Science.gov

Sample records for hawaiian volcano observatory

  1. The origin of the Hawaiian Volcano Observatory

    SciTech Connect

    Dvorak, John

    2011-05-15

    I first stepped through the doorway of the Hawaiian Volcano Observatory in 1976, and I was impressed by what I saw: A dozen people working out of a stone-and-metal building perched at the edge of a high cliff with a spectacular view of a vast volcanic plain. Their primary purpose was to monitor the island's two active volcanoes, Kilauea and Mauna Loa. I joined them, working for six weeks as a volunteer and then, years later, as a staff scientist. That gave me several chances to ask how the observatory had started.

  2. Hawaiian Volcano Observatory 1956 Quarterly Administrative Reports

    USGS Publications Warehouse

    Nakata, Jennifer S., (compiler)

    2007-01-01

    The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. This report consists of four parts.

  3. Hawaiian Volcano Observatory 1961 Quarterly Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S., (compiler)

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  4. Hawaiian Volcano Observatory 1962 Quarterly Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S., (compiler)

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  5. Hawaiian Volcano Observatory 1971 Quarterly Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S., (compiler)

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  6. Hawaiian Volcano Observatory 1980 Annual Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S., (compiler)

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  7. Hawaiian Volcano Observatory 1964 Quarterly Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S., (compiler)

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  8. Hawaiian Volcano Observatory 1978 Annual Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S., (compiler)

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  9. Hawaiian Volcano Observatory 1965 Quarterly Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S., (compiler)

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  10. Hawaiian Volcano Observatory 1984 Annual Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S., (compiler)

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  11. Hawaiian Volcano Observatory 1972 Quarterly Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S., (compiler)

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  12. Hawaiian Volcano Observatory 1983 Annual Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S., (compiler)

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  13. Hawaiian Volcano Observatory 1967 Quarterly Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S., (compiler)

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  14. Hawaiian Volcano Observatory 1969 Quarterly Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S., (compiler)

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  15. Hawaiian Volcano Observatory 1982 Annual Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S., (compiler)

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  16. Hawaiian Volcano Observatory 1975 Annual Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S., (compiler)

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  17. Hawaiian Volcano Observatory 1960 Quarterly Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S., (compiler)

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  18. Hawaiian Volcano Observatory 1979 Annual Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S., (compiler)

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  19. Hawaiian Volcano Observatory 1957 Quarterly Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S., (compiler)

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  20. Hawaiian Volcano Observatory 1976 Annual Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S., (compiler)

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  1. Hawaiian Volcano Observatory 1959 Quarterly Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S., (compiler)

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  2. Hawaiian Volcano Observatory 1968 Quarterly Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S., (compiler)

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  3. Hawaiian Volcano Observatory 1973 Quarterly Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S., (compiler)

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  4. Hawaiian Volcano Observatory 1958 Quarterly Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S., (compiler)

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  5. Hawaiian Volcano Observatory 1966 Quarterly Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S., (compiler)

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  6. Hawaiian Volcano Observatory 1977 Annual Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S., (compiler)

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  7. Hawaiian Volcano Observatory 1981 Annual Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S., (compiler)

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  8. Hawaiian Volcano Observatory 1963 Quarterly Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S., (compiler)

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  9. Hawaiian Volcano Observatory 1970 Quarterly Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S., (compiler)

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  10. Hawaiian Volcano Observatory 1985 Annual Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S., (compiler)

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  11. Hawaiian Volcano Observatory 1974 Annual Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S., (compiler)

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  12. Chasing lava: a geologist's adventures at the Hawaiian Volcano Observatory

    USGS Publications Warehouse

    Duffield, Wendell A.

    2003-01-01

    A lively account of the three years (1969-1972) spent by geologist Wendell Duffield working at the Hawaiian Volcano Observatory at Kilauea, one of the world's more active volcanoes. Abundantly illustrated in b&w and color, with line drawings and maps, as well. Volcanologists and general readers alike will enjoy author Wendell Duffield's report from Kilauea--home of Pele, the goddess of fire and volcanoes. Duffield's narrative encompasses everything from the scientific (his discovery that the movements of cooled lava on a lava lake mimic the movements of the earth's crust, providing an accessible model for understanding plate tectonics) to the humorous (his dog's discovery of a snake on the supposedly snake-free island) to the life-threatening (a colleague's plunge into molten lava). This charming account of living and working at Kilauea, one of the world's most active volcanoes, is sure to be a delight.

  13. Hawaiian Volcano Observatory Seismic Data, January to December 2006

    USGS Publications Warehouse

    Nakata, Jennifer

    2007-01-01

    Introduction The Hawaiian Volcano Observatory (HVO) summary presents seismic data gathered during the year. The seismic summary is offered without interpretation as a source of preliminary data. It is complete in the sense that most data for events of M>1.5 routinely gathered by the Observatory are included. The HVO summaries have been published in various forms since 1956. Summaries prior to 1974 were issued quarterly, but cost, convenience of preparation and distribution, and the large quantities of data dictated an annual publication beginning with Summary 74 for the year 1974. Summary 86 (the introduction of CUSP at HVO) includes a description of the seismic instrumentation, calibration, and processing used in recent years. Beginning with 2004, summaries are simply identified by the year, rather than Summary number. The present summary includes background information on the seismic network and processing to allow use of the data and to provide an understanding of how they were gathered. A report by Klein and Koyanagi (1980) tabulates instrumentation, calibration, and recording history of each seismic station in the network. It is designed as a reference for users of seismograms and phase data and includes and augments the information in the station table in this summary.

  14. Scientists probe Earth’s secrets at the Hawaiian Volcano Observatory

    USGS Publications Warehouse

    Unger, J.D.

    1974-01-01

    The Hawaiian Volcano Observatory (HVO) sits on the edge of Kilauea Caldera at the summit of Kilauea Volcao, one of the five volcanoes on the island of Hawaii, the largest island in the Hawaiian Islands chain. Of the five, only Kilauea and Mauna Loa have been active in the past 100 years. Before its last eruption in June 1950, Mauna Loa had erupted more frequently and copiously than Kilauea, but since then only Kilauea has been active. 

  15. One hundred volatile years of volcanic gas studies at the Hawaiian Volcano Observatory: Chapter 7 in Characteristics of Hawaiian volcanoes

    USGS Publications Warehouse

    Sutton, A.J.; Elias, Tamar

    2014-01-01

    The first volcanic gas studies in Hawai‘i, beginning in 1912, established that volatile emissions from Kīlauea Volcano contained mostly water vapor, in addition to carbon dioxide and sulfur dioxide. This straightforward discovery overturned a popular volatile theory of the day and, in the same action, helped affirm Thomas A. Jaggar, Jr.’s, vision of the Hawaiian Volcano Observatory (HVO) as a preeminent place to study volcanic processes. Decades later, the environmental movement produced a watershed of quantitative analytical tools that, after being tested at Kīlauea, became part of the regular monitoring effort at HVO. The resulting volatile emission and fumarole chemistry datasets are some of the most extensive on the planet. These data indicate that magma from the mantle enters the shallow magmatic system of Kīlauea sufficiently oversaturated in CO2 to produce turbulent flow. Passive degassing at Kīlauea’s summit that occurred from 1983 through 2007 yielded CO2-depleted, but SO2- and H2O-rich, rift eruptive gases. Beginning with the 2008 summit eruption, magma reaching the East Rift Zone eruption site became depleted of much of its volatile content at the summit eruptive vent before transport to Pu‘u ‘Ō‘ō. The volatile emissions of Hawaiian volcanoes are halogen-poor, relative to those of other basaltic systems. Information gained regarding intrinsic gas solubilities at Kīlauea and Mauna Loa, as well as the pressure-controlled nature of gas release, have provided useful tools for tracking eruptive activity. Regular CO2-emission-rate measurements at Kīlauea’s summit, together with surface-deformation and other data, detected an increase in deep magma supply more than a year before a corresponding surge in effusive activity. Correspondingly, HVO routinely uses SO2 emissions to study shallow eruptive processes and effusion rates. HVO gas studies and Kīlauea’s long-running East Rift Zone eruption also demonstrate that volatile emissions can

  16. The evolution of seismic monitoring systems at the Hawaiian Volcano Observatory: Chapter 2 in Characteristics of Hawaiian volcanoes

    USGS Publications Warehouse

    Okubo, Paul G.; Nakata, Jennifer S.; Koyanagi, Robert Y.

    2014-01-01

    In the century since the Hawaiian Volcano Observatory (HVO) put its first seismographs into operation at the edge of Kīlauea Volcano’s summit caldera, seismic monitoring at HVO (now administered by the U.S. Geological Survey [USGS]) has evolved considerably. The HVO seismic network extends across the entire Island of Hawai‘i and is complemented by stations installed and operated by monitoring partners in both the USGS and the National Oceanic and Atmospheric Administration. The seismic data stream that is available to HVO for its monitoring of volcanic and seismic activity in Hawai‘i, therefore, is built from hundreds of data channels from a diverse collection of instruments that can accurately record the ground motions of earthquakes ranging in magnitude from <1 to ≥8. In this chapter we describe the growth of HVO’s seismic monitoring systems throughout its first hundred years of operation. Although other references provide specific details of the changes in instrumentation and data handling over time, we recount here, in more general terms, the evolution of HVO’s seismic network. We focus not only on equipment but also on interpretative products and results that were enabled by the new instrumentation and by improvements in HVO’s seismic monitoring, analytical, and interpretative capabilities implemented during the past century. As HVO enters its next hundred years of seismological studies, it is well situated to further improve upon insights into seismic and volcanic processes by using contemporary seismological tools.

  17. A Versatile Time-Lapse Camera System Developed by the Hawaiian Volcano Observatory for Use at Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Orr, Tim R.; Hoblitt, Richard P.

    2008-01-01

    Volcanoes can be difficult to study up close. Because it may be days, weeks, or even years between important events, direct observation is often impractical. In addition, volcanoes are often inaccessible due to their remote location and (or) harsh environmental conditions. An eruption adds another level of complexity to what already may be a difficult and dangerous situation. For these reasons, scientists at the U.S. Geological Survey (USGS) Hawaiian Volcano Observatory (HVO) have, for years, built camera systems to act as surrogate eyes. With the recent advances in digital-camera technology, these eyes are rapidly improving. One type of photographic monitoring involves the use of near-real-time network-enabled cameras installed at permanent sites (Hoblitt and others, in press). Time-lapse camera-systems, on the other hand, provide an inexpensive, easily transportable monitoring option that offers more versatility in site location. While time-lapse systems lack near-real-time capability, they provide higher image resolution and can be rapidly deployed in areas where the use of sophisticated telemetry required by the networked cameras systems is not practical. This report describes the latest generation (as of 2008) time-lapse camera system used by HVO for photograph acquisition in remote and hazardous sites on Kilauea Volcano.

  18. The story of the Hawaiian Volcano Observatory -- A remarkable first 100 years of tracking eruptions and earthquakes

    USGS Publications Warehouse

    Babb, Janet L.; Kauahikaua, James P.; Tilling, Robert I.

    2011-01-01

    The year 2012 marks the centennial of the Hawaiian Volcano Observatory (HVO). With the support and cooperation of visionaries, financiers, scientists, and other individuals and organizations, HVO has successfully achieved 100 years of continuous monitoring of Hawaiian volcanoes. As we celebrate this milestone anniversary, we express our sincere mahalo—thanks—to the people who have contributed to and participated in HVO’s mission during this past century. First and foremost, we owe a debt of gratitude to the late Thomas A. Jaggar, Jr., the geologist whose vision and efforts led to the founding of HVO. We also acknowledge the pioneering contributions of the late Frank A. Perret, who began the continuous monitoring of Kīlauea in 1911, setting the stage for Jaggar, who took over the work in 1912. Initial support for HVO was provided by the Massachusetts Institute of Technology (MIT) and the Carnegie Geophysical Laboratory, which financed the initial cache of volcano monitoring instruments and Perret’s work in 1911. The Hawaiian Volcano Research Association, a group of Honolulu businessmen organized by Lorrin A. Thurston, also provided essential funding for HVO’s daily operations starting in mid-1912 and continuing for several decades. Since HVO’s beginning, the University of Hawaiʻi (UH), called the College of Hawaii until 1920, has been an advocate of HVO’s scientific studies. We have benefited from collaborations with UH scientists at both the Hilo and Mänoa campuses and look forward to future cooperative efforts to better understand how Hawaiian volcanoes work. The U.S. Geological Survey (USGS) has operated HVO continuously since 1947. Before then, HVO was under the administration of various Federal agencies—the U.S. Weather Bureau, at the time part of the Department of Agriculture, from 1919 to 1924; the USGS, which first managed HVO from 1924 to 1935; and the National Park Service from 1935 to 1947. For 76 of its first 100 years, HVO has been

  19. The Hawaiian Volcano Observatory's current approach to forecasting lava flow hazards (Invited)

    NASA Astrophysics Data System (ADS)

    Kauahikaua, J. P.

    2013-12-01

    Hawaiian Volcanoes are best known for their frequent basaltic eruptions, which typically start with fast-moving channelized `a`a flows fed by high eruptions rates. If the flows continue, they generally transition into pahoehoe flows, fed by lower eruption rates, after a few days to weeks. Kilauea Volcano's ongoing eruption illustrates this--since 1986, effusion at Kilauea has mostly produced pahoehoe. The current state of lava flow simulation is quite advanced, but the simplicity of the models mean that they are most appropriately used during the first, most vigorous, days to weeks of an eruption - during the effusion of `a`a flows. Colleagues at INGV in Catania have shown decisively that MAGFLOW simulations utilizing satellite-derived eruption rates can be effective at estimating hazards during the initial periods of an eruption crisis. However, the algorithms do not simulate the complexity of pahoehoe flows. Forecasts of lava flow hazards are the most common form of volcanic hazard assessments made in Hawai`i. Communications with emergency managers over the last decade have relied on simple steepest-descent line maps, coupled with empirical lava flow advance rate information, to portray the imminence of lava flow hazard to nearby communities. Lavasheds, calculated as watersheds, are used as a broader context for the future flow paths and to advise on the utility of diversion efforts, should they be contemplated. The key is to communicate the uncertainty of any approach used to formulate a forecast and, if the forecast uses simple tools, these communications can be fairly straightforward. The calculation of steepest-descent paths and lavasheds relies on the accuracy of the digital elevation model (DEM) used, so the choice of DEM is critical. In Hawai`i, the best choice is not the most recent but is a 1980s-vintage 10-m DEM--more recent LIDAR and satellite radar DEM are referenced to the ellipsoid and include vegetation effects. On low-slope terrain, steepest

  20. Mahukona: The missing Hawaiian volcano

    SciTech Connect

    Garcia, M.O.; Muenow, D.W. ); Kurz, M.D. )

    1990-11-01

    New bathymetric and geochemical data indicate that a seamount west of the island of Hawaii, Mahukona, is a Hawaiian shield volcano. Mahukona has weakly alkalic lavas that are geochemically distinct. They have high {sup 3}He/{sup 4}He ratios (12-21 times atmosphere), and high H{sub 2}O and Cl contents, which are indicative of the early state of development of Hawaiian volcanoes. The He and Sr isotopic values for Mahukona lavas are intermediate between those for lavas from Loihi and Manuna Loa volcanoes and may be indicative of a temporal evolution of Hawaiian magmas. Mahukona volcano became extinct at about 500 ka, perhaps before reaching sea level. It fills the previously assumed gap in the parallel chains of volcanoes forming the southern segment of the Hawaiian hotspot chain. The paired sequence of volcanoes was probably caused by the bifurcation of the Hawaiian mantle plume during its ascent, creating two primary areas of melting 30 to 40 km apart that have persisted for at least the past 4 m.y.

  1. Alaska Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Murray, Tom; Read, Cyrus

    2008-01-01

    Steam plume from the 2006 eruption of Augustine volcano in Cook Inlet, Alaska. Explosive ash-producing eruptions from Alaska's 40+ historically active volcanoes pose hazards to aviation, including commercial aircraft flying the busy North Pacific routes between North America and Asia. The Alaska Volcano Observatory (AVO) monitors these volcanoes to provide forecasts of eruptive activity. AVO is a joint program of the U.S. Geological Survey (USGS), the Geophysical Institute of the University of Alaska Fairbanks (UAFGI), and the State of Alaska Division of Geological and Geophysical Surveys (ADGGS). AVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Augustine volcano and AVO at http://www.avo.alaska.edu.

  2. Yellowstone Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Lowenstern, Jacob

    2008-01-01

    Eruption of Yellowstone's Old Faithful Geyser. Yellowstone hosts the world's largest and most diverse collection of natural thermal features, which are the surface expression of magmatic heat at shallow depths in the crust. The Yellowstone system is monitored by the Yellowstone Volcano Observatory (YVO), a partnership among the U.S. Geological Survey (USGS), Yellowstone National Park, and the University of Utah. YVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Yellowstone and YVO at http://volcanoes.usgs.gov/yvo.

  3. Geoflicks Reviewed--Films about Hawaiian Volcanoes.

    ERIC Educational Resources Information Center

    Bykerk-Kauffman, Ann

    1994-01-01

    Reviews 11 films on volcanic eruptions in the United States. Films are given a one- to five-star rating and the film's year, length, source and price are listed. Top films include "Inside Hawaiian Volcanoes" and "Kilauea: Close up of an Active Volcano." (AIM)

  4. Iridium emissions from Hawaiian volcanoes

    NASA Technical Reports Server (NTRS)

    Finnegan, D. L.; Zoller, W. H.; Miller, T. M.

    1988-01-01

    Particle and gas samples were collected at Mauna Loa volcano during and after its eruption in March and April, 1984 and at Kilauea volcano in 1983, 1984, and 1985 during various phases of its ongoing activity. In the last two Kilauea sampling missions, samples were collected during eruptive activity. The samples were collected using a filterpack system consisting of a Teflon particle filter followed by a series of 4 base-treated Whatman filters. The samples were analyzed by INAA for over 40 elements. As previously reported in the literature, Ir was first detected on particle filters at the Mauna Loa Observatory and later from non-erupting high temperature vents at Kilauea. Since that time Ir was found in samples collected at Kilauea and Mauna Loa during fountaining activity as well as after eruptive activity. Enrichment factors for Ir in the volcanic fumes range from 10,000 to 100,000 relative to BHVO. Charcoal impregnated filters following a particle filter were collected to see if a significant amount of the Ir was in the gas phase during sample collection. Iridium was found on charcoal filters collected close to the vent, no Ir was found on the charcoal filters. This indicates that all of the Ir is in particulate form very soon after its release. Ratios of Ir to F and Cl were calculated for the samples from Mauna Loa and Kilauea collected during fountaining activity. The implications for the KT Ir anomaly are still unclear though as Ir was not found at volcanoes other than those at Hawaii. Further investigations are needed at other volcanoes to ascertain if basaltic volcanoes other than hot spots have Ir enrichments in their fumes.

  5. Predicting the Timing and Location of the next Hawaiian Volcano

    ERIC Educational Resources Information Center

    Russo, Joseph; Mattox, Stephen; Kildau, Nicole

    2010-01-01

    The wealth of geologic data on Hawaiian volcanoes makes them ideal for study by middle school students. In this paper the authors use existing data on the age and location of Hawaiian volcanoes to predict the location of the next Hawaiian volcano and when it will begin to grow on the floor of the Pacific Ocean. An inquiry-based lesson is also…

  6. Voluminous submarine lava flows from Hawaiian volcanoes

    SciTech Connect

    Holcomb, R.T.; Moore, J.G.; Lipman, P.W.; Belderson, R.H.

    1988-05-01

    The GLORIA long-range sonar imaging system has revealed fields of large lava flows in the Hawaiian Trough east and south of Hawaii in water as deep as 5.5 km. Flows in the most extensive field (110 km long) have erupted from the deep submarine segment of Kilauea's east rift zone. Other flows have been erupted from Loihi and Mauna Loa. This discovery confirms a suspicion, long held from subaerial studies, that voluminous submarine flows are erupted from Hawaiian volcanoes, and it supports an inference that summit calderas repeatedly collapse and fill at intervals of centuries to millenia owing to voluminous eruptions. These extensive flows differ greatly in form from pillow lavas found previously along shallower segments of the rift zones; therefore, revision of concepts of volcano stratigraphy and structure may be required.

  7. Earthquakes of Loihi submarine volcano and the Hawaiian hot spot.

    USGS Publications Warehouse

    Klein, F.W.

    1982-01-01

    Loihi is an active submarine volcano located 35km S of the island of Hawaii and may eventually grow to be the next and S most island in the Hawaiian chain. The Hawaiian Volcano Observatory recorded two major earthquake swarms located there in 1971-1972 and 1975 which were probably associated with submarine eruptions or intrusions. The swarms were located very close to Loihi's bathymetric summit, except for earthquakes during the second stage of the 1971-1972 swarm, which occurred well onto Loihi's SW flank. The flank earthquakes appear to have been triggered by the preceding activity and possible rifting along Loihi's long axis, similar to the rift-flank relationship at Kilauea volcano. Other changes accompanied the shift in locations from Loihi's summit to its flank, including a shift from burst to continuous seismicity, a rise in maximum magnitude, a change from small earthquake clusters to a larger elongated zone, a drop in b value, and a presumed shift from concentrated volcanic stresses to a more diffuse tectonic stress on Loihi's flank. - Author

  8. Alaska Volcano Observatory's KML Tools

    NASA Astrophysics Data System (ADS)

    Valcic, L.; Webley, P. W.; Bailey, J. E.; Dehn, J.

    2008-12-01

    Virtual Globes are now giving the scientific community a new medium to present data, which is compatible across multiple disciplines. They also provide scientists the ability to display their data in real-time, a critical factor in hazard assessment. The Alaska Volcano Observatory remote sensing group has developed Keyhole Markup Language (KML) tools that are used to display satellite data for volcano monitoring and forecast ash cloud movement. The KML tools allow an analyst to view the satellite data in a user-friendly web based environment, without a reliance on non-transportable, proprietary software packages. Here, we show how the tools are used operationally for thermal monitoring of volcanic activity, volcanic ash cloud detection and dispersion modeling, using the Puff model. animate.images.alaska.edu/

  9. Continuous monitoring of Hawaiian volcanoes using thermal cameras

    NASA Astrophysics Data System (ADS)

    Patrick, M. R.; Orr, T. R.; Antolik, L.; Lee, R.; Kamibayashi, K.

    2012-12-01

    Thermal cameras are becoming more common at volcanoes around the world, and have become a powerful tool for observing volcanic activity. Fixed, continuously recording thermal cameras have been installed by the Hawaiian Volcano Observatory in the last two years at four locations on Kilauea Volcano to better monitor its two ongoing eruptions. The summit eruption, which began in March 2008, hosts an active lava lake deep within a fume-filled vent crater. A thermal camera perched on the rim of Halema`uma`u Crater, acquiring an image every five seconds, has now captured about two years of sustained lava lake activity, including frequent lava level fluctuations, small explosions , and several draining events. This thermal camera has been able to "see" through the thick fume in the crater, providing truly 24/7 monitoring that would not be possible with normal webcams. The east rift zone eruption, which began in 1983, has chiefly consisted of effusion through lava tubes onto the surface, but over the past two years has been interrupted by an intrusion, lava fountaining, crater collapse, and perched lava lake growth and draining. The three thermal cameras on the east rift zone, all on Pu`u `O`o cone and acquiring an image every several minutes, have captured many of these changes and are providing an improved means for alerting observatory staff of new activity. Plans are underway to install a thermal camera at the summit of Mauna Loa to monitor and alert to any future changes there. Thermal cameras are more difficult to install, and image acquisition and processing are more complicated than with visual webcams. Our system is based in part on the successful thermal camera installations by Italian volcanologists on Stromboli and Vulcano. Equipment includes custom enclosures with IR transmissive windows, power, and telemetry. Data acquisition is based on ActiveX controls, and data management is done using automated Matlab scripts. Higher-level data processing, also done with

  10. Growth and degradation of Hawaiian volcanoes: Chapter 3 in Characteristics of Hawaiian volcanoes

    USGS Publications Warehouse

    Clague, David A.; Sherrod, David R.

    2014-01-01

    Large Hawaiian volcanoes can persist as islands through the rapid subsidence by building upward rapidly enough. But in the long run, subsidence, coupled with surface erosion, erases any volcanic remnant above sea level in about 15 m.y. One consequence of subsidence, in concert with eustatic changes in sea level, is the drowning of coral reefs that drape the submarine flanks of the actively subsiding volcanoes. At least six reefs northwest of the Island of Hawai‘i form a stairstep configuration, the oldest being deepest.

  11. Alaska Volcano Observatory at 20

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.

    2008-12-01

    The Alaska Volcano Observatory (AVO) was established in 1988 in the wake of the 1986 Augustine eruption through a congressional earmark. Even within the volcanological community, there was skepticism about AVO. Populations directly at risk in Alaska were small compared to Cascadia, and the logistical costs of installing and maintaining monitoring equipment were much higher. Questions were raised concerning the technical feasibility of keeping seismic stations operating through the long, dark, stormy Alaska winters. Some argued that AVO should simply cover Augustine with instruments and wait for the next eruption there, expected in the mid 90s (but delayed until 2006), rather than stretching to instrument as many volcanoes as possible. No sooner was AVO in place than Redoubt erupted and a fully loaded passenger 747 strayed into the eruption cloud between Anchorage and Fairbanks, causing a powerless glide to within a minute of impact before the pilot could restart two engines and limp into Anchorage. This event forcefully made the case that volcano hazard mitigation is not just about people and infrastructure on the ground, and is particularly important in the heavily traveled North Pacific where options for flight diversion are few. In 1996, new funding became available through an FAA earmark to aggressively extend volcano monitoring far into the Aleutian Islands with both ground-based networks and round-the-clock satellite monitoring. Beyond the Aleutians, AVO developed a monitoring partnership with Russians volcanologists at the Institute of Volcanology and Seismology in Petropavlovsk-Kamchatsky. The need to work together internationally on subduction phenomena that span borders led to formation of the Japan-Kamchatka-Alaska Subduction Processes (JKASP) consortium. JKASP meets approximately biennially in Sapporo, Petropavlovsk, and Fairbanks. In turn, these meetings and support from NSF and the Russian Academy of Sciences led to new international education and

  12. Continuous monitoring of Hawaiian volcanoes with thermal cameras

    USGS Publications Warehouse

    Patrick, Matthew R.; Orr, Tim R.; Antolik, Loren; Lee, Robert Lopaka; Kamibayashi, Kevan P.

    2014-01-01

    Continuously operating thermal cameras are becoming more common around the world for volcano monitoring, and offer distinct advantages over conventional visual webcams for observing volcanic activity. Thermal cameras can sometimes “see” through volcanic fume that obscures views to visual webcams and the naked eye, and often provide a much clearer view of the extent of high temperature areas and activity levels. We describe a thermal camera network recently installed by the Hawaiian Volcano Observatory to monitor Kīlauea’s summit and east rift zone eruptions (at Halema‘uma‘u and Pu‘u ‘Ō‘ō craters, respectively) and to keep watch on Mauna Loa’s summit caldera. The cameras are long-wave, temperature-calibrated models protected in custom enclosures, and often positioned on crater rims close to active vents. Images are transmitted back to the observatory in real-time, and numerous Matlab scripts manage the data and provide automated analyses and alarms. The cameras have greatly improved HVO’s observations of surface eruptive activity, which includes highly dynamic lava lake activity at Halema‘uma‘u, major disruptions to Pu‘u ‘Ō‘ō crater and several fissure eruptions.

  13. 2. PARKING LOT AT JAGGAR MUSEUM, VOLCANO OBSERVATORY. VIEW OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. PARKING LOT AT JAGGAR MUSEUM, VOLCANO OBSERVATORY. VIEW OF MEDIAN. NOTE VOLCANIC STONE CURBING (EDGING) TYPICAL OF MOST PARKING AREAS; TRIANGLING AT END NOT TYPICAL. MAUNA LOA VOLCANO IN BACK. - Crater Rim Drive, Volcano, Hawaii County, HI

  14. Magma supply, storage, and transport at shield-stage Hawaiian volcanoes: Chapter 5 in Characteristics of Hawaiian volcanoes

    USGS Publications Warehouse

    Poland, Michael P.; Miklius, Asta; Montgomery-Brown, Emily K.

    2014-01-01

    Magma supply to Hawaiian volcanoes has varied over millions of years but is presently at a high level. Supply to Kīlauea’s shallow magmatic system averages about 0.1 km3/yr and fluctuates on timescales of months to years due to changes in pressure within the summit reservoir system, as well as in the volume of melt supplied by the source hot spot. Magma plumbing systems beneath Kīlauea and Mauna Loa are complex and are best constrained at Kīlauea. Multiple regions of magma storage characterize Kīlauea’s summit, and two pairs of rift zones, one providing a shallow magma pathway and the other forming a structural boundary within the volcano, radiate from the summit to carry magma to intrusion/eruption sites located nearby or tens of kilometers from the caldera. Whether or not magma is present within the deep rift zone, which extends beneath the structural rift zones at ~3-km depth to the base of the volcano at ~9-km depth, remains an open question, but we suggest that most magma entering Kīlauea must pass through the summit reservoir system before entering the rift zones. Mauna Loa’s summit magma storage system includes at least two interconnected reservoirs, with one centered beneath the south margin of the caldera and the other elongated along the axis of the caldera. Transport of magma within shield-stage Hawaiian volcanoes occurs through dikes that can evolve into long-lived pipe-like pathways. The ratio of eruptive to noneruptive dikes is large in Hawai‘i, compared to other basaltic volcanoes (in Iceland, for example), because Hawaiian dikes tend to be intruded with high driving pressures. Passive dike intrusions also occur, motivated at Kīlauea by rift opening in response to seaward slip of the volcano’s south flank.

  15. Decision Analysis Tools for Volcano Observatories

    NASA Astrophysics Data System (ADS)

    Hincks, T. H.; Aspinall, W.; Woo, G.

    2005-12-01

    Staff at volcano observatories are predominantly engaged in scientific activities related to volcano monitoring and instrumentation, data acquisition and analysis. Accordingly, the academic education and professional training of observatory staff tend to focus on these scientific functions. From time to time, however, staff may be called upon to provide decision support to government officials responsible for civil protection. Recognizing that Earth scientists may have limited technical familiarity with formal decision analysis methods, specialist software tools that assist decision support in a crisis should be welcome. A review is given of two software tools that have been under development recently. The first is for probabilistic risk assessment of human and economic loss from volcanic eruptions, and is of practical use in short and medium-term risk-informed planning of exclusion zones, post-disaster response, etc. A multiple branch event-tree architecture for the software, together with a formalism for ascribing probabilities to branches, have been developed within the context of the European Community EXPLORIS project. The second software tool utilizes the principles of the Bayesian Belief Network (BBN) for evidence-based assessment of volcanic state and probabilistic threat evaluation. This is of practical application in short-term volcano hazard forecasting and real-time crisis management, including the difficult challenge of deciding when an eruption is over. An open-source BBN library is the software foundation for this tool, which is capable of combining synoptically different strands of observational data from diverse monitoring sources. A conceptual vision is presented of the practical deployment of these decision analysis tools in a future volcano observatory environment. Summary retrospective analyses are given of previous volcanic crises to illustrate the hazard and risk insights gained from use of these tools.

  16. Deformation and rupture of the oceanic crust may control growth of Hawaiian volcanoes

    USGS Publications Warehouse

    Got, J.-L.; Monteiller, V.; Monteux, J.; Hassani, R.; Okubo, P.

    2008-01-01

    Hawaiian volcanoes are formed by the eruption of large quantities of basaltic magma related to hot-spot activity below the Pacific Plate. Despite the apparent simplicity of the parent process - emission of magma onto the oceanic crust - the resulting edifices display some topographic complexity. Certain features, such as rift zones and large flank slides, are common to all Hawaiian volcanoes, indicating similarities in their genesis; however, the underlying mechanism controlling this process remains unknown. Here we use seismological investigations and finite-element mechanical modelling to show that the load exerted by large Hawaiian volcanoes can be sufficient to rupture the oceanic crust. This intense deformation, combined with the accelerated subsidence of the oceanic crust and the weakness of the volcanic edifice/oceanic crust interface, may control the surface morphology of Hawaiian volcanoes, especially the existence of their giant flank instabilities. Further studies are needed to determine whether such processes occur in other active intraplate volcanoes. ??2008 Nature Publishing Group.

  17. Deformation and rupture of the oceanic crust may control growth of Hawaiian volcanoes.

    PubMed

    Got, Jean-Luc; Monteiller, Vadim; Monteux, Julien; Hassani, Riad; Okubo, Paul

    2008-01-24

    Hawaiian volcanoes are formed by the eruption of large quantities of basaltic magma related to hot-spot activity below the Pacific Plate. Despite the apparent simplicity of the parent process--emission of magma onto the oceanic crust--the resulting edifices display some topographic complexity. Certain features, such as rift zones and large flank slides, are common to all Hawaiian volcanoes, indicating similarities in their genesis; however, the underlying mechanism controlling this process remains unknown. Here we use seismological investigations and finite-element mechanical modelling to show that the load exerted by large Hawaiian volcanoes can be sufficient to rupture the oceanic crust. This intense deformation, combined with the accelerated subsidence of the oceanic crust and the weakness of the volcanic edifice/oceanic crust interface, may control the surface morphology of Hawaiian volcanoes, especially the existence of their giant flank instabilities. Further studies are needed to determine whether such processes occur in other active intraplate volcanoes. PMID:18216852

  18. Alaska Volcano Observatory Seismic Network Data Availability

    NASA Astrophysics Data System (ADS)

    Dixon, J. P.; Haney, M. M.; McNutt, S. R.; Power, J. A.; Prejean, S. G.; Searcy, C. K.; Stihler, S. D.; West, M. E.

    2009-12-01

    The Alaska Volcano Observatory (AVO) established in 1988 as a cooperative program of the U.S. Geological Survey, the Geophysical Institute at the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, monitors active volcanoes in Alaska. Thirty-three volcanoes are currently monitored by a seismograph network consisting of 193 stations, of which 40 are three-component stations. The current state of AVO’s seismic network, and data processing and availability are summarized in the annual AVO seismological bulletin, Catalog of Earthquake Hypocenters at Alaska Volcanoes, published as a USGS Data Series (most recent at http://pubs.usgs.gov/ds/467). Despite a rich seismic data set for 12 VEI 2 or greater eruptions, and over 80,000 located earthquakes in the last 21 years, the volcanic seismicity in the Aleutian Arc remains understudied. Initially, AVO seismic data were only provided via a data supplement as part of the annual bulletin, or upon request. Over the last few years, AVO has made seismic data more available with the objective of increasing volcano seismic research on the Aleutian Arc. The complete AVO earthquake catalog data are now available through the annual AVO bulletin and have been submitted monthly to the on-line Advanced National Seismic System (ANSS) composite catalog since 2008. Segmented waveform data for all catalog earthquakes are available upon request and efforts are underway to make this archive web accessible as well. Continuous data were first archived using a tape backup, but the availability of low cost digital storage media made a waveform backup of continuous data a reality. Currently the continuous AVO waveform data can be found in several forms. Since late 2002, AVO has burned all continuous waveform data to DVDs, as well as storing these data in Antelope databases at the Geophysical Institute. Beginning in 2005, data have been available through a Winston Wave Server housed at the USGS in

  19. Iridium and other trace metal enrichments from Hawaiian volcanoes

    SciTech Connect

    Finnegan, D.L.; Miller, T.L.; Zoller, W.H.

