the cactus pear cultivar 'Gialla', respectively. Ethanolamine-bx and threonine-bx were found to be novel betaxanthins in Chenopodiaceae representatives, which to the best of our knowledge have not been reported as genuine pigments so far. Furthermore, aspartic acid-bx (miraxanthin II), lysine-bx, and methionine-bx, hitherto found in other families, were identified in the Chenopodiaceae for the first time. Additionally, tyrosine-bx (portulacaxanthin II) and tryptophan-bx have not been earlier reported to occur in the Cactaceae. These findings provide valuable phytochemical information and may be useful for a better understanding of the functional properties of betaxanthins in plants. PMID:17708433

  9. Lineage-specific evolutionary rate in plants: Contributions of a screening for Cereus (Cactaceae)1

    PubMed Central

    Romeiro-Brito, Monique; Moraes, Evandro M.; Taylor, Nigel P.; Zappi, Daniela C.; Franco, Fernando F.

    2016-01-01

    Premise of the study: Predictable chloroplast DNA (cpDNA) sequences have been listed for the shallowest taxonomic studies in plants. We investigated whether plastid regions that vary between closely allied species could be applied for intraspecific studies and compared the variation of these plastid segments with two nuclear regions. Methods: We screened 16 plastid and two nuclear intronic regions for species of the genus Cereus (Cactaceae) at three hierarchical levels (species from different clades, species of the same clade, and allopatric populations). Results: Ten plastid regions presented interspecific variation, and six of them showed variation at the intraspecific level. The two nuclear regions showed both inter- and intraspecific variation, and in general they showed higher levels of variability in almost all hierarchical levels than the plastid segments. Discussion: Our data suggest no correspondence between variation of plastid regions at the interspecific and intraspecific level, probably due to lineage-specific variation in cpDNA, which appears to have less effect in nuclear data. Despite the heterogeneity in evolutionary rates of cpDNA, we highlight three plastid segments that may be considered in initial screenings in plant phylogeographic studies. PMID:26819857

  10. How and why does the areole meristem move in Echinocereus (Cactaceae)?

    PubMed Central

    Sánchez, Daniel; Grego-Valencia, Dalia; Terrazas, Teresa; Arias, Salvador

    2015-01-01

    Background and Aims In Cactaceae, the areole is the organ that forms the leaves, spines and buds. Apparently, the genus Echinocereus develops enclosed buds that break through the epidermis of the stem adjacent to the areole; this trait most likely represents a synapomorphy of Echinocereus. The development of the areole is investigated here in order to understand the anatomical modifications that lead to internal bud development and to supplement anatomical knowledge of plants that do not behave according to classical shoot theory. Methods The external morphology of the areole was documented and the anatomy was studied using tissue clearing, scanning electron microscopy and light microscopy for 50 species that represent the recognized clades and sections of the traditional classification of the genus, including Morangaya pensilis (Echinocereus pensilis). Key Results In Echinocereus, the areole is sealed by the periderm, and the areole meristem is moved and enclosed by the differential growth of the epidermis and surrounding cortex. The enclosed areole meristem is differentiated in a vegetative or floral bud, which develops internally and breaks through the epidermis of the stem. In Morangaya pensilis, the areole is not sealed by the periderm and the areole meristem is not enclosed. Conclusions The enclosed areole meristem and internal bud development are understood to be an adaptation to protect the meristem and the bud from low temperatures. The anatomical evidence supports the hypothesis that the enclosed bud represents one synapomorphy for Echinocereus and also supports the exclusion of Morangaya from Echinocereus. PMID:25399023

  11. Correlated evolution of stem and leaf hydraulic traits in Pereskia (Cactaceae).

    PubMed

    Edwards, Erika J

    2006-01-01

    Recent studies have demonstrated significant correlations between stem and leaf hydraulic properties when comparing across species within ecological communities. This implies that these traits are co-evolving, but there have been few studies addressing plant water relations within an explicitly evolutionary framework. This study tests for correlated evolution among a suite of plant water-use traits and environmental parameters in seven species of Pereskia (Cactaceae), using phylogenetically independent contrasts. There were significant evolutionary correlations between leaf-specific xylem hydraulic conductivity, Huber Value, leaf stomatal pore index, leaf venation density and leaf size, but none of these traits appeared to be correlated with environmental water availability; only two water relations traits - mid-day leaf water potentials and photosynthetic water use efficiency - correlated with estimates of moisture regime. In Pereskia, it appears that many stem and leaf hydraulic properties thought to be critical to whole-plant water use have not evolved in response to habitat shifts in water availability. This may be because of the extremely conservative stomatal behavior and particular rooting strategy demonstrated by all Pereskia species investigated. These results highlight the need for a lineage-based approach to understand the relative roles of functional traits in ecological adaptation. PMID:17083678

  12. A new Anagyrus (Hymenoptera: Encyrtidae) from Argentina, parasitoid of Hypogeococcus sp. (Hemiptera: Pseudococcidae) on Harrisia pomanensis (Cactaceae).

    PubMed

    Triapitsyn, Serguei V; Aguirre, María B; Logarzo, Guillermo A

    2016-01-01

    A new species of Anagyrus Howard (Hymenoptera: Encyrtidae), A. lapachosus sp. n., is described from Salta Province of Argentina as a parasitoid of Hypogeococcus sp. (Hemiptera: Pseudococcidae) on Harrisia pomanensis cactus (Cactaceae). It is a candidate "new association" biological control agent for quarantine evaluation and possible following introduction to Puerto Rico (USA) against another Hypogeococcus sp., commonly called the Harrisia cactus mealybug and often misidentified as H. pungens Granara de Willink (according to our unpublished data the latter attacks only Amaranthaceae), which devastates or threatens the native cacti there and also in some other Caribbean islands (Triapitsyn, Aguirre et al. 2014; Carrera-Martínez et al. 2015). PMID:27395151

  13. Studies on the Biology of Hypogeococcus pungens (sensu stricto) (Hemiptera: Pseudococcidae) in Argentina to Aid the Identification of the Mealybug Pest of Cactaceae in Puerto Rico.

    PubMed

    Aguirre, M B; Diaz-Soltero, H; Claps, L E; Saracho Bottero, A; Triapitsyn, S; Hasson, E; Logarzo, G A

    2016-01-01

    Hypogeococcus pungens Granara de Willink, sensu stricto, is a serious pest of cacti in Puerto Rico threating many Caribbean islands. A classical biological control program for H. pungens was initiated for Puerto Rico in 2010 with a survey for natural enemies of H. pungens in its native range of Argentina. Biological differences were observed between populations of H. pungens sampled on Amaranthaceae and Cactaceae. Molecular studies suggested that H. pungens populations from different host plant families are likely a complex of species. Our objective was to study the biology of H. pungens sensu stricto on specimens collected in the same locality and host plant as the holotype [Tucumán Province, Argentina; Alternanthera pungens Kunth (Amaranthaceae)]. We were interested in the reproductive biology of females, longevity and survival of adults, the effect of temperature on the development, and nymph performance (survival and development) on five Cactaceae species. We found that H. pungens s.s showed marked biological differences from the populations collected on Cactaceae and exported to Australia for the biological control of the cactus Harrisia spp. The main differences were the presence of deuterotoky parthenogenesis and the fact that H. pungens did not attack Cactaceae in the laboratory. Our results provide biological evidence that H. pungens is a species complex. We propose that the population introduced to Australia is neither Hypogeococcus festerianus Lizer y Trelles nor H. pungens, but an undescribed species with three circuli, and that the Hypogeococcus pest of cacti in Puerto Rico is not H. pungens. PMID:27324585

  14. Studies on the Biology of Hypogeococcus pungens (sensu stricto) (Hemiptera: Pseudococcidae) in Argentina to Aid the Identification of the Mealybug Pest of Cactaceae in Puerto Rico

    PubMed Central

    Aguirre, M. B.; Diaz-Soltero, H.; Claps, L. E.; Saracho Bottero, A.; Triapitsyn, S.; Hasson, E.; Logarzo, G. A.

    2016-01-01

    Hypogeococcus pungens Granara de Willink, sensu stricto, is a serious pest of cacti in Puerto Rico threating many Caribbean islands. A classical biological control program for H. pungens was initiated for Puerto Rico in 2010 with a survey for natural enemies of H. pungens in its native range of Argentina. Biological differences were observed between populations of H. pungens sampled on Amaranthaceae and Cactaceae. Molecular studies suggested that H. pungens populations from different host plant families are likely a complex of species. Our objective was to study the biology of H. pungens sensu stricto on specimens collected in the same locality and host plant as the holotype [Tucumán Province, Argentina; Alternanthera pungens Kunth (Amaranthaceae)]. We were interested in the reproductive biology of females, longevity and survival of adults, the effect of temperature on the development, and nymph performance (survival and development) on five Cactaceae species. We found that H. pungens s.s. showed marked biological differences from the populations collected on Cactaceae and exported to Australia for the biological control of the cactus Harrisia spp. The main differences were the presence of deuterotoky parthenogenesis and the fact that H. pungens did not attack Cactaceae in the laboratory. Our results provide biological evidence that H. pungens is a species complex. We propose that the population introduced to Australia is neither Hypogeococcus festerianus Lizer y Trelles nor H. pungens, but an undescribed species with three circuli, and that the Hypogeococcus pest of cacti in Puerto Rico is not H. pungens. PMID:27324585

  15. Determinate primary root growth as an adaptation to aridity in Cactaceae: towards an understanding of the evolution and genetic control of the trait

    PubMed Central

    Shishkova, Svetlana; Las Peñas, María Laura; Napsucialy-Mendivil, Selene; Matvienko, Marta; Kozik, Alex; Montiel, Jesús; Patiño, Anallely; Dubrovsky, Joseph G.

    2013-01-01

    Background and Aims Species of Cactaceae are well adapted to arid habitats. Determinate growth of the primary root, which involves early and complete root apical meristem (RAM) exhaustion and differentiation of cells at the root tip, has been reported for some Cactoideae species as a root adaptation to aridity. In this study, the primary root growth patterns of Cactaceae taxa from diverse habitats are classified as being determinate or indeterminate, and the molecular mechanisms underlying RAM maintenance in Cactaceae are explored. Genes that were induced in the primary root of Stenocereus gummosus before RAM exhaustion are identified. Methods Primary root growth was analysed in Cactaceae seedlings cultivated in vertically oriented Petri dishes. Differentially expressed transcripts were identified after reverse northern blots of clones from a suppression subtractive hybridization cDNA library. Key Results All species analysed from six tribes of the Cactoideae subfamily that inhabit arid and semi-arid regions exhibited determinate primary root growth. However, species from the Hylocereeae tribe, which inhabit mesic regions, exhibited mostly indeterminate primary root growth. Preliminary results suggest that seedlings of members of the Opuntioideae subfamily have mostly determinate primary root growth, whereas those of the Maihuenioideae and Pereskioideae subfamilies have mostly indeterminate primary root growth. Seven selected transcripts encoding homologues of heat stress transcription factor B4, histone deacetylase, fibrillarin, phosphoethanolamine methyltransferase, cytochrome P450 and gibberellin-regulated protein were upregulated in S. gummosus root tips during the initial growth phase. Conclusions Primary root growth in Cactoideae species matches their environment. The data imply that determinate growth of the primary root became fixed after separation of the Cactiodeae/Opuntioideae and Maihuenioideae/Pereskioideae lineages, and that the genetic regulation of

  16. Australian native plant species Carpobrotus rossii (Haw.) Schwantes shows the potential of cadmium phytoremediation.

    PubMed

    Zhang, Chengjun; Sale, Peter W G; Doronila, Augustine I; Clark, Gary J; Livesay, Caitlin; Tang, Caixian

    2014-01-01

    Many polluted sites are typically characterized by contamination with multiple heavy metals, drought, salinity, and nutrient deficiencies. Here, an Australian native succulent halophytic plant species, Carpobrotus rossii (Haw.) Schwantes (Aizoaceae) was investigated to assess its tolerance and phytoextraction potential of Cd, Zn, and the combination of Cd and Zn, when plants were grown in soils spiked with various concentrations of Cd (20-320 mg kg(-1) Cd), Zn (150-2,400 mg kg(-1) Zn) or Cd + Zn (20 + 150, 40 + 300, 80 + 600 mg kg(-1)). The concentration of Cd in plant parts followed the order of roots > stems > leaves, resulting in Cd translocation factor (TF, concentration ratio of shoots to roots) less than one. In contrast, the concentration of Zn was in order of leaves > stems > roots, with a Zn TF greater than one. However, the amount of Cd and Zn were distributed more in leaves than in stems or roots, which was attributed to higher biomass of leaves than stems or roots. The critical value that causes 10% shoot biomass reduction was 115 μg g(-1) for Cd and 1,300 μg g(-1) for Zn. The shoot Cd uptake per plant increased with increasing Cd addition while shoot Zn uptake peaked at 600 mg kg(-1) Zn addition. The combined addition of Cd and Zn reduced biomass production more than Cd or Zn alone and significantly increased Cd concentration, but did not affect Zn concentration in plant parts. The results suggest that C. rossii is able to hyperaccumulate Cd and can be a promising candidate for phytoextraction of Cd from polluted soils. PMID:24777324

  17. Is in vitro micrografting a possible valid alternative to traditional micropropagation in Cactaceae? Pelecyphora aselliformis as a case study.

    PubMed

    Badalamenti, Ornella; Carra, Angela; Oddo, Elisabetta; Carimi, Francesco; Sajeva, Maurizio

    2016-01-01

    Several taxa of Cactaceae are endangered by overcollection for commercial purposes, and most of the family is included in the Convention on International Trade in Endangered Species of Fauna and Flora (CITES). Micropropagation may play a key role to keep the pressure off wild populations and contribute to ex situ conservation of endangered taxa. One of the limits of micropropagation is the species-specific requirement of plant regulators for each taxon and sometimes even for different genotypes. With the micrografting technique the rootstock directly provides the scion with the necessary hormonal requirements. In this paper we present data on in vitro grafting of Pelecyphora aselliformis Ehrenberg, an Appendix I CITES listed species critically endangered and sought after by the horticultural trade, on micropropagated Opuntia ficus-indica Miller. Apical and sub-apical scions of P. aselliformis were used to perform micrografting with a successful rate of 97 and 81 % respectively. Survival rate after ex vivo transfer was 85 %. We hypothesize that this method could be applied to other endangered, slow growing taxa of Cactaceae thus contributing to the conservation of this endangered family. PMID:27026897

  18. Morphological, cytological and metabolic consequences of autopolyploidization in Hylocereus (Cactaceae) species

    PubMed Central

    2013-01-01

    Background Genome doubling may have multi-level effects on the morphology, viability and physiology of polyploids compared to diploids. We studied the changes associated with autopolyploidization in two systems of somatic newly induced polyploids, diploid-autotetraploid and triploid-autohexaploid, belonging to the genus Hylocereus (Cactaceae). Stomata, fruits, seeds, embryos, and pollen were studied. Fruit pulp and seeds were subjected to metabolite profiling using established gas chromatography-mass spectrometry (GC-MS) and ultra-performance liquid chromatography (UPLC) Q-TOF-MS/MS (time of flight)-protocols. Results Autopolyploid lines produced lower numbers of tetrads, larger pollen grains with lower viability, larger stomata with lower density, and smaller fruits with lower seed numbers and decreased seed viability. The abundance of sugars was lower in the fruits and seeds of the two duplicated lines than in their donor lines, accompanied by increased contents of amino acids, tricarboxylic acid (TCA) cycle intermediates, organic acids and flavonoids. Betacyanins, the major fruit pigments in diploid and triploid donors, decreased following genome doubling. Both autopolyploid Hylocereus lines thus exhibited unfavorable changes, with the outcome being more dramatic in the autohexaploid than in the autotetraploid line. Conclusion Induced autotetraploid and autohexaploid lines exhibited morphological and cytological characteristics that differed from those of their donor plants and that were accompanied by significant metabolic alterations. It is suggested that a developmental arrest occurs in the fruits of the autohexaploid line, since their pericarp shows a greater abundance of acids and of reduced sugars. We conclude that genome doubling does not necessarily confer a fitness advantage and that the extent of alterations induced by autopolyploidization depends on the genetic background of the donor genotype. PMID:24188386

  19. [Therapeutic effects and mechanisms of Opuntia dillenii Haw on atherosclerosis of rats].

    PubMed

    Wang, Yu-chun; Qi, Zhan-peng; Liu, Zhen-zhong; Li, Tao; Cui, Hong-xia; Wang, Bao-qing; Chi, Na

    2015-04-01

    The research aimed to investigate the therapeutic effects and mechanisms of Opuntia dillenii Haw polysaccharide (OPS) on atherosclerosis of rats. First atherosclerotic rat models were established by high-fat and high-calcium diet. Thirty days later, the rats were treated with low dosage of OPS (0.2 g x kg(-1) x d(-1)) or high dosage of OPS (0.4 g x kg(-1) x d(-1)) by intraperitoneal injection for 60 days continuously. At the end of treatment, thoracic aorta rings were prepared and vasorelaxation of rat thoracic aorta in different experiment groups were determined by using 620M multi wire myograph system in vitro. Blood and livers of rats were collected. Then plasma levels of total cholesterol (TC), triglyceride (TG) and low density lipoprotein (LDL) of rats were separately determined using whole automatic biochemical analyzer; protein level of hepatic apolipoprotein B (ApoB) and that of hepatic diglyceride acyltransferase (Dgat1) were measured by Western Blot technique. Results showed that the ability of rat thoracic aorta to relax decreased markedly in the model group compared with that in the normal group, and significant differences existed in vasorelaxation ratios induced by different concentrations of carbamylcholine chloride (Carb) between these two groups (P < 0.01). After OPS treatment, the ability of rat thoracic aorta to relax improved markedly, the vasorelaxation ratios induced by Carb at 5 and 10 μmol x L(-1) were respectively 0.34 ± 0.08 and 0.62 ± 0.15 in the group treated with low dosage of OPS, while the ratios induced by Carb at 1 and 5 μmol x L(-1) were respectively 0.54 ± 0.08 and 0.98 ± 0.02 in the group treated with high dosage of OPS, which were all significantly different with those in the model group (P < 0.01). Plasma contents of TC, TG and LDL reduced significantly by the treatments both with low and high dosages of OPS compared with those in the model group (P < 0.01). Protein level of hepatic ApoB and that of hepatic Dgat1

  20. Antioxidant capacity and amino acid analysis of Caralluma adscendens (Roxb.) Haw var. fimbriata (wall.) Grav. & Mayur. aerial parts.

    PubMed

    Maheshu, Vellingiri; Priyadarsini, Deivamarudhachalam Teepica; Sasikumar, Jagathala Mahalingam

    2014-10-01

    Caralluma adscendens (Roxb.) Haw var. fimbriata (wall.) Grav. & Mayur. is a traditional food consumed as vegetable or pickle in arid regions of India and eaten during famines. In Indian traditional medicine, the plant is used to treat diabetes, inflammation and etc. The aim of this study was to evaluate the antioxidant properties (DPPH, TEAC, TAA, FRAP, OH˙ and NO˙ radical scavenging activities) of the different extracts from aerial parts. The levels of total phenolics and flavonoids of the extracts were also determined. The extracts were found to have different levels of antioxidant properties in the test models used. Methanol and water extracts had good total phenolic and flavonoid contents showed potent antioxidant and free radical scavenging activities. The antioxidant activity was correlated well with the amount of total phenolics present in the extracts. The extracts and its components may be used as an additive in food preparations and nutraceuticals. PMID:25328180

  1. Anti-proliferative and mutagenic activities of aqueous and methanol extracts of leaves from Pereskia bleo (Kunth) DC (Cactaceae).

    PubMed

    Er, Hui Meng; Cheng, En-Hsiang; Radhakrishnan, Ammu Kutty

    2007-09-25

    The anti-proliferative effects of the aqueous and methanol extracts of leaves of Pereskia bleo (Kunth) DC (Cactaceae) against a mouse mammary cancer cell line (4T1) and a normal mouse fibroblast cell line (NIH/3T3) were evaluated under an optimal (in culture medium containing 10% foetal bovine serum (FBS)) and a sub-optimal (in culture medium containing 0.5% FBS) conditions. Under the optimal condition, the aqueous extract showed a significant (p<0.05) anti-proliferative effect at 200 microg/mL and 300 microg/mL in 4T1 cells and 300 microg/mL in NIH/3T3 cells, whereas the methanol extract did not show any notable anti-proliferative effect in these cell lines, at any of the concentrations tested. Under the sub-optimal condition, the aqueous extract showed a significant (p<0.05) anti-proliferative effect at 200 microg/mL and 300 microg/mL in NIH/3T3 cells, whilst the methanol extract showed a significant (p<0.05) anti-proliferative effect at 200 microg/mL and 300 microg/mL in both cell lines. An upward trend of apoptosis was observed in both 4T1 and NIH/3T3 cells treated with increasing concentrations of the aqueous extract. The level of apoptosis observed at all the concentrations of the aqueous extract tested was consistently higher than necrosis. There was a significant (p<0.05) increase in the level of necrosis observed in the 4T1 cells treated with 300 microg/mL of the methanol extract. Generally, the level of necrosis was noted to be higher than that of apoptosis in the methanol extract-treated cells. The mutagenicity assay performed showed that in the absence of S-9 liver metabolic activation, the extract was not mutagenic up to the concentration of 165 microg/mL . However, in the presence of S-9 liver metabolic activation, the aqueous extract was mutagenic at all the concentrations tested. This study shows that both the aqueous and methanol extracts of the leaves from Pereskia bleo (Kunth) DC (Cactaceae) do not have appreciable anti-proliferative effect on

  2. New Alcamide and Anti-oxidant Activity of Pilosocereus gounellei A. Weber ex K. Schum. Bly. ex Rowl. (Cactaceae).

    PubMed

    Maciel, Jéssica K S; Chaves, Otemberg S; Brito Filho, Severino G; Teles, Yanna C F; Fernandes, Marianne G; Assis, Temilce S; Fernandes, Pedro Dantas; de Andrade, Alberício Pereira; Felix, Leonardo P; Silva, Tania M S; Ramos, Nathalia S M; Silva, Girliane R; de Souza, Maria de Fátima Vanderlei

    2015-01-01

    The Cactaceae family is composed by 124 genera and about 1438 species. Pilosocereus gounellei, popularly known in Brazil as xique-xique, is used in folk medicine to treat prostate inflammation, gastrointestinal and urinary diseases. The pioneering phytochemical study of P. gounellei was performed using column chromatography and HPLC, resulting in the isolation of 10 substances: pinostrobin (1), β-sitosterol (2), a mixture of sitosterol 3-O-β-d-glucopyranoside/stigmasterol 3-O-β-d-glucopyranoside (3a/3b), 13²-hydroxyphaeophytin a (4), phaeophytin a (5), a mixture of β-sitosterol and stigmasterol (6a/6b), kaempferol (7), quercetin (8), 7'-ethoxy-trans-feruloyltyramine (mariannein, 9) and trans-feruloyl tyramine (10). Compound 9 is reported for the first time in the literature. The structural characterization of the compounds was performed by analyses of 1-D and 2-D NMR data. In addition, a phenolic and flavonol total content assay was carried out, and the anti-oxidant potential of P. gounellei was demonstrated. PMID:26703549

  3. Methanolic extract of Pereskia bleo (Kunth) DC. (Cactaceae) induces apoptosis in breast carcinoma, T47-D cell line.

    PubMed

    Tan, M L; Sulaiman, S F; Najimuddin, N; Samian, M R; Muhammad, T S Tengku

    2005-01-01

    Currently, breast cancer is the leading cause of cancer-related death in women. Therefore, there is an urgent need to develop alternative therapeutic measures against this deadly disease. Here, we report the cytotoxicity activity and the mechanism of cell death exhibited by the methanol extract prepared from Pereskia bleo (Kunth) DC. (Cactaceae) plant against human breast carcinoma cell line, T-47D. In vitro cytotoxicity screening of methanol extract of Pereskia bleo plant indicated the presence of cytotoxicity activity of the extract against T-47D cells with EC50 of 2.0 microg/ml. T-47D cell death elicited by the extract was found to be apoptotic in nature based a clear indication of DNA fragmentation which is a hallmark of apoptosis. In addition, ultrastructural analysis also revealed apoptotic characteristics (the presence of chromatin margination and apoptotic bodies) in the extract-treated cells. RT-PCR analysis showed the mRNA expression levels of c-myc, and caspase 3 were markedly increased in the cells treated with the plant extract. However, p53 expression was only slightly increased as compared to caspase 3 and c-myc. Thus, the results from this study strongly suggest that the methanol extract of Pereskia bleo may contain bioactive compound(s) that caused breast carcinoma, T-47D cell death by apoptosis mechanism via the activation of caspase-3 and c-myc pathways. PMID:15588681

  4. Atmospheric Propagation

    NASA Technical Reports Server (NTRS)

    Embleton, Tony F. W.; Daigle, Gilles A.

    1991-01-01

    Reviewed here is the current state of knowledge with respect to each basic mechanism of sound propagation in the atmosphere and how each mechanism changes the spectral or temporal characteristics of the sound received at a distance from the source. Some of the basic processes affecting sound wave propagation which are present in any situation are discussed. They are geometrical spreading, molecular absorption, and turbulent scattering. In geometrical spreading, sound levels decrease with increasing distance from the source; there is no frequency dependence. In molecular absorption, sound energy is converted into heat as the sound wave propagates through the air; there is a strong dependence on frequency. In turbulent scattering, local variations in wind velocity and temperature induce fluctuations in phase and amplitude of the sound waves as they propagate through an inhomogeneous medium; there is a moderate dependence on frequency.

  5. Drop tests and numerical impact analyses of new cask designs for High Activity Waste (Haw) and spent fuel - updated BAM design testing experiences

    SciTech Connect

    Volzke, H.; Zencker, U.; Qiao, L.; Feutlinske, K.; Musolff, A.

    2007-07-01

    In Germany, several new cask designs by international vendors (Gesellschaft fuer Nuklear Service mbH (GNS), TN International (TNI), Mitsubishi Heavy Industries (MHI)) are under design testing and within official licensing procedures for transport and storage casks for spent fuel and high activity waste (HAW). BAM (the German Federal Institute for Materials Research and Testing) has been performing several extensive drop test series with prototype casks to evaluate the safety margins against mechanical test conditions. An important project is the new GNS cask design for HAW, the CASTOR{sup R} HAW 28M. Sixteen drop tests have been performed under transport conditions with a 1:2 scale cask model equipped with impact limiters and extensively instrumented with strain gauges and accelerometers. Additionally, the accident scenario inside a storage facility has been investigated by a cask drop without impact limiters onto a nearly unyielding target. This scenario is dominated by highly dynamic effects and interactions between the test object and the target. Complete safety assessments for such mechanical accident scenarios and highly loaded cask structures require additional numerical investigations. They are done by complex finite element (FE) calculations that provide detailed dynamic stress and strain analyses all over the cask structure and at such points where sensors can't be applied. In addition, differences between the material property quantities of the prototype cask and the minimum material property requirements for the cask series production can be investigated as well as dimensional tolerances. By example, the safety assessment method and some of its special aspects are illustrated by the cask drop without an impact limiter onto a hard foundation. The main aspects and challenges are to develop a sufficient computer model of the cask and foundation and to provide detailed interpretation of the large amount of measurement data for achieving good correlation

  6. Insect growth regulatory effects of some extracts and sterols from Myrtillocactus geometrizans (Cactaceae) against Spodoptera frugiperda and Tenebrio molitor.

    PubMed

    Céspedes, Carlos L; Salazar, J Rodrigo; Martínez, Mariano; Aranda, Eduardo

    2005-10-01

    A methanol extract from the roots and aerial parts of Myrtillocactus geometrizans (Cactaceae) yielded peniocerol 1, macdougallin 2, and chichipegenin 3. The natural products 1, 2 their mixtures, MeOH and CH(2)Cl(2) extracts showed insecticidal and insect growth regulatory activity against fall armyworm [Spodoptera frugiperda J. E. Smith (Lepidoptera: Noctuidae)], an important insect pest of corn, and [Tenebrio molitor (Coleoptera)], a pest of stored grains in Mexico. The most active compounds were 1, 2, and a mixture (M(2)) of 1 and 2 (6:4). All these extracts, compounds and the mixture had insect growth regulating (IGR) activity between 5.0 and 50.0 ppm and insecticidal effects between 50 and 300 ppm in diets. The extracts were insecticidal to larvae, with lethal doses between 100 and 200 ppm. These compounds appear to have selective effects on the pre-emergence metabolism of Coleoptera, because in all treatments of the larvae of T. molitor, pupation were shortened and this process show precociousness in relation to controls. In contrast to S. frugiperda larvae, onset of pupation was noticeably delayed. Emergence in both cases was drastically diminished. In both pupae and in the few adults that were able to emerge, many deformations were observed. The results of these assays indicated that the compounds were more active than other known natural insect growth inhibitors such as gedunin and methanol extracts of Cedrela salvadorensis and Yucca periculosa. Peniocerol, macdougallin and chichipegenin, as well as mixtures of these substances, may be useful as natural insecticidal agents. PMID:16122768

  7. Compressive/Tensile Stresses and Lignified Cells as Resistance Components in Joints between Cladodes of Opuntia laevis (Cactaceae).

    PubMed

    Kahn-Jetter; Evans; Grzan; Frenz

    2000-05-01

    The Cactaceae are a diverse group of plants with a wide variety of morphologies. Many species of Opuntia have segmented stems in which terminal cladodes may be separated from main-stem cladodes with varying amounts of resistance. From a geometric approach, derivations were used to calculate normal (axial and bending) and shear (transverse force and torque) stresses at joints due to the weight of the cladodes. Normal and shear stresses act perpendicular and parallel to (along) the cross sections of joints, respectively. Normal stress caused by bending was >10 times that of the mean value of any other stress. Analyses were performed to determine the relationship between maximum normal stress and the amount of lignified xylem cells. Such cells had thicker cell walls compared with the various other cells of stem joints that had thin cell walls and that thus would provide the most resistance to normal stresses. An analogy was made between cactus joints and a composite beam with reinforcing rods. In such joints, thin-walled parenchyma cells might be analogous to concrete that has little resistance to tensile stress, while the thick-walled, lignified xylem cells would be analogous to reinforcing rods. There were statistically significant relationships between normal stresses (from bending and axial loads) and mean percentage of lignified xylem cells (r=0.73) and between normal stresses and total areas of lignified xylem cells (r=0.65) (more stress, more reinforcing xylem cells). Tensile portions of cactus joints had 23% lignified xylem cells, while compressive portions had only 10% lignified xylem cells in joint areas (more tension, more reinforcing xylem cells). In addition, tensile joint tissues had two to three times more thick-walled, lignified xylem cells in the outer 30% of the radius compared with other joint tissues types (more reinforcing near the surface). To our knowledge, this is the first publication to present mechanical stresses at stem joints of cacti and

  8. Managing diversity: Domestication and gene flow in Stenocereus stellatus Riccob. (Cactaceae) in Mexico

    PubMed Central

    Cruse-Sanders, Jennifer M; Parker, Kathleen C; Friar, Elizabeth A; Huang, Daisie I; Mashayekhi, Saeideh; Prince, Linda M; Otero-Arnaiz, Adriana; Casas, Alejandro

    2013-01-01

    Microsatellite markers (N = 5) were developed for analysis of genetic variation in 15 populations of the columnar cactus Stenocereus stellatus, managed under traditional agriculture practices in central Mexico. Microsatellite diversity was analyzed within and among populations, between geographic regions, and among population management types to provide detailed insight into historical gene flow rates and population dynamics associated with domestication. Our results corroborate a greater diversity in populations managed by farmers compared with wild ones (HE = 0.64 vs. 0.55), but with regional variation between populations among regions. Although farmers propagated S. stellatus vegetatively in home gardens to diversify their stock, asexual recruitment also occurred naturally in populations where more marginal conditions have limited sexual recruitment, resulting in lower genetic diversity. Therefore, a clear-cut relationship between the occurrence of asexual recruitment and genetic diversity was not evident. Two managed populations adjacent to towns were identified as major sources of gene movement in each sampled region, with significant migration to distant as well as nearby populations. Coupled with the absence of significant bottlenecks, this suggests a mechanism for promoting genetic diversity in managed populations through long distance gene exchange. Cultivation of S. stellatus in close proximity to wild populations has led to complex patterns of genetic variation across the landscape that reflects the interaction of natural and cultural processes. As molecular markers become available for nontraditional crops and novel analysis techniques allow us to detect and evaluate patterns of genetic diversity, genetic studies provide valuable insights into managing crop genetic resources into the future against a backdrop of global change. Traditional agriculture systems play an important role in maintaining genetic diversity for plant species. PMID:23762520

  9. Rift propagation

    NASA Technical Reports Server (NTRS)

    Parmentier, E. M.; Schubert, G.

    1989-01-01

    A model for rift propagation which treats the rift as a crack in an elastic plate which is filled from beneath by upwelling viscous asthenosphere as it lengthens and opens. Growth of the crack is driven by either remotely applied forces or the pressure of buoyant asthenosphere in the crack and is resisted by viscous stresses associated with filling the crack. The model predicts a time for a rift to form which depends primarily on the driving stress and asthenosphere viscosity. For a driving stress on the order of 10 MPa, as expected from the topography of rifted swells, the development of rifts over times of a few Myr requires an asthenosphere viscosity of 10 to the 16th Pa s (10 to the 17th poise). This viscosity, which is several orders of magnitude less than values determined by postglacial rebound and at least one order of magnitude less than that inferred for spreading center propagation, may reflect a high temperature or large amount of partial melting in the mantle beneath a rifted swell.

  10. Antioxidant activity of penta-oligogalacturonide, isolated from haw pectin, suppresses triglyceride synthesis in mice fed with a high-fat diet.

    PubMed

    Li, Tuoping; Li, Suhong; Dong, Yinping; Zhu, Rugang; Liu, Yonghui

    2014-02-15

    To expand application of hawthorn (Crataegus pinnatifida Bge) fruit, the antioxidant and anti-lipidemic effects of haw pectin penta-oligogalacturonide (HPPS) prepared from hawthorn fruit were investigated in vitro and in mice. HPPS exhibited concentration-dependent scavenging activities against superoxide anion, hydroxyl and DPPH radicals. Additionally, HPPS supplementation significantly enhanced the antioxidant enzyme activities of superoxide dismutase, catalase, glutathione peroxidase, increased the total antioxidant capacity and the levels of glutathione, but lowered the malondialdehyde content in the liver of high-fat fed mice. Furthermore, HPPS significantly decreased the TG levels, the activity and the mRNA and protein levels of glycerol 3-phosphate acyltransferase (GPAT) and phosphatidate phosphohydrolase (PAP) in mice livers. Moreover, liver steatosis of mice associated with diffuse hepatocyte ballooning induced by a high-fat diet was markedly improved by a dose of 300 mg/kg HPPS-consumption. The results revealed that HPPS might be applicable as a dietary supplement for the prevention of fatty liver and oxidative damage. PMID:24128486

  11. Extraction optimization by response surface methodology of mucilage polysaccharide from the peel of Opuntia dillenii haw. fruits and their physicochemical properties.

    PubMed

    Han, Yu-Lu; Gao, Jie; Yin, Yan-Yan; Jin, Zheng-Yu; Xu, Xue-Ming; Chen, Han-Qing

    2016-10-20

    In this study, response surface methodology (RSM) was employed to optimize microwave-assisted extraction (MAE) technology of mucilage polysaccharide from the peel of Opuntia dillenii haw. fruits (OFPP), and the physicochemical characteristics of OFPP were also investigated. The three parameters were the ratio of water to raw material (30-40ml/g), microwave power (300-400W) and extraction time (120-180s). The results indicated that the yield of OFPP was 15.62±0.37% under the optimum extraction conditions. Compared with MAE, the OFPP yield by hot water extraction (HWE) was 13.36±0.71%. In addition, the rheological properties of OFPP were also explored. The OFPP obtained by HWE exhibited a lower viscosity compared with that by MAE. The FT-IR spectra analysis, scanning electron microscopy (SEM) observation and thermogravimetric analysis (TGA) revealed that there were strong interactions between Ca(2+) and OFPP, which resulted in the high viscosity, different microstructure and thermal stability of OFPP. PMID:27474580

  12. Development of In-Can Melting Process Applied to Vitrification of High Activity Waste Solutions (HAWS): Glass characterizations and process tests results - 12442

    SciTech Connect

    Gruber, P.; Lemonnier, S.; Lacombe, J.; Papin, Y.; Hugon, I.; Batifol, B.; Pescayre, L.

    2012-07-01

    The CEA has selected vitrification for specific High-Activity nuclear Waste Solutions (HAWS) containing large quantities of salts. This choice has led the CEA Marcoule to develop a compact 'in-can' batch melting process in which the melting pot is disposable and serves as the primary canister for the solidified glass. This process is particularly suitable for the treatment of small waste quantities (less than 10 m{sup 3} per year) and low flow rates (5 to 10 L/h) which do not justify the use of a Cold Crucible Induction Melter. The unit capacity is approximately one hundred kilograms of glass a week operating alternately between feeding during the day and surveillance at night. In order to be fully representative of the glove box to be implemented, a new nonradioactive pilot-scale unit in which the core process (furnace and dust scrubber) is completely enclosed with glove box simulation was built at CEA Marcoule in 2008. The equipment includes all the systems and components necessary to perform full-scale tests: feed system, furnace and complete off-gas treatment system. The nominal tests were performed in 2009 and 2010 to verify that no problems arose in vitrifying solutions under the specified conditions. Two different liquid feeds representatives of the current HAWS stored and future solutions were used. The transient runs were carried out in this facility in 2010. Their objectives were to validate the glass product with different operating conditions and to determine optimum parameters for transient phases such as decreased volatility during standby phases. Finally, all the material obtained under nominal conditions or different operating conditions (e.g. initial glass frit quantity, standby temperature or restart procedure of feeding after night surveillance) have been characterized and described. The impact of transient phases on the process is then discussed in terms of volatility, thermal balance, etc., and compared with nominal tests results. Off

  13. The universal propagator

    NASA Technical Reports Server (NTRS)

    Klauder, John R.

    1993-01-01

    For a general Hamiltonian appropriate to a single canonical degree of freedom, a universal propagator with the property that it correctly evolves the coherent-state Hilbert space representatives for an arbitrary fiducial vector is characterized and defined. The universal propagator is explicitly constructed for the harmonic oscillator, with a result that differs from the conventional propagators for this system.

  14. Cytogeography of the Humifusa clade of Opuntia s.s. Mill. 1754 (Cactaceae, Opuntioideae, Opuntieae): correlations with pleistocene refugia and morphological traits in a polyploid complex

    PubMed Central

    Majure, Lucas C.; Judd, Walter S.; Soltis, Pamela S.; Soltis, Douglas E.

    2012-01-01

    Abstract Ploidy has been well studied and used extensively in the genus Opuntia to determine species boundaries, detect evidence of hybridization, and infer evolutionary patterns. We carried out chromosome counts for all members of the Humifusa clade to ascertain whether geographic patterns are associated with differences in ploidy. We then related chromosomal data to observed morphological variability, polyploid formation, and consequently the evolutionary history of the clade. We counted chromosomes of 277 individuals from throughout the ranges of taxa included within the Humifusa clade, with emphasis placed on the widely distributed species, Opuntia humifusa (Raf.) Raf., 1820 s.l. and Opuntia macrorhiza Engelm., 1850 s.l. We also compiled previous counts made for species in the clade along with our new counts to plot geographic distributions of the polyploid and diploid taxa. A phylogeny using nuclear ribosomal ITS sequence data was reconstructed to determine whether ploidal variation is consistent with cladogenesis. We discovered that diploids of the Humifusa clade are restricted to the southeastern United States (U.S.), eastern Texas, and southeastern New Mexico. Polyploid members of the clade, however, are much more widely distributed, occurring as far north as the upper midwestern U.S. (e.g., Michigan, Minnesota, Wisconsin). Morphological differentiation, although sometimes cryptic, is commonly observed among diploid and polyploid cytotypes, and such morphological distinctions may be useful in diagnosing possible cryptic species. Certain polyploid populations of Opuntia humifusa s.l. and Opuntia macrorhiza s.l., however, exhibit introgressive morphological characters, complicating species delineations. Phylogenetically, the Humifusa clade forms two subclades that are distributed, respectively, in the southeastern U.S. (including all southeastern U.S. diploids, polyploid Opuntia abjecta Small, 1923, and polyploid Opuntia pusilla (Haw.) Haw., 1812) and the

  15. NASA Propagation Studies Website

    NASA Technical Reports Server (NTRS)

    Angkasa, Krisjani S.

    1996-01-01

    The NASA propagation studies objective is to enable the development of new commercial satellite communication systems and services by providing timely data and models about propagation of satellite radio signals through the intervening environment and to support NASA missions. In partnership with industry and academia, the program leverages unique NASA assets (currently Advanced Communications Technology Satellite) to obtain propagation data. The findings of the study are disseminated through referred journals, NASA reference publications, workshops, electronic media, and direct interface with industry.

  16. Allozyme Diversity and Morphometrics of Melocactus paucispinus (Cactaceae) and Evidence for Hybridization with M. concinnus in the Chapada Diamantina, North-eastern Brazil

    PubMed Central

    LAMBERT, SABRINA MOTA; BORBA, EDUARDO LEITE; MACHADO, MARLON CÂMARA; ANDRADE, SÓNIA CRISTINA DA SILVA

    2006-01-01

    • Background and Aims Melocacatus paucispinus (Cactaceae) is endemic to the state of Bahia, Brazil, and due to its rarity and desirability to collectors it has been considered threatened with extinction. This species is usually sympatric and inter-fertile with M. concinnus, and morphological evidence for hybridization between them is present in some populations. Levels of genetic and morphological variation and sub-structuring in populations of these species were assessed and an attempt was made to verify the occurrence of natural hybridization between them. • Methods Genetic variability was surveyed using allozymes (12 loci) and morphological variability using multivariate morphometric analyses (17 vegetative characters) in ten populations of M. paucispinus and three of M. concinnus occurring in the Chapada Diamantina, Bahia. • Key Results Genetic variability was low in both species (P = 0·0–33·3, A = 1·0–1·6, He = 0·000–0·123 in M. paucispinus; P = 0·0–25·0, A = 1·0–1·4, He = 0·000–0·104 in M. concinnus). Deficit of heterozygotes within the populations was detected in both species, with high values of FIS (0·732 and 0·901 in M. paucispinus and M. concinnus, respectively). Evidence of hybridization was detected by the relative allele frequency in the two diaphorase loci. High levels of genetic (FST = 0·504 in M. paucispinus and 0·349 in M. concinnus) and morphological (A = 0·20 in M. paucispinus and 0·17 in M. concinnus) structuring among populations were found. • Conclusions The Melocactus spp. displayed levels of genetic variability lower than the values reported for other cactus species. The evidence indicates the occurrence of introgression in both species at two sites. The high FST values cannot be explained by geographical substructuring, but are consistent with hybridization. Conversely, morphological differentiation in M. paucispinus, but not in M. concinnus, is probably due to isolation by distance. PMID:16423866

  17. Limitations in scatter propagation

    NASA Astrophysics Data System (ADS)

    Lampert, E. W.

    1982-04-01

    A short description of the main scatter propagation mechanisms is presented; troposcatter, meteor burst communication and chaff scatter. For these propagation modes, in particular for troposcatter, the important specific limitations discussed are: link budget and resulting hardware consequences, diversity, mobility, information transfer and intermodulation and intersymbol interference, frequency range and future extension in frequency range for troposcatter, and compatibility with other services (EMC).

  18. NASA Propagation Information Center

    NASA Technical Reports Server (NTRS)

    Smith, Ernest K.; Flock, Warren L.

    1989-01-01

    The NASA Propagation Information Center became formally operational in July 1988. It is located in the Department of Electrical and Computer Engineering of the University of Colorado at Boulder. The Center is several things: a communications medium for the propagation with the outside world, a mechanism for internal communication within the program, and an aid to management.

  19. NASA propagation information center

    NASA Technical Reports Server (NTRS)

    Smith, Ernest K.; Flock, Warren L.

    1990-01-01

    The NASA Propagation Information Center became formally operational in July 1988. It is located in the Department of Electrical and Computer Engineering of the University of Colorado at Boulder. The center is several things: a communications medium for the propagation with the outside world, a mechanism for internal communication within the program, and an aid to management.

  20. Propagation research in Japan

    NASA Technical Reports Server (NTRS)

    Wakana, Hiromitsu

    1991-01-01

    L-band propagation measurements for land-mobile, maritime, and aeronautical satellite communications have been carried out by using the Japanese Engineering Test Satellite-Five (ETS-5) which was launched in Aug. 1987. This paper presents propagation characteristics for each of the mobile satellite communication channels.

  1. Wave propagation phenomena

    NASA Astrophysics Data System (ADS)

    Groenenboom, P. H. L.

    The phenomenon of wave propagation is encountered frequently in a variety of engineering disciplines. It has been realized that for a growing number of problems the solution can only be obtained by discretization of the boundary. Advantages of the Boundary Element Method (BEM) over domain-type methods are related to the reduction of the number of space dimensions and of the modelling effort. It is demonstrated how the BEM can be applied to wave propagation phenomena by establishing the fundamental relationships. A numerical solution procedure is also suggested. In connection with a discussion of the retarded potential formulation, it is shown how the wave propagation problem can be cast into a Boundary Integral Formulation (BIF). The wave propagation problem in the BIF can be solved by time-successive evaluation of the boundary integrals. The example of pressure wave propagation following a sodium-water reaction in a Liquid Metal cooled Fast Breeder Reactor steam generator is discussed.

  2. Gear crack propagation investigations

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Ballarini, Roberto

    1996-01-01

    Analytical and experimental studies were performed to investigate the effect of gear rim thickness on crack propagation life. The FRANC (FRacture ANalysis Code) computer program was used to simulate crack propagation. The FRANC program used principles of linear elastic fracture mechanics, finite element modeling, and a unique re-meshing scheme to determine crack tip stress distributions, estimate stress intensity factors, and model crack propagation. Various fatigue crack growth models were used to estimate crack propagation life based on the calculated stress intensity factors. Experimental tests were performed in a gear fatigue rig to validate predicted crack propagation results. Test gears were installed with special crack propagation gages in the tooth fillet region to measure bending fatigue crack growth. Good correlation between predicted and measured crack growth was achieved when the fatigue crack closure concept was introduced into the analysis. As the gear rim thickness decreased, the compressive cyclic stress in the gear tooth fillet region increased. This retarded crack growth and increased the number of crack propagation cycles to failure.

  3. Phenology and egg production of the cactus moth, Cactoblastis cactorum(Lepidoptera: Pyralidae): comparison of field census data and life stage development in the field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural phenology and development of the cactus moth, Cactoblastis cactorum (Berg) (Lepidoptera: Pyralidae) was studied under field conditions in St. Marks National Wildlife Refuge, St. Marks, FL. from July 2006 to September 2007. Cactus pads (Opuntia stricta Haw. [Cactaceae]) were visually surveyed...

  4. Phenology of blue cactus moth Melitara prodenialis (Lepidoptera: Pyralidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Native cactus plants (Opuntia stricta Haw. [Cactaceae]) were sampled weekly at St. Marks National Wildlife Refuge, St. Marks, Florida (30.16 - 30° 1' N, -84.21 - 84° 1' W) from September 2006 to September 2007 for the native blue cactus moth, Melitara prodenialis Walker (Lepidoptera: Pyralidae) Meli...

  5. Gear Crack Propagation Investigation

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Reduced weight is a major design goal in aircraft power transmissions. Some gear designs incorporate thin rims to help meet this goal. Thin rims, however, may lead to bending fatigue cracks. These cracks may propagate through a gear tooth or into the gear rim. A crack that propagates through a tooth would probably not be catastrophic, and ample warning of a failure could be possible. On the other hand, a crack that propagates through the rim would be catastrophic. Such cracks could lead to disengagement of a rotor or propeller from an engine, loss of an aircraft, and fatalities. To help create and validate tools for the gear designer, the NASA Lewis Research Center performed in-house analytical and experimental studies to investigate the effect of rim thickness on gear-tooth crack propagation. Our goal was to determine whether cracks grew through gear teeth (benign failure mode) or through gear rims (catastrophic failure mode) for various rim thicknesses. In addition, we investigated the effect of rim thickness on crack propagation life. A finite-element-based computer program simulated gear-tooth crack propagation. The analysis used principles of linear elastic fracture mechanics, and quarter-point, triangular elements were used at the crack tip to represent the stress singularity. The program had an automated crack propagation option in which cracks were grown numerically via an automated remeshing scheme. Crack-tip stress-intensity factors were estimated to determine crack-propagation direction. Also, various fatigue crack growth models were used to estimate crack-propagation life. Experiments were performed in Lewis' Spur Gear Fatigue Rig to validate predicted crack propagation results. Gears with various backup ratios were tested to validate crack-path predictions. Also, test gears were installed with special crack-propagation gages in the tooth fillet region to measure bending-fatigue crack growth. From both predictions and tests, gears with backup ratios

  6. Propagation of Environmental Noise

    ERIC Educational Resources Information Center

    Lyon, R. H.

    1973-01-01

    Solutions for environmental noise pollution lie in systematic study of many basic processes such as reflection, scattering, and spreading. Noise propagation processes should be identified in different situations and assessed for their relative importance. (PS)

  7. NASA Propagation Studies Website

    NASA Technical Reports Server (NTRS)

    Angkasa, Krisjani S.

    1996-01-01

    This paper describes an Internet website which provides information to enable the development of new commerical satellite systems and services by providing timely data and models about the propagation of satellite radio signals. In partnership with industry and academia, the program leverages NASA assets, currently the Advanced Communications Technology Satellite (ACTS), to obtain propagation data. The findings of the study are disseminated through refereed journals, NASA reference publications, workshops, electronic media, and direct interface with industry.

  8. Database for propagation models

    NASA Technical Reports Server (NTRS)

    Kantak, Anil V.

    1991-01-01

    A propagation researcher or a systems engineer who intends to use the results of a propagation experiment is generally faced with various database tasks such as the selection of the computer software, the hardware, and the writing of the programs to pass the data through the models of interest. This task is repeated every time a new experiment is conducted or the same experiment is carried out at a different location generating different data. Thus the users of this data have to spend a considerable portion of their time learning how to implement the computer hardware and the software towards the desired end. This situation may be facilitated considerably if an easily accessible propagation database is created that has all the accepted (standardized) propagation phenomena models approved by the propagation research community. Also, the handling of data will become easier for the user. Such a database construction can only stimulate the growth of the propagation research it if is available to all the researchers, so that the results of the experiment conducted by one researcher can be examined independently by another, without different hardware and software being used. The database may be made flexible so that the researchers need not be confined only to the contents of the database. Another way in which the database may help the researchers is by the fact that they will not have to document the software and hardware tools used in their research since the propagation research community will know the database already. The following sections show a possible database construction, as well as properties of the database for the propagation research.

  9. Wave Propagation Program

    Energy Science and Technology Software Center (ESTSC)

    2007-01-08

    WPP is a massively parallel, 3D, C++, finite-difference elastodynamic wave propagation code. Typical applications for wave propagation with WPP include: evaluation of seismic event scenarios and damage from earthquakes, non-destructive evaluation of materials, underground facility detection, oil and gas exploration, predicting the electro-magnetic fields in accelerators, and acoustic noise generation. For more information, see User’s Manual [1].

  10. Elevated Temperature Crack Propagation

    NASA Technical Reports Server (NTRS)

    Orange, Thomas W.

    1994-01-01

    This paper is a summary of two NASA contracts on high temperature fatigue crack propagation in metals. The first evaluated the ability of fairly simple nonlinear fracture parameters to correlate crack propagation. Hastelloy-X specimens were tested under isothermal and thermomechanical cycling at temperatures up to 980 degrees C (1800 degrees F). The most successful correlating parameter was the crack tip opening displacement derived from the J-integral. The second evaluated the ability of several path-independent integrals to correlate crack propagation behavior. Inconel 718 specimens were tested under isothermal, thermomechanical, temperature gradient, and creep conditions at temperatures up to 650 degrees C (1200 degrees F). The integrals formulated by Blackburn and by Kishimoto correlated the data reasonably well under all test conditions.

  11. Crack propagation in graphene

    NASA Astrophysics Data System (ADS)

    Budarapu, P. R.; Javvaji, B.; Sutrakar, V. K.; Roy Mahapatra, D.; Zi, G.; Rabczuk, T.

    2015-08-01

    The crack initiation and growth mechanisms in an 2D graphene lattice structure are studied based on molecular dynamics simulations. Crack growth in an initial edge crack model in the arm-chair and the zig-zag lattice configurations of graphene are considered. Influence of the time steps on the post yielding behaviour of graphene is studied. Based on the results, a time step of 0.1 fs is recommended for consistent and accurate simulation of crack propagation. Effect of temperature on the crack propagation in graphene is also studied, considering adiabatic and isothermal conditions. Total energy and stress fields are analyzed. A systematic study of the bond stretching and bond reorientation phenomena is performed, which shows that the crack propagates after significant bond elongation and rotation in graphene. Variation of the crack speed with the change in crack length is estimated.

  12. Turbofan Duct Propagation Model

    NASA Technical Reports Server (NTRS)

    Lan, Justin H.; Posey, Joe W. (Technical Monitor)

    2001-01-01

    The CDUCT code utilizes a parabolic approximation to the convected Helmholtz equation in order to efficiently model acoustic propagation in acoustically treated, complex shaped ducts. The parabolic approximation solves one-way wave propagation with a marching method which neglects backwards reflected waves. The derivation of the parabolic approximation is presented. Several code validation cases are given. An acoustic lining design process for an example aft fan duct is discussed. It is noted that the method can efficiently model realistic three-dimension effects, acoustic lining, and flow within the computational capabilities of a typical computer workstation.

  13. Automatic crack propagation tracking

    NASA Technical Reports Server (NTRS)

    Shephard, M. S.; Weidner, T. J.; Yehia, N. A. B.; Burd, G. S.

    1985-01-01

    A finite element based approach to fully automatic crack propagation tracking is presented. The procedure presented combines fully automatic mesh generation with linear fracture mechanics techniques in a geometrically based finite element code capable of automatically tracking cracks in two-dimensional domains. The automatic mesh generator employs the modified-quadtree technique. Crack propagation increment and direction are predicted using a modified maximum dilatational strain energy density criterion employing the numerical results obtained by meshes of quadratic displacement and singular crack tip finite elements. Example problems are included to demonstrate the procedure.

