Science.gov

Sample records for hazard mitigation

  1. Washington Tsunami Hazard Mitigation Program

    NASA Astrophysics Data System (ADS)

    Walsh, T. J.; Schelling, J.

    2012-12-01

    Washington State has participated in the National Tsunami Hazard Mitigation Program (NTHMP) since its inception in 1995. We have participated in the tsunami inundation hazard mapping, evacuation planning, education, and outreach efforts that generally characterize the NTHMP efforts. We have also investigated hazards of significant interest to the Pacific Northwest. The hazard from locally generated earthquakes on the Cascadia subduction zone, which threatens tsunami inundation in less than hour following a magnitude 9 earthquake, creates special problems for low-lying accretionary shoreforms in Washington, such as the spits of Long Beach and Ocean Shores, where high ground is not accessible within the limited time available for evacuation. To ameliorate this problem, we convened a panel of the Applied Technology Council to develop guidelines for construction of facilities for vertical evacuation from tsunamis, published as FEMA 646, now incorporated in the International Building Code as Appendix M. We followed this with a program called Project Safe Haven (http://www.facebook.com/ProjectSafeHaven) to site such facilities along the Washington coast in appropriate locations and appropriate designs to blend with the local communities, as chosen by the citizens. This has now been completed for the entire outer coast of Washington. In conjunction with this effort, we have evaluated the potential for earthquake-induced ground failures in and near tsunami hazard zones to help develop cost estimates for these structures and to establish appropriate tsunami evacuation routes and evacuation assembly areas that are likely to to be available after a major subduction zone earthquake. We intend to continue these geotechnical evaluations for all tsunami hazard zones in Washington.

  2. Earthquake Hazard Mitigation Strategy in Indonesia

    NASA Astrophysics Data System (ADS)

    Karnawati, D.; Anderson, R.; Pramumijoyo, S.

    2008-05-01

    Because of the active tectonic setting of the region, the risks of geological hazards inevitably increase in Indonesian Archipelagoes and other ASIAN countries. Encouraging community living in the vulnerable area to adapt with the nature of geology will be the most appropriate strategy for earthquake risk reduction. Updating the Earthquake Hazard Maps, enhancement ofthe existing landuse management , establishment of public education strategy and method, strengthening linkages among stake holders of disaster mitigation institutions as well as establishement of continues public consultation are the main strategic programs for community resilience in earthquake vulnerable areas. This paper highlights some important achievements of Earthquake Hazard Mitigation Programs in Indonesia, together with the difficulties in implementing such programs. Case examples of Yogyakarta and Bengkulu Earthquake Mitigation efforts will also be discussed as the lesson learned. The new approach for developing earthquake hazard map which is innitiating by mapping the psychological aspect of the people living in vulnerable area will be addressed as well.

  3. Playing against nature: improving earthquake hazard mitigation

    NASA Astrophysics Data System (ADS)

    Stein, S. A.; Stein, J.

    2012-12-01

    The great 2011 Tohoku earthquake dramatically demonstrated the need to improve earthquake and tsunami hazard assessment and mitigation policies. The earthquake was much larger than predicted by hazard models, and the resulting tsunami overtopped coastal defenses, causing more than 15,000 deaths and $210 billion damage. Hence if and how such defenses should be rebuilt is a challenging question, because the defences fared poorly and building ones to withstand tsunamis as large as March's is too expensive,. A similar issue arises along the Nankai Trough to the south, where new estimates warning of tsunamis 2-5 times higher than in previous models raise the question of what to do, given that the timescale on which such events may occur is unknown. Thus in the words of economist H. Hori, "What should we do in face of uncertainty? Some say we should spend our resources on present problems instead of wasting them on things whose results are uncertain. Others say we should prepare for future unknown disasters precisely because they are uncertain". Thus society needs strategies to mitigate earthquake and tsunami hazards that make economic and societal sense, given that our ability to assess these hazards is poor, as illustrated by highly destructive earthquakes that often occur in areas predicted by hazard maps to be relatively safe. Conceptually, we are playing a game against nature "of which we still don't know all the rules" (Lomnitz, 1989). Nature chooses tsunami heights or ground shaking, and society selects the strategy to minimize the total costs of damage plus mitigation costs. As in any game of chance, we maximize our expectation value by selecting the best strategy, given our limited ability to estimate the occurrence and effects of future events. We thus outline a framework to find the optimal level of mitigation by balancing its cost against the expected damages, recognizing the uncertainties in the hazard estimates. This framework illustrates the role of the

  4. Reduce toxic hazards using passive mitigation

    SciTech Connect

    Flamberg, S.A.; Torti, K.S.; Myers, P.M.

    1998-07-01

    The primary goal of the Risk Management Program Rule promulgated under Section 112(r) of the 1990 US Clean Air Act Amendments is to prevent the accidental release of those chemicals that pose the greatest threat to the public and the environment, and to encourage emergency preparedness to mitigate the severity of such releases. The Rule requires facility owners to identify, evaluate, and communicate to the public any potential worst-case scenarios that could involve accidental releases of toxic and flammable substances. A worst-case scenario is defined by the US Environmental Protection Agency (EPA; Washington, DC) as: {hor_ellipsis}the release of the largest quantity of a regulated substance from a vessel or process line failure that results in the greatest distance to an endpoint. When designing systems to store or process hazardous materials, passive-mitigation methods--those that function without human, mechanical, or energy input--should be considered. Such systems contain or limit a potential release of hazardous materials. And, because they have no mechanical requirements, passive-mitigation techniques are considered more reliable than active methods, such as emergency-shutdown and water-spray systems. Passive mitigation should also be considered when defining potential release scenarios and modeling hazard zones.

  5. Landslide hazard mitigation in North America

    USGS Publications Warehouse

    Wieczorek, G.F.; Leahy, P.P.

    2008-01-01

    Active landslides throughout the states and territories of the United States result in extensive property loss and 25-50 deaths per year. The U.S. Geological Survey (USGS) has a long history of detailed examination of landslides since the work of Howe (1909) in the San Juan Mountains of Colorado. In the last four decades, landslide inventory maps and landslide hazard maps have depicted landslides of different ages, identified fresh landslide scarps, and indicated the direction of landslide movement for different regions of the states of Colorado, California, and Pennsylvania. Probability-based methods improve landslide hazards assessments. Rainstorms, earthquakes, wildfires, and volcanic eruptions can trigger landslides. Improvements in remote sensing of rainfall make it possible to issue landslide advisories and warnings for vulnerable areas. From 1986 to 1995, the USGS issued hazard warnings based on rainfall in the San Francisco Bay area. USGS workers also identified rainfall thresholds triggering landslides in Puerto Rico, Hawaii, Washington, and the Blue Ridge Mountains of central Virginia. Detailed onsite monitoring of landslides near highways in California and Colorado aided transportation officials. The USGS developed a comprehensive, multi-sector, and multi-agency strategy to mitigate landslide hazards nationwide. This study formed the foundation of the National Landslide Hazards Mitigation Strategy. The USGS, in partnership with the U.S. National Weather Service and the State of California, began to develop a real-time warning system for landslides from wildfires in Southern California as a pilot study in 2005.

  6. Unacceptable Risk: Earthquake Hazard Mitigation in One California School District. Hazard Mitigation Case Study.

    ERIC Educational Resources Information Center

    California State Office of Emergency Services, Sacramento.

    Earthquakes are a perpetual threat to California's school buildings. School administrators must be aware that hazard mitigation means much more than simply having a supply of water bottles in the school; it means getting everyone involved in efforts to prevent tragedies from occurring in school building in the event of an earthquake. The PTA in…

  7. WHC natural phenomena hazards mitigation implementation plan

    SciTech Connect

    Conrads, T.J.

    1996-09-11

    Natural phenomena hazards (NPH) are unexpected acts of nature which pose a threat or danger to workers, the public or to the environment. Earthquakes, extreme winds (hurricane and tornado),snow, flooding, volcanic ashfall, and lightning strike are examples of NPH at Hanford. It is the policy of U.S. Department of Energy (DOE) to design, construct and operate DOE facilitiesso that workers, the public and the environment are protected from NPH and other hazards. During 1993 DOE, Richland Operations Office (RL) transmitted DOE Order 5480.28, ``Natural Phenomena Hazards Mitigation,`` to Westinghouse Hanford COmpany (WHC) for compliance. The Order includes rigorous new NPH criteria for the design of new DOE facilities as well as for the evaluation and upgrade of existing DOE facilities. In 1995 DOE issued Order 420.1, ``Facility Safety`` which contains the same NPH requirements and invokes the same applicable standards as Order 5480.28. It will supersede Order 5480.28 when an in-force date for Order 420.1 is established through contract revision. Activities will be planned and accomplished in four phases: Mobilization; Prioritization; Evaluation; and Upgrade. The basis for the graded approach is the designation of facilities/structures into one of five performance categories based upon safety function, mission and cost. This Implementation Plan develops the program for the Prioritization Phase, as well as an overall strategy for the implemention of DOE Order 5480.2B.

  8. Volcano hazard mitigation program in Indonesia

    USGS Publications Warehouse

    Sudradjat, A.

    1990-01-01

    Volcanological investigations in Indonesia were started in the 18th century, when Valentijn in 1726 prepared a chronological report of the eruption of Banda Api volcno, Maluku. Modern and intensive volcanological studies did not begin until the catastrophic eruption of Kelut volcano, East Java, in 1919. The eruption took 5,011 lives and destroyed thousands of acres of coffee plantation. An eruption lahar generated by the crater lake water mixed with volcanic eruptions products was the cause of death for a high number of victims. An effort to mitigate the danger from volcanic eruption was first initiated in 1921 by constructing a tunnel to drain the crater lake water of Kelut volcano. At the same time a Volcanological Survey was established by the government with the responsibility of seeking every means for minimizing the hazard caused by volcanic eruption. 

  9. The National Tsunami Hazard Mitigation Program

    NASA Astrophysics Data System (ADS)

    Bernard, E. N.

    2003-12-01

    The National Tsunami Hazard Mitigation Program (NTHMP) is a state/Federal partnership that was created to reduce the impacts of tsunamis to U. S. Coastal areas. It is a coordinated effort between the states of Alaska, California, Hawaii, Oregon, and Washington and four Federal agencies: the National Oceanic and Atmospheric Administration(NOAA), the Federal Emergency Management Agency (FEMA), the U. S. Geological Survey (USGS), and the National Science Foundation(NSF). NOAA has led the effort to forge a solid partnership between the states and the Federal agencies because of it's responsibility to provide tsunami warning services to the nation. This successful partnership has established a mitigation program in each state that is preparing coastal communities for the next tsunami. Inundation maps are now available for many of the coastal communities of Alaska, California, Hawaii, Oregon, and Washington. These maps are used to develop evacuation plans and, in the case of Oregon, for land use management. The partnership has successfully upgraded the warning capability in NOAA so that earthquakes can be detected within 5 minutes and tsunamis can be detected in the open ocean in real time, paving the way for improved tsunami forecasts. NSF's new Network for Earthquake Engineering (NEES) program has agreed to work with the NTHMP to focus tsunami research on national needs. An overview of the NTHMP will be given including a discussion of accomplishments and the new collaboration with NEES.

  10. EVALUATION OF FOAMS FOR MITIGATING AIR POLLUTION FROM HAZARDOUS SPILLS

    EPA Science Inventory

    This program has been conducted to evaluate commercially available water base foams for mitigating the vapors from hazardous chemical spills. Foam systems were evaluated in the laboratory to define those foam properties which are important in mitigating hazardous vapors. Larger s...

  11. The National Tsunami Hazard Mitigation Program

    NASA Astrophysics Data System (ADS)

    Bernard, E. N.

    2004-12-01

    The National Tsunami Hazard Mitigation Program (NTHMP) is a state/Federal partnership that was created to reduce the impacts of tsunamis to U.S. Coastal areas. It is a coordinated effort between the states of Alaska, California, Hawaii, Oregon, and Washington and four Federal agencies: the National Oceanic and Atmospheric Administration (NOAA), the Federal Emergency Management Agency (FEMA), the U.S. Geological Survey (USGS), and the National Science Foundation (NSF). NOAA has led the effort to forge a solid partnership between the states and the Federal agencies because of it's responsibility to provide tsunami warning services to the nation. The successful partnership has established a mitigation program in each state that is developing tsunami resilient coastal communities. Inundation maps are now available for many of the coastal communities of Alaska, California, Hawaii, Oregon, and Washington. These maps are used to develop evacuation plans and, in the case of Oregon, for land use management. The NTHMP mapping technology is now being applied to FEMA's Flood Insurance Rate Maps (FIRMs). The NTHMP has successfully upgraded the warning capability in NOAA so that earthquakes can be detected within 5 minutes and tsunamis can be detected in the open ocean in real time. Deep ocean reporting of tsunamis has already averted one unnecessary evacuation of Hawaii and demonstrated that real-time tsunami forecasting is now possible. NSF's new Network for Earthquake Engineering (NEES) program has agreed to work with the NTHMP to focus tsunami research on national needs. An overview of the NTHMP will be given including a discussion of accomplishments and a progress report on NEES and FIRM activities.

  12. Potentially Hazardous Objects (PHO) Mitigation Program

    NASA Astrophysics Data System (ADS)

    Huebner, Walter

    Southwest Research Institute (SwRI) and its partner, Los Alamos National Laboratory (LANL), are prepared to develop, implement, and expand procedures to avert collisions of potentially hazardous objects (PHOs) with Earth as recommended by NASA in its White Paper "Near- Earth Object Survey and Deflection Analysis of Alternatives" requested by the US Congress and submitted to it in March 2007. In addition to developing the general mitigation program as outlined in the NASA White Paper, the program will be expanded to include aggressive mitigation procedures for small (e.g., Tunguska-sized) PHOs and other short warning-time PHOs such as some long-period comet nuclei. As a first step the program will concentrate on the most likely and critical cases, namely small objects and long-period comet nuclei with short warning-times, but without losing sight of objects with longer warning-times. Objects smaller than a few hundred meters are of interest because they are about 1000 times more abundant than kilometer-sized objects and are fainter and more difficult to detect, which may lead to short warning times and hence short reaction times. Yet, even these small PHOs can have devastating effects as the 30 June 1908, Tungaska event has shown. In addition, long-period comets, although relatively rare but large (sometimes tens of kilometers in size), cannot be predicted because of their long orbital periods. Comet C/1983 H1 (IRAS-Araki-Alcock), for example, has an orbital period of 963.22 years, was discovered 27 April 1983, and passed Earth only two weeks later, on 11 May 1983, at a distance of 0.0312 AU. Aggressive methods and continuous alertness will be needed to defend against objects with such short warning times. While intact deflection of a PHO remains a key objective, destruction of a PHO and dispersion of the pieces must also be considered. The effectiveness of several alternative methods including nuclear demolition munitions, conventional explosives, and hyper

  13. Destructive Interactions Between Mitigation Strategies and the Causes of Unexpected Failures in Natural Hazard Mitigation Systems

    NASA Astrophysics Data System (ADS)

    Day, S. J.; Fearnley, C. J.

    2013-12-01

    Large investments in the mitigation of natural hazards, using a variety of technology-based mitigation strategies, have proven to be surprisingly ineffective in some recent natural disasters. These failures reveal a need for a systematic classification of mitigation strategies; an understanding of the scientific uncertainties that affect the effectiveness of such strategies; and an understanding of how the different types of strategy within an overall mitigation system interact destructively to reduce the effectiveness of the overall mitigation system. We classify mitigation strategies into permanent, responsive and anticipatory. Permanent mitigation strategies such as flood and tsunami defenses or land use restrictions, are both costly and 'brittle': when they malfunction they can increase mortality. Such strategies critically depend on the accuracy of the estimates of expected hazard intensity in the hazard assessments that underpin their design. Responsive mitigation strategies such as tsunami and lahar warning systems rely on capacities to detect and quantify the hazard source events and to transmit warnings fast enough to enable at risk populations to decide and act effectively. Self-warning and voluntary evacuation is also usually a responsive mitigation strategy. Uncertainty in the nature and magnitude of the detected hazard source event is often the key scientific obstacle to responsive mitigation; public understanding of both the hazard and the warnings, to enable decision making, can also be a critical obstacle. Anticipatory mitigation strategies use interpretation of precursors to hazard source events and are used widely in mitigation of volcanic hazards. Their critical limitations are due to uncertainties in time, space and magnitude relationships between precursors and hazard events. Examples of destructive interaction between different mitigation strategies are provided by the Tohoku 2011 earthquake and tsunami; recent earthquakes that have impacted

  14. Space options for tropical cyclone hazard mitigation

    NASA Astrophysics Data System (ADS)

    Dicaire, Isabelle; Nakamura, Ryoko; Arikawa, Yoshihisa; Okada, Kazuyuki; Itahashi, Takamasa; Summerer, Leopold

    2015-02-01

    This paper investigates potential space options for mitigating the impact of tropical cyclones on cities and civilians. Ground-based techniques combined with space-based remote sensing instrumentation are presented together with space-borne concepts employing space solar power technology. Two space-borne mitigation options are considered: atmospheric warming based on microwave irradiation and laser-induced cloud seeding based on laser power transfer. Finally technology roadmaps dedicated to the space-borne options are presented, including a detailed discussion on the technological viability and technology readiness level of our proposed systems. Based on these assessments, the space-borne cyclone mitigation options presented in this paper may be established in a quarter of a century.

  15. Mitigation of earthquake hazards using seismic base isolation systems

    SciTech Connect

    Wang, C.Y.

    1994-06-01

    This paper deals with mitigation of earthquake hazards using seismic base-isolation systems. A numerical algorithm is described for system response analysis of isolated structures with laminated elastomer bearings. The focus of this paper is on the adaptation of a nonlinear constitutive equation for the isolation bearing, and the treatment of foundation embedment for the soil-structure-interaction analysis. Sample problems are presented to illustrate the mitigating effect of using base-isolation systems.

  16. Speakers urge a unified approach to mitigating natural hazards

    NASA Astrophysics Data System (ADS)

    White, M. Catherine

    On November 3, while wildfires consumed acres of coastal land in California, the U.S. Natural Hazards Symposium in Washington, D.C., addressed the threat of natural hazards in the United States, disaster mitigation and recovery, and the need to consider natural hazards in land development plans. Several of the scheduled speakers were unable to participate because they were called to California to investigate the fires, including keynote speaker James Witt, the new director of the Federal Emergency Management Agency (FEMA).Substitute keynote speaker Harvey Ryland, Witt's senior adviser at FEMA, emphasized that “we must sell mitigation as an effective means of protecting people and property.” He discussed FEMA's new “National Mitigation Strategy,” which will serve as the basis for its emergency management program. The strategy is expected to be in place by January 1995. As part of the approach, FEMA will establish a mitigation directorate to organize various disaster mitigation efforts in one office. Ryland also discussed the idea of creating risk reduction enterprise zones, designated high risk areas that would offer incentives to property owners who take proper mitigation measures. “Such incentives would be offset by reduced disaster assistance costs,” Ryland added.

  17. Input space-dependent controller for multi-hazard mitigation

    NASA Astrophysics Data System (ADS)

    Cao, Liang; Laflamme, Simon

    2016-04-01

    Semi-active and active structural control systems are advanced mechanical devices and systems capable of high damping performance, ideal for mitigation of multi-hazards. The implementation of these devices within structural systems is still in its infancy, because of the complexity in designing a robust closed-loop control system that can ensure reliable and high mitigation performance. Particular challenges in designing a controller for multi-hazard mitigation include: 1) very large uncertainties on dynamic parameters and unknown excitations; 2) limited measurements with probabilities of sensor failure; 3) immediate performance requirements; and 4) unavailable sets of input-output during design. To facilitate the implementation of structural control systems, a new type of controllers with high adaptive capabilities is proposed. It is based on real-time identification of an embedding that represents the essential dynamics found in the input space, or in the sensors measurements. This type of controller is termed input-space dependent controllers (ISDC). In this paper, the principle of ISDC is presented, their stability and performance derived analytically for the case of harmonic inputs, and their performance demonstrated in the case of different types of hazards. Results show the promise of this new type of controller at mitigating multi-hazards by 1) relying on local and limited sensors only; 2) not requiring prior evaluation or training; and 3) adapting to systems non-stationarities.

  18. California Earthquakes: Science, Risks, and the Politics of Hazard Mitigation

    NASA Astrophysics Data System (ADS)

    Shedlock, Kaye M.

    "Politics" should be the lead word in the sub-title of this engrossing study of the emergence and growth of the California and federal earthquake hazard reduction infrastructures. Beginning primarily with the 1906 San Francisco earthquake, scientists, engineers, and other professionals cooperated and clashed with state and federal officials, the business community, " boosters," and the general public to create programs, agencies, and commissions to support earthquake research and hazards mitigation. Moreover, they created a "regulatory-state" apparatus that governs human behavior without sustained public support for its creation. The public readily accepts that earthquake research and mitigation are government responsibilities. The government employs or funds the scientists, engineers, emergency response personnel, safety officials, building inspectors, and others who are instrumental in reducing earthquake hazards. This book clearly illustrates how, and why all of this came to pass.

  19. Risk perception and volcanic hazard mitigation: Individual and social perspectives

    NASA Astrophysics Data System (ADS)

    Paton, Douglas; Smith, Leigh; Daly, Michele; Johnston, David

    2008-05-01

    This paper discusses how people's interpretation of their experience of volcanic hazards and public volcanic hazard education programs influences their risk perception and whether or not they adopt measures that can mitigate their risk. Drawing on four studies of volcanic risk perception and preparedness, the paper first examines why experiencing volcanic hazards need not necessarily motivate people to prepare for future volcanic crises. This work introduces how effective risk communication requires communities and civic agencies to play complementary roles in the risk management process. Next, the findings of a study evaluating the effectiveness of a public volcanic hazard education program introduce the important role that social interaction amongst community members plays in risk management. Building on the conclusions of these studies, a model that depicts preparing as a social process is developed and tested. The model predicts that it is the quality of the relationships between people, communities and civic agencies that determines whether people adopt measures that can reduce their risk from volcanic hazard consequences. The implications of the model for conceptualizing and delivering volcanic hazard public education programs in ways that accommodate these relationships is discussed.

  20. Debris flow hazards mitigation--Mechanics, prediction, and assessment

    USGS Publications Warehouse

    2007-01-01

    These proceedings contain papers presented at the Fourth International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment held in Chengdu, China, September 10-13, 2007. The papers cover a wide range of topics on debris-flow science and engineering, including the factors triggering debris flows, geomorphic effects, mechanics of debris flows (e.g., rheology, fluvial mechanisms, erosion and deposition processes), numerical modeling, various debris-flow experiments, landslide-induced debris flows, assessment of debris-flow hazards and risk, field observations and measurements, monitoring and alert systems, structural and non-structural countermeasures against debris-flow hazards and case studies. The papers reflect the latest devel-opments and advances in debris-flow research. Several studies discuss the development and appli-cation of Geographic Information System (GIS) and Remote Sensing (RS) technologies in debris-flow hazard/risk assessment. Timely topics presented in a few papers also include the development of new or innovative techniques for debris-flow monitoring and alert systems, especially an infra-sound acoustic sensor for detecting debris flows. Many case studies illustrate a wide variety of debris-flow hazards and related phenomena as well as their hazardous effects on human activities and settlements.

  1. Composite Materials for Hazard Mitigation of Reactive Metal Hydrides.

    SciTech Connect

    Pratt, Joseph William; Cordaro, Joseph Gabriel; Sartor, George B.; Dedrick, Daniel E.; Reeder, Craig L.

    2012-02-01

    In an attempt to mitigate the hazards associated with storing large quantities of reactive metal hydrides, polymer composite materials were synthesized and tested under simulated usage and accident conditions. The composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride. Composites with vinyl-containing siloxane oligomers were also polymerized with and without added styrene and divinyl benzene. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride reduced the inherent hydrogen storage capacity of the material. The composites were found to be initially effective at reducing the amount of heat released during oxidation. However, upon cycling the composites, the mitigating behavior was lost. While the polymer composites we investigated have mitigating potential and are physically robust, they undergo a chemical change upon cycling that makes them subsequently ineffective at mitigating heat release upon oxidation of the metal hydride. Acknowledgements The authors would like to thank the following people who participated in this project: Ned Stetson (U.S. Department of Energy) for sponsorship and support of the project. Ken Stewart (Sandia) for building the flow-through calorimeter and cycling test stations. Isidro Ruvalcaba, Jr. (Sandia) for qualitative experiments on the interaction of sodium alanate with water. Terry Johnson (Sandia) for sharing his expertise and knowledge of metal hydrides, and sodium alanate in particular. Marcina Moreno (Sandia) for programmatic assistance. John Khalil (United Technologies Research Corp) for insight into the hazards of reactive metal hydrides and real-world accident scenario experiments. Summary In an attempt to mitigate and/or manage hazards associated with storing bulk quantities of reactive metal hydrides, polymer composite materials (a mixture of a mitigating polymer and a metal hydride) were synthesized and tested

  2. Volcanic hazards and their mitigation: Progress and problems

    NASA Astrophysics Data System (ADS)

    Tilling, Robert I.

    1989-05-01

    At the beginning of the twentieth century, volcanology began to emerge as a modern science as a result of increased interest in eruptive phenomena following some of the worst volcanic disasters in recorded history: Krakatau (Indonesia) in 1883 and Mont Pelée (Martinique), Soufrière (St. Vincent), and Santa María (Guatemala) in 1902. Volcanology is again experiencing a period of heightened public awareness and scientific growth in the 1980s, the worst period since 1902 in terms of volcanic disasters and crises. A review of hazards mitigation approaches and techniques indicates that significant advances have been made in hazards assessment, volcano monitoring, and eruption forecasting. For example, the remarkable accuracy of the predictions of dome-building events at Mount St. Helens since June 1980 is unprecedented. Yet a predictive capability for more voluminous and explosive eruptions still has not been achieved. Studies of magma-induced seismicity and ground deformation continue to provide the most systematic and reliable data for early detection of precursors to eruptions and shallow intrusions. In addition, some other geophysical monitoring techniques and geochemical methods have been refined and are being more widely applied and tested. Comparison of the four major volcanic disasters of the 1980s (Mount St. Helens, U.S.A. (1980), El Chichón, Mexico (1982); Galunggung, Indonesia (1982); and Nevado del Ruíz, Colombia (1985) illustrates the importance of predisaster geoscience studies, volcanic hazards assessments, volcano monitoring, contingency planning, and effective communications between scientists and authorities. The death toll (>22,000) from the Ruíz catastrophe probably could have been greatly reduced; the reasons for the tragically ineffective implementation of evacuation measures are still unclear and puzzling in view of the fact that sufficient warnings were given. The most pressing problem in the mitigation of volcanic and associated hazards on

  3. 77 FR 24505 - Hazard Mitigation Assistance for Wind Retrofit Projects for Existing Residential Buildings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-24

    ... SECURITY Federal Emergency Management Agency Hazard Mitigation Assistance for Wind Retrofit Projects for... comments on Hazard Mitigation Assistance for Wind Retrofit Projects for Existing Residential Buildings... property from hazards and their effects. One such activity is the implementation of wind retrofit...

  4. Deterministic and Nondeterministic Behavior of Earthquakes and Hazard Mitigation Strategy

    NASA Astrophysics Data System (ADS)

    Kanamori, H.

    2014-12-01

    Earthquakes exhibit both deterministic and nondeterministic behavior. Deterministic behavior is controlled by length and time scales such as the dimension of seismogenic zones and plate-motion speed. Nondeterministic behavior is controlled by the interaction of many elements, such as asperities, in the system. Some subduction zones have strong deterministic elements which allow forecasts of future seismicity. For example, the forecasts of the 2010 Mw=8.8 Maule, Chile, earthquake and the 2012 Mw=7.6, Costa Rica, earthquake are good examples in which useful forecasts were made within a solid scientific framework using GPS. However, even in these cases, because of the nondeterministic elements uncertainties are difficult to quantify. In some subduction zones, nondeterministic behavior dominates because of complex plate boundary structures and defies useful forecasts. The 2011 Mw=9.0 Tohoku-Oki earthquake may be an example in which the physical framework was reasonably well understood, but complex interactions of asperities and insufficient knowledge about the subduction-zone structures led to the unexpected tragic consequence. Despite these difficulties, broadband seismology, GPS, and rapid data processing-telemetry technology can contribute to effective hazard mitigation through scenario earthquake approach and real-time warning. A scale-independent relation between M0 (seismic moment) and the source duration, t, can be used for the design of average scenario earthquakes. However, outliers caused by the variation of stress drop, radiation efficiency, and aspect ratio of the rupture plane are often the most hazardous and need to be included in scenario earthquakes. The recent development in real-time technology would help seismologists to cope with, and prepare for, devastating tsunamis and earthquakes. Combining a better understanding of earthquake diversity and modern technology is the key to effective and comprehensive hazard mitigation practices.

  5. 76 FR 23613 - Draft Programmatic Environmental Assessment for Hazard Mitigation Safe Room Construction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-27

    ... SECURITY Federal Emergency Management Agency Draft Programmatic Environmental Assessment for Hazard Mitigation Safe Room Construction AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice of... Mitigation Grant Program (HMGP), the Federal Emergency Management Agency (FEMA) may provide funding...

  6. New Approaches to Tsunami Hazard Mitigation Demonstrated in Oregon

    NASA Astrophysics Data System (ADS)

    Priest, G. R.; Rizzo, A.; Madin, I.; Lyles Smith, R.; Stimely, L.

    2012-12-01

    Oregon Department of Geology and Mineral Industries and Oregon Emergency Management collaborated over the last four years to increase tsunami preparedness for residents and visitors to the Oregon coast. Utilizing support from the National Tsunami Hazards Mitigation Program (NTHMP), new approaches to outreach and tsunami hazard assessment were developed and then applied. Hazard assessment was approached by first doing two pilot studies aimed at calibrating theoretical models to direct observations of tsunami inundation gleaned from the historical and prehistoric (paleoseismic/paleotsunami) data. The results of these studies were then submitted to peer-reviewed journals and translated into 1:10,000-12,000-scale inundation maps. The inundation maps utilize a powerful new tsunami model, SELFE, developed by Joseph Zhang at the Oregon Health & Science University. SELFE uses unstructured computational grids and parallel processing technique to achieve fast accurate simulation of tsunami interactions with fine-scale coastal morphology. The inundation maps were simplified into tsunami evacuation zones accessed as map brochures and an interactive mapping portal at http://www.oregongeology.org/tsuclearinghouse/. Unique in the world are new evacuation maps that show separate evacuation zones for distant versus locally generated tsunamis. The brochure maps explain that evacuation time is four hours or more for distant tsunamis but 15-20 minutes for local tsunamis that are invariably accompanied by strong ground shaking. Since distant tsunamis occur much more frequently than local tsunamis, the two-zone maps avoid needless over evacuation (and expense) caused by one-zone maps. Inundation mapping for the entire Oregon coast will be complete by ~2014. Educational outreach was accomplished first by doing a pilot study to measure effectiveness of various approaches using before and after polling and then applying the most effective methods. In descending order, the most effective

  7. Seismic hazard assessment and mitigation in India: an overview

    NASA Astrophysics Data System (ADS)

    Verma, Mithila; Bansal, Brijesh K.

    2013-07-01

    The Indian subcontinent is characterized by various tectonic units viz., Himalayan collision zone in North, Indo-Burmese arc in north-east, failed rift zones in its interior in Peninsular Indian shield and Andaman Sumatra trench in south-east Indian Territory. During the last about 100 years, the country has witnessed four great and several major earthquakes. Soon after the occurrence of the first great earthquake, the Shillong earthquake ( M w: 8.1) in 1897, efforts were started to assess the seismic hazard in the country. The first such attempt was made by Geological Survey of India in 1898 and since then considerable progress has been made. The current seismic zonation map prepared and published by Bureau of Indian Standards, broadly places seismic risk in different parts of the country in four major zones. However, this map is not sufficient for the assessment of area-specific seismic risks, necessitating detailed seismic zoning, that is, microzonation for earthquake disaster mitigation and management. Recently, seismic microzonation studies are being introduced in India, and the first level seismic microzonation has already been completed for selected urban centres including, Jabalpur, Guwahati, Delhi, Bangalore, Ahmadabad, Dehradun, etc. The maps prepared for these cities are being further refined on larger scales as per the requirements, and a plan has also been firmed up for taking up microzonation of 30 selected cities, which lie in seismic zones V and IV and have a population density of half a million. The paper highlights the efforts made in India so far towards seismic hazard assessment as well as the future road map for such studies.

  8. Collaborative Monitoring and Hazard Mitigation at Fuego Volcano, Guatemala

    NASA Astrophysics Data System (ADS)

    Lyons, J. J.; Bluth, G. J.; Rose, W. I.; Patrick, M.; Johnson, J. B.; Stix, J.

    2007-05-01

    A portable, digital sensor network has been installed to closely monitor changing activity at Fuego volcano, which takes advantage of an international collaborative effort among Guatemala, U.S. and Canadian universities, and the Peace Corps. The goal of this effort is to improve the understanding shallow internal processes, and consequently to more effectively mitigate volcanic hazards. Fuego volcano has had more than 60 historical eruptions and nearly-continuous activity make it an ideal laboratory to study volcanic processes. Close monitoring is needed to identify base-line activity, and rapidly identify and disseminate changes in the activity which might threaten nearby communities. The sensor network is comprised of a miniature DOAS ultraviolet spectrometer fitted with a system for automated plume scans, a digital video camera, and two seismo-acoustic stations and portable dataloggers. These sensors are on loan from scientists who visited Fuego during short field seasons and donated use of their sensors to a resident Peace Corps Masters International student from Michigan Technological University for extended data collection. The sensor network is based around the local volcano observatory maintained by Instituto National de Sismologia, Vulcanologia, Metrologia e Hidrologia (INSIVUMEH). INSIVUMEH provides local support and historical knowledge of Fuego activity as well as a secure location for storage of scientific equipment, data processing, and charging of the batteries that power the sensors. The complete sensor network came online in mid-February 2007 and here we present preliminary results from concurrent gas, seismic, and acoustic monitoring of activity from Fuego volcano.

  9. Climate resiliency: A unique multi-hazard mitigation approach.

    PubMed

    Baja, Kristin

    2016-01-01

    Baltimore's unique combination of shocks and stresses cuts across social, economic and environmental factors. Like many other post-industrial cities, over the past several decades, Baltimore has experienced a decline in its population -- resulting in a lower tax base. These trends have had deleterious effects on the city's ability to attend to much needed infrastructure improvements and human and social services. In addition to considerable social and economic issues, the city has begun to experience negative impacts due to climate change. The compounding nature of these trends has put Baltimore, like other post-industrial cities, in the position of having to do more with fewer available resources. Rather than wait for disaster to strike, Baltimore took a proactive approach to planning for shocks and stresses by determining unique ways to pre-emptively plan for and adapt to effects from climate change and incorporating these into the City's All Hazard Mitigation Plan. Since adopting the plan in 2013, Baltimore has been moving forward with various projects aimed at improving systems, enhancing adaptive capacity and building a more resilient and sustainable city. This paper describes the basis for the city's approach and offers a portrait of its efforts in order to broaden foundational knowledge of the emerging ways that cities are recasting the role of planning in light of unprecedented circumstances that demand complex solutions that draw on few resources. PMID:27318285

  10. Mitigation options for accidental releases of hazardous gases

    SciTech Connect

    Fthenakis, V.M.

    1995-05-01

    The objective of this paper is to review and compare technologies available for mitigation of unconfined releases of toxic and flammable gases. These technologies include: secondary confinement, deinventory, vapor barriers, foam spraying, and water sprays/monitors. Guidelines for the design and/or operation of effective post-release mitigation systems and case studies involving actual industrial mitigation systems are also presented.

  11. Meteorological Hazard Assessment and Risk Mitigation in Rwanda.

    NASA Astrophysics Data System (ADS)

    Nduwayezu, Emmanuel; Jaboyedoff, Michel; Bugnon, Pierre-Charles; Nsengiyumva, Jean-Baptiste; Horton, Pascal; Derron, Marc-Henri

    2015-04-01

    Between 10 and 13 April 2012, heavy rains hit sectors adjacent to the Vulcanoes National Park (Musanze District in the Northern Province and Nyabihu and Rubavu Districts in the Western Province of RWANDA), causing floods that affected about 11,000 persons. Flooding caused deaths and injuries among the affected population, and extensive damage to houses and properties. 348 houses were destroyed and 446 were partially damaged or have been underwater for several days. Families were forced to leave their flooded homes and seek temporal accommodation with their neighbors, often in overcrowded places. Along the West-northern border of RWANDA, Virunga mountain range consists of 6 major volcanoes. Mount Karisimbi is the highest volcano at 4507m. The oldest mountain is mount Sabyinyo which rises 3634m. The hydraulic network in Musanze District is formed by temporary torrents and permanent watercourses. Torrents surge during strong storms, and are provoked by water coming downhill from the volcanoes, some 20 km away. This area is periodically affected by flooding and landslides because of heavy rain (Rwanda has 2 rainy seasons from February to April and from September to November each year in general and 2 dry seasons) striking the Volcano National Park. Rain water creates big water channels (in already known torrents or new ones) that impact communities, agricultural soils and crop yields. This project aims at identifying hazardous and risky areas by producing susceptibility maps for floods, debris flow and landslides over this sector. Susceptibility maps are being drawn using field observations, during and after the 2012 events, and an empirical model of propagation for regional susceptibility assessments of debris flows (Flow-R). Input data are 10m and 30m resolution DEMs, satellite images, hydrographic network, and some information on geological substratum and soil occupation. Combining susceptibility maps with infrastructures, houses and population density maps will be

  12. Next-Generation GPS Station for Hazards Mitigation (Invited)

    NASA Astrophysics Data System (ADS)

    Bock, Y.

    2013-12-01

    Our objective is to better forecast, assess, and mitigate natural hazards, including earthquakes, tsunamis, and extreme storms and flooding through development and implementation of a modular technology for the next-generation in-situ geodetic station to support the flow of information from multiple stations to scientists, mission planners, decision makers, and first responders. The same technology developed under NASA funding can be applied to enhance monitoring of large engineering structures such as bridges, hospitals and other critical infrastructure. Meaningful warnings save lives when issued within 1-2 minutes for destructive earthquakes, several tens of minutes for tsunamis, and up to several hours for extreme storms and flooding, and can be provided by on-site fusion of multiple data types and generation of higher-order data products: GPS/GNSS and accelerometer measurements to estimate point displacements, and GPS/GNSS and meteorological measurements to estimate moisture variability in the free atmosphere. By operating semi-autonomously, each station can then provide low-latency, high-fidelity and compact data products within the constraints of narrow communications bandwidth that often accompanies natural disasters. We have developed a power-efficient, low-cost, plug-in Geodetic Module for fusion of data from in situ sensors including GPS, a strong-motion accelerometer module, and a meteorological sensor package, for deployment at existing continuous GPS stations in southern California; fifteen stations have already been upgraded. The low-cost modular design is scalable to the many existing continuous GPS stations worldwide. New on-the-fly data products are estimated with 1 mm precision and accuracy, including three-dimensional seismogeodetic displacements for earthquake, tsunami and structural monitoring and precipitable water for forecasting extreme weather events such as summer monsoons and atmospheric rivers experienced in California. Unlike more

  13. Standards and Guidelines for Numerical Models for Tsunami Hazard Mitigation

    NASA Astrophysics Data System (ADS)

    Titov, V.; Gonzalez, F.; Kanoglu, U.; Yalciner, A.; Synolakis, C. E.

    2006-12-01

    An increased number of nations around the workd need to develop tsunami mitigation plans which invariably involve inundation maps for warning guidance and evacuation planning. There is the risk that inundation maps may be produced with older or untested methodology, as there are currently no standards for modeling tools. In the aftermath of the 2004 megatsunami, some models were used to model inundation for Cascadia events with results much larger than sediment records and existing state-of-the-art studies suggest leading to confusion among emergency management. Incorrectly assessing tsunami impact is hazardous, as recent events in 2006 in Tonga, Kythira, Greece and Central Java have suggested (Synolakis and Bernard, 2006). To calculate tsunami currents, forces and runup on coastal structures, and inundation of coastlines one must calculate the evolution of the tsunami wave from the deep ocean to its target site, numerically. No matter what the numerical model, validation (the process of ensuring that the model solves the parent equations of motion accurately) and verification (the process of ensuring that the model used represents geophysical reality appropriately) both are an essential. Validation ensures that the model performs well in a wide range of circumstances and is accomplished through comparison with analytical solutions. Verification ensures that the computational code performs well over a range of geophysical problems. A few analytic solutions have been validated themselves with laboratory data. Even fewer existing numerical models have been both validated with the analytical solutions and verified with both laboratory measurements and field measurements, thus establishing a gold standard for numerical codes for inundation mapping. While there is in principle no absolute certainty that a numerical code that has performed well in all the benchmark tests will also produce correct inundation predictions with any given source motions, validated codes

  14. Threshold effects of hazard mitigation in coastal human-environmental systems

    NASA Astrophysics Data System (ADS)

    Lazarus, E. D.

    2014-01-01

    Despite improved scientific insight into physical and social dynamics related to natural disasters, the financial cost of extreme events continues to rise. This paradox is particularly evident along developed coastlines, where future hazards are projected to intensify with consequences of climate change, and where the presence of valuable infrastructure exacerbates risk. By design, coastal hazard mitigation buffers human activities against the variability of natural phenomena such as storms. But hazard mitigation also sets up feedbacks between human and natural dynamics. This paper explores developed coastlines as exemplary coupled human-environmental systems in which hazard mitigation is the key coupling mechanism. Results from a simplified numerical model of an agent-managed seawall illustrate the nonlinear effects that economic and physical thresholds can impart into coastal human-environmental system dynamics. The scale of mitigation action affects the time frame over which human activities and natural hazards interact. By accelerating environmental changes observable in some settings over human timescales of years to decades, climate change may temporarily strengthen the coupling between human and environmental dynamics. However, climate change could ultimately result in weaker coupling at those human timescales as mitigation actions increasingly engage global-scale systems.

  15. Threshold effects of hazard mitigation in coastal human-environmental systems

    NASA Astrophysics Data System (ADS)

    Lazarus, E. D.

    2013-10-01

    Despite improved scientific insight into physical and social dynamics related to natural disasters, the financial cost of extreme events continues to rise. This paradox is particularly evident along developed coastlines, where future hazards are projected to intensify with consequences of climate change, and where the presence of valuable infrastructure exacerbates risk. By design, coastal hazard mitigation buffers human activities against the variability of natural phenomena such as storms. But hazard mitigation also sets up feedbacks between human and natural dynamics. This paper explores developed coastlines as exemplary coupled human-environmental systems in which hazard mitigation is the key coupling mechanism. Results from a simplified numerical model of an agent-managed seawall illustrate the nonlinear effects that economic and physical thresholds can impart into coupled-system dynamics. The scale of mitigation action affects the time frame over which human activities and natural hazards interact. By accelerating environmental changes observable in some settings over human time scales of years to decades, climate change may temporarily strengthen the coupling between human and environmental dynamics. However, climate change could ultimately result in weaker coupling at those human time scales as mitigation actions increasingly engage global-scale systems.

  16. The price of safety: costs for mitigating and coping with Alpine hazards

    NASA Astrophysics Data System (ADS)

    Pfurtscheller, C.; Thieken, A. H.

    2013-10-01

    Due to limited public budgets and the need to economize, the analysis of costs of hazard mitigation and emergency management of natural hazards becomes increasingly important for public natural hazard and risk management. In recent years there has been a growing body of literature on the estimation of losses which supported to help to determine benefits of measures in terms of prevented losses. On the contrary, the costs of mitigation are hardly addressed. This paper thus aims to shed some light on expenses for mitigation and emergency services. For this, we analysed the annual costs of mitigation efforts in four regions/countries of the Alpine Arc: Bavaria (Germany), Tyrol (Austria), South Tyrol (Italy) and Switzerland. On the basis of PPP values (purchasing power parities), annual expenses on public safety ranged from EUR 44 per capita in the Free State of Bavaria to EUR 216 in the Autonomous Province of South Tyrol. To analyse the (variable) costs for emergency services in case of an event, we used detailed data from the 2005 floods in the Federal State of Tyrol (Austria) as well as aggregated data from the 2002 floods in Germany. The analysis revealed that multi-hazards, the occurrence and intermixture of different natural hazard processes, contribute to increasing emergency costs. Based on these findings, research gaps and recommendations for costing Alpine natural hazards are discussed.

  17. Assessment and mitigation of combustible dust hazards in the plastics industry

    NASA Astrophysics Data System (ADS)

    Stern, Michael C.; Ibarreta, Alfonso; Myers, Timothy J.

    2015-05-01

    A number of recent industrial combustible dust fires and explosions, some involving powders used in the plastics industry, have led to heightened awareness of combustible dust hazards, increased regulatory enforcement, and changes to the current standards and regulations. This paper provides a summary of the fundamentals of combustible dust explosion hazards, comparing and contrasting combustible dust to flammable gases and vapors. The types of tests used to quantify and evaluate the potential hazard posed by plastic dusts are explored. Recent changes in NFPA 654, a standard applicable to combustible dust in the plastics industry, are also discussed. Finally, guidance on the primary methods for prevention and mitigation of combustible dust hazards are provided.

  18. The Diversity of Large Earthquakes and Its Implications for Hazard Mitigation

    NASA Astrophysics Data System (ADS)

    Kanamori, Hiroo

    2014-05-01

    With the advent of broadband seismology and GPS, significant diversity in the source radiation spectra of large earthquakes has been clearly demonstrated. This diversity requires different approaches to mitigate hazards. In certain tectonic environments, seismologists can forecast the future occurrence of large earthquakes within a solid scientific framework using the results from seismology and GPS. Such forecasts are critically important for long-term hazard mitigation practices, but because stochastic fracture processes are complex, the forecasts are inevitably subject to large uncertainty, and unexpected events will continue to surprise seismologists. Recent developments in real-time seismology will help seismologists to cope with and prepare for tsunamis and earthquakes. Combining a better understanding of earthquake diversity with modern technology is the key to effective and comprehensive hazard mitigation practices.

  19. Mitigation of unconfined releases of hazardous gases via liquid spraying

    SciTech Connect

    Fthenakis, V.M.

    1997-02-01

    The capability of water sprays in mitigating clouds of hydrofluoric acid (HF) has been demonstrated in the large-scale field experiments of Goldfish and Hawk, which took place at the DOE Nevada Test Site. The effectiveness of water sprays and fire water monitors to remove HF from vapor plume, has also been studied theoretically using the model HGSPRAY5 with the near-field and far-field dispersion described by the HGSYSTEM models. This paper presents options to select and evaluate liquid spraying systems, based on the industry experience and mathematical modeling.

  20. Fourth DOE Natural Phenomena Hazards Mitigation Conference: Proceedings. Volume 1

    SciTech Connect

    Not Available

    1993-12-31

    This conference allowed an interchange in the natural phenomena area among designers, safety professionals, and managers. The papers presented in Volume I of the proceedings are from sessions I - VIII which cover the general topics of: DOE standards, lessons learned and walkdowns, wind, waste tanks, ground motion, testing and materials, probabilistic seismic hazards, risk assessment, base isolation and energy dissipation, and lifelines and floods. Individual papers are indexed separately. (GH)

  1. Department of Energy Natural Phenomena Hazards Mitigation Program

    SciTech Connect

    Murray, R.C.

    1993-09-01

    This paper will present a summary of past and present accomplishments of the Natural Phenomena Hazards Program that has been ongoing at Lawrence Livermore National Laboratory since 1975. The Natural Phenomena covered includes earthquake; winds, hurricanes, and tornadoes; flooding and precipitation; lightning; and volcanic events. The work is organized into four major areas (1) Policy, requirements, standards, and guidance (2) Technical support, research development, (3) Technology transfer, and (4) Oversight.

  2. Advances(?) in mitigating volcano hazards in Latin America

    USGS Publications Warehouse

    Hall, M.L.

    1991-01-01

    The 1980's were incredible years for volcanology. As a consequence of the Mount St. Helens and other eruptions, major advances in our understanding of volcanic processes and eruption dynamics were made. the decade also witnessed the greatest death toll caused by volcanism since 1902. Following Mount St. Helens, awareness of volcano hazards increased throughout the world; however, in Latin America, subsequent events showed that much was still to be learned. 

  3. GO/NO-GO - When is medical hazard mitigation acceptable for launch?

    NASA Technical Reports Server (NTRS)

    Hamilton, Douglas R.; Polk, James D.

    2005-01-01

    Medical support of spaceflight missions is composed of complex tasks and decisions that dedicated to maintaining the health and performance of the crew and the completion of mission objectives. Spacecraft represent one of the most complex vehicles built by humans, and are built to very rigorous design specifications. In the course of a Flight Readiness Review (FRR) or a mission itself, the flight surgeon must be able to understand the impact of hazards and risks that may not be completely mitigated by design alone. Some hazards are not mitigated because they are never actually identified. When a hazard is identified, it must be reduced or waivered. Hazards that cannot be designed out of the vehicle or mission, are usually mitigated through other means to bring the residual risk to an acceptable level. This is possible in most engineered systems because failure modes are usually predictable and analysis can include taking these systems to failure. Medical support of space missions is complicated by the inability of flight surgeons to provide "exact" hazard and risk numbers to the NASA engineering community. Taking humans to failure is not an option. Furthermore, medical dogma is mostly comprised of "medical prevention" strategies that mitigate risk by examining the behaviour of a cohort of humans similar to astronauts. Unfortunately, this approach does not lend itself well for predicting the effect of a hazard in the unique environment of space. This presentation will discuss how Medical Operations uses an evidence-based approach to decide if hazard mitigation strategies are adequate to reduce mission risk to acceptable levels. Case studies to be discussed will include: 1. Risk of electrocution risk during EVA 2. Risk of cardiac event risk during long and short duration missions 3. Degraded cabin environmental monitoring on the ISS. Learning Objectives 1.) The audience will understand the challenges of mitigating medical risk caused by nominal and off

  4. Looking before we leap: an ongoing, quantative investigation of asteroid and comet impact hazard mitigation

    SciTech Connect

    Plesko, Catherine S; Weaver, Robert P; Bradley, Paul A; Huebner, Walter F

    2010-01-01

    There are many outstanding questions about the correct response to an asteroid or comet impact threat on Earth. Nuclear munitions are currently thought to be the most efficient method of delivering an impact-preventing impulse to a potentially hazardous object (PHO). However, there are major uncertainties about the response of PHOs to a nuclear burst, and the most appropriate ways to use nuclear munitions for hazard mitigation.

  5. Aligning Natural Resource Conservation and Flood Hazard Mitigation in California

    PubMed Central

    Calil, Juliano; Beck, Michael W.; Gleason, Mary; Merrifield, Matthew; Klausmeyer, Kirk; Newkirk, Sarah

    2015-01-01

    Flooding is the most common and damaging of all natural disasters in the United States, and was a factor in almost all declared disasters in U.S. history. Direct flood losses in the U.S. in 2011 totaled $8.41 billion and flood damage has also been on the rise globally over the past century. The National Flood Insurance Program paid out more than $38 billion in claims since its inception in 1968, more than a third of which has gone to the one percent of policies that experienced multiple losses and are classified as “repetitive loss.” During the same period, the loss of coastal wetlands and other natural habitat has continued, and funds for conservation and restoration of these habitats are very limited. This study demonstrates that flood losses could be mitigated through action that meets both flood risk reduction and conservation objectives. We found that there are at least 11,243km2 of land in coastal California, which is both flood-prone and has natural resource conservation value, and where a property/structure buyout and habitat restoration project could meet multiple objectives. For example, our results show that in Sonoma County, the extent of land that meets these criteria is 564km2. Further, we explore flood mitigation grant programs that can be a significant source of funds to such projects. We demonstrate that government funded buyouts followed by restoration of targeted lands can support social, environmental, and economic objectives: reduction of flood exposure, restoration of natural resources, and efficient use of limited governmental funds. PMID:26200353

  6. Numerical study on tsunami hazard mitigation using a submerged breakwater.

    PubMed

    Ha, Taemin; Yoo, Jeseon; Han, Sejong; Cho, Yong-Sik

    2014-01-01

    Most coastal structures have been built in surf zones to protect coastal areas. In general, the transformation of waves in the surf zone is quite complicated and numerous hazards to coastal communities may be associated with such phenomena. Therefore, the behavior of waves in the surf zone should be carefully analyzed and predicted. Furthermore, an accurate analysis of deformed waves around coastal structures is directly related to the construction of economically sound and safe coastal structures because wave height plays an important role in determining the weight and shape of a levee body or armoring material. In this study, a numerical model using a large eddy simulation is employed to predict the runup heights of nonlinear waves that passed a submerged structure in the surf zone. Reduced runup heights are also predicted, and their characteristics in terms of wave reflection, transmission, and dissipation coefficients are investigated. PMID:25215334

  7. Numerical Study on Tsunami Hazard Mitigation Using a Submerged Breakwater

    PubMed Central

    Yoo, Jeseon; Han, Sejong; Cho, Yong-Sik

    2014-01-01

    Most coastal structures have been built in surf zones to protect coastal areas. In general, the transformation of waves in the surf zone is quite complicated and numerous hazards to coastal communities may be associated with such phenomena. Therefore, the behavior of waves in the surf zone should be carefully analyzed and predicted. Furthermore, an accurate analysis of deformed waves around coastal structures is directly related to the construction of economically sound and safe coastal structures because wave height plays an important role in determining the weight and shape of a levee body or armoring material. In this study, a numerical model using a large eddy simulation is employed to predict the runup heights of nonlinear waves that passed a submerged structure in the surf zone. Reduced runup heights are also predicted, and their characteristics in terms of wave reflection, transmission, and dissipation coefficients are investigated. PMID:25215334

  8. Earthquake Hazard Mitigation Using a Systems Analysis Approach to Risk Assessment

    NASA Astrophysics Data System (ADS)

    Legg, M.; Eguchi, R. T.

    2015-12-01

    The earthquake hazard mitigation goal is to reduce losses due to severe natural events. The first step is to conduct a Seismic Risk Assessment consisting of 1) hazard estimation, 2) vulnerability analysis, 3) exposure compilation. Seismic hazards include ground deformation, shaking, and inundation. The hazard estimation may be probabilistic or deterministic. Probabilistic Seismic Hazard Assessment (PSHA) is generally applied to site-specific Risk assessments, but may involve large areas as in a National Seismic Hazard Mapping program. Deterministic hazard assessments are needed for geographically distributed exposure such as lifelines (infrastructure), but may be important for large communities. Vulnerability evaluation includes quantification of fragility for construction or components including personnel. Exposure represents the existing or planned construction, facilities, infrastructure, and population in the affected area. Risk (expected loss) is the product of the quantified hazard, vulnerability (damage algorithm), and exposure which may be used to prepare emergency response plans, retrofit existing construction, or use community planning to avoid hazards. The risk estimate provides data needed to acquire earthquake insurance to assist with effective recovery following a severe event. Earthquake Scenarios used in Deterministic Risk Assessments provide detailed information on where hazards may be most severe, what system components are most susceptible to failure, and to evaluate the combined effects of a severe earthquake to the whole system or community. Casualties (injuries and death) have been the primary factor in defining building codes for seismic-resistant construction. Economic losses may be equally significant factors that can influence proactive hazard mitigation. Large urban earthquakes may produce catastrophic losses due to a cascading of effects often missed in PSHA. Economic collapse may ensue if damaged workplaces, disruption of utilities, and

  9. Monitoring Fogo Island, Cape Verde Archipelago, for Volcanic Hazard Mitigation

    NASA Astrophysics Data System (ADS)

    Faria, B. V.; Heleno, S. I.; Barros, I. J.; d'Oreye, N.; Bandomo, Z.; Fonseca, J. F.

    2001-12-01

    Fogo Island, in the Cape Verde Archipelago (North Atlantic), with a total area of 476 km2 and a population of about 40000, is an active ocean island volcano raising from an average sea-bottom depth of the order of -3000m to a maximum altitude of 2820m. All of the 28 historically recorded eruptions (Ribeiro, 1960) since the arrival of the first settlers in the 15th Century took place in Cha das Caldeiras, a 9 km-wide flat zone 1700 meters above sea level that resulted from the infill of a large lateral collapse caldera (Day et al., 2000). The last eruptions occurred in 1951 and 1995, through secondary cones at the basis of Pico do Fogo, the main volcanic edifice. A tall scarp surrounds Cha das Calderas on its western side only, and the eastern limit leads to a very steep sub-aerial slope down to the coastline. With this morphology, the volcanic hazard is significant inside Cha das Caldeiras - with a resident population of the order of 800 - and particularly in the villages of the eastern coast. Because the magma has low viscosity, eruptions in Fogo have scarce precursory activity, and its forecast is therefore challenging. The VIGIL monitoring network was installed between 1997 and 2001, and is currently in full operation. It consists of seven seismographic stations - two of which broadband - four tilt stations, a CO2 monitoring station and a meteo station. The data is telemetred in real time to the central laboratory in the neighbor island of Santiago, and analyzed on a daily basis. The continuous data acquisition is complemented by periodic GPS, gravity and leveling surveys (Lima et al., this conference). In this paper we present the methodology adopted to monitor the level of volcanic activity of Fogo Volcano, and show examples of the data being collected. Anomalous data recorded at the end of September 2000, which led to the only occurrence of an alert warning so far, are also presented and discussed.

  10. Quantifying the effect of early warning systems for mitigating risks from alpine hazards

    NASA Astrophysics Data System (ADS)

    Straub, Daniel; Sättele, Martina; Bründl, Michael

    2016-04-01

    Early warning systems (EWS) are increasingly applied as flexible and non-intrusive measures for mitigating risks from alpine hazards. They are typically planed and installed in an ad-hoc manner and their effectiveness is not quantified, which is in contrast to structural risk mitigation measures. The effect of an EWS on the risk depends on human decision makers: experts interpret the signals from EWS, authorities decide on intervention measures and the public responds to the warnings. This interaction of the EWS with humans makes the quantification of their effectiveness challenging. Nevertheless, such a quantification is an important step in understanding, improving and justifying the use of EWS. We systematically discuss and demonstrate the factors that influence EWS effectiveness for alpine hazards, and present approaches and tools for analysing them. These include Bayesian network models, which are a powerful tool for an integral probabilistic assessment. The theory is illustrated through applications of warning systems for debris flow and rockfall hazards. References: Sättele M., Bründl M., Straub D. (in print). Quantifying the effectiveness of early warning systems for natural hazards. Natural Hazards and Earth System Sciences. Sättele M., Bründl M., Straub D. (2015). Reliability and Effectiveness of Warning Systems for Natural Hazards: Concepts and Application to Debris Flow Warning. Reliability Engineering & System Safety, 142: 192-202

  11. New Activities of the U.S. National Tsunami Hazard Mitigation Program, Mapping and Modeling Subcommittee

    NASA Astrophysics Data System (ADS)

    Wilson, R. I.; Eble, M. C.

    2013-12-01

    The U.S. National Tsunami Hazard Mitigation Program (NTHMP) is comprised of representatives from coastal states and federal agencies who, under the guidance of NOAA, work together to develop protocols and products to help communities prepare for and mitigate tsunami hazards. Within the NTHMP are several subcommittees responsible for complimentary aspects of tsunami assessment, mitigation, education, warning, and response. The Mapping and Modeling Subcommittee (MMS) is comprised of state and federal scientists who specialize in tsunami source characterization, numerical tsunami modeling, inundation map production, and warning forecasting. Until September 2012, much of the work of the MMS was authorized through the Tsunami Warning and Education Act, an Act that has since expired but the spirit of which is being adhered to in parallel with reauthorization efforts. Over the past several years, the MMS has developed guidance and best practices for states and territories to produce accurate and consistent tsunami inundation maps for community level evacuation planning, and has conducted benchmarking of numerical inundation models. Recent tsunami events have highlighted the need for other types of tsunami hazard analyses and products for improving evacuation planning, vertical evacuation, maritime planning, land-use planning, building construction, and warning forecasts. As the program responsible for producing accurate and consistent tsunami products nationally, the NTHMP-MMS is initiating a multi-year plan to accomplish the following: 1) Create and build on existing demonstration projects that explore new tsunami hazard analysis techniques and products, such as maps identifying areas of strong currents and potential damage within harbors as well as probabilistic tsunami hazard analysis for land-use planning. 2) Develop benchmarks for validating new numerical modeling techniques related to current velocities and landslide sources. 3) Generate guidance and protocols for

  12. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies

    NASA Technical Reports Server (NTRS)

    2010-01-01

    The United States spends approximately four million dollars each year searching for near-Earth objects (NEOs). The objective is to detect those that may collide with Earth. The majority of this funding supports the operation of several observatories that scan the sky searching for NEOs. This, however, is insufficient in detecting the majority of NEOs that may present a tangible threat to humanity. A significantly smaller amount of funding supports ways to protect the Earth from such a potential collision or "mitigation." In 2005, a Congressional mandate called for NASA to detect 90 percent of NEOs with diameters of 140 meters of greater by 2020. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies identifies the need for detection of objects as small as 30 to 50 meters as these can be highly destructive. The book explores four main types of mitigation including civil defense, "slow push" or "pull" methods, kinetic impactors and nuclear explosions. It also asserts that responding effectively to hazards posed by NEOs requires national and international cooperation. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies is a useful guide for scientists, astronomers, policy makers and engineers.

  13. Almost strict liability: Wind River Petroleum and the Utah Hazardous Substance Mitigation Act

    SciTech Connect

    1996-12-31

    In Wind River, the Utah Supreme Court developed a two-step liability standard. The court ruled that under the act, statutorily responsible parties are strictly liable for any release of hazardous material from their facility. Among responsible parties, liability is to be apportioned on an equitable contribution standard. However, the Utah Legislature has subsequently amended the Mitigation Act to prohibit the application of unapportioned strict liability. Therefore, Wind River can no longer be relied upon as the law regarding liability under the Mitigation Act.

  14. The influence of hazard models on GIS-based regional risk assessments and mitigation policies

    USGS Publications Warehouse

    Bernknopf, R.L.; Rabinovici, S.J.M.; Wood, N.J.; Dinitz, L.B.

    2006-01-01

    Geographic information systems (GIS) are important tools for understanding and communicating the spatial distribution of risks associated with natural hazards in regional economies. We present a GIS-based decision support system (DSS) for assessing community vulnerability to natural hazards and evaluating potential mitigation policy outcomes. The Land Use Portfolio Modeler (LUPM) integrates earth science and socioeconomic information to predict the economic impacts of loss-reduction strategies. However, the potential use of such systems in decision making may be limited when multiple but conflicting interpretations of the hazard are available. To explore this problem, we conduct a policy comparison using the LUPM to test the sensitivity of three available assessments of earthquake-induced lateral-spread ground failure susceptibility in a coastal California community. We find that the uncertainty regarding the interpretation of the science inputs can influence the development and implementation of natural hazard management policies. Copyright ?? 2006 Inderscience Enterprises Ltd.

  15. Mitigating mountain hazards in Austria - legislation, risk transfer, and awareness building

    NASA Astrophysics Data System (ADS)

    Holub, M.; Fuchs, S.

    2009-04-01

    Embedded in the overall concept of integral risk management, mitigating mountain hazards is pillared by land use regulations, risk transfer, and information. In this paper aspects on legislation related to natural hazards in Austria are summarised, with a particular focus on spatial planning activities and hazard mapping, and possible adaptations focussing on enhanced resilience are outlined. Furthermore, the system of risk transfer is discussed, highlighting the importance of creating incentives for risk-aware behaviour, above all with respect to individual precaution and insurance solutions. Therefore, the issue of creating awareness through information is essential, which is presented subsequently. The study results in recommendations of how administrative units on different federal and local levels could increase the enforcement of regulations related to the minimisation of natural hazard risk. Moreover, the nexus to risk transfer mechanisms is provided, focusing on the current compensation system in Austria and some possible adjustments in order to provide economic incentives for (private) investments in mitigation measures, i.e. local structural protection. These incentives should be supported by delivering information on hazard and risk target-oriented to any stakeholder involved. Therefore, coping strategies have to be adjusted and the interaction between prevention and precaution has to be highlighted. The paper closes with recommendations of how these efforts could be achieved, with a particular focus on the situation in the Republic of Austria.