    1989-01-01

    Particle and gas samples were collected at Mauna Loa volcano during and after its eruption in March and April, 1984 and at Kilauea volcano in 1983, 1984, and 1985 during various phases of its ongoing activity. In the last two Kilauea sampling missions, samples were collected during eruptive activity. The samples were analyzed by INAA for over 40 elements. We have found Ir in samples collected at Kilauea and Mauna Loa during fountaining activity as well as after eruptive activity. Os was also seen in the Mauna Loa samples. Enrichment factors for Ir in the volcanic fumes range from 10/sup 4/ to 10/sup 5/ relative to BHVO. Flux calculations for Ir at Mauna Loa and Kilauea had ranges of 80 to 3000 and 10 to 315 g/d respectively. The percentage of Ir released from the magma into the fumes ranged from 1% to 12% for both volcanoes. Calculations assuming the Deccan as the source of Ir for the K/T boundary layer show that the concentration of Ir left in the basalts may be too low to account for all of the K/T Ir. It would require a very high fraction (> 30%) of the Ir to be purged from the basalt to account for all the Ir, which cannot be supported by the Hawaiian data. 26 refs., 1 fig., 4 tabs.

  20. Tungsten Abundances in Hawaiian Picrites: Implications for the Mantle Sources of Hawaiian Volcanoes

    NASA Astrophysics Data System (ADS)

    Ireland, T. J.; Arevalo, R. D.; Walker, R. J.; McDonough, W. F.

    2008-12-01

    Tungsten abundances have been measured in a suite of Hawaiian picrites (MgO >13 wt.%) from nine Hawaiian shield volcanoes (Mauna Kea, Mauna Loa, Hualalai, Loihi, Koolau, Kilauea, Kohala, Lanai and Molokai). Tungsten concentrations in the parental melts for these volcanoes have been estimated via the intersection of linear W-MgO trends with the putative MgO content of the parental melt (~16 wt.%). Tungsten behaves as a highly incompatible trace element in mafic to ultramafic systems; thus, given an independent assessment of the degree of partial melting for each volcanic center, the W abundances in their mantle sources can be determined. The mantle sources for Hualalai, Kilauea, Kohala and Loihi have non- uniform estimated W abundances of 11, 13, 16 and 27 ng/g, respectively, giving an average source abundance of 17±5 ng/g. This average source abundance is nearly six times more enriched than Depleted MORB Mantle (DMM: 3.0±2.3 ng/g) and slightly elevated relative to the Bulk Silicate Earth (BSE: 13±10 ng/g). The relatively high abundances of W in the Hawaiian sources relative to the DMM can potentially be explained as a consequence of crustal recycling. For example, incorporation of 30% oceanic crust (30 ng/g W), including 3% sediment (1500 ng/g W), into a DMM source could create the W enrichment observed in the Loihi source, consistent with estimates from earlier models based on other trace elements and isotope systems. The Hualalai source, however, has also been suggested to contain a substantial recycled component, as implied by similarly radiogenic 187Os/188Os, yet this source has the lowest estimated W abundance among the volcanic centers studied. The conflict between these results may: 1) reflect chemical differences among recycled components, 2) indicate a more complex history for Hualalai samples, e.g. involvement of a melt percolation component, or 3) implicate other sources of W.

  1. Instability of Hawaiian volcanoes: Chapter 4 in Characteristics of Hawaiian volcanoes

    USGS Publications Warehouse

    Denlinger, Roger P.; Morgan, Julia K.

    2014-01-01

    All seaward flank movement occurs along a detachment fault, or décollement, that forms within the mixture of pelagic clays and volcaniclastic deposits on the old seafloor and pushes up a bench of debris along the distal margin of the flank. The offshore uplift that builds this bench is generated by décollement slip that terminates upward into the overburden along thrust faults. Finite strain and finite strength models for volcano growth on a low-friction décollement reproduce this bench structure, as well as much of the morphology and patterns of faulting observed on the actively growing volcanoes of Mauna Loa and Kīlauea. These models show how stress is stored within growing volcano flanks, but not how rapid, potentially seismic slip is triggered along their décollements. The imbalance of forces that triggers large, rapid seaward displacement of the flank after decades of creep may result either from driving forces that change rapidly, such as magma pressure gradients; from resisting forces that rapidly diminish with slip, such as those arising from coupling of pore pressure and dilatancy within décollement sediment; or, from some interplay between driving and resisting forces that produces flank motion. Our understanding of the processes of flank motion is limited by available data, though recent studies have increased our ability to quantitatively address flank instability and associated hazards.

  2. Can magma-injection and groundwater forces cause massive landslides on Hawaiian volcanoes?

    USGS Publications Warehouse

    Iverson, R.M.

    1995-01-01

    Landslides with volumes exceeding 1000 km3 have occurred on the flanks of Hawaiian volcanoes. Because the flanks typically slope seaward no more than 12??, the mechanics of slope failure are problematic. Limit-equilibrium analyses of wedge-shaped slices of the volcano flanks show that magma injection at prospective headscarps might trigger the landslides, but only under very restrictive conditions. Additional calculations show that groundwater head gradients associated with topographically induced flow and sea-level change are less likely to be important. Thus a simple, quantitative explanation for failure of Hawaiian volcano flanks remains elusive, and more complex scenarios may merit investigation. -from Author

  3. Early growth of Kohala volcano and formation of long Hawaiian rift zones

    USGS Publications Warehouse

    Lipman, P.W.; Calvert, A.T.

    2011-01-01

    Transitional-composition pillow basalts from the toe of the Hilo Ridge, collected from outcrop by submersible, have yielded the oldest ages known from the Island of Hawaii: 1138 ?? 34 to 1159 ?? 33 ka. Hilo Ridge has long been interpreted as a submarine rift zone of Mauna Kea, but the new ages validate proposals that it is the distal east rift zone of Kohala, the oldest subaerial volcano on the island. These ages constrain the inception of tholeiitic volcanism at Kohala, provide the first measured duration of tholeiitic shield building (???870 k.y.) for any Hawaiian volcano, and show that this 125-km-long rift zone developed to near-total length during early growth of Kohala. Long eastern-trending rift zones of Hawaiian volcanoes may follow fractures in oceanic crust activated by arching of the Hawaiian Swell in front of the propagating hotspot. ?? 2011 Geological Society of America.

  4. Three Short Videos by the Yellowstone Volcano Observatory

    USGS Publications Warehouse

    Wessells, Stephen; Lowenstern, Jake; Venezky, Dina

    2009-01-01

    This is a collection of videos of unscripted interviews with Jake Lowenstern, who is the Scientist in Charge of the Yellowstone Volcano Observatory (YVO). YVO was created as a partnership among the U.S. Geological Survey (USGS), Yellowstone National Park, and University of Utah to strengthen the long-term monitoring of volcanic and earthquake unrest in the Yellowstone National Park region. Yellowstone is the site of the largest and most diverse collection of natural thermal features in the world and the first National Park. YVO is one of the five USGS Volcano Observatories that monitor volcanoes within the United States for science and public safety. These video presentations give insights about many topics of interest about this area. Title: Yes! Yellowstone is a Volcano An unscripted interview, January 2009, 7:00 Minutes Description: USGS Scientist-in-Charge of Yellowstone Volcano Observatory, Jake Lowenstern, answers the following questions to explain volcanic features at Yellowstone: 'How do we know Yellowstone is a volcano?', 'What is a Supervolcano?', 'What is a Caldera?','Why are there geysers at Yellowstone?', and 'What are the other geologic hazards in Yellowstone?' Title: Yellowstone Volcano Observatory An unscripted interview, January 2009, 7:15 Minutes Description: USGS Scientist-in-Charge of Yellowstone Volcano Observatory, Jake Lowenstern, answers the following questions about the Yellowstone Volcano Observatory: 'What is YVO?', 'How do you monitor volcanic activity at Yellowstone?', 'How are satellites used to study deformation?', 'Do you monitor geysers or any other aspect of the Park?', 'Are earthquakes and ground deformation common at Yellowstone?', 'Why is YVO a relatively small group?', and 'Where can I get more information?' Title: Yellowstone Eruptions An unscripted interview, January 2009, 6.45 Minutes Description: USGS Scientist-in-Charge of Yellowstone Volcano Observatory, Jake Lowenstern, answers the following questions to explain volcanic

  5. Evolution of Deformation Studies on Active Hawaiian Volcanoes

    USGS Publications Warehouse

    Decker, Robert; Okamura, Arnold; Miklius, Asta; Poland, Michael

    2008-01-01

    Everything responds to pressure, even rocks. Deformation studies involve measuring and interpreting the changes in elevations and horizontal positions of the land surface or sea floor. These studies are variously referred to as geodetic changes or ground-surface deformations and are sometimes indexed under the general heading of geodesy. Deformation studies have been particularly useful on active volcanoes and in active tectonic areas. A great amount of time and energy has been spent on measuring geodetic changes on Kilauea and Mauna Loa Volcanoes in Hawai`i. These changes include the build-up of the surface by the piling up and ponding of lava flows, the changes in the surface caused by erosion, and the uplift, subsidence, and horizontal displacements of the surface caused by internal processes acting beneath the surface. It is these latter changes that are the principal concern of this review. A complete and objective review of deformation studies on active Hawaiian volcanoes would take many volumes. Instead, we attempt to follow the evolution of the most significant observations and interpretations in a roughly chronological way. It is correct to say that this is a subjective review. We have spent years measuring and recording deformation changes on these great volcanoes and more years trying to understand what makes these changes occur. We attempt to make this a balanced as well as a subjective review; the references are also selective rather than exhaustive. Geodetic changes caused by internal geologic processes vary in magnitude from the nearly infinitesimal - one micron or less, to the very large - hundreds of meters. Their apparent causes also are varied and include changes in material properties and composition, atmospheric pressure, tidal stress, thermal stress, subsurface-fluid pressure (including magma pressure, magma intrusion, or magma removal), gravity, and tectonic stress. Deformation is measured in units of strain or displacement. For example, tilt

  6. Linking space observations to volcano observatories in Latin America: Results from the CEOS DRM Volcano Pilot

    NASA Astrophysics Data System (ADS)

    Delgado, F.; Pritchard, M. E.; Biggs, J.; Arnold, D. W. D.; Poland, M. P.; Ebmeier, S. K.; Wauthier, C.; Wnuk, K.; Parker, A. L.; Amelug, F.; Sansosti, E.; Mothes, P. A.; Macedo, O.; Lara, L.; Zoffoli, S.; Aguilar, V.

    2015-12-01

    Within Latin American, about 315 volcanoes that have been active in the Holocene, but according to the United Nations Global Assessment of Risk 2015 report (GAR15) 202 of these volcanoes have no seismic, deformation or gas monitoring. Following the 2012 Santorini Report on satellite Earth Observation and Geohazards, the Committee on Earth Observation Satellites (CEOS) has developed a 3-year pilot project to demonstrate how satellite observations can be used to monitor large numbers of volcanoes cost-effectively, particularly in areas with scarce instrumentation and/or difficult access. The pilot aims to improve disaster risk management (DRM) by working directly with the volcano observatories that are governmentally responsible for volcano monitoring, and the project is possible thanks to data provided at no cost by international space agencies (ESA, CSA, ASI, DLR, JAXA, NASA, CNES). Here we highlight several examples of how satellite observations have been used by volcano observatories during the last 18 months to monitor volcanoes and respond to crises -- for example the 2013-2014 unrest episode at Cerro Negro/Chiles (Ecuador-Colombia border); the 2015 eruptions of Villarrica and Calbuco volcanoes, Chile; the 2013-present unrest and eruptions at Sabancaya and Ubinas volcanoes, Peru; the 2015 unrest at Guallatiri volcano, Chile; and the 2012-present rapid uplift at Cordon Caulle, Chile. Our primary tool is measurements of ground deformation made by Interferometric Synthetic Aperture Radar (InSAR) but thermal and outgassing data have been used in a few cases. InSAR data have helped to determine the alert level at these volcanoes, served as an independent check on ground sensors, guided the deployment of ground instruments, and aided situational awareness. We will describe several lessons learned about the type of data products and information that are most needed by the volcano observatories in different countries.

  7. Propagation of the Hawaiian-Emperor volcano chain by Pacific plate cooling stress

    USGS Publications Warehouse

    Stuart, W.D.; Foulger, G.R.; Barall, M.

    2007-01-01

    The lithosphere crack model, the main alternative to the mantle plume model for age-progressive magma emplacement along the Hawaiian-Emperor volcano chain, requires the maximum horizontal tensile stress to be normal to the volcano chain. However, published stress fields calculated from Pacific lithosphere tractions and body forces (e.g., subduction pull, basal drag, lithosphere density) are not optimal for southeast propagation of a stress-free, vertical tensile crack coincident with the Hawaiian segment of the Hawaiian-Emperor chain. Here we calculate the thermoelastic stress rate for present-day cooling of the Pacific plate using a spherical shell finite element representation of the plate geometry. We use observed seafloor isochrons and a standard model for lithosphere cooling to specify the time dependence of vertical temperature profiles. The calculated stress rate multiplied by a time increment (e.g., 1 m.y.) then gives a thermoelastic stress increment for the evolving Pacific plate. Near the Hawaiian chain position, the calculated stress increment in the lower part of the shell is tensional, with maximum tension normal to the chain direction. Near the projection of the chain trend to the southeast beyond Hawaii, the stress increment is compressive. This incremental stress field has the form necessary to maintain and propagate a tensile crack or similar lithosphere flaw and is thus consistent with the crack model for the Hawaiian volcano chain.?? 2007 The Geological Society of America.

  8. Rifts of deeply eroded Hawaiian basaltic shields: A structural analog for large Martian volcanoes

    NASA Technical Reports Server (NTRS)

    Knight, Michael D.; Walker, G. P. L.; Mouginis-Mark, P. J.; Rowland, Scott K.

    1988-01-01

    Recently derived morphologic evidence suggests that intrusive events have not only influenced the growth of young shield volcanoes on Mars but also the distribution of volatiles surrounding these volcanoes: in addition to rift zones and flank eruptions on Arsia Mons and Pavonis Mons, melt water channels were identified to the northwest of Hecates Tholus, to the south of Hadriaca Patera, and to the SE of Olympus Mons. Melt water release could be the surface expression of tectonic deformation of the region or, potentially, intrusive events associated with dike emplacement from each of these volcanoes. In this study the structural properties of Hawaiian shield volcanoes were studied where subaerial erosion has removed a sufficient amount of the surface to enable a direct investigation of the internal structure of the volcanoes. The field investigation of dike morphology and magma flow characteristics for several volcanoes in Hawaii is reported. A comprehensive investigation was made of the Koolau dike complex that passes through the summit caldera. A study of two other dissected Hawaiian volcanoes, namely Waianae and East Molokai, was commenced. The goal is not only to understand the emplacement process and magma flow within these terrestrial dikes, but also to explore the possible role that intrusive events may have played in volcano growth and the distribution of melt water release on Mars.

  9. Evolution of Deformation Studies on Active Hawaiian Volcanoes

    NASA Astrophysics Data System (ADS)

    Decker, R.; Okamura, A.

    2004-12-01

    Summarizing 1600 years of observations and interpretations into a brief presentation forces some difficult choices on highlighting the following techniques that are presented chronologically: Visual Observations, 400 AD to present: Missionary William Ellis' Hawaiian Guides told him that Kilauea "had been burning from time immemorial, or, to use their own words, `mai ka po mai', from chaos till now...that in earlier ages it used to boil up, overflow its banks, and inundate the adjacent country...and on occasions they supposed Pele went by a road under ground from her house in the crater to the shore". Observations of the nearly-continuous lava lake in Kilauea Caldera from 1823 until 1924 established that its surface level fluctuated from about 700 to 1100 m above sea level in 10 up-and-down episodes. Tilt Measurements, 1914 to present: Horizontal-seismometer drift and water-tube tiltmeters show that the range of long-term, ground-surface tilt radial to Halemaumau Crater exceeds 500 microradians. Triangulation and Leveling, 1920: R. M. Wilson measured deformation changes related to major Kilauea summit subsidence in 1924. The caldera area around Halemaumau subsided concentrically as much as 4 m relative to the Volcano House benchmark, and triangulation points moved toward Halemaumau by as much as 1.6 m in the caldera area. K. Mogi in 1958 modeled Kilauea leveling data and inferred 3-4 km-deep magma reservoirs. Gravity Measurements, 1959 to present: Changes were first measured during Kilauea summit subsidence related to the lower-east-rift Kapoho eruption. Surveys made before and after the 1975 M7.2 Kalapana Earthquake show that gravity changes are not a simple proxy for elevation changes. Electronic Distance Measurements (EDM), 1964 to present: D. A. Swanson, W. A. Duffield, and R. S. Fiske use EDM for trilateration proving movement of the south flank of Kilauea toward the sea. EDM show displacements as large as 8.7 m of Kilauea's south flank toward the sea related

  10. Revised age for Midway volcano, Hawaiian volcanic chain

    USGS Publications Warehouse

    Dalrymple, G.B.; Clague, D.A.; Lanphere, M.A.

    1977-01-01

    New conventional K-Ar, 40Ar/39Ar, and petrochemical data on alkalic basalt pebbles from the basalt conglomerate overlying tholeiitic flows in the Midway drill hole show that Midway evolved past the tholeiitic shield-building stage and erupted lavas of the alkalic suite 27.0 ?? 0.6 m.y. ago. The data also show that previously published conventional K-Ar ages on altered samples of tholeiite are too young by about 9 m.y. These results remove a significant anomaly in the age-distance relationships of the Hawaiian chain and obviate the need for large changes in either the rate of rotation of the Pacific plate about the Hawaiian pole or the motion of the plate relative to the Hawaiian hot spot since the time of formation of the Hawaiian-Emperor bend. All of the age data along the Hawaiian chain are now reasonably consistent with an average rate of volcanic propagation of 8.0 cm/yr and with 0.83??/m.y. of angular rotation about the Hawaiian pole. ?? 1977.

  11. Is mercury from Hawaiian volcanoes a natural source of pollution.

    NASA Technical Reports Server (NTRS)

    Eshleman, A.; Siegel, S. M.; Siegel, B. Z.

    1971-01-01

    An analysis shows that 98% of mercury from Hawaiian fumaroles is gaseous or solid particles less than 0.3 micron in diameter. It is suggested that both natural and industrial sources may be contributors to mercury pollution of the air in Hawaii.

  12. Developing monitoring capability of a volcano observatory: the example of the Vanuatu Geohazards Observatory

    NASA Astrophysics Data System (ADS)

    Todman, S.; Garaebiti, E.; Jolly, G. E.; Sherburn, S.; Scott, B.; Jolly, A. D.; Fournier, N.; Miller, C. A.

    2010-12-01

    Vanuatu lies on the Pacific 'Ring of Fire'. With 6 active subaerial and 3 submarine (identified so far) volcanoes, monitoring and following up their activities is a considerable work for a national observatory. The Vanuatu Geohazards Observatory is a good example of what can be done from ‘scratch’ to develop a volcanic monitoring capability in a short space of time. A fire in June 2007 completely destroyed the old observatory building and many valuable records leaving Vanuatu with no volcano monitoring capacity. This situation forced the Government of Vanuatu to reconsider the structure of the hazards monitoring group and think about the best way to rebuild a complete volcano monitoring system. Taking the opportunity of the re-awakening of Gaua volcano (North of Vanuatu), the Vanuatu Geohazards section in partnership with GNS Science, New Zealand developed a new program including a strategic plan for Geohazards from 2010-2020, the installation of a portable seismic network with real-time data transmission in Gaua, the support of the first permanent monitoring station installation in Ambrym and the design and implementation of volcano monitoring infrastructure and protocol. Moreover the technology improvements of the last decade and the quick extension of enhanced communication systems across the islands of Vanuatu played a very important role for the development of this program. In less than one year, the implementation of this program was beyond expectations and showed considerable improvement of the Vanuatu Geohazards Observatory volcano monitoring capability. In response to increased volcanic activity (or unrest) in Ambae, the Geohazards section was fully capable of the installation of a portable seismic station in April 2010 and to follow the development of the activity. Ultimately, this increased capability results in better and timelier delivery of information and advice on the threat from volcanic activity to the National Disaster Management Office and

  13. Calculated volumes of individual shield volcanoes at the young end of the Hawaiian Ridge

    USGS Publications Warehouse

    Robinson, J.E.; Eakins, B.W.

    2006-01-01

    High-resolution multibeam bathymetry and a digital elevation model of the Hawaiian Islands are used to calculate the volumes of individual shield volcanoes and island complexes (Niihau, Kauai, Oahu, the Maui Nui complex, and Hawaii), taking into account subsidence of the Pacific plate under the load of the Hawaiian Ridge. Our calculated volume for the Island of Hawaii and its submarine extent (213 ?? 103 km3) is nearly twice the previous estimate (113 ?? 103 km3), due primarily to crustal subsidence that had not been accounted for in the earlier work. The volcanoes that make up the Island of Hawaii (Mahukona, Kohala, Mauna Kea, Hualalai, Mauna Loa, Kilauea and Loihi) are generally considered to have been formed within the past million years, and our revised volume for the island indicates that magma supply rates are greater than previously estimated, 0.21 km3/yr as opposed to ???0.1 km3/yr. This result also shows that compared with rates calculated for the Hawaiian Islands (0-6 Ma, 0.095 km3/yr), the Hawaiian Ridge (0-45 Ma, 0.017 km3/yr), and the Emperor Seamounts (45-80 Ma, 0.010 km3/yr), magma supply rates have increased dramatically to build the Island of Hawaii.

  14. Petrologic insights into basaltic volcanism at historically active Hawaiian volcanoes: Chapter 6 in Characteristics of Hawaiian volcanoes

    USGS Publications Warehouse

    Helz, Rosalind L.; Clague, David A.; Sisson, Thomas W.; Thornber, Carl R.

    2014-01-01

    Contributions to our knowledge of the nature of the mantle source(s) of Hawaiian basalts are reviewed briefly, although this is a topic where debate is ongoing. Finally, our accumulated petrologic observations impose constraints on the nature of the summit reservoirs at Kīlauea and Mauna Loa, specifically whether the summit chamber has been continuous or segmented during past decades.

  15. Enriched components in the Hawaiian plume: Evidence from Kahoolawe Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Huang, Shichun; Frey, Frederick A.; Blichert-Toft, Janne; Fodor, R. V.; Bauer, Glenn R.; Xu, Guangping

    2005-11-01

    The geochemical differences between individual Hawaiian shields provide clues to the magma source components in the Hawaiian plume. Lavas from Koolau (Makapuu-stage) and Kahoolawe volcanoes define the enriched, i.e., relatively high 87Sr/86Sr and low 143Nd/144Nd, extreme for Hawaiian shield lavas. There are, however, important geochemical differences between these shields; Kahoolawe lavas lack the relatively high SiO2, low CaO, and high Sr/Nb and La/Nb that are characteristic of Makapuu-stage Koolau lavas, and they are offset from other Hawaiian shield lavas to high 87Sr/86Sr at a given 143Nd/144Nd. Consequently, a varying role for recycled plagioclase-rich gabbro is inferred, in particular, lower amounts of the low 87Sr/86Sr component in Kahoolawe lavas. Also, lavas from Loa-trend volcanoes, such as Kahoolawe, define trends ranging toward high 208Pb*/206Pb* and 87Sr/86Sr and low 143Nd/144Nd and 176Hf/177Hf. Such trends are consistent with variable amounts of recycled sediment sampled by Loa-trend volcanoes, with the largest proportion in Makapuu-stage Koolau lavas. Therefore the enriched component in the Hawaiian plume, the Koolau component, is recycled oceanic crust, which is heterogeneous because of varying proportions of sediment, basalt, and gabbro. Hawaiian shield-stage lavas range widely in 87Sr/86Sr, 143Nd/144Nd, 176Hf/177Hf, and 206Pb/204Pb, but they have similar ratios of Sr/Nd, Nd/Hf, and Hf/Pb, each varying by a factor of <3 among the Hawaiian shields. This observation has important consequences. Namely, the similar Hf/Pb ratios are inconsistent with a two-component (i.e., Kea and Koolau) mixing model for explaining the hyperbolic trend of 176Hf/177Hf versus 206Pb/204Pb defined by shield lavas. Such a model requires end-members with very different Hf/Pb (a factor of 15 to 40), but this is not observed; therefore a third component must be involved. On the basis of trends of 208Pb*/206Pb* versus 87Sr/86Sr, 143Nd/144Nd, and 176Hf/177Hf, we infer that Loa

  16. Hawaiian Volcano Observatory seismic data, January to March 2009

    USGS Publications Warehouse

    Nakata, Jennifer S.; Okubo, Paul G.

    2010-01-01

    Figures 11–14 are maps showing computer-located hypocenters. The maps were generated using the Generic Mapping Tools (GMT), found at http://gmt.soest.hawaii.edu/ (last accessed 01/22/2010), in place of traditional QPLOT maps.

  17. Twenty years of Alaska Volcano Observatory's contributions to seismology

    NASA Astrophysics Data System (ADS)

    Dixon, J. P.; McNutt, S. R.; Power, J. A.; West, M.

    2008-12-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute at the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys observed its 20th anniversary in 2008. The AVO seismic network, inherited from AVO partners in 1988, consisted of three small-aperture subnetworks on Mount Spurr, Redoubt Volcano and Augustine Volcano and regional stations for a total of 23 short-period instruments (two with three-components). Twenty years later, the AVO network has expanded to 192 stations (23 three-component short-period, and 15 broadband) on 33 volcanoes spanning 2500 km across the Aleutian arc in one of the most remote and challenging environments in the world. The AVO seismic network provides for a unique data set. Within the seismically active Aleutian Arc, there are instrumented volcanoes which exhibit a variety of chemical compositions and eruptive styles. With each individual volcanic center similarly instrumented and all data analyzed in a consistent manner AVO has produced a data set suitable for making seismic comparisons across a wide suite of volcanoes. In twenty years, the AVO has captured data sets for eruptions at Augustine, Kasatochi, Okmok, Pavlof, Redoubt, Shishaldin, Spurr, and Venianinof. AVO data set also includes several volcanic-tectonic swarms, most notably at Akutan, Iliamna, Mageik, Martin, Shishaldin, and Tanaga. This broad approach to volcano seismology has led to a better understanding of precursory earthquake swarms, variations in background rates, triggered seismicity, the structure of volcanoes, volcanic tremor and deep long period earthquakes, among numerous other topics. The AVO also incorporates data from seismic stations operated by both the Alaska Earthquake Information Center and West Coast and Alaska Tsunami Warning Center to help locate some of the 70,000 earthquakes in the AVO catalog. In exchange AVO provides dense seismic data from the

  18. A century of studying effusive eruptions in Hawai'i: Chapter 9 in Characteristics of Hawaiian volcanoes

    USGS Publications Warehouse

    Cashman, Katherine V.; Mangan, Margaret T.

    2014-01-01

    The Hawaiian Volcano Observatory (HVO) was established as a natural laboratory to study volcanic processes. Since the most frequent form of volcanic activity in Hawai‘i is effusive, a major contribution of the past century of research at HVO has been to describe and quantify lava flow emplacement processes. Lava flow research has taken many forms; first and foremost it has been a collection of basic observational data on active lava flows from both Mauna Loa and Kīlauea volcanoes that have occurred over the past 100 years. Both the types and quantities of observational data have changed with changing technology; thus, another important contribution of HVO to lava flow studies has been the application of new observational techniques. Also important has been a long-term effort to measure the physical properties (temperature, viscosity, crystallinity, and so on) of flowing lava. Field measurements of these properties have both motivated laboratory experiments and presaged the results of those experiments, particularly with respect to understanding the rheology of complex fluids. Finally, studies of the dynamics of lava flow emplacement have combined detailed field measurements with theoretical models to build a framework for the interpretation of lava flows in numerous other terrestrial, submarine, and planetary environments. Here, we attempt to review all these aspects of lava flow studies and place them into a coherent framework that we hope will motivate future research.

  19. Thermal mapping of Hawaiian volcanoes with ASTER satellite data

    USGS Publications Warehouse

    Patrick, Matthew R.; Witzke, Coral-Nadine

    2011-01-01

    Thermal mapping of volcanoes is important to determine baseline thermal behavior in order to judge future thermal activity that may precede an eruption. We used cloud-free kinetic temperature images from the ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) sensor obtained between 2000 and 2010 to produce thermal maps for all five subaerial volcanoes in Hawai‘i that have had eruptions in the Holocene (Kīlauea, Mauna Loa, Hualālai, Mauna Kea, and Haleakalā). We stacked the images to provide time-averaged thermal maps, as well as to analyze temperature trends through time. Thermal areas are conspicuous at the summits and rift zones of Kīlauea and Mauna Loa, and the summit calderas of these volcanoes contain obvious arcuate, concentric linear thermal areas that probably result from channeling of rising gas along buried, historical intracaldera scarps. The only significant change in thermal activity noted in the study period is the opening of the Halema‘uma‘u vent at Kīlauea's summit in 2008. Several small thermal anomalies are coincident with pit craters on Hualālai. We suspect that these simply result from the sheltered nature of the depression, but closer inspection is warranted to determine if genuine thermal activity exists in the craters. Thermal areas were not detected on Haleakalā or Mauna Kea. The main limitation of the study is the large pixel size (90 m) of the ASTER images, which reduces our ability to detect subtle changes or to identify small, low-temperature thermal activity. This study, therefore, is meant to characterize the broad, large-scale thermal features on these volcanoes. Future work should study these thermal areas with thermal cameras and thermocouples, which have a greater ability to detect small, low-temperature thermal features.

  20. Evolution of Hawaiian shield volcano revealed by antecryst-hosted melt inclusions

    NASA Astrophysics Data System (ADS)

    Tanaka, R.; Sakyi, P. A.; Kobayashi, K.; Nakamura, E.

    2009-12-01

    Ocean island basalts, exemplified by the Hawaiian Volcanics, are often considered to be the best targets for understanding the chemical and thermal structure of upwelling mantle plumes. The important feature with regards to the petrogenesis of the recent Hawaiian shield building lavas is the existence of a double volcanic loci (Loa and Kea), which has resulted in large-scale heterogeneity between the north-western and south-eastern sides of the plume. The temporal Sr-Nd-Hf-Pb isotopic trends displayed by the Loa-type lavas may have been caused by systematic vertical heterogeneity of the SW part of the Hawaiian plume. The majority of the available OIB samples are limited to the youngest lava flows covering the shield, with the exception of samples obtained from drilled cores and land slide deposits. Thus, sampling is biased to the latest stages of the shield building process, and consequently, so are geochemical studies. We found that the majority of olivine crystals coarser than ˜1 mm in the Hawaiian lavas are antecryst, which originally crystallized from previous stages of Hawaiian magmatism. These anatecrysts were then plastically deformed prior to entrainment in the erupted host magmas. The Pb isotopic compositions of antecryst-hosted melt inclusions reveal that the mantle source components that formed Hawaiian shields successively changed during shield formation. The temporal geochemical trend in the Kilauea melt inclusion could be caused by increasing the degree of partial melting by moving the melting source of the volcano from the periphery to the centre of the plume. The Pb isotopic trend of Koolau melt inclusions are consistent with the previously identified temporal isotopic trend, which shows that the 207Pb/206Pb and 208Pb/206Pb of the Koolau magma systematically increased with time. Thus, antecryst-hosted melt inclusions preserve geochemical information regarding the petrogenesis of the Hawaiian shield lavas, which is unobtainable via whole rock

  1. Exploring Hawaiian volcanism

    USGS Publications Warehouse

    Poland, Michael P.; Okubo, Paul G.; Hon, Ken

    2013-01-01

    In 1912 the Hawaiian Volcano Observatory (HVO) was established by Massachusetts Institute of Technology professor Thomas A. Jaggar Jr. on the island of Hawaii. Driven by the devastation he observed while investigating the volcanic disasters of 1902 at Montagne Pelée in the Caribbean, Jaggar conducted a worldwide search and decided that Hawai‘i provided an excellent natural laboratory for systematic study of earthquake and volcano processes toward better understanding of seismic and volcanic hazards. In the 100 years since HVO’s founding, surveillance and investigation of Hawaiian volcanoes have spurred advances in volcano and seismic monitoring techniques, extended scientists’ understanding of eruptive activity and processes, and contributed to development of global theories about hot spots and mantle plumes.

  2. Intrusive dike complexes, cumulate cores, and the extrusive growth of Hawaiian volcanoes

    USGS Publications Warehouse

    Flinders, Ashton F.; Ito, Garrett; Garcia, Michael O.; Sinton, John M.; Kauahikaua, Jim; Taylor, Brian

    2013-01-01

    The Hawaiian Islands are the most geologically studied hot-spot islands in the world yet surprisingly, the only large-scale compilation of marine and land gravity data is more than 45 years old. Early surveys served as reconnaissance studies only, and detailed analyses of the crustal-density structure have been limited. Here we present a new chain-wide gravity compilation that incorporates historical island surveys, recently published work on the islands of Hawai‘i, Kaua‘i, and Ni‘ihau, and >122,000 km of newly compiled marine gravity data. Positive residual gravity anomalies reflect dense intrusive bodies, allowing us to locate current and former volcanic centers, major rift zones, and a previously suggested volcano on Ka‘ena Ridge. By inverting the residual gravity data, we generate a 3-D view of the dense, intrusive complexes and olivine-rich cumulate cores within individual volcanoes and rift zones. We find that the Hāna and Ka‘ena ridges are underlain by particularly high-density intrusive material (>2.85 g/cm3) not observed beneath other Hawaiian rift zones. Contrary to previous estimates, volcanoes along the chain are shown to be composed of a small proportion of intrusive material (<30% by volume), implying that the islands are predominately built extrusively.

  3. Intrusive dike complexes, cumulate cores, and the extrusive growth of Hawaiian volcanoes

    NASA Astrophysics Data System (ADS)

    Flinders, Ashton F.; Ito, Garrett; Garcia, Michael O.; Sinton, John M.; Kauahikaua, Jim; Taylor, Brian

    2013-07-01

    The Hawaiian Islands are the most geologically studied hot-spot islands in the world yet surprisingly, the only large-scale compilation of marine and land gravity data is more than 45 years old. Early surveys served as reconnaissance studies only, and detailed analyses of the crustal-density structure have been limited. Here we present a new chain-wide gravity compilation that incorporates historical island surveys, recently published work on the islands of Hawai`i, Kaua`i, and Ni`ihau, and >122,000 km of newly compiled marine gravity data. Positive residual gravity anomalies reflect dense intrusive bodies, allowing us to locate current and former volcanic centers, major rift zones, and a previously suggested volcano on Ka`ena Ridge. By inverting the residual gravity data, we generate a 3-D view of the dense, intrusive complexes and olivine-rich cumulate cores within individual volcanoes and rift zones. We find that the Hāna and Ka`ena ridges are underlain by particularly high-density intrusive material (>2.85 g/cm3) not observed beneath other Hawaiian rift zones. Contrary to previous estimates, volcanoes along the chain are shown to be composed of a small proportion of intrusive material (<30% by volume), implying that the islands are predominately built extrusively.