  14. DROMO propagator revisited

    NASA Astrophysics Data System (ADS)

    Urrutxua, Hodei; Sanjurjo-Rivo, Manuel; Peláez, Jesús

    2016-01-01

    In the year 2000 an in-house orbital propagator called DROMO (Peláez et al. in Celest Mech Dyn Astron 97:131-150, 2007. doi: 10.1007/s10569-006-9056-3) was developed by the Space Dynamics Group of the Technical University of Madrid, based in a set of redundant variables including Euler-Rodrigues parameters. An original deduction of the DROMO propagator is carried out, underlining its close relation with the ideal frame concept introduced by Hansen (Abh der Math-Phys Cl der Kon Sachs Ges der Wissensch 5:41-218, 1857). Based on the very same concept, Deprit (J Res Natl Bur Stand Sect B Math Sci 79B(1-2):1-15, 1975) proposed a formulation for orbit propagation. In this paper, similarities and differences with the theory carried out by Deprit are analyzed. Simultaneously, some improvements are introduced in the formulation, that lead to a more synthetic and better performing propagator. Also, the long-term effect of the oblateness of the primary is studied in terms of DROMO variables, and new numerical results are presented to evaluate the performance of the method.

  15. GRC RF Propagation Studies

    NASA Technical Reports Server (NTRS)

    Nessel, James

    2013-01-01

    NASA Glenn Research Center has been involved in the characterization of atmospheric effects on space communications links operating at Ka-band and above for the past 20 years. This presentation reports out on the most recent activities of propagation characterization that NASA is currently involved in.

  16. PROPER: Optical propagation routines

    NASA Astrophysics Data System (ADS)

    Krist, John E.

    2014-05-01

    PROPER simulates the propagation of light through an optical system using Fourier transform algorithms (Fresnel, angular spectrum methods). Distributed as IDL source code, it includes routines to create complex apertures, aberrated wavefronts, and deformable mirrors. It is especially useful for the simulation of high contrast imaging telescopes (extrasolar planet imagers like TPF).

  17. A Database for Propagation Models

    NASA Technical Reports Server (NTRS)

    Kantak, Anil V.; Rucker, James

    1997-01-01

    The Propagation Models Database is designed to allow the scientists and experimenters in the propagation field to process their data through many known and accepted propagation models. The database is an Excel 5.0 based software that houses user-callable propagation models of propagation phenomena. It does not contain a database of propagation data generated out of the experiments. The database not only provides a powerful software tool to process the data generated by the experiments, but is also a time- and energy-saving tool for plotting results, generating tables and producing impressive and crisp hard copy for presentation and filing.

  18. Atmospheric sound propagation

    NASA Technical Reports Server (NTRS)

    Cook, R. K.

    1969-01-01

    The propagation of sound waves at infrasonic frequencies (oscillation periods 1.0 - 1000 seconds) in the atmosphere is being studied by a network of seven stations separated geographically by distances of the order of thousands of kilometers. The stations measure the following characteristics of infrasonic waves: (1) the amplitude and waveform of the incident sound pressure, (2) the direction of propagation of the wave, (3) the horizontal phase velocity, and (4) the distribution of sound wave energy at various frequencies of oscillation. Some infrasonic sources which were identified and studied include the aurora borealis, tornadoes, volcanos, gravity waves on the oceans, earthquakes, and atmospheric instability waves caused by winds at the tropopause. Waves of unknown origin seem to radiate from several geographical locations, including one in the Argentine.

  19. Transionospheric Propagation Code (TIPC)

    SciTech Connect

    Roussel-Dupre, R.; Kelley, T.A.

    1990-10-01

    The Transionospheric Propagation Code is a computer program developed at Los Alamos National Lab to perform certain tasks related to the detection of vhf signals following propagation through the ionosphere. The code is written in Fortran 77, runs interactively and was designed to be as machine independent as possible. A menu format in which the user is prompted to supply appropriate parameters for a given task has been adopted for the input while the output is primarily in the form of graphics. The user has the option of selecting from five basic tasks, namely transionospheric propagation, signal filtering, signal processing, DTOA study, and DTOA uncertainty study. For the first task a specified signal is convolved against the impulse response function of the ionosphere to obtain the transionospheric signal. The user is given a choice of four analytic forms for the input pulse or of supplying a tabular form. The option of adding Gaussian-distributed white noise of spectral noise to the input signal is also provided. The deterministic ionosphere is characterized to first order in terms of a total electron content (TEC) along the propagation path. In addition, a scattering model parameterized in terms of a frequency coherence bandwidth is also available. In the second task, detection is simulated by convolving a given filter response against the transionospheric signal. The user is given a choice of a wideband filter or a narrowband Gaussian filter. It is also possible to input a filter response. The third task provides for quadrature detection, envelope detection, and three different techniques for time-tagging the arrival of the transionospheric signal at specified receivers. The latter algorithms can be used to determine a TEC and thus take out the effects of the ionosphere to first order. Task four allows the user to construct a table of delta-times-of-arrival (DTOAs) vs TECs for a specified pair of receivers.

  20. Transionospheric Propagation Code (TIPC)

    NASA Astrophysics Data System (ADS)

    Roussel-Dupre, Robert; Kelley, Thomas A.

    1990-10-01

    The Transionospheric Propagation Code is a computer program developed at Los Alamos National Lab to perform certain tasks related to the detection of VHF signals following propagation through the ionosphere. The code is written in FORTRAN 77, runs interactively and was designed to be as machine independent as possible. A menu format in which the user is prompted to supply appropriate parameters for a given task has been adopted for the input while the output is primarily in the form of graphics. The user has the option of selecting from five basic tasks, namely transionospheric propagation, signal filtering, signal processing, delta times of arrival (DTOA) study, and DTOA uncertainty study. For the first task a specified signal is convolved against the impulse response function of the ionosphere to obtain the transionospheric signal. The user is given a choice of four analytic forms for the input pulse or of supplying a tabular form. The option of adding Gaussian-distributed white noise of spectral noise to the input signal is also provided. The deterministic ionosphere is characterized to first order in terms of a total electron content (TEC) along the propagation path. In addition, a scattering model parameterized in terms of a frequency coherence bandwidth is also available. In the second task, detection is simulated by convolving a given filter response against the transionospheric signal. The user is given a choice of a wideband filter or a narrowband Gaussian filter. It is also possible to input a filter response. The third task provides for quadrature detection, envelope detection, and three different techniques for time-tagging the arrival of the transionospheric signal at specified receivers. The latter algorithms can be used to determine a TEC and thus take out the effects of the ionosphere to first order. Task four allows the user to construct a table of DTOAs vs TECs for a specified pair of receivers.

  1. Florida's propagation report

    NASA Technical Reports Server (NTRS)

    Helmken, Henry; Henning, Rudolf

    1994-01-01

    One of the key goals of the Florida Center is to obtain a maximum of useful information on propagation behavior unique to its subtropical weather and subtropical climate. Such weather data is of particular interest when it is (or has the potential to become) useful for developing and implementing techniques to compensate for adverse weather effects. Also discussed are data observations, current challenges, CDF's, sun movement, and diversity experiments.

  2. OPEX: (Olympus Propagation EXperiment)

    NASA Technical Reports Server (NTRS)

    Brussaard, Gert

    1988-01-01

    The Olympus-1 satellite carries four distinct payloads for experimental utilization and research in the field of satellite communications: (1) the Direct Broadcasting Service (DBS) payload; (2) the Specialized Services Payload; (3) the 20/30 GHz Advanced Communications Payload; and (4) the Propagation Payload. Experimental utilization of the first three payloads involves ground transmissions to the satellite and hence sharing of available satellite time among experimenters. This is coordinated through the Olympus Utilization Program.

  3. The ACTS propagation program

    NASA Technical Reports Server (NTRS)

    Chakraborty, D.; Davarian, Faramaz

    1992-01-01

    The success or failure of the ACTS experiment will depend on how accurately the rain-fade statistics and fade dynamics can be predicted in order to derive an appropriate algorithm that will combat weather vagaries, specifically for links with small terminals, such as very small aperture terminals (VSAT's) where the power margin is a premium. The planning process and hardware development program that will comply with the recommendations of the ACTS propagation study groups are described.

  4. Olympus propagation experiments

    NASA Technical Reports Server (NTRS)

    Arbesser-Rastburg, Bertram

    1994-01-01

    A summary of the activities of the OPEX (Olympus Propagation EXperimenters) group is given and some of the recent findings are presented. OLYMPUS, a telecommunication satellite owned by the European Space Agency, was launched on 12 June 1989. After the in-orbit tests were completed (in September 1989) the first propagation experiments started. Throughout 1990 the spacecraft functioned very well and a large number of experimenters received the beacon signals. On 29 May 1991 the spacecraft became inoperational after a major technical problem. With a series of complicated procedures OLYMPUS was recovered on 15 August 1991 - the first time in history that a civilian telecommunications satellite was brought back to service after losing power and telemetry. The propagation experiments were back on track. However, the recovery had used up so much fuel that the North-South station keeping had to be abandoned, which led to a natural increase of inclination at a rate of about 0.8 deg per year. On 10 October 1992 the second 30 GHz beacon tube failed, causing a loss of this beacon signal. The other two beacon frequencies continued to deliver a stable signal for more than two years. On 12 August 1993 the spacecraft experienced another problem with the altitude control, but this time there was not enough fuel left for a recovery maneuver and thus the mission came to an end.

  5. Olympus propagation experiments

    NASA Astrophysics Data System (ADS)

    Arbesser-Rastburg, Bertram

    1994-08-01

    A summary of the activities of the OPEX (Olympus Propagation EXperimenters) group is given and some of the recent findings are presented. OLYMPUS, a telecommunication satellite owned by the European Space Agency, was launched on 12 June 1989. After the in-orbit tests were completed (in September 1989) the first propagation experiments started. Throughout 1990 the spacecraft functioned very well and a large number of experimenters received the beacon signals. On 29 May 1991 the spacecraft became inoperational after a major technical problem. With a series of complicated procedures OLYMPUS was recovered on 15 August 1991 - the first time in history that a civilian telecommunications satellite was brought back to service after losing power and telemetry. The propagation experiments were back on track. However, the recovery had used up so much fuel that the North-South station keeping had to be abandoned, which led to a natural increase of inclination at a rate of about 0.8 deg per year. On 10 October 1992 the second 30 GHz beacon tube failed, causing a loss of this beacon signal. The other two beacon frequencies continued to deliver a stable signal for more than two years. On 12 August 1993 the spacecraft experienced another problem with the altitude control, but this time there was not enough fuel left for a recovery maneuver and thus the mission came to an end.

  6. Propagation in the ionosphere, A

    NASA Astrophysics Data System (ADS)

    Cannon, Paul S.

    1994-09-01

    The use of ionospheric models and ray tracing models as components of a propagation model are discussed. These can be used as decision aids to support human interpretation of ionospheric propagation. The physical basis for ionospheric decision aids is introduced by reference to ionospheric morphology and the basic theory of ionospheric propagation, which, along with ray tracing techniques, is then reviewed.

  7. Tropospheric propagation assessment

    NASA Astrophysics Data System (ADS)

    Anderson, K. D.; Richter, J. H.; Hitney, H. V.

    1984-02-01

    It is well known that microwave propagation in a marine environment frequently exhibits unexpected behavior. The deviation from 4/3 earth propagation calculations is due to the fact that the vertical refractivity distribution of the troposphere rarely follows the standard lapse rate of -39 N/km. Instead, the troposphere is generally composed of horizontally stratified layers of differing refractivity gradients. The most striking propagation anomalies result when a layer gradient is less than -157 N/km, forming a trapping layer. In the marine environment, there are two mechanisms which produce such layers. An elevated trapping layer is created by the advection of a warm, dry air mass over a cold, moist air mass producing either a surface-based or an elevated duct which may affect frequencies as low as 100 MHz. A very persistent surface trapping layer is due to water evaporation at the air-sea interface. This surface, or evaporation duct is generally thin, on the order of 10 m in vertical extent, and is an effective trapping mechanism for frequencies greater than 3 GHz. With the introduction of the Integrated Refraction Effects Prediction System (IREPS) into the US Navy, fleet units now have the capability to evaluate accurately the performance of their EM systems when the refractive environment is known. However, these units may have to plan for operations thousands of miles away under different refractivity conditions. To assist in planning, a worldwide upper air and surface climatology has been developed for use through the IREPS programs. The IREPS concept is reviewed and a description of the tropospheric ducting data base is presented.

  8. PIV uncertainty propagation

    NASA Astrophysics Data System (ADS)

    Sciacchitano, Andrea; Wieneke, Bernhard

    2016-08-01

    This paper discusses the propagation of the instantaneous uncertainty of PIV measurements to statistical and instantaneous quantities of interest derived from the velocity field. The expression of the uncertainty of vorticity, velocity divergence, mean value and Reynolds stresses is derived. It is shown that the uncertainty of vorticity and velocity divergence requires the knowledge of the spatial correlation between the error of the x and y particle image displacement, which depends upon the measurement spatial resolution. The uncertainty of statistical quantities is often dominated by the random uncertainty due to the finite sample size and decreases with the square root of the effective number of independent samples. Monte Carlo simulations are conducted to assess the accuracy of the uncertainty propagation formulae. Furthermore, three experimental assessments are carried out. In the first experiment, a turntable is used to simulate a rigid rotation flow field. The estimated uncertainty of the vorticity is compared with the actual vorticity error root-mean-square, with differences between the two quantities within 5–10% for different interrogation window sizes and overlap factors. A turbulent jet flow is investigated in the second experimental assessment. The reference velocity, which is used to compute the reference value of the instantaneous flow properties of interest, is obtained with an auxiliary PIV system, which features a higher dynamic range than the measurement system. Finally, the uncertainty quantification of statistical quantities is assessed via PIV measurements in a cavity flow. The comparison between estimated uncertainty and actual error demonstrates the accuracy of the proposed uncertainty propagation methodology.

  9. Pulse Propagation in Phaseonium

    NASA Astrophysics Data System (ADS)

    Rahman, Ashiqur; Eberly, J. H.

    1996-05-01

    Phaseonium [1] is a medium where the quantum atomic phase is held fixed for long times compared with various relaxation processes. In inhomogeneously broadened two-level phaseonium, we have found a new area theorem (similar to self-induced transparency [2]) for pulse propagation, where pulses of arbitrary area can be stable instead of 2π area. We will also report results for inhomogeneously broadened three-level phaseonium. Research partially supported by NSF grant PHY94-08733. [1] M.O. Scully, Phys. Rev. Lett. 55, 2802 (1985), also Quant. Opt. 6, 203 (1994). [2] S. L. McCall and E. L. Hahn, Phys. Rev. 183, 457 (1969).

  10. Transport with Feynman propagators

    SciTech Connect

    White, R.H.

    1990-11-06

    Richard Feynman's formulation of quantum electrodynamics suggests a Monte Carlo algorithm for calculating wave propagation. We call this the Sum Over All Paths (SOAP) method. The method is applied to calculate diffraction by double slits of finite width and by a reflection grating. Calculations of reflection by plane and parabolic mirrors of finite aperture and from several figured surfaces are shown. An application to a one-dimensional scattering problem is discussed. A variation of SOAP can be applied to the diffusion equation. 2 refs., 8 figs.

  11. Temporal scaling in information propagation

    NASA Astrophysics Data System (ADS)

    Huang, Junming; Li, Chao; Wang, Wen-Qiang; Shen, Hua-Wei; Li, Guojie; Cheng, Xue-Qi

    2014-06-01

    For the study of information propagation, one fundamental problem is uncovering universal laws governing the dynamics of information propagation. This problem, from the microscopic perspective, is formulated as estimating the propagation probability that a piece of information propagates from one individual to another. Such a propagation probability generally depends on two major classes of factors: the intrinsic attractiveness of information and the interactions between individuals. Despite the fact that the temporal effect of attractiveness is widely studied, temporal laws underlying individual interactions remain unclear, causing inaccurate prediction of information propagation on evolving social networks. In this report, we empirically study the dynamics of information propagation, using the dataset from a population-scale social media website. We discover a temporal scaling in information propagation: the probability a message propagates between two individuals decays with the length of time latency since their latest interaction, obeying a power-law rule. Leveraging the scaling law, we further propose a temporal model to estimate future propagation probabilities between individuals, reducing the error rate of information propagation prediction from 6.7% to 2.6% and improving viral marketing with 9.7% incremental customers.

  12. Temporal scaling in information propagation.

    PubMed

    Huang, Junming; Li, Chao; Wang, Wen-Qiang; Shen, Hua-Wei; Li, Guojie; Cheng, Xue-Qi

    2014-01-01

    For the study of information propagation, one fundamental problem is uncovering universal laws governing the dynamics of information propagation. This problem, from the microscopic perspective, is formulated as estimating the propagation probability that a piece of information propagates from one individual to another. Such a propagation probability generally depends on two major classes of factors: the intrinsic attractiveness of information and the interactions between individuals. Despite the fact that the temporal effect of attractiveness is widely studied, temporal laws underlying individual interactions remain unclear, causing inaccurate prediction of information propagation on evolving social networks. In this report, we empirically study the dynamics of information propagation, using the dataset from a population-scale social media website. We discover a temporal scaling in information propagation: the probability a message propagates between two individuals decays with the length of time latency since their latest interaction, obeying a power-law rule. Leveraging the scaling law, we further propose a temporal model to estimate future propagation probabilities between individuals, reducing the error rate of information propagation prediction from 6.7% to 2.6% and improving viral marketing with 9.7% incremental customers. PMID:24939414

  13. Shaping propagation invariant laser beams

    NASA Astrophysics Data System (ADS)

    Soskind, Michael; Soskind, Rose; Soskind, Yakov

    2015-11-01

    Propagation-invariant structured laser beams possess several unique properties and play an important role in various photonics applications. The majority of propagation invariant beams are produced in the form of laser modes emanating from stable laser cavities. Therefore, their spatial structure is limited by the intracavity mode formation. We show that several types of anamorphic optical systems (AOSs) can be effectively employed to shape laser beams into a variety of propagation invariant structured fields with different shapes and phase distributions. We present a propagation matrix approach for designing AOSs and defining mode-matching conditions required for preserving propagation invariance of the output shaped fields. The propagation matrix approach was selected, as it provides a more straightforward approach in designing AOSs for shaping propagation-invariant laser beams than the alternative technique based on the Gouy phase evolution, especially in the case of multielement AOSs. Several practical configurations of optical systems that are suitable for shaping input laser beams into a diverse variety of structured propagation invariant laser beams are also presented. The laser beam shaping approach was applied by modeling propagation characteristics of several input laser beam types, including Hermite-Gaussian, Laguerre-Gaussian, and Ince-Gaussian structured field distributions. The influence of the Ince-Gaussian beam semifocal separation parameter and the azimuthal orientation between the input laser beams and the AOSs onto the resulting shape of the propagation invariant laser beams is presented as well.

  14. An analysis of rumor propagation based on propagation force

    NASA Astrophysics Data System (ADS)

    Zhao, Zhen-jun; Liu, Yong-mei; Wang, Ke-xi

    2016-02-01

    A propagation force is introduced into the analysis of rumor propagation to address uncertainty in the process. The propagation force is portrayed as a fuzzy variable, and a category of new parameters with fuzzy variables is defined. The classic susceptible, infected, recovered (SIR) model is modified using these parameters, a fuzzy reproductive number is introduced into the modified model, and the rationality of the fuzzy reproductive number is illuminated through calculation and comparison. Rumor control strategies are also discussed.

  15. ACTS propagation experiment discussion: Ka-band propagation measurements using the ACTS propagation terminal and the CSU-CHILL and Space Communications Technology Center Florida propagation program

    NASA Technical Reports Server (NTRS)

    Bringi, V. N.; Chandrasekar, V.; Mueller, Eugene A.; Turk, Joseph; Beaver, John; Helmken, Henry F.; Henning, Rudy

    1993-01-01

    Papers on Ka-band propagation measurements using the ACTS propagation terminal and the Colorado State University CHILL multiparameter radar and on Space Communications Technology Center Florida Propagation Program are discussed. Topics covered include: microwave radiative transfer and propagation models; NASA propagation terminal status; ACTS channel characteristics; FAU receive only terminal; FAU terminal status; and propagation testbed.

  16. ACTS mobile propagation campaign

    NASA Technical Reports Server (NTRS)

    Goldhirsh, Julius; Vogel, Wolfhard J.; Torrence, Geoffrey W.

    1994-01-01

    Preliminary results are presented for three propagation measurement campaigns involving a mobile receiving laboratory and 20 GHz transmissions from the Advanced Communications Technology Satellite (ACTS). Four 1994 campaigns were executed during weekly periods in and around Austin, Texas in February and May, in Central Maryland during March, and in Fairbanks, Alaska and environs in June. Measurements tested the following effects at 20 GHz: (1) attenuation due to roadside trees with and without foliage, (2) multipath effects for scenarios in which line-of-sight paths were unshadowed, (3) fades due to terrain and roadside obstacles, (4) fades due to structures in urban environs, (5) single tree attenuation, and (6) effects of fading at low elevation angles (8 deg in Fairbanks, Alaska) and high elevation angles (55 deg in Austin, Texas). Results presented here cover sampled measurements in Austin, Texas for foliage and non-foliage cases and in Central Maryland for non-foliage runs.

  17. Research in LMSS propagation

    NASA Technical Reports Server (NTRS)

    Barts, R. M.; Stutzman, W. L.; Pratt, T.

    1989-01-01

    The Virginia Tech Satellite Communications Group has participated in the Land Mobile Satellite System (LMSS) program through JPL sponsorship since 1985. Involvement has mainly been in modeling and simulation of propagation characteristics and effects. Models developed to predict cummulative fade distributions for fading LMSS signals include LMSSMOD and the Simple Models which approximate LMSSMOD. Models to predict the mean and standard deviation of signal attenuation through roadside vegetation, namely the Average Path Model, were developed. In the area of simulation, efforts have centered around the development of a software simulator that uses data bases derived from experimental data to generate simulated data with arbitrary statistical behavior. This work has progressed to the development of an integrated analysis and simulation package, LIPS. The basic theory and results for the models and simulator have been previously documented in reports and papers. All LMSS activities are summarized and details of this year's efforts are given.

  18. The ACTS propagation program

    NASA Technical Reports Server (NTRS)

    Chakraborty, Dayamoy; Davarian, Faramaz

    1991-01-01

    The purpose of the Advanced Communications Technology Satellite (ACTS) is to demonstrate the feasibility of the Ka-band (20 and 30 GHz) spectrum for satellite communications, as well as to help maintain U.S. leadership in satellite communications. ACTS incorporates such innovative schemes as time division multiple access (TDMA), microwave and baseband switching, onboard regeneration, and adaptive application of coding during rain-fade conditions. The success or failure of the ACTS experiment will depend on how accurately the rain-fade statistics and fade dynamics can be predicted in order to derive an appropriate algorithm that will combat weather vagaries, specifically for links with small terminals, such as very small aperture terminals (VSAT's) where the power margin is a premium. This article describes the planning process and hardware development program that will comply with the recommendations of the ACTS propagation study groups.

  19. Numerical propagator through PIAA optics

    NASA Astrophysics Data System (ADS)

    Pueyo, Laurent; Shaklan, Stuart; Give'On, Amir; Krist, John

    2009-08-01

    In this communication we address two outstanding issues pertaining the modeling of PIAA coronagraphs, accurate numerical propagation of edge effects and fast propagation of mid spatial frequencies for wavefront control. In order to solve them, we first derive a quadratic approximation of the Huygens wavelets that allows us to develop an angular spectrum propagator for pupil remapping. Using this result we introduce an independent method to verify the ultimate contrast floor, due to edge propagation effects, of PIAA units currently being tested in various testbeds. We then delve into the details of a novel fast algorithm, based on the recognition that angular spectrum computations with a pre-apodised system are computationally light. When used for the propagation of mid spatial frequencies, such a fast propagator will ultimately allow us to develop robust wavefront control algorithms with DMs located before the pupil remapping mirrors.

  20. Interferometric Propagation Delay

    NASA Technical Reports Server (NTRS)

    Goldstein, Richard

    1999-01-01

    Radar interferometry based on (near) exact repeat passes has lately been used by many groups of scientists, worldwide, to achieve state of the art measurements of topography, glacier and ice stream motion, earthquake displacements, oil field subsidence, lava flows, crop-induced surface decorrelation, and other effects. Variations of tropospheric and ionospheric propagation delays limit the accuracy of all such measurements. We are investigating the extent of this limitation, using data from the Shuttle radar flight, SIR-C, which is sensitive to the troposphere, and the Earth Resources Satellites, ERS-1/2, which are sensitive to both the troposphere and the ionosphere. We are presently gathering statistics of the delay variations over selected, diverse areas to determine the best accuracy possible for repeat track interferometry. The phases of an interferogram depend on both the topography of the scene and variations in propagation delay. The delay variations can be caused by movement of elements in the scene, by changes in tropospheric water vapor and by changes of the charge concentrations in the ionosphere. We plan to separate these causes by using the data from a third satellite visit (three-pass interferometry). The figure gives the geometry of the three-pass observations. The page of the figure is taken to be perpendicular to the spacecraft orbits. The three observational locations are marked on the figure, giving baselines B-12 and B-13, separated by the angle alpha. These parameters are almost constant over the whole scene. However, each pixel has an individual look angle, theta, which is related to the topography, rho is the slant range. A possible spurious time delay is shown. Additional information is contained in the original.

  1. Propagation Terminal Design and Measurements

    NASA Technical Reports Server (NTRS)

    Nessel, James

    2015-01-01

    The NASA propagation terminal has been designed and developed by the Glenn Research Center and is presently deployed at over 5 NASA and partner ground stations worldwide collecting information on the effects of the atmosphere on Ka-band and millimeter wave communications links. This lecture provides an overview of the fundamentals and requirements of the measurement of atmospheric propagation effects and, specifically, the types of hardware and digital signal processing techniques employed by current state-of-the-art propagation terminal systems.

  2. Propagation into an unstable state

    SciTech Connect

    Dee, G.

    1985-06-01

    We describe propagating front solutions of the equations of motion of pattern-forming systems. We make a number of conjectures concerning the properties of such fronts in connection with pattern selection in these systems. We describe a calculation which can be used to calculate the velocity and state selected by certain types of propagating fronts. We investigate the propagating front solutions of the amplitude equation which provides a valid dynamical description of many pattern-forming systems near onset.

  3. Cascade dynamics of complex propagation

    NASA Astrophysics Data System (ADS)

    Centola, Damon; Eguíluz, Víctor M.; Macy, Michael W.

    2007-01-01

    Random links between otherwise distant nodes can greatly facilitate the propagation of disease or information, provided contagion can be transmitted by a single active node. However, we show that when the propagation requires simultaneous exposure to multiple sources of activation, called complex propagation, the effect of random links can be just the opposite; it can make the propagation more difficult to achieve. We numerically calculate critical points for a threshold model using several classes of complex networks, including an empirical social network. We also provide an estimation of the critical values in terms of vulnerable nodes.

  4. Seismic wave propagation modeling

    SciTech Connect

    Jones, E.M.; Olsen, K.B.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). A hybrid, finite-difference technique was developed for modeling nonlinear soil amplification from three-dimensional, finite-fault radiation patters for earthquakes in arbitrary earth models. The method was applied to the 17 January 1994 Northridge earthquake. Particle velocities were computed on a plane at 5-km depth, immediately above the causative fault. Time-series of the strike-perpendicular, lateral velocities then were propagated vertically in a soil column typical of the San Fernando Valley. Suitable material models were adapted from a suite used to model ground motions at the US Nevada Test Site. The effects of nonlinearity reduced relative spectral amplitudes by about 40% at frequencies above 1.5 Hz but only by 10% at lower frequencies. Runs made with source-depth amplitudes increased by a factor of two showed relative amplitudes above 1.5 Hz reduced by a total of 70% above 1.5 Hz and 20% at lower frequencies. Runs made with elastic-plastic material models showed similar behavior to runs made with Masing-Rule models.

  5. Directed HK propagator

    NASA Astrophysics Data System (ADS)

    Kocia, Lucas; Heller, Eric J.

    2015-09-01

    We offer a more formal justification for the successes of our recently communicated "directed Heller-Herman-Kluk-Kay" (DHK) time propagator by examining its performance in one-dimensional bound systems which exhibit at least quasi-periodic motion. DHK is distinguished by its single one-dimensional integral—a vast simplification over the usual 2N-dimensional integral in full Heller-Herman-Kluk-Kay (for an N-dimensional system). We find that DHK accurately captures particular coherent state autocorrelations when its single integral is chosen to lie along these states' fastest growing manifold, as long as it is not perpendicular to their action gradient. Moreover, the larger the action gradient, the better DHK will perform. We numerically examine DHK's accuracy in a one-dimensional quartic oscillator and illustrate that these conditions are frequently satisfied such that the method performs well. This lends some explanation for why DHK frequently seems to work so well and suggests that it may be applicable to systems exhibiting quite strong anharmonicity.

  6. Modeling turbulent flame propagation

    SciTech Connect

    Ashurst, W.T.

    1994-08-01

    Laser diagnostics and flow simulation techniques axe now providing information that if available fifty years ago, would have allowed Damkoehler to show how turbulence generates flame area. In the absence of this information, many turbulent flame speed models have been created, most based on Kolmogorov concepts which ignore the turbulence vortical structure, Over the last twenty years, the vorticity structure in mixing layers and jets has been shown to determine the entrainment and mixing behavior and these effects need to be duplicated by combustion models. Turbulence simulations reveal the intense vorticity structure as filaments and simulations of passive flamelet propagation show how this vorticity Creates flame area and defines the shape of the expected chemical reaction surface. Understanding how volume expansion interacts with flow structure should improve experimental methods for determining turbulent flame speed. Since the last decade has given us such powerful new tools to create and see turbulent combustion microscopic behavior, it seems that a solution of turbulent combustion within the next decade would not be surprising in the hindsight of 2004.

  7. Join-Graph Propagation Algorithms

    PubMed Central

    Mateescu, Robert; Kask, Kalev; Gogate, Vibhav; Dechter, Rina

    2010-01-01

    The paper investigates parameterized approximate message-passing schemes that are based on bounded inference and are inspired by Pearl's belief propagation algorithm (BP). We start with the bounded inference mini-clustering algorithm and then move to the iterative scheme called Iterative Join-Graph Propagation (IJGP), that combines both iteration and bounded inference. Algorithm IJGP belongs to the class of Generalized Belief Propagation algorithms, a framework that allowed connections with approximate algorithms from statistical physics and is shown empirically to surpass the performance of mini-clustering and belief propagation, as well as a number of other state-of-the-art algorithms on several classes of networks. We also provide insight into the accuracy of iterative BP and IJGP by relating these algorithms to well known classes of constraint propagation schemes. PMID:20740057

  8. Dike Propagation Near Drifts

    SciTech Connect

    NA

    2002-03-04

    The purpose of this Analysis and Model Report (AMR) supporting the Site Recommendation/License Application (SR/LA) for the Yucca Mountain Project is the development of elementary analyses of the interactions of a hypothetical dike with a repository drift (i.e., tunnel) and with the drift contents at the potential Yucca Mountain repository. This effort is intended to support the analysis of disruptive events for Total System Performance Assessment (TSPA). This AMR supports the Process Model Report (PMR) on disruptive events (CRWMS M&O 2000a). This purpose is documented in the development plan (DP) ''Coordinate Modeling of Dike Propagation Near Drifts Consequences for TSPA-SR/LA'' (CRWMS M&O 2000b). Evaluation of that Development Plan and the work to be conducted to prepare Interim Change Notice (ICN) 1 of this report, which now includes the design option of ''Open'' drifts, indicated that no revision to that DP was needed. These analyses are intended to provide reasonable bounds for a number of expected effects: (1) Temperature changes to the waste package from exposure to magma; (2) The gas flow available to degrade waste containers during the intrusion; (3) Movement of the waste package as it is displaced by the gas, pyroclasts and magma from the intruding dike (the number of packages damaged); (4) Movement of the backfill (Backfill is treated here as a design option); (5) The nature of the mechanics of the dike/drift interaction. These analyses serve two objectives: to provide preliminary analyses needed to support evaluation of the consequences of an intrusive event and to provide a basis for addressing some of the concerns of the Nuclear Regulatory Commission (NRC) expressed in the Igneous Activity Issue Resolution Status Report.

  9. Laser Propagation in Uranium Hexafluoride

    NASA Astrophysics Data System (ADS)

    Chu, Danny

    1990-01-01

    Several researchers have simulated the laser pulse propagation through simple N-level systems; but, for UF _6 models, large CPU time and memory is required. In an attempt to efficiently yet accurately characterize laser pulse propagation through a UF _6 molecule, a model of UF_6 is created and analyzed by adiabatic excitation. A minimax numerical method is developed to solve the time -dependent Schrodinger equation and then applied to the study of laser excitation of UF_6 using various Gaussian pulses. The process of laser isotope separation is also discussed. The results from the laser excitation of UF_6 are used to simulate laser propagation through ^{235} UF_6.

  10. A database for propagation models

    NASA Technical Reports Server (NTRS)

    Kantak, Anil V.; Suwitra, Krisjani S.

    1992-01-01

    In June 1991, a paper at the fifteenth NASA Propagation Experimenters Meeting (NAPEX 15) was presented outlining the development of a database for propagation models. The database is designed to allow the scientists and experimenters in the propagation field to process their data through any known and accepted propagation model. The architecture of the database also incorporates the possibility of changing the standard models in the database to fit the scientist's or the experimenter's needs. The database not only provides powerful software to process the data generated by the experiments, but is also a time- and energy-saving tool for plotting results, generating tables, and producing impressive and crisp hard copy for presentation and filing.

  11. Reconstruction of nonlinear wave propagation

    DOEpatents

    Fleischer, Jason W; Barsi, Christopher; Wan, Wenjie

    2013-04-23

    Disclosed are systems and methods for characterizing a nonlinear propagation environment by numerically propagating a measured output waveform resulting from a known input waveform. The numerical propagation reconstructs the input waveform, and in the process, the nonlinear environment is characterized. In certain embodiments, knowledge of the characterized nonlinear environment facilitates determination of an unknown input based on a measured output. Similarly, knowledge of the characterized nonlinear environment also facilitates formation of a desired output based on a configurable input. In both situations, the input thus characterized and the output thus obtained include features that would normally be lost in linear propagations. Such features can include evanescent waves and peripheral waves, such that an image thus obtained are inherently wide-angle, farfield form of microscopy.

  12. The NASA radiowave propagation program

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz

    1990-01-01

    The objectives of the NASA radiowave Propagation Program are to enable new satellite communication applications and to enhance existing satellite communication networks. These objectives are achieved by supporting radio wave propagation studies and disseminating the study results in a timely fashion. Studies initiated by this program in the 1980s enabled the infant concept of conducting mobile communications via satellite to reach a state of relative maturity in 1990. The program also supported the satellite communications community by publishing and revising two handbooks dealing with radio wave propagation effects for frequencies below and above 10 GHz, respectively. The program has served the international community through its support of the International Telecommunications Union. It supports state of the art work at universities. Currently, the program is focusing on the Advanced Communications Technology Satellite (ACTS) and its propagation needs. An overview of the program's involvement in the ACTS project is given.

  13. Nonlinear competition in nematicon propagation.

    PubMed

    Laudyn, Urszula A; Kwasny, Michał; Piccardi, Armando; Karpierz, Mirosław A; Dabrowski, Roman; Chojnowska, Olga; Alberucci, Alessandro; Assanto, Gaetano

    2015-11-15

    We investigate the role of competing nonlinear responses in the formation and propagation of bright spatial solitons. We use nematic liquid crystals (NLCs) exhibiting both thermo-optic and reorientational nonlinearities with continuous-wave beams. In a suitably prepared dye-doped sample and dual beam collinear geometry, thermal heating in the visible affects reorientational self-focusing in the near infrared, altering light propagation and self-trapping. PMID:26565843

  14. Semiclassical propagation of Wigner functions

    SciTech Connect

    Dittrich, T.; Gomez, E. A.; Pachon, L. A.

    2010-06-07

    We present a comprehensive study of semiclassical phase-space propagation in the Wigner representation, emphasizing numerical applications, in particular as an initial-value representation. Two semiclassical approximation schemes are discussed. The propagator of the Wigner function based on van Vleck's approximation replaces the Liouville propagator by a quantum spot with an oscillatory pattern reflecting the interference between pairs of classical trajectories. Employing phase-space path integration instead, caustics in the quantum spot are resolved in terms of Airy functions. We apply both to two benchmark models of nonlinear molecular potentials, the Morse oscillator and the quartic double well, to test them in standard tasks such as computing autocorrelation functions and propagating coherent states. The performance of semiclassical Wigner propagation is very good even in the presence of marked quantum effects, e.g., in coherent tunneling and in propagating Schroedinger cat states, and of classical chaos in four-dimensional phase space. We suggest options for an effective numerical implementation of our method and for integrating it in Monte-Carlo-Metropolis algorithms suitable for high-dimensional systems.

  15. The physical theory and propagation model of THz atmospheric propagation

    NASA Astrophysics Data System (ADS)

    Wang, R.; Yao, J. Q.; Xu, D. G.; Wang, J. L.; Wang, P.

    2011-02-01

    Terahertz (THz) radiation is extensively applied in diverse fields, such as space communication, Earth environment observation, atmosphere science, remote sensing and so on. And the research on propagation features of THz wave in the atmosphere becomes more and more important. This paper firstly illuminates the advantages and outlook of THz in space technology. Then it introduces the theoretical framework of THz atmospheric propagation, including some fundamental physical concepts and processes. The attenuation effect (especially the absorption of water vapor), the scattering of aerosol particles and the effect of turbulent flow mainly influence THz atmosphere propagation. Fundamental physical laws are illuminated as well, such as Lamber-beer law, Mie scattering theory and radiative transfer equation. The last part comprises the demonstration and comparison of THz atmosphere propagation models like Moliere(V5), SARTre and AMATERASU. The essential problems are the deep analysis of physical mechanism of this process, the construction of atmospheric propagation model and databases of every kind of material in the atmosphere, and the standardization of measurement procedures.

  16. Genetic structure of Pilosocereus gounellei (Cactaceae) as revealed by AFLP marker to guide proposals for improvement and restoration of degraded areas in Caatinga biome.

    PubMed

    Monteiro, E R; Strioto, D K; Meirelles, A C S; Mangolin, C A; Machado, M F P S

    2015-01-01

    Amplified fragment length polymorphism (AFLP) analysis was used to evaluate DNA polymorphism in Pilosocereus gounellei with the aim of differentiating samples grown in different Brazilian semiarid regions. Seven primer pairs were used to amplify 703 AFLP markers, of which 700 (99.21%) markers were polymorphic. The percentage of polymorphic markers ranged from 95.3% for the primer combination E-AAG/M-CTT to 100% for E-ACC/M-CAT, E-ACC/M-CAA, E-AGC/M-CAG, E-ACT/M-CTA, and E-AGG/M-CTG. The largest number of informative markers (126) was detected using the primer combination E-AAC/M-CTA. Polymorphism of the amplified DNA fragments ranged from 72.55% (in sample from Piauí State) to 82.79% (in samples from Rio Grande Norte State), with an average of 75.39%. Despite the high genetic diversity of AFLP markers in xiquexique, analysis using the STRUCTURE software identified relatively homogeneous clusters of xiquexique from the same location, indicating a differentiation at the molecular level, among the plant samples from different regions of the Caatinga biome. The AFLP methodology identified genetically homogeneous and contrasting plants, as well as plants from different regions with common DNA markers. Seeds from such plants can be used for further propagation of plants for establishment of biodiversity conservation units and restoration of degraded areas of the Caatinga biome. PMID:26681043

  17. The geometry of propagating rifts

    NASA Astrophysics Data System (ADS)

    McKenzie, Dan

    1986-03-01

    The kinematics of two different processes are investigated, both of which have been described as rift propagation. Courtillot uses this term to describe the change from distributed to localised extension which occurs during the early development of an ocean basin. The term localisation is instead used here to describe this process, to distinguish it from Hey's type of propagation. Localisation generally leads to rotation of the direction of magnetisation. To Hey propagation means the extension of a rift into the undeformed plate beyond a transform fault. Detail surveys of the Galapagos rift have shown that the propagating and failing rifts are not connected by a single transform fault, but by a zone which is undergoing shear. The principal deformation is simple shear, and the kinematics of this deformation are investigated in some detail. The strike of most of the lineations observed in the area can be produced by such deformation. The mode of extension on the propagating rift appears to be localised for some periods but to be distributed for others. Neither simple kinematic arguments nor stretching of the lithosphere with conservation of crust can account for the observed variations in water depth.

  18. User needs for propagation data

    NASA Technical Reports Server (NTRS)

    Sullivan, Thomas M.

    1993-01-01

    New and refined models of radio signal propagation phenomena are needed to support studies of evolving satellite services and systems. Taking an engineering perspective, applications for propagation measurements and models in the context of various types of analyses that are of ongoing interest are reviewed. Problems that were encountered in the signal propagation aspects of these analyses are reviewed, and potential solutions to these problems are discussed. The focus is on propagation measurements and models needed to support design and performance analyses of systems in the Mobile-Satellite Service (MSS) operating in the 1-3 GHz range. These systems may use geostationary or non-geostationary satellites and Frequency Division Multiple Access (FDMA), Time Division Multiple Access Digital (TDMA), or Code Division Multiple Access (CDMA) techniques. Many of the propagation issues raised in relation to MSS are also pertinent to other services such as broadcasting-satellite (sound) at 2310-2360 MHz. In particular, services involving mobile terminals or terminals with low gain antennas are of concern.

  19. Wave propagation in isogrid structures

    NASA Astrophysics Data System (ADS)

    Reynolds, Whitney D.; Doyle, Derek; Arritt, Brandon

    2011-04-01

    This work focuses on an analysis of wave propagation in isogrid structures as it relates to Structural Health Monitoring (SHM) methods. Assembly, integration, and testing (AI&T) of satellite structures in preparation for launch includes significant time for testing and reworking any issues that may arise. SHM methods are being investigated as a means to validate the structure during assembly and truncate the number of tests needed to qualify the structure for the launch environment. The most promising of these SHM methods uses an active wave-based method in which an actuator propagates a Lamb wave through the structure; the Lamb wave is then received by a sensor and evaluated over time to detect structural changes. To date this method has proven effective in locating structural defects in a complex satellite panel; however, the attributes associated with the first wave arrival change significantly as the wave travels through ribs and joining features. Previous studies have been conducted in simplified ribbed structures, giving initial insight into the complex wave propagation phenomena. In this work, the study has been extended numerically to the isogrid plate case. Wave propagation was modeled using commercial finite element analysis software. The results of the analyses offer further insight into the complexities of wave propagation in isogrid structures.

  20. Propagated repolarization in heart muscle.

    PubMed

    CRANEFIELD, P F; HOFFMAN, B F

    1958-03-20

    The effect of current flow on the transmembrane action potential of single fibers of ventricular muscle has been examined. Pulses of repolarizing current applied during the plateau of the action potential displace membrane potential much more than do pulses of depolarizing current. The application of sufficiently strong pulses of repolarizing current initiates sustained repolarization which persists after the end of the pulse. This sustained repolarization appears to propagate throughout the length of the fiber. Demonstration of propagated repolarization is made difficult by appearance of break excitation at the end of the repolarizing pulse. The thresholds for sustained repolarization and break excitation are separated by reducing the concentration of Ca(++) in the environment of the fiber. In fibers in such an environment it is easier to demonstrate apparently propagated repolarization and also, by further increase of the strength of the repolarizing current, to demonstrate graded break excitation. PMID:13514000

  1. Modification of tropospheric propagation conditions

    NASA Astrophysics Data System (ADS)

    Jeske, H.

    1990-10-01

    The propagation mechanisms of ultra-short radio waves and microwaves are governed by the composition of the troposphere and their space-time structure of the refractive index field. Useful effects are obtained by chaff clouds concerning communication channels, masking of targets or meteorological research. A wide field of posiibilities seems to be within the scope of weather modification experiments. But due to the huge variability of cloud and rain parameters only minor propagation changes are to be expected. A successful application of remotely determining atmospheric temperature profiles is the modulation of the atmospheric refractive index field by sound waves and tracking the acoustic wave fronts by a Doppler radar (Radio Acoustic Sounding System). Oil and alga slicks on water surfaces may change the reflection/scattering and emission properties for radar waves. They also suppress evaporation which may influence the development of tropical storms but just so evaporation duct propagation of microwaves.

  2. Dynamical Realism and Uncertainty Propagation

    NASA Astrophysics Data System (ADS)

    Park, Inkwan

    In recent years, Space Situational Awareness (SSA) has become increasingly important as the number of tracked Resident Space Objects (RSOs) continues their growth. One of the most significant technical discussions in SSA is how to propagate state uncertainty in a consistent way with the highly nonlinear dynamical environment. In order to keep pace with this situation, various methods have been proposed to propagate uncertainty accurately by capturing the nonlinearity of the dynamical system. We notice that all of the methods commonly focus on a way to describe the dynamical system as precisely as possible based on a mathematical perspective. This study proposes a new perspective based on understanding dynamics of the evolution of uncertainty itself. We expect that profound insights of the dynamical system could present the possibility to develop a new method for accurate uncertainty propagation. These approaches are naturally concluded in goals of the study. At first, we investigate the most dominant factors in the evolution of uncertainty to realize the dynamical system more rigorously. Second, we aim at developing the new method based on the first investigation enabling orbit uncertainty propagation efficiently while maintaining accuracy. We eliminate the short-period variations from the dynamical system, called a simplified dynamical system (SDS), to investigate the most dominant factors. In order to achieve this goal, the Lie transformation method is introduced since this transformation can define the solutions for each variation separately. From the first investigation, we conclude that the secular variations, including the long-period variations, are dominant for the propagation of uncertainty, i.e., short-period variations are negligible. Then, we develop the new method by combining the SDS and the higher-order nonlinear expansion method, called state transition tensors (STTs). The new method retains advantages of the SDS and the STTs and propagates

  3. NASA Propagation Program Status and Propagation Needs of Satcom Industry

    NASA Technical Reports Server (NTRS)

    Golshan, Nassar

    1996-01-01

    The program objective is to enable the development of new commercial satellite systems and services and to support NASA's programs by providing timely data and models about propagation of satellite radio signals though the intervening environment. Provisions include new services, higher frequencies, higher data rates, different environments (mobile, indoors, fixed), and different orbits (geostationary, low earth orbit).

  4. SIS Epidemic Propagation on Hypergraphs.

    PubMed

    Bodó, Ágnes; Katona, Gyula Y; Simon, Péter L

    2016-04-01

    Mathematical modelling of epidemic propagation on networks is extended to hypergraphs in order to account for both the community structure and the nonlinear dependence of the infection pressure on the number of infected neighbours. The exact master equations of the propagation process are derived for an arbitrary hypergraph given by its incidence matrix. Based on these, moment closure approximation and mean-field models are introduced and compared to individual-based stochastic simulations. The simulation algorithm, developed for networks, is extended to hypergraphs. The effects of hypergraph structure and the model parameters are investigated via individual-based simulation results. PMID:27033348

  5. Landscape management and domestication of Stenocereus pruinosus (Cactaceae) in the Tehuacán Valley: human guided selection and gene flow

    PubMed Central

    2012-01-01

    propagules from one another. Multivariate analyses showed morphological differentiation of wild and agriculturally managed populations, mainly due to differences in reproductive characters; however, the phenotypic differentiation indexes were relatively low among all populations studied. Morphological diversity of S. pruinosus (average MD = 0.600) is higher than in other columnar cacti species previously analyzed. Conclusions Artificial selection in favor of high quality fruit promotes morphological variation and divergence because of the continual replacement of plant material propagated and introduction of propagules from other villages and regions. This process is counteracted by high gene flow influenced by natural factors (pollinators and seed dispersers) but also by human management (movement of propagules among populations), all of which determines relatively low phenotypic differentiation among populations. Conservation of genetic resources of S. pruinosus should be based on the traditional forms of germplasm management by local people. PMID:22891978

  6. Near earth propagation: physics revealed

    NASA Astrophysics Data System (ADS)

    Wert, R.; Goroch, A.; Worthington, E.; Wong, V.

    2007-04-01

    Both the military and consumer sectors are pursuing distributed networked systems and sensors. A major stumbling block to deployment of these sensors will be the radio frequency (RF) propagation environment within a few wavelengths of the earth. Increasing transmit power (battery consumption) is not a practical solution to the problem. This paper will discuss some of the physical phenomena related to the near earth propagation (NEP) problem. When radiating near the earth the communications link is subjected to a list of physical impairments. On the list are the expected Fresnel region encroachment and multipath reflections. Additionally, radiation pattern changes and near earth boundary layer perturbations exist. A significant amount of data has been collected on NEP. Disturbances in the NEP atmosphere can have a time varying attenuation related to the time of day and these discoveries will be discussed. Solutions, or workarounds, to the near earth propagation problem hinge on dynamic adaptive RF elements. Adaptive RF elements will allow the distributed sensor to direct energy, beam form, impedance correct, increase communication efficiency, and decrease battery consumption. Small electrically controllable elements are under development to enable antenna impedance matching in a dynamic environment. Additionally, small dynamic beam forming arrays are under development to focus RF energy in the direction of need. With an increased understanding of the near earth propagation problem, distributed autonomous networked sensors can become a reality within a few centimeters of the earth.

  7. Microwave Propagation in Dielectric Fluids.

    ERIC Educational Resources Information Center

    Lonc, W. P.

    1980-01-01

    Describes an undergraduate experiment designed to verify quantitatively the effect of a dielectric fluid's dielectric constant on the observed wavelength of microwave radiation propagating through the fluid. The fluid used is castor oil, and results agree with the expected behavior within 5 percent. (Author/CS)

  8. Analysis of fatigue crack propagation

    NASA Technical Reports Server (NTRS)

    Liu, H. W.

    1972-01-01

    The correlation between fatigue crack propagation and stress intensity factor is analyzed. When determining fatigue crack propagation rate, a crack increment, delta a, and its corresponding increment in load cycles, delta N, are measured. Fatigue crack propagation must be caused by a shear and/or a normal separation mode. Both of these two processes are discrete if one looks at the atomic level. If the average deformation and fracture properties over the crack increments, delta a, can be considered as homogeneous, if the characteristic discrete lengths of sigma a, if the plastic zone size is small, and if a plate is thick enough to insure a plane strain case, da/dN is proportional to delta K squared. Any deviation of empirical data from this relation must be caused by the fact that one or more of these conditions are not satisfied. The effects of plate thickness and material inhomogeneity are discussed in detail. A shear separation mode of fatigue crack propagation is described and is used to illustrate the effects of material inhomogeneity.

  9. Balloon atmospheric propagation experiment measurements

    NASA Technical Reports Server (NTRS)

    Minott, P. O.

    1973-01-01

    High altitude balloon measurements on laser beam fading during propagation through turbulent atmosphere show that a correlation between fading strength and stellar scintillation magnitudes exists. Graphs for stellar scintillation as a function of receiver aperture are used to predict fading bit error rates for neodymium-yag laser communication system.

  10. Fracture propagation, pipe deformation study

    SciTech Connect

    Aloe, A.; Di Candia, A.; Bramante, M.

    1983-04-15

    Shear fracture propagation has become an important research subject connected with design aspects of gas pipelines. Difficulties involved in predicting safe service conditions from pure theoretical studies require 1:1 scale experiments. Through these tests, semiempirical design criteria was formulated where the minimum level of material quality, indicated by Charpy V energy in the ductile range, is determined as a function of pipe geometry and hoop stress. Disagreements exist among these criteria. Different arrest energy predictions at high hoop stresses and different effects ascribed to the thickness have called for further research in the field. Some interesting indications were obtained about shape and size of the plastic zone ahead of the propagating crack. Burst tests have been conducted and are discussed.

  11. Atmospheric propagation of THz radiation.

    SciTech Connect

    Wanke, Michael Clement; Mangan, Michael A.; Foltynowicz, Robert J.

    2005-11-01

    In this investigation, we conduct a literature study of the best experimental and theoretical data available for thin and thick atmospheres on THz radiation propagation from 0.1 to 10 THz. We determined that for thick atmospheres no data exists beyond 450 GHz. For thin atmospheres data exists from 0.35 to 1.2 THz. We were successful in using FASE code with the HITRAN database to simulate the THz transmission spectrum for Mauna Kea from 0.1 to 2 THz. Lastly, we successfully measured the THz transmission spectra of laboratory atmospheres at relative humidities of 18 and 27%. In general, we found that an increase in the water content of the atmosphere led to a decrease in the THz transmission. We identified two potential windows in an Albuquerque atmosphere for THz propagation which were the regions from 1.2 to 1.4 THz and 1.4 to 1.6 THz.

  12. Improved beam propagation method equations.

    PubMed

    Nichelatti, E; Pozzi, G

    1998-01-01

    Improved beam propagation method (BPM) equations are derived for the general case of arbitrary refractive-index spatial distributions. It is shown that in the paraxial approximation the discrete equations admit an analytical solution for the propagation of a paraxial spherical wave, which converges to the analytical solution of the paraxial Helmholtz equation. The generalized Kirchhoff-Fresnel diffraction integral between the object and the image planes can be derived, with its coefficients expressed in terms of the standard ABCD matrix. This result allows the substitution, in the case of an unaberrated system, of the many numerical steps with a single analytical step. We compared the predictions of the standard and improved BPM equations by considering the cases of a Maxwell fish-eye and of a Luneburg lens. PMID:18268554

  13. Sound propagation in choked ducts

    NASA Technical Reports Server (NTRS)

    Hersh, A. S.; Liu, C. Y.

    1976-01-01

    The linearized equations describing the propagation of sound in variable area ducts containing flow are shown to be singular when the duct mean flow is sonic. The singularity is removed when previously ignored nonlinear terms are retained. The results of a numerical study, for the case of plane waves propagating in a one-dimensional converging-diverging duct, show that the sound field is adequately described by the linearized equations only when the axial mean flow Mach number at the duct throat M sub th 0.6. For M sub th 0.6, the numerical results showed that acoustic energy flux was not conserved. An attempt was made to extend the study to include the nonlinear behavior of the sound field. Meaningful results were not obtained due, primarily, to numerical difficulties.

  14. Propagation in multiscale random media

    NASA Astrophysics Data System (ADS)

    Balk, Alexander M.

    2003-10-01

    Many studies consider media with microstructure, which has variations on some microscale, while the macroproperties are under investigation. Sometimes the medium has several microscales, all of them being much smaller than the macroscale. Sometimes the variations on the macroscale are also included, which are taken into account by some procedures, like WKB or geometric optics. What if the medium has variations on all scales from microscale to macroscale? This situation occurs in several practical problems. The talk is about such situations, in particular, passive tracer in a random velocity field, wave propagation in a random medium, Schrödinger equation with random potential. To treat such problems we have developed the statistical near-identity transformation. We find anomalous attenuation of the pulse propagating in a multiscale medium.

  15. A database for propagation models

    NASA Technical Reports Server (NTRS)

    Kantak, Anil V.; Suwitra, Krisjani; Le, Chuong

    1995-01-01

    A database of various propagation phenomena models that can be used by telecommunications systems engineers to obtain parameter values for systems design is presented. This is an easy-to-use tool and is currently available for either a PC using Excel software under Windows environment or a Macintosh using Excel software for Macintosh. All the steps necessary to use the software are easy and many times self explanatory.

  16. Light propagation through atomic vapours

    NASA Astrophysics Data System (ADS)

    Siddons, Paul

    2014-05-01

    This tutorial presents the theory necessary to model the propagation of light through an atomic vapour. The history of atom-light interaction theories is reviewed, and examples of resulting applications are provided. A numerical model is developed and results presented. Analytic solutions to the theory are found, based on approximations to the numerical work. These solutions are found to be in excellent agreement with experimental measurements.