  16. Planning ahead for asteroid and comet hazard mitigation, phase 1: parameter space exploration and scenario modeling

    SciTech Connect

    Plesko, Catherine S; Clement, R Ryan; Weaver, Robert P; Bradley, Paul A; Huebner, Walter F

    2009-01-01

    The mitigation of impact hazards resulting from Earth-approaching asteroids and comets has received much attention in the popular press. However, many questions remain about the near-term and long-term, feasibility and appropriate application of all proposed methods. Recent and ongoing ground- and space-based observations of small solar-system body composition and dynamics have revolutionized our understanding of these bodies (e.g., Ryan (2000), Fujiwara et al. (2006), and Jedicke et al. (2006)). Ongoing increases in computing power and algorithm sophistication make it possible to calculate the response of these inhomogeneous objects to proposed mitigation techniques. Here we present the first phase of a comprehensive hazard mitigation planning effort undertaken by Southwest Research Institute and Los Alamos National Laboratory. We begin by reviewing the parameter space of the object's physical and chemical composition and trajectory. We then use the radiation hydrocode RAGE (Gittings et al. 2008), Monte Carlo N-Particle (MCNP) radiation transport (see Clement et al., this conference), and N-body dynamics codes to explore the effects these variations in object properties have on the coupling of energy into the object from a variety of mitigation techniques, including deflection and disruption by nuclear and conventional munitions, and a kinetic impactor.

  17. ANALYSIS AND MITIGATION OF X-RAY HAZARD GENERATED FROM HIGH INTENSITY LASER-TARGET INTERACTIONS

    SciTech Connect

    Qiu, R.; Liu, J.C.; Prinz, A.A.; Rokni, S.H.; Woods, M.; Xia, Z.; /SLAC

    2011-03-21

    Interaction of a high intensity laser with matter may generate an ionizing radiation hazard. Very limited studies have been made, however, on the laser-induced radiation protection issue. This work reviews available literature on the physics and characteristics of laser-induced X-ray hazards. Important aspects include the laser-to-electron energy conversion efficiency, electron angular distribution, electron energy spectrum and effective temperature, and bremsstrahlung production of X-rays in the target. The possible X-ray dose rates for several femtosecond Ti:sapphire laser systems used at SLAC, including the short pulse laser system for the Matter in Extreme Conditions Instrument (peak power 4 TW and peak intensity 2.4 x 10{sup 18} W/cm{sup 2}) were analysed. A graded approach to mitigate the laser-induced X-ray hazard with a combination of engineered and administrative controls is also proposed.

  18. A portfolio approach to evaluating natural hazard mitigation policies: An Application to lateral-spread ground failure in Coastal California

    USGS Publications Warehouse

    Bernknopf, R.L.; Dinitz, L.B.; Rabinovici, S.J.M.; Evans, A.M.

    2001-01-01

    In the past, efforts to prevent catastrophic losses from natural hazards have largely been undertaken by individual property owners based on site-specific evaluations of risks to particular buildings. Public efforts to assess community vulnerability and encourage mitigation have focused on either aggregating site-specific estimates or adopting standards based upon broad assumptions about regional risks. This paper develops an alternative, intermediate-scale approach to regional risk assessment and the evaluation of community mitigation policies. Properties are grouped into types with similar land uses and levels of hazard, and hypothetical community mitigation strategies for protecting these properties are modeled like investment portfolios. The portfolios consist of investments in mitigation against the risk to a community posed by a specific natural hazard, and are defined by a community's mitigation budget and the proportion of the budget invested in locations of each type. The usefulness of this approach is demonstrated through an integrated assessment of earthquake-induced lateral-spread ground failure risk in the Watsonville, California area. Data from the magnitude 6.9 Loma Prieta earthquake of 1989 are used to model lateral-spread ground failure susceptibility. Earth science and economic data are combined and analyzed in a Geographic Information System (GIS). The portfolio model is then used to evaluate the benefits of mitigating the risk in different locations. Two mitigation policies, one that prioritizes mitigation by land use type and the other by hazard zone, are compared with a status quo policy of doing no further mitigation beyond that which already exists. The portfolio representing the hazard zone rule yields a higher expected return than the land use portfolio does: However, the hazard zone portfolio experiences a higher standard deviation. Therefore, neither portfolio is clearly preferred. The two mitigation policies both reduce expected losses

  19. Local hazard mitigation plans: a preliminary estimation of state-level completion from 2004 to 2009.

    PubMed

    Jackman, Andrea M; Beruvides, Mario G

    2013-01-01

    According to the Disaster Mitigation Act of 2000 and subsequent federal policy, local governments are required to have a Hazard Mitigation Plan (HMP) written and approved by the Federal Emergency Management Agency (FEMA) to be eligible for federal mitigation assistance. This policy took effect on November 1, 2004. Using FEMA's database of approved HMPs and US Census Bureau's 2002 Survey of Local Governments, it is estimated that 3 years after the original deadline, 67 percent of the country's active local governments were without an approved HMP. A follow-up examination in 2009 of the eight states with the lowest completion percentages did not indicate significant improvement following the initial study and revealed inconsistencies in plan completion data over time. The completion percentage varied greatly by state and did not appear to follow any expected pattern such as wealth or hazard vulnerability that might encourage prompt completion of a plan. Further, the results indicate that -92 percent of the approved plans were completed by a multijurisdictional entity, which suggests single governments seldom complete and gain approval for plans. Based on these results, it is believed that state-level resolution is not adequate for explaining the variation of plan completion, and further study at the local level is warranted. PMID:24180092

  20. Lidar and Electro-Optics for Atmospheric Hazard Sensing and Mitigation

    NASA Technical Reports Server (NTRS)

    Clark, Ivan O.

    2012-01-01

    This paper provides an overview of the research and development efforts of the Lidar and Electro-Optics element of NASA's Aviation Safety Program. This element is seeking to improve the understanding of the atmospheric environments encountered by aviation and to provide enhanced situation awareness for atmospheric hazards. The improved understanding of atmospheric conditions is specifically to develop sensor signatures for atmospheric hazards. The current emphasis is on kinetic air hazards such as turbulence, aircraft wake vortices, mountain rotors, and windshear. Additional efforts are underway to identify and quantify the hazards arising from multi-phase atmospheric conditions including liquid and solid hydrometeors and volcanic ash. When the multi-phase conditions act as obscurants that result in reduced visual awareness, the element seeks to mitigate the hazards associated with these diminished visual environments. The overall purpose of these efforts is to enable safety improvements for air transport class and business jet class aircraft as the transition to the Next Generation Air Transportation System occurs.

  1. Nationwide Operational Assessment of Hazards and success stories in disaster prevention and mitigation in the Philippines

    NASA Astrophysics Data System (ADS)

    Mahar Francisco Lagmay, Alfredo

    2016-04-01

    The Philippines, being a locus of typhoons, tsunamis, earthquakes, and volcanic eruptions, is a hotbed of disasters. Natural hazards inflict loss of lives and costly damage to property in the country. In 2011, after tropical storm Washi devastated cities in southern Philippines, the Department of Science and Technology put in place a responsive program to warn and give communities hours-in-advance lead-time to prepare for imminent hazards and use advanced science and technology to enhance geohazard maps for more effective disaster prevention and mitigation. Since its launch, there have been many success stories on the use of Project NOAH, which after Typhoon Haiyan was integrated into the Pre-Disaster Risk Assessment (PDRA) system of the National Disaster Risk Reduction and Management Council (NDRRMC), the government agency tasked to prepare for, and respond to, natural calamities. Learning from past disasters, NDRRMC now issues warnings, through scientific advise from DOST-Project NOAH and PAGASA (Philippine Weather Bureau) that are hazards-specific, area-focused and time-bound. Severe weather events in 2015 generated dangerous hazard phenomena such as widespread floods and massive debris flows, which if not for timely, accessible and understandable warnings, could have turned into disasters. We call these events as "disasters that did not happen". The innovative warning system of the Philippine government has so far proven effective in addressing the impacts of hydrometeorological hazards and can be employed elsewhere in the world.

  2. The Wenchuan, China M8.0 Earthquake: A Lesson and Implication for Seismic Hazard Mitigation

    NASA Astrophysics Data System (ADS)

    Wang, Z.

    2008-12-01

    The Wenchuan, China M8.0 earthquake caused great damage and huge casualty. 69,197 people were killed, 374,176 people were injured, and 18,341 people are still missing. The estimated direct economic loss is about 126 billion U.S. dollar. The Wenchuan earthquake again demonstrated that earthquake does not kill people, but the built environments and induced hazards, landslides in particular, do. Therefore, it is critical to strengthen the built environments, such buildings and bridges, and to mitigate the induced hazards in order to avoid such disaster. As a part of the so-called North-South Seismic Zone in China, the Wenchuan earthquake occurred along the Longmen Shan thrust belt which forms a boundary between the Qinghai-Tibet Plateau and the Sichuan basin, and there is a long history (~4,000 years) of seismicity in the area. The historical records show that the area experienced high intensity (i.e., greater than IX) in the past several thousand years. In other words, the area is well-known to have high seismic hazard because of its tectonic setting and seismicity. However, only intensity VII (0.1 to 0.15g PGA) has been considered for seismic design for the built environments in the area. This was one of the main reasons that so many building collapses, particularly the school buildings, during the Wenchuan earthquake. It is clear that the seismic design (i.e., the design ground motion or intensity) is not adequate in the Wenchuan earthquake stricken area. A lesson can be learned from the Wenchuan earthquake on the seismic hazard and risk assessment. A lesson can also be learned from this earthquake on seismic hazard mitigation and/or seismic risk reduction.

  3. Linear Aerospike SR-71 Experiment (LASRE): Aerospace Propulsion Hazard Mitigation Systems

    NASA Technical Reports Server (NTRS)

    Mizukami, Masashi; Corpening, Griffin P.; Ray, Ronald J.; Hass, Neal; Ennix, Kimberly A.; Lazaroff, Scott M.

    1998-01-01

    A major hazard posed by the propulsion system of hypersonic and space vehicles is the possibility of fire or explosion in the vehicle environment. The hazard is mitigated by minimizing or detecting, in the vehicle environment, the three ingredients essential to producing fire: fuel, oxidizer, and an ignition source. The Linear Aerospike SR-71 Experiment (LASRE) consisted of a linear aerospike rocket engine integrated into one-half of an X-33-like lifting body shape, carried on top of an SR-71 aircraft. Gaseous hydrogen and liquid oxygen were used as propellants. Although LASRE is a one-of-a-kind experimental system, it must be rated for piloted flight, so this test presented a unique challenge. To help meet safety requirements, the following propulsion hazard mitigation systems were incorporated into the experiment: pod inert purge, oxygen sensors, a hydrogen leak detection algorithm, hydrogen sensors, fire detection and pod temperature thermocouples, water misting, and control room displays. These systems are described, and their development discussed. Analyses, ground test, and flight test results are presented, as are findings and lessons learned.

  4. Numerical and probabilistic analysis of asteroid and comet impact hazard mitigation

    SciTech Connect

    Plesko, Catherine S; Weaver, Robert P; Huebner, Walter F

    2010-09-09

    The possibility of asteroid and comet impacts on Earth has received significant recent media and scientific attention. Still, there are many outstanding questions about the correct response once a potentially hazardous object (PHO) is found. Nuclear munitions are often suggested as a deflection mechanism because they have a high internal energy per unit launch mass. However, major uncertainties remain about the use of nuclear munitions for hazard mitigation. There are large uncertainties in a PHO's physical response to a strong deflection or dispersion impulse like that delivered by nuclear munitions. Objects smaller than 100 m may be solid, and objects at all sizes may be 'rubble piles' with large porosities and little strength. Objects with these different properties would respond very differently, so the effects of object properties must be accounted for. Recent ground-based observations and missions to asteroids and comets have improved the planetary science community's understanding of these objects. Computational power and simulation capabilities have improved such that it is possible to numerically model the hazard mitigation problem from first principles. Before we know that explosive yield Y at height h or depth -h from the target surface will produce a momentum change in or dispersion of a PHO, we must quantify energy deposition into the system of particles that make up the PHO. Here we present the initial results of a parameter study in which we model the efficiency of energy deposition from a stand-off nuclear burst onto targets made of PHO constituent materials.

  5. Implementation strategies for U.S. DOE Order 5480.28 Natural Phenomena Hazards Mitigation

    SciTech Connect

    Conrads, T.J.

    1995-01-01

    This paper describes the strategies used by Westinghouse Hanford Company for implementing a new U.S. Department of Energy Order 5480.28, Natural Phenomena Hazards Mitigation. The order requires that all new and existing structures, systems, and components be designed and evaluated for the effects of natural phenomena (seismic, wind, flood, and volcano) applicable at a given site. It also requires that instrumentation be available to record the expected seismic events and that procedures be available to inspect facilities for damage following a natural phenomena event. This order requires that probabilistic hazards studies be conducted for the applicable natural phenomena to determine appropriate loads to be applied in a graded approach to structures, systems, and components important to safety. This paper discusses the processes, tasks, and methods used to implement this directive, which altered the standard design basis for new and existing structures, systems, and components at the Hanford Site. It also addresses a correlation between the performance category nomenclature of DOE Order 5480.28 and the safety classification described in DOE Order 5480.23, Nuclear Safety Analysis Reports. This correlation was deemed to be a prerequisite for the cost-effective implementation of the new DOE Order on natural phenomena hazards mitigation.

  6. An economic and geographic appraisal of a spatial natural hazard risk: a study of landslide mitigation rules

    USGS Publications Warehouse

    Bernknopf, R.L.; Brookshire, D.S.; Campbell, R.H.; Shapiro, C.D.

    1988-01-01

    Efficient mitigation of natural hazards requires a spatial representation of the risk, based upon the geographic distribution of physical parameters and man-related development activities. Through such a representation, the spatial probability of landslides based upon physical science concepts is estimated for Cincinnati, Ohio. Mitigation programs designed to reduce loss from landslide natural hazards are then evaluated. An optimum mitigation rule is suggested that is spatially selective and is determined by objective measurements of hillside slope and properties of the underlying soil. -Authors

  7. Evaluating fuel complexes for fire hazard mitigation planning in the southeastern United States.

    SciTech Connect

    Andreu, Anne G.; Shea, Dan; Parresol, Bernard, R.; Ottmar, Roger, D.

    2012-01-01

    Fire hazard mitigation planning requires an accurate accounting of fuel complexes to predict potential fire behavior and effects of treatment alternatives. In the southeastern United States, rapid vegetation growth coupled with complex land use history and forest management options requires a dynamic approach to fuel characterization. In this study we assessed potential surface fire behavior with the Fuel Characteristic Classification System (FCCS), a tool which uses inventoried fuelbed inputs to predict fire behavior. Using inventory data from 629 plots established in the upper Atlantic Coastal Plain, South Carolina, we constructed FCCS fuelbeds representing median fuel characteristics by major forest type and age class. With a dry fuel moisture scenario and 6.4 km h{sub 1} midflame wind speed, the FCCS predicted moderate to high potential fire hazard for the majority of the fuelbeds under study. To explore fire hazard under potential future fuel conditions, we developed fuelbeds representing the range of quantitative inventorydata for fuelbed components that drive surface fire behavior algorithms and adjusted shrub species composition to represent 30% and 60% relative cover of highly flammable shrub species. Results indicate that the primary drivers of surface fire behavior vary by forest type, age and surface fire behavior rating. Litter tends to be a primary or secondary driver in most forest types. In comparison to other surface fire contributors, reducing shrub loading results in reduced flame lengths most consistently across forest types. FCCS fuelbeds and the results from this project can be used for fire hazard mitigation planning throughout the southern Atlantic Coastal Plain where similar forest types occur. The approach of building simulated fuelbeds across the range of available surface fuel data produces sets of incrementally different fuel characteristics that can be applied to any dynamic forest types in which surface fuel conditions change rapidly.

  8. Fluor Daniel Hanford implementation plan for DOE Order 5480.28, Natural phenomena hazards mitigation

    SciTech Connect

    Conrads, T.J.

    1997-09-12

    Natural phenomena hazards (NPH) are unexpected acts of nature that pose a threat or danger to workers, the public, or the environment. Earthquakes, extreme winds (hurricane and tornado), snow, flooding, volcanic ashfall, and lightning strikes are examples of NPH that could occur at the Hanford Site. U.S. Department of Energy (DOE) policy requires facilities to be designed, constructed, and operated in a manner that protects workers, the public, and the environment from hazards caused by natural phenomena. DOE Order 5480.28, Natural Phenomena Hazards Mitigation, includes rigorous new natural phenomena criteria for the design of new DOE facilities, as well as for the evaluation and, if necessary, upgrade of existing DOE facilities. The Order was transmitted to Westinghouse Hanford Company in 1993 for compliance and is also identified in the Project Hanford Management Contract, Section J, Appendix C. Criteria and requirements of DOE Order 5480.28 are included in five standards, the last of which, DOE-STD-1023, was released in fiscal year 1996. Because the Order was released before all of its required standards were released, enforcement of the Order was waived pending release of the last standard and determination of an in-force date by DOE Richland Operations Office (DOE-RL). Agreement also was reached between the Management and Operations Contractor and DOE-RL that the Order would become enforceable for new structures, systems, and components (SSCS) 60 days following issue of a new order-based design criteria in HNF-PRO-97, Engineering Design and Evaluation. The order also requires that commitments addressing existing SSCs be included in an implementation plan that is to be issued 1 year following the release of the last standard. Subsequently, WHC-SP-1175, Westinghouse Hanford Company Implementation Plan for DOE Order 5480.28, Natural Phenomena Hazards Mitigation, Rev. 0, was issued in November 1996, and this document, HNF-SP-1175, Fluor Daniel Hanford

  9. The Puerto Rico Component of the National Tsunami Hazard and Mitigation Program Pr-Nthmp

    NASA Astrophysics Data System (ADS)

    Huerfano Moreno, V. A.; Hincapie-Cardenas, C. M.

    2014-12-01

    Tsunami hazard assessment, detection, warning, education and outreach efforts are intended to reduce losses to life and property. The Puerto Rico Seismic Network (PRSN) is participating in an effort with local and federal agencies, to developing tsunami hazard risk reduction strategies under the National Tsunami Hazards and Mitigation Program (NTHMP). This grant supports the TsunamiReady program which is the base of the tsunami preparedness and mitigation in PR. The Caribbean region has a documented history of damaging tsunamis that have affected coastal areas. The seismic water waves originating in the prominent fault systems around PR are considered to be a near-field hazard for Puerto Rico and the Virgin islands (PR/VI) because they can reach coastal areas within a few minutes after the earthquake. Sources for local, regional and tele tsunamis have been identified and modeled and tsunami evacuation maps were prepared for PR. These maps were generated in three phases: First, hypothetical tsunami scenarios on the basis of the parameters of potential underwater earthquakes were developed. Secondly, each of these scenarios was simulated. The third step was to determine the worst case scenario (MOM). The run-ups were drawn on GIS referenced maps and aerial photographs. These products are being used by emergency managers to educate the public and develop mitigation strategies. Online maps and related evacuation products are available to the public via the PR-TDST (PR Tsunami Decision Support Tool). Currently all the 44 coastal municipalities were recognized as TsunamiReady by the US NWS. The main goal of the program is to declare Puerto Rico as TsunamiReady, including two cities that are not coastal but could be affected by tsunamis. Based on these evacuation maps, tsunami signs were installed, vulnerability profiles were created, communication systems to receive and disseminate tsunami messages were installed in each TWFP, and tsunami response plans were approved

  10. Monitoring active volcanoes and mitigating volcanic hazards: the case for including simple approaches

    NASA Astrophysics Data System (ADS)

    Stoiber, Richard E.; Williams, Stanley N.

    1990-07-01

    Simple approaches to problems brought about eruptions and their ensuing hazardous effects should be advocated and used by volcanologists while awaiting more sophisticated remedies. The expedients we advocate have all or many of the following attributes: only locally available materials are required; no extensive training of operators or installation is necessary; they are affordable and do not require foreign aid or exports; they are often labor intensive and are sustainable without outside assistance. Where appropriate, the involvement of local residents is advocated. Examples of simple expedients which can be used in forecasting or mitigating the effects of crises emphasize the relative ease and the less elaborate requirements with which simple approaches can be activated. Emphasis is on visual observations often by untrained observers, simple meteorogical measurements, observations of water level in lakes, temperature and chemistry of springs and fumaroles, new springs and collapse areas and observations of volcanic plumes. Simple methods are suggested which can be applied to mitigating damage from mudflows, nuées ardentes, tephra falls and gas discharge. A review in hindsight at Ruiz includes the use of both chemical indicators and simple mudflow alarms. Simple expedients are sufficiently effective that any expert volcanologist called to aid in a crisis must include them in the package of advice offered. Simple approaches are a critical and logical complement to highly technical solutions to hazardous situations.

  11. Assessing the costs of hazard mitigation through landscape interventions in the urban structure

    NASA Astrophysics Data System (ADS)

    Bostenaru-Dan, Maria; Aldea Mendes, Diana; Panagopoulos, Thomas

    2014-05-01

    In this paper we look at an issue rarely approached, the economic efficiency of natural hazard risk mitigation. The urban scale at which a natural hazard can impact leads to the importance of urban planning strategy in risk management. However, usually natural, engineering, and social sciences deal with it, and the role of architecture and urban planning is neglected. Climate change can lead to risks related to increased floods, desertification, sea level rise among others. Reducing the sealed surfaces in cities through green spaces in the crowded centres can mitigate them, and can be foreseen in restructuration plans in presence or absence of disasters. For this purpose we reviewed the role of green spaces and community centres such as churches in games, which can build the core for restructuration efforts, as also field and archive studies show. We look at the way ICT can contribute to organize the information from the building survey to economic computations in direct modeling or through games. The roles of game theory, agent based modeling and networks and urban public policies in designing decision systems for risk management are discussed. Games rules are at the same time supported by our field and archive studies, as well as research by design. Also we take into consideration at a rare element, which is the role of landscape planning, through the inclusion of green elements in reconstruction after the natural and man-made disasters, or in restructuration efforts to mitigate climate change. Apart of existing old city tissue also landscape can be endangered by speculation and therefore it is vital to highlight its high economic value, also in this particular case. As ICOMOS highlights for the 2014 congress, heritage and landscape are two sides of the same coin. Landscape can become or be connected to a community centre, the first being necessary for building a settlement, the second raising its value, or can build connections between landmarks in urban routes

  12. 2009 ERUPTION OF REDOUBT VOLCANO: Lahars, Oil, and the Role of Science in Hazards Mitigation (Invited)

    NASA Astrophysics Data System (ADS)

    Swenson, R.; Nye, C. J.

    2009-12-01

    In March, 2009, Redoubt Volcano erupted for the third time in 45 years. More than 19 explosions produced ash plumes to 60,000 ft asl, lahar flows of mud and ice down the Drift river ~30 miles to the coast, and tephra fall up to 1.5 mm onto surrounding communities. The eruption had severe impact on many operations. Airlines were forced to cancel or divert hundreds of international and domestic passenger and cargo flights, and Anchorage International airport closed for over 12 hours. Mudflows and floods down the Drift River to the coast impacted operations at the Drift River Oil Terminal (DROT) which was forced to shut down and ultimately be evacuated. Prior mitigation efforts to protect the DROT oil tank farm from potential impacts associated with a major eruptive event were successful, and none of the 148,000 barrels of oil stored at the facility was spilled or released. Nevertheless, the threat of continued eruptive activity at Redoubt, with the possibility of continued lahar flows down the Drift River alluvial fan, required an incident command post be established so that the US Coast Guard, Alaska Dept. of Environmental Conservation, and the Cook Inlet Pipeline Company could coordinate a response to the potential hazards. Ultimately, the incident command team relied heavily on continuous real-time data updates from the Alaska Volcano Observatory, as well as continuous geologic interpretations and risk analysis by the USGS Volcanic Hazards group, the State Division of Geological and Geophysical Surveys and the University of Alaska Geophysical Institute, all members of the collaborative effort of the Alaska Volcano Observatory. The great success story that unfolded attests to the efforts of the incident command team, and their reliance on real-time scientific analysis from scientific experts. The positive results also highlight how pre-disaster mitigation and monitoring efforts, in concert with hazards response planning, can be used in a cooperative industry

  13. Numerical and Probabilistic Analysis of Asteroid and Comet Impact Hazard Mitigation

    NASA Astrophysics Data System (ADS)

    Plesko, C.; Weaver, R.; Huebner, W.

    2010-09-01

    The possibility of asteroid and comet nucleus impacts on Earth has received significant recent media and scientific attention. Still, there are many outstanding questions about the correct response once a potentially hazardous object (PHO) is found. Nuclear explosives are often suggested as a deflection mechanism because they have a high internal energy per unit launch mass. However, major uncertainties remain about the use of nuclear explosives for hazard mitigation. There are large uncertainties in a PHO’s physical response to a strong deflection or dispersion impulse like that delivered by nuclear munitions. Objects smaller than 100 m may be solid, and objects at all sizes may be “rubble piles” with large porosities and little strength [1]. Objects with these different properties would respond very differently, so the effects of object properties must be accounted for. Recent ground-based observations and missions to asteroids and comets have improved the planetary science community’s understanding of these objects. Computational power and simulation capabilities have improved to such an extent that it is possible to numerically model the hazard mitigation problem from first principles. Before we know that explosive yield Y at height h or depth -h from the target surface will produce a momentum change in or dispersion of a PHO, we must quantify the energy deposition into the system of particles that make up the PHO. Here we present the initial results of a parameter study in which we model the efficiency of energy deposition from a stand-off nuclear burst onto targets made of PHO constituent materials.

  14. Coupling Radar Rainfall Estimation and Hydrological Modelling For Flash-flood Hazard Mitigation

    NASA Astrophysics Data System (ADS)

    Borga, M.; Creutin, J. D.

    Flood risk mitigation is accomplished through managing either or both the hazard and vulnerability. Flood hazard may be reduced through structural measures which alter the frequency of flood levels in the area. The vulnerability of a community to flood loss can be mitigated through changing or regulating land use and through flood warning and effective emergency response. When dealing with flash-flood hazard, it is gener- ally accepted that the most effective way (and in many instances the only affordable in a sustainable perspective) to mitigate the risk is by reducing the vulnerability of the involved communities, in particular by implementing flood warning systems and community self-help programs. However, both the inherent characteristics of the at- mospheric and hydrologic processes involved in flash-flooding and the changing soci- etal needs provide a tremendous challenge to traditional flood forecasting and warning concepts. In fact, the targets of these systems are traditionally localised like urbanised sectors or hydraulic structures. Given the small spatial scale that characterises flash floods and the development of dispersed urbanisation, transportation, green tourism and water sports, human lives and property are exposed to flash flood risk in a scat- tered manner. This must be taken into consideration in flash flood warning strategies and the investigated region should be considered as a whole and every section of the drainage network as a potential target for hydrological warnings. Radar technology offers the potential to provide information describing rain intensities almost contin- uously in time and space. Recent research results indicate that coupling radar infor- mation to distributed hydrologic modelling can provide hydrologic forecasts at all potentially flooded points of a region. Nevertheless, very few flood warning services use radar data more than on a qualitative basis. After a short review of current under- standing in this area, two

  15. Development Of An Open System For Integration Of Heterogeneous Models For Flood Forecasting And Hazard Mitigation

    NASA Astrophysics Data System (ADS)

    Chang, W.; Tsai, W.; Lin, F.; Lin, S.; Lien, H.; Chung, T.; Huang, L.; Lee, K.; Chang, C.

    2008-12-01

    During a typhoon or a heavy storm event, using various forecasting models to predict rainfall intensity, and water level variation in rivers and flood situation in the urban area is able to reveal its capability technically. However, in practice, the following two causes tend to restrain the further application of these models as a decision support system (DSS) for the hazard mitigation. The first one is due to the difficulty of integration of heterogeneous models. One has to take into consideration the different using format of models, such as input files, output files, computational requirements, and so on. The second one is that the development of DSS requires, due to the heterogeneity of models and systems, a friendly user interface or platform to hide the complexity of various tools from users. It is expected that users can be governmental officials rather than professional experts, therefore the complicated interface of DSS is not acceptable. Based on the above considerations, in the present study, we develop an open system for integration of several simulation models for flood forecasting by adopting the FEWS (Flood Early Warning System) platform developed by WL | Delft Hydraulics. It allows us to link heterogeneous models effectively and provides suitable display modules. In addition, FEWS also has been adopted by Water Resource Agency (WRA), Taiwan as the standard operational system for river flooding management. That means this work can be much easily integrated with the use of practical cases. In the present study, based on FEWS platform, the basin rainfall-runoff model, SOBEK channel-routing model, and estuary tide forecasting model are linked and integrated through the physical connection of model initial and boundary definitions. The work flow of the integrated processes of models is shown in Fig. 1. This differs from the typical single model linking used in FEWS, which only aims at data exchange but without much physical consideration. So it really

  16. Earth sciences, GIS and geomatics for natural hazards assessment and risks mitigation: a civil protection perspective

    NASA Astrophysics Data System (ADS)

    Perotti, Luigi; Conte, Riccardo; Lanfranco, Massimo; Perrone, Gianluigi; Giardino, Marco; Ratto, Sara

    2010-05-01

    Geo-information and remote sensing are proper tools to enhance functional strategies for increasing awareness on natural hazards and risks and for supporting research and operational activities devoted to disaster reduction. An improved Earth Sciences knowledge coupled with Geomatics advanced technologies has been developed by the joint research group and applied by the ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action) centre, within its partnership with the UN World Food Programme (WFP) with the goal of reducing human, social, economic and environmental losses due to natural hazards and related disasters. By cooperating with local and regional authorities (Municipalities, Centro Funzionale of the Aosta Valley, Civil Protection Agency of Regione Piemonte), data on natural hazards and risks have been collected, compared to national and global data, then interpreted for helping communities and civil protection agencies of sensitive mountain regions to make strategic choices and decisions to better mitigation and adaption measures. To enhance the application of GIS and Remote-sensing technologies for geothematic mapping of geological and geomorphological risks of mountain territories of Europe and Developing Countries, research activities led to the collection and evaluation of data from scientific literature and historical technical archives, for the definition of predisposing/triggering factors and evolutionary processes of natural instability phenomena (landslides, floods, storms, …) and for the design and implementation of early-warning and early-impact systems. Geodatabases, Remote Sensing and Mobile-GIS applications were developed to perform analysis of : 1) large climate-related disaster (Hurricane Mitch, Central America), by the application of remote sensing techniques, either for early warning or mitigation measures at the national and international scale; 2) distribution of slope instabilities at the regional scale (Aosta

  17. The Puerto Rico Component of the National Tsunami Hazard and Mitigation Program (PR-NTHMP)

    NASA Astrophysics Data System (ADS)

    Vanacore, E. A.; Huerfano Moreno, V. A.; Lopez, A. M.

    2015-12-01

    The Caribbean region has a documented history of damaging tsunamis that have affected coastal areas. Of particular interest is the Puerto Rico - Virgin Islands (PRVI) region, where the proximity of the coast to prominent tectonic faults would result in near-field tsunamis. Tsunami hazard assessment, detection capabilities, warning, education and outreach efforts are common tools intended to reduce loss of life and property. It is for these reasons that the PRSN is participating in an effort with local and federal agencies to develop tsunami hazard risk reduction strategies under the NTHMP. This grant supports the TsunamiReady program, which is the base of the tsunami preparedness and mitigation in PR. In order to recognize threatened communities in PR as TsunamiReady by the US NWS, the PR Component of the NTHMP have identified and modeled sources for local, regional and tele-tsunamis and the results of simulations have been used to develop tsunami response plans. The main goal of the PR-NTHMP is to strengthen resilient coastal communities that are prepared for tsunami hazards, and recognize PR as TsunamiReady. Evacuation maps were generated in three phases: First, hypothetical tsunami scenarios of potential underwater earthquakes were developed, and these scenarios were then modeled through during the second phase. The third phase consisted in determining the worst-case scenario based on the Maximum of Maximums (MOM). Inundation and evacuation zones were drawn on GIS referenced maps and aerial photographs. These products are being used by emergency managers to educate the public and develop mitigation strategies. Maps and related evacuation products, like evacuation times, can be accessed online via the PR Tsunami Decision Support Tool. Based on these evacuation maps, tsunami signs were installed, vulnerability profiles were created, communication systems to receive and disseminate tsunami messages were installed in each TWFP, and tsunami response plans were

  18. The Brave New World of Real-time GPS for Hazards Mitigation

    NASA Astrophysics Data System (ADS)

    Melbourne, T. I.; Szeliga, W. M.; Santillan, V. M.; Scrivner, C. W.

    2015-12-01

    Over 600 continuously-operating, real-time telemetered GPS receivers operate throughout California, Oregon, Washington and Alaska. These receivers straddle active crustal faults, volcanoes and landslides, the magnitude-9 Cascadia and northeastern Alaskan subduction zones and their attendant tsunamigenic regions along the Pacific coast. Around the circum-Pacific, there are hundreds more and the number is growing steadily as real-time networks proliferate. Despite offering the potential for sub-cm positioning accuracy in real-time useful for a broad array of hazards mitigation, these GPS stations are only now being incorporated into routine seismic, tsunami, volcanic, land-slide, space-weather, or meterologic monitoring. We will discuss NASA's READI (Real-time Earthquake Analysis for DIsasters) initiative. This effort is focussed on developing all aspects of real-time GPS for hazards mitigation, from establishing international data-sharing agreements to improving basic positioning algorithms. READI's long-term goal is to expand real-time GPS monitoring throughout the circum-Pacific as overseas data become freely available, so that it may be adopted by NOAA, USGS and other operational agencies responsible for natural hazards monitoring. Currently ~100 stations are being jointly processed by CWU and Scripps Inst. of Oceanography for algorithm comparison and downstream merging purposes. The resultant solution streams include point-position estimates in a global reference frame every second with centimeter accuracy, ionospheric total electron content and tropospheric zenith water content. These solutions are freely available to third-party agencies over several streaming protocols to enable their incorporation and use in hazards monitoring. This number will ramp up to ~400 stations over the next year. We will also discuss technical efforts underway to develop a variety of downstream applications of the real-time position streams, including the ability to broadcast

  19. Solutions Network Formulation Report. NASA's Potential Contributions using ASTER Data in Marine Hazard Mitigation

    NASA Technical Reports Server (NTRS)

    Fletcher, Rose

    2010-01-01

    The 28-foot storm surge from Hurricane Katrina pushed inland along bays and rivers for a distance of 12 miles in some areas, contributing to the damage or destruction of about half of the fleet of boats in coastal Mississippi. Most of those boats had sought refuge in back bays and along rivers. Some boats were spared damage because the owners chose their mooring site well. Gulf mariners need a spatial analysis tool that provides guidance on the safest places to anchor their boats during future hurricanes. This product would support NOAA s mission to minimize the effects of coastal hazards through awareness, education, and mitigation strategies and could be incorporated in the Coastal Risk Atlas decision support tool.

  20. Assessment of indirect losses and costs of emergency for project planning of alpine hazard mitigation

    NASA Astrophysics Data System (ADS)

    Amenda, Lisa; Pfurtscheller, Clemens

    2013-04-01

    By virtue of augmented settling in hazardous areas and increased asset values, natural disasters such as floods, landslides and rockfalls cause high economic losses in Alpine lateral valleys. Especially in small municipalities, indirect losses, mainly stemming from a breakdown of transport networks, and costs of emergency can reach critical levels. A quantification of these losses is necessary to estimate the worthiness of mitigation measures, to determine the appropriate level of disaster assistance and to improve risk management strategies. There are comprehensive approaches available for assessing direct losses. However, indirect losses and costs of emergency are widely not assessed and the empirical basis for estimating these costs is weak. To address the resulting uncertainties of project appraisals, a standardized methodology has been developed dealing with issues of local economic effects and emergency efforts needed. In our approach, the cost-benefit-analysis for technical mitigation of the Austrian Torrent and Avalanche Control (TAC) will be optimized and extended using the 2005-debris flow as a design event, which struggled a small town in the upper Inn valley in southwest Tyrol (Austria). Thereby, 84 buildings were affected, 430 people were evacuated and due to this, the TAC implemented protection measures for 3.75 million Euros. Upgrading the method of the TAC and analyzing to what extent the cost-benefit-ratio is about to change, is one of the main objectives of this study. For estimating short-run indirect effects and costs of emergency on the local level, data was collected via questionnaires, field mapping, guided interviews, as well as intense literature research. According to this, up-to-date calculation methods were evolved and the cost-benefit-analysis of TAC was recalculated with these new-implemented results. The cost-benefit-ratio will be more precise and specific and hence, the decision, which mitigation alternative will be carried out

  1. Making the Handoff from Earthquake Hazard Assessments to Effective Mitigation Measures (Invited)

    NASA Astrophysics Data System (ADS)

    Applegate, D.

    2010-12-01

    This year has witnessed a barrage of large earthquakes worldwide with the resulting damages ranging from inconsequential to truly catastrophic. We cannot predict when earthquakes will strike, but we can build communities that are resilient to strong shaking as well as to secondary hazards such as landslides and liquefaction. The contrasting impacts of the magnitude-7 earthquake that struck Haiti in January and the magnitude-8.8 event that struck Chile in April underscore the difference that mitigation and preparedness can make. In both cases, millions of people were exposed to severe shaking, but deaths in Chile were measured in the hundreds rather than the hundreds of thousands that perished in Haiti. Numerous factors contributed to these disparate outcomes, but the most significant is the presence of strong building codes in Chile and their total absence in Haiti. The financial cost of the Chilean earthquake still represents an unacceptably high percentage of that nation’s gross domestic product, a reminder that life safety is the paramount, but not the only, goal of disaster risk reduction measures. For building codes to be effective, both in terms of lives saved and economic cost, they need to reflect the hazard as accurately as possible. As one of four federal agencies that make up the congressionally mandated National Earthquake Hazards Reduction Program (NEHRP), the U.S. Geological Survey (USGS) develops national seismic hazard maps that form the basis for seismic provisions in model building codes through the Federal Emergency Management Agency and private-sector practitioners. This cooperation is central to NEHRP, which both fosters earthquake research and establishes pathways to translate research results into implementation measures. That translation depends on the ability of hazard-focused scientists to interact and develop mutual trust with risk-focused engineers and planners. Strengthening that interaction is an opportunity for the next generation

  2. Probing Aircraft Flight Test Hazard Mitigation for the Alternative Fuel Effects on Contrails & Cruise Emissions (ACCESS) Research Team

    NASA Technical Reports Server (NTRS)

    Kelly, Michael J.

    2013-01-01

    The Alternative Fuel Effects on Contrails & Cruise Emissions (ACCESS) Project Integration Manager requested in July 2012 that the NASA Engineering and Safety Center (NESC) form a team to independently assess aircraft structural failure hazards associated with the ACCESS experiment and to identify potential flight test hazard mitigations to ensure flight safety. The ACCESS Project Integration Manager subsequently requested that the assessment scope be focused predominantly on structural failure risks to the aircraft empennage raft empennage.

  3. Mitigation of EMU Cut Glove Hazard from Micrometeoroid and Orbital Debris Impacts on ISS Handrails

    NASA Technical Reports Server (NTRS)

    Ryan, Shannon; Christiansen, Eric L.; Davis, Bruce A.; Ordonez, Erick

    2009-01-01

    Recent cut damages sustained on crewmember gloves during extravehicular activity (ISS) onboard the International Space Station (ISS) have been caused by contact with sharp edges or a pinch point according to analysis of the damages. One potential source are protruding sharp edged crater lips from micrometeoroid and orbital debris (MMOD) impacts on metallic handrails along EVA translation paths. A number of hypervelocity impact tests were performed on ISS handrails, and found that mm-sized projectiles were capable of inducing crater lip heights two orders of magnitude above the minimum value for glove abrasion concerns. Two techniques were evaluated for mitigating the cut glove hazard of MMOD impacts on ISS handrails: flexible overwraps which act to limit contact between crewmember gloves and impact sites, and; alternate materials which form less hazardous impact crater profiles. In parallel with redesign efforts to increase the cut resilience of EMU gloves, the modifications to ISS handrails evaluated in this study provide the means to significantly reduce cut glove risk from MMOD impact craters

  4. Developing a scientific procedure for community based hazard mapping and risk mitigation

    NASA Astrophysics Data System (ADS)

    Verrier, M.

    2011-12-01

    As an international exchange student from the Geological Sciences Department at San Diego State University (SDSU), I joined the KKN-PPM program at Universitas Gadjah Mada (UGM), Yogyakarta, Indonesia, in July 2011 for 12 days (July 4th to July 16th) of its two month duration (July 4th to August 25th). The KKN-PPM group I was attached was designated 154 and was focused in Plosorejo Village, Karanganyar, Kerjo, Central Java, Indonesia. The mission of KKN-PPM 154 was to survey Plosorejo village for existing landslides, to generate a simple hazard susceptibility map that can be understood by local villagers, and then to begin dissemination of that map into the community. To generate our susceptibility map we first conducted a geological survey of the existing landslides in the field study area, with a focus on determining landslide triggers and gauging areas for susceptibility for future landslides. The methods for gauging susceptibility included lithological observation, the presence of linear cracking, visible loss of structural integrity in structures such as villager homes, as well as collaboration with local residents and with the local rescue and response team. There were three color distinctions used in representing susceptibility which were green, where there is no immediate danger of landslide damage; orange, where transportation routes are at risk of being disrupted by landslides; and red, where imminent landslide potential puts a home in direct danger. The landslide inventory and susceptibility data was compiled into digital mediums such as CorelDraw, ArcGIS and Google Earth. Once a technical map was generated, we presented it to the village leadership for confirmation and modification based on their experience. Finally, we began to use the technical susceptibility map to draft evacuation routes and meeting points in the event of landslides, as well as simple susceptibility maps that can be understood and utilized by local villagers. Landslide mitigation

  5. The U.S. National Tsunami Hazard Mitigation Program: Successes in Tsunami Preparedness

    NASA Astrophysics Data System (ADS)

    Whitmore, P.; Wilson, R. I.

    2012-12-01

    Formed in 1995 by Congressional Action, the National Tsunami Hazards Mitigation Program (NTHMP) provides the framework for tsunami preparedness activities in the United States. The Program consists of the 28 U.S. coastal states, territories, and commonwealths (STCs), as well as three Federal agencies: the National Oceanic and Atmospheric Administration (NOAA), the Federal Emergency Management Agency (FEMA), and the United States Geological Survey (USGS). Since its inception, the NTHMP has advanced tsunami preparedness in the United States through accomplishments in many areas of tsunami preparedness: - Coordination and funding of tsunami hazard analysis and preparedness activities in STCs; - Development and execution of a coordinated plan to address education and outreach activities (materials, signage, and guides) within its membership; - Lead the effort to assist communities in meeting National Weather Service (NWS) TsunamiReady guidelines through development of evacuation maps and other planning activities; - Determination of tsunami hazard zones in most highly threatened coastal communities throughout the country by detailed tsunami inundation studies; - Development of a benchmarking procedure for numerical tsunami models to ensure models used in the inundation studies meet consistent, NOAA standards; - Creation of a national tsunami exercise framework to test tsunami warning system response; - Funding community tsunami warning dissemination and reception systems such as sirens and NOAA Weather Radios; and, - Providing guidance to NOAA's Tsunami Warning Centers regarding warning dissemination and content. NTHMP activities have advanced the state of preparedness of United States coastal communities, and have helped save lives and property during recent tsunamis. Program successes as well as future plans, including maritime preparedness, are discussed.

  6. Field Guide for Testing Existing Photovoltaic Systems for Ground Faults and Installing Equipment to Mitigate Fire Hazards

    SciTech Connect

    Brooks, William; Basso, Thomas; Coddington, Michael

    2015-10-01

    Ground faults and arc faults are the two most common reasons for fires in photovoltaic (PV) arrays and methods exist that can mitigate the hazards. This report provides field procedures for testing PV arrays for ground faults, and for implementing high resolution ground fault and arc fault detectors in existing and new PV system designs.

  7. Challenges in understanding, modelling, and mitigating Lake Outburst Flood Hazard: experiences from Central Asia

    NASA Astrophysics Data System (ADS)

    Mergili, Martin; Schneider, Demian; Andres, Norina; Worni, Raphael; Gruber, Fabian; Schneider, Jean F.

    2010-05-01

    Lake Outburst Floods can evolve from complex process chains like avalanches of rock or ice that produce flood waves in a lake which may overtop and eventually breach glacial, morainic, landslide, or artificial dams. Rising lake levels can lead to progressive incision and destabilization of a dam, to enhanced ground water flow (piping), or even to hydrostatic failure of ice dams which can cause sudden outflow of accumulated water. These events often have a highly destructive potential because a large amount of water is released in a short time, with a high capacity to erode loose debris, leading to a powerful debris flow with a long travel distance. The best-known example of a lake outburst flood is the Vajont event (Northern Italy, 1963), where a landslide rushed into an artificial lake which spilled over and caused a flood leading to almost 2000 fatalities. Hazards from the failure of landslide dams are often (not always) fairly manageable: most breaches occur in the first few days or weeks after the landslide event and the rapid construction of a spillway - though problematic - has solved some hazardous situations (e.g. in the case of Hattian landslide in 2005 in Pakistan). Older dams, like Usoi dam (Lake Sarez) in Tajikistan, are usually fairly stable, though landsildes into the lakes may create floodwaves overtopping and eventually weakening the dams. The analysis and the mitigation of glacial lake outburst flood (GLOF) hazard remains a challenge. A number of GLOFs resulting in fatalities and severe damage have occurred during the previous decades, particularly in the Himalayas and in the mountains of Central Asia (Pamir, Tien Shan). The source area is usually far away from the area of impact and events occur at very long intervals or as singularities, so that the population at risk is usually not prepared. Even though potentially hazardous lakes can be identified relatively easily with remote sensing and field work, modeling and predicting of GLOFs (and also

  8. A perspective multidisciplinary geological approach for mitigation of effects due to the asbestos hazard

    NASA Astrophysics Data System (ADS)

    Vignaroli, Gianluca; Rossetti, Federico; Belardi, Girolamo; Billi, Andrea

    2010-05-01

    during rock fragmentation). Accordingly, we are confident that definition of an analytical protocol based on the geological attributes of the asbestos-bearing rocks may constitute a propaedeutical tool to evaluate the asbestos hazard in natural environments. This approach may have important implications for mitigation effects of the asbestos hazard from the medical field to the engineering operations.

  9. An establishment on the hazard mitigation system of large scale landslides for Zengwen reservoir watershed management in Taiwan

    NASA Astrophysics Data System (ADS)

    Tsai, Kuang-Jung; Lee, Ming-Hsi; Chen, Yie-Ruey; Huang, Meng-Hsuan; Yu, Chia-Ching

    2016-04-01

    Extremely heavy rainfall with accumulated rainfall amount more than 2900mm within continuous 3 day event occurred at southern Taiwan has been recognized as a serious natural hazard caused by Morakot typhoon in august, 2009. Very destructive large scale landslides and debris flows were induced by this heavy rainfall event. According to the satellite image processing and monitoring project was conducted by Soil & Water Conservation Bureau after Morakot typhoon. More than 10904 sites of landslide with total sliding area of 18113 ha were significantly found by this project. Also, the field investigation on all landslide areas were executed by this research on the basis of disaster type, scale and location related to the topographic condition, colluvium soil characteristics, bedrock formation and geological structure after Morakot hazard. The mechanism, characteristics and behavior of this large scale landslide combined with debris flow disasters are analyzed and Investigated to rule out the interaction of factors concerned above and identify the disaster extent of rainfall induced landslide during the period of this study. In order to reduce the disaster risk of large scale landslide and debris flow, the adaption strategy of hazard mitigation system should be set up as soon as possible and taken into consideration of slope land conservation, landslide control countermeasure planning, disaster database establishment, environment impact analysis and disaster risk assessment respectively. As a result, this 3-year research has been focused on the field investigation by using GPS/GIS/RS integration, mechanism and behavior study regarding to the rainfall induced landslide occurrence, disaster database and hazard mitigation system establishment. In fact, this project has become an important issue which was seriously concerned by the government and people live in Taiwan. Hopefully, all results come from this research can be used as a guidance for the disaster prevention and

  10. Volcanic hazard in Mexico: a comprehensive on-line database for risk mitigation

    NASA Astrophysics Data System (ADS)

    Manea, Marina; Constantin Manea, Vlad; Capra, Lucia; Bonasia, Rosanna

    2013-04-01

    Researchers are currently working on several key aspects of the Mexican volcanoes, such as remote sensing, field data of old and recent volcaniclastic deposits, structural framework, monitoring (rainfall data and visual observation of lahars), and laboratory experiment (analogue models and numerical simulations - fall3D, titan2D). Each investigation is focused on specific processes, but it is fundamental to visualize the global status of the volcano in order to understand its behavior and to mitigate future hazards. The Mexican Volcanoes @nline represents a novel initiative aimed to collect, on a systematic basis, the complete set of data obtained so far on the volcanoes, and to continuously update the database with new data. All the information is compiled from published works and updated frequently. Maps, such as the geological map of the Mexican volcanos and the associated hazard zonation, as well as point data, such as stratigraphic sections, sedimentology and diagrams of rainfall intensities, are presented in Google Earth format in order to be easily accessed by the scientific community and the general public. An important section of this online database is the presentation of numerical simulations results for ash dispersion associated with the principal Mexican active volcanoes. Daily prediction of ash flow dispersion (based on real-time data from CENAPRED and the Mexican Meteorological Service), as well as large-scale high-resolution subduction simulations performed on HORUS (the Computational Geodynamics Laboratory's supercomputer) represent a central part of the Mexican Volcanos @nline database. The Mexican Volcanoes @nline database is maintained by the Computational Geodynamics Laboratory and it is based entirely on Open Source software. The website can be visited at: http://www.geociencias.unam.mx/mexican_volcanoes.

  11. Integrated Tsunami Data Supports Forecast, Warning, Research, Hazard Assessment, and Mitigation (Invited)

    NASA Astrophysics Data System (ADS)

    Dunbar, P. K.; Stroker, K. J.

    2009-12-01

    With nearly 230,000 fatalities, the 26 December 2004 Indian Ocean tsunami was the deadliest tsunami in history, illustrating the importance of developing basinwide warning systems. Key to creating these systems is easy access to quality-controlled, verified data on past tsunamis. It is essential that warning centers, emergency managers, and modelers can determine if and when similar events have occurred. Following the 2004 tsunami, the National Oceanic and Atmospheric Administration’s (NOAA) National Geophysical Data Center (NGDC) began examining all aspects of the tsunami data archive to help answer questions regarding the frequency and severity of past tsunamis. Historical databases span insufficient time to reveal a region’s full tsunami hazard, so a global database of citations to articles on tsunami deposits was added to the archive. NGDC further expanded the archive to include high-resolution tide gauge data, deep-ocean sensor data, and digital elevation models used for propagation and inundation modeling. NGDC continuously reviews the data for accuracy, making modifications as new information is obtained. These added databases allow NGDC to provide the tsunami data necessary for warning guidance, hazard assessments, and mitigation efforts. NGDC is also at the forefront of standards-based Web delivery of integrated science data through a variety of tools, from Web-form interfaces to interactive maps. The majority of the data in the tsunami archive are discoverable online. Scientists, journalists, educators, planners, and emergency managers are among the many users of these public domain data, which may be used without restriction provided that users cite data sources.

  12. Earthquake Scaling and Development of Ground Motion Prediction for Earthquake Hazard Mitigation in Taiwan

    NASA Astrophysics Data System (ADS)

    Ma, K.; Yen, Y.

    2011-12-01

    For earthquake hazard mitigation toward risk management, integration study from development of source model to ground motion prediction is crucial. The simulation for high frequency component ( > 1 Hz) of strong ground motions in the near field was not well resolved due to the insufficient resolution in velocity structure. Using the small events as Green's functions (i.e. empirical Green's function (EGF) method) can resolve the problem of lack of precise velocity structure to replace the path effect evaluation. If the EGF is not available, a stochastic Green's function (SGF) method can be employed. Through characterizing the slip models derived from the waveform inversion, we directly extract the parameters needed for the ground motion prediction in the EGF method or the SGF method. The slip models had been investigated from Taiwan dense strong motion and global teleseismic data. In addition, the low frequency ( < 1 Hz) can obtained numerically by the Frequency-Wavenumber (FK) method. Thus, broadband frequency strong ground motion can be calculated by a hybrid method that combining a deterministic FK method for the low frequency simulation and the EGF or SGF method for high frequency simulation. Characterizing the definitive source parameters from the empirical scaling study can provide directly to the ground motion simulation. To give the ground motion prediction for a scenario earthquake, we compiled the earthquake scaling relationship from the inverted finite-fault models of moderate to large earthquakes in Taiwan. The studies show the significant involvement of the seismogenic depth to the development of rupture width. In addition to that, several earthquakes from blind fault show distinct large stress drop, which yield regional high PGA. According to the developing scaling relationship and the possible high stress drops for earthquake from blind faults, we further deploy the hybrid method mentioned above to give the simulation of the strong motion in

  13. Multidisciplinary Approach to Identify and Mitigate the Hazard from Induced Seismicity in Oklahoma

    NASA Astrophysics Data System (ADS)

    Holland, A. A.; Keller, G. R., Jr.; Darold, A. P.; Murray, K. E.; Holloway, S. D.

    2014-12-01

    Oklahoma has experienced a very significant increase in seismicity rates over the last 5 years with the greatest increase occurring in 2014. The observed rate increase indicates that the seismic hazard for at least some parts of Oklahoma has increased significantly. Many seismologists consider the large number of salt-water disposal wells operating in Oklahoma as the largest contributing factor to this increase. However, unlike many cases of seismicity induced by injection, the greatest increase is occurring over a very large area, about 15% of the state. There are more than 3,000 disposal wells currently operating within Oklahoma along with injection volumes greater than 2010 rates. These factors add many significant challenges to identifying potential cases of induced seismicity and understanding the contributing factors well enough to mitigate such occurrences. In response to a clear need for a better geotechnical understanding of what is occurring in Oklahoma, a multi-year multidisciplinary study some of the most active areas has begun at the University of Oklahoma. This study includes additional seismic monitoring, better geological and geophysical characterization of the subsurface, hydrological and reservoir modeling, and geomechanical studies to better understand the rise in seismicity rates. The Oklahoma Corporation Commission has added new rules regarding reporting and monitoring of salt-water disposal wells, and continue to work with the Oklahoma Geological Survey and other researchers.

  14. Earthquake Hazard Mitigation and Real-Time Warnings of Tsunamis and Earthquakes

    NASA Astrophysics Data System (ADS)

    Kanamori, Hiroo

    2015-09-01

    With better understanding of earthquake physics and the advent of broadband seismology and GPS, seismologists can forecast the future activity of large earthquakes on a sound scientific basis. Such forecasts are critically important for long-term hazard mitigation, but because stochastic fracture processes are complex, the forecasts are inevitably subject to large uncertainties, and unexpected events will inevitably occur. Recent developments in real-time seismology helps seismologists cope with and prepare for such unexpected events, including tsunamis and earthquakes. For a tsunami warning, the required warning time is fairly long (usually 5 min or longer) and enables use of a rigorous method for this purpose. Significant advances have already been made. In contrast, early warning of earthquakes is far more challenging because the required warning time is very short (as short as three seconds). Despite this difficulty the methods used for regional warnings have advanced substantially, and several systems have been already developed and implemented. A future strategy for more challenging, rapid (a few second) warnings, which are critically important for saving properties and lives, is discussed.

  15. Identification, prediction, and mitigation of sinkhole hazards in evaporite karst areas

    USGS Publications Warehouse

    Gutierrez, F.; Cooper, A.H.; Johnson, K.S.

    2008-01-01

    Sinkholes usually have a higher probability of occurrence and a greater genetic diversity in evaporite terrains than in carbonate karst areas. This is because evaporites have a higher solubility and, commonly, a lower mechanical strength. Subsidence damage resulting from evaporite dissolution generates substantial losses throughout the world, but the causes are only well understood in a few areas. To deal with these hazards, a phased approach is needed for sinkhole identification, investigation, prediction, and mitigation. Identification techniques include field surveys and geomorphological mapping combined with accounts from local people and historical sources. Detailed sinkhole maps can be constructed from sequential historical maps, recent topographical maps, and digital elevation models (DEMs) complemented with building-damage surveying, remote sensing, and high-resolution geodetic surveys. On a more detailed level, information from exposed paleosubsidence features (paleokarst), speleological explorations, geophysical investigations, trenching, dating techniques, and boreholes may help in investigating dissolution and subsidence features. Information on the hydrogeological pathways including caves, springs, and swallow holes are particularly important especially when corroborated by tracer tests. These diverse data sources make a valuable database-the karst inventory. From this dataset, sinkhole susceptibility zonations (relative probability) may be produced based on the spatial distribution of the features and good knowledge of the local geology. Sinkhole distribution can be investigated by spatial distribution analysis techniques including studies of preferential elongation, alignment, and nearest neighbor analysis. More objective susceptibility models may be obtained by analyzing the statistical relationships between the known sinkholes and the conditioning factors. Chronological information on sinkhole formation is required to estimate the probability of

  16. Impact Hazard Mitigation: Understanding the Effects of Nuclear Explosive Outputs on Comets and Asteroids

    NASA Astrophysics Data System (ADS)

    Clement, R.

    The NASA 2007 white paper "Near-Earth Object Survey and Deflection Analysis of Alternatives" affirms deflection as the safest and most effective means of potentially hazardous object (PHO) impact prevention. It also calls for further studies of object deflection. In principle, deflection of a PHO may be accomplished by using kinetic impactors, chemical explosives, gravity tractors, solar sails, or nuclear munitions. Of the sudden impulse options, nuclear munitions are by far the most efficient in terms of yield-per-unit-mass launched and are technically mature. However, there are still significant questions about the response of a comet or asteroid to a nuclear burst. Recent and ongoing observational and experimental work is revolutionizing our understanding of the physical and chemical properties of these bodies (e.g., Ryan (2000), Fujiwara et al. (2006), and Jedicke et al. (2006)). The combination of this improved understanding of small solar-system bodies combined with current state-of-the-art modeling and simulation capabilities, which have also improved dramatically in recent years, allow for a science-based, comprehensive study of PHO mitigation techniques. Here we present an examination of the effects of radiation from a nuclear explosion on potentially hazardous asteroids and comets through Monte Carlo N-Particle code (MCNP) simulation techniques. MCNP is a general-purpose particle transport code commonly used to model neutron, photon, and electron transport for medical physics, reactor design and safety, accelerator target and detector design, and a variety of other applications including modeling the propagation of epithermal neutrons through the Martian regolith (Prettyman 2002). It is a massively parallel code that can conduct simulations in 1-3 dimensions, complicated geometries, and with extremely powerful variance reduction techniques. It uses current nuclear cross section data, where available, and fills in the gaps with analytical models where data

  17. Impact hazard mitigation: understanding the effects of nuclear explosive outputs on comets and asteroids

    SciTech Connect

    Clement, Ralph R C; Plesko, Catherine S; Bradley, Paul A; Conlon, Leann M

    2009-01-01

    The NASA 2007 white paper ''Near-Earth Object Survey and Deflection Analysis of Alternatives'' affirms deflection as the safest and most effective means of potentially hazardous object (PHO) impact prevention. It also calls for further studies of object deflection. In principle, deflection of a PHO may be accomplished by using kinetic impactors, chemical explosives, gravity tractors, solar sails, or nuclear munitions. Of the sudden impulse options, nuclear munitions are by far the most efficient in terms of yield-per-unit-mass launched and are technically mature. However, there are still significant questions about the response of a comet or asteroid to a nuclear burst. Recent and ongoing observational and experimental work is revolutionizing our understanding of the physical and chemical properties of these bodies (e.g ., Ryan (2000) Fujiwara et al. (2006), and Jedicke et al. (2006)). The combination of this improved understanding of small solar-system bodies combined with current state-of-the-art modeling and simulation capabilities, which have also improved dramatically in recent years, allow for a science-based, comprehensive study of PHO mitigation techniques. Here we present an examination of the effects of radiation from a nuclear explosion on potentially hazardous asteroids and comets through Monte Carlo N-Particle code (MCNP) simulation techniques. MCNP is a general-purpose particle transport code commonly used to model neutron, photon, and electron transport for medical physics reactor design and safety, accelerator target and detector design, and a variety of other applications including modeling the propagation of epithermal neutrons through the Martian regolith (Prettyman 2002). It is a massively parallel code that can conduct simulations in 1-3 dimensions, complicated geometries, and with extremely powerful variance reduction techniques. It uses current nuclear cross section data, where available, and fills in the gaps with analytical models where

  18. Contributions of Nimbus 7 TOMS Data to Volcanic Study and Hazard Mitigation

    NASA Technical Reports Server (NTRS)

    Krueger, Arlin J.; Bluth, G. J. S.; Schaefer, S. A.

    1998-01-01

    Nimbus TOMS data have led to advancements among many volcano-related scientific disciplines, from the initial ability to quantify SO2 clouds leading to derivations of eruptive S budgets and fluxes, to tracking of individual clouds, assessing global volcanism and atmospheric impacts. Some of the major aspects of TOMS-related research, listed below, will be reviewed and updated: (1) Measurement of volcanic SO2 clouds: Nimbus TOMS observed over 100 individual SO2 clouds during its mission lifetime; large explosive eruptions are now routinely and reliably measured by satellite. (2) Eruption processes: quantification of SO2 emissions have allowed assessments of eruption sulfur budgets, the evaluation of "excess" sulfur, and inferences of H2S emissions. (3) Detection of ash: TOMS data are now used to detect volcanic particulates in the atmosphere, providing complementary analyses to infrared methods of detection. Paired TOMS and AVHRR studies have provided invaluable information on volcanic cloud compositions and processes. (4) Cloud tracking and hazard mitigation: volcanic clouds can be considered gigantic tracers in the atmosphere, and studies of the fates of these clouds have led to new knowledge of their physical and chemical dispersion in the atmosphere for predictive models. (5) Global trends: the long term data set has provided researchers an unparalleled record of explosive volcanism, and forms a key component in assessing annual to decadal trends in global S emissions. (6) Atmospheric impacts: TOMS data have been linked to independent records of atmospheric change, in order to compare cause and effect processes following a massive injection of SO2 into the atmosphere. (7) Future TOMS instruments and applications: Nimbus TOMS has given way to new satellite platforms, with several wavelength and resolution modifications. New efforts to launch a geostationary TOMS could provide unprecedented observations of volcanic activity.

  19. Bringing New Tools and Techniques to Bear on Earthquake Hazard Analysis and Mitigation

    NASA Astrophysics Data System (ADS)

    Willemann, R. J.; Pulliam, J.; Polanco, E.; Louie, J. N.; Huerta-Lopez, C.; Schmitz, M.; Moschetti, M. P.; Huerfano Moreno, V.; Pasyanos, M.

    2013-12-01

    During July 2013, IRIS held an Advanced Studies Institute in Santo Domingo, Dominican Republic, that was designed to enable early-career scientists who already have mastered the fundamentals of seismology to begin collaborating in frontier seismological research. The Institute was conceived of at a strategic planning workshop in Heredia, Costa Rica, that was supported and partially funded by USAID, with a goal of building geophysical capacity to mitigate the effects of future earthquakes. To address this broad goal, we drew participants from a dozen different countries of Middle America. Our objectives were to develop understanding of the principles of earthquake hazard analysis, particularly site characterization techniques, and to facilitate future research collaborations. The Institute was divided into three main sections: overviews on the fundamentals of earthquake hazard analysis and lectures on the theory behind methods of site characterization; fieldwork where participants acquired new data of the types typically used in site characterization; and computer-based analysis projects in which participants applied their newly-learned techniques to the data they collected. This was the first IRIS institute to combine an instructional short course with field work for data acquisition. Participants broke into small teams to acquire data, analyze it on their own computers, and then make presentations to the assembled group describing their techniques and results.Using broadband three-component seismometers, the teams acquired data for Spatial Auto-Correlation (SPAC) analysis at seven array locations, and Horizontal to Vertical Spectral Ratio (HVSR) analysis at 60 individual sites along six profiles throughout Santo Domingo. Using a 24-channel geophone string, the teams acquired data for Refraction Microtremor (SeisOptReMi™ from Optim) analysis at 11 sites, with supplementary data for active-source Multi-channel Spectral Analysis of Surface Waves (MASW) analysis at

  20. PREDICTION/MITIGATION OF SUBSIDENCE DAMAGE TO HAZARDOUS WASTE LANDFILL COVERS

    EPA Science Inventory

    Characteristics of Resource Conservation and Recovery Act hazardous waste landfills and of landfilled hazardous wastes have been described to permit development of models and other analytical techniques for predicting, reducing, and preventing landfill settlement and related cove...