  4. 2011 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Maharrey, J. Zebulon; Neal, Christina A.

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest at or near three separate volcanic centers in Alaska during 2011. The year was highlighted by the unrest and eruption of Cleveland Volcano in the central Aleutian Islands. AVO annual summaries no longer report on activity at Russian volcanoes.

  5. Mount St. Helens and Kilauea volcanoes

    SciTech Connect

    Barrat, J. )

    1989-01-01

    Mount St. Helens' eruption has taught geologists invaluable lessons about how volcanoes work. Such information will be crucial in saving lives and property when other dormant volcanoes in the northwestern United States--and around the world--reawaken, as geologists predict they someday will. Since 1912, scientists at the U.S. Geological Survey's Hawaiian Volcano Observatory have pioneered the study of volcanoes through work on Mauna Loa and Kilauea volcanoes on the island of Hawaii. In Vancouver, Wash., scientists at the Survey's Cascades Volcano Observatory are studying the after-effects of Mount St. Helens' catalysmic eruption as well as monitoring a number of other now-dormant volcanoes in the western United States. This paper briefly reviews the similarities and differences between the Hawaiian and Washington volcanoes and what these volcanoes are teaching the volcanologists.

  6. Temporal helium isotopic variations within Hawaiian volcanoes: Basalts from Mauna Loa and Haleakala

    SciTech Connect

    Kurz, M.D.; O'Brien, P.A. ); Garcia, M.O. ); Frey, F.A. )

    1987-11-01

    Helium isotope ratios in basalts spanning the subaerial eruptive history of Mauna Loa and Haleakala vary systematically with eruption age. In both volcanoes, olivine mineral separates from the oldest samples have the highest {sup 3}He/{sup 4}he ratios. The Haleakala samples studied range in age from roughly one million years to historic time, while the Mauna Loa samples are radiocarbon dated flows younger than 30,000 years old. The Honomanu tholeiites are the oldest samples from Haleakala and have {sup 3}He/{sup 4}he ratios that range from 13 to 16.8X atmospheric, while the younger Kula and Hana series alkali basalts all have {sup 3}He/{sup 4}He close to 8X atmospheric. A similar range is observed on Manua Loa; the oldest samples have {sup 3}He/{sup 4}He ratios of 15 to 20X atmospheric, with a relatively smooth decrease to 8X atmospheric with decreasing age. The consistent trend of decreasing {sup 3}He/{sup 4}he ratio with time in both volcanoes, coherence between the helium and Sr and Nd isotopes (for Haleakala), and the similarity of {sup 3}He/{sup 4}He in the late stage basalts to depleted mid-ocean ridge basalt (MORB) helium, argue against the decrease being the result of radiogenic ingrowth of {sup 4}He. The data strongly suggest an undegassed mantle source for the early shield building stages of Hawaiian volcanism, and are consistent with the hotspot/mantle plume model. The data are difficult to reconcile with models for Hawaiian volcanism that require recycled oceanic crust or derivation from a MORB-related upper mantle source. The authors interpret the decrease in {sup 3}He/{sup 4}He with volcano evolution to result from an increasing involvement of depleted mantle and/or lithosphere during the late stages of Hawaiian volcanism.

  7. Recent improvements in monitoring Hawaiian volcanoes with webcams and thermal cameras

    NASA Astrophysics Data System (ADS)

    Patrick, M. R.; Orr, T. R.; Antolik, L.; Lee, R.; Kamibayashi, K.

    2012-12-01

    Webcams have become essential tools for continuous observation of ongoing volcanic activity. The use of both visual webcams and Web-connected thermal cameras has increased dramatically at the Hawaiian Volcano Observatory over the past five years, improving our monitoring capability and understanding of both Kilauea's summit eruption, which began in 2008, and the east rift zone eruption, which began in 1983. The recent bolstering of the webcam network builds upon the three sub-megapixel webcams that were in place five years ago. First, several additional fixed visual webcam systems have been installed, using multi-megapixel low-light cameras. Second, several continuously operating thermal cameras have been deployed, providing a new view of activity, easier detection of active flows, and often "seeing" through fume that completely obscures views from visual webcams. Third, a new type of "mobile" webcam - using cellular modem telemetry and capable of rapid deployment - has allowed us to respond quickly to changes in eruptive activity. Fourth, development of automated analysis and alerting scripts provide real-time products that aid in quantitative interpretation of incoming images. Finally, improvements in the archiving and Web-based display of images allow efficient review of current and recent images by observatory staff. Examples from Kilauea's summit and lava flow field provide more detail on the improvements. A thermal camera situated at Kilauea's summit has tracked the changes in the active lava lake in Halema`uma`u Crater since late 2010. Automated measurements from these images using Matlab scripts are now providing real-time quantitative data on lava level and, in some cases, lava crust velocity. Lava level essentially follows summit tilt over short time scales, in which near-daily cycles of deflation and inflation correspond with about ten meters of lava level drop and rise, respectively. The data also show that the long-term Halema`uma`u lava level tracked

  8. Hawaiian Volcano Flank Stability Appraised From Strength Testing the Hawaiian Scientific Drilling Project's (HSDP) 3.1-km Drill Core

    NASA Astrophysics Data System (ADS)

    Thompson, N.; Watters, R. J.; Schiffman, P.

    2005-12-01

    the means of the basaltic flows, intrusive and pillow lava values. The test results imply that shallow rotational slumps that develop within the upper few kilometers of spreading Hawai'ian volcanoes within low strength, poorly-consolidated, smectite-rich hyaloclastites are similar to those we have found from the incipient and smectitic alteration zones of the HSDP cores. Deeper slumps might be directed through over-pressured pillow lava units as a result of the stronger pillow lava units permitting deeper failure surfaces to develop. Petrographically the Mauna Kea hyaloclastites appear similar to those from actively spreading Hawai'ian shield volcanoes. Alteration processes apparently affect the strength of these hyaloclastites. In the shallower zones of incipient and smectitic alteration, hyaloclastites generally retain their high primary porosities. In the deeper, palagonitic zone of alteration, the hyaloclastites gain both compressive and shear strength, primarily through consolidation and zeolitic cementation. The marked strength contrast between hyaloclastites, and the lavas that overlie and underlie them is significant, and may be a primary factor in localizing the destabilization of the flanks of Hawaiian volcanoes.

  9. Petrology and thermal structure of the Hawaiian plume from Mauna Kea volcano.

    PubMed

    Herzberg, Claude

    2006-11-30

    There is uncertainty about whether the abundant tholeiitic lavas on Hawaii are the product of melt from peridotite or pyroxenite/eclogite rocks. Using a parameterization of melting experiments on peridotite with glass analyses from the Hawaii Scientific Deep Project 2 on Mauna Kea volcano, I show here that a small population of the core samples had fractionated from a peridotite-source primary magma. Most lavas, however, differentiated from magmas that were too deficient in CaO and enriched in NiO (ref. 2) to have formed from a peridotite source. For these, experiments indicate that they were produced by the melting of garnet pyroxenite, a lithology that had formed in a second stage by reaction of peridotite with partial melts of subducted oceanic crust. Samples in the Hawaiian core are therefore consistent with previous suggestions that pyroxenite occurs in a host peridotite, and both contribute to melt production. Primary magma compositions vary down the drill core, and these reveal evidence for temperature variations within the underlying mantle plume. Mauna Kea magmatism is represented in other Hawaiian volcanoes, and provides a key for a general understanding of melt production in lithologically heterogeneous mantle. PMID:17136091

  10. Petrology and Geochronology of Kaula Volcano lavas: An off-axis window into the Hawaiian Mantle Plume

    NASA Astrophysics Data System (ADS)

    Garcia, M. O.; Weis, D.; Jicha, B. R.; Tree, J. P.; Bizimis, M.

    2014-12-01

    The Hawaiian Islands extend NW for 625 km from Lō'ihi to Ka'ula island. One anomalous feature cross-cutting the Hawaiian Islands is the Kaua'i Ridge, a 165 km-long bathymetric high with three well-defined gravity highs. These gravity highs are centered under or near the islands of Ka'ula, Ni'ihau and Kaua'i, and represent the cores of three shield volcanoes whose volumes decrease dramatically with distance from the axis of the Hawaiian Chain (Kaua'i, 58 x 103 km3, Ni'ihau x 103 km, Ka'ula 10 x 103 km; Robinson and Eakins 2006). Ka'ula Volcano, on the SW end of the Kaua'i Ridge, is centered 100 km off the axis of the Hawaiian mantle plume. The volcano is capped by a small island, which is a remnant of a nephelinitic tuff cone. The cone contains abundant accidental bombs of lava (tholeiite, phonolite and basanite), peridotite and pyroxenite, and unexploded ordnance from US military bombing. Two JASON dives on the flanks of Ka'ula recovered only alkalic lavas. Three stage of Ka'ula volcanism have been identified from sampling the volcanic bombs and flanks of the volcano. These rocks were dated using 40Ar/39Ar methods for the basalts and K-Ar for the phonolites. A tholeiitic shield basalt yielded an age of 6.2 Ma, the oldest reliable age for any Hawaiian Island tholeiite. Post-shield phonolites gave ages of 4.0 to 4.2 Ma (Garcia et al., 1986) and rejuvenation stage alkalic basalts yielded ages of 1.9 to 0.5 Ma. These ages are nearly identical to those for the same stages for adjacent Ni'ihau volcano but slightly older than on Kauai, 100 km to the NE (Sherrod et al. 2007). Thus, volcanism was nearly simultaneous along Kaua'i Ridge. The new age results extend to 420 km the distance within the Hawaiian Islands that experienced coeval rejuvenated volcanism. Geochemically, the rejuvenated and tholeiitic lavas from the Kaua'i Ridge are very similar with mixed source signatures of Loa and Kea trend compositions. Mixed Loa-Kea sources have been found for many other Hawaiian

  11. Dynamics of magma supply, storage and migration at basaltic volcanoes: Geophysical studies of the Galapagos and Hawaiian volcanoes

    NASA Astrophysics Data System (ADS)

    Bagnardi, Marco

    Basaltic shields forming ocean island volcanoes, in particular those of Hawai'i and of the Galapagos Islands, constitute some of the largest volcanic features on Earth. Understanding subsurface processes such as those controlling magma supply, storage and migration at these volcanoes, is essential to any attempt to anticipate their future behavior. This dissertation presents a series of studies carried out at Hawaiian and Galapagos volcanoes. InSAR measurements acquired between 2003 and 2010 at Fernandina Volcano, Galapagos, are used to study the structure and the dynamics of the shallow magmatic system of the volcano (Chapter 3). Spatial and temporal variations in the measured displacements reveal the presence of two hydraulically connected areas of magma storage, and the modeling of the deformation data provides an estimate of their location and geometry. The same dataset also provides the first geodetic evidence for two subvolcanic sill intrusions (in 2006 and 2007) deep beneath the volcano's flank. The lateral migration of magma from the reservoirs during these intrusions could provide an explanation for enigmatic volcanic events at Fernandina such as the 1968 caldera collapse without significant eruption. Space-geodetic measurements of the surface deformation produced by the most recent eruptions at Fernandina, reveal that all have initiated with the intrusion of subhorizontal sills from the shallow magma reservoir (Chapter 4). A synthetic aperture radar (SAR) image acquired 1-2 h before the start of a radial fissure eruption in 2009 captures one of these sills in the midst of its propagation toward the surface. Galapagos eruptive fissures of all orientations have previously been presumed to be fed by vertical dikes, but these new findings allow a reinterpretation of the internal structure and evolution of Galapagos volcanoes and of similar basaltic shields elsewhere on Earth and on other planets. A joint analysis of InSAR and groud-based microgravity data

  12. Volcano and Earthquake Monitoring Plan for the Yellowstone Volcano Observatory, 2006-2015

    USGS Publications Warehouse

    Yellowstone Volcano Observatory

    2006-01-01

    To provide Yellowstone National Park (YNP) and its surrounding communities with a modern, comprehensive system for volcano and earthquake monitoring, the Yellowstone Volcano Observatory (YVO) has developed a monitoring plan for the period 2006-2015. Such a plan is needed so that YVO can provide timely information during seismic, volcanic, and hydrothermal crises and can anticipate hazardous events before they occur. The monitoring network will also provide high-quality data for scientific study and interpretation of one of the largest active volcanic systems in the world. Among the needs of the observatory are to upgrade its seismograph network to modern standards and to add five new seismograph stations in areas of the park that currently lack adequate station density. In cooperation with the National Science Foundation (NSF) and its Plate Boundary Observatory Program (PBO), YVO seeks to install five borehole strainmeters and two tiltmeters to measure crustal movements. The boreholes would be located in developed areas close to existing infrastructure and away from sensitive geothermal features. In conjunction with the park's geothermal monitoring program, installation of new stream gages, and gas-measuring instruments will allow YVO to compare geophysical phenomena, such as earthquakes and ground motions, to hydrothermal events, such as anomalous water and gas discharge. In addition, YVO seeks to characterize the behavior of geyser basins, both to detect any precursors to hydrothermal explosions and to monitor earthquakes related to fluid movements that are difficult to detect with the current monitoring system. Finally, a monitoring network consists not solely of instruments, but requires also a secure system for real-time transmission of data. The current telemetry system is vulnerable to failures that could jeopardize data transmission out of Yellowstone. Future advances in monitoring technologies must be accompanied by improvements in the infrastructure for

  13. Isotope and trace element characteristics of Waianae Volcano, Oahu, Hawaii: evidence for crustal melting in Hawaiian volcanoes

    NASA Astrophysics Data System (ADS)

    van der Zander, I.; Sinton, J. M.; Mahaoney, J. J.

    2006-12-01

    Well-exposed sections within the 3-4 Ma Waianae Volcano of Oahu, Hawaii, encompass much of the Hawaiian volcano "life" cycle, ranging from early or main shield stage (Lualualei) through late shield (Kamaileunu) to postshield (Palehua and Kolekole) stage. New data on 25 samples indicate a relatively restricted range in Sr, Nd and Pb isotopic ratios. 87Sr/86Sr ranges from 0.70352 to 0.70379, \\UpsilonNd from +4.5 to +6.7 and 206Pb/204Pb 17.793 to 18.295. The largest range within the sample suite occurs in the shield stage lavas (Lualualei and Kamaileunu), suggesting less time for homogenization of magma in a magma chamber(s) during this period. The late shield stage contains silicic lavas and dikes (basaltic icelandites, icelandites and rhyodacites). In 206Pb/204Pb versus 207Pb/204Pb or ^{208}Pb/204Pb diagrams, most shield and postshield lavas fall on a single array, which may be a binary (or pseudo-binary) mixing array. However, data for the silicic lavas lie well off the array at low 206Pb/204Pb (~17.8). Incompatible-element patterns for these samples are distinct in having peaks at Pb. Greater scatter in Sr-Pb and Nd-Pb isotope diagrams compared to Pb-Pb isotope diagrams suggests that the variations in Sr-Pb and Nd-Pb isotope diagrams are related to fractionation of Sr, Nd and Pb by different degrees of melting of different components. Geochemical modeling of the isotopic and trace element data suggests that the silicic lavas (which are petrographically, chemically and mineralogically calc-alkalic) likely represent hydrous melts of amphibolite in the lower Hawaiian crust. We propose that the occurrence of these lavas in the late shield stage results from deep crustal melting as a consequence of compression and crustal thickening after the accumulation and alteration of a thick pile of lavas earlier in the shield stage. The Koolau Volcano's late shield (Makapuu stage) exhibits similar Pb isotope ratios, perhaps indicating that the "exotic" Koolau component might

  14. Ancient carbonate sedimentary signature in the Hawaiian plume: Evidence from Mahukona volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Huang, Shichun; Abouchami, Wafa; Blichert-Toft, Janne; Clague, David A.; Cousens, Brian L.; Frey, Frederick A.; Humayun, Munir

    2009-08-01

    Lavas from Mahukona, a small Hawaiian volcano on the Loa trend, exhibit major and trace element abundance variations exceeding those in lavas from large Hawaiian shields, such as Mauna Loa and Mauna Kea. Mahukona lavas define three geochemically distinct groups of tholeiitic shield basalt and a transitional group of postsshield basalt. At 10% MgO the tholeiitic groups range from 9 to 12% CaO; such differences in CaO can reflect partial melts derived from garnet pyroxenite (low CaO) and peridotite (high CaO), but the negative CaO-Yb (both at 10% MgO) trend formed by Mahukona lavas is inconsistent with this explanation. Within Mahukona lavas, radiogenic Nd-Hf-Pb isotopic ratios are highly correlated with each other; however, 87Sr/86Sr is decoupled from these radiogenic isotopic ratios. Rather, 87Sr/86Sr is correlated with trace element abundance ratios involving Sr, and importantly, Mahukona lavas define a negative Rb/Sr-87Sr/86Sr trend, implying that a Sr-rich source component characterized by high 87Sr/86Sr is important in the petrogenesis of Mahukona lavas. We infer that this Sr-rich source component is recycled ancient carbonate-rich sediments. Intershield heterogeneity among Hawaiian shields also shows a negative Rb/Sr-87Sr/86Sr trend. For example, Makapuu-stage Koolau lavas have higher 87Sr/86Sr but lower Rb/Sr than Mauna Kea lavas. Consequently, we infer that a recycled ancient carbonate-rich sedimentary source component is important in the Hawaiian plume. Although most lavas from Loa and Kea trend volcanoes define distinct fields in isotopic ratios of Sr, Nd, Hf, and Pb, the majority of Mahukona lavas have isotopic ratios at the boundary between the fields defined by Loa and Kea trend lavas. However, a subgroup of Mahukona shield lavas have Kea-like isotopic and trace element signatures, an observation that can be explained by vertical heterogeneity in a bilaterally asymmetrical plume.

  15. The Mauna Kea Observatories Outreach Committee brings Astronomy to the Hawaiian Public

    NASA Astrophysics Data System (ADS)

    Heyer, Ingeborg; Harvey, J.; Usuda, K. S.; Fujihara, G.

    2010-01-01

    The Mauna Kea Observatories Outreach Committee (MKOOC) combines the outreach activities of the 13 telescopes on Mauna Kea on the Big Island of Hawai`i. For the International Year of Astronomy (IYA) 2009 we branded our annual local events, and in addition developed several unique activities and products to bring astronomy to the public during IYA. Our Journey Through The Universe classroom visit and teacher training program was augmented by several evening public events for the whole family. For AstroDay we developed a set of astronomy trading cards, such that people had to visit all the observatory booths to collect the whole set. In collaboration with the local newspapers we produced an astronomy supplement, available both on paper and online, highlighting the work being done at our observatories. A year-long introductory astronomy class for K-12 teachers was held, emphasizing hands-on activities to teach important concepts. In collaboration with a local supermarket we held a poster contest for students, making the connection between astronomy and Hawaiian culture. We also participated in the "100 Hours for Astronomy" webcast. In the fall we celebrated the Galilean Nights with an all-observatories block party, with activities, music, and give-aways.

  16. The Mauna Kea Observatories Outreach Committee Brings Astronomy To The Hawaiian Public

    NASA Astrophysics Data System (ADS)

    Heyer, I.; Harvey, J.; Usuda, K. S.; Fujihara, G.; Hamilton, J.

    2010-08-01

    The Mauna Kea Observatories Outreach Committee (MKOOC) combines the outreach activities of the 13 telescopes on Mauna Kea on the Big Island of Hawaii. For the International Year of Astronomy (IYA) 2009 we branded our annual local events, and in addition developed several unique activities and products to bring astronomy to the public during IYA. Our Journey Through The Universe classroom visit and teacher training program was augmented by several evening public events for the whole family. For AstroDay we developed a set of astronomy trading cards, such that people had to visit all the observatory booths to collect the whole set. In collaboration with the local newspapers, we produced an astronomy supplement, available both on paper and online, highlighting the work being done at our observatories. A year-long introductory astronomy class for K-12 teachers was held, emphasizing hands-on activities to teach important concepts. In collaboration with a local supermarket, we held a poster contest for students, making the connection between astronomy and Hawaiian culture. We also participated in the "100 Hours of Astronomy" webcast. In the fall, we celebrated the Galilean Nights with an all-observatories block party, with activities, music, and give-aways.

  17. Interagency collaboration on an active volcano: a case study at Hawai‘i Volcanoes National Park

    USGS Publications Warehouse

    Kauahikaua, James P.; Orlando, Cindy

    2014-01-01

    Because Kilauea and Mauna Loa are included within the National Park, there is a natural intersection of missions for the National Park Service (NPS) and the U.S. Geological Survey (USGS). HAVO staff and the USGS Hawaiian Volcano Observatory scientists have worked closely together to monitor and forecast multiple eruptions from each of these volcanoes since HAVO’s founding in 1916.

  18. Can tephra be recognized in Hawaiian drill core, and if so, what can be learned about the explosivity of Hawaiian volcanoes?

    NASA Astrophysics Data System (ADS)

    Lautze, N. C.; Haskins, E.; Thomas, D. M.

    2013-12-01

    Nearly 6000 feet of drill core was recently recovered from the Pohakula Training Area (PTA) near the Saddle Road between Mauna Loa and Mauna Kea volcanoes on Hawaii Island. Drilling was funded by the US Army with an objective to find a potable water source; the rock core was logged and archived thanks to funding from the National Science Foundation. Within the first few hundred meters, alluvial outwash from the slopes of Mauna Kea is underlain by post-shield Mauna Kea lavas. Below this depth the core is predominantly pahoehoe and to a lesser extent a'a lavas expected to be from Mauna Kea's shield stage volcanism. During the logging effort, and throughout the core, a number of suspect-pyroclastic deposits were identified (largely based on particle texture). These deposits will be examined in more detail, with results presented here. An effort will be made to determine whether explosive deposits can, in fact, be unequivocally identified in drill core. Two anticipated challenges are differentiating between: scoria and 'clinker' (the latter associated with a'a lava flows), and primary volcanic ash, loess, and glacial sediments. Recognition of explosive deposits in the PTA drill core would lend insight into Mauna Kea's explosive history, and potentially that of other Big Island volcanoes as well. If the characteristics of tephra in Hawaiian drill core can be identified, core from the Hawaiian Scientific Drilling Project (HSDP) and Scientific Observation Holes (SOH-1,2,4) may also be examined.

  19. 1994 Volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; Doukas, Michael P.; McGimsey, Robert G.

    1995-01-01

    During 1994, the Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, or false alarms at nine volcanic centers-- Mount Sanford, Iliamna, the Katmai group, Kupreanof, Mount Veniaminof, Shishaldin, Makushin, Mount Cleveland and Kanaga (table 1). Of these volcanoes, AVO has a real time, continuously recording seismic network only at Iliamna, which is located in the Cook Inlet area of south-central Alaska (fig. 1). AVO has dial-up access to seismic data from a 5-station network in the general region of the Katmai group of volcanoes. The remaining unmonitored volcanoes are located in sparsely populated areas of the Wrangell Mountains, the Alaska Peninsula, and the Aleutian Islands (fig. 1). For these volcanoes, the AVO monitoring program relies chiefly on receipt of pilot reports, observations of local residents and analysis of satellite imagery.

  20. 2013 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Dixon, James P.; Cameron, Cheryl; McGimsey, Robert G.; Neal, Christina A.; Waythomas, Chris

    2015-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, volcanic unrest or suspected unrest, and seismic events at 18 volcanic centers in Alaska during 2013. Beginning with the 2013 AVO Summary of Events, the annual description of the AVO seismograph network and activity, once a stand-alone publication, is now part of this report. Because of this change, the annual summary now contains an expanded description of seismic activity at Alaskan volcanoes. Eruptions occurred at three volcanic centers in 2013: Pavlof Volcano in May and June, Mount Veniaminof Volcano in June through December, and Cleveland Volcano throughout the year. None of these three eruptive events resulted in 24-hour staffing at AVO facilities in Anchorage or Fairbanks.

  1. Initiative for the creation of an integrated infrastructure of European Volcano Observatories

    NASA Astrophysics Data System (ADS)

    Puglisi, G.; Bachelery, P.; Ferreira, T. J. L.; Vogfjörd, K. S.

    2012-04-01

    Active volcanic areas in Europe constitute a direct threat to millions of European citizens. The recent Eyjafjallajökull eruption also demonstrated that indirect effects of volcanic activity can present a threat to the economy and the lives of hundreds of million of people living in the whole continental area even in the case of activity of volcanoes with sporadic eruptions. Furthermore, due to the wide political distribution of the European territories, major activities of "European" volcanoes may have a worldwide impact (e.g. on the North Atlantic Ocean, West Indies included, and the Indian Ocean). Our ability to understand volcanic unrest and forecast eruptions depends on the capability of both the monitoring systems to effectively detect the signals generated by the magma rising and on the scientific knowledge necessary to unambiguously interpret these signals. Monitoring of volcanoes is the main focus of volcano observatories, which are Research Infrastructures in the ESFRI vision, because they represent the basic resource for researches in volcanology. In addition, their facilities are needed for the design, implementation and testing of new monitoring techniques. Volcano observatories produce a large amount of monitoring data and represent extraordinary and multidisciplinary laboratories for carrying out innovative joint research. The current distribution of volcano observatories in Europe and their technological state of the art is heterogeneous because of different types of volcanoes, different social requirements, operational structures and scientific background in the different volcanic areas, so that, in some active volcanic areas, observatories are lacking or poorly instrumented. Moreover, as the recent crisis of the ash in the skies over Europe confirms, the assessment of the volcanic hazard cannot be limited to the immediate areas surrounding active volcanoes. The whole European Community would therefore benefit from the creation of a network of

  2. New K-Ar ages for calculating end-of-shield extrusion rates at West Maui volcano, Hawaiian island chain

    USGS Publications Warehouse

    Sherrod, D.R.; Murai, T.; Tagami, Takahiro

    2007-01-01

    Thirty-seven new K-Ar ages from West Maui volcano, Hawai'i, are used to define the waning stages of shield growth and a brief episode of postshield volcanism. All but two samples from shield-stage strata have reversed polarity magnetization, so conceivably the exposed shield is not much older than the Olduvai Normal-Polarity subchron, or about 1.8 Ma. The oldest ages obtained are in the range 1.9-2.1 Ma but have large analytical error. Shield volcanism ended about 1.35 Ma, and postshield volcanism followed soon thereafter, persisting until about 1.2 Ma. Exposed shield-stage strata were emplaced at a rate of about 0.001 km3 per year, a rate smaller than historic Hawaiian magmatic rates by a factor of 100. Stratigraphic accumulation rates are similar to those measured previously at Wai'anae volcano (O'ahu) or the upper part of the Mauna Kea shield sequence (Hilo drill core, Hawai'i). These rates diminish sharply during the final 0.3-0.5 m.y. of the shield stage. Hawaiian shield volcanoes begin waning well before their last 0.5 m.y. of life, then end quickly, geologically speaking, if West Maui is representative. ?? Springer-Verlag 2006.

  3. Geophysical monitoring from seafloor observatories in Italian volcanic sites: Marsili Seamount, Etna Volcano and Stromboli Island.

    NASA Astrophysics Data System (ADS)

    Giovanetti, Gabriele; Monna, Stephen; Lo Bue, Nadia; Embriaco, Davide; Frugoni, Francesco; Marinaro, Giuditta; De Caro, Mariagrazia; Sgroi, Tiziana; Montuori, Caterina; De Santis, Angelo; Cianchini, Gianfranco; Favali, Paolo; Beranzoli, Laura

    2016-04-01

    Many volcanoes on Earth are located within or near the oceans and observations from the seafloor can be very important for a more complete understanding of the structure and nature of these volcanoes. We present some results obtained from data acquired in volcanic sites in the Central Mediterranean Sea. Data were taken by means of stand-alone free-fall systems, and fixed-point ocean observatories, both cabled and autonomous, some of which are part of the European research infrastructure EMSO (European Multidisciplinary Seafloor and water-column Observatory, www.emso-eu.org). EMSO observatories strongly rely on a multidisciplinary approach, in spite of the many technical challenges that the operation of very different sensors by means of a single acquisition system presents. We focus on three volcanic sites near the coasts of Italy (Marsili seamount, Stromboli Island and Etna Volcano) involved in subduction processes and to the opening of the Central Mediterranean basin. Through multidisciplinary analysis we were able to associate geophysical and oceanographic signals to a common volcanic source in a more reliable way with respect to single sensor analysis, showing the potential of long-term seafloor monitoring in unravelling otherwise still obscure aspects of such volcanoes. The very strong expansion of seafloor monitoring, which is taking place both in the quantity of the infrastructures and in the technological capabilities, suggests that there will be important developments in the near future.

  4. Challenges to Integrating Geographically-Dispersed Data and Expertise at U.S. Volcano Observatories

    NASA Astrophysics Data System (ADS)

    Murray, T. L.; Ewert, J. W.

    2010-12-01

    During the past 10 years the data and information available to volcano observatories to assess hazards and forecast activity has grown dramatically, a trend that will likely continue. Similarly, the ability of observatories to draw upon external specialists who can provide needed expertise is also increasing. Though technology easily provides the ability to move large amounts of information to the observatory, the challenge remains to efficiently and quickly integrate useful information and expertise into the decision-making process. The problem is further exacerbated by the use of new research techniques during times of heightened activity. Eruptive periods typically accelerate research into volcanic processes as scientists use the opportunity to test new hypotheses and develop new tools. Such experimental methods can be extremely insightful, but may be less easily integrated into the normal data streams that inform decisions. Similarly, there is an increased need for collaborative tools that allow efficient and effective communication between the observatory and external experts. Observatories will continue to be the central focus for integrating information, assessing hazards, and communicating with the public, but will increasingly draw on experts at other observatories, government agencies, academia and even the private sector, both foreign and domestic, to provide analysis and assistance. Fostering efficient communication among such a diverse and geographically dispersed group is a challenge. Addressing these challenges is one of the goals of the U.S. National Volcano Early Warning System, falling under the effort to improve interoperability among the five U.S. volcano observatories and their collaborators. In addition to providing the mechanisms to handle the flow of data, efforts will be directed at simplifying - though retaining the required nuance - information and merging data streams while developing tools that enable observatory staff to quickly

  5. 2012 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Herrick, Julie A.; Neal, Christina A.; Cameron, Cheryl E.; Dixon, James P.; McGimsey, Robert G.

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest, or suspected unrest at 11 volcanic centers in Alaska during 2012. Of the two verified eruptions, one (Cleveland) was clearly magmatic and the other (Kanaga) was most likely a single phreatic explosion. Two other volcanoes had notable seismic swarms that probably were caused by magmatic intrusions (Iliamna and Little Sitkin). For each period of clear volcanic unrest, AVO staff increased monitoring vigilance as needed, reviewed eruptive histories of the volcanoes in question to help evaluate likely outcomes, and shared observations and interpretations with the public. 2012 also was the 100th anniversary of Alaska’s Katmai-Novarupta eruption of 1912, the largest eruption on Earth in the 20th century and one of the most important volcanic eruptions in modern times. AVO marked this occasion with several public events.

  6. VOLInSAR-PF, the InSAR Volcano Observatory Service at Piton de la Fournaise Volcano (La Reunion Island).

    NASA Astrophysics Data System (ADS)

    Froger, Jean-Luc; Cayol, Valérie; Augier, Aurélien; Souriot, Thierry

    2010-05-01

    Since 2003, we carry out a systematic InSAR survey of the Piton de la Fournaise volcano, Reunion Island, in the framework of an AO-ENVISAT project. Since 2005 this activity gets the status of Observatory Service of the Observatoire de Physique du Globe de Clermont-Ferrand (OPGC). From 375 ASAR images acquired between 2003 and 2010, we have produced more than 2100 interferograms that allowed us to map the deformations related to 21 eruptions and thus to better understand the internal processes acting during each eruption. In the same time, we have developed an automatic procedure to provide full resolution interferograms, trough a dedicated WEB site, to the Volcano Observatory of Piton de la Fournaise (OVPF), and our other partners, within a few hours after receiving the ASAR images. In this way, our work is a first step toward an operational system of InSAR monitoring of volcanic activity. Since the beginning of 2010, the VOLInSAR-PF database is also open to the entire community, trough an anonymous login that gives access to slightly reduced resolution interferograms. We will present the VOLInSAR-PF database, the main results it provides concerning the way Piton de la Fournaise is deforming, and the main perspectives for monitoring provided by the new InSAR data (PALSAR-ALOS, TerraSAR-X, RADARSAT-2, COSMO-Skymed) we are beginning to integrate in the database.

  7. 2010 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; Herrick, Julie; Girina, O.A.; Chibisova, Marina; Rybin, Alexander; McGimsey, Robert G.; Dixon, Jim

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest or suspected unrest at 12 volcanic centers in Alaska during 2010. The most notable volcanic activity consisted of intermittent ash emissions from long-active Cleveland volcano in the Aleutian Islands. AVO staff also participated in hazard communication regarding eruptions or unrest at seven volcanoes in Russia as part of an ongoing collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  8. Emplacement of Hawaiian Lava Flows - the Perspective From Twenty Years of Observations at Kilauea Volcano

    NASA Astrophysics Data System (ADS)

    Cashman, K. V.; Kauahikaua, J. P.

    2002-12-01

    viscosity and eventually the onset of non-Newtonian flow behavior and the formation of transitional and aa flow surfaces upon cooling. While aa flow advance is often continuous, aa flows may also stall and inflate. During the past decade, aa flows have formed under conditions of temporarily high flux, when surface breakouts traverse steep slopes, or near the eruptive vent when the flux is unsteady. Although our knowledge of Hawaiian lava flows has improved substantially over the past two decades, we still lack predictive models that truly link macroscopic features of flow advance to microscopic changes in the physical state of the lava. Comparisons of analog and numerical models to existing data sets are limited by the relatively small dynamic range of activity exhibited by Kilauea over the past decade. Improved linkage of observations over different scales requires quantitative field observations that span a broader range of scale than supplied by the current eruption, a limitation that may be overcome by well designed field campaigns for the next eruption of Mauna Loa volcano.

  9. Hazard communication by the Alaska Volcano Observatory Concerning the 2008 Eruptions of Okmok and Kasatochi Volcanoes, Aleutian Islands, Alaska

    NASA Astrophysics Data System (ADS)

    Adleman, J. N.; Cameron, C. E.; Neal, T. A.; Shipman, J. S.