  17. Propagator for finite range potentials

    SciTech Connect

    Cacciari, Ilaria; Moretti, Paolo

    2006-12-15

    The Schroedinger equation in integral form is applied to the one-dimensional scattering problem in the case of a general finite range, nonsingular potential. A simple expression for the Laplace transform of the transmission propagator is obtained in terms of the associated Fredholm determinant, by means of matrix methods; the particular form of the kernel and the peculiar aspects of the transmission problem play an important role. The application to an array of delta potentials is shown.

  18. Wave propagation in modified gravity

    NASA Astrophysics Data System (ADS)

    Lindroos, Jan Ø.; Llinares, Claudio; Mota, David F.

    2016-02-01

    We investigate the propagation of scalar waves induced by matter sources in the context of scalar-tensor theories of gravity which include screening mechanisms for the scalar degree of freedom. The usual approach when studying these theories in the nonlinear regime of cosmological perturbations is based on the assumption that scalar waves travel at the speed of light. Within general relativity this approximation is valid and leads to no loss of accuracy in the estimation of observables. We find, however, that mass terms and nonlinearities in the equations of motion lead to propagation and dispersion velocities significantly different from the speed of light. As the group velocity is the one associated with the propagation of signals, a reduction of its value has direct impact on the behavior and dynamics of nonlinear structures within modified gravity theories with screening. For instance, the internal dynamics of galaxies and satellites submerged in large dark matter halos could be affected by the fact that the group velocity is smaller than the speed of light. It is therefore important, within such a framework, to take into account the fact that different parts of a galaxy will see changes in the environment at different times. A full nonstatic analysis may be necessary under those conditions.

  19. Jet propagation through energetic materials

    SciTech Connect

    Pincosy, P; Poulsen, P

    2004-01-08

    In applications where jets propagate through energetic materials, they have been observed to become sufficiently perturbed to reduce their ability to effectively penetrate subsequent material. Analytical calculations of the jet Bernoulli flow provides an estimate of the onset and extent of such perturbations. Although two-dimensional calculations show the back-flow interaction pressure pulses, the symmetry dictates that the flow remains axial. In three dimensions the same pressure impulses can be asymmetrical if the jet is asymmetrical. The 3D calculations thus show parts of the jet having a significant component of radial velocity. On the average the downstream effects of this radial flow can be estimated and calculated by a 2D code by applying a symmetrical radial component to the jet at the appropriate position as the jet propagates through the energetic material. We have calculated the 3D propagation of a radio graphed TOW2 jet with measured variations in straightness and diameter. The resultant three-dimensional perturbations on the jet result in radial flow, which eventually tears apart the coherent jet flow. This calculated jet is compared with jet radiographs after passage through the energetic material for various material thickness and plate thicknesses. We noted that confinement due to a bounding metal plate on the energetic material extends the pressure duration and extent of the perturbation.

  20. Turbofan Acoustic Propagation and Radiation

    NASA Technical Reports Server (NTRS)

    Eversman, Walter

    2000-01-01

    This document describes progress in the development of finite element codes for the prediction of near and far field acoustic radiation from the inlet and aft fan ducts of turbofan engines. The report consists of nine papers which have appeared in archival journals and conference proceedings, or are presently in review for publication. Topics included are: 1. Aft Fan Duct Acoustic Radiation; 2. Mapped Infinite Wave Envelope Elements for Acoustic Radiation in a Uniformly Moving Medium; 3. A Reflection Free Boundary Condition for Propagation in Uniform Flow Using Mapped Infinite Wave Envelope Elements; 4. A Numerical Comparison Between Multiple-Scales and FEM Solution for Sound Propagation in Lined Flow Ducts; 5. Acoustic Propagation at High Frequencies in Ducts; 6. The Boundary Condition at an Impedance Wall in a Nonuniform Duct with Potential Flow; 7. A Reverse Flow Theorem and Acoustic Reciprocity in Compressible Potential Flows; 8. Reciprocity and Acoustics Power in One Dimensional Compressible Potential Flows; and 9. Numerical Experiments on Acoustic Reciprocity in Compressible Potential Flows.

  1. Yee-e-e-Haw!: Tall Tales.

    ERIC Educational Resources Information Center

    Jordan, Anne Devereaux

    1997-01-01

    Outlines the characteristics of "tall tales." Fills in the historical background of tall tales, from the ancient myth of Gilgamesh to Baron Munchausen, the closest European progenitor of American tall tales. Opines that tall tales appear to have been created as a response to challenges posed by building a new nation. Lists 11 characteristics of…

  2. Premixed Turbulent Flame Propagation in Microgravity

    NASA Technical Reports Server (NTRS)

    Menon, S.; Disseau, M.; Chakravarthy, V. K.; Jagoda, J.

    1997-01-01

    Papers included address the following topics: (1) Turbulent premixed flame propagation in microgravity; (2) The effect of gravity on turbulent premixed flame propagation - a preliminary cold flow study; and (3) Characteristics of a subgrid model for turbulent premixed combustion.

  3. Calculations of precursor propagation in dispersive dielectrics.

    SciTech Connect

    Bacon, Larry Donald

    2003-08-01

    The present study is a numerical investigation of the propagation of electromagnetic transients in dispersive media. It considers propagation in water using Debye and composite Rocard-Powles-Lorentz models for the complex permittivity. The study addresses this question: For practical transmitted spectra, does precursor propagation provide any features that can be used to advantage over conventional signal propagation in models of dispersive media of interest? A companion experimental study is currently in progress that will attempt to measure the effects studied here.

  4. Slow-Slip Propagation Speeds

    NASA Astrophysics Data System (ADS)

    Rubin, A. M.; Ampuero, J.

    2007-12-01

    Combined seismic and geodetic data from subduction zones and the Salton Trough have revealed slow slip events with reasonably well-defined propagation speeds. This in turn is suggestive of a more-or-less well- defined front separating nearly locked regions outside the slipping zone from interior regions that slide much more rapidly. Such crack-like nucleation fronts arise naturally in models of rate-and-state friction for lab-like values of a/b, where a and b are the coefficients of the velocity- and state-dependence of the frictional strength (with the surface being velocity-neutral for a/b=1). If the propagating front has a quasi-steady shape, the propagation and slip speeds are kinematically tied via the local slip gradient. Given a sufficiently sharp front, the slip gradient is given dimensionally by Δτp- r/μ', where Δτp-r is the peak-to-residual stress drop at the front and μ' the effective elastic shear modulus. Rate-and-state simulations indicate that Δτp-r is given reasonably accurately by bσ\\ln(Vmaxθi/Dc), where σ is the effective normal stress, Vmax is the maximum slip speed behind the propagating front, θi is the the value of "state" ahead of the propagating front, and Dc is the characteristic slip distance for state evolution. Except for a coefficient of order unity, Δτp-r is independent of the evolution law. This leads to Vprop/Vmax ~μ'/[bσ\\ln(Vmaxθi/Dc)]. For slip speeds a few orders of magnitude above background, \\ln(Vmaxθi/Dc) can with reasonable accuracy be assigned some representative value (~4-5, for example). Subduction zone transients propagate on the order of 10 km/day or 10-1 m/s. Geodetic data constrain the average slip speed to be a few times smaller than 1 cm/day or 10-7 m/s. However, numerical models indicate that the maximum slip speed at the front may be several times larger than the average, over a length scale that is probably too small to resolve geodetically, so a representative value of Vprop/Vmax may be ~106

  5. Japanese propagation experiments with ETS-5

    NASA Technical Reports Server (NTRS)

    Ikegami, Tetsushi

    1989-01-01

    Propagation experiments for maritime, aeronautical, and land mobile satellite communications were performed using Engineering Test Satellite-Five (ETS-5). The propagation experiments are one of major mission of Experimental Mobile Satellite System (EMSS) which is aimed for establishing basic technology for future general mobile satellite communication systems. A brief introduction is presented for the experimental results on propagation problems of ETS-5/EMSS.

  6. 49 CFR 195.111 - Fracture propagation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Fracture propagation. 195.111 Section 195.111... PIPELINE Design Requirements § 195.111 Fracture propagation. A carbon dioxide pipeline system must be designed to mitigate the effects of fracture propagation....

  7. 49 CFR 195.111 - Fracture propagation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Fracture propagation. 195.111 Section 195.111... PIPELINE Design Requirements § 195.111 Fracture propagation. A carbon dioxide pipeline system must be designed to mitigate the effects of fracture propagation....

  8. 49 CFR 195.111 - Fracture propagation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Fracture propagation. 195.111 Section 195.111... PIPELINE Design Requirements § 195.111 Fracture propagation. A carbon dioxide pipeline system must be designed to mitigate the effects of fracture propagation....

  9. 49 CFR 195.111 - Fracture propagation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Fracture propagation. 195.111 Section 195.111... PIPELINE Design Requirements § 195.111 Fracture propagation. A carbon dioxide pipeline system must be designed to mitigate the effects of fracture propagation....

  10. 49 CFR 195.111 - Fracture propagation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Fracture propagation. 195.111 Section 195.111... PIPELINE Design Requirements § 195.111 Fracture propagation. A carbon dioxide pipeline system must be designed to mitigate the effects of fracture propagation....

  11. A review of transhorizon propagation phenomena

    NASA Technical Reports Server (NTRS)

    Crane, R. K.

    1981-01-01

    Interference problems underlie the current interest in transhorizon propagation. In particular, statistics of the rare, high-level fields are of interest. This paper reviews the propagation mechanisms which produce the high-level fields and summarizes recent work in the modeling of the transhorizon propagation.

  12. Cutting line determination for plant propagation

    NASA Astrophysics Data System (ADS)

    Lo, Li-Yun; Hsia, Chi-Chun; Sun, Hua-Hong; Chen, Hsiang-Ju; Wu, Xin-Ting; Hu, Min-Chun

    2014-01-01

    Investigating an efficient method for plant propagation can help not only prevent extinction of plants but also facilitate the development of botanical industries. In this paper, we propose to use image processing techniques to determine the cutting-line for the propagation of two kinds of plants, i.e. Melaleuca alternifolia Cheel and Cinnamomum kanehirai Hay, which have quite different characteristics in terms of shape, structure, and propagation way (e.g. propagation by seeding and rooting, respectively). The proposed cutting line determination methods can be further applied to develop an automatic control system to reduce labor cost and increase the effectiveness of plant propagation.

  13. Wave Propagation in Bimodular Geomaterials

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Maria; Pasternak, Elena; Dyskin, Arcady; Pelinovsky, Efim

    2016-04-01

    Observations and laboratory experiments show that fragmented or layered geomaterials have the mechanical response dependent on the sign of the load. The most adequate model accounting for this effect is the theory of bimodular (bilinear) elasticity - a hyperelastic model with different elastic moduli for tension and compression. For most of geo- and structural materials (cohesionless soils, rocks, concrete, etc.) the difference between elastic moduli is such that their modulus in compression is considerably higher than that in tension. This feature has a profound effect on oscillations [1]; however, its effect on wave propagation has not been comprehensively investigated. It is believed that incorporation of bilinear elastic constitutive equations within theory of wave dynamics will bring a deeper insight to the study of mechanical behaviour of many geomaterials. The aim of this paper is to construct a mathematical model and develop analytical methods and numerical algorithms for analysing wave propagation in bimodular materials. Geophysical and exploration applications and applications in structural engineering are envisaged. The FEM modelling of wave propagation in a 1D semi-infinite bimodular material has been performed with the use of Marlow potential [2]. In the case of the initial load expressed by a harmonic pulse loading strong dependence on the pulse sign is observed: when tension is applied before compression, the phenomenon of disappearance of negative (compressive) strains takes place. References 1. Dyskin, A., Pasternak, E., & Pelinovsky, E. (2012). Periodic motions and resonances of impact oscillators. Journal of Sound and Vibration, 331(12), 2856-2873. 2. Marlow, R. S. (2008). A Second-Invariant Extension of the Marlow Model: Representing Tension and Compression Data Exactly. In ABAQUS Users' Conference.

  14. Microwave propagation in chiral metamaterials

    NASA Astrophysics Data System (ADS)

    Prybylski, Aida; Yon, Luis; Noginova, Natalia

    Chiral hyperbolic metamaterials are predicted to show interesting properties associated with possible topological photonic states in these materials, which present new opportunities for light control and manipulation. As prototypes, we consider two metal-dielectric systems designed for microwave range: a twisted wires array, where chirality is associated with shape of metal inclusions, and a rotated layer system, with parallel wires in each layer, and direction of the wires orientation rotated from layer to layer. Systems with different content of metal and layer-to-layer distance were fabricated and studied in the free space propagation experiment. The results were discussed in terms of effective media consideration.

  15. Continuous propagation of microalgae. III.

    NASA Technical Reports Server (NTRS)

    Hanson, D. T.; Fredrickson, A. G.; Tsuchiya, H. M.

    1971-01-01

    Data are presented which give the specific photosynthetic rate and the specific utilization rates of urea and carbon dioxide as functions of specific growth rate for Chlorella. A mathematical model expresses a set of mass balance relations between biotic and environmental materials. Criteria of validity are used to test this model. Predictive procedures are complemented by a particular model of microbial growth. Methods are demonstrated for predicting substrate utilization rates, production rates of extracellular metabolites, growth limiting conditions, and photosynthetic quotients from propagator variables.

  16. Energy propagation throughout chemical networks.

    PubMed

    Le Saux, Thomas; Plasson, Raphaël; Jullien, Ludovic

    2014-06-14

    In order to maintain their metabolism from an energy source, living cells rely on chains of energy transfer involving functionally identified components and organizations. However, propagation of a sustained energy flux through a cascade of reaction cycles has only been recently reproduced at a steady state in simple chemical systems. As observed in living cells, the spontaneous onset of energy-transfer chains notably drives local generation of singular dissipative chemical structures: continuous matter fluxes are dynamically maintained at boundaries between spatially and chemically segregated zones but in the absence of any membrane or predetermined material structure. PMID:24681890

  17. Photon propagator in skewon electrodynamics

    NASA Astrophysics Data System (ADS)

    Itin, Yakov

    2016-01-01

    Electrodynamics with a local and linear constitutive law is used as a framework for models violating Lorentz covariance. The constitutive tensor of such a construction is irreducibly decomposed into three independent pieces. The principal part is the anisotropic generalization of the standard electrodynamics. The two other parts, axion and skewon, represent nonclassical modifications of electrodynamics. We derive the expression for the photon propagator in the Minkowski spacetime endowed with a skewon field. For a relatively small (antisymmetric) skewon field, a modified Coulomb law is exhibited.

  18. Mode II fatigue crack propagation.

    NASA Technical Reports Server (NTRS)

    Roberts, R.; Kibler, J. J.

    1971-01-01

    Fatigue crack propagation rates were obtained for 2024-T3 bare aluminum plates subjected to in-plane, mode I, extensional loads and transverse, mode II, bending loads. These results were compared to the results of Iida and Kobayashi for in-plane mode I-mode II extensional loads. The engineering significance of mode I-mode II fatigue crack growth is considered in view of the present results. A fatigue crack growth equation for handling mode I-mode II fatigue crack growth rates from existing mode I data is also discussed.

  19. ACTS and OLYMPUS propagation experiments

    NASA Technical Reports Server (NTRS)

    Bostian, Charles W.; Baker, Kenneth R.

    1988-01-01

    The OLYMPUS and ACTS satellites both provide opportunities for 10 to 30 GHz propagation measurements. The spacecraft are sufficiently alike that OLYMPUS can be used to test some prototype ACTS equipment and experiments. Data are particularly needed on short term signal behavior and in support of uplink power control and adaptive forward error correction (FEC) techniques. The Virginia Tech Satellite Communications Group has proposed a set of OLYMPUS experiments including attenuation and fade rate measurements, data communications, uplink power control, rain scatter interference, and small-scale site diversity operation. A digital signal processing receiver for the OLYMPUS and ACTS beacon signals is being developed.

  20. Joint Acoustic Propagation Experiment (JAPE)

    NASA Technical Reports Server (NTRS)

    Carnes, Benny L.; Olsen, Robert O.; Kennedy, Bruce W.

    1993-01-01

    The Joint Acoustic Propagation Experiment (JAPE), performed under the auspices of NATO and the Acoustics Working Group, was conducted at White Sands Missile Range, New Mexico, USA, during the period 11-28 Jul. 1991. JAPE consisted of 220 trials using various acoustic sources including speakers, propane cannon, various types of military vehicles, helicopters, a 155mm howitzer, and static high explosives. Of primary importance to the performance of these tests was the intensive characterization of the atmosphere before and during the trials. Because of the wide range of interests on the part of the participants, JAPE was organized in such a manner to provide a broad cross section of test configurations. These included short and long range propagation from fixed and moving vehicles, terrain masking, and vehicle detection. A number of independent trials were also performed by individual participating agencies using the assets available during JAPE. These tests, while not documented in this report, provided substantial and important data to those groups. Perhaps the most significant feature of JAPE is the establishment of a permanent data base which can be used by not only the participants but by others interested in acoustics. A follow-on test was performed by NASA LaRC during the period 19-29 Aug. 1991 at the same location. These trials consisted of 59 overflights of supersonic aircraft in order to establish the relationship between atmospheric turbulence and the received sonic boom energy at the surface.

  1. Orbit propagation in Minkowskian geometry

    NASA Astrophysics Data System (ADS)

    Roa, Javier; Peláez, Jesús

    2015-09-01

    The geometry of hyperbolic orbits suggests that Minkowskian geometry, and not Euclidean, may provide the most adequate description of the motion. This idea is explored in order to derive a new regularized formulation for propagating arbitrarily perturbed hyperbolic orbits. The mathematical foundations underlying Minkowski space-time are exploited to describe hyperbolic orbits. Hypercomplex numbers are introduced to define the rotations, vectors, and metrics in the problem: the evolution of the eccentricity vector is described on the Minkowski plane in terms of hyperbolic numbers, and the orbital plane is described on the inertial reference using quaternions. A set of eight orbital elements is introduced, namely a time-element, the components of the eccentricity vector in , the semimajor axis, and the components of the quaternion defining the orbital plane. The resulting formulation provides a deep insight into the geometry of hyperbolic orbits. The performance of the formulation in long-term propagations is studied. The orbits of four hyperbolic comets are integrated and the accuracy of the solution is compared to other regularized formulations. The resulting formulation improves the stability of the integration process and it is not affected by the perihelion passage. It provides a level of accuracy that may not be reached by the compared formulations, at the cost of increasing the computational time.

  2. Burst propagation in Texas Helimak

    NASA Astrophysics Data System (ADS)

    Pereira, F. A. C.; Toufen, D. L.; Guimarães-Filho, Z. O.; Caldas, I. L.; Gentle, K. W.

    2016-05-01

    We present investigations of extreme events (bursts) propagating in the Texas Helimak, a toroidal plasma device in which the radial electric field can be changed by application of bias. In the experiments analyzed, a large grid of Langmuir probes measuring ion saturation current fluctuations is used to study the burst propagation and its dependence on the applied bias voltage. We confirm previous results reported on the turbulence intermittency in the Texas Helimak, extending them to a larger radial interval with a density ranging from a uniform decay to an almost uniform value. For our analysis, we introduce an improved procedure, based on a multiprobe bidimensional conditional averaging method, to assure precise determination of burst statistical properties and their spatial profiles. We verify that intermittent bursts have properties that vary in the radial direction. The number of bursts depends on the radial position and on the applied bias voltage. On the other hand, the burst characteristic time and size do not depend on the applied bias voltage. The bias voltage modifies the vertical and radial burst velocity profiles differently. The burst velocity is smaller than the turbulence phase velocity in almost all the analyzed region.

  3. Propagation Speed in Myelinated Nerve

    PubMed Central

    Hardy, W. L.

    1973-01-01

    The Hodgkin-Huxley (H.H.) equations modified by Dodge for Rana pipiens myelinated nerve have been solved to determine how well the theory predicts the effects of changes of temperature and [Na+]0 on propagation. Conduction speed θ was found to have an approximately exponential dependence on temperature as was found experimentally, but the theoretical temperature coefficient (Q10) was low; 1.5 compared with the experimental finding of 2.95. θ was found to be a linear function of log ([Na+]0) in contrast to the experimental finding of a square root dependence on [Na+]0. θ is 50% greater at one-fourth normal [Na+]0 than the theory predicts. The difference between the theoretical θ([Na+]0) and the experimental θ([Na+]0) is probably due to an imprecisely known variation of parameters and not to a fundamental inadequacy of the theory. PMID:4542941

  4. Flame propagation through periodic vortices

    SciTech Connect

    Dold, J.W.; Kerr, O.S.; Nikolova, I.P.

    1995-02-01

    The discovery of a new class of Navier-Stokes solutions representing steady periodic stretched vortices offers a useful test-bed for examining interactions between flames and complex flow-fields. After briefly describing these vortex solutions and their wide-ranging parameterization in terms of wavelength and amplitude, this article examines their effect on flames of constant normal propagation speed as observed through numerical solutions of an eikonal equation. Over certain ranges of vortex amplitude and flame-speed, a corridor of enhanced flame passage is seen to be created as a leading flame-tip managers to leap-frog between successive vortices. However, for large enough amplitudes of vorticity or small enough flame-speeds, the flame fails to be able to benefit from the advection due to the vortices. It is shown that the leading tips of such flames are effectively trapped by the stretched vortices.

  5. Vibration Propagation in Spider Webs

    NASA Astrophysics Data System (ADS)

    Hatton, Ross; Otto, Andrew; Elias, Damian

    Due to their poor eyesight, spiders rely on web vibrations for situational awareness. Web-borne vibrations are used to determine the location of prey, predators, and potential mates. The influence of web geometry and composition on web vibrations is important for understanding spider's behavior and ecology. Past studies on web vibrations have experimentally measured the frequency response of web geometries by removing threads from existing webs. The full influence of web structure and tension distribution on vibration transmission; however, has not been addressed in prior work. We have constructed physical artificial webs and computer models to better understand the effect of web structure on vibration transmission. These models provide insight into the propagation of vibrations through the webs, the frequency response of the bare web, and the influence of the spider's mass and stiffness on the vibration transmission patterns. Funded by NSF-1504428.

  6. Supershells and propagating star formation

    NASA Technical Reports Server (NTRS)

    Maclow, M. M.; Mccray, R.; Kafatos, M.

    1986-01-01

    Correlated supernovae from an OB association can carve large cavities (greater than 100 pc) in the interstellar medium (ISM), and can punch holes completely through the disk of a spiral galaxy. Supernova remnant energy within such a cavity is thermalized before the shock reaches the supershell. Thus stellar wind theory may be used to model these superbubbles. We describe how the evolution of the superbubble depends on the density distribution of the galactic disk gas and the rate of supernovae in the OB association. At a radius of 100 to 300 pc, the supershell becomes gravitationally unstable, forming giant molecular clouds which are the sites for new star formation. This gravitational instability of the supershells provides a physical mechanism for propagating star formation and may account for the observation of bursts of star formation in galaxies.

  7. Theory of directional pulse propagation

    SciTech Connect

    Kinsler, P.; Radnor, S. B. P.; New, G. H. C.

    2005-12-15

    We construct combined electric and magnetic field variables which independently represent energy flows in the forward and backward directions, respectively, and use these to reformulate Maxwell's equations. These variables enable us to not only judge the effect and significance of backward-traveling field components, but also to discard them when appropriate. They thereby have the potential to simplify numerical simulations, leading to potential speed gains of up to 100% over standard finite difference time-domain (FDTD) or pseudospectral spatial-domain (PSSD) simulations. We present results for various illustrative situations, including an example application to second harmonic generation in periodically poled lithium niobate. These field variables are also used to derive both envelope equations useful for narrow-band pulse propagation, and a second order wave equation. Alternative definitions are also presented.

  8. Line of sight microwave propagation

    NASA Technical Reports Server (NTRS)

    Strohbehn, J. W.

    1969-01-01

    A review of the uses of microwave line-of-sight propagation in remote atmospheric probing is given. The review concentrates on use of the following types of measurements: (1) the use of total electrical path length for measuring average density and water vapor content; (2) the use of amplitude and phase fluctuations over a single path for determining the form of the turbulence spectrum; (3) the use of angle-of-arrival data for measuring the decrease in refractivity; and (4) the use of multiple-element receiving antennas in determining wind speed, atmospheric parameters, and atmospheric models. A review is given of the connection between microwave measurements and meteorological parameters, and the basic electromagnetic theory on which the analyses are made. A few suggestions for future work in these areas is given.

  9. Progress in front propagation research

    NASA Astrophysics Data System (ADS)

    Fort, Joaquim; Pujol, Toni

    2008-08-01

    We review the progress in the field of front propagation in recent years. We survey many physical, biophysical and cross-disciplinary applications, including reduced-variable models of combustion flames, Reid's paradox of rapid forest range expansions, the European colonization of North America during the 19th century, the Neolithic transition in Europe from 13 000 to 5000 years ago, the description of subsistence boundaries, the formation of cultural boundaries, the spread of genetic mutations, theory and experiments on virus infections, models of cancer tumors, etc. Recent theoretical advances are unified in a single framework, encompassing very diverse systems such as those with biased random walks, distributed delays, sequential reaction and dispersion, cohabitation models, age structure and systems with several interacting species. Directions for future progress are outlined.

  10. Probabilistic modeling of propagating explosions

    SciTech Connect

    Luck, L.B.; Eisenhawer, S.W.; Bott, T.F.

    1996-03-01

    Weapons containing significant quantities of high explosives (HE) are sometimes located in close proximity to one another. If an explosion occurs in a weapon, the possibility of propagation to one or more additional weapons may exist, with severe consequences possibly resulting. In the general case, a system of concern consists of multiple weapons and various other objects in a complex, three-dimensional geometry. In each weapon, HE is enclosed by (casing) materials that function as protection in the event of a neighbor detonation but become a source of fragments if the HE is initiated. The protection afforded by the casing means that only high-momentum fragments, which occur rarely, are of concern. These fragments, generated in an initial donor weapon are transported to other weapons either directly or by ricochet. Interaction of a fragment with an acceptor weapon can produce a reaction in the acceptor HE and result in a second detonation. In this paper we describe a comprehensive methodology to estimate the probability of various consequences for fragment-induced propagating detonations in arrays of weapons containing HE. Analysis of this problem requires an approach that can both define the circumstances under which rare events can occur and calculate the probability of such occurrences. Our approach is based on combining process tree methodology with Monte Carlo transport simulation. Our Monte Carlo technique very effectively captures important features of these differences. Process tree methodology is described and its use is discussed for a simplified problem and to illustrate the power of Monte Carlo simulation in estimating fragment-induced detonation of an acceptor weapon.

  11. Overview of near millimeter wave propagation

    NASA Astrophysics Data System (ADS)

    Flood, W. A.

    1981-02-01

    Near millimeter wave (NMMW) propagation problems are divided into three classes: propagation through homogeneous, turbid, and turbulent atmospheres. These classical forms include anomalous water vapor absorption in a homogeneous atmosphere as well as scintillation phenomena associated with propagation through severe weather and 'dirty battlefield' environments. Examples of the existing, inadequate, scintillation data base are given and the lack of supporting meteorological data noted. Carefully designed NMMW scintillation experiments with equally carefully designed micro-meteorological support are needed.

  12. Wave propagation in solids and fluids

    SciTech Connect

    Davis, J. L.

    1988-01-01

    The fundamental principles of mathematical analysis for wave phenomena in gases, solids, and liquids are presented in an introduction for scientists and engineers. Chapters are devoted to oscillatory phenomena, the physics of wave propagation, partial differential equations for wave propagation, transverse vibration of strings, water waves, and sound waves. Consideration is given to the dynamics of viscous and inviscid fluids, wave propagation in elastic media, and variational methods in wave phenomena. 41 refs.

  13. Quench propagation velocity for highly stabilized conductors

    SciTech Connect

    Mints, R.G. |; Ogitsu, T. |; Devred, A.

    1995-05-01

    Quench propagation velocity in conductors having a large amount of stabilizer outside the multifilamentary area is considered. It is shown that the current redistribution process between the multifilamentary area and the stabilizer can strongly effect the quench propagation. A criterion is derived determining the conditions under which the current redistribution process becomes significant, and a model of effective stabilizer area is suggested to describe its influence on the quench propagation velocity. As an illustration, the model is applied to calculate the adiabatic quench propagation velocity for a conductor geometry with a multifilamentary area embedded inside the stabilizer.

  14. Neural network construction via back-propagation

    SciTech Connect

    Burwick, T.T.

    1994-06-01

    A method is presented that combines back-propagation with multi-layer neural network construction. Back-propagation is used not only to adjust the weights but also the signal functions. Going from one network to an equivalent one that has additional linear units, the non-linearity of these units and thus their effective presence is then introduced via back-propagation (weight-splitting). The back-propagated error causes the network to include new units in order to minimize the error function. We also show how this formalism allows to escape local minima.

  15. Summary of the First ACTS Propagation Workshop

    NASA Technical Reports Server (NTRS)

    Rogers, David V.

    1990-01-01

    The first Advanced Communications Technology Satellite (ACTS) Propagation Studies Workshop (APSW I), organized by NASA/Jet Propulsion Laboratory (JPL) to plan propagation experiments and studies with NASA's ACTS, convened in Santa Monica, California, during November 28 and 29, 1989. The objectives of APSW I were to identify general and ACTS-related propagation needs, and to prepare recommendations for a study plan incorporating scientific and systems requirements related to deployment of 8 to 10 propagation terminals in the USA in support of ACTS experimental activities. A summary of workshop activities is given.

  16. GALPROP: New Developments in CR Propagation Code

    NASA Technical Reports Server (NTRS)

    Moskalenko, I. V.; Jones, F. C.; Mashnik, S. G.; Strong, A. W.; Ptuskin, V. S.

    2003-01-01

    The numerical Galactic CR propagation code GALPROP has been shown to reproduce simultaneously observational data of many kinds related to CR origin and propagation. It has been validated on direct measurements of nuclei, antiprotons, electrons, positrons as well as on astronomical measurements of gamma rays and synchrotron radiation. Such data provide many independent constraints on model parameters while revealing some contradictions in the conventional view of Galactic CR propagation. Using a new version of GALPROP we study new effects such as processes of wave-particle interactions in the interstellar medium. We also report about other developments in the CR propagation code.

  17. Explosion propagation in inert porous media.

    PubMed

    Ciccarelli, G

    2012-02-13

    Porous media are often used in flame arresters because of the high surface area to volume ratio that is required for flame quenching. However, if the flame is not quenched, the flow obstruction within the porous media can promote explosion escalation, which is a well-known phenomenon in obstacle-laden channels. There are many parallels between explosion propagation through porous media and obstacle-laden channels. In both cases, the obstructions play a duel role. On the one hand, the obstruction enhances explosion propagation through an early shear-driven turbulence production mechanism and then later by shock-flame interactions that occur from lead shock reflections. On the other hand, the presence of an obstruction can suppress explosion propagation through momentum and heat losses, which both impede the unburned gas flow and extract energy from the expanding combustion products. In obstacle-laden channels, there are well-defined propagation regimes that are easily distinguished by abrupt changes in velocity. In porous media, the propagation regimes are not as distinguishable. In porous media the entire flamefront is affected, and the effects of heat loss, turbulence and compressibility are smoothly blended over most of the propagation velocity range. At low subsonic propagation speeds, heat loss to the porous media dominates, whereas at higher supersonic speeds turbulence and compressibility are important. This blending of the important phenomena results in no clear transition in propagation mechanism that is characterized by an abrupt change in propagation velocity. This is especially true for propagation velocities above the speed of sound where many experiments performed with fuel-air mixtures show a smooth increase in the propagation velocity with mixture reactivity up to the theoretical detonation wave velocity. PMID:22213663

  18. Propagation modeling for land mobile satellite systems

    NASA Technical Reports Server (NTRS)

    Barts, R. Michael; Stutzman, Warren L.

    1988-01-01

    A simplified empirical model for predicting primary fade statistics for a vegetatively shadowed mobile satellite signal is presented, and predictions based on the model are presented using propagation parameter values from experimental data. Results from the empirical model are used to drive a propagation simulator to produce the secondary fade statistics of average fade duration.

  19. Managing Data From Signal-Propagation Experiments

    NASA Technical Reports Server (NTRS)

    Kantak, Anil V.

    1992-01-01

    Report dicusses system for management of data from Pilot Field Experiment (PiFEx) program, which consists of series of experiments on propagation of signals from transmitter at one fixed location to transponder on tower at another fixed location and from transponder to mobile receiver in van. Purpose of experiments to simulate signal-propagation conditions of land-mobile/satellite communication system.

  20. Steps toward quantitative infrasound propagation modeling

    NASA Astrophysics Data System (ADS)

    Waxler, Roger; Assink, Jelle; Lalande, Jean-Marie; Velea, Doru

    2016-04-01

    Realistic propagation modeling requires propagation models capable of incorporating the relevant physical phenomena as well as sufficiently accurate atmospheric specifications. The wind speed and temperature gradients in the atmosphere provide multiple ducts in which low frequency sound, infrasound, can propagate efficiently. The winds in the atmosphere are quite variable, both temporally and spatially, causing the sound ducts to fluctuate. For ground to ground propagation the ducts can be borderline in that small perturbations can create or destroy a duct. In such cases the signal propagation is very sensitive to fluctuations in the wind, often producing highly dispersed signals. The accuracy of atmospheric specifications is constantly improving as sounding technology develops. There is, however, a disconnect between sound propagation and atmospheric specification in that atmospheric specifications are necessarily statistical in nature while sound propagates through a particular atmospheric state. In addition infrasonic signals can travel to great altitudes, on the order of 120 km, before refracting back to earth. At such altitudes the atmosphere becomes quite rare causing sound propagation to become highly non-linear and attenuating. Approaches to these problems will be presented.

  1. Propagation of almond rootstocks and trees

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Millions of almond trees in production in California and elsewhere were propagated by nurseries using the grafting technique called budding. This gives a uniform orchard and allows the grower to select nut cultivar (scion) and rootstock combinations. Grafting is a form of clonal propagation and resu...

  2. Diagnostics for the ATA beam propagation experiments

    SciTech Connect

    Fessenden, T.J.; Atchison, W.L.; Barletta, W.A.

    1981-11-01

    This report contains a discussion of the diagnostics required for the beam propagation experiment to be done with the ATA accelerator. Included are a list of the diagnostics needed; a description of the ATA experimental environment; the status of beam diagnostics available at Livermore including recent developments, and a prioritized list of accelerator and propagation diagnostics under consideration or in various stages of development.

  3. Vehicular sources in acoustic propagation experiments

    NASA Technical Reports Server (NTRS)

    Prado, Gervasio; Fitzgerald, James; Arruda, Anthony; Parides, George

    1990-01-01

    One of the most important uses of acoustic propagation models lies in the area of detection and tracking of vehicles. Propagation models are used to compute transmission losses in performance prediction models and to analyze the results of past experiments. Vehicles can also provide the means for cost effective experiments to measure acoustic propagation conditions over significant ranges. In order to properly correlate the information provided by the experimental data and the propagation models, the following issues must be taken into consideration: the phenomenology of the vehicle noise sources must be understood and characterized; the vehicle's location or 'ground truth' must be accurately reproduced and synchronized with the acoustic data; and sufficient meteorological data must be collected to support the requirements of the propagation models. The experimental procedures and instrumentation needed to carry out propagation experiments are discussed. Illustrative results are presented for two cases. First, a helicopter was used to measure propagation losses at a range of 1 to 10 Km. Second, a heavy diesel-powered vehicle was used to measure propagation losses in the 300 to 2200 m range.

  4. Uncertainty Propagation in an Ecosystem Nutrient Budget.

    EPA Science Inventory

    New aspects and advancements in classical uncertainty propagation methods were used to develop a nutrient budget with associated error for a northern Gulf of Mexico coastal embayment. Uncertainty was calculated for budget terms by propagating the standard error and degrees of fr...

  5. Nondestructive evaluation of pyroshock propagation using hydrocodes

    NASA Astrophysics Data System (ADS)

    Lee, Juho; Hwang, Dae-Hyeon; Jang, Jae-Kyeong; Lee, Jung-Ryul; Han, Jae-Hung

    2016-04-01

    Pyroshock or pyrotechnic shock generated by explosive events of pyrotechnic devices can induce fatal failures in electronic payloads. Therefore, understanding and estimation of pyroshock propagation through complex structures are necessary. However, an experimental approach using real pyrotechnic devices is quite burdensome because pyrotechnic devices can damage test structures and newly manufactured test structures are necessary for each experiment. Besides, pyrotechnic experiments are quite expensive, time-consuming, and dangerous. Consequently, nondestructive evaluation (NDE) of pyroshock propagation without using real pyrotechnic devices is necessary. In this study, nondestructive evaluation technique for pyroshock propagation estimation using hydrocodes is proposed. First, pyroshock propagation is numerically analyzed using AUTODYN, a commercial hydrocodes. Hydrocodes can handle stress wave propagation including elastic, plastic, and shock wave in the time domain. Test structures are modeled and pyroshock time history is applied to where the pyroshock propagation originates. Numerical NDE results of pyroshock propagation on test structures are analyzed in terms of acceleration time histories and acceleration shock response spectra (SRS) results. To verify the proposed numerical methodology, impact tests using airsoft gun are performed. The numerical analysis results for the impact tests are compared with experimental results and they show good agreements. The proposed numerical techniques enable us to nondestructively characterize pyroshock propagation.

  6. Propagation of a fluidization - combustion wave

    SciTech Connect

    Pron, G.P.; Gusachenko, L.K.; Zarko, V.E.

    1994-05-01

    A fluidization-combustion wave propagating through a fixed and initially cool bed was created by igniting coal at the top surface of the bed. The proposed physical interpretation of the phenomenon is in qualitative agreement with the experimental dependences of the characteristics of the process on determining parameters. A kindling regime with forced wave propagation is suggested.

  7. Rapid vegetative propagation method for carob

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many fruit species are propagated by vegetative methods such as budding, grafting, cutting, suckering, layering etc. to avoid heterozygosity. Carob trees (Ceratonia siliqua L.) are of highly economical value and it is among the most difficult-to-propagate fruit species. In this study, air-layering p...

  8. Propagation testing multi-cell batteries.

    SciTech Connect

    Orendorff, Christopher J.; Lamb, Joshua; Steele, Leigh Anna Marie; Spangler, Scott Wilmer

    2014-10-01

    Propagation of single point or single cell failures in multi-cell batteries is a significant concern as batteries increase in scale for a variety of civilian and military applications. This report describes the procedure for testing failure propagation along with some representative test results to highlight the potential outcomes for different battery types and designs.

  9. 3D Elastic Seismic Wave Propagation Code

    Energy Science and Technology Software Center (ESTSC)

    1998-09-23

    E3D is capable of simulating seismic wave propagation in a 3D heterogeneous earth. Seismic waves are initiated by earthquake, explosive, and/or other sources. These waves propagate through a 3D geologic model, and are simulated as synthetic seismograms or other graphical output.

  10. S-Band propagation measurements

    NASA Technical Reports Server (NTRS)

    Briskman, Robert D.

    1994-01-01

    A geosynchronous satellite system capable of providing many channels of digital audio radio service (DARS) to mobile platforms within the contiguous United States using S-band radio frequencies is being implemented. The system is designed uniquely to mitigate both multipath fading and outages from physical blockage in the transmission path by use of satellite spatial diversity in combination with radio frequency and time diversity. The system also employs a satellite orbital geometry wherein all mobile platforms in the contiguous United States have elevation angles greater than 20 deg to both of the diversity satellites. Since implementation of the satellite system will require three years, an emulation has been performed using terrestrial facilities in order to allow evaluation of DARS capabilities in advance of satellite system operations. The major objective of the emulation was to prove the feasibility of broadcasting from satellites 30 channels of CD quality programming using S-band frequencies to an automobile equipped with a small disk antenna and to obtain quantitative performance data on S-band propagation in a satellite spatial diversity system.

  11. Topographic effects on infrasound propagation.

    PubMed

    McKenna, Mihan H; Gibson, Robert G; Walker, Bob E; McKenna, Jason; Winslow, Nathan W; Kofford, Aaron S

    2012-01-01

    Infrasound data were collected using portable arrays in a region of variable terrain elevation to quantify the effects of topography on observed signal amplitude and waveform features at distances less than 25 km from partially contained explosive sources during the Frozen Rock Experiment (FRE) in 2006. Observed infrasound signals varied in amplitude and waveform complexity, indicating propagation effects that are due in part to repeated local maxima and minima in the topography on the scale of the dominant wavelengths of the observed data. Numerical simulations using an empirically derived pressure source function combining published FRE accelerometer data and historical data from Project ESSEX, a time-domain parabolic equation model that accounted for local terrain elevation through terrain-masking, and local meteorological atmospheric profiles were able to explain some but not all of the observed signal features. Specifically, the simulations matched the timing of the observed infrasound signals but underestimated the waveform amplitude observed behind terrain features, suggesting complex scattering and absorption of energy associated with variable topography influences infrasonic energy more than previously observed. PMID:22280569

  12. In vitro propagation of jojoba.

    PubMed

    Llorente, Berta E; Apóstolo, Nancy M

    2013-01-01

    Jojoba (Simmondsia chinensis (Link) Schn.) is a nontraditional crop in arid and semi-arid areas. Vegetative propagation can be achieved by layering, grafting, or rooting semi-hardwood cuttings, but the highest number of possible propagules is limited by the size of the plants and time of the year. Micropropagation is highly recommended strategy for obtaining jojoba elite clones. For culture initiation, single-node explants are cultivated on Murashige and Skoog medium (MS) supplemented with Gamborg's vitamins (B5), 11.1 μM BA (N(6)-benzyl-adenine), 0.5 μM IBA (indole-3-butyric acid), and 1.4 μM GA(3) (gibberellic acid). Internodal and apical cuttings proliferate on MS medium containing B5 vitamins and 4.4 μM BA. Rooting is achieved on MS medium (half strength mineral salt) amended with B5 vitamins and 14.7 μM IBA during 7 days and transferred to develop in auxin-free rooting medium. Plantlets are acclimatized using a graduated humidity regime on soil: peat: perlite (5:1:1) substrate. This micropagation protocol produces large numbers of uniform plants from selected genotypes of jojoba. PMID:23179687

  13. Scaling analysis of affinity propagation.

    PubMed

    Furtlehner, Cyril; Sebag, Michèle; Zhang, Xiangliang

    2010-06-01

    We analyze and exploit some scaling properties of the affinity propagation (AP) clustering algorithm proposed by Frey and Dueck [Science 315, 972 (2007)]. Following a divide and conquer strategy we setup an exact renormalization-based approach to address the question of clustering consistency, in particular, how many cluster are present in a given data set. We first observe that the divide and conquer strategy, used on a large data set hierarchically reduces the complexity O(N2) to O(N((h+2)/(h+1))) , for a data set of size N and a depth h of the hierarchical strategy. For a data set embedded in a d -dimensional space, we show that this is obtained without notably damaging the precision except in dimension d=2 . In fact, for d larger than 2 the relative loss in precision scales such as N((2-d)/(h+1)d). Finally, under some conditions we observe that there is a value s* of the penalty coefficient, a free parameter used to fix the number of clusters, which separates a fragmentation phase (for ss*) of the underlying hidden cluster structure. At this precise point holds a self-similarity property which can be exploited by the hierarchical strategy to actually locate its position, as a result of an exact decimation procedure. From this observation, a strategy based on AP can be defined to find out how many clusters are present in a given data set. PMID:20866473

  14. Propagation of an atmospheric pressure plasma plume

    SciTech Connect

    Lu, X.; Xiong, Q.; Xiong, Z.; Hu, J.; Zhou, F.; Gong, W.; Xian, Y.; Zou, C.; Tang, Z.; Jiang, Z.; Pan, Y.

    2009-02-15

    The ''plasma bullet'' behavior of atmospheric pressure plasma plumes has recently attracted significant interest. In this paper, a specially designed plasma jet device is used to study this phenomenon. It is found that a helium primary plasma can propagate through the wall of a dielectric tube and keep propagating inside the dielectric tube (secondary plasma). High-speed photographs show that the primary plasma disappears before the secondary plasma starts to propagate. Both plumes propagate at a hypersonic speed. Detailed studies on the dynamics of the plasma plumes show that the local electric field induced by the charges on the surface of the dielectric tube plays an important role in the ignition of the secondary plasma. This indicates that the propagation of the plasma plumes may be attributed to the local electric field induced by the charges in the bulletlike plasma volume.

  15. Propagation prediction for the North Sea environment

    NASA Astrophysics Data System (ADS)

    Vieth, R.

    1989-09-01

    Evaporation ducting can have an important influence on the propagation of electromagnetic waves. The dependence of those ducting conditions on geographic location requires an estimate of occurrence and effects of ducting in various areas. Duct height statistics using long term statistical meteorological data in combination with propagation models are used for this purpose. Jeske's propagation measurements during 1961 at the German coast of the North Sea were taken and compared with the calculated results from the combination of the statistical weather data base and the propagation models, as well as another measurement program performed in Greece. A brief description of the models is followed by an example of the results of the Greek measurements. The German experimental data and duct height distributions for that region are described. Finally the results of measurements and calculations are discussed. A good agreement was found between measured propagation data and predictions based on climatological averages.

  16. Crack propagation driven by crystal growth

    SciTech Connect

    A. Royne; Paul Meaking; A. Malthe-Sorenssen; B. Jamtveit; D. K. Dysthe

    2011-10-01

    Crystals that grow in confinement may exert a force on their surroundings and thereby drive crack propagation in rocks and other materials. We describe a model of crystal growth in an idealized crack geometry in which the crystal growth and crack propagation are coupled through the stress in the surrounding bulk solid. Subcritical crack propagation takes place during a transient period, which may be very long, during which the crack velocity is limited by the kinetics of crack propagation. When the crack is sufficiently large, the crack velocity becomes limited by the kinetics of crystal growth. The duration of the subcritical regime is determined by two non-dimensional parameters, which relate the kinetics of crack propagation and crystal growth to the supersaturation of the fluid and the elastic properties of the surrounding material.

  17. Fluctuation-controlled front propagation

    NASA Astrophysics Data System (ADS)

    Ridgway, Douglas Thacher

    1997-09-01

    the symmetry of the absorbing state, but which is unsuccessful at capturing the behavior of diffusion-limited growth. In an effort to find a simpler model system, we turned to modelling fitness increases in evolution. The work was motivated by an experiment on vesicular stomatitis virus, a short (˜9600bp) single-stranded RNA virus. A highly bottlenecked viral population increases in fitness rapidly until a certain point, after which the fitness increases at a slower rate. This is well modeled by a constant population reproducing and mutating on a smooth fitness landscape. Mean field theory of this system displays the same infinite propagation velocity blowup as mean field diffusion-limited aggregation. However, we have been able to make progress on a number of fronts. One is solving systems of moment equations, where a hierarchy of moments is truncated arbitrarily at some level. Good results for front propagation velocity are found with just two moments, corresponding to inclusion of the basic finite population clustering effect ignored by mean field theory. In addition, for small mutation rates, most of the population will be entirely on a single site or two adjacent sites, and the density of these cases can be described and solved. (Abstract shortened by UMI.)

  18. Ensemble modeling of CME propagation

    NASA Astrophysics Data System (ADS)

    Lee, C. O.; Arge, C. N.; Henney, C. J.; Odstrcil, D.; Millward, G. H.; Pizzo, V. J.

    2014-12-01

    The Wang-Sheeley-Arge(WSA)-Enlil-cone modeling system is used for making routine arrival time forecasts of the Earth-directed "halo" coronal mass ejections (CMEs), since they typically produce the most geoeffective events. A major objective of this work is to better understand the sensitivity of the WSA-Enlil modeling results to input model parameters and how these parameters contribute to the overall model uncertainty and performance. We present ensemble modeling results for a simple halo CME event that occurred on 15 February 2011 and a succession of three halo CME events that occurred on 2-4 August 2011. During this period the Solar TErrestrial RElations Observatory (STEREO) A and B spacecraft viewed the CMEs over the solar limb, thereby providing more reliable constraints on the initial CME geometries during the manual cone fitting process. To investigate the sensitivity of the modeled CME arrival times to small variations in the input cone properties, for each CME event we create an ensemble of numerical simulations based on multiple sets of cone parameters. We find that the accuracy of the modeled arrival times not only depends on the initial input CME geometry, but also on the reliable specification of the background solar wind, which is driven by the input maps of the photospheric magnetic field. As part of the modeling ensemble, we simulate the CME events using the traditional daily updated maps as well as those that are produced by the Air Force data Assimilative Photospheric flux Transport (ADAPT) model, which provide a more instantaneous snapshot of the photospheric field distribution. For the August 2011 events, in particular, we find that the accuracy in the arrival time predictions also depends on whether the cone parameters for all three CMEs are specified in a single WSA-Enlil simulation. The inclusion/exclusion of one or two of the preceding CMEs affects the solar wind conditions through which the succeeding CME propagates.

  19. Propagation considerations in land mobile satellite transmission

    NASA Technical Reports Server (NTRS)

    Vogel, W. J.; Smith, E. K.

    1985-01-01

    It appears likely that the Land Mobile Satellite Services (LMSS) will be authorized by the FCC for operation in the 800 to 900 MHz (UHF) and possibly near 1500 MHz (L-band). Propagation problems are clearly an important factor in the effectiveness of this service, but useful measurements are few, and produced contradictory interpretations. A first order overview of existing measurements is presented with particular attention to the first two NASA balloon to mobile vehicle propagation experiments. Some physical insight into the interpretation of propagation effects in LMSS transmissions is provided.

  20. Computing Propagation Of Sound In Engine Ducts

    NASA Technical Reports Server (NTRS)

    Saylor, Silvia

    1995-01-01

    Frequency Domain Propagation Model (FREDOM) computer program accounts for acoustic loads applied to components of engines. Models propagation of noise through fluids in ducts between components and through passages within components. Used not only to analyze hardware problems, but also for design purposes. Updated version of FREQPL program easier to use. Devised specifically for use in analyzing acoustic loads in rocket engines. Underlying physical and mathematical concepts implemented also applicable to acoustic propagation in other enclosed spaces; analyzing process plumbing and ducts in industrial buildings with view toward reducing noise in work areas.

  1. Asymmetric counter propagation of domain walls

    NASA Astrophysics Data System (ADS)

    Andrade-Silva, I.; Clerc, M. G.; Odent, V.

    2016-07-01

    Far from equilibrium systems show different states and domain walls between them. These walls, depending on the type of connected equilibria, exhibit a rich spatiotemporal dynamics. Here, we investigate the asymmetrical counter propagation of domain walls in an in-plane-switching cell filled with a nematic liquid crystal. Experimentally, we characterize the shape and speed of the domain walls. Based on the molecular orientation, we infer that the counter propagative walls have different elastic deformations. These deformations are responsible of the asymmetric counter propagating fronts. Theoretically, based on symmetry arguments, we propose a simple bistable model under the influence of a nonlinear gradient, which qualitatively describes the observed dynamics.

  2. Propagation of sound through a sheared flow

    NASA Technical Reports Server (NTRS)

    Woolley, J. P.; Smith, C. A.; Karamcheti, K.

    1978-01-01

    Sound generated in a moving fluid must propagate through a shear layer in order to be measured by a fixed instrument. These propagation effects were evaluated for noise sources typically associated with single and co-flowing subsonic jets and for subcritical flow over airfoils in such jets. The techniques for describing acoustic propagation fall into two categories: geometric acoustics and wave acoustics. Geometric acoustics is most convenient and accurate for high frequency sound. In the frequency range of interest to the present study (greater than 150 Hz), the geometric acoustics approach was determined to be most useful and practical.

  3. Photon propagator in light-shell gauge

    NASA Astrophysics Data System (ADS)

    Georgi, Howard; Kestin, Greg; Sajjad, Aqil

    2016-05-01

    We derive the photon propagator in light-shell gauge (LSG) vμAμ=0 , where vμ=(1,r ^ ) μ . This gauge is an important ingredient of the light-shell effective theory—an effective theory for describing high energy jet processes on a 2-dimensional spherical shell expanding at the speed of light around the point of the initial collision producing the jets. Since LSG is a noncovariant gauge, we cannot calculate the LSG propagator by using the standard procedure for covariant gauges. We therefore employ a new technique for computing the propagator, which we hope may be of relevance in other gauges as well.

  4. Propagating confined states in phase dynamics

    NASA Technical Reports Server (NTRS)

    Brand, Helmut R.; Deissler, Robert J.

    1992-01-01

    Theoretical treatment is given to the possibility of the existence of propagating confined states in the nonlinear phase equation by generalizing stationary confined states. The nonlinear phase equation is set forth for the case of propagating patterns with long wavelengths and low-frequency modulation. A large range of parameter values is shown to exist for propagating confined states which have spatially localized regions which travel on a background with unique wavelengths. The theoretical phenomena are shown to correspond to such physical systems as spirals in Taylor instabilities, traveling waves in convective systems, and slot-convection phenomena for binary fluid mixtures.

  5. Probabilistic Fatigue And Flaw-Propagation Analysis

    NASA Technical Reports Server (NTRS)

    Moore, Nicholas; Newlin, Laura; Ebbeler, Donald; Sutharshana, Sravan; Creager, Matthew

    1995-01-01

    Probabilistic Failure Assessment for Fatigue and Flaw Propagation (PFAFAT II) package of software utilizing probabilistic failure-assessment (PFA) methodology to model flaw-propagation and low-cycle-fatigue modes of failure of structural components. Comprises one program for performing probabilistic crack-growth analysis and two programs for performing probabilistic low-cycle-fatigue analysis. These programs perform probabilistic fatigue and crack-propagation analysis by means of Monte Carlo simulation. PFAFAT II is extension of, rather than replacement for, PFAFAT software (NPO-18965). Written in FORTRAN 77.

  6. Electromagnetic Propagation Prediction Inside Aircraft Cabins

    NASA Technical Reports Server (NTRS)

    Hankins, Genevieve; Vahala, Linda; Beggs, John H.

    2004-01-01

    Electromagnetic propagation models for signal strength prediction within aircraft cabins are essential for evaluating and designing a wireless communication system to be implemented onboard aircraft. A model was developed using Wireless Valley's SitePlanner; which is commercial grade software intended for predictions within office buildings. The performance of the model was evaluated through a comparison with test data measurements taken on several aircraft. The comparison concluded that the model can accurately predict power propagation within the cabin. This model can enhance researchers understanding of power propagation within aircraft cabins and will aid in future research.

  7. Propagation of Light Elements in the Galaxy

    NASA Technical Reports Server (NTRS)

    Moskalenko, I. V.; Strong, A. W.; Mashnik, S. G.; Jones, F. C.

    2003-01-01

    The origin and evolution of isotopes of the lightest elements d, He-3, Li, Be, and B in the universe is a key problem in such fields as astrophysics of CR, Galactic evolution, non-thermal nucleosynthesis, and cosmological studies. One of the major sources of these species is spallation by CR nuclei in the interstellar medium. On the other hand, it is the Boron/Carbon ratio in CR and Be-10 abundance which are used to fix the propagation parameters and thus spallation rate. We study production and Galactic propagation of these species using the numerical propagation code GALPROP and updated production cross sections.