  1. Evaluation Of Risk And Possible Mitigation Schemes For Previously Unidentified Hazards

    NASA Technical Reports Server (NTRS)

    Linzey, William; McCutchan, Micah; Traskos, Michael; Gilbrech, Richard; Cherney, Robert; Slenski, George; Thomas, Walter, III

    2006-01-01

    protection wire schemes, 145 tests were conducted using various fuel/ox wire alternatives (shielded and unshielded) and/or different combinations of polytetrafuloroethylene (PTFE), Mystik tape and convoluted wraps to prevent unwanted coil activation. Test results were evaluated along with other pertinent data and information to develop a mitigation strategy for an inadvertent RCS firing. The SSP evaluated civilian aircraft wiring failures to search for aging trends in assessing the wire-short hazard. Appendix 2 applies Weibull statistical methods to the same data with a similar purpose.

  2. Using Robust Decision Making to Assess and Mitigate the Risks of Natural Hazards in Developing Countries

    NASA Astrophysics Data System (ADS)

    Kalra, N.; Lempert, R. J.; Peyraud, S.

    2012-12-01

    Ho Chi Minh City (HCMC) ranks fourth globally among coastal cities most vulnerable to climate change and already experiences extensive routine flooding. In the coming decades, increased precipitation, rising sea levels, and land subsidence could permanently inundate a large portion of the city's population, place the poor at particular risk, and threaten new economic development in low-lying areas. HCMC is not alone in facing the impacts of natural hazards exacerbated by uncertain future climate change, development, and other deep uncertainties. Assessing and managing these risks is a tremendous challenge, particularly in developing countries which face pervasive shortages of the data and models generally used to plan for such changes. Using HCMC as a case study, this talk will demonstrate how a scenario-based approach that uses robustness as a decision and planning element can help developing countries assess future climate risk and manage the risk of natural disasters. In contrast to traditional approaches which treat uncertainty with a small number of handcrafted scenarios, this talk will emphasize how robust decision making, which uses modeling to explore over thousands of scenarios, can identify potential vulnerabilities to HCMC's emerging flood risk management strategy and suggest potential responses. The talk will highlight several novel features of the collaboration with the HCMC Steering Committee for Flood Control. First, it examines several types of risk -- risk to the poor, risk to the non-poor, and risk to the economy -- and illustrates how management policies have different implications for these sectors. Second, it demonstrates how diverse and sometimes incomplete climate, hydrologic, socioeconomic, GIS, and other data and models can be integrated into a modeling framework to develop and evaluate many scenarios of flood risk. Third, it illustrates the importance of non-structural policies such as land use management and building design to manage

  3. Catastrophic debris flows transformed from landslides in volcanic terrains : mobility, hazard assessment and mitigation strategies

    USGS Publications Warehouse

    Scott, Kevin M.; Macias, Jose Luis; Naranjo, Jose Antonio; Rodriguez, Sergio; McGeehin, John P.

    2001-01-01

    Communities in lowlands near volcanoes are vulnerable to significant volcanic flow hazards in addition to those associated directly with eruptions. The largest such risk is from debris flows beginning as volcanic landslides, with the potential to travel over 100 kilometers. Stratovolcanic edifices commonly are hydrothermal aquifers composed of unstable, altered rock forming steep slopes at high altitudes, and the terrain surrounding them is commonly mantled by readily mobilized, weathered airfall and ashflow deposits. We propose that volcano hazard assessments integrate the potential for unanticipated debris flows with, at active volcanoes, the greater but more predictable potential of magmatically triggered flows. This proposal reinforces the already powerful arguments for minimizing populations in potential flow pathways below both active and selected inactive volcanoes. It also addresses the potential for volcano flank collapse to occur with instability early in a magmatic episode, as well as the 'false-alarm problem'-the difficulty in evacuating the potential paths of these large mobile flows. Debris flows that transform from volcanic landslides, characterized by cohesive (muddy) deposits, create risk comparable to that of their syneruptive counterparts of snow and ice-melt origin, which yield noncohesive (granular) deposits, because: (1) Volcano collapses and the failures of airfall- and ashflow-mantled slopes commonly yield highly mobile debris flows as well as debris avalanches with limited runout potential. Runout potential of debris flows may increase several fold as their volumes enlarge beyond volcanoes through bulking (entrainment) of sediment. Through this mechanism, the runouts of even relatively small collapses at Cascade Range volcanoes, in the range of 0.1 to 0.2 cubic kilometers, can extend to populated lowlands. (2) Collapse is caused by a variety of triggers: tectonic and volcanic earthquakes, gravitational failure, hydrovolcanism, and

  4. Use of a Novel Visual Metaphor Measure (PRISM) to Evaluate School Children's Perceptions of Natural Hazards, Sources of Hazard Information, Hazard Mitigation Organizations, and the Effectiveness of Future Hazard Education Programs in Dominica, Eastern Caribbean

    NASA Astrophysics Data System (ADS)

    Parham, M.; Day, S. J.; Teeuw, R. M.; Solana, C.; Sensky, T.

    2014-12-01

    This project aims to study the development of understanding of natural hazards (and of hazard mitigation) from the age of 11 to the age of 15 in secondary school children from 5 geographically and socially different schools on Dominica, through repeated interviews with the students and their teachers. These interviews will be coupled with a structured course of hazard education in the Geography syllabus; the students not taking Geography will form a control group. To avoid distortion of our results arising from the developing verbalization and literacy skills of the students over the 5 years of the project, we have adapted the PRISM tool used in clinical practice to assess patient perceptions of illness and treatment (Buchi & Sensky, 1999). This novel measure is essentially non-verbal, and uses spatial positions of moveable markers ("object" markers) on a board, relative to a fixed marker that represents the subject's "self", as a visual metaphor for the importance of the object to the subject. The subjects also explain their reasons for placing the markers as they have, to provide additional qualitative information. The PRISM method thus produces data on the perceptions measured on the board that can be subjected to statistical analysis, and also succinct qualitative data about each subject. Our study will gather data on participants' perceptions of different natural hazards, different sources of information about these, and organizations or individuals to whom they would go for help in a disaster, and investigate how these vary with geographical and social factors. To illustrate the method, which is generalisable, we present results from our initial interviews of the cohort of 11 year olds whom we will follow through their secondary school education.Büchi, S., & Sensky, T. (1999). PRISM: Pictorial Representation of Illness and Self Measure: a brief nonverbal measure of illness impact and therapeutic aid in psychosomatic medicine. Psychosomatics, 40(4), 314-320.

  5. Use of a Novel Visual Metaphor Measure (PRISM) to Evaluate School Children's Perceptions of Natural Hazards, Sources of Hazard Information, Hazard Mitigation Organizations, and the Effectiveness of Future Hazard Education Programs in Dominica, Eastern Car

    NASA Astrophysics Data System (ADS)

    Parham, Martin; Day, Simon; Teeuw, Richard; Solana, Carmen; Sensky, Tom

    2015-04-01

    This project aims to study the development of understanding of natural hazards (and of hazard mitigation) from the age of 11 to the age of 15 in secondary school children from 5 geographically and socially different schools on Dominica, through repeated interviews with the students and their teachers. These interviews will be coupled with a structured course of hazard education in the Geography syllabus; the students not taking Geography will form a control group. To avoid distortion of our results arising from the developing verbalization and literacy skills of the students over the 5 years of the project, we have adapted the PRISM tool used in clinical practice to assess patient perceptions of illness and treatment (Buchi & Sensky, 1999). This novel measure is essentially non-verbal, and uses spatial positions of moveable markers ("object" markers) on a board, relative to a fixed marker that represents the subject's "self", as a visual metaphor for the importance of the object to the subject. The subjects also explain their reasons for placing the markers as they have, to provide additional qualitative information. The PRISM method thus produces data on the perceptions measured on the board that can be subjected to statistical analysis, and also succinct qualitative data about each subject. Our study will gather data on participants' perceptions of different natural hazards, different sources of information about these, and organizations or individuals to whom they would go for help in a disaster, and investigate how these vary with geographical and social factors. To illustrate the method, which is generalisable, we present results from our initial interviews of the cohort of 11 year olds whom we will follow through their secondary school education. Büchi, S., & Sensky, T. (1999). PRISM: Pictorial Representation of Illness and Self Measure: a brief nonverbal measure of illness impact and therapeutic aid in psychosomatic medicine. Psychosomatics, 40(4), 314-320.

  6. Pulsed Electric Processing of the Seismic-Active Fault for Earthquake Hazard Mitigation

    NASA Astrophysics Data System (ADS)

    Novikov, V. A.; Zeigarnik, V. A.; Konev, Yu. B.; Klyuchkin, V. N.

    2010-03-01

    Previous field and laboratory investigations performed in Russia (1999-2008) showed a possibility of application of high-power electric current pulses generated by pulsed MHD power system for triggering the weak seismicity and release of tectonic stresses in the Earth crust for earthquake hazard mitigation. The mechanism of the influence of man-made electromagnetic field on the regional seismicity is not clear yet. One of possible cause of the phenomenon may be formation of cracks in the rocks under fluid pressure increase due to Joule heat generation by electric current injected into the Earth crust. Detailed 3D-calculaton of electric current density in the Earth crust of Northern Tien Shan provided by pulsed MHD power system connected to grounded electric dipole showed that at the depth of earthquake epicenters (> 5km) the electric current density is lower than 10-7 A/m2 that is not sufficient for increase of pressure in the fluid-saturated porous geological medium due to Joule heat generation, which may provide formation of cracks resulting in the fault propagation and release of tectonic stresses in the Earth crust. Nevertheless, under certain conditions, when electric current will be injected into the fault through the casing pipes of deep wells with preliminary injection of conductive fluid into the fault, the current density may be high enough for significant increase of mechanic pressure in the porous two-phase geological medium. Numerical analysis of a crack formation triggered by high-power electric pulses based on generation of mechanical pressure in the geological medium was carried out. It was shown that calculation of mechanical pressure impulse due to high-power electrical current in the porous two-phase medium may be performed neglecting thermal conductance by solving the non-stationary equation of piezo-conductivity with Joule heat generation. For calculation of heat generation the known solution of the task of current spreading from spherical or

  7. Looking Before We Leap: Recent Results From An Ongoing Quantitative Investigation Of Asteroid And Comet Impact Hazard Mitigation.

    NASA Astrophysics Data System (ADS)

    Plesko, Catherine; Weaver, R. P.; Korycansky, D. G.; Huebner, W. F.

    2010-10-01

    The asteroid and comet impact hazard is now part of public consciousness, as demonstrated by movies, Super Bowl commercials, and popular news stories. However, there is a popular misconception that hazard mitigation is a solved problem. Many people think, `we'll just nuke it.’ There are, however, significant scientific questions remaining in the hazard mitigation problem. Before we can say with certainty that an explosive yield Y at height of burst h will produce a momentum change in or dispersion of a potentially hazardous object (PHO), we need to quantify how and where energy is deposited into the rubble pile or conglomerate that may make up the PHO. We then need to understand how shock waves propagate through the system, what causes them to disrupt, and how long gravitationally bound fragments take to recombine. Here we present numerical models of energy deposition from an energy source into various materials that are known PHO constituents, and rigid body dynamics models of the recombination of disrupted objects. In the energy deposition models, we explore the effects of porosity and standoff distance as well as that of composition. In the dynamical models, we explore the effects of fragment size and velocity distributions on the time it takes for gravitationally bound fragments to recombine. Initial models indicate that this recombination time is relatively short, as little as 24 hours for a 1 km sized PHO composed of 1000 meter-scale self-gravitating fragments with an initial velocity field of v/r = 0.001 1/s.

  8. Bike Helmets and Black Riders: Experiential Approaches to Helping Students Understand Natural Hazard Assessment and Mitigation Issues

    NASA Astrophysics Data System (ADS)

    Stein, S. A.; Kley, J.; Hindle, D.; Friedrich, A. M.

    2014-12-01

    Defending society against natural hazards is a high-stakes game of chance against nature, involving tough decisions. How should a developing nation allocate its budget between building schools for towns without ones or making existing schools earthquake-resistant? Does it make more sense to build levees to protect against floods, or to prevent development in the areas at risk? Would more lives be saved by making hospitals earthquake-resistant, or using the funds for patient care? These topics are challenging because they are far from normal experience, in that they involve rare events and large sums. To help students in natural hazard classes conceptualize them, we pose tough and thought-provoking questions about complex issues involved and explore them together via lectures, videos, field trips, and in-class and homework questions. We discuss analogous examples from the students' experiences, drawing on a new book "Playing Against Nature, Integrating Science and Economics to Mitigate Natural Hazards in an Uncertain World". Asking whether they wear bicycle helmets and why or why not shows the cultural perception of risk. Individual students' responses vary, and the overall results vary dramatically between the US, UK, and Germany. Challenges in hazard assessment in an uncertain world are illustrated by asking German students whether they buy a ticket on public transportation - accepting a known cost - or "ride black" - not paying but risking a heavy fine if caught. We explore the challenge of balancing mitigation costs and benefits via the question "If you were a student in Los Angeles, how much more would you pay in rent each month to live in an earthquake-safe building?" Students learn that interdisciplinary thinking is needed, and that due to both uncertainties and sociocultural factors, no unique or right strategies exist for a particular community, much the less all communities. However, we can seek robust policies that give sensible results given

  9. Environmental legislation as the legal framework for mitigating natural hazards in Spain

    NASA Astrophysics Data System (ADS)

    Garrido, Jesús; Arana, Estanislao; Jiménez Soto, Ignacio; Delgado, José

    2015-04-01

    In Spain, the socioeconomic losses due to natural hazards (floods, earthquakes or landslides) are considerable, and the indirect costs associated with them are rarely considered because they are very difficult to evaluate. The prevention of losses due to natural hazards is more economic and efficient through legislation and spatial planning rather than through structural measures, such as walls, anchorages or structural reinforcements. However, there isn't a Spanish natural hazards law and national and regional sector legislation make only sparse mention of them. After 1978, when the Spanish Constitution was enacted, the Autonomous Communities (Spanish regions) were able to legislate according to the different competences (urban planning, environment or civil protection), which were established in the Constitution. In the 1990's, the Civil Protection legislation (national law and regional civil protection tools) dealt specifically with natural hazards (floods, earthquakes and volcanoes), but this was before any soil, seismic or hydrological studies were recommended in the national sector legislation. On the other hand, some Autonomous Communities referred to natural hazards in the Environmental Impact Assessment legislation (EIA) and also in the spatial and urban planning legislation and tools. The National Land Act, enacted in 1998, established, for the first time, that those lands exposed to natural hazards should be classified as non-developable. The Spanish recast text of the Land Act, enacted by Royal Legislative Decree 2/2008, requires that a natural hazards map be included in the Environmental Sustainability Report (ESR), which is compulsory for all master plans, according to the provisions set out by Act 9/2006, known as Spanish Strategic Environmental Assessment (SEA). Consequently, the environmental legislation, after the aforementioned transposition of the SEA European Directive 2001/42/EC, is the legal framework to prevent losses due to natural hazards

  10. Remote Sensing for Hazard Mitigation and Resource Protection in Pacific Latin America: New NSF sponsored initiative at Michigan Tech.

    NASA Astrophysics Data System (ADS)

    Rose, W. I.; Bluth, G. J.; Gierke, J. S.; Gross, E.

    2005-12-01

    Though much of the developing world has the potential to gain significantly from remote sensing techniques in terms of public health and safety and, eventually, economic development, they lack the resources required to advance the development and practice of remote sensing. Both developed and developing countries share a mutual interest in furthering remote sensing capabilities for natural hazard mitigation and resource development, and this common commitment creates a solid foundation upon which to build an integrated education and research project. This will prepare students for careers in science and engineering through their efforts to solve a suite of problems needing creative solutions: collaboration with foreign agencies; living abroad immersed in different cultures; and adapting their academic training to contend with potentially difficult field conditions and limited resources. This project makes two important advances: (1) We intend to develop the first formal linkage among geoscience agencies from four Pacific Latin American countries (Guatemala, El Salvador, Nicaragua and Ecuador), focusing on the collaborative development of remote sensing tools for hazard mitigation and water resource development; (2) We will build a new educational system of applied research and engineering, using two existing educational programs at Michigan Tech: a new Peace Corp/Master's International (PC/MI) program in Natural Hazards which features a 2-year field assignment, and an "Enterprise" program for undergraduates, which gives teams of geoengineering students the opportunity to work for three years in a business-like setting to solve real-world problems This project will involve 1-2 post-doctoral researchers, 3 Ph.D., 9 PC/MI, and roughly 20 undergraduate students each year.

  11. A review of accidents, prevention and mitigation options related to hazardous gases

    SciTech Connect

    Fthenakis, V.M.

    1993-05-01

    Statistics on industrial accidents are incomplete due to lack of specific criteria on what constitutes a release or accident. In this country, most major industrial accidents were related to explosions and fires of flammable materials, not to releases of chemicals into the environment. The EPA in a study of 6,928 accidental releases of toxic chemicals revealed that accidents at stationary facilities accounted for 75% of the total number of releases, and transportation accidents for the other 25%. About 7% of all reported accidents (468 cases) resulted in 138 deaths and 4,717 injuries ranging from temporary respiratory problems to critical injuries. In-plant accidents accounted for 65% of the casualties. The most efficient strategy to reduce hazards is to choose technologies which do not require the use of large quantities of hazardous gases. For new technologies this approach can be implemented early in development, before large financial resources and efforts are committed to specific options. Once specific materials and options have been selected, strategies to prevent accident initiating events need to be evaluated and implemented. The next step is to implement safety options which suppress a hazard when an accident initiating event occurs. Releases can be prevented or reduced with fail-safe equipment and valves, adequate warning systems and controls to reduce and interrupt gas leakage. If an accident occurs and safety systems fail to contain a hazardous gas release, then engineering control systems will be relied on to reduce/minimize environmental releases. As a final defensive barrier, the prevention of human exposure is needed if a hazardous gas is released, in spite of previous strategies. Prevention of consequences forms the final defensive barrier. Medical facilities close by that can accommodate victims of the worst accident can reduce the consequences of personnel exposure to hazardous gases.

  12. Influence of behavioral biases on the assessment of multi-hazard risks and the implementation of multi-hazard risks mitigation measures: case study of multi-hazard cyclone shelters in Tamil Nadu, India

    NASA Astrophysics Data System (ADS)

    Komendantova, Nadejda; Patt, Anthony

    2013-04-01

    In December 2004, a multiple hazards event devastated the Tamil Nadu province of India. The Sumatra -Andaman earthquake with a magnitude of Mw=9.1-9.3 caused the Indian Ocean tsunami with wave heights up to 30 m, and flooding that reached up to two kilometers inland in some locations. More than 7,790 persons were killed in the province of Tamil Nadu, with 206 in its capital Chennai. The time lag between the earthquake and the tsunami's arrival in India was over an hour, therefore, if a suitable early warning system existed, a proper means of communicating the warning and shelters existing for people would exist, than while this would not have prevented the destruction of infrastructure, several thousands of human lives would have been saved. India has over forty years of experience in the construction of cyclone shelters. With additional efforts and investment, these shelters could be adapted to other types of hazards such as tsunamis and flooding, as well as the construction of new multi-hazard cyclone shelters (MPCS). It would therefore be possible to mitigate one hazard such as cyclones by the construction of a network of shelters while at the same time adapting these shelters to also deal with, for example, tsunamis, with some additional investment. In this historical case, the failure to consider multiple hazards caused significant human losses. The current paper investigates the patterns of the national decision-making process with regards to multiple hazards mitigation measures and how the presence of behavioral and cognitive biases influenced the perceptions of the probabilities of multiple hazards and the choices made for their mitigation by the national decision-makers. Our methodology was based on the analysis of existing reports from national and international organizations as well as available scientific literature on behavioral economics and natural hazards. The results identified several biases in the national decision-making process when the

  13. Piloted Simulation to Evaluate the Utility of a Real Time Envelope Protection System for Mitigating In-Flight Icing Hazards

    NASA Technical Reports Server (NTRS)

    Ranaudo, Richard J.; Martos, Borja; Norton, Bill W.; Gingras, David R.; Barnhart, Billy P.; Ratvasky, Thomas P.; Morelli, Eugene

    2011-01-01

    The utility of the Icing Contamination Envelope Protection (ICEPro) system for mitigating a potentially hazardous icing condition was evaluated by 29 pilots using the NASA Ice Contamination Effects Flight Training Device (ICEFTD). ICEPro provides real time envelope protection cues and alerting messages on pilot displays. The pilots participating in this test were divided into two groups; a control group using baseline displays without ICEPro, and an experimental group using ICEPro driven display cueing. Each group flew identical precision approach and missed approach procedures with a simulated failure case icing condition. Pilot performance, workload, and survey questionnaires were collected for both groups of pilots. Results showed that real time assessment cues were effective in reducing the number of potentially hazardous upset events and in lessening exposure to loss of control following an incipient upset condition. Pilot workload with the added ICEPro displays was not measurably affected, but pilot opinion surveys showed that real time cueing greatly improved their situation awareness of a hazardous aircraft state.

  14. Assessing NEO hazard mitigation in terms of astrodynamics and propulsion systems requirements.

    PubMed

    Remo, John L

    2004-05-01

    Uncertainties associated with assessing valid near-Earth object (NEO) threats and carrying out interception missions place unique and stringent burdens on designing mission architecture, astrodynamics, and spacecraft propulsion systems. A prime uncertainty is associated with the meaning of NEO orbit predictability regarding Earth impact. Analyses of past NEO orbits and impact probabilities indicate uncertainties in determining if a projected NEO threat will actually materialize within a given time frame. Other uncertainties regard estimated mass, composition, and structural integrity of the NEO body. At issue is if one can reliably estimate a NEO threat and its magnitude. Parameters that determine NEO deflection requirements within various time frames, including the terminal orbital pass before impact, and necessary energy payloads, are quantitatively discussed. Propulsion system requirements for extending space capabilities to rapidly interact with NEOs at ranges of up to about 1 AU (astronomical unit) from Earth are outlined. Such missions, without gravitational boosts, are deemed critical for a practical and effective response to mitigation. If an impact threat is confirmed on an immediate orbital pass, the option for interactive reconnaissance, and interception, and subsequent NEO orbit deflection must be promptly carried out. There also must be an option to abort the mitigation mission if the NEO is subsequently found not to be Earth threatening. These options require optimal decision latitude and operational possibilities for NEO threat removal while minimizing alarm. Acting too far in advance of the projected impact could induce perturbations that ultimately exacerbate the threat. Given the dilemmas, uncertainties, and limited options associated with timely NEO mitigation within a decision making framework, currently available propulsion technologies that appear most viable to carry out a NEO interception/mitigation mission within the greatest margin of

  15. Hazardous near Earth asteroid mitigation campaign planning based on uncertain information on fundamental asteroid characteristics

    NASA Astrophysics Data System (ADS)

    Sugimoto, Y.; Radice, G.; Ceriotti, M.; Sanchez, J. P.

    2014-10-01

    Given a limited warning time, an asteroid impact mitigation campaign would hinge on uncertainty-based information consisting of remote observational data of the identified Earth-threatening object, general knowledge of near-Earth asteroids (NEAs), and engineering judgment. Due to these ambiguities, the campaign credibility could be profoundly compromised. It is therefore imperative to comprehensively evaluate the inherent uncertainty in deflection and plan the campaign accordingly to ensure successful mitigation. This research demonstrates dual-deflection mitigation campaigns consisting of primary (instantaneous/quasi-instantaneous) and secondary (slow-push) deflection missions, where both deflection efficiency and campaign credibility are taken into account. The results of the dual-deflection campaign analysis show that there are trade-offs between the competing aspects: the launch cost, mission duration, deflection distance, and the confidence in successful deflection. The design approach is found to be useful for multi-deflection campaign planning, allowing us to select the best possible combination of missions from a catalogue of campaign options, without compromising the campaign credibility.

  16. Mitigation of EMU Glove Cut Hazard by MMOD Impact Craters on Exposed ISS Handrails

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L.; Ryan, Shannon

    2009-01-01

    Recent cut damages to crewmember extravehicular mobility unit (EMU) gloves during extravehicular activity (EVA) onboard the International Space Station (ISS) has been found to result from contact with sharp edges or pinch points rather than general wear or abrasion. One possible source of cut-hazards are protruding sharp edged crater lips from impact of micrometeoroid and orbital debris (MMOD) particles on external metallic handrails along EVA translation paths. During impact of MMOD particles at hypervelocity an evacuation flow develops behind the shock wave, resulting in the formation of crater lips that can protrude above the target surface. In this study, two methods were evaluated to limit EMU glove cut-hazards due to MMOD impact craters. In the first phase, four flexible overwrap configurations are evaluated: a felt-reusable surface insulation (FRSI), polyurethane polyether foam with beta-cloth cover, double-layer polyurethane polyether foam with beta-cloth cover, and multi-layer beta-cloth with intermediate Dacron netting spacers. These overwraps are suitable for retrofitting ground equipment that has yet to be flown, and are not intended to protect the handrail from impact of MMOD particles, rather to act as a spacer between hazardous impact profiles and crewmember gloves. At the impact conditions considered, all four overwrap configurations evaluated were effective in limiting contact between EMU gloves and impact crater profiles. The multi-layer beta-cloth configuration was the most effective in reducing the height of potentially hazardous profiles in handrail-representative targets. In the second phase of the study, four material alternatives to current aluminum and stainless steel alloys were evaluated: a metal matrix composite, carbon fiber reinforced plastic (CFRP), fiberglass, and a fiber metal laminate. Alternative material handrails are intended to prevent the formation of hazardous damage profiles during MMOD impact and are suitable for flight

  17. Volcano Hazard Tracking and Disaster Risk Mitigation: A Detailed Gap Analysis from Data-Collection to User Implementation

    NASA Astrophysics Data System (ADS)

    Faied, D.; Sanchez, A.

    2009-04-01

    Volcano Hazard Tracking and Disaster Risk Mitigation: A Detailed Gap Analysis from Data-Collection to User Implementation Dohy Faied, Aurora Sanchez (on behalf of SSP08 VAPOR Project Team) Dohy.Faied@masters.isunet.edu While numerous global initiatives exist to address the potential hazards posed by volcanic eruption events and assess impacts from a civil security viewpoint, there does not yet exist a single, unified, international system of early warning and hazard tracking for eruptions. Numerous gaps exist in the risk reduction cycle, from data collection, to data processing, and finally dissemination of salient information to relevant parties. As part of the 2008 International Space University's Space Studies Program, a detailed gap analysis of the state of volcano disaster risk reduction was undertaken, and this paper presents the principal results. This gap analysis considered current sensor technologies, data processing algorithms, and utilization of data products by various international organizations. Recommendations for strategies to minimize or eliminate certain gaps are also provided. In the effort to address the gaps, a framework evolved at system level. This framework, known as VIDA, is a tool to develop user requirements for civil security in hazardous contexts, and a candidate system concept for a detailed design phase. VIDA also offers substantial educational potential: the framework includes a centralized clearinghouse for volcanology data which could support education at a variety of levels. Basic geophysical data, satellite maps, and raw sensor data are combined and accessible in a way that allows the relationships between these data types to be explored and used in a training environment. Such a resource naturally lends itself to research efforts in the subject but also research in operational tools, system architecture, and human/machine interaction in civil protection or emergency scenarios.

  18. The Identification of Filters and Interdependencies for Effective Resource Allocation: Coupling the Mitigation of Natural Hazards to Economic Development.

    NASA Astrophysics Data System (ADS)

    Agar, S. M.; Kunreuther, H.

    2005-12-01

    Policy formulation for the mitigation and management of risks posed by natural hazards requires that governments confront difficult decisions for resource allocation and be able to justify their spending. Governments also need to recognize when spending offers little improvement and the circumstances in which relatively small amounts of spending can make substantial differences. Because natural hazards can have detrimental impacts on local and regional economies, patterns of economic development can also be affected by spending decisions for disaster mitigation. This paper argues that by mapping interdependencies among physical, social and economic factors, governments can improve resource allocation to mitigate the risks of natural hazards while improving economic development on local and regional scales. Case studies of natural hazards in Turkey have been used to explore specific "filters" that act to modify short- and long-term outcomes. Pre-event filters can prevent an event from becoming a natural disaster or change a routine event into a disaster. Post-event filters affect both short and long-term recovery and development. Some filters cannot be easily modified by spending (e.g., rural-urban migration) but others (e.g., land-use practices) provide realistic spending targets. Net social benefits derived from spending, however, will also depend on the ways by which filters are linked, or so-called "interdependencies". A single weak link in an interdependent system, such as a power grid, can trigger a cascade of failures. Similarly, weak links in social and commercial networks can send waves of disruption through communities. Conversely, by understanding the positive impacts of interdependencies, spending can be targeted to maximize net social benefits while mitigating risks and improving economic development. Detailed information on public spending was not available for this study but case studies illustrate how networks of interdependent filters can modify

  19. Marine and Hydrokinetic Renewable Energy Devices, Potential Navigational Hazards and Mitigation Measures

    SciTech Connect

    Cool, Richard, M.; Hudon, Thomas, J.; Basco, David, R.; Rondorf, Neil, E.

    2009-12-01

    On April 15, 2008, the Department of Energy (DOE) issued a Funding Opportunity Announcement for Advanced Water Power Projects which included a Topic Area for Marine and Hydrokinetic Renewable Energy Market Acceleration Projects. Within this Topic Area, DOE identified potential navigational impacts of marine and hydrokinetic renewable energy technologies and measures to prevent adverse impacts on navigation as a sub-topic area. DOE defines marine and hydrokinetic technologies as those capable of utilizing one or more of the following resource categories for energy generation: ocean waves; tides or ocean currents; free flowing water in rivers or streams; and energy generation from the differentials in ocean temperature. PCCI was awarded Cooperative Agreement DE-FC36-08GO18177 from the DOE to identify the potential navigational impacts and mitigation measures for marine hydrokinetic technologies. A technical report addressing our findings is available on this Science and Technology Information site under the Product Title, "Marine and Hydrokinetic Renewable Energy Technologies: Potential Navigational Impacts and Mitigation Measures". This product is a brochure, primarily for project developers, that summarizes important issues in that more comprehensive report, identifies locations where that report can be downloaded, and identifies points of contact for more information.

  20. Debris flood hazard documentation and mitigation on the Tilcara alluvial fan (Quebrada de Humahuaca, Jujuy province, North-West Argentina)

    NASA Astrophysics Data System (ADS)

    Marcato, G.; Bossi, G.; Rivelli, F.; Borgatti, L.

    2012-06-01

    For some decades, mass wasting processes such as landslides and debris floods have been threatening villages and transportation routes in the Rio Grande Valley, named Quebrada de Humauhuaca. One of the most significant examples is the urban area of Tilcara, built on a large alluvial fan. In recent years, debris flood phenomena have been triggered in the tributary valley of the Huasamayo Stream and reached the alluvial fan on a decadal basis. In view of proper development of the area, hazard and risk assessment together with risk mitigation strategies are of paramount importance. The need is urgent also because the Quebrada de Humahuaca was recently included in the UNESCO World Cultural Heritage. Therefore, the growing tourism industry may lead to uncontrolled exploitation and urbanization of the valley, with a consequent increase of the vulnerability of the elements exposed to risk. In this context, structural and non structural mitigation measures not only have to be based on the understanding of natural processes, but also have to consider environmental and sociological factors that could hinder the effectiveness of the countermeasure works. The hydrogeological processes are described with reference to present-day hazard and risk conditions. Considering the socio-economic context, some possible interventions are outlined, which encompass budget constraints and local practices. One viable solution would be to build a protecting dam upstream of the fan apex and an artificial channel, in order to divert the floodwaters in a gully that would then convey water and sediments into the Rio Grande, some kilometers downstream of Tilcara. The proposed remedial measures should employ easily available and relatively cheap technologies and local workers, incorporating low environmental and visual impacts issues, in order to ensure both the future conservation of the site and its safe exploitation for inhabitants and tourists.

  1. Societal transformation and adaptation necessary to manage dynamics in flood hazard and risk mitigation (TRANS-ADAPT)

    NASA Astrophysics Data System (ADS)

    Fuchs, Sven; Thaler, Thomas; Bonnefond, Mathieu; Clarke, Darren; Driessen, Peter; Hegger, Dries; Gatien-Tournat, Amandine; Gralepois, Mathilde; Fournier, Marie; Mees, Heleen; Murphy, Conor; Servain-Courant, Sylvie

    2015-04-01

    Facing the challenges of climate change, this project aims to analyse and to evaluate the multiple use of flood alleviation schemes with respect to social transformation in communities exposed to flood hazards in Europe. The overall goals are: (1) the identification of indicators and parameters necessary for strategies to increase societal resilience, (2) an analysis of the institutional settings needed for societal transformation, and (3) perspectives of changing divisions of responsibilities between public and private actors necessary to arrive at more resilient societies. This proposal assesses societal transformations from the perspective of changing divisions of responsibilities between public and private actors necessary to arrive at more resilient societies. Yet each risk mitigation measure is built on a narrative of exchanges and relations between people and therefore may condition the outputs. As such, governance is done by people interacting and defining risk mitigation measures as well as climate change adaptation are therefore simultaneously both outcomes of, and productive to, public and private responsibilities. Building off current knowledge this project will focus on different dimensions of adaptation and mitigation strategies based on social, economic and institutional incentives and settings, centring on the linkages between these different dimensions and complementing existing flood risk governance arrangements. The policy dimension of adaptation, predominantly decisions on the societal admissible level of vulnerability and risk, will be evaluated by a human-environment interaction approach using multiple methods and the assessment of social capacities of stakeholders across scales. As such, the challenges of adaptation to flood risk will be tackled by converting scientific frameworks into practical assessment and policy advice. In addressing the relationship between these dimensions of adaptation on different temporal and spatial scales, this

  2. Volcanic risk: mitigation of lava flow invasion hazard through optimized barrier configuration

    NASA Astrophysics Data System (ADS)

    Scifoni, S.; Coltelli, M.; Marsella, M.; Napoleoni, Q.; Del Negro, C.; Proietti, C.; Vicari, A.

    2009-04-01

    In order to mitigate the destructive effects of lava flows along volcanic slopes, the building of artificial barriers is a fundamental action for controlling and slowing down the lava flow advance, as experienced during a few recent eruptions of Etna. The simulated lava path can be used to define an optimize project to locate the work but for a timely action it is also necessary to quickly construct a barrier. Therefore this work investigates different type of engineering work that can be adopted to build up a lava containing barrier for improving the efficiency of the structure. From the analysis of historical cases it is clear that barriers were generally constructed by building up earth, lava blocks and incoherent, low density material. This solution implies complex operational constraints and logistical problems that justify the effort of looking for alternative design. Moreover for optimizing the barrier construction an alternative project of gabion-made barrier was here proposed. In this way the volume of mobilized material is lower than that for a earth barrier, thus reducing the time needed for build up the structure. A second crucial aspect to be considered is the geometry of the barrier which, is one of the few parameters that can be modulated, the others being linked to the morphological and topographical characteristics of the ground. Once the walls have been realized, it may be necessary to be able to expand the structure vertically. The use of gabion has many advantages over loose riprap (earthen walls) owing to their modularity and capability to be stacked in various shapes. Furthermore, the elements which are not inundated by lava can be removed and rapidly used for other barriers. The combination between numerical simulations and gabions will allow a quicker mitigation of risk on lava flows and this is an important aspect for a civil protection intervention in emergency cases.

  3. Physical Prototype Development for the Real-Time Detection and Mitigation of Hazardous Releases into a Flow System

    NASA Astrophysics Data System (ADS)

    Rimer, Sara; Katopodes, Nikolaos

    2013-11-01

    The threat of accidental or deliberate toxic chemicals released into public spaces is a significant concern to public safety. The real-time detection and mitigation of such hazardous contaminants has the potential to minimize harm and save lives. In this study, we demonstrate the feasibility of feedback control of a hazardous contaminant by means of a laboratory-scale physical prototype integrated with a previously-developed robust predictive control numerical model. The physical prototype is designed to imitate a public space characterized by a long conduit with an ambient flow (e.g. airport terminal). Unidirectional air flows through a 24-foot long duct. The ``contaminant'' plume of propylene glycol smoke is released into the duct. Camera sensors are used to visually measure concentration of the plume. A pneumatic system is utilized to localize the contaminant via air curtains, and draw it out via vacuum nozzles. The control prescribed to the pneumatic system is based on the numerical model. NSF-CMMI 0856438.

  4. Smart Oceans BC: Supporting Coastal and Ocean Natural Hazards Mitigation for British Columbia

    NASA Astrophysics Data System (ADS)

    Moran, K.; Insua, T. L.; Pirenne, B.; Hoeberechts, M.; McLean, S.

    2014-12-01

    Smart Oceans BC is a new multi-faceted program to support decision-makers faced with responding to natural disasters and hazards in Canada's Province of British Columbia. It leverages the unique capabilities of Ocean Networks Canada's cabled ocean observatories, NEPTUNE and VENUS to enhance public safety, marine safety and environmental monitoring. Smart Oceans BC combines existing and new marine sensing technology with its robust data management and archive system, Oceans 2.0, to deliver information and science for good ocean management and responsible ocean use. Smart Oceans BC includes new ocean observing infrastructure for: public safety, through natural hazard detection for earthquake groundshaking and near-field tsunamis; marine safety, by monitoring and providing alerts on sea state, ship traffic, and marine mammal presence; and environmental protection, by establishing baseline data in critical areas, and providing real-time environmental observations. Here we present the elements of this new ocean observing initiative that are focused on tsunami and earthquake early warning including cabled and autonomous sensor systems, real-time data delivery, software developments that enable rapid detection, analytics used in notification development, and stakeholder engagement plans.

  5. Determination of Bedrock Variations and S-wave Velocity Structure in the NW part of Turkey for Earthquake Hazard Mitigation

    NASA Astrophysics Data System (ADS)

    Ozel, A. O.; Arslan, M. S.; Aksahin, B. B.; Genc, T.; Isseven, T.; Tuncer, M. K.

    2015-12-01

    Tekirdag region (NW Turkey) is quite close to the North Anatolian Fault which is capable of producing a large earthquake. Therefore, earthquake hazard mitigation studies are important for the urban areas close to the major faults. From this point of view, integration of different geophysical methods has important role for the study of seismic hazard problems including seismotectonic zoning. On the other hand, geological mapping and determining the subsurface structure, which is a key to assist management of new developed areas, conversion of current urban areas or assessment of urban geological hazards can be performed by integrated geophysical methods. This study has been performed in the frame of a national project, which is a complimentary project of the cooperative project between Turkey and Japan (JICA&JST), named as "Earthquake and Tsunami Disaster Mitigation in the Marmara Region and Disaster Education". With this principal aim, this study is focused on Tekirdag and its surrounding region (NW of Turkey) where some uncertainties in subsurface knowledge (maps of bedrock depth, thickness of quaternary sediments, basin geometry and seismic velocity structure,) need to be resolved. Several geophysical methods (microgravity, magnetic and single station and array microtremor measurements) are applied and the results are evaluated to characterize lithological changes in the region. Array microtremor measurements with several radiuses are taken in 30 locations and 1D-velocity structures of S-waves are determined by the inversion of phase velocities of surface waves, and the results of 1D structures are verified by theoretical Rayleigh wave modelling. Following the array measurements, single-station microtremor measurements are implemented at 75 locations to determine the predominant frequency distribution. The predominant frequencies in the region range from 0.5 Hz to 8 Hz in study area. On the other hand, microgravity and magnetic measurements are performed on

  6. A fast global tsunami modeling suite as a trans-oceanic tsunami hazard prediction and mitigation tool

    NASA Astrophysics Data System (ADS)

    Mohammed, F.; Li, S.; Jalali Farahani, R.; Williams, C. R.; Astill, S.; Wilson, P. S.; B, S.; Lee, R.

    2014-12-01

    The past decade has been witness to two mega-tsunami events, 2004 Indian ocean tsunami and 2011 Japan tsunami and multiple major tsunami events; 2006 Java, Kuril Islands, 2007 Solomon Islands, 2009 Samoa and 2010 Chile, to name a few. These events generated both local and far field tsunami inundations with runup ranging from a few meters to around 40 m in the coastal impact regions. With a majority of the coastal population at risk, there is need for a sophisticated outlook towards catastrophe risk estimation and a quick mitigation response. At the same time tools and information are needed to aid advanced tsunami hazard prediction. There is an increased need for insurers, reinsurers and Federal hazard management agencies to quantify coastal inundations and vulnerability of coastal habitat to tsunami inundations. A novel tool is developed to model local and far-field tsunami generation, propagation and inundation to estimate tsunami hazards. The tool is a combination of the NOAA MOST propagation database and an efficient and fast GPU (Graphical Processing Unit)-based non-linear shallow water wave model solver. The tsunamigenic seismic sources are mapped on to the NOAA unit source distribution along subduction zones in the ocean basin. Slip models are defined for tsunamigenic seismic sources through a slip distribution on the unit sources while maintaining limits of fault areas. A GPU based finite volume solver is used to simulate non-linear shallow water wave propagation, inundation and runup. Deformation on the unit sources provide initial conditions for modeling local impacts, while the wave history from propagation database provides boundary conditions for far field impacts. The modeling suite provides good agreement with basins for basin wide tsunami propagation to validate local and far field tsunami inundations.

  7. Evaluation and mitigation of lightning hazards to the space shuttle Solid Rocket Motors (SRM)

    NASA Technical Reports Server (NTRS)

    Rigden, Gregory J.; Papazian, Peter B.

    1988-01-01

    The objective was to quantify electric field strengths in the Solid Rocket Motor (SRM) propellant in the event of a worst case lightning strike. Using transfer impedance measurements for selected lightning protection materials and 3D finite difference modeling, a retrofit design approach for the existing dielectric grain cover and railcar covers was evaluated and recommended for SRM segment transport. A safe level of 300 kV/m was determined for the propellant. The study indicated that a significant potential hazard exists for unprotected segments during rail transport. However, modified railcar covers and grain covers are expected to prevent lightning attachment to the SRM and to reduce the levels to several orders of magnitude below 300 kV/m.

  8. Field Guide for Testing Existing Photovoltaic Systems for Ground Faults and Installing Equipment to Mitigate Fire Hazards: November 2012 - October 2013

    SciTech Connect

    Brooks, William

    2015-02-01

    Ground faults and arc faults are the two most common reasons for fires in photovoltaic (PV) arrays and methods exist that can mitigate the hazards. This report provides field procedures for testing PV arrays for ground faults, and for implementing high resolution ground fault and arc fault detectors in existing and new PV system designs.

  9. Novel bio-inspired smart control for hazard mitigation of civil structures

    NASA Astrophysics Data System (ADS)

    Kim, Yeesock; Kim, Changwon; Langari, Reza

    2010-11-01

    In this paper, a new bio-inspired controller is proposed for vibration mitigation of smart structures subjected to ground disturbances (i.e. earthquakes). The control system is developed through the integration of a brain emotional learning (BEL) algorithm with a proportional-integral-derivative (PID) controller and a semiactive inversion (Inv) algorithm. The BEL algorithm is based on the neurologically inspired computational model of the amygdala and the orbitofrontal cortex. To demonstrate the effectiveness of the proposed hybrid BEL-PID-Inv control algorithm, a seismically excited building structure equipped with a magnetorheological (MR) damper is investigated. The performance of the proposed hybrid BEL-PID-Inv control algorithm is compared with that of passive, PID, linear quadratic Gaussian (LQG), and BEL control systems. In the simulation, the robustness of the hybrid BEL-PID-Inv control algorithm in the presence of modeling uncertainties as well as external disturbances is investigated. It is shown that the proposed hybrid BEL-PID-Inv control algorithm is effective in improving the dynamic responses of seismically excited building structure-MR damper systems.

  10. Educational Approach to Seismic Risk Mitigation in Indian Himalayas -Hazard Map Making Workshops at High Schools-

    NASA Astrophysics Data System (ADS)

    Koketsu, K.; Oki, S.; Kimura, M.; Chadha, R. K.; Davuluri, S.

    2014-12-01

    How can we encourage people to take preventive measures against damage risks and empower them to take the right actions in emergencies to save their lives? The conventional approach taken by scientists had been disseminating intelligible information on up-to-date seismological knowledge. However, it has been proven that knowledge alone does not have enough impact to modify people's behaviors in emergencies (Oki and Nakayachi, 2012). On the other hand, the conventional approach taken by practitioners had been to conduct emergency drills at schools or workplaces. The loss of many lives from the 2011 Tohoku earthquake has proven that these emergency drills were not enough to save people's lives, unless they were empowered to assess the given situation on their own and react flexibly. Our challenge is to bridge the gap between knowledge and practice. With reference to best practices observed in Tohoku, such as The Miracles of Kamaishi, our endeavor is to design an effective Disaster Preparedness Education Program that is applicable to other disaster-prone regions in the world, even with different geological, socio-economical and cultural backgrounds. The key concepts for this new approach are 1) empowering individuals to take preventive actions to save their lives, 2) granting community-based understanding of disaster risks and 3) building a sense of reality and relevancy to disasters. With these in mind, we held workshops at some high schools in the Lesser Himalayan Region, combining lectures with an activity called "Hazard Map Making" where students proactively identify and assess the hazards around their living areas and learn practical strategies on how to manage risks. We observed the change of awareness of the students by conducting a preliminary questionnaire survey and interviews after each session. Results strongly implied that the significant change of students' attitudes towards disaster preparedness occurred not by the lectures of scientific knowledge, but

  11. Using Darwin's theory of atoll formation to improve tsunami hazard mitigation in the Pacific

    NASA Astrophysics Data System (ADS)

    Goff, J. R.; Terry, J. P.

    2012-12-01

    It is 130 years since Charles Darwin's death and 176 years since he his penned his subsidence theory of atoll formation on 12th April 1836 during the voyage of the Beagle through the Pacific. This theory, founded on the premise of a subsiding volcano and the corresponding upward growth of coral reef, was astonishing for the time considering the absence of an underpinning awareness of plate tectonics. Furthermore, with the exception of the occasional permutation and opposing idea his theory has endured and has an enviable longevity amongst paradigms in geomorphology. In his theory, Darwin emphasised the generally circular morphology of the atoll shape and surprisingly, the validity of this simple morphological premise has never been questioned. There are however, few atolls in the Pacific Ocean that attain such a simple morphology with most manifesting one or more arcuate 'bight-like' structures (ABLSs). These departures from the circular form complicate his simplistic model and are indicative of geomorphological processes in the Pacific Ocean which cannot be ignored. ABLSs represent the surface morphological expression of major submarine failures of atoll volcanic foundations. Such failures can occur during any stage of atoll formation and are a valuable addition to Darwin's theory because they indicate the instability of the volcanic foundations. It is widely recognized in the research community that sector/flank collapses of island edifices are invariably tsunamigenic and yet we have no clear understanding of how significant such events are in the tsunami hazard arena. The recognition of ABLSs however, now offers scientists the opportunity to establish a first order database of potential local and regional tsunamigenic sources associated with the sector/flank collapses of island edifices. We illustrate the talk with examples of arcuate 'bight-like' structures and associated tsunamis in atoll and atoll-like environments. The implications for our understanding of

  12. California Real Time Network: Test Bed for Mitigation of Geological and Atmospheric Hazards within a Modern Data Portal Environment

    NASA Astrophysics Data System (ADS)

    Bock, Y.

    2008-12-01

    Global geological and atmospheric hazards such as earthquakes, volcanoes, tsunamis, landslides, storms and floods continue to wreak havoc on the lives of millions of people worldwide. High precision geodetic observations of surface displacements and atmospheric water vapor are indispensable tools in studying natural hazards along side more traditional seismic and atmospheric measurements. The rapid proliferation of dense in situ GPS networks for crustal deformation studies such as the Earthscope Plate Boundary Observatory provides us with unique data sets. However, the full information content and timeliness of these observations have not been fully developed, in particular at higher frequencies than traditional daily continuous GPS position time series. Nor have scientists taken full advantage of the complementary nature of space-based and in situ observations in forecasting, assessing and mitigating natural hazards. The primary operating mode for in situ GPS networks has been daily download of GPS data sampled at a 15-30 s sample rate, and the production of daily position time series or hourly tropospheric zenith delay estimates. However, as continuous GPS networks are being upgraded to provide even higher-frequency information approaching the sampling rates (1-50 Hz) of modern GPS receivers, and with a latency of less than 1 second, new data processing approaches are being developed. Low-latency high-rate measurements are being applied to earthquake source modeling, early warning of natural hazards (geological and atmospheric), and structural monitoring. Since 2002, more than 80 CGPS stations in southern California have been upgraded to a 1 Hz sample rate, including stations from the SCIGN and PBO networks, and several large earthquakes have been recorded. The upgraded stations comprise the California Real Time Network (CRTN - http://sopac.ucsd.edu/projects/realtime/). This prototype network provides continuous 1 Hz (upgradable to 10 Hz at some stations) GPS

  13. The subsurface cross section resistivity using magnetotelluric method in Pelabuhan Ratu area, West Java, implication for geological hazard mitigation

    NASA Astrophysics Data System (ADS)

    Gaffar, Eddy Z.

    2016-02-01

    Pelabuhan Ratu area is located on the south coast of West Java. Pelabuhan Ratu area's rapid development and population growth were partly stimulated by the Indonesian Government Regulation No. 66 the year 1998 that made Pelabuhan Ratu the capital city of the district of Sukabumi. Because of this fact, it is very important to create a geological hazard mitigation plan for the area. Pelabuhan Ratu were passed by two major faults: Cimandiri fault in the western and Citarik fault in the eastern. Cimandiri fault starts from the upstream of Cimandiri River to the southern of Sukabumi and Cianjur city. While Citarik fault starts from the Citarik River until the Salak Mountain. These two faults needs to be observed closely as they are prone to cause earthquake in the area. To mitigate earthquake that is estimated will occur at Cimandiri fault or the Citarik fault, the Research Center for Geotechnology LIPI conducted research using Magnetotelluric (MT) method with artificial Phoenix MT tool to determine the cross-section resistivity of the Pelabuhan Ratu and the surrounding area. Measurements were taken at 40 points along the highway towards Jampang to Pelabuhan Ratu, and to Bandung towards Cibadak with a distance of less than 500 meters between the measuring points. Measurement results using this tool will generate AMT cross-section resistivity to a depth of 1500 meters below the surface. Cross-section resistivity measurement results showed that there was a layer of rock with about 10 Ohm-m to 1000 Ohm-m resistivity. Rocks with resistivity of 10 Ohm-m was interpreted as conductive rocks that were loose or sandstone containing water. If an earthquake to occur in this area, it will lead to a strong movement and liquefaction that will destroy buildings and potentially cause casualties in this area.

  14. Volcanic Ash Image Products from MODIS for Aviation Safety and Natural Hazard Mitigation

    NASA Astrophysics Data System (ADS)

    Stephens, G.; Ellrod, G. P.; Im, J.

    2003-12-01

    Multi-spectral volcanic ash image products have been developed using Moderate Resolution Imaging Spectroradiometer (MODIS) data from the NASA Terra spacecraft (Ellrod and Im 2003). Efforts are now underway to integrate these new products into the MODIS Data Retrieval System at NESDIS, for use in the operational Hazard Mapping System (HMS). The images will be used at the Washington Volcanic Ash Advisory Center (W-VAAC) in the issuance of volcanic ash advisory statements to aircraft. In addition, the images will be made available to users in the global volcano and emergency management community via the World Wide Web. During the development process, good results (high detection rate with low ­false alarms­") were obtained from a tri-spectral combination of MODIS Infrared (IR) bands centered near 8.6, 11.0 and 12.0 ŸYm (Bands 29, 31, and 32). Optimum Red-Green-Blue false color composite images were developed to provide information on ash cloud location, as well as cloud phase and surface characteristics, to aid in interpretation both day and night. Information on volcanic ash derived from the tri-spectral product was displayed using the red color gun. This information was combined with visible (0.6 ŸYm) and near-IR (1.6 ŸYm) data for green and blue, respectively, during daylight periods. At night, the 8.6 ­V 11.0 ŸYm combination and 11.0 ŸYm band were used for the green and blue colors in the RGB product. Currently, raw MODIS data in five minute ­granules­" are processed for the following regions: (1) southern Alaska, (2) Mexico, Central America and the Caribbean, and (3) northern Andes region of South America. Image products are converted to Geo-spatial Information System (GIS) compatible formats for use in the HMS, and to Man-Computer Interactive Data Access System (McIDAS) ­Area File­" format for use in currently configured W-VAAC display systems. The installation of a high speed, fiber optic line from NASA Goddard Space Flight Center to the World

  15. The respiratory health hazards of volcanic ash: a review for volcanic risk mitigation

    NASA Astrophysics Data System (ADS)

    Horwell, Claire J.; Baxter, Peter J.

    2006-07-01

    Studies of the respiratory health effects of different types of volcanic ash have been undertaken only in the last 40 years, and mostly since the eruption of Mt. St. Helens in 1980. This review of all published clinical, epidemiological and toxicological studies, and other work known to the authors up to and including 2005, highlights the sparseness of studies on acute health effects after eruptions and the complexity of evaluating the long-term health risk (silicosis, non-specific pneumoconiosis and chronic obstructive pulmonary disease) in populations from prolonged exposure to ash due to persistent eruptive activity. The acute and chronic health effects of volcanic ash depend upon particle size (particularly the proportion of respirable-sized material), mineralogical composition (including the crystalline silica content) and the physico-chemical properties of the surfaces of the ash particles, all of which vary between volcanoes and even eruptions of the same volcano, but adequate information on these key characteristics is not reported for most eruptions. The incidence of acute respiratory symptoms (e.g. asthma, bronchitis) varies greatly after ashfalls, from very few, if any, reported cases to population outbreaks of asthma. The studies are inadequate for excluding increases in acute respiratory mortality after eruptions. Individuals with pre-existing lung disease, including asthma, can be at increased risk of their symptoms being exacerbated after falls of fine ash. A comprehensive risk assessment, including toxicological studies, to determine the long-term risk of silicosis from chronic exposure to volcanic ash, has been undertaken only in the eruptions of Mt. St. Helens (1980), USA, and Soufrière Hills, Montserrat (1995 onwards). In the Soufrière Hills eruption, a long-term silicosis hazard has been identified and sufficient exposure and toxicological information obtained to make a probabilistic risk assessment for the development of silicosis in outdoor

  16. A probabilistic framework for hazard assessment and mitigation of induced seismicity related to deep geothermal systems

    NASA Astrophysics Data System (ADS)

    Wiemer, S.; Bachmann, C. E.; Allmann, B.; Giardini, D.; Woessner, J.; Catalli, F.; Mena Carbrera, B.

    2011-12-01

    Slip on tectonic faults take place over a wide range of spatial and temporal scales as earthquakes, continuous aseismic creep, or transient creep events. Shallow creep events on continental strike-slip faults can occur spontaneously, or are coupled with earthquake afterslip, or are triggered by nearby earthquakes. Despite more than five decades of observations, the mechanism of shallow creep events and their implications for seismic hazard are still not fully understood. To understand the mechanism of creep events, we developed a physics-based numerical model to simulate shallow creep events on a strike-slip fault with rate-and-state frictional properties (Wei et al., 2013). We show that the widely used synoptic model (Scholz, 1998) cannot reproduce both rapid afterslip and frequent creep events as observed on the Superstition Hills fault in the Salton Trough after the 1987 Mw 6.6 earthquake. Rather, an unstable layer embedded in the shallow stable zone is required to match the geodetic observations of the creep behavior. Using the strike-slip fault model, we studied the triggering process of creep events, by either static or dynamic, or combined stress perturbations induced on the fault by nearby earthquakes. Preliminary results show that static stress perturbations in the effective normal stress on a system with spontaneous creep events can advance or delay creep events. The magnitude and timing of perturbations determines the clock change of creep events. The magnitude and interval of creep events changes permanently after static stress perturbation. Dynamic stress perturbations in effective normal stress can advance the timings of creep events when the perturbation temporally decreases the effective normal stress. A threshold exists for instantaneous triggering. The size of triggered slip increases as the dynamic perturbation increases in the direction of less normal stress. The system returns to pre-perturbation state after a long period of no slip. The length

  17. Scientific Animations for Tsunami Hazard Mitigation: The Pacific Tsunami Warning Center's YouTube Channel

    NASA Astrophysics Data System (ADS)

    Becker, N. C.; Wang, D.; Shiro, B.; Ward, B.

    2013-12-01

    Outreach and education save lives, and the Pacific Tsunami Warning Center (PTWC) has a new tool--a YouTube Channel--to advance its mission to protect lives and property from dangerous tsunamis. Such outreach and education is critical for coastal populations nearest an earthquake since they may not get an official warning before a tsunami reaches them and will need to know what to do when they feel strong shaking. Those who live far enough away to receive useful official warnings and react to them, however, can also benefit from PTWC's education and outreach efforts. They can better understand a tsunami warning message when they receive one, can better understand the danger facing them, and can better anticipate how events will unfold while the warning is in effect. The same holds true for emergency managers, who have the authority to evacuate the public they serve, and for the news media, critical partners in disseminating tsunami hazard information. PTWC's YouTube channel supplements its formal outreach and education efforts by making its computer animations available 24/7 to anyone with an Internet connection. Though the YouTube channel is only a month old (as of August 2013), it should rapidly develop a large global audience since similar videos on PTWC's Facebook page have reached over 70,000 viewers during organized media events, while PTWC's official web page has received tens of millions of hits during damaging tsunamis. These animations are not mere cartoons but use scientific data and calculations to render graphical depictions of real-world phenomena as accurately as possible. This practice holds true whether the animation is a simple comparison of historic earthquake magnitudes or a complex simulation cycling through thousands of high-resolution data grids to render tsunami waves propagating across an entire ocean basin. PTWC's animations fall into two broad categories. The first group illustrates concepts about seismology and how it is critical to

  18. Towards the Establishment of the Hawaii Integrated Seismic Network for Tsunami, Seismic, and Volcanic Hazard Mitigation

    NASA Astrophysics Data System (ADS)

    Shiro, B. R.; Koyanagi, S. K.; Okubo, P. G.; Wolfe, C. J.

    2006-12-01

    The NOAA Pacific Tsunami Warning Center (PTWC) located in `Ewa Beach, Hawai`i, provides warnings to the State of Hawai`i regarding locally generated tsunamis. The USGS Hawaiian Volcano Observatory (HVO) located in Hawai`i National Park monitors earthquakes on the island of Hawai`i in order to characterize volcanic and earthquake activity and hazards. In support of these missions, PTWC and HVO operate seismic networks for rapidly detecting and evaluating earthquakes for their tsunamigenic potential and volcanic risk, respectively. These existing seismic networks are comprised mostly of short-period vertical seismometers with analog data collection and transmission based on decades-old technology. The USGS National Strong Motion Program (NSMP) operates 31 accelerometers throughout the state, but none currently transmit their data in real time. As a result of enhancements to the U.S. Tsunami Program in the wake of the December 2004 Indian Ocean tsunami disaster, PTWC is upgrading and expanding its seismic network using digital real-time telemetry from broadband and strong motion accelerometer stations. Through new cooperative agreements with partners including the USGS (HVO and NSMP), IRIS, University of Hawai`i, and Germany's GEOFON, the enhanced seismic network has been designed to ensure maximum benefit to all stakeholders. The Hawaii Integrated Seismic Network (HISN) will provide a statewide resource for tsunami, earthquake, and volcanic warnings. Furthermore, because all data will be archived by the IRIS Data Management Center (DMC), the HISN will become a research resource to greater scientific community. The performance target for the enhanced HISN is for PTWC to provide initial local tsunami warnings within 90 seconds of the earthquake origin time. This will be accomplished using real-time digital data transmission over redundant paths and by implementing contemporary analysis algorithms in real-time and near-real-time. Earthquake location, depth, and

  19. Public Policy Issues Associated with Tsunami Hazard Mitigation, Response and Recovery: Transferable Lessons from Recent Global Disasters

    NASA Astrophysics Data System (ADS)

    Johnson, L.

    2014-12-01

    Since 2004, a sequence of devastating tsunamis has taken the lives of more than 300,000 people worldwide. The path of destruction left by each is typically measured in hundreds of meters to a few kilometers and its breadth can extend for hundreds even thousands of kilometers, crossing towns and countries and even traversing an entire oceanic basin. Tsunami disasters in Indonesia, Chile, Japan and elsewhere have also shown that the almost binary nature of tsunami impacts can present some unique risk reduction, response, recovery and rebuilding challenges, with transferable lessons to other tsunami vulnerable coastal communities around the world. In particular, the trauma can motivate survivors to relocate homes, jobs, and even whole communities to safer ground, sometimes at tremendous social and financial costs. For governments, the level of concentrated devastation usually exceeds the local capacity to respond and thus requires complex inter-governmental arrangements with regional, national and even international partners to support the recovery of impacted communities, infrastructure and economies. Two parallel projects underway in California since 2011—the SAFRR (Science Application for Risk Reduction) tsunami scenario project and the California Tsunami Policy Working Group (CTPWG)—have worked to digest key lessons from recent tsunami disasters, with an emphasis on identifying gaps to be addressed in the current state and federal policy framework to enhance tsunami risk awareness, hazard mitigation, and response and recovery planning ahead of disaster and also improve post-disaster implementation practices following a future California or U.S. tsunami event.

  20. Mitigating hazards to aircraft from drifting volcanic clouds by comparing and combining IR satellite data with forward transport models

    NASA Astrophysics Data System (ADS)

    Matiella Novak, M. Alexandra

    Volcanic ash clouds in the upper atmosphere (>10km) present a significant hazard to the aviation community and in some cases cause near-disastrous situations for aircraft that inadvertently encounter them. The two most commonly used techniques for mitigating hazards to aircraft from drifting volcanic clouds are (1) using data from satellite observations and (2) the forecasting of dispersion and trajectories with numerical models. This dissertation aims to aid in the mitigation of this hazard by using Moderate Infrared Resolution Spectroradiometer (MODIS) and Advanced Very High Resolution Radiometer (AVHRR) infrared (IR) satellite data to quantitatively analyze and constrain the uncertainties in the PUFF volcanic ash transport model. Furthermore, this dissertation has experimented with the viability of combining IR data with the PUFF model to increase the model's reliability. Comparing IR satellite data with forward transport models provides valuable information concerning the uncertainty and sensitivity of the transport models. A study analyzing the viability of combining satellite-based information with the PUFF model was also done. Factors controlling the cloud-shape evolution, such as the horizontal dispersion coefficient, vertical distribution of particles, the height of the cloud, and the location of the cloud were all updated based on observations from satellite data in an attempt to increase the reliability of the simulations. Comparing center of mass locations--calculated from satellite data--to HYSPLIT trajectory simulations provides insight into the vertical distribution of the cloud. A case study of the May 10, 2003 Anatahan Volcano eruption was undertaken to assess methods of calculating errors in PUFF simulations with respect to the transport and dispersion of the erupted cloud. An analysis of the factors controlling the cloud-shape evolution of the cloud in the model was also completed and compared to the shape evolution of the cloud observed in the

  1. Probing Aircraft Flight Test Hazard Mitigation for the Alternative Fuel Effects on Contrails and Cruise Emissions (ACCESS) Research Team . Volume 2; Appendices

    NASA Technical Reports Server (NTRS)

    Kelly, Michael J.