    2008-12-01

    The significant explosive eruptions of Okmok and Kasatochi volcanoes in 2008 tested the hazard communication systems at the Alaska Volcano Observatory (AVO) including a rigorous test of the new format for written notices of volcanic activity. AVO's Anchorage-based Operations facility (Ops) at the USGS Alaska Science Center serves as the hub of AVO's eruption response. From July 12 through August 28, 2008 Ops was staffed around the clock (24/7). Among other duties, Ops staff engaged in communicating with the public, media, and other responding federal and state agencies and issued Volcanic Activity Notices (VAN) and Volcano Observatory Notifications for Aviation (VONA), recently established and standardized products to announce eruptions, significant activity, and alert level and color code changes. In addition to routine phone communications with local, national and international media, on July 22, AVO held a local press conference in Ops to share observations and distribute video footage collected by AVO staff on board a U.S. Coast Guard flight over Okmok. On July 27, AVO staff gave a public presentation on the Okmok eruption in Unalaska, AK, 65 miles northeast of Okmok volcano and also spoke with local public safety and industry officials, observers and volunteer ash collectors. AVO's activity statements, photographs, and selected data streams were posted in near real time on the AVO public website. Over the six-week 24/7 period, AVO staff logged and answered approximately 300 phone calls in Ops and approximately 120 emails to the webmaster. Roughly half the logged calls were received from interagency cooperators including NOAA National Weather Service's Alaska Aviation Weather Unit and the Center Weather Service Unit, both in Anchorage. A significant number of the public contacts were from mariners reporting near real-time observations and photos of both eruptions, as well as the eruption of nearby Cleveland Volcano on July 21. As during the 2006 eruption of

  10. General Purpose Real-time Data Analysis and Visualization Software for Volcano Observatories

    NASA Astrophysics Data System (ADS)

    Cervelli, P. F.; Miklius, A.; Antolik, L.; Parker, T.; Cervelli, D.

    2011-12-01

    In 2002, the USGS developed the Valve software for management, visualization, and analysis of volcano monitoring data. In 2004, the USGS developed similar software, called Swarm, for the same purpose but specifically tailored for seismic waveform data. Since then, both of these programs have become ubiquitous at US volcano observatories, and in the case of Swarm, common at volcano observatories across the globe. Though innovative from the perspective of software design, neither program is methodologically novel. Indeed, the software can perform little more than elementary 2D graphing, along with basic geophysical analysis. So, why is the software successful? The answer is that both of these programs take data from the realm of discipline specialists and make them universally available to all observatory scientists. In short, the software creates additional value from existing data by leveraging the observatory's entire intellectual capacity. It enables rapid access to different data streams, and allows anyone to compare these data on a common time scale or map base. It frees discipline specialists from routine tasks like preparing graphics or compiling data tables, thereby making more time for interpretive efforts. It helps observatory scientists browse through data, and streamlines routine checks for unusual activity. It encourages a multi-parametric approach to volcano monitoring. And, by means of its own usefulness, it creates incentive to organize and capture data streams not yet available. Valve and Swarm are both written in Java, open-source, and freely available. Swarm is a stand-alone Java application. Valve is a system consisting of three parts: a web-based user interface, a graphing and analysis engine, and a data server. Both can be used non-interactively (e.g., via scripts) to generate graphs or to dump raw data. Swarm has a simple, built-in alarm capability. Several alarm algorithms have been built around Valve. Both programs remain under active

  11. 2008 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: Summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; McGimsey, Robert G.; Dixon, James P.; Cameron, Cheryl E.; Nuzhdaev, Anton A.; Chibisova, Marina

    2011-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest or suspected unrest at seven separate volcanic centers in Alaska during 2008. Significant explosive eruptions at Okmok and Kasatochi Volcanoes in July and August dominated Observatory operations in the summer and autumn. AVO maintained 24-hour staffing at the Anchorage facility from July 12 through August 28. Minor eruptive activity continued at Veniaminof and Cleveland Volcanoes. Observed volcanic unrest at Cook Inlet's Redoubt Volcano presaged a significant eruption in the spring of 2009. AVO staff also participated in hazard communication regarding eruptions or unrest at nine volcanoes in Russia as part of a collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  12. 2009 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Neal, Christina A.; Girina, Olga A.; Chibisova, Marina; Rybin, Alexander

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest, and reports of unusual activity at or near eight separate volcanic centers in Alaska during 2009. The year was highlighted by the eruption of Redoubt Volcano, one of three active volcanoes on the western side of Cook Inlet and near south-central Alaska's population and commerce centers, which comprise about 62 percent of the State's population of 710,213 (2010 census). AVO staff also participated in hazard communication and monitoring of multiple eruptions at ten volcanoes in Russia as part of its collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  13. Tracking the movement of Hawaiian volcanoes; Global Positioning System (GPS) measurement

    USGS Publications Warehouse

    Dvorak, J.J.

    1992-01-01

    At some well-studied volcanoes, surface movements of at least several centimeters take place out to distances of about 10 km from the summit of the volcano. Widespread deformation of this type is relatively easy to monitor, because the necessary survey stations can be placed at favorable sites some distance from the summit of the volcano. Examples of deformation of this type include Kilauea and Mauna Loa in Hawaii, Krafla in Iceland, Long Valley in California, Camp Flegrei in Italy, and Sakurajima in Japan. In contrast, surface movement at some other volcanoes, usually volcanoes with steep slopes, is restricted to places within about 1 km of their summits. Examples of this class of volcanoes include Mount St. Helens in Washington, Etna in Italy, and Tangkuban Parahu in Indonesia. Local movement on remote, rugged volcanoes of this type is difficult to observe using conventional methods of measuring ground movement, which generally require a clear line-of-sight between points of interest. However, a revolutionary new technique, called the Global Positional System (GPS), provides a very efficient, alternative method of making such measurements. GPS, which uses satellites and ground-based receivers to accurately record slight crustal movements, is rapidly becoming the method of choice to measure deformation at volcanoes

  14. Petrology and geochronology of lavas from Ka'ula Volcano: Implications for rejuvenated volcanism of the Hawaiian mantle plume

    NASA Astrophysics Data System (ADS)

    Garcia, Michael O.; Weis, Dominique; Jicha, Brian R.; Ito, Garrett; Hanano, Diane

    2016-07-01

    Marine surveying and submersible sampling of Ka'ula Volcano, located 100 km off the axis of the Hawaiian chain, revealed widespread areas of young volcanism. New 40Ar/39Ar and geochemical analyses of the olivine-phyric submarine and subaerial volcanic rocks show that Ka'ula is shrouded with 1.9-0.5 Ma alkalic basalts. The ages and chemistry of these rocks overlap with rejuvenated lavas on nearby, northern Hawaiian Island shields (Ni'ihau, Kaua'i and South Kaua'i Swell). Collectively, these rejuvenated lavas cover a vast area (∼7000 km2), much more extensive than any other area of rejuvenated volcanism worldwide. Ka'ula rejuvenated lavas range widely in alkalinity and incompatible element abundances (e.g., up to 10× P2O5 at a given MgO value) and ratios indicating variable degrees of melting of a heterogeneous source. Heavy REE elements in Ka'ula lavas are pinned at a mantle normalized Yb value of 10 ± 1, reflecting the presence of garnet in the source. Trace element ratios indicate the source also contained phlogopite and an Fe-Ti oxide. The new Ka'ula ages show that rejuvenated volcanism was nearly coeval from ∼0.3 to 0.6 Ma along a 450 km segment of the Hawaiian Islands (from West Maui to north of Ka'ula). The ages and volumes for rejuvenated volcanism are inconsistent with all but one geodynamic melting model proposed to date. This model advocates a significant contribution of pyroxenite to rejuvenated magmas. Analyses of olivine phenocryst compositions suggest a major (33-69%) pyroxenite component in Ka'ula rejuvenated lavas, which correlates positively with radiogenic Pb isotope ratios for Ka'ula. This correlation is also observed in lavas from nearby South Kaua'i lavas, as was reported for Atlantic oceanic islands. The presence of pyroxenite in the source may have extended the duration and volume of Hawaiian rejuvenated volcanism.

  15. Low intensity hawaiian fountaining as exemplified by the March 2011, Kamoamoa eruption at Kilauea Volcano, Hawai`i (Invited)

    NASA Astrophysics Data System (ADS)

    Orr, T. R.; Houghton, B. F.; Poland, M. P.; Patrick, M. R.; Thelen, W. A.; Sutton, A. J.; Parcheta, C. E.; Thornber, C. R.

    2013-12-01

    The latest 'classic' hawaiian high-fountaining activity at Kilauea Volcano occurred in 1983-1986 with construction of the Pu`u `O`o pyroclastic cone. Since then, eruptions at Kilauea have been dominated by nearly continuous effusive activity. Episodes of sustained low hawaiian fountaining have occurred but are rare and restricted to short-lived fissure eruptions along Kilauea's east rift zone. The most recent of these weakly explosive fissure eruptions--the Kamoamoa eruption--occurred 5-9 March 2011. The Kamoamoa eruption was probably the consequence of a decrease in the carrying capacity of the conduit feeding the episode 58 eruptive vent down-rift from Pu`u `O`o in Kilauea's east rift zone. As output from the vent waned, Kilauea's summit magma storage and east rift zone transport system began to pressurize, as manifested by an increase in seismicity along the upper east rift zone, inflation of the summit and Pu`u `O`o, expansion of the east rift zone, and rising lava levels at both the summit and Pu`u `O`o. A dike began propagating towards the surface from beneath Makaopuhi Crater, 6 km west of Pu`u `O`o, at 1342 Hawaiian Standard Time (UTC - 10 hours) on 5 March. A fissure eruption started about 3.5 hours later near Nāpau Crater, 2 km uprift of Pu`u `O`o. Activity initially jumped between numerous en echelon fissure segments before centering on discrete vents near both ends of the 2.4-km-long fissure system for the final two days of the eruption. About 2.6 mcm of lava was erupted over the course of four days with a peak eruption rate of 11 m3/s. The petrologic characteristics of the fissure-fed lava indicate mixing between hotter mantle-derived magma and cooler rift-stored magma, with a greater proportion of the cooler component than was present in east rift zone lava erupting before March 2011. The fissure eruption was accompanied by the highest SO2 emission rates since 1986. Coincidentally, the summit and Pu`u `O`o deflated as magma drained away, causing

  16. Deep magmatic structures of Hawaiian volcanoes, imaged by three-dimensional gravity models

    USGS Publications Warehouse

    Kauahikaua, J.; Hildenbrand, T.; Webring, M.

    2000-01-01

    A simplified three-dimensional model for the island of Hawai'i, based on 3300 gravity measurements, provides new insights on magma pathways within the basaltic volcanoes. Gravity anomalies define dense cumulates and intrusions beneath the summits and known rift zones of every volcano. Linear gravity anomalies project southeast from Kohala and Mauna Kea summits and south from Huala??lai and Mauna Loa; these presumably express dense cores of previously unrecognized rift zones lacking surface expression. The gravity-modeled dense cores probably define tholeiitic shield-stage structures of the older volcanoes that are now veneered by late alkalic lavas. The three-dimensional gravity method is valuable for characterizing the magmatic systems of basaltic oceanic volcanoes and for defining structures related to landslide and seismic hazards.

  17. 1996 volcanic activity in Alaska and Kamchatka: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; McGimsey, Robert G.

    1997-01-01

    During 1996, the Alaska Volcano Observatory (AVO) responded to eruptive activity, anomalous seismicity, or suspected volcanic activity at 10 of the approximately 40 active volcanic centers in the state of Alaska. As part of a formal role in KVERT (the Kamchatkan Volcano Eruption Response Team), AVO staff also disseminated information about eruptions and other volcanic unrest at six volcanic centers on the Kamchatka Peninsula and in the Kurile Islands, Russia.

  18. Response of the Alaska Volcano Observatory to Public Inquiry Concerning the 2006 Eruption of Augustine Volcano, Cook Inlet, Alaska

    NASA Astrophysics Data System (ADS)

    Adleman, J. N.

    2006-12-01

    The 2006 eruption of Augustine Volcano provided the Alaska Volcano Observatory (AVO) with an opportunity to test its newly renovated Operations Center (Ops) at the Alaska Science Center in Anchorage. Because of the demand for interagency operations and public communication, Ops became the hub of Augustine monitoring activity, twenty-four hours a day, seven days a week, from January 10 through May 19, 2006. During this time, Ops was staffed by 17 USGS AVO staff, and over two dozen Fairbanks-based AVO staff from the Alaska Department of Geological and Geophysical Surveys and the University of Alaska Fairbanks Geophysical Institute and USGS Volcano Hazards Program staff from outside Alaska. This group engaged in communicating with the public, media, and other responding agencies throughout the eruption. Before and during the eruption, reference sheets - ;including daily talking - were created, vetted, and distributed to prepare staff for questions about the volcano. These resources were compiled into a binder stationed at each Ops phone and available through the AVO computer network. In this way, AVO was able to provide a comprehensive, uniform, and timely response to callers and emails at all three of its cooperative organizations statewide. AVO was proactive in scheduling an Information Scientist for interviews on-site with Anchorage television stations and newspapers several times a week. Scientists available, willing, and able to speak clearly about the current activity were crucial to AVO's response. On January 19, 2006, two public meetings were held in Homer, 120 kilometers northeast of Augustine Volcano. AVO, the West Coast Alaska Tsunami Warning Center, and the Kenai Peninsula Borough Office of Emergency Management gave brief presentations explaining their roles in eruption response. Representatives from several local, state, and federal agencies were also available. In addition to communicating with the public by daily media interviews and phone calls to Ops

  19. 2007 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: Summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Neal, Christina A.; Dixon, James P.; Malik, Nataliya; Chibisova, Marina

    2011-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest at or near nine separate volcanic centers in Alaska during 2007. The year was highlighted by the eruption of Pavlof, one of Alaska's most frequently active volcanoes. Glaciated Fourpeaked Mountain, a volcano thought to have been inactive in the Holocene, produced a phreatic eruption in the autumn of 2006 and continued to emit copious amounts of steam and volcanic gas into 2007. Redoubt Volcano showed the first signs of the unrest that would unfold in 2008-09. AVO staff also participated in hazard communication and monitoring of multiple eruptions at seven volcanoes in Russia as part of its collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  20. Tephra Studies by the Alaska Volcano Observatory: Present and Future Research

    NASA Astrophysics Data System (ADS)

    Waythomas, C. F.; Wallace, K. L.

    2004-12-01

    Tephra from Aleutian arc volcanoes constitutes an important volcanic hazard for Alaska, western Canada, and some parts of the conterminous U.S. where even small amounts of airborne ash may have dire consequences for jet aircraft traversing North Pacific and western U.S. air routes. Motivated by the need to address volcanic ash hazards on a regional scale, we have initiated a program of tephra studies within the auspices of the Alaska Volcano Observatory (AVO) of the U.S. Geological Survey. A concentrated focus on tephra problems and a new laboratory facility within AVO will help facilitate studies of Quaternary age tephra at Alaskan volcanoes by providing a regional center for laboratory analyses of volcanic ash and standardized web-based reporting and archiving of tephra data. In its first year of operation, the laboratory has been engaged in research at Veniaminof, Mt. Spurr, and Augustine volcanoes, has sponsored research on Holocene tephra deposits of upper Cook Inlet, and has initiated analytical studies of tephra deposits on Adak and Kanaga Islands in the western Aleutians. The objective of these studies is to develop multiparameter techniques for characterization and correlation of tephra deposits, establish radiocarbon-controlled tephrostratigraphic frameworks, and to evaluate the magnitude and frequency of tephra-producing eruptions. In the upper Cook Inlet region of Alaska, we and our colleagues have begun developing a comprehensive record of ash fall by systematically selecting and coring shallow lakes and evaluating the tephra preserved in the lacustrine sediment. Sediment cores from these lakes contain numerous tephra deposits of Holocene age in datable context that can be correlated with proximal tephra deposits on the flanks of their source volcanoes. By combining tephra data from lacustrine deposits and natural exposures we hope to develop a robust geologic catalog of tephra deposits that will enable long-distance correlation of tephras, provide

  1. Living on Active Volcanoes - The Island of Hawai'i

    USGS Publications Warehouse

    Heliker, Christina; Stauffer, Peter H.; Hendley, James W., II

    1997-01-01

    People on the Island of Hawai'i face many hazards that come with living on or near active volcanoes. These include lava flows, explosive eruptions, volcanic smog, damaging earthquakes, and tsunamis (giant seawaves). As the population of the island grows, the task of reducing the risk from volcano hazards becomes increasingly difficult. To help protect lives and property, U.S. Geological Survey (USGS) scientists at the Hawaiian Volcano Observatory closely monitor and study Hawai'i's volcanoes and issue timely warnings of hazardous activity.

  2. Horizontal and vertical zoning of heterogeneities in the Hawaiian mantle plume from the geochemistry of consecutive postshield volcano pairs: Kohala-Mahukona and Mauna Kea-Hualalai

    NASA Astrophysics Data System (ADS)

    Hanano, Diane; Weis, Dominique; Scoates, James S.; Aciego, Sarah; Depaolo, Donald J.

    2010-01-01

    Sr-Nd-Pb-Hf isotopic compositions of postshield lavas from two pairs of Hawaiian volcanoes, Mauna Kea and Kohala (Kea trend) and Hualalai and Mahukona (Loa trend), allow for identification of small-scale (tens of kilometers) heterogeneities in the Hawaiian mantle plume and provide constraints on their distribution. The postshield lavas range from transitional/alkalic basalt to trachyte and are enriched in incompatible trace elements (e.g., LaN/YbN = 6.0-16.2). These lavas are characterized by a limited range of Sr-Nd-Hf isotopic compositions (87Sr/86Sr = 0.70343-0.70365, 143Nd/144Nd = 0.51292-0.51301, and 176Hf/177Hf = 0.28311-0.28314) and have distinct Pb isotopic compositions (206Pb/204Pb = 17.89-18.44, 207Pb/204Pb = 15.44-15.49, and 208Pb/204Pb = 37.68-38.01) that correspond to their respective Kea or Loa side of the Pb-Pb isotopic boundary. Mauna Kea lavas show a systematic shift to less radiogenic Pb isotopic compositions from the shield to postshield stage and they trend to low 87Sr/86Sr toward, but not as extreme as, compositions characteristic of rejuvenated stage lavas. Hualalai postshield lavas lie distinctly above the Hf-Nd Hawaiian array and have much lower Pb isotopic ratios than shield lavas, including some of the least radiogenic values (e.g., 206Pb/204Pb = 17.89-18.01) of recent Hawaiian volcanoes. In contrast, comparison of Kohala with the adjacent Mahukona volcano shows that these older postshield lavas become more radiogenic in Pb during the late stages of volcanism. The isotope systematics of the postshield lavas cannot be explained by mixing between Hawaiian plume end-members (e.g., Kea, Koolau, and Loihi) or by assimilation of Pacific lithosphere and are consistent with the presence of ancient recycled lower oceanic crust (±sediments) in their source. More than one depleted component is sampled by the postshield lavas and these components are long-lived features of the Hawaiian plume that are present in both the Kea and Loa source regions

  3. Hydrothermal Zoning of Rift Zones Inferred From Magnetic Susceptibility Variations: Implications for the Collapse of Hawaiian Shield Volcanoes, and for Ore-genesis Processes.

    NASA Astrophysics Data System (ADS)

    Cañòn-Tapia, E.; Herrero-Bervera, E.

    2009-05-01

    Hawaiian shield volcanoes have experienced large scale landslides throughout their history. These collapses are due in part to the failure of the surrounding sea floor to support the weight of the spreading volcano as it grows. Nevertheless, these collapses also might be promoted by the weakening of the volcanic edifice due to the injection of dykes within rift zones, and by the alteration of the rock due to hydrothermal activity along these zones. In turn, hydrothermal alteration modifies the rock bulk magnetic susceptibility, and such relationship provides a good opportunity to estimate the zoning of alteration by completing measurements of magnetic susceptibility. In this work we show preliminary evidence suggesting that a hydrothermal zoning can be inferred to have existed in the Hawaiian Shield volcanoes, probably reflecting the variation of the optimum temperature for alteration as a function of distance from the magma center. The mechanical destabilization of the volcanic edifice due to dyke injection and that related to alteration of the rocks seems to have been inversely related, therefore resulting in an average destabilization of approximately equal magnitude along the whole extension of the rift zone. Such uniform destabilization seemingly favors the collapse of large sectors of the volcanic shield once a critical mass is achieved. In the context of ore-genesis, zoning is known to be related to paleogeography and temperature variations among other factors. Actually, different patterns of orebody zoning are known to take place depending on the conditions prevalent in each region, and it is of interest to determine the details of zoning of the deposit to understand its genesis. Despite the fact that Hawaiian volcanoes are not the most economically important places to study ore-genesis processes, the better understanding of the processes of hydrothermal alteration gained in these settings should contribute to gain a better knowledge of the distribution of

  4. Natural hazards and risk reduction in Hawai'i: Chapter 10 in Characteristics of Hawaiian volcanoes

    USGS Publications Warehouse

    Kauahikaua, James P.; Tilling, Robert I.

    2014-01-01

    Although HVO has been an important global player in advancing natural hazards studies during the past 100 years, it faces major challenges in the future, among which the following command special attention: (1) the preparation of an updated volcano hazards assessment and map for the Island of Hawai‘i, taking into account not only high-probability lava flow hazards, but also hazards posed by low-probability, high-risk events (for instance, pyroclastic flows, regional ashfalls, volcano flank collapse and associated megatsunamis), and (2) the continuation of timely and effective communications of hazards information to all stakeholders and the general public, using all available means (conventional print media, enhanced Web presence, public-education/outreach programs, and social-media approaches).

  5. The EarthScope Plate Boundary Observatory Akutan Alaskan Volcano Tiltmeter Installation

    NASA Astrophysics Data System (ADS)

    Pauk, B. A.; Gallaher, W.; Dittmann, T.; Smith, S.

    2007-12-01

    During August of 2007, the Plate Boundary Observatory (PBO) successfully installed four Applied Geomechanics Lily Self Leveling Borehole Tiltmeters on Akutan Volcano, in the central Aleutian islands of Alaska. All four stations were collocated with existing PBO Global Positioning Systems (GPS) stations installed on the volcano in 2005. The tiltmeters will aid researchers in detecting and measuring flank deformation associated with future magmatic intrusions of the volcano. All four of the tiltmeters were installed by PBO field crews with helicopter support provided by JL Aviation and logistical support from the Trident Seafood Corporation, the City of Akutan, and the Akutan Corporation. Lack of roads and drivable trails on the remote volcanic island required that all drilling equipment be transported to each site from the village of Akutan by slinging gear beneath the helicopter and with internal loads. Each tiltmeter hole was drilled to a depth of approximately 30 feet with a portable hydraulic/pneumatic drill rig. The hole was then cased with splined 2.75 inch PVC. The PVC casing was cemented in place with grout and the tiltmeters were installed and packed with fine grain sand to stabilize the tiltmeters inside the casing. The existing PBO NetRS GPS receivers were configured to collect the tiltmeter data through a spare receiver serial port at one sample per minute and 1 hour files. Data from the GPS receivers and tiltmeters is telemetered directly or through a repeater radio to a base station located in the village of Akutan that transmits the data using satellite based communications to connect to the internet and to the UNAVCO Facility data archive where it is made freely available to the public.

  6. 2006 Volcanic Activity in Alaska, Kamchatka, and the Kurile Islands: Summary of Events and Response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; McGimsey, Robert G.; Dixon, James P.; Manevich, Alexander; Rybin, Alexander

    2008-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest at or near nine separate volcanic centers in Alaska during 2006. A significant explosive eruption at Augustine Volcano in Cook Inlet marked the first eruption within several hundred kilometers of principal population centers in Alaska since 1992. Glaciated Fourpeaked Mountain, a volcano thought to have been inactive in the Holocene, produced a phreatic eruption in the fall of 2006 and continued to emit copious amounts of volcanic gas into 2007. AVO staff also participated in hazard communication and monitoring of multiple eruptions at seven volcanoes in Russia as part of its collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  7. Hawaiian double volcanic chain triggered by an episodic involvement of recycled material: Constraints from temporal Sr-Nd-Hf-Pb isotopic trend of the Loa-type volcanoes

    NASA Astrophysics Data System (ADS)

    Tanaka, Ryoji; Makishima, Akio; Nakamura, Eizo

    2008-01-01

    The two parallel loci of recent Hawaiian volcanoes, Kea and Loa, have been regarded as the best targets to interpret the chemical structure of an upwelling mantle plume derived from the lower mantle. Here we show that the Sr-Nd-Hf-Pb isotopic data of the shield-building lavas along the Loa locus form a systematic trend from the main shield stage of Koolau (> 2.9 Ma) to the active Loihi volcanoes. During the growth of the Koolau volcano, the dominant material in the melting region successively changed from the proposed KEA, DMK (depleted Makapuu), to EMK (enriched Makapuu) components. The proportion of EMK, dominated by a recycled mafic component, is typified by some Koolau Makapuu-stage and some Lanai lavas. Subsequently, the EMK component decreased and LOIHI component increased toward the Loihi lavas. The temporal coincidence between the episodically elevated magma production rate and the abrupt appearance of the typical Loa-type lavas that is restricted to the last 3 Myr should be linked to magma genesis. We suggest that the abrupt appearance of Loa-type magmatism should be attributed to the transient incorporation of the relatively dense recycled material and surrounding less degassed lower mantle material that accumulated near the core-mantle boundary into the upwelling plume. This episodic involvement could have been trigged by episodic thermal pulses and buoyancy increases in the plume. The continuous appearance of Kea-type lavas during the long history of Hawaiian-chain magmatism and the larger magma volume of Kea-type lavas relative to that of the Loa-type lavas in the last 3 Myr indicate that the Kea locus is closer to the thermal centre of the Hawaiian plume relative to that of the Loa locus.

  8. Magma paths at Piton de la Fournaise volcano: a synthesis of Hawaiian and Etnean rift zones

    NASA Astrophysics Data System (ADS)

    Michon, Laurent; Ferrazzini, Valérie; Di Muro, Andrea; Chaput, Marie; Famin, Vincent

    2014-05-01

    On ocean basaltic volcanoes, magma transfer to the surface occurs along sub-vertical ascent from the mantle lithosphere through the oceanic crust and the volcanic edifice, eventually followed by lateral propagation along rift zones. We use a 17-years-long database of volcano-tectonic seismic events and a detailed mapping of the pyroclastic cones to determine the geometry and the dynamics of the magma paths intersecting the edifice of Piton de la Fournaise volcano. We show that the overall plumbing system, from about 30 km depth to the surface, is composed of two structural levels that feed distinct types of rift zones. The lower plumbing system has a southeastward (N120) orientation and permits magma transfer from the lithospheric mantle to the base of the La Réunion edifice (5 km bsl). The related rift zone is wide, linear, spotted by small to large pyroclastic cones and related lava flows and involving magma resulting from high-pressure fractionation of ol ± cpx and presents an eruption periodicity of around 200 years over the last 30 kyrs. Seismic data suggest that the long-lasting activity of this rift zone result from a regional NNE-SSW extension reactivating inherited lithospheric faults by the effect of underplating and/or thermal erosion of the mantle lithosphere. The upper plumbing system originates at the base of the edifice in the vertical continuity of the lower plumbing system. It feeds frequent (1 eruption every 9 months on average), short-lived summit and distal (flank) eruptions along summit and outer rift zones, respectively. Summit rift zones are short and present an orthogonal pattern restricted to the central active cone of Piton de la Fournaise whereas outer rift zones extend from inside the Enclos Fouqué caldera to the NE and SE volcano flanks. We show that the outer rift zones are genetically linked to the east flank seaward displacements, whose most recent events where detected in 2004 and 2007. The lateral movements are themselves

  9. Implementation of Simple and Functional Web Applications at the Alaska Volcano Observatory Remote Sensing Group

    NASA Astrophysics Data System (ADS)

    Skoog, R. A.

    2007-12-01

    Web pages are ubiquitous and accessible, but when compared to stand-alone applications they are limited in capability. The Alaska Volcano Observatory (AVO) Remote Sensing Group has implemented web pages and supporting server software that provide relatively advanced features to any user able to meet basic requirements. Anyone in the world with access to a modern web browser (such as Mozilla Firefox 1.5 or Internet Explorer 6) and reasonable internet connection can fully use the tools, with no software installation or configuration. This allows faculty, staff and students at AVO to perform many aspects of volcano monitoring from home or the road as easily as from the office. Additionally, AVO collaborators such as the National Weather Service and the Anchorage Volcanic Ash Advisory Center are able to use these web tools to quickly assess volcanic events. Capabilities of this web software include (1) ability to obtain accurate measured remote sensing data values on an semi- quantitative compressed image of a large area, (2) to view any data from a wide time range of data swaths, (3) to view many different satellite remote sensing spectral bands and combinations, to adjust color range thresholds, (4) and to export to KML files which are viewable virtual globes such as Google Earth. The technologies behind this implementation are primarily Javascript, PHP, and MySQL which are free to use and well documented, in addition to Terascan, a commercial software package used to extract data from level-0 data files. These technologies will be presented in conjunction with the techniques used to combine them into the final product used by AVO and its collaborators for operational volcanic monitoring.

  10. Volcanoes

    ERIC Educational Resources Information Center

    Kunar, L. N. S.

    1975-01-01

    Describes the forces responsible for the eruptions of volcanoes and gives the physical and chemical parameters governing the type of eruption. Explains the structure of the earth in relation to volcanoes and explains the location of volcanic regions. (GS)

  11. ʻŌhiʻa Lehua rainforest: born among Hawaiian volcanoes, evolved in isolation: the story of a dynamic ecosystem with relevance to forests worldwide

    USGS Publications Warehouse

    Mueller-Dombois, Dieter; Jacobi, James D.; Boehmer, Hans Juergen; Price, Jonathan P.

    2013-01-01

    In the early 1970s, a multidisciplinary team of forest biologists began a study of Hawaiian ecosystems under the International Biological Program (IBP). Research focus was on the intact native ecosystems in and around Hawai'i Volcanoes National Park, in particular the ʻŌhiʻa Lehua rainforest. Patches of dead ʻŌhiʻa stands had been reported from the windward slopes of Mauna Loa and Mauna Kea. Subsequent air photo analyses by a team of US and Hawai'i State foresters discovered rapidly spreading ʻŌhiʻa dieback, also called ʻŌhiʻa forest decline. A killer disease was suspected to destroy the Hawaiian rain forest in the next 15-25 years. Ecological research continued with a focus on the dynamics of the Hawaiian rainforest. This book explains what really happened and why the ʻŌhiʻa rainforest survived in tact as everyone can witness today.

  12. 1995 volcanic activity in Alaska and Kamchatka: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Neal, Christina A.

    1996-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptive activity or suspected volcanic activity (SVA) at 6 volcanic centers in 1995: Mount Martin (Katmai Group), Mount Veniaminof, Shishaldin, Makushin, Kliuchef/Korovin, and Kanaga. In addition to responding to eruptive activity at Alaska volcanoes, AVO also disseminated information for the Kamchatkan Volcanic Eruption Response Team (KVERT) on the 1995 eruptions of 2 Russian volcanoes: Bezymianny and Karymsky. This report summarizes volcanic activity in Alaska during 1995 and the AVO response, as well as information on the 2 Kamchatkan eruptions. Only those reports or inquiries that resulted in a "significant" investment of staff time and energy (here defined as several hours or more for reaction, tracking, and follow-up) are included. AVO typically receives dozens of phone calls throughout the year reporting steaming, unusual cloud sightings, or eruption rumors. Most of these are resolved quickly and are not tabulated here as part of the 1995 response record.

  13. Volcanoes

    SciTech Connect

    Decker, R.W.; Decker, B.

    1989-01-01

    This book describes volcanoes although the authors say they are more to be experienced than described. This book poses more question than answers. The public has developed interest and awareness in volcanism since the first edition eight years ago, maybe because since the time 120 volcanoes have erupted. Of those, the more lethal eruptions were from volcanoes not included in the first edition's World's 101 Most Notorious Volcanoes.

  14. Volcanoes.

    ERIC Educational Resources Information Center

    Tilling, Robert I.

    One of a series of general interest publications on science topics, this booklet provides a non-technical introduction to the subject of volcanoes. Separate sections examine the nature and workings of volcanoes, types of volcanoes, volcanic geological structures such as plugs and maars, types of eruptions, volcanic-related activity such as geysers…

  15. Comparative velocity structure of active Hawaiian volcanoes from 3-D onshore-offshore seismic tomography

    USGS Publications Warehouse

    Park, J.; Morgan, J.K.; Zelt, C.A.; Okubo, P.G.; Peters, L.; Benesh, N.

    2007-01-01

    We present a 3-D P-wave velocity model of the combined subaerial and submarine portions of the southeastern part of the Island of Hawaii, based on first-arrival seismic tomography of marine airgun shots recorded by the onland seismic network. Our model shows that high-velocity materials (6.5-7.0??km/s) lie beneath Kilauea's summit, Koae fault zone, and the upper Southwest Rift Zone (SWRZ) and upper and middle East Rift Zone (ERZ), indicative of magma cumulates within the volcanic edifice. A separate high-velocity body of 6.5-6.9??km/s within Kilauea's lower ERZ and upper Puna Ridge suggests a distinct body of magma cumulates, possibly connected to the summit magma cumulates at depth. The two cumulate bodies within Kilauea's ERZ may have undergone separate ductile flow seaward, influencing the submarine morphology of Kilauea's south flank. Low velocities (5.0-6.3??km/s) seaward of Kilauea's Hilina fault zone, and along Mauna Loa's seaward facing Kao'iki fault zone, are attributed to thick piles of volcaniclastic sediments deposited on the submarine flanks. Loihi seamount shows high-velocity anomalies beneath the summit and along the rift zones, similar to the interpreted magma cumulates below Mauna Loa and Kilauea volcanoes, and a low-velocity anomaly beneath the oceanic crust, probably indicative of melt within the upper mantle. Around Kilauea's submarine flank, a high-velocity anomaly beneath the outer bench suggests the presence of an ancient seamount that may obstruct outward spreading of the flank. Mauna Loa's southeast flank is also marked by a large, anomalously high-velocity feature (7.0-7.4??km/s), interpreted to define an inactive, buried volcanic rift zone, which might provide a new explanation for the westward migration of Mauna Loa's current SWRZ and the growth of Kilauea's SWRZ. ?? 2007 Elsevier B.V. All rights reserved.

  16. 1997 volcanic activity in Alaska and Kamchatka: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Wallace, Kristi L.

    1999-01-01

    The Alaska Volcano Observatory (AVO) monitors over 40 historically active volcanoes along the Aleutian Arc. Twenty are seismically monitored and for the rest, the AVO monitoring program relies mainly on pilot reports, observations of local residents and ship crews, and daily analysis of satellite images. In 1997, AVO responded to eruptive activity or suspect volcanic activity at 11 volcanic centers: Wrangell, Sanford, Shrub mud volcano, Iliamna, the Katmai group (Martin, Mageik, Snowy, and Kukak volcanoes), Chiginagak, Pavlof, Shishaldin, Okmok, Cleveland, and Amukta. Of these, AVO has real-time, continuously recording seismic networks at Iliamna, the Katmai group, and Pavlof. The phrase “suspect volcanic activity” (SVA), used to characterize several responses, is an eruption report or report of unusual activity that is subsequently determined to be normal or enhanced fumarolic activity, weather-related phenomena, or a non-volcanic event. In addition to responding to eruptive activity at Alaska volcanoes, AVO also disseminated information for the Kamchatkan Volcanic Eruption Response Team (KVERT) about the 1997 activity of 5 Russian volcanoes--Sheveluch, Klyuchevskoy, Bezymianny, Karymsky, and Alaid (SVA). This report summarizes volcanic activity and SVA in Alaska during 1997 and the AVO response, as well as information on the reported activity at the Russian volcanoes. Only those reports or inquiries that resulted in a “significant” investment of staff time and energy (here defined as several hours or more for reaction, tracking, and follow-up) are included. AVO typically receives dozens of reports throughout the year of steaming, unusual cloud sightings, or eruption rumors. Most of these are resolved quickly and are not tabulated here as part of the 1997 response record.