  8. Ultrasound Propagation in Colloidal Dispersions.

    NASA Astrophysics Data System (ADS)

    Sherman, Nigel E.

    Available from UMI in association with The British Library. This thesis describes apparatus and techniques for making ultrasonic measurements in fluids and applications of them to measurements of ultrasonic parameters in colloidal dispersions. A brief description of the properties and uses of ultrasound propagation in dispersions is followed by an extensive review of theories which relate the particulate properties of the dispersions to the measurable ultrasonic parameters, velocity (c) and attenuation (alpha ). Measurement principles are outlined related to the design of near-field measurement methods and the development of three techniques is described. These are shown to give results which are both highly self-consistent and in excellent agreement with a far-field method. Measurements of alpha and c for model dispersions of glass spheres in Newtonian liquids are shown to be in good agreement with the relevant theory when particle polydispersity is taken into account. For structured fluids as the continuous phase, the alpha and c data for suspensions of spheres are used to obtain the continuous phase viscosity ( eta). The alpha data agree approximately with the macroscopic viscosity, but the velocity data requires the introduction of a shear elastic term and the revision of theory in order to obtain agreement. Attenuation as a function of barite concentration in Newtonian liquids was investigated and the ultrasonic particle radius was found to be systematically larger than expected. This is attributed to particle rugosity. Measurements of alpha and c using non-gelling aqueous kaolinite suspensions are shown to agree well with theory when the eccentricity and the interactions of particles are taken into account. For gelling aqueous bentonite suspensions, alpha and c were found to be time-dependent over a period of several days following initial dispersion. The observed increases in both alpha and c are interpreted in terms of a growth in gel fraction and shear

  9. Pulse Wave Propagation in the Arterial Tree

    NASA Astrophysics Data System (ADS)

    van de Vosse, Frans N.; Stergiopulos, Nikos

    2011-01-01

    The beating heart creates blood pressure and flow pulsations that propagate as waves through the arterial tree that are reflected at transitions in arterial geometry and elasticity. Waves carry information about the matter in which they propagate. Therefore, modeling of arterial wave propagation extends our knowledge about the functioning of the cardiovascular system and provides a means to diagnose disorders and predict the outcome of medical interventions. In this review we focus on the physical and mathematical modeling of pulse wave propagation, based on general fluid dynamical principles. In addition we present potential applications in cardiovascular research and clinical practice. Models of short- and long-term adaptation of the arterial system and methods that deal with uncertainties in personalized model parameters and boundary conditions are briefly discussed, as they are believed to be major topics for further study and will boost the significance of arterial pulse wave modeling even more.

  10. Promoted Combustion Test Propagation Rate Data

    NASA Technical Reports Server (NTRS)

    Borstorff, J.; Jones, P.; Lowery, F.

    2002-01-01

    Combustion propagation rate data were examined for potential use in benchmarking a thermal model of the Promoted Combustion Test (PCT), and also for potential use in measuring the repeatability of PCT results.

  11. In vitro propagation of Paphiopedilum orchids.

    PubMed

    Zeng, Songjun; Huang, Weichang; Wu, Kunlin; Zhang, Jianxia; da Silva, Jaime A Teixeira; Duan, Jun

    2016-01-01

    Paphiopedilum is one of the most popular and rare orchid genera. Members of the genus are sold and exhibited as pot plants and cut flowers. Wild populations of Paphiopedilum are under the threat of extinction due to over-collection and loss of suitable habitats. A reduction in their commercial value through large-scale propagation in vitro is an option to reduce pressure from illegal collection, to attempt to meet commercial needs and to re-establish threatened species back into the wild. Although they are commercially propagated via asymbiotic seed germination, Paphiopedilum are considered to be difficult to propagate in vitro, especially by plant regeneration from tissue culture. This review aims to cover the most important aspects and to provide an up-to-date research progress on in vitro propagation of Paphiopedilum and to emphasize the importance of further improving tissue culture protocols for ex vitro-derived explants. PMID:25582733

  12. Fick's Law Assisted Propagation for Semisupervised Learning.

    PubMed

    Gong, Chen; Tao, Dacheng; Fu, Keren; Yang, Jie

    2015-09-01

    How to propagate the label information from labeled examples to unlabeled examples is a critical problem for graph-based semisupervised learning. Many label propagation algorithms have been developed in recent years and have obtained promising performance on various applications. However, the eigenvalues of iteration matrices in these algorithms are usually distributed irregularly, which slow down the convergence rate and impair the learning performance. This paper proposes a novel label propagation method called Fick's law assisted propagation (FLAP). Unlike the existing algorithms that are directly derived from statistical learning, FLAP is deduced on the basis of the theory of Fick's First Law of Diffusion, which is widely known as the fundamental theory in fluid-spreading. We prove that FLAP will converge with linear rate and show that FLAP makes eigenvalues of the iteration matrix distributed regularly. Comprehensive experimental evaluations on synthetic and practical datasets reveal that FLAP obtains encouraging results in terms of both accuracy and efficiency. PMID:25532192

  13. The ghost propagator in Coulomb gauge

    SciTech Connect

    Watson, P.; Reinhardt, H.

    2011-05-23

    We present results for a numerical study of the ghost propagator in Coulomb gauge whereby lattice results for the spatial gluon propagator are used as input to solving the ghost Dyson-Schwinger equation. We show that in order to solve completely, the ghost equation must be supplemented by a boundary condition (the value of the inverse ghost propagator dressing function at zero momentum) which determines if the solution is critical (zero value for the boundary condition) or subcritical (finite value). The various solutions exhibit a characteristic behavior where all curves follow the same (critical) solution when going from high to low momenta until 'forced' to freeze out in the infrared to the value of the boundary condition. The boundary condition can be interpreted in terms of the Gribov gauge-fixing ambiguity; we also demonstrate that this is not connected to the renormalization. Further, the connection to the temporal gluon propagator and the infrared slavery picture of confinement is discussed.

  14. Gram-Schmidt algorithms for covariance propagation

    NASA Technical Reports Server (NTRS)

    Thornton, C. L.; Bierman, G. J.

    1977-01-01

    This paper addresses the time propagation of triangular covariance factors. Attention is focused on the square-root free factorization, P = UD(transpose of U), where U is unit upper triangular and D is diagonal. An efficient and reliable algorithm for U-D propagation is derived which employs Gram-Schmidt orthogonalization. Partitioning the state vector to distinguish bias and coloured process noise parameters increase mapping efficiency. Cost comparisons of the U-D, Schmidt square-root covariance and conventional covariance propagation methods are made using weighted arithmetic operation counts. The U-D time update is shown to be less costly than the Schmidt method; and, except in unusual circumstances, it is within 20% of the cost of conventional propagation.

  15. Gram-Schmidt algorithms for covariance propagation

    NASA Technical Reports Server (NTRS)

    Thornton, C. L.; Bierman, G. J.

    1975-01-01

    This paper addresses the time propagation of triangular covariance factors. Attention is focused on the square-root free factorization, P = UDU/T/, where U is unit upper triangular and D is diagonal. An efficient and reliable algorithm for U-D propagation is derived which employs Gram-Schmidt orthogonalization. Partitioning the state vector to distinguish bias and colored process noise parameters increases mapping efficiency. Cost comparisons of the U-D, Schmidt square-root covariance and conventional covariance propagation methods are made using weighted arithmetic operation counts. The U-D time update is shown to be less costly than the Schmidt method; and, except in unusual circumstances, it is within 20% of the cost of conventional propagation.

  16. Propagation Regime of Iron Dust Flames

    NASA Technical Reports Server (NTRS)

    Tang, Francois-David; Goroshin, Samuel; Higgins, Andrew J.

    2012-01-01

    A flame propagating through an iron-dust mixture can propagate in two asymptotic regimes. When the characteristic time of heat transfer between particles is much smaller than the characteristic time of particle combustion, the flame propagates in the continuum regime where the heat released by reacting particles can be modelled as a space-averaged function. In contrast, when the characteristic time of heat transfer is much larger than the particle reaction time, the flame can no longer be treated as a continuum due to dominating effects associated with the discrete nature of the particle reaction. The discrete regime is characterized by weak dependence of the flame speed on the oxygen concentration compared to the continuum regime. The discrete regime is observed in flames propagating through an iron dust cloud within a gas mixture containing xenon, while the continuum regime is obtained when xenon is substituted with helium.

  17. Electromagnetic wave propagation characteristics in unimolecular reactions

    NASA Astrophysics Data System (ADS)

    Liu, Xingpeng; Huang, Kama

    2016-01-01

    Microwave-assisted chemical reactions have attracted interests because of their benefits for enhancement of reaction rates. However, the problems, such as hot spots and thermal runaway, limit the application of microwaves in the chemical industry. To study the characteristics of electromagnetic wave propagation in a chemical reaction is critical to solve the problems. The research on the characteristics of electromagnetic wave propagation in the unimolecular reaction that is a simple model reaction, can be generalized to the research in a chemical reaction. The approximate expressions of the attenuation and dispersion characteristics of electromagnetic wave propagation in the unimolecular reaction are derived by the nonlinear propagation theory. Specially, when the reaction rate is zero, the derived approximate expressions can be reduced to the formulas in low-loss dispersive media. Moreover, a 1D mold is used to validate the feasibility of the approximate expressions. The influences of the reaction rate and initial reactant concentration on the characteristics are obtained.

  18. Radio wave propagation and acoustic sounding

    NASA Astrophysics Data System (ADS)

    Singal, S. P.

    Radio wave propagation of the decimetric and centimetric waves depends to a large extent on the boundary layer meteorological conditions which give rise to severe fadings, very often due to multipath propagation. Sodar is one of the inexpensive remote sensing techniques which can be employed to probe the boundary layer structure. In the paper a historical perspective has been given of the simultaneously conducted studies on radio waves and sodar at various places. The radio meteorological information needed for propagation studies has been clearly spelt out and conditions of a ray path especially in the presence of a ducting layer have been defined as giving rise to fading or signal enhancement conditions. Finally the potential of the sodar studies to obtain information about the boundary layer phenomena has been stressed, clearly spelling out the use of acoustic sounding in radio wave propagation studies.

  19. ACTS Project and Propagation Program Update

    NASA Technical Reports Server (NTRS)

    Bauer, Robert

    1996-01-01

    Spacecraft operations continue to be nominal and the sixth eclipse season completed. Battery reconditioning to be re-evaluated before the fall eclipse. Other topics covered include: Inclined orbit; Experiments program; Reorganizations; Program timeline; and propagation program status.

  20. Molecular dynamics simulation of propagating cracks

    NASA Technical Reports Server (NTRS)

    Mullins, M.

    1982-01-01

    Steady state crack propagation is investigated numerically using a model consisting of 236 free atoms in two (010) planes of bcc alpha iron. The continuum region is modeled using the finite element method with 175 nodes and 288 elements. The model shows clear (010) plane fracture to the edge of the discrete region at moderate loads. Analysis of the results obtained indicates that models of this type can provide realistic simulation of steady state crack propagation.

  1. Light propagation in Swiss-cheese cosmologies

    NASA Astrophysics Data System (ADS)

    Szybka, Sebastian J.

    2011-08-01

    We study the effect of inhomogeneities on light propagation. The Sachs equations are solved numerically in the Swiss-cheese models with inhomogeneities modeled by the Lemaître-Tolman solutions. Our results imply that, within the models we study, inhomogeneities may partially mimic the accelerated expansion of the Universe provided the light propagates through regions with lower than the average density. The effect of inhomogeneities is small and full randomization of the photons’ trajectories reduces it to an insignificant level.

  2. Comments on 'Rapid pulsed microwave propagation'

    NASA Astrophysics Data System (ADS)

    Tichy-Racs, Adam

    1992-05-01

    Giakos and Ishii (1991) indicated that the leading edge of the pulse-modulated microwaves propagates with the velocity c/cos theta in a direction theta in open space. This is tantamount to a claim that their measurements indicate a propagation velocity faster than the speed of light. Giakos and Ishii reply to all technical points raised in the present comment and defend their experimental observations.

  3. Quark propagators in confinement and deconfinement phases

    SciTech Connect

    Hamada, Masatoshi; Yahiro, Masanobu; Kouno, Hiroaki; Nakamura, Atsushi; Saito, Takuya

    2010-05-01

    We study quark propagators near the confinement/deconfinement phase transition temperature in quenched-lattice simulation of QCD. We find that there is no qualitative change for the quark propagators in both phases. In the confinement phase, those effective quark masses in units of the critical temperature behave as a constant as a function of the temperature, while above the critical temperature, the value of the effective quark mass drops to circa half value.

  4. POPPY: Physical Optics Propagation in PYthon

    NASA Astrophysics Data System (ADS)

    Perrin, Marshall; Long, Joseph; Douglas, Ewan; Sivaramakrishnan, Anand; Slocum, Christine

    2016-02-01

    POPPY (Physical Optics Propagation in PYthon) simulates physical optical propagation including diffraction. It implements a flexible framework for modeling Fraunhofer and Fresnel diffraction and point spread function formation, particularly in the context of astronomical telescopes. POPPY provides the optical modeling framework for WebbPSF (ascl:1504.007) and was developed as part of a simulation package for JWST, but is available separately and is broadly applicable to many kinds of imaging simulations.

  5. Combustion front propagation in underground coal gasification

    SciTech Connect

    Dobbs, R.L. II; Krantz, W.B.

    1990-10-01

    Reverse Combustion (RC) enhances coal seam permeability prior to Underground Coal Gasification. Understanding RC is necessary to improve its reliability and economics. A curved RC front propagation model is developed, then solved by high activation energy asymptotics. It explicitly incorporates extinction (stoichiometric and thermal) and tangential heat transport (THT) (convection and conduction). THT arises from variation in combustion front temperature caused by tangential variation in the oxidant gas flux to the channel surface. Front temperature depends only weakly on THT; front velocity is strongly affected, with heat loss slowing propagation. The front propagation speed displays a maximum with respect to gas flux. Combustion promoters speed front propagation; inhibitors slow front propagation. The propagation model is incorporated into 2-D simulations of RC channel evolution utilizing the boundary element method with cubic hermetian elements to solve the flow from gas injection wells through the coal to the convoluted, temporally evolving, channel surface, and through the channel to a gas production well. RC channel propagation is studied using 17 cm diameter subbituminous horizontally drilled coal cores. Sixteen experiments at pressures between 2000 and 3600 kPa, injected gas oxygen contents between 21% and 75%, and flows between 1 and 4 standard liters per minute are described. Similarity analysis led to scaling-down of large RC ({approx}1 m) to laboratory scale ({approx}5 cm). Propagation velocity shows a strong synergistic increase at high levels of oxygen, pressure, and gas flow. Char combustion is observed, leaving ash-filled, irregularly shaped channels. Cracks are observed to penetrate the char zone surrounding the channel cores. 69 refs., 54 figs., 4 tabs.

  6. Error Propagation in a System Model

    NASA Technical Reports Server (NTRS)

    Schloegel, Kirk (Inventor); Bhatt, Devesh (Inventor); Oglesby, David V. (Inventor); Madl, Gabor (Inventor)

    2015-01-01

    Embodiments of the present subject matter can enable the analysis of signal value errors for system models. In an example, signal value errors can be propagated through the functional blocks of a system model to analyze possible effects as the signal value errors impact incident functional blocks. This propagation of the errors can be applicable to many models of computation including avionics models, synchronous data flow, and Kahn process networks.

  7. Managing Mobile/Satellite Propagation Data

    NASA Technical Reports Server (NTRS)

    Kantak, Anil V.

    1990-01-01

    "Data Management System for Mobile Satellite Propagation" software package collection of FORTRAN programs and UNIX shell scripts designed to handle huge amounts of data resulting from mobile/satellite radio-propagation experiments. Data from experiments converted into standard and more useful forms. Software package contains program to convert binary format of data into standard ASCII format suitable for use with wide variety of computing-machine architectures. Written in either FORTRAN 77 or UNIX shell scripts.

  8. Propagation measurements in Alaska using ACTS beacons

    NASA Technical Reports Server (NTRS)

    Mayer, Charles E.

    1991-01-01

    The placement of an ACTS propagation terminal in Alaska has several distinct advantages. First is the inclusion of a new and important climatic zone to the global propagation model. Second is the low elevation look angle from Alaska to ACTS. These two unique opportunities also present problems unique to the location, such as extreme temperatures and lower power levels. These problems are examined and compensatory solutions are presented.

  9. Premixed flame propagation in vertical tubes

    NASA Astrophysics Data System (ADS)

    Kazakov, Kirill A.

    2016-04-01

    Analytical treatment of the premixed flame propagation in vertical tubes with smooth walls is given. Using the on-shell flame description, equations for a quasi-steady flame with a small but finite front thickness are obtained and solved numerically. It is found that near the limits of inflammability, solutions describing upward flame propagation come in pairs having close propagation speeds and that the effect of gravity is to reverse the burnt gas velocity profile generated by the flame. On the basis of these results, a theory of partial flame propagation driven by a strong gravitational field is developed. A complete explanation is given of the intricate observed behavior of limit flames, including dependence of the inflammability range on the size of the combustion domain, the large distances of partial flame propagation, and the progression of flame extinction. The role of the finite front-thickness effects is discussed in detail. Also, various mechanisms governing flame acceleration in smooth tubes are identified. Acceleration of methane-air flames in open tubes is shown to be a combined effect of the hydrostatic pressure difference produced by the ambient cold air and the difference of dynamic gas pressure at the tube ends. On the other hand, a strong spontaneous acceleration of the fast methane-oxygen flames at the initial stage of their evolution in open-closed tubes is conditioned by metastability of the quasi-steady propagation regimes. An extensive comparison of the obtained results with the experimental data is made.

  10. Active Wave Propagation and Sensing in Plates

    NASA Technical Reports Server (NTRS)

    Ghoshal, Anindya; Martin, William N.; Sundaresan, Mannur J.; Schulz, Mark J.; Ferguson, Frederick

    2001-01-01

    Health monitoring of aerospace structures can be done using an active interrogation approach with diagnostic Lamb waves. Piezoelectric patches are often used to generate the waves, and it is helpful to understand how these waves propagate through a structure. To give a basic understanding of the actual physical process of wave propagation, a model is developed to simulate asymmetric wave propagation in a panel and to produce a movie of the wave motion. The waves can be generated using piezoceramic patches of any size or shape. The propagation, reflection, and interference of the waves are represented in the model. Measuring the wave propagation is the second important aspect of damage detection. Continuous sensors are useful for measuring waves because of the distributed nature of the sensor and the wave. Two sensor designs are modeled, and their effectiveness in measuring acoustic waves is studied. The simulation model developed is useful to understand wave propagation and to optimize the type of sensors that might be used for health monitoring of plate-like structures.

  11. Making and Propagating Elastic Waves: Overview of the new wave propagation code WPP

    SciTech Connect

    McCandless, K P; Petersson, N A; Nilsson, S; Rodgers, A; Sjogreen, B; Blair, S C

    2006-05-09

    We are developing a new parallel 3D wave propagation code at LLNL called WPP (Wave Propagation Program). WPP is being designed to incorporate the latest developments in embedded boundary and mesh refinement technology for finite difference methods, as well as having an efficient portable implementation to run on the latest supercomputers at LLNL. We are currently exploring seismic wave applications, including a recent effort to compute ground motions for the 1906 Great San Francisco Earthquake. This paper will briefly describe the wave propagation problem, features of our numerical method to model it, implementation of the wave propagation code, and results from the 1906 Great San Francisco Earthquake simulation.

  12. Radiowave propagation measurements in Nigeria (preliminary reports)

    NASA Astrophysics Data System (ADS)

    Falodun, S. E.; Okeke, P. N.

    2013-07-01

    International conferences on frequency coordination have, in recent years, required new information on radiowave propagation in tropical regions and, in particular, on propagation in Africa. The International Telecommunications Union (ITU-R) initiated `radio-wave propagation measurement campaign' in some African countries some years back. However, none of the ITU-initiated experiments were mounted in Nigeria, and hence, there is lack of adequate understanding of the propagation mechanisms associated with this region of the tropics. The Centre for Basic Space Science (CBSS) of NASRDA has therefore embarked on propagation data collection from the different climatic zones of Nigeria (namely Coastal, Guinea Savannah, Midland, and Sahelian) with the aim of making propagation data available to the ITU, for design and prediction purposes in order to ensure a qualitative and effective communication system in Nigeria. This paper focuses on the current status of propagation data from Nigeria (collected by CBSS), identifying other parameters that still need to be obtained. The centre has deployed weather stations to different locations in the country for refractivity measurements in clear atmosphere, at the ground surface and at an altitude of 100 m, being the average height of communication mast in Nigeria. Other equipments deployed are Micro Rain Radar and Nigerian Environmental and Climatic Observing Program equipments. Some of the locations of the measurement stations are Nsukka (7.4° E, 6.9° N), Akure (5.12° E, 7.15° N), Minna (6.5° E, 9.6° N), Sokoto (5.25° E, 13.08° N), Jos (8.9° E, 9.86° N), and Lagos (3.35° E, 6.6° N). The results obtained from the data analysis have shown that the refractivity values vary with climatic zones and seasons of the year. Also, the occurrence probability of abnormal propagation events, such as super refraction, sub-refraction, and ducting, depends on the location as well as the local time. We have also attempted to identify

  13. Accurate orbit propagation with planetary close encounters

    NASA Astrophysics Data System (ADS)

    Baù, Giulio; Milani Comparetti, Andrea; Guerra, Francesca

    2015-08-01

    We tackle the problem of accurately propagating the motion of those small bodies that undergo close approaches with a planet. The literature is lacking on this topic and the reliability of the numerical results is not sufficiently discussed. The high-frequency components of the perturbation generated by a close encounter makes the propagation particularly challenging both from the point of view of the dynamical stability of the formulation and the numerical stability of the integrator. In our approach a fixed step-size and order multistep integrator is combined with a regularized formulation of the perturbed two-body problem. When the propagated object enters the region of influence of a celestial body, the latter becomes the new primary body of attraction. Moreover, the formulation and the step-size will also be changed if necessary. We present: 1) the restarter procedure applied to the multistep integrator whenever the primary body is changed; 2) new analytical formulae for setting the step-size (given the order of the multistep, formulation and initial osculating orbit) in order to control the accumulation of the local truncation error and guarantee the numerical stability during the propagation; 3) a new definition of the region of influence in the phase space. We test the propagator with some real asteroids subject to the gravitational attraction of the planets, the Yarkovsky and relativistic perturbations. Our goal is to show that the proposed approach improves the performance of both the propagator implemented in the OrbFit software package (which is currently used by the NEODyS service) and of the propagator represented by a variable step-size and order multistep method combined with Cowell's formulation (i.e. direct integration of position and velocity in either the physical or a fictitious time).

  14. NLO error propagation exercise: statistical results

    SciTech Connect

    Pack, D.J.; Downing, D.J.

    1985-09-01

    Error propagation is the extrapolation and cumulation of uncertainty (variance) above total amounts of special nuclear material, for example, uranium or /sup 235/U, that are present in a defined location at a given time. The uncertainty results from the inevitable inexactness of individual measurements of weight, uranium concentration, /sup 235/U enrichment, etc. The extrapolated and cumulated uncertainty leads directly to quantified limits of error on inventory differences (LEIDs) for such material. The NLO error propagation exercise was planned as a field demonstration of the utilization of statistical error propagation methodology at the Feed Materials Production Center in Fernald, Ohio from April 1 to July 1, 1983 in a single material balance area formed specially for the exercise. Major elements of the error propagation methodology were: variance approximation by Taylor Series expansion; variance cumulation by uncorrelated primary error sources as suggested by Jaech; random effects ANOVA model estimation of variance effects (systematic error); provision for inclusion of process variance in addition to measurement variance; and exclusion of static material. The methodology was applied to material balance area transactions from the indicated time period through a FORTRAN computer code developed specifically for this purpose on the NLO HP-3000 computer. This paper contains a complete description of the error propagation methodology and a full summary of the numerical results of applying the methodlogy in the field demonstration. The error propagation LEIDs did encompass the actual uranium and /sup 235/U inventory differences. Further, one can see that error propagation actually provides guidance for reducing inventory differences and LEIDs in future time periods.

  15. Controls on flood and sediment wave propagation

    NASA Astrophysics Data System (ADS)

    Bakker, Maarten; Lane, Stuart N.; Costa, Anna; Molnar, Peter

    2015-04-01

    The understanding of flood wave propagation - celerity and transformation - through a fluvial system is of generic importance for flood forecasting/mitigation. In association with flood wave propagation, sediment wave propagation may induce local erosion and sedimentation, which will affect infrastructure and riparian natural habitats. Through analysing flood and sediment wave propagation, we gain insight in temporal changes in transport capacity (the flood wave) and sediment availability and transport (the sediment wave) along the river channel. Heidel (1956) was amongst the first to discuss the progressive lag of sediment concentration behind the corresponding flood wave based on field measurements. Since then this type of hysteresis has been characterized in a number of studies, but these were often based on limited amount of floods and measurement sites, giving insufficient insight into associated forcing mechanisms. Here, as part of a project concerned with the hydrological and geomorphic forcing of sediment transfer processes in alpine environments, we model the downstream propagation of short duration, high frequency releases of water and sediment (purges) from a flow intake in the Borgne d'Arolla River in south-west Switzerland. A total of >50 events were measured at 1 minute time intervals using pressure transducers and turbidity probes at a number of sites along the river. We show that flood and sediment wave propagation can be well represented through simple convection diffusion models. The models are calibrated/validated to describe the set of measured waves and used to explain the observed variation in wave celerity and diffusion. In addition we explore the effects of controlling factors including initial flow depth, flood height, flood duration, bed roughness, bed slope and initial sediment concentration, on the wave propagation processes. We show that the effects of forcing mechanisms on flood and sediment wave propagation will lead to different

  16. Classification of neocortical interneurons using affinity propagation

    PubMed Central

    Santana, Roberto; McGarry, Laura M.; Bielza, Concha; Larrañaga, Pedro; Yuste, Rafael

    2013-01-01

    In spite of over a century of research on cortical circuits, it is still unknown how many classes of cortical neurons exist. In fact, neuronal classification is a difficult problem because it is unclear how to designate a neuronal cell class and what are the best characteristics to define them. Recently, unsupervised classifications using cluster analysis based on morphological, physiological, or molecular characteristics, have provided quantitative and unbiased identification of distinct neuronal subtypes, when applied to selected datasets. However, better and more robust classification methods are needed for increasingly complex and larger datasets. Here, we explored the use of affinity propagation, a recently developed unsupervised classification algorithm imported from machine learning, which gives a representative example or exemplar for each cluster. As a case study, we applied affinity propagation to a test dataset of 337 interneurons belonging to four subtypes, previously identified based on morphological and physiological characteristics. We found that affinity propagation correctly classified most of the neurons in a blind, non-supervised manner. Affinity propagation outperformed Ward's method, a current standard clustering approach, in classifying the neurons into 4 subtypes. Affinity propagation could therefore be used in future studies to validly classify neurons, as a first step to help reverse engineer neural circuits. PMID:24348339

  17. Classification of neocortical interneurons using affinity propagation.

    PubMed

    Santana, Roberto; McGarry, Laura M; Bielza, Concha; Larrañaga, Pedro; Yuste, Rafael

    2013-01-01

    In spite of over a century of research on cortical circuits, it is still unknown how many classes of cortical neurons exist. In fact, neuronal classification is a difficult problem because it is unclear how to designate a neuronal cell class and what are the best characteristics to define them. Recently, unsupervised classifications using cluster analysis based on morphological, physiological, or molecular characteristics, have provided quantitative and unbiased identification of distinct neuronal subtypes, when applied to selected datasets. However, better and more robust classification methods are needed for increasingly complex and larger datasets. Here, we explored the use of affinity propagation, a recently developed unsupervised classification algorithm imported from machine learning, which gives a representative example or exemplar for each cluster. As a case study, we applied affinity propagation to a test dataset of 337 interneurons belonging to four subtypes, previously identified based on morphological and physiological characteristics. We found that affinity propagation correctly classified most of the neurons in a blind, non-supervised manner. Affinity propagation outperformed Ward's method, a current standard clustering approach, in classifying the neurons into 4 subtypes. Affinity propagation could therefore be used in future studies to validly classify neurons, as a first step to help reverse engineer neural circuits. PMID:24348339

  18. Toward an improved understanding of MCS propagation

    NASA Astrophysics Data System (ADS)

    Peters, J. M.

    2015-12-01

    Processes that drive the propagation of elevated mesoscale convective systems (MCSs) have been the topic of a growing body of recent research. Elevated MCSs are responsible for a large percentage of warm season rainfall in the continental United States, and produce flash floods more frequently than other modes of convection. A comprehensive understanding of the dynamics of MCS propagation is important, since propagation sometimes opposes other environmental forces that influence MCS motion. This leads to nearly stationary MCSs that produce prolific local rainfall totals. The ingredients-based Propagation index (IPI) is introduced in this research. IPI is defined as the normalized product of horizontal warm thermal advection (a proxy for lifting), convective available potential energy (CAPE), and relative humidity. Horizontal plots of IPI are useful in identifying regions of probable convective initiation, including the intersections between potentially unstable flow and outflow boundaries, regions of mesoscale lift along the nose of the low-level jet, convectively induced gravity waves, and frontogenesis. Effective inflow-layer shear vectors are also introduced, and found to be useful for scenarios where IPI does yield predictive insight, such as the traditional "RKW" scenario where the forward propagation of an MCS is driven by thunderstorm outflow. It is argued that horizontal maps of IPI and EILS vectors will contribute significantly to short-term (e.g. 1-2 hr) predictions of the movement of MCSs, and to the subsequent assessment of their potential for flash flood production.

  19. Effects of fluctuations on propagating fronts

    NASA Astrophysics Data System (ADS)

    Panja, Debabrata

    Propagating fronts are seen in varieties of nonequilibrium pattern forming systems in Physics, Chemistry and Biology. In the last two decades, many researchers have contributed to the understanding of the underlying dynamics of the propagating fronts. Of these, the deterministic and mean-field dynamics of the fronts were mostly understood in late 1980s and 1990s. On the other hand, although the earliest work on the effect of fluctuations on propagating fronts dates back to early 1980s, the subject of fluctuating fronts did not reach its adolescence until the mid 1990s. From there onwards the last few years witnessed a surge in activities in the effect of fluctuations on propagating fronts. Scores of papers have been written on this subject since then, contributing to a significant maturity of our understanding, and only recently a full picture of fluctuating fronts has started to emerge. This review is an attempt to collect all the works on fluctuating (propagating) fronts in a coherent and cogent manner in proper perspective. It is based on the idea of making our knowledge in this field available to a broader audience, and it is also expected to help to collect bits and pieces of loose thread-ends together for possible further investigation.

  20. Gain-assisted superluminal light propagation

    PubMed

    Wang; Kuzmich; Dogariu

    2000-07-20

    Einstein's theory of special relativity and the principle of causality imply that the speed of any moving object cannot exceed that of light in a vacuum (c). Nevertheless, there exist various proposals for observing faster-than-c propagation of light pulses, using anomalous dispersion near an absorption line, nonlinear and linear gain lines, or tunnelling barriers. However, in all previous experimental demonstrations, the light pulses experienced either very large absorption or severe reshaping, resulting in controversies over the interpretation. Here we use gain-assisted linear anomalous dispersion to demonstrate superluminal light propagation in atomic caesium gas. The group velocity of a laser pulse in this region exceeds c and can even become negative, while the shape of the pulse is preserved. We measure a group-velocity index of n(g) = -310(+/- 5); in practice, this means that a light pulse propagating through the atomic vapour cell appears at the exit side so much earlier than if it had propagated the same distance in a vacuum that the peak of the pulse appears to leave the cell before entering it. The observed superluminal light pulse propagation is not at odds with causality, being a direct consequence of classical interference between its different frequency components in an anomalous dispersion region. PMID:10917523

  1. Nonlinear Force Propagation During Granular Impact

    NASA Astrophysics Data System (ADS)

    Clark, Abram H.; Petersen, Alec J.; Kondic, Lou; Behringer, Robert P.

    2015-04-01

    We experimentally study nonlinear force propagation into granular material during impact from an intruder, and we explain our observations in terms of the nonlinear grain-scale force relation. Using high-speed video and photoelastic particles, we determine the speed and spatial structure of the force response just after impact. We show that these quantities depend on a dimensionless parameter, M'=tcv0/d , where v0 is the intruder speed at impact, d is the particle diameter, and tc is the collision time for a pair of grains impacting at relative speed v0. The experiments access a large range of M' by using particles of three different materials. When M'≪1 , force propagation is chainlike with a speed, vf, satisfying vf∝d /tc. For larger M', the force response becomes spatially dense and the force propagation speed departs from vf∝d /tc, corresponding to collective stiffening of a strongly compressed packing of grains.

  2. Propagation of shock waves through petroleum suspensions

    NASA Astrophysics Data System (ADS)

    Mukuk, K. V.; Makhkamov, S. M.; Azizov, K. K.

    1986-01-01

    Anomalous shock wave propagation through petroleum with a high paraffin content was studied in an attempt to confirm the theoretically predicted breakdown of a forward shock wave into oscillating waves and wave packets as well as individual solitons. Tests were performed in a shock tube at 10, 20, and 50 to 60 C, with pure kerosene as reference and with kerosene + 5, 10, 15, and 20% paraffin. The addition of paraffin was found to radically alter the rheodynamic characteristics of the medium and, along with it, the pattern of shock wave propagation. The integro-differential equation describing a one dimensional hydraulic shock process in viscoelastic fluids is reduced to the Burgers-Korteweg-deVries equation, which is solved numerically for given values of the system parameters. The results indicate that the theory of shock wave propagation through such an anomalous suspension must be modified.

  3. Heat pulse propagation studies in TFTR

    SciTech Connect

    Fredrickson, E.D.; Callen, J.D.; Colchin, R.J.; Efthimion, P.C.; Hill, K.W.; Izzo, R.; Mikkelsen, D.R.; Monticello, D.A.; McGuire, K.; Bell, J.D.

    1986-02-01

    The time scales for sawtooth repetition and heat pulse propagation are much longer (10's of msec) in the large tokamak TFTR than in previous, smaller tokamaks. This extended time scale coupled with more detailed diagnostics has led us to revisit the analysis of the heat pulse propagation as a method to determine the electron heat diffusivity, chi/sub e/, in the plasma. A combination of analytic and computer solutions of the electron heat diffusion equation are used to clarify previous work and develop new methods for determining chi/sub e/. Direct comparison of the predicted heat pulses with soft x-ray and ECE data indicates that the space-time evolution is diffusive. However, the chi/sub e/ determined from heat pulse propagation usually exceeds that determined from background plasma power balance considerations by a factor ranging from 2 to 10. Some hypotheses for resolving this discrepancy are discussed. 11 refs., 19 figs., 1 tab.

  4. Flame propagation in partially premixed conditions

    NASA Astrophysics Data System (ADS)

    Ruetsch, G.; Poinsot, T.; Veynante, D.; Trouvé, A.

    1996-11-01

    Turbulent flame propagation is studied under inhomogenously premixed conditions via data from direct numerical simulations. Departures from the premixed case are studied using four different configurations, ranging from one dimensional unsteady flames to turbulent three-dimensional simulations. Simulations are performed in these cases with various values of the mean equivalence ratio, fluctuations about the mean equivlalence ratio, correlation length scales, and probability denisty functions of the mixture composition. Propagation characteristics are described in terms of the flamelet approach, where the the main contribution of partial premixing on flame propagation is due to flame wrinkling relative to modification of the mean flamelet structure. This behavior is consistent over a broad range of conditions, with the exception being extreme departures from stoichiometric conditions where flamability limits are exceeded and flame quenching is observed.

  5. Propagation of intense UV filaments and vortices

    NASA Astrophysics Data System (ADS)

    Sukhinin, Alexey

    The goal of this dissertation is to investigate the propagation of ultrashort high intensity UV laser pulses of order of nanoseconds in atmosphere. It is believed that they have a potential for stable and diffractionless propagation over the extended distances. Consequently, it creates a new array of applications in areas of communication, sensing, energy transportation and others. The theoretical model derived from Maxwell's equations represents unidirectional envelope propagation and plasma creation equations. It was shown numerically through Newton's iterations that the stationary model permits the localized fundamental and vortex solutions. Discussion of the stability of steady states involves different approaches and their limitations. Finally, model equations are integrated numerically to study the dynamics of the beams in the stationary model as well as nanosecond pulses in the full (3+1)D model using parallel computation.

  6. Shock unsteadiness creation and propagation: experimental analysis

    NASA Astrophysics Data System (ADS)

    Benay, R.; Alaphilippe, M.; Severac, N.

    2012-09-01

    The possibility of creating unsteady distortions of the tip shock by waves emitted from an aircraft is assessed experimentally. The model chosen is a cylindrical fore body equipped with a spike. This configuration is known for generating an important level of unsteadiness around the spike in supersonic regime. The wind tunnel Mach number is equal to 2. The experiments show that waves emitted from this source propagate along the tip shock and interact with it. It is then assessed that this interaction produces a periodic distortion of the shock that propagates to the external flow. Unsteady pressure sensors, high speed schlieren films, hot wire probing and laser Doppler velocimetry are used as complementary experimental means. The final result is a coherent representation of the complex mechanism of wave propagation that has been evidenced. The principle of creating unsteady shock deformation by onboard equipments could be examined as a possibly promising method of sonic boom control.

  7. Wave propagation into the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Hirota, I.

    1989-01-01

    Recent observations of various types of waves propagating into the middle atmosphere are reviewed. Emphasis is made on the excitation processes in the lower atmosphere and their vertical propagation through the background flow as a function of the latitude, height and season. The following subjects are discussed: (1) Vertical propagation of quasi-stationary forced Rossby waves into the winter stratosphere in connection with the sudden warming; (2) Spectral distribution and seasonal characteristics of normal mode (free) Rossby waves and the asymmetry of the Northern and Southern Hemispheres; and (3) Seasonal variation of internal gravity waves in the middle atmosphere. Further discussions are presented for future studies based on accumulated observational data during the MAP period.

  8. Propagation studies using a theoretical ionosphere model

    NASA Technical Reports Server (NTRS)

    Lee, M.

    1973-01-01

    The mid-latitude ionospheric and neutral atmospheric models are coupled with an advanced three dimensional ray tracing program to see what success would be obtained in predicting the wave propagation conditions and to study to what extent the use of theoretical ionospheric models is practical. The Penn State MK 1 ionospheric model, the Mitra-Rowe D region model, and the Groves' neutral atmospheric model are used throughout this work to represent the real electron densities and collision frequencies. The Faraday rotation and differential Doppler velocities from satellites, the propagation modes for long distance high frequency propagation, the group delays for each mode, the ionospheric absorption, and the spatial loss are all predicted.

  9. Three-Dimensional Gear Crack Propagation Studies

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Sane, Ashok D.; Drago, Raymond J.; Wawrzynek, Paul A.

    1998-01-01

    Three-dimensional crack growth simulation was performed on a split-tooth gear design using boundary element modeling and linear elastic fracture mechanics. Initial cracks in the fillet of the teeth produced stress intensity factors of greater magnitude (and thus, greater crack growth rates) than those in the root or groove areas of the teeth. Crack growth simulation was performed on a case study to evaluate crack propagation paths. Tooth fracture was predicted from the crack growth simulation for an initial crack in the tooth fillet region. Tooth loads on the uncracked mesh of the split-tooth design were up to five times greater than those on the cracked mesh if equal deflections of the cracked and uncracked teeth were considered. Predicted crack shapes as well as crack propagation life are presented based on calculated stress intensity factors, mixed-mode crack propagation trajectory theories, and fatigue crack growth theories.

  10. Microdomain Effects on Transverse Cardiac Propagation

    PubMed Central

    Lin, Joyce; Keener, James P.

    2014-01-01

    The effect of gap junctional coupling, sodium ion channel distribution, and extracellular conductivity on transverse conduction in cardiac tissue is explored using a microdomain model that incorporates aspects of the inhomogeneous cellular structure. The propagation velocities found in our model are compared to those in the classic bidomain model and indicate a strong ephaptic microdomain contribution to conduction depending on the parameter regime. We show that ephaptic effects can be quite significant in the junctional spaces between cells, and that the cell activation sequence is modified substantially by these effects. Further, we find that transverse propagation can be maintained by ephaptic effects, even in the absence of gap junctional coupling. The mechanism by which this occurs is found to be cablelike in that the junctional regions act like inverted cables. Our results provide insight into several recent experimental studies that indirectly indicate a mode of action potential propagation that does not rely exclusively on gap junctions. PMID:24559995

  11. Propagation of polarized waves in inhomogeneous media.

    PubMed

    Charnotskii, Mikhail

    2016-07-01

    A parabolic equation for electromagnetic wave propagation in a random medium is extended to include the depolarization effects in the narrow-angle, forward-scattering setting. Closed-form parabolic equations for propagation of the coherence tensor are derived under a Markov approximation model. For a general partially coherent and partially polarized beam wave, this equation can be reduced to a system of ordinary differential equations, allowing a simple numeric solution. An analytical solution exists for statistically homogeneous waves. Estimates based on the perturbation solution support the common knowledge that the depolarization at the optical frequencies is negligible for atmospheric turbulence propagation. These results indicate that the recently published theory [Opt. Lett.40, 3077 (2015)10.1364/OL.40.003077] is not valid for atmospheric turbulence. PMID:27409697

  12. Study of propagation along nonuniform excitable fibers

    SciTech Connect

    Zhou, Y.

    1992-01-01

    Two related reaction diffusion systems which support traveling wave solutions when parameters are constant are studied when there are jump discontinuities in the diffusion coefficient. The first system represents a classical axon model where the fiber has a jump in diameter at discrete locations, and the membrane dynamics represents that of barnacle muscle (which we call Morris-Lecar dynamics). The second model represents a passive cable with a uniform density of spines which have Morris-Lecar dynamics. Use of a conditional comparison principle establishes conditions where a traveling wave solution can be blocked from propagating beyond the change in fiber diameter. The authors then examine numerically for both models conditions on physical parameters which show that traveling wave solutions are blocked by changes in the fiber diameter, when propagation is successful, and when there is both forward propagation and the formation of a reflecting (echo) wave.

  13. Displacement of squeezed propagating microwave states

    NASA Astrophysics Data System (ADS)

    Fedorov, Kirill G.; Zhong, Ling; Pogorzalek, Stefan; Eder, Peter; Fischer, Michael; Goetz, Jan; Wulschner, Friedrich; Xie, Edwar; Menzel, Edwin; Deppe, Frank; Marx, Achim; Gross, Rudolf

    Displacement of propagating squeezed states is a fundamental operation for quantum communications. It can be applied to fundamental studies of macroscopic quantum coherence and has an important role in quantum teleportation protocols with propagating microwaves. We generate propagating squeezed states using a Josephson parametric amplifier and implement displacement using a cryogenic directional coupler. We study single- and two-mode displacement regimes. For the single-mode displacement we find that the squeezing level of the displaced squeezed state does not depend on the displacement amplitude. Also, we observe that quantum entanglement between two spatially separated channels stays constant across 4 orders of displacement power. We acknowledge support by the German Research Foundation through SFB 631 and FE 1564/1-1, the EU project PROMISCE, and Elite Network of Bavaria through the program ExQM.

  14. Complex singularities in the quark propagator

    SciTech Connect

    Roberts, C.D.; Frank, M.R.

    1995-08-01

    The Dyson-Schwinger equation for the quark propagator is being studied in the rainbow approximation using a gluon propagator that incorporates asymptotic freedom and is an entire function. The gluon propagator has a number of parameters that may be varied in order to obtain a good description of low-energy pion observables; such as f{sub {pi}} and the {pi}-{pi} scattering lengths. This provides a direct means of relating hadronic observables to the form of the quark-quark interaction in the infrared and serves as an adjunct and extension of the separable Ansatz approach discussed above. It also provides a means of examining the pole structure of the quark propagator, which may hold the key to understanding quark confinement. The preliminary results are encouraging. It was demonstrated that it is possible to obtain a good description of pion observables in this approach. Further, when the strength of the quark-quark interaction in the infrared becomes larger than a given critical value, the pole in the quark propagator bifurcates into a pair of complex conjugate poles: m{sub q} = m{sub q}{sup R} {plus_minus} im{sub q}{sup I}, which is a signal of confinement. The interpretation in this case is of 1/m{sub q}{sup I} as the distance over which a quark may propagate before fragmenting. Further, there are indications from these studies that T{sub c}{sup D} < T{sub c}{sup {chi}}, where T{sub c}{sup D} is the critical temperature for deconfinement and T{sub c}{sup {chi}} is the critical temperature for chiral symmetry restoration; i.e., indications that deconfinement occurs at a lower temperature than chiral symmetry restoration. Available results from this work will be presented at the Washington meeting of the APS.

  15. Satellite sound broadcast propagation studies and measurements

    NASA Technical Reports Server (NTRS)

    Vogel, Wolfhard J.; Torrence, Geoffrey W.

    1990-01-01

    Satellite Sound Broadcasting is an attractive satellite application. Before regulatory decisions can be made in 1992, the propagation effects encountered have to be characterized. The Electrical Engineering Research Laboratory has nearly completed a system which will allow amplitude measurements to be made over 10 MHz bandwidths in the 800 to 1800 MHz frequency range. The system uses transmission from a transportable tower, and reception inside buildings or in the shadow of trees or utility poles. The goal is to derive propagation models for use by systems engineers who are about to design satellite broadcast systems. The advance of fiber-optics technology has helped to focus future development of satellite services into areas where satellites are uniquely competitive. One of these preferred satellite applications is the broadcasting of high-quality sound for stationary or mobile reception by listeners using low-cost, consumer-grade receivers. Before such services can be provided, however, the political hurdles of spectrum allocation have to be surmounted and the technical questions of standardization for world-wide compatibility have to be resolved. In order to arrive at an optimal system design, efficient in the use of our scarce spectral resources, affordable both to the broadcaster and the listener, and providing predictable performance, the propagation effects to which the service is subjected have to be characterized. Consequently, the objective of the research project is to make basic propagation measurements for direct Satellite Sound Broadcasting Service (SSBS). The data obtained should allow the development of propagation models to be used by communications engineers designing the operational systems. Such models shall describe the effects of shadowing and multipath propagation on SSBS receivers operating in a specified environment, such as inside commercial or residential buildings of various construction and also in the shadow of trees or utility poles

  16. The discrete regime of flame propagation

    NASA Astrophysics Data System (ADS)

    Tang, Francois-David; Goroshin, Samuel; Higgins, Andrew

    The propagation of laminar dust flames in iron dust clouds was studied in a low-gravity envi-ronment on-board a parabolic flight aircraft. The elimination of buoyancy-induced convection and particle settling permitted measurements of fundamental combustion parameters such as the burning velocity and the flame quenching distance over a wide range of particle sizes and in different gaseous mixtures. The discrete regime of flame propagation was observed by substitut-ing nitrogen present in air with xenon, an inert gas with a significantly lower heat conductivity. Flame propagation in the discrete regime is controlled by the heat transfer between neighbor-ing particles, rather than by the particle burning rate used by traditional continuum models of heterogeneous flames. The propagation mechanism of discrete flames depends on the spa-tial distribution of particles, and thus such flames are strongly influenced by local fluctuations in the fuel concentration. Constant pressure laminar dust flames were observed inside 70 cm long, 5 cm diameter Pyrex tubes. Equally-spaced plate assemblies forming rectangular chan-nels were placed inside each tube to determine the quenching distance defined as the minimum channel width through which a flame can successfully propagate. High-speed video cameras were used to measure the flame speed and a fiber optic spectrometer was used to measure the flame temperature. Experimental results were compared with predictions obtained from a numerical model of a three-dimensional flame developed to capture both the discrete nature and the random distribution of particles in the flame. Though good qualitative agreement was obtained between model predictions and experimental observations, residual g-jitters and the short reduced-gravity periods prevented further investigations of propagation limits in the dis-crete regime. The full exploration of the discrete flame phenomenon would require high-quality, long duration reduced gravity environment

  17. Propagation characteristics of acoustic waves in snow

    NASA Astrophysics Data System (ADS)

    Capelli, Achille; Kapil, Jagdish Chandra; Reiweger, Ingrid; Schweizer, Jürg; Or, Dani

    2015-04-01

    Acoustic emission analysis is a promising technique for monitoring snow slope stability with potential for application in early warning systems for avalanches. Current research efforts focus on identification and localization of acoustic emission features preceding snow failure and avalanches. However, our knowledge of sound propagation characteristics in snow is still limited. A review of previous studies showed that significant gaps exist and that the results of the various studies are partly contradictory. Furthermore, sound velocity and attenuation have been determined for the frequency range below 10 kHz, while recent snow failure experiments suggest that the peak frequency is in the ultrasound range between 30 kHz to 500 kHz. We therefore studied the propagation of pencil lead fracture (PLF) signals through snow in the ultrasound frequency range. This was achieved by performing laboratory experiments with columns of artificially produced snow of varying density and temperature. The attenuation constant was obtained by varying the size of the columns to eliminate possible influences of the snow-sensor coupling. The attenuation constant was measured for the entire PLF burst signal and for single frequency components. The propagation velocity was calculated from the arrival time of the acoustic signal. We then modelled the sound propagation for our experimental setup using Biot's model for wave propagation in porous media. The Model results were in good agreement with our experimental results. For the studied samples, the acoustic signals propagated as fast and slow longitudinal waves, but the main part of the energy was carried by the slow waves. The Young's modulus of our snow samples was determined from the sound velocity. This is highly relevant, as the elastic properties of snow are not well known.

  18. Light propagation in the South Pole ice

    SciTech Connect

    Williams, Dawn; Collaboration: IceCube Collaboration

    2014-11-18

    The IceCube Neutrino Observatory is located in the ice near the geographic South Pole. Particle showers from neutrino interactions in the ice produce light which is detected by IceCube modules, and the amount and pattern of deposited light are used to reconstruct the properties of the incident neutrino. Since light is scattered and absorbed by ice between the neutrino interaction vertex and the sensor, IceCube event reconstruction depends on understanding the propagation of light through the ice. This paper presents the current status of modeling light propagation in South Pole ice, including the recent observation of an azimuthal anisotropy in the scattering.

  19. Atmospheric propagation issues relevant to optical communications

    NASA Technical Reports Server (NTRS)

    Churnside, James H.; Shaik, Kamran

    1989-01-01

    Atmospheric propagation issues relevant to space-to-ground optical communications for near-earth applications are studied. Propagation effects, current optical communication activities, potential applications, and communication techniques are surveyed. It is concluded that a direct-detection space-to-ground link using redundant receiver sites and temporal encoding is likely to be employed to transmit earth-sensing satellite data to the ground some time in the future. Low-level, long-term studies of link availability, fading statistics, and turbulence climatology are recommended to support this type of application.

  20. Displacement of Propagating Squeezed Microwave States.

    PubMed

    Fedorov, Kirill G; Zhong, L; Pogorzalek, S; Eder, P; Fischer, M; Goetz, J; Xie, E; Wulschner, F; Inomata, K; Yamamoto, T; Nakamura, Y; Di Candia, R; Las Heras, U; Sanz, M; Solano, E; Menzel, E P; Deppe, F; Marx, A; Gross, R

    2016-07-01

    Displacement of propagating quantum states of light is a fundamental operation for quantum communication. It enables fundamental studies on macroscopic quantum coherence and plays an important role in quantum teleportation protocols with continuous variables. In our experiments, we have successfully implemented this operation for propagating squeezed microwave states. We demonstrate that, even for strong displacement amplitudes, there is no degradation of the squeezing level in the reconstructed quantum states. Furthermore, we confirm that path entanglement generated by using displaced squeezed states remains constant over a wide range of the displacement power. PMID:27447495

  1. Atmospheric propagation effects relevant to optical communications

    NASA Technical Reports Server (NTRS)

    Shaik, K. S.

    1988-01-01

    A number of atmospheric phenomena affect the propagation of light. The effects of clear air turbulence are reviewed as well as atmospheric turbidity on optical communications. Among the phenomena considered are astronomical and random refraction, scintillation, beam broadening, spatial coherence, angle of arrival, aperture averaging, absorption and scattering, and the effect of opaque clouds. An extensive reference list is also provided for further study. Useful information on the atmospheric propagation of light in relation to optical deep space communications to an earth based receiving station is available, however, further data must be generated before such a link can be designed with committed performance.

  2. Optimization of directional elastic energy propagation

    NASA Astrophysics Data System (ADS)

    Andreassen, Erik; Chang, Hannah R.; Ruzzene, Massimo; Jensen, Jakob Søndergaard

    2016-09-01

    The aim of this paper is to demonstrate how topology optimization can be used to design a periodically perforated plate, in order to obtain a tailored anisotropic group velocity profile. The main method is demonstrated on both low and high frequency bending wave propagation in an aluminum plate, but is general in the sense that it could be used to design periodic structures with frequency dependent group velocity profiles for any kind of elastic wave propagation. With the proposed method the resulting design is manufacturable. Measurements on an optimized design compare excellently with the numerical results.

  3. Flame propagation and extinction in particle clouds

    NASA Technical Reports Server (NTRS)

    Berlad, A. L.; Joshi, N. D.

    1986-01-01

    Two phase flame propagation and extinction theory required to support the corresponding experiments planned for the space shuttle is being developed. Also being planned are specialized collaborative, experimental and theoretical NASA UCSD studies needed to support the ongoing definition of needed experimental hardware, experimental procedures, data acquisition philosophy, and other ground based support activities required to assure the success of space shuttle based experiments concerned with combustion of clouds of particulates at reduced gravitational conditions. The further development of relations delineating premixed particle cloud and premixed gaseous systems as well as burner stabilized and freely propagating flame systems is considered.

  4. Laser propagation in underdense plasmas: Scaling arguments

    SciTech Connect

    Garrison, J.C.

    1993-05-01

    The propagation of an intense laser beam in the underdense plasma is modelled by treating the plasma as a relativistic, zero temperature, charged fluid. For paraxial propagation and a sufficiently underdense plasma ({omega}p/{omega} {much_lt} 1), a multiple-scales technique is used to expand the exact equations in powers of the small parameter {theta} {equivalent_to} {omega}p/{omega}. The zeroth order equations are used in a critical examination of previous work on this problem, and to derive a scaling law for the threshold power required for cavitation.

  5. Comments on 'Rapid pulsed microwave propagation'

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.; Rodrigue, George P.

    1992-01-01

    Giakos and Ishii (1991) claim conclusive experimental evidence that microwave pulse propagation in waveguides and in air occurs at velocities exceeding the free-space speed of light, and assert that it is possible to transmit both energy and information in a non-TEM waveguiding medium at the lightspeed-exceeding phase velocity. The present analysis of their results reveals several significant potential sources of error in both their laboratory findings and those findings' interpretation. Giakos and Ishii reply that the accuracy of the propagation measurements presented in their study exceeds 0.2 percent.