    2013-01-01

    The Alternative Fuel Effects on Contrails and Cruise Emissions (ACCESS) Project Integration Manager requested in July 2012 that the NASA Engineering and Safety Center (NESC) form a team to independently assess aircraft structural failure hazards associated with the ACCESS experiment and to identify potential flight test hazard mitigations to ensure flight safety. The ACCESS Project Integration Manager subsequently requested that the assessment scope be focused predominantly on structural failure risks to the aircraft empennage (horizontal and vertical tail). This report contains the Appendices to Volume I.

  2. Advances in Remote Sensing Approaches for Hazard Mitigation and Natural Resource Protection in Pacific Latin America: A Workshop for Advanced Graduate Students, Post- Doctoral Researchers, and Junior Faculty

    NASA Astrophysics Data System (ADS)

    Gierke, J. S.; Rose, W. I.; Waite, G. P.; Palma, J. L.; Gross, E. L.

    2008-12-01

    Though much of the developing world has the potential to gain significantly from remote sensing techniques in terms of public health and safety, they often lack resources for advancing the development and practice of remote sensing. All countries share a mutual interest in furthering remote sensing capabilities for natural hazard mitigation and resource development. With National Science Foundation support from the Partnerships in International Research and Education program, we are developing a new educational system of applied research and engineering for advancing collaborative linkages among agencies and institutions in Pacific Latin American countries (to date: Guatemala, El Salvador, Nicaragua, Costa Rica, Panama, and Ecuador) in the development of remote sensing tools for hazard mitigation and water resources management. The project aims to prepare students for careers in science and engineering through their efforts to solve suites of problems needing creative solutions: collaboration with foreign agencies; living abroad immersed in different cultures; and adapting their academic training to contend with potentially difficult field conditions and limited resources. The ultimate goal of integrating research with education is to encourage cross-disciplinary, creative, and critical thinking in problem solving and foster the ability to deal with uncertainty in analyzing problems and designing appropriate solutions. In addition to traditional approaches for graduate and undergraduate research, we have built new educational systems of applied research and engineering: (1) the Peace Corp/Master's International program in Natural Hazards which features a 2-year field assignment during service in the U.S. Peace Corps, (2) the Michigan Tech Enterprise program for undergraduates, which gives teams of students from different disciplines the opportunity to work for three years in a business-like setting to solve real-world problems, and (3) a unique university exchange

  3. AMENDING SOILS WITH PHOSPHATE AS MEANS TO MITIGATE SOIL LEAD HAZARD: A CRITICAL REVIEW OF THE STATE OF THE SCIENCE

    EPA Science Inventory

    Ingested soil and surface dust may be important contributors to elevated blood lead (Pb) levels in children exposed to Pb contaminated environments. Mitigation strategies have typically focused on excavation and removal of the contaminated soil. However, this is not always feas...

  4. Hawaiian cultural influences on support for lava flow hazard mitigation measures during the January 1960 eruption of Kīlauea volcano, Kapoho, Hawai‘i

    NASA Astrophysics Data System (ADS)

    Gregg, C. E.; Houghton, B. F.; Paton, D.; Swanson, D. A.; Lachman, R.; Bonk, W. J.

    2008-05-01

    In 1960, Kīlauea volcano in Hawaii erupted, destroying most of the village of Kapoho and forcing evacuation of its approximately 300 residents. A large and unprecedented social science survey was undertaken during the eruption to develop an understanding of human behavior, beliefs, and coping strategies among the adult evacuees ( n = 160). Identical studies were also performed in three control towns located at varying distances from the eruption site ( n = 478). During these studies data were collected that characterized ethnic grouping and attitudes toward Hawaiian cultural issues such as belief in Pele and two lava flow mitigation measures—use of barriers and bombs to influence the flow of lava, but the data were never published. Using these forgotten data, we examined the relationship between Hawaiian cultural issues and attitudes toward the use of barriers and bombs as mitigation strategies to protect Kapoho. On average, 72% of respondents favored the construction of earthen barriers to hold back or divert lava and protect Kapoho, but far fewer agreed with the military's use of bombs (14%) to protect Kapoho. In contrast, about one-third of respondents conditionally agreed with the use of bombs. It is suggested that local participation in the bombing strategy may explain the increased conditional acceptance of bombs as a mitigation tool, although this can not be conclusively demonstrated. Belief in Pele and being of Hawaiian ethnicity did not reduce support for the use of barriers, but did reduce support for bombs in both bombing scenarios. The disparity in levels of acceptance of barriers versus bombing and of one bombing strategy versus another suggests that historically public attitudes toward lava flow hazard mitigation strategies were complex. A modern comparative study is needed before the next damaging eruption to inform debates and decisions about whether or not to interfere with the flow of lava. Recent changes in the current eruption of K

  5. Integrated Data Products to Forecast, Mitigate, and Educate for Natural Hazard Events Based on Recent and Historical Observations

    NASA Astrophysics Data System (ADS)

    McCullough, H. L.; Dunbar, P. K.; Varner, J. D.

    2011-12-01

    Immediately following a damaging or fatal natural hazard event there is interest to access authoritative data and information. The National Geophysical Data Center (NGDC) maintains and archives a comprehensive collection of natural hazards data. The NGDC global historic event database includes all tsunami events, regardless of intensity, as well as earthquakes and volcanic eruptions that caused fatalities, moderate damage, or generated a tsunami. Examining the past record provides clues to what might happen in the future. NGDC also archives tide gauge data from stations operated by the NOAA/NOS Center for Operational Oceanographic Products and Services and the NOAA Tsunami Warning Centers. In addition to the tide gauge data, NGDC preserves deep-ocean water-level, 15-second sampled data as collected by the Deep-ocean Assessment and Reporting of Tsunami (DART) buoys. Water-level data provide evidence of sea-level fluctuation and possible inundation events. NGDC houses an extensive collection of geologic hazards photographs available online as digital images. Visual media provide invaluable pre- and post-event data for natural hazards. Images can be used to illustrate inundation and possible damage or effects. These images are organized by event or hazard type (earthquake, volcano, tsunami, landslide, etc.), along with description and location. They may be viewed via interactive online maps and are integrated with historic event details. The planning required to achieve collection and dissemination of hazard event data is extensive. After a damaging or fatal event, NGDC begins to collect and integrate data and information from many people and organizations into the hazards databases. Sources of data include the U.S. NOAA Tsunami Warning Centers, the U.S. Geological Survey, the U.S. NOAA National Data Buoy Center, the UNESCO Intergovernmental Oceanographic Commission (IOC), Smithsonian Institution's Global Volcanism Program, news organizations, etc. NGDC then works to

  6. Mitigation of hazards from future lahars from Mount Merapi in the Krasak River channel near Yogyakarta, central Java

    USGS Publications Warehouse

    Ege, John R.; Sutikno

    1983-01-01

    Procedures for reducing hazards from future lahars and debris flows in the Krasak River channel near Yogyakarta, Central Java, Indonesia, include (1) determining the history of the location, size, and effects of previous lahars and debris flows, and (2) decreasing flow velocities. The first may be accomplished by geologic field mapping along with acquiring information by interviewing local residents, and the second by increasing the cross sectional area of the river channel and constructing barriers in the flow path.

  7. Source-to-sink sediment transfers, environmental engineering and hazard mitigation in the steep Var River catchment, French Riviera, southeastern France

    NASA Astrophysics Data System (ADS)

    Anthony, Edward J.; Julian, Maurice

    1999-12-01

    Steep coastal margins are potentially subject to mass wasting processes involving notable landslide activity and sediment evacuation downstream by steep-gradient streams. Sediment transfer from short source-to-sink segments, coupled with mountain hydrological regimes, regulate patterns of river channel aggradation and coastal sediment supply in such geomorphic settings. On the steep French Riviera margin, sediment transfers from existing landslides or from various minor mass wasting processes to stream channels may result following bursts of heavy, concentrated rainfall. High-magnitude flooding and massive sediment transport downstream are generally related to unpredictable extreme rainfalls. Both mass movements and channel sediment storage pose serious hazards to downvalley settlements and infrastructure. A consideration of channel sediment storage patterns in the Var River catchment, the most important catchment in this area, highlights two important shortcomings relative to environmental engineering and hazard mitigation practices. In the first place, the appreciation of geomorphic processes is rather poor. This is illustrated by the undersized nature of engineering works constructed to mitigate hazards in the upstream bedload-dominated channels, and by the unforeseen effects that ten rock dams, constructed in the early 1970s, have had on downstream and coastal sediment storage and on sediment dispersal patterns and, consequently, valley flooding. Secondly, planners and environmental engineers have lacked foresight in valley and coastal management issues on this steep setting, notably as regards the reclaimed areas of the lower Var channel and delta liable to flooding. Urbanization and transport and environmental engineering works have progressively affected patterns of storage and transport of fine-grained sediments in the lower Var channel and delta. Meanwhile the problems raised by these changes have not been adequately addressed in terms of scientific

  8. 3D modelling of Mt. Talaga Bodas Crater (Indonesia) by using terrestrial laser scanner for volcano hazard mitigation

    NASA Astrophysics Data System (ADS)

    Gumilar, Irwan; Abidin, Hasanuddin Z.; Putra, Andreas D.; Haerani, Nia

    2015-04-01

    Indonesia is a country with many volcanoes. Each volcano in Indonesia typically has its own crater characteristics. One of them is the Mt.Talaga Bodas, located in Garut, West Java. Researches regarding the crater characteristics are necessary for volcanic disaster mitigation process. One of them is the modelling of the shape of the crater. One of the methods that can be used to model the volcanic crater is using Terrestrial Laser Scanner (TLS). This research aims to create a 3 dimensional (3D) model of the crater of the Mt. Talaga Bodas, that hopefully can be utilized for volcanic disaster mitigation. The methodology used in this research is by obtaining the scanning data using TLS and GPS measurements to obtain the coordinates of the reference points. The data processing methods consist of several steps, namely target to target registration, filterization, georeference, meshing point cloud, surface making, drawing, and 3D modelling. These steps were done using the Cyclone 7 software, and also using 3DS MAX for 3D modelling. The result of this data processing is a 3D model of the crater of the Mt. Talaga Bodas which is similar with the real shape. The calculation result shows that the height of the crater is 62.522 m, the diameter of the crater is 467.231 m, and the total area is 2961054.652 m2. The main obstacle in this research is the dense vegetation which becomes the noise and affects the crater model.

  9. Natural hazards and motivation for mitigation behavior: people cannot predict the affect evoked by a severe flood.

    PubMed

    Siegrist, Michael; Gutscher, Heinz

    2008-06-01

    Past research indicates that personal flood experience is an important factor in motivating mitigation behavior. It is not fully clear, however, why such experience is so important. This study tested the hypothesis that people without flooding experience underestimate the negative affect evoked by such an event. People who were affected by a severe recent flood disaster were compared with people who were not affected, but who also lived in flood-prone areas. Face-to-face interviews with open and closed questions were conducted (n= 201). Results suggest that people without flood experience envisaged the consequences of a flood differently from people who had actually experienced severe losses due to a flood. People who were not affected strongly underestimated the negative affect associated with a flood. Based on the results, it can be concluded that risk communication must not focus solely on technical aspects; in order to trigger motivation for mitigation behavior, successful communication must also help people to envisage the negative emotional consequences of natural disasters. PMID:18643832

  10. Human uses of forested watersheds and riparian corridors: hazard mitigation as an ecosystem service, with examples from Panama, Puerto Rico, and Venezuela

    NASA Astrophysics Data System (ADS)

    Larsen, M. C.

    2015-12-01

    Humans have long favored settlement along rivers for access to water supply for drinking and agriculture, for transport corridors, and for food sources. Additionally, settlement in or near montane forests include benefits such as food sources, wood supply, esthetic values, and high quality water resources derived from watersheds where upstream human disturbance and environmental degradation is generally reduced. However, the advantages afforded by these riparian and montane settings pose episodic risks for communities located there as floods, landslides, and wildfires cause loss of life, destroy infrastructure, and damage or destroy crops. A basic understanding of flood probability and magnitude as well as hillslope stability by residents in these environments can mitigate these risks. Early humans presumably developed some degree of knowledge about these risks by means of their long periods of occupation in these environments and their observations of seasonal and storm rainfall patterns and river discharge, which became more refined as agriculture developed over the past 10,000 years. Modern global urbanization, particularly in regions of rapid economic growth, has resulted in much of this "organic" knowledge being lost, as rural populations move into megacities, many of which encroach on floodplains and mountain fronts. Moreover, the most likely occupants of these hazardous locations are often economically constrained, increasing their vulnerabity. Effective stewardship of river floodplains and upstream montane forests yields a key ecosystem service, which in addition to the well-known services, ie. water, hydroelectric energy, etc., provides a risk mitigation service, by reducing hazard and vulnerability. Puerto Rico, Panama, and Venezuela illustrate a range of practices and results, providing useful examples for planners and land use managers.

  11. Hawaiian cultural influences on support for lava flow hazard mitigation measures during the January 1960 eruption of Kīlauea volcano, Kapoho, Hawai‘i

    USGS Publications Warehouse

    Gregg, Chris E.; Houghton, B.F.; Paton, Douglas; Swanson, D.A.; Lachman, R.; Bonk, W.J.

    2008-01-01

    On average, 72% of respondents favored the construction of earthen barriers to hold back or divert lava and protect Kapoho, but far fewer agreed with the military's use of bombs (14%) to protect Kapoho. In contrast, about one-third of respondents conditionally agreed with the use of bombs. It is suggested that local participation in the bombing strategy may explain the increased conditional acceptance of bombs as a mitigation tool, although this can not be conclusively demonstrated. Belief in Pele and being of Hawaiian ethnicity did not reduce support for the use of barriers, but did reduce support for bombs in both bombing scenarios. The disparity in levels of acceptance of barriers versus bombing and of one bombing strategy versus another suggests that historically public attitudes toward lava flow hazard mitigation strategies were complex. A modern comparative study is needed before the next damaging eruption to inform debates and decisions about whether or not to interfere with the flow of lava. Recent changes in the current eruption of Kīlauea make this a timely topic.

  12. Using fine-scale fuel measurements to assess wildland fuels, potential fire behavior and hazard mitigation treatments in the southeastern USA.

    SciTech Connect

    Ottmar, Roger, D.; Blake, John, I.; Crolly, William, T.

    2012-01-01

    The inherent spatial and temporal heterogeneity of fuelbeds in forests of the southeastern United States may require fine scale fuel measurements for providing reliable fire hazard and fuel treatment effectiveness estimates. In a series of five papers, an intensive, fine scale fuel inventory from the Savanna River Site in the southeastern United States is used for building fuelbeds and mapping fire behavior potential, evaluating fuel treatment options for effectiveness, and providing a comparative analysis of landscape modeled fire behavior using three different data sources including the Fuel Characteristic Classification System, LANDFIRE, and the Southern Wildfire Risk Assessment. The research demonstrates that fine scale fuel measurements associated with fuel inventories repeated over time can be used to assess broad scale wildland fire potential and hazard mitigation treatment effectiveness in the southeastern USA and similar fire prone regions. Additional investigations will be needed to modify and improve these processes and capture the true potential of these fine scale data sets for fire and fuel management planning.

  13. Volcanic sulfur dioxide index and volcanic explosivity index inferred from eruptive volume of volcanoes in Jeju Island, Korea: application to volcanic hazard mitigation

    NASA Astrophysics Data System (ADS)

    Ko, Bokyun; Yun, Sung-Hyo

    2016-04-01

    Jeju Island located in the southwestern part of Korea Peninsula is a volcanic island composed of lavaflows, pyroclasts, and around 450 monogenetic volcanoes. The volcanic activity of the island commenced with phreatomagmatic eruptions under subaqueous condition ca. 1.8-2.0 Ma and lasted until ca. 1,000 year BP. For evaluating volcanic activity of the most recently erupted volcanoes with reported age, volcanic explosivity index (VEI) and volcanic sulfur dioxide index (VSI) of three volcanoes (Ilchulbong tuff cone, Songaksan tuff ring, and Biyangdo scoria cone) are inferred from their eruptive volumes. The quantity of eruptive materials such as tuff, lavaflow, scoria, and so on, is calculated using a model developed in Auckland Volcanic Field which has similar volcanic setting to the island. The eruptive volumes of them are 11,911,534 m3, 24,987,557 m3, and 9,652,025 m3, which correspond to VEI of 3, 3, and 2, respectively. According to the correlation between VEI and VSI, the average quantity of SO2 emission during an eruption with VEI of 3 is 2-8 × 103 kiloton considering that the island was formed under intraplate tectonic setting. Jeju Island was regarded as an extinct volcano, however, several studies have recently reported some volcanic eruption ages within 10,000 year BP owing to the development in age dating technique. Thus, the island is a dormant volcano potentially implying high probability to erupt again in the future. The volcanoes might have explosive eruptions (vulcanian to plinian) with the possibility that SO2 emitted by the eruption reaches stratosphere causing climate change due to backscattering incoming solar radiation, increase in cloud reflectivity, etc. Consequently, recommencement of volcanic eruption in the island is able to result in serious volcanic hazard and this study provides fundamental and important data for volcanic hazard mitigation of East Asia as well as the island. ACKNOWLEDGMENTS: This research was supported by a grant [MPSS

  14. Rockslide susceptibility and hazard assessment for mitigation works design along vertical rocky cliffs: workflow proposal based on a real case-study conducted in Sacco (Campania), Italy

    NASA Astrophysics Data System (ADS)

    Pignalosa, Antonio; Di Crescenzo, Giuseppe; Marino, Ermanno; Terracciano, Rosario; Santo, Antonio

    2015-04-01

    The work here presented concerns a case study in which a complete multidisciplinary workflow has been applied for an extensive assessment of the rockslide susceptibility and hazard in a common scenario such as a vertical and fractured rocky cliffs. The studied area is located in a high-relief zone in Southern Italy (Sacco, Salerno, Campania), characterized by wide vertical rocky cliffs formed by tectonized thick successions of shallow-water limestones. The study concerned the following phases: a) topographic surveying integrating of 3d laser scanning, photogrammetry and GNSS; b) gelogical surveying, characterization of single instabilities and geomecanichal surveying, conducted by geologists rock climbers; c) processing of 3d data and reconstruction of high resolution geometrical models; d) structural and geomechanical analyses; e) data filing in a GIS-based spatial database; f) geo-statistical and spatial analyses and mapping of the whole set of data; g) 3D rockfall analysis; The main goals of the study have been a) to set-up an investigation method to achieve a complete and thorough characterization of the slope stability conditions and b) to provide a detailed base for an accurate definition of the reinforcement and mitigation systems. For this purposes the most up-to-date methods of field surveying, remote sensing, 3d modelling and geospatial data analysis have been integrated in a systematic workflow, accounting of the economic sustainability of the whole project. A novel integrated approach have been applied both fusing deterministic and statistical surveying methods. This approach enabled to deal with the wide extension of the studied area (near to 200.000 m2), without compromising an high accuracy of the results. The deterministic phase, based on a field characterization of single instabilities and their further analyses on 3d models, has been applied for delineating the peculiarity of each single feature. The statistical approach, based on geostructural

  15. Multi-scale earthquake hazard and risk in the Chinese mainland and countermeasures for the preparedness, mitigation, and management: an overview

    NASA Astrophysics Data System (ADS)

    Wu, Z.; Jiang, C.; Ma, T.

    2012-12-01

    Earthquake hazard and risk in the Chinese mainland exhibit multi-scale characteristics. Temporal scales from centuries to months, spatial scales from the whole mainland to specific engineering structures, and energy scales from great disastrous earthquakes to small earthquakes causing social disturbance and economic loss, feature the complexity of earthquake disasters. Coping with such complex challenge, several research and application projects have been undertaken since recent years. Lessons and experiences of the 2008 Wenchuan earthquake contributed much to the launching and conducting of these projects. Understandings of the scientific problems and technical approaches taken in the mainstream studies in the Chinese mainland have no significant difference from those in the international scientific communities, albeit using of some of the terminologies have "cultural differences" - for instance, in the China Earthquake Administration (CEA), the terminology "earthquake forecast/prediction (study)" is generally used in a much broader sense, mainly indicating time-dependent seismic hazard at different spatio-temporal scales. Several scientific products have been produced serving the society in different forms. These scientific products have unique academic merits due to the long-term persistence feature and the forward forecast nature, which are all essential for the evaluation of the technical performance and the falsification of the scientific ideas. On the other hand, using the language of the "actor network theory (ANT)" in science studies (or the sociology of science), at present, the hierarchical "actors' network", making the science transformed to the actions of the public and government for the preparedness, mitigation, and management of multi-scale earthquake disasters, is still in need of careful construction and improvement.

  16. Is research on soil erosion hazard and mitigation in the Global South still needed? (Alexander von Humbold Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Poesen, Jean

    2016-04-01

    Soil erosion represents a geomorphological and geological hazard that may cause environmental damage (land degradation), property damage, loss of livelihoods and services as well as social and economic disruption. Erosion not only lowers the quality of our soils on site, resulting in a drastic reduction of their ecosystem functions that play a vital role in daily life, but causes also significant sediment-related problems off site. To curb soil erosion problems, a range of soil conservation techniques and strategies have been designed and are being applied. Worldwide, ca. 62 000 research papers on soil erosion and 116 000 on soil conservation have been published (Web of Science, Dec. 2015). The number of such papers dealing with the Global South represents less than 20 % of all papers, despite the fact that many regions in this part of the world face significant soil erosion problems, aggravated by a rapidly growing population and major environmental changes. Given the large number of research papers on this topic, one might therefore conclude that we now know almost everything about the various soil erosion processes and rates, their factors and consequences as well as their control so that little new knowledge can still be added to the vast amount of available information. We refute this conclusion by pointing to some major research gaps that still need to be addressed if we want to use our soils in a more sustainable way. More specifically the following topics need more research attention: 1) improved understanding of both natural and anthropogenic soil erosion processes and their interactions, 2) scaling up soil erosion processes and rates in space and time, and 3) innovative techniques and strategies to prevent or reduce erosion rates. This will be illustrated with case studies from the Global South. If future research focuses on these research gaps, we will 1) better understand processes and their interactions operating at a range of spatial and temporal

  17. Detecting Slow Deformation Signals Preceding Dynamic Failure: A New Strategy For The Mitigation Of Natural Hazards (SAFER)

    NASA Astrophysics Data System (ADS)

    Vinciguerra, Sergio; Colombero, Chiara; Comina, Cesare; Ferrero, Anna Maria; Mandrone, Giuseppe; Umili, Gessica; Fiaschi, Andrea; Saccorotti, Gilberto

    2015-04-01

    Rock slope monitoring is a major aim in territorial risk assessment and mitigation. The high velocity that usually characterizes the failure phase of rock instabilities makes the traditional instruments based on slope deformation measurements not applicable for early warning systems. The use of "site specific" microseismic monitoring systems, with particular reference to potential destabilizing factors, such as rainfalls and temperature changes, can allow to detect pre-failure signals in unstable sectors within the rock mass and to predict the possible acceleration to the failure. We deployed a microseismic monitoring system in October 2013 developed by the University of Turin/Compagnia San Paolo and consisting of a network of 4 triaxial 4.5 Hz seismometers connected to a 12 channel data logger on an unstable patch of the Madonna del Sasso, Italian Western Alps. The initial characterization based on geomechanical and geophysical tests allowed to understand the instability mechanism and to design a 'large aperture' configuration which encompasses the entire unstable rock and can monitor subtle changes of the mechanical properties of the medium. Stability analysis showed that the stability of the slope is due to rock bridges. A continuous recording at 250 Hz sampling frequency (switched in March 2014 to 1 kHz for improving the first arrival time picking and obtain wider frequency content information) and a trigger recording based on a STA/LTA (Short Time Average over Long Time Average) detection algorithm have been used. More than 2000 events with different waveforms, duration and frequency content have been recorded between November 2013 and March 2014. By inspecting the acquired events we identified the key parameters for a reliable distinction among the nature of each signal, i.e. the signal shape in terms of amplitude, duration, kurtosis and the frequency content in terms of range of maximum frequency content, frequency distribution in spectrograms. Four main

  18. Natural Hazard Mitigation thru Water Augmentation Strategies to Provide Additional Snow Pack for Water Supply and Hydropower Generation in Drought Stressed Alps/Mountains

    NASA Astrophysics Data System (ADS)

    Matthews, D.; Brilly, M.

    2009-12-01

    Climate variability and change are clearly stressing water supplies in high alpine regions of the Earth. These recent long-term natural hazards present critical challenges to policy makers and water managers. This paper addresses strategies to use enhanced scientific methods to mitigate the problem. Recent rapid depletions of glaciers and intense droughts throughout the world have created a need to reexamine modern water augmentation technologies for enhancing snow pack in mountainous regions. Today’s reliance on clean efficient hydroelectric power in the Alps and the Rocky Mountains poses a critical need for sustainable snow packs and high elevation water supplies through out the year. Hence, the need to make natural cloud systems more efficient precipitators during the cold season through anthropogenic weather modification techniques. The Bureau of Reclamation, US Department of the Interior, has spent over $39M in research from 1963 to 1990 to develop the scientific basis for snow pack augmentation in the headwaters of the Colorado, American, and Columbia River Basins in the western United States, and through USAID in Morocco in the High Atlas Mountains. This paper presents a brief summary of the research findings and shows that even during drought conditions potential exists for significant, cost-effective enhancement of water supplies. Examples of ground based propane and AgI seeding generators, cloud physics studies of supercooled cloud droplets and ice crystal characteristics that indicate seeding potential will be shown. Hypothetical analyses of seeding potential in 17 western states from Montana to California will be presented based on observed SNOTEL snow water equivalent measurements, and distributed by elevation and observed winter precipitation. Early studies indicated from 5 to 20% increases in snow pack were possible, if winter storm systems were seeded effectively. If this potential was realized in drought conditions observed in 2003, over 1

  19. Decay extent evaluation of wood degraded by a fungal community using NIRS: application for ecological engineering structures used for natural hazard mitigation

    NASA Astrophysics Data System (ADS)

    Baptiste Barré, Jean; Bourrier, Franck; Bertrand, David; Rey, Freddy

    2015-04-01

    .13). This tool improves the evaluation accuracy of wood decay extent in the context of ecological engineering structures used for natural hazard mitigation.

  20. A European effort towards the development of tools for tsunami hazard and risk assessment and mitigation, and tsunami early warning: the EC-funded TRANSFER project

    NASA Astrophysics Data System (ADS)

    Tinti, S.; Armigliato, A.

    2007-12-01

    TRANSFER (acronym for "Tsunami Risk ANd Strategies For the European Region") is a European Community funded project being coordinated by the University of Bologna (Italy) and involving 29 partners in Europe, Turkey and Israel. The main objectives of the project can be summarised as: 1) improving our understanding of tsunami processes in the Euro-Mediterranean region, 2) contributing to the tsunami hazard, vulnerability and risk assessment, 3) identifying the best strategies for reduction of tsunami risk, 4) focussing on the gaps and needs for the implementation of an efficient tsunami early warning system (TEWS) in the Euro-Mediterranean area, which is a high-priority task in consideration that no tsunami early warning system is today in place in the Euro- Mediterranean countries. This paper briefly outlines the results that were obtained in the first year of life of the project and the activities that are currently carried out and planned for the future. In particular, we will emphasize the efforts made so far in the following directions. 1) The improvement of existing numerical models for tsunami generation, propagation and impact, and the possible development of new ones. Existing numerical models have been already applied to selected benchmark problems. At the same time, the project is making an important effort in the development of standards for inundation maps in Europe. 2) The project Consortium has selected seven test areas in different countries facing the Mediterranean Sea and the eastern Atlantic Ocean, where innovative probabilistic and statistical approaches for tsunami hazard assessment, up-to-date and new methods to compute inundation maps are being and will be applied. For the same test areas, tsunami scenario approaches are being developed, vulnerability and risk assessed, prevention and mitigation measures defined also by the advice of end users that are organised in an End User Group. 3) A final key aspect is represented by the dissemination of

  1. Tsunami hazard mitigation in tourism in the tropical and subtropical coastal areas: a case study in the Ryukyu Islands, southwest of Japan

    NASA Astrophysics Data System (ADS)

    Matsumoto, T.

    2006-12-01

    Life and economy (including tourism) in tropical and subtropical coastal areas, such as Okinawa Prefecture (Ryukyu) are highly relying on the sea. The sea has both "gentle" side to give people healing and "dangerous" side to kill people. If we are going to utilise the sea for marine tourism such as constructing resort facilities on the oceanfront, we should know all of the sea, including the both sides of the sea: especially the nature of tsunamis. And also we islanders should issue accurate information about the sea towards outsiders, especially tourists visiting the island. We have already learned a lesson about this issue from the Sumatra tsunami in 2004. However, measures against the tsunami disaster by marine tourism industry are still inadequate in these areas. The goal of tsunami hazard mitigation for those engaged in tourism industry in tropical and subtropical coastal areas should be as follows. (1) Preparedness against tsunamis: "Be aware of the characteristics of tsunamis." "Prepare tsunamis when you feel an earthquake." "Prepare tsunamis when an earthquake takes place somewhere in the world." (2) Maintenance of an exact tsunami hazard map under quantitative analyses of the characteristics of tsunamis: "Flooding areas by tsunami attacks are dependent not only on altitude but also on amplification and inundation due to the seafloor topography near the coast and the onland topographic relief." "Tsunami damage happens repeatedly." (3) Maintenance of a tsunami disaster prevention manual and training after the manual: "Who should do what in case of tsunamis?" "How should the resort hotel employees lead the guests to the safe place?" Such a policy for disaster prevention is discussed in the class of the general education of "Ocean Sciences" in University of the Ryukyus (UR) and summer school for high school students. The students (most of them are from Okinawa Prefecture) consider, discuss and make reports about what to do in case of tsunamis as an islander

  2. Satellite Monitoring of Ash and Sulphur Dioxide for the mitigation of Aviation Hazards: Part II. Validation of satellite-derived Volcanic Sulphur Dioxide Levels.

    NASA Astrophysics Data System (ADS)

    Koukouli, MariLiza; Balis, Dimitris; Dimopoulos, Spiros; Clarisse, Lieven; Carboni, Elisa; Hedelt, Pascal; Spinetti, Claudia; Theys, Nicolas; Tampellini, Lucia; Zehner, Claus

    2014-05-01

    The eruption of the Icelandic volcano Eyjafjallajökull in the spring of 2010 turned the attention of both the public and the scientific community to the susceptibility of the European airspace to the outflows of large volcanic eruptions. The ash-rich plume from Eyjafjallajökull drifted towards Europe and caused major disruptions of European air traffic for several weeks affecting the everyday life of millions of people and with a strong economic impact. This unparalleled situation revealed limitations in the decision making process due to the lack of information on the tolerance to ash of commercial aircraft engines as well as limitations in the ash monitoring and prediction capabilities. The European Space Agency project Satellite Monitoring of Ash and Sulphur Dioxide for the mitigation of Aviation Hazards, was introduced to facilitate the development of an optimal End-to-End System for Volcanic Ash Plume Monitoring and Prediction. This system is based on comprehensive satellite-derived ash plume and sulphur dioxide [SO2] level estimates, as well as a widespread validation using supplementary satellite, aircraft and ground-based measurements. The validation of volcanic SO2 levels extracted from the sensors GOME-2/MetopA and IASI/MetopA are shown here with emphasis on the total column observed right before, during and after the Eyjafjallajökull 2010 eruptions. Co-located ground-based Brewer Spectrophotometer data extracted from the World Ozone and Ultraviolet Radiation Data Centre, WOUDC, were compared to the different satellite estimates. The findings are presented at length, alongside a comprehensive discussion of future scenarios.

  3. Satellite Monitoring of Ash and Sulphur Dioxide for the mitigation of Aviation Hazards: Part I. Validation of satellite-derived Volcanic Ash Levels.

    NASA Astrophysics Data System (ADS)

    Koukouli, MariLiza; Balis, Dimitris; Simopoulos, Spiros; Siomos, Nikos; Clarisse, Lieven; Carboni, Elisa; Wang, Ping; Siddans, Richard; Marenco, Franco; Mona, Lucia; Pappalardo, Gelsomina; Spinetti, Claudia; Theys, Nicolas; Tampellini, Lucia; Zehner, Claus

    2014-05-01

    The 2010 eruption of the Icelandic volcano Eyjafjallajökull attracted the attention of the public and the scientific community to the vulnerability of the European airspace to volcanic eruptions. Major disruptions in European air traffic were observed for several weeks surrounding the two eruptive episodes, which had a strong impact on the everyday life of many Europeans as well as a noticable economic loss of around 2-3 billion Euros in total. The eruptions made obvious that the decision-making bodies were not informed properly and timely about the commercial aircraft capabilities to ash-leaden air, and that the ash monitoring and prediction potential is rather limited. After the Eyjafjallajökull eruptions new guidelines for aviation, changing from zero tolerance to newly established ash threshold values, were introduced. Within this spirit, the European Space Agency project Satellite Monitoring of Ash and Sulphur Dioxide for the mitigation of Aviation Hazards, called for the creation of an optimal End-to-End System for Volcanic Ash Plume Monitoring and Prediction . This system is based on improved and dedicated satellite-derived ash plume and sulphur dioxide level assessments, as well as an extensive validation using auxiliary satellite, aircraft and ground-based measurements. The validation of volcanic ash levels extracted from the sensors GOME-2/MetopA, IASI/MetopA and MODIS/Terra and MODIS/Aqua is presented in this work with emphasis on the ash plume height and ash optical depth levels. Co-located aircraft flights, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation [CALIPSO] soundings and well as European Aerosol Research Lidar Network [EARLINET] measurements were compared to the different satellite estimates for the those two eruptive episodes. The validation results are extremely promising with most satellite sensors performing quite well and within the estimated uncertainties compared to the comparative datasets. The findings are

  4. Mitigating Hazards in School Facilities

    ERIC Educational Resources Information Center

    National Clearinghouse for Educational Facilities, 2008

    2008-01-01

    School safety is a human concern, one that every school and community must take seriously and strive continually to achieve. It is also a legal concern; schools can be held liable if they do not make good-faith efforts to provide a safe and secure school environment. How schools are built and maintained is an integral part of school safety and…

  5. From structural investigation towards multi-parameter early warning systems: geophysical contributions to hazard mitigation at the landslide of Gschliefgraben (Gmunden, Upper Austria)

    NASA Astrophysics Data System (ADS)

    Supper, Robert; Baron, Ivo; Jochum, Birgit; Ita, Anna; Winkler, Edmund; Motschka, Klaus; Moser, Günter

    2010-05-01

    In December 2007 the large landslide system inside the Gschliefgraben valley (located at the east edge of the Traun lake, Upper Austria), known over centuries for its repeated activity, was reactivated. Although a hazard zone map was already set up in 1974, giving rise to a complete prohibition on building, some hundreds of people are living on the alluvial fan close to the lake. Consequently, in frame of the first emergency measures, 55 building had to be evacuated. Within the first phase of mitigation, measures were focused on property and infrastructure protection. Around 220 wells and one deep channel were implemented to drain the sliding mass. Additionally a big quantity of sliding material was removed close to the inhabited areas. Differential GPS and water level measurements were performed to evaluate the effectiveness of the measures, which led to a significant slowdown of the movement. Soon after the suspension of the evacuation several investigations, including drilling, borehole logging and complex geophysical measurements were performed to investigate the structure of the landslide area in order to evaluate maximum hazard scenarios as a basis for planning further measures. Based on these results, measuring techniques for an adapted, future early warning system are currently being tested. This emergency system should enable local stakeholders to take appropriate and timely measures in case of a future event thus lessening the impact of a future disaster significantly. Within this tree-step-plan the application of geophysical methodologies was an integral part of the research and could considerably contribute to the success. Several innovative approaches were implemented which will be described in more detail within the talk. Airborne multi-sensor geophysical surveying is one of new and progressive approaches which can remarkably contribute to effectively analyse triggering processes of large landslides and to better predict their hazard. It was tested in

  6. Development, Implementation, and Pilot Evaluation of a Model-Driven Envelope Protection System to Mitigate the Hazard of In-Flight Ice Contamination on a Twin-Engine Commuter Aircraft

    NASA Technical Reports Server (NTRS)

    Martos, Borja; Ranaudo, Richard; Norton, Billy; Gingras, David; Barnhart, Billy

    2014-01-01

    Fatal loss-of-control accidents have been directly related to in-flight airframe icing. The prototype system presented in this report directly addresses the need for real-time onboard envelope protection in icing conditions. The combination of prior information and real-time aerodynamic parameter estimations are shown to provide sufficient information for determining safe limits of the flight envelope during inflight icing encounters. The Icing Contamination Envelope Protection (ICEPro) system was designed and implemented to identify degradations in airplane performance and flying qualities resulting from ice contamination and provide safe flight-envelope cues to the pilot. The utility of the ICEPro system for mitigating a potentially hazardous icing condition was evaluated by 29 pilots using the NASA Ice Contamination Effects Flight Training Device. Results showed that real time assessment cues were effective in reducing the number of potentially hazardous upset events and in lessening exposure to loss of control following an incipient upset condition. Pilot workload with the added ICEPro displays was not measurably affected, but pilot opinion surveys showed that real time cueing greatly improved their awareness of a hazardous aircraft state. The performance of ICEPro system was further evaluated by various levels of sensor noise and atmospheric turbulence.

  7. 44 CFR 78.5 - Flood Mitigation Plan development.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.5 Flood Mitigation Plan development. A Flood Mitigation Plan will articulate...

  8. 44 CFR 78.5 - Flood Mitigation Plan development.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.5 Flood Mitigation Plan development. A Flood Mitigation Plan will articulate...

  9. 44 CFR 78.5 - Flood Mitigation Plan development.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.5 Flood Mitigation Plan development. A Flood Mitigation Plan will articulate...

  10. Interdisciplinary approach to hydrological hazard mitigation and disaster response and effects of climate change on the occurrence of flood severity in central Alaska

    NASA Astrophysics Data System (ADS)

    Kontar, Y. Y.; Bhatt, U. S.; Lindsey, S. D.; Plumb, E. W.; Thoman, R. L.

    2015-06-01

    In May 2013, a massive ice jam on the Yukon River caused flooding that destroyed much of the infrastructure in the Interior Alaska village of Galena and forced the long-term evacuation of nearly 70% of its residents. This case study compares the communication efforts of the out-of-state emergency response agents with those of the Alaska River Watch program, a state-operated flood preparedness and community outreach initiative. For over 50 years, the River Watch program has been fostering long-lasting, open, and reciprocal communication with flood prone communities, as well as local emergency management and tribal officials. By taking into account cultural, ethnic, and socioeconomic features of rural Alaskan communities, the River Watch program was able to establish and maintain a sense of partnership and reliable communication patterns with communities at risk. As a result, officials and residents in these communities are open to information and guidance from the River Watch during the time of a flood, and thus are poised to take prompt actions. By informing communities of existing ice conditions and flood threats on a regular basis, the River Watch provides effective mitigation efforts in terms of ice jam flood effects reduction. Although other ice jam mitigation attempts had been made throughout US and Alaskan history, the majority proved to be futile and/or cost-ineffective. Galena, along with other rural riverine Alaskan communities, has to rely primarily on disaster response and recovery strategies to withstand the shock of disasters. Significant government funds are spent on these challenging efforts and these expenses might be reduced through an improved understanding of both the physical and climatological principals behind river ice breakup and risk mitigation. This study finds that long term dialogue is critical for effective disaster response and recovery during extreme hydrological events connected to changing climate, timing of river ice breakup, and

  11. Why so many sperm cells? Not only a possible means of mitigating the hazards inherent to human reproduction but also an indicator of an exaptation

    PubMed Central

    Barlow, Peter W.

    2016-01-01

    ABSTRACT Redundancy—the excess of supply over necessity—has recently been proposed for human sperm cells. However, the apparent superfluity of cell numbers may be necessary in order to circumvent the hazards, many of which can be quantified, that can occur during the transition from gametogenesis within the testes to zygosis within the female reproductive tract. Sperm cell numbers are directly related to testicular volume, and it is owing to a redundancy, and the possible exaptation, of this latter parameter that a putative excess of sperm cells is perceived. PMID:27574542

  12. Mitigation and prevention of exertional heat stress in firefighters: a review of cooling strategies for structural firefighting and hazardous materials responders.

    PubMed

    McEntire, Serina J; Suyama, Joe; Hostler, David

    2013-01-01

    Most duties performed by firefighters require the use of personal protective equipment, which inhibits normal thermoregulation during exertion, creating an uncompensable heat stress. Structured rest periods are required to correct the effects of uncompensable heat stress and ensure that firefighter safety is maintained and that operations can be continued until their conclusion. While considerable work has been done to optimize firefighter cooling during fireground operations, there is little consensus on when or how cooling should be deployed. A systematic review of cooling techniques and practices among firefighters and hazardous materials operators was conducted to describe the state of the science and provide recommendations for deploying resources for fireground rehab (i.e., structured rest periods during an incident). Five electronic databases were searched using a selected combination of key words. One hundred forty publications were found in the initial search, with 27 meeting all the inclusion criteria. Two independent reviewers performed a qualitative assessment of each article based on nine specific questions. From the selected literature, the efficacy of multiple cooling strategies was compared during exertion and immediately following exertion under varying environmental conditions. When considering the literature available for cooling firefighters and hazardous materials technicians during emergency incident rehabilitation, widespread use of cooling devices does not appear to be warranted if ambient temperature and humidity approximate room temperature and protective garments can be removed. When emergency incident rehabilitation must be conducted in hot or humid conditions, active cooling devices are needed. Hand/forearm immersion is likely the best modality for cooling during rehab under hot, humid conditions; however, this therapy has a number of limitations. Cooling during work thus far has been limited primarily to cooling vests and liquid- or

  13. Land use /Land Cover Approaches as Instruments of Natural Hazard Mitigation in the Manjira River Sub-Basin, Andhra Pradesh, India.

    NASA Astrophysics Data System (ADS)

    THATIPARTI, V. L.

    2001-05-01

    Rapid industrialization during the last three decades had a profound adverse effect on the land use / land cover practices in , and the water quality, of the Manjira River sub-basin, Medak district, Andhra Pradesh, India. As water interacts with all other components of the environment, such as geology, soils, weather and climate, flora and fauna, the pollution of water has affected both biophysical and socioeconomic and cultural environments. The area of study is the catchment of Nakkavagu (stream) in the Manjira river system, which lies between long. 78 05' - 78 25' E., and the lat. 17 25'- and 17 45' N., and covers an area of 734 sq.km. Remote Sensing and GIS techniques have been employed to identify and quantify measures for mitigating the adverse impacts of the industrialization and for being prepared for extreme weather events. The methodology employed in the present study involves the generation of various thematic layers like slope, hydrogeomorphology and land use / land cover maps using Land sat MSS, IRS IA LISS II and IRS ID LISS III and PAN merged data in EASI / PACE 6.3 ver. Platform. By overlaying all the above thematic maps, action plan maps are generated to device various ways and means of rolling back the degradation of the environment, and to develop low -cost, people - participatory strategies ( such as, agricultural practices, use of water bodies and land under urbanization, structural and non-structural, particularly vegetation methods, etc.) of reducing the vulnerability of the population for extreme weather events.

  14. Land Use/Land Cover Approaches as Instruments of Natural Hazard Mitigation in the Manjira River Sub-Basin, Andhra Pradesh, India

    NASA Astrophysics Data System (ADS)

    Lakshmi, T. V.; Reddy, M. A.; Anjaneyulu, Y.

    2001-05-01

    Rapid industrialization during the last three decades had a profound adverse effect on the land use/land cover practices in, and the water quality, of the Manjira River sub-basin, Medak District, Andhra Pradesh, India. As water interacts with all other components of the environment, such as, geology, soils, weather and climate, flora and fauna, the pollution of water has affected both biophysical and socioeconomic and cultural environments. The area of study is the catchment of Nakkavagu (stream) in the Manjira river system, which lies between long. 78 05' - 78 25' E., and the lat. 17 25' - 17 45' N., and covers an area of 734 sq. km. Remote sensing and GIS techniques have been employed to identify and quantify measures for mitigating the adverse impacts of the industrialization and for being prepared for extreme weather events. The methodology employed in the present study involves the generation of various thematic layers like slope, hydrogeomorphology and land use / land cover maps using Landsat MSS, IRS 1A LISS II and IRS 1D LISS III and PAN merged data in EASI/PACE 6.3 ver. platform. By overlaying all the above thematic maps, action plan maps are generated to devise various ways and means of rolling back the degradation of the environment, and to develop low-cost, people-participatory strategies (such as, agricultural practices, use of water bodies and land under urbanization, structural and non-structural, particularly vegetation methods, etc.) of reducing the vulnerability of the population for extreme weather events.

  15. 44 CFR 78.6 - Flood Mitigation Plan approval process.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.6 Flood Mitigation Plan approval process. The State POC will forward all...

  16. 44 CFR 78.6 - Flood Mitigation Plan approval process.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Flood Mitigation Plan approval..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.6 Flood Mitigation Plan approval process. The State POC will forward all...

  17. 44 CFR 78.6 - Flood Mitigation Plan approval process.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.6 Flood Mitigation Plan approval process. The State POC will forward all...

  18. 44 CFR 78.6 - Flood Mitigation Plan approval process.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.6 Flood Mitigation Plan approval process. The State POC will forward all...

  19. 44 CFR 78.6 - Flood Mitigation Plan approval process.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.6 Flood Mitigation Plan approval process. The State POC will forward all...

  20. Underground Coal-Fires in Xinjiang, China: A Continued Effort in Applying Geophysics to Solve a Local Problem and to Mitigate a Global Hazard

    NASA Astrophysics Data System (ADS)

    Wuttke, M. W.; Halisch, M.; Tanner, D. C.; Cai, Z. Y.; Zeng, Q.; Wang, C.

    2012-04-01

    laboratory measurements realistic dynamical models of fire-zones are constructed to increase the understanding of particular coal-fires, to interpret the surface signatures of the coal-fire in terms of location and propagation and to estimate the output of hazardous exhaust products to evaluate the economic benefit of fire extinction.

  1. Spatio-temporal patterns of hazards and their use in risk assessment and mitigation. Case study of road accidents in Romania

    NASA Astrophysics Data System (ADS)

    Catalin Stanga, Iulian

    2013-04-01

    the spatial or temporal clustering of crash accidents. Since the 1990's, Geographical Informational Systems (GIS) became a very important tool for traffic and road safety management, allowing not only the spatial and multifactorial analysis, but also graphical and non-graphical outputs. The current paper presents an accessible GIS methodology to study the spatio-temporal pattern of injury related road accidents, to identify the high density accidents zones, to make a cluster analysis, to create multicriterial typologies, to identify spatial and temporal similarities and to explain them. In this purpose, a Geographical Information System was created, allowing a complex analysis that involves not only the events, but also a large set of interrelated and spatially linked attributes. The GIS includes the accidents as georeferenced point elements with a spatially linked attribute database: identification information (date, location details); accident type; main, secondary and aggravating causes; data about driver; vehicle information; consequences (damages, injured peoples and fatalities). Each attribute has its own number code that allows both the statistical analysis and the spatial interrogation. The database includes those road accidents that led to physical injuries and loss of human lives between 2007 and 2012 and the spatial analysis was realized using TNTmips 7.3 software facilities. Data aggregation and processing allowed creating the spatial pattern of injury related road accidents through Kernel density estimation at three different levels (national - Romania; county level - Iasi County; local level - Iasi town). Spider graphs were used to create the temporal pattern or road accidents at three levels (daily, weekly and monthly) directly related to their causes. Moreover the spatial and temporal database relates the natural hazards (glazed frost, fog, and blizzard) with the human made ones, giving the opportunity to evaluate the nature of uncertainties in risk

  2. Spatio-temporal patterns of hazards and their use in risk assessment and mitigation. Case study of road accidents in Romania

    NASA Astrophysics Data System (ADS)

    Catalin Stanga, Iulian

    2013-04-01

    the spatial or temporal clustering of crash accidents. Since the 1990's, Geographical Informational Systems (GIS) became a very important tool for traffic and road safety management, allowing not only the spatial and multifactorial analysis, but also graphical and non-graphical outputs. The current paper presents an accessible GIS methodology to study the spatio-temporal pattern of injury related road accidents, to identify the high density accidents zones, to make a cluster analysis, to create multicriterial typologies, to identify spatial and temporal similarities and to explain them. In this purpose, a Geographical Information System was created, allowing a complex analysis that involves not only the events, but also a large set of interrelated and spatially linked attributes. The GIS includes the accidents as georeferenced point elements with a spatially linked attribute database: identification information (date, location details); accident type; main, secondary and aggravating causes; data about driver; vehicle information; consequences (damages, injured peoples and fatalities). Each attribute has its own number code that allows both the statistical analysis and the spatial interrogation. The database includes those road accidents that led to physical injuries and loss of human lives between 2007 and 2012 and the spatial analysis was realized using TNTmips 7.3 software facilities. Data aggregation and processing allowed creating the spatial pattern of injury related road accidents through Kernel density estimation at three different levels (national - Romania; county level - Iasi County; local level - Iasi town). Spider graphs were used to create the temporal pattern or road accidents at three levels (daily, weekly and monthly) directly related to their causes. Moreover the spatial and temporal database relates the natural hazards (glazed frost, fog, and blizzard) with the human made ones, giving the opportunity to evaluate the nature of uncertainties in risk

  3. The fujairah united arab emirates (uae) (ml = 5.1) earthquake of march 11, 2002 a reminder for the immediate need to develop and implement a national hazard mitigation strategy

    NASA Astrophysics Data System (ADS)

    Al-Homoud, A.

    2003-04-01

    the epicenter of the earthquake. Indeed, the March 11, 2002 and "aftershocks" scared the citizens of Masafi and surrounding regions and ignited the attention of the public and government to the subject matter of earthquake hazard, specialty this earthquake came one year after the near by Indian m = 6.5 destructive Earthquake. Indeed the recent m = 6.2 June 22 destructive earthquake too that hit north west Iran, has again reminded the UAE public and government with the need to take quick and concrete measures to dtake the necessary steps to mitigate any anticipated earthquake hazard. This study reflects in some details on the following aspects related to the region and vicinity: geological and tectonic setting, seismicity, earthquake activity data base and seismic hazard assessment. Moreover, it documents the following aspects of the March 11, 2002 earthquake: tectonic, seismological, instrumental seismic data, aftershocks, strong motion recordings and response spectral and local site effect analysis, geotechnical effects and structural observations in the region affected by the earthquake. The study identifies local site ground amplification effects and liquefaction hazard potential in some parts of the UAE. Moreover, the study reflects on the coverage of the incident in the media, public and government response, state of earthquake engineering practice in the construction industry in the UAE, and the national preparedness and public awareness issues. However, it is concluded for this event that the mild damages that occurred in Masafi region were due to poor quality of construction, and lack of underestimating of the design base shear. Practical recommendations are suggested for the authorities to avoid damages in newly constructed buildings and lifelines as a result of future stronger earthquakes, in addition to recommendations on a national strategy for earthquake hazard mitigation in the UAE, which is still missing. The recommendations include the development and

  4. Success in transmitting hazard science

    NASA Astrophysics Data System (ADS)

    Price, J. G.; Garside, T.

    2010-12-01

    Money motivates mitigation. An example of success in communicating scientific information about hazards, coupled with information about available money, is the follow-up action by local governments to actually mitigate. The Nevada Hazard Mitigation Planning Committee helps local governments prepare competitive proposals for federal funds to reduce risks from natural hazards. Composed of volunteers with expertise in emergency management, building standards, and earthquake, flood, and wildfire hazards, the committee advises the Nevada Division of Emergency Management on (1) the content of the State’s hazard mitigation plan and (2) projects that have been proposed by local governments and state agencies for funding from various post- and pre-disaster hazard mitigation programs of the Federal Emergency Management Agency. Local governments must have FEMA-approved hazard mitigation plans in place before they can receive this funding. The committee has been meeting quarterly with elected and appointed county officials, at their offices, to encourage them to update their mitigation plans and apply for this funding. We have settled on a format that includes the county’s giving the committee an overview of its infrastructure, hazards, and preparedness. The committee explains the process for applying for mitigation grants and presents the latest information that we have about earthquake hazards, including locations of nearby active faults, historical seismicity, geodetic strain, loss-estimation modeling, scenarios, and documents about what to do before, during, and after an earthquake. Much of the county-specific information is available on the web. The presentations have been well received, in part because the committee makes the effort to go to their communities, and in part because the committee is helping them attract federal funds for local mitigation of not only earthquake hazards but also floods (including canal breaches) and wildfires, the other major concerns in

  5. 44 CFR 201.7 - Tribal Mitigation Plans.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... OF HOMELAND SECURITY DISASTER ASSISTANCE MITIGATION PLANNING § 201.7 Tribal Mitigation Plans. The... reduce risks from natural hazards, serving as a guide for decision makers as they commit resources to reducing the effects of natural hazards. (a) Plan requirement. (1) Indian tribal governments applying...

  6. Hazardous Waste

    MedlinePlus

    ... you throw these substances away, they become hazardous waste. Some hazardous wastes come from products in our homes. Our garbage can include such hazardous wastes as old batteries, bug spray cans and paint ...

  7. Hazardous-Materials Robot

    NASA Technical Reports Server (NTRS)

    Stone, Henry W.; Edmonds, Gary O.

    1995-01-01

    Remotely controlled mobile robot used to locate, characterize, identify, and eventually mitigate incidents involving hazardous-materials spills/releases. Possesses number of innovative features, allowing it to perform mission-critical functions such as opening and unlocking doors and sensing for hazardous materials. Provides safe means for locating and identifying spills and eliminates risks of injury associated with use of manned entry teams. Current version of vehicle, called HAZBOT III, also features unique mechanical and electrical design enabling vehicle to operate safely within combustible atmosphere.

  8. Climate change and mitigation.

    PubMed

    Nibleus, Kerstin; Lundin, Rickard

    2010-01-01

    Planet Earth has experienced repeated changes of its climate throughout time. Periods warmer than today as well as much colder, during glacial episodes, have alternated. In our time, rapid population growth with increased demand for natural resources and energy, has made society increasingly vulnerable to environmental changes, both natural and those caused by man; human activity is clearly affecting the radiation balance of the Earth. In the session "Climate Change and Mitigation" the speakers offered four different views on coal and CO2: the basis for life, but also a major hazard with impact on Earth's climate. A common denominator in the presentations was that more than ever science and technology is required. We need not only understand the mechanisms for climate change and climate variability, we also need to identify means to remedy the anthropogenic influence on Earth's climate. PMID:20873680

  9. Mapping Europe's Seismic Hazard

    NASA Astrophysics Data System (ADS)

    Giardini, Domenico; Wössner, Jochen; Danciu, Laurentiu

    2014-07-01

    From the rift that cuts through the heart of Iceland to the complex tectonic convergence that causes frequent and often deadly earthquakes in Italy, Greece, and Turkey to the volcanic tremors that rattle the Mediterranean, seismic activity is a prevalent and often life-threatening reality across Europe. Any attempt to mitigate the seismic risk faced by society requires an accurate estimate of the seismic hazard.

  10. Hydrogen Hazards Assessment Protocol (HHAP): Approach and Methodology

    NASA Technical Reports Server (NTRS)

    Woods, Stephen

    2009-01-01

    This viewgraph presentation reviews the approach and methodology to develop a assessment protocol for hydrogen hazards. Included in the presentation are the reasons to perform hazards assessment, the types of hazard assessments that exist, an analysis of hydrogen hazards, specific information about the Hydrogen Hazards Assessment Protocol (HHAP). The assessment is specifically tailored for hydrogen behavior. The end product of the assesment is a compilation of hazard, mitigations and associated factors to facilitate decision making and achieve the best practice.

  11. Probabilistic Tsunami Hazard Analysis

    NASA Astrophysics Data System (ADS)

    Thio, H. K.; Ichinose, G. A.; Somerville, P. G.; Polet, J.

    2006-12-01

    The recent tsunami disaster caused by the 2004 Sumatra-Andaman earthquake has focused our attention to the hazard posed by large earthquakes that occur under water, in particular subduction zone earthquakes, and the tsunamis that they generate. Even though these kinds of events are rare, the very large loss of life and material destruction caused by this earthquake warrant a significant effort towards the mitigation of the tsunami hazard. For ground motion hazard, Probabilistic Seismic Hazard Analysis (PSHA) has become a standard practice in the evaluation and mitigation of seismic hazard to populations in particular with respect to structures, infrastructure and lifelines. Its ability to condense the complexities and variability of seismic activity into a manageable set of parameters greatly facilitates the design of effective seismic resistant buildings but also the planning of infrastructure projects. Probabilistic Tsunami Hazard Analysis (PTHA) achieves the same goal for hazards posed by tsunami. There are great advantages of implementing such a method to evaluate the total risk (seismic and tsunami) to coastal communities. The method that we have developed is based on the traditional PSHA and therefore completely consistent with standard seismic practice. Because of the strong dependence of tsunami wave heights on bathymetry, we use a full waveform tsunami waveform computation in lieu of attenuation relations that are common in PSHA. By pre-computing and storing the tsunami waveforms at points along the coast generated for sets of subfaults that comprise larger earthquake faults, we can efficiently synthesize tsunami waveforms for any slip distribution on those faults by summing the individual subfault tsunami waveforms (weighted by their slip). This efficiency make it feasible to use Green's function summation in lieu of attenuation relations to provide very accurate estimates of tsunami height for probabilistic calculations, where one typically computes

  12. 77 FR 40627 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency... Administrator for Mitigation, Department of Homeland Security, Federal Emergency Management Agency. BILLING CODE... Development Building, 25 Dorrance Street, Providence, RI 02903. Big Horn County, Wyoming, and...

  13. Reproductive Hazards

    MedlinePlus

    ... such as lead and mercury Chemicals such as pesticides Cigarettes Some viruses Alcohol For men, a reproductive hazard can affect the sperm. For a woman, a reproductive hazard can cause different effects during pregnancy, depending on when she is exposed. ...

  14. Natural phenomena hazards, Hanford Site, Washington

    SciTech Connect

    Conrads, T.J.

    1998-09-29

    This document presents the natural phenomena hazard loads for use in implementing DOE Order 5480.28, Natural Phenomena Hazards Mitigation, and supports development of double-shell tank systems specifications at the Hanford Site in south-central Washington State. The natural phenomena covered are seismic, flood, wind, volcanic ash, lightning, snow, temperature, solar radiation, suspended sediment, and relative humidity.

  15. 14 CFR 437.55 - Hazard analysis.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (iii) Analysis. (b) A permittee must carry out the risk elimination and mitigation measures derived... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Hazard analysis. 437.55 Section 437.55... TRANSPORTATION LICENSING EXPERIMENTAL PERMITS Safety Requirements § 437.55 Hazard analysis. (a) A permittee...

  16. 14 CFR 437.55 - Hazard analysis.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (iii) Analysis. (b) A permittee must carry out the risk elimination and mitigation measures derived... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Hazard analysis. 437.55 Section 437.55... TRANSPORTATION LICENSING EXPERIMENTAL PERMITS Safety Requirements § 437.55 Hazard analysis. (a) A permittee...

  17. 14 CFR 437.55 - Hazard analysis.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (iii) Analysis. (b) A permittee must carry out the risk elimination and mitigation measures derived... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Hazard analysis. 437.55 Section 437.55... TRANSPORTATION LICENSING EXPERIMENTAL PERMITS Safety Requirements § 437.55 Hazard analysis. (a) A permittee...

  18. Natural Hazards, Second Edition

    NASA Astrophysics Data System (ADS)

    Rouhban, Badaoui

    Natural disaster loss is on the rise, and the vulnerability of the human and physical environment to the violent forces of nature is increasing. In many parts of the world, disasters caused by natural hazards such as earthquakes, floods, landslides, drought, wildfires, intense windstorms, tsunami, and volcanic eruptions have caused the loss of human lives, injury, homelessness, and the destruction of economic and social infrastructure. Over the last few years, there has been an increase in the occurrence, severity, and intensity of disasters, culminating with the devastating tsunami of 26 December 2004 in South East Asia.Natural hazards are often unexpected or uncontrollable natural events of varying magnitude. Understanding their mechanisms and assessing their distribution in time and space are necessary for refining risk mitigation measures. This second edition of Natural Hazards, (following a first edition published in 1991 by Cambridge University Press), written by Edward Bryant, associate dean of science at Wollongong University, Australia, grapples with this crucial issue, aspects of hazard prediction, and other issues. The book presents a comprehensive analysis of different categories of hazards of climatic and geological origin.

  19. The Relative Severity of Single Hazards within a Multi-Hazard Framework

    NASA Astrophysics Data System (ADS)

    Gill, Joel C.; Malamud, Bruce D.

    2013-04-01

    Here we present a description of the relative severity of single hazards within a multi-hazard framework, compiled through examining, quantifying and ranking the extent to which individual hazards trigger or increase the probability of other hazards. Hazards are broken up into six major groupings (geophysical, hydrological, shallow earth processes, atmospheric, biophysical and space), with the interactions for 21 different hazard types examined. These interactions include both one primary hazard triggering a secondary hazard, and one primary hazard increasing the probability of a secondary hazard occurring. We identify, through a wide-ranging review of grey- and peer-review literature, >90 interactions. The number of hazard-type linkages are then summed for each hazard in terms of their influence (the number of times one hazard type triggers another type of hazard, or itself) and their sensitivity (the number of times one hazard type is triggered by other hazard types, or itself). The 21 different hazards are then ranked based on (i) influence and (ii) sensitivity. We found, by quantification and ranking of these hazards, that: (i) The strongest influencers (those triggering the most secondary hazards) are volcanic eruptions, earthquakes and storms, which when taken together trigger almost a third of the possible hazard interactions identified; (ii) The most sensitive hazards (those being triggered by the most primary hazards) are identified to be landslides, volcanic eruptions and floods; (iii) When sensitivity rankings are adjusted to take into account the differential likelihoods of different secondary hazards being triggered, the most sensitive hazards are found to be landslides, floods, earthquakes and ground heave. We believe that by determining the strongest influencing and the most sensitive hazards for specific spatial areas, the allocation of resources for mitigation measures might be done more effectively.

  20. Natural Hazards

    NASA Astrophysics Data System (ADS)

    Bryant, Edward

    2005-02-01

    This updated new edition presents a comprehensive, inter-disciplinary analysis of the complete range of natural hazards. Edward Bryant describes and explains how hazards occur, examines prediction methods, considers recent and historical hazard events and explores the social impact of such disasters. Supported by over 180 maps, diagrams and photographs, this standard text is an invaluable guide for students and professionals in the field. First Edition Hb (1991): 0-521-37295-X First Edition Pb (1991): 0-521-37889-3

  1. 78 FR 13844 - Change in Submission Requirements for State Mitigation Plans

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-01

    ... Federal Register on March 24, 2005 (70 FR 15086). B. Submission of Sensitive Information Do not submit...), entitled ``Hazard Mitigation Planning and Hazard Mitigation Grant Program,'' 67 FR 8844, implemented... November 1, 2003 to November 1, 2004. 67 FR 61512. A subsequent revision on September 13, 2004 provided...

  2. 49 CFR 195.579 - What must I do to mitigate internal corrosion?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false What must I do to mitigate internal corrosion? 195... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.579 What must I do to mitigate internal corrosion? (a) General. If you transport any hazardous liquid or carbon dioxide...

  3. Over-Pressurized Drums: Their Causes and Mitigation

    SciTech Connect

    Simmons, Fred; Kuntamukkula, Murty; Quigley, David; Robertson, Janeen; Freshwater, David

    2009-07-10

    Having to contend with bulging or over-pressurized drums is, unfortunately, a common event for people storing chemicals and chemical wastes. (Figure 1) The Department of Energy alone reported over 120 incidents of bulging drums between 1992 and 1999 (1). Bulging drums can be caused by many different mechanisms, represent a number of significant hazards and can be tricky to mitigate. In this article, we will discuss reasons or mechanisms by which drums can become over-pressurized, recognition of the hazards associated with and mitigation of over-pressurized drums, and methods that can be used to prevent drum over-pressurization from ever occurring. Drum pressurization can represent a significant safety hazard. Unless recognized and properly mitigated, improperly manipulated pressurized drums can result in employee exposure, employee injury, and environmental contamination. Therefore, recognition of when a drum is pressurized and knowledge of pressurized drum mitigation techniques is essential.