  17. Observing active deformation of volcanoes in North America: Geodetic data from the Plate Boundary Observatory and associated networks

    NASA Astrophysics Data System (ADS)

    Puskas, C. M.; Phillips, D. A.; Mattioli, G. S.; Meertens, C. M.; Hodgkinson, K. M.; Crosby, C. J.; Enders, M.; Feaux, K.; Mencin, D.; Baker, S.; Lisowski, M.; Smith, R. B.

    2013-12-01

    The EarthScope Plate Boundary Observatory (PBO), operated by UNAVCO, records deformation of the geologically diverse North America western plate boundary, with subnetworks of instruments concentrated at selected active and potentially active volcanoes. These sensors record deformation and earthquakes and allow monitoring agencies and researchers to analyze changes in ground motion and seismicity. The intraplate volcanoes at Yellowstone and Long Valley are characterized by uplift/subsidence cycles, high seismicity, and hydrothermal activity but there have been no historic eruptions at either volcano. PBO maintains dense GPS networks of 20-25 stations at each of these volcanoes, with an additional 5 boreholes at Yellowstone containing tensor strainmeters, short-period seismometers, and borehole tiltmeters. Subduction zone volcanoes in the Aleutian Arc have had multiple historic eruptions, and PBO maintains equipment at Augustine (8 GPS), Akutan (8 GPS, 4 tiltmeters), and Unimak Island (14 GPS, 8 tiltmeters). The Unimak stations are at the active Westdahl and Shishaldin edifices and the nearby, inactive Isanotski volcano. In the Cascade Arc, PBO maintains networks at Mount St. Helens (15 GPS, 4 borehole strainmeters and seismometers, 8 borehole tiltmeters), Shasta (7 GPS, 1 borehole strainmeter and seismometer), and Lassen Peak (8 GPS). Data from many of these stations in the Pacific Northwest and California are also provided as realtime streams of raw and processed data. Real-time GPS data, along with high-rate GPS data, will be an important new resource for detecting and studying future rapid volcanic deformation events and earthquakes. UNAVCO works closely with the USGS Volcano Hazards Program, archiving data from USGS GPS stations in Alaska, Cascadia, and Long Valley. The PBO and USGS networks combined provide more comprehensive coverage than PBO alone, particularly of the Cascade Arc, where the USGS maintains a multiple instruments near each volcano. Ground

  18. 2005 Volcanic Activity in Alaska, Kamchatka, and the Kurile Islands: Summary of Events and Response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, R.G.; Neal, C.A.; Dixon, J.P.; Ushakov, Sergey

    2008-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptive activity or suspected volcanic activity at or near 16 volcanoes in Alaska during 2005, including the high profile precursory activity associated with the 2005?06 eruption of Augustine Volcano. AVO continues to participate in distributing information about eruptive activity on the Kamchatka Peninsula, Russia, and in the Kurile Islands of the Russian Far East, in conjunction with the Kamchatkan Volcanic Eruption Response Team (KVERT) and the Sakhalin Volcanic Eruption Response Team (SVERT), respectively. In 2005, AVO helped broadcast alerts about activity at 8 Russian volcanoes. The most serious hazard posed from volcanic eruptions in Alaska, Kamchatka, or the Kurile Islands is the placement of ash into the atmosphere at altitudes traversed by jet aircraft along the North Pacific and Russian Trans East air routes. AVO, KVERT, and SVERT work collaboratively with the National Weather Service, Federal Aviation Administration, and the Volcanic Ash Advisory Centers to provide timely warnings of volcanic eruptions and the production and movement of ash clouds.

  19. Hawaiian cultural influences on support for lava flow hazard mitigation measures during the January 1960 eruption of Kīlauea volcano, Kapoho, Hawai‘i

    NASA Astrophysics Data System (ADS)

    Gregg, C. E.; Houghton, B. F.; Paton, D.; Swanson, D. A.; Lachman, R.; Bonk, W. J.

    2008-05-01

    In 1960, Kīlauea volcano in Hawaii erupted, destroying most of the village of Kapoho and forcing evacuation of its approximately 300 residents. A large and unprecedented social science survey was undertaken during the eruption to develop an understanding of human behavior, beliefs, and coping strategies among the adult evacuees ( n = 160). Identical studies were also performed in three control towns located at varying distances from the eruption site ( n = 478). During these studies data were collected that characterized ethnic grouping and attitudes toward Hawaiian cultural issues such as belief in Pele and two lava flow mitigation measures—use of barriers and bombs to influence the flow of lava, but the data were never published. Using these forgotten data, we examined the relationship between Hawaiian cultural issues and attitudes toward the use of barriers and bombs as mitigation strategies to protect Kapoho. On average, 72% of respondents favored the construction of earthen barriers to hold back or divert lava and protect Kapoho, but far fewer agreed with the military's use of bombs (14%) to protect Kapoho. In contrast, about one-third of respondents conditionally agreed with the use of bombs. It is suggested that local participation in the bombing strategy may explain the increased conditional acceptance of bombs as a mitigation tool, although this can not be conclusively demonstrated. Belief in Pele and being of Hawaiian ethnicity did not reduce support for the use of barriers, but did reduce support for bombs in both bombing scenarios. The disparity in levels of acceptance of barriers versus bombing and of one bombing strategy versus another suggests that historically public attitudes toward lava flow hazard mitigation strategies were complex. A modern comparative study is needed before the next damaging eruption to inform debates and decisions about whether or not to interfere with the flow of lava. Recent changes in the current eruption of K

  20. One hundred years of volcano monitoring in Hawaii

    USGS Publications Warehouse

    Kauahikaua, J.; Poland, M.

    2012-01-01

    In 2012 the Hawaiian Volcano Observatory (HVO), the oldest of five volcano observatories in the United States, is commemorating the 100th anniversary of its founding. HVO's location, on the rim of Klauea volcano (Figure 1)one of the most active volcanoes on Earthhas provided an unprecedented opportunity over the past century to study processes associated with active volcanism and develop methods for hazards assessment and mitigation. The scientifically and societally important results that have come from 100 years of HVO's existence are the realization of one man's vision of the best way to protect humanity from natural disasters. That vision was a response to an unusually destructive decade that began the twentieth century, a decade that saw almost 200,000 people killed by the effects of earthquakes and volcanic eruptions.

  1. One hundred years of volcano monitoring in Hawaii

    USGS Publications Warehouse

    Kauahikaua, Jim; Poland, Mike

    2012-01-01

    In 2012 the Hawaiian Volcano Observatory (HVO), the oldest of five volcano observatories in the United States, is commemorating the 100th anniversary of its founding. HVO's location, on the rim of Kilauea volcano (Figure 1)—one of the most active volcanoes on Earth—has provided an unprecedented opportunity over the past century to study processes associated with active volcanism and develop methods for hazards assessment and mitigation. The scientifically and societally important results that have come from 100 years of HVO's existence are the realization of one man's vision of the best way to protect humanity from natural disasters. That vision was a response to an unusually destructive decade that began the twentieth century, a decade that saw almost 200,000 people killed by the effects of earthquakes and volcanic eruptions.

  2. Comparison of numerical approaches for modeling gravitationally-induced horizontal deviatoric stresses within a Hawaiian basaltic shield volcano

    NASA Astrophysics Data System (ADS)

    Klein, E. C.; Le Corvec, N.; Galgana, G.

    2014-12-01

    Basaltic shield volcanoes are subjected to important gravitational loads that lead to their spreading. Such deformation influences the stress state within the volcano, thus the formation of faults and the location of earthquakes and the propagation of magmas and the potential eruption location. Using distinct numerical approaches constrained by geophysical data from the Hawai`i Island Shield Volcano (HISV), we studied the extent to which horizontal deviatoric stresses (HDS) induced from gravitational loading drives the process of volcanic spreading. Two distinct numerical approaches based on similar models were used: 1- the thin-sheet method, and 2- finite element models using COMSOL Multiphysics. We quantified depth integrals of vertical stress (i.e., the gravitational potential energy per unit area or GPE) and then we derived the HDS that balance the horizontal gradients in GPE. We performed the integration over series of single layers that encompasses the surface of variable topography down to a uniform depth of 10 km b.s.l. consistent with the base of the HISV. To compare the results of our numerical approaches we built a fine-scale, Island-wide, set of kinematically constrained deformation indicators (KCDI) using the slip-rate and fault style information from a comprehensive fault database for the HISV. We measure the success of each numerical approach by how well model HDS match the horizontal styles of the strain rates associated with KCDI. Thus far we find that the HDS obtained using the thin-sheet method match well with the KCDI. This may indicate that to first order that patterns of observed surface deformation on the HISV are governed by gradients in GPE. This provides a balance to the gravitationally-induced stresses associated with the volcano load. These HDS do not account for other competing sources of stress (e.g., flexure, magmatic, or hoop) that taken all together may combine to better explain the volcano spreading process for basaltic shield type

  3. Use of new and old technologies and methods by the Alaska Volcano Observatory during the 2006 eruption of Augustine Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Murray, T. L.; Nye, C. J.; Eichelberger, J. C.

    2006-12-01

    The recent eruption of Augustine Volcano was the first significant volcanic event in Cook Inlet, Alaska since 1992. In contrast to eruptions at remote Alaskan volcanoes that mainly affect aviation, ash from previous eruptions of Augustine has affected communities surrounding Cook Inlet, home to over half of Alaska's population. The 2006 eruption validated much of AVO's advance preparation, underscored the need to quickly react when a problem or opportunity developed, and once again demonstrated that while technology provides us with wonderful tools, professional relationships, especially during times of crisis, are still important. Long-term multi-parametric instrumental monitoring and background geological and geophysical studies represent the most fundamental aspect of preparing for any eruption. Once significant unrest was detected, AVO augmented the existing real-time network with additional instrumentation including web cameras. GPS and broadband seismometers that recorded data on site were also quickly installed as their data would be crucial for post-eruption research. Prior to 2006, most of most of AVO's eruption response plans and protocols had focused on the threat to aviation rather than ground-based hazards. However, the relationships and protocols developed for the aviation threat were sufficient to be adapted to the ash fall hazard, though it is apparent that more work, both scientific and with response procedures, is needed. Similarly, protocols were quickly developed for warning of a flank- collapse induced tsunami. Information flow within the observatory was greatly facilitated by an internal web site that had been developed and refined specifically for eruption response. Because AVO is a partnership of 3 agencies (U.S. Geological Survey, University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophysical Surveys) with offices in both Fairbanks and Anchorage, web and internet-facing data servers provided

  4. Infrared Surveys of Hawaiian Volcanoes: Aerial surveys with infrared imaging radiometer depict volcanic thermal patterns and structural features.

    PubMed

    Fisher, W A; Moxham, R M; Polcyn, F; Landis, G H

    1964-11-01

    Aerial infrared-sensor surveys of Kilauea volcano have depicted the areal extent and the relative intensity of abnormal thermal features in the caldera area of the volcano and along its associated rift zones. Many of these anomalies show correlation with visible steaming and reflect convective transfer of heat to the surface from subterranean sources. Structural details of the volcano, some not evident from surface observation, are also delineated by their thermal abnormalities. Several changes were observed in the patterns of infrared emission during the period of study; two such changes show correlation in location with subsequent eruptions, but the cause-and-effect relationship is uncertain. Thermal anomalies were also observed on the southwest flank of Mauna Loa; images of other volcanoes on the island of Hawaii, and of Haleakala on the island of Maui, revealed no thermal abnormalities. Approximately 25 large springs issuing into the ocean around the periphery of Hawaii have been detected. Infrared emission varies widely with surface texture and composition, suggesting that similar observations may have value for estimating surface conditions on the moon or planets. PMID:17729994

  5. Public outreach and communications of the Alaska Volcano Observatory during the 2005-2006 eruption of Augustine Volcano: Chapter 27 in The 2006 eruption of Augustine Volcano, Alaska

    USGS Publications Warehouse

    Adleman, Jennifer N.; Cameron, Cheryl E.; Snedigar, Seth F.; Neal, Christina A.; Wallace, Kristi L.

    2010-01-01

    The AVO Web site, with its accompanying database, is the backbone of AVO's external and internal communications. This was the first Cook Inlet volcanic eruption with a public expectation of real-time access to data, updates, and hazards information over the Internet. In March 2005, AVO improved the Web site from individual static pages to a dynamic, database-driven site. This new system provided quick and straightforward access to the latest information for (1) staff within the observatory, (2) emergency managers from State and local governments and organizations, (3) the media, and (4) the public. From mid-December 2005 through April 2006, the AVO Web site served more than 45 million Web pages and about 5.5 terabytes of data.

  6. Rhenium and chalcophile elements in basaltic glasses from Ko'olau and Moloka'i volcanoes: Magmatic outgassing and composition of the Hawaiian plume

    NASA Astrophysics Data System (ADS)

    Norman, Marc D.; Garcia, Michael O.; Bennett, Victoria C.

    2004-09-01

    The behavior of chalcophile metals in volcanic environments is important for a variety of economic and environmental applications, and for understanding large-scale processes such as crustal recycling into the mantle. In order to better define the behavior of chalcophile metals in ocean island volcanoes, we measured the concentrations of Re, Cd, Bi, Cu, Pb, Zn, Pt, S, and a suite of major elements and lithophile trace elements in moderately evolved (6-7% MgO) tholeiitic glasses from Ko'olau and Moloka'i volcanoes. Correlated variations in the Re, Cd, and S contents of these glasses are consistent with loss of these elements as volatile species during magmatic outgassing. Bismuth also shows a good correlation with S in the Ko'olau glasses, but undegassed glasses from Moloka'i have unexpectedly low Bi contents. Rhenium appears to have been more volatile than either Cd or Bi in these magmas. Undegassed glasses with 880-1400 ppm S have 1.2-1.5 ppb Re and 130-145 ppb Cd. In contrast, outgassed melts with low S (<200 ppm) are depleted in these elements by factors of 2-5. Key ratios such as Re/Yb and Cu/Re are fractionated significantly from mantle values. Copper, Pb, and Pt contents of these glasses show no correlation with S, ruling out segregation of an immiscible magmatic sulfide phase as the cause of these variations. Undegassed Hawaiian tholeiites have Re/Yb ratios significantly higher than those of MORB, and extend to values greater than that of the primitive mantle. Loss of Re during outgassing of ocean island volcanoes, may help resolve the apparent paradox of low Re/Os ratios in ocean island basalts with radiogenic Os isotopic compositions. Plume source regions with Re/Yb ratios greater than that of the primitive mantle may provide at least a partial solution to the "missing Re" problem in which one or more reservoirs with high Re/Yb are required to balance the low Re/Yb of MORB. Lithophile trace element compositions of most Ko'olau and Moloka'i tholeiites are

  7. Towards a Network Matched Filter Observatory for Alaska/Aleutian Volcano Monitoring and Research.

    NASA Astrophysics Data System (ADS)

    Holtkamp, S. G.

    2015-12-01

    Network Matched Filtering (NMF, commonly referred to as template matching), is a procedure which utilizes waveforms recorded from a cataloged seismic event (the "template event") to find additional seismic events by cross-correlating the template event with continuous seismic data over the time period of interest. NMF has been successfully used to populate seismic catalogs for a wide variety of seismic signals which are difficult to identify, such as tectonic low frequency earthquakes, early or triggered aftershocks, and small magnitude induced seismic sequences. NMF provides robust event detection of signals with signal to noise ratios near one, and the output of the filter is largely independent of unrelated seismic noise, making it an ideal technique for identifying events during noisy time periods, such as immediately following a large earthquake or during a volcanic eruption. We also show how NMF can be used over longer time periods, with dynamic seismic network status, to more robustly compare time periods with disparate network geometries. Here, we present efforts to develop processing infrastructure for semi-automated execution of the NMF technique applied to volcanoes in the state of Alaska. We present a series of case studies involving both monitored and unmonitored volcanoes. Given the large scope of this endeavor, we focus our preliminary efforts on cataloging deep long period (DLP) seismicity, as DLP's have high scientific interest (as well as providing a reasonable benchmark), have been cataloged at many of Alaska's volcanoes, and yet are rare enough to speed up code development and testing. At Redoubt, for example, we use NMF to develop a catalog of ~300 DLP's from 2008 through July 2015. Most cataloged DLP's and new matches from NMF occurred close in time to the 2009 eruption, but we find that DLP activity has continued through July 2015. At Kasatochi, an unmonitored volcano which erupted in 2008, we show that NMF is more effective at cataloging

  8. Mauna Loa--history, hazards and risk of living with the world's largest volcano

    USGS Publications Warehouse

    Trusdell, Frank A.

    2012-01-01

    Mauna Loa on the Island Hawaiʻi is the world’s largest volcano. People residing on its flanks face many hazards that come with living on or near an active volcano, including lava flows, explosive eruptions, volcanic smog, damaging earthquakes, and local tsunami (giant seawaves). The County of Hawaiʻi (Island of Hawaiʻi) is the fastest growing County in the State of Hawaii. Its expanding population and increasing development mean that risk from volcano hazards will continue to grow. U.S. Geological Survey (USGS) scientists at the Hawaiian Volcano Observatory (HVO) closely monitor and study Mauna Loa Volcano to enable timely warning of hazardous activity and help protect lives and property.

  9. Catalog of Hawaiian earthquakes, 1823-1959

    USGS Publications Warehouse

    Klein, Fred W.; Wright, Thomas L.

    2000-01-01

    This catalog of more than 17,000 Hawaiian earthquakes (of magnitude greater than or equal to 5), principally located on the Island of Hawaii, from 1823 through the third quarter of 1959 is designed to expand our ability to evaluate seismic hazard in Hawaii, as well as our knowledge of Hawaiian seismic rhythms as they relate to eruption cycles at Kilauea and Mauna Loa volcanoes and to subcrustal earthquake patterns related to the tectonic evolution of the Hawaiian chain.

  10. Recent Results From Seafloor Instruments at the NeMO Observatory, Axial Volcano, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Chadwick, W. W.; Butterfield, D. A.; Embley, R. W.; Meinig, C.; Stalin, S. E.; Nooner, S. L.; Zumberge, M. A.; Fox, C. G.

    2002-12-01

    NeMO is a seafloor observatory at Axial Seamount, an active submarine volcano located on the Juan de Fuca Ridge (JdFR) in the NE Pacific. Axial Volcano was chosen for NeMO because it has the largest magma supply on the JdFR, and is therefore the best place to study volcanic events and the perturbations they cause to pre-existing hydrothermal systems. In fact, Axial volcano erupted in January 1998 and initially our field efforts were focused on mapping the new lava flows and documenting the impact of the eruption on the hydrothermal vents and biological communities. Since then, our emphasis has gradually shifted to long-term geophysical and geochemical monitoring of the volcano in anticipation of its next eruption. Recent results from seafloor monitoring instruments and recent geologic mapping will be presented, including the following: (1) NeMO Net, a state-of-the-art, two-way communication system currently deployed at Axial, which uses a moored surface buoy to link three instruments on the seafloor in near real-time to the internet. The buoy communicates with the seafloor instruments via acoustic modems and relays data to and from shore via the Orbcomm and Iridium satellite systems. The seafloor instruments include two Remote Access Samplers (RAS) located at two hydrothermal vents in the ASHES vent field, and a Bottom Pressure Recorder (BPR) located near the center of the caldera. The RAS samplers monitor temperature and chemistry at the vents and can take 48 fluid and particle samples over a year, but can also be commanded from shore to take a sample at any time in response to detected seismic or volcanic events. The BPR is monitoring vertical motion of the seafloor, looking for sudden inflation or deflation events that may signal the onset of an eruption or intrusion. Data from the three instruments is displayed on the web at http://www.pmel.noaa.gov/vents/nemo/realtime/. (2) Data from a RAS sampler that was deployed at Cloud vent in Axial caldera between 2001

  11. Volcanoes: Nature's Caldrons Challenge Geochemists.

    ERIC Educational Resources Information Center

    Zurer, Pamela S.

    1984-01-01

    Reviews various topics and research studies on the geology of volcanoes. Areas examined include volcanoes and weather, plate margins, origins of magma, magma evolution, United States Geological Survey (USGS) volcano hazards program, USGS volcano observatories, volcanic gases, potassium-argon dating activities, and volcano monitoring strategies.…

  12. Volcano hazards program in the United States

    USGS Publications Warehouse

    Tilling, R.I.; Bailey, R.A.

    1985-01-01

    Volcano monitoring and volcanic-hazards studies have received greatly increased attention in the United States in the past few years. Before 1980, the Volcanic Hazards Program was primarily focused on the active volcanoes of Kilauea and Mauna Loa, Hawaii, which have been monitored continuously since 1912 by the Hawaiian Volcano Observatory. After the reawakening and catastrophic eruption of Mount St. Helens in 1980, the program was substantially expanded as the government and general public became aware of the potential for eruptions and associated hazards within the conterminous United States. Integrated components of the expanded program include: volcanic-hazards assessment; volcano monitoring; fundamental research; and, in concert with federal, state, and local authorities, emergency-response planning. In 1980 the David A. Johnston Cascades Volcano Observatory was established in Vancouver, Washington, to systematically monitor the continuing activity of Mount St. Helens, and to acquire baseline data for monitoring the other, presently quiescent, but potentially dangerous Cascade volcanoes in the Pacific Northwest. Since June 1980, all of the eruptions of Mount St. Helens have been predicted successfully on the basis of seismic and geodetic monitoring. The largest volcanic eruptions, but the least probable statistically, that pose a threat to western conterminous United States are those from the large Pleistocene-Holocene volcanic systems, such as Long Valley caldera (California) and Yellowstone caldera (Wyoming), which are underlain by large magma chambers still potentially capable of producing catastrophic caldera-forming eruptions. In order to become better prepared for possible future hazards associated with such historically unpecedented events, detailed studies of these, and similar, large volcanic systems should be intensified to gain better insight into caldera-forming processes and to recognize, if possible, the precursors of caldera-forming eruptions

  13. Island of Hawaii, Hawaiian Archipelago

    NASA Technical Reports Server (NTRS)

    1983-01-01

    This single photo covers almost all of the big island of Hawaii (19.5N, 155.5E) in the Hawaiian Archipelago. The active Kilauea Volcano and lava flow is under clouds and hardly visible at the lower right edge but the Mauna Loa volcano crater and its older lava flow is at the bottom center. The Kona Coast, that produces the only coffee grown in the United States, is to the left. Mauna Kea is the extinct volcano and lava flow in the right center.

  14. A space-borne, multi-parameter, Virtual Volcano Observatory for the real-time, anywhere-anytime support to decision-making during eruptive crises

    NASA Astrophysics Data System (ADS)

    Ferrucci, F.; Tampellini, M.; Loughlin, S. C.; Tait, S.; Theys, N.; Valks, P.; Hirn, B.

    2013-12-01

    The EVOSS consortium of academic, industrial and institutional partners in Europe and Africa, has created a satellite-based volcano observatory, designed to support crisis management within the Global Monitoring for Environment and Security (GMES) framework of the European Commission. Data from 8 different payloads orbiting on 14 satellite platforms (SEVIRI on-board MSG-1, -2 and -3, MODIS on-board Terra and Aqua, GOME-2 and IASI onboard MetOp-A, OMI on-board Aura, Cosmo-SkyMED/1, /2, /3 and /4, JAMI on-board MTSAT-1 and -2, and, until April 8th2012, SCHIAMACHY on-board ENVISAT) acquired at 5 different down-link stations, are disseminated to and automatically processed at 6 locations in 4 countries. The results are sent, in four separate geographic data streams (high-temperature thermal anomalies, volcanic Sulfur dioxide daily fluxes, volcanic ash and ground deformation), to a central facility called VVO, the 'Virtual Volcano Observatory'. This system operates 24H/24-7D/7 since September 2011 on all volcanoes in Europe, Africa, the Lesser Antilles, and the oceans around them, and during this interval has detected, measured and monitored all subaerial eruptions occurred in this region (44 over 45 certified, with overall detection and processing efficiency of ~97%). EVOSS borne realtime information is delivered to a group of 14 qualified end users, bearing the direct or indirect responsibility of monitoring and managing volcano emergencies, and of advising governments in Comoros, DR Congo, Djibouti, Ethiopia, Montserrat, Uganda, Tanzania, France and Iceland. We present the full set of eruptions detected and monitored - from 2004 to present - by multispectral payloads SEVIRI onboard the geostationary platforms of the MSG constellation, for developing and fine tuning-up the EVOSS system along with its real-time, pre- and post-processing automated algorithms. The set includes 91% of subaerial eruptions occurred at 15 volcanoes (Piton de la Fournaise, Karthala, Jebel al

  15. Preliminary assessment for the use of VORIS as a tool for rapid lava flow simulation at Goma Volcano Observatory, Democratic Republic of the Congo

    NASA Astrophysics Data System (ADS)

    Syavulisembo, A. M.; Havenith, H.-B.; Smets, B.; d'Oreye, N.; Marti, J.

    2015-10-01

    Assessment and management of volcanic risk are important scientific, economic, and political issues, especially in densely populated areas threatened by volcanoes. The Virunga volcanic province in the Democratic Republic of the Congo, with over 1 million inhabitants, has to cope permanently with the threat posed by the active Nyamulagira and Nyiragongo volcanoes. During the past century, Nyamulagira erupted at intervals of 1-4 years - mostly in the form of lava flows - at least 30 times. Its summit and flank eruptions lasted for periods of a few days up to more than 2 years, and produced lava flows sometimes reaching distances of over 20 km from the volcano. Though most of the lava flows did not reach urban areas, only impacting the forests of the endangered Virunga National Park, some of them related to distal flank eruptions affected villages and roads. In order to identify a useful tool for lava flow hazard assessment at Goma Volcano Observatory (GVO), we tested VORIS 2.0.1 (Felpeto et al., 2007), a freely available software (http://www.gvb-csic.es) based on a probabilistic model that considers topography as the main parameter controlling the lava flow propagation. We tested different parameters and digital elevation models (DEM) - SRTM1, SRTM3, and ASTER GDEM - to evaluate the sensitivity of the models to changes in input parameters of VORIS 2.0.1. Simulations were tested against the known lava flows and topography from the 2010 Nyamulagira eruption. The results obtained show that VORIS 2.0.1 is a quick, easy-to-use tool for simulating lava-flow eruptions and replicates to a high degree of accuracy the eruptions tested when input parameters are appropriately chosen. In practice, these results will be used by GVO to calibrate VORIS for lava flow path forecasting during new eruptions, hence contributing to a better volcanic crisis management.

  16. Things Hawaiian.

    ERIC Educational Resources Information Center

    Choo, Lehua

    In this short guide, activities are described in five areas: musical instruments, games, canoe building, clothing instruction, and cooking with Hawaiian recipes. All of these activities are designed to help young Hawaiians find out about Hawaii's past. This guide is part of an artifacts kit which contains a few of the many different kinds of…

  17. Galactic Super Volcano Similar to Iceland Volcano

    NASA Video Gallery

    This composite image from NASAs Chandra X-ray Observatory with radio data from the Very Large Array shows a cosmic volcano being driven by a black hole in the center of the M87 galaxy. This eruptio...

  18. Seismically Articulating Kilauea Volcano's Active Conduits, Rift Zones, and Faults through HVO's Second Fifty Years

    NASA Astrophysics Data System (ADS)

    Okubo, P.; Nakata, J.; Klein, F.; Koyanagi, R.; Thelen, W.

    2011-12-01

    While seismic monitoring of active Hawaiian volcanoes began 100 years ago, the build-up of the U. S. Geological Survey's (USGS) Hawaiian Volcano Observatory (HVO) seismographic network to its current configuration began in 1955, when Jerry Eaton established remote stations that telemetered data via landline to recorders at HVO. With network expansion through the 1960's, earthquake location and cataloging capabilities have evolved to afford a computer processed seismic catalog now spanning fifty years. Location accuracy and catalog completeness to smaller magnitudes have increased. Research and insights developed using HVO's seismic record have exploited the ability to seismically monitor volcanic activity at depth, to identify active regions within the volcanoes on the basis of computed hypocentral locations, to infer regions of magma storage by recognizing different families of volcanic earthquakes, and to forecast volcanic activity in both short and longer term from seismicity patterns. HVO's seismicity catalog was central to calculations of probabilistic seismic hazards. The ability to develop and implement additional analytical and interpretive capabilities has kept pace with improvements in both field and laboratory hardware and software. While the basic capabilities continue as part of HVO's core monitoring, additional interpretive capabilities now include adding details of volcanic and earthquake source regions, and viewing seismic data in juxtaposition with other observatory data streams. As HVO looks to its next century of volcano studies, research and development continue to shape the future. Broadband seismic recording at HVO has enabled extensive study by Chouet, Dawson, and co-workers of the relationship of very-long-period seismic sources beneath Kilauea's summit caldera to magma supply and transport. Recent upgrades have improved the ability to use these data in seismic cataloging and research. Data processing upgrades have bolstered the ability to

  19. Monitoring and analyses of volcanic activity using remote sensing data at the Alaska Volcano Observatory: Case study for Kamchatka, Russia, December 1997

    NASA Astrophysics Data System (ADS)

    Schneider, D. J.; Dean, K., G.; Dehn, J.; Miller, T., P.; Kirianov, V. Yu.

    There are about 100 potentially active volcanoes in the North Pacific Ocean region that includes Alaska, the Kamchatka Peninsula, and the Kurile Islands, but fewer than 25% are monitored seismically. The region averages about five volcanic eruptions per year, and more than 20,000 passengers and millions of dollars of cargo fly the air routes in this region each day. One of the primary public safety objectives of the Alaska Volcano Observatory (AVO) is to mitigate the hazard posed by volcanic ash clouds drifting into these busy air traffic routes. The AVO uses real-time remote sensing data (AVHRR, GOES, and GMS) in conjunction with other methods (primarily seismic) to monitor and analyze volcanic activity in the region. Remote sensing data can be used to detect volcanic thermal anomalies and to provide unique information on the location, movement, and composition of volcanic eruption clouds. Satellite images are routinely analyzed twice each day at AVO and many times per day during crisis situations. As part of its formal working relationship with the Kamchatka Volcanic Eruption Response Team (KVERT), the AVO provides satellite observations of volcanic activity in Kamchatka and distributes notices of volcanic eruptions from KVERT to non-Russian users in the international aviation community. This paper outlines the current remote sensing capabilities and operations of the AVO and describes the responsibilities and procedures of federal agencies and international aviation organizations for volcanic eruptions in the North Pacific region. A case study of the December 4, 1997, eruption of Bezymianny volcano, Russia, is used to illustrate how real-time remote sensing and hazard communication are used to mitigate the threat of volcanic ash to aircraft.

  20. A geologic evaluation of proposed lava diversion barriers for the NOAA Mauna Loa Observatory, Mauna Loa Volcano, Hawaii

    USGS Publications Warehouse

    Moore, H.J.

    1982-01-01

    Lava flow diversion barriers should protect the Mauna Loa Observatory from flows of reasonable magnitude if properly constructed. The a'a flow upon which the observatory is constructed represents a flow of reasonable magnitude. Proper construction of the barriers includes obtaining riprap from a zone exterior to the proposed V-shaped barrier so as to produce an exterior relief near 9.2 m for most of the barrier, construction of a channel about 8 m deep and 40 m wide along the east part of the barrier, and proper positioning of an isolated initiating barrier. Calculations suggest that the barriers should be able to handle peak volume flow rates near 800 m/s and possibly larger ones. Peak volume flow rates for the a'a flow upon which the observatory is constructed are estimated.

  1. Automated tracking of lava lake level using thermal images at Kīlauea Volcano, Hawai’i

    USGS Publications Warehouse

    Patrick, Matthew R.; Swanson, Don; Orr, Tim

    2016-01-01

    Tracking the level of the lava lake in Halema‘uma‘u Crater, at the summit of Kīlauea Volcano, Hawai’i, is an essential part of monitoring the ongoing eruption and forecasting potentially hazardous changes in activity. We describe a simple automated image processing routine that analyzes continuously-acquired thermal images of the lava lake and measures lava level. The method uses three image segmentation approaches, based on edge detection, short-term change analysis, and composite temperature thresholding, to identify and track the lake margin in the images. These relative measurements from the images are periodically calibrated with laser rangefinder measurements to produce real-time estimates of lake elevation. Continuous, automated tracking of the lava level has been an important tool used by the U.S. Geological Survey’s Hawaiian Volcano Observatory since 2012 in real-time operational monitoring of the volcano and its hazard potential.

  2. Hawaiian cultural influences on support for lava flow hazard mitigation measures during the January 1960 eruption of Kīlauea volcano, Kapoho, Hawai‘i

    USGS Publications Warehouse

    Gregg, Chris E.; Houghton, B.F.; Paton, Douglas; Swanson, D.A.; Lachman, R.; Bonk, W.J.

    2008-01-01

    On average, 72% of respondents favored the construction of earthen barriers to hold back or divert lava and protect Kapoho, but far fewer agreed with the military's use of bombs (14%) to protect Kapoho. In contrast, about one-third of respondents conditionally agreed with the use of bombs. It is suggested that local participation in the bombing strategy may explain the increased conditional acceptance of bombs as a mitigation tool, although this can not be conclusively demonstrated. Belief in Pele and being of Hawaiian ethnicity did not reduce support for the use of barriers, but did reduce support for bombs in both bombing scenarios. The disparity in levels of acceptance of barriers versus bombing and of one bombing strategy versus another suggests that historically public attitudes toward lava flow hazard mitigation strategies were complex. A modern comparative study is needed before the next damaging eruption to inform debates and decisions about whether or not to interfere with the flow of lava. Recent changes in the current eruption of Kīlauea make this a timely topic.

  3. Selected time-lapse movies of the east rift zone eruption of KĪlauea Volcano, 2004–2008

    USGS Publications Warehouse

    Orr, Tim R.

    2011-01-01

    Since 2004, the U.S. Geological Survey's Hawaiian Volcano Observatory has used mass-market digital time-lapse cameras and network-enabled Webcams for visual monitoring and research. The 26 time-lapse movies in this report were selected from the vast collection of images acquired by these camera systems during 2004–2008. Chosen for their content and broad aesthetic appeal, these image sequences document a variety of flow-field and vent processes from Kīlauea's east rift zone eruption, which began in 1983 and is still (as of 2011) ongoing.