  6. Comments on 'Rapid pulsed microwave propagation'

    NASA Astrophysics Data System (ADS)

    Steffes, Paul G.; Rodrigue, George P.

    1992-05-01

    Giakos and Ishii (1991) claim conclusive experimental evidence that microwave pulse propagation in waveguides and in air occurs at velocities exceeding the free-space speed of light, and assert that it is possible to transmit both energy and information in a non-TEM waveguiding medium at the lightspeed-exceeding phase velocity. The present analysis of their results reveals several significant potential sources of error in both their laboratory findings and those findings' interpretation. Giakos and Ishii reply that the accuracy of the propagation measurements presented in their study exceeds 0.2 percent.

  7. Acceleration and propagation of solar cosmic rays

    NASA Astrophysics Data System (ADS)

    Podgorny, I. M.; Podgorny, A. I.

    2015-12-01

    Analysis of the solar cosmic ray measurements on the Geostationary Orbital Environmental Satellite (GOES) spacecraft indicated that the duration of solar flare relativistic proton large pulses is comparable with the solar wind propagation duration from the Sun to the Earth. The front of the proton flux from flares on the western solar disk approaches the Earth with a flight time along the Archimedean spiral magnetic field line of 15-20 min. The proton flux from eastern flares is registered in the Earth's orbit 3-5 h after the flare onset. These particles apparently propagate across IMF owing to diffusion.

  8. Surface acoustic wave propagation in graphene film

    SciTech Connect

    Roshchupkin, Dmitry Plotitcyna, Olga; Matveev, Viktor; Kononenko, Oleg; Emelin, Evgenii; Irzhak, Dmitry; Ortega, Luc; Zizak, Ivo; Erko, Alexei; Tynyshtykbayev, Kurbangali; Insepov, Zinetula

    2015-09-14

    Surface acoustic wave (SAW) propagation in a graphene film on the surface of piezoelectric crystals was studied at the BESSY II synchrotron radiation source. Talbot effect enabled the visualization of the SAW propagation on the crystal surface with the graphene film in a real time mode, and high-resolution x-ray diffraction permitted the determination of the SAW amplitude in the graphene/piezoelectric crystal system. The influence of the SAW on the electrical properties of the graphene film was examined. It was shown that the changing of the SAW amplitude enables controlling the magnitude and direction of current in graphene film on the surface of piezoelectric crystals.

  9. Mean Element Propagations Using Numerical Averaging

    NASA Technical Reports Server (NTRS)

    Ely, Todd A.

    2009-01-01

    The long-term evolution characteristics (and stability) of an orbit are best characterized using a mean element propagation of the perturbed two body variational equations of motion. The averaging process eliminates short period terms leaving only secular and long period effects. In this study, a non-traditional approach is taken that averages the variational equations using adaptive numerical techniques and then numerically integrating the resulting EOMs. Doing this avoids the Fourier series expansions and truncations required by the traditional analytic methods. The resultant numerical techniques can be easily adapted to propagations at most solar system bodies.

  10. Propagation of polymer slugs through porous media

    SciTech Connect

    Lecourtier, J.; Chauveteau, G.

    1984-09-01

    This paper describes an experimental and theoretical study of the mechanisms governing polymer slug propagation through porous media. An analytical model taking into account the macromolecule exclusion from pore walls is proposed to predict rodlike polymer velocity in porous media and thus the spreading out of polydispersed polymer slugs. Under conditions where this wall exclusion is maximum, i.e. at low shear rates and polymer concentrations, the experiments show that xanthan propagation is effectively predicted by this model. At higher flow rates and polymer concentrations, the effects of hydrodynamic dispersion and viscous fingering are analyzed. A new fractionation method for determining molecular weight distribution of polymers used in EOR is proposed.

  11. Sources, Propagators, and Sinks of Space Weather

    NASA Astrophysics Data System (ADS)

    Pesnell, W. D.

    Space Weather is a complex web of sources propagators and sinks of energy mass and momentum A complete understanding of Space Weather would require specifying and an ability to predict each link in this web One important problem in Space Weather is ranking the importance of a particular measurement or model in a research program One way to do this ranking is to identify the sources propagators and sinks and produce the simplest linked diagram of the components Such a diagram will be shown and used to discuss how longterm effects of Space Weather can be separated from the impulsive effects

  12. Acoustic propagation in a thermally stratified atmosphere

    NASA Technical Reports Server (NTRS)

    Vanmoorhem, W. K.

    1984-01-01

    This report describes the activities during the fourth six month period of the investigation of acoustic propagation in the atmosphere with a realistic lapse temperature profile. A significant error was detected since the previous semi-annual report and has been corrected in both the plane wave and point source solutions. This report then describes both of these problems in some detail along with presenting some numerical results from the model. Work will begin this summer on the model of propagation in an inversion.

  13. Enhancement of in vitro Guayule propagation

    NASA Technical Reports Server (NTRS)

    Dastoor, M. N.; Schubert, W. W.; Petersen, G. R. (Inventor)

    1982-01-01

    A method for stimulating in vitro propagation of Guayule from a nutrient medium containing Guayule tissue by adding a substituted trialkyl amine bioinducing agent to the nutrient medium is described. Selective or differentiated propagation of shoots or callus is obtained by varying the amounts of substituted trialky amine present in the nutrient medium. The luxuriant growth provided may be processed for its poly isoprene content or may be transferred to a rooting medium for production of whole plants as identical clones of the original tissue. The method also provides for the production of large numbers of Guayule plants having identical desirable properties such as high polyisoprene levels.

  14. Displacement of Propagating Squeezed Microwave States

    NASA Astrophysics Data System (ADS)

    Fedorov, Kirill G.; Zhong, L.; Pogorzalek, S.; Eder, P.; Fischer, M.; Goetz, J.; Xie, E.; Wulschner, F.; Inomata, K.; Yamamoto, T.; Nakamura, Y.; Di Candia, R.; Las Heras, U.; Sanz, M.; Solano, E.; Menzel, E. P.; Deppe, F.; Marx, A.; Gross, R.

    2016-07-01

    Displacement of propagating quantum states of light is a fundamental operation for quantum communication. It enables fundamental studies on macroscopic quantum coherence and plays an important role in quantum teleportation protocols with continuous variables. In our experiments, we have successfully implemented this operation for propagating squeezed microwave states. We demonstrate that, even for strong displacement amplitudes, there is no degradation of the squeezing level in the reconstructed quantum states. Furthermore, we confirm that path entanglement generated by using displaced squeezed states remains constant over a wide range of the displacement power.

  15. Atmospheric Propagation Effects Relevant to Optical Communications

    NASA Technical Reports Server (NTRS)

    Shaik, K. S.

    1988-01-01

    A number of atmospheric phenomena affect the propagation of light. This article reviews the effects of clear-air turbulence as well as atmospheric turbidity on optical communications. Among the phenomena considered are astronomical and random refraction, scintillation, beam broadening, spatial coherence, angle of arrival, aperture averaging, absorption and scattering, and the effect of opaque clouds. An extensive reference list is also provided for further study, Useful information on the atmospheric propagation of light in resolution to optical deep-space communications to an earth-based receiving station is available, however, further data must be generated before such a link can be designed with committed performance.

  16. Proceedings of the Thirteenth NASA Propagation Experimenters Meeting (NAPEX 13)

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz (Editor)

    1989-01-01

    The NASA Propagation Experimenters Meeting (NAPEX), supported by the NASA Propagation Program, is convened annually to discuss studies made on radio wave propagation by investigators from domestic and international organizations. The meeting was organized into three technical sessions: the first focused on mobile satellite propagation; the second examined the propagation effects for frequencies above 10 GHz; and the third addressed studies devoted exclusively to the Olympus/Advanced Communications Technology Satellite (ACTS) Program.

  17. Effects of self-propagating synthesis reactant compact character on ignition, propagation, and microstructure

    SciTech Connect

    Rice, R.W.; Richardson, G.Y.; Kunetz, J.M.; Schroeter, T.; McDonough, W.J. )

    1987-07-01

    Studies of reactions involving Ti to produce TiC, TiB{sub 2}, TiC + TiB{sub 2}, or 3TiB{sub 2} + 5Al{sub 2}O{sub 3} ignited at one end of test plates showed that reactant powder compact densities were a major factor in the reaction propagation rate along the plate, i.e., a maximum in propagation rate was observed at {approx}60 {plus minus} 10% of theoretical density. At higher densities, propagation rates not only decreased but terminated due to self extinction in some cases or failed to ignite and propagate, typically at {ge}90% of theoretical density. Both reactant particle size and shape can also affect results, i.e., compacts of large (200 {mu}m in diameter) Ti particles, Ti flakes or foil, or wires failed to ignite or had slower propagation rates. Also, the ignition and propagation rates of carbon fiber tows infiltrated with titanium metal powders depended significantly on the local thermal conductivity. However, overall propagation rates for a given range of reactant compact microstructures increased with the heat of the reaction involved.

  18. Propagating waves can explain irregular neural dynamics.

    PubMed

    Keane, Adam; Gong, Pulin

    2015-01-28

    Cortical neurons in vivo fire quite irregularly. Previous studies about the origin of such irregular neural dynamics have given rise to two major models: a balanced excitation and inhibition model, and a model of highly synchronized synaptic inputs. To elucidate the network mechanisms underlying synchronized synaptic inputs and account for irregular neural dynamics, we investigate a spatially extended, conductance-based spiking neural network model. We show that propagating wave patterns with complex dynamics emerge from the network model. These waves sweep past neurons, to which they provide highly synchronized synaptic inputs. On the other hand, these patterns only emerge from the network with balanced excitation and inhibition; our model therefore reconciles the two major models of irregular neural dynamics. We further demonstrate that the collective dynamics of propagating wave patterns provides a mechanistic explanation for a range of irregular neural dynamics, including the variability of spike timing, slow firing rate fluctuations, and correlated membrane potential fluctuations. In addition, in our model, the distributions of synaptic conductance and membrane potential are non-Gaussian, consistent with recent experimental data obtained using whole-cell recordings. Our work therefore relates the propagating waves that have been widely observed in the brain to irregular neural dynamics. These results demonstrate that neural firing activity, although appearing highly disordered at the single-neuron level, can form dynamical coherent structures, such as propagating waves at the population level. PMID:25632135

  19. Using Least Squares for Error Propagation

    ERIC Educational Resources Information Center

    Tellinghuisen, Joel

    2015-01-01

    The method of least-squares (LS) has a built-in procedure for estimating the standard errors (SEs) of the adjustable parameters in the fit model: They are the square roots of the diagonal elements of the covariance matrix. This means that one can use least-squares to obtain numerical values of propagated errors by defining the target quantities as…

  20. Propagation of coherent light pulses with PHASE

    NASA Astrophysics Data System (ADS)

    Bahrdt, J.; Flechsig, U.; Grizzoli, W.; Siewert, F.

    2014-09-01

    The current status of the software package PHASE for the propagation of coherent light pulses along a synchrotron radiation beamline is presented. PHASE is based on an asymptotic expansion of the Fresnel-Kirchhoff integral (stationary phase approximation) which is usually truncated at the 2nd order. The limits of this approximation as well as possible extensions to higher orders are discussed. The accuracy is benchmarked against a direct integration of the Fresnel-Kirchhoff integral. Long range slope errors of optical elements can be included by means of 8th order polynomials in the optical element coordinates w and l. Only recently, a method for the description of short range slope errors has been implemented. The accuracy of this method is evaluated and examples for realistic slope errors are given. PHASE can be run either from a built-in graphical user interface or from any script language. The latter method provides substantial flexibility. Optical elements including apertures can be combined. Complete wave packages can be propagated, as well. Fourier propagators are included in the package, thus, the user may choose between a variety of propagators. Several means to speed up the computation time were tested - among them are the parallelization in a multi core environment and the parallelization on a cluster.

  1. LMSS propagation modeling at Virginia Tech

    NASA Technical Reports Server (NTRS)

    Stutzman, Warren L.; Barts, R. Michael; Bostian, Charles W.

    1988-01-01

    Recent efforts in the modeling of land mobile satellite systems are reported. These include descriptions of a simple model for prediction of fading statistics, a propagation simulator, and results from studies using the simulator. Predictions are compared to available measured data.

  2. Cosmic Ray Origin, Acceleration and Propagation

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.

    2000-01-01

    This paper summarizes highlights of the OG3.1, 3.2 and 3.3 sessions of the 26th International Cosmic Ray Conference in Salt Lake City, which were devoted to issues of origin/composition, acceleration and propagation.

  3. Propagation handbook, frequencies above 10 GHz

    NASA Technical Reports Server (NTRS)

    Ippolito, Louis J.

    1988-01-01

    The progress and accomplishments in the developmet of the Fourth Edition of the NASA Propagation Effects Handbook for Satellite Systems Design, for frequencies 10 to 100 GHz, NASA Reference Publication 1082(04), dated May 1988, prepared by Westighouse Electric Corporation for the Jet Propulsion Laboratory are discussed.

  4. Optical system defect propagation in ABCD systems.

    PubMed

    McKinley, W G; Yura, H T; Hanson, S G

    1988-05-01

    We describe how optical system defects (tilt/jitter, decenter, and despace) propagate through an arbitrary paraxial optical system that can be described by an ABCD ray transfer matrix. A pedagogical example is given that demonstrates the effect of alignment errors on a typical optical system. PMID:19745889

  5. Effect-specific analysis of propagation parameters

    NASA Technical Reports Server (NTRS)

    Ortgies, G.; Ruecker, F.; Dintelmann, F.; Jakoby, R.

    1992-01-01

    Results of propagation measurements with the satellite OLYMPUS carried out at 12.5, 20, and 30 GHz at the Research Center of the Deutsche Bundespost Telekom are discussed. In particular, attenuation, scintillation, and depolarization measurements are analyzed with special emphasis on frequency scaling of the various effects.

  6. Virus isolation and propagation in embryonating eggs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The embryonating egg is one of the most versatile, easy to work with, and widely used host systems for the isolation and propagation of avian viruses. The embryonating chicken egg (ECE) is the most commonly available system that is both specific pathogen free and supports the replication of viruses...

  7. Antenna Construction and Propagation of Radio Waves.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    Developed as part of the Marine Corps Institute (MCI) correspondence training program, this course on antenna construction and propagation of radio waves is designed to provide communicators with instructions in the selection and/or construction of the proper antenna(s) for use with current field radio equipment. Introductory materials include…

  8. Detonation propagation in a high loss configuration

    SciTech Connect

    Jackson, Scott I; Shepherd, Joseph E

    2009-01-01

    This work presents an experimental study of detonation wave propagation in tubes with inner diameters (ID) comparable to the mixture cell size. Propane-oxygen mixtures were used in two test section tubes with inner diameters of 1.27 mm and 6.35 mm. For both test sections, the initial pressure of stoichiometric mixtures was varied to determine the effect on detonation propagation. For the 6.35 mm tube, the equivalence ratio {phi} (where the mixture was {phi} C{sub 3}H{sub 8} + 50{sub 2}) was also varied. Detonations were found to propagate in mixtures with cell sizes as large as five times the diameter of the tube. However, under these conditions, significant losses were observed, resulting in wave propagation velocities as slow as 40% of the CJ velocity U{sub CJ}. A review of relevant literature is presented, followed by experimental details and data. Observed velocity deficits are predicted using models that account for boundary layer growth inside detonation waves.

  9. PROPAGATION AND LINKAGE OF OCEANIC RIDGE SEGMENTS.

    USGS Publications Warehouse

    Pollard, David D.; Aydin, Atilla

    1984-01-01

    An investigation was made of spreading ridges and the development of structures that link ridge segments using an analogy between ridges and cracks in elastic plates. The ridge-propagation force and a path factor that controls propagation direction were calculated for echelon ridge segments propagating toward each other. The ridge-propagation force increases as ridge ends approach but then declines sharply as the ends pass, so ridge segments may overlap somewhat. The sign of the path factor changes as ridge ends approach and pass, so the overlapping ridge ends may diverge and then converge following a hook-shaped path. The magnitudes of shear stresses in the plane of the plate and orientations of maximum shear planes between adjacent ridge segments were calculated to study transform faulting. For different loading conditions simulating ridge push, plate pull, and ridge suction, a zone of intense mechanical interaction between adjacent ridge ends in which stresses are concentrated was identified. The magnitudes of mean stresses in the plane of the plate and orientations of principal stress planes were also calculated.

  10. Predicting clutter during anomalous propagation conditions

    NASA Astrophysics Data System (ADS)

    Lee, Susan C.; Maurer, Donald E.; Musser, Keith L.

    1988-06-01

    Excessive clutter caused by anomalous propagation conditions severely degrades radar performance in many regions of the world. This article describes methods that can be used to predict anomalous clutter amplitude for site-specific radar parameters, terrain features, and atmospheric conditions and to predict the effects of radar Doppler processing on evaporation-ducted sea clutter.

  11. Rupture Propagation for Stochastic Fault Models

    NASA Astrophysics Data System (ADS)

    Favreau, P.; Lavallee, D.; Archuleta, R.

    2003-12-01

    The inversion of strong motion data of large earhquakes give the spatial distribution of pre-stress on the ruptured faults and it can be partially reproduced by stochastic models, but a fundamental question remains: how rupture propagates, constrained by the presence of spatial heterogeneity? For this purpose we investigate how the underlying random variables, that control the pre-stress spatial variability, condition the propagation of the rupture. Two stochastic models of prestress distributions are considered, respectively based on Cauchy and Gaussian random variables. The parameters of the two stochastic models have values corresponding to the slip distribution of the 1979 Imperial Valley earthquake. We use a finite difference code to simulate the spontaneous propagation of shear rupture on a flat fault in a 3D continuum elastic body. The friction law is the slip dependent friction law. The simulations show that the propagation of the rupture front is more complex, incoherent or snake-like for a prestress distribution based on Cauchy random variables. This may be related to the presence of a higher number of asperities in this case. These simulations suggest that directivity is stronger in the Cauchy scenario, compared to the smoother rupture of the Gauss scenario.

  12. ACTS propagation terminal prototype planning and design

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz; Pergal, F.; Chakraborty, D.; Stutzman, Warren L.

    1990-01-01

    The planning and design of a prototype propagation receiving terminal for beacon signals at 27 and 20 GHz bands are examined. The developmental plan is discussed, followed by technical design considerations including, the Advanced Communications Technology Satellite (ACTS) system salient features and frequency plan, beacon signal parameters and specifications, system calculations, and terminal hardware design issues.

  13. Vertical laser beam propagation through the troposphere

    NASA Technical Reports Server (NTRS)

    Minott, P. O.; Bufton, J. L.; Schaefer, W. H.; Grolemund, D. A.

    1974-01-01

    The characteristics of the earth's atmosphere and its effects upon laser beams was investigated in a series of balloon borne, optical propagation experiments. These experiments were designed to simulate the space to ground laser link. An experiment to determine the amplitude fluctuation, commonly called scintillation, caused by the atmosphere was described.

  14. Aircraft noise and its nearfield propagation computations

    NASA Astrophysics Data System (ADS)

    Zhang, Xin

    2012-08-01

    Noise generated by civil transport aircraft during take-off and approach-to-land phases of operation is an environmental problem. The aircraft noise problem is firstly reviewed in this article. The review is followed by a description and assessment of a number of sound propagation methods suitable for applications with a background mean flow field pertinent to aircraft noise. Of the three main areas of the noise problem, i.e. generation, propagation, and radiation, propagation provides a vital link between near-field noise generation and far-field radiation. Its accurate assessment ensures the overall validity of a prediction model. Of the various classes of propagation equations, linearised Euler equations are often casted in either time domain or frequency domain. The equations are often solved numerically by computational aeroacoustics techniques, bur are subject to the onset of Kelvin-Helmholtz (K-H) instability modes which may ruin the solutions. Other forms of linearised equations, e.g. acoustic perturbation equations have been proposed, with differing degrees of success.

  15. Propagation of Innovations in Networked Groups

    ERIC Educational Resources Information Center

    Mason, Winter A.; Jones, Andy; Goldstone, Robert L.

    2008-01-01

    A novel paradigm was developed to study the behavior of groups of networked people searching a problem space. The authors examined how different network structures affect the propagation of information in laboratory-created groups. Participants made numerical guesses and received scores that were also made available to their neighbors in the…

  16. Wave propagation on a random lattice

    SciTech Connect

    Sahlmann, Hanno

    2010-09-15

    Motivated by phenomenological questions in quantum gravity, we consider the propagation of a scalar field on a random lattice. We describe a procedure to calculate the dispersion relation for the field by taking a limit of a periodic lattice. We use this to calculate the lowest order coefficients of the dispersion relation for a specific one-dimensional model.

  17. Relativistic shock propagation in nonuniform media

    NASA Astrophysics Data System (ADS)

    Gnatyk, B. I.

    1985-10-01

    Strong shocks will propagate in much the same way whether they are non- or ultrarelativistic. An approximate law is proposed to describe the motion of a strong, adiabatic, arbitrarily relativistic shock through an initially nonrelativistic medium having any desired density distribution.

  18. Longitudinal nonlinear wave propagation through soft tissue.

    PubMed

    Valdez, M; Balachandran, B

    2013-04-01

    In this paper, wave propagation through soft tissue is investigated. A primary aim of this investigation is to gain a fundamental understanding of the influence of soft tissue nonlinear material properties on the propagation characteristics of stress waves generated by transient loadings. Here, for computational modeling purposes, the soft tissue is modeled as a nonlinear visco-hyperelastic material, the geometry is assumed to be one-dimensional rod geometry, and uniaxial propagation of longitudinal waves is considered. By using the linearized model, a basic understanding of the characteristics of wave propagation is developed through the dispersion relation and in terms of the propagation speed and attenuation. In addition, it is illustrated as to how the linear system can be used to predict brain tissue material parameters through the use of available experimental ultrasonic attenuation curves. Furthermore, frequency thresholds for wave propagation along internal structures, such as axons in the white matter of the brain, are obtained through the linear analysis. With the nonlinear material model, the authors analyze cases in which one of the ends of the rods is fixed and the other end is subjected to a loading. Two variants of the nonlinear model are analyzed and the associated predictions are compared with the predictions of the corresponding linear model. The numerical results illustrate that one of the imprints of the nonlinearity on the wave propagation phenomenon is the steepening of the wave front, leading to jump-like variations in the stress wave profiles. This phenomenon is a consequence of the dependence of the local wave speed on the local deformation of the material. As per the predictions of the nonlinear material model, compressive waves in the structure travel faster than tensile waves. Furthermore, it is found that wave pulses with large amplitudes and small elapsed times are attenuated over shorter spans. This feature is due to the elevated

  19. Proceedings of the Twentieth NASA Propagation Experimenters Meeting (NAPEX XX) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    NASA Technical Reports Server (NTRS)

    Golshan, Nassar (Editor)

    1996-01-01

    The NASA Propagation Experimenters (NAPEX) Meeting and associated Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop convene yearly to discuss studies supported by the NASA Propagation Program. Representatives from the satellite communications (satcom)industry, academia, and government with an interest in space-ground radio wave propagation have peer discussion of work in progress, disseminate propagation results, and interact with the satcom industry. NAPEX XX, in Fairbanks, Alaska, June 4-5, 1996, had three sessions: (1) "ACTS Propagation Study: Background, Objectives, and Outcomes," covered results from thirteen station-years of Ka-band experiments; (2) "Propagation Studies for Mobile and Personal Satellite Applications," provided the latest developments in measurement, modeling, and dissemination of propagation phenomena of interest to the mobile, personal, and aeronautical satcom industry; and (3)"Propagation Research Topics," covered a range of topics including space/ground optical propagation experiments, propagation databases, the NASA Propagation Web Site, and revision plans for the NASA propagation effects handbooks. The ACTS Miniworkshop, June 6, 1996, covered ACTS status, engineering support for ACTS propagation terminals, and the ACTS Propagation Data Center. A plenary session made specific recommendations for the future direction of the program.

  20. The Temporal Morphology of Infrasound Propagation

    NASA Astrophysics Data System (ADS)

    Drob, Douglas P.; Garcés, Milton; Hedlin, Michael; Brachet, Nicolas

    2010-05-01

    Expert knowledge suggests that the performance of automated infrasound event association and source location algorithms could be greatly improved by the ability to continually update station travel-time curves to properly account for the hourly, daily, and seasonal changes of the atmospheric state. With the goal of reducing false alarm rates and improving network detection capability we endeavor to develop, validate, and integrate this capability into infrasound processing operations at the International Data Centre of the Comprehensive Nuclear Test-Ban Treaty Organization. Numerous studies have demonstrated that incorporation of hybrid ground-to-space (G2S) enviromental specifications in numerical calculations of infrasound signal travel time and azimuth deviation yields significantly improved results over that of climatological atmospheric specifications, specifically for tropospheric and stratospheric modes. A robust infrastructure currently exists to generate hybrid G2S vector spherical harmonic coefficients, based on existing operational and emperical models on a real-time basis (every 3- to 6-hours) (D rob et al., 2003). Thus the next requirement in this endeavor is to refine numerical procedures to calculate infrasound propagation characteristics for robust automatic infrasound arrival identification and network detection, location, and characterization algorithms. We present results from a new code that integrates the local (range-independent) τp ray equations to provide travel time, range, turning point, and azimuth deviation for any location on the globe given a G2S vector spherical harmonic coefficient set. The code employs an accurate numerical technique capable of handling square-root singularities. We investigate the seasonal variability of propagation characteristics over a five-year time series for two different stations within the International Monitoring System with the aim of understanding the capabilities of current working knowledge of the

  1. NASA Lunar Base Wireless System Propagation Analysis

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.; Upanavage, Matthew; Sham, Catherine C.

    2007-01-01

    There have been many radio wave propagation studies using both experimental and theoretical techniques over the recent years. However, most of studies have been in support of commercial cellular phone wireless applications. The signal frequencies are mostly at the commercial cellular and Personal Communications Service bands. The antenna configurations are mostly one on a high tower and one near the ground to simulate communications between a cellular base station and a mobile unit. There are great interests in wireless communication and sensor systems for NASA lunar missions because of the emerging importance of establishing permanent lunar human exploration bases. Because of the specific lunar terrain geometries and RF frequencies of interest to the NASA missions, much of the published literature for the commercial cellular and PCS bands of 900 and 1800 MHz may not be directly applicable to the lunar base wireless system and environment. There are various communication and sensor configurations required to support all elements of a lunar base. For example, the communications between astronauts, between astronauts and the lunar vehicles, between lunar vehicles and satellites on the lunar orbits. There are also various wireless sensor systems among scientific, experimental sensors and data collection ground stations. This presentation illustrates the propagation analysis of the lunar wireless communication and sensor systems taking into account the three dimensional terrain multipath effects. It is observed that the propagation characteristics are significantly affected by the presence of the lunar terrain. The obtained results indicate the lunar surface material, terrain geometry and antenna location are the important factors affecting the propagation characteristics of the lunar wireless systems. The path loss can be much more severe than the free space propagation and is greatly affected by the antenna height, surface material and operating frequency. The

  2. SH wave propagation in piezoelectric coupled plates.

    PubMed

    Wang, Quan

    2002-05-01

    The propagation of shear horizontal (SH) wave in a piezoelectric coupled plate is investigated in this paper. Full account is taken of the piezoelectric coupling effect to the isotropic metal core in the mathematical model. One of the applications of this research is in the damage detection of the host metal structure from the wave propagation signal excited by the piezoelectric layer which is surface bonded on the surface of a metal core. This research is distinct from the previous works on SH propagation in piezoelectric structures because the piezoelectric materials were used as the core structure in the previous studies, and the potential of the studies was mainly on time-delay devices. The dispersive characteristics and the mode shapes of the transverse displacement and the electric potential of the piezoelectric layer are theoretically derived. The results from numerical simulations show that the phase velocity of the plate structure tends to the bulk shear wave velocity of the host metal core at high wavenumber when the shear wave velocity of host plate is larger than that of PZT bonded on it. Furthermore, there are three asymptotic solutions of wave propagation when the shear wave velocity of the host plate is smaller than that of PZT. The mode shape of the electric potential of the piezoelectric layer changes from the quadratic shape at lower wavenumber and with thinner piezoelectric layer to the shape with more zero nodes at higher wavenumber and with thicker piezoelectric layer. These findings are significant in the application of wave propagation in piezoelectric coupled structures. PMID:12046935

  3. Shock wave propagation in glow discharges

    NASA Astrophysics Data System (ADS)

    Ganguly, B. N.

    1998-10-01

    The modification of acoustic shock wave propagation characteristics in a 25 cm long positive column low pressure (10 to 50 Torr), low current density (2 to 10 mA/cm^2) argon and N2 dc discharges have been measured by laser beam deflection technique. The simultaneous multi point shock velocity, dispersion and damping have been measured both inside and outside the glow discharge region. The local shock velocity is found to increase with the increased propagation path length through the discharge; for Mach number greater than 1.7 the upstream velocity exceeded the downstream velocity in contrast to the opposite behavior in neutral gas. The damping and dispersion are also dependent on the propagation distance. The recovery of the shock dispersion and damping in the post discharge region, for a given discharge condition, are functions of the initial Mach number. The optical measurement of the wall and the gas (rotational) temperatures suggest the observed shock features can not be solely explained by the gas heating in a self sustained discharge. The results are similar for both Ar and N2 discharges showing that vibrational excitation and relaxation are not essential^1. The explanation of the observed weak shock propagation properties in a glow discharge appears to require long range cooperative interactions that enhance heavy particle collisional energy transfer rates for the measured discharge conditions. Unlike collisional shock wave propagation in highly ionized plasmas^2,3, the exact energy coupling mechanism between the nonequilibrium weakly ionized plasma and shock is not understood. 1. A.I. Osipov and A.V. Uvarov, Sov. Phys. Usp. 35, 903 (1992) and other references there in. 2. M. Casanova, O. Larroche and J-P Matte, Phys. Rev. Lett. 67, 2143 (1991). 3. M.C.M. van de Sanden, R. van den Bercken and D.C. Schram, Plasma Sources Sci.Technol. 3, 511 (1994).

  4. Three-Dimensional Gear Crack Propagation Studied

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.

    1999-01-01

    Gears used in current helicopters and turboprops are designed for light weight, high margins of safety, and high reliability. However, unexpected gear failures may occur even with adequate tooth design. To design an extremely safe system, the designer must ask and address the question, "What happens when a failure occurs?" With gear-tooth bending fatigue, tooth or rim fractures may occur. A crack that propagates through a rim will be catastrophic, leading to disengagement of the rotor or propeller, loss of an aircraft, and possible fatalities. This failure mode should be avoided. A crack that propagates through a tooth may or may not be catastrophic, depending on the design and operating conditions. Also, early warning of this failure mode may be possible because of advances in modern diagnostic systems. One concept proposed to address bending fatigue fracture from a safety aspect is a splittooth gear design. The prime objective of this design would be to control crack propagation in a desired direction such that at least half of the tooth would remain operational should a bending failure occur. A study at the NASA Lewis Research Center analytically validated the crack-propagation failsafe characteristics of a split-tooth gear. It used a specially developed three-dimensional crack analysis program that was based on boundary element modeling and principles of linear elastic fracture mechanics. Crack shapes as well as the crack-propagation life were predicted on the basis of the calculated stress intensity factors, mixed-mode crack-propagation trajectory theories, and fatigue crack-growth theories. The preceding figures show the effect of the location of initial cracks on crack propagation. Initial cracks in the fillet of the teeth produced stress intensity factors of greater magnitude (and thus, greater crack growth rates) than those in the root or groove areas of the teeth. Crack growth was simulated in a case study to evaluate crack-propagation paths. Tooth

  5. Amplitude-Preserving Propagator and its Applications in Computational Wave Propagation and Seismic Imaging

    NASA Astrophysics Data System (ADS)

    Eslaminia, Mehran

    A novel method is developed to approximately solve acoustic wave equation in the frequency domain. The key idea of the method is to partition the domain into smaller subdomains and solve for the wavefield in each subdomain sequentially, which is facilitated by special interface (continuity) conditions. The sequential solution is performed in two steps: First the downward propagating wavefield is computed considering only downward propagation and transmission at the interfaces. The wavefield is then corrected by adding the upward propagating wavefield resulting from reflections and body forces. It is shown that the proposed method results in accurate amplitudes for downward propagation and primary reflections and is hence called the Amplitude-Preserving Propagator. This novel wave propagator leads to three disparate contributions in large scale computational wave modeling and seismic imaging: forward modeling, migration imaging and full waveform inversion. Forward Modeling: The amplitude-preserving propagator is implemented as a preconditioner to iteratively solve the Helmholtz equation. The effectiveness of the proposed preconditioner is studied using various numerical experiments. We show three significant properties of the proposed preconditioner. First, number of iterations grows very slowly with increasing frequency which is a significant advantage compared to other methods, e.g. sweeping preconditioner. Second, the mesh size (i.e. number of elements per wavelength) does not change number of iterations. Third, and the most important one, the computational time is much less than many other preconditioners. Migration Imaging: In the context of migration imaging, the amplitude-preserving propagator is implemented as an efficient forward solver to perform wave propagation simulation in the frequency domain. We show that the propagator results in a new migration algorithm that is almost as accurate as full-wave migration, while being significantly more efficient

  6. Beam propagation method using a [(p- 1)/ p] Padé approximant of the propagator.

    PubMed

    Lu, Ya Yan; Ho, Pui Lin

    2002-05-01

    A new beam propagation method (BPM) is developed based on a direct approximation to the propagator by its [(p-1)/p] Padé approximant. The approximant is simple to construct and has the desired damping effect for the evanescent modes. The method is applied to a tapered waveguide for TM-polarized waves, based on the energy-conserving improvement of the one-way Helmholtz equation. Numerical results are compared with those obtained with other variants of the BPM. PMID:18007898

  7. Solitons in wave propagation and spin systems

    NASA Astrophysics Data System (ADS)

    Loutsenko, Igor

    1999-10-01

    This thesis consists of three parts: In the first part, a solution of the restricted Hadamard problem is presented. The classical Hadamard problem consists in determining (up to equivalence) all the second order differential operators which satisfy Huygens' Principle in the narrow sense. Physically, such operators describe systems where the diffusion of waves is absent and where signals propagate with maximal velocity. Unlike the original principle of superposition of secondary waves, which holds for all wave propagation phenomena, Huygens' principle in the narrow sense of Hadamard applies only to a very restricted range of wave processes, with sharp signals. We present a new class of Huygens' operators on Minkowski space-time and establish a new link between Huygens' principle and the solitons of the Korteveg-de Vries equation. In the second part, a new class of exactly solvable models in statistical mechanics is presented. We study the connections between the soliton solutions of certain integrable nonlinear equations (hierarchies of equations) and the thermodynamic quantities of one-dimensional Ising models with different types of interactions between spins. The exact solvability of these models can be traced back to this connection. We consider a model linked to soliton solutions of the Korteveg de Vries and of the B-type Kadomtsev-Petiashvili hierarchies. A connection between these Ising chains and random matrix models is considered as well. In the third part, we study solitonic mechanisms of exciton superfluidity. We provide a theoretical explanation of recent experiments on the propagation of excitons in semiconductors. In these experiments, the excitonic transport under the action of a laser pulse has been studied. It turned out that under certain conditions this transport becomes anomalous and the excitons propagate through the crystal in a wave packet without diffusion. We propose a model for this phenomenon which relies on the presence of an exciton

  8. Efficient Geometric Sound Propagation Using Visibility Culling

    NASA Astrophysics Data System (ADS)

    Chandak, Anish

    2011-07-01

    Simulating propagation of sound can improve the sense of realism in interactive applications such as video games and can lead to better designs in engineering applications such as architectural acoustics. In this thesis, we present geometric sound propagation techniques which are faster than prior methods and map well to upcoming parallel multi-core CPUs. We model specular reflections by using the image-source method and model finite-edge diffraction by using the well-known Biot-Tolstoy-Medwin (BTM) model. We accelerate the computation of specular reflections by applying novel visibility algorithms, FastV and AD-Frustum, which compute visibility from a point. We accelerate finite-edge diffraction modeling by applying a novel visibility algorithm which computes visibility from a region. Our visibility algorithms are based on frustum tracing and exploit recent advances in fast ray-hierarchy intersections, data-parallel computations, and scalable, multi-core algorithms. The AD-Frustum algorithm adapts its computation to the scene complexity and allows small errors in computing specular reflection paths for higher computational efficiency. FastV and our visibility algorithm from a region are general, object-space, conservative visibility algorithms that together significantly reduce the number of image sources compared to other techniques while preserving the same accuracy. Our geometric propagation algorithms are an order of magnitude faster than prior approaches for modeling specular reflections and two to ten times faster for modeling finite-edge diffraction. Our algorithms are interactive, scale almost linearly on multi-core CPUs, and can handle large, complex, and dynamic scenes. We also compare the accuracy of our sound propagation algorithms with other methods. Once sound propagation is performed, it is desirable to listen to the propagated sound in interactive and engineering applications. We can generate smooth, artifact-free output audio signals by applying

  9. Propagation of nitromethane detonations in porous media

    NASA Astrophysics Data System (ADS)

    Lee, J. J.; Frost, D. L.; Lee, J. H. S.; Dremin, A.

    1995-06-01

    The characteristics of the propagation of a detonation in chemically sensitized nitromethane in a dense porous medium are investigated. By introducing liquid NM+15% (by weight) DETA into densely packed beds of solid spherical glass beads 66μm to 2.4 mm in diameter, a highly heterogeneous explosive mixture is obtained. The critical (i.e., failure) charge diameter of this mixture is systematically measured in unconfined charges over a wide range of bead sizes. Velocity measurements are also made for the various charges. It is found that there exists a critical bead size above which the critical diameter decreases with increasing bead size and below which it decreases with decreasing bead size. This result indicates an abrupt change in the mechanism of propagation at the critical bead size. Velocity measurements further support this by emphasizing the different behavior above and below the critical point.

  10. Joint Acoustic Propagation Experiment (JAPE-91) Workshop

    NASA Technical Reports Server (NTRS)

    Willshire, William L., Jr. (Compiler); Chestnutt, David (Compiler)

    1993-01-01

    The Joint Acoustic Propagation Experiment (JAPE), was conducted at the White Sands Missile Range, New Mexico, USA, during the period 11-28 Jul. 1991. JAPE consisted of various short and long range propagation experiments using various acoustic sources including speakers, propane cannons, helicopters, a 155 mm howitzer, and static high explosives. Of primary importance to the performance of theses tests was the extensive characterization of the atmosphere during these tests. This atmospheric characterization included turbulence measurements. A workshop to disseminate the results of JAPE-91 was held in Hampton, VA, on 28 Apr. 1993. This report is a compilation of the presentations made at the workshop along with a list of attendees and the agenda.

  11. Propagation of waves along an impedance boundary

    NASA Technical Reports Server (NTRS)

    Wenzel, A. R.

    1974-01-01

    A theoretical analysis of the scalar wave field due to a point source above a plane impedance boundary is presented. A surface wave is found to be an essential component of the total wave field. It is shown that, as a result of ducting of energy by the surface wave, the amplitude of the total wave near the boundary can be greater than it would be if the boundary were perfectly reflecting. Asymptotic results, valid near the boundary, are obtained both for the case of finite impedance (the soft-boundary case) and for the limiting case in which the impedance becomes infinite (the hard-boundary case). In the latter, the wave amplitude in the farfield decreases essentially inversely as the horizontal propagation distance; in the former (if the surface-wave term is neglected), it decreases inversely as the square of the horizontal propagation distance.

  12. Propagating Resource Constraints Using Mutual Exclusion Reasoning

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Sanchez, Romeo; Do, Minh B.; Clancy, Daniel (Technical Monitor)

    2001-01-01

    One of the most recent techniques for propagating resource constraints in Constraint Based scheduling is Energy Constraint. This technique focuses in precedence based scheduling, where precedence relations are taken into account rather than the absolute position of activities. Although, this particular technique proved to be efficient on discrete unary resources, it provides only loose bounds for jobs using discrete multi-capacity resources. In this paper we show how mutual exclusion reasoning can be used to propagate time bounds for activities using discrete resources. We show that our technique based on critical path analysis and mutex reasoning is just as effective on unary resources, and also shows that it is more effective on multi-capacity resources, through both examples and empirical study.

  13. Experiments on the Propagation of Plasma Filaments

    SciTech Connect

    Katz, Noam; Egedal, Jan; Fox, Will; Le, Ari; Porkolab, Miklos

    2008-07-04

    We investigate experimentally the motion and structure of isolated plasma filaments propagating through neutral gas. Plasma filaments, or 'blobs,' arise from turbulent fluctuations in a range of plasmas. Our experimental geometry is toroidally symmetric, and the blobs expand to a larger major radius under the influence of a vertical electric field. The electric field, which is caused by {nabla}B and curvature drifts in a 1/R magnetic field, is limited by collisional damping on the neutral gas. The blob's electrostatic potential structure and the resulting ExB flow field give rise to a vortex pair and a mushroom shape, which are consistent with nonlinear plasma simulations. We observe experimentally this characteristic mushroom shape for the first time. We also find that the blob propagation velocity is inversely proportional to the neutral density and decreases with time as the blob cools.

  14. Ionic wave propagation along actin filaments.

    PubMed

    Tuszyński, J A; Portet, S; Dixon, J M; Luxford, C; Cantiello, H F

    2004-04-01

    We investigate the conditions enabling actin filaments to act as electrical transmission lines for ion flows along their lengths. We propose a model in which each actin monomer is an electric element with a capacitive, inductive, and resistive property due to the molecular structure of the actin filament and viscosity of the solution. Based on Kirchhoff's laws taken in the continuum limit, a nonlinear partial differential equation is derived for the propagation of ionic waves. We solve this equation in two different regimes. In the first, the maximum propagation velocity wave is found in terms of Jacobi elliptic functions. In the general case, we analyze the equation in terms of Fisher-Kolmogoroff modes with both localized and extended wave characteristics. We propose a new signaling mechanism in the cell, especially in neurons. PMID:15041636

  15. Propagation mechanism of polymer optical fiber fuse

    PubMed Central

    Mizuno, Yosuke; Hayashi, Neisei; Tanaka, Hiroki; Nakamura, Kentaro; Todoroki, Shin-ichi

    2014-01-01

    A fiber fuse phenomenon in polymer optical fibers (POFs) has recently been observed, and its unique properties such as slow propagation, low threshold power density, and the formation of a black oscillatory damage curve, have been reported. However, its characterization is still insufficient to well understand the mechanism and to avoid the destruction of POFs. Here, we present detailed experimental and theoretical analyses of the POF fuse propagation. First, we clarify that the bright spot is not a plasma but an optical discharge, the temperature of which is ~3600 K. We then elucidate the reasons for the oscillation of the damage curve along with the formation of newly-observed gas bubbles as well as for the low threshold power density. We also present the idea that the POF fuse can potentially be exploited to offer a long photoelectric interaction length. PMID:24762949

  16. Crack Propagation in Bamboo's Hierarchical Cellular Structure

    PubMed Central

    Habibi, Meisam K.; Lu, Yang

    2014-01-01

    Bamboo, as a natural hierarchical cellular material, exhibits remarkable mechanical properties including excellent flexibility and fracture toughness. As far as bamboo as a functionally graded bio-composite is concerned, the interactions of different constituents (bamboo fibers; parenchyma cells; and vessels.) alongside their corresponding interfacial areas with a developed crack should be of high significance. Here, by using multi-scale mechanical characterizations coupled with advanced environmental electron microscopy (ESEM), we unambiguously show that fibers' interfacial areas along with parenchyma cells' boundaries were preferred routes for crack growth in both radial and longitudinal directions. Irrespective of the honeycomb structure of fibers along with cellular configuration of parenchyma ground, the hollow vessels within bamboo culm affected the crack propagation too, by crack deflection or crack-tip energy dissipation. It is expected that the tortuous crack propagation mode exhibited in the present study could be applicable to other cellular natural materials as well. PMID:24998298

  17. Cosmic ray propagation in galactic turbulence

    SciTech Connect

    Evoli, Carmelo; Yan, Huirong E-mail: hryan@pku.edu.cn

    2014-02-10

    We revisit propagation of galactic cosmic rays (CRs) in light of recent advances in CR diffusion theory in realistic interstellar turbulence. We use a tested model of turbulence in which it has been shown that fast modes dominate scattering of CRs. As a result, propagation becomes inhomogeneous and environment dependent. By adopting the formalism of the nonlinear theory developed by Yan and Lazarian, we calculate the diffusion of CRs self-consistently from first principles. We assume a two-phase model for the Galaxy to account for different damping mechanisms of the fast modes, and we find that the energy dependence of the diffusion coefficient is mainly affected by medium properties. We show that it gives a correct framework to interpret some of the recent CR puzzles.

  18. In vitro propagation of Berberis buxifolia Lam.

    PubMed

    Arena, M E; Martínez Pastur, G; Vater, G

    2000-04-01

    Berberis buxifolia is a native shrub of Patagonia with a great importance due to its crop production as soon its medicinal and tinctorial applications. The aim of this work was to develop a protocol for in vitro propagation of B. buxifolia, with special emphasys on the rooting stage. The culture of the explants on Murashige and Skoog (1962) medium added with 0.55 microM BA allowed to attain a multiplication rate of 1:4.7 at day 63. Rooted shoots were obtained on Murashige and Skoog medium with half strength of macronutrient salts. The culture of the shoots with a period of 4 days of darkness at the beginning of the rooting, on a medium with 1.25 microM IBA for 7 days, followed by a IBA free medium until day 28, allowed to attain 80% rooting. These results show that B. buxifolia can be in vitro propagated. PMID:10893802

  19. The Joint African Radiometric Propagation Measurement Programme

    NASA Astrophysics Data System (ADS)

    Arbesser-Rastburg, B.; Zaks, C.; Rogers, D. V.; McCarthy, D. K.; Allnutt, J. E.

    1990-06-01

    This paper summarizes the principal aspects of a major cooperative radiowave propagation experiment that was designed to collect data for improving rain attenuation prediction models for tropical Africa. A pressing need for such data had previously been identified by Resolution 79 of the CCIR. In a unique joint arrangement with three African governments, Intelsat, Comsat, the U.S. Agency for International Development, the U.S. National Telecommunications and Information Administration and the U.S. Telecommunications Training Institute (USTTI) collaborated in setting up a Ku-band radiometric measurement campaign in Cameroon, Kenya and Nigeria. A brief historical overview is given, together with the major technical parameters of the sites and the equipment installed there. The anticipated characteristics of the three locations are outlined with regard to meteorological and propagation conditions, and some preliminary indications of the results are presented based on an inspection of the early event data.

  20. Observations concerning licensee practices in error propagation

    SciTech Connect

    Lumb, R.F.; Messinger, M.; Tingey, F.H.

    1983-07-01

    This paper describes some of NUSAC's observations concerning licensee error propagation practice. NUSAC's findings are based on the results of work performed for the NRC whereby NUSAC visited seven nuclear fuel fabrication facilities, four processing low enriched uranium (LEU) and three processing high enriched uranium (HEU), in order to develop a detailed evaluation of the processing of material accounting data by those facilities. Discussed is the diversity that was found to exist across the industry in material accounting data accumulation; in error propagation methodology, for both inventory difference (ID) and shipper/receiver difference (SRD); as well as in measurement error modeling and estimation. Problems that have been identified are, in general, common to the industry. The significance of nonmeasurement effects on the variance of ID is discussed. This paper will also outline a four-phase program that can be implemented to improve the existing situation.

  1. Holographic capture of femtosecond pulse propagation

    SciTech Connect

    Centurion, Martin; Pu Ye; Psaltis, Demetri

    2006-09-15

    We have implemented a holographic system to study the propagation of femtosecond laser pulses with high temporal (150 fs) and spatial resolutions (4 {mu}m). The phase information in the holograms allows us to reconstruct both positive and negative index changes due to the Kerr nonlinearity (positive) and plasma formation (negative), and to reconstruct three-dimensional structure. Dramatic differences were observed in the interaction of focused femtosecond pulses with air, water, and carbon disulfide. The air becomes ionized in the focal region, while in water long plasma filaments appear before the light reaches a tight focus. In contrast, in carbon disulfide the optical beam breaks up into multiple filaments but no plasma is measured. We explain these different propagation regimes in terms of the different nonlinear material properties.

  2. Burrowing mechanics: burrow extension by crack propagation.

    PubMed

    Dorgan, Kelly M; Jumars, Peter A; Johnson, Bruce; Boudreau, B P; Landis, Eric

    2005-02-01

    Until now, the analysis of burrowing mechanics has neglected the mechanical properties of impeding, muddy, cohesive sediments, which behave like elastic solids. Here we show that burrowers can progress through such sediments by using a mechanically efficient, previously unsuspected mechanism--crack propagation--in which an alternating 'anchor' system of burrowing serves as a wedge to extend the crack-shaped burrow. The force required to propagate cracks through sediment in this way is relatively small: we find that the force exerted by the annelid worm Nereis virens in making and moving into such a burrow amounts to less than one-tenth of the force it needs to use against rigid aquarium walls. PMID:15690029

  3. High-power pulse propagation experiments

    SciTech Connect

    Alvarez, R.A.

    1986-12-01

    One of the questions that must be answered in assessing the potential of pulsed microwave beams as directed energy weapons is, ''What is the maximum pulse energy (and/or peak power) that can be delivered from a source to a target.'' Atmospheric breakdown caused by the electromagnetic fields of the pulse sets one limit on energy propagation, and the breakdown threshold was the subject of fairly extensive investigation a number of years ago. The evolution of microwave source technology has extended the parameter range over which propagation needs to be understood, and additional issues that have not previously been investigated experimentally have assumed a new importance. A new generation of experiments is underway, planned, or proposed to investigate these issues. 13 refs.

  4. Outwardly Propagating Flames at Elevated Pressures

    NASA Technical Reports Server (NTRS)

    Law, C. K.; Rozenchan, G.; Tse, S. D.; Zhu, D. L.

    2001-01-01

    Spherical, outwardly-propagating flames of CH4-O2-inert and H2-O2-inert mixtures were experimentally studied in a high pressure apparatus. Stretch-free flame speeds and Markstein lengths were extracted for a wide range of pressures and equivalence ratios for spherically-symmetric, smooth flamefronts and compared to numerical computations with detailed chemistry and transport, as well as existing data in the literature. Wrinkle development was examined for propagating flames that were unstable under our experimental conditions. Hydrodynamic cells developed for most H2-air and CH4-air flames at elevated pressures, while thermal-diffusive instabilities were also observed for lean and near-stoichiometric hydrogen flames at pressures above atmospheric. Strategies in suppressing or delaying the onset of cell formation have been assessed. Buoyancy effects affected sufficiently off-stoichiometric CH4 mixtures at high pressures.

  5. Spacetime and Quantum Propagation From Digital Clocks

    NASA Astrophysics Data System (ADS)

    Ord, Garnet. N.

    2013-09-01

    Minkowski spacetime predates quantum mechanics and is frequently regarded as an extension of the classical paradigm of Newtonian physics, rather than a harbinger of quantum mechanics. By inspecting how discrete clocks operate in a relativistic world we show that this view is misleading. Discrete relativistic clocks implicate classical spacetime provided a continuum limit is taken in such a way that successive ticks of the clock yield a smooth worldline. The classical picture emerges but does so by confining unitary propagation into spacetime regions between ticks that have zero area in the continuum limit. Clocks allowed a continuum limit that does not force inter-event intervals to zero, satisfy the Dirac equation. This strongly suggests that the origin of quantum propagation is to be found in the shift from Newton's absolute time to Minkowski's frame dependent time and is ultimately relativistic in origin.

  6. Entanglement dynamics via coherent-state propagators

    SciTech Connect

    Ribeiro, A. D.; Angelo, R. M.

    2010-11-15

    The dynamical generation of entanglement in closed bipartite systems is investigated in the semiclassical regime. We consider a model of two particles, initially prepared in a product of coherent states, evolving in time according to a generic Hamiltonian, and derive a formula for the linear entropy of the reduced density matrix using the semiclassical propagator in the coherent-state representation. The formula is explicitly written in terms of quantities that define the stability of classical trajectories of the underlying classical system. The formalism is then applied to the problem of two nonlinearly coupled harmonic oscillators, and the result is shown to be in remarkable agreement with the exact quantum measure of entanglement in the short-time regime. An important by-product of our approach is a unified semiclassical formula, which contemplates both the coherent-state propagator and its complex conjugate.

  7. Mechanically driven interface propagation in biological tissues

    NASA Astrophysics Data System (ADS)

    Ranft, Jonas; Aliee, Maryam; Prost, Jacques; Jülicher, Frank; Joanny, Jean-François

    2014-03-01

    Many biological tissues consist of more than one cell type. We study the dynamics of an interface between two different cell populations as it occurs during the growth of a tumor in a healthy host tissue. Recent work suggests that the rates of cell division and cell death are under mechanical control, characterized by a homeostatic pressure. The difference in the homeostatic pressures of two cell types drives the propagation of the interface, corresponding to the invasion of one cell type into the other. We derive a front propagation equation that takes into account the coupling between cell number balance and tissue mechanics. We show that in addition to pulled fronts, pushed-front solutions occur as a result of convection driven by mechanics.

  8. Obliquely propagating dust-density waves

    NASA Astrophysics Data System (ADS)

    Piel, A.; Arp, O.; Klindworth, M.; Melzer, A.

    2008-02-01

    Self-excited dust-density waves are experimentally studied in a dusty plasma under microgravity. Two types of waves are observed: a mode inside the dust volume propagating in the direction of the ion flow and another mode propagating obliquely at the boundary between the dusty plasma and the space charge sheath. The dominance of oblique modes can be described in the frame of a fluid model. It is shown that the results fom the fluid model agree remarkably well with a kinetic electrostatic model of Rosenberg [J. Vac. Sci. Technol. A 14, 631 (1996)]. In the experiment, the instability is quenched by increasing the gas pressure or decreasing the dust density. The critical pressure and dust density are well described by the models.

  9. Atmospheric effects on CO2 laser propagation

    NASA Technical Reports Server (NTRS)

    Murty, S. S. R.; Bilbro, J. W.

    1978-01-01

    An investigation was made of the losses encountered in the propagation of CO2 laser radiation through the atmosphere, particularly as it applies to the NASA/Marshall Space Flight Center Pulsed Laser Doppler System. As such it addresses three major areas associated with signal loss: molecular absorption, refractive index changes in a turbulent environment, and aerosol absorption and scattering. In particular, the molecular absorption coefficients of carbon dioxide, water vapor, and nitrous oxide are calculated for various laser lines in the region of 10.6 mu m as a function of various pressures and temperatures. The current status in the physics of low-energy laser propagation through a turbulent atmosphere is presented together with the analysis and evaluation of the associated heterodyne signal power loss. Finally, aerosol backscatter and extinction coefficients are calculated for various aerosol distributions and the results incorporated into the signal-to-noise ratio equation for the Marshall Space Flight Center system.

  10. Crack propagation and arrest in pressurized containers

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Delale, F.; Owczarek, J. A.