  4. Hazardous materials

    MedlinePlus

    ... people how to work with hazardous materials and waste. There are many different kinds of hazardous materials, including: Chemicals, like some that are used for cleaning Drugs, like chemotherapy to treat cancer Radioactive material that is used for x-rays or ...

  5. The California Hazards Institute

    NASA Astrophysics Data System (ADS)

    Rundle, J. B.; Kellogg, L. H.; Turcotte, D. L.

    2006-12-01

    California's abundant resources are linked with its natural hazards. Earthquakes, landslides, wildfires, floods, tsunamis, volcanic eruptions, severe storms, fires, and droughts afflict the state regularly. These events have the potential to become great disasters, like the San Francisco earthquake and fire of 1906, that overwhelm the capacity of society to respond. At such times, the fabric of civic life is frayed, political leadership is tested, economic losses can dwarf available resources, and full recovery can take decades. A patchwork of Federal, state and local programs are in place to address individual hazards, but California lacks effective coordination to forecast, prevent, prepare for, mitigate, respond to, and recover from, the harmful effects of natural disasters. Moreover, we do not know enough about the frequency, size, time, or locations where they may strike, nor about how the natural environment and man-made structures would respond. As California's population grows and becomes more interdependent, even moderate events have the potential to trigger catastrophes. Natural hazards need not become natural disasters if they are addressed proactively and effectively, rather than reactively. The University of California, with 10 campuses distributed across the state, has world-class faculty and students engaged in research and education in all fields of direct relevance to hazards. For that reason, the UC can become a world leader in anticipating and managing natural hazards in order to prevent loss of life and property and degradation of environmental quality. The University of California, Office of the President, has therefore established a new system-wide Multicampus Research Project, the California Hazards Institute (CHI), as a mechanism to research innovative, effective solutions for California. The CHI will build on the rich intellectual capital and expertise of the Golden State to provide the best available science, knowledge and tools for

  6. EARTHQUAKE HAZARDS IN THE OFFSHORE ENVIRONMENT.

    USGS Publications Warehouse

    Page, Robert A.; Basham, Peter W.

    1985-01-01

    This report discusses earthquake effects and potential hazards in the marine environment, describes and illustrates methods for the evaluation of earthquake hazards, and briefly reviews strategies for mitigating hazards. The report is broadly directed toward engineers, scientists, and others engaged in developing offshore resources. The continental shelves have become a major frontier in the search for new petroleum resources. Much of the current exploration is in areas of moderate to high earthquake activity. If the resources in these areas are to be developed economically and safely, potential earthquake hazards must be identified and mitigated both in planning and regulating activities and in designing, constructing, and operating facilities. Geologic earthquake effects that can be hazardous to marine facilities and operations include surface faulting, tectonic uplift and subsidence, seismic shaking, sea-floor failures, turbidity currents, and tsunamis.

  7. Smart disaster mitigation in Thailand

    NASA Astrophysics Data System (ADS)

    Aimmanee, S.; Ekkawatpanit, C.; Asanuma, H.

    2016-04-01

    Thailand is notoriously exposed to several natural disasters, from heavy thunder storms to earthquakes and tsunamis, since it is located in the tropical area and has tectonic cracks underneath the ground. Besides these hazards flooding, despite being less severe, occurs frequently, stays longer than the other disasters, and affects a large part of the national territory. Recently in 2011 have also been recorded the devastating effects of major flooding causing the economic damages and losses around 50 billion dollars. Since Thailand is particularly exposed to such hazards, research institutions are involved in campaigns about monitoring, prevention and mitigation of the effects of such phenomena, with the aim to secure and protect human lives, and secondly, the remarkable cultural heritage. The present paper will first make a brief excursus on the main Thailand projects aimed at the mitigation of natural disasters, referring to projects of national and international relevance, being implemented, such as the ESCAP1999 (flow regime regulation and water conservation). Adaptable devices such as foldable flood barriers and hydrodynamically supported temporary banks have been utilized when flooding. In the second part of the paper, will be described some new ideas concerning the use of smart and biomimicking column structures capable of high-velocity water interception and velocity detection in the case of tsunami. The pole configuration is composite cylindrical shell structure embedded with piezoceramic sensor. The vortex shedding of the flow around the pole induces the vibration and periodically strains the piezoelectric element, which in turn generates the electrical sensorial signal. The internal space of the shell is filled with elastic foam to enhance the load carrying capability due to hydrodynamic application. This more rigid outer shell inserted with soft core material resemble lotus stem in nature in order to prolong local buckling and ovalization of column

  8. Tethers and debris mitigation

    NASA Astrophysics Data System (ADS)

    van der Heide, Erik Jan; Kruijff, Michiel

    2001-03-01

    In recent years, the use of tethers has been proposed for reduction of space debris either through momentum transfer or use of electrodynamic effects. Tethers have been shown to at least theoretically allow for quick, elegant and cost-effective deorbit of defunct satellites or spent stages. On the other hand, the large risk that tethers themselves may pose to other satellites in orbit has been recognized as well. The large collision area of tethers, combined with operational hazards and meteoroid risk may result in a large orbital exposure. For example, in 1997, the ESA/Dutch 35-km tether deployment of YES from TEAMSAT was inhibited after an analysis of the collision risk for the case the tether operation would fail. The question rises how these two points of view compare to eachother. This paper intends to highlight a representative selection of the proposed tether applications while taking into account the added risks caused by the tethers themselves. Typical applications from recent literature will be briefly described, such as an Ariane 502 spent stage re-entry from GTO and the concept of deboost of defunct satellites by interaction of a conductive tether with the Earth magnetic field. Mass savings of the tethered sytems versus conventional equivalents will be evaluated. Based on a crude risk analysis, involving elements such as mission complexity, dynamic stability, meteoroid risk and orbital life time, a general outline of limiting factors can be given for the various applications. Special attention is reserved for implementation of mechanisms that help reduce this tether risk, such as the DUtether (Tether Degradable by Ultraviolet), utilization of airdrag and solar pressure, the effect of residual current in bare tethers, tether retrieval etc. It is proposed how a net tether-induced mitigation can be compared to that of conventional alternatives, i.e. deboost by rocket engine or a completely passive approach. This comparison is put in the perspective of an

  9. Space Debris & its Mitigation

    NASA Astrophysics Data System (ADS)

    Kaushal, Sourabh; Arora, Nishant

    2012-07-01

    Space debris has become a growing concern in recent years, since collisions at orbital velocities can be highly damaging to functioning satellites and can also produce even more space debris in the process. Some spacecraft, like the International Space Station, are now armored to deal with this hazard but armor and mitigation measures can be prohibitively costly when trying to protect satellites or human spaceflight vehicles like the shuttle. This paper describes the current orbital debris environment, outline its main sources, and identify mitigation measures to reduce orbital debris growth by controlling these sources. We studied the literature on the topic Space Debris. We have proposed some methods to solve this problem of space debris. We have also highlighted the shortcomings of already proposed methods by space experts and we have proposed some modification in those methods. Some of them can be very effective in the process of mitigation of space debris, but some of them need some modification. Recently proposed methods by space experts are maneuver, shielding of space elevator with the foil, vaporizing or redirecting of space debris back to earth with the help of laser, use of aerogel as a protective layer, construction of large junkyards around international space station, use of electrodynamics tether & the latest method proposed is the use of nano satellites in the clearing of the space debris. Limitations of the already proposed methods are as follows: - Maneuvering can't be the final solution to our problem as it is the act of self-defence. - Shielding can't be done on the parts like solar panels and optical devices. - Vaporizing or redirecting of space debris can affect the human life on earth if it is not done in proper manner. - Aerogel has a threshold limit up to which it can bear (resist) the impact of collision. - Large junkyards can be effective only for large sized debris. In this paper we propose: A. The Use of Nano Tubes by creating a mesh

  10. Hazardous materials

    MedlinePlus

    ... should be in a room with good airflow Work Safely If you find a spill, treat it like ... Hazard communication; Material Safety Data Sheet; MSDS References Occupational Safety and Health Administration. Healthcare. Available at: www.osha. ...

  11. Coastal Hazards.

    ERIC Educational Resources Information Center

    Vandas, Steve

    1998-01-01

    Focuses on hurricanes and tsunamis and uses these topics to address other parts of the science curriculum. In addition to a discussion on beach erosion, a poster is provided that depicts these natural hazards that threaten coastlines. (DDR)

  12. Hazardous Waste

    MedlinePlus

    ... wastes come from products in our homes. Our garbage can include such hazardous wastes as old batteries, ... drain, flush them, or put them in the garbage. See if you can donate or recycle. Many ...

  13. Reproductive Hazards

    MedlinePlus

    ... and female reproductive systems play a role in pregnancy. Problems with these systems can affect fertility and ... a reproductive hazard can cause different effects during pregnancy, depending on when she is exposed. During the ...

  14. Volcanic hazards and aviation safety

    USGS Publications Warehouse

    Casadevall, Thomas J.; Thompson, Theodore B.; Ewert, John W.

    1996-01-01

    An aeronautical chart was developed to determine the relative proximity of volcanoes or ash clouds to the airports and flight corridors that may be affected by volcanic debris. The map aims to inform and increase awareness about the close spatial relationship between volcanoes and aviation operations. It shows the locations of the active volcanoes together with selected aeronautical navigation aids and great-circle routes. The map mitigates the threat that volcanic hazards pose to aircraft and improves aviation safety.

  15. 44 CFR 65.16 - Standard Flood Hazard Determination Form and Instructions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Standard Flood Hazard... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IDENTIFICATION AND MAPPING OF SPECIAL HAZARD AREAS § 65.16 Standard Flood Hazard...

  16. 44 CFR 65.16 - Standard Flood Hazard Determination Form and Instructions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Standard Flood Hazard... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IDENTIFICATION AND MAPPING OF SPECIAL HAZARD AREAS § 65.16 Standard Flood Hazard...

  17. 44 CFR 65.16 - Standard Flood Hazard Determination Form and Instructions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Standard Flood Hazard... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IDENTIFICATION AND MAPPING OF SPECIAL HAZARD AREAS § 65.16 Standard Flood Hazard...

  18. 44 CFR 65.16 - Standard Flood Hazard Determination Form and Instructions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Standard Flood Hazard... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IDENTIFICATION AND MAPPING OF SPECIAL HAZARD AREAS § 65.16 Standard Flood Hazard...

  19. 44 CFR 65.16 - Standard Flood Hazard Determination Form and Instructions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Standard Flood Hazard... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IDENTIFICATION AND MAPPING OF SPECIAL HAZARD AREAS § 65.16 Standard Flood Hazard...

  20. The Chelyabinsk Fireball and Meteorite: Implications for Asteroid Hazard Assessment

    NASA Astrophysics Data System (ADS)

    Galimov, E. M.; Pillinger, C. T.; Greenwood, R. C.; Kolotov, V. P.; Nazarov, M. A.; Kostitsyn, Y. A.; Buikin, A.; Verchovsky, A. B.; Kubrakova, I. V.; Kononkova, N. N.; Roschina, I. A.; Alekseev, V. A.; Koshkarov, L. L.; Badyukov, D. D.; Sevastyanov, V. S.; Johnson, D.; Tindle, A. G.

    2013-09-01

    The explosive break-up of the Chelyabinsk fireball was probably facilitated by its pre-entry shock-induced structure. The Chelyabinsk event demonstrates that effective asteroid-hazard mitigation requires structural knowledge of the threatening body.

  1. Flood fatality hazard and flood damage hazard: combining multiple hazard characteristics into meaningful maps for spatial planning

    NASA Astrophysics Data System (ADS)

    de Bruijn, K. M.; Klijn, F.; van de Pas, B.; Slager, C. T. J.

    2015-06-01

    For comprehensive flood risk management, accurate information on flood hazards is crucial. While in the past an estimate of potential flood consequences in large areas was often sufficient to make decisions on flood protection, there is currently an increasing demand to have detailed hazard maps available to be able to consider other risk-reducing measures as well. Hazard maps are a prerequisite for spatial planning, but can also support emergency management, the design of flood mitigation measures, and the setting of insurance policies. The increase in flood risks due to population growth and economic development in hazardous areas in the past shows that sensible spatial planning is crucial to prevent risks increasing further. Assigning the least hazardous locations for development or adapting developments to the actual hazard requires comprehensive flood hazard maps. Since flood hazard is a multi-dimensional phenomenon, many different maps could be relevant. Having large numbers of maps to take into account does not, however, make planning easier. To support flood risk management planning we therefore introduce a new approach in which all relevant flood hazard parameters can be combined into two comprehensive maps of flood damage hazard and flood fatality hazard.

  2. Flood fatality hazard and flood damage hazard: combining multiple hazard characteristics into meaningful maps for spatial planning

    NASA Astrophysics Data System (ADS)

    de Bruijn, K. M.; Klijn, F.; van de Pas, B.; Slager, C. T. J.

    2015-01-01

    For comprehensive flood risk management, accurate information on flood hazards is crucial. While in the past an estimate of potential flood consequences in large areas was often sufficient to make decisions on flood protection, there currently is an increasing demand to have detailed hazard maps available to be able to consider other risk reducing measures as well. Hazard maps are a prerequisite for spatial planning, but can also support emergency management, the design of flood mitigation measures, and the setting of insurance policies. The increase in flood risks due to population growth and economic development in hazardous areas in the past shows that sensible spatial planning is crucial to prevent risks increasing further. Assigning the least hazardous locations for development or adapting developments to the actual hazard requires comprehensive flood hazard maps. Since flood hazard is a multi-dimensional phenomenon, many different maps could be relevant. Having large numbers of maps to take into account does, however, not make planning easier. To support flood risk management planning we therefore introduce a new approach in which all relevant flood hazard parameters can be combined into two comprehensive maps of flood damage hazard respectively flood fatality hazard.

  3. Revised position on natural hazards

    NASA Astrophysics Data System (ADS)

    Folger, Peter

    At the 2000 Fall Meeting in December, the AGU Council reaffirmed a revised version of AGU's position statement, “Meeting the Challenges of Natural Hazards.” This position was first adopted in 1996. The revised version (see accompanying text box) contains the same message as the original, but in concise language more easily understood by policy-makers and other non-scientists.The statement calls for more research in the geophysical processes to help understand the nature of natural hazards. However, it also clearly indicates that research alone will not improve the ability of society to withstand a natural disaster. Multidisciplinary approaches involving groups as disparate as builders, insurers, and relief organizations are required to improve mitigation efforts worldwide. The policy statement also emphasizes the need to communicate the results of scientific research to the public, especially those communities situated in areas particularly susceptible to extreme natural hazards.

  4. Mitigation Action Plan

    SciTech Connect

    Not Available

    1994-02-01

    This Mitigation Action Plan (MAP) focuses on mitigation commitments stated in the Supplemental Environmental Impact Statement (SEIS) and the Record of Decision (ROD) for the Naval Petroleum Reserve No. 1 (NPR-1). Specific commitments and mitigation implementation actions are listed in Appendix A-Mitigation Actions, and form the central focus of this MAP. They will be updated as needed to allow for organizational, regulatory, or policy changes. It is the intent of DOE to comply with all applicable federal, state, and local environmental, safety, and health laws and regulations. Eighty-six specific commitments were identified in the SEIS and associated ROD which pertain to continued operation of NPR-1 with petroleum production at the Maximum Efficient Rate (MER). The mitigation measures proposed are expected to reduce impacts as much as feasible, however, as experience is gained in actual implementation of these measures, some changes may be warranted.

  5. Tsunami: The Underrated Hazard

    NASA Astrophysics Data System (ADS)

    Synolakis, Costas; Fryer, Gerard J.

    Tsunami: the Underrated Hazard, by Edward Bryant, would appear to be a welcome addition to the scholarly tsunami literature. No book on tsunamis has the broad perspective of this work. The book looks attractive, with many high-quality photographs. It looks comprehensive, with discussions of tsunami hydrodynamics, tsunami effects on coastal landscapes, and causes of tsunamis (earthquakes, landslides, volcanic eruptions, meteorite impacts). It looks practical, with a section on risk and mitigation. It also looks entertaining, with an opening chapter on tsunami legends and a closing chapter presenting fanciful descriptions of imagined events. Appearances are deceiving, though. Any initial enthusiasm for the work evaporates on even casual reading. The book is so flawed by errors, omissions, confusion, and unsupported conjecture that we cannot recommend it to anyone.

  6. Canister Storage Building (CSB) Hazard Analysis Report

    SciTech Connect

    POWERS, T.B.

    2000-03-16

    This report describes the methodology used in conducting the Canister Storage Building (CSB) Hazard Analysis to support the final CSB Safety Analysis Report and documents the results. This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the CSB final safety analysis report (FSAR) and documents the results. The hazard analysis process identified hazardous conditions and material-at-risk, determined causes for potential accidents, identified preventive and mitigative features, and qualitatively estimated the frequencies and consequences of specific occurrences. The hazard analysis was performed by a team of cognizant CSB operations and design personnel, safety analysts familiar with the CSB, and technical experts in specialty areas. The material included in this report documents the final state of a nearly two-year long process. Attachment A provides two lists of hazard analysis team members and describes the background and experience of each. The first list is a complete list of the hazard analysis team members that have been involved over the two-year long process. The second list is a subset of the first list and consists of those hazard analysis team members that reviewed and agreed to the final hazard analysis documentation. The material included in this report documents the final state of a nearly two-year long process involving formal facilitated group sessions and independent hazard and accident analysis work. The hazard analysis process led to the selection of candidate accidents for further quantitative analysis. New information relative to the hazards, discovered during the accident analysis, was incorporated into the hazard analysis data in order to compile a complete profile of facility hazards. Through this process, the results of the hazard and accident analyses led directly to the identification of safety structures, systems, and components, technical safety requirements, and other

  7. A probabilistic tsunami hazard assessment for Indonesia

    NASA Astrophysics Data System (ADS)

    Horspool, N.; Pranantyo, I.; Griffin, J.; Latief, H.; Natawidjaja, D. H.; Kongko, W.; Cipta, A.; Bustaman, B.; Anugrah, S. D.; Thio, H. K.

    2014-11-01

    Probabilistic hazard assessments are a fundamental tool for assessing the threats posed by hazards to communities and are important for underpinning evidence-based decision-making regarding risk mitigation activities. Indonesia has been the focus of intense tsunami risk mitigation efforts following the 2004 Indian Ocean tsunami, but this has been largely concentrated on the Sunda Arc with little attention to other tsunami prone areas of the country such as eastern Indonesia. We present the first nationally consistent probabilistic tsunami hazard assessment (PTHA) for Indonesia. This assessment produces time-independent forecasts of tsunami hazards at the coast using data from tsunami generated by local, regional and distant earthquake sources. The methodology is based on the established monte carlo approach to probabilistic seismic hazard assessment (PSHA) and has been adapted to tsunami. We account for sources of epistemic and aleatory uncertainty in the analysis through the use of logic trees and sampling probability density functions. For short return periods (100 years) the highest tsunami hazard is the west coast of Sumatra, south coast of Java and the north coast of Papua. For longer return periods (500-2500 years), the tsunami hazard is highest along the Sunda Arc, reflecting the larger maximum magnitudes. The annual probability of experiencing a tsunami with a height of > 0.5 m at the coast is greater than 10% for Sumatra, Java, the Sunda islands (Bali, Lombok, Flores, Sumba) and north Papua. The annual probability of experiencing a tsunami with a height of > 3.0 m, which would cause significant inundation and fatalities, is 1-10% in Sumatra, Java, Bali, Lombok and north Papua, and 0.1-1% for north Sulawesi, Seram and Flores. The results of this national-scale hazard assessment provide evidence for disaster managers to prioritise regions for risk mitigation activities and/or more detailed hazard or risk assessment.

  8. Preliminary hazards analysis -- vitrification process

    SciTech Connect

    Coordes, D.; Ruggieri, M.; Russell, J.; TenBrook, W.; Yimbo, P.

    1994-06-01

    This paper presents a Preliminary Hazards Analysis (PHA) for mixed waste vitrification by joule heating. The purpose of performing a PHA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PHA is then followed by a Preliminary Safety Analysis Report (PSAR) performed during Title 1 and 2 design. The PSAR then leads to performance of the Final Safety Analysis Report performed during the facility`s construction and testing. It should be completed before routine operation of the facility commences. This PHA addresses the first four chapters of the safety analysis process, in accordance with the requirements of DOE Safety Guidelines in SG 830.110. The hazards associated with vitrification processes are evaluated using standard safety analysis methods which include: identification of credible potential hazardous energy sources; identification of preventative features of the facility or system; identification of mitigative features; and analyses of credible hazards. Maximal facility inventories of radioactive and hazardous materials are postulated to evaluate worst case accident consequences. These inventories were based on DOE-STD-1027-92 guidance and the surrogate waste streams defined by Mayberry, et al. Radiological assessments indicate that a facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous materials assessment indicates that a Mixed Waste Vitrification facility will be a Low Hazard facility having minimal impacts to offsite personnel and the environment.

  9. Mitigation Monitoring Plan

    SciTech Connect

    Not Available

    1992-09-01

    The Final Supplemental Environmental Impact Report (SEIR) (September 1992) for the Proposed Renewal of the Contract between the United States Department of Energy and The Regents of the University of California for the Operation and Management of the Lawrence Berkeley Laboratory identifies the environmental impacts associated with renewing the contract and specifies a series of measures designed to mitigate adverse impacts to the environment. This Mitigation Monitoring Plan describes the procedures the University will use to implement the mitigation measures adopted in connection with the approval of the Contract.

  10. Recording and cataloging hazards information, revision A

    NASA Technical Reports Server (NTRS)

    Stein, R. J.

    1974-01-01

    A data collection process is described for the purpose of discerning causation factors of accidents, and the establishment of boundaries or controls aimed at mitigating and eliminating accidents. A procedure is proposed that suggests a discipline approach to hazard identification based on energy interrelationships together with an integrated control technique which takes the form of checklists.

  11. 78 FR 78995 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency... Mitigation, Department of Homeland Security, Federal Emergency Management Agency. BILLING CODE 9110-12-P ..., Paris, MI 49338. City of Big Rapids City Hall, 226 North Michigan Avenue, Big Rapids, MI 49307....

  12. Moral hazard.

    PubMed

    Chambers, David W

    2009-01-01

    Civil societies set aside a common pool of resources to help those with whom chance has dealt harshly. Frequently we allow access to these common resources when bad luck is assisted by foolishness and lack of foresight. Sometimes we may even help ourselves to a few of those common assets since others are doing so and they are public goods, the cost of which is shared and has already been paid. Moral hazard is the questionable ethical practice of increasing opportunity for individual gain while shifting risk for loss to the group. Bailout is an example. What makes moral hazard so widespread and difficult to manage is that it is easier for individuals to see their advantage than it is for groups to see theirs. Runaway American healthcare costs can be explained in these terms. Cheating, overtreatment, commercialism, and other moral problems in dentistry can be traced to the interaction between opportunistic individual behavior and permissive group responses common in moral hazard. PMID:19928367

  13. Orbital Debris Mitigation

    NASA Technical Reports Server (NTRS)

    Kelley, R. L.; Jarkey, D. R.; Stansbery, G.

    2014-01-01

    Policies on limiting orbital debris are found throughout the US Government, many foreign space agencies, and as adopted guidelines in the United Nations. The underlying purpose of these policies is to ensure the environment remains safe for the operation of robotic and human spacecraft in near- Earth orbit. For this reason, it is important to consider orbital debris mitigation during the design of all space vehicles. Documenting compliance with the debris mitigation guidelines occurs after the vehicle has already been designed and fabricated for many CubeSats, whereas larger satellites are evaluated throughout the design process. This paper will provide a brief explanation of the US Government Orbital Debris Mitigation Standard Practices, a discussion of international guidelines, as well as NASA's process for compliance evaluation. In addition, it will discuss the educational value of considering orbital debris mitigation requirements as a part of student built satellite design.

  14. Policy thresholds in mitigation

    NASA Astrophysics Data System (ADS)

    Ricke, Katharine L.; Moreno-Cruz, Juan B.; Schewe, Jacob; Levermann, Anders; Caldeira, Ken

    2016-01-01

    Some climate change impacts rise fast with little warming, and then taper off. To avoid diminishing incentives to reduce emissions and inadvertently slipping into a lower-welfare world, mitigation policy needs to be ambitious early on.

  15. Mitigation win-win

    NASA Astrophysics Data System (ADS)

    Moran, Dominic; Lucas, Amanda; Barnes, Andrew

    2013-07-01

    Win-win messages regarding climate change mitigation policies in agriculture tend to oversimplify farmer motivation. Contributions from psychology, cultural evolution and behavioural economics should help to design more effective policy.

  16. Occupational Health Hazards among Healthcare Workers in Kampala, Uganda

    PubMed Central

    Yu, Xiaozhong; Buregyeya, Esther; Musoke, David; Wang, Jia-Sheng; Halage, Abdullah Ali; Whalen, Christopher; Bazeyo, William; Williams, Phillip; Ssempebwa, John

    2015-01-01

    Objective. To assess the occupational health hazards faced by healthcare workers and the mitigation measures. Methods. We conducted a cross-sectional study utilizing quantitative data collection methods among 200 respondents who worked in 8 major health facilities in Kampala. Results. Overall, 50.0% of respondents reported experiencing an occupational health hazard. Among these, 39.5% experienced biological hazards while 31.5% experienced nonbiological hazards. Predictors for experiencing hazards included not wearing the necessary personal protective equipment (PPE), working overtime, job related pressures, and working in multiple health facilities. Control measures to mitigate hazards were availing separate areas and containers to store medical waste and provision of safety tools and equipment. Conclusion. Healthcare workers in this setting experience several hazards in their workplaces. Associated factors include not wearing all necessary protective equipment, working overtime, experiencing work related pressures, and working in multiple facilities. Interventions should be instituted to mitigate the hazards. Specifically PPE supply gaps, job related pressures, and complacence in adhering to mitigation measures should be addressed. PMID:25802531

  17. Community response to hazard information.

    PubMed

    McKay, J M

    1984-06-01

    The impact of flood hazard information on public acceptance of a selected flood mitigation strategy was assessed by an analysis of the content of newspaper reports of community reaction and letters to the editor. The impact of personal delivery of a flood hazard map on individual perception of risk and attitude to such information was assessed using personal interviews. The results indicated that media coverage of the flood hazard information reduced public criticism of the works. This result must be partially attributable to the dramatic style of media coverage and the fact that the media only emphasized the positive value of the works. The interview demonstrated that personal delivery of the information raised perception of risk, improved comprehension of flood risk, had no impact on acceptability of risk but discouraged some respondents from seeking such information in the future. Factors to explain the last negative change were identified to be the format of the map sheet and low salience of flood hazard. On the basis of all results, methods to improve community response to hazard information are provided. PMID:20958565

  18. Transportation of hazardous materials

    SciTech Connect

    Not Available

    1986-07-01

    This report discusses the following: data and information systems for hazardous-materials; containers for hazardous-materials transportation; hazardous-materials transportation regulation; and training for hazardous-materials transportation enforcement and emergency response.

  19. Hazard Interactions and Interaction Networks (Cascades) within Multi-Hazard Methodologies

    NASA Astrophysics Data System (ADS)

    Gill, Joel; Malamud, Bruce D.

    2016-04-01

    Here we combine research and commentary to reinforce the importance of integrating hazard interactions and interaction networks (cascades) into multi-hazard methodologies. We present a synthesis of the differences between 'multi-layer single hazard' approaches and 'multi-hazard' approaches that integrate such interactions. This synthesis suggests that ignoring interactions could distort management priorities, increase vulnerability to other spatially relevant hazards or underestimate disaster risk. We proceed to present an enhanced multi-hazard framework, through the following steps: (i) describe and define three groups (natural hazards, anthropogenic processes and technological hazards/disasters) as relevant components of a multi-hazard environment; (ii) outline three types of interaction relationship (triggering, increased probability, and catalysis/impedance); and (iii) assess the importance of networks of interactions (cascades) through case-study examples (based on literature, field observations and semi-structured interviews). We further propose visualisation frameworks to represent these networks of interactions. Our approach reinforces the importance of integrating interactions between natural hazards, anthropogenic processes and technological hazards/disasters into enhanced multi-hazard methodologies. Multi-hazard approaches support the holistic assessment of hazard potential, and consequently disaster risk. We conclude by describing three ways by which understanding networks of interactions contributes to the theoretical and practical understanding of hazards, disaster risk reduction and Earth system management. Understanding interactions and interaction networks helps us to better (i) model the observed reality of disaster events, (ii) constrain potential changes in physical and social vulnerability between successive hazards, and (iii) prioritise resource allocation for mitigation and disaster risk reduction.

  20. Tsunami: scientific frontiers, mitigation, forecasting and policy implications.

    PubMed

    Bernard, E N; Mofjeld, H O; Titov, V; Synolakis, C E; González, F I

    2006-08-15

    Tsunamis are an ever-present threat to lives and property along the coasts of most of the world's oceans. As the Sumatra tsunami of 26 December 2004 reminded the world, we must be more proactive in developing ways to reduce their impact on our global society. This article provides an overview of the state of knowledge of tsunamis, presents some challenges confronting advances in the field and identifies some promising frontiers leading to a global warning system. This overview is then used to develop guidelines for advancing the science of forecasting, hazard mitigation programmes and the development of public policy to realize a global system. Much of the information on mitigation and forecasting draws upon the development and accomplishments of a joint state/federal partnership that was forged to reduce tsunami hazards along US coastlines-the National Tsunami Hazard Mitigation Programme. By integrating hazard assessment, warning guidance and mitigation activities, the programme has created a roadmap and a set of tools to make communities more resilient to local and distant tsunamis. Among the tools are forecasting, educational programmes, early warning systems and design guidance for tsunami-resilient communities. Information on international cooperation is drawn from the Global Earth Observing System of Systems (GEOSS). GEOSS provides an international framework to assure international compatibility and interoperability for rapid exchange of data and information. PMID:16844645

  1. USGS GNSS Applications to Volcano Disaster Response and Hazard Mitigation

    NASA Astrophysics Data System (ADS)

    Lisowski, M.; McCaffrey, R.

    2015-12-01

    Volcanic unrest is often identified by increased rates of seismicity, deformation, or the release of volcanic gases. Deformation results when ascending magma accumulates in crustal reservoirs, creates new pathways to the surface, or drains from magma reservoirs to feed an eruption. This volcanic deformation is overprinted by deformation from tectonic processes. GNSS monitoring of volcanoes captures transient volcanic deformation and steady and transient tectonic deformation, and we use the TDEFNODE software to unravel these effects. We apply the technique on portions of the Cascades Volcanic arc in central Oregon and in southern Washington that include a deforming volcano. In central Oregon, the regional TDEFNODE model consists of several blocks that rotate and deform internally and a decaying inflationary volcanic pressure source to reproduce the crustal bulge centered ~5 km west of South Sister. We jointly invert 47 interferograms that cover the interval from 1992 to 2010, as well as 2001 to 2015 continuous GNSS (cGNSS) and survey-mode (sGNSS) time series from stations in and around the Three Sisters, Newberry, and Crater Lake areas. A single, smoothly-decaying ~5 km deep spherical or prolate spheroid volcanic pressure source activated around 1998 provides the best fit to the combined geodetic data. In southern Washington, GNSS displacement time-series track decaying deflation of a ~8 km deep magma reservoir that fed the 2004 to 2008 eruption of Mount St. Helens. That deformation reversed when it began to recharge after the eruption ended. Offsets from slow slip events on the Cascadia subduction zone punctuate the GNSS displacement time series, and we remove them by estimating source parameters for these events. This regional TDEFNODE model extends from Mount Rainier south to Mount Hood, and additional volcanic sources could be added if these volcanoes start deforming. Other TDEFNODE regional models are planned for northern Washington (Mount Baker and Glacier Peak), northern California (Mount Shasta, Medicine Lake, Lassen Peak), and Long Valley. These models take advantage of the data from dense GNSS networks, they provide source parameters for volcanic and tectonic transients, and can be used to discriminate possible short- and long-term volcano- tectonic interactions.

  2. LEAD-BASED PAINT HAZARD-MITIGATION TECHNOLOGIES: FINAL REPORT

    EPA Science Inventory

    Lead-based paints (LEP) and primers have been used in the past by the Department of Defense (DoD) to protect steel structures from corrosion. DoD owns about 200 million sq ft of steel structures with lead-based paint (such as bridges, aircraft hangars, water tanks, etc.). The DoD...

  3. USGS GNSS Applications to Earthquake Disaster Response and Hazard Mitigation

    NASA Astrophysics Data System (ADS)

    Hudnut, K. W.; Murray, J. R.; Minson, S. E.

    2015-12-01

    Rapid characterization of earthquake rupture is important during a disaster because it establishes which fault ruptured and the extent and amount of fault slip. These key parameters, in turn, can augment in situ seismic sensors for identifying disruption to lifelines as well as localized damage along the fault break. Differential GNSS station positioning, along with imagery differencing, are important methods for augmenting seismic sensors. During response to recent earthquakes (1989 Loma Prieta, 1992 Landers, 1994 Northridge, 1999 Hector Mine, 2010 El Mayor - Cucapah, 2012 Brawley Swarm and 2014 South Napa earthquakes), GNSS co-seismic and post-seismic observations proved to be essential for rapid earthquake source characterization. Often, we find that GNSS results indicate key aspects of the earthquake source that would not have been known in the absence of GNSS data. Seismic, geologic, and imagery data alone, without GNSS, would miss important details of the earthquake source. That is, GNSS results provide important additional insight into the earthquake source properties, which in turn help understand the relationship between shaking and damage patterns. GNSS also adds to understanding of the distribution of slip along strike and with depth on a fault, which can help determine possible lifeline damage due to fault offset, as well as the vertical deformation and tilt that are vitally important for gravitationally driven water systems. The GNSS processing work flow that took more than one week 25 years ago now takes less than one second. Formerly, portable receivers needed to be set up at a site, operated for many hours, then data retrieved, processed and modeled by a series of manual steps. The establishment of continuously telemetered, continuously operating high-rate GNSS stations and the robust automation of all aspects of data retrieval and processing, has led to sub-second overall system latency. Within the past few years, the final challenges of standardization and adaptation to the existing framework of the ShakeAlert earthquake early warning system have been met, such that real-time GNSS processing and input to ShakeAlert is now routine and in use. Ongoing adaptation and testing of algorithms remain the last step towards fully operational incorporation of GNSS into ShakeAlert by USGS and its partners.

  4. 76 FR 61070 - Disaster Assistance; Hazard Mitigation Grant Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-03

    ... (63 FR 24143), is withdrawn as of October 3, 2011. ADDRESSES: The Notice of Proposed Rulemaking and... not all-inclusive. FEMA published a Notice of Proposed Rulemaking (NPRM) (63 FR 24143, May 1, 1998... development or improvement of warning systems from the list of eligible project types; and modified...

  5. El Nino - La Nina Implications on Flood Hazard Mitigation

    SciTech Connect

    R. French; J. Miller

    2006-03-31

    The effects of El Nino and La Nina periods on the maximum daily winter period depths of precipitation are examined using records from five precipitation gages on the Nevada Test Site. The potential implications of these effects are discussed.

  6. Preparedness and Mitigation Systems for Asian Tsunami-Type Hazards

    NASA Astrophysics Data System (ADS)

    Aswathanarayana, U.

    2005-03-01

    The devastating impact of the 26 December 2004 Indian Ocean tsunami (also known as the Asian tsunami) on coastal communities has been widely reported in the media. The tsunami has so traumatized the public that governments are under pressure to spend vast amounts of money for warning and protective measures against the tsunamis. It should not, however, be forgotten that tsunamis are comparatively rare events, and consequently the expenditure on preparedness should be commensurate with the probability of risk. It is safe to state that the probability of an equally powerful tsunami being triggered at around the same location in the next few decades is low (http://www.msnbc.msn.com/id/6759529/site/newsweek/), for two reasons: (1) The repeat time for Sumatran-type subduction zone earthquakes is typically 200-300 years; and (2) the tsunami of 26 December was rendered so powerful because of the sudden release of the stress energy that accumulated over a long period of time in the area. This does not, however, preclude less powerful tsunamis from being set off in the future at this or other locations in the Sumatran belt.

  7. Space elevator radiation hazards and how to mitigate them.

    SciTech Connect

    Jorgensen, A. M.; Gassend, B.; Friedel, R. H. W.; Cayton, T. E.; Patamia, S. E.

    2004-01-01

    The conclusions of this paper are: (1) the radiation field is severe; (2) shielding with aluminium is not economical; (3) shielding with a magnetic field may be feasible; (4) reducing dose by going gaster is not very effective; (5) larger/heavier climbers are more efficient when shielding with a heavy material (contrary requirement to talk by Ben Shelef); (6) climber mass and cost to orbit are impacted; and (7) power requirement could be impacted.

  8. Emerging Radiation Health-Risk Mitigation Technologies

    SciTech Connect

    Wilson, J.W.; Cucinotta, F.A.; Schimmerling, W.

    2004-02-04

    Past space missions beyond the confines of the Earth's protective magnetic field have been of short duration and protection from the effects of solar particle events was of primary concern. The extension of operational infrastructure beyond low-Earth orbit to enable routine access to more interesting regions of space will require protection from the hazards of the accumulated exposures of Galactic Cosmic Rays (GCR). There are significant challenges in providing protection from the long-duration exposure to GCR: the human risks to the exposures are highly uncertain and safety requirements places unreasonable demands in supplying sufficient shielding materials in the design. A vigorous approach to future radiation health-risk mitigation requires a triage of techniques (using biological and technical factors) and reduction of the uncertainty in radiation risk models. The present paper discusses the triage of factors for risk mitigation with associated materials issues and engineering design methods.

  9. Communicating Volcanic Hazards in the North Pacific

    NASA Astrophysics Data System (ADS)

    Dehn, J.; Webley, P.; Cunningham, K. W.

    2014-12-01

    For over 25 years, effective hazard communication has been key to effective mitigation of volcanic hazards in the North Pacific. These hazards are omnipresent, with a large event happening in Alaska every few years to a decade, though in many cases can happen with little or no warning (e.g. Kasatochi and Okmok in 2008). Here a useful hazard mitigation strategy has been built on (1) a large database of historic activity from many datasets, (2) an operational alert system with graduated levels of concern, (3) scenario planning, and (4) routine checks and communication with emergency managers and the public. These baseline efforts are then enhanced in the time of crisis with coordinated talking points, targeted studies and public outreach. Scientists naturally tend to target other scientists as their audience, whereas in effective monitoring of hazards that may only occur on year to decadal timescales, details can distract from the essentially important information. Creating talking points and practice in public communications can help make hazard response a part of the culture. Promoting situational awareness and familiarity can relieve indecision and concerns at the time of a crisis.

  10. Earthquake hazards: a national threat

    USGS Publications Warehouse

    U.S. Geological Survey

    2006-01-01

    Earthquakes are one of the most costly natural hazards faced by the Nation, posing a significant risk to 75 million Americans in 39 States. The risks that earthquakes pose to society, including death, injury, and economic loss, can be greatly reduced by (1) better planning, construction, and mitigation practices before earthquakes happen, and (2) providing critical and timely information to improve response after they occur. As part of the multi-agency National Earthquake Hazards Reduction Program, the U.S. Geological Survey (USGS) has the lead Federal responsibility to provide notification of earthquakes in order to enhance public safety and to reduce losses through effective forecasts based on the best possible scientific information.

  11. Landslide Hazards - A National Threat

    USGS Publications Warehouse

    U.S. Geological Survey

    2005-01-01

    Landslides occur and can cause damage in all 50 States. Severe storms, earthquakes, volcanic activity, coastal wave attack, and wildfires can cause widespread slope instability. Landslide danger may be high even as emergency personnel are providing rescue and recovery services. To address landslide hazards, several questions must be considered: Where and when will landslides occur? How big will the landslides be? How fast and how far will they move? What areas will the landslides affect or damage? How frequently do landslides occur in a given area? Answers to these questions are needed to make accurate landslide hazard maps and forecasts of landslide occurrence, and to provide information on how to avoid or mitigate landslide impacts. The U.S. Geological Survey develops methods to answer these questions to help protect U.S. communities from the dangers of landslides.

  12. Satellite Breakup Risk Mitigation

    NASA Technical Reports Server (NTRS)

    Leleux, Darrin P.; Smith, Jason T.

    2006-01-01

    Many satellite breakups occur as a result of an explosion of stored energy on-board spacecraft or rocket-bodies. These breakups generate a cloud of tens or possibly hundreds of thousands of debris fragments which may pose a transient elevated threat to spaceflight crews and vehicles. Satellite breakups pose a unique threat because the majority of the debris fragments are too small to be tracked from the ground. The United States Human Spaceflight Program is currently implementing a risk mitigation strategy that includes modeling breakup events, establishing action thresholds, and prescribing corresponding mitigation actions in response to satellite breakups.

  13. Human error mitigation initiative (HEMI) : summary report.

    SciTech Connect

    Stevens, Susan M.; Ramos, M. Victoria; Wenner, Caren A.; Brannon, Nathan Gregory

    2004-11-01

    Despite continuing efforts to apply existing hazard analysis methods and comply with requirements, human errors persist across the nuclear weapons complex. Due to a number of factors, current retroactive and proactive methods to understand and minimize human error are highly subjective, inconsistent in numerous dimensions, and are cumbersome to characterize as thorough. An alternative and proposed method begins with leveraging historical data to understand what the systemic issues are and where resources need to be brought to bear proactively to minimize the risk of future occurrences. An illustrative analysis was performed using existing incident databases specific to Pantex weapons operations indicating systemic issues associated with operating procedures that undergo notably less development rigor relative to other task elements such as tooling and process flow. Future recommended steps to improve the objectivity, consistency, and thoroughness of hazard analysis and mitigation were delineated.

  14. Volcanic hazard management in dispersed volcanism areas

    NASA Astrophysics Data System (ADS)

    Marrero, Jose Manuel; Garcia, Alicia; Ortiz, Ramon

    2014-05-01

    Traditional volcanic hazard methodologies were developed mainly to deal with the big stratovolcanoes. In such type of volcanoes, the hazard map is an important tool for decision-makers not only during a volcanic crisis but also for territorial planning. According to the past and recent eruptions of a volcano, all possible volcanic hazards are modelled and included in the hazard map. Combining the hazard map with the Event Tree the impact area can be zoned and defining the likely eruptive scenarios that will be used during a real volcanic crisis. But in areas of disperse volcanism is very complex to apply the same volcanic hazard methodologies. The event tree do not take into account unknown vents, because the spatial concepts included in it are only related with the distance reached by volcanic hazards. The volcanic hazard simulation is also difficult because the vent scatter modifies the results. The volcanic susceptibility try to solve this problem, calculating the most likely areas to have an eruption, but the differences between low and large values obtained are often very small. In these conditions the traditional hazard map effectiveness could be questioned, making necessary a change in the concept of hazard map. Instead to delimit the potential impact areas, the hazard map should show the expected behaviour of the volcanic activity and how the differences in the landscape and internal geo-structures could condition such behaviour. This approach has been carried out in La Palma (Canary Islands), combining the concept of long-term hazard map with the short-term volcanic scenario to show the expected volcanic activity behaviour. The objective is the decision-makers understand how a volcanic crisis could be and what kind of mitigation measurement and strategy could be used.

  15. NASA Hazard Analysis Process

    NASA Technical Reports Server (NTRS)

    Deckert, George

    2010-01-01

    This viewgraph presentation reviews The NASA Hazard Analysis process. The contents include: 1) Significant Incidents and Close Calls in Human Spaceflight; 2) Subsystem Safety Engineering Through the Project Life Cycle; 3) The Risk Informed Design Process; 4) Types of NASA Hazard Analysis; 5) Preliminary Hazard Analysis (PHA); 6) Hazard Analysis Process; 7) Identify Hazardous Conditions; 8) Consider All Interfaces; 9) Work a Preliminary Hazard List; 10) NASA Generic Hazards List; and 11) Final Thoughts

  16. Financing recreational mitigation

    SciTech Connect

    Hennagir, T.

    1995-07-01

    Recreational resource area mitigation remains an important operational requirement for hydropower project owners, especially in the western United States. Increasingly, producers of electric capacity must accommodate a rapidly growing demand for public recreation, providing opportunities in accordance with Federal Energy Regulatory Commission (FERC) relicensing requirements.

  17. Space Debris Mitigation Guidelines

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2011-01-01

    The purpose of national and international space debris mitigation guides is to promote the preservation of near-Earth space for applications and exploration missions far into the future. To accomplish this objective, the accumulation of objects, particularly in long-lived orbits, must be eliminated or curtailed.

  18. Flood Hazard Recurrence Frequencies for the Savannah River Site

    SciTech Connect

    Chen, K.F.

    2001-07-11

    Department of Energy (DOE) regulations outline the requirements for Natural Phenomena Hazard (NPH) mitigation for new and existing DOE facilities. The NPH considered in this report is flooding. The facility-specific probabilistic flood hazard curve defines, as a function of water elevation, the annual probability of occurrence or the return period in years. The facility-specific probabilistic flood hazard curves provide basis to avoid unnecessary facility upgrades, to establish appropriate design criteria for new facilities, and to develop emergency preparedness plans to mitigate the consequences of floods. A method based on precipitation, basin runoff and open channel hydraulics was developed to determine probabilistic flood hazard curves for the Savannah River Site. The calculated flood hazard curves show that the probabilities of flooding existing SRS major facilities are significantly less than 1.E-05 per year.

  19. Health Hazard Evaluations

    MedlinePlus

    ... Products Programs Contact NIOSH HHE Media Health Hazard Evaluations (HHEs) Language: English en Español Recommend on Facebook ... or employers can ask the NIOSH Health Hazard Evaluation (HHE) Program to help learn whether health hazards ...

  20. Action on Hazardous Wastes.

    ERIC Educational Resources Information Center

    EPA Journal, 1979

    1979-01-01

    U.S. EPA is gearing up to investigate about 300 hazardous waste dump sites per year that could pose an imminent health hazard. Prosecutions are expected to result from the priority effort at investigating illegal hazardous waste disposal. (RE)

  1. Dust: A major environmental hazard on the earth's moon

    SciTech Connect

    Heiken, G.; Vaniman, D.; Lehnert, B.

    1990-01-01

    On the Earth's Moon, obvious hazards to humans and machines are created by extreme temperature fluctuations, low gravity, and the virtual absence of any atmosphere. The most important other environmental factor is ionizing radiation. Less obvious environmental hazards that must be considered before establishing a manned presence on the lunar surface are the hazards from micrometeoroid bombardment, the nuisance of electro-statically-charged lunar dust, and an alien visual environment without familiar clues. Before man can establish lunar bases and lunar mining operations, and continue the exploration of that planet, we must develop a means of mitigating these hazards. 4 refs.

  2. Dust: A major environmental hazard on the Earth's moon

    NASA Astrophysics Data System (ADS)

    Heiken, Grant; Vaniman, David; Lehnert, Bruce

    On the Earth's Moon, obvious hazards to humans and machines are created by extreme temperature fluctuations, low gravity, and the virtual absence of any atmosphere. The most important other environmental factor is ionizing radiation. Less obvious environmental hazards that must be considered before establishing a manned presence on the lunar surface are the hazards from micrometeoroid bombardment, the nuisance of electro-statically-charged lunar dust, and an alien visual environment without familiar clues. Before man can establish lunar bases and lunar mining operations, and continue the exploration of that planet, we must develop a means of mitigating these hazards.

  3. Mitigating Infectious Disease Outbreaks

    NASA Astrophysics Data System (ADS)

    Davey, Victoria

    The emergence of new, transmissible infections poses a significant threat to human populations. As the 2009 novel influenza A/H1N1 pandemic and the 2014-2015 Ebola epidemic demonstrate, we have observed the effects of rapid spread of illness in non-immune populations and experienced disturbing uncertainty about future potential for human suffering and societal disruption. Clinical and epidemiologic characteristics of a newly emerged infectious organism are usually gathered in retrospect as the outbreak evolves and affects populations. Knowledge of potential effects of outbreaks and epidemics and most importantly, mitigation at community, regional, national and global levels is needed to inform policy that will prepare and protect people. Study of possible outcomes of evolving epidemics and application of mitigation strategies is not possible in observational or experimental research designs, but computational modeling allows conduct of `virtual' experiments. Results of well-designed computer simulations can aid in the selection and implementation of strategies that limit illness and death, and maintain systems of healthcare and other critical resources that are vital to public protection. Mitigating Infectious Disease Outbreaks.

  4. The Integrated Hazard Analysis Integrator

    NASA Technical Reports Server (NTRS)

    Morris, A. Terry; Massie, Michael J.

    2009-01-01

    Hazard analysis addresses hazards that arise in the design, development, manufacturing, construction, facilities, transportation, operations and disposal activities associated with hardware, software, maintenance, operations and environments. An integrated hazard is an event or condition that is caused by or controlled by multiple systems, elements, or subsystems. Integrated hazard analysis (IHA) is especially daunting and ambitious for large, complex systems such as NASA s Constellation program which incorporates program, systems and element components that impact others (International Space Station, public, International Partners, etc.). An appropriate IHA should identify all hazards, causes, controls and verifications used to mitigate the risk of catastrophic loss of crew, vehicle and/or mission. Unfortunately, in the current age of increased technology dependence, there is the tendency to sometimes overlook the necessary and sufficient qualifications of the integrator, that is, the person/team that identifies the parts, analyzes the architectural structure, aligns the analysis with the program plan and then communicates/coordinates with large and small components, each contributing necessary hardware, software and/or information to prevent catastrophic loss. As viewed from both Challenger and Columbia accidents, lack of appropriate communication, management errors and lack of resources dedicated to safety were cited as major contributors to these fatalities. From the accident reports, it would appear that the organizational impact of managers, integrators and safety personnel contributes more significantly to mission success and mission failure than purely technological components. If this is so, then organizations who sincerely desire mission success must put as much effort in selecting managers and integrators as they do when designing the hardware, writing the software code and analyzing competitive proposals. This paper will discuss the necessary and

  5. Natural Hazard Assessment and Communication in the Central United States

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Lynch, M. J.

    2009-12-01

    In the central United States, natural hazards, such as floods, tornados, ice storms, droughts, and earthquakes, result in significant damages and losses of life every year. For example, the February 5-6, 2008 tornado touched down in nine states (Alabama, Arkansas, Illinois, Indiana, Kentucky, Mississippi, Missouri, and Tennessee), killing 57, injuring 350, and causing more than 1.0 billion in damages. The January 2009 ice storm struck Arkansas, Illinois, Indiana, Kentucky, Missouri, Ohio, Tennessee, and West Virginia, killing 36 and causing more than 1.0 billion in damages. It is a great challenge for the society to develop an effective policy for mitigating these natural hazards in the central United States. However, the development of an effective policy starts with a good assessment of the natural hazards. Scientists play a key role in assessing the natural hazards. Therefore, scientists play an important role in the development of an effective policy for the natural hazard mitigation. It is critical for scientists to clearly define, quantify, and communicate the hazard assessments, including the associated uncertainties which are a key factor in policy decision making, to end-users. Otherwise, end-users will have difficulty understanding and using the information provided. For example, ground motion hazard maps with 2, 5, and 10 percent probabilities of exceedance (PE) in 50 years in the central United States have been produced for seismic hazard mitigation purpose. End-users have difficulty understanding and using the maps, however, which has led to either indecision or ineffective policy for seismic hazard mitigation in many communities in the central United States.

  6. Natural phenomena hazards site characterization criteria

    SciTech Connect

    Not Available

    1994-03-01

    The criteria and recommendations in this standard shall apply to site characterization for the purpose of mitigating Natural Phenomena Hazards (wind, floods, landslide, earthquake, volcano, etc.) in all DOE facilities covered by DOE Order 5480.28. Criteria for site characterization not related to NPH are not included unless necessary for clarification. General and detailed site characterization requirements are provided in areas of meteorology, hydrology, geology, seismology, and geotechnical studies.

  7. Creating Probabilistic Multi-Peril Hazard Maps

    NASA Astrophysics Data System (ADS)

    Holliday, J. R.; Page, N. A.; Rundle, J. B.

    2011-12-01

    An often overlooked component of natural hazards is the element of human involvement. Physical events--such as massive earthquakes--that do not affect society constitute natural phenomena, but are not necessarily natural hazards. Natural phenomena that occur in populated areas constitute hazardous events. Furthermore, hazardous events that cause damage--either in the form of structural damage or the loss or injury of lives--constitute natural disasters. Geographic areas that do not contain human interests, by definition, cannot suffer from hazardous events. Therefore, they do not contain a component of natural hazard. Note that this definition differs from the view of natural hazards as "unavoidable havoc wreaked by the unrestrained forces of nature". On the contrary, the burden of cause is shifted from purely natural processes to the concurrent presence of human society and natural events. Although individuals can do little to change the occurrences or intensities of most natural phenomena, they can mitigate their exposure to natural events and help ensure hazardous events do not become natural disasters. For example, choosing to build new settlements in known flood zones increases the exposure--and therefore risk--to natural flood events. Similarly, while volcanoes do erupt periodically, it is the conscious act of reappropriating the rich soils formed by ejecta as farmland that makes the volcanoes hazardous. Again, this empowers individuals and makes them responsible for their own exposure to natural hazards. Various local and governmental agencies--in particular, the United States Geographical Survey (USGS)--do a good job of identifying and listing various local natural hazards. These listings, however, are often treated individually and independently. Thus, it is often difficult to construct a "big picture" image of total natural hazard exposure. In this presentation, we discuss methods of identifying and combining different natural hazards for a given location

  8. Preliminary hazards analysis for the National Ignition Facility

    SciTech Connect

    Brereton, S.J.

    1993-10-01

    This report documents the Preliminary Hazards Analysis (PHA) for the National Ignition Facility (NIF). In summary, it provides: a general description of the facility and its operation; identification of hazards at the facility; and details of the hazards analysis, including inventories, bounding releases, consequences, and conclusions. As part of the safety analysis procedure set forth by DOE, a PHA must be performed for the NIF. The PHA characterizes the level of intrinsic potential hazard associated with a facility, and provides the basis for hazard classification. The hazard classification determines the level of safety documentation required, and the DOE Order governing the safety analysis. The hazard classification also determines the level of review and approval required for the safety analysis report. The hazards of primary concern associated with NIF are radiological and toxicological in nature. The hazard classification is determined by comparing facility inventories of radionuclides and chemicals with threshold values for the various hazard classification levels and by examining postulated bounding accidents associated with the hazards of greatest significance. Such postulated bounding accidents cannot take into account active mitigative features; they must assume the unmitigated consequences of a release, taking into account only passive safety features. In this way, the intrinsic hazard level of the facility can be ascertained.

  9. Identifying hazard parameter to develop quantitative and dynamic hazard map of an active volcano in Indonesia

    NASA Astrophysics Data System (ADS)

    Suminar, Wulan; Saepuloh, Asep; Meilano, Irwan

    2016-05-01

    Analysis of hazard assessment to active volcanoes is crucial for risk management. The hazard map of volcano provides information to decision makers and communities before, during, and after volcanic crisis. The rapid and accurate hazard assessment, especially to an active volcano is necessary to be developed for better mitigation on the time of volcanic crises in Indonesia. In this paper, we identified the hazard parameters to develop quantitative and dynamic hazard map of an active volcano. The Guntur volcano in Garut Region, West Java, Indonesia was selected as study area due population are resided adjacent to active volcanoes. The development of infrastructures, especially related to tourism at the eastern flank from the Summit, are growing rapidly. The remote sensing and field investigation approaches were used to obtain hazard parameters spatially. We developed a quantitative and dynamic algorithm to map spatially hazard potential of volcano based on index overlay technique. There were identified five volcano hazard parameters based on Landsat 8 and ASTER imageries: volcanic products including pyroclastic fallout, pyroclastic flows, lava and lahar, slope topography, surface brightness temperature, and vegetation density. Following this proposed technique, the hazard parameters were extracted, indexed, and calculated to produce spatial hazard values at and around Guntur Volcano. Based on this method, the hazard potential of low vegetation density is higher than high vegetation density. Furthermore, the slope topography, surface brightness temperature, and fragmental volcanic product such as pyroclastics influenced to the spatial hazard value significantly. Further study to this proposed approach will be aimed for effective and efficient analyses of volcano risk assessment.

  10. A web-based tool for ranking landslide mitigation measures

    NASA Astrophysics Data System (ADS)

    Lacasse, S.; Vaciago, G.; Choi, Y. J.; Kalsnes, B.

    2012-04-01

    As part of the research done in the European project SafeLand "Living with landslide risk in Europe: Assessment, effects of global change, and risk management strategies", a compendium of structural and non-structural mitigation measures for different landslide types in Europe was prepared, and the measures were assembled into a web-based "toolbox". Emphasis was placed on providing a rational and flexible framework applicable to existing and future mitigation measures. The purpose of web-based toolbox is to assist decision-making and to guide the user in the choice of the most appropriate mitigation measures. The mitigation measures were classified into three categories, describing whether the mitigation measures addressed the landslide hazard, the vulnerability or the elements at risk themselves. The measures considered include structural measures reducing hazard and non-structural mitigation measures, reducing either the hazard or the consequences (or vulnerability and exposure of elements at risk). The structural measures include surface protection and control of surface erosion; measures modifying the slope geometry and/or mass distribution; measures modifying surface water regime - surface drainage; measures mo¬difying groundwater regime - deep drainage; measured modifying the mechanical charac¬teristics of unstable mass; transfer of loads to more competent strata; retaining structures (to modify slope geometry and/or to transfer stress to compe¬tent layer); deviating the path of landslide debris; dissipating the energy of debris flows; and arresting and containing landslide debris or rock fall. The non-structural mitigation measures, reducing either the hazard or the consequences: early warning systems; restricting or discouraging construction activities; increasing resistance or coping capacity of elements at risk; relocation of elements at risk; sharing of risk through insurance. The measures are described in the toolbox with fact sheets providing a

  11. Occupational Hazards of Farming

    PubMed Central

    White, Gill; Cessna, Allan

    1989-01-01

    A number of occupational hazards exist for the farmer and farm worker. They include the hazards of farm machinery, biologic and chemical hazards, and social and environmental stresses. Recognizing of these hazards will help the family physician care for farmers and their families. PMID:21248929

  12. Relative Hazard and Risk Measure Calculation Methodology

    SciTech Connect

    Stenner, Robert D.; Strenge, Dennis L.; Elder, Matthew S.

    2004-03-20

    The relative hazard (RH) and risk measure (RM) methodology and computer code is a health risk-based tool designed to allow managers and environmental decision makers the opportunity to readily consider human health risks (i.e., public and worker risks) in their screening-level analysis of alternative cleanup strategies. Environmental management decisions involve consideration of costs, schedules, regulatory requirements, health hazards, and risks. The RH-RM tool is a risk-based environmental management decision tool that allows managers the ability to predict and track health hazards and risks over time as they change in relation to mitigation and cleanup actions. Analysis of the hazards and risks associated with planned mitigation and cleanup actions provides a baseline against which alternative strategies can be compared. This new tool allows managers to explore “what if scenarios,” to better understand the impact of alternative mitigation and cleanup actions (i.e., alternatives to the planned actions) on health hazards and risks. This new tool allows managers to screen alternatives on the basis of human health risk and compare the results with cost and other factors pertinent to the decision. Once an alternative or a narrow set of alternatives are selected, it will then be more cost-effective to perform the detailed risk analysis necessary for programmatic and regulatory acceptance of the selected alternative. The RH-RM code has been integrated into the PNNL developed Framework for Risk Analysis In Multimedia Environmental Systems (FRAMES) to allow the input and output data of the RH-RM code to be readily shared with the more comprehensive risk analysis models, such as the PNNL developed Multimedia Environmental Pollutant Assessment System (MEPAS) model.

  13. Flood Hazard Assessment for the Savannah River Site

    SciTech Connect

    Chen, K.F.

    1999-07-08

    'A method was developed to determine the probabilistic flood elevation curves for certain Savannah River Site (SRS) facilities. This paper presents the method used to determine the probabilistic flood elevation curve for F-Area due to runoff from the Upper Three Runs basin. Department of Energy (DOE) Order 420.1, Facility Safety, outlines the requirements for Natural Phenomena Hazard (NPH) mitigation for new and existing DOE facilities. The NPH considered in this paper is flooding. The facility-specific probabilistic flood hazard curve defines as a function of water elevation the annual probability of occurrence or the return period in years. Based on facility-specific probabilistic flood hazard curves and the nature of facility operations (e.g., involving hazardous or radioactive materials), facility managers can design permanent or temporary devices to prevent the propagation of flood on site, and develop emergency preparedness plans to mitigate the consequences of floods.'

  14. 78 FR 78992 - Proposed Flood Hazard Determinations for Plaquemines Parish, Louisiana and Incorporated Areas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ... Luis Rodriguez, Chief, Engineering Management Branch, Federal Insurance and Mitigation Administration... . SUPPLEMENTARY INFORMATION: On April 4, 2013, FEMA published proposed notices at 78 FR 20340 and 78 FR 20341... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations for Plaquemines...

  15. Zebra mussel mitigation; overview

    SciTech Connect

    Claudi, R.

    1995-06-01

    Zebra mussels cause a number of problems to industrial raw water users as well as having serious impact on civil structures exposed to mussel infested waters. The largest volume of water (up to 90% of the total) drawn into most industrial and power generating plants, is for cooling and heat transfer. The rest of the volume is used for other plant processes, such as make-up in steam systems, and service systems used for cleaning, air conditions, fire protection and human consumption. All raw water systems are vulnerable to zebra mussel infestation to greater or lesser degree. To-date, many different chemical and non-chemical techniques for zebra mussel control have been investigated. However, the treatment of choice for most facilities is based on chemical control. This has been the common practice in Europe and so far it has been the case in North America. This is likely to change as the environmental constraints on release of chemicals into natural water bodies continue to increase. This paper deals with the different steps raw water users should take when deciding on a mitigation strategy, the mitigation measures available to-date and those that have been proposed for the control of zebra mussels in industrial systems.

  16. Social and ethical perspectives of landslide risk mitigation measures

    NASA Astrophysics Data System (ADS)

    Kalsnes, Bjørn; Vangelsten, Bjørn V.

    2015-04-01

    Landslide risk may be mitigated by use of a wide range of measures. Mitigation and prevention options may include (1) structural measures to reduce the frequency, severity or exposure to the hazard, (2) non-structural measures, such as land-use planning and early warning systems, to reduce the hazard frequency and consequences, and (3) measures to pool and transfer the risks. In a given situation the appropriate system of mitigation measures may be a combination of various types of measures, both structural and non-structural. In the process of choosing mitigation measures for a given landslide risk situation, the role of the geoscientist is normally to propose possible mitigation measures on basis of the risk level and technical feasibility. Social and ethical perspectives are often neglected in this process. However, awareness of the need to consider social as well as ethical issues in the design and management of mitigating landslide risk is rising. There is a growing understanding that technical experts acting alone cannot determine what will be considered the appropriate set of mitigation and prevention measures. Issues such as environment versus development, questions of acceptable risk, who bears the risks and benefits, and who makes the decisions, also need to be addressed. Policymakers and stakeholders engaged in solving environmental risk problems are increasingly recognising that traditional expert-based decision-making processes are insufficient. This paper analyse the process of choosing appropriate mitigation measures to mitigate landslide risk from a social and ethical perspective, considering technical, cultural, economical, environmental and political elements. The paper focus on stakeholder involvement in the decision making process, and shows how making strategies for risk communication is a key for a successful process. The study is supported by case study examples from Norway and Italy. In the Italian case study, three different risk mitigation

  17. Building Better Volcanic Hazard Maps Through Scientific and Stakeholder Collaboration

    NASA Astrophysics Data System (ADS)

    Thompson, M. A.; Lindsay, J. M.; Calder, E.