  4. An analysis of three new infrasound arrays around Kīlauea Volcano

    USGS Publications Warehouse

    Thelen, Weston A.; Cooper, Jennifer

    2015-01-01

    A network of three new infrasound station arrays was installed around Kīlauea Volcano between July 2012 and September 2012, and a preliminary analysis of open-vent monitoring has been completed by Hawaiian Volcano Observatory (HVO). Infrasound is an emerging monitoring method in volcanology that detects perturbations in atmospheric pressure at frequencies below 20 Hz, which can result from volcanic events that are not always observed optically or thermally. Each array has the capability to detect various infrasound events as small as 0.05 Pa as measured at the array site. The infrasound monitoring network capabilities are demonstrated through case studies of rockfalls, pit collapses, and rise-fall cycles at Halema'uma'u Crater and Pu'u 'Ōʻō.

  5. Iridium enrichment in airborne particles from kilauea volcano: january 1983.

    PubMed

    Zoller, W H; Parrington, J R; Kotra, J M

    1983-12-01

    Airborne particulate matter from the January 1983 eruption of Kilauea volcano was inadvertently collected on air filters at Mauna Loa Observatory at a sampling station used to observe particles in global circulation. Analyses of affected samples revealed unusually large concentrations of selenium, arsenic, indium, gold, and sulfur, as expected for volcanic emissions. Strikingly large concentrations of iridium were also observed, the ratio of iridium to aluminum being 17,000 times its value in Hawaiian basalt. Since iridium enrichments have not previously been observed in volcanic emissions, the results for Kilauea suggest that it is part of an unusual volcanic system which may be fed by magma from the mantle. The iridium enrichment appears to be linked with the high fluorine content of the volcanic gases, which suggests that the iridium is released as a volatile IrF(6). PMID:17747384

  6. The chemical structure of the Hawaiian mantle plume.

    PubMed

    Ren, Zhong-Yuan; Ingle, Stephanie; Takahashi, Eiichi; Hirano, Naoto; Hirata, Takafumi

    2005-08-11

    The Hawaiian-Emperor volcanic island and seamount chain is usually attributed to a hot mantle plume, located beneath the Pacific lithosphere, that delivers material sourced from deep in the mantle to the surface. The shield volcanoes of the Hawaiian islands are distributed in two curvilinear, parallel trends (termed 'Kea' and 'Loa'), whose rocks are characterized by general geochemical differences. This has led to the proposition that Hawaiian volcanoes sample compositionally distinct, concentrically zoned, regions of the underlying mantle plume. Melt inclusions, or samples of local magma 'frozen' in olivine phenocrysts during crystallization, may record complexities of mantle sources, thereby providing better insight into the chemical structure of plumes. Here we report the discovery of both Kea- and Loa-like major and trace element compositions in olivine-hosted melt inclusions in individual, shield-stage Hawaiian volcanoes--even within single rock samples. We infer from these data that one mantle source component may dominate a single lava flow, but that the two mantle source components are consistently represented to some extent in all lavas, regardless of the specific geographic location of the volcano. We therefore suggest that the Hawaiian mantle plume is unlikely to be compositionally concentrically zoned. Instead, the observed chemical variation is probably controlled by the thermal structure of the plume. PMID:16100780

  7. An automated SO2 camera system for continuous, real-time monitoring of gas emissions from Kīlauea Volcano's summit Overlook Crater

    NASA Astrophysics Data System (ADS)

    Kern, Christoph; Sutton, Jeff; Elias, Tamar; Lee, Lopaka; Kamibayashi, Kevan; Antolik, Loren; Werner, Cynthia

    2015-07-01

    SO2 camera systems allow rapid two-dimensional imaging of sulfur dioxide (SO2) emitted from volcanic vents. Here, we describe the development of an SO2 camera system specifically designed for semi-permanent field installation and continuous use. The integration of innovative but largely "off-the-shelf" components allowed us to assemble a robust and highly customizable instrument capable of continuous, long-term deployment at Kīlauea Volcano's summit Overlook Crater. Recorded imagery is telemetered to the USGS Hawaiian Volcano Observatory (HVO) where a novel automatic retrieval algorithm derives SO2 column densities and emission rates in real-time. Imagery and corresponding emission rates displayed in the HVO operations center and on the internal observatory website provide HVO staff with useful information for assessing the volcano's current activity. The ever-growing archive of continuous imagery and high-resolution emission rates in combination with continuous data from other monitoring techniques provides insight into shallow volcanic processes occurring at the Overlook Crater. An exemplary dataset from September 2013 is discussed in which a variation in the efficiency of shallow circulation and convection, the processes that transport volatile-rich magma to the surface of the summit lava lake, appears to have caused two distinctly different phases of lake activity and degassing. This first successful deployment of an SO2 camera for continuous, real-time volcano monitoring shows how this versatile technique might soon be adapted and applied to monitor SO2 degassing at other volcanoes around the world.

  8. Hydrogeology of the Hawaiian islands

    USGS Publications Warehouse

    Gingerich, Stephen B.; Oki, Delwyn S.

    2011-01-01

    Volcanic-rock aquifers are the most extensive and productive aquifers in the Hawaiian Islands. These aquifers contain different types of groundwater systems depending on the geologic setting in which they occur. The most common groundwater systems include coastal freshwater-lens systems in the dike-free flanks of the volcanoes and dike-impounded systems within the dike-intruded areas of the volcanoes. In some areas, a thick (hundreds of meters) freshwater lens may develop because of the presence of a coastal confining unit, or caprock, that impedes the discharge of groundwater from the volcanic-rock aquifer, or because the permeability of the volcanic rocks forming the aquifer is low. In other areas with low groundwater-recharge rates and that lack a caprock, the freshwater lens may be thin or brackish water may exist immediately below the water table. Dike-impounded groundwater systems commonly have high water levels (hundreds of meters above sea level) and contribute to the base flow of streams where the water table intersects the stream. Recent numerical modeling studies have enhanced the conceptual understanding of groundwater systems in the Hawaiian Islands.

  9. Remote-controlled pan, tilt, zoom cameras at Kilauea and Mauna Loa Volcanoes, Hawai'i

    USGS Publications Warehouse

    Hoblitt, Richard P.; Orr, Tim R.; Castella, Frederic; Cervelli, Peter F.

    2008-01-01

    Lists of important volcano-monitoring disciplines usually include seismology, geodesy, and gas geochemistry. Visual monitoring - the essence of volcanology - is usually not mentioned. Yet, observations of the outward appearance of a volcano provide data that is equally as important as that provided by the other disciplines. The eye was almost certainly the first volcano monitoring-tool used by early man. Early volcanology was mostly descriptive and was based on careful visual observations of volcanoes. There is still no substitute for the eye of an experienced volcanologist. Today, scientific instruments replace or augment our senses as monitoring tools because instruments are faster and more sensitive, work tirelessly day and night, keep better records, operate in hazardous environments, do not generate lawsuits when damaged or destroyed, and in most cases are cheaper. Furthermore, instruments are capable of detecting phenomena that are outside the reach of our senses. The human eye is now augmented by the camera. Sequences of timed images provide a record of visual phenomena that occur on and above the surface of volcanoes. Photographic monitoring is a fundamental monitoring tool; image sequences can often provide the basis for interpreting other data streams. Monitoring data are most useful when they are generated and are available for analysis in real-time or near real-time. This report describes the current (as of 2006) system for real-time photograph acquisition and transmission from remote sites on Kilauea and Mauna Loa volcanoes to the U.S. Geological Survey Hawaiian Volcano Observatory (HVO). It also describes how the photographs are archived and analyzed. In addition to providing system documentation for HVO, we hope that the report will prove useful as a practical guide to the construction of a high-bandwidth network for the telemetry of real-time data from remote locations.

  10. Results from the Autonomous Triggering of in situ Sensors on Kilauea Volcano, HI, from Eruption Detection by Spacecraft

    NASA Astrophysics Data System (ADS)

    Doubleday, J.; Behar, A.; Davies, A.; Mora-Vargas, A.; Tran, D.; Abtahi, A.; Pieri, D. C.; Boudreau, K.; Cecava, J.

    2008-12-01

    Response time in acquiring sensor data in volcanic emergencies can be greatly improved through use of autonomous systems. For instance, ground-based observations and data processing applications of the JPL Volcano Sensor Web have promptly triggered spacecraft observations [e.g., 1]. The reverse command and information flow path can also be useful, using autonomous analysis of spacecraft data to trigger in situ sensors. In this demonstration project, SO2 sensors were incorporated into expendable "Volcano Monitor" capsules and placed downwind of the Pu'u 'O'o vent of Kilauea volcano, Hawai'i. In nominal (low) power conservation mode, data from these sensors were collected and transmitted every hour to the Volcano Sensor Web through the Iridium Satellite Network. When SO2 readings exceeded a predetermined threshold, the modem within the Volcano Monitor sent an alert to the Sensor Web, and triggered a request for prompt Earth Observing-1 (EO-1) spacecraft data acquisition. The Volcano Monitors were also triggered by the Sensor Web in response to an eruption detection by the MODIS instrument on Terra. During these pre- defined "critical events" the Sensor Web ordered the SO2 sensors within the Volcano Monitor to increase their sampling frequency to every 5 minutes (high power "burst mode"). Autonomous control of the sensors' sampling frequency enabled the Sensor Web to monitor and respond to rapidly evolving conditions, and allowed rapid compilation and dissemination of these data to the scientific community. Reference: [1] Davies et al., (2006) Eos, 87, (1), 1 and 5. This work was performed at the Jet Propulsion Laboratory-California Institute of Technology, under contract to NASA. Support was provided by the NASA AIST program, the Idaho Space Grant Consortium, and the New Mexico Space Grant Program. We also especially thank the personnel of the USGS Hawaiian Volcano Observatory for their invaluable scientific guidance and logistical assistance.

  11. The Hawaiian Mantle Plume from Toe to Head along the Northwest Hawaiian Ridge

    NASA Astrophysics Data System (ADS)

    Harrison, L.; Weis, D.; Garcia, M. O.

    2015-12-01

    The Hawaiian-Emperor (HE) chain records ~82 Myr of volcanism1 with two distinct geochemical and geographical trends, Kea and Loa, identified on the archipelago. The Northwest Hawaiian Ridge (NWHR) includes 51 volcanoes, spanning ~42 Myr between the bend in the HE chain and the Hawaiian Islands (47% of the HE chain2), that has no high-precision isotopic data aside from two volcanoes near the bend1. Only Kea compositions have been observed on Emperor seamounts (>50 Ma)1,3, whereas the Hawaiian Islands (<6.5 Ma) have both Kea and Loa lavas3,4. We have analyzed 23 samples of shield stage tholeiitic lavas from 13 NWHR volcanoes for Pb isotopes to test if the Loa trend exhibits a persistent presence along the ridge after Diakakuji seamount1. Age corrected 206Pb/204Pb range from 17.870 at Diakakuji to 18.654 at Midway atoll. The most enriched Loa isotopic compositions are erupted at Diakakuji (comparable to Lanai), and Mokumanamana, West Nihoa, and Nihoa have isotopic compositions similar to Mauna Loa. These observations suggest an ephemeral presence of the Loa geochemical trend along the NWHR. When shield-stage lavas of each Hawaiian volcano is averaged, NWHR volcanoes shows the most and least radiogenic Pb of the entire HE dataset: Diakakuji (0.9703) and Midway (0.9247). The NWHR exhibits the most geochemically extreme lava compositions along a region where many geophysical parameters (volcanic propagation rate, magmatic flux, mantle potential temperature) were changing significantly2,5. At a broader scale, correlation between radiogenic Pb and magmatic flux suggests source composition may control some of these changes, and help explain why the Hawaiian mantle plume seems to be strengthening5 rather than waning like classic plumes and LIPs. 1Regelous et al., 2003, J. Pet., 44, 1, 113-140. 2Garcia et al., 2015, GSA Sp. Pap. 511. 3Tanaka et al., 2008, EPSL, 265, 450-465. 4Weis et al., 2011, Nat. Geosci., 4, 831-838. 5Vidal & Bonneville, 2004, J. Geophy. Res., 109.

  12. Hawaiian Islands

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This Multiangle Imaging Spectro-Radiometer (MISR) image of five Hawaiian Islands was acquired by the instrument's vertical- viewing (nadir) camera on June 3, 2000. The image shows the islands of Oahu, Molokai, Lanai, Maui, and Kahoolawe. The prevailing Pacific trade winds bring higher levels of rainfall to the eastern slopes of the islands, leading to a greater abundance of vegetation on the windward coasts. The small change in observation angle across the nadir camera's field-of- view causes the right-hand portion of the image to be more affected by Sun glint, making the ocean surface appear brighter. Oahu is the westernmost of the islands seen in this image. Waikiki Beach and the city of Honolulu are located on the southern shore, to the west of Diamond Head caldera. MISR is one of several Earth-observing instruments on the Terra satellite, launched in December 1999. The Terra spacecraft, the flagship of a fleet of satellites dedicated to understanding our global environment, is part of NASA's Earth Sciences Enterprise, a long-term research program dedicated to understanding how human-induced and natural changes affect our world. Image courtesy NASA/GSFC/JPL, MISR Team

  13. The origin of chemical heterogeneity in the Hawaiian mantle plume

    NASA Astrophysics Data System (ADS)

    Pietruszka, A. J.; Norman, M. D.; Garcia, M. O.; Marske, J. P.; Burns, D. H.

    2012-12-01

    Inter-shield differences in the composition of lavas from Hawaiian volcanoes are generally thought to result from the melting of a heterogeneous mantle source containing variable amounts or types of oceanic crust (sediment, basalt, and/or gabbro) that was recycled into the mantle at ancient subduction zones (e.g., [1-3]). Here we investigate the origin of chemical heterogeneity in the Hawaiian mantle plume by comparing the incompatible trace element abundances of tholeiitic basalts from (1) Kilauea, Mauna Loa, and Loihi Seamount (the three active Hawaiian volcanoes) and (2) the extinct Koolau shield (a compositional end member for Hawaiian volcanoes). Model calculations (based on these incompatible trace element abundances) suggest that the mantle sources of Hawaiian volcanoes contain variable amounts of recycled oceanic crust (ROC), consisting of basalt and gabbro (but little or no marine sediment) that was altered by interaction with seawater or hydrothermal fluids prior to being variably dehydrated in an ancient subduction zone. The estimated fraction of ROC in the Hawaiian plume varies from ~8-16% at Kilauea and Loihi to ~15-21% at Mauna Loa and Koolau (the remainder is assumed to be ambient depleted Hawaiian mantle). The ROC in the mantle source of Kilauea and Loihi lavas is dominated by the uppermost portion of the residual slab (gabbro-free, strongly dehydrated basalt), whereas the ROC in the mantle source of Mauna Loa and Koolau lavas is dominated by the lowermost portion of the residual slab (weakly dehydrated basalt and gabbro). The model results suggest that the large-scale distribution of compositional heterogeneities in the Hawaiian plume at the present time cannot be described by either a radial zonation [1] or a bilateral asymmetry [4,5]. Instead, the Hawaiian plume is heterogeneous on a small scale with a NW-SE oriented spatial gradient in the amount, type (i.e., basalt vs. gabbro) and extent of dehydration of the ancient ROC. [1] Hauri (1996

  14. Chemical heterogeneity in the Hawaiian mantle plume from the alteration and dehydration of recycled oceanic crust

    NASA Astrophysics Data System (ADS)

    Pietruszka, Aaron J.; Norman, Marc D.; Garcia, Michael O.; Marske, Jared P.; Burns, Dale H.

    2013-01-01

    Inter-shield differences in the composition of lavas from Hawaiian volcanoes are generally thought to result from the melting of a heterogeneous mantle source containing variable amounts or types of oceanic crust (sediment, basalt, and/or gabbro) that was recycled into the mantle at an ancient subduction zone. Here we investigate the origin of chemical heterogeneity in the Hawaiian mantle plume by comparing the incompatible trace element abundances of tholeiitic basalts from (1) the three active Hawaiian volcanoes (Kilauea, Mauna Loa, and Loihi) and (2) the extinct Koolau shield (a compositional end member for Hawaiian volcanoes). New model calculations suggest that the mantle sources of Hawaiian volcanoes contain a significant amount of recycled oceanic crust with a factor of ˜2 increase from ˜8-16% at Loihi and Kilauea to ˜15-21% at Mauna Loa and Koolau. We propose that the Hawaiian plume contains a package of recycled oceanic crust (basalt and gabbro, with little or no marine sediment) that was altered by interaction with seawater or hydrothermal fluids prior to being variably dehydrated during subduction. The recycled oceanic crust in the mantle source of Loihi and Kilauea lavas is dominated by the uppermost portion of the residual slab (gabbro-free and strongly dehydrated), whereas the recycled oceanic crust in the mantle source of Mauna Loa and Koolau lavas is dominated by the lowermost portion of the residual slab (gabbro-rich and weakly dehydrated). The present-day distribution of compositional heterogeneities in the Hawaiian plume cannot be described by either a large-scale bilateral asymmetry or radial zonation. Instead, the mantle source of the active Hawaiian volcanoes is probably heterogeneous on a small scale with a NW-SE oriented spatial gradient in the amount, type (i.e., basalt vs. gabbro), and extent of dehydration of the ancient recycled oceanic crust.

  15. Volcano monitoring using the Global Positioning System: Filtering strategies

    USGS Publications Warehouse

    Larson, K.M.; Cervelli, Peter; Lisowski, M.; Miklius, Asta; Segall, P.; Owen, S.

    2001-01-01

    Permanent Global Positioning System (GPS) networks are routinely used for producing improved orbits and monitoring secular tectonic deformation. For these applications, data are transferred to an analysis center each day and routinely processed in 24-hour segments. To use GPS for monitoring volcanic events, which may last only a few hours, real-time or near real-time data processing and subdaily position estimates are valuable. Strategies have been researched for obtaining station coordinates every 15 min using a Kalman filter; these strategies have been tested on data collected by a GPS network on Kilauea Volcano. Data from this network are tracked continuously, recorded every 30 s, and telemetered hourly to the Hawaiian Volcano Observatory. A white noise model is heavily impacted by data outages and poor satellite geometry, but a properly constrained random walk model fits the data well. Using a borehole tiltmeter at Kilauea's summit as ground-truth, solutions using different random walk constraints were compared. This study indicates that signals on the order of 5 mm/h are resolvable using a random walk standard deviation of 0.45 cm/???h. Values lower than this suppress small signals, and values greater than this have significantly higher noise at periods of 1-6 hours. Copyright 2001 by the American Geophysical Union.

  16. Age of the Hawaiian-Emperor bend

    USGS Publications Warehouse

    Dalrymple, G.B.; Clague, D.A.

    1976-01-01

    40Ar/39Ar age data on alkalic and tholeiitic basalts from Diakakuji and Kinmei Seamounts in the vicinity of the Hawaiian-Emperor bend indicate that these volcanoes are about 41 and 39 m.y. old, respectively. Combined with previously published age data on Yuryaku and Ko??ko Seamounts, the new data indicate that the best age for the bend is 42.0 ?? 1.4 m.y. Petrochemical data indicate that the volcanic rocks recovered from bend seamounts are indistinguishable from Hawaiian volcanic rocks, strengthening the hypothesis that the Hawaiian-Emperor bend is part of the Hawaiian volcanic chain. 40Ar/39Ar total fusion ages on altered whole-rock basalt samples are consistent with feldspar ages and with 40Ar/39Ar incremental heating data and appear to reflect the crystallization ages of the samples even though conventional K-Ar ages are significantly younger. The cause of this effect is not known but it may be due to low-temperature loss of 39Ar from nonretentive montmorillonite clays that have also lost 40Ar. ?? 1976.

  17. Volcano-tectonic implications of 3-D velocity structures derived from joint active and passive source tomography of the island of Hawaii

    USGS Publications Warehouse

    Park, J.; Morgan, J.K.; Zelt, C.A.; Okubo, P.G.

    2009-01-01

    We present a velocity model of the onshore and offshore regions around the southern part of the island of Hawaii, including southern Mauna Kea, southeastern Hualalai, and the active volcanoes of Mauna Loa, and Kilauea, and Loihi seamount. The velocity model was inverted from about 200,000 first-arrival traveltime picks of earthquakes and air gun shots recorded at the Hawaiian Volcano Observatory (HVO). Reconstructed volcanic structures of the island provide us with an improved understanding of the volcano-tectonic evolution of Hawaiian volcanoes and their interactions. The summits and upper rift zones of the active volcanoes are characterized by high-velocity materials, correlated with intrusive magma cumulates. These high-velocity materials often do not extend the full lengths of the rift zones, suggesting that rift zone intrusions may be spatially limited. Seismicity tends to be localized seaward of the most active intrusive bodies. Low-velocity materials beneath parts of the active rift zones of Kilauea and Mauna Loa suggest discontinuous rift zone intrusives, possibly due to the presence of a preexisting volcanic edifice, e.g., along Mauna Loa beneath Kilauea's southwest rift zone, or alternatively, removal of high-velocity materials by large-scale landsliding, e.g., along Mauna Loa's western flank. Both locations also show increased seismicity that may result from edifice interactions or reactivation of buried faults. New high-velocity regions are recognized and suggest the presence of buried, and in some cases, previously unknown rift zones, within the northwest flank of Mauna Loa, and the south flanks of Mauna Loa, Hualalai, and Mauna Kea. Copyright 2009 by the American Geophysical Union.

  18. Reunion Island Volcano Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On January 16, 2002, lava that had begun flowing on January 5 from the Piton de la Fournaise volcano on the French island of Reunion abruptly decreased, marking the end of the volcano's most recent eruption. These false color MODIS images of Reunion, located off the southeastern coast of Madagascar in the Indian Ocean, were captured on the last day of the eruption (top) and two days later (bottom). The volcano itself is located on the southeast side of the island and is dark brown compared to the surrounding green vegetation. Beneath clouds (light blue) and smoke, MODIS detected the hot lava pouring down the volcano's flanks into the Indian Ocean. The heat, detected by MODIS at 2.1 um, has been colored red in the January 16 image, and is absent from the lower image, taken two days later on January 18, suggesting the lava had cooled considerably even in that short time. Earthquake activity on the northeast flank continued even after the eruption had stopped, but by January 21 had dropped to a sufficiently low enough level that the 24-hour surveillance by the local observatory was suspended. Reunion is essentially all volcano, with the northwest portion of the island built on the remains of an extinct volcano, and the southeast half built on the basaltic shield of 8,630-foot Piton de la Fournaise. A basaltic shield volcano is one with a broad, gentle slope built by the eruption of fluid basalt lava. Basalt lava flows easily across the ground remaining hot and fluid for long distances, and so they often result in enormous, low-angle cones. The Piton de la Fournaise is one of Earth's most active volcanoes, erupting over 150 times in the last few hundred years, and it has been the subject of NASA research because of its likeness to the volcanoes of Mars. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  19. Hawaiian Starlight: Sharing the Beauty of the Hawaiian Skies

    NASA Astrophysics Data System (ADS)

    Cuillandre, J. C.

    Canada-France-Hawaii Telescope Corp. The summit of Mauna Kea (14,000 feet) offers the best viewing of the Cosmos in the northern hemisphere, and the film "Hawaiian Starlight" delivers a pure esthetic experience from the mountain into the Universe. Seven years in the making, this cinematic symphony reveals the spectacular beauty of the mountain and its connection to the Cosmos through the magical influence of time-lapse cinematography scored exclusively (no narration) with the awe-inspiring, critically acclaimed, Halo music by Martin O'Donnell and Michael Salvatori. Daytime and nighttime landscapes and skyscapes alternate with stunning true color images of the Universe captured by an observatory on Mauna Kea, all free of any computer generated imagery. An extended segment of the film will be presented at the Advanced Maui Optical and Space Surveillance Technologies Conference to celebrate the international year of Astronomy 2009, a global effort initiated by the IAU (International Astronomical Union) and UNESCO (United Nations Educational, Scientific and Cultural Organization) to help the citizens of the world rediscover their place in the Universe through the day- and night-time sky, and thereby engage a personal sense of wonder and discovery. Hawaiian Starlight is true to this commitment. The inspiration and technology of the film will be shortly presented by the film's director.

  20. What, When, Where, and Why of Secondary Hawaiian Hotspot Volcanism

    NASA Astrophysics Data System (ADS)

    Garcia, M. O.; Ito, G.; Applegate, B.; Weis, D.; Swinnard, L.; Flinders, A.; Hanano, D.; Nobre-Silva, I.; Bianco, T.; Naumann, T.; Geist, D.; Blay, C.; Sciaroni, L.; Maerschalk, C.; Harpp, K.; Christensen, B.

    2007-12-01

    Secondary hotspot volcanism occurs on most oceanic island groups (Hawaii, Canary, Society) but its origins remain enigmatic. A 28-day marine expedition used multibeam bathymetry and acoustic imagery to map the extent of submarine volcanic fields around the northern Hawaiian Islands (Kauai, Niihau and Kaula), and the JASON2 ROV to sample many volcanoes to characterize the petrology, geochemistry (major and trace elements, and isotopes) and ages of the lavas from these volcanoes. Our integrated geological, geochemical and geophysical study attempts to examine the what (compositions and source), where (distribution and volumes), when (ages), and why (mechanisms) of secondary volcanism on and around the northern Hawaiian Islands. A first-order objective was to establish how the submarine volcanism relates in space, time, volume, and composition to the nearby shield volcanoes and their associated onshore secondary volcanism. Our surveying and sampling revealed major fields of submarine volcanoes extending from the shallow slopes of these islands to more than 100 km offshore. These discoveries dramatically expand the volumetric importance, distribution and geodynamic framework for Hawaiian secondary volcanism. New maps and rock petrology on the samples collected will be used to evaluate currently proposed mechanisms for secondary volcanism and to consider new models such as small-scale mantle convection driven by thermal and melt-induced buoyancy to produce the huge volume of newly discovered lava. Our results seem to indicate substantial revisions are needed to our current perceptions of hotspot dynamics for Hawaii and possibly elsewhere.

  1. Nicaraguan Volcanoes

    Atmospheric Science Data Center

    2013-04-18

    article title:  Nicaraguan Volcanoes     View Larger Image Nicaraguan volcanoes, February 26, 2000 . The true-color image at left is a ... February 26, 2000 - Plumes from the San Cristobal and Masaya volcanoes. project:  MISR category:  gallery ...

  2. Monitoring active volcanoes

    USGS Publications Warehouse

    Tilling, Robert I.

    1987-01-01

    One of the most spectacular, awesomely beautiful, and at times destructive displays of natural energy is an erupting volcano, belching fume and ash thousands of meters into the atmosphere and pouring out red-hot molten lava in fountains and streams. Countless eruptions in the geologic past have produced volcanic rocks that form much of the Earth's present surface. The gradual disintegration and weathering of these rocks have yielded some of the richest farmlands in the world, and these fertile soils play a significant role in sustaining our large and growing population. Were it not for volcanic activity, the Hawaiian Islands with their sugar cane and pineapple fields and magnificent landscapes and seascapes would not exist to support their residents and to charm their visitors. Yet, the actual eruptive processes are catastrophic and can claim life and property.

  3. Vertical Motions of Oceanic Volcanoes

    NASA Astrophysics Data System (ADS)

    Clague, D. A.; Moore, J. G.

    2006-12-01

    Oceanic volcanoes offer abundant evidence of changes in their elevations through time. Their large-scale motions begin with a period of rapid subsidence lasting hundreds of thousands of years caused by isostatic compensation of the added mass of the volcano on the ocean lithosphere. The response is within thousands of years and lasts as long as the active volcano keeps adding mass on the ocean floor. Downward flexure caused by volcanic loading creates troughs around the growing volcanoes that eventually fill with sediment. Seismic surveys show that the overall depression of the old ocean floor beneath Hawaiian volcanoes such as Mauna Loa is about 10 km. This gross subsidence means that the drowned shorelines only record a small part of the total subsidence the islands experienced. In Hawaii, this history is recorded by long-term tide-gauge data, the depth in drill holes of subaerial lava flows and soil horizons, former shorelines presently located below sea level. Offshore Hawaii, a series of at least 7 drowned reefs and terraces record subsidence of about 1325 m during the last half million years. Older sequences of drowned reefs and terraces define the early rapid phase of subsidence of Maui, Molokai, Lanai, Oahu, Kauai, and Niihau. Volcanic islands, such as Maui, tip down toward the next younger volcano as it begins rapid growth and subsidence. Such tipping results in drowned reefs on Haleakala as deep as 2400 m where they are tipped towards Hawaii. Flat-topped volcanoes on submarine rift zones also record this tipping towards the next younger volcano. This early rapid subsidence phase is followed by a period of slow subsidence lasting for millions of years caused by thermal contraction of the aging ocean lithosphere beneath the volcano. The well-known evolution along the Hawaiian chain from high to low volcanic island, to coral island, and to guyot is due to this process. This history of rapid and then slow subsidence is interrupted by a period of minor uplift

  4. Composition and origin of basaltic magma of the Hawaiian Islands

    USGS Publications Warehouse

    Powers, H.A.

    1955-01-01

    Silica-saturated basaltic magma is the source of the voluminous lava flows, erupted frequently and rapidly in the primitive shield-building stage of activity, that form the bulk of each Hawaiian volcano. This magma may be available in batches that differ slightly in free silica content from batch to batch both at the same and at different volcanoes; differentiation by fractionation of olivine does not occur within this primitive magma. Silica-deficient basaltic magma, enriched in alkali, is the source of commonly porphyritic lava flows erupted less frequently and in relatively negligible volume during a declining and decadent stage of activity at some Hawaiian volcanoes. Differentiation by fractionation of olivine, plagioclase and augite is evident among these lavas, but does not account for the silica deficiency or the alkali enrichment. Most of the data of Hawaiian volcanism and petrology can be explained by a hypothesis that batches of magma are melted from crystalline paridotite by a recurrent process (distortion of the equatorial bulge by forced and free nutational stresses) that accomplishes the melting only of the plagioclase and pyroxene component but not the excess olivine and more refractory components within a zone of fixed and limited depth. Eruption exhausts the supply of meltable magma under a given locality and, in the absence of more violent melting processes, leaves a stratum of crystalline refractory components. ?? 1955.

  5. An automated SO2 camera system for continuous, real-time monitoring of gas emissions from Kīlauea Volcano's summit Overlook Crater

    USGS Publications Warehouse

    Kern, Christoph; Sutton, Jeff; Elias, Tamar; Lee, Robert Lopaka; Kamibayashi, Kevan P.; Antolik, Loren; Werner, Cynthia A.

    2015-01-01

    SO2 camera systems allow rapid two-dimensional imaging of sulfur dioxide (SO2) emitted from volcanic vents. Here, we describe the development of an SO2 camera system specifically designed for semi-permanent field installation and continuous use. The integration of innovative but largely “off-the-shelf” components allowed us to assemble a robust and highly customizable instrument capable of continuous, long-term deployment at Kīlauea Volcano's summit Overlook Crater. Recorded imagery is telemetered to the USGS Hawaiian Volcano Observatory (HVO) where a novel automatic retrieval algorithm derives SO2 column densities and emission rates in real-time. Imagery and corresponding emission rates displayed in the HVO operations center and on the internal observatory website provide HVO staff with useful information for assessing the volcano's current activity. The ever-growing archive of continuous imagery and high-resolution emission rates in combination with continuous data from other monitoring techniques provides insight into shallow volcanic processes occurring at the Overlook Crater. An exemplary dataset from September 2013 is discussed in which a variation in the efficiency of shallow circulation and convection, the processes that transport volatile-rich magma to the surface of the summit lava lake, appears to have caused two distinctly different phases of lake activity and degassing. This first successful deployment of an SO2 camera for continuous, real-time volcano monitoring shows how this versatile technique might soon be adapted and applied to monitor SO2 degassing at other volcanoes around the world.

  6. Hawaiian Music for Hawaii's Children

    ERIC Educational Resources Information Center

    Gillett, Dorothy K.

    1972-01-01

    Hawaiian music has developed from the simple chant and accompanying hula to choral singing and the use of the guitar and ukulele. Article also presents a compositional and choreographic analysis of Hawaiian music. (RK)

  7. the Geochemical Structure of the Hawaiian Plume

    NASA Astrophysics Data System (ADS)

    Huang, S.; Frey, F. A.

    2005-12-01

    The spatial arrangement of modern Hawaiian volcanoes forms two offset trends, the Kea and Loa trends. Lavas from these two volcanic trends have important geochemical differences; e.g., Loa and Kea trend lavas form different trends in 87Sr/86Sr and 208Pb*/206Pb* vs 3He/4He plots (e.g., Kurz et al., 1995; Lassiter et al., 1996). Abouchami et al. (2005) noted that, compared with Kea trend lavas, Loa trend lavas have relatively higher 208Pb/204Pb at a given 206Pb/204Pb, i.e., Loa trend lavas have higher 208Pb*/206Pb*. Kea and Loa trend lavas also form different trends in plots of 208Pb*/206Pb* vs Hf, Sr and Nd isotopic ratios. An important observation is that in these isotopic ratio plots, Loihi lavas are located at the intersections of the near-linear Loa and Kea trends; implying that the Loihi component (high 3He/4He) is a common source component for Loa and Kea trend volcanoes. The other ends of the Loa and Kea trends are defined by Koolau and Mauna Kea lavas, and are designated as the Koolau and Kea components. Loa trend lavas sample the Koolau and Loihi components, and the Kea trend lavas sample the Kea and Loihi components. The Loa-Kea geochemical differences have been inferred to reflect source characteristics. Consequently, different models for the structure of the Hawaiian plume have been proposed, for example, a concentrically zoned plume (Lassiter et al., 1996) and a bilaterally asymmetric plume (Abouchami et al., 2005). Based on the temporal variations of geochemical compositions of shield lavas from several Hawaiian shields, such as Mauna Kea, Koolau and Haleakala, as well as melt inclusion study, Kurz et al. (2004) and Ren et al. (2005) proposed that although the plume is grossly zoned, there are Kea- and Loa-type sources present throughout the plume. In this study, we propose that Loa and Kea volcanoes sample a common, geochemically heterogeneous mantle plume source which contains the Koolau, Kea and Loihi components. These geochemical heterogeneities

  8. Digital Data for Volcano Hazards at Newberry Volcano, Oregon

    USGS Publications Warehouse

    Schilling, S.P.; Doelger, S.; Sherrod, D.R.; Mastin, L.G.; Scott, W.E.