    1976-01-01

    The problem of crack propagation and arrest in a finite volume cylindrical container filled with pressurized gas is considered. It is assumed that the cylinder contains a symmetrically located longitudinal part-through crack with a relatively small net ligament. The net ligament suddenly ruptures initiating the process of fracture propagation and depressurization in the cylinder. Thus the problem is a coupled gas dynamics and solid mechanics problem the exact formulation of which does not seem to be possible. The problem is reduced to a proper initial value problem by introducing a dynamic fracture criterion which relates the crack acceleration to the difference between a load factor and the corresponding strength parameter. The results indicate that generally in gas filled cylinders fracture arrest is not possible unless the material behaves in a ductile manner and the container is relatively long.

  11. Inferring network topology via the propagation process

    NASA Astrophysics Data System (ADS)

    Zeng, An

    2013-11-01

    Inferring the network topology from the dynamics is a fundamental problem, with wide applications in geology, biology, and even counter-terrorism. Based on the propagation process, we present a simple method to uncover the network topology. A numerical simulation on artificial networks shows that our method enjoys a high accuracy in inferring the network topology. We find that the infection rate in the propagation process significantly influences the accuracy, and that each network corresponds to an optimal infection rate. Moreover, the method generally works better in large networks. These finding are confirmed in both real social and nonsocial networks. Finally, the method is extended to directed networks, and a similarity measure specific for directed networks is designed.

  12. Sources, Propagators, and Sinks of Space Weather

    NASA Technical Reports Server (NTRS)

    Pesnell, William D.

    2006-01-01

    Space Weather is a complex web of sources, propagators, and sinks of energy, mass, and momentum. A complete understanding of Space Weather requires specifying, and an ability to predict, each link in this web. One important problem in Space Weather is ranking the importance of a particular measurement or model in a research program. One way to do this ranking is to examine the simplest linked diagram of the sources, propagators, and sinks and produce. By analyzing only those components that contribute to a particular area the individual contributions can be better appreciated. Several such diagrams will be shown and used to discuss how long-term effects of Space Weather can be separated from the impulsive effects.

  13. Method and apparatus for charged particle propagation

    DOEpatents

    Hershcovitch, A.

    1996-11-26

    A method and apparatus are provided for propagating charged particles from a vacuum to a higher pressure region. A generator includes an evacuated chamber having a gun for discharging a beam of charged particles such as an electron beam or ion beam. The beam is discharged through a beam exit in the chamber into a higher pressure region. A plasma interface is disposed at the beam exit and includes a plasma channel for bounding a plasma maintainable between a cathode and an anode disposed at opposite ends thereof. The plasma channel is coaxially aligned with the beam exit for propagating the beam from the chamber, through the plasma, and into the higher pressure region. The plasma is effective for pumping down the beam exit for preventing pressure increase in the chamber and provides magnetic focusing of the beam discharged into the higher pressure region 24. 7 figs.

  14. Vegetative propagation of Cecropia obtusifolia (Cecropiaceae).

    PubMed

    LaPierre, L M

    2001-01-01

    Cecropia is a relatively well-known and well-studied genus in the Neotropics. Methods for the successful propagation of C. obtusifolia Bertoloni, 1840 from cuttings and air layering are described, and the results of an experiment to test the effect of two auxins, naphthalene acetic acid (NAA) and indole butyric acid (IBA), on adventitious root production in cuttings are presented. In general, C. obtusifolia cuttings respond well to adventitious root production (58.3% of cuttings survived to root), but air layering was the better method (93% of cuttings survived to root). The concentration of auxins used resulted in an overall significantly lower quality of roots produced compared with cuttings without auxin treatment. Future experiments using Cecropia could benefit from the use of isogenic plants produced by vegetative propagation. PMID:12189829

  15. Sources, Propagators, and Sinks of Space Weather

    NASA Astrophysics Data System (ADS)

    Pesnell, W. D.

    2006-12-01

    Space Weather is a complex web of sources, propagators, and sinks of energy, mass, and momentum. A complete understanding of Space Weather requires specifying, and an ability to predict, each link in this web. One important problem in Space Weather is ranking the importance of a particular measurement or model in a research program. One way to do this ranking is to examine the simplest linked diagram of the sources, propagators, and sinks and produce. By analyzing only those components that contribute to a particular area the individual contributions can be better appreciated. Several such diagrams will be shown and used to discuss how long-term effects of Space Weather can be separated from the impulsive effects.

  16. Scout trajectory error propagation computer program

    NASA Technical Reports Server (NTRS)

    Myler, T. R.

    1982-01-01

    Since 1969, flight experience has been used as the basis for predicting Scout orbital accuracy. The data used for calculating the accuracy consists of errors in the trajectory parameters (altitude, velocity, etc.) at stage burnout as observed on Scout flights. Approximately 50 sets of errors are used in Monte Carlo analysis to generate error statistics in the trajectory parameters. A covariance matrix is formed which may be propagated in time. The mechanization of this process resulted in computer program Scout Trajectory Error Propagation (STEP) and is described herein. Computer program STEP may be used in conjunction with the Statistical Orbital Analysis Routine to generate accuracy in the orbit parameters (apogee, perigee, inclination, etc.) based upon flight experience.

  17. The stratospheric arrival pair in infrasound propagation.

    PubMed

    Waxler, Roger; Evers, Läslo G; Assink, Jelle; Blom, Phillip

    2015-04-01

    The ideal case of a deep and well-formed stratospheric duct for long range infrasound propagation in the absence of tropospheric ducting is considered. A canonical form, that of a pair of arrivals, for ground returns of impulsive signals in a stratospheric duct is determined. The canonical form is derived from the geometrical acoustics approximation, and is validated and extended through full wave modeling. The full caustic structure of the field of ray paths is found and used to determine phase relations between the contributions to the wavetrain from different propagation paths. Finally, comparison with data collected from the 2005 fuel gas depot explosion in Buncefield, England is made. The correspondence between the theoretical results and the observations is shown to be quite good. PMID:25920837

  18. Propagating Qualitative Values Through Quantitative Equations

    NASA Technical Reports Server (NTRS)

    Kulkarni, Deepak

    1992-01-01

    In most practical problems where traditional numeric simulation is not adequate, one need to reason about a system with both qualitative and quantitative equations. In this paper, we address the problem of propagating qualitative values represented as interval values through quantitative equations. Previous research has produced exponential-time algorithms for approximate solution of the problem. These may not meet the stringent requirements of many real time applications. This paper advances the state of art by producing a linear-time algorithm that can propagate a qualitative value through a class of complex quantitative equations exactly and through arbitrary algebraic expressions approximately. The algorithm was found applicable to Space Shuttle Reaction Control System model.

  19. Proceedings of the Seventeenth NASA Propagation Experimenters Meeting (NAPEX 17) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz (Editor)

    1993-01-01

    The NASA Propagation Experimenters Meeting (NAPEX) is convened annually to discuss studies made on radio wave propagation by investors from domestic and international organizations. NAPEX 17 was held on 15 June 1993. The meeting was organized into two technical sessions. The first session was dedicated to slant path propagation studies and experiments. The second session focused on propagation studies for mobile and personal communications. Preceding NAPEX 17, the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop was held on 14 June 1993 to review ACTS propagation activities with emphasis on ACTS experiments status and data collection, processing, and exchange.

  20. Experimental study of turbulent flame kernel propagation

    SciTech Connect

    Mansour, Mohy; Peters, Norbert; Schrader, Lars-Uve

    2008-07-15

    Flame kernels in spark ignited combustion systems dominate the flame propagation and combustion stability and performance. They are likely controlled by the spark energy, flow field and mixing field. The aim of the present work is to experimentally investigate the structure and propagation of the flame kernel in turbulent premixed methane flow using advanced laser-based techniques. The spark is generated using pulsed Nd:YAG laser with 20 mJ pulse energy in order to avoid the effect of the electrodes on the flame kernel structure and the variation of spark energy from shot-to-shot. Four flames have been investigated at equivalence ratios, {phi}{sub j}, of 0.8 and 1.0 and jet velocities, U{sub j}, of 6 and 12 m/s. A combined two-dimensional Rayleigh and LIPF-OH technique has been applied. The flame kernel structure has been collected at several time intervals from the laser ignition between 10 {mu}s and 2 ms. The data show that the flame kernel structure starts with spherical shape and changes gradually to peanut-like, then to mushroom-like and finally disturbed by the turbulence. The mushroom-like structure lasts longer in the stoichiometric and slower jet velocity. The growth rate of the average flame kernel radius is divided into two linear relations; the first one during the first 100 {mu}s is almost three times faster than that at the later stage between 100 and 2000 {mu}s. The flame propagation is slightly faster in leaner flames. The trends of the flame propagation, flame radius, flame cross-sectional area and mean flame temperature are related to the jet velocity and equivalence ratio. The relations obtained in the present work allow the prediction of any of these parameters at different conditions. (author)

  1. Genesis and propagation of cosmic rays

    SciTech Connect

    Shapiro, M.M.; Wefel, J.P.

    1988-01-01

    This book presents a panorama of contemporary state-of-the-art knowledge on the origin of cosmic rays and how they propagate through space. Twenty-eight articles cover such topics as objects which generate cosmic rays, processes which accelerate particles to cosmic ray energies, the interaction of cosmic rays with their environment, elementary particles in cosmic rays, how to detect cosmic rays and future experiments to measure highly energetic particles.

  2. Propagation issues in the Globalstar system

    NASA Technical Reports Server (NTRS)

    Prescott, Toby

    1995-01-01

    The purpose of the Globalstar system is to provide reliable, timely space based telecommunications services for fixed, handheld and mobile user telephones throughout the world. The system supports communication services for voice and data as well as low rate data services such as paging. The Globalstar system can also support user position determination. The purpose of this paper is to provide a brief introduction of the Globalstar system followed by a discussion of the propagation issues in the Globalstar system design.

  3. Propagation considerations for the Odyssey system design

    NASA Technical Reports Server (NTRS)

    Ho, Hau H.

    1994-01-01

    This paper presents an overview of the Odyssey system with special emphasis given to the link availability for both mobile link and feeder link. The Odyssey system design provides high link availability, typically 98 percent in the primary service areas, and better than 95 percent availability in other service areas. Strategies for overcoming Ka-band feeder link rain fades are presented. Mobile link propagation study results and summary link budgets are also presented.

  4. Surge propagation in gas insulated substation

    SciTech Connect

    Matsumura, S.; Nitta, T.

    1981-06-01

    Surge propagation performance in a 550 kV gas insulated substation is studied experimentally and by computer simulation using the Electro-Magnetic Transients Program. Extra capacitance added to the system by the components of GIS such as potential devices, branch buses, circuit breakers deform the wave shape of the travelling surges. A simple modeling technique to represent GIS in surge analysis is proposed and its applicability is proved. Paper No. 80 SM 658-5.

  5. Meson-meson interactions and Regge propagators

    SciTech Connect

    Beveren, Eef van Rupp, George

    2009-08-15

    By a reformulation of the loop expansion in the Resonance-Spectrum Expansion amplitude for meson-meson scattering, in terms of s-channel exchange of families of propagator modes, we obtain a formalism which allows for a wider range of applications. The connection with the unitarized amplitudes employed in some chiral theories is discussed. We also define an alternative for the Regge spectra and indicate how this may be observed in experiment.

  6. Comments on 'Rapid pulsed microwave propagation'

    NASA Astrophysics Data System (ADS)

    Marks, Roger B.

    1992-05-01

    An evaluation is conducted of the Giakos and Ishii (1991) report of experimental evidence purporting the propagation of EM pulses at a speed faster than that of light. It is established that such experimental results contradict Maxwell's equations. An examination is conducted of the limitations inherent to the experiment of Giakos and Ishii (1991). Giakos and Ishii reply that their experimental results are consistent with the Maxwell equations.

  7. Low frequency propagation in the earth's magnetosphere

    NASA Technical Reports Server (NTRS)

    Dennison, Brian; Ananthakrishnan, S.; Desch, M.; Kaiser, M. L.; Weiler, K. W.

    1990-01-01

    Using a model to simulate wave propagation, estimates were obtained on the effect of the earth's magnetosphere on the imaging potential of the Low-Frequency Space Array mission for observations above the ionosphere at frequencies below about 10 MHz. Results of this simulation show that, for imaging at 1.5 MHz, large orbital radii will be required. It is concluded that successful imaging from within the plasmasphere may depend upon the feasibility of correction schemes.

  8. 47 CFR 80.767 - Propagation curve.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... propagation graph, § 80.767 Graph 1, must be used in computing the service area contour. The graph provides...: Transmitter output power in watts is converted to dBk by Pt=10 −30. Also see § 80.761 Graph 1 for a conversion graph. G=Antenna gain in dB referred to a standard half-wave dipole, in the direction of each...

  9. 47 CFR 80.767 - Propagation curve.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... propagation graph, § 80.767 Graph 1, must be used in computing the service area contour. The graph provides...: Transmitter output power in watts is converted to dBk by Pt=10 −30. Also see § 80.761 Graph 1 for a conversion graph. G=Antenna gain in dB referred to a standard half-wave dipole, in the direction of each...

  10. 47 CFR 80.767 - Propagation curve.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... propagation graph, § 80.767 Graph 1, must be used in computing the service area contour. The graph provides...: Transmitter output power in watts is converted to dBk by Pt=10 −30. Also see § 80.761 Graph 1 for a conversion graph. G=Antenna gain in dB referred to a standard half-wave dipole, in the direction of each...

  11. 47 CFR 80.767 - Propagation curve.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... propagation graph, § 80.767 Graph 1, must be used in computing the service area contour. The graph provides...: Transmitter output power in watts is converted to dBk by Pt=10 −30. Also see § 80.761 Graph 1 for a conversion graph. G=Antenna gain in dB referred to a standard half-wave dipole, in the direction of each...

  12. 47 CFR 80.767 - Propagation curve.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... propagation graph, § 80.767 Graph 1, must be used in computing the service area contour. The graph provides...: Transmitter output power in watts is converted to dBk by Pt=10 −30. Also see § 80.761 Graph 1 for a conversion graph. G=Antenna gain in dB referred to a standard half-wave dipole, in the direction of each...

  13. Propagation Of Sound In Curved Ducts

    NASA Technical Reports Server (NTRS)

    Rostafinski, Wojciech

    1992-01-01

    Monograph presents concise, comprehensive summary of knowledge of propagation of acoustic waves in ducts and pipes including bends. Pulls together information from Lord Rayleigh's book Theory Of Sound, published in 1878, and from 33 papers scattered throughout various scientific journals published between 1945 and 1989. Monograph useful to scientists and engineers interested in such diverse topics as musical instruments, air-conditioning ducts, and jet engines. Material not available in current texts.

  14. Faraday Pilot-Waves: Generation and Propagation

    NASA Astrophysics Data System (ADS)

    Galeano-Rios, Carlos; Milewski, Paul; Nachbin, André; Bush, John

    2015-11-01

    We examine the dynamics of drops bouncing on a fluid bath subjected to vertical vibration. We solve a system of linear PDEs to compute the surface wave generation and propagation. Waves are triggered at each bounce, giving rise to the Faraday pilot-wave field. The model captures several of the behaviors observed in the laboratory, including transitions between a variety of bouncing and walking states, the Doppler effect, and droplet-droplet interactions. Thanks to the NSF.

  15. Propagating synchrony in feed-forward networks.

    PubMed

    Jahnke, Sven; Memmesheimer, Raoul-Martin; Timme, Marc

    2013-01-01

    Coordinated patterns of precisely timed action potentials (spikes) emerge in a variety of neural circuits but their dynamical origin is still not well understood. One hypothesis states that synchronous activity propagating through feed-forward chains of groups of neurons (synfire chains) may dynamically generate such spike patterns. Additionally, synfire chains offer the possibility to enable reliable signal transmission. So far, mostly densely connected chains, often with all-to-all connectivity between groups, have been theoretically and computationally studied. Yet, such prominent feed-forward structures have not been observed experimentally. Here we analytically and numerically investigate under which conditions diluted feed-forward chains may exhibit synchrony propagation. In addition to conventional linear input summation, we study the impact of non-linear, non-additive summation accounting for the effect of fast dendritic spikes. The non-linearities promote synchronous inputs to generate precisely timed spikes. We identify how non-additive coupling relaxes the conditions on connectivity such that it enables synchrony propagation at connectivities substantially lower than required for linearly coupled chains. Although the analytical treatment is based on a simple leaky integrate-and-fire neuron model, we show how to generalize our methods to biologically more detailed neuron models and verify our results by numerical simulations with, e.g., Hodgkin Huxley type neurons. PMID:24298251

  16. Cosmic ray sources, acceleration and propagation

    NASA Technical Reports Server (NTRS)

    Ptuskin, V. S.

    1986-01-01

    A review is given of selected papers on the theory of cosmic ray (CR) propagation and acceleration. The high isotropy and a comparatively large age of galactic CR are explained by the effective interaction of relativistic particles with random and regular electromagnetic fields in interstellar medium. The kinetic theory of CR propagation in the Galaxy is formulated similarly to the elaborate theory of CR propagation in heliosphere. The substantial difference between these theories is explained by the necessity to take into account in some cases the collective effects due to a rather high density of relativisitc particles. In particular, the kinetic CR stream instability and the hydrodynamic Parker instability is studied. The interaction of relativistic particles with an ensemble of given weak random magnetic fields is calculated by perturbation theory. The theory of CR transfer is considered to be basically completed for this case. The main problem consists in poor information about the structure of the regular and the random galactic magnetic fields. An account is given of CR transfer in a turbulent medium.

  17. Large-scale Globally Propagating Coronal Waves

    NASA Astrophysics Data System (ADS)

    Warmuth, Alexander

    2015-09-01

    Large-scale, globally propagating wave-like disturbances have been observed in the solar chromosphere and by inference in the corona since the 1960s. However, detailed analysis of these phenomena has only been conducted since the late 1990s. This was prompted by the availability of high-cadence coronal imaging data from numerous spaced-based instruments, which routinely show spectacular globally propagating bright fronts. Coronal waves, as these perturbations are usually referred to, have now been observed in a wide range of spectral channels, yielding a wealth of information. Many findings have supported the "classical" interpretation of the disturbances: fast-mode MHD waves or shocks that are propagating in the solar corona. However, observations that seemed inconsistent with this picture have stimulated the development of alternative models in which "pseudo waves" are generated by magnetic reconfiguration in the framework of an expanding coronal mass ejection. This has resulted in a vigorous debate on the physical nature of these disturbances. This review focuses on demonstrating how the numerous observational findings of the last one and a half decades can be used to constrain our models of large-scale coronal waves, and how a coherent physical understanding of these disturbances is finally emerging.

  18. Nonlinear propagation of light in Dirac matter.

    PubMed

    Eliasson, Bengt; Shukla, P K

    2011-09-01

    The nonlinear interaction between intense laser light and a quantum plasma is modeled by a collective Dirac equation coupled with the Maxwell equations. The model is used to study the nonlinear propagation of relativistically intense laser light in a quantum plasma including the electron spin-1/2 effect. The relativistic effects due to the high-intensity laser light lead, in general, to a downshift of the laser frequency, similar to a classical plasma where the relativistic mass increase leads to self-induced transparency of laser light and other associated effects. The electron spin-1/2 effects lead to a frequency upshift or downshift of the electromagnetic (EM) wave, depending on the spin state of the plasma and the polarization of the EM wave. For laboratory solid density plasmas, the spin-1/2 effects on the propagation of light are small, but they may be significant in superdense plasma in the core of white dwarf stars. We also discuss extensions of the model to include kinetic effects of a distribution of the electrons on the nonlinear propagation of EM waves in a quantum plasma. PMID:22060507

  19. Wave Propagation in Jointed Geologic Media

    SciTech Connect

    Antoun, T

    2009-12-17

    Predictive modeling capabilities for wave propagation in a jointed geologic media remain a modern day scientific frontier. In part this is due to a lack of comprehensive understanding of the complex physical processes associated with the transient response of geologic material, and in part it is due to numerical challenges that prohibit accurate representation of the heterogeneities that influence the material response. Constitutive models whose properties are determined from laboratory experiments on intact samples have been shown to over-predict the free field environment in large scale field experiments. Current methodologies for deriving in situ properties from laboratory measured properties are based on empirical equations derived for static geomechanical applications involving loads of lower intensity and much longer durations than those encountered in applications of interest involving wave propagation. These methodologies are not validated for dynamic applications, and they do not account for anisotropic behavior stemming from direcitonal effects associated with the orientation of joint sets in realistic geologies. Recent advances in modeling capabilities coupled with modern high performance computing platforms enable physics-based simulations of jointed geologic media with unprecedented details, offering a prospect for significant advances in the state of the art. This report provides a brief overview of these modern computational approaches, discusses their advantages and limitations, and attempts to formulate an integrated framework leading to the development of predictive modeling capabilities for wave propagation in jointed and fractured geologic materials.

  20. Force propagation and force generation in cells.

    PubMed

    Jonas, Oliver; Duschl, Claus

    2010-09-01

    Determining how forces are produced by and propagated through the cytoskeleton (CSK) of the cell is of great interest as dynamic processes of the CSK are intimately correlated with many molecular signaling pathways. We are presenting a novel approach for integrating measurements on cell elasticity, transcellular force propagation, and cellular force generation to obtain a comprehensive description of dynamic and mechanical properties of the CSK under force loading. This approach uses a combination of scanning force microscopy (SFM) and Total Internal Reflection Fluorescence (TIRF) microscopy. We apply well-defined loading schemes onto the apical cell membrane of fibroblasts using the SFM and simultaneously use TIRF microscopy to image the topography of the basal cell membrane. The locally distinct changes of shape and depth of the cytoskeletal imprints onto the basal membrane are interpreted as results of force propagation through the cytoplasm. This observation provides evidence for the tensegrity model and demonstrates the usefulness of our approach that does not depend on potentially disturbing marker compounds. We confirm that the actin network greatly determines cell stiffness and represents the substrate that mediates force transduction through the cytoplasm of the cell. The latter is an essential feature of tensegrity. Most importantly, our new finding that, both intact actin and microtubule networks are required for enabling the cell to produce work, can only be understood within the framework of the tensegrity model. We also provide, for the first time, a direct measurement of the cell's mechanical power output under compression at two femtowatts. PMID:20607861

  1. Model-scale sound propagation experiment

    NASA Technical Reports Server (NTRS)

    Willshire, William L., Jr.

    1988-01-01

    The results of a scale model propagation experiment to investigate grazing propagation above a finite impedance boundary are reported. In the experiment, a 20 x 25 ft ground plane was installed in an anechoic chamber. Propagation tests were performed over the plywood surface of the ground plane and with the ground plane covered with felt, styrofoam, and fiberboard. Tests were performed with discrete tones in the frequency range of 10 to 15 kHz. The acoustic source and microphones varied in height above the test surface from flush to 6 in. Microphones were located in a linear array up to 18 ft from the source. A preliminary experiment using the same ground plane, but only testing the plywood and felt surfaces was performed. The results of this first experiment were encouraging, but data variability and repeatability were poor, particularly, for the felt surface, making comparisons with theoretical predictions difficult. In the main experiment the sound source, microphones, microphone positioning, data acquisition, quality of the anechoic chamber, and environmental control of the anechoic chamber were improved. High-quality, repeatable acoustic data were measured in the main experiment for all four test surfaces. Comparisons with predictions are good, but limited by uncertainties of the impedance values of the test surfaces.

  2. Cosmic ray propagation with CRPropa 3

    NASA Astrophysics Data System (ADS)

    Alves Batista, R.; Erdmann, M.; Evoli, C.; Kampert, K.-H.; Kuempel, D.; Mueller, G.; Sigl, G.; Van Vliet, A.; Walz, D.; Winchen, T.

    2015-05-01

    Solving the question of the origin of ultra-high energy cosmic rays (UHECRs) requires the development of detailed simulation tools in order to interpret the experimental data and draw conclusions on the UHECR universe. CRPropa is a public Monte Carlo code for the galactic and extragalactic propagation of cosmic ray nuclei above ∼ 1017 eV, as well as their photon and neutrino secondaries. In this contribution the new algorithms and features of CRPropa 3, the next major release, are presented. CRPropa 3 introduces time-dependent scenarios to include cosmic evolution in the presence of cosmic ray deflections in magnetic fields. The usage of high resolution magnetic fields is facilitated by shared memory parallelism, modulated fields and fields with heterogeneous resolution. Galactic propagation is enabled through the implementation of galactic magnetic field models, as well as an efficient forward propagation technique through transformation matrices. To make use of the large Python ecosystem in astrophysics CRPropa 3 can be steered and extended in Python.

  3. Modelling and observing Jovian electron propagation times

    NASA Astrophysics Data System (ADS)

    Toit Strauss, Du; Potgieter, Marius; Kopp, Andreas; Heber, Bernd

    2012-07-01

    During the Pioneer 10 Jovian encounter, it was observed that the Jovian magnetosphere is a strong source of low energy electrons. These electrons are accelerated in the Jovian magnetosphere and then propagate through the interplanetary medium to reach Earth, sampling the heliospheric magnetic field (HMF) and its embedded turbulence. With the current constellation of near Earth spacecraft (STEREO, SOHO, ACE, ect.) various aspects of Jovian electron transport at/near Earth can be studied in 3D (spatially). During a CME, the plasma between the Earth and Jupiter becomes more disturbed, inhibiting the transport of these electrons to Earth. With the passage of the CME beyond Jupiter, quite-time transport conditions persist and increases of the electron flux at Earth are observed (so-called quite time increases). Using multi-spacecraft observation during such an event, we are able to infer the propagation time of these electrons from Jupiter to Earth. Using a state-of-the-art electron transport model, we study the transport of these electrons from Jupiter and Earth, focusing on their propagation times. These computed values are also compared with observations. We discuss the implications of these results from a particle transport point-of-view.

  4. Instability and Turbulence of Propagating Particulate Flows

    NASA Astrophysics Data System (ADS)

    Balachandar, S.

    2015-11-01

    Propagation of particle-laden fluid into an ambient is a common fluid mechanical process that can be observed in many industrial and environmental applications. Sedimentation fronts, volcanic plumes, dust storms, powder snow avalanches, submarine turbidity currents, explosive powder dispersal and supernovae offer fascinating examples of advancing particulate fronts. The propagating interface can undergo Rayleigh-Taylor, Kelvin-Helmholtz and double-diffusive instabilities and result in the formation of lobes and clefts, spikes and bubbles, and particulate fingers. The interplay between suspended particles and turbulence is often complex due to interaction of competing mechanisms. In problems such as turbidity currents, turbulence controls sediment concentration through resuspension and settling of particles at the bed. Also, turbulent entrainment at the propagating front is observed to be influenced by the sediments. Stable stratification due to suspended sediment concentration can damp and even kill turbulence. This complex turbulence-sediment interaction offers possible explanation for massive sediment deposits observed in nature. The talk will also address challenges and recent advancements in the modeling and simulation of such particle-laden turbulent flows.

  5. Spectral methods for electromagnetic propagation and diffraction

    NASA Astrophysics Data System (ADS)

    Felsen, L. B.

    1990-03-01

    Analysis of source-excited time-harmonic and transient electromagnetic wave propagation in complicated environments, wave scattering by complicated targets, or wave penetration into complex structures generally requires decomposition of the incident field into elementary constituents, tracking each constituent through the environment or past the scatter, and recombining at the observer. The elementary constituents are spectral objects such as plane waves, cylindrical waves, conical waves, modal fields, ray field, etc. Under transient conditions, the recombination is conventionally performed first on the time-harmonic constituents, with frequency synthesis performed thereafter, but one may alternatively, by a less conventional approach, employ transient constituents (transient plane or cylindrical waves, etc.) and perform the remaining spatial synthesis thereafter. Viewed from this general perspective, there exists an enormous flexibility in the selection of the spectral objects, and of hybrid combinations, for analysis of a particular propagation or scattering problem. It is the objective of the proposed research to examine the various spectral options in their most fundamental terms, study the relation between them, and then assess which option best addresses a particular propagation or scattering phenomenon.

  6. Polarizability corrections in stimulated Raman propagation

    SciTech Connect

    Shore, B.W.; Johnson, M.A.; Lowder, S.

    1991-07-30

    Traditional descriptions of stimulated Raman scattering relate the various Stokes and anti-Stokes fields to the incident pump field by means of a polarizability (tensor). This description is usable for pulsed radiation but it fails when the pump carrier frequency coincides with a resonant frequency of the medium. We here describe a simple procedure for correcting the traditional polarizability approximation for pulse envelopes so as to account for effects of finite pump bandwidth. The correction amounts to the introduction of an auxiliary field envelope that incorporates pump dispersion. We apply this procedure to the equations for a degenerate, Doppler broadened ensemble of three-level atoms, in which the uppermost (virtual) level is close to resonance with the pump carrier frequency. This system becomes a two-level Raman system, but with a correction to the Raman Hamiltonian and the propagation equation. The plane-wave propagation equations presented include dispersive as well as Raman effects, and allow arbitrary combinations of field polarizations. We comment on several incidental aspects of Raman propagation, including dynamic Stark shifts, sublevel averages and fluence equations.

  7. Premixed Turbulent Flame Propagation in Microgravity

    NASA Technical Reports Server (NTRS)

    Menon, Suresh

    1999-01-01

    A combined numerical-experimental study has been carried out to investigate the structure and propagation characteristics of turbulent premixed flames with and without the influence of buoyancy. Experimentally, the premixed flame characteristics are studied in the wrinkled regime using a Couette flow facility and an isotropic flow facility in order to resolve the scale of flame wrinkling. Both facilities were chosen for their ability to achieve sustained turbulence at low Reynolds number. This implies that conventional diagnostics can be employed to resolve the smallest scales of wrinkling. The Couette facility was also built keeping in mind the constraints imposed by the drop tower requirements. Results showed that the flow in this Couette flow facility achieves full-developed turbulence at low Re and all turbulence statistics are in good agreement with past measurements on large-scale facilities. Premixed flame propagation studies were then carried out both using the isotropic box and the Couette facility. Flame imaging showed that fine scales of wrinkling occurs during flame propagation. Both cases in Ig showed significant buoyancy effect. To demonstrate that micro-g can remove this buoyancy effect, a small drop tower was built and drop experiments were conducted using the isotropic box. Results using the Couette facility confirmed the ability to carry out these unique reacting flow experiments at least in 1g. Drop experiments at NASA GRC were planned but were not completed due to termination of this project.

  8. Modeling Light Propagation in Luminescent Media

    NASA Astrophysics Data System (ADS)

    Sahin, Derya

    This study presents physical, computational and analytical modeling approaches for light propagation in luminescent random media. Two different approaches are used, namely (i) a statistical approach: Monte-Carlo simulations for photon transport and (ii) a deterministic approach: radiative transport theory. Both approaches account accurately for the multiple absorption and reemission of light at different wavelengths and for anisotropic luminescence. The deterministic approach is a generalization of radiative transport theory for solving inelastic scattering problems in random media. We use the radiative transport theory to study light propagation in luminescent media. Based on this theory, we also study the optically thick medium. Using perturbation methods, a corrected diffusion approximation with asymptotically accurate boundary conditions and a boundary layer solution are derived. The accuracy and the efficacy of this approach is verified for a plane-parallel slab problem. In particular, we apply these two approaches (MC and radiative transport theory) to model light propagation in semiconductor-based luminescent solar concentrators (LSCs). The computational results for both approaches are compared with each other and found to agree. The results of this dissertation present practical and reliable techniques to use for solving forward/inverse inelastic scattering problems arising in various research areas such as optics, biomedical engineering, nuclear engineering, solar science and material science.

  9. Modeling Propagation of Shock Waves in Metals

    SciTech Connect

    Howard, W M; Molitoris, J D

    2005-08-19

    We present modeling results for the propagation of strong shock waves in metals. In particular, we use an arbitrary Lagrange Eulerian (ALE3D) code to model the propagation of strong pressure waves (P {approx} 300 to 400 kbars) generated with high explosives in contact with aluminum cylinders. The aluminum cylinders are assumed to be both flat-topped and have large-amplitude curved surfaces. We use 3D Lagrange mechanics. For the aluminum we use a rate-independent Steinberg-Guinan model, where the yield strength and shear modulus depend on pressure, density and temperature. The calculation of the melt temperature is based on the Lindermann law. At melt the yield strength and shear modulus is set to zero. The pressure is represented as a seven-term polynomial as a function of density. For the HMX-based high explosive, we use a JWL, with a program burn model that give the correct detonation velocity and C-J pressure (P {approx} 390 kbars). For the case of the large-amplitude curved surface, we discuss the evolving shock structure in terms of the early shock propagation experiments by Sakharov.

  10. Nonlinear guided wave propagation in prestressed plates.

    PubMed

    Pau, Annamaria; Lanza di Scalea, Francesco

    2015-03-01

    The measurement of stress in a structure presents considerable interest in many fields of engineering. In this paper, the diagnostic potential of nonlinear elastic guided waves in a prestressed plate is investigated. To do so, an analytical model is formulated accounting for different aspects involved in the phenomenon. The fact that the initial strains can be finite is considered using the Green Lagrange strain tensor, and initial and final configurations are not merged, as it would be assumed in the infinitesimal strain theory. Moreover, an appropriate third-order expression of the strain energy of the hyperelastic body is adopted to account for the material nonlinearities. The model obtained enables to investigate both the linearized case, which gives the variation of phase and group velocity as a function of the initial stress, and the nonlinear case, involving second-harmonic generation as a function of the initial state of stress. The analysis is limited to Rayleigh-Lamb waves propagating in a plate. Three cases of initial prestress are considered, including prestress in the direction of the wave propagation, prestress orthogonal to the direction of wave propagation, and plane isotropic stress. PMID:25786963

  11. Autocatalytic Reaction Front Propagation in Oscillatory Flows

    NASA Astrophysics Data System (ADS)

    Leconte, Marc; Martin, Jerome; Rakotomalala, Nicole; Salin, Dominique

    2003-11-01

    Laboratoire Fluides Automatique et Systèmes Thermiques, Universités P. et M. Curie and Paris Sud, C.N.R.S. (UMR 7608) Bâtiment 502, Campus Universitaire, 91405 Orsay Cedex, France. Autocatalytic reaction front between two reacting species is able to propagate as a solitary wave that is at a constant velocity and with a stationary concentration profile resulting from a balance between molecular diffusion and chemical reaction. On the other hand, in laminar flow the association of molecular diffusion and convection leads to an overall diffusion effect, the so-called Taylor dispersion, with a flow dependent enhanced dispersion coefficient. Previous experiments have demonstrated the dissymmetry between supportive and adverse advection flows compared to the reaction front propagation without flow. We analyze experimentally the effect of laminar oscillatory flow on the propagation and on the shape of the fronts in the Iodate-Arsenous Acid autocatalytic reaction in micro Hele-Shaw cells. We observe new solitary waves whose velocity and shape depend on the relative importance of advection, diffusion and reaction. The results are in reasonable with our lattice 3D BGK simulations.

  12. Lidar measurements of refractive propagation effects

    NASA Astrophysics Data System (ADS)

    Philbrick, C. R.; Blood, D. W.

    1995-02-01

    A multi-wavelength Raman lidar has been developed and used to measure the profiles of atmospheric properties in the troposphere under a wide range of geophysical conditions. The instrument measures the two physical properties which contribute to the refractive index at radio frequencies, water vapor concentration profiles from vibrational Raman measurements and neutral density determined from rotational Raman temperature profiles and surface pressure. The LAMP lidar instrument is transportable and has been used to make measurements at several locations in addition to our local Penn State University site, including shipboard measurements between Arctic and Antarctic and in the coastal environment at Point Mugu, CA. Lidar measurements of the atmospheric refractive environment, which are of particular interest, were made during 1993 at Point Mugu, CA, including the period of Project VOCAR (Variability of Coastal Atmospheric Refractivity). Both the lidar and balloon tropospheric measurements have been used for analyses of the propagation conditions by employing th Navy's RPO, IREPS and EREPS PC programs and comparisons have been made with the measured propagation conditions. On the short term (hour-to-hour throughout the day), the lidar derived profiles permit the examination of refractive layer stratification for guided-wave mode propagation.

  13. VLF propagation measurements in the Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Lauber, Wilfred R.; Bertrand, Jean M.

    1993-05-01

    For the past three years, during a period of high sun spot numbers, propagation measurements were made on the reception of VLF signals in the Canadian Arctic. Between Aug. and Dec. 1989, the received signal strengths were measured on the Canadian Coast Guard icebreaker, John A. MacDonald in the Eastern Canadian Arctic. Between Jul. 1991 and Jun. 1992, the received signal strengths were measured at Nanisivik, Baffin Island. The purposes of this work were to check the accuracy and estimate variances of the Naval Ocean Systems Center's (NOSC) Long Wave Propagation Capability (LWPC) predictions in the Canadian Arctic and to gather ionospheric storm data. In addition, the NOSC data taken at Fort Smith and our data at Nanisivik were used to test the newly developed Longwave Noise Prediction (LNP) program and the CCIR noise predictions, at 21.4 and 24.0 kHz. The results of the work presented and discussed in this paper show that in general the LWPC predicts accurate values of received signal strength in the Canadian Arctic with standard deviations of 1 to 2 dB over several months. Ionospheric storms can gauge the received signal strengths to decrease some 10 dB for a period of several hours or days. However, the effects of these storms are highly dependent on the propagation path. Finally the new LNP atmospheric noise model predicts lower values of noise in the Arctic than the CCIR model and our limited measurements tend to support these lower values.

  14. Propagation of seismic waves in tall buildings

    USGS Publications Warehouse

    Safak, E.

    1998-01-01

    A discrete-time wave propagation formulation of the seismic response of tall buildings is introduced. The building is modeled as a layered medium, similar to a layered soil medium, and is subjected to vertically propagating seismic shear waves. Soil layers and the bedrock under the foundation are incorporated in the formulation as additional layers. Seismic response is expressed in terms of the wave travel times between the layers, and the wave reflection and transmission coefficients at the layer interfaces. The equations account for the frequency-dependent filtering effects of the foundation and floor masses. The calculation of seismic response is reduced to a pair of simple finite-difference equations for each layer, which can be solved recursively starting from the bedrock. Compared to the commonly used vibration formulation, the wave propagation formulation provides several advantages, including simplified calculations, better representation of damping, ability to account for the effects of the soil layers under the foundation, and better tools for identification and damage detection from seismic records. Examples presented show the versatility of the method. ?? 1998 John Wiley & Sons, Ltd.

  15. Current driven asymmetric domain wall propagation

    NASA Astrophysics Data System (ADS)

    Garg, Chirag; Pushp, Aakash; Phung, Timothy; Yang, See-Hun; Hughes, Brian P.; Rettner, Charles; Parkin, Stuart S. P.

    In ultrathin magnetic heterostructures, the presence of spin-orbit coupling gives rise to chiral Neel walls which are stabilized by the Dzyaloshinskii-Moriya Interaction (DMI), and also to a highly efficient chiral spin torque mechanism. In straight nanowires, the current-driven propagation of alternating Néel DWs without the presence of an in-plane field is equivalent, leading to the lock-step motion of several DWs in a nanowire. Here, we show that by engineering the structure in which the domain walls propagate, which in our case is in the shape of a Y-shaped junction, the DW propagation process becomes selective to the polarity of the DWs even in the absence of any externally applied magnetic fields. We remarkably find that after splitting at the Y-shaped junction, the DW velocity in one branch remains largely unaffected compared to its initial velocity whereas simultaneously the DW velocity in the other branch decreases by as much as 10-90%. We show that this large change in the DW velocity in a particular branch depends on the relative angle between the local magnetization of the DW and the spin current emanating from the underlying heavy-metal layer in these nanowires.

  16. Light propagation in the averaged universe

    SciTech Connect

    Bagheri, Samae; Schwarz, Dominik J. E-mail: dschwarz@physik.uni-bielefeld.de

    2014-10-01

    Cosmic structures determine how light propagates through the Universe and consequently must be taken into account in the interpretation of observations. In the standard cosmological model at the largest scales, such structures are either ignored or treated as small perturbations to an isotropic and homogeneous Universe. This isotropic and homogeneous model is commonly assumed to emerge from some averaging process at the largest scales. We assume that there exists an averaging procedure that preserves the causal structure of space-time. Based on that assumption, we study the effects of averaging the geometry of space-time and derive an averaged version of the null geodesic equation of motion. For the averaged geometry we then assume a flat Friedmann-Lemaître (FL) model and find that light propagation in this averaged FL model is not given by null geodesics of that model, but rather by a modified light propagation equation that contains an effective Hubble expansion rate, which differs from the Hubble rate of the averaged space-time.

  17. Ultrashort Pulse Propagation in Nonlinear Dispersive Fibers

    NASA Astrophysics Data System (ADS)

    Agrawal, Govind P.

    Ultrashort optical pulses are often propagated through optical waveguides for a variety of applications including telecommunications and supercontinuum generation [1]. Typically the waveguide is in the form of an optical fiber but it can also be a planar waveguide. The material used to make the waveguide is often silica glass, but other materials such as silicon or chalcogenides have also been used in recent years. What is common to all such materials is they exhibit chromatic dispersion as well as the Kerr nonlinearity. The former makes the refractive index frequency dependent, whereas the latter makes it to depend on the intensity of light propagating through the medium [2]. Both of these effects become more important as optical pulses become shorter and more intense. For pulses not too short (pulse widths > 1 ns) and not too intense (peak powers < 10 mW), the waveguide plays a passive role (except for small optical losses) and acts as a transporter of optical pulses from one place to another, without significantly affecting their shape or spectrum. However, as pulses become shorter and more intense, both the dispersion and the Kerr nonlinearity start to affect the shape and spectrum of an optical pulse during its propagation inside the waveguide. This chapter focuses on silica fibers but similar results are expected for other waveguides made of different materials

  18. Wave propagation in metamaterial lattice sandwich plates

    NASA Astrophysics Data System (ADS)

    Fang, Xin; Wen, Jihong; Yin, Jianfei; Yu, Dianlong

    2016-04-01

    This paper designed a special acoustic metamaterial 3D Kagome lattice sandwich plate. Dispersion properties and vibration responses of both traditional plate and metamaterial plate are investigated based on FEA methods. The traditional plate does not have low-frequency complete bandgaps, but the metamaterial plate has low-frequency complete bandgap (at 620Hz) coming from the symmetrical local cantilever resonators. The bandgap frequency is approximate to the first-order natural frequency of the oscillator. Complex wave modes are analyzed. The dispersion curves of longitudinal waves exist in the flexural bandgap. The dispersion properties demonstrate the metamaterial design is advantageous to suppress the low-frequency flexural wave propagation in lattice sandwich plate. The flexural vibrations near the bandgap are also suppressed efficiently. The longitudinal excitation stimulates mainly longitudinal waves and lots of low-frequency flexural vibration modes are avoided. Furthermore, the free edge effects in metamaterial plate provide new method for damping optimizations. The influences of damping on vibrations of the metamaterial sandwich plate are studied. Damping has global influence on the wave propagation; stronger damping will induce more vibration attenuation. The results enlighten us damping and metamaterial design approaches can be unite in the sandwich plates to suppress the wave propagations.

  19. Wave propagation in spatially modulated tubes.

    PubMed

    Ziepke, A; Martens, S; Engel, H

    2016-09-01

    We investigate wave propagation in rotationally symmetric tubes with a periodic spatial modulation of cross section. Using an asymptotic perturbation analysis, the governing quasi-two-dimensional reaction-diffusion equation can be reduced into a one-dimensional reaction-diffusion-advection equation. Assuming a weak perturbation by the advection term and using projection method, in a second step, an equation of motion for traveling waves within such tubes can be derived. Both methods predict properly the nonlinear dependence of the propagation velocity on the ratio of the modulation period of the geometry to the intrinsic width of the front, or pulse. As a main feature, we observe finite intervals of propagation failure of waves induced by the tube's modulation and derive an analytically tractable condition for their occurrence. For the highly diffusive limit, using the Fick-Jacobs approach, we show that wave velocities within modulated tubes are governed by an effective diffusion coefficient. Furthermore, we discuss the effects of a single bottleneck on the period of pulse trains. We observe period changes by integer fractions dependent on the bottleneck width and the period of the entering pulse train. PMID:27608990

  20. Propagation of disturbances in degenerate quantum systems

    NASA Astrophysics Data System (ADS)

    Chancellor, Nicholas; Haas, Stephan

    2011-07-01

    Disturbances in gapless quantum many-body models are known to travel an unlimited distance throughout the system. Here, we explore this phenomenon in finite clusters with degenerate ground states. The specific model studied here is the one-dimensional J1-J2 Heisenberg Hamiltonian at and close to the Majumdar-Ghosh point. Both open and periodic boundary conditions are considered. Quenches are performed using a local magnetic field. The degenerate Majumdar-Ghosh ground state allows disturbances which carry quantum entanglement to propagate throughout the system and thus dephase the entire system within the degenerate subspace. These disturbances can also carry polarization, but not energy, as all energy is stored locally. The local evolution of the part of the system where energy is stored drives the rest of the system through long-range entanglement. We also examine approximations for the ground state of this Hamiltonian in the strong field limit and study how couplings away from the Majumdar-Ghosh point affect the propagation of disturbances. We find that even in the case of approximate degeneracy, a disturbance can be propagated throughout a finite system.

  1. Modeling propagation of coherent optical pulses through molecular vapor

    SciTech Connect

    Shore, B.W.; Eberly, J.H.

    1982-01-01

    Results of modeling the mutual coupling of coherent molecular response and coherent optical pulses during propagation are described. The propagation is treated numerically, with particular emphasis on both continuum and discrete behavior associated with the quasicontinuum model.

  2. Fatigue crack layer propagation in silicon-iron

    NASA Technical Reports Server (NTRS)

    Birol, Y.; Welsch, G.; Chudnovsky, A.

    1986-01-01

    Fatigue crack propagation in metal is almost always accompanied by plastic deformation unless conditions strongly favor brittle fracture. The analysis of the plastic zone is crucial to the understanding of crack propagation behavior as it governs the crack growth kinetics. This research was undertaken to study the fatigue crack propagation in a silicon iron alloy. Kinetic and plasticity aspects of fatigue crack propagation in the alloy were obtained, including the characterization of damage evolution.

  3. Infrasound Propagation Modeling for Explosive Yield Estimation

    NASA Astrophysics Data System (ADS)

    Howard, J. E.; Golden, P.; Negraru, P.

    2013-12-01

    This study focuses on developing methods of estimating the size or yield of HE surface explosions from local and regional infrasound measurements in the southwestern United States. A munitions disposal facility near Mina, Nevada provides a repeating ground-truth source for this study, with charge weights ranging from 870 - 3800 lbs. Detonation logs and GPS synchronized videos were obtained for a sample of shots representing the full range of weights. These are used to calibrate a relationship between charge weight and spectral level from seismic waveforms recorded at the Nevada Seismic Array (NVAR) at a distance of 36 km. Origin times and yields for the remaining shots are inferred from the seismic recordings at NVAR. Infrasound arrivals from the detonations have been continuously recorded on three four-element, small aperture infrasound arrays since late 2009. NVIAR is collocated with NVAR at a range of approximately 36 km to the northeast. FALN and DNIAR are located at ranges of 154 km to the north, and 293 km to the southeast respectively. Travel times and amplitudes for stratospheric arrivals at DNIAR show strong seasonal variability with the largest amplitudes and celerities occurring during the winter months when the stratospheric winds are favorable. Stratospheric celerities for FNIAR to the north are more consistent as they are not strongly affected by the predominantly meridional stratospheric winds. Tropospheric arrivals at all three arrays show considerable variability that does not appear to be a seasonal effect. Naval Research Laboratory Ground to Space (NRL-G2S) Mesoscale models are used to specify the atmosphere along the propagation path for each detonation. Ray-tracing is performed for each source/receiver pair to identify events for which the models closely match the travel-time observations. This subset of events is used to establish preliminary wind correction formulas using wind values from the G2S profile for the entire propagation path. These

  4. New approaches to nonlinear diffractive field propagation.

    PubMed

    Christopher, P T; Parker, K J

    1991-07-01

    In many domains of acoustic field propagation, such as medical ultrasound imaging, lithotripsy shock treatment, and underwater sonar, a realistic calculation of beam patterns requires treatment of the effects of diffraction from finite sources. Also, the mechanisms of loss and nonlinear effects within the medium are typically nonnegligible. The combination of diffraction, attenuation, and nonlinear effects has been treated by a number of formulations and numerical techniques. A novel model that incrementally propagates the field of baffled planar sources with substeps that account for the physics of diffraction, attenuation, and nonlinearity is presented. The model accounts for the effect of refraction and reflection (but not multiple reflections) in the case of propagation through multiple, parallel layers of fluid medium. An implementation of the model for axis symmetric sources has been developed. In one substep of the implementation, a new discrete Hankel transform is used with spatial transform techniques to propagate the field over a short distance with diffraction and attenuation. In the other substep, the temporal frequency domain solution to Burgers' equation is implemented to account for the nonlinear accretion and depletion of harmonics. This approach yields a computationally efficient procedure for calculating beam patterns from a baffled planar, axially symmetric source under conditions ranging from quasilinear through shock. The model is not restricted by the usual parabolic wave approximation and the field's directionality is explicitly accounted for at each point. Useage of a harmonic-limiting scheme allows the model to propagate some previously intractable high-intensity nonlinear fields. Results of the model are shown to be in excellent agreement with measurements performed on the nonlinear field of an unfocused 2.25-MHz piston source, even in the near field where the established parabolic wave approximation model fails. Next, the model is used to

  5. Mineral replacement front propagation in deformed rocks

    NASA Astrophysics Data System (ADS)

    Beaudoin, Nicolas; Koehn, Daniel; Kelka, Ulrich

    2015-04-01

    Fluid migrations are a major agent of contaminant transport leading to mineral replacement in rocks, impacting their properties as porosity, permeability, and rheology. Understanding the physical and chemical mechanisms that govern mineralogical replacement during and after deformation is required to better understand complex interplays between fluid and rocks that are involved in faulting, seismic cycle, and resource distribution in the upper crust. Dolomitization process related to hydrothermal fluid flow is one of the most studied and debated replacement processes in earth sciences. Dolomitization of limestone is of economic importance as well, as it stands as unconventional oil reservoirs and is systematically observed in Mississippian-Valley Type ore deposit. Despite recent breakthrough about dolomitization processes at large-scale, the small-scale propagation of the reaction front remains unclear. It is poorly documented in the occurrence of stylolites and fractures in the medium while pressure-solution and fracture network development are the most efficient deformation accomodation mechanism in limestone from early compaction to layer-parallel shortening. Thus, the impact of such network on geometry of replaced bodies and on replacement front propagation deserves specific attention. This contribution illustrates the role of fracture and stylolites on the propagation of a reaction front. In a 2 dimensional numerical model we simulate the dolomitization front propagation in a heterogeneous porous medium. The propagation of the reaction front is governed by the competition between advection and diffusion processes, and takes into account reaction rates, disorder in the location of the potential replacement seeds, and permeability heterogeneities. We add stylolites and fractures that can act as barriers or drains to fluid flow according to their orientation and mineralogical content, which can or cannot react with the contaminant. The patterns produced from

  6. Visual attitude propagation for small satellites

    NASA Astrophysics Data System (ADS)

    Rawashdeh, Samir A.

    As electronics become smaller and more capable, it has become possible to conduct meaningful and sophisticated satellite missions in a small form factor. However, the capability of small satellites and the range of possible applications are limited by the capabilities of several technologies, including attitude determination and control systems. This dissertation evaluates the use of image-based visual attitude propagation as a compliment or alternative to other attitude determination technologies that are suitable for miniature satellites. The concept lies in using miniature cameras to track image features across frames and extracting the underlying rotation. The problem of visual attitude propagation as a small satellite attitude determination system is addressed from several aspects: related work, algorithm design, hardware and performance evaluation, possible applications, and on-orbit experimentation. These areas of consideration reflect the organization of this dissertation. A "stellar gyroscope" is developed, which is a visual star-based attitude propagator that uses relative motion of stars in an imager's field of view to infer the attitude changes. The device generates spacecraft relative attitude estimates in three degrees of freedom. Algorithms to perform the star detection, correspondence, and attitude propagation are presented. The Random Sample Consensus (RANSAC) approach is applied to the correspondence problem to successfully pair stars across frames while mitigating falsepositive and false-negative star detections. This approach provides tolerance to the noise levels expected in using miniature optics and no baffling, and the noise caused by radiation dose on orbit. The hardware design and algorithms are validated using test images of the night sky. The application of the stellar gyroscope as part of a CubeSat attitude determination and control system is described. The stellar gyroscope is used to augment a MEMS gyroscope attitude propagation

  7. Modeling UHF Radio Propagation in Buildings.

    NASA Astrophysics Data System (ADS)

    Honcharenko, Walter

    The potential implementation of wireless Radio Local Area Networks and Personal Communication Services inside buildings requires a thorough understanding of signal propagation within buildings. This work describes a study leading to a theoretical understanding of wave propagation phenomenon inside buildings. Covered first is propagation in the clear space between the floor and ceiling, which is modeled using Kirchoff -Huygens diffraction theory. This along with ray tracing techniques are used to develop a model to predict signal coverage inside buildings. Simulations were conducted on a hotel building, two office buildings, and a university building to which measurements of CW signals were compared, with good agreement. Propagation to other floors was studied to determine the signal strength as a function of the number of floors separating transmitter and receiver. Diffraction paths and through the floor paths which carry significant power to the receivers were examined. Comparisons were made to measurements in a hotel building and an office building, in which agreements were excellent. As originally developed for Cellular Mobile Radio (CMR) systems, the sector average is obtained from the spatial average of the received signal as the mobile traverses a path of 20 or so wavelengths. This approach has also been applied indoors with the assumption that a unique average could be obtained by moving either end of the radio link. However, unlike in the CMR environment, inside buildings both ends of the radio link are in a rich multipath environment. It is shown both theoretically and experimentally that moving both ends of the link is required to achieve a unique average. Accurate modeling of the short pulse response of a signal within a building will provide insight for determining the hardware necessary for high speed data transmission and recovery, and a model for determining the impulse response is developed in detail. Lastly, the propagation characteristics of

  8. Turbulent flame propagation in partially premixed flames

    NASA Technical Reports Server (NTRS)

    Poinsot, T.; Veynante, D.; Trouve, A.; Ruetsch, G.