    2015-12-01

    All across the world information about natural hazards such as volcanic eruptions, earthquakes and tsunami is shared and communicated using maps that show which locations are potentially exposed to hazards of varying intensities. Unlike earthquakes and tsunami, which typically produce one dominant hazardous phenomenon (ground shaking and inundation, respectively) volcanic eruptions can produce a wide variety of phenomena that range from near-vent (e.g. pyroclastic flows, ground shaking) to distal (e.g. volcanic ash, inundation via tsunami), and that vary in intensity depending on the type and location of the volcano. This complexity poses challenges in depicting volcanic hazard on a map, and to date there has been no consistent approach, with a wide range of hazard maps produced and little evaluation of their relative efficacy. Moreover, in traditional hazard mapping practice, scientists analyse data about a hazard, and then display the results on a map that is then presented to stakeholders. This one-way, top-down approach to hazard communication does not necessarily translate into effective hazard education, or, as tragically demonstrated by Nevado del Ruiz, Columbia in 1985, its use in risk mitigation by civil authorities. Furthermore, messages taken away from a hazard map can be strongly influenced by its visual design. Thus, hazard maps are more likely to be useful, usable and used if relevant stakeholders are engaged during the hazard map process to ensure a) the map is designed in a relevant way and b) the map takes into account how users interpret and read different map features and designs. The IAVCEI Commission on Volcanic Hazards and Risk has recently launched a Hazard Mapping Working Group to collate some of these experiences in graphically depicting volcanic hazard from around the world, including Latin America and the Caribbean, with the aim of preparing some Considerations for Producing Volcanic Hazard Maps that may help map makers in the future.

  18. Hazard function theory for nonstationary natural hazards

    NASA Astrophysics Data System (ADS)

    Read, L.; Vogel, R. M.

    2015-12-01

    Studies from the natural hazards literature indicate that many natural processes, including wind speeds, landslides, wildfires, precipitation, streamflow and earthquakes, show evidence of nonstationary behavior such as trends in magnitudes through time. Traditional probabilistic analysis of natural hazards based on partial duration series (PDS) generally assumes stationarity in the magnitudes and arrivals of events, i.e. that the probability of exceedance is constant through time. Given evidence of trends and the consequent expected growth in devastating impacts from natural hazards across the world, new methods are needed to characterize their probabilistic behavior. The field of hazard function analysis (HFA) is ideally suited to this problem because its primary goal is to describe changes in the exceedance probability of an event over time. HFA is widely used in medicine, manufacturing, actuarial statistics, reliability engineering, economics, and elsewhere. HFA provides a rich theory to relate the natural hazard event series (x) with its failure time series (t), enabling computation of corresponding average return periods and reliabilities associated with nonstationary event series. This work investigates the suitability of HFA to characterize nonstationary natural hazards whose PDS magnitudes are assumed to follow the widely applied Poisson-GP model. We derive a 2-parameter Generalized Pareto hazard model and demonstrate how metrics such as reliability and average return period are impacted by nonstationarity and discuss the implications for planning and design. Our theoretical analysis linking hazard event series x, with corresponding failure time series t, should have application to a wide class of natural hazards.

  19. Reviewing and visualising relationships between anthropic processes and natural hazards within a multi-hazard framework

    NASA Astrophysics Data System (ADS)

    Gill, Joel C.; Malamud, Bruce D.

    2014-05-01

    Here we present a broad overview of the interaction relationships between 17 anthropic processes and 21 different natural hazard types. Anthropic processes are grouped into seven categories (subsurface extraction, subsurface addition, land use change, explosions, hydrological change, surface construction processes, miscellaneous). Natural hazards are grouped into six categories (geophysical, hydrological, shallow earth processes, atmospheric, biophysical and space). A wide-ranging review based on grey- and peer-reviewed literature from many scientific disciplines identified 54 relationships where anthropic processes have been noted to trigger natural hazards. We record case studies for all but three of these relationships. Based on the results of this review, we find that the anthropic processes of deforestation, explosions (conventional and nuclear) and reservoir construction could trigger the widest range of different natural hazard types. We also note that within the natural hazards, landslides and earthquakes are those that could be triggered by the widest range of anthropic processes. This work also examines the possibility of anthropic processes (i) resulting in an increased occurrence of a particular hazard interaction (e.g., deforestation could result in an increased interaction between storms and landslides); and (ii) inadvertently reducing the likelihood of a natural hazard or natural hazard interaction (e.g., poor drainage or deforestation reducing the likelihood of wildfires triggered by lightning). This study synthesises, using accessible visualisation techniques, the large amounts of anthropic process and natural hazard information from our review. In it we have outlined the importance of considering anthropic processes within any analysis of hazard interactions, and we reinforce the importance of a holistic approach to natural hazard assessment, mitigation and management.

  20. Examination of Icing Induced Loss of Control and Its Mitigations

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.; Addy, Harold E., Jr.; Colantonio, Renato O.

    2010-01-01

    Factors external to the aircraft are often a significant causal factor in loss of control (LOC) accidents. In today s aviation world, very few accidents stem from a single cause and typically have a number of causal factors that culminate in a LOC accident. Very often the "trigger" that initiates an accident sequence is an external environment factor. In a recent NASA statistical analysis of LOC accidents, aircraft icing was shown to be the most common external environmental LOC causal factor for scheduled operations. When investigating LOC accident or incidents aircraft icing causal factors can be categorized into groups of 1) in-flight encounter with super-cooled liquid water clouds, 2) take-off with ice contamination, or 3) in-flight encounter with high concentrations of ice crystals. As with other flight hazards, icing induced LOC accidents can be prevented through avoidance, detection, and recovery mitigations. For icing hazards, avoidance can take the form of avoiding flight into icing conditions or avoiding the hazard of icing by making the aircraft tolerant to icing conditions. Icing detection mitigations can take the form of detecting icing conditions or detecting early performance degradation caused by icing. Recovery from icing induced LOC requires flight crew or automated systems capable of accounting for reduced aircraft performance and degraded control authority during the recovery maneuvers. In this report we review the icing induced LOC accident mitigations defined in a recent LOC study and for each mitigation describe a research topic required to enable or strengthen the mitigation. Many of these research topics are already included in ongoing or planned NASA icing research activities or are being addressed by members of the icing research community. These research activities are described and the status of the ongoing or planned research to address the technology needs is discussed

  1. Use of Space Technology in Flood Mitigation (Western Province, Zambia)

    NASA Astrophysics Data System (ADS)

    Mulando, A.

    2001-05-01

    Disasters, by definition are events that appear suddenly and with little warning. They are usually short lived, with extreme events bringing death, injury and destruction of buildings and communications. Their aftermath can be as damaging as their physical effects through destruction of sanitation and water supplies, destruction of housing and breakdown of transport for food, temporary shelter and emergency services. Since floods are one of the natural disasters which endanger both life and property, it becomes vital to know its extents and where the hazards exists. Flood disasters manifest natural processes on a larger scale and information provided by Remote Sensing is a most appropriate input to analysis of actual events and investigations of potential risks. An analytical and qualitative image processing and interpretation of Remotely Sensed data as well as other data such as rainfall, population, settlements not to mention but a few should be used to derive good mitigation strategies. Since mitigation is the cornerstone of emergency management, it therefore becomes a sustained action that will reduce or eliminate long term risks to people and property from natural hazards such as floods and their effects. This will definitely involve keeping of homes and other sensitive structures away from flood plains. Promotion of sound land use planning based on this known hazard, "FLOODS" is one such form of mitigation that can be applied in flood affected areas within flood plain. Therefore future mitigation technologies and procedures should increasingly be based on the use of flood extent information provided by Remote Sensing Satellites like the NOAA AVHRR as well as information on the designated flood hazard and risk areas.

  2. Managing uncertainties of hazard risks - adaptation strategies to sustain human security

    NASA Astrophysics Data System (ADS)

    Liotta, P.; Klose, C. D.

    2010-12-01

    With regard to severities of natural forces events, measures to mitigate associated hazard risks take place under high uncertainties (i.e., information entropy). In terms of decision making, this fog of uncertainties “tends to make things seem grotesque and larger than they really are." (v. Clausewitz) Thus, expected socioeconomic risks associated with nature- or human-triggered hazards range over a wide spectrum and make decision making processes often cumbersome (e.g, 2005 Hurricane Katrina, 2010 Mexican Golf coast oil spills). Here, we present strategies with several tactical measures to mitigate expected risks and improve human security. Both, hazard and vulnerability mitigation/reduction strategies will be discussed in the context of nature-triggered hazards (e.g., volcanic, atmospheric events) and human-triggered hazards (e.g., earthquakes, environmental changes).

  3. Planning Tools For Seismic Risk Mitigation. Rules And Applications

    SciTech Connect

    De Paoli, Rosa Grazia

    2008-07-08

    Recently, Italian urban planning research in the field of seismic risk mitigation are renewing. In particular, it promotes strategies that integrate urban rehabilitation and aseismic objectives, and also politicizes that are directed to revitalizes urban systems, coupling physical renewal and socio-economic development.In Italy the first law concerning planning for seismic mitigation dates back 1974, the law n. 64 'Regulation for buildings with particular rules for the seismic areas' where the rules for buildings in seismic areas concerning also the local hazard. This law, in fact, forced the municipalities to acquire, during the formation of the plans, a preventive opinion of compatibility between planning conditions and geomorphology conditions of the territory. From this date the conviction that the seismic risk must be considered inside the territorial planning especially in terms of strategies of mitigation has been strengthened.The town planners have started to take an interest in seismic risk in the [80]s when the Irpinia's earthquake took place. The researches developed after this earthquake have established that the principal cause of the collapse of buildings are due to from the wrong location of urban settlements (on slopes or crowns) After Irpinia's earthquake the first researches on seismic risk mitigation, in particular on the aspects related to the hazards and to the urban vulnerability were made.

  4. RFI Mitigation for FAST

    NASA Astrophysics Data System (ADS)

    Zhang, Haiyan; Nan, Rendong; Gan, Hengqian; Yue, Youling; Wu, Mingchang; Zhang, Zhiwei; Jin, Chengjin; Peng, Bo

    2015-08-01

    Five-hundred-meter Aperture Spherical radio Telescope (FAST) is a Chinese mega-science project to build the largest single dish radio telescope in the world. The construction was officially commenced in March 2011. The first light of FAST is expected in 2016. Due to the high sensitivity of FAST, Radio Frequency Interference (RFI) mitigation for the telescope is required to assure the realization of the scientific goals. In order to protect the radio environment of FAST site, the local government has established a radio quiet zone with 30 km radius. Moreover, Electromagnetic Compatibility (EMC) designs and measurements for FAST have also been carried out, and some examples, such as EMC designs for actuator and focus cabin, have been introduced briefly.

  5. Emergency mitigation and preparedness in healthcare facilities.

    PubMed

    Paras, Emma; Schwartz, Robert M

    2013-01-01

    The city of Akron, Ohio, has four major healthcare facilities: Akron General Medical Center, Summa Akron City Hospital, Summa St. Thomas, and Akron Children's Hospital. These institutions have implemented the preparedness and mitigative strategies to prepare for hazards affecting the community. Because of the wide population these facilities serve, it is crucial that an effective emergency management (EM) system be in place at each hospital. Archival research and interviews with the emergency managers of each hospital examine the preparedness of these establishments for disasters. Strengths and weaknesses of the EM systems are also discussed and include recommendations on ways to improve shortcomings. This research demonstrates how EM is evolving and improving in one of the most important critical infrastructure of a community. PMID:24623110

  6. Apparatus and Methods for Mitigating Electromagnetic Emissions

    NASA Technical Reports Server (NTRS)

    Geng, Steven M. (Inventor); Niedra, Janis M. (Inventor)

    2013-01-01

    Apparatus, methods, and other embodiments associated with mitigation of magnetic fields are described herein. In an embodiment, a method for mitigating an electromagnetic field includes positioning a mitigating coil around a linear alternator of linear motor so that the mitigating coil is coaxially located with an alternator coil; arranging the mitigating coil to generate a field to mitigate an electromagnetic field generated by the alternator coil; and passing an induced current from the alternator coil through the mitigating coil.

  7. Apparatus and Methods for Mitigating Electromagnetic Emissions

    NASA Technical Reports Server (NTRS)

    Geng, Steven M. (Inventor); Niedra, Janis M. (Inventor)

    2016-01-01

    Apparatus, methods, and other embodiments associated with mitigation of magnetic fields are described herein. In an embodiment, a method for mitigating an electromagnetic field includes positioning a mitigating coil around a linear alternator of linear motor so that the mitigating coil is coaxially located with an alternator coil; arranging the mitigating coil to generate a field to mitigate an electromagnetic field generated by the alternator coil; and passing an induced current from the alternator coil through the mitigating coil.

  8. A~probabilistic tsunami hazard assessment for Indonesia

    NASA Astrophysics Data System (ADS)

    Horspool, N.; Pranantyo, I.; Griffin, J.; Latief, H.; Natawidjaja, D. H.; Kongko, W.; Cipta, A.; Bustaman, B.; Anugrah, S. D.; Thio, H. K.

    2014-05-01

    Probabilistic hazard assessments are a fundamental tool for assessing the threats posed by hazards to communities and are important for underpinning evidence based decision making on risk mitigation activities. Indonesia has been the focus of intense tsunami risk mitigation efforts following the 2004 Indian Ocean Tsunami, but this has been largely concentrated on the Sunda Arc, with little attention to other tsunami prone areas of the country such as eastern Indonesia. We present the first nationally consistent Probabilistic Tsunami Hazard Assessment (PTHA) for Indonesia. This assessment produces time independent forecasts of tsunami hazard at the coast from tsunami generated by local, regional and distant earthquake sources. The methodology is based on the established monte-carlo approach to probabilistic seismic hazard assessment (PSHA) and has been adapted to tsunami. We account for sources of epistemic and aleatory uncertainty in the analysis through the use of logic trees and through sampling probability density functions. For short return periods (100 years) the highest tsunami hazard is the west coast of Sumatra, south coast of Java and the north coast of Papua. For longer return periods (500-2500 years), the tsunami hazard is highest along the Sunda Arc, reflecting larger maximum magnitudes along the Sunda Arc. The annual probability of experiencing a tsunami with a height at the coast of > 0.5 m is greater than 10% for Sumatra, Java, the Sunda Islands (Bali, Lombok, Flores, Sumba) and north Papua. The annual probability of experiencing a tsunami with a height of >3.0 m, which would cause significant inundation and fatalities, is 1-10% in Sumatra, Java, Bali, Lombok and north Papua, and 0.1-1% for north Sulawesi, Seram and Flores. The results of this national scale hazard assessment provide evidence for disaster managers to prioritise regions for risk mitigation activities and/or more detailed hazard or risk assessment.

  9. Handling Hazardous Materials.

    ERIC Educational Resources Information Center

    Piper, James; Piverotto, John

    1990-01-01

    Describes a 16-hour course in hazard communication for vocational instructors, which teaches the proper use, storage, and disposal of hazardous materials in the laboratory as well as techniques for teaching safety. (SK)

  10. Household Hazards to Pets

    MedlinePlus

    ... health by becoming aware of the most common health hazards found in many pet-owning households. Hazards in the Kitchen Foods Many foods are perfectly safe for humans, but could be harmful or potentially deadly to ...

  11. MITIGATION IMPACT SCREENING TOOL (MIST)

    EPA Science Inventory

    MIST is intended to provide a back of the envelope, qualitative indication of the likely impacts of heat island mitigation strategies averaged at the city-scale. To run MIST, users follow three basic steps: 1. Select the city to model (240 available) 2. Define the mitigation ...

  12. Toward to Disaster Mitigation Science

    NASA Astrophysics Data System (ADS)

    Kaneda, Yoshiyuki; Shiraki, Wataru; Tokozakura, Eiji

    2016-04-01

    Destructive natural disasters such as earthquakes and tsunamis have occurred frequently in the world. For the reduction and mitigation of damages by destructive natural disasters, early detection of natural disasters and speedy and proper evacuations are indispensable. And hardware and software preparations for reduction and mitigation of natural disasters are quite important and significant. Finally, methods on restorations and revivals are necessary after natural disasters. We would like to propose natural disaster mitigation science for early detections, evacuations and restorations against destructive natural disasters. In natural disaster mitigation science, there are lots of research fields such as natural science, engineering, medical treatment, social science and literature/art etc. Especially, natural science, engineering and medical treatment are fundamental research fields for natural disaster mitigation, but social sciences such as sociology, psychology etc. are very important research fields for restorations after natural disasters. We have to progress the natural disaster mitigation science against destructive natural disaster mitigation. in the near future. We will present the details of natural disaster mitigation science.

  13. Turbulence Detection and Mitigation Element

    NASA Technical Reports Server (NTRS)

    Bogue, Rod

    2003-01-01

    This paper presents viewgraphs on turbulence detection and mitigation technologies in weather accident prevention. The topics include: 1) Organization; 2) Scope of Turbulence Effort; 3) Background; 4) Turbulence Detection and Mitigation Program Metrics; 5) Approach; 6) Turbulence Team Relationships; 7) WBS Structure; 8) Deliverables; 9) TDAM Changes; 10) FY-01 Results/Accomplishments; 11) Out-year Plans; and 12) Element Status.

  14. 24 CFR 51.204 - HUD-assisted hazardous facilities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... area where people may congregate or be present. The mitigating measures listed in § 51.205 may be taken.... 51.204 Section 51.204 Housing and Urban Development Office of the Secretary, Department of Housing... Hazardous Operations Handling Conventional Fuels or Chemicals of an Explosive or Flammable Nature §...

  15. Hazard function theory for nonstationary natural hazards

    NASA Astrophysics Data System (ADS)

    Read, Laura K.; Vogel, Richard M.

    2016-04-01

    Impact from natural hazards is a shared global problem that causes tremendous loss of life and property, economic cost, and damage to the environment. Increasingly, many natural processes show evidence of nonstationary behavior including wind speeds, landslides, wildfires, precipitation, streamflow, sea levels, and earthquakes. Traditional probabilistic analysis of natural hazards based on peaks over threshold (POT) generally assumes stationarity in the magnitudes and arrivals of events, i.e., that the probability of exceedance of some critical event is constant through time. Given increasing evidence of trends in natural hazards, new methods are needed to characterize their probabilistic behavior. The well-developed field of hazard function analysis (HFA) is ideally suited to this problem because its primary goal is to describe changes in the exceedance probability of an event over time. HFA is widely used in medicine, manufacturing, actuarial statistics, reliability engineering, economics, and elsewhere. HFA provides a rich theory to relate the natural hazard event series (X) with its failure time series (T), enabling computation of corresponding average return periods, risk, and reliabilities associated with nonstationary event series. This work investigates the suitability of HFA to characterize nonstationary natural hazards whose POT magnitudes are assumed to follow the widely applied generalized Pareto model. We derive the hazard function for this case and demonstrate how metrics such as reliability and average return period are impacted by nonstationarity and discuss the implications for planning and design. Our theoretical analysis linking hazard random variable X with corresponding failure time series T should have application to a wide class of natural hazards with opportunities for future extensions.

  16. Hazard function theory for nonstationary natural hazards

    NASA Astrophysics Data System (ADS)

    Read, L. K.; Vogel, R. M.

    2015-11-01

    Impact from natural hazards is a shared global problem that causes tremendous loss of life and property, economic cost, and damage to the environment. Increasingly, many natural processes show evidence of nonstationary behavior including wind speeds, landslides, wildfires, precipitation, streamflow, sea levels, and earthquakes. Traditional probabilistic analysis of natural hazards based on peaks over threshold (POT) generally assumes stationarity in the magnitudes and arrivals of events, i.e. that the probability of exceedance of some critical event is constant through time. Given increasing evidence of trends in natural hazards, new methods are needed to characterize their probabilistic behavior. The well-developed field of hazard function analysis (HFA) is ideally suited to this problem because its primary goal is to describe changes in the exceedance probability of an event over time. HFA is widely used in medicine, manufacturing, actuarial statistics, reliability engineering, economics, and elsewhere. HFA provides a rich theory to relate the natural hazard event series (X) with its failure time series (T), enabling computation of corresponding average return periods, risk and reliabilities associated with nonstationary event series. This work investigates the suitability of HFA to characterize nonstationary natural hazards whose POT magnitudes are assumed to follow the widely applied Generalized Pareto (GP) model. We derive the hazard function for this case and demonstrate how metrics such as reliability and average return period are impacted by nonstationarity and discuss the implications for planning and design. Our theoretical analysis linking hazard event series X, with corresponding failure time series T, should have application to a wide class of natural hazards with rich opportunities for future extensions.

  17. Hazard function theory for nonstationary natural hazards

    DOE PAGESBeta

    Read, Laura K.; Vogel, Richard M.

    2016-04-11

    Impact from natural hazards is a shared global problem that causes tremendous loss of life and property, economic cost, and damage to the environment. Increasingly, many natural processes show evidence of nonstationary behavior including wind speeds, landslides, wildfires, precipitation, streamflow, sea levels, and earthquakes. Traditional probabilistic analysis of natural hazards based on peaks over threshold (POT) generally assumes stationarity in the magnitudes and arrivals of events, i.e., that the probability of exceedance of some critical event is constant through time. Given increasing evidence of trends in natural hazards, new methods are needed to characterize their probabilistic behavior. The well-developed field ofmore » hazard function analysis (HFA) is ideally suited to this problem because its primary goal is to describe changes in the exceedance probability of an event over time. HFA is widely used in medicine, manufacturing, actuarial statistics, reliability engineering, economics, and elsewhere. HFA provides a rich theory to relate the natural hazard event series (X) with its failure time series (T), enabling computation of corresponding average return periods, risk, and reliabilities associated with nonstationary event series. This work investigates the suitability of HFA to characterize nonstationary natural hazards whose POT magnitudes are assumed to follow the widely applied generalized Pareto model. We derive the hazard function for this case and demonstrate how metrics such as reliability and average return period are impacted by nonstationarity and discuss the implications for planning and design. As a result, our theoretical analysis linking hazard random variable X with corresponding failure time series T should have application to a wide class of natural hazards with opportunities for future extensions.« less

  18. Hazardous Waste Roundup

    ERIC Educational Resources Information Center

    Farenga, Stephen J.; Joyce, Beverly A.; Ness, Daniel

    2004-01-01

    According to the Environmental Protection Agency (EPA), Americans generate approximately 1.6 million tons of hazardous household waste every year. When most people think of hazardous waste, they generally think of materials used in construction, the defense industry, mining, manufacturing, and agriculture. Few people think of hazardous substances…

  19. Radar Ionospheric Impact Mitigation

    NASA Astrophysics Data System (ADS)

    Bishop, G.; Decker, D.; Baker, C.

    2006-12-01

    New ionospheric modeling technology is being developed to improve correction of ionospheric impacts on the performance of ground-based space-surveillance radars (SSRs) in near-real-time. These radars, which detect and track space objects, can experience significant target location errors due to ionospheric delay and refraction of the radar signals. Since these radars must detect and track targets essentially to the radar horizon, it is necessary to accurately model the ionosphere as the radar would observe it, down to the local horizon. To correct for spatial and temporal changes in the ionosphere the model must be able to update in near-real-time using ionospheric sensor data. Since many radars are in isolated locations, or may have requirements to operate autonomously, an additional required capability is to provide accurate ionospheric mitigation by exploiting only sensor data from the radar site. However, the model must also be able to update using additional data from other types of sensors that may be available. The original radar ionospheric mitigation approach employed the Bent climatological model. This 35-year-old technology is still the means employed in the many DoD SSRs today. One more recent approach used capabilities from the PRISM model. PRISM technology has today been surpassed by `assimilative models' which employ better physics and Kalman filtering techniques. These models are not necessarily tailored for SSR application which needs to optimize modeling of very small regions using only data from a single sensor, or very few. The goal is to develop and validate the performance of innovative and efficient ionospheric modeling approaches that are optimized for the small regions applicable to ground-based radar coverage (radius of ~2000 km at ionospheric altitudes) and somewhat beyond. These approaches must adapt a continuous modeling scheme in near-real-time to be consistent with all observational data that may become available, and degrade

  20. Enhancing Students' Understanding of Risk and Geologic Hazards Using a Dartboard Model.

    ERIC Educational Resources Information Center

    Lutz, Timothy M.

    2001-01-01

    Uses dartboards to represent magnitude-frequency relationships of natural hazards which engage students at different levels of preparation in different contexts, and for different lengths of time. Helps students to mitigate the misconceptions that processes occur periodically by emphasizing the random nature of hazards. Includes 12 references.…

  1. Mitigation analysis for Estonia

    SciTech Connect

    Martins, A.; Roos, J.; Pesur, A.

    1996-09-01

    The present report provides data on the mitigation analysis of Estonia. The results for energy, forest and agricultural sectors and macro-economic analysis are given. The Government of Estonia has identified the development of energy production as the main strategical means in the movement towards market economy. Now 99% of electricity generation and about 25% of heat production in Estonia is based on oil shale combustion. To increase the efficiency of oil shale-fired power plants and decrease CO{sub 2} emissions, the State Enterprise (SE) Eesti Energia (Estonian Energy) is planning to reconstruct these power plants and introduce the Circulating Fluidized Bed (CFB) combustion technology for oil shale burning to replace the Pulverized Combustion (PC). According to the Estonian Forest Policy, two general objectives are of importance: sustainability in forestry and efficiency in forest management. For the reduction of greenhouse gases (GHG) emissions from agriculture, it is necessary to increase the efficiency of production resource usage. The growth of the GDP in 1995 was 2.9% as a result of large-scale privatization activities in Estonia and re-introduction of the available, but unused production capacities with the help of foreign and domestic investments. It is assumed that the medium growth rate of GDP reaches 6% in 1998.

  2. Translation readthrough mitigation.

    PubMed

    Arribere, Joshua A; Cenik, Elif S; Jain, Nimit; Hess, Gaelen T; Lee, Cameron H; Bassik, Michael C; Fire, Andrew Z

    2016-06-30

    A fraction of ribosomes engaged in translation will fail to terminate when reaching a stop codon, yielding nascent proteins inappropriately extended on their C termini. Although such extended proteins can interfere with normal cellular processes, known mechanisms of translational surveillance are insufficient to protect cells from potential dominant consequences. Here, through a combination of transgenics and CRISPR–Cas9 gene editing in Caenorhabditis elegans, we demonstrate a consistent ability of cells to block accumulation of C-terminal-extended proteins that result from failure to terminate at stop codons. Sequences encoded by the 3′ untranslated region (UTR) were sufficient to lower protein levels. Measurements of mRNA levels and translation suggested a co- or post-translational mechanism of action for these sequences in C. elegans. Similar mechanisms evidently operate in human cells, in which we observed a comparable tendency for translated human 3′ UTR sequences to reduce mature protein expression in tissue culture assays, including 3′ UTR sequences from the hypomorphic ‘Constant Spring’ haemoglobin stop codon variant. We suggest that 3′ UTRs may encode peptide sequences that destabilize the attached protein, providing mitigation of unwelcome and varied translation errors. PMID:27281202

  3. Ultrasonic mitigation investigation

    SciTech Connect

    Hildebrand, B.P.; Shepard, C.L.

    1993-04-01

    The suggestion was made that the introduction of ultrasound into Tank 101-SY might serve to release the hydrogen bubbles trapped in the slurry. This would cause a continuous release of bubbles and thereby prevent the turnover phenomenon. Two major considerations were (1) the method for delivering the energy into the slurry and (2) the effective volume of action. In this study, we attached the former by designing and testing a liquid-filled waveguide and radiator, and the latter by making ultrasonic property measurements on synthetic waste. Our conclusion is that ultrasonic mitigation may not be feasible, primarily because of the very high attenuation (1000 to 50000 dB/m) factor to 10 to 30 kHz. Such a high attenuation would restrict the action volume to such a low value as to make the method impractical. Further investigations are recommended to identify the cause of this effect and determine if this same effect will be seen in real 101-SY waste.

  4. Dealing with the Impact Hazard

    NASA Astrophysics Data System (ADS)

    Morrison, D.; Harris, A. W.; Sommer, G.; Chapman, C. R.; Carusi, A.

    2002-03-01

    both national governments and international decision-making bodies and to anticipate ways of mitigating the danger if a NEA were located on an apparent Earthimpact trajectory. As the most extreme known example of a natural risk with low probability but severe global consequences, the NEA impact hazard calls for the most careful consideration and planning.

  5. Automated Hazard Analysis

    Energy Science and Technology Software Center (ESTSC)

    2003-06-26

    The Automated Hazard Analysis (AHA) application is a software tool used to conduct job hazard screening and analysis of tasks to be performed in Savannah River Site facilities. The AHA application provides a systematic approach to the assessment of safety and environmental hazards associated with specific tasks, and the identification of controls regulations, and other requirements needed to perform those tasks safely. AHA is to be integrated into existing Savannah River site work control andmore » job hazard analysis processes. Utilization of AHA will improve the consistency and completeness of hazard screening and analysis, and increase the effectiveness of the work planning process.« less

  6. Hazard Analysis Database Report

    SciTech Connect

    GRAMS, W.H.

    2000-12-28

    The Hazard Analysis Database was developed in conjunction with the hazard analysis activities conducted in accordance with DOE-STD-3009-94, Preparation Guide for U S . Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, for HNF-SD-WM-SAR-067, Tank Farms Final Safety Analysis Report (FSAR). The FSAR is part of the approved Authorization Basis (AB) for the River Protection Project (RPP). This document describes, identifies, and defines the contents and structure of the Tank Farms FSAR Hazard Analysis Database and documents the configuration control changes made to the database. The Hazard Analysis Database contains the collection of information generated during the initial hazard evaluations and the subsequent hazard and accident analysis activities. The Hazard Analysis Database supports the preparation of Chapters 3 ,4 , and 5 of the Tank Farms FSAR and the Unreviewed Safety Question (USQ) process and consists of two major, interrelated data sets: (1) Hazard Analysis Database: Data from the results of the hazard evaluations, and (2) Hazard Topography Database: Data from the system familiarization and hazard identification.

  7. Steve Ostro and the Near-Earth Asteroid Impact Hazard

    NASA Astrophysics Data System (ADS)

    Chapman, Clark R.

    2009-09-01

    The late Steve Ostro, whose scientific interests in Near-Earth Asteroids (NEAs) primarily related to his planetary radar research in the 1980s, soon became an expert on the impact hazard. He quickly realized that radar provided perspectives on close-approaching NEAs that were both very precise as well as complementary to traditional astrometry, enabling good predictions of future orbits and collision probabilities extending for centuries into the future. He also was among the few astronomers who considered the profound issues raised by this newly recognized hazard and by early suggestions of how to mitigate the hazard. With Carl Sagan, Ostro articulated the "deflection dilemma" and other potential low-probability but real dangers of mitigation technologies that might be more serious than the low-probability impact hazard itself. Yet Ostro maintained a deep interest in developing responsible mitigation technologies, in educating the public about the nature of the impact hazard, and in learning more about the population of threatening bodies, especially using the revealing techniques of delay-doppler radar mapping of NEAs and their satellites.

  8. Natural phenomena hazards, Hanford Site, south central Washington

    SciTech Connect

    Tallman, A.M.

    1996-04-16

    This document presents the natural phenomena hazard (NPH) loads for use in implementing DOE Order 5480.28, Natural Phenomena Hazards Mitigation, at the Hanford Site in south-central Washington State. The purpose of this document is twofold: (1) summarize the NPH that are important to the design and evaluation of structures, systems, and components at the Hanford Site; (2) develop the appropriate natural phenomena loads for use in the implementation of DOE Order 5480.28. The supporting standards, DOE-STD-1020-94, Natural Phenomena Hazards Design and Evaluation Criteria for Department of Energy Facilities (DOE 1994a); DOE-STD-1022-94, Natural Phenomena Hazards Site Characteristics Criteria (DOE 1994b); and DOE-STD-1023-95, Natural Phenomena Hazards Assessment Criteria (DOE 1995) are the basis for developing the NPH loads.

  9. Environmental mitigation at hydroelectric projects

    SciTech Connect

    Sale, M.J.; Cada, G.F.; Chang, L.H.; Christensen, S.W.; Railsback, S.F. ); Francfort, J.E.; Rinehart, B.N.; Sommers, G.L. )

    1991-12-01

    Current environmental mitigation practices at nonfederal hydropower projects were analyzed. Information about instream flows, dissolved oxygen (DO) mitigation, and upstream and downstream fish passage facilities was obtained from project operators, regulatory and resource agencies, and literature reviews. Information provided by the operators includes the specific mitigation requirements imposed on each project, specific objectives or purposes of mitigation, mitigation measures chosen to meet the requirement, the kinds of post-project monitoring conducted, and the costs of mitigation. Costs are examined for each of the four mitigation methods, segmented by capital, study, operations and maintenance, and annual reporting costs. Major findings of the study include: the dominant role of the Instream Flow Incremental Methodology, in conjunction with professional judgment by agency biologists, to set instream flow requirements; reliance on spill flows for DO enhancement; and the widespread use of angled bar racks for downstream fish protection. All of these measures can have high costs and, with few exceptions, there are few data available from nonfederal hydropower projects with which to judge their effectiveness. 100 refs.

  10. Albeni Falls Wildlife Mitigation Project : Annual Report of Mitigation Activities.

    SciTech Connect

    Entz, Ray D.

    2001-04-01

    The Albeni Falls Interagency Work Group was actively involved in implementing wildlife mitigation activities in 2000. The Work Group met each quarter to discuss management and budget issues affecting Albeni Falls wildlife mitigation. Members of the Work Group protected a total of 1,242 acres of wetland habitat in 2000. The total amount of wildlife habitat protected for Albeni Falls mitigation is approximately 4,190 acres (4,630 Habitat Units). Approximately 16% of the total wildlife habitat lost has been mitigated. Land management activities were limited in 2000 as protection opportunities took up most staff time. Administrative activities increased in 2000 as funding was more evenly distributed among Work Group members. As a result, implementation is expected to continue to increase in the coming year. Land management and monitoring and evaluation activities will increase in 2001 as site-specific management plans are completed and implemented.

  11. Lunar Dust Mitigation Screens

    NASA Astrophysics Data System (ADS)

    Knutson, Shawn; Holloway, Nancy

    With plans for the United States to return to the moon, and establish a sustainable human presence on the lunar surface many issues must be successfully overcome. Lunar dust is one of a number of issues with the potential to create a myriad of problems if not adequately addressed. Samples of dust brought back from Apollo missions show it to be soft, yet sharp and abrasive. The dust consists of a variety of morphologies including spherical, angular blocks, shards, and a number of irregular shapes. One of the main issues with lunar dust is its attraction to stick to anything it comes in contact with (i.e. astronauts, equipment, habitats, etc.). Ionized radiation from the sun strikes the moon's surface and creates an electrostatic charge on the dust. Further, the dust harbors van der Waals forces making it especially difficult to separate once it sticks to a surface. During the Apollo missions, it was discovered that trying to brush the lunar dust from spacesuits was not effective, and rubbing it caused degradation of the suit material. Further, when entering the lunar module after moonwalks, the astronauts noted that the dust was so prolific inside the cabin that they inhaled and ingested it, causing at least one of them, Harrison "Jack" Schmidt, to report irritation of the throat and lungs. It is speculated that the dust could also harm an astronaut's nervous and cardiovascular systems, especially during an extended stay. In addition to health issues, the dust can also cause problems by scouring reflective coatings off of thermal blankets, and roughening surfaces of windows and optics. Further, panels on solar cells and photovoltaics can also be compromised due to dust sticking on the surfaces. Lunar dust has the capacity to penetrate seals, interfere with connectors, as well as mechanisms on digging machines, all of which can lead to problems and failure. To address lunar dust issues, development of electrostatic screens to mitigate dust on sur-faces is currently

  12. Assessment of regional earthquake hazards and risk along the Wasatch Front, Utah

    USGS Publications Warehouse

    Gori, Paula L., (Edited By); Hays, Walter W.

    2000-01-01

    This report--the second of two volumes--represents an ongoing effort by the U.S. Geological Survey to transfer accurate Earth science information about earthquake hazards along Utah's Wasatch Front to researchers, public officials, design professionals, land-use planners, and emergency managers in an effort to mitigate the effects of these hazards. This volume contains eight chapters on ground-shaking hazards and aspects of loss estimation.

  13. Systematic Review of Control Measures to Reduce Hazardous Drug Exposure for Health Care Workers.

    PubMed

    Crickman, Rachael; Finnell, Deborah

    2016-01-01

    Because of their involvement in the transport, handling, preparation, administration, or disposal of hazardous medications, health care workers across multiple settings are at risk for adverse health consequences from exposure to these drugs. This review presents evidence-based strategies to mitigate the harmful exposures. These include engineering controls, full use of personal protective equipment, medical and environmental monitoring, hazard identification, and the need for a comprehensive hazardous drug control program that includes education and training for health care workers. PMID:26417920

  14. Minimizing hazardous waste

    SciTech Connect

    DeClue, S.C.

    1996-06-01

    Hazardous waste minimization is a broad term often associated with pollution prevention, saving the environment or protecting Mother Earth. Some associate hazardous waste minimization with saving money. Thousands of hazardous materials are used in processes every day, but when these hazardous materials become hazardous wastes, dollars must be spent for disposal. When hazardous waste is reduced, an organization will spend less money on hazardous waste disposal. In 1993, Fort Bragg reduced its hazardous waste generation by over 100,000 pounds and spent nearly $90,000 less on hazardous waste disposal costs than in 1992. Fort Bragg generates a variety of wastes: Vehicle maintenance wastes such as antifreeze, oil, grease and solvents; helicopter maintenance wastes, including solvents, adhesives, lubricants and paints; communication operation wastes such as lithium, magnesium, mercury and nickel-cadmium batteries; chemical defense wastes detection, decontamination, and protective mask filters. The Hazardous Waste Office has the responsibility to properly identify, characterize, classify and dispose of these waste items in accordance with US Environmental Protection Agency (EPA) and US Department of Transportation (DOT) regulations.

  15. Hazard Analysis Database Report

    SciTech Connect

    GAULT, G.W.

    1999-10-13

    The Hazard Analysis Database was developed in conjunction with the hazard analysis activities conducted in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, for the Tank Waste Remediation System (TWRS) Final Safety Analysis Report (FSAR). The FSAR is part of the approved TWRS Authorization Basis (AB). This document describes, identifies, and defines the contents and structure of the TWRS FSAR Hazard Analysis Database and documents the configuration control changes made to the database. The TWRS Hazard Analysis Database contains the collection of information generated during the initial hazard evaluations and the subsequent hazard and accident analysis activities. The database supports the preparation of Chapters 3,4, and 5 of the TWRS FSAR and the USQ process and consists of two major, interrelated data sets: (1) Hazard Evaluation Database--Data from the results of the hazard evaluations; and (2) Hazard Topography Database--Data from the system familiarization and hazard identification.

  16. Robust dynamic mitigation of instabilities

    SciTech Connect

    Kawata, S.; Karino, T.

    2015-04-15

    A dynamic mitigation mechanism for instability growth was proposed and discussed in the paper [S. Kawata, Phys. Plasmas 19, 024503 (2012)]. In the present paper, the robustness of the dynamic instability mitigation mechanism is discussed further. The results presented here show that the mechanism of the dynamic instability mitigation is rather robust against changes in the phase, the amplitude, and the wavelength of the wobbling perturbation applied. Generally, instability would emerge from the perturbation of the physical quantity. Normally, the perturbation phase is unknown so that the instability growth rate is discussed. However, if the perturbation phase is known, the instability growth can be controlled by a superposition of perturbations imposed actively: If the perturbation is induced by, for example, a driving beam axis oscillation or wobbling, the perturbation phase could be controlled, and the instability growth is mitigated by the superposition of the growing perturbations.

  17. Applying the Land Use Portfolio Model with Hazus to analyse risk from natural hazard events

    USGS Publications Warehouse

    Dinitz, Laura B.; Taketa, Richard A.

    2013-01-01

    This paper describes and demonstrates the integration of two geospatial decision-support systems for natural-hazard risk assessment and management. Hazus is a risk-assessment tool developed by the Federal Emergency Management Agency to identify risks and estimate the severity of risk from natural hazards. The Land Use Portfolio Model (LUPM) is a risk-management tool developed by the U.S. Geological Survey to evaluate plans or actions intended to reduce risk from natural hazards. We analysed three mitigation policies for one earthquake scenario in the San Francisco Bay area to demonstrate the added value of using Hazus and the LUPM together. The demonstration showed that Hazus loss estimates can be input to the LUPM to obtain estimates of losses avoided through mitigation, rates of return on mitigation investment, and measures of uncertainty. Together, they offer a more comprehensive approach to help with decisions for reducing risk from natural hazards.

  18. Natural hazard understanding in the middle schools of the Colorado Front Range

    SciTech Connect

    Grogger, P.K.

    1995-12-01

    The best form of mitigation is not to put one`s self in a position that mitigation is required. For the last five years the University of Colorado`s Department of Geology has teamed with local school districts to implement an understanding of natural hazards. By working with middle school students the dangers and possible mitigation of North America are learned at an early age. Over the years, the knowledge gained by these communities citizens will hopefully help lessen the dangers from natural hazards society faces. Education of the general public about natural hazards needs to be addressed by the professional societies studying and developing answers to natural hazards problems. By working with school children this process of educating the general public starts early in the education system and will bear fruit many years in the future. This paper describes the course that is being given to students in Colorado.

  19. Digging Our Own Holes: Institutional Perspectives on Seismic Hazards

    NASA Astrophysics Data System (ADS)

    Stein, S.; Tomasello, J.

    2005-12-01

    It has been observed that there are no true students of the earth; instead, we each dig our own holes and sit in them. A similar situation arises in attempts to assess the hazards of earthquakes and other natural disasters and to develop strategies to mitigate them. Ideally, we would like to look at the interests of society as a whole and develop strategies that best balance hazard mitigation with alternative uses of resources. Doing so, however, is difficult for several reasons. First, estimating seismic hazards requires assumptions about the size, recurrence, and shaking from future earthquakes, none of which are well known. Second, we have to chose a definition of seismic hazard, which is even more arbitrary and at least as significant about future earthquakes. Third, mitigating the risks involves economic and policy issues as well as the scientific one of estimating the hazard itself and the engineering one of designing safe structures. As a result, different public and private organizations with different institutional perspectives naturally adopt different approaches. Most organizations have a single focus. For example, those focusing on economic development tend to discount hazards, whereas emergency management groups tend to accentuate them. Organizations with quasi-regulatory duties (BSSC, FEMA, USGS) focus on reducing losses in future earthquakes without considering the cost of mitigation measures or how this use of resources should be balanced with alternative uses of resources that could mitigate other losses. Some organizations, however, must confront these tradeoffs directly because they allocate resources internally. Hence hospitals implicitly trade off more earthquake resistant construction with treating uninsured patients, highway departments balance stronger bridges with other safety improvements, and schools balance safer buildings with after school programs. These choices are complicated by the fact that such infrastructure typically has longer

  20. Migration and Environmental Hazards

    PubMed Central

    Hunter, Lori M.

    2011-01-01

    Losses due to natural hazards (e.g., earthquakes, hurricanes) and technological hazards (e.g., nuclear waste facilities, chemical spills) are both on the rise. One response to hazard-related losses is migration, with this paper offering a review of research examining the association between migration and environmental hazards. Using examples from both developed and developing regional contexts, the overview demonstrates that the association between migration and environmental hazards varies by setting, hazard types, and household characteristics. In many cases, however, results demonstrate that environmental factors play a role in shaping migration decisions, particularly among those most vulnerable. Research also suggests that risk perception acts as a mediating factor. Classic migration theory is reviewed to offer a foundation for examination of these associations. PMID:21886366

  1. Public perception of flood risks, flood forecasting and mitigation

    NASA Astrophysics Data System (ADS)

    Brilly, M.; Polic, M.

    2005-04-01

    A multidisciplinary and integrated approach to the flood mitigation decision making process should provide the best response of society in a flood hazard situation including preparation works and post hazard mitigation. In Slovenia, there is a great lack of data on social aspects and public response to flood mitigation measures and information management. In this paper, two studies of flood perception in the Slovenian town Celje are represented. During its history, Celje was often exposed to floods, the most recent serious floods being in 1990 and in 1998, with a hundred and fifty return period and more than ten year return period, respectively. Two surveys were conducted in 1997 and 2003, with 157 participants from different areas of the town in the first, and 208 in the second study, aiming at finding the general attitude toward the floods. The surveys revealed that floods present a serious threat in the eyes of the inhabitants, and that the perception of threat depends, to a certain degree, on the place of residence. The surveys also highlighted, among the other measures, solidarity and the importance of insurance against floods.

  2. Earthquake risk mitigation projects in central asia and india

    NASA Astrophysics Data System (ADS)

    Hausler, E.; Petal, M.; Tobin, T.; Tucker, B.; Gupta, M.; Sharma, A.; Shaw, R.

    2003-04-01

    In the fall of 2002, GeoHazards International (GHI), a California-based nonprofit organization, launched two 3-year projects, each funded by the U.S. Agency for International Development, to improve the earthquake risk management of 23 cities in Central Asia and India. The objectives of these projects are to: * Assess the earthquake risk of each city, * Identify the most effective risk mitigation options for each city, * Raise awareness of that risk and those mitigation options, and * Initiate mitigation activities in some of these cities. A critical characteristic of these projects is that leaders of each local community will be deeply involved in realizing all four objectives. GHI will work with, in addition to local authorities, national government, academic and non-governmental organizations. In India, GHI’s partners are the Disaster Management Planning Hyogo Office, United Nations Centre for Regional Development (UNCRD) of Kobe, Japan, and the Sustainable Environment and Ecological Development Society (SEEDS), of Delhi, India. In India, we will work in 20 cities that were chosen, in a February 1, 2002 workshop (sponsored by Munich Reinsurance Company) in Delhi; the cities were selected by Indian earthquake professionals on the basis of the cities’ population, hazard, and economic, cultural and political significance. In Central Asia, we will focus on Tashkent, Uzbekistan; Dushanbe, Tadzhikistan; and Almaty, Kazakstan. GHI and its partners are looking for other organizations that would like to collaborate on these projects.

  3. Flood- and Drought-Related Natural Hazards Activities of the U.S. Geological Survey in New England

    USGS Publications Warehouse

    Lombard, Pamela J.

    2016-01-01

    Tools for natural hazard assessment and mitigation • Light detection and ranging (lidar) remote sensing technology • StreamStats Web-based tool for streamflow statistics • Flood inundation mapper

  4. Hazards in the theater.

    PubMed

    Rossol, M; Hinkamp, D

    2001-01-01

    The authors offer a survey of the myriad and unique safety and health hazards faced past and present by performers and theatrical workers, from preproduction work, through the show, and during the strike (dismantling). Special emphasis is given to health hazards posed by the many new plastic resin systems and adhesives used in set, prop, and costume construction; the hazards of special-effect fogs, smokes, haze, dusts, and pyrotechnic emissions; and theatrical makeup. PMID:11567920

  5. Flood Hazard Assessment for the Savannah River Site

    SciTech Connect

    Chen, K.F.

    2000-08-15

    A method was developed to determine the probabilistic flood elevation curves for certain Savannah River Site (SRS) facilities. This paper presents the method used to determine the probabilistic flood elevation curve for F-Area due to runoff from the Upper Three Runs basin. Department of Energy (DOE) Order 420.1, Facility Safety, outlines the requirements for Natural Phenomena Hazard (NPH) mitigation for new and existing DOE facilities. The NPH considered in this paper is flooding. The facility-specific probabilistic flood hazard curve defines as a function of water elevation the annual probability of occurrence or the return period in years. Based on facility-specific probabilistic flood hazard curves and the nature of facility operations (e.g., involving hazardous or radioactive materials), facility managers can design permanent or temporary devices to prevent the propagation of flood on site, and develop emergency preparedness plans to mitigate the consequences of floods. A method was developed to determine the probabilistic flood hazard curves for SRS facilities. The flood hazard curves for the SRS F-Area due to flooding in the Upper Three Runs basin are presented in this paper.

  6. Hazardous waste tracking issues

    SciTech Connect

    Marvin, R. )

    1993-08-01

    The concept of cradle-to-grave oversight of hazardous waste was established in 1976 under RCRA. Since then, the multicopy Uniform Hazardous Waste Manifest has been a key component in the federal tracking system. The manifests ensure that generators, transporters and TSDFs maintain documentation of hazardous waste shipments. To a large extent, the tracking system has served its intended purpose; nevertheless, certain shortcomings exist. Anyone involved in shipping hazardous waste should be aware of the system's weaknesses and take appropriate measures to compensate for them.

  7. Inland Flood Hazards

    NASA Astrophysics Data System (ADS)

    Wohl, Ellen E.

    2000-07-01

    A comprehensive, interdisciplinary review of issues related to inland flood hazards, this important work addresses physical controls on flooding, flood processes and effects, and responses to flooding, from the perspectives of human, aquatic, and riparian communities. The contributors, recognized experts in their fields, draw on examples and case studies of inland flood hazards from around the world. The volume is unique in that it addresses how the nonoccurrence of floods, in association with flow regulation and other human manipulation of river systems, may create hazards for aquatic and riparian communities. This book will be a valuable resource for all professionals concerned with inland flood hazards.

  8. A critical analysis of hazard resilience measures within sustainability assessment frameworks

    SciTech Connect

    Matthews, Elizabeth C.; Sattler, Meredith; Friedland, Carol J.

    2014-11-15

    Today, numerous sustainability assessment frameworks (SAFs) exist to guide designers in achieving sustainable performance in the design of structures and communities. SAFs are beneficial in educating users and are useful tools for incorporating sustainability strategies into planning, design, and construction; however, there is currently a substantial gap in the ability of existing SAFs to incorporate hazard resistance and hazard mitigation in the broader context of sustainable design. This paper analyzes the incorporation of hazard resistant design and hazard mitigation strategies within SAFs via a multi-level analysis of eleven SAFs. The SAFs analyzed range in scale of application (i.e. building, site, community). Three levels of analysis are presented: (1) macro-level analysis comparing the number of measures strictly addressing resilience versus sustainability, (2) meso-level analysis of the coverage of types of hazards within SAFs (e.g. flood, fire), and (3) micro-level analysis of SAF measures connected to flood-related hazard resilience. The results demonstrate that hazard resistance and hazard mitigation do not figure prominently in the intent of SAFs and that weaknesses in resilience coverage exist that have the potential to lead to the design of structures and communities that are still highly vulnerable to the impacts of extreme events. - Highlights: • Sustainability assessment frameworks (SAFs) were analyzed for resilience coverage • Hazard resistance and mitigation do not figure prominently in the intent of SAFs • Approximately 75% of SAFs analyzed address three or fewer hazards • Lack of economic measures within SAFs could impact resilience and sustainability • Resilience measures for flood hazards are not consistently included in SAFs.

  9. Enhancing Natural Hazards Data with Photographs

    NASA Astrophysics Data System (ADS)

    McCullough, H. L.; Varner, J. D.; Redmon, R. J.

    2010-12-01

    Photographs and other visual media provide invaluable pre- and post-event data for natural hazards. Scientific research, mitigation, and forecasting rely on visual data for post-analysis, inundation mapping and historic records. Instrumental data reveal only a portion of the whole story; photographs explicitly illustrate the physical and societal impacts from the event. Visual data is rapidly increasing as the availability of portable cameras and video recorders becomes more attainable. Incorporating these data into archives ensures a more complete historical account of events. Integrating natural hazards data, such as tsunami, earthquake and volcanic eruption events, tide gauge records, socio-economic information, and tsunami deposits and runups along with illustrated photographs enhances event comprehension. Global historic databases at NOAA's National Geophysical Data Center (NGDC) consolidates these data, providing the user with easy access to a network of beneficial information. NGDC's Natural Hazards Image database interfaces via Keyhole Markup Language (KML) and the historic databases, and on its own as a web service. NGDC frequently updates a suite of natural hazards KML files (tsunami source events, tsunami runups, significant earthquakes and volcanic eruptions) for viewing in 3D Earth browsers, such as Google Earth. Each map point identifies event date, cause, fatalities, and provides links to historic database event details, including photographs. Upcoming prototypes for new features and improvements will also be highlighted.

  10. Probabilistic seismic hazard estimation of Manipur, India

    NASA Astrophysics Data System (ADS)

    Pallav, Kumar; Raghukanth, S. T. G.; Darunkumar Singh, Konjengbam

    2012-10-01

    This paper deals with the estimation of spectral acceleration for Manipur based on probabilistic seismic hazard analysis (PSHA). The 500 km region surrounding Manipur is divided into seven tectonic zones and major faults located in these zones are used to estimate seismic hazard. The earthquake recurrence relations for the seven zones have been estimated from past seismicity data. Ground motion prediction equations proposed by Boore and Atkinson (2008 Earthq. Spectra 24 99-138) for shallow active regions and Atkinson and Boore (2003 Bull. Seismol. Soc. Am. 93 1703-29) for the Indo-Burma subduction zone are used for estimating ground motion. The uniform hazard response spectra for all the nine constituent districts of Manipur (Senapati, Tamenglong, Churachandpur, Chandel, Imphal east, Imphal west, Ukhrul, Thoubal and Bishnupur) at 100-, 500- and 2500-year return periods have been computed from PSHA. A contour map of peak ground acceleration over Manipur is also presented for 100-, 500-, and 2500-year return periods with variations of 0.075-0.225, 0.18-0.63 and 0.3-0.1.15 g, respectively, throughout the state. These results may be of use to planners and engineers for site selection, designing earthquake resistant structures and, further, may help the state administration in seismic hazard mitigation.

  11. 23 CFR 710.513 - Environmental mitigation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... wetland mitigation sites and other mitigation banks is governed by 23 CFR part 777. (b) Environmental... 23 Highways 1 2013-04-01 2013-04-01 false Environmental mitigation. 710.513 Section 710.513...-WAY AND REAL ESTATE Property Acquisition Alternatives § 710.513 Environmental mitigation. (a)...

  12. 23 CFR 710.513 - Environmental mitigation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... wetland mitigation sites and other mitigation banks is governed by 23 CFR part 777. (b) Environmental... 23 Highways 1 2012-04-01 2012-04-01 false Environmental mitigation. 710.513 Section 710.513...-WAY AND REAL ESTATE Property Acquisition Alternatives § 710.513 Environmental mitigation. (a)...

  13. 23 CFR 710.513 - Environmental mitigation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... wetland mitigation sites and other mitigation banks is governed by 23 CFR part 777. (b) Environmental... 23 Highways 1 2010-04-01 2010-04-01 false Environmental mitigation. 710.513 Section 710.513...-WAY AND REAL ESTATE Property Acquisition Alternatives § 710.513 Environmental mitigation. (a)...

  14. 23 CFR 710.513 - Environmental mitigation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... wetland mitigation sites and other mitigation banks is governed by 23 CFR part 777. (b) Environmental... 23 Highways 1 2011-04-01 2011-04-01 false Environmental mitigation. 710.513 Section 710.513...-WAY AND REAL ESTATE Property Acquisition Alternatives § 710.513 Environmental mitigation. (a)...

  15. Post mitigation impact risk analysis for asteroid deflection demonstration missions

    NASA Astrophysics Data System (ADS)

    Eggl, Siegfried; Hestroffer, Daniel; Thuillot, William; Bancelin, David; Cano, Juan L.; Cichocki, Filippo

    2015-08-01

    Even though mankind believes to have the capabilities to avert potentially disastrous asteroid impacts, only the realization of mitigation demonstration missions can validate this claim. Such a deflection demonstration attempt has to be cost effective, easy to validate, and safe in the sense that harmless asteroids must not be turned into potentially hazardous objects. Uncertainties in an asteroid's orbital and physical parameters as well as those additionally introduced during a mitigation attempt necessitate an in depth analysis of deflection mission designs in order to dispel planetary safety concerns. We present a post mitigation impact risk analysis of a list of potential kinetic impactor based deflection demonstration missions proposed in the framework of the NEOShield project. Our results confirm that mitigation induced uncertainties have a significant influence on the deflection outcome. Those cannot be neglected in post deflection impact risk studies. We show, furthermore, that deflection missions have to be assessed on an individual basis in order to ensure that asteroids are not inadvertently transported closer to the Earth at a later date. Finally, we present viable targets and mission designs for a kinetic impactor test to be launched between the years 2025 and 2032.

  16. 42 CFR 93.408 - Mitigating and aggravating factors in HHS administrative actions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Mitigating and aggravating factors in HHS administrative actions. 93.408 Section 93.408 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES HEALTH ASSESSMENTS AND HEALTH EFFECTS STUDIES OF HAZARDOUS SUBSTANCES RELEASES AND FACILITIES PUBLIC HEALTH SERVICE POLICIES ON...

  17. 42 CFR 93.408 - Mitigating and aggravating factors in HHS administrative actions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Mitigating and aggravating factors in HHS administrative actions. 93.408 Section 93.408 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES HEALTH ASSESSMENTS AND HEALTH EFFECTS STUDIES OF HAZARDOUS SUBSTANCES RELEASES AND FACILITIES PUBLIC HEALTH SERVICE POLICIES ON...

  18. A Natural Hazards Workbook.

    ERIC Educational Resources Information Center

    Kohler, Fred

    This paper discusses the development of and provides examples of exercises from a student workbook for a college-level course about natural hazards. The course is offered once a year to undergraduates at Western Illinois University. Students are introduced to 10 hazards (eight meteorological plus earthquakes and volcanoes) through slides, movies,…

  19. Relative Hazard Calculation Methodology

    SciTech Connect

    DL Strenge; MK White; RD Stenner; WB Andrews

    1999-09-07

    The methodology presented in this document was developed to provide a means of calculating the RH ratios to use in developing useful graphic illustrations. The RH equation, as presented in this methodology, is primarily a collection of key factors relevant to understanding the hazards and risks associated with projected risk management activities. The RH equation has the potential for much broader application than generating risk profiles. For example, it can be used to compare one risk management activity with another, instead of just comparing it to a fixed baseline as was done for the risk profiles. If the appropriate source term data are available, it could be used in its non-ratio form to estimate absolute values of the associated hazards. These estimated values of hazard could then be examined to help understand which risk management activities are addressing the higher hazard conditions at a site. Graphics could be generated from these absolute hazard values to compare high-hazard conditions. If the RH equation is used in this manner, care must be taken to specifically define and qualify the estimated absolute hazard values (e.g., identify which factors were considered and which ones tended to drive the hazard estimation).

  20. Customized hazard maps

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Finding out about the historic occurrence of six different types of natural hazards in any region in the United States recently became a little easier.A Project Impact initiative of the Federal Emergency Management Agency (FEMA) and ESRI—a leading provider of Geographic Information System (GIS) software and a Project Impact partner—offers the public customized online hazard maps.

  1. Industry initiatives in impact mitigation

    SciTech Connect

    Metz, W.C.

    1982-08-01

    The author concludes that mitigation is the focus of conflicting opinions regarding responsibility, strategy, and effort. There are no hard, fast, or tried and true rules for company involvement in mitigation efforts. Each mitigation effort must be tailored and negotiated to match the unique characteristics of individual projects and circumstances of specific locales. Companies must assume financial responsibility for the temporary impacts and area needs created by their projects. They must also offer financial and technical assistance to impact areas, not just the host political jurisdiction, when local, state, federal, and special fund sources of revenue or technical assistance are not available or insufficient. But, local, state, and federal governments must also recognize their responsibilities and make adjustments in tax jurisdiction boundaries and disbursement formulas so that impacted areas are properly defined and receive an adequate share of lease, royalty, severance tax, permit fee, special use and service charges, and sales tax payments. Laws need to allow innovative uses of tax pre-payments, housing mortgage bonds, changeable debt and bounding limits, industrial loans with delayed prepayment, and revised revenue assistance formulas. Enabling legislation is required in most states to allow impact areas to negotiate the mitigation efforts. A review of 7 types of mitigation effort is presented: transportation; housing; public utilities; health, public safety and recreation; miscellaneous; and company-community interaction. (PBS)

  2. A Windshear Hazard Index

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Hinton, David A.; Bowles, Roland L.

    2000-01-01

    An aircraft exposed to hazardous low-level windshear may suffer a critical loss of airspeed and altitude, thus endangering its ability to remain airborne. In order to characterize this hazard, a nondimensional index was developed based oil aerodynamic principals and understanding of windshear phenomena, 'This paper reviews the development and application of the Bowles F-tactor. which is now used by onboard sensors for the detection of hazardous windshear. It was developed and tested during NASA/I:AA's airborne windshear program and is now required for FAA certification of onboard radar windshear detection systems. Reviewed in this paper are: 1) definition of windshear and description of atmospheric phenomena that may cause hazardous windshear. 2) derivation and discussion of the F-factor. 3) development of the F-factor hazard threshold, 4) its testing during field deployments, and 5) its use in accident reconstructions,

  3. NGNP SITE 2 HAZARDS ASSESSMENT

    SciTech Connect

    Wayne Moe

    2011-10-01

    to be addressed in design and licensing processes; assure the HTGR technology can be deployed at variety of sites for a range of applications; evaluate potential sites for potential hazards and describe some of the actions necessary to mitigate impacts of hazards; and, provide key insights that can inform the plant design process. The report presents a summary of the process methodology and the results of an assessment of hazards typical of a class of candidate sites for the potential deployment of HTGR reactor technology. The assessment considered health and safety, and other important siting characteristics to determine the potential impact of identified hazards and potential challenges presented by the location for this technology. A four reactor module nuclear plant (2000 to 2400 MW thermal), that co-generates steam, electricity for general use in the plant, and hot gas for use in a nearby chemical processing facility, to provide the requisite performance and reliability was assumed for the assessment.

  4. Maritime Tsunami Hazard Assessment in California

    NASA Astrophysics Data System (ADS)

    Lynett, P. J.; Borrero, J. C.; Wilson, R. I.; Miller, K. M.

    2012-12-01

    of a typical tsunami. The ability to model and then validate these currentsdissect them has only recently become available through the evaluation of dozens of eyewitness accounts and hundreds of videos.developed. In this presentation, we will present ongoing work related to the application of such models to quantify the maritime tsunami hazard in select ports and harbors in California. The development of current-based tsunami hazard maps and safe-offshore-depth delineations will be discussed. We will also present an overview of the challenges in modeling tsunami currents, including capture of turbulent dynamics, coupling with tides, and issues with long-duration simulations. This work in California will form the basis for tsunami hazard reduction for all U.S. maritime communities through the National Tsunami Hazard Mitigation Program.

  5. A course in disaster mitigation.

    PubMed

    Bundy, Sarah J

    2016-01-01

    While endeavors are underway within the emergency management discipline to develop a unique body of foundational knowledge, widespread acknowledgement and agreement within the emergency management scholarly community of the existence of theoretical foundations and the consistent incorporation of these elements into emergency management research and teaching are still lacking. This article offers an outline of a US-based undergraduate course in mitigation theory and practice that is based on a synthesis of the academic literature related to disaster mitigation as a means to advance the discourse on foundational knowledge and curriculum development. The course outline proposes a set of concepts, theories, propositions, and empirical data that would arguably be fundamental for students in gaining a comprehensive understanding of mitigation in the United States and suggests how that information can be organized and presented in a meaningful way. PMID:26963230

  6. Puerto Rico Tsunami Warning and Mitigation Program

    NASA Astrophysics Data System (ADS)

    Huerfano, V. A.; Mercado, A.; von Hillebrandt, C. G.

    2003-12-01

    The circum-Caribbean region has a documented history of large damaging tsunamis that have affected coastal areas, including the events of the Virgin Islands in 1867 and Mona Passage in 1918. These tsunamis have been triggered by large tsunamigenic earthquakes that deformed the ocean floor. The seismic water waves originating in the prominent fault system around PR are considered to be a near-field hazard for Puerto Rico and the Virgin islands (PR/VI) because they can reach coastal areas within a few minutes after the earthquake. Sources for regional and tele tsunamis have also been identified. To help mitigate the risk of potential tsunamis on the coastal communities of Puerto Rico, with initial funding from the Federal Emergency Management Administration (FEMA) and the University of Puerto Rico (UPR), the Puerto Rico Tsunami Warning and Mitigation Program (PRTWMP) was established in 2000. Three of the main tasks are to evaluate the possibility of establishing a Tsunami Warning System (TWS), prepare tsunami flood maps and education. The need to establish a system of rapid notification for tsunami alerting in the Caribbean region has been recognized by the emergency management and scientific community. Presently, the Puerto Rico Seismic Network (PRSN) of the University of Puerto Rico at Mayag\\x81ez is establishing a Tsunami Warning System (TWS) for PR/VI. Part of the TWS is the EarlyBird system, developed by the West Coast/Alaska Tsunami Warning Center, which has been running in the PRSN since January, 2003. This program automatically locates and disseminates information on potentially tsunamigenic earthquakes. Also, the existing protocol for exchanging data and information on potentially tsunamigenic events in the PR/VI is currently being reviewed by the concerned institutions. Tsunami flood maps were prepared for all of Puerto Rico, including the island municipalities of Vieques and Culebra. These flood maps were generated in three phases. First, hypothetical

  7. Natural hazards science strategy

    USGS Publications Warehouse

    Holmes, Jr., Robert R.; Jones, Lucile M.; Eidenshink, Jeffery C.; Godt, Jonathan W.; Kirby, Stephen H.; Love, Jeffrey J.; Neal, Christina A.; Plant, Nathaniel G.; Plunkett, Michael L.; Weaver, Craig S.; Wein, Anne; Perry, Suzanne C.