    2008-01-01

    Newberry volcano is a broad shield volcano located in central Oregon, the product of thousands of eruptions, beginning about 600,000 years ago. At least 25 vents on the flanks and summit have been active during the past 10,000 years. The most recent eruption 1,300 years ago produced the Big Obsidian Flow. Thus, the volcano's long history and recent activity indicate that Newberry will erupt in the future. Newberry Crater, a volcanic depression or caldera has been the focus of Newberry's volcanic activity for at least the past 10,000 years. Newberry National Volcanic Monument, which is managed by the U.S. Forest Service, includes the caldera and extends to the Deschutes River. Newberry volcano is quiet. Local earthquake activity (seismicity) has been trifling throughout historic time. Subterranean heat is still present, as indicated by hot springs in the caldera and high temperatures encountered during exploratory drilling for geothermal energy. The report USGS Open-File Report 97-513 (Sherrod and others, 1997) describes the kinds of hazardous geologic events that might occur in the future at Newberry volcano. A hazard-zonation map is included to show the areas that will most likely be affected by renewed eruptions. When Newberry volcano becomes restless, the eruptive scenarios described herein can inform planners, emergency response personnel, and citizens about the kinds and sizes of events to expect. The geographic information system (GIS) volcano hazard data layers used to produce the Newberry volcano hazard map in USGS Open-File Report 97-513 are included in this data set. Scientists at the USGS Cascades Volcano Observatory created a GIS data layer to depict zones subject to the effects of an explosive pyroclastic eruption (tephra fallout, pyroclastic flows, and ballistics), lava flows, volcanic gasses, and lahars/floods in Paulina Creek. A separate GIS data layer depicts drill holes on the flanks of Newberry Volcano that were used to estimate the probability

  9. An overview of the Icelandic Volcano Observatory response to the on-going rifting event at Bárðarbunga (Iceland) and the SO2 emergency associated with the gas-rich eruption in Holuhraun

    NASA Astrophysics Data System (ADS)

    Barsotti, Sara; Jonsdottir, Kristin; Roberts, Matthew J.; Pfeffer, Melissa A.; Ófeigsson, Benedikt G.; Vögfjord, Kristin; Stefánsdóttir, Gerður; Jónasdóttir, Elin B.

    2015-04-01

    On 16 August, 2014, Bárðarbunga volcano entered a new phase of unrest. Elevated seismicity in the area with up to thousands of earthquakes detected per day and significant deformation was observed around the Bárðarbunga caldera. A dike intrusion was monitored for almost two weeks until a small, short-lived effusive eruption began on 29 August in Holuhraun. Two days later a second, more intense, tremendously gas-rich eruption started that is still (as of writing) ongoing. The Icelandic Volcano Observatory (IVO), within the Icelandic Meteorological Office (IMO), monitors all the volcanoes in Iceland. Responsibilities include evaluating their related hazards, issuing warnings to the public and Civil Protection, and providing information regarding risks to aviation, including a weekly summary of volcanic activity provided to the Volcanic Ash Advisory Center in London. IVO has monitored the Bárðarbunga unrest phase since its beginning with the support of international colleagues and, in collaboration with the University of Iceland and the Environment Agency of Iceland, provides scientific support and interpretation of the ongoing phenomena to the local Civil Protection. The Aviation Color Code, for preventing hazards to aviation due to ash-cloud encounter, has been widely used and changed as soon as new observations and geophysical data from the monitoring network have suggested a potential evolution in the volcanic crisis. Since the onset of the eruption, IVO is monitoring the gas emission by using different and complementary instrumentations aimed at analyzing the plume composition as well as estimating the gaseous fluxes. SO2 rates have been measured with both real-time scanning DOASes and occasional mobile DOAS traveses, near the eruption site and in the far field. During the first month-and-a-half of the eruption, an average flux equal to 400 kg/s was registered, with peaks exceeding 1,000 kg/s. Along with these measurements the dispersal model CALPUFF has

  10. Internet-accessible, near-real-time volcano monitoring data for geoscience education: the Volcanoes Exploration Project—Pu`u `O`o

    NASA Astrophysics Data System (ADS)

    Poland, M. P.; Teasdale, R.; Kraft, K.

    2010-12-01

    Internet-accessible real- and near-real-time Earth science datasets are an important resource for geoscience education, but relatively few comprehensive datasets are available, and background information to aid interpretation is often lacking. In response to this need, the U.S. Geological Survey’s (USGS) Hawaiian Volcano Observatory, in collaboration with the National Aeronautics and Space Administration and the University of Hawai‘i, Mānoa, established the Volcanoes Exploration Project: Pu‘u ‘O‘o (VEPP). The VEPP Web site provides access, in near-real time, to geodetic, seismic, and geologic data from the Pu‘u ‘O‘o eruptive vent on Kilauea Volcano, Hawai‘i. On the VEPP Web site, a time series query tool provides a means of interacting with continuous geophysical data. In addition, results from episodic kinematic GPS campaigns and lava flow field maps are posted as data are collected, and archived Webcam images from Pu‘u ‘O‘o crater are available as a tool for examining visual changes in volcanic activity over time. A variety of background information on volcano surveillance and the history of the 1983-present Pu‘u ‘O‘o-Kupaianaha eruption puts the available monitoring data in context. The primary goal of the VEPP Web site is to take advantage of high visibility monitoring data that are seldom suitably well-organized to constitute an established educational resource. In doing so, the VEPP project provides a geoscience education resource that demonstrates the dynamic nature of volcanoes and promotes excitement about the process of scientific discovery through hands-on learning. To support use of the VEPP Web site, a week-long workshop was held at Kilauea Volcano in July 2010, which included 25 participants from the United States and Canada. The participants represented a diverse cross-section of higher learning, from community colleges to research universities, and included faculty who teach both large introductory non-major classes

  11. Pb, Sr, Nd, and Hf isotopic constraints on the origin of Hawaiian basalts and evidence for a unique mantle source

    NASA Technical Reports Server (NTRS)

    Stille, P.; Unruh, D. M.; Tatsumoto, M.

    1986-01-01

    The isotopic Pb, Sr, Nd, and Hf compositions of rocks from nine Hawaiian volcanos are determined using the analytical procedures described by Tatsumoto and Unruh (1976) and Patchett and Tatsumoto (1980). The results are presented in graphs, tables, and maps and characterized in detail. The mantle plume, the oceanic lithosphere, and the depleted mantle are identified as distinct sources of the Hawaiian basalts, with different mechanisms responsible for the formation of shield-building tholeiites, late-stage alkalic rocks, and posterosional basalts. The uniqueness of the Hawaiian basalts and the possibility that the Koolau end member represents an undepleted 'primitive' mantle reservoir are considered.

  12. Tungsten in Hawaiian picrites: A compositional model for the sources of Hawaiian lavas

    NASA Astrophysics Data System (ADS)

    Ireland, Thomas J.; Arevalo, Ricardo, Jr.; Walker, Richard J.; McDonough, William F.

    2009-08-01

    Concentrations of tungsten (W) and uranium (U), which represent two of the most highly incompatible elements during mantle melting, have been measured in a suite of Hawaiian picrites and primitive tholeiites from nine main-stage shield volcanoes. Tungsten abundances in the parental melts are estimated from correlations between sample W abundances and MgO contents, and/or by olivine correction calculations. From these parental melt determinations, along with independent estimates for the degree of partial melting at each volcanic center, we extrapolate the W content of the mantle sources for each shield volcano. The mantle sources of Hualalai, Mauna Loa, Kohala, Kilauea, Mauna Kea, Koolau and Loihi contain 9 ± 2 (2 σ), 11 ± 5, 10 ± 4, 12 ± 4, 10 ± 5, 8 ± 7 and 11 ± 5 ng/g, respectively. When combined, the mean Hawaiian source has an average of 10 ± 3 ng/g W, which is three-times as enriched as the Depleted MORB Mantle (DMM; 3.0 ± 2.3 ng/g). The relatively high abundances of W in the mantle sources that contribute to Hawaiian lavas may be explained as a consequence of the recycling of W-rich oceanic crust and sediment into a depleted mantle source, such as the depleted MORB mantle (DMM). However, this scenario requires varying proportions of recycled materials with different mean ages to account for the diversity of radiogenic isotope compositions observed between Kea- and Loa-trend volcanoes. Alternatively, the modeled W enrichments may also reflect a primary source component that is less depleted in incompatible trace elements than the DMM. Such a source would not necessarily require the addition of recycled materials, although the presence of some recycled crust is permitted within our model parameters and likely accounts for some of the isotopic variations between volcanic centers. The physical admixture of ⩽0.5 wt.% outer core material with the Hawaiian source region would not be resolvable via W source abundances or W/U ratios; however, W isotopes

  13. Chikurachki Volcano

    Atmospheric Science Data Center

    2013-04-16

    ... plume from the April 22, 2003, eruption of the Chikurachki volcano is portrayed in these views from the Multi-angle Imaging ... the volcanically active Kuril Island group, the Chikurachki volcano is an active stratovolcano on Russia's Paramushir Island (just south of ...

  14. Bathymetry of the southwest flank of Mauna Loa Volcano, Hawaii

    USGS Publications Warehouse

    Chadwick, William W.; Moore, James G.; Fox, Christopher G.

    1994-01-01

    Much of the seafloor topography in the map area is on the southwest submarine flank of the currently active Mauna Loa Volcano. The benches and blocky hills shown on the map were shaped by giant landslides that resulted from instability of the rapidly growing volcano. These landslides were imagined during a 1986 to 1991 swath sonar program of the United States Hawaiian Exclusive Economic Zone, a cooperative venture by the U.S. Geological Survey and the British Institute of Oceanographic Sciences (Lipman and others, 1988; Moore and others, 1989). Dana Seamount (and probably also the neighboring Day Seamount) are apparently Cretaceous in age, based on paleomagnetic studies, and predate the growth of the Hawaiian Ridge volcanoes (Sager and Pringle, 1990).

  15. Obesity and Native Hawaiians/Pacific Islanders

    MedlinePlus

    ... Population Profiles > Native Hawaiian/Other Pacific Islander > Obesity Obesity and Native Hawaiians/Pacific Islanders Native Hawaiians/Pacific ... youthonline . [Accessed 05/25/2016] HEALTH IMPACT OF OBESITY More than 80 percent of people with type ...

  16. Profile: Native Hawaiians and Pacific Islanders

    MedlinePlus

    ... Hawaiian/Other Pacific Islander Profile: Native Hawaiians and Pacific Islanders (Map of the US with the states that have significant Native Hawaiian/Pacific Islander populations according to the Census Bureau) HI - ...

  17. Diabetes and Native Hawaiians/Pacific Islanders

    MedlinePlus

    ... Other Pacific Islander > Diabetes Diabetes and Native Hawaiians/Pacific Islanders Asian Americans, in general, have the same ... However, there are differences within the Native Hawaiian/Pacific Islander population. From a national survey, Native Hawaiians/ ...

  18. The Hawaiian Archipelago: a microbial diversity hotspot.

    PubMed

    Donachie, S P; Hou, S; Lee, K S; Riley, C W; Pikina, A; Belisle, C; Kempe, S; Gregory, T S; Bossuyt, A; Boerema, J; Liu, J; Freitas, T A; Malahoff, A; Alam, M

    2004-11-01

    The Hawaiian Archipelago is a "biodiversity hotspot" where significant endemism among eukaryotes has evolved through geographic isolation and local topography. To address the absence of corresponding region-wide data on Hawaii's microbiota, we compiled the first 16S SSU rDNA clone libraries and cultivated bacteria from five Hawaiian lakes, an anchialine pool, and the Lō'ihi submarine volcano. These sites offer diverse niches over approximately 5000 m elevation and approximately 1150 nautical miles. Each site hosted a distinct prokaryotic community dominated by Bacteria. Cloned sequences fell into 158 groups from 18 Bacteria phyla, while seven were unassigned and two belonged in the Euryarchaeota. Only seven operational taxonomic units (each OTU comprised sequences that shared > or =97% sequence identity) occurred in more than one site. Pure bacterial cultures from all sites fell into 155 groups (each group comprised pure cultures that shared > or =97% 16S SSU rDNA sequence identity) from 10 Bacteria phyla; 15 Proteobacteria and Firmicutes were cultivated from more than one site. One hundred OTUs (60%) and 52 (33.3%) cultures shared <97% 16S SSU rDNA sequence identity with published sequences. Community structure reflected habitat chemistry; most delta-Proteobacteria occurred in anoxic and sulfidic waters of one lake, while beta-Proteobacteria were cultivated exclusively from fresh or brackish waters. Novel sequences that affiliate with an Antarctic-specific clade of Deinococci, and Candidate Divisions TM7 and BRC1, extend the geographic ranges of these phyla. Globally and locally remote, as well as physically and chemically diverse, Hawaiian aquatic habitats provide unique niches for the evolution of novel communities and microorganisms. PMID:15696384

  19. Kilauea volcano eruption seen from orbit

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The STS-51 crew had a clear view of the erupting Kilauea volcano during the early morning pass over the Hawaiian islands. Kilauea, on the southwest side of the island of Hawaii, has been erupting almost continuously since January, 1983. Kilauea's summit caldera, with the smaller Halemaumau crater nestled within, is highlighted in the early morning sun (just above the center of the picture). The lava flows which covered roads and subdivisions in 1983-90 can be seen as dark flows to the east (toward the upper right) of the steam plumes on this photo. The summit crater and lava flows of Mauna Loa volcano make up the left side of the photo. Features like the Volcano House and Kilauea Visitor Center on the edge of the caldera, the small subdivisions east of the summit, Ola's Rain Forest north of the summit, and agricultural land along the coast are easily identified.

  20. Linking Hawaiian and Strombolian explosive styles

    NASA Astrophysics Data System (ADS)

    Houghton, B. F.; Taddeucci, J.; Orr, T. R.; Gonnermann, H. M.; Swanson, D. A.; Parcheta, C. E.

    2013-12-01

    Contrary to some contemporary classification schemes, high Hawaiian fountaining eruptions represent mass eruption rates 100 to 1000 times largely than classical Strombolian explosions. They are also sustained on time scales of hours to days, compared to durations for explosions of seconds to tens of seconds at Stromboli. However the advent of high-speed, high-resolution imagery at Stromboli and Kilauea shows both eruption styles are typically unsteady and pulsatory in terms of ejecta height and mass discharge rate. Plotting basaltic activity in viscosity-mass eruption rate space reveals some of the issues. Individual Strombolian explosions occupy the short duration, low eruption rate corner of such a plot, very clearly distinguished from high Hawaiian fountains that have durations that are 3 to 5 orders of magnitude longer and mass discharge rates that are 10 to 100 times larger. However the spectrum of activity called names such as ';low fountains', ';gas pistoning' and ';violent Strombolian' defines a grey scale between these extremes. Recent observations suggest that notions of open versus closed system behavior and mechanically coupled versus decoupled gas bubbles are oversimplified for these persistently active volcanoes with long established yet complex conduit/storage systems for magma.

  1. Two views of Hawaiian plume structure

    NASA Astrophysics Data System (ADS)

    Hofmann, Albrecht W.; Farnetani, Cinzia G.

    2013-12-01

    Fundamentally contradictory interpretations of the isotopic compositions of Hawaiian basalts persist, even among authors who agree that the Hawaiian hotspot is caused by a deep-mantle plume. One view holds that the regional isotopic pattern of the volcanoes reflects large-scale heterogeneities in the basal thermal boundary layer of the mantle. These are drawn into the rising plume conduit, where they are vertically stretched and ultimately sampled by volcanoes. The alternative view is that the plume resembles a "uniformly heterogeneous plum pudding," with fertile plums of pyroxenite and/or enriched peridotite scattered in a matrix of more refractory peridotite. In a rising plume, the plums melt before the matrix, and the final melt composition is controlled significantly by the bulk melt fraction. Here we show that the uniformly heterogeneous plum pudding model is inconsistent with several geochemical observations: (1) the relative melt fractions inferred from La/Yb ratios in shield-stage basalts of the two parallel (Kea- and Loa-) volcanic chains, (2) the systematic Pb-isotopic differences between the chains, and the absence of such differences between shield and postshield phases, (3) the systematic shift to uniformly depleted Nd-isotopic compositions during rejuvenated volcanism. We extend our previous numerical simulation to the low melt production rates calculated far downstream (200-400 km) from shield volcanism. Part of these melts, feeding rejuvenated volcanism, are formed at pressures of ˜5 GPa in the previously unmelted underside of the plume, from material that originally constituted the uppermost part of the thermal boundary layer at the base of the mantle.

  2. Catalogue of Icelandic Volcanoes

    NASA Astrophysics Data System (ADS)

    Ilyinskaya, Evgenia; Larsen, Gudrun; Gudmundsson, Magnus T.; Vogfjord, Kristin; Pagneux, Emmanuel; Oddsson, Bjorn; Barsotti, Sara; Karlsdottir, Sigrun

    2016-04-01

    The Catalogue of Icelandic Volcanoes is a newly developed open-access web resource in English intended to serve as an official source of information about active volcanoes in Iceland and their characteristics. The Catalogue forms a part of an integrated volcanic risk assessment project in Iceland GOSVÁ (commenced in 2012), as well as being part of the effort of FUTUREVOLC (2012-2016) on establishing an Icelandic volcano supersite. Volcanic activity in Iceland occurs on volcanic systems that usually comprise a central volcano and fissure swarm. Over 30 systems have been active during the Holocene (the time since the end of the last glaciation - approximately the last 11,500 years). In the last 50 years, over 20 eruptions have occurred in Iceland displaying very varied activity in terms of eruption styles, eruptive environments, eruptive products and the distribution lava and tephra. Although basaltic eruptions are most common, the majority of eruptions are explosive, not the least due to magma-water interaction in ice-covered volcanoes. Extensive research has taken place on Icelandic volcanism, and the results reported in numerous scientific papers and other publications. In 2010, the International Civil Aviation Organisation (ICAO) funded a 3 year project to collate the current state of knowledge and create a comprehensive catalogue readily available to decision makers, stakeholders and the general public. The work on the Catalogue began in 2011, and was then further supported by the Icelandic government and the EU through the FP7 project FUTUREVOLC. The Catalogue of Icelandic Volcanoes is a collaboration of the Icelandic Meteorological Office (the state volcano observatory), the Institute of Earth Sciences at the University of Iceland, and the Civil Protection Department of the National Commissioner of the Iceland Police, with contributions from a large number of specialists in Iceland and elsewhere. The Catalogue is built up of chapters with texts and various

  3. Dante's volcano

    NASA Astrophysics Data System (ADS)

    1994-09-01

    This video contains two segments: one a 0:01:50 spot and the other a 0:08:21 feature. Dante 2, an eight-legged walking machine, is shown during field trials as it explores the inner depths of an active volcano at Mount Spurr, Alaska. A NASA sponsored team at Carnegie Mellon University built Dante to withstand earth's harshest conditions, to deliver a science payload to the interior of a volcano, and to report on its journey to the floor of a volcano. Remotely controlled from 80-miles away, the robot explored the inner depths of the volcano and information from onboard video cameras and sensors was relayed via satellite to scientists in Anchorage. There, using a computer generated image, controllers tracked the robot's movement. Ultimately the robot team hopes to apply the technology to future planetary missions.

  4. Dante's Volcano

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This video contains two segments: one a 0:01:50 spot and the other a 0:08:21 feature. Dante 2, an eight-legged walking machine, is shown during field trials as it explores the inner depths of an active volcano at Mount Spurr, Alaska. A NASA sponsored team at Carnegie Mellon University built Dante to withstand earth's harshest conditions, to deliver a science payload to the interior of a volcano, and to report on its journey to the floor of a volcano. Remotely controlled from 80-miles away, the robot explored the inner depths of the volcano and information from onboard video cameras and sensors was relayed via satellite to scientists in Anchorage. There, using a computer generated image, controllers tracked the robot's movement. Ultimately the robot team hopes to apply the technology to future planetary missions.

  5. An olivine-free mantle source of Hawaiian shield basalts.

    PubMed

    Sobolev, Alexander V; Hofmann, Albrecht W; Sobolev, Stephan V; Nikogosian, Igor K

    2005-03-31

    More than 50 per cent of the Earth's upper mantle consists of olivine and it is generally thought that mantle-derived melts are generated in equilibrium with this mineral. Here, however, we show that the unusually high nickel and silicon contents of most parental Hawaiian magmas are inconsistent with a deep olivine-bearing source, because this mineral together with pyroxene buffers both nickel and silicon at lower levels. This can be resolved if the olivine of the mantle peridotite is consumed by reaction with melts derived from recycled oceanic crust, to form a secondary pyroxenitic source. Our modelling shows that more than half of Hawaiian magmas formed during the past 1 Myr came from this source. In addition, we estimate that the proportion of recycled (oceanic) crust varies from 30 per cent near the plume centre to insignificant levels at the plume edge. These results are also consistent with volcano volumes, magma volume flux and seismological observations. PMID:15800614

  6. 50-Ma initiation of Hawaiian-Emperor bend records major change in Pacific plate motion.

    PubMed

    Sharp, Warren D; Clague, David A

    2006-09-01

    The Hawaiian-Emperor bend has played a prominent yet controversial role in deciphering past Pacific plate motions and the tempo of plate motion change. New ages for volcanoes of the central and southern Emperor chain define large changes in volcanic migration rate with little associated change in the chain's trend, which suggests that the bend did not form by slowing of the Hawaiian hot spot. Initiation of the bend near Kimmei seamount about 50 million years ago (MA) was coincident with realignment of Pacific spreading centers and early magmatism in western Pacific arcs, consistent with formation of the bend by changed Pacific plate motion. PMID:16946069

  7. Native Hawaiian Education: Talking Story with Three Hawaiian Educators.

    ERIC Educational Resources Information Center

    Sing, David Kekaulike; Hunter, Alapa; Meyer, Manu Aluli

    1999-01-01

    Interview with three Hawaiian educators discusses Hawaiian educational philosophy focused on the importance of family and community and the relationary nature of knowledge; educational self-determination; the politics of promoting culture-based education; and the spiritual aspect of helping students pursue both a career and a destiny. (SV)

  8. Native Hawaiian Epistemology: Exploring Hawaiian Views of Knowledge.

    ERIC Educational Resources Information Center

    Meyer, Manu Aluli

    1998-01-01

    Empiricism is culturally defined in that culture shapes sensory knowledge. Hawaiians recognize senses beyond the five that Western culture recognizes. Hawaiians are not unempirical; they draw conclusions of their own from their empirical experiences. It is time to validate other ways of knowing, long suppressed in the U.S. educational system. (TD)

  9. Hawaiian Island Archipelago

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The entire Hawaiian Island Archipelago (21.5N, 158.0W) is seen in this single view. The islands are a favorite international resort and tourist attraction drawing visitors from all over the world to enjoy the tropical climate, year round beaches and lush island flora. Being volcanic in origin, the islands' offer a rugged landscape and on the big island of Hawaii, there is still an occasional volcanic eruption of lava flows and steam vents.

  10. Decreasing Magmatic Footprints of Individual Volcanos in a Waning Basaltic Field

    SciTech Connect

    G.A> Valentine; F.V. Perry

    2006-06-06

    The distribution and characteristics of individual basaltic volcanoes in the waning Southwestern Nevada Volcanic Field provide insight into the changing physical nature of magmatism and the controls on volcano location. During Pliocene-Pleistocene times the volumes of individual volcanoes have decreased by more than one order of magnitude, as have fissure lengths and inferred lava effusion rates. Eruptions evolved from Hawaiian-style eruptions with extensive lavas to eruptions characterized by small pulses of lava and Strombolian to violent Strombolian mechanisms. These trends indicate progressively decreasing partial melting and length scales, or magmatic footprints, of mantle source zones for individual volcanoes. The location of each volcano is determined by the location of its magmatic footprint at depth, and only by shallow structural and topographic features that are within that footprint. The locations of future volcanoes in a waning system are less likely to be determined by large-scale topography or structures than were older, larger volume volcanoes.

  11. The isotope systematics of a juvenile intraplate volcano: Pb, Nd, and Sr isotope ratios of basalts from Loihi Seamount, Hawaii

    USGS Publications Warehouse

    Staudigel, H.; Zindler, A.; Hart, S.R.; Leslie, T.; Chen, C.-Y.; Clague, D.

    1984-01-01

    Sr, Nd, and Pb isotope ratios for a representative suite of 15 basanites, alkali basalts, transitional basalts and tholeiites from Loihi Seamount, Hawaii, display unusually large variations for a single volcano, but lie within known ranges for Hawaiian basalts. Nd isotope ratios in alkali basalts show the largest relative variation (0.51291-0.51305), and include the nearly constant tholeiite value ( ??? 0.51297). Pb isotope ratios show similarly large ranges for tholeiites and alkali basalts and continue Tatsumoto's [31] "Loa" trend towards higher 206Pb 204Pb ratios, resulting in a substantial overlap with the "Kea" trend. 206Pb 204Pb ratios for Loihi and other volcanoes along the Loa and Kea trends [31] are observed to correlate with the age of the underlying lithosphere suggesting lithosphere involvement in the formation of Hawaiian tholeiites. Loihi lavas display no correlation of Nd, Sr, or Pb isotope ratios with major element compositions or eruptive age, in contrast with observations of some other Hawaiian volcanoes [38]. Isotope data for Loihi, as well as average values for Hawaiian volcanoes, are not adequately explained by previously proposed two-end-member models; new models for the origin and the development of Hawaiian volcanoes must include mixing of at least three geochemically distinct source regions and allow for the involvement of heterogeneous oceanic lithosphere. ?? 1984.

  12. Asthma and Native Hawaiians/Pacific Islanders

    MedlinePlus

    ... Other Pacific Islander > Asthma Asthma and Native Hawaiians/Pacific Islanders Native Hawaiians/Pacific Islanders are 70 percent more likely to have ... being told they had asthma, 2014 Native Hawaiian/Pacific Islander Non-Hispanic White Native Hawaiian/Pacific Islander/ ...

  13. From Purgatory to Paradise: The Volatile Life of Hawaiian Magma

    NASA Astrophysics Data System (ADS)

    Marske, J. P.; Hauri, E. H.; Trusdell, F.; Garcia, M. O.; Pietruszka, A. J.

    2014-12-01

    Variations in radiogenic isotope ratios and magmatic volatile abundances (e.g., CO2 or H2O) in Hawaiian lavas reveal key processes within a deep-seated mantle plume (e.g., mantle heterogeneity, source lithology, partial melting, and magma degassing). Shield-stage Hawaiian lavas likely originate from a mixed plume source containing peridotite and recycled oceanic crust (pyroxenite) based on variations of radiogenic isotopes (e.g., 206Pb/204Pb). The mantle source region may also be heterogeneous with respect to volatile contents, yet the link between pre-eruptive volatile budgets and mantle source lithology in the Hawaiian plume is poorly constrained due to shallow magmatic degassing and mixing. Here, we use a novel approach to investigate this link using Os isotopic ratios, and major, trace, and volatile elements in olivines and mineral-hosted melt inclusions (MIs) from 34 samples from Koolau, Mauna Loa, Hualalai, Kilauea, and Loihi. These samples reveal a strong correlation between volatile contents in olivine-hosted MIs and Os isotopes of the same olivines, in which lavas that originated from greater proportions of recycled oceanic crust/pyroxenite (i.e. 'Loa' chain volcanoes: Koolau, Mauna Loa, Loihi) have MIs with the lower H2O, F, and Cl contents than 'Kea' chain volcanoes (i.e. Kilauea) that contain greater amounts of peridotite in the source region. No correlation is observed with CO2 or S. The depletion of fluid-mobile elements (H2O, F, and Cl) in 'Loa' chain volcanoes indicates ancient dehydrated oceanic crust is a plume component that controls much of the compositional variation of Hawaiian Volcanoes. The presence of dehydrated recycled mafic material in the plume source suggests that subduction effectively devolatilizes the mafic part of the oceanic crust. These results are similar to the observed shifts in H2O/Ce ratios near the Easter and Samoan hotspots [1,2]. Thus, it appears that multiple hotspots may record relative H2O depletions and possibly other

  14. Spreading Volcanoes

    NASA Astrophysics Data System (ADS)

    Borgia, Andrea; Delaney, Paul T.; Denlinger, Roger P.

    As volcanoes grow, they become ever heavier. Unlike mountains exhumed by erosion of rocks that generally were lithified at depth, volcanoes typically are built of poorly consolidated rocks that may be further weakened by hydrothermal alteration. The substrates upon which volcanoes rest, moreover, are often sediments lithified by no more than the weight of the volcanic overburden. It is not surprising, therefore, that volcanic deformation includes-and in the long term is often dominated by-spreading motions that translate subsidence near volcanic summits to outward horizontal displacements around the flanks and peripheries. We review examples of volcanic spreading and go on to derive approximate expressions for the time volcanoes require to deform by spreading on weak substrates. We also demonstrate that shear stresses that drive low-angle thrust faulting from beneath volcanic constructs have maxima at volcanic peripheries, just where such faults are seen to emerge. Finally, we establish a theoretical basis for experimentally derived scalings that delineate volcanoes that spread from those that do not.

  15. Spreading volcanoes

    USGS Publications Warehouse

    Borgia, A.; Delaney, P.T.; Denlinger, R.P.

    2000-01-01

    As volcanoes grow, they become ever heavier. Unlike mountains exhumed by erosion of rocks that generally were lithified at depth, volcanoes typically are built of poorly consolidated rocks that may be further weakened by hydrothermal alteration. The substrates upon which volcanoes rest, moreover, are often sediments lithified by no more than the weight of the volcanic overburden. It is not surprising, therefore, that volcanic deformation includes-and in the long term is often dominated by-spreading motions that translate subsidence near volcanic summits to outward horizontal displacements around the flanks and peripheries. We review examples of volcanic spreading and go on to derive approximate expressions for the time volcanoes require to deform by spreading on weak substrates. We also demonstrate that shear stresses that drive low-angle thrust faulting from beneath volcanic constructs have maxima at volcanic peripheries, just where such faults are seen to emerge. Finally, we establish a theoretical basis for experimentally derived scalings that delineate volcanoes that spread from those that do not.

  16. Culture Studies: Hawaiian Studies Project.

    ERIC Educational Resources Information Center

    Hazama, Dorothy, Ed.

    Reports and materials from the Hawaiian Studies Project are presented. The document, designed for elementary school teachers contains two major sections. The first section describes the planning phase of the project, the Summer Institute for Hawaiian Culture Studies (1976) and the follow-up workshops and consultant help (1976-77). The appendix to…

  17. Catalogue of Icelandic volcanoes

    NASA Astrophysics Data System (ADS)

    Ilyinskaya, Evgenia; Larsen, Gudrun; Vogfjörd, Kristin; Tumi Gudmundsson, Magnus; Jonsson, Trausti; Oddsson, Björn; Reynisson, Vidir; Barsotti, Sara; Karlsdottir, Sigrun

    2015-04-01

    Volcanic activity in Iceland occurs on volcanic systems that usually comprise a central volcano and fissure swarm. Over 30 systems have been active during the Holocene. In the last 100 years, over 30 eruptions have occurred displaying very varied activity in terms of eruption styles, eruptive environments, eruptive products and their distribution. Although basaltic eruptions are most common, the majority of eruptions are explosive, not the least due to magma-water interaction in ice-covered volcanoes. Extensive research has taken place on Icelandic volcanism, and the results reported in scientific papers and other publications. In 2010, the International Civil Aviation Organisation funded a 3 year project to collate the current state of knowledge and create a comprehensive catalogue readily available to decision makers, stakeholders and the general public. The work on the Catalogue began in 2011, and was then further supported by the Icelandic government and the EU. The Catalogue forms a part of an integrated volcanic risk assessment project in Iceland (commenced in 2012), and the EU FP7 project FUTUREVOLC (2012-2016), establishing an Icelandic volcano Supersite. The Catalogue is a collaborative effort between the Icelandic Meteorological Office (the state volcano observatory), the Institute of Earth Sciences at the University of Iceland, and the Icelandic Civil Protection, with contributions from a large number of specialists in Iceland and elsewhere. The catalogue is scheduled for opening in the first half of 2015 and once completed, it will be an official publication intended to serve as an accurate and up to date source of information about active volcanoes in Iceland and their characteristics. The Catalogue is an open web resource in English and is composed of individual chapters on each of the volcanic systems. The chapters include information on the geology and structure of the volcano; the eruption history, pattern and products; the known precursory signals

  18. Age, geochemistry and melt flux variations for the Hawaiian Ridge

    NASA Astrophysics Data System (ADS)

    Garcia, M. O.; Weis, D. A.; Greene, A. R.; Wessel, P.; Harrison, L.; Tree, J.

    2012-12-01

    The Hawaiian Ridge portion of the Hawaiian-Emperor Chain, the classic example of a mantle plume produced linear island chain, is 6000 km in length, active for 80+ Myr, and tectonically simple. Despite its importance to our understanding of mantle plumes and Cenozoic plate motion, there are large data gaps for the age and geochemistry of lavas from volcanoes along the Hawaiian Ridge (HR) portion of the Chain. Ages: Only volcanoes near the Hawaiian-Emperor bend and in the Hawaiian Islands have modern Ar-Ar ages, leaving a gap of 2000 km where existing K-Ar ages suggest synchronous volcanism over a 1000 km section. Geochemistry: There is a 2900 km gap in high precision geochemical data for the HR. The Emperor Seamounts (>45 Ma) have better regional coverage of recent isotopic data and show a correlation of Sr isotope composition with age of the underlying oceanic lithosphere (Regelous et al. 2003). The HR has an unexplained, exponential increase in magma flux over the last 30 Myr (Vidal & Bonneville 2004). Potential explanations for the increase in magma flux include: changes in melting conditions (temperature and/or pressure), change in source fertility related to rock type (pyroxenite vs. peridotite) or previous melting history, and/or changes in plate stresses resulting from reconfigurations of plate motion. Our new multi-disciplinary project will: 1) Determine 40Ar/39Ar ages, and whole-rock major, trace element, and Pb, Sr, Nd and Hf isotopic geochemistry for lavas from 20 volcanoes spanning ~2150 km of the HR (NW of the Hawaiian Islands). 2) Use the geochemical data to determine the long-term evolution of the Hawaiian mantle plume source components and to evaluate whether there have been systematic variations in mantle potential temperature, melting pressure, and/or source lithology during the creation of the HR. If so, are they responsible for the 300% variation in melt production along the Ridge? Also, we will assess when the more fertile Loa source component

  19. Koolau Revisited: Vertical, Short-Scale Heterogeneities in the Hawaiian Plume

    NASA Astrophysics Data System (ADS)

    Bizimis, M.; Salters, V. J.; Huang, S.