    1996-01-01

    Turbulent premixed flame propagation is essential in many practical devices. In the past, fundamental and modeling studies of propagating flames have generally focused on turbulent flame propagation in mixtures of homogeneous composition, i.e. a mixture where the fuel-oxidizer mass ratio, or equivalence ratio, is uniform. This situation corresponds to the ideal case of perfect premixing between fuel and oxidizer. In practical situations, however, deviations from this ideal case occur frequently. In stratified reciprocating engines, fuel injection and large-scale flow motions are fine-tuned to create a mean gradient of equivalence ratio in the combustion chamber which provides additional control on combustion performance. In aircraft engines, combustion occurs with fuel and secondary air injected at various locations resulting in a nonuniform equivalence ratio. In both examples, mean values of the equivalence ratio can exhibit strong spatial and temporal variations. These variations in mixture composition are particularly significant in engines that use direct fuel injection into the combustion chamber. In this case, the liquid fuel does not always completely vaporize and mix before combustion occurs, resulting in persistent rich and lean pockets into which the turbulent flame propagates. From a practical point of view, there are several basic and important issues regarding partially premixed combustion that need to be resolved. Two such issues are how reactant composition inhomogeneities affect the laminar and turbulent flame speeds, and how the burnt gas temperature varies as a function of these inhomogeneities. Knowledge of the flame speed is critical in optimizing combustion performance, and the minimization of pollutant emissions relies heavily on the temperature in the burnt gases. Another application of partially premixed combustion is found in the field of active control of turbulent combustion. One possible technique of active control consists of pulsating

  9. EFFECT OF CREVICE FORMER ON CORROSION DAMAGE PROPAGATION

    SciTech Connect

    J.H. Payer; U. Landau; X. Shan; A.S. Agarwal

    2006-03-01

    The objectives of this report are: (1) To determine the effect of the crevice former on the localized corrosion damage propagation; (2) FOCUS on post initiation stage, crevice propagation and arrest processes; (3) Determine the evolution of damage--severity, shape, location/distribution, damage profile; and (4) Model of crevice corrosion propagation, i.e. the evolution of the crevice corrosion damage profile.

  10. Can Electron Propagator Methods Be Used To Improve Polarization Propagator Methods?

    SciTech Connect

    Joergen, Hans; Jensen, Aagaard

    2007-12-26

    Calculations of Rydberg excitation energies with the second-order polarization propagator approximation (SOPPA) often produce results which are more in error than the random phase approximation (RPA), which formally is the first-order model. This is obviously because of cancellation of errors at the RPA level. On the other hand, valence excitation energies behave as expected, and they are systematically improved in SOPPA compared to RPA. Note that a Rydberg series is related to one of the ionization thresholds of the molecule, and it is thus obvious that a good description of the ionization limits is necessary in order to calculate good values for the Rydberg excitations. From perturbative electron propagator methods it is well-known that the second-order level is inadequate to obtain good ionization energies. It is also known from electron propagator methods that partial inclusion of higher-order terms can greatly improve the ionization energies. In this work it will be investigated if the lessons from electron propagator models can be used to improve to the calculation of Rydberg excitations in perturbative polarization propagator methods.

  11. Crack propagation modeling using Peridynamic theory

    NASA Astrophysics Data System (ADS)

    Hafezi, M. H.; Alebrahim, R.; Kundu, T.

    2016-04-01

    Crack propagation and branching are modeled using nonlocal peridynamic theory. One major advantage of this nonlocal theory based analysis tool is the unifying approach towards material behavior modeling - irrespective of whether the crack is formed in the material or not. No separate damage law is needed for crack initiation and propagation. This theory overcomes the weaknesses of existing continuum mechanics based numerical tools (e.g. FEM, XFEM etc.) for identifying fracture modes and does not require any simplifying assumptions. Cracks grow autonomously and not necessarily along a prescribed path. However, in some special situations such as in case of ductile fracture, the damage evolution and failure depend on parameters characterizing the local stress state instead of peridynamic damage modeling technique developed for brittle fracture. For brittle fracture modeling the bond is simply broken when the failure criterion is satisfied. This simulation helps us to design more reliable modeling tool for crack propagation and branching in both brittle and ductile materials. Peridynamic analysis has been found to be very demanding computationally, particularly for real-world structures (e.g. vehicles, aircrafts, etc.). It also requires a very expensive visualization process. The goal of this paper is to bring awareness to researchers the impact of this cutting-edge simulation tool for a better understanding of the cracked material response. A computer code has been developed to implement the peridynamic theory based modeling tool for two-dimensional analysis. A good agreement between our predictions and previously published results is observed. Some interesting new results that have not been reported earlier by others are also obtained and presented in this paper. The final objective of this investigation is to increase the mechanics knowledge of self-similar and self-affine cracks.

  12. Orbital Propagation of Momentum Exchange Tether Systems

    NASA Technical Reports Server (NTRS)

    Westerhoff, John

    2002-01-01

    An advanced concept in in-space transportation currently being studied is the Momentum-Exchange/Electrodynamic Reboost Tether System (MXER). The system acts as a large momentum wheel, imparting a Av to a payload in low earth orbit (LEO) at the expense of its own orbital energy. After throwing a payload, the system reboosts itself using an electrodynamic tether to push against Earth's magnetic field and brings itself back up to an operational orbit to prepare for the next payload. The ability to reboost itself allows for continued reuse of the system without the expenditure of propellants. Considering the cost of lifting propellant from the ,ground to LEO to do the same Av boost at $10000 per pound, the system cuts the launch cost of the payload dramatically, and subsequently, the MXER system pays for itself after a small number of missions.1 One of the technical hurdles to be overcome with the MXER concept is the rendezvous maneuver. The rendezvous window for the capture of the payload is on the order of a few seconds, as opposed to traditional docking maneuvers, which can take as long ets necessary to complete a precise docking. The payload, therefore, must be able to match its orbit to meet up with the capture device on the end of the tether at a specific time and location in the future. In order to be able to determine that location, the MXER system must be numerically propagated forward in time to predict where the capture device will be at that instant. It should be kept in mind that the propagation computation must be done faster than real-time. This study focuses on the efforts to find and/or build the tools necessary to numerically propagate the motion of the MXER system as accurately as possible.

  13. Speeding up tsunami wave propagation modeling

    NASA Astrophysics Data System (ADS)

    Lavrentyev, Mikhail; Romanenko, Alexey

    2014-05-01

    Trans-oceanic wave propagation is one of the most time/CPU consuming parts of the tsunami modeling process. The so-called Method Of Splitting Tsunami (MOST) software package, developed at PMEL NOAA USA (Pacific Marine Environmental Laboratory of the National Oceanic and Atmospheric Administration, USA), is widely used to evaluate the tsunami parameters. However, it takes time to simulate trans-ocean wave propagation, that is up to 5 hours CPU time to "drive" the wave from Chili (epicenter) to the coast of Japan (even using a rather coarse computational mesh). Accurate wave height prediction requires fine meshes which leads to dramatic increase in time for simulation. Computation time is among the critical parameter as it takes only about 20 minutes for tsunami wave to approach the coast of Japan after earthquake at Japan trench or Sagami trench (as it was after the Great East Japan Earthquake on March 11, 2011). MOST solves numerically the hyperbolic system for three unknown functions, namely velocity vector and wave height (shallow water approximation). The system could be split into two independent systems by orthogonal directions (splitting method). Each system can be treated independently. This calculation scheme is well suited for SIMD architecture and GPUs as well. We performed adaptation of MOST package to GPU. Several numerical tests showed 40x performance gain for NVIDIA Tesla C2050 GPU vs. single core of Intel i7 processor. Results of numerical experiments were compared with other available simulation data. Calculation results, obtained at GPU, differ from the reference ones by 10^-3 cm of the wave height simulating 24 hours wave propagation. This allows us to speak about possibility to develop real-time system for evaluating tsunami danger.

  14. DECIMETRIC TYPE III BURSTS: GENERATION AND PROPAGATION

    SciTech Connect

    Li, B.; Cairns, Iver H.; Robinson, P. A.; Yan, Y. H.

    2011-09-01

    Simulations are presented for decimetric type III radio bursts at 2f{sub p} , where f{sub p} is the local electron plasma frequency. The simulations show that 2f{sub p} radiation can be observed at Earth in two scenarios for the radiation's generation and propagation. In Scenario A, radiation is produced and propagates in warm plasmas in the lower corona that are caused by previous magnetic reconnection outflows and/or chromospheric evaporation. In Scenario B radiation is generated in normal plasmas, then due to its natural directivity pattern and refraction, radiation partly propagates into nearby regions, which are hot because of previous reconnection/evaporation. The profiles of plasma density n{sub e} (r) and electron temperature T{sub e} (r) in the lower corona (r - R{sub sun} {approx}< 100 Mm) are found to be crucial to whether radiation can be produced and escape at observable levels against the effects of free-free absorption, where r is the heliocentric distance. Significantly, the observed wide ranges of radiation properties (e.g., drift rates) require n{sub e} (r) with a large range of scale heights h{sub s} , consistent nonetheless for Scenario B with short observed EUV loops. This is relevant to problems with large h{sub s} inferred from tall EUV loops. The simulations suggest: (1) n{sub e} (r) with small h{sub s} , such as n{sub e} (r){proportional_to}(r - R{sub sun}){sup -2.38} for flaring regions, are unexpectedly common deep in the corona. This result is consistent with recent work on n{sub e} (r) for r {approx} (1.05-2)R{sub sun} extracted from observed metric type IIIs. (2) The dominance of reverse-slope bursts over normal bursts sometimes observed may originate from asymmetric reconnection/acceleration, which favors downgoing beams.

  15. Calibration of seismic wave propagation in Jordan

    SciTech Connect

    Al-Husien, A; Amrat, A; Harris, D; Mayeda, K; Nakanishi, K; Rodgers, A; Ruppert, S; Ryall, F; Skinnell, K; Yazjeen, T

    1999-07-23

    The Natural Resources Authority of Jordan (NRA), the USGS and LLNL have a collaborative project to improve the calibration of seismic propagation in Jordan and surrounding regions. This project serves common goals of CTBT calibration and earthquake hazard assessment in the region. These objectives include accurate location of local and regional earthquakes, calibration of magnitude scales, and the development of local and regional propagation models. In the CTBT context, better propagation models and more accurately located events in the Dead Sea rift region can serve as (potentially GT5) calibration events for generating IMS location corrections. The detection and collection of mining explosions underpins discrimination research. The principal activity of this project is the deployment of two broadband stations at Hittiyah (south Jordan) and Ruweishid (east Jordan). These stations provide additional paths in the region to constrain structure with surface wave and body wave tomography. The Ruweishid station is favorably placed to provide constraints on Arabian platform structure. Waveform modeling with long-period observations of larger earthquakes will provide constraints on 1-D velocity models of the crust and upper mantle. Data from these stations combined with phase observations from the 26 short-period stations of the Jordan National Seismic Network (JNSN) may allow the construction of a more detailed velocity model of Jordan. The Hittiyah station is an excellent source of ground truth information for the six phosphate mines of southern Jordan and Israel. Observations of mining explosions collected by this station have numerous uses: for definition of templates for screening mining explosions, as ground truth events for calibrating travel-time models, and as explosion populations in development and testing discriminants. Following previously established procedures for identifying explosions, we have identified more than 200 explosions from the first 85 days of

  16. Foam front propagation in anisotropic oil reservoirs.

    PubMed

    Grassia, P; Torres-Ulloa, C; Berres, S; Mas-Hernández, E; Shokri, N

    2016-04-01

    The pressure-driven growth model is considered, describing the motion of a foam front through an oil reservoir during foam improved oil recovery, foam being formed as gas advances into an initially liquid-filled reservoir. In the model, the foam front is represented by a set of so-called "material points" that track the advance of gas into the liquid-filled region. According to the model, the shape of the foam front is prone to develop concave sharply curved concavities, where the orientation of the front changes rapidly over a small spatial distance: these are referred to as "concave corners". These concave corners need to be propagated differently from the material points on the foam front itself. Typically the corner must move faster than those material points, otherwise spurious numerical artifacts develop in the computed shape of the front. A propagation rule or "speed up" rule is derived for the concave corners, which is shown to be sensitive to the level of anisotropy in the permeability of the reservoir and also sensitive to the orientation of the corners themselves. In particular if a corner in an anisotropic reservoir were to be propagated according to an isotropic speed up rule, this might not be sufficient to suppress spurious numerical artifacts, at least for certain orientations of the corner. On the other hand, systems that are both heterogeneous and anisotropic tend to be well behaved numerically, regardless of whether one uses the isotropic or anisotropic speed up rule for corners. This comes about because, in the heterogeneous and anisotropic case, the orientation of the corner is such that the "correct" anisotropic speed is just very slightly less than the "incorrect" isotropic one. The anisotropic rule does however manage to keep the corner very slightly sharper than the isotropic rule does. PMID:27090239

  17. DNA motif elucidation using belief propagation.

    PubMed

    Wong, Ka-Chun; Chan, Tak-Ming; Peng, Chengbin; Li, Yue; Zhang, Zhaolei

    2013-09-01

    Protein-binding microarray (PBM) is a high-throughout platform that can measure the DNA-binding preference of a protein in a comprehensive and unbiased manner. A typical PBM experiment can measure binding signal intensities of a protein to all the possible DNA k-mers (k=8∼10); such comprehensive binding affinity data usually need to be reduced and represented as motif models before they can be further analyzed and applied. Since proteins can often bind to DNA in multiple modes, one of the major challenges is to decompose the comprehensive affinity data into multimodal motif representations. Here, we describe a new algorithm that uses Hidden Markov Models (HMMs) and can derive precise and multimodal motifs using belief propagations. We describe an HMM-based approach using belief propagations (kmerHMM), which accepts and preprocesses PBM probe raw data into median-binding intensities of individual k-mers. The k-mers are ranked and aligned for training an HMM as the underlying motif representation. Multiple motifs are then extracted from the HMM using belief propagations. Comparisons of kmerHMM with other leading methods on several data sets demonstrated its effectiveness and uniqueness. Especially, it achieved the best performance on more than half of the data sets. In addition, the multiple binding modes derived by kmerHMM are biologically meaningful and will be useful in interpreting other genome-wide data such as those generated from ChIP-seq. The executables and source codes are available at the authors' websites: e.g. http://www.cs.toronto.edu/∼wkc/kmerHMM. PMID:23814189

  18. PIV tracer behavior on propagating shock fronts

    NASA Astrophysics Data System (ADS)

    Glazyrin, Fyodor N.; Mursenkova, Irina V.; Znamenskaya, Irina A.

    2016-01-01

    The present work was aimed at the quantitative particle image velocimetry (PIV) measurement of a velocity field near the front of a propagating shock wave and the study of the dynamics of liquid tracers crossing the shock front. For this goal, a shock tube with a rectangular cross-section (48  ×  24 mm) was used. The flat shock wave with Mach numbers M  =  1.4-2.0 propagating inside the tube channel was studied as well as an expanding shock wave propagating outside the channel with M  =  1.2-1.8 at its main axis. The PIV imaging of the shock fronts was carried out with an aerosol of dioctyl sebacate (DEHS) as tracer particles. The pressures of the gas in front of the shock waves studied ranged from 0.013 Mpa to 0.1 MPa in the series of experiments. The processed PIV data, compared to the 1D normal shock theory, yielded consistent values of wake velocity immediately behind the plain shock wave. Special attention was paid to the blurring of the velocity jump on the shock front due to the inertial particle lag and peculiarities of the PIV technique. A numerical algorithm was developed for analysis and correction of the PIV data on the shock fronts, based on equations of particle-flow interaction. By application of this algorithm, the effective particle diameter of the DEHS aerosol tracers was estimated as 1.03  ±  0.12 μm. A number of different formulations for particle drag were tested with this algorithm, with varying success. The results show consistency with previously reported experimental data obtained for cases of stationary shock waves.

  19. Nonlinear acoustic wave propagation in atmosphere

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.

    1985-01-01

    A model problem that simulates an atmospheric acoustic wave propagation situation that is nonlinear is considered. The model is derived from the basic Euler equations for the atmospheric flow and from the regular perturbations for the acoustic part. The nonlinear effects are studied by obtaining two successive linear problems in which the second one involves the solution of the first problem. Well posedness of these problems is discussed and approximations of the radiation boundary conditions that can be used in numerical simulations are presented.

  20. Reaction propagation along an enclosed conveyor

    NASA Astrophysics Data System (ADS)

    Peckham, P. J.; Swisdak, M. M., Jr.

    1984-08-01

    Tests were conducted to study the likelihood of explosive reaction propagation along an enclosed explosive handling conveyor. An initiation scheme was selected and tests conducted which insured a high order detonation over the entire length of an explosive increment. A full scale mockup of a 125-foot enclosed section of conveyor was constructed. A 50-foot increment of explosive was detonated. A 25-foot air gap and a 50-foot acceptor increment were also present. The acceptor did not detonate, nor even react violently. A small amoung of self-extinguishing burning was also observed.

  1. Parton Propagation and Fragmentation in QCD Matter

    SciTech Connect

    Alberto Accardi, Francois Arleo, William Brooks, David D'Enterria, Valeria Muccifora

    2009-12-01

    We review recent progress in the study of parton propagation, interaction and fragmentation in both cold and hot strongly interacting matter. Experimental highlights on high-energy hadron production in deep inelastic lepton-nucleus scattering, proton-nucleus and heavy-ion collisions, as well as Drell-Yan processes in hadron-nucleus collisions are presented. The existing theoretical frameworks for describing the in-medium interaction of energetic partons and the space-time evolution of their fragmentation into hadrons are discussed and confronted to experimental data. We conclude with a list of theoretical and experimental open issues, and a brief description of future relevant experiments and facilities.

  2. Curvature sensors: noise and its propagation.

    PubMed

    Kellerer, Aglae

    2010-11-01

    The signal measured with a curvature sensor is analyzed. At the outset, we derive the required minimum number of sensing elements at the pupil edges, depending on the total number of sensing elements. The distribution of the sensor signal is further characterized in terms of its mean, variance, kurtosis, and skewness. It is established that while the approximation in terms of a Gaussian distribution is correct down to fairly low photon numbers, much higher numbers are required to obtain meaningful sensor measurements for small wavefront distortions. Finally, we indicate a closed expression for the error propagation factor and for the photon-noise-induced Strehl loss. PMID:21045888

  3. Lazy checkpoint coordination for bounding rollback propagation

    NASA Technical Reports Server (NTRS)

    Wang, Yi-Min; Fuchs, W. Kent

    1992-01-01

    Independent checkpointing allows maximum process autonomy but suffers from potential domino effects. Coordinated checkpointing eliminates the domino effect by sacrificing a certain degree of process autonomy. In this paper, we propose the technique of lazy checkpoint coordination which preserves process autonomy while employing communication-induced checkpoint coordination for bounding rollback propagation. The introduction of the notion of laziness allows a flexible trade-off between the cost for checkpoint coordination and the average rollback distance. Worst-case overhead analysis provides a means for estimating the extra checkpoint overhead. Communication trace-driven simulation for several parallel programs is used to evaluate the benefits of the proposed scheme for real applications.

  4. Probes of Lorentz violation in neutrino propagation

    SciTech Connect

    Ellis, John; Harries, Nicholas; Meregaglia, Anselmo; Sakharov, Alexander S.

    2008-08-01

    It has been suggested that the interactions of energetic particles with the foamy structure of space-time thought to be generated by quantum-gravitational (QG) effects might violate Lorentz invariance, so that they do not propagate at a universal speed of light. We consider the limits that may be set on a linear or quadratic violation of Lorentz invariance in the propagation of energetic neutrinos, v/c=[1{+-}(E/M{sub {nu}}{sub QG1})] or [1{+-}(E/M{sub {nu}}{sub QG2}){sup 2}], using data from supernova explosions and the OPERA long-baseline neutrino experiment. Using the SN1987a neutrino data from the Kamioka II, IMB, and Baksan experiments, we set the limits M{sub {nu}}{sub QG1}>2.7(2.5)x10{sup 10} GeV for subluminal (superluminal) propagation and M{sub {nu}}{sub QG2}>4.6(4.1)x10{sup 4} GeV at the 95% confidence level. A future galactic supernova at a distance of 10 kpc would have sensitivity to M{sub {nu}}{sub QG1}>2(4)x10{sup 11} GeV for subluminal (superluminal) propagation and M{sub {nu}}{sub QG2}>2(4)x10{sup 5} GeV. With the current CERN neutrinos to Gran Sasso extraction spill length of 10.5 {mu}s and with standard clock synchronization techniques, the sensitivity of the OPERA experiment would reach M{sub {nu}}{sub QG1}{approx}7x10{sup 5} GeV (M{sub {nu}}{sub QG2}{approx}8x10{sup 3} GeV) after 5 years of nominal running. If the time structure of the super proton synchrotron radio frequency bunches within the extracted CERN neutrinos to Gran Sasso spills could be exploited, these figures would be significantly improved to M{sub {nu}}{sub QG1}{approx}5x10{sup 7} GeV (M{sub {nu}}{sub QG2}{approx}4x10{sup 4} GeV). These results can be improved further if a similar time resolution can be achieved with neutrino events occurring in the rock upstream of the OPERA detector: we find potential sensitivities to M{sub {nu}}{sub QG1}{approx}4x10{sup 8} GeV and M{sub {nu}}{sub QG2}{approx}7x10{sup 5} GeV.

  5. Anomalous bubble propagation in elastic tubes

    NASA Astrophysics Data System (ADS)

    Heap, Alexandra; Juel, Anne

    2008-08-01

    Airway reopening is an important physiological event, as exemplified by the first breath of an infant that inflates highly collapsed airways by driving a finger of air through its fluid-filled lungs. Whereas fundamental models of airway reopening predict the steady propagation of only one type of bubble with a characteristic rounded tip, our experiments reveal a surprising selection of novel bubbles with counterintuitive shapes that reopen strongly collapsed, liquid-filled elastic tubes. Our multiple bubbles are associated with a discontinuous relationship between bubble pressure and speed that sets exciting challenges for modelers.

  6. D region predictions. [effects on radio propagation

    NASA Technical Reports Server (NTRS)

    Thrane, E. V.; Chakrabarty, D. K.; Deshpande, S. D.; Doherty, R. H.; Gregory, J. B.; Hargreaves, J. K.; Lastovicka, J.; Morris, P.; Piggott, W. R.; Reagan, J. B.

    1979-01-01

    Present knowledge of D region phenomena is briefly reviewed and the status of current methods of predicting their effects on radio propagation considered. The ELF, VLF and LF navigational and timing systems depend on the stability of the lower part of the D layer where these waves are reflected, whereas MF and HF waves are absorbed as they penetrate the region, in most cases mainly in the upper part of the layer. Possible methods of improving predictions, warnings, and real time operations are considered with particular stress on those which can be implemented in the near future.

  7. [In vitro propagation of Clematis filamentosa].

    PubMed

    Shao, Ling; Yu, Ganxin

    2005-05-01

    The rapid propagation of Clematis filamentosa Dumn by tissue cluture showed that the best explant was young stem. It also showed that the callus can be easily induced in MS + NAA 0.1 mg/L + 6-BA 0.5 mg/L, the medium for the buds differentiation and proliferation was MS + NAA 0.05 mg/L + 6-BA 0.5 mg/L, and the medium for the root growth was MS + NAA 0.1 mg/L. The survival tube seedling can be successfully transplant. PMID:16131027

  8. Managing Data From Signal-Propagation Experiments

    NASA Technical Reports Server (NTRS)

    Kantak, A. V.

    1989-01-01

    Computer programs generate characteristic plots from amplitudes and phases. Software system enables minicomputer to process data on amplitudes and phases of signals received during experiments in ground-mobile/satellite radio propagation. Takes advantage of file-handling capabilities of UNIX operating system and C programming language. Interacts with user, under whose guidance programs in FORTRAN language generate plots of spectra or other curves of types commonly used to characterize signals. FORTRAN programs used to process file-handling outputs into any of several useful forms.

  9. Target & Propagation Models for the FINDER Radar

    NASA Technical Reports Server (NTRS)

    Cable, Vaughn; Lux, James; Haque, Salmon

    2013-01-01

    Finding persons still alive in piles of rubble following an earthquake, a severe storm, or other disaster is a difficult problem. JPL is currently developing a victim detection radar called FINDER (Finding Individuals in Emergency and Response). The subject of this paper is directed toward development of propagation & target models needed for simulation & testing of such a system. These models are both physical (real rubble piles) and numerical. Early results from the numerical modeling phase show spatial and temporal spreading characteristics when signals are passed through a randomly mixed rubble pile.

  10. Propagating torsion in the Einstein frame

    SciTech Connect

    Poplawski, Nikodem J.

    2006-11-15

    The Einstein-Cartan-Saa theory of torsion modifies the spacetime volume element so that it is compatible with the connection. The condition of connection compatibility gives constraints on torsion, which are also necessary for the consistence of torsion, minimal coupling, and electromagnetic gauge invariance. To solve the problem of positivity of energy associated with the torsionic scalar, we reformulate this theory in the Einstein conformal frame. In the presence of the electromagnetic field, we obtain the Hojman-Rosenbaum-Ryan-Shepley theory of propagating torsion with a different factor in the torsionic kinetic term.

  11. Propagating precipitation waves: experiments and modeling.

    PubMed

    Tinsley, Mark R; Collison, Darrell; Showalter, Kenneth

    2013-12-01

    Traveling precipitation waves, including counterrotating spiral waves, are observed in the precipitation reaction of AlCl3 with NaOH [Volford, A.; et al. Langmuir 2007, 23, 961 - 964]. Experimental and computational studies are carried out to characterize the wave behavior in cross-section configurations. A modified sol-coagulation model is developed that is based on models of Liesegang band and redissolution systems. The dynamics of the propagating waves is characterized in terms of growth and redissolution of a precipitation feature that travels through a migrating band of colloidal precipitate. PMID:24191642

  12. Propagation of cosmic rays in the galaxy

    NASA Technical Reports Server (NTRS)

    Daniel, R. R.; Stephens, S. A.

    1974-01-01

    The characteristics of a model for analyzing the propagation of cosmic rays are discussed. The requirements for analyzing the relevant observational data on cosmic rays are defines as: (1) the chemical and isotopic composition of cosmic rays as a function of energy, (2) the flux and energy spectrum of the individual nucleonic components, (3) the flux and energy spectrum of the electronic component, (4) the cosmic ray prehistory, and (5) the degree of isotropy in their arrival directions as a function of energy. It is stated that the model which has been able to bring to pass the greatest measure of success is the galactic confinement model.

  13. NLO error propagation exercise data collection system

    SciTech Connect

    Keisch, B.; Bieber, A.M. Jr.

    1983-01-01

    A combined automated and manual system for data collection is described. The system is suitable for collecting, storing, and retrieving data related to nuclear material control at a bulk processing facility. The system, which was applied to the NLO operated Feed Materials Production Center, was successfully demonstrated for a selected portion of the facility. The instrumentation consisted of off-the-shelf commercial equipment and provided timeliness, convenience, and efficiency in providing information for generating a material balance and performing error propagation on a sound statistical basis.

  14. Symmetry-constrained electron vortex propagation

    NASA Astrophysics Data System (ADS)

    Clark, L.; Guzzinati, G.; Béché, A.; Lubk, A.; Verbeeck, J.

    2016-06-01

    Electron vortex beams hold great promise for development in transmission electron microscopy but have yet to be widely adopted. This is partly due to the complex set of interactions that occur between a beam carrying orbital angular momentum (OAM) and a sample. Herein, the system is simplified to focus on the interaction between geometrical symmetries, OAM, and topology. We present multiple simulations alongside experimental data to study the behavior of a variety of electron vortex beams after interacting with apertures of different symmetries and investigate the effect on their OAM and vortex structure, both in the far field and under free-space propagation.

  15. Wave propagation analysis using the variance matrix.

    PubMed

    Sharma, Richa; Ivan, J Solomon; Narayanamurthy, C S

    2014-10-01

    The propagation of a coherent laser wave-field through a pseudo-random phase plate is studied using the variance matrix estimated from Shack-Hartmann wavefront sensor data. The uncertainty principle is used as a tool in discriminating the data obtained from the Shack-Hartmann wavefront sensor. Quantities of physical interest such as the twist parameter, and the symplectic eigenvalues, are estimated from the wavefront sensor measurements. A distance measure between two variance matrices is introduced and used to estimate the spatial asymmetry of a wave-field in the experiment. The estimated quantities are then used to compare a distorted wave-field with its undistorted counterpart. PMID:25401243

  16. Probes of Lorentz violation in neutrino propagation

    NASA Astrophysics Data System (ADS)

    Ellis, John; Harries, Nicholas; Meregaglia, Anselmo; Rubbia, André; Sakharov, Alexander S.

    2008-08-01

    It has been suggested that the interactions of energetic particles with the foamy structure of space-time thought to be generated by quantum-gravitational (QG) effects might violate Lorentz invariance, so that they do not propagate at a universal speed of light. We consider the limits that may be set on a linear or quadratic violation of Lorentz invariance in the propagation of energetic neutrinos, v/c=[1±(E/MνQG1)] or [1±(E/MνQG2)2], using data from supernova explosions and the OPERA long-baseline neutrino experiment. Using the SN1987a neutrino data from the Kamioka II, IMB, and Baksan experiments, we set the limits MνQG1>2.7(2.5)×1010GeV for subluminal (superluminal) propagation and MνQG2>4.6(4.1)×104GeV at the 95% confidence level. A future galactic supernova at a distance of 10 kpc would have sensitivity to MνQG1>2(4)×1011GeV for subluminal (superluminal) propagation and MνQG2>2(4)×105GeV. With the current CERN neutrinos to Gran Sasso extraction spill length of 10.5μs and with standard clock synchronization techniques, the sensitivity of the OPERA experiment would reach MνQG1˜7×105GeV (MνQG2˜8×103GeV) after 5 years of nominal running. If the time structure of the super proton synchrotron radio frequency bunches within the extracted CERN neutrinos to Gran Sasso spills could be exploited, these figures would be significantly improved to MνQG1˜5×107GeV (MνQG2˜4×104GeV). These results can be improved further if a similar time resolution can be achieved with neutrino events occurring in the rock upstream of the OPERA detector: we find potential sensitivities to MνQG1˜4×108GeV and MνQG2˜7×105GeV.

  17. An Empirical Study of Infrasonic Propagation

    SciTech Connect

    J. Paul Mutschlecner; Rodney W. Whitaker; Lawrence H. Auer

    1999-10-01

    Observations of atmospheric nuclear tests carried out at the Nevada Test Site from 1951 to 1958 provided data for an empirical investigation of how infrasonic signals are propagated to distances of about 250 km. Those observations and the analysis documented in this report involved signal amplitudes and average velocities and included three classes of signals: stratospheric, thermospheric, and tropospheric/surface. The authors' analysis showed that stratospheric winds have a dominant effect upon stratospheric signal amplitudes. The report outlines a method for normalizing stratospheric signal amplitudes for the effects of upper atmospheric winds and presents equations for predicting or normalizing amplitude and average velocity for the three types of signals.

  18. Femtosecond pulses propagation through pure water

    NASA Astrophysics Data System (ADS)

    Naveira, Lucas; Sokolov, Alexei; Byeon, Joong-Hyeok; Kattawar, George

    2007-10-01

    Recently, considerable attention has been dedicated to the field of optical precursors, which can possibly be applied to long-distance underwater communications. Input beam intensities have been carefully adjusted to keep experiments in the linear regime, and some experiments have shown violation of the Beer-Lambert law. We are presently carrying out experiments using femtosecond laser pulses propagating through pure water strictly in the linear regime to study this interesting and important behavior. We are also employing several new and innovative schemes to more clearly define the phenomena.

  19. Directional crack propagation of granular water systems.

    PubMed

    Mizuguchi, Tsuyoshi; Nishimoto, Akihiro; Kitsunezaki, So; Yamazaki, Yoshihiro; Aoki, Ichio

    2005-05-01

    Pattern dynamics of directional crack propagation phenomena observed in drying process of starch-water mixture is investigated. To visualize the three-dimensional structure of the drying-fracture process two kinds of experiments are performed, i.e., resin solidification planing method and real-time measurement of water content distribution with MR instruments. A cross section with polygonal structure is visualized in both experiments. The depth dependency of cell size is measured. The phenomenological model for water transportation is also discussed. PMID:16089617

  20. Nonlinear acoustic wave propagation in atmosphere

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.

    1986-01-01

    In this paper a model problem is considered that simulates an atmospheric acoustic wave propagation situation that is nonlinear. The model is derived from the basic Euler equations for the atmospheric flow and from the regular perturbations for the acoustic part. The nonlinear effects are studied by obtaining two successive linear problems in which the second one involves the solution of the first problem. Well-posedness of these problems is discussed and approximations of the radiation boundary conditions that can be used in numerical simulations are presented.

  1. Propagation of heavy cosmic-ray nuclei

    NASA Technical Reports Server (NTRS)

    Letaw, J. R.; Silberberg, R.; Tsao, C. H.

    1984-01-01

    Techniques for modeling the propagation of heavy cosmic-ray nuclei, and the required atomic and nuclear data, are assembled in this paper. Emphasis is on understanding nuclear composition in the charge range Z = 3-83. Details of the application of 'matrix methods' above a few hundred MeV/nucleon, a new treatment of electron capture decay, and a new table of cosmic ray-stable isotopes are presented. Computation of nuclear fragmentation cross sections, stopping power, and electron stripping and attachment are briefly reviewed.

  2. Reconstructing propagation networks with temporal similarity

    PubMed Central

    Liao, Hao; Zeng, An

    2015-01-01

    Node similarity significantly contributes to the growth of real networks. In this paper, based on the observed epidemic spreading results we apply the node similarity metrics to reconstruct the underlying networks hosting the propagation. We find that the reconstruction accuracy of the similarity metrics is strongly influenced by the infection rate of the spreading process. Moreover, there is a range of infection rate in which the reconstruction accuracy of some similarity metrics drops nearly to zero. To improve the similarity-based reconstruction method, we propose a temporal similarity metric which takes into account the time information of the spreading. The reconstruction results are remarkably improved with the new method. PMID:26086198

  3. Belief propagation in genotype-phenotype networks.

    PubMed

    Moharil, Janhavi; May, Paul; Gaile, Daniel P; Blair, Rachael Hageman

    2016-03-01

    Graphical models have proven to be a valuable tool for connecting genotypes and phenotypes. Structural learning of phenotype-genotype networks has received considerable attention in the post-genome era. In recent years, a dozen different methods have emerged for network inference, which leverage natural variation that arises in certain genetic populations. The structure of the network itself can be used to form hypotheses based on the inferred direct and indirect network relationships, but represents a premature endpoint to the graphical analyses. In this work, we extend this endpoint. We examine the unexplored problem of perturbing a given network structure, and quantifying the system-wide effects on the network in a node-wise manner. The perturbation is achieved through the setting of values of phenotype node(s), which may reflect an inhibition or activation, and propagating this information through the entire network. We leverage belief propagation methods in Conditional Gaussian Bayesian Networks (CG-BNs), in order to absorb and propagate phenotypic evidence through the network. We show that the modeling assumptions adopted for genotype-phenotype networks represent an important sub-class of CG-BNs, which possess properties that ensure exact inference in the propagation scheme. The system-wide effects of the perturbation are quantified in a node-wise manner through the comparison of perturbed and unperturbed marginal distributions using a symmetric Kullback-Leibler divergence. Applications to kidney and skin cancer expression quantitative trait loci (eQTL) data from different mus musculus populations are presented. System-wide effects in the network were predicted and visualized across a spectrum of evidence. Sub-pathways and regions of the network responded in concert, suggesting co-regulation and coordination throughout the network in response to phenotypic changes. We demonstrate how these predicted system-wide effects can be examined in connection with

  4. Reconstructing propagation networks with temporal similarity.

    PubMed

    Liao, Hao; Zeng, An

    2015-01-01

    Node similarity significantly contributes to the growth of real networks. In this paper, based on the observed epidemic spreading results we apply the node similarity metrics to reconstruct the underlying networks hosting the propagation. We find that the reconstruction accuracy of the similarity metrics is strongly influenced by the infection rate of the spreading process. Moreover, there is a range of infection rate in which the reconstruction accuracy of some similarity metrics drops nearly to zero. To improve the similarity-based reconstruction method, we propose a temporal similarity metric which takes into account the time information of the spreading. The reconstruction results are remarkably improved with the new method. PMID:26086198

  5. ACTS propagation concerns, issues, and plans

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz

    1989-01-01

    ACTS counters fading by resource sharing between the users. It provides a large margin only for those terminals which are at risk by unfavorable atmospheric conditions. ACTS, as an experimental satellite, provides a 5 dB clear weather margin and 10 dB additional margin via rate reduction and encoding. For the uplink, this margin may be increased by exercising uplink power control. Some of the challenges faced by the radiowave propagation community are listed. The issue of needs for the satellite are listed, both general and specific.

  6. Earth-Space Propagation Data Bases

    NASA Technical Reports Server (NTRS)

    Smith, Ernest K.

    1996-01-01

    This paper, designed for the newcomer rather than the expert, will take a rather broad view of what is meant by 'propagation data bases' in that it will take the term to mean both the actual measurements and models of Earth-space paths. The text will largely be drawn from International Radio Consultative Committee (CCIR) reports, now annexed to the Recommendations of the International Telecommunications Union-R Study Group 3, plus some experience with a course taught at the University of Colorado.

  7. Elastic Wave Propagation and Generation in Seismology

    NASA Astrophysics Data System (ADS)

    Lees, Jonathan M.

    The majority of mature seismologists of my generation were introduced to theoretical seismology via classic textbooks written in the early 1980s. Since this generation has matured and taken the mantle of teaching seismology to a new generation, several new books have been put forward as replacements, or alternatives, to the original classical texts. The target readers of the new texts range from beginner through intermediate to more advanced, although all have been attempts to improve upon what is now considered standard convention in quantitative seismology. To this plethora of choices we now have a new addition by Jose Pujol, titledElastic Wave Propagation and Generation in Seismology.

  8. Propagation Tests in SnowPilot

    NASA Astrophysics Data System (ADS)

    Bair, N.; Birkeland, K.; Chabot, D.

    2013-12-01

    The Extended Column Test (ECT) and the Propagation Saw Test (PST) show crack propagation, a fundamental part of the avalanche process. Many studies have examined the accuracy of these tests at predicting stability, but only a few compare the tests side-by-side. Side-by-side tests are the only way to fully control for the many factors that affect crack propagation. Moreover, most of the comparisons have been from research data. We have limited knowledge of how these tests are being used by avalanche professionals and backcountry travelers. SnowPilot is the largest public database of stability tests in the world. In this study, we examine 256 snow pits from the SnowPilot database with 513 ECTs and 345 PSTs conducted side-by-side. Because results of the ECT and PST cannot be directly compared, we simplify test results by classifying them as unstable or stable. We classify a test result as unstable if it is 'ECTP/ECTPV' or 'PST End' with a cut length ≤ 50 cm; otherwise we classify a test result as stable. We find that: 1) PSTs showed unstable results more often than ECTs, 2) the subjective stability rating ('stability on similar slopes') was correlated with ECT stability, but not with PST stability, 3) PSTs were used on deeper slabs than ECTs, and 4) PST use increased with a decreasing stability rating, relative to ECT use. Result (1) is supported by 2 of 3 other studies with side-by-side tests. We suggest a potentially larger 'cracked' area in the PST as one cause, resulting in a larger crack nucleus and increased edge effects that promote propagation. Result (1) contradicts previous work that shows the PST has a higher false-stable rate than the ECT. One would expect Result (1) to cause a lower false-stable rate. Result (2) shows that either the ECT is an accurate test or that users are basing their stability assessment on ECT stability results. This correlation is problematic for studies that use SnowPilot's stability field to infer test accuracy. Result (3

  9. Approximate Bruechner orbitals in electron propagator calculations

    SciTech Connect

    Ortiz, J.V.

    1999-12-01

    Orbitals and ground-state correlation amplitudes from the so-called Brueckner doubles approximation of coupled-cluster theory provide a useful reference state for electron propagator calculations. An operator manifold with hold, particle, two-hole-one-particle and two-particle-one-hole components is chosen. The resulting approximation, third-order algebraic diagrammatic construction [2ph-TDA, ADC (3)] and 3+ methods. The enhanced versatility of this approximation is demonstrated through calculations on valence ionization energies, core ionization energies, electron detachment energies of anions, and on a molecule with partial biradical character, ozone.

  10. Solitary wave propagation influenced by submerged breakwater

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Zuo, Qi-hua; Wang, Deng-ting; Shukrieva, Shirin

    2013-10-01

    The form of Boussinesq equation derived by Nwogu (1993) using velocity at an arbitrary distance and surface elevation as variables is used to simulate wave surface elevation changes. In the numerical experiment, water depth was divided into five layers with six layer interfaces to simulate velocity at each layer interface. Besides, a physical experiment was carried out to validate numerical model and study solitary wave propagation. "Water column collapsing" method (WCCM) was used to generate solitary wave. A series of wave gauges around an impervious breakwater were set-up in the flume to measure the solitary wave shoaling, run-up, and breaking processes. The results show that the measured data and simulated data are in good agreement. Moreover, simulated and measured surface elevations were analyzed by the wavelet transform method. It shows that different wave frequencies stratified in the wavelet amplitude spectrum. Finally, horizontal and vertical velocities of each layer interface were analyzed in the process of solitary wave propagation through submerged breakwater.

  11. Crack propagation and arrest in pressurized containers

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Delale, F.; Owczarek, J. A.

    1977-01-01

    The problem of crack propagation and arrest in a finite volume cylindrical container filled with pressurized gas is considered. It is assumed that the cylinder contains a symmetrically located longitudinal part-through crack with a relatively small net ligament. The net ligament suddenly ruptures initiating the process of fracture propagation and depressurization in the cylinder. The problem is formulated by making two major assumptions, namely, that the shell problem is quasi-static and the gas dynamics problem is one-dimensional. The problem is reduced to a proper initial value problem by introducing a dynamic fracture criterion which relates the crack acceleration to the difference between a load factor and the corresponding strength parameter. The main results are demonstrated by considering two examples, an aluminum cylinder which may behave in a quasi-brittle manner, and a steel cylinder which undergoes ductile fracture. The results indicate that generally in gas-filled cylinders fracture arrest is not possible unless the material behaves in a ductile manner and the container is relatively long.

  12. Structure of Propagating and Attached Hydrocarbon Flames

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Katta, Viswanath

    2004-01-01

    Direct numerical simulations with C3-chemistry and radiative heat-loss models have been performed to reveal the internal structure of propagating and attached flames in an axisymmetric fuel jet of methane, ethane, ethylene, acetylene, or propane in air under normal and zero gravity. Observations of the flames were also made at the NASA Glenn 2.2-Second Drop Tower. In computations, the fuel issued into quasi-quiescent air for a fixed mixing time before it was ignited along the centerline at stoichiometry. The edge of the flame propagated through a flammable layer at the laminar flame speed of the stoichiometric fuel-air mixture independent of gravity. For all cases, a peak reactivity spot, i.e., reaction kernel, was formed in the flame base, thereby holding a trailing diffusion flame. The location of the reaction kernel in the attached flames depended inversely on the reactivity. The reaction-kernel correlations between the reactivity and the velocity were developed further using variables related to local Damkahler and Peclet numbers.

  13. Terahertz polariton propagation in patterned materials.

    PubMed

    Stoyanov, Nikolay S; Ward, David W; Feurer, Thomas; Nelson, Keith A

    2002-10-01

    Generation and control of pulsed terahertz-frequency radiation have received extensive attention, with applications in terahertz spectroscopy, imaging and ultrahigh-bandwidth electro-optic signal processing. Terahertz 'polaritonics', in which terahertz lattice waves called phonon-polaritons are generated, manipulated and visualized with femtosecond optical pulses, offers prospects for an integrated solid-state platform for terahertz signal generation and guidance. Here, we extend terahertz polaritonics methods to patterned structures. We demonstrate femtosecond laser fabrication of polaritonic waveguide structures in lithium tantalate and lithium niobate crystals, and illustrate polariton focusing into, and propagation within, the fabricated waveguide structures. We also demonstrate a 90 degrees turn within a structure consisting of two waveguides and a reflecting face, as well as a structure consisting of splitting and recombining elements that can be used as a terahertz Mach-Zehnder interferometer. The structures permit integrated terahertz signal generation, propagation through waveguide-based devices, and readout within a single solid-state platform. PMID:12618821

  14. Neutrino emission in the jet propagation process

    SciTech Connect

    Xiao, D.; Dai, Z. G.

    2014-07-20

    Relativistic jets are universal in long-duration gamma-ray burst (GRB) models. Before breaking out, they must propagate in the progenitor envelope along with a forward shock and a reverse shock forming at the jet head. Both electrons and protons will be accelerated by the shocks. High-energy neutrinos could be produced by these protons interacting with stellar materials and electron-radiating photons. The jet will probably be collimated, which may have a strong effect on the final neutrino flux. Under the assumption of a power-law stellar-envelope density profile ρ∝r {sup –α} with index α, we calculate the neutrino emission flux by these shocks for low-luminosity GRBs (LL-GRBs) and ultra-long GRBs (UL-GRBs) in different collimation regimes, using the jet propagation framework developed by Bromberg et al. We find that LL-GRBs and UL-GRBs are capable of producing detectable high-energy neutrinos up to ∼PeV, from which the final neutrino spectrum can be obtained. Further, we conclude that a larger α corresponds to greater neutrino flux at the high-energy end (∼PeV) and to higher maximum neutrino energy as well. However, such differences are so small that it is not promising for us to be able to distinguish these in observations, given the energy resolution we have now.

  15. Error Propagation Analysis for Quantitative Intracellular Metabolomics

    PubMed Central

    Tillack, Jana; Paczia, Nicole; Nöh, Katharina; Wiechert, Wolfgang; Noack, Stephan

    2012-01-01

    Model-based analyses have become an integral part of modern metabolic engineering and systems biology in order to gain knowledge about complex and not directly observable cellular processes. For quantitative analyses, not only experimental data, but also measurement errors, play a crucial role. The total measurement error of any analytical protocol is the result of an accumulation of single errors introduced by several processing steps. Here, we present a framework for the quantification of intracellular metabolites, including error propagation during metabolome sample processing. Focusing on one specific protocol, we comprehensively investigate all currently known and accessible factors that ultimately impact the accuracy of intracellular metabolite concentration data. All intermediate steps are modeled, and their uncertainty with respect to the final concentration data is rigorously quantified. Finally, on the basis of a comprehensive metabolome dataset of Corynebacterium glutamicum, an integrated error propagation analysis for all parts of the model is conducted, and the most critical steps for intracellular metabolite quantification are detected. PMID:24957773

  16. Note on gauge invariance and causal propagation

    NASA Astrophysics Data System (ADS)

    Henneaux, Marc; Rahman, Rakibur

    2013-09-01

    Interactions of gauge-invariant systems are severely constrained by several consistency requirements. One is the preservation of the number of gauge symmetries, another is causal propagation. For lower-spin fields, the emphasis is usually put on gauge invariance that happens to be very selective by itself. We demonstrate with an explicit example, however, that gauge invariance, albeit indispensable for constructing interactions, may not suffice as a consistency condition. The chosen example that exhibits this feature is the theory of a massless spin-3/2 field coupled to electromagnetism. We show that this system admits an electromagnetic background in which the spin-3/2 gauge field may move faster than light. Requiring causal propagation rules out otherwise allowed gauge-invariant couplings. This emphasizes the importance of causality analysis as an independent test for a system of interacting gauge fields. We comment on the implications of allowing new degrees of freedom and nonlocality in a theory, on higher-derivative gravity and Vasiliev’s higher-spin theories.

  17. Photoelectric observations of propagating sunspot oscillations

    SciTech Connect

    Lites, B.W.; White, O.R.; Packman, D.

    1982-02-01

    The Sacramento Park Observatory Vacuum Tower Telescope and diode array were used to make repeated intensity and velocity images of a large, isolated sunspot in both a chromospheric (lambda8542 Ca II) and a photospheric (lambda5576 Fe I) line. The movie of the digital data for the chromospheric line shows clearly a relationship between the propagating umbral disturbances and the running penumbral waves. The velocities for transverse propagating of the umbral and penumbral disturbances are 60--70 km s/sup -1/ and 20--35 km s/sup -1/, respectively. Power spectra of the oscillations show a sharp peak at a period of about 170 s in both the velocity and intensity signals. The rms velocity fluctuation of this power peak is 0.26 km s/sup -1/. The oscillations at any given point in the sunspot are very regular, and the phase relationship between the velocity and intensity of the chromospheric oscillations is radically different than that for the quiet Sun. Our preliminary interpretation of the phase relationship involves acoustic waves with wave vector directed downwards along the magnetic field lines; however, this interpretation relies on assumptions involved in the data reduction scheme. The mechanical energy flux carried by the observed umbral disturbances does not appear to be a significant contributor to the overall energy budget of the sunspot or the surrounding active region.

  18. Light propagation and large-scale inhomogeneities

    SciTech Connect

    Brouzakis, Nikolaos; Tetradis, Nikolaos; Tzavara, Eleftheria E-mail: ntetrad@phys.uoa.gr

    2008-04-15

    We consider the effect on the propagation of light of inhomogeneities with sizes of order 10 Mpc or larger. The Universe is approximated through a variation of the Swiss-cheese model. The spherical inhomogeneities are void-like, with central underdensities surrounded by compensating overdense shells. We study the propagation of light in this background, assuming that the source and the observer occupy random positions, so that each beam travels through several inhomogeneities at random angles. The distribution of luminosity distances for sources with the same redshift is asymmetric, with a peak at a value larger than the average one. The width of the distribution and the location of the maximum increase with increasing redshift and length scale of the inhomogeneities. We compute the induced dispersion and bias of cosmological parameters derived from the supernova data. They are too small to explain the perceived acceleration without dark energy, even when the length scale of the inhomogeneities is comparable to the horizon distance. Moreover, the dispersion and bias induced by gravitational lensing at the scales of galaxies or clusters of galaxies are larger by at least an order of magnitude.

  19. Calibration of seismic wave propagation in Kuwait

    SciTech Connect

    Al-Awadhi, J; Endo, E; Fryall, F; Harris, D; Mayeda, K; Rodgers, A; Ruppert, S; Sweeney, J

    1999-07-23

    The Kuwait Institute of Scientific Research (KISR), the USGS and LLNL are collaborating to calibrate seismic wave propagation in Kuwait and surrounding regions of the northwest Arabian Gulf using data from the Kuwait National Seismic Network (KNSN). Our goals are to develop local and regional propagation models for locating and characterizing seismic events in Kuwait and portions of the Zagros mountains close to Kuwait. The KNSN consists of 7 short-period stations and one broadband (STS-2) station. Constraints on the local velocity structure may be derived from joint inversions for hypocenters of local events and the local velocity model, receiver functions from three-component observations of teleseisms, and surface wave phase velocity estimated from differential dispersion measurements made across the network aperture. Data are being collected to calibrate travel-time curves for the principal regional phases for events in the Zagros mountains. The available event observations span the distance range from approximately 2.5 degrees to almost 9 degrees. Additional constraints on structure across the deep sediments of the Arabian Gulf will be obtained from long-period waveform modeling.

  20. Mechanical Surface Waves Accompany Action Potential Propagation

    NASA Astrophysics Data System (ADS)

    Machta, Benjamin; El Hady, Ahmed

    2015-03-01

    The action potential (AP) is the basic mechanism by which information is transmitted along neuronal axons. Although the excitable nature of axons is understood to be primarily electrical, many experimental studies have shown that a mechanical displacement of the axonal membrane co-propagates with the electrical signal. While the experimental evidence for co-propagating mechanical waves is diverse and compelling, there is no consensus for their physical underpinnings. We present a model in which these mechanical displacements arise from the driving of mechanical surface waves, in which potential energy is stored in elastic deformations of the neuronal membrane and cytoskeleton while kinetic energy is stored in the movement of the axoplasmic fluid. In our model these surface waves are driven by the traveling wave of electrical depolarization that characterizes the AP, altering the electrostatic forces across the membrane as it passes. Our model allows us to predict the shape of the displacement that should accompany any traveling wave of voltage, including the well-characterized AP. We expect our model to serve as a framework for understanding the physical origins and possible functional roles of these AWs in neurobiology. See Arxiv/1407.7600

  1. Propagated Uncertainty in Scattering in Humidified Nephelometers

    NASA Astrophysics Data System (ADS)

    Morrow, H. A.; Jefferson, A.; Sherman, J. P.; Andrews, E.; Sheridan, P. J.; Hageman, D.; Ogren, J. A.

    2013-12-01

    Atmospheric aerosols exert a cooling effect at the surface by directly scattering and absorbing incident sunlight and indirectly by serving as seeds for cloud droplets. They are highly variable liquid or solid particles suspended in gas phase whose climate impact is associated with their chemical composition and microphysical properties. One such aerosol property is the hygroscopic growth or increase in aerosol size and scattering with the uptake of water with increasing relative humidity (RH). Particle size is strongly linked to the wavelength of light scattered and absorbed. Defined as the parameter which characterizes the dispersion of the values about the measured quantity1, uncertainty can effectively place a measured value into perspective. Small uncertainties in instrument sensors can propagate to large errors in the measured hygroscopic growth of aerosols. The uncertainties in the aerosol scattering coefficients and hygroscopic growth fit parameter were calculated. Among the propagated uncertainties stems a considerable contribution from imprecise RH sensors. RH dependent uncertainty of the aerosol hygroscopic growth has never been reported in the literature; however, an increased uncertainty was calculated in aerosols with lower hygroscopic growth, particularly those in clean and wet conditions. 1. Cook, R. R., ASSESSMENT OF UNCERTAINTIES OF MEASUREMENT for calibration & testing laboratories. In National Association of Testing Authorities, Australia, 2002.

  2. Interplanetary Propagation of Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat

    2011-01-01

    Although more than ten thousand coronal mass ejections (CMEs) are produced during each solar cycle at the Sun, only a small fraction hits the Earth. Only a small fraction of the Earth-directed CMEs ultimately arrive at Earth depending on their interaction with the solar wind and other large-scale structures such as coronal holes and CMEs. The interplanetary propagation is essentially controlled by the drag force because the propelling force and the solar gravity are significant only near the Sun. Combined remote-sensing and in situ observations have helped us estimate the influence of the solar wind on the propagation of CMEs. However, these measurements have severe limitations because the remote-sensed and in-situ observations correspond to different portions of the CME. Attempts to overcome this problem are made in two ways: the first is to model the CME and get the space speed of the CME, which can be compared with the in situ speed. The second method is to use stereoscopic observation so that the remote-sensed and in-situ observations make measurements on the Earth-arriving part of CMEs. The Solar Terrestrial Relations Observatory (STEREO) mission observed several such CMEs, which helped understand the interplanetary evolution of these CMEs and to test earlier model results. This paper discusses some of these issues and updates the CME/shock travel time estimates for a number of CMEs.

  3. Damage Propagation Modeling for Aircraft Engine Prognostics

    NASA Technical Reports Server (NTRS)

    Saxena, Abhinav; Goebel, Kai; Simon, Don; Eklund, Neil

    2008-01-01

    This paper describes how damage propagation can be modeled within the modules of aircraft gas turbine engines. To that end, response surfaces of all sensors are generated via a thermo-dynamical simulation model for the engine as a function of variations of flow and efficiency of the modules of interest. An exponential rate of change for flow and efficiency loss was imposed for each data set, starting at a randomly chosen initial deterioration set point. The rate of change of the flow and efficiency denotes an otherwise unspecified fault with increasingly worsening effect. The rates of change of the faults were constrained to an upper threshold but were otherwise chosen randomly. Damage propagation was allowed to continue until a failure criterion was reached. A health index was defined as the minimum of several superimposed operational margins at any given time instant and the failure criterion is reached when health index reaches zero. Output of the model was the time series (cycles) of sensed measurements typically available from aircraft gas turbine engines. The data generated were used as challenge data for the Prognostics and Health Management (PHM) data competition at PHM 08.