    2012-01-01

    The mission of the U.S. Geological Survey (USGS) in natural hazards is to develop and apply hazard science to help protect the safety, security, and economic well-being of the Nation. The costs and consequences of natural hazards can be enormous, and each year more people and infrastructure are at risk. USGS scientific research - founded on detailed observations and improved understanding of the responsible physical processes - can help to understand and reduce natural hazard risks and to make and effectively communicate reliable statements about hazard characteristics, such as frequency, magnitude, extent, onset, consequences, and where possible, the time of future events. To accomplish its broad hazard mission, the USGS maintains an expert workforce of scientists and technicians in the earth sciences, hydrology, biology, geography, social and behavioral sciences, and other fields, and engages cooperatively with numerous agencies, research institutions, and organizations in the public and private sectors, across the Nation and around the world. The scientific expertise required to accomplish the USGS mission in natural hazards includes a wide range of disciplines that this report refers to, in aggregate, as hazard science. In October 2010, the Natural Hazards Science Strategy Planning Team (H-SSPT) was charged with developing a long-term (10-year) Science Strategy for the USGS mission in natural hazards. This report fulfills that charge, with a document hereinafter referred to as the Strategy, to provide scientific observations, analyses, and research that are critical for the Nation to become more resilient to natural hazards. Science provides the information that decisionmakers need to determine whether risk management activities are worthwhile. Moreover, as the agency with the perspective of geologic time, the USGS is uniquely positioned to extend the collective experience of society to prepare for events outside current memory. The USGS has critical statutory

  8. Mitigation Strategies To Protect Food Against Intentional Adulteration. Final rule.

    PubMed

    2016-05-27

    The Food and Drug Administration (FDA or we) is issuing this final rule to require domestic and foreign food facilities that are required to register under the Federal Food, Drug, and Cosmetic Act (the FD&C Act) to address hazards that may be introduced with the intention to cause wide scale public health harm. These food facilities are required to conduct a vulnerability assessment to identify significant vulnerabilities and actionable process steps and implement mitigation strategies to significantly minimize or prevent significant vulnerabilities identified at actionable process steps in a food operation. FDA is issuing these requirements as part of our implementation of the FDA Food Safety Modernization Act (FSMA). PMID:27236872

  9. Plasma Hazards and Acceptance for International Space Station Extravehicular Activities

    NASA Astrophysics Data System (ADS)

    Patton, Thomas

    2010-09-01

    Extravehicular activity(EVA) is accepted by NASA and other space faring agencies as a necessary risk in order to build and maintain a safe and efficient laboratory in space. EVAs are used for standard construction and as contingency operations to repair critical equipment for vehicle sustainability and safety of the entire crew in the habitable volume. There are many hazards that are assessed for even the most mundane EVA for astronauts, and the vast majority of these are adequately controlled per the rules of the International Space Station Program. The need for EVA repair and construction has driven acceptance of a possible catastrophic hazard to the EVA crewmember which cannot currently be controlled adequately. That hazard is electrical shock from the very environment in which they work. This paper describes the environment, causes and contributors to the shock of EVA crewmembers attributed to the ionospheric plasma environment in low Earth orbit. It will detail the hazard history, and acceptance process for the risk associated with these hazards that give assurance to a safe EVA. In addition to the hazard acceptance process this paper will explore other factors that go into the decision to accept a risk including criticality of task, hardware design and capability, and the probability of hazard occurrence. Also included will be the required interaction between organizations at NASA(EVA Office, Environments, Engineering, Mission Operations, Safety) in order to build and eventually gain adequate acceptance rationale for a hazard of this kind. During the course of the discussion, all current methods of mitigating the hazard will be identified. This paper will capture the history of the plasma hazard analysis and processes used by the International Space Station Program to formally assess and qualify the risk. The paper will discuss steps that have been taken to identify and perform required analysis of the floating potential shock hazard from the ISS environment

  10. Assessing volcanic hazards with Vhub

    NASA Astrophysics Data System (ADS)

    Palma, J. L.; Charbonnier, S.; Courtland, L.; Valentine, G.; Connor, C.; Connor, L.

    2012-04-01

    Vhub (online at vhub.org) is a virtual organization and community cyberinfrastructure designed for collaboration in volcanology research, education, and outreach. One of the core objectives of this project is to accelerate the transfer of research tools to organizations and stakeholders charged with volcano hazard and risk mitigation (such as volcano observatories). Vhub offers a clearinghouse for computational models of volcanic processes and data analysis, documentation of those models, and capabilities for online collaborative groups focused on issues such as code development, configuration management, benchmarking, and validation. Vhub supports computer simulations and numerical modeling at two levels: (1) some models can be executed online via Vhub, without needing to download code and compile on the user's local machine; (2) other models are not available for online execution but for offline use in the user's computer. VHub also has wikis, blogs and group functions around specific topics to encourage collaboration, communication and discussion. Some of the simulation tools currently available to Vhub users are: Energy Cone (rapid delineation of the impact zone by pyroclastic density currents), Tephra2 (tephra dispersion forecast tool), Bent (atmospheric plume analysis), Hazmap (simulate sedimentation of volcanic particles) and TITAN2D (mass flow simulation tool). The list of online simulations available on Vhub is expected to expand considerably as the volcanological community becomes more involved in the project. This presentation focuses on the implementation of online simulation tools, and other Vhub's features, for assessing volcanic hazards following approaches similar to those reported in the literature. Attention is drawn to the minimum computational resources needed by the user to carry out such analyses, and to the tools and media provided to facilitate the effective use of Vhub's infrastructure for hazard and risk assessment. Currently the project

  11. The Impact Hazard in the Context of Other Natural Hazards and Predictive Science

    NASA Astrophysics Data System (ADS)

    Chapman, C. R.

    1998-09-01

    The hazard due to impact of asteroids and comets has been recognized as analogous, in some ways, to other infrequent but consequential natural hazards (e.g. floods and earthquakes). Yet, until recently, astronomers and space agencies have felt no need to do what their colleagues and analogous agencies must do in order the assess, quantify, and communicate predictions to those with a practical interest in the predictions (e.g. public officials who must assess the threats, prepare for mitigation, etc.). Recent heightened public interest in the impact hazard, combined with increasing numbers of "near misses" (certain to increase as Spaceguard is implemented) requires that astronomers accept the responsibility to place their predictions and assessments in terms that may be appropriately considered. I will report on preliminary results of a multi-year GSA/NCAR study of "Prediction in the Earth Sciences: Use and Misuse in Policy Making" in which I have represented the impact hazard, while others have treated earthquakes, floods, weather, global climate change, nuclear waste disposal, acid rain, etc. The impact hazard presents an end-member example of a natural hazard, helping those dealing with more prosaic issues to learn from an extreme. On the other hand, I bring to the astronomical community some lessons long adopted in other cases: the need to understand the policy purposes of impact predictions, the need to assess potential societal impacts, the requirements to very carefully assess prediction uncertainties, considerations of potential public uses of the predictions, awareness of ethical considerations (e.g. conflicts of interest) that affect predictions and acceptance of predictions, awareness of appropriate means for publicly communicating predictions, and considerations of the international context (especially for a hazard that knows no national boundaries).

  12. Elimination of the hazards from hazardous wastes.

    PubMed Central

    Gloyna, E F; Taylor, R D

    1978-01-01

    The "hazard" associated with a waste essentially controls the overall engineering approach to finding suitable alternatives for solving potential disposal problems. It should be recognized that all factors affecting environmental equilibrium must be considered, including product sales, process design, financing, pre- and end-of-pipe treatment, residuals management, and ultimate bioaccumulation of residuals. To meet this challenge, a systems approach to waste treatment and residuals disposal provides a logical approach, but this management concept requires a thorough understanding of the important physical and chemical aspects of the problem, as well as many social implications of the resulting decisions. Thus waste management within a plant necessarily involves process control, pretreatment and end-of-pipe treatment. Further, it follows that residuals management from a disposal point-of-view must ultimately embrace what is called the "multi-barrier concept." In essence, hazard elimination occurs in varying degrees during each phase of a properly engineered system. PMID:738249

  13. Parametric Hazard Function Estimation.

    Energy Science and Technology Software Center (ESTSC)

    1999-09-13

    Version 00 Phaze performs statistical inference calculations on a hazard function (also called a failure rate or intensity function) based on reported failure times of components that are repaired and restored to service. Three parametric models are allowed: the exponential, linear, and Weibull hazard models. The inference includes estimation (maximum likelihood estimators and confidence regions) of the parameters and of the hazard function itself, testing of hypotheses such as increasing failure rate, and checking ofmore » the model assumptions.« less

  14. Space Debris Hazard Evaluation

    NASA Technical Reports Server (NTRS)

    Davison, Elmer H.; Winslow, Paul C., Jr.

    1961-01-01

    The hazard to space vehicles from natural space debris has been explored. A survey of the available information pertinent to this problem is presented. The hope is that this presentation gives a coherent picture of the knowledge to date in terms of the topic covered. The conclusion reached is that a definite hazard exists but that it can only be poorly assessed on the basis of present information. The need for direct measurement of this hazard is obvious, and some of the problems involved in making these direct measurements have been explored.

  15. Flood hazard assessment for the Savannah River Site

    SciTech Connect

    Chen, K.F.

    2000-01-18

    A method was developed to determine the probabilistic flood elevation curves for certain Savannah River Site (SRS) facilities. This paper presents the method used to determine the probabilistic flood elevation curve for F-Area due to runoff from the Upper Three Runs basin. Department of Energy (DOE) Order 420.1, Facility Safety, outlines the requirements for Natural Phenomena Hazard (NPH) mitigation for new and existing DOE facilities. The NPH considered in this paper is flooding. The facility-specific probabilistic flood hazard curve defines as a function of water elevation the annual probability of occurrence or the return period in years. Based on facility-specific probabilistic flood hazard curves and the nature of facility operations (e.g., involving hazardous or radioactive materials), facility managers can design permanent or temporary devices to prevent the propagation of flood on site, and develop emergency preparedness plans to mitigate the consequences of floods. The flood hazard curves for the SRS F-Area due to flooding in the Upper Three Runs basin are presented in this paper.

  16. Review of Natural Phenomena Hazard (NPH) Assessments for the Hanford 200 Areas (Non-Seismic)

    SciTech Connect

    Snow, Robert L.; Ross, Steven B.; Sullivan, Robin S.

    2010-09-24

    The purpose of this review is to assess the need for updating Natural Phenomena Hazard (NPH) assessments for the Hanford 200 Areas, as required by DOE Order 420.1B Chapter IV, Natural Phenomena Hazards Mitigation, based on significant changes in state-of-the-art NPH assessment methodology or site-specific information. The review includes all natural phenomena hazards with the exception of seismic/earthquake hazards, which are being addressed under a separate effort. It was determined that existing non-seismic NPH assessments are consistent with current design methodology and site specific data.

  17. Greenhouse gas mitigation in agriculture.

    PubMed

    Smith, Pete; Martino, Daniel; Cai, Zucong; Gwary, Daniel; Janzen, Henry; Kumar, Pushpam; McCarl, Bruce; Ogle, Stephen; O'Mara, Frank; Rice, Charles; Scholes, Bob; Sirotenko, Oleg; Howden, Mark; McAllister, Tim; Pan, Genxing; Romanenkov, Vladimir; Schneider, Uwe; Towprayoon, Sirintornthep; Wattenbach, Martin; Smith, Jo

    2008-02-27

    Agricultural lands occupy 37% of the earth's land surface. Agriculture accounts for 52 and 84% of global anthropogenic methane and nitrous oxide emissions. Agricultural soils may also act as a sink or source for CO2, but the net flux is small. Many agricultural practices can potentially mitigate greenhouse gas (GHG) emissions, the most prominent of which are improved cropland and grazing land management and restoration of degraded lands and cultivated organic soils. Lower, but still significant mitigation potential is provided by water and rice management, set-aside, land use change and agroforestry, livestock management and manure management. The global technical mitigation potential from agriculture (excluding fossil fuel offsets from biomass) by 2030, considering all gases, is estimated to be approximately 5500-6000Mt CO2-eq.yr-1, with economic potentials of approximately 1500-1600, 2500-2700 and 4000-4300Mt CO2-eq.yr-1 at carbon prices of up to 20, up to 50 and up to 100 US$ t CO2-eq.-1, respectively. In addition, GHG emissions could be reduced by substitution of fossil fuels for energy production by agricultural feedstocks (e.g. crop residues, dung and dedicated energy crops). The economic mitigation potential of biomass energy from agriculture is estimated to be 640, 2240 and 16 000Mt CO2-eq.yr-1 at 0-20, 0-50 and 0-100 US$ t CO2-eq.-1, respectively. PMID:17827109

  18. Remote Sensing Technologies Mitigate Drought

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Ames Research Center has partnered with the California Department of Water Resources to develop satellite-based technologies to mitigate drought conditions. One project aims to help water managers adjust their irrigation to match the biological needs of each crop, and another involves monitoring areas where land is fallow so emergency relief can more quickly aid affected communities.

  19. RADON MITIGATION STUDIES: NASHVILLE DEMONSTRATION

    EPA Science Inventory

    The report gives results of an EPA radon mitigation demonstration project involving 14 houses in the Nashville, TN, area with indoor radon levels of 5.6-47.6 pCi/L, using a variety of techniques, designed to be the most cost effective methods possible to implement, and yet adequa...

  20. Lunar Dust: Characterization and Mitigation

    NASA Technical Reports Server (NTRS)

    Hyatt. Mark J.; Feighery, John

    2007-01-01

    Lunar dust is a ubiquitous phenomenon which must be explicitly addressed during upcoming human lunar exploration missions. Near term plans to revisit the moon as a stepping stone for further exploration of Mars, and beyond, places a primary emphasis on characterization and mitigation of lunar dust. Comprised of regolith particles ranging in size from tens of nanometers to microns, lunar dust is a manifestation of the complex interaction of the lunar soil with multiple mechanical, electrical, and gravitational effects. The environmental and anthropogenic factors effecting the perturbation, transport, and deposition of lunar dust must be studied in order to mitigate it's potentially harmful effects on exploration systems. The same hold true for assessing the risk it may pose for toxicological health problems if inhaled. This paper presents the current perspective and implementation of dust knowledge management and integration, and mitigation technology development activities within NASA's Exploration Technology Development Program. This work is presented within the context of the Constellation Program's Integrated Lunar Dust Management Strategy. This work further outlines the scientific basis for lunar dust behavior, it's characteristics and potential effects, and surveys several potential strategies for its control and mitigation both for lunar surface operations and within the working volumes of a lunar outpost. The paper also presents a perspective on lessons learned from Apollo and forensics engineering studies of Apollo hardware.

  1. Space debris detection and mitigation

    SciTech Connect

    Allahdadi, F.

    1993-01-01

    Space debris is defined as all useless man-made objects in space. This conference covers the following areas: debris detection, tracking, and surveillance; orbital debris analytical modeling; debris environment and safety issues; and orbital debris mitigation. Separate abstracts were prepared for 26 papers in this conference.

  2. Modeling, Forecasting and Mitigating Extreme Earthquakes

    NASA Astrophysics Data System (ADS)

    Ismail-Zadeh, A.; Le Mouel, J.; Soloviev, A.

    2012-12-01

    Recent earthquake disasters highlighted the importance of multi- and trans-disciplinary studies of earthquake risk. A major component of earthquake disaster risk analysis is hazards research, which should cover not only a traditional assessment of ground shaking, but also studies of geodetic, paleoseismic, geomagnetic, hydrological, deep drilling and other geophysical and geological observations together with comprehensive modeling of earthquakes and forecasting extreme events. Extreme earthquakes (large magnitude and rare events) are manifestations of complex behavior of the lithosphere structured as a hierarchical system of blocks of different sizes. Understanding of physics and dynamics of the extreme events comes from observations, measurements and modeling. A quantitative approach to simulate earthquakes in models of fault dynamics will be presented. The models reproduce basic features of the observed seismicity (e.g., the frequency-magnitude relationship, clustering of earthquakes, occurrence of extreme seismic events). They provide a link between geodynamic processes and seismicity, allow studying extreme events, influence of fault network properties on seismic patterns and seismic cycles, and assist, in a broader sense, in earthquake forecast modeling. Some aspects of predictability of large earthquakes (how well can large earthquakes be predicted today?) will be also discussed along with possibilities in mitigation of earthquake disasters (e.g., on 'inverse' forensic investigations of earthquake disasters).

  3. 44 CFR 65.5 - Revision to special hazard area boundaries with no change to base flood elevation determinations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Revision to special hazard area boundaries with no change to base flood elevation determinations. 65.5 Section 65.5 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood...

  4. Application of multi-agent coordination methods to the design of space debris mitigation tours

    NASA Astrophysics Data System (ADS)

    Stuart, Jeffrey; Howell, Kathleen; Wilson, Roby

    2016-04-01

    The growth in the number of defunct and fragmented objects near to the Earth poses a growing hazard to launch operations as well as existing on-orbit assets. Numerous studies have demonstrated the positive impact of active debris mitigation campaigns upon the growth of debris populations, but comparatively fewer investigations incorporate specific mission scenarios. Furthermore, while many active mitigation methods have been proposed, certain classes of debris objects are amenable to mitigation campaigns employing chaser spacecraft with existing chemical and low-thrust propulsive technologies. This investigation incorporates an ant colony optimization routing algorithm and multi-agent coordination via auctions into a debris mitigation tour scheme suitable for preliminary mission design and analysis as well as spacecraft flight operations.

  5. Health Care Wide Hazards

    MedlinePlus

    ... Employee Downloads Additional Information Latex Allergy Legionnaires' Disease Mercury Needlesticks Noise Other Hazards (Lack of) PPE Slips/ ... Staphylococcus aureus Latex Allergy Legionnaires' Disease Needlesticks Noise Mercury Inappropriate PPE Slips/Trips/Falls Stress Tuberculosis Lack ...

  6. California's potential volcanic hazards

    SciTech Connect

    Jorgenson, P. )

    1989-01-01

    Although volcanic eruptions have occurred infrequently in California during the last few thousand years, the potential danger to life and property from volcanoes in the state is great enough to be of concern, according to a recent U.S. Geological Survey (USGS) publication. The 17-page bulletin, Potential Hazards from Future Volcanic Eruptions in California, gives a brief history of volcanic activity in California during the past 100,000 years, descriptions of the types of volcanoes in the state, the types of potentially hazardous volcanic events that could occur, and hazard-zonation maps and tables depicting six areas of the state where volcanic eruptions might occur. The six areas and brief descriptions of their past volcanic history and potential for future volcanic hazards are briefly summarized here.

  7. Space flight hazards catalog

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The most significant hazards identified on manned space flight programs are listed. This summary is of special value to system safety engineers in developing safety checklists and otherwise tailoring safety tasks to specific systems and subsystems.

  8. Developing hazardous waste programs

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Developing a fully operational hazardous waste regulatory system requires at least 10 to 15 years—even in countries with strong legal and bureaucratic institutions, according to a report on "The Evolution of Hazardous Waste Programs," which was funded by Resources for the Future (RFF) and the World Bank's South Asia Environment Group, and issued on June 4.The report, which compares the experiences of how four developed and four developing countries have created hazardous waste programs, indicates that hazardous waste issues usually do not become a pressing environmental issue until after countries have dealt with more direct threats to public health, such as contaminated drinking water and air pollution. The countries examined include Indonesia, Thailand, Germany, and the United States.

  9. HAZARDOUS WASTE DESTRUCTION

    EPA Science Inventory

    The paper profiles the current status of hazardous waste thermal destruction in the United States, including facilities and wastes typically handled. The results of extensive EPA-sponsored performance tests are presented for incinerators, industrial boilers, and industrial proces...

  10. Barrier Island Hazard Mapping.

    ERIC Educational Resources Information Center

    Pilkey, Orrin H.; Neal, William J.

    1980-01-01

    Describes efforts to evaluate and map the susceptibility of barrier islands to damage from storms, erosion, rising sea levels and other natural phenomena. Presented are criteria for assessing the safety and hazard potential of island developments. (WB)

  11. Automated Standard Hazard Tool

    NASA Technical Reports Server (NTRS)

    Stebler, Shane

    2014-01-01

    The current system used to generate standard hazard reports is considered cumbersome and iterative. This study defines a structure for this system's process in a clear, algorithmic way so that standard hazard reports and basic hazard analysis may be completed using a centralized, web-based computer application. To accomplish this task, a test server is used to host a prototype of the tool during development. The prototype is configured to easily integrate into NASA's current server systems with minimal alteration. Additionally, the tool is easily updated and provides NASA with a system that may grow to accommodate future requirements and possibly, different applications. Results of this project's success are outlined in positive, subjective reviews complete by payload providers and NASA Safety and Mission Assurance personnel. Ideally, this prototype will increase interest in the concept of standard hazard automation and lead to the full-scale production of a user-ready application.

  12. Lunar Dust Mitigation Technology Development

    NASA Technical Reports Server (NTRS)

    Hyatt, Mark J.; Deluane, Paul B.

    2008-01-01

    NASA s plans for implementing the Vision for Space Exploration include returning to the moon as a stepping stone for further exploration of Mars, and beyond. Dust on the lunar surface has a ubiquitous presence which must be explicitly addressed during upcoming human lunar exploration missions. While the operational challenges attributable to dust during the Apollo missions did not prove critical, the comparatively long duration of impending missions presents a different challenge. Near term plans to revisit the moon places a primary emphasis on characterization and mitigation of lunar dust. Comprised of regolith particles ranging in size from tens of nanometers to microns, lunar dust is a manifestation of the complex interaction of the lunar soil with multiple mechanical, electrical, and gravitational effects. The environmental and anthropogenic factors effecting the perturbation, transport, and deposition of lunar dust must be studied in order to mitigate it s potentially harmful effects on exploration systems. This paper presents the current perspective and implementation of dust knowledge management and integration, and mitigation technology development activities within NASA s Exploration Technology Development Program. This work is presented within the context of the Constellation Program s Integrated Lunar Dust Management Strategy. The Lunar Dust Mitigation Technology Development project has been implemented within the ETDP. Project scope and plans will be presented, along with a a perspective on lessons learned from Apollo and forensics engineering studies of Apollo hardware. This paper further outlines the scientific basis for lunar dust behavior, it s characteristics and potential effects, and surveys several potential strategies for its control and mitigation both for lunar surface operations and within the working volumes of a lunar outpost.

  13. K Basin Hazard Analysis

    SciTech Connect

    PECH, S.H.

    2000-08-23

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  14. K Basins Hazard Analysis

    SciTech Connect

    WEBB, R.H.

    1999-12-29

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Safety Analysis Report (HNF-SD-WM-SAR-062, Rev.4). This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  15. Geomorphology and natural hazards

    NASA Astrophysics Data System (ADS)

    Gares, Paul A.; Sherman, Douglas J.; Nordstrom, Karl F.

    1994-08-01

    Natural hazards research was initiated in the 1960's by Gilbert White and his students who promulgated a research paradigm that involved assessing risk from a natural event, identifying adjustments to cope with the hazard, determining people's perception of the event, defining the process by which people choose adjustments, and estimating the effects of public policy on the choice process. Studies of the physical system played an important role in early research, but criticismsof the paradigm resulted in a shift to a prominence of social science. Geomorphologists are working to fill gaps in knowledge of the physical aspects of individual hazards, but use of the information by social scientists will only occur if information is presented in a format that is useful to them. One format involves identifying the hazard according to seven physical parameters established by White and his colleagues: magnitude, frequency, duration, areal extent, speed of onset, spatial dispersion, and temporal spacing. Geomorphic hazards are regarded as related to landscape changes that affect human systems. The processes that produce the changes are rarely geomorphic in nature, but are better regarded as atmospheric or hydrologic. An examination of geomorphic hazards in four fields — soil erosion, mass movement, coastal erosion and fluvial erosion — demonstrates that advances in those fields may be evaluated in terms of the seven parameters. Geomorphologists have contributed to hazard research by focusing on the dynamics of the landforms. The prediction of occurence, the determination of spatial and temporal characteristics, the impact of physical characteristics on people's perception, and the impact of physical characteristics on adjustment formulation. Opportunities for geomorphologists to improve our understanding of geomorphic hazards include research into the characteristics of the events particularly with respect to predicting the occurence, and increased evaluation of the

  16. Carbon Structure Hazard Control

    NASA Technical Reports Server (NTRS)

    Yoder, Tommy; Greene, Ben; Porter, Alan

    2015-01-01

    Carbon composite structures are widely used in virtually all advanced technology industries for a multitude of applications. The high strength-to-weight ratio and resistance to aggressive service environments make them highly desirable. Automotive, aerospace, and petroleum industries extensively use, and will continue to use, this enabling technology. As a result of this broad range of use, field and test personnel are increasingly exposed to hazards associated with these structures. No single published document exists to address the hazards and make recommendations for the hazard controls required for the different exposure possibilities from damaged structures including airborne fibers, fly, and dust. The potential for personnel exposure varies depending on the application or manipulation of the structure. The effect of exposure to carbon hazards is not limited to personnel, protection of electronics and mechanical equipment must be considered as well. The various exposure opportunities defined in this document include pre-manufacturing fly and dust, the cured structure, manufacturing/machining, post-event cleanup, and post-event test and/or evaluation. Hazard control is defined as it is applicable or applied for the specific exposure opportunity. The carbon exposure hazard includes fly, dust, fiber (cured/uncured), and matrix vapor/thermal decomposition products. By using the recommendations in this document, a high level of confidence can be assured for the protection of personnel and equipment.

  17. HAZARD ANALYSIS SOFTWARE

    SciTech Connect

    Sommer, S; Tinh Tran, T

    2008-04-08

    Washington Safety Management Solutions, LLC developed web-based software to improve the efficiency and consistency of hazard identification and analysis, control selection and classification, and to standardize analysis reporting at Savannah River Site. In the new nuclear age, information technology provides methods to improve the efficiency of the documented safety analysis development process which includes hazard analysis activities. This software provides a web interface that interacts with a relational database to support analysis, record data, and to ensure reporting consistency. A team of subject matter experts participated in a series of meetings to review the associated processes and procedures for requirements and standard practices. Through these meetings, a set of software requirements were developed and compiled into a requirements traceability matrix from which software could be developed. The software was tested to ensure compliance with the requirements. Training was provided to the hazard analysis leads. Hazard analysis teams using the software have verified its operability. The software has been classified as NQA-1, Level D, as it supports the analysis team but does not perform the analysis. The software can be transported to other sites with alternate risk schemes. The software is being used to support the development of 14 hazard analyses. User responses have been positive with a number of suggestions for improvement which are being incorporated as time permits. The software has enforced a uniform implementation of the site procedures. The software has significantly improved the efficiency and standardization of the hazard analysis process.

  18. Hazard screening application guide. Safety Analysis Report Update Program

    SciTech Connect

    1992-06-01

    The basic purpose of hazard screening is to group precesses, facilities, and proposed modifications according to the magnitude of their hazards so as to determine the need for and extent of follow on safety analysis. A hazard is defined as a material, energy source, or operation that has the potential to cause injury or illness in human beings. The purpose of this document is to give guidance and provide standard methods for performing hazard screening. Hazard screening is applied to new and existing facilities and processes as well as to proposed modifications to existing facilities and processes. The hazard screening process evaluates an identified hazards in terms of the effects on people, both on-site and off-site. The process uses bounding analyses with no credit given for mitigation of an accident with the exception of certain containers meeting DOT specifications. The process is restricted to human safety issues only. Environmental effects are addressed by the environmental program. Interfaces with environmental organizations will be established in order to share information.

  19. Transportation of Hazardous Materials Emergency Preparedness Hazards Assessment

    SciTech Connect

    Blanchard, A.

    2000-02-28

    This report documents the Emergency Preparedness Hazards Assessment (EPHA) for the Transportation of Hazardous Materials (THM) at the Department of Energy (DOE) Savannah River Site (SRS). This hazards assessment is intended to identify and analyze those transportation hazards significant enough to warrant consideration in the SRS Emergency Management Program.

  20. Limiting the immediate and subsequent hazards associated with wildfires

    USGS Publications Warehouse

    DeGraff, Jerome V.; Cannon, Susan H.; Parise, Mario

    2013-01-01

    Similarly, our capability to limit impacts from post-fire debris flows is improving. Empirical models for estimating the probability of debris-flow occurrence, the volume of such an event, and mapping the inundated area, linked with improved definitions of the rainfall conditions that trigger debris flows, can be used to provide critical information for post-fire hazard mitigation and emergency-response planning.

  1. A Procedure for Rapid Localized Earthquake Hazard Analysis

    NASA Astrophysics Data System (ADS)

    Holliday, J. R.; Rundle, J. B.

    2010-12-01

    In this presentation, we introduce various ground shaking and building response models. We then discuss the forecasting capabilities of different models submitted to the Collaboratory for the Study of Earthquake Predictability (CSEP) and show how they can be used as inputs for these models. Finally, we discuss how outputs from such multi- tiered calculations would prove invaluable for real-time and scenario-based hazard assessment and for cost-benefit analysis of possible mitigation actions.

  2. Submarine landslides: processes, triggers and hazard prediction.

    PubMed

    Masson, D G; Harbitz, C B; Wynn, R B; Pedersen, G; Løvholt, F

    2006-08-15

    Huge landslides, mobilizing hundreds to thousands of km(3) of sediment and rock are ubiquitous in submarine settings ranging from the steepest volcanic island slopes to the gentlest muddy slopes of submarine deltas. Here, we summarize current knowledge of such landslides and the problems of assessing their hazard potential. The major hazards related to submarine landslides include destruction of seabed infrastructure, collapse of coastal areas into the sea and landslide-generated tsunamis. Most submarine slopes are inherently stable. Elevated pore pressures (leading to decreased frictional resistance to sliding) and specific weak layers within stratified sequences appear to be the key factors influencing landslide occurrence. Elevated pore pressures can result from normal depositional processes or from transient processes such as earthquake shaking; historical evidence suggests that the majority of large submarine landslides are triggered by earthquakes. Because of their tsunamigenic potential, ocean-island flank collapses and rockslides in fjords have been identified as the most dangerous of all landslide related hazards. Published models of ocean-island landslides mainly examine 'worst-case scenarios' that have a low probability of occurrence. Areas prone to submarine landsliding are relatively easy to identify, but we are still some way from being able to forecast individual events with precision. Monitoring of critical areas where landslides might be imminent and modelling landslide consequences so that appropriate mitigation strategies can be developed would appear to be areas where advances on current practice are possible. PMID:16844646

  3. NEOShield - A global approach to NEO Impact Threat Mitigation

    NASA Astrophysics Data System (ADS)

    Michel, Patrick

    2015-03-01

    NEOShield is a European-Union funded project coordinated by the German Aero-space Center, DLR, to address near-Earth object (NEO) impact hazard mitigation issues. The NEOShield consortium consists of 13 research institutes, universities, and industrial partners from 6 countries and includes leading US and Russian space organizations. The project is funded for a period of 3.5 years from January 2012 with a total of 5.8 million euros. The primary aim of the project is to investigate in detail promising mitigation techniques, such as the kinetic impactor, blast deflection, and the gravity tractor, and devise feasible demonstration missions. Options for an international strategy for implementation when an actual impact threat arises will also be investigated. The NEOShield work plan consists of scientific investigations into the nature of the impact hazard and the physical properties of NEOs, and technical and engineering studies of practical means of deflecting NEOs. There exist many ideas for asteroid deflection techniques, many of which would require considerable scientific and technological development. The emphasis of NEOShield is on techniques that are feasible with current technology, requiring a minimum of research and development work. NEOShield aims to provide detailed designs of feasible mitigation demonstration missions, targeting NEOs of the kind most likely to trigger the first space-based mitigation action. Most of the asteroid deflection techniques proposed to date require physical contact with the threatening object, an example being the kinetic impactor. NEOShield includes research into the mitigation-relevant physical properties of NEOs on the basis of remotely-sensed astronomical data and the results of rendezvous missions, the observational techniques required to efficiently gather mitigation-relevant data on the dynamical state and physical properties of a threatening NEO, and laboratory investigations using gas guns to fire projectiles into

  4. 7 CFR 1794.17 - Mitigation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... § 1794.17 Mitigation. (a) General. In addition to complying with the requirements of 40 CFR 1502.14(f... (FONSI) and the Record of Decision (ROD). (b) Water and waste program. (1) Mitigation measures...

  5. 7 CFR 1794.17 - Mitigation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... § 1794.17 Mitigation. (a) General. In addition to complying with the requirements of 40 CFR 1502.14(f... (FONSI) and the Record of Decision (ROD). (b) Water and waste program. (1) Mitigation measures...

  6. 7 CFR 1794.17 - Mitigation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... § 1794.17 Mitigation. (a) General. In addition to complying with the requirements of 40 CFR 1502.14(f... (FONSI) and the Record of Decision (ROD). (b) Water and waste program. (1) Mitigation measures...

  7. 7 CFR 1794.17 - Mitigation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... § 1794.17 Mitigation. (a) General. In addition to complying with the requirements of 40 CFR 1502.14(f... (FONSI) and the Record of Decision (ROD). (b) Water and waste program. (1) Mitigation measures...

  8. Risk assessment of debris flow hazards in natural slope

    NASA Astrophysics Data System (ADS)

    Choi, Junghae; Chae, Byung-gon; Liu, Kofei; Wu, Yinghsin

    2016-04-01

    The study area is located at north-east part of South Korea. Referring to the map of landslide sus-ceptibility (KIGAM, 2009) from Korea Institute of Geoscience and Mineral Resources (KIGAM for short), there are large areas of potential landslide in high probability on slope land of mountain near the study area. Besides, recently some severe landslide-induced debris flow hazards occurred in this area. So this site is convinced to be prone to debris flow haz-ards. In order to mitigate the influence of hazards, the assessment of potential debris flow hazards is very important and essential. In this assessment, we use Debris-2D, debris flow numerical program, to assess the potential debris flow hazards. The worst scenario is considered for simulation. The input mass sources are determined using landslide susceptibility map. The water input is referred to the daily accumulative rainfall in the past debris flow event in study area. The only one input material property, i.e. yield stress, is obtained using calibration test. The simulation results show that the study area has po-tential to be impacted by debris flow. Therefore, based on simulation results, to mitigate debris flow hazards, we can propose countermeasures, including building check dams, constructing a protection wall in study area, and installing instruments for active monitoring of debris flow hazards. Acknowledgements:This research was supported by the Public Welfare & Safety Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2012M3A2A1050983)

  9. A UAV System for Observing Volcanoes and Natural Hazards

    NASA Astrophysics Data System (ADS)

    Saggiani, G.; Persiani, F.; Ceruti, A.; Tortora, P.; Troiani, E.; Giuletti, F.; Amici, S.; Buongiorno, M.; Distefano, G.; Bentini, G.; Bianconi, M.; Cerutti, A.; Nubile, A.; Sugliani, S.; Chiarini, M.; Pennestri, G.; Petrini, S.; Pieri, D.

    2007-12-01

    Fixed or rotary wing manned aircraft are currently the most commonly used platforms for airborne reconnaissance in response to natural hazards, such as volcanic eruptions, oil spills, wild fires, earthquakes. Such flights are very often undertaken in hazardous flying conditions (e.g., turbulence, downdrafts, reduced visibility, close proximity to dangerous terrain) and can be expensive. To mitigate these two fundamental issues-- safety and cost--we are exploring the use of small (less than 100kg), relatively inexpensive, but effective, unmanned aerial vehicles (UAVs) for this purpose. As an operational test, in 2004 we flew a small autonomous UAV in the airspace above and around Stromboli Volcano. Based in part on this experience, we are adapting the RAVEN UAV system for such natural hazard surveillance missions. RAVEN has a 50km range, with a 3.5m wingspan, main fuselage length of 4.60m, and maximum weight of 56kg. It has autonomous flight capability and a ground control Station for the mission planning and control. It will carry a variety of imaging devices, including a visible camera, and an IR camera. It will also carry an experimental Fourier micro-interferometer based on MOEMS technology, (developed by IMM Institute of CNR), to detect atmospheric trace gases. Such flexible, capable, and easy-to-deploy UAV systems may significantly shorten the time necessary to characterize the nature and scale of the natural hazard threats if used from the outset of, and systematically during, natural hazard events. When appropriately utilized, such UAVs can provide a powerful new hazard mitigation and documentation tool for civil protection hazard responders. This research was carried out under the auspices of the Italian government, and, in part, under contract to NASA at the Jet Propulsion Laboratory.

  10. Chemical process hazards analysis

    SciTech Connect

    1996-02-01

    The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

  11. ITER Disruption Mitigation System Design

    NASA Astrophysics Data System (ADS)

    Rasmussen, David; Lyttle, M. S.; Baylor, L. R.; Carmichael, J. R.; Caughman, J. B. O.; Combs, S. K.; Ericson, N. M.; Bull-Ezell, N. D.; Fehling, D. T.; Fisher, P. W.; Foust, C. R.; Ha, T.; Meitner, S. J.; Nycz, A.; Shoulders, J. M.; Smith, S. F.; Warmack, R. J.; Coburn, J. D.; Gebhart, T. E.; Fisher, J. T.; Reed, J. R.; Younkin, T. R.

    2015-11-01

    The disruption mitigation system for ITER is under design and will require injection of up to 10 kPa-m3 of deuterium, helium, neon, or argon material for thermal mitigation and up to 100 kPa-m3 of material for suppression of runaway electrons. A hybrid unit compatible with the ITER nuclear, thermal and magnetic field environment is being developed. The unit incorporates a fast gas valve for massive gas injection (MGI) and a shattered pellet injector (SPI) to inject a massive spray of small particles, and can be operated as an SPI with a frozen pellet or an MGI without a pellet. Three ITER upper port locations will have three SPI/MGI units with a common delivery tube. One equatorial port location has space for sixteen similar SPI/MGI units. Supported by US DOE under DE-AC05-00OR22725.

  12. Probabilistic Seismic Hazard assessment in Albania

    NASA Astrophysics Data System (ADS)

    Muco, B.; Kiratzi, A.; Sulstarova, E.; Kociu, S.; Peci, V.; Scordilis, E.

    2002-12-01

    zone with PGA (0.12 - 0.16 g) 26.5 percent of Albanian territory, 4)the zone with PGA (0.08 - 0.12 g) 28.2 percent of Albanian territory and 5)the zone with PGA (0.04 - 0.08 g) 21.9 percent of Albanian territory. The new maps of probabilistic seismic hazard for Albania would be a basic tool for the strategies of seismic hazard mitigation in this country.

  13. Assessment of Nearshore Hazard due to Tsunami-Induced Currents

    NASA Astrophysics Data System (ADS)

    Lynett, P. J.; Ayca, A.; Borrero, J. C.; Eskijian, M.; Miller, K.; Wilson, R. I.

    2014-12-01

    The California Tsunami Program in cooperation with NOAA and FEMA has begun implementing a plan to increase tsunami hazard preparedness and mitigation in maritime communities (both ships and harbor infrastructure) through the development of in-harbor hazard maps, offshore safety zones for boater evacuation, and associated guidance for harbors and marinas before, during and following tsunamis. The hope is that the maritime guidance and associated education program will help save lives and reduce exposure of damage to boats and harbor infrastructure. Findings will be used to develop maps, guidance documents, and consistent policy recommendations for emergency managers and port authorities and provide information critical to real-time decisions required when responding to tsunami alert notifications. The initial goals of the study are to (1) evaluate the effectiveness and sensitivity of existing numerical models for assessing maritime tsunami hazards, (2) find a relationship between current speeds and expected damage levels, (3) evaluate California ports and harbors in terms of tsunami induced hazards by identifying regions that are prone to higher current speeds and damage and to identify regions of relatively lower impact that may be used for evacuation of maritime assets, and (4) determine 'safe depths' for evacuation of vessels from ports and harbors during a tsunami event. We will present details of a new initiative to evaluate the future likelihood of failure for different structural components of a harbor, leading to the identification of high priority areas for mitigation. This presentation will focus on the results from California ports and harbors across the State, and will include feedback we have received from discussions with local harbor masters and port authorities. To help promote accurate and consistent products, the authors are also working through the National Tsunami Hazard Mitigation Program to organize a tsunami current model benchmark workshop.

  14. Mitigating hyperventilation during cardiopulmonary resuscitation.

    PubMed

    Nikolla, Dhimitri; Lewandowski, Tyler; Carlson, Jestin

    2016-03-01

    Although multiple airway management and ventilation strategies have been proposed during cardiac arrest, the ideal strategy is unknown. Current strategies call for advanced airways, such as endotracheal intubation and supraglottic airways. These may facilitate hyperventilation which is known to adversely affect cardiopulmonary physiology. We provide a summary of conceptual models linking hyperventilation to patient outcomes and identify methods for mitigating hyperventilation during cardiac arrest. PMID:26740418

  15. 7 CFR 1794.17 - Mitigation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 12 2014-01-01 2013-01-01 true Mitigation. 1794.17 Section 1794.17 Agriculture... § 1794.17 Mitigation. (a) General. In addition to complying with the requirements of 40 CFR 1502.14(f... (FONSI) and the Record of Decision (ROD). (b) Water and waste program. (1) Mitigation measures...

  16. 43 CFR 10005.8 - Mitigation obligations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Mitigation obligations. 10005.8 Section 10005.8 Public Lands: Interior Regulations Relating to Public Lands (Continued) UTAH RECLAMATION MITIGATION AND CONSERVATION COMMISSION POLICIES AND PROCEDURES FOR DEVELOPING AND IMPLEMENTING THE COMMISSION'S MITIGATION AND CONSERVATION PLAN §...

  17. 7 CFR 652.39 - Mitigating factors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Mitigating factors. 652.39 Section 652.39 Agriculture... AGRICULTURE SUPPORT ACTIVITIES TECHNICAL SERVICE PROVIDER ASSISTANCE Decertification § 652.39 Mitigating..., the deciding official will take into consideration any mitigating factors. Examples of...

  18. 34 CFR 81.33 - Mitigating circumstances.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Mitigating circumstances. 81.33 Section 81.33 Education... for Recovery of Funds § 81.33 Mitigating circumstances. (a) A recipient that is a State or local... funds is not required to return any amount that is attributable to the mitigating...

  19. 23 CFR 710.513 - Environmental mitigation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... wetland mitigation sites and other mitigation banks is governed by 23 CFR part 777. (b) Environmental...-WAY AND REAL ESTATE Property Acquisition Alternatives § 710.513 Environmental mitigation. (a) The... financial assistance. This includes real property acquired for a wetland bank, or other...

  20. IDENTIFICATION OF AIRCRAFT HAZARDS

    SciTech Connect

    K.L. Ashley

    2005-03-23

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in the ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2004, Section 6.4.1). That determination was conservatively based on limited knowledge of flight data in the area of concern and on crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a Monitored Geologic Repository (MGR) at Yucca Mountain using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987, Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. NUREG-0800 is being used here as a reference because some of the same considerations apply. The intended use of this report is to provide inputs for further screening and analysis of the identified aircraft hazards based on the criteria that apply to Category 1 and 2 event sequence analyses as defined in 10 CFR 63.2 (see Section 4). The scope of this technical report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the MGR at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (see Section 7).

  1. Identification of Aircraft Hazards

    SciTech Connect

    K. Ashley

    2006-12-08

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7).

  2. Mitigation alternatives for L Lake

    SciTech Connect

    Moore, D.B.

    1988-11-03

    The current condition of L Lake/Steel Creek was summarized in a report to SCDHEC in June 1988 which reported that the L Lake and Steel Creek ecosystems were adequately developing towards balanced biological communities. If mitigation for L Lake inputs, specifically temperature and nutrients, are required, several viable alternatives are available. A report prepared by Spencer in 1986 discusses the various options available for cooling L-Reactor discharges. In effect, a small cooling tower is the only realistic solution to reducing effluent temperatures. Nutrient mitigation can take several approaches including upstream sewage treatment, hypolimnetic withdrawal, dilution of input water by Par Pond water, precipitation of nutrients, and sediment oxidation. None of these systems would influence the thermal regime, but would significantly reduce nutrient input into the system. One beneficial use of L-Lake thermal effluents is algaculture, the production of useful algae. A document prepared in 1988 concludes that algaculture is a technically and economically feasible mitigation alternative for L Lake and could allow L Lake to be handled under Section 318 of the Clean Water Act.

  3. Cost-benefit analysis of alternative LNG vapor-mitigation measures. Topical report, September 14, 1987-January 15, 1991

    SciTech Connect

    Atallah, S.

    1992-06-25

    A generalized methodology is presented for comparing the costs and safety benefits of alternative hazard mitigation measures for a large LNG vapor release. The procedure involves the quantification of the risk to the public before and after the application of LNG vapor mitigation measures. In the study, risk was defined as the product of the annual accident frequency, estimated from a fault tree analysis, and the severity of the accident. Severity was measured in terms of the number of people who may be exposed to 2.5% or higher concentration. The ratios of the annual costs of the various mitigation measures to their safety benefits (as determined by the differences between the risk before and after mitigation measure implementation), were then used to identify the most cost-effective approaches to vapor cloud mitigation.

  4. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation

    USGS Publications Warehouse

    Ferrario, Filippo; Beck, Michael W.; Storlazzi, Curt D.; Micheli, Fiorenza; Shepard, Christine C.; Airoldi, Laura

    2014-01-01

    The world’s coastal zones are experiencing rapid development and an increase in storms and flooding. These hazards put coastal communities at heightened risk, which may increase with habitat loss. Here we analyse globally the role and cost effectiveness of coral reefs in risk reduction. Meta-analyses reveal that coral reefs provide substantial protection against natural hazards by reducing wave energy by an average of 97%. Reef crests alone dissipate most of this energy (86%). There are 100 million or more people who may receive risk reduction benefits from reefs or bear hazard mitigation and adaptation costs if reefs are degraded. We show that coral reefs can provide comparable wave attenuation benefits to artificial defences such as breakwaters, and reef defences can be enhanced cost effectively. Reefs face growing threats yet there is opportunity to guide adaptation and hazard mitigation investments towards reef restoration to strengthen this first line of coastal defence.

  5. The Influence of Environmental Hazard Maps on Risk Beliefs, Emotion, and Health-related Behavioral Intentions

    PubMed Central

    Severtson, Dolores

    2013-01-01

    To test a theoretical explanation of how attributes of mapped environmental health hazards influence health-related behavioral intentions and how beliefs and emotion mediate the influences of attributes, 24 maps were developed that varied by four attributes of a residential drinking water hazard: level, proximity, prevalence, and density. In a factorial design, student participants (N=446) answered questions for a subset of maps. Hazard level and proximity had the largest influences on intentions to test water and mitigate exposure. Belief in the problem’s seriousness mediated attributes’ influence on intention to test drinking water, and perceived susceptibility mediated the influence of attributes on intention to mitigate risk. Maps with carefully illustrated attributes of hazards may promote appropriate health-related risk beliefs, intentions, and behavior. PMID:23533022

  6. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation.

    PubMed

    Ferrario, Filippo; Beck, Michael W; Storlazzi, Curt D; Micheli, Fiorenza; Shepard, Christine C; Airoldi, Laura

    2014-01-01

    The world's coastal zones are experiencing rapid development and an increase in storms and flooding. These hazards put coastal communities at heightened risk, which may increase with habitat loss. Here we analyse globally the role and cost effectiveness of coral reefs in risk reduction. Meta-analyses reveal that coral reefs provide substantial protection against natural hazards by reducing wave energy by an average of 97%. Reef crests alone dissipate most of this energy (86%). There are 100 million or more people who may receive risk reduction benefits from reefs or bear hazard mitigation and adaptation costs if reefs are degraded. We show that coral reefs can provide comparable wave attenuation benefits to artificial defences such as breakwaters, and reef defences can be enhanced cost effectively. Reefs face growing threats yet there is opportunity to guide adaptation and hazard mitigation investments towards reef restoration to strengthen this first line of coastal defence. PMID:24825660

  7. The influence of environmental hazard maps on risk beliefs, emotion, and health-related behavioral intentions.

    PubMed

    Severtson, Dolores J

    2013-08-01

    To test a theoretical explanation of how attributes of mapped environmental health hazards influence health-related behavioral intentions and how beliefs and emotion mediate the influences of attributes, 24 maps were developed that varied by four attributes of a residential drinking water hazard: level, proximity, prevalence, and density. In a factorial design, student participants (N = 446) answered questions about a subset of maps. Hazard level and proximity had the largest influences on intentions to test water and mitigate exposure. Belief in the problem's seriousness mediated attributes' influence on intention to test drinking water, and perceived susceptibility mediated the influence of attributes on intention to mitigate risk. Maps with carefully illustrated attributes of hazards may promote appropriate health-related risk beliefs, intentions, and behavior. PMID:23533022

  8. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation

    PubMed Central

    Ferrario, Filippo; Beck, Michael W.; Storlazzi, Curt D.; Micheli, Fiorenza; Shepard, Christine C.; Airoldi, Laura

    2014-01-01

    The world’s coastal zones are experiencing rapid development and an increase in storms and flooding. These hazards put coastal communities at heightened risk, which may increase with habitat loss. Here we analyse globally the role and cost effectiveness of coral reefs in risk reduction. Meta-analyses reveal that coral reefs provide substantial protection against natural hazards by reducing wave energy by an average of 97%. Reef crests alone dissipate most of this energy (86%). There are 100 million or more people who may receive risk reduction benefits from reefs or bear hazard mitigation and adaptation costs if reefs are degraded. We show that coral reefs can provide comparable wave attenuation benefits to artificial defences such as breakwaters, and reef defences can be enhanced cost effectively. Reefs face growing threats yet there is opportunity to guide adaptation and hazard mitigation investments towards reef restoration to strengthen this first line of coastal defence. PMID:24825660

  9. Hazardous materials dictionary

    SciTech Connect

    Coleman, R.J.

    1987-01-01

    Parallel growth of the chemical industry of emergency response capabilities in the public and private sectors has created a new need for improved communications. A new vocabulary of important terms is emerging in each of the industries that transport, store and handle hazardous materials. This dictionary, representing a compilation of words and phrases from many relevant sources, will help document and standardize the nomenclature of hazardous materials. The authors have screened the technical discourse of the chemical, transportation, petroleum and medical fields, both governmental and private, to determine the most current expressions and their uses. The lexicographic goal has been to identify key terms, ambiguous and multiple meaning words, acronyms, symbols and even slang referring to hazardous materials reactions, storing and handling procedures.

  10. Moral Hazard in Pediatrics.

    PubMed

    Brunnquell, Donald; Michaelson, Christopher M

    2016-07-01

    "Moral hazard" is a term familiar in economics and business ethics that illuminates why rational parties sometimes choose decisions with bad moral outcomes without necessarily intending to behave selfishly or immorally. The term is not generally used in medical ethics. Decision makers such as parents and physicians generally do not use the concept or the word in evaluating ethical dilemmas. They may not even be aware of the precise nature of the moral hazard problem they are experiencing, beyond a general concern for the patient's seemingly excessive burden. This article brings the language and logic of moral hazard to pediatrics. The concept reminds us that decision makers in this context are often not the primary party affected by their decisions. It appraises the full scope of risk at issue when decision makers decide on behalf of others and leads us to separate, respect, and prioritize the interests of affected parties. PMID:27292845

  11. Hazardous fluid leak detector

    DOEpatents

    Gray, Harold E.; McLaurin, Felder M.; Ortiz, Monico; Huth, William A.

    1996-01-01

    A device or system for monitoring for the presence of leaks from a hazardous fluid is disclosed which uses two electrodes immersed in deionized water. A gas is passed through an enclosed space in which a hazardous fluid is contained. Any fumes, vapors, etc. escaping from the containment of the hazardous fluid in the enclosed space are entrained in the gas passing through the enclosed space and transported to a closed vessel containing deionized water and two electrodes partially immersed in the deionized water. The electrodes are connected in series with a power source and a signal, whereby when a sufficient number of ions enter the water from the gas being bubbled through it (indicative of a leak), the water will begin to conduct, thereby allowing current to flow through the water from one electrode to the other electrode to complete the circuit and activate the signal.

  12. Hazard Communication Standard

    SciTech Connect

    Sichak, S.

    1991-01-01

    The current rate of technological advances has brought with it an overwhelming increase in the usage of chemicals in the workplace and in the home. Coupled to this increase has been a heightened awareness in the potential for acute and chronic injuries attributable to chemical insults. The Hazard Communication Standard has been introduced with the desired goal of reducing workplace exposures to hazardous substances and thereby achieving a corresponding reduction in adverse health effects. It was created and proclaimed by the US Department of Labor and regulated by the Occupational Safety and Health Administration. 1 tab.

  13. Geothermal hazards - Mercury emission

    NASA Technical Reports Server (NTRS)

    Siegel, S. M.; Siegel, B. Z.

    1975-01-01

    Enthusiasm for intensified geothermal exploration may induce many participants to overlook a long-term potential toxicity hazard possibly associated with the tapping of magmatic steam. The association of high atmospheric Hg levels with geothermal activity has been established both in Hawaii and Iceland, and it has been shown that mercury can be introduced into the atmosphere from fumaroles, hot springs, and magmatic sources. These arguments, extended to thallium, selenium, and other hazardous elements, underscore the need for environmental monitoring in conjunction with the delivery of magmatic steam to the surface.

  14. Decision-support systems for natural-hazards and land-management issues

    USGS Publications Warehouse

    Dinitz, Laura; Forney, William; Byrd, Kristin

    2012-01-01

    Scientists at the USGS Western Geographic Science Center are developing decision-support systems (DSSs) for natural-hazards and land-management issues. DSSs are interactive computer-based tools that use data and models to help identify and solve problems. These systems can provide crucial support to policymakers, planners, and communities for making better decisions about long-term natural hazards mitigation and land-use planning.

  15. Translating Volcano Hazards Research in the Cascades Into Community Preparedness

    NASA Astrophysics Data System (ADS)

    Ewert, J. W.; Driedger, C. L.

    2015-12-01

    Research by the science community into volcanic histories and physical processes at Cascade volcanoes in the states of Washington, Oregon, and California has been ongoing for over a century. Eruptions in the 20th century at Lassen Peak and Mount St. Helen demonstrated the active nature of Cascade volcanoes; the 1980 eruption of Mount St. Helens was a defining moment in modern volcanology. The first modern volcano hazards assessments were produced by the USGS for some Cascade volcanoes in the 1960s. A rich scientific literature exists, much of which addresses hazards at these active volcanoes. That said community awareness, planning, and preparation for eruptions generally do not occur as a result of a hazard analyses published in scientific papers, but by direct communication with scientists. Relative to other natural hazards, volcanic eruptions (or large earthquakes, or tsunami) are outside common experience, and the public and many public officials are often surprised to learn of the impacts volcanic eruptions could have on their communities. In the 1980s, the USGS recognized that effective hazard communication and preparedness is a multi-faceted, long-term undertaking and began working with federal, state, and local stakeholders to build awareness and foster community action about volcano hazards. Activities included forming volcano-specific workgroups to develop coordination plans for volcano emergencies; a concerted public outreach campaign; curriculum development and teacher training; technical training for emergency managers and first responders; and development of hazard information that is accessible to non-specialists. Outcomes include broader ownership of volcano hazards as evidenced by bi-national exchanges of emergency managers, community planners, and first responders; development by stakeholders of websites focused on volcano hazards mitigation; and execution of table-top and functional exercises, including evacuation drills by local communities.

  16. Ranking the risk of wildlife species hazardous to military aircraft

    USGS Publications Warehouse

    Zakrajsek, E.J.; Bissonette, J.A.

    2005-01-01

    Collisions between birds and aircraft (birdstrikes) pose a major threat to aviation safety. Different species pose different levels of threat; thus, identification of the most hazardous species can help managers identify the level of hazard and prioritize mitigation efforts. Dolbeer et al. (2000) assessed the hazard posed by birds to civilian aircraft by analyzing data from the Federal Aviation Administration's (FAA) Wildlife Strike Database to rank the hazardous species and species groups. A similar analysis has not been done for the military but would be useful and necessary. Military flight characteristics differ from those of civilian flights. During the period 1985-1998, birdstrikes cost the United States Air Force (USAF) an average of $35 million/year in damage. Using the USAF Birdstrike Database, we selected and evaluated each species or species group by the number of strikes recorded in each of 3 damage categories. We weighted damage categories to reflect extent and cost of damage. The USAF Birdstrike Database contained 25,519 records of wildlife strikes in the United States. During the period 1985-1998, 22 (mean = 1.6/year) Class-A birdstrikes (>$1,000,000 damage, loss of aircraft, loss of life, or permanent total disability) were sustained, accounting for 80% of total monetary losses caused by birds. Vultures (Cathartes aura, Coragyps atratus, Caracara cheriway) were ranked the most hazardous species group (Hazard Index Rank [HIR] = 127) to USAF aircraft, followed by geese (Branta canadensis, Chen caerulescens, HIR = 76), pelicans (Pelecanus erythrorhynchos, P. occidentalis, HIR = 47), and buteos (Buteo sp., HIR = 30). Of the smaller flocking birds, blackbirds and starlings (mostly Agelaius phoeniceus, Euphagus cyanocephalus, Molothrus ater, Sturnus vulgaris, HIR = 46), horned larks (Eremophila alpestris, HIR = 24), and swallows (Families Hirundinidae, Apodidae, HIR = 23) were species groups ranked highest. Coupling these results with local bird census

  17. Seismic hazard communication in Istanbul

    NASA Astrophysics Data System (ADS)

    Ickert, Johanna

    2015-04-01

    Conflicting societal conceptions of earthquake safety provide challenges but also opportunities for the communication of seismic hazards. This paradox is exemplified in the controversial social reactions to the ongoing 'urban renewal projects' in Istanbul. Seismologists estimate that there is a high probability that a major earthquake will strike Istanbul in the next decade or so. Detailed earthquake risk analysis, and direct experience of the losses suffered during the major earthquakes that struck Turkey in 1999 and 2011, have engendered a broad societal recognition of the need for extensive earthquake preparedness and response planning. However, there has been dissent concerning the democratic legitimation of some of Istanbul's mitigation measures, most notably the implementation of the 'Law for the Regeneration of Areas Under Disaster Risk' (Law 6306, known as the 'disaster law') in May 2012. The strong interconnections between geological 'matters of fact' and societal 'matters of concern' raise fundamental questions for geocommunication on how to deal with this societal complexity, particularly in terms of maintaining trust in the geoscientist. There is a growing recognition among geoscientists that achieving disaster resilience in Istanbul is not solely the domain of 'earthquake experts' but rather requires a shared societal responsibility. However, the question arises as to how geocommunication can be designed to respond to this increased demand for interdisciplinarity and civil participation. This research will confront this question, exploring ways to combine qualitative and quantitative analyses, values and preferred norms with facts and observations, and be organised around an interactive web-based documentary platform that integrates multiple knowledge bases and seeks to help connect different communication cultures.

  18. Fostering Interdisciplinary Science to Improve Resilience to Natural Hazards

    NASA Astrophysics Data System (ADS)

    Darnell, Amii; Barclay, Jenni

    2009-09-01

    Characterization, Communication and Mitigation of Risks Arising From Multiple Hazards; Norwich, UK, 7-8 May 2009; Despite great scientific advances and humanitarian efforts, economic and human losses from natural hazards have increased in recent decades. This is largely a result of the growth in size and vulnerability of populations. Scientists additionally face the complexities of dealing with a broad range of hazards, including the seemingly inevitable increase in the severity and frequency of hydrometeorological events. To address these issues, the U.K. Natural Environment Research Council and the Economic and Social Research Council, together with the Department for Environment, Food and Rural Affairs, sponsored a meeting to assess how the societal cost of natural disasters could be reduced through the development of new, integrated approaches to research.

  19. Assessing natural hazard risk using images and data

    NASA Astrophysics Data System (ADS)

    Mccullough, H. L.; Dunbar, P. K.; Varner, J. D.; Mungov, G.

    2012-12-01

    Photographs and other visual media provide valuable pre- and post-event data for natural hazard assessment. Scientific research, mitigation, and forecasting rely on visual data for risk analysis, inundation mapping and historic records. Instrumental data only reveal a portion of the whole story; photographs explicitly illustrate the physical and societal impacts from the event. Visual data is rapidly increasing as the availability of portable high resolution cameras and video recorders becomes more attainable. Incorporating these data into archives ensures a more complete historical account of events. Integrating natural hazards data, such as tsunami, earthquake and volcanic eruption events, socio-economic information, and tsunami deposits and runups along with images and photographs enhances event comprehension. Global historic databases at NOAA's National Geophysical Data Center (NGDC) consolidate these data, providing the user with easy access to a network of information. NGDC's Natural Hazards Image Database (ngdc.noaa.gov/hazardimages) was recently improved to provide a more efficient and dynamic user interface. It uses the Google Maps API and Keyhole Markup Language (KML) to provide geographic context to the images and events. Descriptive tags, or keywords, have been applied to each image, enabling easier navigation and discovery. In addition, the Natural Hazards Map Viewer (maps.ngdc.noaa.gov/viewers/hazards) provides the ability to search and browse data layers on a Mercator-projection globe with a variety of map backgrounds. This combination of features creates a simple and effective way to enhance our understanding of hazard events and risks using imagery.

  20. a model based on crowsourcing for detecting natural hazards

    NASA Astrophysics Data System (ADS)

    Duan, J.; Ma, C.; Zhang, J.; Liu, S.; Liu, J.

    2015-12-01

    Remote Sensing Technology provides a new method for the detecting,early warning,mitigation and relief of natural hazards. Given the suddenness and the unpredictability of the location of natural hazards as well as the actual demands for hazards work, this article proposes an evaluation model for remote sensing detecting of natural hazards based on crowdsourcing. Firstly, using crowdsourcing model and with the help of the Internet and the power of hundreds of millions of Internet users, this evaluation model provides visual interpretation of high-resolution remote sensing images of hazards area and collects massive valuable disaster data; secondly, this evaluation model adopts the strategy of dynamic voting consistency to evaluate the disaster data provided by the crowdsourcing workers; thirdly, this evaluation model pre-estimates the disaster severity with the disaster pre-evaluation model based on regional buffers; lastly, the evaluation model actuates the corresponding expert system work according to the forecast results. The idea of this model breaks the boundaries between geographic information professionals and the public, makes the public participation and the citizen science eventually be realized, and improves the accuracy and timeliness of hazards assessment results.

  1. Hazardous solvent substitution

    SciTech Connect

    Twitchell, K.E.

    1995-11-01

    Eliminating hazardous solvents is good for the environment, worker safety, and the bottom line. However, even though we are motivated to find replacements, the big question is `What can we use as replacements for hazardous solvents?`You, too, can find replacements for your hazardous solvents. All you have to do is search for them. Search through the vendor literature of hundreds of companies with thousands of products. Ponder the associated material safety data sheets, assuming of course that you can obtain them and, having obtained them, that you can read them. You will want to search the trade magazines and other sources for product reviews. You will want to talk to users about how well the product actually works. You may also want to check US Environmental Protection Agency (EPA) and other government reports for toxicity and other safety information. And, of course, you will want to compare the product`s constituent chemicals with the many hazardous constituency lists to ensure the safe and legal use of the product in your workplace.