    2008-12-01

    The subaerial Makapuu stage lavas on the Koolau volcano define the isotopically enriched endmember of the Hawaiian lavas. Their compositions are central to the debate for the presence of recycled oceanic crust and the scales of heterogeneity in the Hawaiian plume. Despite their importance, however, relatively few isotope analyses exist. Here we report new high precision isotope data (Hf-Nd-Sr-Pb) and major / trace element compositions on newly collected samples from the Makapuu Head, Koolau. The new data extends to more unradiogenic isotopic compositions (ɛNd= -1.3 - 3.0) than previously reported in Hawaiian lavas. In ɛHf - ɛNd space the Makapuu lavas define a shallower slope (0.75, r2 = 0.92) than all other Hawaiian lavas, while in Sr-Nd isotope space they define the steepest slope. On a 208Pb/204Pb vs. ɛNd plot, these lavas define a well correlated negative array that is best explained by the presence of a depleted component (low 208Pb/204Pb - high ɛNd) in the Makapuu source, similar to the isotopic characteristics of pyroxenite xenoliths and rejuvenated stage lavas from the Oahu and Kaula island. When plotted on any combination of 3-isotope systems (3D plots) the Makapuu and the stratigraphically lower KSDP lavas, show well defined but non-intersecting binary arrays. This feature cannot be explained by any two or three- component mixing, and requires that the plume source changed significantly and abruptly during the shield stage volcanism at Koolau. A reexamination of available high precision isotope data from other Hawaiian volcanoes further shows that each shield volcano defines a unique linear array (implying binary mixing) in all 3D isotope plot combinations that involve Hf-Nd-Sr-Pb isotopes. Note that, in general, there is very little overlap between the individual arrays. This requires that only a unique set of two end members, responsible for the isotopic variability of each volcano, is available during the eruption of that particular volcano. This

  20. Chilean Volcanoes

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On the border between Chile and the Catamarca province of Argentina lies a vast field of currently dormant volcanoes. Over time, these volcanoes have laid down a crust of magma roughly 2 miles (3.5 km) thick. It is tinged with a patina of various colors that can indicate both the age and mineral content of the original lava flows. This image was acquired by Landsat 7's Enhanced Thematic Mapper plus (ETM+) sensor on May 15, 1999. This is a false-color composite image made using shortwave infrared, infrared, and green wavelengths. Image provided by the USGS EROS Data Center Satellite Systems Branch

  1. Digital data set of volcano hazards for active Cascade Volcanos, Washington

    USGS Publications Warehouse

    Schilling, Steve P.

    1996-01-01

    Scientists at the Cascade Volcano Observatory have completed hazard assessments for the five active volcanos in Washington. The five studies included Mount Adams (Scott and others, 1995), Mount Baker (Gardner and others, 1995), Glacier Peak (Waitt and others, 1995), Mount Rainier (Hoblitt and others, 1995) and Mount St. Helens (Wolfe and Pierson, 1995). Twenty Geographic Information System (GIS) data sets have been created that represent the hazard information from the assessments. The twenty data sets have individual Open File part numbers and titles

  2. Eruption rate, area, and length relationships for some Hawaiian lava flows

    NASA Technical Reports Server (NTRS)

    Pieri, David C.; Baloga, Stephen M.

    1986-01-01

    The relationships between the morphological parameters of lava flows and the process parameters of lava composition, eruption rate, and eruption temperature were investigated using literature data on Hawaiian lava flows. Two simple models for lava flow heat loss by Stefan-Boltzmann radiation were employed to derive eruption rate versus planimetric area relationship. For the Hawaiian basaltic flows, the eruption rate is highly correlated with the planimetric area. Moreover, this observed correlation is superior to those from other obvious combinations of eruption rate and flow dimensions. The correlations obtained on the basis of the two theoretical models, suggest that the surface of the Hawaiian flows radiates at an effective temperature much less than the inner parts of the flowing lava, which is in agreement with field observations. The data also indicate that the eruption rate versus planimetric area correlations can be markedly degraded when data from different vents, volcanoes, and epochs are combined.

  3. Iceland Volcano

    Atmospheric Science Data Center

    2013-04-23

    ... of which are so thick that they block the penetration of light from CALIPSO's lidar to the surface. The yellow layer near the surface over France is believed to be primarily air pollution, but could also contain ash from the volcano. Highlighting its ...

  4. Amateur Observatories

    NASA Astrophysics Data System (ADS)

    Gavin, M.

    1997-08-01

    A roundup of amateur observatories in this country and abroad, with construction and location details, concluding with a detailed description and architect's drawing of the author's own observatory at Worcester Park, Surrey. The text of the 1996 Presidential Address to the British Astronomical Association.

  5. Astronomical observatories

    NASA Technical Reports Server (NTRS)

    Ponomarev, D. N.

    1983-01-01

    The layout and equipment of astronomical observatories, the oldest scientific institutions of human society are discussed. The example of leading observatories of the USSR allows the reader to familiarize himself with both their modern counterparts, as well as the goals and problems on which astronomers are presently working.

  6. Ondrejov Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Ondrejov Observatory is located 20 miles from Prague in the village of Ondrejov. It was established in 1898 as a private observatory and donated to the state of Czechoslovakia in 1928. Since 1953 it has been part of the Astronomical Institute, Academy of Sciences of the Czech Republic; there are 40 astronomers....

  7. Experimental Melting Study of Basalt-Peridotite Hybrid Source: Melting model of Hawaiian plume

    NASA Astrophysics Data System (ADS)

    Takahashi, E.; Gao, S.

    2015-12-01

    Eclogite component entrained in ascending plume is considered to be essentially important in producing flood basalts (e.g., Columbia River basalt, Takahashi et al., 1998 EPSL), alkalic OIBs (e.g., Kogiso et al.,2003), ferro-picrites (Tuff et al.,2005) and Hawaiian shield lavas (e.g., Hauri, 1996; Takahashi & Nakajima, 2002, Sobolev et al.,2005). Size of the entrained eclogite, which controls the reaction rates with ambient peridotite, however, is very difficult to constrain using geophysical observation. Among Hawaiian shield volcanoes, Koolau is the most enriched end-member in eclogite component (Frey et al, 1994). Reconstruction of Koolau volcano based on submarine study on Nuuanu landslide (AGU Monograph vol.128, 2002, Takahashi Garcia Lipman eds.) revealed that silica-rich tholeiite appeared only at the last stage (Makapuu stage) of Koolau volcano. Chemical compositions of lavas as well as isotopes change abruptly and coherently across a horizon (Shinozaki et al. and Tanaka et al. ibid.). Based on these observation, Takahashi & Nakajima (2002 ibid) proposed that the Makapuu stage lava in Koolau volcano was supplied from a single large eclogite block. In order to study melting process in Hawaiian plume, high-pressure melting experiments were carried out under dry and hydrous conditions with layered eclogite/peridotite starting materials. Detail of our experiments will be given by Gao et al (2015 AGU). Combined previous field observation with new set of experiments, we propose that variation in SiO2 among Hawaiian tholeiites represent varying degree of wall-rock interaction between eclogite and ambient peridotite. Makapuu stage lavas in Koolau volcano represents eclogite partial melts formed at ~3 GPa with various amount of xenocrystic olivines derived from Pacific plate. In other words, we propose that "primary magma" in the melting column of Hawaiian plume ranges from basaltic andesite to ferro-picrite depending on the lithology of the source. Solidus of

  8. The Lithium Isotopic Signature of Hawaiian Basalts

    NASA Astrophysics Data System (ADS)

    Harrison, L.; Weis, D.; Hanano, D. W.

    2013-12-01

    Recycling of oceanic crust and sediment is a common mechanism to account for the presence of chemical heterogeneities observed in oceanic island basalts (OIBs). On Hawai';i, a mantle plume-sourced OIB with a high mass flux, sampling of deep mantle heterogeneities accounts for the presence of two unique geochemical and geographical trends called the Loa and Kea trends. The Loa trend overlaps the Pacific large low shear velocity province and is distinctly more enriched [1] than the Kea trend with average Pacific mantle compositions [2]. Because of the sizeable fractionation of lithium isotopes in low temperature environments, lithium serves as a tracer for the presence of recycled material in OIB sources, including Hawai'i. In this study, we analyzed 87 samples of Hawaiian basalt from the pre-shield, shield, post-shield, and rejuvenated volcanic stages and 10 samples of altered oceanic crust from ODP Site 843 for lithium isotopes using a multi-collector inductively coupled plasma mass spectrometer. Correlations of lithium isotopes with the radiogenic isotopes Pb, Hf, Nd, and Sr indicate lithium isotopes may be used to trace components in mantle plumes such as Hawai';i. The measured range of lithium isotopes for shield stage lavas is δ7Li = 1.8 - 5.7‰ and for post-shield lavas is δ7Li = 0.8 - 4.7‰. Pre-shield stage lavas (Lo'ihi volcano only) and rejuvenated lavas are the least and most homogeneous volcanic stages, respectively, in lithium isotopes. The Loa and Kea geochemical trends have different lithium isotopic signatures, with Loa trend shield volcanoes exhibiting lighter lithium isotopic signatures (δ7Li = 3.5‰ [N=43]) than Kea trend shield volcanoes (δ7Li = 4.0‰ [N=31]) [3]. Similarly, post-shield lavas have systematically lighter δ7Li than shield lavas. The presence of systematic differences in lithium isotopic signatures may indicate: 1) the sampling of distinct components in the deep source, to account for variations between Kea and Loa trend

  9. Restoration of Native Hawaiian Dryland Forest at Auwahi, Maui

    USGS Publications Warehouse

    Medieros, Arthur C.; vonAllmen, Erica

    2006-01-01

    BACKGROUND The powerful volcanoes that formed the high islands of the Hawaiian archipelago block northeasterly tradewinds, creating wet, windward rain forests and much drier, leeward forests. Dryland forests in Hawai'i receive only about 20 inches of rain a year. However, the trees in these forests intercept fog and increase ground moisture levels, thereby enabling these seemingly inhospitable habitats to support a diverse assemblage of plants and animals. Dryland forests of the Hawaiian Islands, like those worldwide, have been heavily impacted by humans both directly and indirectly. Less than 10% of Hawai'i's original dryland forest habitat remains. These forests have been severely impacted by urban development, ranching and agriculture, and invasive species. In particular, browsing animals and alien grasses have caused significant damage. Feral ungulates, including goats, sheep, cattle, and pigs, consume sensitive plants. Alien grasses have become dominant in the understory in many dryland habitats. In addition, these introduced grasses are fire-adapted and have increased the incidence of wildfire in these ecosystems. Native Hawaiian plants did not evolve with frequent fires or mammalian herbivores and typically do not survive well under these pressures.

  10. Mating asymmetry and the direction of evolution in the Hawaiian cricket genus Laupala.

    PubMed

    Shaw, K L; Lugo, E

    2001-03-01

    Based on studies from native Hawaiian Drosophila, a model was proposed to explain sexual isolation and mating asymmetry, from which one could potentially infer the 'direction of evolution'. We examined sexual isolation between allopatric cricket species of the genus Laupala, another endemic Hawaiian insect with an elaborate mating system, to begin to explore the nature of sexual isolation and mating asymmetry in closely related Hawaiian organisms. We studied sexual isolation and mating asymmetry in two contrasts. First, an inter-island comparison, including L. makaio from the older island of Maui and L. paranigra from the younger island of Hawaii, and second, an intra-island (Hawaii) comparison, including L. nigra from the older volcano of Mauna Kea and L. paranigra with a primary distribution on the younger volcanoes of Mauna Loa and Kilauea. We used a 'no-choice' experimental design, pairing individual males and females in homospecific or heterospecific combinations. Several behavioural aspects of courtship (proportion of male singing, latency to male singing, production of spermatophores and courtship initiation speed) were quantified as well as the success or failure of matings. We demonstrate asymmetry in sexual isolation between reciprocal combinations of L. makaio and L. paranigra. This result is examined in light of the differences in courtship behaviour manifest in the experiments with these two species. We did not find evidence of asymmetry in sexual isolation between L. nigra and L. paranigra, although differences in courtship initiation speed were evident between reciprocal combinations of these two species. In addition to the geological argument that species on older islands and older volcanoes give rise to species on younger islands and younger volcanoes, we discuss phylogenetic evidence consistent with these biogeographic hypotheses of relationships among the focal taxa. The patterns of asymmetrical sexual isolation and mating asymmetry are

  11. Calculated geochronology and stress field orientations along the Hawaiian chain

    USGS Publications Warehouse

    Jackson, E.D.; Shaw, H.R.; Bargar, K.E.

    1975-01-01

    A new method has been discovered for calculating ages of the main shield building stages of volcanoes along the Hawaiian chain from Kilauea to the Hawaiian-Emperor bend. The method is based on a graphical technique for hypothetical subtraction of distance intervals that theoretically represent regions of simultaneous volcanism along adjacent or nearly en-echelon loci of volcanism. Distances along the chain, measured from Kilauea, when progressively foreshortened by the distances of hypothetical "collapse" and plotted versus existing age data are found to give linear age-distance relationships. A calibration graph is presented that agrees closely with the measured ages in 17 of the 20 existing dated volcanoes. The criterion for simultaneous activity on different loci is based on the concept of equal azimuths of synchronous volcanic propagation within coeval segments of the chain. This is the predicted relationship when magmatic fluids inject the lithosphere along directions normal to a nearly horizontal least principal stress. It appears that the Pacific plate has been subjected to oscillatory, but principally clockwise, rotations of horizontal stress components during the last 40 m.y. ?? 1975.

  12. The Kea- and Loa- trends and magma genesis in the Hawaiian mantle plume

    NASA Astrophysics Data System (ADS)

    Ren, Z.; Ingle, S.; Takahashi, E.; Hirano, N.; Hirata, T.; Tatsumi, Y.

    2005-12-01

    The Hawaiian-Emperor volcanic island and seamount chain has been created by a hot mantle plume located beneath the Pacific lithosphere. The shield volcanoes of the Hawaiian islands are distributed in two curvilinear parallel trends, termed _eKea_Eand _eLoa_E(Jackson et al., 1972). Lavas from these two trends are commonly believed to have different geochemical characteristics (Tatsumoto, 1978; Frey et al., 1994; Hauri, 1996; Lassiter et al., 1996; Abouchami et al., 2005). The Kea- and Loa- geochemical trends within the Hawaiian shield volcanoes have been interpreted to reflect melting above a compositionally concentrically zoned (Hauri, 1996; Lassiter et al., 1996; Kurz et al., 1996; DePaolo et al., 2001) or compositionally left-right asymmetrically zoned mantle plume (Abouchami et al., 2005). In order to evaluate the homogeneity of the mantle plume source sampled by the Kea- and Loa- trends, we analyzed major and trace element compositions of olivine-hosted melt inclusions from Hawaiian shield lavas, using EPMA and Laser ICP-MS. We selected lava samples form submarine Hana Ridge, Haleakala volcano (Kea trend) and submarine exposures of the Makapuu stage, Koolau volcano (Loa trend), respectively. We found both Kea- and Loa-like major and trace element compositions from olivine-hosted melt inclusions in individual, shield-stage Hawaiian volcanoes, even within single rock samples. We infer from these data that although one mantle source component may dominate a single lava flow, the two (or more) mantle source components are consistently represented to some extent in all lavas, regardless of the specific geographic location of the volcano. On the basis of whole rock geochemical characteristics (Ren et al., J. pet., 2004; 2005) combined with the melt inclusion data (Ren et al., 2005, Nature), we propose a Hawaiian mantle plume characterized by more random heterogeneity than would be present in a simple compositionally zoned mantle plume. The geochemical differences in

  13. Smithsonian Volcano Data on Google Earth

    NASA Astrophysics Data System (ADS)

    Venzke, E.; Siebert, L.; Luhr, J. F.

    2006-12-01

    Interactive global satellite imagery datasets such as hosted by Google Earth provide a dynamic platform for educational outreach in the Earth Sciences. Users with widely varied backgrounds can easily view geologic features on a global-to-local scale, giving access to educational background on individual geologic features or events such as volcanoes and earthquakes. The Smithsonian Institution's Global Volcanism Program (GVP) volcano data became available as a Google Earth layer on 11 June 2006. Locations for about 1550 volcanoes with known or possible Holocene activity are shown as red triangles with associated volcano names that appear when zooming in to a regional-scale view. Clicking on a triangle opens an informational balloon that displays a photo, geographic data, and a brief paragraph summarizing the volcano's geologic history. The balloon contains links to a larger version of the photo with credits and a caption and to more detailed information on the volcano, including eruption chronologies, from the GVP website. Links to USGS and international volcano observatories or other websites focusing on regional volcanoes are also provided, giving the user ready access to a broad spectrum of volcano data. Updates to the GVP volcano layer will be provided to Google Earth. A downloadable file with the volcanoes organized regionally is also available directly from the GVP website (www.volcano.si.edu) and provides the most current volcano data set. Limitations of the implied accuracy of spacially plotted data at high zoom levels are also apparent using platforms such as Google Earth. Real and apparent mismatches between plotted locations and the summits of some volcanoes seen in Google Earth satellite imagery occur for reasons including data precision (deg/min vs. deg/min/sec) and the GVP convention of plotting the center-point of large volcanic fields, which often do not correspond to specific volcanic vents. A more fundamental problem originates from the fact that

  14. Seismic tomography of compressional wave attenuation structure for Kı¯lauea Volcano, Hawai`i

    NASA Astrophysics Data System (ADS)

    Lin, Guoqing; Shearer, Peter M.; Amelung, Falk; Okubo, Paul G.

    2015-04-01

    We present a frequency-independent three-dimensional (3-D) compressional wave attenuation model (indicated by the reciprocal of quality factor Qp) for Kı¯lauea Volcano in Hawai`i. We apply the simul2000 tomographic algorithm to the attenuation operator t* values for the inversion of Qp perturbations through a recent 3-D seismic velocity model and earthquake location catalog. The t* values are measured from amplitude spectra of 26708 P wave arrivals of 1036 events recorded by 61 seismic stations at the Hawaiian Volcanology Observatory. The 3-D Qp model has a uniform horizontal grid spacing of 3 km, and the vertical node intervals range between 2 and 10 km down to 35 km depth. In general, the resolved Qp values increase with depth, and there is a correlation between seismic activity and low-Qp values. The area beneath the summit caldera is dominated by low-Qp anomalies throughout the entire resolved depth range. The Southwest Rift Zone and the East Rift Zone exhibit very high Qp values at about 9 km depth, whereas the shallow depths are characterized with low-Qp anomalies comparable with those in the summit area. The seismic zones and fault systems generally display relatively high Qp values relative to the summit. The newly developed Qp model provides an important complement to the existing velocity models for exploring the magmatic system and evaluating and interpreting intrinsic physical properties of the rocks in the study area.

  15. Santorini Volcano

    USGS Publications Warehouse

    Druitt, T.H.; Edwards, L.; Mellors, R.M.; Pyle, D.M.; Sparks, R.S.J.; Lanphere, M.; Davies, M.; Barreirio, B.

    1999-01-01

    Santorini is one of the most spectacular caldera volcanoes in the world. It has been the focus of significant scientific and scholastic interest because of the great Bronze Age explosive eruption that buried the Minoan town of Akrotiri. Santorini is still active. It has been dormant since 1950, but there have been several substantial historic eruptions. Because of this potential risk to life, both for the indigenous population and for the large number of tourists who visit it, Santorini has been designated one of five European Laboratory Volcanoes by the European Commission. Santorini has long fascinated geologists, with some important early work on volcanoes being conducted there. Since 1980, research groups at Cambridge University, and later at the University of Bristol and Blaise Pascal University in Clermont-Ferrand, have collected a large amount of data on the stratigraphy, geochemistry, geochronology and petrology of the volcanics. The volcanic field has been remapped at a scale of 1:10 000. A remarkable picture of cyclic volcanic activity and magmatic evolution has emerged from this work. Much of this work has remained unpublished until now. This Memoir synthesizes for the first time all the data from the Cambridge/Bristol/Clermont groups, and integrates published data from other research groups. It provides the latest interpretation of the tectonic and magmatic evolution of Santorini. It is accompanied by the new 1:10 000 full-colour geological map of the island.

  16. Eruption of Alaska volcano breaks historic pattern

    USGS Publications Warehouse

    Larsen, Jessica; Neal, Christina A.; Webley, Peter; Freymueller, Jeff; Haney, Matthew; McNutt, Stephen; Schneider, David; Prejean, Stephanie; Schaefer, Janet; Wessels, Rick L.

    2009-01-01

    In the late morning of 12 July 2008, the Alaska Volcano Observatory (AVO) received an unexpected call from the U.S. Coast Guard, reporting an explosive volcanic eruption in the central Aleutians in the vicinity of Okmok volcano, a relatively young (~2000-year-old) caldera. The Coast Guard had received an emergency call requesting assistance from a family living at a cattle ranch on the flanks of the volcano, who reported loud "thunder," lightning, and noontime darkness due to ashfall. AVO staff immediately confirmed the report by observing a strong eruption signal recorded on the Okmok seismic network and the presence of a large dark ash cloud above Okmok in satellite imagery. Within 5 minutes of the call, AVO declared the volcano at aviation code red, signifying that a highly explosive, ash-rich eruption was under way.

  17. Taosi Observatory

    NASA Astrophysics Data System (ADS)

    Sun, Xiaochun

    Taosi observatory is the remains of a structure discovered at the later Neolithic Taosi site located in Xiangfen County, Shanxi Province, in north-central China. The structure is a walled enclosure on a raised platform. Only rammed-earth foundations of the structure remained. Archaeoastronomical studies suggest that this structure functioned as an astronomical observatory. Historical circumstantial evidence suggests that it was probably related to the legendary kingdom of Yao from the twenty-first century BC.

  18. Native Hawaiian Views on Biobanking

    PubMed Central

    Tauali‘i, Maile; Davis, Elise Leimomi; Braun, Kathryn L.; Tsark, JoAnn Umilani; Brown, Ngiare; Hudson, Maui; Burke, Wylie

    2014-01-01

    Genomic science represents a new frontier for health research and will provide important tools for personalizing health care. Biospecimen-based research is an important mechanism for expanding the genomic research capacity, and indigenous peoples are a target of biospecimen-based research due to their relative isolation and the potential to discover rare or unique genotypes. This study explored Native Hawaiian perceptions of and expectations for biobanking. Ten discussion groups were conducted with Native Hawaiians (N=92), who first heard a presentation on biobanking. Six themes emerged: 1) biobank governance by the Native Hawaiian community, 2) research transparency, 3) priority of Native Hawaiian health concerns, 4) leadership by Native Hawaiian scientists accountable to community, 5) re-consenting each time specimen is used, and 6) education of Native Hawaiian communities. Considered together, these findings suggest that biobanking should be guided by six principles that comprise “G.R.E.A.T. Research:” (Governance, Re-consent, Education, Accountability, Transparency, Research priorities). These recommendations are being shared with biobanking facilities in Hawai‘i as they develop protocols for biobanking participation, governance, and education. These findings also inform researchers and indigenous peoples throughout the world who are working on biobanking and genomic research initiatives in their nations. PMID:24683042

  19. Instrumentation Recommendations for Volcano Monitoring at U.S. Volcanoes Under the National Volcano Early Warning System

    USGS Publications Warehouse

    Moran, Seth C.; Freymueller, Jeff T.; LaHusen, Richard G.; McGee, Kenneth A.; Poland, Michael P.; Power, John A.; Schmidt, David A.; Schneider, David J.; Stephens, George; Werner, Cynthia A.; White, Randall A.

    2008-01-01

    As magma moves toward the surface, it interacts with anything in its path: hydrothermal systems, cooling magma bodies from previous eruptions, and (or) the surrounding 'country rock'. Magma also undergoes significant changes in its physical properties as pressure and temperature conditions change along its path. These interactions and changes lead to a range of geophysical and geochemical phenomena. The goal of volcano monitoring is to detect and correctly interpret such phenomena in order to provide early and accurate warnings of impending eruptions. Given the well-documented hazards posed by volcanoes to both ground-based populations (for example, Blong, 1984; Scott, 1989) and aviation (for example, Neal and others, 1997; Miller and Casadevall, 2000), volcano monitoring is critical for public safety and hazard mitigation. Only with adequate monitoring systems in place can volcano observatories provide accurate and timely forecasts and alerts of possible eruptive activity. At most U.S. volcanoes, observatories traditionally have employed a two-component approach to volcano monitoring: (1) install instrumentation sufficient to detect unrest at volcanic systems likely to erupt in the not-too-distant future; and (2) once unrest is detected, install any instrumentation needed for eruption prediction and monitoring. This reactive approach is problematic, however, for two reasons. 1. At many volcanoes, rapid installation of new ground-1. based instruments is difficult or impossible. Factors that complicate rapid response include (a) eruptions that are preceded by short (hours to days) precursory sequences of geophysical and (or) geochemical activity, as occurred at Mount Redoubt (Alaska) in 1989 (24 hours), Anatahan (Mariana Islands) in 2003 (6 hours), and Mount St. Helens (Washington) in 1980 and 2004 (7 and 8 days, respectively); (b) inclement weather conditions, which may prohibit installation of new equipment for days, weeks, or even months, particularly at

  20. MATLAB tools for improved characterization and quantification of volcanic incandescence in Webcam imagery; applications at Kilauea Volcano, Hawai'i

    USGS Publications Warehouse

    Patrick, Matthew R.; Kauahikaua, James P.; Antolik, Loren

    2010-01-01

    Webcams are now standard tools for volcano monitoring and are used at observatories in Alaska, the Cascades, Kamchatka, Hawai'i, Italy, and Japan, among other locations. Webcam images allow invaluable documentation of activity and provide a powerful comparative tool for interpreting other monitoring datastreams, such as seismicity and deformation. Automated image processing can improve the time efficiency and rigor of Webcam image interpretation, and potentially extract more information on eruptive activity. For instance, Lovick and others (2008) provided a suite of processing tools that performed such tasks as noise reduction, eliminating uninteresting images from an image collection, and detecting incandescence, with an application to dome activity at Mount St. Helens during 2007. In this paper, we present two very simple automated approaches for improved characterization and quantification of volcanic incandescence in Webcam images at Kilauea Volcano, Hawai`i. The techniques are implemented in MATLAB (version 2009b, Copyright: The Mathworks, Inc.) to take advantage of the ease of matrix operations. Incandescence is a useful indictor of the location and extent of active lava flows and also a potentially powerful proxy for activity levels at open vents. We apply our techniques to a period covering both summit and east rift zone activity at Kilauea during 2008?2009 and compare the results to complementary datasets (seismicity, tilt) to demonstrate their integrative potential. A great strength of this study is the demonstrated success of these tools in an operational setting at the Hawaiian Volcano Observatory (HVO) over the course of more than a year. Although applied only to Webcam images here, the techniques could be applied to any type of sequential images, such as time-lapse photography. We expect that these tools are applicable to many other volcano monitoring scenarios, and the two MATLAB scripts, as they are implemented at HVO, are included in the appendixes

  1. Geochronology, geochemistry and geophysics of Mahukona Volcano, Hawai`i

    NASA Astrophysics Data System (ADS)

    Hanano, D.; Garcia, M. O.; Weis, D. A.; Flinders, A. F.; Ito, G.; Kurz, M. D.

    2009-12-01

    Mahukona is an extinct submarine volcano that fills a gap in the Loa-trend of paired Hawaiian volcanoes between Hualalai and Kaho`olawe. A new marine survey of the seamount was undertaken in an attempt to resolve the location of the volcano’s summit. The multibeam bathymetry showed no clear summit. The gravity data reveals a central oval-shaped residual gravity anomaly with a maximum density 85 kg/m3 greater than the surrounding edifice, which could be the frozen magmatic center of Mahukona. Eighteen weakly to strongly olivine-phyric samples were collected by submersible from the shallower parts (>2 km) of the volcano to supplement previous dredged samples. These fresh, mostly glassy samples vary from low-silica tholeiites to weakly alkali basalts. Ar-Ar weighted plateau ages range from 653 ka for a tholeiite to 479 and 351 ka for transitional basalts. These ages straddle the predicted age for the end of shield building (435 ka) and are older than previous ages for transitional basalts (310-298 ka; Clague and Calvert, 2008). Trace elements show a moderate range of variability (33% for Ba and Nb) and parallel primitive mantle normalized patterns suggesting variable degrees of melting of a similar source. Zr/Nb ratios for this Loa chain volcano (11-14) span the Loa-Kea boundary. Pb, Sr, Nd and Hf isotope ratios for 12 samples are distinct from adjacent Kohala volcano with Loihi-like values, although they are slightly higher in Hf and Nd at a given Pb isotope value. Most samples have Loa-like Pb isotope ratios, although two tholeiites have Kea-like ratios but high, Loa-like Zr/Nb. Sr isotopes are well correlated with the other isotopic systems indicating no ancient carbonate-rich sediment source component is needed. Mahukona He isotope ratios overlap with those found at Lo`ihi Seamount. Higher values are found in transitional basalts and lower in the tholeiites (16-21 vs. 12-14 Ra), which is opposite to other Hawaiian volcanoes. With high-precision data sets for

  2. A scale for ranking volcanoes by risk

    NASA Astrophysics Data System (ADS)

    Scandone, Roberto; Bartolini, Stefania; Martí, Joan

    2016-01-01

    We propose a simple volcanic risk coefficient (VRC) useful for comparing the degree of risk arising from different volcanoes, which may be used by civil protection agencies and volcano observatories to rapidly allocate limited resources even without a detailed knowledge of each volcano. Volcanic risk coefficient is given by the sum of the volcanic explosivity index (VEI) of the maximum expected eruption from the volcano, the logarithm of the eruption rate, and the logarithm of the population that may be affected by the maximum expected eruption. We show how to apply the method to rank the risk using as examples the volcanoes of Italy and in the Canary Islands. Moreover, we demonstrate that the maximum theoretical volcanic risk coefficient is 17 and pertains to the large caldera-forming volcanoes like Toba or Yellowstone that may affect the life of the entire planet. We develop also a simple plugin for a dedicated Quantum Geographic Information System (QGIS) software to graphically display the VRC of different volcanoes in a region.

  3. Aloha Aina: Native Hawaiians Fight for Survival

    ERIC Educational Resources Information Center

    Kealoha, Gard

    1976-01-01

    Discusses the history, values, and cultural background of the native Hawaiian population, asserting that Hawaiians want to recapture and reaffirm the native rights guaranteed by the constitution of Hawaii in 1846. (Author/JM)

  4. Bathymetry of southern Mauna Loa Volcano, Hawaii

    USGS Publications Warehouse

    Chadwick, William W.; Moore, James G.; Garcia, Michael O.; Fox, Christopher G.

    1993-01-01

    Manua Loa, the largest volcano on Earth, lies largely beneath the sea, and until recently only generalized bathymetry of this giant volcano was available. However, within the last two decades, the development of multibeam sonar and the improvement of satellite systems (Global Positioning System) have increased the availability of precise bathymetric mapping. This map combines topography of the subaerial southern part of the volcano with modern multibeam bathymetric data from the south submarine flank. The map includes the summit caldera of Mauna Loa Volcano and the entire length of the 100-km-long southwest rift zone that is marked by a much more pronounced ridge below sea level than above. The 60-km-long segment of the rift zone abruptly changes trend from southwest to south 30 km from the summit. It extends from this bend out to sea at the south cape of the island (Kalae) to 4 to 4.5 km depth where it impinges on the elongate west ridge of Apuupuu Seamount. The west submarine flank of the rift-zone ridge connects with the Kahuku fault on land and both are part of the ampitheater head of a major submarine landslide (Lipman and others, 1990; Moore and Clague, 1992). Two pre-Hawaiian volcanic seamounts in the map area, Apuupuu and Dana Seamounts, are apparently Cretaceous in age and are somewhat younger than the Cretaceous oceanic crust on which they are built.

  5. Stroke and Native Hawaiians/Pacific Islanders

    MedlinePlus

    ... Other Pacific Islander > Stroke Stroke and Native Hawaiians/Pacific Islanders Native Hawaiians/Pacific Islanders were four times more likely than non- ... a stroke in 2010. In general, Native Hawaiian/Pacific Islander adults have developed several of the high ...

  6. Incorporating Technology into a Hawaiian Language Curriculum.

    ERIC Educational Resources Information Center

    Ka'awa, Makalapua; Hawkins, Emily

    This paper describes Hawaiian language courses that incorporate computer technology at the University of Hawaii at Manoa. In the past decade, enrollments in all types of Hawaiian language programs have increased rapidly. The University of Hawaii is committed to extending Hawaiian language education, especially the full development of Hawaiian…

  7. Hawaiian Studies Curriculum Guide. Grade 3.

    ERIC Educational Resources Information Center

    Hawaii State Dept. of Education, Honolulu. Office of Instructional Services.

    This curriculum guide suggests activities and educational experiences within a Hawaiian cultural context for Grade 3 students in Hawaiian schools. First, an introduction discusses the contents of the guide; the relationship of classroom teacher and the kupuna (Hawaiian-speaking elder); the identification and scheduling of Kupunas; and how to use…

  8. Native Hawaiian Educational Assessment Project. Final Report.

    ERIC Educational Resources Information Center

    Kamehameha Schools/Bernice Pauahi Bishop Estate, Honolulu, HI.

    This report documents the educational needs of Native Hawaiians across ecosystem levels. Identifying the unique educational needs of Native Hawaiians and effective Native American and local programs that meet the unique educational needs of native Hawaiians, this project works within certain parameters: (1) part of a continuous needs assessment,…

  9. WOVOdat Progress 2012: Installable DB template for Volcano Monitoring Database

    NASA Astrophysics Data System (ADS)

    Ratdomopurbo, A.; Widiwijayanti, C.; Win, N.-T.-Z.; Chen, L.-D.; Newhall, C.

    2012-04-01

    WOVOdat is the World Organization of Volcano Observatories' (WOVO) Database of Volcanic Unrest. Volcanoes are frequently restless but only a fraction of unrest leads to eruptions. We aim to compile and make the data of historical volcanic unrest available as a reference tool during volcanic crises, for observatory or other user to compare or look for systematic in many unrest episodes, and also provide educational tools for teachers and students on understanding volcanic processes. Furthermore, we promote the use of relational databases for countries that are still planning to develop their own monitoring database. We are now in the process of populating WOVOdat in collaboration with volcano observatories worldwide. Proprietary data remains at the observatories where the data originally from. Therefore, users who wish to use the data for publication or to obtain detail information about the data should directly contact the observatories. To encourage the use of relational database system in volcano observatories with no monitoring database, WOVOdat project is preparing an installable standalone package. This package is freely downloadable through our website (www.wovodat.org), ready to install and serve as database system in the local domain to host various types of volcano monitoring data. The WOVOdat project is now hosted at Earth Observatory of Singapore (Nanyang Technological University). In the current stage of data population, our website supports interaction between WOVOdat developers, observatories, and other partners in building the database, e.g. accessing schematic design, information and documentation, and also data submission. As anticipation of various data formats coming from different observatories, we provide an interactive tools for user to convert their data into standard WOVOdat format file before then able to upload and store in the database system. We are also developing various visualization tools that will be integrated in the system to ease

  10. Keele Observatory

    NASA Astrophysics Data System (ADS)

    Theodorus van Loon, Jacco; Albinson, James; Bagnall, Alan; Bryant, Lian; Caisley, Dave; Doody, Stephen; Johnson, Ian; Klimczak, Paul; Maddison, Ron; Robinson, StJohn; Stretch, Matthew; Webb, John

    2015-08-01

    Keele Observatory was founded by Dr. Ron Maddison in 1962, on the hill-top campus of Keele University in central England, hosting the 1876 Grubb 31cm refractor from Oxford Observatory. It since acquired a 61cm research reflector, a 15cm Halpha solar telescope and a range of other telescopes. Run by a group of volunteering engineers and students under directorship of a Keele astrophysicist, it is used for public outreach as well as research. About 4,000 people visit the observatory every year, including a large number of children. We present the facility, its history - including involvement in the 1919 Eddington solar eclipse expedition which proved Albert Einstein's theory of general relativity - and its ambitions to erect a radio telescope on its site.