  4. Acoustic propagation in a thermally stratified atmosphere

    NASA Technical Reports Server (NTRS)

    Vanmoorhem, W. K.

    1985-01-01

    This report describes the activities during the fifth six month period of the investigation of acoustic propagation in the atmosphere with a realistic temperature profile. Progress has been achieved in two major directions: comparisons between the lapse model and experimental data taken by NASA during the second tower experiment, and development of a model propagation in an inversion. Data from the second tower experiment became available near the end of 1984 and some comparisons have been carried out, but this work is not complete. Problems with the temperature profiler during the experiment have produced temperature profiles that are difficult to fit the assumed variation of temperature with height, but in cases where reasonable fits have been obtained agreement between the model and the experiments are close. The major weaknesses in the model appear to be the presence of discontinuities in some regions, the low sound levels predicted near the source height, and difficulties with the argument of the Hankel function being outside the allowable range. Work on the inversion model has progressed slowly, and the rays for that case are discussed along with a simple energy conservation model of sound level enhancement in the inversion case.

  5. Method and apparatus for charged particle propagation

    DOEpatents

    Hershcovitch, Ady

    1996-11-26

    A method and apparatus are provided for propagating charged particles from a vacuum to a higher pressure region. A generator 14,14b includes an evacuated chamber 16a,b having a gun 18,18b for discharging a beam of charged particles such as an electron beam 12 or ion beam 12b. The beam 12,12b is discharged through a beam exit 22 in the chamber 16a,b into a higher pressure region 24. A plasma interface 34 is disposed at the beam exit 22 and includes a plasma channel 38 for bounding a plasma 40 maintainable between a cathode 42 and an anode 44 disposed at opposite ends thereof. The plasma channel 38 is coaxially aligned with the beam exit 22 for propagating the beam 12,12b from the chamber 16a,b, through the plasma 40, and into the higher pressure region 24. The plasma 40 is effective for pumping down the beam exit 22 for preventing pressure increase in the chamber 16a,b, and provides magnetic focusing of the beam 12,12b discharged into the higher pressure region 24.

  6. Ultrasonic wave propagation in cortical bone mimics

    NASA Astrophysics Data System (ADS)

    Dodd, Simon P.; Cunningham, James L.; Miles, Anthony W.; Humphrey, Victor F.; Gheduzzi, Sabina

    2004-10-01

    Understanding the velocity and attenuation of ultrasonic waves in cortical bone is important for studies of osteoporosis and fractures. In particular, propagation in free- and water-loaded acrylic plates, with a thickness range of around 1-6 mm, has been widely used to mimic cortical bone behavior. A theoretical investigation of Lamb mode propagation at 200 kHz in free- and water-loaded acrylic plates revealed a marked difference in the form of their velocity and attenuation dispersion curves as a function of frequency thickness product. In experimental studies, this difference between free and loaded plates is not seen. Over short measurement distances, the results for both free and loaded plates are consistent with previous modeling and experimental studies: for thicker plates (above 3-4 mm), the velocity calculated using the first arrival signal is a lateral wave comparable with the longitudinal velocity. As the plate thickness decreases, the velocity approaches the S0 Lamb mode value. WAVE2000 modeling of the experimental setup agrees with experimental data. The data are also used to test a hypothesis that for thin plates the velocity approaches the corresponding S0 Lamb mode velocity at large measurement distances or when different arrival time criteria are used. [Work supported by Action Medical Research.

  7. Propagation characteristics of magnetostatic waves: A review

    NASA Astrophysics Data System (ADS)

    Parekh, J. P.

    1983-01-01

    This paper reviews the propagation characteristics of guided magnetostatic waves (MSW's) in a YIG film magnetized beyond saturation. There exist three guided magnetostatic wave-types, viz., magnetostatic surface waves (MSSW's) and magnetostatic forward and backward volume waves (MSFVW's and MSBVW's). The orientation of the internal bias field determines the particular wave-type that can be supported by the YIG film. The frequency spectrum of the volume waves coincides with that over which magnetostatic plane waves are of the homogeneous variety. The frequency spectrum of the MSSW's is located immediately above the MSVW spectrum. MSW's are dispersive, with the dispersion properties alterable through modification in boundary conditions. The most explored dispersion control technique employs the placement of a ground plane somewhat above the YIG film surface. This dispersion control technique, which provides one method of realizing nondispersive MSW propagation, raises the upper bound of the MSSW spectrum but does not affect the bounds of the MSVW spectrum. Numerical computations illustrating the dispersion and polarization characteristics of MSW's are presented.

  8. Line spread instrumentation for propagation measurements

    NASA Technical Reports Server (NTRS)

    Bailey, W. H., Jr.

    1980-01-01

    A line spread device capable of yielding direct measure of a laser beam's line spread function (LSF) was developed and employed in propagation tests conducted in a wind tunnel to examine optimal acoustical suppression techniques for laser cavities exposed to simulated aircraft aerodynamic environments. Measurements were made on various aerodynamic fences and cavity air injection techniques that effect the LSF of a propagating laser. Using the quiescent tunnel as a control, the relative effect of each technique on laser beam quality was determined. The optical instrument employed enabled the comparison of relative beam intensity for each fence or mass injection. It was found that fence height had little effect on beam quality but fence porosity had a marked effect, i.e., 58% porosity alleviated cavity resonance and degraded the beam the least. Mass injection had little effect on the beam LSF. The use of a direct LSF measuring device proved to be a viable means of determining aerodynamic seeing qualities of flow fields.

  9. Propagation style controls lava-snow interactions

    NASA Astrophysics Data System (ADS)

    Edwards, B. R.; Belousov, A.; Belousova, M.

    2014-12-01

    Understanding interactions between volcanic eruptions and the cryosphere (a.k.a. glaciovolcanism) is important for climate reconstructions as well as for hazard mitigation at ice-clad volcanoes. Here we present unique field observations of interactions between snowpack and advancing basaltic lava flows during the 2012-13 eruption at Tolbachik volcano, Kamchatka, Russia. Our observations show that lava-snow heat transfer is slow, and that styles of lava propagation control snowpack responses. ‧A‧a and sheet lava flows advance in a rolling caterpillar-track motion on top of the rigid, snowpack substrate with minor lava-snow interaction. In contrast, pahoehoe lava propagates by inflation of lobes beneath/inside the snowpack, producing rigorous lava-snow interaction via meltwater percolation down into the incandescent lava causing production of voluminous steam, rapid surface cooling and thermal shock fragmentation. The textures produced by pahoehoe-snowpack interactions are distinctive and, where observed at other sites, can be used to infer syn-eruption seasonality and climatic conditions.

  10. Wave propagation in random granular chains.

    PubMed

    Manjunath, Mohith; Awasthi, Amnaya P; Geubelle, Philippe H

    2012-03-01

    The influence of randomness on wave propagation in one-dimensional chains of spherical granular media is investigated. The interaction between the elastic spheres is modeled using the classical Hertzian contact law. Randomness is introduced in the discrete model using random distributions of particle mass, Young's modulus, or radius. Of particular interest in this study is the quantification of the attenuation in the amplitude of the impulse associated with various levels of randomness: two distinct regimes of decay are observed, characterized by an exponential or a power law, respectively. The responses are normalized to represent a vast array of material parameters and impact conditions. The virial theorem is applied to investigate the transfer from potential to kinetic energy components in the system for different levels of randomness. The level of attenuation in the two decay regimes is compared for the three different sources of randomness and it is found that randomness in radius leads to the maximum rate of decay in the exponential regime of wave propagation. PMID:22587093

  11. Axion-photon propagation in magnetized universe

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Lai, Dong

    2016-06-01

    Oscillations between photons and axion-like particles (ALP) travelling in intergalactic magnetic fields have been invoked to explain a number of astrophysical phenomena, or used to constrain ALP properties using observations. One example is the anomalous transparency of the universe to TeV gamma rays. The intergalactic magnetic field is usually modeled as patches of coherent domains, each with a uniform magnetic field, but the field orientation changes randomly from one domain to the next (``discrete-varphi model''). We show in this paper that in more realistic situations, when the magnetic field direction varies continuously along the propagation path, the photon-to-ALP conversion probability P can be significantly different from the discrete-varphi model. In particular, P has a distinct dependence on the photon energy and ALP mass, and can be as large as 100%. This result can affect previous constraints on ALP properties based on ALP-photon propagation in intergalactic magnetic fields, such as TeV photons from distant Active Galactic Nucleus.

  12. Optimizing online social networks for information propagation.

    PubMed

    Chen, Duan-Bing; Wang, Guan-Nan; Zeng, An; Fu, Yan; Zhang, Yi-Cheng

    2014-01-01

    Online users nowadays are facing serious information overload problem. In recent years, recommender systems have been widely studied to help people find relevant information. Adaptive social recommendation is one of these systems in which the connections in the online social networks are optimized for the information propagation so that users can receive interesting news or stories from their leaders. Validation of such adaptive social recommendation methods in the literature assumes uniform distribution of users' activity frequency. In this paper, our empirical analysis shows that the distribution of online users' activity is actually heterogenous. Accordingly, we propose a more realistic multi-agent model in which users' activity frequency are drawn from a power-law distribution. We find that previous social recommendation methods lead to serious delay of information propagation since many users are connected to inactive leaders. To solve this problem, we design a new similarity measure which takes into account users' activity frequencies. With this similarity measure, the average delay is significantly shortened and the recommendation accuracy is largely improved. PMID:24816894

  13. Optimizing Online Social Networks for Information Propagation

    PubMed Central

    Chen, Duan-Bing; Wang, Guan-Nan; Zeng, An; Fu, Yan; Zhang, Yi-Cheng

    2014-01-01

    Online users nowadays are facing serious information overload problem. In recent years, recommender systems have been widely studied to help people find relevant information. Adaptive social recommendation is one of these systems in which the connections in the online social networks are optimized for the information propagation so that users can receive interesting news or stories from their leaders. Validation of such adaptive social recommendation methods in the literature assumes uniform distribution of users' activity frequency. In this paper, our empirical analysis shows that the distribution of online users' activity is actually heterogenous. Accordingly, we propose a more realistic multi-agent model in which users' activity frequency are drawn from a power-law distribution. We find that previous social recommendation methods lead to serious delay of information propagation since many users are connected to inactive leaders. To solve this problem, we design a new similarity measure which takes into account users' activity frequencies. With this similarity measure, the average delay is significantly shortened and the recommendation accuracy is largely improved. PMID:24816894

  14. Propagation style controls lava-snow interactions.

    PubMed

    Edwards, B R; Belousov, A; Belousova, M

    2014-01-01

    Understanding interactions between volcanic eruptions and the cryosphere (a.k.a. glaciovolcanism) is important for climate reconstructions as well as for hazard mitigation at ice-clad volcanoes. Here we present unique field observations of interactions between snowpack and advancing basaltic lava flows during the 2012-13 eruption at Tolbachik volcano, Kamchatka, Russia. Our observations show that lava-snow heat transfer is slow, and that styles of lava propagation control snowpack responses. 'A'a and sheet lava flows advance in a rolling caterpillar-track motion on top of the rigid, snowpack substrate with minor lava-snow interaction. In contrast, pahoehoe lava propagates by inflation of lobes beneath/inside the snowpack, producing rigorous lava-snow interaction via meltwater percolation down into the incandescent lava causing production of voluminous steam, rapid surface cooling and thermal shock fragmentation. The textures produced by pahoehoe-snowpack interactions are distinctive and, where observed at other sites, can be used to infer syn-eruption seasonality and climatic conditions. PMID:25514031

  15. Seismic Wave Propagation Along Fracture Intersections

    NASA Astrophysics Data System (ADS)

    Abell, B.; Pyrak-Nolte, L. J.; Knobloch, J.

    2012-12-01

    Past research has shown that fractures support guided-modes such as coupled Rayleigh waves as well as confined modes such as Love waves and leaky-mode compressional waves. We demonstrated experimentally that fracture intersections support a mode that is similar to interface waves but propagates at speeds below the Rayleigh wave for low applied load. In this experimental study, we demonstrated that at low stress, fracture intersections support highly-localized wedge waves whose existence depends on stress and source-receiver polarization. Wedge waves (W.W.) were propagated along the orthogonal edge of aluminum samples. The sample measured 100 x 150 x 150 mm and was machined with two orthogonal fractures, intersecting at the center, such that four independent pieces of aluminum could be measured independently or pieced together. Seismic measurements were performed for two cases: (1) two right angle blocks in contact to examine the stress dependence of two corners in contact and (2) four right angle blocks in contact to study the behavior of four intersecting corners in contact. Seismic transducers with a central frequency of 1MHz were used to propagate shear (S) waves along the corners of the blocks that form an intersection, along the fractures and through the bulk. Measurements were made with the shear transducers polarized at 0, 45, 90 and 135 deg. to the direction of loading for a range (0 to 66 kN) of applied normal loads. When only two blocks were in contact, a W.W. was observed traveling at speeds between 2650 m/s and 3000 m/s. This is below the Rayleigh speed (2830 m/s) for low stress. As the applied load was increased, the wave speed increased, indicating a change in the local stiffness. Although an increase in speed was observed for both polarizations, the measured speed was lower for 135 deg. polarization indicating that the local stiffness of the top wedge was dramatically different than the bottom aluminum block. All four blocks were also examined under

  16. Proceedings of the Eighteenth NASA Propagation Experimenters Meeting (NAPEX 18) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz (Editor)

    1994-01-01

    The NASA Propagation Experimenters Meeting (NAPEX), supported by the NASA Propagation Program, is convened annually to discuss studies made on radio wave propagation by investigators from domestic and international organizations. Participants included representatives from Canada, the Netherlands, England, and the United States, including researchers from universities, government agencies, and private industry. The meeting was organized into two technical sessions. The first session was dedicated to slant path propagation studies and experiments. The second session focused on propagation studies for mobile, personal, and sound broadcast systems. In total, 14 technical papers and some informal contributions were presented. Preceding NAPEX_17, the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop was held to review ACTS propagation activities.

  17. Propagation container and timing of propagation affects growth and quality of oak seedlings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two experiments were conducted to determine the container effect and the timeline of seed propagation on germination and subsequent shoot and root development for container-grown oaks. Quercus nigra and Q. texana had equal or better growth and better root ratings when acorns were sown in Anderson t...

  18. Propagation data at 20/40 GHz and the propagation needs of Milstar

    NASA Technical Reports Server (NTRS)

    Shimabukuro, Fred I.; Kim, Y. S.; Ayotte, P.

    1994-01-01

    There are a number of propagation issues that need further investigation for efficient system planning for EHF communication systems. Especially needed are better cloud and rain characterizations. A method for estimating one of the rain induced effects of interest, outage duration, is presented.

  19. Pathogen Propagation Model with Superinfection in Vegetatively Propagated Plants on Lattice Space.

    PubMed

    Sakai, Yuma; Takada, Takenori

    2016-01-01

    Many clonal plants have two reproductive patterns, seed propagation and vegetative propagation. By vegetative propagation, plants reproduce the genetically identical offspring with a low mortality, because resources are supplied from the other individuals through interconnected ramets at vegetative-propagated offspring. However, the ramets transport not only resources but also systemic pathogen. Pathogens evolve to establish and spread widely within the plant population. The superinfection, which is defined as the ability that an established pathogen spreads widely by infecting to already-infected individuals with other strains of a pathogen, is important to the evolution of pathogens. We examine the dynamics of plant reproduction and pathogen propagation considering spatial structure and the effect of superinfection on genetic diversity of pathogen by analysis of several models, 1-strain and multiple-strain models, on two-dimensional square lattice. In the analysis of 1-strain model, we derive equilibrium value by mean-field approximation and pair approximation, and its local stability by Routh-Hurwitz stability criterion. In the multiple-strain models, we analyze the dynamics by numerical simulation of mean-field approximation, pair approximation and Monte Carlo simulation. Through the analyses, we show the effect of parameter values to dynamics of models, such as transition of dominant strain of pathogen, competition between plants and pathogens and density of individuals. As a result, (i) The strain with intermediate cost becomes dominant when both superinfection rate and growth rate are low. (ii) The competition between plants and pathogens occurs in the phase of coexistence of various strains by pair approximation and Monte Carlo simulation. (iii) Too high growth rate leads to the decrease of plant population in all models. (iv) Pathogens are easy to maintain their genetic diversity with low superinfection rate. However, if they do not superinfect, the

  20. Pathogen Propagation Model with Superinfection in Vegetatively Propagated Plants on Lattice Space

    PubMed Central

    Sakai, Yuma; Takada, Takenori

    2016-01-01

    Many clonal plants have two reproductive patterns, seed propagation and vegetative propagation. By vegetative propagation, plants reproduce the genetically identical offspring with a low mortality, because resources are supplied from the other individuals through interconnected ramets at vegetative-propagated offspring. However, the ramets transport not only resources but also systemic pathogen. Pathogens evolve to establish and spread widely within the plant population. The superinfection, which is defined as the ability that an established pathogen spreads widely by infecting to already-infected individuals with other strains of a pathogen, is important to the evolution of pathogens. We examine the dynamics of plant reproduction and pathogen propagation considering spatial structure and the effect of superinfection on genetic diversity of pathogen by analysis of several models, 1-strain and multiple-strain models, on two-dimensional square lattice. In the analysis of 1-strain model, we derive equilibrium value by mean-field approximation and pair approximation, and its local stability by Routh-Hurwitz stability criterion. In the multiple-strain models, we analyze the dynamics by numerical simulation of mean-field approximation, pair approximation and Monte Carlo simulation. Through the analyses, we show the effect of parameter values to dynamics of models, such as transition of dominant strain of pathogen, competition between plants and pathogens and density of individuals. As a result, (i) The strain with intermediate cost becomes dominant when both superinfection rate and growth rate are low. (ii) The competition between plants and pathogens occurs in the phase of coexistence of various strains by pair approximation and Monte Carlo simulation. (iii) Too high growth rate leads to the decrease of plant population in all models. (iv) Pathogens are easy to maintain their genetic diversity with low superinfection rate. However, if they do not superinfect, the

  1. Radio wave propagation in pulsar magnetospheres

    NASA Astrophysics Data System (ADS)

    Petrova, S. A.; Lyubarskii, Yu. E.

    Pulsar magnetospheres are known to contain an ultrarelativistic highly magnetized plasma which streams along the open magnetic lines. The radio emission observed from pulsars is believed to originate sufficiently deep in the open field line tube, so that the characteristics of outgoing waves can be influenced by propagation in the magnetospheric plasma. Refraction of radio waves in pulsar magnetospheres appears to be efficient. The effect not only influences the observed pulse width and its frequency dependency. It can alter the apparent spatial structure of pulsar emission region which can be derived from the observations of pulsar interstellar scintillations. Transverse ray separation versus pulse longitude calculated allowing for magnetospheric refraction appears to be in qualitative agreement with that observed. In particular, the nonmonotonic character of the curve can be attributed to nonmonotonic distribution of the plasma number density across the open field line tube which makes the rays emitted at different spatial locations deviate in the opposite directions. Proceeding from the frequency dependence of refraction some predictions are made about the frequency evolution of the apparent spatial structure of pulsar emission region. Magnetospheric refraction can also determine the profile shape giving rise to ray grouping into separate components. It will be demonstrated that the salient features of profile morphology can be explained within the frame of a primordial hollow-cone emission model taking into account refraction of rays in pulsar plasma. Then the frequency evolution of profile structure is naturally interpreted as a consequence of frequency dependence of refraction. As the waves propagate in the magnetospheric plasma their polarization also evolves essentially. In the vicinity of the emission region normal waves are linearly polarized and propagate independently, with the polarization plane following the orientation of the local magnetic field. As

  2. Surface wave propagation across the USArray

    NASA Astrophysics Data System (ADS)

    Foster, A. E.; Ekstrom, G.; Hjorleifsdottir, V.

    2010-12-01

    We present Love and Rayleigh wave phase-velocity models at discrete periods between 25 and 100 s from the inversion of phase measurements. Phase measurements are made on an updated set of USArray TA data using a two-station method that has been corrected for the estimated wavefront arrival angle. Arrival angles are estimated using a “mini-array” method, which additionally calculates the local phase velocity for each event recorded in a mini array. By minimizing the misfit between observed and predicted phase within the mini array, we find the best-fit local phase velocity, which is then used to predict the phase in a grid search for apparent source locations. The trial sources have fixed epicentral distance but varied arrival angles with respect to the mini array, and the optimal apparent source corresponds to the arrival angle. Correcting the two-station method for the arrival angle produces small (around 1%) changes in phase velocity. In the inversion results, these changes are most significant along the Pacific coast at shorter periods, as a result of refraction at the ocean-continent transition. The local phase-velocity estimates are combined to make independent phase-velocity models for comparison with the inversion results. For Rayleigh waves at all periods, the two models have similar size, location, and strength of anomalies. Higher noise levels in Love wave data are apparent in both models; they show similar velocities and large anomalies, but smaller anomalies are below the noise levels at short periods. Still, the overall quality and quantity of data available allow us to investigate the errors associated with the two-station method, and the effect the duration and complexity of wave propagation has on these errors. We examine the consistency of wave propagation using the estimated arrival angles for multiple events recorded at the same stations. This is repeated with synthetic events, calculated using the spectral element method of Komatitsch and

  3. Seismic Wave Propagation on the Tablet Computer

    NASA Astrophysics Data System (ADS)

    Emoto, K.

    2015-12-01

    Tablet computers widely used in recent years. The performance of the tablet computer is improving year by year. Some of them have performance comparable to the personal computer of a few years ago with respect to the calculation speed and the memory size. The convenience and the intuitive operation are the advantage of the tablet computer compared to the desktop PC. I developed the iPad application of the numerical simulation of the seismic wave propagation. The numerical simulation is based on the 2D finite difference method with the staggered-grid scheme. The number of the grid points is 512 x 384 = 196,608. The grid space is 200m in both horizontal and vertical directions. That is the calculation area is 102km x 77km. The time step is 0.01s. In order to reduce the user waiting time, the image of the wave field is drawn simultaneously with the calculation rather than playing the movie after the whole calculation. P and S wave energies are plotted on the screen every 20 steps (0.2s). There is the trade-off between the smooth simulation and the resolution of the wave field image. In the current setting, it takes about 30s to calculate the 10s wave propagation (50 times image updates). The seismogram at the receiver is displayed below of the wave field updated in real time. The default medium structure consists of 3 layers. The layer boundary is defined by 10 movable points with linear interpolation. Users can intuitively change to the arbitrary boundary shape by moving the point. Also users can easily change the source and the receiver positions. The favorite structure can be saved and loaded. For the advance simulation, users can introduce the random velocity fluctuation whose spectrum can be changed to the arbitrary shape. By using this application, everyone can simulate the seismic wave propagation without the special knowledge of the elastic wave equation. So far, the Japanese version of the application is released on the App Store. Now I am preparing the

  4. Adaptive laser link reconfiguration using constraint propagation

    NASA Technical Reports Server (NTRS)

    Crone, M. S.; Julich, P. M.; Cook, L. M.

    1993-01-01

    This paper describes Harris AI research performed on the Adaptive Link Reconfiguration (ALR) study for Rome Lab, and focuses on the application of constraint propagation to the problem of link reconfiguration for the proposed space based Strategic Defense System (SDS) Brilliant Pebbles (BP) communications system. According to the concept of operations at the time of the study, laser communications will exist between BP's and to ground entry points. Long-term links typical of RF transmission will not exist. This study addressed an initial implementation of BP's based on the Global Protection Against Limited Strikes (GPALS) SDI mission. The number of satellites and rings studied was representative of this problem. An orbital dynamics program was used to generate line-of-site data for the modeled architecture. This was input into a discrete event simulation implemented in the Harris developed COnstraint Propagation Expert System (COPES) Shell, developed initially on the Rome Lab BM/C3 study. Using a model of the network and several heuristics, the COPES shell was used to develop the Heuristic Adaptive Link Ordering (HALO) Algorithm to rank and order potential laser links according to probability of communication. A reduced set of links based on this ranking would then be used by a routing algorithm to select the next hop. This paper includes an overview of Constraint Propagation as an Artificial Intelligence technique and its embodiment in the COPES shell. It describes the design and implementation of both the simulation of the GPALS BP network and the HALO algorithm in COPES. This is described using a 59 Data Flow Diagram, State Transition Diagrams, and Structured English PDL. It describes a laser communications model and the heuristics involved in rank-ordering the potential communication links. The generation of simulation data is described along with its interface via COPES to the Harris developed View Net graphical tool for visual analysis of communications

  5. Radial propagation of geodesic acoustic modes

    SciTech Connect

    Hager, Robert; Hallatschek, Klaus

    2009-07-15

    The GAM group velocity is estimated from the ratio of the radial free energy flux to the total free energy applying gyrokinetic and two-fluid theory. This method is much more robust than approaches that calculate the group velocity directly and can be generalized to include additional physics, e.g., magnetic geometry. The results are verified with the gyrokinetic code GYRO[J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)], the two-fluid code NLET[K. Hallatschek and A. Zeiler, Phys. Plasmas 7, 2554 (2000)], and analytical calculations. GAM propagation must be kept in mind when discussing the windows of GAM activity observed experimentally and the match between linear theory and experimental GAM frequencies.

  6. Mechanical surface waves accompany action potential propagation.

    PubMed

    El Hady, Ahmed; Machta, Benjamin B

    2015-01-01

    Many diverse studies have shown that a mechanical displacement of the axonal membrane accompanies the electrical pulse defining the action potential (AP). We present a model for these mechanical displacements as arising from the driving of surface wave modes in which potential energy is stored in elastic properties of the neuronal membrane and cytoskeleton while kinetic energy is carried by the axoplasmic fluid. In our model, these surface waves are driven by the travelling wave of electrical depolarization characterizing the AP, altering compressive electrostatic forces across the membrane. This driving leads to co-propagating mechanical displacements, which we term Action Waves (AWs). Our model allows us to estimate the shape of the AW that accompanies any travelling wave of voltage, making predictions that are in agreement with results from several experimental systems. Our model can serve as a framework for understanding the physical origins and possible functional roles of these AWs. PMID:25819404

  7. Globally propagating waves in the solar corona

    NASA Astrophysics Data System (ADS)

    Warmuth, Alexander

    2011-12-01

    High-cadence space-based observations, available for over a decade now, have revealed globally propagating wave-like disturbances in the solar corona. These coronal waves have now been imaged in a wide range of spectral channels, yielding a wealth of information. Still, no consensus on their physical nature has been reached yet. While many findings are consistent with fast-mode MHD waves and/or shocks, other characteristics have given rise to alternative models which involve magnetic reconfiguration in the framework of an erupting coronal mass ejection. In this paper, the observational signatures of coronal waves will be reviewed, and the different physical interpretations of coronal waves and how they are motivated by observations will be discussed. Finally, the potential of using coronal waves as a diagnostic tool for the corona will be shown.

  8. Propagation degradation for mobile satellite systems

    NASA Technical Reports Server (NTRS)

    Goldhirsh, Julius; Vogel, Wolfhard J.

    1988-01-01

    The results of four propagation tests for mobile satellite systems, which used remotely piloted vehicles and helicopters to simulate a transmitter satellite source platform, are presented. The signal degradation by individual trees, attenuation caused by roadside trees when the vehicle was moving, and multipath effects in hilly and mountainous terrain were studied. Three tests were conducted at UHF (870 MHz) and one test was performed at UHF and L band (1500 MHz). It was found that attenuation by roadside trees is the dominant cause of signal fading. The signal degradation may amount to 7 dB or more for 10 percent of the traveling time along tree-lined roads, with attenuations of 15 dB or more 1 percent of the time. The signal degradation caused by multipath effects amounted to only about 2 dB for 10 percent of the time and 9 dB for 1 percent of the time.

  9. Anomalous crack propagation in reinforced natural rubber

    NASA Astrophysics Data System (ADS)

    Sotta, Paul; Gabrielle, Brice; Long, Didier; Vanel, Loic; Albouy, Pierre-Antoine; Peditto, Francesca

    2009-03-01

    In reinforced natural rubber, crack propagation in mode I exhibits rotation of the tear in a direction perpendicular to the usual one. Our objective is, first, to understand the impact of this phenomenon on fracture toughness of the material, and, secondly, to understand how this phenomenon is related to the specific properties of reinforced natural rubber. To this aim, we combine measurements of ultimate properties, measurements of the number and length of tear rotations as a function of loading velocity and temperature, and investigation of material heterogeneities at sub-micrometric scales, originating both from fillers and strain-induced crystallites (strain-induced crystallinity is measured up to failure by X ray diffraction), in natural rubber samples reinforced by nanometric aggregates. Observations suggest that tear rotation is related both to the mechanical anisotropy induced by strain-induced crystallinity and to the dissipative properties of the material at high strain.

  10. Epidemic Propagation In Overlaid Wireless Networks

    SciTech Connect

    Yanmaz, Evsen

    2008-01-01

    Witb tbe emergence of computer worms tbat can spread over air interfaces, wireless ad boc and sensor networks can be vulnerable to node compromises even if the deployed network is not connected to the backbone. Depending on the physical topology of the wireless network, even a single infected node can compromise the whole network. In this work, epidemic (e.g., worm) propagation in a static wireless network is studied, where a number of inCected mobile nodes are injected over the existing network. It is shown that the epidemic spread threshold and size depend on the physical topology of the underlying static wireless network as well as the mobility model employed by the infected mobile nodes. More specifically, results show that in a Cully-connected static wirelessnctwork targeted attacks are more effective, wbereas Cor a random topology random attacks can be sufficient to compromise the whole network.

  11. Ray propagation in nonuniform random lattices

    NASA Astrophysics Data System (ADS)

    Martini, Anna; Franceschetti, Massimo; Massa, Andrea

    2006-09-01

    The problem of optical ray propagation in a nonuniform random half-plane lattice is considered. An external source radiates a planar monochromatic wave impinging at an angle θ on a half-plane random grid where each cell can be independently occupied with probability qj=1-pj,j being the row index. The wave undergoes specular reflections on the occupied cells, and the probability of penetrating up to level k inside the lattice is analytically estimated. Numerical experiments validate the proposed approach and show improvement upon previous results that appeared in the literature. Applications are in the field of remote sensing and communications, where estimation of the penetration of electromagnetic waves in disordered media is of interest.

  12. A Modular Atmospheric Propagation Program (MAPP)

    NASA Technical Reports Server (NTRS)

    Wright, M. L.; Gasiorek, L. S.

    1973-01-01

    A computer model of the atmosphere has been developed that will solve a wide variety of lidar and atmospheric propagation problems. The lidar system calculations involve the prediction of path loss and lidar signal return for a variety of atmospheric conditions and lidar system configurations. The program contains a very large data base of absorption and attenuation coefficients for all of the naturally occurring gases and several gaseous pollutants such as S02, N02, NO, N20, 03, HCL, etc. The spectral range of this data base extends from the ultra-violet (1200 angstroms) through the infra-red. Several aerosol models are included in the program to account for the effects of this important scattering mechanism.

  13. Propagation modeling in a manufacturing environment

    SciTech Connect

    Birdwell, J.D.; Horn, R.D.; Rader, M.S.; Shourbaji, A.A.

    1995-12-31

    Wireless sensors which utilize low power spread spectrum data transmission have significant potential in industrial environments due to low cabling and installation costs. In addition, this technology imposes fewer constraints upon placement due to cable routing, allowing sensors to be installed in areas with poor access. Limitations are imposed on sensor and receiver placement by electromagnetic propagation effects in the industrial environment, including multipath and the presence of absorbing media. This paper explores the electromagnetic analysis of potential wireless sensor applications using commercially available finite element software. In addition, since the applications environment is often at least partially specified in electronic form using computer-aided drafting software, the importation of information from this software is discussed. Both three-dimensional and two-dimensional examples are presented which demonstrate the utility and limitations of the method.

  14. Asymmetric morphology of the propagating jet

    NASA Astrophysics Data System (ADS)

    Hardee, Philip E.; Norman, Michael L.

    1990-12-01

    Simulations of slab jets propagating in constant atmospheres are reported for a range of jet velocities and Mach numbers. At early times, the jet maintains approximate axisymmetry within a backflowing cocoon. When the jet has penetrated farther into the external medium, the symmetry is broken by sideways oscillation and the leading edge of the jet moves about within a growing lobe. The oscillation results from nonlinear resonant amplification of the initial perturbation by the Kelvin-Helmholtz instability. Finally, the jet flaps chaotically within the growing lobe. The flapping is driven by turbulent vortices in the lobe. The basic picture of Scheuer's (1982) 'dentist's drill' model of the physical processes underlying asymmetric morphologies in radio galaxies is confirmed. The fluid motions in the lobe are found to govern the location of the drill bit. The morphology is time-dependent on relatively short time scales.

  15. Propagation of detonations in hydrazine vapor

    NASA Technical Reports Server (NTRS)

    Heinrich, H. J.

    1985-01-01

    In the range of greater hydrazine vapor pressure, detonation speed depends exclusively on the extent of the ammonia decomposition in the second reaction stage. As vapor pressure decreases, the ammonia disintegration speed becomes increasingly slower and the reaction reached in the reaction zone increasingly decreases until finally, in the vapor pressure range between 53 and 16 Torr, the contribution of the second stage to detonation propagation disappears, and only the first stage remains active. Since the disintegration speed of the hydrazine in this pressure range has decreased markedly as well, no level, but rather only spinning, detonations occur. Temporary separations of the impact front and the reaction zone in the process lead to fluctuations of the detonation speed.

  16. Corrosion fatigue crack propagation in metals

    SciTech Connect

    Gangloff, R.P.

    1990-06-01

    This review assesses fracture mechanics data and mechanistic models for corrosion fatigue crack propagation in structural alloys exposed to ambient temperature gases and electrolytes. Extensive stress intensity-crack growth rate data exist for ferrous, aluminum and nickel based alloys in a variety of environments. Interactive variables (viz., stress intensity range, mean stress, alloy composition and microstructure, loading frequency, temperature, gas pressure and electrode potential) strongly affect crack growth kinetics and complicate fatigue control. Mechanistic models to predict crack growth rates were formulated by coupling crack tip mechanics with occluded crack chemistry, and from both the hydrogen embrittlement and anodic dissolution/film rupture perspectives. Research is required to better define: (1) environmental effects near threshold and on crack closure; (2) damage tolerant life prediction codes and the validity of similitude; (3) the behavior of microcrack; (4) probes and improved models of crack tip damage; and (5) the cracking performance of advanced alloys and composites.

  17. Detonation Propagation through Nitromethane Embedded Metal Foam

    NASA Astrophysics Data System (ADS)

    Lieberthal, Brandon; Maines, Warren R.; Stewart, D. Scott

    2015-11-01

    There is considerable interest in developing a better understanding of dynamic behaviors of multicomponent systems. We report results of Eulerian hydrodynamic simulations of shock waves propagating through metal foam at approximately 20% relative density and various porosities using a reactive flow model in the ALE3D software package. We investigate the applied pressure and energy of the shock wave and its effects on the fluid and the inert material interface. By varying pore sizes, as well as metal impedance, we predict the overall effects of heterogeneous material systems at the mesoscale. In addition, we observe a radially expanding blast front in these heterogeneous models and apply the theory of Detonation Shock Dynamics to the convergence behavior of the lead shock.

  18. Asymbiotic in vitro seed propagation of Dendrobium.

    PubMed

    Teixeira da Silva, Jaime A; Tsavkelova, Elena A; Ng, Tzi Bun; Parthibhan, S; Dobránszki, Judit; Cardoso, Jean Carlos; Rao, M V; Zeng, Songjun

    2015-10-01

    The ability to germinate orchids from seeds in vitro presents a useful and viable method for the propagation of valuable germplasm, maintaining the genetic heterogeneity inherent in seeds. Given the ornamental and medicinal importance of many species within the genus Dendrobium, this review explores in vitro techniques for their asymbiotic seed germination. The influence of abiotic factors (such as temperature and light), methods of sterilization, composition of basal media, and supplementation with organic additives and plant growth regulators are discussed in context to achieve successful seed germination, protocorm formation, and further seedling growth and development. This review provides both a basis for the selection of optimal conditions, and a platform for the discovery of better ones, that would allow the development of new protocols and the exploration of new hypotheses for germination and conservation of Dendrobium seeds and seedlings. PMID:26183950

  19. Radio propagation for space communications systems

    NASA Technical Reports Server (NTRS)

    Ippolito, L. J.

    1981-01-01

    This paper presents a review of the most recent information on the effects of the earth's atmosphere on space communications systems. Models and techniques used in the prediction of atmospheric effects as influenced by frequency, geography, elevation angle, and type of transmission are discussed. Recent data on performance characteristics obtained from direct measurements on satellite links operating to above 30 GHz are reviewed. Particular emphasis is placed on the effects of precipitation on the earth-space path, including rain attenuation, and rain and ice-particle depolarization. Sky noise, antenna gain degradation, scintillations, and bandwidth coherence are also discussed. The impact of the various propagation factors on communications system design criteria is presented. These criteria include link reliability, power margins, noise contributions, modulation and polarization factors, channel crosstalk, error-rate, and bandwidth limitations.

  20. Digital reverse propagation in focusing Kerr media

    SciTech Connect

    Goy, Alexandre; Psaltis, Demetri

    2011-03-15

    Lenses allow the formation of clear images in homogeneous linear media. Holography is an alternative imaging method, but its use is limited to cases in which it provides an advantage, such as three-dimensional imaging. In nonlinear media, lenses no longer work. The light produces intensity-dependent aberrations. The reverse propagation method used in digital holography to form images from recorded holograms works even in Kerr media [M. Tsang, D. Psaltis, and F. G. Omenetto, Opt. Lett. 28, 1873 (2003).]. The principle has been experimentally demonstrated recently in defocusing media [C. Barsi, W.Wan, and J.W. Fleischer, Nat. Photonics 3, 211 (2009).]. Here, we report experimental results in focusing media.

  1. Protein aggregates stimulate macropinocytosis facilitating their propagation.

    PubMed

    Yerbury, Justin J

    2016-03-01

    Temporal and spatial patterns of pathological changes such as loss of neurons and presence of pathological protein aggregates are characteristic of neurodegenerative diseases such as Amyotrophic Lateral Sclerosis, Frontotemporal Dementia, Alzheimer's disease and Parkinson's disease. These patterns are consistent with the propagation of protein misfolding and aggregation reminiscent of the prion diseases. There is a surge of evidence that suggests that large protein aggregates of a range of proteins are able to enter cells via macropinocytosis. Our recent work suggests that this process is activated by the binding of aggregates to the neuron cell surface. The current review considers the potential role of cell surface receptors in the triggering of macropinocytosis by protein aggregates and the possibility of utilizing macropinocytosis pathways as a therapeutic target. PMID:26963158

  2. Current Propagation in Narrow Bipolar Pulses

    NASA Astrophysics Data System (ADS)

    Watson, S. S.; Marshall, T. C.

    2005-12-01

    We model the observed electric fields of a particular narrow bipolar pulse (NBP) published in Eack [2004]. We assume an exponential growth of current carriers due to a runaway breakdown avalanche and show that this leads to a corresponding increase in current. With specific input values for discharge altitude, length, current, and propagation velocity, the model does a good job of reproducing the observed near and far electric field. The ability of the model to reproduce the observed electric fields is an indication that our assumptions concerning the runaway avalanche may be correct, and this indication is further strengthened by the inability of the simple transmission line model to reproduce simultaneously both the near and far electric fields. Eack, K. B. (2004), Electrical characteristics of narrow bipolar events, Geophys. Res. Lett., 31, L20102, doi:10.1029/2004/GL021117.

  3. Irregular lattice model for quasistatic crack propagation

    NASA Astrophysics Data System (ADS)

    Bolander, J. E.; Sukumar, N.

    2005-03-01

    An irregular lattice model is proposed for simulating quasistatic fracture in softening materials. Lattice elements are defined on the edges of a Delaunay tessellation of the medium. The dual (Voronoi) tessellation is used to scale the elemental stiffness terms in a manner that renders the lattice elastically homogeneous. This property enables the accurate modeling of heterogeneity, as demonstrated through the elastic stress analyses of fiber composites. A cohesive description of fracture is used to model crack initiation and propagation. Numerical simulations, which demonstrate energy-conserving and grid-insensitive descriptions of cracking, are presented. The model provides a framework for the failure analysis of quasibrittle materials and fiber-reinforced brittle-matrix composites.

  4. Photoelectric observations of propagating sunspot oscillations

    NASA Technical Reports Server (NTRS)

    Lites, B. W.; White, O. R.; Packman, D.

    1982-01-01

    Repeated intensity and velocity images of a large, isolated sunspot in both the chromospheric Ca II 8542 A and photospheric Fe I 5576 line were performed. It is shown by means of a movie of the digital data for the chromospheric line that a relationship exists between the propagating umbral disturbances and the running penumbral waves. Power spectra of the oscillations show a sharp peak at a period of about 170 sec in both the velocity and intensity signals, and the oscillations at any point in the sunspot are found to be very regular. The phase relationship between the velocity and the intensity of the chromospheric oscillations contrasts with that for the quiet sun. The mechanical energy flux carried by the observed umbral disturbances does not appear to be a significant contributor to the overall energy budget of the sunspot or the surrounding active region.

  5. Wave propagation in a random medium

    NASA Technical Reports Server (NTRS)

    Lee, R. W.; Harp, J. C.

    1969-01-01

    A simple technique is used to derive statistical characterizations of the perturbations imposed upon a wave (plane, spherical or beamed) propagating through a random medium. The method is essentially physical rather than mathematical, and is probably equivalent to the Rytov method. The limitations of the method are discussed in some detail; in general they are restrictive only for optical paths longer than a few hundred meters, and for paths at the lower microwave frequencies. Situations treated include arbitrary path geometries, finite transmitting and receiving apertures, and anisotropic media. Results include, in addition to the usual statistical quantities, time-lagged functions, mixed functions involving amplitude and phase fluctuations, angle-of-arrival covariances, frequency covariances, and other higher-order quantities.

  6. Alfven Wave Propagation in Young Stellar Systems

    NASA Astrophysics Data System (ADS)

    Humienny, Ray; Fatuzzo, Marco

    Young stellar systems have disks that are threaded by magnetic field lines with an hourglass geometry. These fields funnel ionizing cosmic rays (CRs) into the system. However, the effect is offset by magnetic mirroring. An previous analysis considered how the presence of magnetic turbulence moving outward from the disk would effect the propagation of cosmic-rays, and in turn, change the cosmic-ray ionization fraction occurring within the disk. This work indicated that turbulence reduces the overall flux of cosmic-rays at the disk, which has important consequences for both chemical processes and planet formation that occur within these environments. However, the analysis assumed ideal MHD condition in which the gas is perfectly coupled to the magnetic field. We explore here the validity of this assumption by solving the full equations governing the motion of both ions and neutral within the system.

  7. Corrosion fatigue crack propagation in metals

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.

    1990-01-01

    This review assesses fracture mechanics data and mechanistic models for corrosion fatigue crack propagation in structural alloys exposed to ambient temperature gases and electrolytes. Extensive stress intensity-crack growth rate data exist for ferrous, aluminum and nickel based alloys in a variety of environments. Interactive variables (viz., stress intensity range, mean stress, alloy composition and microstructure, loading frequency, temperature, gas pressure and electrode potential) strongly affect crack growth kinetics and complicate fatigue control. Mechanistic models to predict crack growth rates were formulated by coupling crack tip mechanics with occluded crack chemistry, and from both the hydrogen embrittlement and anodic dissolution/film rupture perspectives. Research is required to better define: (1) environmental effects near threshold and on crack closure; (2) damage tolerant life prediction codes and the validity of similitude; (3) the behavior of microcrack; (4) probes and improved models of crack tip damage; and (5) the cracking performance of advanced alloys and composites.

  8. Quantum propagation in single mode fiber

    NASA Technical Reports Server (NTRS)

    Joneckis, Lance G.; Shapiro, Jeffrey H.

    1994-01-01

    This paper presents a theory for quantum light propagation in a single-mode fiber which includes the effects of the Kerr nonlinearity, group-velocity dispersion, and linear loss. The theory reproduces the results of classical self-phase modulation, quantum four-wave mixing, and classical solution physics, within their respective regions of validity. It demonstrates the crucial role played by the Kerr-effect material time constant, in limiting the quantum phase shifts caused by the broadband zero-point fluctuations that accompany any quantized input field. Operator moment equations - approximated, numerically, via a terminated cumulant expansion - are used to obtain results for homodyne-measurement noise spectra when dispersion is negligible. More complicated forms of these equations can be used to incorporate dispersion into the noise calculations.

  9. Mechanical surface waves accompany action potential propagation

    NASA Astrophysics Data System (ADS)

    El Hady, Ahmed; Machta, Benjamin B.

    2015-03-01

    Many diverse studies have shown that a mechanical displacement of the axonal membrane accompanies the electrical pulse defining the action potential (AP). We present a model for these mechanical displacements as arising from the driving of surface wave modes in which potential energy is stored in elastic properties of the neuronal membrane and cytoskeleton while kinetic energy is carried by the axoplasmic fluid. In our model, these surface waves are driven by the travelling wave of electrical depolarization characterizing the AP, altering compressive electrostatic forces across the membrane. This driving leads to co-propagating mechanical displacements, which we term Action Waves (AWs). Our model allows us to estimate the shape of the AW that accompanies any travelling wave of voltage, making predictions that are in agreement with results from several experimental systems. Our model can serve as a framework for understanding the physical origins and possible functional roles of these AWs.

  10. Electromagnetic model for propagation through clouds

    NASA Astrophysics Data System (ADS)

    Seker, S. S.

    Electromagnetic propagation through a sparse distribution of lossy dielectric particles in a cloud is investigated. A mathematical model is developed to aid in the interpretation of the interaction data obtained by electromagnetic remote probing of mixed ice crystal and waterdrop clouds. Such clouds can contain many possible crystal forms, most notably thin long cylinder, bullets, and flat plate crystals. Bistatic reflectivity and attenuation are computed for waves of selected polarizations passing through clouds with specified size, shape, and distributions. The proposed formulation is matrix and stochastic in nature, and easily accomodates arbitrary polarization states. It allows complete characterization of medium depolarization effects from hydrometers (e.g., attenuation, isolation, and shape shift). The results obtained are of interest in connection with the study of the effects of clouds on microwave or millimeter-wave communications.

  11. Boosting Set Constraint Propagation for Network Design

    NASA Astrophysics Data System (ADS)

    Yip, Justin; van Hentenryck, Pascal; Gervet, Carmen

    This paper reconsiders the deployment of synchronous optical networks (SONET), an optimization problem naturally expressed in terms of set variables. Earlier approaches, using either MIP or CP technologies, focused on symmetry breaking, including the use of SBDS, and the design of effective branching strategies. This paper advocates an orthogonal approach and argues that the thrashing behavior experienced in earlier attempts is primarily due to a lack of pruning. It studies how to improve domain filtering by taking a more global view of the application and imposing redundant global constraints. The technical results include novel hardness results, propagation algorithms for global constraints, and inference rules. The paper also evaluates the contributions experimentally by presenting a novel model with static symmetric-breaking constraints and a static variable ordering which is many orders of magnitude faster than existing approaches.

  12. Isolation, propagation, and analysis of biological nanoparticles.

    PubMed

    Linnes, Michael P; Shiekh, Farooq A; Hunter, Larry W; Miller, Virginia M; Lieske, John C

    2011-01-01

    Calcifying biologic nanoparticles (NPs) have been implicated as nucleation points for a number of -pathologic events that include vascular calcification and the formation of kidney stones. In order to study these potential relationships, reproducible isolation of well-characterized biologic NPs is a necessity. Our group has isolated and propagated calcifying NPs from several human tissues and renal stones. Specific proteins that could nucleate a calcium phosphate shell under physiologic conditions have been identified as part of their structure, including elongation factor Tu (EF-Tu) and fetuin-A. Visualization, using advanced transmission electron microscopy (TEM), immunofluorescence microscopy, and nuclear and antibody staining in conjunction with flow cytometry, can further elucidate NPs composition and their role in pathology. In order to allow uniform investigation by others, the isolation, culture, and handling procedures for biologic NPs from human calcified vascular tissue and kidney stones are reported in detail. PMID:21948421

  13. Acoustic propagation in a thermally stratified atmosphere

    NASA Technical Reports Server (NTRS)

    Vanmoorhem, W. K.

    1987-01-01

    Acoustic propagation in an atmosphere with a specific form of temperature profile has been investigated by analytical means. The temperature profile used is representative of an actual atmospheric profile and contains three free parameters. Both lapse and inversion cases have been considered. Although ray solution have been considered the primary emphasis has been on solutions of the acoustic wave equation with point force where the sound speed varies with height above the ground corresponding to the assumed temperature profile. The method used to obtain the solution of the wave equation is based on Hankel transformation of the wave equation, approximate solution of the transformed equation for wavelength small compared to the scale of the temperature (or sound speed) profile, and approximate or numerical inversion of the Hankel transformed solution. The solution displays the characteristics found in experimental data but extensive comparison between the models and experimental data has not been carried out.

  14. Lattice Boltzmann model for wave propagation.

    PubMed

    Zhang, Jianying; Yan, Guangwu; Shi, Xiubo

    2009-08-01

    A lattice Boltzmann model for two-dimensional wave equation is proposed by using the higher-order moment method. The higher-order moment method is based on the solution of a series of partial differential equations obtained by using multiscale technique and Chapman-Enskog expansion. In order to obtain the lattice Boltzmann model for the wave equation with higher-order accuracy of truncation errors, we removed the second-order dissipation term and the third-order dispersion term by employing the moments up to fourth order. The reversibility in time appears owing to the absence of the second-order dissipation term and the third-order dispersion term. As numerical examples, some classical examples, such as interference, diffraction, and wave passing through a convex lens, are simulated. The numerical results show that this model can be used to simulate wave propagation. PMID:19792280

  15. Propagation and nucleosynthesis of ultraheavy cosmic rays

    NASA Technical Reports Server (NTRS)

    Giler, M.; Wibig, T.

    1985-01-01

    The observed fluxes of cosmic ray (C.R.) ultraheavy elements depend on their charge and mass spectrum at the sources and on the propagation effects, on the distribution of path lengths traversed by the particles on their way from the sources to the observation point. The effect of different path length distributions (p.l.d.) on the infered source abunances is analyzed. It seems that it is rather difficult to fit a reasonable p.l.d. so that the obtained source spectrum coincides with the Solar System (SS) abundances in more detail. It suggests that the nucleosynthesis conditions for c.r. nuclei may differ from that for SS matter. The nucleosynthesis of ultraheavy elements fitting its parameters to get the c.r. source abundances is calculated. It is shown that it is possible to get a very good agreement between the predicted and the observed source abundance.

  16. Effective propagation in a perturbed periodic structure

    NASA Astrophysics Data System (ADS)

    Maurel, Agnès; Pagneux, Vincent

    2008-08-01

    In a recent paper [D. Torrent, A. Hakansson, F. Cervera, and J. Sánchez-Dehesa, Phys. Rev. Lett. 96, 204302 (2006)] inspected the effective parameters of a cluster containing an ensemble of scatterers with a periodic or a weakly disordered arrangement. A small amount of disorder is shown to have a small influence on the characteristics of the acoustic wave propagation with respect to the periodic case. In this Brief Report, we inspect further the effect of a deviation in the scatterer distribution from the periodic distribution. The quasicrystalline approximation is shown to be an efficient tool to quantify this effect. An analytical formula for the effective wave number is obtained in one-dimensional acoustic medium and is compared with the Berryman result in the low-frequency limit. Direct numerical calculations show a good agreement with the analytical predictions.

  17. Effective propagation in a perturbed periodic structure

    SciTech Connect

    Maurel, Agnes; Pagneux, Vincent

    2008-08-01

    In a recent paper [D. Torrent, A. Hakansson, F. Cervera, and J. Sanchez-Dehesa, Phys. Rev. Lett. 96, 204302 (2006)] inspected the effective parameters of a cluster containing an ensemble of scatterers with a periodic or a weakly disordered arrangement. A small amount of disorder is shown to have a small influence on the characteristics of the acoustic wave propagation with respect to the periodic case. In this Brief Report, we inspect further the effect of a deviation in the scatterer distribution from the periodic distribution. The quasicrystalline approximation is shown to be an efficient tool to quantify this effect. An analytical formula for the effective wave number is obtained in one-dimensional acoustic medium and is compared with the Berryman result in the low-frequency limit. Direct numerical calculations show a good agreement with the analytical predictions.

  18. Skewon field and cosmic wave propagation

    NASA Astrophysics Data System (ADS)

    Ni, Wei-Tou

    2014-03-01

    We study the propagation of the Hehl-Obukhov-Rubilar skewon field in weak gravity field/dilute matter or with weak violation of the Einstein Equivalence Principle (EEP), and further classify it into Type I and Type II skewons. From the dispersion relation we show that no dissipation/no amplification condition implies that the additional skewon field must be of Type II. For Type I skewon field, the dissipation/amplification is proportional to the frequency and the CMB spectrum would deviate from Planck spectrum. From the high precision agreement of the CMB spectrum with 2.755 K Planck spectrum, we constrain the Type I cosmic skewon field |χijkl(SkI)| to ⩽ a few ×10-35. The skewon part of constitutive tensor constructed from asymmetric metric is of Type II, hence it is allowed. This study may also be applied to macroscopic electrodynamics in the case of laser pumped medium or dissipative medium.

  19. Safe Laser Beam Propagation for Interplanetary Links

    NASA Technical Reports Server (NTRS)

    Wilson, Keith E.

    2011-01-01

    Ground-to-space laser uplinks to Earth–orbiting satellites and deep space probes serve both as a beacon and an uplink command channel for deep space probes and Earth-orbiting satellites. An acquisition and tracking point design to support a high bandwidth downlink from a 20-cm optical terminal on an orbiting Mars spacecraft typically calls for 2.5 kW of 1030-nm uplink optical power in 40 micro-radians divergent beams.2 The NOHD (nominal ocular hazard distance) of the 1030nm uplink is in excess of 2E5 km, approximately half the distance to the moon. Recognizing the possible threat of high power laser uplinks to the flying public and to sensitive Earth-orbiting satellites, JPL developed a three-tiered system at its Optical Communications Telescope Laboratory (OCTL) to ensure safe laser beam propagation through navigational and near-Earth space.

  20. Damage initiation and propagation in metal laminates

    SciTech Connect

    Riddle, R.A.; Lesuer, D.R.; Syn, C.K.

    1996-07-26

    The metal laminates proposed here for aircraft structures are Al alloy interlayers between Al alloy based metal matrix composite (MMC) plates reinforced with Si carbide particles. Properties to be tailored for jet engine fan containment and wing and auxiliary support structures include the important property fracture toughness. A method was developed for simulating and predicting crack initiation/growth using finite element analysis and fracture mechanics. An important key in predicting the failure is the tie- break slideline with prescribed (chosen based on J Integral calculations) effective plastic strain to failure in elements along the slideline. More development of the method is needed, particularly in its correlation with experimental data from various fracture toughness and strength tests of metal laminates. Results show that delamination at the interface of the ductile interlayer and MMC material can add significantly to the energy required to propagate a crack through a metal laminate. 11 figs, 7 refs.