  2. Hazardous Wastes from Homes.

    ERIC Educational Resources Information Center

    Lord, John

    The management of waste materials has become more complex with the increase in human population and the development of new substances. This illustrated booklet traces the history of waste management and provides guidelines for individuals and communities in disposing of certain hazardous wastes safely. It addresses such topics as: (1) how people…

  3. PERMITTING HAZARDOUS WASTE INCINERATORS

    EPA Science Inventory

    This publication is a compilation of information presented at a seminar series designed to address the issues that affect the issuance of hazardous waste incineration permits and to improve the overall understanding of trial burn testing. pecifically, the document provides guidan...

  4. Hazards of Mercury.

    ERIC Educational Resources Information Center

    Environmental Research, 1971

    1971-01-01

    Common concern for the protection and improvement of the environment and the enhancement of human health and welfare underscore the purpose of this special report on the hazards of mercury directed to the Secretary's Pesticide Advisory Committee, Department of Health, Education, and Welfare. The report summarizes the findings of a ten-member study…

  5. Cables and fire hazards

    NASA Technical Reports Server (NTRS)

    Zanelli, C.; Philbrick, S.; Beretta, G.

    1986-01-01

    Besides describing the experiments conducted to develop a nonflammable cable, this article discusses several considerations regarding other hazards which might result from cable fires, particularly the toxicity and opacity of the fumes emitted by the burning cable. In addition, this article examines the effects of using the Oxygen Index as a gauge of quality control during manufacture.

  6. Wind shear hazard determination

    NASA Technical Reports Server (NTRS)

    Lewis, Michael S.

    1992-01-01

    The topics are presented in viewgraph form and include the following: F-factor relationship with aircraft performance; F-factor formulations; the F-bar index; F-factor hazard limit; F-bar with Doppler sensors; and F-bar profile composite.

  7. SCI Hazard Report Methodology

    NASA Technical Reports Server (NTRS)

    Mitchell, Michael S.

    2010-01-01

    This slide presentation reviews the methodology in creating a Source Control Item (SCI) Hazard Report (HR). The SCI HR provides a system safety risk assessment for the following Ares I Upper Stage Production Contract (USPC) components (1) Pyro Separation Systems (2) Main Propulsion System (3) Reaction and Roll Control Systems (4) Thrust Vector Control System and (5) Ullage Settling Motor System components.

  8. Mitigation of structureborne noise nuisance

    NASA Astrophysics Data System (ADS)

    Ko, Wing P.

    2005-09-01

    This paper presents a noise complaint case which was solved by me a few years ago in Hong Kong. A newlywed couple in the residential unit complained to the Government that the noise emitted from the pump room directly beneath their unit was very annoying, especially in the night-time period. The owner of the building was then required by the Government to mitigate the noise to the night-time statutory noise requirement within 30 days, otherwise he would be prosecuted. Ideally, the structureborne noise from the pump room could be effectively mitigated by installation of floating slab and vibration isolators under the pumps. Also, the water tanks and water pipes were required to be isolated from the walls and floor. However, this work was impossible to be completed within 30 days to stop the prosecution. Water supply to the above residents would be seriously interrupted during the construction period. As the only noise parameter of the statutory requirement was 30 minute A-weighted Leq, the most effective and practical way in this exigent situation was to reduce the pump operation time within any 30 minute period to decrease the Leq values. In addition, the water pipes and pumps were also required to be isolated from the walls and floor with resilient materials to break the vibration channels. These noise mitigation measures were successfully applied to the pump room before the end of the 30 days. Finally, the noise levels inside the complainant's unit were found to meet the statutory requirement. The noise complaint case was then closed by the Government.

  9. Dealing with the Asteroid Impact Hazard

    NASA Technical Reports Server (NTRS)

    Morrison, David

    2001-01-01

    The small fraction of the asteroids with Earth-crossing or Earth-approaching orbits is of special interest to us because many will eventually impact our planet. The time-averaged impact flux as a function of projectile energy can be derived from lunar cratering statistics, although we have little information on the possible variability of this flux over time. The effects of impacts of various energies can be modeled, using data from historic impacts (such as the KT impactor 65 million years ago), nuclear explosive testing, and the observed 1994 bombardment of Jupiter by fragments of comet Shoemaker-Levy 9. It is of particular interest to find from such models that the terrestrial environment is highly vulnerable to perturbation from impacts, so that even such a small event as the KT impact (by a projectile roughly 15 km in diameter) can lead to a mass extinction. Combining the impact flux with estimates of environmental and ecological effects reveals that the greatest contemporary hazard is associated with impactors near one million megatons energy. The current impact hazard is significant relative to other natural hazards, and arguments can be developed to illuminate a variety of public policy issues. These include the relative risk of different impact scenarios and the associated costs and probability of success of countermeasures. It is generally agreed that the first step is to survey and catalogue the thousand-or-so Near Earth Asteroids (NEAs), and we review the status of the Spaceguard NEA Survey. We compare the efficiency of various ground and space-based approaches and consider the challenges of international coordination and the problems and opportunities associated with communicating the results with the press and the public. It is also important to reflect on how the impact hazard might be dealt with by both national governments and international decision-making bodies, and to anticipate ways of mitigating the danger if a NEA were located on an apparent

  10. Passive mitigation of mode instabilities

    NASA Astrophysics Data System (ADS)

    Jauregui, C.; Otto, H.-J.; Stutzki, F.; Jansen, F.; Limpert, J.; Tünnermann, A.

    2014-03-01

    The phenomenon of mode instabilities has quickly become the most limiting effect for a further scaling of the average power of fiber laser systems. Consequently it is of great importance to find solutions for this problem. In this work we propose two concrete possible passive mitigation strategies: the first one is based on the reduction of the heat load in the fiber, whereas the second one is based on the reduction of the pump absorption. In both cases a significant increase of the threshold is expected.

  11. Tank farms hazards assessment

    SciTech Connect

    Broz, R.E.

    1994-09-30

    Hanford contractors are writing new facility specific emergency procedures in response to new and revised US Department of Energy (DOE) Orders on emergency preparedness. Emergency procedures are required for each Hanford facility that has the potential to exceed the criteria for the lowest level emergency, an Alert. The set includes: (1) a facility specific procedure on Recognition and Classification of Emergencies, (2) area procedures on Initial Emergency Response and, (3) an area procedure on Protective Action Guidance. The first steps in developing these procedures are to identify the hazards at each facility, identify the conditions that could release the hazardous material, and calculate the consequences of the releases. These steps are called a Hazards Assessment. The final product is a document that is similar in some respects to a Safety Analysis Report (SAR). The document could br produced in a month for a simple facility but could take much longer for a complex facility. Hanford has both types of facilities. A strategy has been adopted to permit completion of the first version of the new emergency procedures before all the facility hazards Assessments are complete. The procedures will initially be based on input from a task group for each facility. This strategy will but improved emergency procedures in place sooner and therefore enhance Hanford emergency preparedness. The purpose of this document is to summarize the applicable information contained within the Waste Tank Facility ``Interim Safety Basis Document, WHC-SD-WM-ISB-001`` as a resource, since the SARs covering Waste Tank Operations are not current in all cases. This hazards assessment serves to collect, organize, document and present the information utilized during the determination process.

  12. Mitigating earthquakes; the federal role

    USGS Publications Warehouse

    Press, F.

    1977-01-01

    With rapid approach of a capability to make reliable earthquake forecasts, it essential that the Federal Government play a strong, positive role in formulating and implementing plans to reduce earthquake hazards. Many steps are being taken in this direction, with the President looking to the Office of Science and Technology Policy (OSTP) in his Executive Office to provide leadership in establishing and coordinating Federal activities. 

  13. Social Uptake of Scientific Understanding of Seismic Hazard in Sumatra and Cascadia

    NASA Astrophysics Data System (ADS)

    Shannon, R.; McCloskey, J.; Guyer, C.; McDowell, S.; Steacy, S.

    2007-12-01

    The importance of science within hazard mitigation cannot be underestimated. Robust mitigation polices rely strongly on a sound understanding of the science underlying potential natural disasters and the transference of that knowledge from the scientific community to the general public via governments and policy makers. We aim to investigate how and why the public's knowledge, perceptions, response, adjustments and values towards science have changed throughout two decades of research conducted in areas along and adjacent to the Sumatran and Cascadia subduction zones. We will focus on two countries subject to the same potential hazard, but which encompass starkly contrasting political, economic, social and environmental settings. The transfer of scientific knowledge into the public/ social arena is a complex process, the success of which is reflected in a community's ability to withstand large scale devastating events. Although no one could have foreseen the magnitude of the 2004 Boxing Day tsunami, the social devastation generated underscored the stark absence of mitigation measures in the nations most heavily affected. It furthermore emphasized the need for the design and implementation of disaster preparedness measures. Survey of existing literature has already established timelines for major events and public policy changes in the case study areas. Clear evidence exists of the link between scientific knowledge and its subsequent translation into public policy, particularly in the Cascadia context. The initiation of the National Tsunami Hazard Mitigation Program following the Cape Mendocino earthquake in 1992 embodies this link. Despite a series of environmental disasters with recorded widespread fatalities dating back to the mid 1900s and a heightened impetus for scientific research into tsunami/ earthquake hazard following the 2004 Boxing Day tsunami, the translation of science into the public realm is not widely obvious in the Sumatran context. This research

  14. U.S. States and Territories National Tsunami Hazard Assessment: Historical record and sources for waves – Update

    USGS Publications Warehouse

    Dunbar, Paula K.; Weaver, Craig S.

    2015-01-01

    The first U.S. Tsunami Hazard Assessment (Dunbar and Weaver, 2008) was prepared at the request of the National Tsunami Hazard Mitigation Program (NTHMP). The NTHMP is a partnership formed between federal and state agencies to reduce the impact of tsunamis through hazard assessment, warning guidance, and mitigation. The assessment was conducted in response to a 2005 joint report by the Sub-Committee on Disaster Reduction and the U.S. Group on Earth Observations entitled Tsunami Risk Reduction for the United States: A Framework for Action. The first specific action called for in the Framework was to “develop standardized and coordinated tsunami hazard and risk assessments for all coastal regions of the United States and its territories.” Since the first assessment, there have been a number of very significant tsunamis, including the 2009 Samoa, 2010 Chile, and 2011 Japan tsunamis. As a result, the NTHMP requested an update of the U.S. tsunami hazard assessment.

  15. Mitigation and monitoring plan for impacted wetlands at the Gunnison UMTRA Project site, Gunnison, Colorado

    SciTech Connect

    Not Available

    1992-06-01

    The U.S Department of Energy (DOE) administers the Uranium Mill Tailings Remedial Action (UMTRA) Project. The UMTRA Project is the result of the Uranium Mill Tailings Radiation Control Act(UMTRA) which was passed in response to the public`s concern over the potential public health hazards related to uranium mill tailings and associated contaminated material at abandoned or otherwise uncontrolled inactive processing sites throughout the United States. The Gunnison, Colorado abandoned uranium mill site is one of the sites slated for cleanup by the DOE under authority of UMTRA. The contaminated material at this site will be transported to a disposal site on US Bureau of Land Management (BLM) land east of Gunnison. Remedial action activities will temporarily disturb 0.8 acre and permanently eliminate 5.1 acres of wetlands. This report describes the proposed mitigation plan for the 5.9 acres of impacted wetlands. In conjunction with the mitigation of the permanently impacted wetlands through the enhancement of wetland and adjacent riparian areas, impacts to wildlife as a result of this project will also be mitigated. However, wildlife mitigation is not the focus of this document and is covered in relevant BLM permits for this project. This plan proposes the enhancement of a 3:1 ratio of impacted wetlands in accordance with US Environmental Protection Agency guidelines, plus the enhancement of riparian areas for wildlife mitigation. Included in this mitigation plan is a monitoring plan to ensure that the proposed measures are working and being maintained.

  16. Ethical aspects of the mitigation obstruction argument against climate engineering research.

    PubMed

    Morrow, David R

    2014-12-28

    Many commentators fear that climate engineering research might lead policy-makers to reduce mitigation efforts. Most of the literature on this so-called 'moral hazard' problem focuses on the prediction that climate engineering research would reduce mitigation efforts. This paper focuses on a related ethical question: Why would it be a bad thing if climate engineering research obstructed mitigation? If climate engineering promises to be effective enough, it might justify some reduction in mitigation. Climate policy portfolios involving sufficiently large or poorly planned reductions in mitigation, however, could lead to an outcome that would be worse than the portfolio that would be chosen in the absence of further climate engineering research. This paper applies three ethical perspectives to describe the kinds of portfolios that would be worse than that 'baseline portfolio'. The literature on climate engineering identifies various mechanisms that might cause policy-makers to choose these inferior portfolios, but it is difficult to know in advance whether the existence of these mechanisms means that climate engineering research really would lead to a worse outcome. In the light of that uncertainty, a precautionary approach suggests that researchers should take measures to reduce the risk of mitigation obstruction. Several such measures are suggested. PMID:25404676

  17. Evaluation of turbulence mitigation methods

    NASA Astrophysics Data System (ADS)

    van Eekeren, Adam W. M.; Huebner, Claudia S.; Dijk, Judith; Schutte, Klamer; Schwering, Piet B. W.

    2014-05-01

    Atmospheric turbulence is a well-known phenomenon that diminishes the recognition range in visual and infrared image sequences. There exist many different methods to compensate for the effects of turbulence. This paper focuses on the performance of two software-based methods to mitigate the effects of low- and medium turbulence conditions. Both methods are capable of processing static and dynamic scenes. The first method consists of local registration, frame selection, blur estimation and deconvolution. The second method consists of local motion compensation, fore- /background segmentation and weighted iterative blind deconvolution. A comparative evaluation using quantitative measures is done on some representative sequences captured during a NATO SET 165 trial in Dayton. The amount of blurring and tilt in the imagery seem to be relevant measures for such an evaluation. It is shown that both methods improve the imagery by reducing the blurring and tilt and therefore enlarge the recognition range. Furthermore, results of a recognition experiment using simulated data are presented that show that turbulence mitigation using the first method improves the recognition range up to 25% for an operational optical system.

  18. Further RAGE modeling of asteroid mitigation: surface and subsurface explosions in porous objects

    SciTech Connect

    Weaver, Robert P; Plesko, Catherine S; Dearholt, William R

    2011-01-03

    Disruption or mitigation of a potentially hazardous object (PHO) by a high-energy subsurface burst is considered. This is just one possible method of impact-hazard mitigation. We present RAGE hydrocode models of the shock-generated disruption of PHOs by subsurface nuclear bursts using scenario-specific models from realistic RADAR shape models. We will show 2D and 3D models for the disruption by a large energy source at the center of such PHO models ({approx}100 kt-10 Mt) specifically for the shape of the asteroid 25143 Itokawa. We study the effects of non-uniform composition (rubble pile), shallow buried bursts for the optimal depth of burial and porosity.

  19. Counterfactual Volcano Hazard Analysis

    NASA Astrophysics Data System (ADS)

    Woo, Gordon

    2013-04-01

    The historical database of past disasters is a cornerstone of catastrophe risk assessment. Whereas disasters are fortunately comparatively rare, near-misses are quite common for both natural and man-made hazards. The word disaster originally means 'an unfavourable aspect of a star'. Except for astrologists, disasters are no longer perceived fatalistically as pre-determined. Nevertheless, to this day, historical disasters are treated statistically as fixed events, although in reality there is a large luck element involved in converting a near-miss crisis situation into a disaster statistic. It is possible to conceive a stochastic simulation of the past to explore the implications of this chance factor. Counterfactual history is the exercise of hypothesizing alternative paths of history from what actually happened. Exploring history from a counterfactual perspective is instructive for a variety of reasons. First, it is easy to be fooled by randomness and see regularity in event patterns which are illusory. The past is just one realization of a variety of possible evolutions of history, which may be analyzed through a stochastic simulation of an array of counterfactual scenarios. In any hazard context, there is a random component equivalent to dice being rolled to decide whether a near-miss becomes an actual disaster. The fact that there may be no observed disaster over a period of time may belie the occurrence of numerous near-misses. This may be illustrated using the simple dice paradigm. Suppose a dice is rolled every month for a year, and an event is recorded if a six is thrown. There is still an 11% chance of no events occurring during the year. A variety of perils may be used to illustrate the use of near-miss information within a counterfactual disaster analysis. In the domain of natural hazards, near-misses are a notable feature of the threat landscape. Storm surges are an obvious example. Sea defences may protect against most meteorological scenarios. However

  20. Natural Hazards of the Space Environment

    NASA Technical Reports Server (NTRS)

    Evans, Steven W.; Kross, Dennis A. (Technical Monitor)

    2000-01-01

    Spacecraft in Low Earth Orbit (LEO) are subject to numerous environmental hazards. Here I'll briefly discuss three environment factors that pose acute threats to the survival of spacecraft systems and crew: atmospheric drag, impacts by meteoroids and orbital debris, and ionizing radiation. Atmospheric drag continuously opposes the orbital motion of a satellite, causing the orbit to decay. This decay will lead to reentry if not countered by reboost maneuvers. Orbital debris is a by-product of man's activities in space, and consists of objects ranging in size from miniscule paint chips to spent rocket stages and dead satellites. Ionizing radiation experienced in LEO has several components: geomagnetically trapped protons and electrons (Van Allen belts); energetic solar particles; galactic cosmic rays; and albedo neutrons. These particles can have several types of prompt harmful effects on equipment and crew, from single-event upsets, latchup, and burnout of electronics, to lethal doses to crew.All three types of prompt threat show some dependence on the solar activity cycle. Atmospheric drag mitigation and large debris avoidance require propulsive maneuvers. M/OD and ionizing radiation require some form of shielding for crew and sensitive equipment. Limiting exposure time is a mitigation technique for ionizing radiation and meteor streams.

  1. HAZARDOUS SUBSTANCES DATA BANK (HSDB)

    EPA Science Inventory

    Hazardous Substances Data Bank (HSDB) is a factual, non-bibliographic data bank focusing upon the toxicology of potentially hazardous chemicals. It is enhanced with data from such related areas as emergency handling procedures, environmental fate, human exposure, detection method...

  2. Hypothermia: A Cold Weather Hazard

    MedlinePlus

    ... Weather Hazard Heath and Aging Hypothermia: A Cold Weather Hazard What Are The Signs Of Hypothermia? Taking ... cold air. But, not everyone knows that cold weather can also lower the temperature inside your body. ...

  3. Autonomous Landing Hazard Avoidance Technology

    NASA Video Gallery

    Future NASA space crafts will be able to safely land on the Moon, Marsand even an asteroid, in potentially hazardous terrain areas, allautonomously. And NASA’s Autonomous Landing Hazard Avoidan...

  4. Hazardous Waste: Cleanup and Prevention.

    ERIC Educational Resources Information Center

    Vandas, Steve; Cronin, Nancy L.

    1996-01-01

    Describes the Superfund, a federal cleanup program created in response to growing public concern over the health and environmental risks posed by hazardous waste sites. Discusses sources, disposal, and movement and risk of hazardous waste. (JRH)

  5. Seismic hazard maps for Haiti

    USGS Publications Warehouse

    Frankel, Arthur; Harmsen, Stephen; Mueller, Charles; Calais, Eric; Haase, Jennifer

    2011-01-01

    We have produced probabilistic seismic hazard maps of Haiti for peak ground acceleration and response spectral accelerations that include the hazard from the major crustal faults, subduction zones, and background earthquakes. The hazard from the Enriquillo-Plantain Garden, Septentrional, and Matheux-Neiba fault zones was estimated using fault slip rates determined from GPS measurements. The hazard from the subduction zones along the northern and southeastern coasts of Hispaniola was calculated from slip rates derived from GPS data and the overall plate motion. Hazard maps were made for a firm-rock site condition and for a grid of shallow shear-wave velocities estimated from topographic slope. The maps show substantial hazard throughout Haiti, with the highest hazard in Haiti along the Enriquillo-Plantain Garden and Septentrional fault zones. The Matheux-Neiba Fault exhibits high hazard in the maps for 2% probability of exceedance in 50 years, although its slip rate is poorly constrained.

  6. 2015 USGS Seismic Hazard Model for Induced Seismicity

    NASA Astrophysics Data System (ADS)

    Petersen, M. D.; Mueller, C. S.; Moschetti, M. P.; Hoover, S. M.; Ellsworth, W. L.; Llenos, A. L.; Michael, A. J.

    2015-12-01

    Over the past several years, the seismicity rate has increased markedly in multiple areas of the central U.S. Studies have tied the majority of this increased activity to wastewater injection in deep wells and hydrocarbon production. These earthquakes are induced by human activities that change rapidly based on economic and policy decisions, making them difficult to forecast. Our 2014 USGS National Seismic Hazard Model and previous models are intended to provide the long-term hazard (2% probability of exceedance in 50 years) and are based on seismicity rates and patterns observed mostly from tectonic earthquakes. However, potentially induced earthquakes were identified in 14 regions that were not included in the earthquake catalog used for constructing the 2014 model. We recognized the importance of considering these induced earthquakes in a separate hazard analysis, and as a result in April 2015 we released preliminary models that explored the impact of this induced seismicity on the hazard. Several factors are important in determining the hazard from induced seismicity: period of the catalog that optimally forecasts the next year's activity, earthquake magnitude-rate distribution, earthquake location statistics, maximum magnitude, ground motion models, and industrial drivers such as injection rates. The industrial drivers are not currently available in a form that we can implement in a 1-year model. Hazard model inputs have been evaluated by a broad group of scientists and engineers to assess the range of acceptable models. Results indicate that next year's hazard is significantly higher by more than a factor of three in Oklahoma, Texas, and Colorado compared to the long-term 2014 hazard model. These results have raised concern about the impacts of induced earthquakes on the built environment and have led to many engineering and policy discussions about how to mitigate these effects for the more than 7 million people that live near areas of induced seismicity.

  7. Investigation of separation, treatment, and recycling options for hazardous paint blast media waste. Final report

    SciTech Connect

    Boy, J.H.; Race, T.D.; Reinbold, K.A.

    1996-02-01

    U.S. Army depot depaint operations generate over 4 million kg per year of contaminated paint blast media wastes. The objective of this work was to investigate technologies that might significantly mitigate this Army hazardous waste disposal problem. Most of the technologies investigated either failed to meet acceptable TCLP levels for hazardous metals content, or failed to meet Army disposal requirements. However, based on a review of several commercially available services, it is recommended that Army depot depaint operations consider processing hazardous blast media waste through properly regulated contractors that offer safe, effective, and economical stabilization, fixation, and recycling technologies.

  8. Earthquake and volcano hazard notices: An economic evaluation of changes in risk perceptions

    USGS Publications Warehouse

    Bernknopf, R.L.; Brookshire, D.S.; Thayer, M.A.

    1990-01-01

    Earthquake and volcano hazard notices were issued for the Mammoth Lakes, California area by the U.S. Geological Survey under the authority granted by the Disaster Relief Act of 1974. The effects on investment, recretion visitation, and risk perceptionsare explored. The hazard notices did not affect recreation visitation, although investment was affected. A perceived loss in the market value of homes was documented. Risk perceptions were altered for property owners. Communication of the probability of an event over time would enhance hazard notices as a policy instrument and would mitigate unnecessary market perturbations. ?? 1990.

  9. Review of Natural Phenomena Hazard (NPH) Assessments for the DOE Hanford Site

    SciTech Connect

    Snow, Robert L.; Ross, Steven B.

    2011-09-15

    The purpose of this review is to assess the need for updating Natural Phenomena Hazard (NPH) assessments for the DOE's Hanford Site, as required by DOE Order 420.1B Chapter IV, Natural Phenomena Hazards Mitigation, based on significant changes in state-of-the-art NPH assessment methodology or site-specific information. This review is an update and expansion to the September 2010 review of PNNL-19751, Review of Natural Phenomena Hazard (NPH) Assessments for the Hanford 200 Areas (Non-Seismic).

  10. Publication: Evansville hazard maps

    USGS Publications Warehouse

    Evansville Area Earthquake Hazards Mapping Project

    2012-01-01

    The Evansville (Indiana) Area Earthquake Hazards Mapping Project was completed in February 2012. It was a collaborative effort among the U.S. Geological Survey and regional partners Purdue University; the Center for Earthquake Research and Information at the University of Memphis; the state geologic surveys of Kentucky, Illinois, and Indiana; the Southwest Indiana Disaster Resistant Community Corporation; and the Central U.S. Earthquake Consortium state geologists.

  11. TECHNICAL BASIS DOCUMENT FOR THE ABOVE GROUND TANK FAILURE REPRESENTATIVE ACCIDENT & ASSOCIATED REPRESENTED HAZARDOUS CONDITIONS

    SciTech Connect

    ZACH, J.J.

    2003-03-21

    This document qualitatively evaluates the frequency and consequences of the representative aboveground tank failure accident and associated represented hazardous conditions without controls. Based on the evaluation, it was determined that safety-significant structures, systems, and components, and/or technical safety requirements were not required to prevent or mitigate aboveground tank failure accidents.

  12. The Creation of a University-Community Alliance to Address Lead Hazards: Three Keys to Success

    ERIC Educational Resources Information Center

    Beckman, Mary; Caponigro, Jay

    2005-01-01

    Exposure to lead can be devastating for children, and federal regulations established in 2001 are forcing local governments to mitigate this risk. This essay discusses the creation of the Lead Alliance, a university-community coalition created to address lead hazards facing children from low-income households in South Bend, Indiana. Among the…

  13. Comprehensive baseline hazard assessments

    SciTech Connect

    Warren, S.B.; Amundson, T.M.

    1994-10-01

    Westinghouse Hanford Company (WHC) has developed and implemented a cost effective/value-added program/process that assists in fulfilling key elements of the Occupational Safety and Health Administration`s (OSHA) voluntary Protection Program (VPP) requirements. WHC is the prime contractor for the US Department of Energy (US DOE) at the Hanford site, located in Richland, Washington. The site consists of over 560 square miles, contains over 1100 facilities and has an employment of approximately 18,000. WHC is currently in the application review phase for the US DOE equivalent of OSHA-VPP ``merit`` program status. The program involves setting up a team consisting of industrial safety and health (industrial hygienists) professionals, members of the maintenance and operations work force, and facility management. This team performs a workplace hazard characterization/analysis and then applies a risk assessment approach to prioritize observed and potential hazards in need of abatement. The process involves using checklists that serve as a guide for evaluation/inspection criteria. Forms are used to document meetings, field observations, instrument calibration and performance testing. Survey maps are generated to document quality records of measurement results. A risk assessment code matrix with a keyword index was developed to facilitate consistency. The end product is useful in communicating hazards to facility management, health and safety professionals, audit/appraisal groups, and most importantly, facility workers.

  14. PUREX facility hazards assessment

    SciTech Connect

    Sutton, L.N.

    1994-09-23

    This report documents the hazards assessment for the Plutonium Uranium Extraction Plant (PUREX) located on the US Department of Energy (DOE) Hanford Site. Operation of PUREX is the responsibility of Westinghouse Hanford Company (WHC). This hazards assessment was conducted to provide the emergency planning technical basis for PUREX. DOE Order 5500.3A requires an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification. In October of 1990, WHC was directed to place PUREX in standby. In December of 1992 the DOE Assistant Secretary for Environmental Restoration and Waste Management authorized the termination of PUREX and directed DOE-RL to proceed with shutdown planning and terminal clean out activities. Prior to this action, its mission was to reprocess irradiated fuels for the recovery of uranium and plutonium. The present mission is to establish a passively safe and environmentally secure configuration at the PUREX facility and to preserve that condition for 10 years. The ten year time frame represents the typical duration expended to define, authorize and initiate follow-on decommissioning and decontamination activities.

  15. 24 CFR 51.205 - Mitigating measures.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... project from a potential hazard of an explosion or fire prone nature is predicated on level topography... eliminated or modified if: (a) The nature of the topography shields the proposed project from the hazard....

  16. 24 CFR 51.205 - Mitigating measures.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... project from a potential hazard of an explosion or fire prone nature is predicated on level topography... eliminated or modified if: (a) The nature of the topography shields the proposed project from the hazard....

  17. 24 CFR 51.205 - Mitigating measures.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... project from a potential hazard of an explosion or fire prone nature is predicated on level topography... eliminated or modified if: (a) The nature of the topography shields the proposed project from the hazard....

  18. 24 CFR 51.205 - Mitigating measures.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... project from a potential hazard of an explosion or fire prone nature is predicated on level topography... eliminated or modified if: (a) The nature of the topography shields the proposed project from the hazard....

  19. 24 CFR 51.205 - Mitigating measures.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... project from a potential hazard of an explosion or fire prone nature is predicated on level topography... eliminated or modified if: (a) The nature of the topography shields the proposed project from the hazard....

  20. Hazard Maps in the Classroom.

    ERIC Educational Resources Information Center

    Cross, John A.

    1988-01-01

    Emphasizes the use of geophysical hazard maps and illustrates how they can be used in the classroom from kindergarten to college level. Depicts ways that hazard maps of floods, landslides, earthquakes, volcanoes, and multi-hazards can be integrated into classroom instruction. Tells how maps may be obtained. (SLM)

  1. Identifying and modeling safety hazards

    SciTech Connect

    DANIELS,JESSE; BAHILL,TERRY; WERNER,PAUL W.

    2000-03-29

    The hazard model described in this paper is designed to accept data over the Internet from distributed databases. A hazard object template is used to ensure that all necessary descriptors are collected for each object. Three methods for combining the data are compared and contrasted. Three methods are used for handling the three types of interactions between the hazard objects.

  2. Hazardous Waste: Cleanup and Prevention.

    ERIC Educational Resources Information Center

    Vandas, Steve; Cronin, Nancy L.

    1996-01-01

    Discusses hazardous waste, waste disposal, unsafe exposure, movement of hazardous waste, and the Superfund clean-up process that consists of site discovery, site assessment, clean-up method selection, site clean up, and site maintenance. Argues that proper disposal of hazardous waste is everybody's responsibility. (JRH)

  3. An Optimal Mitigation Strategy Against the Asteroid Impact Threat with Short Warning Time

    NASA Technical Reports Server (NTRS)

    Wie, Bong; Barbee, Brent W.

    2015-01-01

    This paper presents the results of a NASA Innovative Advanced Concept (NIAC) Phase 2 study entitled "An Innovative Solution to NASA's Near-Earth Object (NEO) Impact Threat Mitigation Grand Challenge and Flight Validation Mission Architecture Development." This NIAC Phase 2 study was conducted at the Asteroid Deflection Research Center (ADRC) of Iowa State University in 2012-2014. The study objective was to develop an innovative yet practically implementable mitigation strategy for the most probable impact threat of an asteroid or comet with short warning time (less than 5 years). The mitigation strategy described in this paper is intended to optimally reduce the severity and catastrophic damage of the NEO impact event, especially when we don't have sufficient warning times for non-disruptive deflection of a hazardous NEO. This paper provides an executive summary of the NIAC Phase 2 study results.

  4. Overview of Risk Mitigation for Safety-Critical Computer-Based Systems

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo

    2015-01-01

    This report presents a high-level overview of a general strategy to mitigate the risks from threats to safety-critical computer-based systems. In this context, a safety threat is a process or phenomenon that can cause operational safety hazards in the form of computational system failures. This report is intended to provide insight into the safety-risk mitigation problem and the characteristics of potential solutions. The limitations of the general risk mitigation strategy are discussed and some options to overcome these limitations are provided. This work is part of an ongoing effort to enable well-founded assurance of safety-related properties of complex safety-critical computer-based aircraft systems by developing an effective capability to model and reason about the safety implications of system requirements and design.

  5. Laboratory scale studies on mitigation of high 222Rn concentrations in air and water

    NASA Astrophysics Data System (ADS)

    Mamoon, A.; Gomma, M. A.; Sohsah, M.

    2004-01-01

    In view of the occasional occurrence of high 222Rn concentrations in air and water under certain circumstances, and in view of the potential health hazards of increased levels of 222Rn in respirable air and in potable water, mitigation of such high 222Rn concentration has become of primary concern. To facilitate the study of the efficiency of the various 222Rn mitigating factors simple laboratory systems were used. Altered alkali granite was used as radon source to enrich air and a piece of pitchblende was used as radon source to enrich water samples. Both enriched media will then be subjected to the mitigation treatments. Charcoal canister technique along with gamma spectrometry were used to measure 222Rn concentrations in air before and after the different mitigating treatments. These were: use of ventilation, radon barriers such as geo-membranes and aluminum sheet, and sealant such as epoxy and vinyl tape. Regarding high levels of 222Rn in air ventilation was the most efficient mitigating factor. Standard liquid scintillation counting was used to measure 222Rn concentrations in water before and after the different mitigation treatments. These were: use of aeration, activated charcoal and heating. Regarding high levels of 222Rn in water, aeration using bubblers and large volume of air was most effective in removing radon from water in a short time. However all the mitigating factors proved effective, in different degrees in decreasing 222Rn concentrations in the respective media. The result from these studies are in general agreement with reports in the literature. It can be concluded then that the different 222Rn mitigating factors can be tested and compared effectively under controlled conditions using simple laboratory scale systems.

  6. Controlling Hazardous Releases while Protecting Passengers in Civil Infrastructure Systems

    NASA Astrophysics Data System (ADS)

    Rimer, Sara P.; Katopodes, Nikolaos D.

    2015-11-01

    The threat of accidental or deliberate toxic chemicals released into public spaces is a significant concern to public safety, and the real-time detection and mitigation of such hazardous contaminants has the potential to minimize harm and save lives. Furthermore, the safe evacuation of occupants during such a catastrophe is of utmost importance. This research develops a comprehensive means to address such scenarios, through both the sensing and control of contaminants, and the modeling of and potential communication to occupants as they evacuate. A computational fluid dynamics model is developed of a simplified public space characterized by a long conduit (e.g. airport terminal) with unidirectional ambient flow that is capable of detecting and mitigating the hazardous contaminant (via boundary ports) over several time horizons using model predictive control optimization. Additionally, a physical prototype is built to test the real-time feasibility of this computational flow control model. The prototype is a blower wind-tunnel with an elongated test section with the capability of sensing (via digital camera) an injected `contaminant' (propylene glycol smoke), and then mitigating that contaminant using actuators (compressed air operated vacuum nozzles) which are operated by a set of pressure regulators and a programmable controller. Finally, an agent-based model is developed to simulate ``agents'' (i.e. building occupants) as they evacuate a public space, and is coupled with the computational flow control model such that agents must interact with a dynamic, threatening environment. NSF-CMMI #0856438.

  7. Acoustic metamaterials for sound mitigation

    NASA Astrophysics Data System (ADS)

    Assouar, Badreddine; Oudich, Mourad; Zhou, Xiaoming

    2016-05-01

    We provide theoretical and numerical analyses of the behavior of a plate-type acoustic metamaterial considered in an air-borne sound environment in view of sound mitigation application. Two configurations of plate are studied, a spring-mass one and a pillar system-based one. The acoustic performances of the considered systems are investigated with different approaches and show that a high sound transmission loss (STL) up to 82 dB is reached with a metamaterial plate with a thickness of 0.5 mm. The physical understanding of the acoustic behavior of the metamaterial partition is discussed based on both air-borne and structure-borne approaches. Confrontation between the STL, the band structure, the displacement fields and the effective mass density of the plate metamaterial is made to have a complete physical understanding of the different mechanisms involved. xml:lang="fr"

  8. Drought processes, modeling, and mitigation

    NASA Astrophysics Data System (ADS)

    Mishra, Ashok K.; Sivakumar, Bellie; Singh, Vijay P.

    2015-07-01

    Accurate assessment of droughts is crucial for proper planning and management of our water resources, environment, and ecosystems. The combined influence of increasing water demands and the anticipated impacts of global climate change has already raised serious concerns about worsening drought conditions in the future and their social, economic, and environmental impacts. As a result, studies on droughts are currently a major focal point for a broad range of research communities, including civil engineers, hydrologists, environmentalists, ecologists, meteorologists, geologists, agricultural scientists, economists, policy makers, and water managers. There is, therefore, an urgent need for enhancing our understanding of droughts (e.g. occurrence, modeling), making more reliable assessments of their impacts on various sectors of our society (e.g. domestic, agricultural, industrial), and undertaking appropriate adaptation and mitigation measures, especially in the face of global climate change.

  9. 3(omega) Damage: Growth Mitigation

    SciTech Connect

    Kozlowski, M; Demos, S; Wu, Z-L; Wong, J; Penetrante, B; Hrubesh, L

    2001-02-22

    The design of high power UV laser systems is limited to a large extent by the laser-initiated damage performance of transmissive fused silica optical components. The 3{omega} (i.e., the third harmonic of the primary laser frequency) damage growth mitigation LDRD effort focused on understanding and reducing the rapid growth of laser-initiated surface damage on fused silica optics. Laser-initiated damage can be discussed in terms of two key issues: damage initiated at some type of precursor and rapid damage growth of the damage due to subsequent laser pulses. The objective of the LDRD effort has been the elucidation of laser-induced damage processes in order to quantify and potentially reduce the risk of damage to fused silica surfaces. The emphasis of the first two years of this effort was the characterization and reduction of damage initiation. In spite of significant reductions in the density of damage sites on polished surfaces, statistically some amount of damage initiation should always be expected. The early effort therefore emphasized the development of testing techniques that quantified the statistical nature of damage initiation on optical surfaces. This work led to the development of an optics lifetime modeling strategy that has been adopted by the NIF project to address damage-risk issues. During FY99 interest shifted to the damage growth issue which was the focus of the final year of this project. The impact of the remaining damage sites on laser performance can be minimized if the damage sites did not continue to grow following subsequent illumination. The objectives of the final year of the LDRD effort were to apply a suite of state-of-the-art characterization tools to elucidate the nature of the initiated damage sites, and to identify a method that effectively mitigates further damage growth. Our specific goal is to understand the cause for the rapid growth of damage sites so that we can develop and apply an effective means to mitigate it. The

  10. Hazard Assessment of Chemical Air Contaminants Measured in Residences

    SciTech Connect

    Logue, J.M.; McKone, T.E.; Sherman, M. H.; Singer, B.C.

    2010-05-10

    Identifying air pollutants that pose a potential hazard indoors can facilitate exposure mitigation. In this study, we compiled summary results from 77 published studies reporting measurements of chemical pollutants in residences in the United States and in countries with similar lifestyles. These data were used to calculate representative mid-range and upper bound concentrations relevant to chronic exposures for 267 pollutants and representative peak concentrations relevant to acute exposures for 5 activity-associated pollutants. Representative concentrations are compared to available chronic and acute health standards for 97 pollutants. Fifteen pollutants appear to exceed chronic health standards in a large fraction of homes. Nine other pollutants are identified as potential chronic health hazards in a substantial minority of homes and an additional nine are identified as potential hazards in a very small percentage of homes. Nine pollutants are identified as priority hazards based on the robustness of measured concentration data and the fraction of residences that appear to be impacted: acetaldehyde; acrolein; benzene; 1,3-butadiene; 1,4-dichlorobenzene; formaldehyde; naphthalene; nitrogen dioxide; and PM{sub 2.5}. Activity-based emissions are shown to pose potential acute health hazards for PM{sub 2.5}, formaldehyde, CO, chloroform, and NO{sub 2}.

  11. Qualitative Rockfall Hazard Assessment: A Comprehensive Review of Current Practices

    NASA Astrophysics Data System (ADS)

    Ferrari, F.; Giacomini, A.; Thoeni, K.

    2016-07-01

    Rockfall phenomena represent a major hazard in mountainous areas because they can cause severe damage to infrastructure and buildings as well as serious injuries and fatalities. Rockfalls do not pose the same level of economic risk as large-scale landslides, yet they are responsible for a similar number of accidents and fatalities. Therefore, appropriate land-use planning is necessary to protect people, buildings and facilities from rockfall hazards. Over the last two decades, several methodologies have been proposed to assess rockfall hazards, identify potentially dangerous areas (i.e., rock cliffs with failure-prone blocks) and provide guidelines for choosing and installing the most appropriate mitigation measures. This paper provides a comprehensive review of the existing rockfall hazard assessment methodologies. In particular, the review focuses on qualitative methods that allow a rapid evaluation of a rockfall hazard without costly and time-consuming numerical simulations. The most commonly adopted methodologies in Europe and North America are described and critically analyzed to highlight their differences and similarities and to identify their primary advantages, limitations and fields of application.

  12. Documentation for the Southeast Asia seismic hazard maps

    USGS Publications Warehouse

    Petersen, Mark; Harmsen, Stephen; Mueller, Charles; Haller, Kathleen; Dewey, James; Luco, Nicolas; Crone, Anthony; Lidke, David; Rukstales, Kenneth

    2007-01-01

    The U.S. Geological Survey (USGS) Southeast Asia Seismic Hazard Project originated in response to the 26 December 2004 Sumatra earthquake (M9.2) and the resulting tsunami that caused significant casualties and economic losses in Indonesia, Thailand, Malaysia, India, Sri Lanka, and the Maldives. During the course of this project, several great earthquakes ruptured subduction zones along the southern coast of Indonesia (fig. 1) causing additional structural damage and casualties in nearby communities. Future structural damage and societal losses from large earthquakes can be mitigated by providing an advance warning of tsunamis and introducing seismic hazard provisions in building codes that allow buildings and structures to withstand strong ground shaking associated with anticipated earthquakes. The Southeast Asia Seismic Hazard Project was funded through a United States Agency for International Development (USAID)—Indian Ocean Tsunami Warning System to develop seismic hazard maps that would assist engineers in designing buildings that will resist earthquake strong ground shaking. An important objective of this project was to discuss regional hazard issues with building code officials, scientists, and engineers in Thailand, Malaysia, and Indonesia. The code communities have been receptive to these discussions and are considering updating the Thailand and Indonesia building codes to incorporate new information (for example, see notes from Professor Panitan Lukkunaprasit, Chulalongkorn University in Appendix A).

  13. Resident perception of volcanic hazards and evacuation procedures

    NASA Astrophysics Data System (ADS)

    Bird, D. K.; Gisladottir, G.; Dominey-Howes, D.

    2009-02-01

    Katla volcano, located beneath the Mýrdalsjökull ice cap in southern Iceland, is capable of producing catastrophic jökulhlaup. The Icelandic Civil Protection (ICP), in conjunction with scientists, local police and emergency managers, developed mitigation strategies for possible jökulhlaup produced during future Katla eruptions. These strategies were tested during a full-scale evacuation exercise in March 2006. A positive public response during a volcanic crisis not only depends upon the public's knowledge of the evacuation plan but also their knowledge and perception of the possible hazards. To improve the effectiveness of residents' compliance with warning and evacuation messages it is important that emergency management officials understand how the public interpret their situation in relation to volcanic hazards and their potential response during a crisis and apply this information to the ongoing development of risk mitigation strategies. We adopted a mixed methods approach in order to gain a broad understanding of residents' knowledge and perception of the Katla volcano in general, jökulhlaup hazards specifically and the regional emergency evacuation plan. This entailed field observations during the major evacuation exercise, interviews with key emergency management officials and questionnaire survey interviews with local residents. Our survey shows that despite living within the hazard zone, many residents do not perceive that their homes could be affected by a jökulhlaup, and many participants who perceive that their homes are safe, stated that they would not evacuate if an evacuation warning was issued. Alarmingly, most participants did not receive an evacuation message during the exercise. However, the majority of participants who took part in the exercise were positive about its implementation. This assessment of resident knowledge and perception of volcanic hazards and the evacuation plan is the first of its kind in this region. Our data can be used

  14. Simulating Social and Political Influences on Hazard Analysis through a Classroom Role Playing Exercise

    NASA Astrophysics Data System (ADS)

    Hales, T. C.; Cashman, K. V.

    2006-12-01

    Geological hazard mitigation is a complicated process that involves both detailed scientific research and negotiations between community members with competing interests in the solution. Geological hazards classes based around traditional lecture methods have difficulty conveying the decision-making processes that go into these negotiations. To address this deficiency, we have spent five years developing and testing a role- playing exercise based on mitigation of a dam outburst hazard on Ruapehu volcano, New Zealand. In our exercise, students are asked to undertake one of five different roles and decide the best way to mitigate the hazard. Over the course of their discussion students are challenged to reach a consensus decision despite the presence of strongly opposed positions. Key to the success of the exercise are (1) the presence of a facilitator and recorder for each meeting, (2) the provision of unique information for each interested party, and (3) the division of the class into multiple meeting groups, such that everyone is required to participate and individual groups can evolve to different conclusions. The exercise can be completed in a single hour and twenty minute classroom session that is divided into four parts: an introduction, a meeting between members of the same interested party to discuss strategy, a meeting between different interested parties, and a debriefing session. This framework can be readily translated to any classroom hazard problem. In our experience, students have responded positively to the use of role-playing to supplement lectures.

  15. Natural and technologic hazardous material releases during and after natural disasters: a review.

    PubMed

    Young, Stacy; Balluz, Lina; Malilay, Josephine

    2004-04-25

    Natural disasters may be powerful and prominent mechanisms of direct and indirect hazardous material (hazmat) releases. Hazardous materials that are released as the result of a technologic malfunction precipitated by a natural event are referred to as natural-technologic or na-tech events. Na-tech events pose unique environmental and human hazards. Disaster-associated hazardous material releases are of concern, given increases in population density and accelerating industrial development in areas subject to natural disasters. These trends increase the probability of catastrophic future disasters and the potential for mass human exposure to hazardous materials released during disasters. This systematic review summarizes direct and indirect disaster-associated releases, as well as environmental contamination and adverse human health effects that have resulted from natural disaster-related hazmat incidents. Thorough examination of historic disaster-related hazmat releases can be used to identify future threats and improve mitigation and prevention efforts. PMID:15081734

  16. Probabilistic Hazard Curves for Tornadic Winds, Wind Gusts, and Extreme Rainfall Events

    SciTech Connect

    Weber, A.H.

    1999-07-29

    'This paper summarizes a study carried on at the Savannah River Site (SRS) for determining probabilistic hazard curves for tornadic winds, wind gusts, and extreme rainfall events. DOE Order 420.1, Facility Safety, outlines the requirements for Natural Phenomena Hazards (NPH) mitigation for new and existing DOE facilities. Specifically, NPH include tornadic winds, maximum wind gusts, and extreme rainfall events. Probabilistic hazard curves for each phenomenon indicate the recurrence frequency, and these hazard curves must be updated at least every 10 years to account for recent data, improved methodologies, or criteria changes. Also, emergency response exercises often use hypothetical weather data to initiate accident scenarios. The hazard curves in these reports provide a means to use extreme weather events based on models and measurements rather than scenarios that are created ad hoc as is often the case.'

  17. Risk Perception and the Psychology of Natural Hazard Preparedness

    NASA Astrophysics Data System (ADS)

    Thompson, K. J.; Weber, E. U.

    2014-12-01

    In the preparedness phase of the disaster cycle, willingness to invest resources in prevention and mitigation doesn't depend only on quantitative judgments of the probability of a disaster. People also evaluate the risks of situations in qualitative ways. Psychological studies of risk perception have shown that risk attitudes toward everyday technologies and activities (e.g., electric power, air travel, smoking) can be mapped onto two orthogonal dimensions: how unknown the risks seem, and how dread or severe they feel. Previously, this psychometric approach to risk perception has focused mostly on man-made risks (e.g., Fischhoff et al. 1978, Slovic 1987). In this paper we examine how natural hazards fit into the established unknown/dread risk space. Hazards that are high on the unknown dimension of risk tend to be perceived as having effects that are unknown to science and to the exposed, uncontrollable, and new. Hazards that rank high on the dread/severity dimension are seen as immediate, catastrophic, highly dreaded on a gut level, new, and likely to be fatal. Perceived risk tends to be highest for hazards that are both high on the dread dimension and low on the unknown dimension. We find that weather-related hazards rank lowest on both dimensions: blizzards, heat waves, hailstorms, fog, and ice storms are all feel very known and not particularly dread. The exception for this group is hurricanes and tornadoes, which are viewed as more similar to geophysical hazards and mass movements: high on dread, though not particularly unknown. Two notable outliers are climate change and sea-level rise, which are both considered very unknown (higher than any other natural hazard save sinkholes), and not at all dread (less dread even than fog and dust storms). But when compared with perceptions of technological hazards, nearly every natural hazard ranks as more dread than any technology or activity, including nuclear power. Man-made hazards fall with technologies, rather than

  18. Natural and Man-Made Hazards in the Cayman Islands

    NASA Astrophysics Data System (ADS)

    Novelo-Casanova, D. A.; Suarez, G.

    2010-12-01

    awareness of decision makers for disasters prevention and mitigation plans. Our results constitute the basis of future mitigation risk projects in the islands. Areas showing the level of exposure to natural and man-made hazards at Grand Cayman.

  19. Radiation Hazard Detector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    NASA technology has made commercially available a new, inexpensive, conveniently-carried device for protection, of people exposed to potentially dangerous levels of microwave radiation. Microwaves are radio emissions of extremely high frequency. They can be hazardous but the degree of hazard is not yet well understood. Generally, it is believed that low intensity radiation of short duration is not harmful but that exposure to high levels can induce deep internal burns, affecting the circulatory and nervous systems, and particularly the eyes. The Department of Labor's Occupational Safety and Health Administration (OSHA) has established an allowable safe threshold of exposure. However, people working near high intensity sources of microwave energy-for example, radar antennas and television transmitters-may be unknowingly exposed to radiation levels beyond the safe limit. This poses not only a personal safety problem but also a problem for employers in terms of productivity loss, workman's compensation claims and possible liability litigation. Earlier-developed monitoring devices which warn personnel of dangerous radiation levels have their shortcomings. They can be cumbersome and awkward to use while working. They also require continual visual monitoring to determine if a person is in a dangerous area of radiation, and they are relatively expensive, another deterrent to their widespread adoption. In response to the need for a cheaper and more effective warning system, Jet Propulsion Laboratory developed, under NASA auspices, a new, battery-powered Microwave Radiation Hazard Detector. To bring the product to the commercial market, California Institute Research Foundation, the patent holder, granted an exclusive license to Cicoil Corporation, Chatsworth, California, an electronic components manufacturer.

  20. Toxic Hazards Research Unit

    NASA Technical Reports Server (NTRS)

    Macewen, J. D.; Vernot, E. H.

    1971-01-01

    The activities of the Toxic Hazards Research Unit (THRU) for the period of June 1970 through May 1971 reviewed. Modification of the animal exposure facilities primarily for improved human safety but also for experimental integrity and continuity are discussed. Acute toxicity experiments were conducted on hydrogen fluoride (HF), hydrogen chloride (HCl), nitrogen dioxide (NO2), and hydrogen cyanide (HCN) both singly and in combination with carbon dioxide (CO). Additional acute toxicity experiments were conducted on oxygen difluoride (OF2) and chlorine pentafluoride (ClF5). Subacute toxicity studies were conducted on methylisobutylketone and dichloromethane (methylene dichloride). The interim results of further chronic toxicity experiments on monomethylhydrazine (MMH) are also described.

  1. Hazardous Environment Robotics

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Jet Propulsion Laboratory (JPL) developed video overlay calibration and demonstration techniques for ground-based telerobotics. Through a technology sharing agreement with JPL, Deneb Robotics added this as an option to its robotics software, TELEGRIP. The software is used for remotely operating robots in nuclear and hazardous environments in industries including automotive and medical. The option allows the operator to utilize video to calibrate 3-D computer models with the actual environment, and thus plan and optimize robot trajectories before the program is automatically generated.

  2. 40 CFR 1508.20 - Mitigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Mitigation. 1508.20 Section 1508.20 Protection of Environment COUNCIL ON ENVIRONMENTAL QUALITY TERMINOLOGY AND INDEX § 1508.20 Mitigation... eliminating the impact over time by preservation and maintenance operations during the life of the action....

  3. 34 CFR 81.33 - Mitigating circumstances.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 1 2011-07-01 2011-07-01 false Mitigating circumstances. 81.33 Section 81.33 Education Office of the Secretary, Department of Education GENERAL EDUCATION PROVISIONS ACT-ENFORCEMENT Hearings for Recovery of Funds § 81.33 Mitigating circumstances. (a) A recipient that is a State or...

  4. Wake Turbulence Mitigation for Arrivals (WTMA)

    NASA Technical Reports Server (NTRS)

    Williams, Daniel M.; Lohr, Gary W.; Trujillo, Anna C.

    2008-01-01

    The preliminary Wake Turbulence Mitigation for Arrivals (WTMA) concept of operations is described in this paper. The WTMA concept provides further detail to work initiated by the Wake Vortex Avoidance System Concept Evaluation Team and is an evolution of the Wake Turbulence Mitigation for Departure concept. Anticipated benefits about reducing wake turbulence separation standards in crosswind conditions, and candidate WTMA system considerations are discussed.

  5. 40 CFR 1508.20 - Mitigation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Mitigation. 1508.20 Section 1508.20 Protection of Environment COUNCIL ON ENVIRONMENTAL QUALITY TERMINOLOGY AND INDEX § 1508.20 Mitigation... eliminating the impact over time by preservation and maintenance operations during the life of the action....

  6. Economic outcomes of greenhouse gas mitigation options

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Economic outcomes of greenhouse gas (GHG) mitigation options are reviewed including reductions in tillage intensity, diversifying crop rotation, and N fertilizer management. The review indicates that, while reducing tillage can be a cost effective GHG mitigation practice, results vary by region and ...

  7. CO2 mitigation via accelerated limestone weathering

    USGS Publications Warehouse

    Rau, G.H.; Knauss, K.G.; Langer, W.H.; Caldeira, K.

    2004-01-01

    The climate and environmental impacts of the current, carbon-intensive energy usage demands that effective and practical energy alternatives and CO2 mitigation strategies be found. A discussion on CO2 mitigation via accelerated limestone weathering covers limestone and seawater availability and cost; reaction rates and densities; effectiveness in CO2 sequestration; and environmental impacts and benefits.

  8. Mitigation assessment results and priorities in China

    SciTech Connect

    Wu Zongxin; Wei Zhihong

    1996-12-31

    In this paper energy related CO2 emission projections of China by 2030 are given. CO2 mitigation potential and technology options in main fields of energy conservation and energy substitution are analyzed. CO2 reduction costs of main mitigation technologies are estimated and the AHP approach is used for helping assessment of priority technologies.

  9. 32 CFR 989.22 - Mitigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... clearly whether mitigation measures (40 CFR 1508.20) must be implemented for the alternative selected. If... EPF informed of the mitigation status. The EPF reports its status, through the MAJCOM, to HQ USAF/A7CI... forwarded, through the MAJCOM EPF to HQ USAF/A7CI for review within 90 days from the date of signature...

  10. 32 CFR 989.22 - Mitigation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... clearly whether mitigation measures (40 CFR 1508.20) must be implemented for the alternative selected. If... EPF informed of the mitigation status. The EPF reports its status, through the MAJCOM, to HQ USAF/A7CI... forwarded, through the MAJCOM EPF to HQ USAF/A7CI for review within 90 days from the date of signature...

  11. 32 CFR 989.22 - Mitigation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... clearly whether mitigation measures (40 CFR 1508.20) must be implemented for the alternative selected. If... EPF informed of the mitigation status. The EPF reports its status, through the MAJCOM, to HQ USAF/A7CI... forwarded, through the MAJCOM EPF to HQ USAF/A7CI for review within 90 days from the date of signature...

  12. 32 CFR 989.22 - Mitigation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... clearly whether mitigation measures (40 CFR 1508.20) must be implemented for the alternative selected. If... EPF informed of the mitigation status. The EPF reports its status, through the MAJCOM, to HQ USAF/A7CI... forwarded, through the MAJCOM EPF to HQ USAF/A7CI for review within 90 days from the date of signature...

  13. 32 CFR 989.22 - Mitigation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... clearly whether mitigation measures (40 CFR 1508.20) must be implemented for the alternative selected. If... EPF informed of the mitigation status. The EPF reports its status, through the MAJCOM, to HQ USAF/A7CI... forwarded, through the MAJCOM EPF to HQ USAF/A7CI for review within 90 days from the date of signature...

  14. Mitigation of Volcanic Risk: The COSMO-SkyMed Contribution

    NASA Astrophysics Data System (ADS)

    Sacco, Patrizia; Daraio, Maria Girolamo; Battagliere, Maria Libera; Coletta, Alessandro

    2015-05-01

    The Italian Space Agency (ASI) promotes Earth Observation (EO) applications related to themes such as the prediction, monitoring, management and mitigation of natural and anthropogenic hazards. The approach generally followed is the development and demonstration of prototype services, using currently available data from space missions, in particular the COSMO-SkyMed (Constellation of Small Satellites for Mediterranean basin observation) mission, which represents the largest Italian investment in Space System for EO and thanks to which Italy plays a key role worldwide. Projects funded by ASI provide the convergence of various national industry expertise, research and institutional reference users. In this context a significant example is represented by the ASI Pilot Projects, recently concluded, dealing with various thematic, such as volcanoes. In this paper a special focus will be addressed to the volcanic risk management and the contribution provided in this field by COSMO-SkyMed satellite constellation during the last years. A comprehensive overview of the various national and international projects using COSMO-SkyMed data for the volcanic risk mitigation will be given, highlighting the Italian contribution provided worldwide in this operational framework.

  15. Mitigation of Lunar Dust Adhesion by Surface Treatment

    NASA Astrophysics Data System (ADS)

    Dove, A.; Wang, X.; Robertson, S. H.; Horanyi, M.; Devaud, J.; Crowder, M.; Lawitzke, A.

    2009-12-01

    Dust has been recognized as one of the greatest hazards in continued lunar exploration. Thus, it is crucial to develop dust mitigation techniques that will minimize both the damages done to hardware and the dangers posed to humans working on the Moon. Passive mitigation techniques, which modify the surface of a material prior to dust exposure, will aid in repelling dust or reducing adhesion for easier dust removal. Our experiments use various surfaces (black Kapton (polymide), quartz, and silicon) that have been treated to have low surface energies by a Ball Aerospace and Technologies Corp. proprietary surface treatment technique. We use a centrifugal force detachment method to measure the total adhesive force acting between < 25 µm JSC-1 lunar simulant grains and these surfaces, both untreated and treated, in vacuum. Results indicate that the treated surfaces show significant improvement; dust is removed from treated black Kapton with about 4% of the force required for untreated black Kapton, while treated quartz and silicon show about a 50% reduction in force. Further tests will be conducted on additional surfaces, such as stainless steel and polycarbonate, and with different size fractions of JSC-1 in order to evaluate the role of dust grain size on adhesion. Because the Moon’s surface is directly exposed to solar UV radiation, we will also measure adhesion on surfaces that have previously been UV-irradiated.

  16. Contributions to the Characterization and Mitigation of Rotorcraft Brownout

    NASA Astrophysics Data System (ADS)

    Tritschler, John Kirwin

    Rotorcraft brownout, the condition in which the flow field of a rotorcraft mobilizes sediment from the ground to generate a cloud that obscures the pilot's field of view, continues to be a significant hazard to civil and military rotorcraft operations. This dissertation presents methodologies for: (i) the systematic mitigation of rotorcraft brownout through operational and design strategies and (ii) the quantitative characterization of the visual degradation caused by a brownout cloud. In Part I of the dissertation, brownout mitigation strategies are developed through simulation-based brownout studies that are mathematically formulated within a numerical optimization framework. Two optimization studies are presented. The first study involves the determination of approach-to-landing maneuvers that result in reduced brownout severity. The second study presents a potential methodology for the design of helicopter rotors with improved brownout characteristics. The results of both studies indicate that the fundamental mechanisms underlying brownout mitigation are aerodynamic in nature, and the evolution of a ground vortex ahead of the rotor disk is seen to be a key element in the development of a brownout cloud. In Part II of the dissertation, brownout cloud characterizations are based upon the Modulation Transfer Function (MTF), a metric commonly used in the optics community for the characterization of imaging systems. The use of the MTF in experimentation is examined first, and the application of MTF calculation and interpretation methods to actual flight test data is described. The potential for predicting the MTF from numerical simulations is examined second, and an initial methodology is presented for the prediction of the MTF of a brownout cloud. Results from the experimental and analytical studies rigorously quantify the intuitively-known facts that the visual degradation caused by brownout is a space and time-dependent phenomenon, and that high spatial frequency

  17. Protection of large alpine infrastructures against natural hazards

    NASA Astrophysics Data System (ADS)

    Robl, Jörg; Scheikl, Manfred; Hergarten, Stefan

    2013-04-01

    Large infrastructures in alpine domains are threatened by a variety of natural hazards like debris flows, rock falls and snow avalanches. Especially linear infrastructure including roads, railway lines, pipe lines and power lines passes through the entire mountain range and the impact of natural hazards can be expected along a distance over hundreds of kilometers. New infrastructure projects like storage power plants or ski resorts including access roads are often located in remote alpine domains without any historical record of hazardous events. Mitigation strategies against natural hazards require a detailed analysis on the exposure of the infrastructure to natural hazards. Following conventional concepts extensive mapping and documentation of surface processes over hundreds to several thousand km² of steep alpine domain is essential but can be hardly performed. We present a case study from the Austrian Alps to demonstrate the ability of a multi-level concept to describe the impact of natural hazards on infrastructure by an iterative process. This includes new state of the art numerical models, modern field work and GIS-analysis with an increasing level of refinement at each stage. A set of new numerical models for rock falls, debris flows and snow avalanches was designed to operate with information from field in different qualities and spatial resolutions. Our analysis starts with simple and fast cellular automata for rockfalls and debrisflows to show the exposure of the infrastructure to natural hazards in huge domains and detects "high risk areas" that are investigated in more detail in field in the next refinement level. Finally, sophisticated 2D- depth averaged fluid dynamic models for all kinds of rapid mass movements are applied to support the development of protection structures.

  18. Structural master plan of flood mitigation measures

    NASA Astrophysics Data System (ADS)

    Heidari, A.

    2009-01-01

    Flood protection is one of the practical methods in damage reduction. Although it not possible to be completely protected from flood disaster but major part of damages can be reduced by mitigation plans. In this paper, the optimum flood mitigation master plan is determined by economic evaluation in trading off between the construction costs and expected value of damage reduction as the benefits. Size of the certain mitigation alternative is also be obtained by risk analysis by accepting possibility of flood overtopping. Different flood mitigation alternatives are investigated from various aspects in the Dez and Karun river floodplain areas as a case study in south west of IRAN. The results show that detention dam and flood diversion are the best alternatives of flood mitigation methods as well as enforcing the flood control purpose of upstream multipurpose reservoirs. Dyke and levees are not mostly justifiable because of negative impact on down stream by enhancing routed flood peak discharge magnitude and flood damages as well.

  19. Long term performance of radon mitigation systems

    SciTech Connect

    Prill, R.; Fisk, W.J.

    2002-03-01

    Researchers installed radon mitigation systems in 12 houses in Spokane, Washington and Coeur d'Alene, Idaho during the heating season 1985--1986 and continued to monitor indoor radon quarterly and annually for ten years. The mitigation systems included active sub-slab ventilation, basement over-pressurization, and crawlspace isolation and ventilation. The occupants reported various operational problems with these early mitigation systems. The long-term radon measurements were essential to track the effectiveness of the mitigation systems over time. All 12 homes were visited during the second year of the study, while a second set 5 homes was visited during the fifth year to determine the cause(s) of increased radon in the homes. During these visits, the mitigation systems were inspected and measurements of system performance were made. Maintenance and modifications were performed to improve system performance in these homes.

  20. Incineration of hazardous wastes.

    PubMed

    Gannon, T; Ansbro, A R; Burns, R P

    1991-10-01

    Glaxo has practiced incineration of liquid and gaseous wastes for over twenty years and currently operate eleven liquid and gas incinerators in the United Kingdom and Singapore. The liquid incinerators burn, as their main streams, those solvents that cannot be recovered and recycled within the processes. The early installations were for readily combustible solvents only. However, there has been a progressive move into the destruction of more difficult and hazardous wastes, with the consequential requirements for more sophisticated technology, in the belief that the responsible destruction of waste should be tackled near to its source. The eventual aim is to be self-sufficient in this area of waste management. The incineration of hazardous liquid and gaseous waste has presented a series of design, operational and monitoring problems into account which have all been successfully overcome. The solutions take into account the environmental consequences of the operations from both liquid and gaseous emissions. In order to ensure minimal environmental impact and safe operation the best practicable technology is employed. Environmental assessment forms part of the process development and permitting procedures. PMID:24233930